LN
28]
N
LN
)
O
-
—l

International Summer School, GTTSE 2007
Braga, Portugal, July 2007
Revised Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5235

Ralf Lammel
Joost Visser
Joao Saraiva (Eds.)

Generative and
Transformational Techniques
in Software Engineering

International Summer School, GTTSE 2007
Braga, Portugal, July 2-7, 2007
Revised Papers

@ Springer

Volume Editors

Ralf Lammel

Universitit Koblenz-Landau, Fachbereich 4
Institut fiir Informatik, B127
Universititsstrae 1, 56070 Koblenz, Germany
E-mail: rlaemmel @acm.org

Joost Visser

Software Improvement Group

A.J. Ernststraat 595-H, 1082 LD Amsterdam, The Netherlands
E-mail: j.visser@sig.nl

Jodo Saraiva

Universidade do Minho, Departamento de Informatica
Campus de Gualtar, 4710-057 Braga, Portugal
E-mail: jas@di.uminho.pt

Library of Congress Control Number: Applied for

CR Subject Classification (1998): B.2, C.1,C.2,C.5,D.2,D.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-88642-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88642-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12527151 06/3180 543210

Preface

The second instance of the international summer school on Generative and
Transformational Techniques in Software Engineering (GTTSE 2007) was held
in Braga, Portugal, during July 2-7, 2007. This volume contains an augmented
selection of the material presented at the school, including full tutorials, short
tutorials, and contributions to the participants workshop.

The GTTSE summer school series brings together PhD students, lecturers,
technology presenters, as well as other researchers and practitioners who are
interested in the generation and the transformation of programs, data, models,
metamodels, documentation, and entire software systems. This concerns many
areas of software engineering: software reverse and re-engineering, model-driven
engineering, automated software engineering, generic language technology, to
name a few. These areas differ with regard to the specific sorts of metamodels
(or grammars, schemas, formats etc.) that underlie the involved artifacts, and
with regard to the specific techniques that are employed for the generation and
the transformation of the artifacts. The first instance of the school was held in
2005 and its proceedings appeared as volume 4143 in the LNCS series.

The 2007 instance of GTTSE offered eight tutorials, given by renowned rep-
resentatives of complementary approaches and problem domains. Each tutorial
combines foundations, methods, examples, and tool support. The program of the
summer school also featured eight invited technology presentations, which pre-
sented concrete support for generative and transformational techniques. These
presentations complemented each other in terms of the chosen application do-
mains, case studies, and the underlying concepts. Furthermore, the program of
the school included a participants workshop to which all students of the summer
school were asked to submit an extended abstract beforehand. The Organizing
Committee reviewed these extended abstracts and invited 12 students to present
their work at the workshop.

This volume contains extended and revised versions of the material presented
at the summer school. Each of the seven full tutorials included here was reviewed
by two members of the Scientific Committee of GTTSE 2007. The five included
short tutorials were reviewed by three members each. The four included par-
ticipant contributions were selected on the basis of three reviews for each such
submission. All submissions were carefully revised based on the reviews.

We are grateful to all lecturers and participants of the school for their enthu-
siasm and hard work in preparing excellent material for the school itself and for
these proceedings. Due to their efforts the event was a great success, which we
trust the reader finds reflected in this volume.

April 2008 Ralf Lammel
Joost Visser
Joao Saraiva

Organization

GTTSE 2007 was hosted by the Departamento de Informatica, Universidade do
Minho, Braga, Portugal.

Executive Committee

Program Co-chair
Program Co-chair

Organizing Chair

Ralf Lammel (Microsoft, Redmond, USA)

Joost Visser (Software Improvement Group,
Amsterdam, The Netherlands)

Joao Saraiva (Universidade do Minho, Braga,
Portugal)

Scientific Committee

Uwe ABBmann
Paulo Borba
Mark van den Brand

Charles Consel
Jim Cordy

Alcino Cunha
Jean-Luc Dekeyser

Andrea DeLucia
Stephen Freund
Jeff Gray

Reiko Heckel
Gorel Hedin
Dirk Heuzeroth

Zhenjiang Hu
Ralf Lammel
Julia Lawall
Cristina Lopes
Tom Mens
Marjan Mernik
Klaus Ostermann
Jens Palsberg
Benjamin C. Pierce
Joao Saraiva
Andy Schiirr

TU Dresden, Germany

Universidade Federal de Pernambuco, Brazil

Technical University Eindhoven,
The Netherlands

LaBRI/INRIA, France

Queen’s University, Canada

Universidade do Minho, Portugal

Université des Sciences et Technologies de Lille,
France

Universita di Salerno, Italy

Williams College, UK

University of Alabama at Birmingham, USA

University of Leicester, UK

Lund Institute of Technology, Sweden

IBM Deutschland Entwicklung GmbH,
Germany

The University of Tokyo, Japan

Microsoft Corporation, USA

University of Copenhagen, Denmark

University of California at Irvine, USA

University of Mons-Hainaut, Belgium

University of Maribor, Slovenia

Technical University Darmstadt, Germany

UCLA, USA

University of Pennsylvania, USA

Universidade do Minho, Portugal

Technical University Darmstadt, Germany

VIII Organization

Anthony Sloane Macquarie University, Australia
Perdita Stevens University of Edinburgh, UK

Peter Thiemann Universitat Freiburg, Germany

Simon Thompson University of Kent, UK

Joost Visser Universidade do Minho, Portugal
Victor Winter University of Nebraska at Omaha, USA
Eric Van Wyk University of Minnesota, USA

Albert Ziindorf University of Kassel, Germany

Organizing Committee

Alcino Cunha Universidade do Minho, Braga, Portugal
Jodo Saraiva Universidade do Minho, Braga, Portugal
Ricardo Vilaga Universidade do Minho, Braga, Portugal
Joost Visser Software Improvement Group, Amsterdam,

The Netherlands

Sponsoring Institutions

Centro de Ciéncias e Tecnologias de Computacao
Luso-American Foundation
Software Improvement Group

CCTC

Centro de Ciéncias e
Tecnologias de Computacao

LUSO-AMERICAN
FOUNDATION

-l

Table of Contents

I Full Tutorials

Design Space of Heterogeneous Synchronization 3
Michat Antkiewicz and Krzysztof Czarnecki

Software Reuse beyond Components with XVCL (Tutorial)............ 47
Stan Jarzabek

.QL: Object-Oriented Queries Made Easy 78
Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev,
Pavel Avgustinov, Torbjorn Ekman, Neil Ongkingco, and
Julian Tibble

Transforming Data by Calculation 134
José N. Oliveira

How to Write Fast Numerical Code: A Small Introduction............. 196
Srinivas Chellappa, Franz Franchetti, and Markus Piischel

A Gentle Introduction to Multi-stage Programming, Part IT 260
Walid Taha

WebDSL: A Case Study in Domain-Specific Language Engineering 291

FEelco Visser

IT Short Tutorials

Model-Driven Engineering of Rules for Web Services 377
Marko Ribarié, Dragan GaSevié, Milan Milanovié, Adrian Giurca,
Sergey Lukichev, and Gerd Wagner

An Introduction to Context-Oriented Programming with ContextsS 396
Robert Hirschfeld, Pascal Costanza, and Michael Haupt

A Landscape of Bidirectional Model Transformations 408
Perdita Stevens

Evolving a DSL Implementation 425
Laurence Tratt

Adding Dimension Analysis to Java as a Composable Language
Extension (Extended Abstract) i il 442
Eric Van Wyk and Yogesh Mali

X Table of Contents

IIT Participants Contributions

Model Transformations for the Compilation of Multi-processor

Systems-on-Chip

Eric Piel, Philippe Marquet, and Jean-Luc Dekeyser

Implementation of a Finite State Machine with Active Libraries

I G b

Zoltan Juhdsz, Addm Sipos, and Zoltin Porkoldb

Automated Merging of Feature Models Using Graph Transformations. . .

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and
Pablo Trinidad

Modelling the Operational Semantics of Domain-Specific Modelling

Languages

Guido Wachsmuth

Author Imdex

Part I
Full Tutorials

Design Space of Heterogeneous Synchronization

Michal Antkiewicz and Krzysztof Czarnecki

University of Waterloo
Generative Software Development Lab
{mantkiew,k2czarne}Quwaterloo.ca

http://gsd.uwaterloo.ca

Abstract. This tutorial explores the design space of heterogeneous syn-
chronization, which is concerned with establishing consistency among
artifacts that conform to different schemas or are expressed in different
languages. Our main application scenario is synchronization of software
artifacts, such as code, models, and configuration files. We classify het-
erogeneous synchronizers according to the cardinality of the relation that
they enforce between artifacts, their directionality, their incrementality,
and whether they support reconciliation of concurrent updates. We then
provide a framework of artifact operators that describes different ways of
building heterogeneous synchronizers, such as synchronizers based on ar-
tifact or update translation. The design decisions within the framework
are described using feature models. We present 16 concrete instances
of the framework, discuss tradeoffs among them, and identify sample
implementations for some of them. We also explore additional design
decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchroniza-
tion result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software
engineering, model management, and model transformation.

1 Introduction

The sheer complexity of today’s software-intensive systems can only be con-
quered by incremental and evolutionary development. As Brooks points out [I],
“teams can grow much more complex entities in four months than they can
build,” where “build” refers to the traditional engineering approach of specify-
ing structures accurately and completely before they are constructed. However,
despite important advances in software methods and technology, such as agile
development and object orientation, evolving software to conform to a changed
set of requirements is notoriously hard. Evolution is hard because it requires
keeping multiple software artifacts such as specifications, code, configuration
files, and tests, consistent. A simple change in one artifact may require multi-
ple changes in many artifacts and current development tools offer little help in
identifying the artifacts and their parts that need to be changed and performing
the changes.

R. Lammel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 3 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://gsd.uwaterloo.ca

4 M. Antkiewicz and K. Czarnecki

Synchronization is the process of enforcing consistency among a set of ar-
tifacts and synchronizers are procedures that automate—fully or in part—the
synchronization process. Heterogeneous synchronizers synchronize artifacts that
conform to different schemas or are expressed in different languages. Many pro-
cesses in software engineering can be viewed as heterogeneous synchronization.
Examples include reverse engineering models from code using code queries, com-
piling programs to object code, generating program code from models, round-
trip engineering between models and code, and maintaining consistency among
models expressed in different modeling languages.

While many approaches to synchronization of heterogeneous software arti-
facts exist, it is not clear how they differ and how to choose among them. The
purpose of this tutorial is to address this problem. We explore the design space
of heterogeneous synchronizers. We cover both the simpler synchronization sce-
narios where some artifacts are never edited directly but are re-generated from
other artifacts and the more complex scenarios where several artifacts that can
be modified directly need to be synchronized. Both kinds of scenarios occur
in software development. Example of the simpler scenario is generation of ob-
ject code from source code. The need for synchronizing multiple heterogeneous
artifacts that are edited directly arises in multi-view development [2L3], where
each stakeholder can understand and change the system through an appropriate
view. The motivation for providing different views is that certain changes may
be most conveniently expressed in a particular view, e.g., because of conciseness
of expression or the familiarity of the a stakeholder with a particular view.

The tutorial is organized as follows. In Section 2, we present kinds of re-
lations among software artifacts and concrete examples of such relations. In
Section 3, we introduce kinds of synchronizers that can be used for reestab-
lishing the consistency among artifacts. We classify heterogeneous synchronizers
according to the cardinality of the relation that they enforce between artifacts,
their directionality, their incrementality, and whether they support reconciliation
of concurrent updates in Sections The need for reconciliation arises in the
context of concurrent development, where developers need to concurrently mod-
ify multiple related artifacts. We provide a framework of artifact operators that
describes different ways of building heterogeneous synchronizers, such as syn-
chronizers based on artifact or update translation. The operator-based approach
is inspired by the manifesto for model merging by Brunet et al. [4]. The design
decisions within the framework are described using feature models. We present
16 concrete instances of the framework, discuss their properties, and identify
sample implementations for some of them. We summarize the synchronizers and
discuss the tradeoffs among the synchronizers in Section [7} In Section B we ex-
plore additional design decisions such as representation of updates, establishing
correspondence among model elements, and strategies for selecting a single syn-
chronization result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software engineer-
ing, model management, and model transformation in Section [0l We conclude
in Section IOl

Design Space of Heterogeneous Synchronization 5

Purpose and Approach. The purpose of the tutorial is to present a wide
family of scenarios that require heterogeneous synchronization and the different
solutions that can be applied in each scenario. The solutions are characterized
by the scenarios they support, such as unidirectional or bi-directional synchro-
nization, and the different design choices that can be made when constructing
a synchronizer. The discussion of the scenarios and design choices is made more
precise by considering the properties of the relations that are to be maintained
among sets of artifacts and formulating the synchronizers using a set of arti-
fact operators. The formalization does not consider the structure of the artifacts
or their semantics. Whereas such a treatment would allow more precision in
the analysis of choices, it would introduce a considerable amount of additional
complexity and detail. We leave this endeavor for future work.

The intended audience is primarily those interested in building heterogeneous
synchronizers. This audience can learn about the different design choices, the
tradeoffs among the choices, and examples of systems implementing particular
kinds of synchronizers. Furthermore, the operator-based formalization of the
different kinds of synchronizers may also be of interest to researchers studying
the semantics of model transformations.

2 Relations among Software Artifacts

Modern software development involves a multitude of artifacts of different types,
such as requirements and design models, program code, tests, XML configuration
files, and documentation. Since the artifacts describe the same software system,
they are related to each other in various ways. For example, a design model and
its implementation code should be related by refinement. Furthermore, both the
code and its XML configuration files have to use consistent names and identifiers.
Also, the design model should conform to the metamodel defining the abstract
syntax of the language in which the model is expressed.

In this tutorial, we usually consider software artifacts simply as typed values.
An artifact type is a set of artifacts and it may be viewed as an extensional
definition of a language. For example, assuming that J denotes the Java lan-
guage, we write P € J in order to denote that the artifact P is a Java program.
Alternatively, we may also indicate the type of an artifact using a subscript, e.g.,
P7. On few occasions, we also consider the internal structure of an artifact, in
which case we view an artifact as a collection of elements with attributes and
links among the elements.

When an artifact is modified, related artifacts need to be updated in order to
reestablish the relations. For example, when the design model is changed, the im-
plementation code may need to be updated, and vice versa. The general problem of
identifying relations among artifacts, detecting inconsistencies, handling of incon-
sistencies, and establishing relations among artifacts is referred to as consistency
management. Furthermore, the update of related artifacts in order to re-establish
consistency after changes to some of these artifacts is known as synchronization,

6 M. Antkiewicz and K. Czarnecki

change propagation, or co-evolution. We refer to synchronization as heterogeneous
if the artifacts being synchronized are of different types.

Definition 1. CONSISTENT ARTIFACTS. We say that two artifacts Ss and Tt are
consistent or synchronized with respect to the relation R C Sx 7T iff (Ss,Tr) € R.

In general, two or more artifacts need not be consistent at all times [2L[5]. For
example, the implementation code may be out of sync with its design model
while several changes are being applied to the model. In this case, the incon-
sistency between the code and the design is desirable and should be tolerated.
Only after the changes are completed, the code is updated and the consistency
re-established. Consequently, some authors use the term inconsistency manage-
ment [6L[7L8].

The relations among software artifacts may have different properties. For a
binary relation R C § x 7, we distinguish among the following three interesting
cases:

1. R is a bijection. This is the one-to-one case where each artifact in S corre-
sponds to exactly one artifact in 7 and vice versa.

2. Ris a total and surjective function. This is the many-to-one case where each
artifact in S corresponds to exactly one artifact in 7 and each artifact in 7°
corresponds to at least one artifact in S.

3. Ris a total relation. This is the many-to-many case where each artifact in S
corresponds to at least one artifact in 7 and each artifact in 7 corresponds
to at least one artifact in S.

Note that all of the above cases assume total binary relations. In practice,
cases where R covers S or 7 only partially can be handled, e.g., by making
these sets smaller using additional well-formedness constraints or by introducing
a special value representing an error. For example, a source artifact that has no
proper translation into the target type would be mapped to such an error element
in the target type. Furthermore, the above cases are distinguished only in regard
to the correspondence between whole artifacts. In practice, the artifact relations
also need to establish correspondence between the structures within the artifacts,
i.e., the correspondence between the elements and links in one artifact and the
elements and links in another artifact. We will explicitly refer to this structural
correspondence whenever necessary. Finally, the artifact relations need not be
binary, but could be relating three or more sets of artifacts.

Examples. Let us look at some examples of relations among different kinds of
artifacts.

Ezample 1. Simple class diagrams and KM3.

KM3 [9] is a textual notation that can be used for the specification of simple
class diagrams. The relation between graphical class diagrams and their textual
specifications is a bijection. In this example, assuming that the layout of diagrams

Design Space of Heterogeneous Synchronization 7

and text is irrelevant, artifacts expressed in one language can be translated into
the other language without any loss of information.

Example 2. Java and type hierarchy.

A type hierarchy of a Java program is a graph in which classes and interfaces are
nodes and extends and implements relations are edges. Such a type hierarchy is
an abstraction of a Java program because it contains a subset of the information
contained in the program and it does not contain any additional information that
does not exist in the program. Furthermore, many different Java programs may
have the same type hierarchy. Therefore, the relation between a Java program
and its type hierarchy is a function.

Example 3. Java and XML and Struts Framework-Specific Modeling Language
(FSML).

Struts FSML [I0] is a modeling language that can be used for describing how
Struts’ concepts actions, forms, and forwards are implemented in an application
consisting of Java code and XML configuration files. A model expressed in the
Struts FSML is an abstraction of the code and it can be fully recreated from the
code. Actions, forms, and forwards can be implemented in the code in various
ways, some of which are equivalent with respect to the model. For example, a
Java class is represented in the model as an action if it is a direct or indirect
subclass of the Struts’ Action class. The relation between the code and the
model expressed in Struts FSML is a function: parts of the code do not have
any representation in the model and equivalent ways of implementing actions,
forms, and forwards are represented the same way in the model.

Example 4. UML class diagrams and RDBMS.

This example considers UML class diagrams and relational database schemas.
The relation between the two languages is a general relation because inheritance
and associations in class diagrams can be represented in many different ways in
database schemas and every database schema can be represented using different
class diagrams with or without inheritance [I1]. For example, each single class
can be mapped to a separate table or an entire class hierarchy can be mapped
to a single table. Furthermore, different class hierarchies may still be translated
into the same table structure.

Ezample 5. Statecharts and sequence diagrams.

The relation between statecharts and sequence diagrams is a general relation
because a statechart can be synthesized from multiple sequence diagrams and a
given sequence diagram can be produced by different statecharts.

Ezxample 6. Metamodels and models.

In model-driven software development [I2], the syntax of a modeling language is
often specified as a class model, which is referred to as a metamodel. A metamodel
defines all syntactically correct models and a model is syntactically correct if it
conforms to its metamodel. As any other software artifacts, metamodels evolve
over time. Some changes to the metamodels may break the conformance of ex-
isting models, in which case the models need to be updated [I3]. The relation

8 M. Antkiewicz and K. Czarnecki

between a metamodel and a model is a general relation because many models
can conform to a single metamodel and a single model can conform to many
metamodels. As an example of the latter situation, consider two metamodels
representing the same set of models, but one using abstract and concrete classes
and the other using concrete classes only.

3 Mappings, Transforms, Transformations, Synchronizers,
and Synchronizations

We refer to the specifications of relations among artifacts as mappings. Fur-
thermore, we refer to programs that implement mappings as transforms and
executions of those programs as transformations. In this tutorial, we focus on
synchronizers, which are transforms used for (re-)establishing consistency among
related artifacts. Consequently, we refer to the execution of a synchronizer as
synchronization. Note that not every transform is a synchronizer. For exam-
ple, refactorings, which change the structure of an artifact while preserving the
artifact’s semantics are transforms, but they are not synchronizers.

Transforms are executable programs, which may be interactive. For example,
they may seek additional inputs from the user to decide among possible alter-
native results. In this tutorial, we model transforms as computable functions,
where any additional inputs are given to the functions up-front as arguments. In
particular, we represent interactive choices as decision functions that are passed
as parameters to the transforms.

In the following sections we present various kinds of heterogeneous synchro-
nizers that can be used to synchronize two artifacts, which we refer to as source
and target. At the highest level, a synchronizer falls into one of the three distinct
categories: unidirectional, bidirectional, and bidirectional with reconciliation (cf.
Figure [I)). The three alternatives are represented as a feature model [14)[15]. A
feature model is a hierarchy of common and variable features characterizing the
set of instances of a concept that is represented by the root of the hierarchy.
In this tutorial, the features provide a terminology and a representation of the
design choices for heterogeneous synchronizers. The subset of the feature model
notation used in this tutorial is explained in Table [Il The three categories of
synchronizers are modeled in Figure [I] as a group of three alternative features.
Each of these alternative features is actually a reference to a more refined feature
model that is presented later.

Heterogeneous synchronizer

D//q\m

Unidirectional synchronizer » Bidirectional synchronizer » Bidirectional synchronizer
with reconciliation »

Fig. 1. Artifact synchronization synchronizers

Design Space of Heterogeneous Synchronization 9

Table 1. Feature modeling notation used in this tutorial

Symbol Explanation
Fl Solitary feature with cardinality [1..1], i.e., mandatory feature
Fé Solitary feature with cardinality [0..1], i.e., optional feature
e Reference to feature F'
/A\ XOR feature group (groups alternative features)
é Grouped feature (a feature under a feature group)

Unidirectional synchronizers synchronize the target artifact with the source
artifact. Bidirectional synchronizers (without reconciliation) can be used to syn-
chronize the target artifact with the source artifact and vice versa. They syn-
chronize in one direction at a time, meaning that they are most useful if only
one of the artifacts was changed since the last synchronization. Bidirectional
synchronizers can also be used when both artifacts have changed since the last
synchronization; however, they cannot be used to resolve conflicting changes to
both artifacts, as one artifact acts as a slave and its changes may get overridden.
Finally, bidirectional synchronizers with reconciliation can be used to synchronize
both artifacts at the same time. Thus, these synchronizers are also applicable in
situations where both artifacts were changed since the last synchronization and
they can be used for conflict resolution in both directions.

4 Unidirectional Synchronizers

Unidirectional synchronization from S to 7 enforcing the relation R C S x T
involves up to four artifacts (cf. Figure [2)):

1. Ss is the original source artifact, i.e., the version of the source artifact before
it was modified by the developer;

2. T is the original target artifact, i.e., the version of the target artifact that
co-existed with the original source artifact;

3. S% is the new source artifact, i.e., the version of the source artifact after it
was modified by the developer; and

4. T is the new target artifact, i.e., the version of the target artifact after
synchronization with the new source artifact.

The first three of these artifacts are the ones that typically exist before the
synchronization occurs. However, the first two are optional since the new source
could have been created from scratch and the original target might have not
been yet created. Note that we use the convention of marking new versions of
artifacts by a prime.

10 M. Antkiewicz and K. Czarnecki

Ss Tr

UASl l Yar

R
Ss «—— Tr

Fig. 2. Artifacts involved in unidirectional synchronization

The fourth artifact, T/, is the new target that needs to be computed during
the synchronization. The enclosing boxes in Figure 2 indicate elements that
are computed during the synchronization. The arrows pointing downwards in
the figure denote updates: Upas is the update applied to the original source
and Ya7 is the target update resulting from the synchronization. The double-
headed arrow between the new artifacts indicates that they are consistent, i.e.,
(S5, T%) € R. Note that, in general, the original artifacts Ss and T do not have
to be consistent; however, some synchronizers might impose such a requirement.

A wunidirectional synchronizer from S to 7 implementing the relation R C
S x T computes the new target T given the new source S, and optionally
the original source Ss and the original target T, as inputs, such that the new
source and the new target are consistent, i.e., (S%,T5) € R. Note that the new
source can also be passed as input to the synchronizer indirectly by passing both
the original source and the update of the source as inputs. Furthermore, some
synchronizer variants require the original source and the original target to be
consistent.

Unidirectional synchronizers can be implemented using different operators
and the choices depend first and foremost on the cardinality of the end of the
relation in the direction of which the synchronizers are executed. In particular, a
synchronizer can be executed towards the cardinality of one, which we refer to as
to-one case, and towards the cardinality of many, which we refer to as to-many
case (cf. Figure [3).

Unidirectional synchronizer

N

To-one » To-many »

Fig. 3. Unidirectional synchronizers

The to-one case corresponds to the situation where the mapping between
source and target is a function from source to target, which also covers the case
of a bijection. The mapping clearly specifies a single target artifact T% that
a synchronizer has to return for a given source artifact S%s. The to-many case
corresponds to the situation where the mapping between source and target is not
a function in the source-to-target direction. In other words, the relation is either
a function in the target-to-source direction or a general relation. Consequently,
the mapping may specify several alternative target artifacts that a synchronizer

Design Space of Heterogeneous Synchronization 11

could return for a given source artifact. Since all synchronizers are functions
returning only a single synchronization result, to-many synchronizers will require
a mechanism for selecting one target artifact from the set of possible alternatives.

4.1 Unidirectional Synchronizers in To-One Direction

The unidirectional to-one case could be described as computing a “disposable
view”, where the target T is fully determined by the source S. In other words,
the source-to-target mapping is a function and the target can be automatically
re-computed whenever needed based on the source S only.

In general, a disposable view can be computed in an incremental or a non-
incremental fashion. The non-incremental approach implies that the view is
completely re-computed whenever the source is modified, whereas the incremen-
tal approach involves computing only the necessary updates to the existing view
and applying these updates. As a result, all incremental synchronizers take the
original target as a parameter.

All to-one synchronizers are original-target-independent, meaning that the
computed new target does not depend on the original target in a mathematical
sense. Although the incremental to-one synchronizers take the original target as
a parameter, the new target depends only on the new source because the relation-
ship between the new source and the new target is a function. The original tar-
get is used by the synchronizer implementation purely to improve performance,
which is achieved by reusing structures from the original target and avoiding
recomputing these structures. We present examples of original-target-dependent
synchronizers in Section

Depending on the operator that is used to translate between source and tar-
get artifact types, we distinguish among three fundamental ways of realizing
unidirectional to-one synchronizers (cf. Figuredl). The first synchronizer variant
is non-incremental and it uses artifact translation, an operator that translates
an entire source artifact into a consistent target artifact. The other two variants
are incremental. The second variant uses heterogeneous artifact comparison, an
operator that directly compares two artifacts of different types and produces an
update that can be applied to the second artifact in order to make it consistent
with the first artifact. The third variant uses update translation, an operator that

To-one
Artifact Heterogeneous Update
translation artifact translation
comparison J)
Homogeneous
artifact
comparison

Fig. 4. Operators used in to-one unidirectional synchronizers

12 M. Antkiewicz and K. Czarnecki

SSL T,

UAsl l Yar

R
S5 ——— T4

Fig. 5. Artifacts involved in unidirectional synchronization using update translation

translates an update to the source artifact into a consistent update of the target
artifact. In addition, update translation expects the original source and the orig-
inal target to be consistent. The artifacts involved in the synchronization using
update translation are shown in Figure[Bl The input artifacts are underlined. As
an option, the transform may use homogeneous artifact comparison to compute
the source update as a difference between the original and the new source.

Artifact translation. The non-incremental variant of the to-one synchronizer
uses an operator that translates a source artifact into a consistent target artifact.

Operator 1. Artifact translation: ATsr : & — T. For an artifact Ss, the
operator ATs 7(Ss) computes St such that (Ss, S1) € R.

In this tutorial, operators are defined generically over artifact types and the
type parameters are specified as subscripts. For example, the operator ATgs 7
has the artifact type parameters S and 7 and these parameters are used in the
operator’s signature.

We are now ready to state the non-incremental to-one synchronizer. We
present all synchronizers using the form input+ preconditionx = computation
= output+, which makes the input artifact(s), the precondition(s) (if any),
the computation steps, and the output artifact(s) explicit. This form may seem
too verbose for the following simple synchronizer, but its advantages become
apparent for more complex synchronizers.

Synchronizer 1. Unidirectional, non-incremental, and to-one synchronizer us-
ing artifact translation:

Ds7:8—T
Sy = Tr=ATs7(Ss) = Tk

In this non-incremental variant, the new source artifact is translated into the
new target artifact, which then replaces the original target artifact.

Examples for Synchronizer [l

Ezample 7. Type hierarchy.

Examples of Synchronizer [Il are type hierarchy extractors for object-oriented
programs (cf. Example B]). Such extractors are offered by many integrated de-
velopment environments (IDEs).

Design Space of Heterogeneous Synchronization 13

Example 8. Reverse engineering in FSMLs.

Another example of Synchronizer [is reverse engineering of framework-based
Java code in FSMLs (cf. Example [B)). The result of reverse engineering is a
framework-specific model that describes how framework abstractions are imple-
mented in the application code [T6]10]. For any application code, a unique model
is retrieved using code queries.

Ezxample 9. Lenses in Harmony.

Synchronizer [I] corresponds to the get function in Lenses [I7]. In Lenses, the
source-to-target relationship is many-to-one and the target is also referred to as
view. A get function takes the new source and creates the corresponding new
view for it. A full lens, as shown later, is a bidirectional synchronizer and consists
of two functions: get and putback.

Updates. Incremental synchronization can be achieved either by coercing the
original target artifact into conformance with the new source artifact or by trans-
lating updates of the source artifact into the updates of the target artifact. Both
variants require the notion of an update.

Definition 2. UPDATE. An update U : S — S for artifact(s) of type S is a
partial function that is defined for at least one artifact Ss. Artifacts on which
an update is defined are referred to as reference artifacts of that update.

The intuition behind an update is that it connects an original version of an
artifact with its new version, e.g., S = Uas(Ss). Note that we abbreviate the
space of all partial functions S — S as AS and we use this abbreviation to
specify the type of an update.

The size of the set of reference artifacts of an update can vary. An extreme
case is when an update is applicable to only a single artifact. A more practical
solution is to implement updates so that they can be applied to a number of
artifacts that share certain characteristics. For example, an update could be
defined so that it applies to all artifacts that contain a certain structure that the
update modifies.

In practice, we can think of an update as a program that takes the origi-
nal version of an artifact and returns its new version. The update instructions,
such as inserting or removing elements, could be recorded while the user edits
the original artifact. The recorded sequence can then be applied to a reference
artifact, e.g., the original artifact.

Alternatively, an update can be computed using a homogeneous artifact com-
parison operator, which takes an original version of an artifact and its new
version and returns an update connecting the two. We refer to this comparison
operator as homogeneous since it takes two artifacts of the same type.

Operator 2. Homogeneous artifact comparison: ACs : S x § — AS. For ar-
tifacts Ss and S%, the operator ACs(Ss,Ss) computes Uas such that S =
Uas(Ss)-

We further discuss the design choices for creating and representing updates in
Section

14 M. Antkiewicz and K. Czarnecki

Heterogeneous artifact comparison. The first incremental synchronizer uses
heterogeneous artifact comparison, an operator that directly compares two arti-
facts of different types and produces an update that can be applied to the second
artifact in order to make it consistent with the first artifact.

Operator 3. Heterogeneous artifact comparison: ACsr : S x T — AT. For
artifacts S and Tr, the operator ACs 7(S%s,TT) computes an update Uar such
that (S5, Uar(Tr)) € R.

The incremental synchronizer using heterogeneous artifact comparison takes the
original target in addition to the new source as an input and produces the new
target.

Synchronizer 2. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using heterogeneous artifact comparison:

Ls7:SxT —-T

S:;,TT —— UAT = ACS’T(S&TT)
TQ/— = UAT(TT) — TQ/—

In general, the synchronizer needs to analyze the original target with respect
to the new source, compute the updates, and apply the updates to the original
target. Although the above formulation separates the update computation and
application, all these actions could be performed in one pass over the existing
target by synchronizing the target in place.

Note that the above operator and synchronizer assume the situation shown
in Figure 2l where Ss and T7 do not have to be consistent. However, in cases
where Ss and T7 are consistent and a small source update Uas corresponds
to a small target update Y7, the performance savings from reusing 7’7 in the
computation of T are expected to be high.

Update translation. The second incremental synchronizer assumes that the
original source Ss and the original target T are consistent (cf. Figure). The
key idea behind this synchronizer is to translate the update of the source into a
consistent update of the target.

Definition 3. CONSISTENT UPDATES. Two updates Uas and YT of two con-
sistent reference artifacts Ss and T, respectively, are consistent iff application
of both updates results in consistent artifacts, i.e., (Uas(Ss),Yar(T7)) € R.

We can now define the update translation operator. The operator takes not only
the update of the source artifact but also the original source and target artifacts
as parameters. The reason is that consistent updates are defined with respect to
these artifacts.

Operator 4. Update translation: UTs 1t : AS x & x T — AT. For consis-
tent artifacts Ss and T, i.e., (Ss,TT) € R, and an update Ups of the source
artifact Ss, the operator UTs 7(Uas, Ss,T1) computes an update Uar of the
target artifact T such that Uas and Uagr are consistent for Ss and Tr, i.e.,
(Uas(Ss), Uar(Tr)) € R.

Design Space of Heterogeneous Synchronization 15

Using the update translation operator we can define the second incremental
synchronizer as follows.

Synchronizer 3. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using update translation:

s 7: SXASXT - T

Ss,Uas, Tt
(Ss,Tr) e R = Ua7r = UTs1(Uas,Ss,TT)
Ty =Uar(T7) — Tr

The synchronizer requires the original source and the original target, which have
to be consistent, and an update to the original source.

Note that the update of the source artifact Uas can also be computed by com-
paring the new source against the original source using the homogeneous artifact
comparison. This possibility allows us to rewrite Synchronizer B as follows.

Synchronizer 4. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using homogeneous artifact comparison and update translation:

Hs7:SxSXxT =T

SS7S:SaTT
(Ss,Tr) € R = Uas = ACs(Ss, S%)
Uar = UTs7(Uas, Ss, Tr)
Té— = UAT(TT) — Té—

An example for Synchronizer

Ezxample 10. Live Update.

An example implementation of Synchronizer Blis live update [18]. In live update,
a target artifact is first obtained by executing a transformation on the source
artifact. The transformation execution context is preserved and later used for
incremental update of the target artifact in response to an update of the source
artifact. The update translation operator works by locating the points in the
transformation execution context that are affected by the source update. Update
application works by resuming the transformation from the identified points with
the new values from the source.

4.2 Unidirectional Synchronizers in To-Many Direction

The operators used in unidirectional to-many synchronizers are summarized in
Figure [@l The feature diagram is similar to the diagram for the to-one case in
Figure @ except that each operator appears as a “with choice” variant. Further-
more, an additional variant using a special merge operator was added (on the
bottom left in the diagram). The to-many case implies that a given source arti-
fact may correspond to multiple target artifacts. Thus, each translating operator

16 M. Antkiewicz and K. Czarnecki

To-many

Artifact Heterogeneous Update
translation artifact translation
with choice comparison with choice

J) with choice J)

Homogeneous Homogeneous

asymmetric artifact
artifact merge comparison

with choice

Fig. 6. Operators used in to-many unidirectional synchronizers

in its “with choice” variant produces a set of possible targets rather than a single
target. Consequently, all to-many synchronizers need a decision function as an
additional input that they use to select only one result from the set of possible
targets.

Like their to-one counterparts, the to-many synchronizers can be non-
incremental or incremental. However, whereas all to-one synchronizers are
original-target-independent, the to-many synchronizers have only one original-
target-independent variant. The remaining ones are original-target-dependent,
which means that values and structures from the original target are used in the
computation of the new target and the resulting new target depends both on
the new source and the original target.

The dependency on the original target is desirable for to-many synchronizers
if the target can be edited by developers. The original-target-dependent synchro-
nizers can preserve parts of the original target that have no representation in
the source artifact type when the target is updated. These parts could be added
to the target and edited by developers. Such edits should be preserved during
the synchronization of the target in order to preserve developers’ work.

The first two unidirectional to-many synchronizers are non-incremental and
correspond to the left branch of the feature diagram in Figure[@l The first one is
original-target-independent. It uses artifact translation with choice to translate
the new source into a set of possible new targets and selects one target using a
decision function. The second synchronizer is original-target-dependent. It also
uses artifact translation with choice to translate the new source into a set of
possible new targets, but then it merges the selected new target with the original
target. For this purpose, it uses homogeneous asymmetric artifact merge with
choice, an operation which merges a slave artifact with a master artifact while
preserving a certain property of the master artifact. As a result, some structures
from the original target can be preserved.

The remaining synchronizers are incremental and operate similarly to their
to-one counterparts. However, unlike the latter, they are original-target-depen-
dent. The first incremental variant uses heterogeneous artifact comparison with
choice. The other one uses update translation with choice. The source update

Design Space of Heterogeneous Synchronization 17

may optionally be computed using homogeneous artifact comparison between
the original source and the new source.

Artifact translation with choice. Let us first consider the first non-incremental
variant. This variant requires an artifact translation operator that returns a set of
possible results. Note that P*(7") denotes the power set of the set 7 without the
empty set. We mark all “with choice” variants of operators with x.

Operator 5. Artifact translation with choice: ATs r : S — P (T). For an

5

artifact S, the operator ATs 1(Ss) computes {S7 : (S5, 57) € R}.
A single resulting artifact can be chosen using a decision function.

Definition 4. DECISION. A decision for an artifact type T is a function Dp, :
PT(T) — T such that VX € PY(T) : Dp,(X) € X. We denote a set of all
decision functions for an artifact type T as Dr.

Intuitively, a decision function chooses one artifact out of a set of artifacts of a
given type. It models both the situation where the user makes a choice interac-
tively or the situation where a choice is made based on some predefined criteria
or default settings. We discuss some design choices for implementing decision
functions in Section [R5

Synchronizer 5. Unidirectional, non-incremental, original-target-independent,
and to-many synchronizer using artifact translation with choice:

Aﬂs)T : S x 'DT — T
S‘/SWDDT = T'/T:D'DT(A]T‘;’,T(S‘/S,‘)) = T’;’

Synchronizer [l is only of interest for scenarios where the target artifact is not
supposed to be manually edited, e.g., code generation in model compilation.

Examples for Synchronizer

Example 11. Code and model compilation.

In compilation, the resulting artifacts, regardless if they are machine code, byte
code, or code in a high-level programming language, depend on many settings of
the compiler such as optimizations or coding style. Although the relation between
the source and target artifacts is many-to-many, the selection of options allows
the synchronizer (the compiler) to produce a single result.

Ezxample 12. Pretty printing.
Similarly to the previous example, many code style options influence the result
of pretty printing an abstract syntax tree representing a program.

Homogeneous asymmetric artifact merge. Unlike the first variant, which
completely replaces the original target with the new one, the second non-incre-
mental variant uses a merge operator to preserve some structures from the orig-
inal target.

18 M. Antkiewicz and K. Czarnecki

The merge operator is homogeneous as it merges two artifacts of the same
type. It is also asymmetric as one of the artifacts is a master artifact and the
other one is a slave artifact, that is, the operator merges the master and slave
artifacts in such a way that the result of the merge satisfies the same property
as the master artifact does. The merge can be implemented in two ways: by
copying structures from the master artifact to the slave artifact or vice versa.

In our context, the slave artifact will be the original target and the master
artifact will be the target obtained by translating the new source into the target
artifact type. The property of the master artifact to be preserved will be its
consistency with the new source artifact.

We model artifact properties as binary functions.

Definition 5. ARTIFACT PROPERTY. A property function ¢ for artifacts of type
T is a function with the following signature ¢ : T — {0,1}. We say that the
property ¢ holds for an artifact Tt iff ¢(T7) = 1. We denote the set of all
properties for an artifact type T as .

Operator 6. Homogeneous asymmetric artifact merge with choice: My : T X
T x &7 — PT(T). For a slave artifact Tr, a property ¢, and a master artifact
St such that ¢(St) = 1, the operator My(TT,ST,p) computes a non-empty
subset of {Th : ¢(Th) = 1}. The elements of the subset preserve structures from
both master and slave artifacts according to some criteria.

The key intention behind this operator, which is only partially captured by the
formal part, is that the resulting set contains artifacts obtained by combining
structures from both input artifacts such that each of the artifacts in the result-
ing set satisfies the input property. The merge returns a subset of all the artifacts
satisfying the property, meaning that some artifacts satisfying the property are
rejected if they do not preserve structures from both artifacts well enough ac-
cording to some criteria. The operator returns a set of artifacts rather than a
single artifact since, in general, there may be more than one satisfactory way to
merge the input artifacts.

Synchronizer 6. Unidirectional, non-incremental, original-target-dependent,
and to-many synchronizer using artifact translation with choice and homoge-
neous asymmetric artifact merge with choice:

Os1:SxT xDr xDr =T

Ss,Tr,Dpy, Ep, = Sy = Dp,(ATs 1(Ss))
T7/' = EDT(M;'(TTa S’/T7 ¢¢7)) = T7/'

1 if (S5, T)eR
0 otherwise

where ¢p, (T) = {

The synchronizer takes two decision functions. The first function selects a trans-
lation of the new source artifact into the target artifact type from the alternatives
returned by the artifact translation with choice. The selected translation S% is

Design Space of Heterogeneous Synchronization 19

then merged with the original target artifact, where the property passed to the
merge is consistency with the new source artifact S’%. The second decision function
is used to select one target artifact from the alternatives returned by the merge.
In practice, the decision functions are likely to be realized as default set-
tings allowing the entire synchronizer to be executed automatically. Furthermore,
practical implementations, while focusing on preserving manual edits from the
original target, often do not restore the full consistency during the merge. In such
cases, the developers are expected to complete the merge by manual editing.

An example for Synchronizer

Ezxample 13. JET and JMerge.

An example implementation of artifact merge with choice is JMerge, which is
a part of Java Emitter Templates (JET) [19]. JET is a template-based code
generation framework in Eclipse.

JMerge can be used to merge an old version of Java code (slave artifact) with
a new version (master artifact), such that developers can control which parts of
the old versions get overridden by the corresponding parts from the new version.
JMerge replaces Java classes, methods, and fields of the slave artifact that are an-
notated with @generated with their corresponding new versions from the master
artifact. Developers can remove the @generated annotation from the elements
they modify in order to preserve their modifications during subsequent merges.
The behavior of JMerge is parameterized with a set of rules, which is an imple-
mentation of the decision function Ep,. JMerge is not concerned with preserv-
ing the consistency of the master artifact with the new source, meaning that the
merged result might require manual edits in order to make it consistent. However,
JMerge guarantees that all program elements in the slave that are not annotated
with the @generated annotation remain unchanged in the merged result.

The code generator of Eclipse Modeling Framework (EMF) [20] implements
Synchronizer [0l and uses JMerge as an implementation of the merge operator.
The code generator is based on JET and takes a new EMF model as an input,
which is the new source artifact S%. Code generation is controlled by a separate
generator model, which specifies both global generation options and options that
are specific to some source model elements. The latter can be thought of as deco-
rations or mark-up of the source elements, but ones that are stored in a separate
artifact. Effectively, the generator model corresponds to the decision function
Dp, . The code generator emits the Java code implementing the model, i.e., S
JMerge is then used to merge the freshly-generated code S (master artifact)
with the original Java code T7 (slave artifact) that may contain developer’s
customizations. The resulting new Java code T is now synchronized with the
new model in the sense that all code elements annotated with the @generated
annotation were replaced with the code elements generated from the new model.

The JMerge approach is an example of the concept of protected blocks. Pro-
tected blocks are specially marked code sections that are preserved during code
re-generation. In JMerge, protected blocks are marked by virtue of not being
annotated with @generated.

20 M. Antkiewicz and K. Czarnecki

Heterogeneous artifact comparison. Analogously to the incremental syn-
chronizers from the previous section, incremental to-many synchronizers can be
realized using either heterogeneous comparison or update translation. However,
both operators need to be modified to produce sets of results.

Operator 7. Heterogeneous artifact comparison with choice: ACg 7 :SxT —
PH(AT). For artifacts Ss and Tr, the operator ACs 7(Ss,Tr) computes a
non-empty subset of {Uat : (S5, Uar(Tr)) € R}. The elements of the subset
preserve structures from Tr according to some criteria.

We can now state the first incremental synchronizer as follows.

Synchronizer 7. Unidirectional, incremental, original-target-dependent, and to-
many synchronizer using heterogeneous artifact comparison with choice:

‘ﬂS’T:SXTXDAT_)T

SZSvTTa ‘DDAT = Uar = DDAT(ACTS’,T<S‘/S'7TT))
Té— = UAT(TT) — Té—

An example for Synchronizer [7]

Ezxample 14. Lenses in Harmony.

Synchronizer [7] corresponds to the putback function in Lenses [I7]. In Lenses, the
source-to-target relationship is many-to-one and putback is used in the target-
to-source direction. In other words, putback is a unidirectional to-many synchro-
nizer. The function takes the new view and the original source and returns the
new source. A full lens combines putback with get (cf. Example [d) to form a
bidirectional synchronizer (cf. Example [Ig]).

Update translation with choice. The second incremental variant uses update
translation with choice.

Operator 8. Update translation with choice: UTg 7 : AS xS x T — PT(AT).
For two consistent artifacts Ss and Tr and an update Uas of Ss, the oper-
ator UTs 7(Uas, Ss,Tt) computes a non-empty subset of {Uat : (Uas(Ss),
Uat(T7)) € R}. The elements of the subset preserve structures from Tt accord-
g to some criteria.

Synchronizer 8. Unidirectional, incremental, original-target-dependent, and to-

many synchronizer using update translation with choice:
s 7:SXAS X T xDar — T

Ss,Uns, T, Dp o+
(8s,Tr) € R = Uatr = Dp,,(UTs5 7 (Uas,Ss,Tr))
Té— = UAT(TT) — Té—

Design Space of Heterogeneous Synchronization 21

Examples for Synchronizer [8]

Ezxample 15. Incremental code update in FSMLs.

An example of Synchronizer B is incremental code update in FSMLs [I0]. During
forward propagation of model updates to code, code update transformations are
executed for every added, modified, or removed model element. This translation
of element updates into corresponding code updates is an example of an update
translation function. Different code updates can be applied for a given model
update depending on the desired implementation variant. An example of an
implementation variant is the creation of an assignment to a field either as a
separate statement or as an expression of the field’s initializer. The variants can
be selected based on source model annotations that are provided by default and
can also be modified by the developer. This annotation mechanism represents
an implementation of the decision function Dp .., .

Ezxample 16. Co-evolution of models with metamodels.

Wachsmuth [I3] describes an approach to the synchronization of models in re-
sponse to certain well-defined kinds of updates in their metamodels. The updates
are classified into refactoring, construction, and destruction. These metamodel
updates are then translated into the corresponding updates of the models. The
model updates are an example of updates whose sets of reference artifacts con-
tain more than one artifact (cf. Definition [2).

5 Bidirectional Synchronizers

Propagating change only in one direction is often not practical as certain changes
may only be possible in certain artifacts. Bidirectional synchronization involves
propagating changes in both directions using bidirectional synchronizers. Bidi-
rectional synchronization is also referred to as round-trip engineering [21122123].

In this section, we focus on synchronization where changes to one artifact are
propagated to the other artifact only in one direction at a time, whereas in the
next section we focus on synchronization in which changes to both artifacts can
be reconciled and propagated in both directions at once.

Ss Tr

UAsl l Yar L

R
Ss «—— Tz
1

! ’
Uas , l lYAT

R
LS ¢
2

Fig. 7. Bidirectional synchronization scenario with a source-to-target synchronization
followed by a target-to-source synchronization

22 M. Antkiewicz and K. Czarnecki

Bidirectional synchronizer

o/\o

Towards target Towards source
Unidirectional synchronizer » Unidirectional synchronizer »

Fig. 8. Bidirectional synchronizer

A sample bidirectional synchronization scenario with a source-to-target syn-
chronization followed by a target-to-source synchronization is shown in Figure[7
The results of the first synchronization are placed in boxes with subscript one
and the results of the second synchronization are placed in boxes with subscript
two. The first synchronization is executed in response to update Uas, and the
second synchronization is executed in response to update Y+

A bidirectional synchronizer can be thought of as a pair of unidirectional
synchronizers, one synchronizer for one direction, as shown in Figure Q The
feature towards target represents the unidirectional synchronizer from source to
target, and the feature towards source represents the unidirectional synchronizer
from target to source. Both synchronizers could be constructed separately using
a unidirectional language, or they could be derived from a single description in
a bidirectional language. We discuss these possibilities in Section B.Gl

Properties. According to Stevens [24], the key property of a pair of unidi-
rectional synchronizers implementing bidirectional synchronization for a given
relation is that they are correct with respect to the relation. Correctness means
that each synchronizer enforces the relation between the source and target arti-
facts. Clearly, any pair (Sis 7, Sjr s) of the unidirectional synchronizers defined
in the previous sections (where i and j may be equal) is correct with respect to
R by the definition of the synchronizers.

Another desired property of a synchronization synchronizer is hippocratic-
ness [24], meaning that the synchronizer should not modify any of the artifacts
if they already are in the relation. The hippocraticness property is also referred to
as check-then-enforce, which suggests that the synchronizer should only enforce
the relation if the artifacts are not in the relation.

Note that, in practice, a synchronization step may be partial in the sense
that it does not establish full consistency. Artifact developers may choose to
synchronize only certain changes at a time and ignore parts of the artifacts that
are not yet ready to be synchronized. Therefore, the correctness property only
applies to complete synchronization.

Examples of bidirectional synchronizers

Example 17. Triple Graph Grammars in FUJABA.
Giese and Wagner describe an approach to bidirectional synchronization us-
ing Triple Graph Grammars (TGG) [25]. Their approach is implemented in the

Design Space of Heterogeneous Synchronization 23

Fujaba tool suite [26]. TGG rules are expressed using a bi-directional, graphical
language. For two models, the user can choose the direction of synchronization.
Both models are then matched by TGG rules, which can be viewed as an im-
plementation of the heterogeneous artifact comparison. The updates determined
by each rule are applied to the target in a given direction, which amounts to
incremental synchronization. The authors assume that the relationship between
source and target is a bijection [25] p. 550]. Thus, the approach can be described
as (s,7, Br.s)-

Example 18. Lenses in Harmony.

A lens [IT] is a bidirectional synchronizer for the many-to-one case. It consist
of two unidirectional synchronizers: get (cf. Example[d]) and putback (cf. Exam-
ple [[4)). In other words, a lens can be described as (1s7, % s). Note that
the second synchronizer executes in the target-to-source direction, i.e., the di-
rection towards the end with the cardinality of many, and the artifact at that
end can be edited. Consequently, the synchronizer should be one of the unidirec-
tional, to-many, and original-target-dependent synchronizers, which is satisfied

by %,&

6 Bidirectional Synchronizers with Reconciliation

In this section we focus on synchronization where both artifacts can be changed
simultaneously in-between two consecutive synchronizations and the changes can
be reconciled and propagated in both directions during a single synchronization.

Bidirectional synchronization with reconciliation involves up to six artifacts
(cf. Figure[d). Four of them are the same as in the case of unidirectional synchro-
nization (cf. Figure2]), except that the original source Ss and the original target
T7 are now assumed to be consistent. Furthermore, the new target T is given
as a result of a user update Ya7 just as the new source S5 is given as a result
of another user update Uas. The purpose of a bidirectional synchronizer with
reconciliation is to compute a reconciled source artifact S% and a reconciled tar-
get artifact TZ, such that the two are consistent. In essence, such a synchronizer
can also be viewed as a heterogeneous symmetric merge operation.

As in the unidirectional case, some of the four input artifacts may be missing.
The two extreme cases are when only the new source or only the new target

Ss —2— T

UASl lYAT

/ /
SS T’T
U/

/7
As l l Yir

R
54— 1y

Fig. 9. Artifacts involved in bidirectional synchronization with reconciliation

24 M. Antkiewicz and K. Czarnecki

Bidirectional synchronizer with reconciliation

D/O\-D

Homogeneous Heterogeneous
Bidirectional Homogeneous Homogeneous Heterogeneous Heterogeneous
synchronizer » artifact update artifact update
comparison and comparison and comparison and comparison and
reconciliation reconciliation reconciliation reconciliation
with choice with choice with choice with choice

Fig. 10. Bidirectional synchronizer with reconciliation

exist. The synchronization in these cases corresponds to the initial generation
of the target artifact or the source artifact, respectively. The case where both
original artifacts are missing corresponds to the situation where two artifacts
are synchronized for the first time. Note that a “missing” artifact corresponds
to a special value that represents a minimal artifact, that is, an artifact that
contains the minimum structure required by its artifact type. We assume that
minimal artifacts of all types are always consistent.
In general, bidirectional synchronization with reconciliation involves

— Translation of updates, artifacts, or both;

— Identification of conflicting updates;

— Creation of updates that resolve conflicts and reconcile the artifacts; and
— Application of the updates.

The identification of conflicting updates and their resolution can be performed
in homogeneous or heterogeneous fashion as indicated in Figure

Homogeneous reconciliation means that updates to both source and target ar-
tifacts are compared and then reviewed by the user in terms of one artifact type,
which is either the source or the target type. In other words, if the comparison
and review (and resolution of potential conflicts) is done on the target side, the
new source artifact or the update of the source artifact need to be first translated
into the target type. Depending whether the entire artifact or just the update
is translated, the comparison and reconciliation is done either by homogeneous
artifact comparison and reconciliation with choice or its update counterpart (cf.
Figure [[0). Assuming reconciliation on the target side, both operators return
an update of the new source artifact (but expressed in the target artifact type)
and an update to the new target artifact, such that the two updates reconcile
both artifacts. Finally, the first update has to be translated back into the source
artifact type and applied to the new source artifact, and the second update is ap-
plied to the new target artifact. Note that the translation of artifacts or updates
in one direction and the translation of updates in the other direction essentially
requires a bidirectional synchronizer, as indicated in Figure[I0 by a reference to
the feature bidirectional synchronizer.

Heterogeneous reconciliation implies a heterogeneous comparison between
the artifacts or the updates. A bidirectional synchronizer with heterogeneous

Design Space of Heterogeneous Synchronization 25

reconciliation can be implemented using the operator heterogeneous artifact com-
parison and reconciliation with choice or its update counterpart (cf. Figure [IT]).
The operators are similar to their homogeneous counterparts with the difference
that they directly compare artifacts of different types and thus do not require a
pair of unidirectional synchronizers for both directions.

6.1 Comparison and Reconciliation Procedures

In general, comparison and reconciliation operators work at the level of indi-
vidual structural updates that occurred within the overall update of the source
artifact Uas and the overall update of the target artifact Ya7. The updates can
be atomic, such as element additions, removals, and relocations and attribute
value modifications. The updates can also be composite, i.e., consisting of other
atomic and composite updates.

We categorize updates into synchronizing, propagating, consistent, conflicting,
non-reflectable, and inverse. An update in one artifact is synchronizing if it
establishes the consistency of the artifact with the related artifact. An update
in one artifact is propagating if it forces a synchronizing update in the related
artifact. Two updates, one in each artifact, are consistent if one is a synchronizing
update of the other one. On the other hand, two updates, one in each artifact,
are conflicting if the propagation of one update would override the other one.
An update in one artifact is non-reflectable if it does not force any synchronizing
update in the other artifact. An inverse update (intuitively undo) for a given
update and a reference artifact maps the result of applying the given update to
the reference artifact back to the reference artifact.

A mazimal synchronizer [27] is one that propagates all propagating updates.
The following strategy is used to compute U’y g and Y/, for achieving maximum
synchronization:

— Consistent and non-reflectable updates in Uas and Yo7 are ignored since
both artifacts are already consistent with respect to these updates;

— Out of several conflicting updates in Upns and Ya7, exactly one update can
be accepted as a propagating update; and

— For each propagating update in Uas, a synchronizing update needs to be
included in Y),7; similarly, for each propagating update in Ya7, a synchro-
nizing update needs to be included in Uy s.

After the updates are classified into consistent, non-reflectable, conflicting,
and propagating by the comparison operator, the user typically reviews the clas-
sification, resolves conflicts by rejecting some of the conflicting updates, and then
the final updates U/, and Y/, are computed by determining and composing
the necessary synchronizing updates. In practice, simple acceptance or rejection
of updates might not be sufficient to resolve all conflicts, in which case the in-
put artifacts may need to be manually edited to resolve and merge conflicting
updates.

In general, conflict resolution is not the only possible conflict management
strategy. Other possibilities include storing all conflicting updates in each rec-
onciled artifact or allowing artifacts to diverge for conflicting updates [27].

26 M. Antkiewicz and K. Czarnecki

6.2 Bidirectional Synchronizers for One-to-One Relations

Note that due to the need for reconciliation, none of the synchronizers can be
fully non-incremental since at least one artifact needs to be updated by update
application. Let us first consider a target-incremental synchronizer. This variant
requires homogeneous artifact comparison and reconciliation with choice opera-
tion. The need for choice arises from the fact that conflicts may be resolved in
different ways.

Operator 9. Homogeneous artifact comparison and reconciliation with choice:
ACRY : TxT xT — Pt (AT x AT). For two artifacts S and Tk, and the ref-
erence artifact Tr, the operator ACRT(S%, T4, Tr) computes a non-empty sub-
set of {(Uh+,Y 1) : Ur7(Sh) = YA-(Th)}. Each pair of updates (U, Y A7)
from that subset is such that the updates resolve conflicting changes and enforce
all propagating changes from Uar and Yar, where Uar = ACT(Tr,S%) and
Yar = ACT(TT,T%).

The operator ACR’- performs a three-way comparison of the artifacts and re-
turns a set of pairs of updates. The reference artifact is included in the three-way
comparison as it allows precisely determining the kind and location of updates.
In particular, it allows determining whether certain updates occurred consis-
tently in both artifacts, inconsistently in both artifacts, or only in one artifact.
Each resulting pair of updates modifies both artifacts S and T such that they
become identical and all conflicting updates are resolved and all propagating up-
dates are propagated. The second condition is necessary: without it, the operator
could simply return updates that could, for example, revert each artifact back to
the reference artifact, or even to the minimal artifact. Each pair of resulting up-
dates represents one possible way of reconciling conflicts. The resulting updates
are constructed using the strategy given at the end of the previous section.

Now we are ready to formulate the target-incremental synchronizer. Note that
all discussed synchronizers perform reconciliation on the target side.

Synchronizer 9. Bidirectional, target-incremental, and one-to-one synchronizer
using artifact translation and homogeneous artifact comparison and reconciliation
with choice:

%)TISXTXTX'DATXAT—)SXT

S‘ISaTé’aTT7
Fparinr = S’/T - ATS,T(Sg)
(7YAT) = FDATXAT(ACR;(S'IT7T'}7TT))
Ty =Yar(T7)
S% = ATT’S(T,?) — S‘/S/-,Téi

In the target-incremental variant, source artifact is first translated into the target
artifact type. Next, the operator ACR% computes new updates for each artifact.
In the target-incremental synchronizers, the update for the artifact S/ is simply
ignored. Next, the reconciled target artifact 7% is created by applying the update

Design Space of Heterogeneous Synchronization 27

Y+ to T’. Finally, the reconciled source artifact S% is obtained by translating
T back into the artifact type S.

A fully-incremental variant, in which the new source S% is incrementally up-
dated, is also possible.

Synchronizer 10. Bidirectional, fully-incremental, and one-to-one synchronizer
using artifact translation, homogeneous artifact comparison and reconciliation with
choice, and update translation:

ms7T:SXTXT><DATXAT—>SXT

S‘/S-,qu—,TT,
Fpariar = Sé’ = ATS’T(S‘/S‘)
(U/ATV YAT) = FDATXAT(ACR:;'(S’/ZWTQ/WTT))
Ty =Yar(T7)
Uhs = UTr s(Upr, 57, Ss)
SE% Uls(5%) — sy

A fully-incremental variant can also be realized by translating updates instead
of translating the entire artifacts. The fully-incremental case requires a homoge-
neous update comparison and reconciliation operator.

Operator 10. Homogeneous update comparison and reconciliation with choice:
UCRY : AT x AT x T — PY(AT x AT). For two updates Uar and Yar of a
reference artifact T, the operator UCRT(Uar, YaT,TT) computes a non-empty
subset of {(Uhr,YA7) : Unt(Uar(T1)) = Y r (Yar(T7))}. Each pair of up-
dates (U7, Y 1) from that subset is such that the updates resolve all conflicting
changes and enforce all propagating changes from Uas and Yar.

Synchronizer 11. Bidirectional, fully-incremental, and one-to-one synchronizer
using update translation and homogeneous update comparison and reconciliation
with choice:

s 7: S XS X ASXT xT x AT x Darxar =S X T

Ss,S%,Uas,
Tr,Tr,Yar,
FDATXAT
Uas(Ss) = S%
Yar(Tr) =Tk
(Ss,Tr) e R = Uar = UT&T(UAS,SS,TT)
(U/AT7 YAT) = FDATXAT(UCR;(UATﬂ YATuTT))
T7 =Y\ (T7)
U/AS = UTT,S<U/AT7T’§’7 SZS‘)
S8 Ul () — STy

Analogously to the non-incremental variant, the UCR% operator performs the
three-way comparison of the updates with respect to the reference artifact T'r.

28 M. Antkiewicz and K. Czarnecki

Again, the result is a pair of reconciled updates. The update U’y needs to be
translated into the artifact type S. Finally, the reconciled updates are applied.

6.3 Bidirectional Synchronizers for Many-to-One Relations

For many-to-one relations, we only consider homogeneous reconciliation on the
target side since source artifacts or updates can be unambiguously translated
in the target direction. We show two synchronizers in this category. The first
synchronizer uses a non-incremental unidirectional synchronizer in the source-
to-target direction, while the other uses an incremental one. For the target-to-
source direction, we need to use one of the unidirectional to-many synchronizers
that are original-target-dependent, where the “original target” corresponds to
the new source in our context. The reason is that we want to preserve non-
reflectable edits from the new source. Both synchronizers use update translation
with choice in the target-to-source direction.

Synchronizer 12. Bidirectional, fully-incremental, and many-to-one synchro-
nizer using artifact translation, homogeneous artifact comparison and reconcili-
ation with choice, and update translation with choice:

SES)T:SXSXTXTX'DASX'DATXATHSXT

SS7 S‘/S‘aTTaTéﬁ
D'DA,sa

FDATXAT
(S&TT) €R = S&— = ATS’T(S‘/S)
(U/ATV YAT) = FDATXAT(ACR:;'(S’/ZWTQ/WTT))
T4 = Yir (1)
Uhs = Dpas(UTr s(Usz, ST.55))
58 = Uls(5%) = Su1f

Synchronizer 13. Bidirectional, fully-incremental, and many-to-one synchro-
nizer using update translation, homogeneous update comparison and reconcilia-
tion with choice, and update translation with choice:

SZHS)T:SXSXASXTXTXATX'DASX'DATXATHSXT

Ss,8%,Uas,
Tr,Tr Yar,
D'DA,sa
FDATXAT
UAs(Ss) = S:g
Yar(Tr) =Tk
(Ss,Tr) e R = Uar = UT&T(UAS,SS,TT)
(Uar:YAT) = Fparyar (UCRT(UaT, Yar, T1))
T7 =YAr(T7)
U/AS = DDas(UT*T,S(U/ATqul'a st))
Ss = Uhs(Ss) = 54,17

Design Space of Heterogeneous Synchronization 29

An example for Synchronizer

Ezxample 19. Synchronization in FSMLs.

The FSML infrastructure [I0] supports synchronization according to Synchro-
nizer Source artifact is Java code, XML code, or a combination of both.
Target artifact is a model in an FSML designed for a particular framework,
e.g., Apache Struts (cf. Example [3)). The relation between source and target is
many-to-one. The infrastructure performs homogeneous artifact comparison and
reconciliation on the model (target) side since every code update has a unique
representation on the model side. The reverse is not true: a model update can
be translated in different ways into code updates.

The first step of the synchronizer is to retrieve S%, i.e., the model of the new
code, from the new code S using AT s 7, which is implemented by a set of code
queries (cf. Example [)).

The second step is a three-way compare between the model of the new code
S’ and the new model T while using the original model T as a reference
artifact. The original model corresponds to the initial situation when the model
and the code were consistent after the previous synchronization, and the new
model and the new code are the results of independent updates of the respective
original artifacts (cf. Figure [)).

The artifact comparison and reconciliation ACRY- operates on framework-
specific models. A model is an object structure conforming to a class model, i.e.,
the metamodel. The object structure consists of objects (i.e., model elements),
attributes with primitive values, and containment and reference links between
objects. The containment links form a containment hierarchy, which is a tree.
The comparison process starts with establishing the correspondence among the
model elements in all three models, namely S%, T/, and Tr. The correspondence
is established using structural matching, which takes into account the location
of the elements in the containment hierarchy and their identification keys that
are specified in the metamodel. Approaches to establishing correspondence are
further discussed in Section The result of the matching is a set of 3-tuples,
where each tuple contains the corresponding elements from the three input mod-
els. Each position in a 3-tuple is dedicated to one of the three input models and
contains the corresponding element from the model or a special symbol repre-
senting the absence of the corresponding element from that model.

The comparison process continues by processing each 3-tuple to establish
the updates that occurred in the new source and the new target according to
Table @I The first and the second column classifies each 3-tuple according to
whether all three elements or only some were present and whether the corre-
sponding elements were equal or not. Two elements are equal iff their corre-
sponding attribute values are equal, their corresponding reference links point
to the same element, and the corresponding contained elements are equal. The
third column describes the detected updates as element additions, modifications,
and removals, and the fourth column classifies the updates as propagating, con-
sistent, or conflicting (cf. Section [G.1]).

30 M. Antkiewicz and K. Czarnecki

Table 2. Results of three-way compare of the corresponding elements ¢, s, and r in
the new artifacts Ty and S%, and the reference artifact Tr, respectively. The absence
of a corresponding element is represented by -. Table adapted from [28].

T4 S Tr condition detected updates to element update classification

s t r t=s=r unchanged no updates

s t 1 t=sAt#r modified consistently in T+ & S% consistent updates

s t - t=s added consistently to T & S% consistent updates

s t 1 t#sAt=r modified in S propagating update in S/
s t r t#sAs=r modified in T4 propagating update in T4
s t 1 t#s#r#tmodified inconsistently in T4 & S’ conflicting updates

s t - t#s added inconsistently to T & S% conflicting updates

s - T t=r removed from S% propagating update in S7-
s - T t#r removed from S, modified in T5 conflicting updates

s - - - added to T propagating update in T
-t s=r removed from 1% propagating update in T4
-t r S#ET removed from T4, modified in S conflicting updates

-t - - added to S% propagating update in S
- -0 - removed from T4 & S4 consistent updates

The classification results are then presented to the user, who can review each
of the updates and decide to accept or reject it. More precisely, a propagating
update can be accepted or rejected and a pair of conflicting updates can be
enforced in the forward or the reverse direction or rejected all together. Note that
the decisions can be taken at different levels in the containment hierarchy. In a
extreme, the user might only review the updates at the level of the corresponding
model elements representing the model roots. The user might also desire to drill
down the hierarchy and review the updates at a finer granularity.

The conflict resolution decisions made by the user correspond to the decision
function Fp,,, .. It is desirable that the decisions taken by the user should
result in a well-formed model T before the code is updated. However, in prac-
tice, developers may choose to synchronize one element at a time. Also, only
accepting and/or rejecting updates may not be enough to arrive at the desired
model, meaning that developers might need to perform some additional edits
during reconciliation.

The last stage of ACRY is to compute the resulting updates U4, and Y.
The resulting update U4, for S is computed by collecting the synchronizing
update for every accepted propagating and conflicting update to T and the in-
verse updates to the rejected propagating updates. An inverse update reverts an
element back to its state from T’7. There is no need to include an inverse update
for the rejected update from a conflicting pair since the accepted update will over-
ride the corresponding element. The update Y+ is computed in a similar way.

Finally, the update of the model representing the new code, Ui+, is translated
into the update of the new code, UA5. The translation is achieved using update
translation UT*T, s as described in Example[I0l At last, both the new code and the
new model are incrementally updated by applying U4 g and Y+, respectively, and
the synchronizer returns the two reconciled artifacts S and 7.

Design Space of Heterogeneous Synchronization 31

6.4 Bidirectional Synchronizers for Many-to-Many Relations

Reconciliation for many-to-many relations can be performed in the homoge-
neous or heterogeneous fashion. A bidirectional synchronizer with homogeneous
reconciliation for a many-to-many relation needs to use unidirectional original-
target-dependent to-many synchronizers in both directions.

First we show a bidirectional synchronizer with homogeneous reconciliation
that uses update translation with choice in both directions.

Synchronizer 14. Bidirectional, fully-incremental, and many-to-many synchro-
nizer using update translation with choice and homogeneous update comparison
and reconciliation with choice:

@577:S><S><AS><T><T><AT><DASXDATXDATXAT—MS‘XT

Ss, 85, Uas,
Tr, Ty, Yart,
DDA57 EDAT7
FDATxAT
Uas(Ss) = S5
Yar(Tr) =Tk
(Ss,T1) € R = Uat = Ep,; (UTs r(Uas, Ss,Tt))
(U/AT’ YAT) = FDATXAT(UCR'*T(UATV YATvTT))

T7 = YAT(T/T)
Uhs = Dps(UT7 s(Uhr, Ss,TT))
S& =Uhs(S%) = SLTY

The heterogeneous variant of the many-to-many synchronizer requires a hetero-
geneous comparison and reconciliation operator.

Operator 11. Heterogeneous artifact comparison and reconciliation with choice:
ACRS 7 : SXT xS8xT — PT(ASx AT). For two artifacts S and Tz, and two
consistent reference artifacts Ss and Tr, the operator ACRg +(S§, T, Ss,Tr)
computes a non-empty subset of {(Uxg,YAr) : (Uxs(S%s), YAr(T%)) € R}. Each
pair of updates (U7, Y 1) from that subset is such that the updates resolve con-
flicting updates and enforce all propagating updates from Uas and YT, where
UAS = ACS(SS, S‘/S‘) and YAT = ACT(TT,T,}).

Synchronizer 15. Bidirectional, fully-incremental, and many-to-many synchro-
nizer using heterogeneous artifact comparison and reconciliation with choice:

Sms)TISXSXTXTX'DASXATHSXT

SSusZSvTTaT’é’a
FDASXAT
(557TT) €ER = (U/AS?YAT) - FDA.SxAT(ACRZ‘,T(S‘/S‘vT/TvSSaTT))
S — ! (S/)
1 /AS ‘? "o
T7 =YAr(T7) = Ss 717

We introduce the last variant, Synchronizer [[6 by first discussing its sample
implementation.

32 M. Antkiewicz and K. Czarnecki

An example for Synchronizer

Example 20. ATL Virtual Machine extension for synchronization.
An example of a bidirectional many-to-many synchronizer is an extension to the
Atlas Transformation Language (ATL) [29] virtual machine [30]. While the syn-
chronizer works in the reconciliation setting as illustrated in Figure[@ and allows
independent updates to the original source and the original target, it only sup-
ports partial reconciliation. More specifically, while the synchronizer propagates
all propagating updates, it does not support conflict resolution. Furthermore,
the synchronizer does not tolerate additions made to the original target model.
In any of the above situations, the synchronizer reports an error and terminates.

The mapping between source and target is given as an artifact translator ex-
pressed in ATL, which is a unidirectional transformation language. While an
ATL translator is a partial function, the extension supports many-to-many rela-
tions by merging the translation results with existing artifacts using asymmetric
homogeneous merge (cf. Operator [@). In this way, the non-reflectable updates
from the new source and the new target can be preserved.

The following synchronizer describes the synchronization procedure.

Synchronizer 16. Bidirectional, source-incremental, and many-to-many syn-
chronizer using artifact translation, homogeneous artifact comparison, update
translation with choice, and homogeneous asymmetric artifact merge with choice:

m&T:SXSXTXDASXDASX'DATHSXT

Ss, 8%, Tt
DDS, EDS, FDT — TI7 = ATS,T(SS)
Yar = ACT(Tr,TY)
Yas = Dps(UTy s(Yar, Tr,Ss))
S}S/ = Yas(Ss)
Ss = EDS(]MTS(S‘/S?S}S(WZ%S))
S% = ATs 1(S%)

TH:FDT(M*T(T%VS%7¢35T)) = Sg,Téf
1 if (Th,S)eER
here ¢} (S) = T’
where ¢q§5() 0 otherwise
1 if (S%4,T)eR
2 T) = S»
(%T() 0 otherwise

First, the original target 17 is obtained by executing an artifact translation writ-
ten in ATL. Next, the update of the original target Y a7 is translated into the cor-
responding update of the original source Ss using the virtual machine extension.
The information that is necessary for the update translation in the reverse direc-
tion was recorded by the ATL virtual machine extension during the execution of
the artifact translation in the forward direction. Next, the new source S’ is merged
with S}; which is the updated original source incorporating the source trans-
lation of Ya7. The merged artifact S% is the reconciled source artifact. Finally,

Design Space of Heterogeneous Synchronization 33

the reconciled source S% is translated into the artifact S%, which is then merged
with the new target T to produce the reconciled target artifact T7.

7 Summary of Synchronizers and Tradeoffs

In this section, we summarize the presented synchronizers and discuss the trade-
offs among them. Figure [[T] presents a composite feature model of the design
space of heterogeneous synchronizers. The feature model serves two purposes: 1)
it consolidates the fragments of the feature model spread over the course of the
tutorial, and 2) it provides section and page numbers of the feature descriptions.
The leaf features that are not references, i.e., the leafs without », correspond to
artifact operators.

Table B] shows a feature comparison of the presented synchronizers and their
inputs. Synchronizers 1-8 are unidirectional, of which Synchronizers 1-4 are
to-one and Synchronizers 5-8 are to-many. Synchronizers 9-16 are bidirectional.
Among them, Synchronizers 9—11 are one-to-one, Synchronizers 12—13 are many-
to-one, and Synchronizers 14-16 are many-to-many.

Tradeoffs for unidirectional to-one synchronizers. The incremental vari-
ants offer higher performance than the non-incremental one because only indi-
vidual updates are considered instead of the whole artifacts. Consequently, they
enable more frequent synchronization for large artifacts. However, implement-
ing heterogeneous artifact comparison or update translation operators is usually
more complex than implementing artifact translation. The reason is that addi-
tional design decisions for implementing updates (cf. Section 1)) and matching
(cf. Section B2) need to be considered.

Furthermore, while the incremental variant based on update translation is
likely to be more efficient than the one based on heterogeneous artifact compar-
ison, the additional requirement that the original versions of the artifacts need
to be consistent may be too restrictive in some situations. For example, it could
be sufficient for the original versions to be nearly consistent.

Tradeoffs for unidirectional to-many synchronizers. The first synchro-
nizer, i.e., the one based on artifact translation with choice and without homo-
geneous merge, is only useful if the target is not going to be manually edited
in between target regenerations, as in the case of compiling a program into ob-
ject code. If the target is intended to be edited, any of the remaining to-many
variants needs to be used.

The synchronizer using the merge operator is simple to implement for cases
where the structures of the target artifact that are non-reflectable in the source
are well separated from the structures that are reflectable in the source. Such
separation simplifies the implementation of the merge. If both kinds of structures
are strongly intertwined, one of the incremental to-many synchronizers may be
a better choice since they take the original target into account already in the
translation operator.

M. Antkiewicz and K. Czarnecki

34

SI9ZIUOIYDUAS snoauadoralay jo aoeds udso(] *TT *S1q

@ dfgpn) @a-d Lyov)

(umoys jou) ([d ‘“£'$YDOV) 9010 [yIm o010t M
Q0101 M 20101D 1M UOTRI[IDU0DDT TOTRI[IOU0DAT
UOTIRI[IDUODAT UOTRI[IDU0AT pue uostredwod pue uostredurod
pue uosureduwiod pue uostreduod oyepdn j00jILIR <« I9ZIUOIYDUAS
orepdn j0€JILIR SNO0aULSOWO STN0aUDSOWO] [RUOTIORIIPIE]
SN0oUDS0I)O] SN0OUDZ0I)O] « TOZIUOIYDUAS « IOZIUOIYDUAS
D/O\D [RUOT}ODIIPTU () [RUOI}0dIIPIU)
(1 d g uoryoag) Tq "d g suorjoag) % ﬂ
SN0 Z0I)O] SNOOULZOWOH] 90IN0S SPIRMO], j081R) SpIRMOT,
UOIJRI[IDUO0D3I [}IM JSZIUOIYDIUAS [RUOI}IITPIE JI9ZIUOIYDUAS [RUOI}IIIPIE
(D -d)
Em-d ‘sov) 90101 TIm
uostreduoo a81ew joRjI)IR En-d ‘sov)
j0RjILIR OLIJOUWTIAS® uostreduwoo
STN0aUDSOWO] STN09UDZOUWO] j00jILIR
mﬂ mﬂ SNOaULSOWOH]
; @-d“+$ov) » i
@ d+'sin) 901010 M @D -dL9Lny) [-d “£'sHv)
O010TD M uostreduion Q0101 HIM @Dn-dz'sin) uostedwon @n-d ‘z's1y)
uorje[suRIy joejIIe uorje[suRIy uorje[suRIy JoejIyIe uorje[suLRI}
oepdn SN0 Z0IO] ORIy ogepdn SN0 Z0IOF] 10RJ11Y
(0 d [wonoos)
Auewr-oJ, Qu0-07,
(7 -d g uoryoeg) D/.D\D
< uorjerouodal Yim ([d g uorag)
19ZIUOIOUAS < IOZIUOIYPUAS @ d | uoroeg)
[RUOIID2IIPIE [RUOIID2IIPIE] I9ZTUOIYDUAS [RUOIIDIIPIU)

e e T

JISZIUOIYIUAS SNOSUSS0.I910

Design Space of Heterogeneous Synchronization 35

Table 3. Summary of features and inputs of the synchronizers

— 1 — % l1—1 x<1 * > %

Synchronizer 1234 5678 91011 12 13 14 15 16

non-incremental @ - - - e e -
(target-) incremental - e e @ - - ® 0 @
source-incremental - - - - - - - e
fully-incremental -

increment.

original-target-dependent - - - - - e e o @

Ss (original source artifact)

S’ (new source artifact)

Uas (update of the orig. source art.)

Dpg (decision function on artifact)

Dp,s (decision function on update)
Eps (decision function on artifact) - - - - S
Tt (original target artifact) - e e @ - o ® @

)

)

)

)

)

T7 (new target artifact
Yar (update of the orig. target art.
Dp, (decision function on artifact
Dp,, (decision function on update
Ep, (decision function on artifact
Fpryar (decision fun. on updates
Fpasyasr (decision fun. on updates) - - - - - - - - - -« . . . e
Fp, (decision function on artifact) - - - - - - - - - - - e
(Ss,TT)ER - -0 - - -9 - - o o o o o
Uas(Ss) =85 - -« -« « o . . .
Yar(Tr) = T -
artifact translation e - - - - - - . o @ - e - . . e
heterogeneous artifact comparison - e -
update translation - - e® - - . . . e e - @
homogeneous artifact comparison - - - e - - - - . . . B EE
artifact translation® - - - - e e -
update translation®* - - - - - . . e - . . e e e
homog. asymmetric artifact merge* - - - - - o -
heterogeneous artifact comparison®* - - - - - - e -
homog. artifact comp. & recon.* - - - - - - . . o @ - @
homog. update comp. & recon.* - - - - e - e e
heterog. artifact comp. & recon.® - - - - - e

inputs

precon.

operations

The tradeoffs between the two incremental synchronizers, i.e., the one using het-
erogeneous artifact comparison with choice and the other one using update trans-
lation with choice, are similar to the tradeoffs between their to-one counterparts.

Tradeoffs for bidirectional synchronizers. The choice of the unidirectional
synchronizer mainly depends on the cardinalities of the relation’s ends, i.e., one
or many. Each of the synchronizers can be non-incremental or incremental de-
pending on the performance requirements. If the cardinality of the end towards
which the synchronizer should be executed is many, any of the unidirectional

36 M. Antkiewicz and K. Czarnecki

to-many synchronizers that are original-target-dependent should be used. The
synchronizer should be original-target-dependent because the target of the syn-
chronizer can be edited.

Tradeoffs for bidirectional synchronizers with reconciliation. Homoge-
neous reconciliation is most appropriate if the relation between the source and
target has at least one end with the cardinality of one because artifacts or up-
dates can be unambiguously translated in the direction of that end. In contrast,
heterogeneous reconciliation appears to be more appropriate for many-to-many
relations.

8 Additional Design Decisions

In this Section, we present additional design decisions related to the implemen-
tation of the synchronizers: creation and representation of updates, structure
identification and matching, modes of synchronization, implementation of deci-
sion functions, and construction and correctness of synchronizers.

8.1 Creation and Representation of Updates

An update describes the change of artifact’s internal structure. The applica-
tion of an update corresponds to the execution of a sequence of artifact update
operations such as element additions, removals, and relocations and attribute
value changes. One way of obtaining a sequence of artifact update operations
is by recording editing operations performed by the artifact’s developer. In this
case, the artifact at the beginning of the recording is a reference artifact of the
recorded update. We refer to updates obtained by recording developer’s edits as
history-based updates. The sequence of developer’s edits can be transformed into
a canonical form, which produces the same result as the original sequence, but
lacks redundant edits, such as, modifying the same attribute multiple times. An-
other way of creating an update is by comparing two artifacts using homogeneous
artifact comparison. We refer to updates obtained by comparing two artifacts as
state-based updates. History-based updates contain more information than state-
based updates, but may be more difficult to implement in practice. For example,
implementations have to ensure that all artifact updates are performed through
an appropriate change-tracking interface.

8.2 Structure Identification and Matching

Comparison operators such as homogeneous and heterogeneous artifact compar-
ison require a way to establish the correspondence between the elements of the
artifacts being compared. Furthermore, the implementation of an update func-
tion must also contain information about the elements it affects and a way to
identify them in the reference artifact. We refer to the process of establishing
the correspondence between elements as matching.

Design Space of Heterogeneous Synchronization 37

The two fundamentally different approaches to matching are non-structural
matching and structural matching. Non-structural matching assumes that ele-
ments receive globally unique, structure-independent identifiers at the time of
their creation. By “globally unique” we mean that the identifiers are unique at
least in the scope of the matched artifacts. Structure-independent means that
the identifiers are independent of the artifact structure, meaning that they re-
main constant when the structure evolves. For example, the identifier could be
generated as a combination of the IP address of the machine where the identifier
is generated, a timestamp, and a random number. This approach greatly sim-
plifies matching among different versions of an artifact as the correspondence of
elements can be established immediately based on the equality of the identifiers.
The main drawback of this approach is that it tends to be brittle with respect
to artifact evolution that involves a deletion and subsequent recreation of an
element. For example, consider the removal of a method from a class and its
later re-introduction. The new method would have a new identifier, which would
mark it as a new element even though it is probably just a new version of the
original method. Furthermore, identifiers tend to pollute and bloat the artifacts,
especially if they need to be stored in a human-readable textual form.

Structural matching avoids both problems by establishing correspondence
through the structural information that is already in the artifacts, e.g., element
nesting, element’s position in ordered lists, and attribute values such as element’s
local name. In our method evolution example, the old and the new version of the
method could be matched by using the fully qualified name of the containing
class and the method’s signature as an identifier. The matching can still use
precomputed identifiers, but these identifiers would be structure dependent as
they encode structural information. The main drawback of structural matching
is that sometimes the structural information needed for recovering a particular
relationship may be missing or difficult to identify. For example, while the fully
qualified name and signature of a method is sufficient to unambiguously match
a single call to that method within the body of another method, identifying
multiple calls within a single body is challenging. Using the lexical order of the
calls is a possible solution, but one that is brittle with respect to evolution when
the body is restructured, for example, when additional calls are inserted in the
middle of the body. A practical solution may need to use more local context in-
formation of each call in order to establish the correspondence between the two
versions. The problem of recognizing element relocations in nested structures is
an active research topic, e.g., [31].

In practice, both non-structural and structural matching can be used in com-
bination. For example, the model management infrastructure of IBM Rational
Software Modeler [32], which is IBM’s UML modeling tool, supports both non-
structural and structural matching.

Finally, matching could be realized at a semantic level rather than a structural
(i.e., syntactic) one. For example, Nejati et al. [33] present an approach for
matching and merging Statecharts specifications that respects the behavioral
semantics of the specifications.

38 M. Antkiewicz and K. Czarnecki

8.3 Instantaneous vs. On-Demand Synchronization

Another design decision is the time of update propagation. We distinguish be-
tween instantaneous and on-demand synchronization. Instantaneous synchroniza-
tion translates and applies updates to the target artifact immediately after the
updates occurred in the source artifact. On-demand synchronization translates
and applies updates at the time most convenient for the developer. Instantaneous
synchronization is likely to require an incremental synchronizer since translating
the entire source artifact after each update would be highly inefficient.

8.4 Disconnected vs. Live Synchronization

Update propagation can be implemented as a disconnected or a live transforma-
tion. Live transformation is a transformation that does not terminate [I825] and
whose intermediate execution data, referred to as execution context, is preserved.
The context of a live transformation maintains the links between structures in
the source artifact and the resulting structures in the target artifact. The preser-
vation of the execution context allows for efficient propagation of updates made
to the source artifact (cf. Example [IT). In contrast, a disconnected transforma-
tion terminates and its execution trace is lost, in which case a structure matching
mechanism is needed (cf. Section B2)).

8.5 Strategies for Selecting Synchronization Result from Multiple
Choices

Synchronization in the “to-many” direction requires a way to select a single
target from the set of possible targets that are consistent with the source. We
distinguish among the following selection strategies:

— Pre-determined choice: The choice is fixed by the synchronizer developer and
hardcoded in the synchronizer.

— Interactive selection: The available choices, typically ranked according to
some criteria, are presented to the user interactively. While the number of
choices may be infinite, a finite number is presented at a time and the user
can ask for more.

— User-specified defaults: The user may use global options to specify prefer-
ence. Alternatively, the choices may be related to individual source elements,
in which case the source elements are annotated. Examples of annotation
mechanisms are Java annotations and UML profiles.

— Adaptive defaults: The default settings could be obtained by mining from the
original target or from a corpus of existing sample targets. An example of this
strategy is the automatic application of code formatting that was extracted
from a corpus of sample programs using data mining techniques [34].

— Target preservation: The available choices may be restricted by the desire to
preserve structures in the original target. We accounted for this possibility
in the original-target-dependent synchronizers.

Design Space of Heterogeneous Synchronization 39

8.6 Construction of Bidirectional Synchronizers

Bidirectional synchronizers can be constructed using either a bidirectional or a
unidirectional transformation language. Synchronizers constructed using a bidi-
rectional language can be directly executed in both directions from a single
specification.

Examples of bidirectional transformation languages include QVT Relations
[35], triple graph grammars [25,86] (TGGs), and Lenses for trees [I7]. In QVT
and TGGs, synchronizers are expressed by a set of rules, which can be executed
in both forward and reverse directions. Implementations of the QVT Relations
language include ModelMorf by TATA Research Development and Design Centre
and Medini QVT by IKV++. Tool support for creating TGG-based synchroniz-
ers exists as a plug-in for the FUTABA tool suite [26]. In the Lenses approach
complex bidirectional synchronizers are implemented by composing bidirectional
primitives using combinators. Similarly to lenses, Xiong et al. propose an ap-
proach to building bidirectional synchronizers using combinators that translate
modification operations performed on one artifact to synchronizing operations
on the other artifact [37]. In this approach, a synchronizer is defined by creating
a synchronizer graph, which consists of primitive synchronizers, input artifacts,
and intermediate (temporary) artifacts. The approach additionally supports dif-
ferent synchronization behaviors by parameterizing primitive synchronizers with
mode options.

Using a unidirectional transformation language requires either writing two
unidirectional synchronizers, one in each direction, or writing a unidirectional
synchronizer in one direction and automatically computing its inverse. Depend-
ing on the type of relation among the artifacts, the two unidirectional trans-
formations can be constructed in many ways. For some bijections, an inverse
transformation can be automatically computed from the transformation in one
direction. Pierce provides a list of examples of interesting cases of computing
such inverse transformations [38]. Xiong et al. [30] developed an approach that
can execute a synchronizer written in ATL, a unidirectional language, in the
reverse direction (cf. Example 20). The information that is necessary for the
reverse transformation is recorded by an extension to the ATL virtual machine
during the execution of the synchronizer in the forward direction.

8.7 Correctness of Synchronizers

In practice, establishing full consistency automatically may not always be possi-
ble. First, developers may desire to synchronize partially finished artifacts, i.e.,
the synchronizer may need to be able to handle artifacts of which only parts are
well-formed. Second, the complex semantics of some artifacts and relations can
sometimes be only approximated by programs implementing translation opera-
tors. For example, a synchronizer that operates on program code may need to
rely on static approximations of control and data flow.

Code queries for FSMLs exemplify both situations [16]. The precise FSML
semantics relate model elements with structural and behavioral patterns in Java

40 M. Antkiewicz and K. Czarnecki

code. However, the code queries implementing the reverse engineering for the
behavioral patterns are incomplete and unsound approximations of the behav-
ioral patterns. Furthermore, the code query evaluation engine relies on an incre-
mental Java compiler, which allows for querying code that does not completely
compile.

9 Related Work

In this section we discuss related works in three areas: data synchronization in
optimistic replication, inconsistency management in software development, and
model management and model transformation.

9.1 Data Synchronization in Optimistic Replication

The need for synchronization arises in the area of optimistic replication, which
allows replica contents to diverge in the short term in order to allow concur-
rent work practices and to tolerate failures in low quality communication links.
Optimistic replication has applications to file systems, personal digital assis-
tants, internet services, mobile databases, and software revision control. Saito
and Shapiro [39] provide an excellent survey of optimistic replication algorithms,
which are essentially synchronization algorithms. They distinguish the following
phases of synchronization: update submission at multiple sites, update propaga-
tion, update scheduling, conflict detection and resolution, and commitment to
final reconciliation result. The scheduling of update operations is of particular
interest in the context of multiple master sites with background propagation,
which leads to the challenge that not all update operations are received at all
sites in the same order. Furthermore, Saito and Shapiro distinguish several key
characteristics of optimistic replication:

— Single vs. multi-master synchronization: Synchronization scenarios can in-
volve different numbers of master sites. Master sites are those that can mod-
ify replicas. In contrast, slave sites store read-only replicas. The scope of this
tutorial is limited to master-slave (i.e., unidirectional) and master-master
(i.e., bidirectional) synchronization.

— State-transfer vs. operation transfer: We discussed this distinction in Sec-
tion

— Conflict detections and resolution granularity: Conflicts may be easier to
resolve if smaller sub-objects are considered.

— Syntactic vs. semantic update operations: Replicas can be compared syntac-
tically or semantically. This distinction is concerned with the extent to which
the synchronizer system is aware of the application semantics of the replicas
and the update operations. Semantic approaches avoid some conflicts that
would arise in syntactic approaches, but are more challenging to implement.

— Conflict management: This characteristic is concerned with the way the sys-
tem defines and handles conflicts. Conflict detection policies can be syntactic
or semantic. Conflict resolution may involve selecting one update among a

Design Space of Heterogeneous Synchronization 41

set of conflicting ones while the others are discarded, storing all conflict-
ing updates in each synchronized replica, or allowing replicas to diverge for
conflicting updates [27].

— Update propagation strategy: This dimension includes the degree of syn-
chrony, e.g., pull vs. push strategies, and the communication topology, e.g.,
star vs. ad-hoc propagation.

— Consistency guarantees: Some synchronizers may guarantee consistency of
the accessed replicas while other may give weaker guarantees, such as guaran-
teeing that the state of replicas will eventually converge to being consistent.

An additional dimension given by Foster et al. [27] is

— Homogeneityvs. heterogeneity: This dimension refers to the distinction whether
the data to be synchronized adheres to a single schema or to different schemas
expressed in the same schema language (e.g., relational algebra). The focus
of this tutorial is on heterogeneous synchronization.

Saito and Shapiro [39] and Foster et al. [27] give many example of existing
synchronization systems; however, Harmony [27] seems to be the only generic
synchronizer handling heterogeneous replicas. Harmony is concerned with the
special case of mappings which are functions. The same case is also studied in
databases as the view update problem, e.g., see Bancilhon and Spyratos [40] and
Gottlob et al. [41].

9.2 Data Integration and Schema Mapping

Another related area is data integration, which is concerned with integrating data
from multiple sources, such as different databases. A particular challenge in this
context is schema integration, i.e., the integration of the vocabularies defined by
the schemas, which is addressed by schema matching. Bernstein and Rahm [42]
provide an excellent survey of approaches to automated schema matching.

9.3 Inconsistency Management in Software Development

Software artifact synchronization is a topic in inconsistency management in soft-
ware engineering [2L5[0L[8[43]. Spanoudakis and Zisman [8] provide a survey of
this area. They identify a broad set of activities related to inconsistency man-
agement: detection of overlaps (i.e., identification of relationships), detection of
inconsistencies, diagnosis of inconsistencies, handling of inconsistencies, tracking
(not all inconsistencies need to be resolved), and specification and application of
an inconsistency management policy. Grundy and Hosking [7] explore architec-
tures and user-interface techniques for inconsistency management in the context
of multiple-view development environments.

9.4 Model Management and Model Transformation

Software artifact synchronization is also closely related to model management
and model transformation. In model-driven software development (MDSD) [12],

42 M. Antkiewicz and K. Czarnecki

models are specifications that are inputs to automated processes such as code
generation, specification checking, and test generation. Furthermore, models in
MDSD are typically represented as object graphs conforming to a class model
usually referred to as a metamodel.

Model management is concerned with providing operators on models such as
comparison, splitting, and merging. Bernstein et al. argued for the need of such
generic model operators and the existence of mappings among models as first-
class objects [44]. Later, Bernstein applied the model management operators to
three problems: schema integration, schema evolution, and round-trip engineer-
ing [45]. Brunet et al. [4] wrote a manifesto for model management, in which they
argue for an algebraic framework of model operators as a basis for comparing
different approaches to model merging. Indeed, the use of operators in our design
space was partly inspired by this manifesto. The diff operator corresponds to the
homogeneous comparison operator presented in this tutorial. Furthermore, the
manifesto refers to updates as transformations and to the application of updates
as patching. The manifesto defines additional operators, e.g., split and slice. The
operators in this tutorial treat the relation R as an implicit parameter. In con-
trast, the operators in the manifesto are defined explicitly over artifacts and
relations. While the manifesto focuses on homogeneous merge, our design space
is concerned with heterogeneous synchronization. In fact, bidirectional synchro-
nizers with reconciliation can be understood as heterogeneous merge operations.
One of the uses of model management is detecting and resolving inconsisten-
cies in models, e.g., see work by Egyed [46] and Mens [47]. Sriplakich et al. [4§]
discuss a middleware approach to exchanging model updates among different
tools. Finally, Diskin [49,[50] proposes using category theory as a mathematical
formalism for expressing the operators for both homogeneous and heterogeneous
generic model management.

Another related area is model transformation, which is concerned with pro-
viding an infrastructure for the implementation and execution of operations on
models. Mens et al. [51] provide a taxonomy of model transformation and apply
it to model transformation approaches based on graph transformations [52]. The
taxonomy discusses several tool-oriented criteria such as level of automation,
preservation, dealing with incomplete and inconsistent models, and automatic
suggestion of transformations based on context. Czarnecki and Helsen [53] sur-
vey 26 approaches to model transformation. The survey and the design space
presented in this tutorial both use a feature-based approach and have some
features in common, such as target incrementality, source incrementality, and
preservation of user edits in the target. In contrast to this tutorial, the survey
mainly focuses on the different paradigms of transformation specification, such
as relational, operational, template-based, and structure-driven approaches, and
it does not consider reconciliation. Some ideas for an algebraic semantics for
model transformations are presented by Diskin and Dingel [54].

The topic of bidirectional model transformation has recently attracted in-
creased attention in the modeling community. Stevens [24] analyzes proper-
ties of the relational part of OMG’s Query View Transformation (QVT) and

Design Space of Heterogeneous Synchronization 43

argues that more basic research on bidirectional transformation is needed before
practical tools will be fully realizable. Giese and Wagner [25] identify a set of
concepts around bidirectional incremental transformations. In particular, they
distinguish between bijective and surjective bidirectional transformations. The
latter correspond to the situation where several sources correspond to a single
target. Furthermore they refer to a transformation as fully incremental if the
effort of synchronizing a source model change is proportional to the size of the
source change. Finally, Ehrig et al. [36] study the conditions under which model
transformations based on triple-graph grammars are reversible.

10 Conclusion

In this tutorial we explored the design space of heterogeneous synchronization,
i.e., the synchronization of artifacts of different types. We presented a number
of artifact operators that can be used in the implementation of synchronizers
and presented 16 example synchronizers. The example synchronizers illustrate
different approaches to synchronization and can be characterized along a number
of dimensions, such as directionality, incrementality, original-target-dependency,
and support for the reconciliation of concurrent updates. For some of the syn-
chronizers, we provided examples of existing systems that implement a given
approach to synchronization. Furthermore, we discussed a number of additional
design decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchronization re-
sult from a set of alternatives. Finally, we discussed important works in related
fields including data synchronization, inconsistency management in software en-
gineering, model management, and model transformation.

Acknowledgments. The authors would like to thank Zinovy Diskin, Lech
Tuzinkiewicz, and the anonymous reviewers for their valuable comments on ear-
lier drafts of this tutorial.

References

1. Frederick, P., Brooks, J.: No silver bullet: essence and accidents of software engi-
neering. Computer 20(4), 10-19 (1987)

2. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between
multiple views in requirements specification. In: ICSE, pp. 187-196 (1993)

3. Maier, M.W., Emery, D., Hilliard, R.: Software architecture: Introducing ieee stan-
dard 1471. Computer 34(4), 107-109 (2001)

4. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa, pp. 5-12 (2006)

5. Balzer, R.: Tolerating inconsistency. In: ICSE, pp. 158-165 (1991)

6. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
BCS/IEE Software Engineering Journal 11(1), 31-43 (1996)

7. Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency management for multiple-
view software development environments. IEEE Trans. Softw. Eng. 24(11), 960-981
(1998)

44

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Antkiewicz and K. Czarnecki

Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329-380. World Scientific Publishing Co, Singapore (2001)
Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171-185. Springer,
Heidelberg (2006),
http://www.lina.sciences.univ-nantes.fr/Publications/2006/JB06a
Antkiewicz, M.: Framework-Specific Modeling Languages. PhD thesis, University
of Waterloo (2008) (submitted for review)

Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, Reading (2002)

Stahl, T., Vélter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, Chichester (2006)

Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609. Springer, Heidelberg (2007)

Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)
Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
A progress report. In: OOPSLA International Workshop on Software Factories
(2005); On-line proceedings

Antkiewicz, M., Tonelli Bartolomei, T., Czarnecki, K.: Automatic extraction of
framework-specific models from framework-based application code. In: ASE, pp.
214-223 (2007)

Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. In: POPL, pp. 233-246 (2005)

Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321-335. Springer, Heidelberg (2006)
Eclipse Foundation: Java Emitter Templates Component (2007),
http://www.eclipse.org/modeling/m2t/7project=jet

Eclipse Foundation: Eclipse Modeling Framework Project (2007),
http://www.eclipse.org/modeling/emf/7project=emf

Nickel, U.A., Niere, J., Wadsack, J.P., Ziindorf, A.: Roundtrip engineering with
FUJABA. In: WSR, Fachberichte Informatik, Universitiat Koblenz-Landau (2000)
Afimann, U.: Automatic roundtrip engineering. Electr. Notes Theor. Comput.
Sci. 82(5) (2003)

Sendall, S., Kiister, J.M.: Taming model round-trip engineering (2004)

Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1-15. Springer, Heidelberg (2007)

Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543-557. Springer, Heidelberg (2006)

Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implemen-
tations, and application scenarios. Technical Report tr-ri-07-284, Software Engi-
neering Group, Department of Computer Science, University of Paderborn (2007)
Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-
ing schemas in data synchronization. J. Comput. Syst. Sci. 73(4), 669-689 (2007)

http://www.lina.sciences.univ-nantes.fr/Publications/2006/JB06a
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/emf/?project=emf

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Design Space of Heterogeneous Synchronization 45

Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages; examples
and algorithms. Technical Report 2007-18, ECE, Univeristy of Waterloo (2007)
ATLAS Group: ATLAS Transformation Language (2007),
http://www.eclipse.org/m2m/atl/

Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE, pp. 164-173 (2007)
Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and
merging of architectural views. In: ASE, pp. 47-58 (2006)

IBM: Rational Software Modeler (2007),
http://www-306.1ibm.com/software/awdtools/modeler/swmodeler/

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: ICSE, pp. 54-64 (2007)

Reiss, S.P.: Automatic code stylizing. In: ASE, pp. 74-83 (2007)

Object Management Group: MOF QVT Final Adopted Specification. OMG
Adopted Specification ptc/05-11-01 (2005),
http://www.omg.org/docs/ptc/056-11-01.pdf

Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72-86. Springer, Heidelberg (2007)

Xiong, Y., Hu, Z., Takeichi, M., Zhao, H., Mei, H.: On-site synchronization of
software artifacts. Technical Report METR, 2008-21, Department of Mathematical
Informatics, University of Tokyo (2008),
http://www.ipl.t.u-tokyo.ac.jp/~xiong/papers/METRO8.pdf

Pierce, B.C.: The weird world of bi-directional programming (2006) ETAPS invited
talk, slides,
http://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf

Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42-81
(2005)

Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557-575 (1981)

Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Trans. Database Syst. 13(4), 486-524 (1988)

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334-350 (2001)

Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships are
difficult! In: ICSE, pp. 676-681 (2003)

Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex
models. SIGMOD Rec. 29(4), 55-63 (2000)

Bernstein, P.: Applying model management to classical metadata problems. In:
CIDR (2003)

Egyed, A.: Fixing inconsistencies in UML design models. In: ICSE, pp. 292-301
(2007)

Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsis-
tencies using transformation dependency analysis. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200-214. Springer,
Heidelberg (2006)

Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting transparent model update in
distributed case tool integration. In: SAC, pp. 17591766 (2006)

Diskin, Z., Kadish, B.: Generic model management. In: Rivero, Doorn, Ferraggine
(eds.) Encyclopedia of Database Technologies and Applications, pp. 258-265. Idea
Group (2005)

http://www.eclipse.org/m2m/atl/
http://www-306.ibm.com/software/awdtools/modeler/swmodeler/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.ipl.t.u-tokyo.ac.jp/~xiong/papers/METR08.pdf
http://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf

46

50.

51.

52.

53.

54.

M. Antkiewicz and K. Czarnecki

Diskin, Z.: Mathemtics of generic specifications for model management. In: Rivero,
Doorn, Ferraggine (eds.) Encyclopedia of Database Technologies and Applications,
pp. 351-366. Idea Group (2005)

Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Proc. Int’l
Workshop on Graph and Model Transformation (2005)

Mens, T., Van Gorp, P., Varro, D., Karsai, G.: Applying a model transformation
taxonomy to graph transformation technology. In: Proc. Int’l Workshop on Graph
and Model Transformation (2005)

Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621-645 (2006)

Diskin, Z., Diengel, J.: A metamodel independent framework for model transfor-
mation: Towards generic model management patterns in reverse engineering. In:
Favre, J.-M., Gasevic, D., Laemmel, R., Winter, A. (eds.) 3rd Int.Workshop on
Metamodels, Schemas, Grammas and Ontologies for reverse engineering, ATEM
2006 (2006)

Software Reuse beyond Components with XVCL
(Tutorial)

Stan Jarzabek

Department of Computer Science, School of Computing
National University of Singapore, Singapore 117543
stan@comp.nus.edu.sg

Abstract. The basic idea behind software reuse is to exploit similarities within
and across software systems to avoid repetitive development work. Conven-
tional reuse is based on components and architectures. We describe how reuse
of structural similarities extends the benefits of conventional component reuse,
and realization of the concept with a generative technique of XVCL'. Structural
similarities are repetition patterns in software of any type or granularity, from
similar code fragments to recurring architecture-level component configuration
patterns. We represent any significant repetition pattern in subject system(s)
with a generic, adaptable, XVCL meta-structure. We develop, reuse and evolve
software at the level of meta-structures, deriving specific, custom systems from
their meta-level representations. Lab studies and industrial applications of
XVCL show that by doing that, on average, we raise reuse rates and productiv-
ity by 60-90%, reducing cognitive program complexity and maintenance effort
by similar rates. The approach scales to systems of any size. The benefits are
proportional to system size, and to the extent of repetitions present in subject
system(s). The main application of this reuse strategy is in supporting software
Product Lines.

1 Introduction

Software reuse is such a tempting idea as we see so much similarity within and across
software systems. Experienced developers become aware of the fact that software de-
velopment involves common themes that recur in variant forms from project to pro-
ject, and from one software system to another. Effective reuse strategy should help us
avoid repetitive development work. With reuse, we hope to exploit productivity im-
provements similarities offer, rather than develop similar systems from scratch.

Software Product Line (PL) approach [12] focuses on domain-specific reuse,
within a family of software systems that are known to have much in common with
one another. Domain-specific reuse can be easier and more effective than reuse across
arbitrary, possibly very dissimilar systems.

Consider a family of Role Playing Games (RPG) for mobile phones (Fig. 1). An
RPG player takes the role of a fictional character and participates in an interactive

! XVCL: XML-based Variant Configuration Language, xvcl.comp.nus.edu.sg

R. Lammel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 47§77] 2008.
© Springer-Verlag Berlin Heidelberg 2008

48 S. Jarzabek

Feeding

product .
derivation a

Jump

. Feeding
variant features

reusable components software products

PL members
PLA

Fig. 2. Product Line Architecture (PLA) and product derivation

story. All RPGs are similar, but they also differ in some functional requirements, and
in characteristics of a specific mobile device on which they run. The goal of mobile
device contents providers is to support possibly large number of games, on a possibly
wide range of mobile devices. Games for new mobile device models should be deliv-
ered fast. Much similarity among games makes reuse a promising approach to cut
game development time and effort. Product Line (PL) approach targets this goal [48].

The core idea of a PL approach is to set up a base of reusable assets, so-called PL
Architecture, PLA for short. Specific products are then built by reusing assets stored
in a PLA.

Fig. 2 depicts the main concepts behind the PL approach. A range of variant fea-
tures supported by a PLA are shown as a feature diagram on the left-hand-side of the
figure (details are not meant to be read). Reuse-based development is called product
derivation. Product derivation starts by selecting variant features for a product we in-
tend to build. We try to understand the impact of variant features on PLA compo-
nents, and select component configurations “best matching” variant features for a
product. This is followed by component customization to accommodate the impact of
variant features on components. Then, we integrate components to form a custom
product, and validate the product. If component integration or validation fails, we may
need to repeat the component selection, customization, integration and validation cy-
cle until the requirements for a new PL member are properly met.

The above product derivation model generalizes experiences from a number of in-
dustrial PL projects [15], and we use it as a reference model in this paper.

Software Reuse beyond Components with XVCL 49

Software architectures and components are the main concepts behind conventional
approaches to realizing reuse in PLs. Modern component platforms (e.g., JEE or
.NET), design patterns, parameterization (e.g., Java generics, C++ templates, higher-
level functions or macros) and inheritance also contribute useful reuse solutions in
certain situations. Platform mechanisms have many advantages, but reuse benefits are
mostly limited to common services and middleware layers. Reuse potentials on a sys-
tem-wide scale, especially in the application domain-specific areas of business logic
and user interfaces, are more difficult to realize with component platform mechanism
alone. By setting up a PL, companies can also aim at reuse in domain-specific areas.

Some companies established and benefited from PL programmes [12][27][37]. At
the same time, a number of problems have also been reported. First, companies ob-
serve explosion of similar component versions in PLA. This hinders selection and
customization of components for reuse when deriving new products from a PLA.
Functionality already implemented may be difficult to reuse in new products [15], de-
feating the very purpose of establishing a PL. Second, product derivation lacks auto-
mation, and is done mostly manually, with help of complementary techniques such as
wizards or configuration files. Finally, to our best knowledge, benefits of compo-
nent/architecture-based reuse are mainly observed during new development, but are
less evident in long-term evolution of successful products.

It is the role of variability management strategy to provide effective solution to the
above problems. The main challenge of reuse is to handle variability across PL mem-
bers: We wish to derive PL. members from a common set of reusable software assets,
a PLA. PL members share similarities, but variability in a domain causes that they
also differ one from another in variant features. Effectiveness of a reuse strategy de-
pends on how well we can exploit similarities, and deal with differences.

It follows that the ability to represent software in a generic and highly adaptable
form should be a prerequisite for successful reuse, and a prominent characteristic of a
PLA. Genericity is needed to express similarities among PL members. Adaptability
takes care of variant features that differ from one PL member to another.

Generic, adaptable software representations are the heart and soul of reuse. How-
ever, they are difficult to build with conventional component architectures. Conse-
quently, genericity remains underutilized in realizing today’s reuse strategies. Com-
ponents typically stored in a PLA are not generic enough, and their adaptation, mostly
manual, is too difficult for effective reuse.

Generic design is easier to achieve at the meta-level program representation than
at the level of conventional components. In this paper, we show a pragmatic way to
strengthen generic design capabilities of conventional reuse techniques with a gen-
erative programming technique of XVCL [45]. The approach works as follows: We
do initial design using conventional techniques, and then apply XVCL to build ge-
neric, adaptable meta-level structures. By doing that, we unify and reuse structural
similarity patterns of all types and granularity (e.g., similar classes, components and
patterns of collaborating components) for which conventional generic representa-
tions may not exist.

Such approach reaps reuse opportunities beyond what is possible with conventional
component/architecture reuse. It works for common middleware services, as well as
for application domain layers of user interfaces and business logic, which are particu-
larly difficult to componentize for reuse. On average, we reduce cognitive program

50 S. Jarzabek

complexity (and maintenance effort) of a program solution by 60-90%, raising the
levels of reuse by similar rates.

PLA contains all types of software assets such as code, documentation, models,
and test cases. Similarities and differences occur in PLA software assets and variabil-
ity management should address all of them. XVCL can manage variability in any as-
sets that can be expressed as text, written in a formal or informal language. Having
said that, in this paper we focus only on code assets.

In Section 2, we discuss the software similarity phenomenon with examples.
Sections 3 motivates XVCL and describes its concepts. Section 4 introduces detailed
XVCL mechanisms by means of a toy example. Section 5 illustrates application of
XVCL. We evaluate the XVCL approach in Section 6. Related work and conclusions
end the paper.

2 Software Similarity Phenomenon

Similarities are inherent in software. They show within and across application do-
mains as recurring similar software structures, so-called software clones. Clones ap-
pear in software for variety of reasons. Ad hoc copy-paste-modify practice leads to
repetitions. Recurring patterns of software requirements or design also induce repeti-
tions (e.g., analysis patterns [19] or design patterns [21]). Some clones are intentional
and play a useful role in a program [31] while some clones occur because of the limi-
tations of a programming language [26][33]. Cordy [13] describes situations where
refactoring clones is not a viable option because of the risks involved in changing the
software. Similarly, Rajapakse [39] describes trade-offs involved in refactoring clones
in web applications developed with PHP. Clones can also be induced by a design
techniques, for example, by standardized architectures and pattern-driven develop-
ment (e.g., Web architectures, JEE or .NET). Uniformity of design is desirable despite
inducing many repetitions. The above observations suggest that in many situations,
refactoring clones from programs is neither possible nor even desirable.

In case of families of similar systems, such as Software Product Lines, repetitions
are expected, evident and pervasive. With XVCL, we capture similar program struc-
tures recurring in products in a generic, non-redundant form at the meta-level, while
preserving clones intact in the actual program derived from the meta-level program
representation.

In this paper, we show the benefits of and trade-offs involved in changing the per-
spective from component reuse, to meta-level reuse of any structurally similar soft-
ware representations.

2.1 Simple and Structural Clones

Software clones are any program structures of considerable size and significant simi-
larity, irrespective of their type and granularity. The actual size and similarity (which
can be measured, for example, in terms of percentage of repeated code) is subjective,
varies with context, hence is left to human judgment. Similarity is a multi-faceted
phenomenon that escapes precise definition.

Software Reuse beyond Components with XVCL 51

CreateUser.UI CreateTask.UI GUI

\ \
exeelites
executes
‘/@zﬁ 29?‘-/ Business
CreateUser.Ul CreateTask.BL Logic
visyalizes

y
User.DB Q
adcesses accesses | Task.DB | DB Entity Classes

A4 A
Fig. 3. Structural clones spanning multiple tiers of DEMS

Clones may or may not represent program structures that perform well-defined
functions. It is structural similarity among program structures, not their function that
is of our interest in this paper.

Research so far mostly focused on similar code fragments, so-called simple clones.
Simple clones may differ in parametric or non-parametric ways, for example some
clone instances may have inserted or deleted code lines as compared to others.

Software similarities are not limited to simple clones; similarities also exist at
higher levels of software representation. We call large-granular, design-level similar
program structures as structural clones [1]. Structural clones are patterns of inter-
related components/classes. They are often induced by the application domain (analy-
sis patterns) or design techniques.

Cloning situation shown in Fig. 3 has been found in a Domain Entity Management
Subsystem (DEMS) of a command-and-control application developed in C# by our
industry partner ST Electronics Pte Ltd (STEE). DEMS involves domain entities such
as User, Task or Resource. For each entity, there are operations, such as Create, Up-
date, View, Delete, Find or Copy.

The design of each operation such as CreateUser or Create Task involves a pattern
of collaborating classes from GUI, service and database layers. Each box in Fig. 3
represents a number of classes: GUI classes implement various forms to display or en-
ter data; Business Logic classes implement data validation and actions specific to
various operations and/or entities; Entity classes define data access; classes at the bot-
tom contain table definitions. Classes in corresponding boxes at each level display
much similarity, but there are also differences induced by different semantics of do-
main entities: For example, operation CreateTask requires different types of data en-
try and data validation than CreateUser.

Patterns of components implementing operations such as CreateUser and Cre-
ateTask form a structural clone class.

2.2 Clones in the Buffer Library

A study of the Buffer library JDK 1.5 provides interesting insights into sources of
software similarities. It also sheds light on the reasons why it is difficult to avoid
repetitions with conventional programming techniques such as componentization,

52 S. Jarzabek

Buffer
Element Type Memory Allocation Access Modd Byte Order View Buffer
Scheme (MS) (AM) (BO) (vVB)

Writable ittle-| i Big-Endian Native Non-native

Alternative Mandatory Optional
features features features

Fig. 4. Features of buffer classes

Buffer
s

Level 1

ByteBuffer ‘ CharBuffer ‘ IntBuffeﬂ DoubleBuffer ‘FloatBuffer LongBuffer‘ ‘ ShortBuffer
/ N4 A e vd A

7

MappedByteBuffer Level 2

/
‘HeapByteBuffer‘ ‘ HeapCharBuffer ‘ Heaplntﬁff&r\
A L L
‘ DirectChgrBuffe ‘ DirecIntBufferS
I:Y—Dlr“tB /teBuffer | |DirectCharBuffer! R DirectIntBufferU
\

\

I I
HeapByteBuffeR| HeapCharBufferR | HeapIntBufferR | Level 3
]ﬂ DirectCharBufferRS DirecIntBufferRS
DirectBytcBuffer DirectCharBufferRU DirectIntBufferRU

Fig. 5. A fragment of the Buffer library

type parameterization or inheritance. Here, we summarize the results from the Buffer
library study, referring the reader to [26] for details. Code and step-by-step explana-
tion of the Buffer library study can be found on XVCL Web site [45]. A study of STL
[3,41] further strengthens observations we make in this section.

A buffer contains data in a linear sequence for reading and writing. Buffer classes
differ in buffer element type, memory allocation scheme, byte ordering and access
mode. Features of buffer classes are shown in Fig. 4, as a feature diagram [29]. We see
five features groups, with specific variant features listed below a respective feature
group. Each legal combination of features from various groups yields a unique buffer
class. As we combine features, buffer classes grow in number, as observed in [5,9].

Some of the buffer classes are shown in Fig. 5. A class name, such as Directlnt-
BufferRS, reflects combination of features implemented into a given class. Class
names are derived from a template:

Software Reuse beyond Components with XVCL 53

[MS][T]Buffer[AM][BO],
where
MS — memory scheme: Heap or Direct;
T — type: int, short, float, long double, char, or byte;
AM - access mode: W — writable (default) or R - read-only;
BO - byte ordering: S — non-native or U — native;
B - BigEndian or L - LittleEndian.

Classes whose names do not include ‘R’, by default are ‘W’ — writable.
Examination of buffer classes reveals much similarity among classes in seven
groups, namely

[T]Buffer,

Heap[T]Buffer,

Heap[T]BufferR,

Direct[T]Buffer[SIU],
Direct[T]BufferR[SIU],
ByteBufferAs[T]Buffer[BIL], and
ByteBufferAs[T]BufferR[BIL].

Classes in each group differ in method signatures, data types, keywords, operators,
and other editing changes. Some of the classes have extra methods and/or attributes as
compared to other classes in the same group.

A non-redundant, generic representation for groups of similar classes seems a vi-
able approach to achieving a simpler representation of buffer classes. It is interesting
to see why buffer classes could not be represented in a generic form.

Any solutions to unifying similarities must be considered in the context of other de-
sign goals developers must meet. Usability, conceptual clarity and good performance
are important design goals for the Buffer library. In many situations, designers could
introduce a new abstract class or a suitable design pattern to avoid repetitions. How-
ever, such a solution would compromise the above design goals, and therefore, was not
implemented. Many similar classes or methods were replicated because of that.

Many similarities in buffer classes sparked from the fact that buffer features (Fig. 4)
could not be implemented independently of each other in separate implementation
units (e.g., class methods). Feature modularization, one of the goals of Feature-
Oriented Programming [7,38], did not work for the Buffer library. Code fragments re-
lated to specific features appeared with many variants in different classes, depending
on the context. Whenever such code could not be parameterized to unify the variant
forms, and placed in some upper-level class for reuse via inheritance, similar code
structures spread through classes.

Since JDK 1.5 includes generics, one could presume that type parameterization
should have a role to play in unifying parametric differences among similar classes.
However, generics have not been applied to unify similar buffer classes. Groups of
classes that differ only in data type are obvious candidates for generics. There are
three such groups comprising 21 classes, namely [T]Buffer, Heap[T]Buffer and
Heap[T]BufferR. In each of these groups, classes corresponding to Byte and Char
types differ in non-type parameters and are not generics-friendly. This leaves us with
15 generics-friendly classes whose unification with three generics eliminates 27% of
code. There is, however, one problem with this solution. In Java, generic types cannot

54 S. Jarzabek

/*Creates a new byte buffer containing a shared
subsequence of this buffer's content. */
public ByteBuffer slice() {
int pos = this.position();
int lim = this.limit();
assert (pos <= lim);
int rem = (pos <= lim ? lim - pos : 0);
int off = (pos << 0):
return new DirectByteBuffer(this, -1, 0, rem, rem, off);

Fig. 6. Method slice() recurring in 13 Direct[T]Buffer[SIU] classes

be primitive types such as int or char. This is a serious limitation, as one has to create
corresponding wrapper classes just for the purpose of parameterization. Wrapper
classes introduce extra complexity and hamper performance. Application of generics
to 15 buffer classes is subject to this limitation.

Buffer classes and methods differ in parameters representing constants, keywords
or algorithmic elements rather than data types. This happens when the impact of vari-
ous features affects the same class or method. For example, method slice() (Fig. 6) re-
curs 13 times in all the Direct[T]Buffer[SIU] classes with small changes highlighted
in bold. Generics are not meant to unify this kind of differences in classes. We found
yet other cases of similar but generics-unfriendly classes and we refer the reader to
further details of the generics solution (including code) to our case studies on XVCL
Web site [45].

In summary, generics have a rather limited role to play in unifying similarity pat-
terns that we find in practical situations such as we observed in the Buffer library. It is
interesting to note that repetitions often occur across classes at the same level of in-
heritance hierarchy, as well as in classes at different levels of inheritance hierarchy.
Programming languages do not have a proper mechanism to handle such variations at
an adequate (that is a sufficiently small) granularity level. Therefore, the impact of a
small variation on a program may not be proportional to the size of the variation.

3 XVCL Concepts

XVCL (XML-based Variant Configuration Language) provides a systematic treat-
ment for generic design problems that cannot be easily solved using conventional
techniques. In the reuse context, XVCL adds generic design and variability manage-
ment capabilities to conventional component/architecture Product Line techniques.

XVCL technology includes a language that helps represent programs in generic,
adaptable form, methods guiding project application of XVCL, and tools. XVCL
Processor is an interpreter of the XVCL notation. The Processor automates derivation
of custom, executable programs from their generic meta-level XVCL representation.
XVCL Workbench is an eclipse-based plug-in with additional tools such as a
static/dynamic analyzer, debugger and meta-level visualizer.

Software Reuse beyond Components with XVCL 55

XVCL [45] is not yet another programming language. Developers still use conven-
tional design techniques, programming languages and platforms to express the core of
their program solution — user interfaces, business logic or databases. XVCL is applied
together and in synergy with any base programming technology, to enhance its capa-
bilities to define generic, adaptable, changeable and extendible software representa-
tions, as needed for effective reuse and evolution. We call it mixed-strategy.

XVCL provides a mechanism for designing generic meta-level representations to
unify groups of similar program structures of any kind and granularity. It also pro-
vides a change propagation mechanism to instantiate generic structures in multiple
variant forms, as required in target programs (e.g., PL members). For example, any
group of simple clones (e.g., slice() methods recurring in buffer classes) has a generic
representation in XVCL; so does each of the seven groups of similar buffer classes
([T]Buffer, Heap[T]Buffer, etc.), and a group of DEMS structural clones (Fig. 3).

Product Line members typically display much similarity. In Fig. 7, S-1, S-2, S3,
and S-4 is a similar program structure that recurs in four games in variant forms. A
PLA, built with the help of XVCL, represents each such group of similar structures in
a generic form (S-gen). At the same time, we also make a record of differences among
instances of a program structure in different games (circles at the bottom numbered 1,
2, 3 and 4). This record as well as S-gen are formally expressed in XVCL. The XVCL
Processor interprets specifications deriving custom instances of a programs structure
required in different games.

Unification of similar program structures is done at all levels of software represen-
tations, from similar code fragments (such as class methods), to classes, components,
and subsystems. At the end, we build a generic representation of PL members as a
PLA from which custom products are derived.

Generic XVCL meta-components are called x-frames. A PLA built with XVCL is
called an x—framework. Custom systems are derived from x-frames based on specifi-
cations of required customizations.

To represent in a generic form any similar program structures, we need powerful,
unrestrictive parameterization, and refined mechanisms to separate commonalties
from differences. We also need to build generic design solutions in a hierarchical
way, with small-granularity structures (e.g., class methods) being building blocks of
larger-granularity structures (e.g., classes). This will allow us to achieve reuse at as
many levels as it is required.

roduct
E—— Hunt
derivation
XVCL
Processor
op | Jump
PLA in XVCL H Feeding

Fig. 7. A PLA for RPGs and product derivation with XVCL Processor

56 S. Jarzabek

4 XVCL by Example

We introduce XVCL mechanisms by means of a toy Product Line (PL). We use sim-
plified XML-free XVCL notation and do not cover many XVCL features that are use-
ful in practice, but not essential to understanding the essence of the approach. For full
specifications of XVCL, we refer readers to XVCL Web site [45].

Consider a PL. whose members are similar Java classes. Each class can print any
number of messages. One such class SavingAccount is shown in Fig. 8. The class
name and the messages, variant features of our PL, are shown in bold in Fig. 8.

class SavingsAccount {
public static void main(String[] args) {
System.out.println(“This is a bank account”);
System.out.println(“Savings Account”);

Fig. 8. Class SavingsAccount printing two messages

An x-frame Account in Fig. 9 forms a PLA, and a SPeCification x-frame (SPC)
describes how to derive class SavingAccount from it .

x-frame SPC

<set className = SavingsAccount />

<set messages = This is a bank account, Savings Account/>
<adapt Account />

x-frame Account :>
class @className {
public static void main(String[] args) { ﬂ
<while messages>
System.out.println(“@messages "), class SavingsAccount {
</while> public static void main(String[] args) {
} System.out.println(“This is a bank account”)
} System.out.println(“Savings Account”);
}
!

Fig. 9. Deriving class SavingsAccount from a generic x-frame Account

For readability, Java code in x-frames is shown in italics. The non-italics parts of
the x-frame body are in XVCL. We highlight names of XVCL commands in bold.

XVCL variables ‘className’ and ‘messages’ are assigned values in <set> com-
mands, in SPC. The value of variable ‘className’ is ‘SavingsAccount’. The value of
variable ‘messages’ is a list of values, namely “This is a bank account” and “Savings
Account”. We call ‘messages’ a multi-value variable.

Software Reuse beyond Components with XVCL 57

class CurrentAccount {
public static void main(String[] args) {
System.out.println(“This is a bank account”);
System.out.println(“Current Account”);
}
H

class LoanAccount {
public static void main(String[] args) {
System.out.println(“This is a bank account”);
System.out.println(“Loan Account”);

Fig. 10. Classes CurrentAccount and LoanAccont

XVCL Processor interprets x-frames from the top to the bottom, emitting any non-
XVCL text (Java code, in our case) to the output “as is”, and interpreting any XVCL
commands found on the way.

In our example, XVCL Processor starts processing with SPC, setting values of
variables first, and then switching processing to x-frame Account (a class template),
as instructed by <adapt> command (indicated by arrow between x-frames in Fig. 9).

In x-frame Account, ‘@className’ is a reference to variable ‘className’. XVCL
Processor emits the current variable value, in this case ‘SavingsAccount’.

Loop command <while> is controlled by a multi-value variable ‘messages’. The i-
th iteration of the loop uses the i-th value of the variable ‘messages’. In each iteration
over the <while> body, XVCL Processor emits Java code to print a message.

We now wish to derive from the same x-frame two other classes, PL. members,
shown in Fig. 10.

With simple modifications of SPC, we derive class CurrentAccount (Fig. 11).

x-frame SPC

<set className = CurrentAccount />

<set messages = This is a bank account, Current Account/>
<adapt Account />

x-frame Account :>
class @className {
public static void main(String[] args) { ﬂ
<while messages>
System.out.println(“‘@messages ”); class CurrentAccount {
</while> public static void main(String[] args) {
} System.out.println(“This is a bank account”)
} System.out.println(“Current Account”);
}
+

Fig. 11. Deriving class CurrentAccount a generic x-frame Account

58 S. Jarzabek

x-frame SPC
<set className = SavingsAccount, CurrentAccount,
LoanAccount />
<set common = This is a bank account/>
<while className>
<select option = className>
<option SavingsAccount >
<set messages = @common, Savings Account />
<adapt Account />
<option CurrentAccount >
<set messages = @common, Current Account />
<adapt Account />
<option LoanAccount > Class SavingsAccount {
<set messages = @common, Loan Account /> public static void main(String[] args) {

System.out println(“This is a bank account”);
< >

adapt Account / System.out.println(“Savings Account”);
</select>)

</while>)

Class CurrentAccount {
public static void main(String[] args) {
L System.out.println(“This is a bank account™);
System.out.println(“Current Account”);

y
x-frame Account ’

class @className | }
public static void main(String[] args) { XVCL Processor)

<while messages> class LoanAccount {

System.out.println(“@messages ”); public static void main(String[] args) {
</while> System.out.println(“This is a bank account™);
1 System.out.println(“Loan Account”);

}

/ }

Fig. 12. Deriving three classes from x-frames

class FcAccount {

public static void main(String[] args) {
System.out.println(“This is a bank account”);
System.out.println(“Foreign Account”);

/I extra messages for Foreign Account:
System.out.println();
System.out.println("Currency Swiss Francs");

}

/I extra methods for FcAccount
int convert () { ... }
int interest () { ... }

Fig. 13. Class FcAccount printing extra messages

Derivation of all three classes is shown in Fig. 12. We define a common message
in variable ‘common’ and then define messages specific to different classes in rele-
vant <option>s of <select> command. In each <option>, multi-value variable ‘mes-
sage’ is <set> to contain messages required for a given class, and x-frame Account is
<adapt>ed accordingly.

In the final example, suppose that we also need a foreign currency account. A class
named FcAccount requires two extra methods, convert() and interest(), in addition to

Software Reuse beyond Components with XVCL 59

x-frame SPC
<set className = SavingsAccount, CurrentAccount, LoanAccount, FcAccount />
<set common = This is a bank account/>
<while className>
<select option = className>
<option SavingsAccount >
<set messages = @common, Savings Account />
<adapt Account />
<option CurrentAccount >
<set messages = @common, Current Account />
<adapt Account />
<option LoanAccount >
<set messages = @common, Loan Account />
<adapt Account />
<option FcAccount >
<set messages = @common, Foreign Account />
<adapt Account > class SavingsAccount {
<insert extra-methods> }
// extra methods for Foreign Account:

int convert () { ... } class CurrentAccount {
int interest () { ... } H

</insert>
</select>
</while>

Class LoanAccount {

}

class FcAccount {
public static void main(String[] args) {

class @clas§Nan?e { . . System.out.printIn(“This is a bank account”);
public static void main(String[] args) { System.out.printIn(“Foreign Account”);

<while messages>)
</Svgf1€’i-”"’-17””ﬂ"(@messages”); - XVCL Processor // extra methods for Foreign Account:
‘while

int convert () { ... }
int interest () { ... }

x-frame Account

!
s
<break extra-methods>

}

Fig. 14. Deriving four classes from x-frame Account

the methods defined in previous classes. This new requirement for class FcAccount
was unexpected at the time when we designed x-frame Account. Such unexpected
changes often happen in software, and techniques for software reuse and evolution
should provide suitable mechanisms to handle it.

We use XVCL command <insert> into <break> to insert extra methods into class
FcAccount (Fig. 14). XVCL <insert> plays a similar role to weaving aspect code
in Aspect-Oriented Programming [32]. With <insert> command, we can modify
x-frames at designated <break> points in arbitrary ways. Notice that <break> in
x-frame Account allows us to extend any class with extra methods, if necessary.
However, <break> does not affect classes that do not need extra methods. If not
affected by <insert>, <break extra-methods> does not have any impact on classes
derived from x-frame Account.

By now, the reader is already familiar with basic XVCL mechanisms. We summa-
rize them below, adding some more details, not explained in the above examples.

XVCL variables and expressions provide a basic parameterization mechanism to
make x-frames generic. XVCL <set> command assigns a value to a variable. Typi-
cally, names of program elements manipulated by XVCL, such as components,
source files, classes, methods, data types, operators or algorithmic fragments, are
represented by XVCL expressions, which references variable (e.g., @className) is
the simplest form. Names of x-frames in <adapt> commands are often provided as

60 S. Jarzabek

XVCL expressions rather than strings, allowing the actual name of an <adapt>ed
x-frame to be determined during processing.

XVCL expressions are then instantiated by the XVCL Processor, according to the
context. For example, class names and messages are represented by XVCL variables
in the examples of Account classes.

XVCL variables accept a single value or a list of values. The latter are called multi-
value variables.

Other than parameterization, XVCL variables control <while> loops and <select>
structures, playing an important role in exercising the control over the processing of
x-frames and the actual custom code that XVCL Processor emits during processing.

As variable values propagate across x-frames, variables can coordinate chains of
all the customizations related to the same source of variation or change, that spans
across multiple x-frames. XVCL variable scoping and propagation rules are important
for achieving the overall goal of building generic, adaptable program representations.
During processing of x-frames, values of variables propagate from an x-frame where
the value of a variable is set, down to the lower-level x-frames. While each x-frame
may set default values for its variables, values assigned to variables in higher-level x-
frames take precedence over the locally assigned default values. In other words, once
a value of variable is <set> in x-frame A, XVCL Processor ignores any subsequent
<set> commands trying to assign value to that variable in x-frames <adapt>ed from
A. Thanks to this overriding rule, x-frames become generic and adaptable, with poten-
tial for reuse in many contexts.

Other XVCL commands that help us design generic and adaptable x-frames in-
clude <select>, <insert> into <break> and <while>. We use <select> command to
direct processing into one of the many pre-defined branches (called options), based on
the value of a variable. With <insert> command, we can modify x-frames at desig-
nated <break> points in arbitrary ways. XVCL expressions, <select> <insert> into
<break> are analogous to AOP’s mechanism for weaving advices at specified join
points. The difference is that XVCL allows us to modify x-frames in arbitrary ways,
at any explicitly designated variation points.

A <while> command iterates over its body, with each iteration generating similar,
but also different, program structures. A <select> command in the <while> loop al-
lows us to define messages specific to Account classes in the example discussed in
the last section.

5 Buffer Library in Java/XVCL

Buffer library can be considered a special kind of a PL. whose members are buffer
classes. The overall solution to Buffer library PL in Java/XVCL is shown in Fig. 15.
A PLA built with XVCL is called an x-framework.

An arrow between two x-frames: X — Y is read as “X adapts Y”, meaning that X
controls adaptation of Y. At Level 3, we have seven generic class x-frames, one for
each of the seven groups of similar classes described in Section 2.2. Only two of
them, namely [T]Buffer.gen and Heap[T]Buffer.gen, are shown in Fig. 15.

XVCL Processor derives all classes in group [T]Buffer from x-frame
[T1Buffer.gen, based on specifications contained in specification x-frames SPC and

Software Reuse beyond Components with XVCL

Level 1: Buffer specifications

Level 2:

class s‘pec(ﬁcuﬁnnx{ [T]Buffer.s H Heap[T]Buffer.s ‘

|

Level 3:

generic classes

[T]Buffer.gen ‘ ‘ Heap[T]Buffer.gen ‘

Level 4:

hasArray()

generic methods

Legend:

Level 5: generic fragments ‘ method fragment ‘ ‘ attribute declarations ‘

[adapt relationship between x-frames

an x-framework for buffer classes

=

input/output

Fig. 15. A Java/XVCL x-framework for Buffer library

public abstract class IntBuffer extends Buffer
extendsBuffer implements Comparable
{ final int[] hb;

public abstract class ShortBuffer extends Buffer
extendsBuffer implements Comparable
{ final short[] hb;

61

Java buffer classes

IntBuffer(int mark, int pos, int lim, int cap, ShortBuffer(int mark, int pos, int lim, int cap,
int[] hb, int offset) { ... } short[] hb, int offset) { ...}

IntBuffer(int mark, int pos, int lim, int cap) ShortBuffer(int mark, int pos, int lim, int cap)

{3 {3

public static IntBuffer allocate(int capacity) public static ShortBuffer allocate(int capacity)

{ ... return new HeapIntBuffer(capacity) } { ... return new HeapShortBuffer(capacity) }

public static ShortBuffer wrap(short[] array) ...}

public abstract ShortBuffer slice();

public abstract ShortBuffer duplicate();

public static IntBuffer wrap(int[] array) {... }
public abstract IntBuffer slice();
public abstract IntBuffer duplicate();

Fig. 16. Differences among IntBuffer and ShortBuffer

[T]Buffer.s (details to be exaplined). Classes in other groups are derived in a similar
way from their respective generic and specification x-frames.

Each generic x-frame defines common part of classes in the respective group.
Smaller granular generic building blocks for classes are defined below, at Level 4
(methods) and Level 5 (fragments of method implementation or attribute declaration
sections). Therefore, lower-level generic components are composed, after possible
adaptations, to construct required instances of higher-level generic components. Level
1 and 2 are specification x-frames — they tell the XVCL Processor how to generate
specific components (buffer classes, in our case) from generic ones. Top-most x-
frame SPC sets up global parameters and exercises the overall control over the gen-
eration process. Specifications of controls for each of the seven groups of similar
classes are at Level 2.

The XVCL Processor interprets an x-framework starting from the SPC, traverses
x-frames below, adapting visited x-frames and emitting buffer classes in each group
one-by-one.

62 S. Jarzabek

public abstract class TBuffer extends Buffer <T>
extendsBuffer implements Comparable
{ final T[] hb;
TBuffer(int mark, int pos, int lim, int cap,
T[] hb, int offset) { ...}
TBuffer(int mark, int pos, int lim, int cap)
{...}
public static TBuffer allocate(int capacity)
{ ... return new HeapTBuffer <T> (capacity) }
public static TBuffer wrap(T[] array) { ... }
public abstract TBuffer slice();
public abstract TBuffer duplicate();

}

Fig. 17. Generic class unifying five numeric [T]Buffer classes

<x-frame SPC >

<set Type = Int />

<set type = int />
<adapt [T]Buffer.gen />

\adapt >

<x-frame [T]Buffer.gen outfile = @TypeBuffer.java > XVCL
public abstract class @TypeBuffer extends Buffer Processor :

extendsBuffer implements Comparable

{ final @type[] hb; IntBuffer
Buffer(int mark, int pos, int lim, int cap,

@type/] hb, int offset) { ...}
@TypeBuffer(int mark, int pos, int lim, int cap)

£}
public static @TypeBuffer allocate(int capacity)

buffer class in Java

{ ... return new Heap@TypeBuffer (capacity) }

Fig. 18. Deriving class IntBuffer from x-frames

In the sections to follow, we show the steps in building a Java/XVCL representa-
tion for seven classes in the group [T]Buffer, namely IntBuffer, ShortBuffer, Float-
Buffer, LongBuffer, DoubleBuffer, CharBufer and ByteBuffer.

5.1 Five Generics-Friendly Buffer Classes

Numeric type buffer classes differ one from another in type names only. Fig. 16 high-
lights in bold differences among IntBuffer and ShortBuffer.

Software Reuse beyond Components with XVCL 63

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double />
<set type = int, short, float, long, double />
<while Type, type>

<adapt [T]Buffer.gen />

</while>
:> XVCL
Processor
<adapt>ed five times

IntBuffer

!

<x-frame [T]|Buffer.gen outfile = @TypeBuffer.java >

public abstract class @TypeBuffer extends Buffer ShortBuffer
extendsBuffer implements Comparable ~
{ final @type[] hb; FloatBuffer
Buffer(int mark, int pos, int lim, int cap, ~
@type[] hb, int offset) { ...} LongBuffer
@TypeBuffer(int mark, int pos, int lim, int cap) ~
{0} DoubleBuffer

public static @TypeBuffer al[oca{elz(int capu'cily) buffer classes in Java
{ ... return new Heap@TypeBuffer (capacity) }

/

Fig. 19. Deriving numeric buffer classes from x-frames

Such classes usually can be unified with type parameterization, called generics in
Java or C# or templates in C++. A generic class is shown in Fig. 17.

Fig. 18 shows a generic x-frame [T]Buffer.gen parameterized by two XVCL vari-
ables, namely ‘Type’ and ‘type’. By setting variable values in SPC, we derive class
IntBuffer from x-frame [T]Buffer. Attribute ‘outfile’ in x-frame [T]Buffer.gen de-
fines the name of a file, IntBuffer.java, where we want XVCL Processor emit code for
this class.

Fig. 19 shows derivation of all five numeric buffer classes from x-frame [T]Buffer.gen.

The reader should notice a fundamental difference between generics and XVCL:
Generics are defined in a program and can be instantiated during program execution.
On the other hand, in XVCL, all the classes are built in their concrete form before
program runs. XVCL is used at the program construction time, not at runtime.

5.2 Classes CharBuffer and ByteBuffer

Fig. 20 shows some of the differences among numeric buffer classes and class Char-
Buffer. For CharBuffer, we must update ‘implements’ clause (the second line), re-
define implementation of method toString(), and insert extra methods required in
class CharBuffer, but not needed in numeric buffer classes.

In x-frames of Fig. 21, <option Char> of <select> defines customizations required
for class CharBuffer, but not needed in other classes. We use <insert> commands in
the <adapt> body to update the ‘implements’ clause, to override the implementation
of method toString() and to add extra methods. Notice that <break toString> in
x-frame [T]Buffer.gen contains implementation of method toString() for all five
numeric buffer classes as default. If no <insert> affects the <break>, the default

64 S. Jarzabek

public abstract class IntBuffer extends Buffer
extendsBuffer implements Comparable
{ final int[] hb;

IntBuffer(int mark, int pos, int lim, int cap,

public abstract class CharBuffer extends Buffer
extendsBuffer implements Comparable,CharSequence
{ final char[] hb;

CharBuffer(int mark, int pos, int lim, int cap,

int[] hb, int offset) { ... }
public String toString() { ... }

char[] hb, int offset) { ...}
public String toString() { different implementation }
i many extra methods in Char Buffer:

public static CharBuffer wrap(CharSequence csq) { }
etc.

Fig. 20. Differences among classes IntBuffer and CharBuffer

contents of the <break> is processed as if there was no <break>. Any <insert> af-
fecting the <break>, overrides the default contents of the <break>.

At the bottom of the <select> there is <otherwise> clause that caters for all the
numeric buffer classes that are derived from x-frame [T]Buffer.gen as shown before,
without any further customizations. <otherwise> is processed five times, in iterations
when none of the other <option>s under <select> is processed, producing five nu-
meric buffer classes.

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double, Char />
<set type = int, short, float, long, double, char />
<while Type, type>
<select option = Type>
<option Char>
<adapt [T]Buffer.gen />
<insert implements >
,CharSequence
<insert toString >

IntBuffer

implementation of method toString() for CharBuffer
<insert extraMethods > ShortBuffer
I of extra methods for CharBuffer g
<otherwise>
<adapt [T]Buffer.gen /> FloatBuffe
</while> XVCL

=

\ Processor

<x-frame [T]|Buffer.gen outfile = @TypeBuffer.java >

<adapt>ed six times

LongBuffer

public abstract class @TypeBuffer extends Buffer DoubleBuffer
extendsBuffer implements Comparable <break implements> ~
{ final @type[] hb;
Buffer(int mark, int pos, int lim, int cap,
@type[] hb, int offset) { ...}
<break toString >

CharBuffer

buffer classes in Java
implementation of method toString() for numeric classes
<break extraMethods >

implementation of methods specific to CharBuffer

}

Fig. 21. Deriving numeric buffer classes and class CharBuffer

Software Reuse beyond Components with XVCL 65

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double, Char, Byte />
<set type = int, short, float, long, double, char, byte />
<while Type>
<select option = Type>
<option Char>
<adapt [T]Buffer.gen>
customizations for CharBuffer
<option Byte>
<adapt [T]Buffer.gen>
customizations for ByteBuffer
<otherwise>
<adapt [T]Buffer.gen/>
</select>
</while>

Fig. 22. SPC to derive seven [T]Buffer classes

SPC

‘ [T]Buffer.s ‘ ‘ Heap[T]Buffer.s

[T]Buffer.gen

methodsForCharBuffer ‘ ‘ methodsForByteBuffer

Fig. 23. An overview a Java/XVCL x-framework for Buffer library

Class ByteBuffer has yet other extra methods, not found in other [T]Buffer classes.
The solution is the same as for extra methods in class CharBuffer, and the resulting
SPC is shown in Fig. 22 (x-frame [T]Buffer.gen is the same as in Fig. 21).

An outline of the x-framework for the Buffer library is shown in Fig. 23, and its
details in Fig. 24.

5.3 Evaluation of Java/XVCL Solution for the Buffer Library

The size of the Java/XVCL solution was 68% smaller than buffer classes in Java (in
terms of lines of code, without blanks or comments). For the sake of fair comparison,
we designed the Java/XVCL x-framework so that buffer classes generated from it
were no different from the original classes. The physical size of a program is just one
among many factors that collectively determine ease of understanding and changing a
software system. Conceptual complexity is by far more important than the physical
size. Therefore, we compared the number of conceptual elements in Java and
Java/XVCL solutions. A conceptual element in a Java program is a class, method/

66 S. Jarzabek

SPC // specifies how to generate all the buffer classes
<set Type = Int, Short, Float, Long, Double, Char, Byte />
<set type = int, short, float, long double, char, byte />
<set elmntSize =0, 1,3,2,2,3,1 />

[<adapt [T]Buffer.s />
<adapt Heap[T]Buffer.s />

x-frame [T]Buffer.s // specifies how to generate [T]Buffer classes
<while Type, type, elmntSize>

<select option = Type>
<option Char>

<adapt [T]Buffer.gen />

<insert implements >

<adapt ByteBufferAs[T]BufferR[B|L.s] />

<x-frame [T|Buffer.gen outfile = @TypeBuffer.java >

) uffer extends Buffer
extendsBuffer implements Campamb.i?z?brcak implements>
{ final @type[] hb;

,CharSequence
<insert toString > - .
implementation of met é'ﬂ‘m.Sl__/_f_{_n
<insert extraMethods >
<adapt extra-methods-CharBuffer /> Buffer(int mark, int pos, int lim, int cap,
<option Byte> . @type/] hb, int offset) { ... }
<adapt [T]Buffer.gen /> <break toString >
<insert extraMethods >,
<adapt extra-methods—BS;feBpffer />

for CharBuffer

public String toString() {
StringBuffer sb = new

<otherwise> StringBuffer();
<adapt [T]Buffer.gen />
<;N/lsgll§§t> .)c)b-_append(getCIaxx().getName(
etc.
e, return sb.toString(); }

<break extraMethods >
// methods specific to CharBuffer or ByteBuffer
!

/ /

x-frame extra-methods-CharBuffer e
public static CharBuffer wrap(CharSequence csq) { x-frame extra-methods-ByteBuffer

public static ByteBuffer allocateDirect(int capacity)
{ return new DirectByteBuffer(capacity); }

Fig. 24. A fragment of a Java/XVCL x-framework for Buffer library

constructor, declaration section or a fragment of method/constructor implementation
that plays a role in the Buffer domain or in class design. Among classes at Level 1
(Fig. 5), there were 258 conceptual elements comprising 3,720 LOC (without blanks
or comments) in the original Buffer classes, versus 79 conceptual elements compris-
ing 1,400 LOC in the Java/XVCL representation. In the entire library, there were
1,385 conceptual elements comprising 6,719 LOC in the original classes, versus 324
conceptual elements comprising 2,080 LOC in the Java/XVCL representation.

This contraction of the solution space achieved by XVCL was a consequence of
representing each of the important similarity patterns in a unique generic form.

Other than reducing the physical size and conceptual complexity, the XVCL solu-
tion also emphasized important relationships among program elements that matter to
programmers who try to understand and modify the program. Due to genericity, in-
stead of dealing with each class separately from others, we could understand classes
in groups such as [T]Buffer or Heap[T]Buffer. We could see exact similarities and
differences among specific classes in a group. This information helps in reusing exist-
ing classes when designing new buffer classes. It also reduces ripple effects and the
risk of update anomalies, simplifying changes: If we want to change one class, we can
check if the change also affects other similar classes. If we want to change a class
method, we can analyze the impact of change on all the classes that use that method in
the same or similar form.

Software Reuse beyond Components with XVCL 67

The above relationships are implicit in the Java buffer classes (as well as in most of
other conventional programs). A programmer must recover them whenever a program
must be understood for change.

To further support claims of easier changeability of the XVCL solution, we ex-
tended the Buffer library with a new type of buffer element — Complex. Then, we
compared the effort involved in changing each of the two solutions, Java classes and
Java/XVCL representation. Many classes must be implemented to address the Com-
plex element type, but in this experiment we concentrated only on three of them,
namely ComplexBuffer, HeapComplexBuffer and HeapComplexBufferR. In Java,
class ComplexBuffer could be implemented based on the class IntBuffer, with 25
modifications that could be automated by an editing tool, and 17 modifications that
had to be done manually. On the other hand, in the Java/XVCL representation, all the
changes had to be done manually, but only 5 modifications were required. To imple-
ment class HeapComplexBuffer, we needed 21 “automatic” and 10 manual modifica-
tions in Java, versus 3 manual modifications in the Java/XVCL. To implement class
HeapComplexBufferR, we needed 16 ‘“automatic” and 5 manual modifications in
Java, versus 5 manual modifications in Java/XVCL.

6 Evaluation of XVCL

Applying a new technique does not come for free, it entails costs and involves trade-
offs. Therefore, to be attractive, a new technique must solve some important engineer-
ing problems, providing benefits that outweigh the cost. In this section, we evaluate
trade-offs involved in project application of XVCL.

We summarize experiences with XVCL first. We applied XVCL to building Prod-
uct Lines in a range of application domains (business systems, Web Portals, command
and control), programming languages (Java, C++, C#, ASP, PHP) and platforms
(JEE, .NET, Unix, Windows) [3,24,26,37,46,48,49]. We typically found 50%-90% of
code contained in similar program structures. The reasons that triggered repetitions
were often similar to what we observed in the Buffer library. The logical structure
of XVCL solutions was similar to the one we developed for the Buffer library, but as
we were dealing with more complex program situations, we had to decompose
x-frameworks into more layers than in the Buffer library.

6.1 Strengths

In XVCL, we represent each of the important similarity patterns in a unique generic,
but adaptable form, along with the information necessary to obtain its instances — spe-
cific program structures. Such generic software representation offers some interesting
engineering benefits. In particular, it (1) reduces the code size (in our studies, by 50-
90%), (2) contains less number of conceptual elements than the number of conceptual
elements in the concrete program, (3) bridges the gap between domain concepts and
code, as similarity patterns often represent domain-specific abstractions, (4) enhances
the conceptual integrity of the design, which Brooks calls “the most important consid-
eration in system design” [10], and (5) in addition to program code, contains informa-
tion that is helpful in program understanding, evolution and reuse, such as a record of

68 S. Jarzabek

similarities/differences among program structures, and traces of how various features
affect program components.

Generic structures built with XVCL can unify similarity patterns of any granularity
and type — from a subsystem, to pattern of components, to component, to class and to
program statement in class implementation. We can specify arbitrary differences
among similar program structures. Many similarity patterns crosscut system layers
and involve many components. Such similarities offer reuse opportunities that are
usually missed by conventional architecture-centric and component-based approaches
to reuse. XVCL exploits these extra reuse opportunities, often extending the scope
and rates of reuse achievable by means of conventional techniques.

We can benefit from non-redundancy at the level of XVCL representation, and still
keep clones in executable programs (as it is often desirable or unavoidable for the rea-
sons we discussed in this paper, and as observed by others [13][33]).

A programmer can intervene in any detail of the transition from the generic struc-
tures to concrete programs. This allows XVCL to escape the problem of the tech-
niques based on abstractions disconnected from the base code, which are found diffi-
cult to work with by maintenance programmers [13].

From the XVCL perspective, there is no distinction between maintainability (un-
derstood as the ease of changing software) and reusability. Both are achieved by
means of generic design, with provisions for fine control over instantiating generic
structures, matching practical needs of software reuse and evolution [24].

6.2 Weaknesses and How We Address Them

Despite potential benefits, applying XVCL also induces certain complexities. Design-
ing generic, reusable and maintainable solutions is always a challenge which requires
more talent, skill and time than building a concrete program. A concrete program is
only a prerequisite for applying XVCL.

An XVCL solution is expressed at two inter-mixed levels, in base programming
language(s) and wrapped in XVCL meta-structures. Thinking in terms of a mixed-
level representation such as Java/XVCL or JEE/XVCL is different from thinking in
terms of conventional program. This creates extra difficulties. However, we must
keep in mind that an XVCL solution contains much useful information for evolution
and reuse, in addition to information about the program(s) itself. We do not apply
XVCL for quick gains during development, but for long-term gains. XVCL targets at
long-lived programs that undergo extensive evolutionary changes, or need be tailored
to needs of multiple customers.

As we relax the coupling between the parameterization mechanism and the rules
(syntax and semantics) of the underlying programming language, the power of the
parameterization mechanism increases. For example, with C++ templates we can
unify a wider class of variations than with Java generics. At the end of this spectrum,
there are techniques that manipulate program structures with no regard to language
rules. XVCL is such a technique. By separating genericity issues from the core pro-
gramming constructs, we can address genericity concerns without compromising run-
time properties of programs. But as we move towards less restrictive parameterization
mechanisms, we also decrease type-safety of a program representation. Therefore,
there are important trade-offs to consider.

Software Reuse beyond Components with XVCL 69

Specification, analysis and validation methods that work for concrete programs are
not directly applicable to XVCL program representations. Before such methods are
invented, skillful design, informal documentation and tools can mitigate problems to
some extent. An x-framework can be organized based on the usual principles of the
abstraction and separation of concerns. “Good design” can minimize the scope of an
x-framework that has to be analyzed at any time when an x-framework is modified or
reused. As lower levels x-frames become stable and reliable over time, potential er-
rors tend to be located only in top-most, context-specific and still fragile x-frames.

The feedback from our industry partner indicates that, in practice, the benefit of
enhanced reusability and maintainability may outweigh the cost of the added com-
plexity [37]: the learning curve and development effort of an XVCL solution can be
reasonable even for large programs (provided that an XVCL expert is also familiar
with an application domain and program itself). At the same time, the return on in-
vestment may be quick and substantial.

Could we do better by raising the level of abstraction of XVCL? We consider the
current form of XVCL an assembly language for generic design. XVCL contains the
minimum constructs to specify any generic structures along with adaptation changes
required to obtain their instances. Direct articulation is the source of XVCL’s expres-
sive power. However, specifications can get tedious and complex. At this point, we do
not know how to raise the level of abstraction without compromising the expressive

- [=]x]

- |00 |&- |# |0 [| [f%vCLDevelop...
%5 Project Explorer 22 = 0|/ [spcs £l x| =0
2% B~ <!DOCTYPE x-frame SYSTENM "xvcl.ded"> Am
e EE= =rDirec Sutfer [SU] .s" =rDirec Suffer [SU] . log” =
- bier | “<x-frame name=rDirect[T]Buffer[SU].s" outfile="Direct[T]Buffer[SU].log" language

(& [TBuffer
= (= ByteBufferas[TIBuffer[BL]
@ ByteBufferAs[TIBuffer[BL].htm
[X) ByteBufferas[T]Buffer[BL].xvel
@ ByteBufferAsCharBuffer_methods.html
[¥] ByteBufferAsCharBuffer_methods. xvel

<set var="java nio_packageName" value="java.nio"/>

<set-multi var="
<set-multi var=

"elntType” value="By
Imttype” value=
<set-multi var="elmtSize"” value="0,1,

r,Double, Float, Int, Long, Short"/>
har,double, float, int, long, short"/>
2,2,3,1"/>

@ commonAttributes.html H
[%) commonattributes.xvel S<while using-items-in="elmtType,elmctype,elmcSize"s 3
@ commonConstructors.html <select option="elmtType">
[¥) commonConstructors.xvel <option value="Byte">
@ commonMethods.htm
[¥) commontethods. xvel <set var="ByteOrder” value=""/>
5] xvel.ded <adapt x-frame="meta-fragments\Direct[T]Buffer[SU]\Direct[T]Buffer [SU
E-@ BytsBufferAs{TIBufferR[BL] <insert-after break="extends">Napped</insert-after>
@ BY‘EB“’E'“SU]B":?’R[B"]'ht'“' <insert-after break="moreConstructors"s
e b <adapt x-frame="DirectByreBuffer_moreConstructors.xvel"/>
[X] ByteBufferAsCharBufferR_methods.xvcl </inserc-atter>
O commonAttribubes. html <insert-after break="moreMethods">
[¥) commonattrbutes.xvel <adapt x-frame="DirectByteBuffer moreMethods.xvel"/>
@ commonConstructors.html 1 </insert-afrer>
[¥) commonConstructors.xvel </adapt>
@ commonMethods. htmi <1 <
2 —— 1 </OPt <bresk nam
=g RISLEN <copt frame:
set var=java_nio_packag... -~ v
)¢ set-multi var=elmtType < = B
¢ set-muli var=elmttype —
) set-muli var=elmtSize 2 Problems &2 v =0
=] ¢ while using-items-in=elmtType, elmtty... 1 error, 0 warnings, Dinfos <"hile using
© using-items-in=elmtType, elmtty... Description SLLSRE | Resource [
B4 5:'9;;:5;'”;::::‘;;299 @ The content of elemer <ifndef var=""/> Direct[TJBuffer[sUl.s t
= option value=Byte
© value=Byte
¢ set var=ByteOrder v
< > < >

Writable Insert 25:14

Fig. 25. A snapshot of XVCL Workbench

70 S. Jarzabek

power of the XVCL mechanism. In the future, we hope to discover abstractions that
will allow us to define higher-level forms of XVCL, equally expressive but free of
current pitfalls.

Tools may considerably simplify application of XVCL. We are developing an IDE
for XVCL called XVCL Workbench that helps in editing, visualizing, debugging and
static/dynamic analysis of x-frameworks. The upper left-hand-side Project Explorer
window (Fig. 25) shows x-frameworks. The Outline window below shows x-frame
structure in XML-free format. The upper right-hand-side window shows an x-frame
in raw XML format. A context-sensitive help popup menu shows XML commands
valid at a given editing point. The Workbench reports errors and warnings in the
lower right-hand-side window. A developer can examine static structure of an x-
framework or only x-frames visited by the Processor for a given SPC. In the future, a
developer will be able to ask queries about properties of x-frames, and run the Proces-
sor in a debugging mode. XVCL Workbench is implemented as a plug-in to the
Eclipse platform.

XVCL affects conventional development processes in a similar way as any sys-
tematic reuse strategy does. Changing the way people think about software, changing
existing processes and company structures has always been a challenge. At this point,
we know how XVCL can raise productivity of small teams of highly-skilled software
developers. We are yet to learn what it takes to inject XVCL methods into large-scale
team-based industrial development processes.

7 Related Work

We contrast XVCL with other techniques that target the similar goals.

XVCL has its roots in Frame Technology™ by Netron, Inc [4]. A number of
frame-based systems have been implemented in both industrial and academic institu-
tions [18]. We believe any system based on frame principles can achieve similar en-
gineering benefits as XVCL, independently of a specific syntactic representation that
different systems may use.

Frame Technology™ has been extensively applied to maintain multi-million-line
COBOL-based information systems and to build reuse frameworks in companies [4].
An independent assessment by QSM Associates, Inc. showed that frames could
achieve up to 90% reuse, reduce project costs by over 84% and their time-to-market
by 70%, when compared to industry norms [4]. We are in the lucky situation that the
basic principles of XVCL have been already tested in practice, though in a different
setting than ours. Our contribution is that we refined frame concepts into a general-
purpose technique of XVCL. We also demonstrated that XVCL can enhance modern
programming paradigms in areas of maintainability and reusability.

Macro-processors work on the principle of code expansion, and so does XVCL.
However, from the point of view of detailed mechanisms and engineering goals, there
are more differences among macro-processors and XVCL than similarities. Macros
work in local scope, only at the implementation level, which causes well-known prob-
lems when trying to tackle more complex change situations with macros [30]. XVCL
is full-fledged technique for taking advantage of software similarities and for control-
ling changes, from software architecture down to every detail of code. We believe it is

Software Reuse beyond Components with XVCL 71

difficult to solve the problems we discussed in the paper with macros and other low
level program manipulation techniques such as scripting languages, providing engi-
neering qualities comparable to those we demonstrated with XVCL.

Software Configuration Management (SCM) systems [44] have been applied to
handle variant features in software. Rather than unifying similarity patterns induced by
features, for each legal combination of features, an SCM system maintains a separate
component version. Thousands of component versions arise in industrial applications
of product lines, creating problems for effective reuse [15]. It is difficult to synthesize a
comprehendible view of domain similarities and differences from multiple component
versions. In XVCL, we avoid this problem by designing generics components, and
maintaining a record (both human-readable and executable by the XVCL Processor) of
how to generate concrete components in required variant forms.

Powerful domain-specific solutions can be built by formalizing the domain knowl-
edge, and using generation techniques [42] to produce custom programs in a domain.
Advancements in modeling and generation techniques led to recent interest in Model-
Driven Engineering (MDE) [40], where multiple, inter-related models are used to express
domain-specific abstractions. Models are used for analysis, validation (via model check-
ing), and code generation. Platforms such as Microsoft Visual Studio™ and Eclipse™
support generation of source code using domain-specific diagrammatic notations.

This is in contrast with XVCL which is an application domain- and programming
language-independent technique. There is no concept of DSL in XVCL. XVCL
targets the similarity patterns in any application domain. Such similarity patterns
often represent important domain concepts — this observation is one of important con-
tributions of the research described in this paper. Therefore, many XVCL structures
(x-frames) map into domain concepts. However, in XVCL approach, the very phi-
losophy of how to arrive at these structures and how to represent them is fundamen-
tally different from domain-specific generators. Rather than extending the language
towards domain-specific abstractions, in XVCL we focus on identifying similarity
patterns, in both top-down and bottom-up ways, and unifying differences among
instances of such patterns with generic representations.

XVCL provides simple yet powerful means to achieve that. While we do not come
up with all possible domain concepts, we usually address domain concepts that are of
practical engineering importance. XVCL generic meta-level structures show realiza-
tion of such abstractions in the design/implementation solution space. Bridging the
gap between domain concepts and their implementation is a by-product of the process
of similarity analysis and unification. From this perspective, XVCL can be viewed as
a domain-independent technique for capturing some of the domain-specific abstrac-
tions. Therefore, even though there is no direct competition between XVCL and
domain-specific generation approaches, and the principle of the approaches and tech-
nical means are different, there is a certain overlap in goals achieved by domain-
specific generators and domain-independent XVCL.

In contrast to generation approaches, XVCL offers programming language-neutral
mechanisms specifically dedicated to unifying arbitrary differences among similar pro-
gram structures whose unification is deemed to be useful. As such, XVCL’s principle
of operation does not rely on the underlying language syntax or semantics, or even
knowledge of what they are. XVCL does code expansion at arbitrary program points,
according to pre-defined “composition with adaptation” rules. The expansion points,

72 S. Jarzabek

meta-level structures (x-frames) that are subject of “composition with adaptation”,
forms of their parameterization, as well as concrete program structures that result from
expansion are not constrained by the rules of the underlying programming language.

We believe the strength of generators lies in their ability to hide a part of program
complexity from a programmer by encoding application domain knowledge, rather
than in providing general means for unifying similarity patterns, which is one of the
prime goals of XVCL. We are not aware of any study that would demonstrate the fea-
sibility of solving problems as discussed in this paper by means of systems based on
domain-specific generators or language-specific transformations.

Dijkstra introduced a principle of separation of concerns to the software domain in
early 1980’s [16]. Recently, there’ve been a number of attempts to bring separation of
concerns from the concept down to the design and implementation levels. Aspect-
Oriented Programming (AOP) [32], Multi-Dimensional Separation of Concerns
(MDSOC) from IBM [43], and Feature-Oriented Programming (FOP) [7,38] are
among most widely published such techniques. Separation of concerns helps in main-
tainability, long-term evolution, and is also supportive to building more generic, reus-
able software. Though we did not come across applications of techniques based on
separation of concern to unify software similarities such as we discussed in this paper,
the very principle and techniques that help in its realization are most relevant to the
theme of this paper.

FOP [38] applies separation of concerns principle in an attempt to modularize fea-
tures, and then provides a mechanism for composing features into a base program.
Mixin is the most common technique for feature composition. AHEAD [7] is a well-
known and the most advanced realization of FOP concepts. The premise of AHEAD
is that features can be modeled separately one from another, and programs can be
constructed, evolved and reused by feature refinements defined as mathematical func-
tions. Refinements can add, override or extend data declarations and methods of
classes. A combination of features a given program implements is elegantly described
by hierarchical algebraic equations in a GenVoca grammar [6]. While the concept is
very appealing, its realization and scalability is a challenge. Program features tend to
have delocalized, diverse and highly irregular impact on program structures. Such fea-
tures may not fit into the above model.

In AOP, various computational aspects are programmed separately and weaved
into the base of conventional program modules of primary decomposition (e.g.,
classes). Aspect code is weaved into program modules at join points that are specified
in a descriptive way. AOP can simply and elegantly separate a range of programming
aspects such as synchronization, persistence, security transaction management, or au-
thentication/authorization. Due to such separation, aspects can be easily modified and
also added or deleted to/from program modules, which automatically become more
generic and reusable in different contexts.

The trust of the MDSOC approach [43] is separation of concerns to overcome a
“tyranny of a dominant decomposition” of programs into functional modules. Hyper-
slices are meta-level abstractions that encapsulate specific concerns and can be com-
posed in various configurations to form custom programs. Hyperslices are written in
the underlying programming language and can be composed by merging or overriding
program units by name and in many other ways. Compositions yield programs with

Software Reuse beyond Components with XVCL 73

modified or extended behavior. Unlike in AOP, it is typical for hyperslices to repre-
sent functional units.

XVCL’s mechanisms cater for both generic design and separation of concerns [47].
Like AOP, MDSOC or FOP, XVCL offers a mechanism to define alternative program
decompositions at the meta- level. While groups of inter-related x-frames often corre-
spond to concerns, analysis of similarity patterns and design of generic XVCL repre-
sentations unifying similarity patterns plays a driving role in the process of developing
an XVCL solution. XVCL construct <while> facilitates generation of multiple custom
program structures from their generic representation. <while> does not have a counter-
part in generative techniques based on the separation of concerns principle only.

At the level of actual mechanisms, unlike in other approaches, XVCL’s composi-
tions (a counterpart of weaving aspect code in AOP) are defined in operational way
and take place at designated program points marked with <adapt>, <break> and other
XVCL commands. Concerns encapsulated in x-frames, in areas where separation of
concerns with XVCL is feasible, are unconstrained in the sense that they may overlap
one with another or form concern hierarchies, as one concern may contain other con-
cerns. XVCL’s concerns can be parameterized with XVCL commands, which further
enhances programmer’s ability to define variations in code at any level of granularity
that is required, from a subsystem or component, to a single program statement.

We believe each of the discussed techniques has its unique strengths and weak-
nesses: For different types of software domains and engineering goals, either AOP,
MDSOC, FOP or XVCL may yield the simplest, most elegant and useful solution.

8 Conclusion

Conventional reuse is based on component reuse. We described a technique called
XVCL (XML-based Variant Configuration Language) that is based on reuse of any
structural similarities. Similar programs structures are captured in generic form at the
meta-level. XVCL Processor derives custom instances of program structures from
their generic representation. We develop, reuse and evolve software at the level of
XVCL meta-structures, deriving specific, executable programs from it. Lab studies
and industrial applications of XVCL show that reuse of structural similarities extends
the benefits of conventional component reuse. On average, we raise reuse rates and
productivity by 60-90%, reducing cognitive program complexity and maintenance ef-
fort by similar rates. The approach scales to systems of any size. The benefits are pro-
portional to system size and to the extent of repetitions present in a system. The main
application of XVCL is in building Product Line Architectures for reuse.

Adopting a new technique always brings overheads and XVCL is no different in
this respect. We evaluated trade-offs involved in applying XVCL. The ultimate test
for new techniques is industrial practice. The initial feedback from our industry part-
ner STEE who applied XVCL in two projects indicates that the benefits of enhanced
reusability and maintainability outweigh the cost of the added complexity.

Methodological guidelines and tool support for applying XVCL, as well as scaling
XVCL from small teams of experts to larger team-based projects is the main chal-
lenge and the subject of our on-going work. We continue studies of a software simi-
larity phenomenon, addressing issues such as repetitions induced by the underlying
programming language and design technique. We plan to study formal properties of

74 S. Jarzabek

XVCL program representation to come up with suitable specification and verification
methods for XVCL solutions.

In the context of large programs, purely manual analysis to find similarity patterns is
too laborious to be practical. We implemented a Clone Minder [1], a tool that auto-
mates the search for clones as candidates for generic XVCL representations. Clone
Miner extends capabilities of clone detection tools such as Duploc [17] or CCFinder
[28] from simple clones (code fragments) to design-level similarity patterns.

Large software systems today comprise tens of millions of LOC, with thousands
of inter-related components (MS Windows approaches 100 million LOC). Ultra-
Large-Scale systems will comprise of billions lines of code [35]. Even with much
more successful forms of componentization that we have today, at the level of con-
crete programs we are bound to be exposed to the complexity of validating and
maintaining software proportional to a system size. Exploiting potentials hidden in
similarity patterns opens a pragmatic way to reduce this complexity by the rates pro-
portional to the rates of similarities a system exhibits. XVCL approach described in
this paper is an attempt to do that.

XVCL addresses design issues that are poorly supported by today’s programming
paradigms. We believe the full potentials of this simple yet powerful approach have
yet to be discovered.

Acknowledgements

Thanks are due to numerous students at National University of Singapore who par-
ticipated in various projects. Their names appear as co-authors of publications cited in
this paper. Collaborations with Paul Bassett and Ulf Pettersson contributed a lot to the
results and interpretations described in this paper. This research was supported by Na-
tional University of Singapore Research Grant R-252-000-239-112.

References

1. Basit, A.H., Jarzabek, S.: Detecting Higher-level Similarity Patterns in Programs. In:
ESEC-FSE 2005, European Soft. Eng. Conf. and ACM Symp. on the Foundations of Soft.
Eng., Lisbon, pp. 156-165 (September 2005)

2. Basit, H.A., Rajapakse, D.C., Jarzabek, S.: Beyond Generics: Meta-Level Parameterization
For Effective Generic Programming. In: Proc. 17th Int. Conf. on Software Engineering and
Knowledge Engineering, SEKE 2005, Taipei (July 2005)

3. Basit, H.A., Rajapakse, D.C., Jarzabek, S.: Beyond Templates: a Study of Clones in the
STL and Some General Implications. In: Proc. Int. Conf. Software Engineering, ICSE 2005,
St. Louis, May 2005, pp. 451-459 (2005)

4. Bassett, P.: Framing software reuse - lessons from real world. Yourdon Press, Prentice
Hall, Englewood Cliffs (1997)

5. Batory, D., Singhai, V., Sirkin, M., Thomas, J.: Scalable software libraries. In: ACM
SIGSOFT 1993: Symp. on the Foundations of Software Engineering, Los Angeles, Cali-
fornia, pp. 191-199 (December 1993)

6. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software Sys-
tems with Reusable Components. ACM Trans. on Software Engineering and Methodol-
ogy 1(4), 355-398 (1992)

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

Software Reuse beyond Components with XVCL 75

Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: Proc. Int.
Conf. on Software Engineering, ICSE 2003, Portland, Oregon, pp. 187-197 (May 2003)
Baxter, 1., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract
syntax trees. In: Proc. Int. Conf. on Software Maintenance, pp. 368-377 (1998)
Biggerstaft, T.: The library scaling problem and the limits of concrete component reuse.
In: 3rd Int. Conf. on Software Reuse, ICSR 1994, pp. 102-109 (1994)

Brooks, P.B.: The Mythical Man-Month. Addison-Wesley, Reading (1995)

Brooks, F.P.: No Silver Bullet, Computer Magazine (April 1986)

Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

Cordy, J.R.: Comprehending Reality: Practical Challenges to Software Maintenance
Automation. In: Proc. 11th IEEE Intl. Workshop on Program Comprehension (IWPC
2003), pp. 196-206 (2003)

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems
and Issues during Product Derivation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp- 165-182. Springer, Heidelberg (2004)

Dijkstra, E.W.: On the role of scientific thought, Selected Writings on Computing: A Per-
sonal Perspective, pp. 60—-66. Springer, New York (1982)

Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting du-
plicated code. In: Int. Conference on Software Maintenance, ICSM 1999, Oxford, UK, pp.
109-118 (September 1999)

Emrich, M.: Generative Programming Using Frame Technology, Diploma Thesis, Univer-
sity of Applied Sciences Kaiserslautern, Department of Computer Science, and Micro-
System Engineering, 29 (July 2003)

Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading (1997)
Fowler, M.: Refactoring - improving the design of existing code. Addison-Wesley, Read-
ing (1999)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

Garcia, R., et al.: A Comparative Study of Language Support for Generic Programming.
In: Proc. 18th ACM SIGPLAN Conf. on Object-oriented Programming, Systems, Lan-
guages, and Applications, pp. 115-134 (2003)

Goguen, J.A.: Parameterized Programming. IEEE Trans. on Software Engineering SE-
10(5), 528-543 (1984)

Jarzabek, S.: Effective Software Maintenance and Evolution: Reused-based Approach.
CRC Press, Taylor and Francis (2007)

Jarzabek, S.: Genericity - a Missing in Action Key to Software Simplification and Reuse.
In: 13th Asia-Pacific Soft. Eng. Conference, APSEC 2006, Bangalore, India, December 6-
8, pp- 293-300 (2006)

Jarzabek, S., Li, S.: Eliminating Redundancies with a Composition with Adaptation Meta-
programming Technique. In: Proc. ESEC-FSE 2003, European Soft. Eng. Conf. and ACM
Symp. on the Foundations of Soft. Eng., Helsinki, September 2005, pp. 237-246 (2005);
extended version: Jarzabek, S., Li, S.: Unifying clones with a generative programming
technique: a case study. Journal of Software Maintenance and Evolution: Research and
Practice 18(4), 267-292 (2006)

76

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.

43.

44.

45.

S. Jarzabek

Jensen, P.: Experiences with Product Line Development of Multi-Discipline Analysis
Software at Overwatch Textron Systems. In: 11th Int. Software Product Line Conference,
SPLC 2007, pp. 35—43 (September 2007)

Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multi-linguistic token based code clone
detection system for large scale source code. IEEE Trans. Software Engineering 28(7),
654-670 (2002)

Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report, CMU/SEI-90-TR-21, Software Engineering Institute, CMU, Pittsburgh (November
1990)

Karhinen, A., Ran, A., Tallgren, T.: Configuring designs for reuse, International Confer-
ence on Software Engineering. In: ICSE 1997, Boston, MA, pp. 701-710 (1997)

Kapser, C., Godfrey, M.W.: Cloning Considered Harmful Considered Harmful. In: Proc.
13th Working Conference on Reverse Engineering, pp. 19-28 (2006)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220-242. Springer, Heidelberg (1997)

Kim, M., Sazawai, V., Notkin, D., Murphy, G.: An Ethnographic Study of Code Clone
Genealogies. In: ESEC-FSE 2005, European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Lisbon, pp. 187-196.
ACM Press, New York (2005)

Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function
clones in a software system using metrics. In: In Proc. Intl. Conference on Software Main-
tenance (ICSM 1996), pp. 244-254 (1996)

Northrop, L.: Ultra-Large Scale Systems: The Software Challenge of the Future, Software
Engineering Institute (June 2006) ISBN 0-978656-0-7

Parnas, D.: On the Criteria To Be Used in Decomposing Software into Modules. Commu-
nications of the ACM 15(12), 1053-1058 (1972)

Pettersson, U., Jarzabek, S.: An Industrial Application of a Reuse Technique to a Web Por-
tal Product Line. In: ESEC-FSE 2005, European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering, Lisbon, [34],
pp- 326-335. ACM Press, New York (2005)

Proofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Proc. Europe.
Conf. Object-Oriented Programming (1997)

Rajapakse, D.C., Jarzabek, S.: Using Server Pages to Unify Clones in Web Applications:
A Trade-off Analysis. In: Int. Conf. Software Engineering, ICSE 2007, Minneapolis, USA
(May 2007)

Schmidt, D.: Model-Driven Engineering. IEEE Computer, 25-31 (February 2006)

SGI STL, http://www.sgi.com/tech/stl/

Smaragdakis, Y., Batory, D.: Application generators. In: Webster, J. (ed.) Software Engi-
neering volume of the Encyclopedia of Electrical and Electronics Engineering. John Wiley
and Sons, Chichester (2000)

Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In: Proc. International Conference on Software Engineering, ICSE
1999, Los Angeles, pp. 107-119 (1999)

Tichy, W.: Tools for Software Configuration Management. In: Proc. Int. Workshop on
Software Configuration Management, pp. 1-20. Teubner, Grassau (1988)

XVCL (XML-based Variant Configuration Language) method and tool for managing
software changes during evolution and reuse, http: //xvcl.comp.nus.edu.sg

46.

47.

48.

49.

Software Reuse beyond Components with XVCL 77

Zhang, H., Jarzabek, S.: A Mechanism for Handling Variants in Software Product Lines.
special issue on Software Variability Management, Science of Computer Program-
ming 53(3), 255-436 (2004)

Zhang, H.Y., Jarzabek, S., Soe, M.S.: XVCL Approach to Separating Concerns in Product
Family Assets. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 36-47. Springer, Hei-
delberg (2001)

Zhang, W., Jarzabek, S.: Reuse without Compromising Performance: Experience from
RPG Software Product Line for Mobile Devices. In: Obbink, H., Pohl, K. (eds.) SPLC
2005. LNCS, vol. 3714, pp. 57-69. Springer, Heidelberg (2005)

Yang, J., Jarzabek, S.: Applying a Generative Technique for Enhanced Reuse on J2EE
Platform. In: Gliick, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 237-255.
Springer, Heidelberg (2005)

.QL: Object-Oriented Queries Made Easy

Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev,
Pavel Avgustinov, Torbjérn Ekman, Neil Ongkingco, and Julian Tibble

Semmle Limited

Abstract. These notes are an introduction to .QL, an object-oriented
query language for any type of structured data. We illustrate the use
of .QL in assessing software quality, namely to find bugs, to compute
metrics and to enforce coding conventions. The class mechanism of .QL
is discussed in depth, and we demonstrate how it can be used to build
libraries of reusable queries.

1 Introduction

Software quality can be assessed and improved by computing metrics, finding
common bugs, checking style rules and enforcing coding conventions that are
specific to an API. Many tools for these tasks are however awkward to apply in
practice: they often detract from the main task in hand. Above all, it is tough
to customise metrics and rules to one’s own codebase, and yet that is where the
greatest benefit lies.

These lectures present a new approach, where all these tasks related to soft-
ware quality are phrased as queries over a relational representation of the code
base. Furthermore, the language for expressing these queries is object-oriented,
encouraging re-use of queries, and making it easy to tailor them to a specific
framework or project. While code queries have been considered before (both
in industry and academia), the object-oriented query language (named .QL) is
unique, and the key to creating an agile tool for assessing software quality.

As an advance preview of .QL, let us briefly consider a rule that is specific to
the Polyglot compiler framework [46]. Every AST node class that has children
must implement a method named “visitChildren”. In .QL, that requirement is
checked by the query:

class ASTNode extends RefType {
ASTNode() { this.getASupertype+().
hasQualifiedName(” polyglot.ast”,”Node”) }
Field getAChild() {
result = this.getAField() and
result.getType() instanceof ASTNode

}

from ASTNode n
where not(n.declaresMethod(” visitChildren”))
select n, n.getAChild()

R. Lammel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 78 2008.
© Springer-Verlag Berlin Heidelberg 2008

.QL: Object-Oriented Queries Made Easy 79

Of course this may appear rather complex to the reader for now, but the example
still serves to illustrate a couple of important points. First, this is a very useful
query: in our own research compiler for AspectJ called abe [], we found no
less than 18 violations of the rule. Second, the query is concise and in a syntax
resembling mainstream languages like SQL and Java. Third, as we shall see later,
the class definition for ASTNode is reusable in other queries.

.QL has been implemented as part of an Eclipse plugin named SemmleCode.
SemmleCode can be used to query any Java project. It provides an industrial-
strength editor for .QL, with syntax highlighting, autocompletion and so on (as
shown in Figure[l]). Furthermore, the .QL implementation itself is quite efficient.
Java projects are stored in relational form in a standard database system. That
database system can be a cheap-and-cheerful pure Java implementation such as
H2 (which is distributed with SemmleCode), or a dedicated system such as Post-
greSQL or SQL Server. With a proper database system in place, SemmleCode
can easily query projects that consist of millions of lines of code. That scalabil-
ity is another unique characteristic that sets SemmleCode apart from other code
querying systems.

class ASTNode extends RefType {
ASTNode () {
this.getASupertype+().hasQualifiedName("polyglot.ast", "Node")

i
Field getachild() {
result = this.getAField() and
result.getType() instanceof ASTNode
33
i

from ASTNode n
select n.]

@ contains(Elerment) predicate - Element

o declaresField(string) predicate - RefType

= declaresMethod(string) predicate - RefType

o fromLibrary() predicate - Element |

Fig. 1. The SemmleCode editor

.QL is in fact a general query language, and could be thought of as a replace-
ment for SQL — the application to software quality in these notes is just an
example of its power. Like SQL, it has a simple and intuitive syntax that is easy
to learn for novices. In SQL, however, that simple syntax does not carry over to
complex constructs like aggregates, while in .QL it does. Furthermore, recursion
is natural in .QL, and efficiently implemented. Compared to the direct use of
recursion in SQL Server and DB2, it can be orders of magnitude faster. Finally,
its object-oriented features offer unrivalled flexibility for the creation of libraries
of reusable queries.

80 O. de Moor et al.

The structure of these lectures is as follows:

— First we shall consider simple queries, using the existing library of classes
that is distributed with SemmleCode. An important concept here is the
notion of non-deterministic methods, which account for much of the concise-
ness of .QL queries. We shall also examine features such as casts and instance
tests, which are also indispensable for writing effective queries in .QL.

— In the second part of these lectures, we take a close look at the object-oriented
features of .QL. First we illustrate the ideas with a number of motivating
examples, and then zoom in on a number of subtle issues in the design of
.QL’s class mechanism. As indicated above, our notion of classes somehow
must be tied to a traditional database, and we outline how that is done by
appropriate annotation of a database schema.

1.1 Exercises

Exercises for the reader have been sprinkled throughout these notes. Most of the
exercises involve writing a new query in .QL, and it is strongly recommended
that readers follow along with SemmleCode running on a computer. For full
instructions on how to install SemmleCode, visit the Semmle website [53].

The Java project used in the exercises is JFreeChart 1.0.6 [33]. We have cho-
sen JFreeChart because it is a well-written piece of Java code, and its developers
already make extensive use of checkstyle [12], the most popular Eclipse plugin for
checking coding rules. Nevertheless, as we shall see, there are still several prob-
lems and possible improvements that are easily unearthed with SemmleCode.

There is a special web page accompanying these notes that takes you through
the steps required to load JFreeChart in Eclipse, and populate the database with
facts about the project [54].

Each exercise has an indicator of its difficulty at the end: one heart is easy (less
than five minutes), two hearts is medium (requiring at most ten minutes), and
three hearts is a tough exercise (requiring up to fifteen minutes). Full answers
can be found in an appendix to these notes.

2 Program Queries

2.1 A Simple Query

Program queries allow programmers to navigate their source code to identify pro-
gram fragments with arbitrary semantic properties. As a simple example of a pro-
gram query in .QL, let us attempt to find classes which violate Java’s compareTo
/ equals contract. The Java documentation for the compareTo method states:

The natural ordering for a class C is said to be consistent with equals if
and only if (el.compareTo((Object)e2) == 0) has the same boolean
value as el.equals((0bject)e2) for every el and e2 of class C ... It
is strongly recommended (though not required) that natural orderings be
consistent with equals.

.QL: Object-Oriented Queries Made Easy 81

The following .QL query identifies those classes that only implement the
compareTo method without implementing the equals method. This is likely
to indicate a bug, though it is not necessarily erroneous:

from Class ¢

where c.declaresMethod(” compareTo”)
and
not(c.declaresMethod(”equals”))

select c.getPackage(), ¢

This query consists of three parts. First, the from statement declares the vari-
ables of interest (in this case just the class ¢ that we are looking for) together
with their types. The second part of the query is the where clause imposing
some conditions on the results. In this query, the condition is that the class ¢
should declare a method called compareTo but not a method called equals. The
final part of the query is the select statement, to choose the data to return for
each search result, namely the package in which the offending class ¢ occurs,
together with c itself. The order of the select items is chosen so that results are
presented grouped by the package in which they occur in the source.

The type Class is an example of a .QL class. This type defines those programs
elements which are Java classes, and defines operations on them. For instance,
declaresMethod is a test on elements of type Class, to select only those Java
classes declaring a particular method. We will be describing .QL types and classes
in more detail in Section [B] but examples will appear throughout.

Ezercise 1. Run the above query on JFreeChart. You can do that in a number
of ways, but here the nicest way to look at the results is as a table, so use the
run button marked with a table (shown below) at the top right-hand side of the
Quick Query window. You will get two results, and you can navigate to the relevant
locations in the source by double-clicking. Are both of them real bugs? Q

=

2.2 Methods

Predicates such as declaresMethod are useful, but can only filter results. Another
common task is to compute some properties of an element. This is achieved
by more general .QL methods, which may return results. Let us illustrate this
with an example query. Unlike the previous query, which attempted to detect
violations of Java’s style rules, and therefore could easily be hard-coded into a
development environment, the next query is domain-specific.

Suppose that we are working on a compiler, and would like to identify the
children of nodes in the AST, for instance to ensure that appropriate methods
for visiting children are implemented. To code this as a query, we declare three

82 O. de Moor et al.

variables: child for the field, child Type for type of that field, and parentType for
the parent class:

from Field child, ASTNode childType, ASTNode parentType
where child.getType() = childType

and

child . getDeclaringType() = parentType
select child

The ASTNode class is an example of a user-defined class, picking out those types
that are AST nodes, and described further in Section Bl The methods getType
and getDeclaringType are defined in the class Field, and are used to find the
declared type of a field and the type in which the field declaration appears,
respectively. The ASTNode types appearing in the from clause serve to restrict
the range of values for the variables they qualify, so that values of the wrong
type are simply ignored.

This query is concise, but not terribly satisfactory. In the from clause, we
define variables childType and parentType to denote the types of the field and
its containing class respectively. However we are not really interested in these
types, and indeed they do not appear in the select clause. To avoid polluting
queries with such irrelevant types, local declarations can be introduced through
the exists statement:

from Field child
where exists(ASTNode childType | child.getType() = childType)

and

exists(ASTNode parentType | child.getDeclaringType() = parentType)
select child

An advantage of the resulting query is that the scopes of the variables repre-
senting the types of the field and the container are made explicit. There is a
further improvement to be made, however. These fields are only used to restrict
the types we are looking for, as we are only interested in AST nodes. We do
not need to know the exact types of the child and parent, and so it would be
better not to introduce variables to hold these types. .QL offers an instanceof
construct to achieve this, and we can finally rewrite the query as:

from Field child
where child.getType() instanceof ASTNode

and

child . getDeclaringType() instanceof ASTNode
select child

Ezercise 2. Write a query to find all methods named main in packages whose
names end with the string demo. You may find it handy to use the predicate
string.matches(” %demo”) (as is common in query languages, % is a wildcard
matching any string). Q

.QL: Object-Oriented Queries Made Easy 83

2.3 Sets of Results

Methods in .QL are a convenient way of finding properties of elements, as well as
a powerful abstraction mechanism in conjunction with classes. The methods we
have seen so far define attributes of elements, such as the declaring type of a field.
This is only represent a special case, however, since the data model behind .QL
is relational and thus allows methods to define arbitrary relationships between
elements.

As an example, we will consider a query to find calls to the System.exit
method. This method terminates the Java virtual machine, without offering the
opportunity to clean up any state. This should therefore usually be avoided, and
identifying calls to this method allows potentially fragile code to be found. The
query is:
from Method m, Method sysexit, Class system
where system.hasQualifiedName(”java.lang”, ” System”)

and sysexit.getDeclaringType() = system

and sysexit.hasName(”exit”)

and m.getACall() = sysexit
select m

The first line of the where clause identifies the java.lang.Systen class, while
the second and third lines find the exit method in this class. The last line is of
more interest. The expression m.getACall() finds all methods that are directly
called by m. This method returns a result for each such call, and any logical
test on the result is performed for each possible result. In this case, each method
called by m is compared to the exit method. If one of the calls matches (i.e.,
m calls exit), then the equality succeeds and m is returned. Otherwise, this
value of m is not returned. The query thus singles out just those methods that
(directly) call exit.

Methods returning several results can be chained arbitrarily. In the following
example, we search for calls between packages, that is all the calls from any
method in one package to any method in another package. This may be used to
construct a call graph representing dependencies between packages, and identify
potential problems such as cycles of dependencies between packages.

from Package caller, Package callee
where caller.get ARefType().get ACallable().calls(
callee . get ARefType().getACallable())
and caller.fromSource()
and callee.fromSource()
and caller |= callee
select caller , callee

The expression caller.getARefType() finds any type within the package caller, so
that caller.getARefType().getACallable() finds any method or constructor (re-
ferred to as a callable) within some type in the caller package. The use of meth-
ods returning several values greatly simplifies this expression, and avoids the

84 O. de Moor et al.

need to name unimportant elements such as the type or callable, focusing only
on the pairs of packages that we are searching for. As this expression (and its
analogue for callee) return all callables in the package, the query succeeds exactly
for those pairs of packages in which any callable of caller calls some callable in
callee. The predicate fromSource(), which holds of program elements defined in a
source file (as opposed to a Java class file), serves to exclude results from library
code. Finally, the last line of the where statement removes trivial dependencies
of packages on themselves.

The use of sets of results is sometimes called nondeterminism, and a method
that possibly has multiple results (like getA RefType above) is said to be nonde-
terministic. Nondeterminism can sometimes be a bit subtle when used inside a
negation. For instance, consider the .QL method getACallable that returns any
callable (constructor or method) of a class. We could find classes that define a
method named “equals” with the query

from Class c
where c.getACallable().hasName(”equals”)
select c

In words, for each class ¢, we try each callable, and test whether it is named
“equals”; if one of these tests succeeds, c is returned as a result. Now consider
the dual query, where we wish to identify classes that do not have a method
named “equals”. We can do that just by negating the above condition, as in

from Class ¢
where not (c.getACallable().hasName(”equals”))
select ¢

The negated condition succeeds only when none of the tests on the callables of
¢ succeeds.

Ezercise 3. The above queries show how to find types that define a method
named “equals”, and how to find types that do not have such a method. Write
a query picking out types that define at least one method which is not called
“equals”. Q

Exercise 4. Continuing Exercise 1 about compareTo. You will have found that
one class represents a real bug, whereas the other does not. Refine our earlier
query to avoid such false positives. © Q

Exercise 5. Write a query to find all types in JEreeChart that have a field of type
JFreeChart. Many of these are test cases; can they be excluded somehow? V)

2.4 .QL Type Hierarchies and Casts

In the previous section we defined a query to find all dependencies between
packages, by looking for method calls from one package to another. However,
such calls are only one possible way in which a package may depend on another
package. For instance, a package might use a type from another package (say with

.QL: Object-Oriented Queries Made Easy 85

a field of this type), without calling any methods of this type. This is intuitively a
dependency which we would like to record, and indeed there are many more ways
in which a package may depend on another. This is encapsulated in a method
getA Dependency, defined as part of the metrics library for Java programs.

The metrics library, which we shall be using throughout these notes, extends
the basic .QL class definitions for Java programs with additional methods to
compute information about dependencies in source code, and to evaluate various
quantitative metrics to analyse the code. In order to separate these definitions
from the basic classes, some .QL classes representing program elements, e.g.
RefType, are extended by counterparts in the metrics library, in this case Metric-
RefType, which contains all methods for computing dependencies and metrics
on reference types, in addition to the standard methods defined in RefType.
The class MetricRefType does not, however, restrict the set of elements that it
contains — any RefType is also a MetricRefType, and the metric class merely
provides an extended view of the same object. Figure 2l describes the inheritance
hierarchy for (part of) the standard .QL library for Java programs, with the
metrics classes highlighted. The metrics library makes crucial use of multiple

Element

A

|
MetricElement

Package Type
4 4 Member
MetricPackage RefType
MetricRefType - [|
Field Callable
[

Class Interface
4 | | |
NestedClass Method MetricCallable Constructor

Fig. 2. Standard Library: Inheritance Hierarchy (excerpt)

86 O. de Moor et al.

org. jfree. data. categary

org. jfree_chart.renderer, xy

arg. jfree. chart. editar
org.jfree.chart.title

Fig. 3. A fragment of the graph showing inter-package dependencies in JFreeChart

inheritance for .QL classes (described later in Section B) — a MetricPackage is
both a Package and a MetricElement.

Using the metrics library it is straightforward to find precise dependencies
between packages, as the class MetricElement defines the methods getA Depen-
dency to find dependent elements, and getA DependencySre to find dependencies
from source. The query is shown below:

from MetricPackage p
select p, p.getADependencySrc()

This query finds all packages p, and for each p finds those packages defined in
source that depend on p. The results of this query form a dependency graph, part
of which is shown in Figure[3l Suppose, now, that we do not want to inspect just
the other packages that p depends on, but instead also the types that inhabit
such packages. At first you might want to write a query that looks like this:

from MetricPackage p
select p, p.getADependencySrc().getARefType() // incorrect!

However, that is in fact not type correct, because the result of the method
getA DependencySrc is a MetricElement, and MetricElement does not have the
method getARefType. The .QL compiler therefore rejects the above query. We
must amend it by casting the result of getA DependencySrc to a Package:

from MetricPackage p
select p, ((Package) p.getADependencySrc()).getARefType()

The cast here will always succeed because when given a package as the receiver,
getA DependencySrc always returns another package. Similarly, starting from a
MetricRefType, it will always return a RefType.

Casts in .QL also behave like instanceof tests, limiting results to those of a
certain type. For instance, this query will filter out all the types that are not an
instance of Class:

from MetricPackage p
select p, (Class) ((Package)p.getADependencySrc()).getARefType()

It follows that casts in .QL never lead to runtime exceptions as they do in
languages like Java: they are merely a test that a logical property (in this case
a reference type being a class) is satisfied.

.QL: Object-Oriented Queries Made Easy 87

2.5 Chaining

The queries that we have seen so far find relatively local properties of program
elements, such as the declaring type of a field, or the relationship of one method
directly calling another. However, many properties of interest are highly nonlo-
cal, justifying the introduction of chaining, also known as transitive closure.

As an example, we shall write a query to find all types that represent AST
nodes in a compiler (in this case the Polyglot compiler framework [46]), as sug-
gested previously by our use of the ASTNode class. In Polyglot, AST nodes must
implement the Node interface, and so we are interested in all subtypes of this
interface. The standard .QL library for Java provides a convenient hasSubtype
method to find subtypes of a type, but this only finds immediate subtypes, in
this case all classes that implement Node directly. As we are also interested in
classes that are indirect descendents of Node, we must use chaining, written in
.QL using the + postfix operator:

from RefType astNode, RefType rootNode
where rootNode.hasQualifiedName(” polyglot.ast”,” Node”)
and (rootNode.hasSubtype+(astNode)
or
astNode = rootNode)
select astNode

The method hasSubtype+ picks out all direct and indirect subtypes of a type
(in this case the Node interface). AST nodes are defined as subtypes of Node,
together with Node itself. As this pattern is extremely common, simpler notation
is provided for possibly empty chains, as the query is equivalent to:

from RefType astNode, RefType rootNode

where rootNode.hasQualifiedName(” polyglot.ast”,” Node”)
and rootNode.hasSubtypex(astNode)

select astNode

The * operator (known as reflexive transitive closure in mathematics) defines
possibly empty chains from given relationships, such as the subtype relationship.
The symbols +, * may be familiar from repetition in regular expressions where a*
denotes any number of occurrences of a, while a+ denotes at least one occurrence
of a, justifying the intentional similarity in notation.

Exercise 6. There exists a method named getASuperType that returns some
supertype of its receiver, and sometimes this is a convenient alternative to using
hasSubtype. Uses of methods such as getA SuperType that return an argument can
be chained too. Using z.getASuperTypex (), write a query for finding all subtypes
of org.jfree.chart.plot.Plot. Try to use no more than one variable. Q@

Ezercise 7. When a query returns two program elements plus a string you can
view the results as an edge-labelled graph by clicking on the graph button (shown
below). To try out that feature, use chaining to write a query to depict the hierar-
chy above the type TaskSeriesCollection in package org. jfree.data.gantt.

88 O. de Moor et al.

You may wish to exclude Object from the results, as it clutters the picture.
Right-clicking on the graph view will give you a number of options for display-
ing it. © Q@

W

2.6 Aggregates

We have so far seen .QL used to find elements in a program with certain prop-
erties. The language also offers powerful features to aggregate information over
a range of values, to compute numerical metrics over query results. These fea-
tures are substantially more expressive than their SQL counterparts, and allow
a wide range of metrics to be computed straightforwardly. As a first example,
the following query computes the number of types in each package in a program:

from Package p
select p, count(RefType c | c.getPackage() = p)

The count expression in this query finds those elements ¢ of type RefType (all
reference types) satisfying the condition c.getPackage() = p. The value of the
expression is just the number of results, that is the number of reference types in p.

The above query is a simple example of the aggregate constructs in .QL. Ag-
gregates in .QL adopt the FEindhoven Quantifier Notation [21I34], an elegant
notation introduced by Edsger W. Dijkstra and others for the purpose of rea-
soning about programs. The general syntax for aggregates is

aggregateFunction (localVariables | condition | expression)

The aggregateFunction is any function for aggregating sets of values. The func-
tions provided in .QL are count, sum, max, min and avg (average). The
localVariables define the range of the aggregate expression, namely the variables
over the values of which the aggregation is computed. The condition restricts
the values of interest. In our previous example, the condition was used to re-
strict counting to those types in the appropriate package. Finally, the expression
defines the value to be aggregated. In our above example, the expression was
omitted. This is always possible when counting, as the value of each result in the
aggregation is irrelevant. The expression becomes very useful in other aggregates
such as summation, however. As an example, the following query computes the
average number of methods per type in each package:

from Package p
where p.fromSource()
select p, avg(RefType ¢ | c.getPackage() = p | ¢.getNumberOfMethods())

This aggregate finds all reference types in the appropriate package, finds the
number of methods for each such type (which itself is easily defined as an aggre-
gate), and averages these numbers of methods.

.QL: Object-Oriented Queries Made Easy 89

Ezercise 8. Display the results of the above query as pie chart, where each slice of
the pie represents a package and the size of the slice the average number of methods
in that package. To do so, use the run button marked with a chart (shown on the
next page), and select ‘as a pie chart’ from the drop-down menu. Q

Tl ~

Aggregates may be nested, as the expression whose value is being aggregated
is often itself the result of an aggregate. The following example computes the
average number of methods per class over an entire project:

select avg(Class ¢
| c.fromSource()
| count(Method m | m.getDeclaringType()=c))

This query contains two aggregates. The outermost aggregate computes an av-
erage over all classes ¢ that are defined in source files. For each such class, the
value of the innermost aggregate is computed, giving the number of methods in
the class, and the resulting values are averaged. This example does not include
from or where clauses, as only one result is returned, so it is not necessary to
define output variables.

Metrics. An important use of aggregates in program queries is to compute
metrics over the code. Such metrics may be used to identify problematic areas
of the program, such as overly large classes or packages, or classes that do not
encapsulate a single abstraction. It is not our aim here to describe the vast library
of software metrics that have been proposed (see, for instance, [SUTAITSIBEH4TIH6]),
but we shall use such metrics as examples of the use of aggregates in .QL.

Many of these metrics are provided as a library, and use the object-oriented
features of .QL to achieve encapsulation and reusability, as illustrated in Figure[2
However, as we discuss these features in Section 3] we shall simply express metrics
as standalone queries for now.

Instability. Instability is a measure of how hard it is to change a package without
changing the behaviour of other packages. This is represented as a number be-
tween 0 (highly stable) and 1 (highly unstable). Instability is defined as follows:

EfferentCoupling

Instability =
nstabity AfferentCoupling + EfferentCoupling

where the efferent coupling of a package is the number of types outside the
package that the package depends on, while the afferent coupling is the number
of outside types that depend on this package. Typically a package that has
recently been added and is still experimental will have high instability, because
it depends on many more established packages, while few other packages depend
on the new package. Conversely, a package with many responsibilities that is at
the core of an existing project will have low instability, and indeed such packages
are hard to modify.

90 O. de Moor et al.

It is easy to define queries to compute efferent and afferent coupling. As these
are similar, we present afferent coupling only:

from Package p
select p, count(RefType t
| t.getPackage() != p and
exists(RefType u |
u.getPackage() = p and
depends(t, u)))

where the depends predicate, part of the metrics library, is fairly straightforward
but lengthy, and so is omitted.

We now aim to define the instability metric. This is a clear case for the
expressiveness of .QL classes. Without encapsulation mechanisms, there is no
easy means of reusing definitions such as afferent coupling. In section [3 we shall
see how definitions such as afferent coupling can be defined as methods. These
definitions are in fact part of the metrics library and we can write the instability
metric in a straightforward way:

from MetricPackage p, float efferent, float afferent
where efferent = p.getEfferentCoupling()

and

afferent = p.get AfferentCoupling()
select p, efferent / (efferent + afferent)

Without methods, the aggregate expressions for efferent and afferent coupling
would have to be inlined, leading to a far less readable query. The above defini-
tion of instability is in fact itself available as a method named getInstability on
MetricPackage, so a shorter version is

from MetricPackage p select p, p.getInstability ()

Exercise 9. Not convinced that metrics are any good? Run the above query
and display the results as a bar chart—the chart icon mentioned earlier for
creating pie charts (shown below) is also used to create bar charts by selecting
the appropriate option from the drop-down menu. It will be convenient to display
the bars in descending order. To achieve that sorting, add “as s order by s desc”
at the end of the query. Now carefully inspect the packages with high instability.
Sorting the other way round (using asc instead of desc) allows you to inspect
the stable packages. Q

Wl ~

Abstractness. Abstractness measures the proportion of abstract types in a pack-
age, as a number between 0 (not at all abstract) and 1 (entirely abstract).
Packages should be abstract in proportion to their incoming dependencies, and
concrete in proportion to their outgoing dependencies. That way, making changes

.QL: Object-Oriented Queries Made Easy 91

is likely to be easy. There is therefore a relationship between abstractness and
instability: the more abstract a package is, the lower its instability value should
be. A highly abstract, highly stable package is well designed for its purpose
and represents a good use of abstraction; conversely, concrete packages may
be unstable as nothing depends on concrete packages. Abstract and unstable
packages, however, are likely to be useless and represent design flaws.
Abstractness is easy to define: it is just the ratio of abstract classes in a
package to all classes in this package. For a package p this may be written as:

from Package p, float abstract, float all
where all = count(Class c | c.getPackage() = p)
and abstract = count(Class ¢
| c.getPackage() = p and
c.hasModifier(”abstract”))
and abstract > 0
and p.fromSource()
select p, abstract / all

This query computes the number of types in the variable all and the number of
abstract types in abstract, and for nonempty packages returns the ratio of the
two. Again we gave this definition merely for expository reasons, as a method
named abstractness has already been defined on MetricPackage; therefore an
alternative query (which also sorts its results in descending order) is:

from MetricPackage p where p.fromSource() and p.abstractness() > 0
select p, p.abstractness() as a order by a desc

As in the previous exercise, this is a suitable query for viewing as a bar chart.
The result is shown in Figure [l

Quick query (JFreeChart-working-set) [15]

o Lt

W org. jfree.data.statistics ™ org.jfree cata general ™ org.jfree.chart org.jfree chart.axis ™ org. jfree.chart.title
org.jfree.chart.needle = org.jfree.chart.plot ® org.jfree data.xy M org. jiree.chart.renderer M org. jfree.chart.annotations
W org.jfree.data @ org.Jiree.chart.labels M org.jfree.chart.renderer.category M org. jfree.datatime M org. jfree.chart.renderer. xy

Fig. 4. A bar chart of the abstractness of packages in JFreeChart

92 O. de Moor et al.

Semantics of Aggregation. Aggregates in .QL are extremely general con-
structs, and while their use is largely intuitive as our above examples have shown,
it is worth describing the exact meaning of aggregate queries in a little more de-
tail. This section may be omitted on first reading, but forms a useful reference
for the semantics of aggregate expressions.

An aggregate query of the form

aggregate (Ty x1, T 2,..., T, z, | condition | expression)

ranges over all tuples (z1,. .., z,) of appropriately-typed values satisfying condi-
tion. The condition is a conditional formula in which the variables z; may appear,
and which allows some of the tuples to be excluded. Variables defined outside
the aggregate may appear in the condition — the value of such variables is com-
puted outside the aggregate, and the aggregate is evaluated for each possible
assignment of values to external variables.

For each tuple (z1,. .., z,) making the condition true, the expression is evalu-
ated. The values of the expression are then collected and aggregated (counted,
added, ...). It is important to note that these values are not treated as a set,
but allow duplicates. As an example, consider the following expression:

sum (inti| (i=0ori=1)|2)

Evaluation of this proceeds as described above: the set of integers ¢ satisfying the
condition ¢ = 0 or ¢ =1 is collected, giving just the set {0,1}. The expression
has a constant value of 2, so the values to be summed are two copies of 2 — one
for the assignment 7 = 0 and the other for the assignment 7 = 1. The result of
the aggregate is therefore 4 = 2 + 2.

As another example, consider the following:

sum (int i, int j

| (i=3 or i=4) and (j=3 or j=4)

| ixi + j*j)
This sum ranges over four tuples: (3,3), (3,4), (4,3) and (4,4). The result of the
sum is thus 18 + 25 4 25 + 32 = 100.

This notation is convenient, but it would be cumbersome to have to include

all parts of the aggregate, including the term and condition, when these are not
needed. A number of shorthands are therefore provided:

1. Counting: the expression can always be omitted in a count aggregate, as it
is irrelevant

2. Numerical values. For other aggregates, such as sum, the expression can
be omitted in exactly one case, namely if the aggregate defines one local
variable of numerical type. For instance, the aggregate
sum (inti| i=0ori=1)
is simply equivalent to

sum (inti| i=0 or i=1 | 1)

.QL: Object-Oriented Queries Made Easy 93

and thus adds the values of « matching the condition. This obviously cannot
be extended to non-numerical variables — it does not make sense to add
classes together!

3. Omitting condition: if the condition is not required, it may be omitted al-
together. For instance, adding the number of types in each package may be
written:

sum (Package p | | p.getNumberOfTypes())

This is particularly simple for counting, as both condition and expression
can be omitted. Simply counting the number of packages can be achieved
with

count (Package p)

Exercise 10. The following questions are intended to help reinforce some of the
points made above; you could run experiments with SemmleCode to check them,
but really they’re just for thinking.

1. What is sum(int i | i =0ori=0|2)?
2. Under what conditions on p and ¢ is this a true equation?

sum(int i | p(i) or ¢(i)) = sum(int i | p(i)) + sum(int i | ¢(i)) ¢

3 Object-Oriented Queries

So far we have merely written one-off queries, without any form of abstraction
to reuse them. To enable reuse, .QL provides classes, including virtual methods
and overriding, making it easy to adapt existing queries to new requirements.
We present these features in a top-down fashion. First, we discuss some moti-
vating examples, to give the reader a general feel for the way classes are used
in practice. Next, we take a step back and examine the semantics of classes
and virtual dispatch in some detail through small artificial examples. Finally, we
demonstrate how a class hierarchy in .QL can be built on top of a set of simple
primitive relations, of the kind found in traditional databases.

3.1 Motivating Examples

Classes. A classin .QL is a logical property: when a value satisfies that property,
it is a member of the corresponding type. To illustrate, let us define a class for
‘Visible Instance Fields’ in Java, namely fields that are not static and not private.
Clearly it is a special kind of normal Java field, so our new class is a subclass of
Field:

class VisibleInstanceField extends Field {
VisibleInstanceField () {
not(this.hasModifier(”private”)) and
not(this.hasModifier(”static”))

}

94 O. de Moor et al.

predicate readExternally() {
exists(FieldRead fr |
fr. getField()=this and
fr. getSite (). getDeclaringType() != this.getDeclaringType())

}
}

This class definition states that a VisibleInstanceField is a special kind of Field.
The constructor actually makes the distinguishing property of the new class pre-
cise: this field does not have modifier private or static. The conjunction of
the constructor with the defining property of the supertype is called the charac-
teristic predicate of a class. It is somewhat misleading to speak of a ‘constructor’
in this context, as nothing is being constructed: it is just a predicate, and nam-
ing it the character might have been more accurate. However, we adopt the
terminology ‘constructor’ because it is familiar to Java programmers.

The above class also defines a predicate, which is a property of some Visible-
InstanceFields. 1t checks whether this field is read externally. In order to make
that check, it introduces a local variable named fr of type FieldRead: first we
check that fr is indeed an access to this field, and then we check that the read
does not occur in the host type of this. In general, a predicate is a relation
between its parameters and the special variable this.

Newly defined classes can be used directly in select statements. For instance,
we might want to find visible instance fields that are not read externally. Ar-
guably such fields should have been declared private instead. A query to find
such offending fields is:

from VisibleInstanceField vif
where vif.fromSource() and
not(vif.readExternally())
select vif .getDeclaringType().getPackage(),
vif . getDeclaringType(),
vif

It should now be apparent that all those predicates we have used in previous
queries were, in fact, defined in the same way in classes as we defined readFEz-
ternally. We shall shortly see how methods (which can return a result as well as
check a property) are defined as class members. It follows that while at first it
may appear that .QL is specific to the domain of querying source code, in fact it
is a general query language — all the domain-specific notions have been encoded
in the query library.

Classless Predicates. Sometimes there is no obvious class to put a new pred-
icate, and in fact .QL allows you to define such predicates outside a class. To
illustrate, here is a classless predicate for checking that one Java field masks
another in a superclass:

.QL: Object-Oriented Queries Made Easy 95

predicate masks(Field masker, VisibleInstanceField maskee) {
maskee.getName()=masker.getName() and
masker.getDeclaring Type().hasSupertype+(maskee.get Declaring Type())

}

In words, the two fields share the same name, but the masker is defined in a
subtype of the maskee, while the maskee is visible. Such field masking is often
considered bad practice, and indeed it can lead to confusing programming errors.
Indeed, most modern development environments, including Eclipse, provide an
option for checking for the existence of masked fields. In .QL, any such coding
conventions are easily phrased as queries. In particular, here is a query to find
all the visible instance fields that are masked:

from Field f, VisibleInstanceField vif
where masks(f,vif)
select f, vif

Exercise 11. Queries can be useful for identifying refactoring opportunities. For
example, suppose we are interested in finding pairs of classes that could benefit
by extracting a common interface or by creating a new common superclass.

1. As a first step, we will need to identify root definitions: methods that are
not overriding some other method in the superclass. Define a new .QL class
named RootDefMethod for such methods. It only needs to have a constructor,
and no methods or predicates.

2. Complete the body of the following classless predicate:

predicate similar(RefType t, RefType s, Method m, Method n) { ... }

It should check that m is a method of ¢, n is a method of s, and m and n
have the same signature.

3. Now we are ready to write the real query: find all pairs (¢, s) that are in
the same package and have more than one root definition in common. All of
these are potential candidates for refactoring. If you have written the query
correctly, you will find two types in JFreeChart that have 99 root definitions
in common!

4. Write a query to list those 99 root definitions in a table. ©

Methods. Often the introduction of a classless predicate is merely a stepping
stone towards introducing a new class. Wrapping predicates in a class has several
advantages. First, your queries become shorter because you can use method dis-
patch and so there is no need to name intermediate results. Second, when typing
queries you get much better content assist, so you do not need to remember
details of all existing predicates.

To illustrate, we introduce a class MaskedField as a subclass of the class
VisibleInstanceField defined earlier:

class MaskedField extends VisibleInstanceField {
MaskedField() { masks(,this) }

96 O. de Moor et al.

Field getMasker() { masks(result,this) }
string getIconPath() { result = ”icons/semmle—logo.png” }

}

The constructor for this .QL class consists of the property masks(, this) stating
that this is being masked by some other field. Here, as in many other logic
languages, we use the underscore to represent a fresh variable whose value is
not relevant. Next the class introduces two methods. The getMasker() method
returns the masker of this. In general, the body of a method is a relation between
two special variables named result and this; the relation may also involve any
method parameters. Our new class also defines a method getlconPath, which is
used to determine the icon that is displayed next to a program element in the
results views provided by an implementation. In fact this overrides a method of
the same signature in Field, and so from now on masked fields will be displayed
differently from other fields. Somewhat frivolously, we have decided to give them
the Semmle icon.
A query that uses the above class might read:

from MaskedField mf select mf,mf.getMasker()

and the results will be displayed with the new icon we just introduced.

Note that predicates in a class are really just a special kind of method that
returns no result; indeed one could think of them as analogous to void methods
in Java. Also note, once again, that methods may be nondeterministic. Indeed,
in the above example, it is possible that one field in a Java class C is masked
by several fields in different subclasses of C'. Nondeterminism is a natural con-
sequence of the fact that the method body is a relation between this, result
and the method parameters. There is no requirement that result is uniquely
determined.

Framework-specific Classes. It is often worthwhile to define new classes that
are specific to a particular framework, and we already encountered an example of
that earlier, namely ASTNode (in Section 2.2). Now we have all the machinery
at hand to present the definition of ASTNode. We assume the context of the
Polyglot compiler framework [46], which is intended for experimentation with
novel extensions of the Java language. In Polyglot, every kind of ASTNode is
an implementation of the interface polyglot.ast.Node. This can be directly
expressed in .QL:

class ASTNode extends RefType {
ASTNode() { this.getASupertype+().
hasQualifiedName(” polyglot.ast”,”Node”) }

Field getAChild() {
result = this.getAField() and
result.getType() instanceof ASTNode

}
}

.QL: Object-Oriented Queries Made Easy 97

Note the use of nondeterminism in the constructor: effectively it says that
there exists some supertype that implements the Node interface. The method
getAChild returns a field of an AST class, that is itself of an AST type. Of course
it can happen that no such field exists (if the class represents a terminal in the
grammar), or there may be multiple such fields.

In Polyglot, there is a design rule which says that every AST class that has
a child must implement its own wvisitChildren method. We now aim to write a
query for violations to that rule: we seek AST classes that do mot declare a
method named wisitChildren, yet a child exists:

from ASTNode n
where not(n.declaresMethod(” visitChildren”))
select n, n.getAChild()

At first it may appear that the condition that a child exists has been omitted,
but in fact we do attempt to get a child in the select part of the query. If no
such child exists then n.getAChild() will fail, and so the query will return no
results for this value of n — exactly what we intended.

This type of coding convention is extremely common in non-trivial frame-
works. Normally the conventions are mentioned in the documentation, where
they may be ignored or forgotten. Indeed, in our own use of Polyglot in the abc
compiler, there are no less than 18 violations of the rule. Interestingly, there are
no violations in any of the code written by the Polyglot designers themselves —
they do as they say. By making the rule explicit as a query, it can be shipped
with the library code, thus ensuring that all clients comply with it as well.

As another typical example of a coding convention, consider the use of a
factory. Again in Polyglot, all AST nodes must be constructed via such a factory;
the only exceptions allowed are super calls in constructors of other AST nodes.
Violation of this rule leads to compilers that are difficult to extend with new
features.

Definition of a class that captures the essence of an AST node factory in
Polyglot can be expressed in .QL as follows:

class ASTFactory extends RefType {
ASTFactory() { this.getASupertype+().
hasQualifiedName(” polyglot.ast”,” NodeFactory”)
}

ConstructorCall getAViolation() {
result.getType() instanceof ASTNode and
not(result.getCaller (). getDeclaring Type()
instanceof ASTFactory) and
not(result instanceof SuperConstructorCall)

}
¥

The constructor is not interesting; it is just a variation of our earlier example
in ASTNode. The definition of getAViolation is however worth spelling out in
detail. We are looking for an AST constructor call which does not occur inside

98 O. de Moor et al.

an AST factory, and which is also not a super call from an AST constructor.
Again, we successfully used this query to find numerous problems in our own
code for the abc compiler.

Exercise 12. We now explore the use of factories in JFreeChart.

1. Write a query to find types in JFreeChart whose name contains the string
“Factory.”

2. Write a class to model the Java type JFreeChart and its subtypes.

Count the number of constructor calls to such types.

4. Modify the above query to find violations in the use of a factory to construct
instances of JFreeChart.

5. There are 53 such violations; it is easiest to view them as a table. The inter-
esting ones are those that are not in tests or demos. Inspect these in detail —
they reveal a weakness in the above example, namely that we may also wish
to make an exception for this constructor calls. Modify the code to include
that exception. Are all the remaining examples tests or demos? Q

bt

Default Constructors. New .QL classes do not have to define a constructor;
when it is not defined, the default constructor is the same as that of the super-
class. A .QL class with no constructor of its own does not define a new logical
property, but this can often be handy when we want to define a new method
that did not exist in the superclass, but which really belongs there.

For instance, suppose that we wish to define a method named depth that
returns the length of a path from Object to a given type in the inheritance hier-
archy. That method is not defined in the standard library definition of RefType,
but it really is a property of any reference type. In .QL, we can add it as such
via the definition

class RT extends RefType {
int depth() {
(this.hasQualifiedName(”java.lang”, ”Object”) and result=0)
or
(result = ((RT)this.getASupertype()).depth() + 1)

int maxDepth() {
result = max(this.depth())
}

That is, the depth of Object itself is 0. Otherwise, we pick a supertype, com-
pute its depth and add 1 to it. In the recursive step, we cast a RefType to a
RT, just so we can call depth on it. That cast will always succeed, because the
characteristic predicates of RT and RefType are identical. Because Java allows
multiple inheritance for interfaces, there may be multiple paths from a type to
Object, and therefore we also define a method for finding the maximum depth
of a type. This example was just for illustration and the same result can be
obtained via MetricRefType.getInheritanceDepth().

.QL: Object-Oriented Queries Made Easy 99

3.2 Generic Queries

To conclude our introduction to object-oriented queries, we consider the defini-
tion of a metric that exists both on packages and on reference types: the Lakos
level [36]. This metric, which was first introduced by John Lakos, is intended to
give insight into the layers of an application: at the highest level, are the most
abstract parts of the program, and at the bottom, utility elements. The Lakos
metric is part of the metrics library, and we shall describe how many of the
methods from this library that have already been used in earlier sections may
be defined.

To appreciate the level metric, consider the well-known drawing framework
JHotDraw. When arranging packages according to level, the highest point is a
package containing sample applications, and a low point is a package of utility
classes for recording user preferences. When arranging reference types according
to level, most of the high level types are classes containing a main method. An
example of a low reference type is again a utility class, this time for recording
information about a locale.

As illustrated by these examples, Lakos’s level metric is useful in sorting the
components of a program (be it packages or types) in a top-down fashion, to
ease exploration and to gain a bird’s-eye view of the structure of a system.

Formally, an element has no level defined if it is cyclically dependent on itself.
Otherwise, it has level 0 if it does not depend on any other elements. It has
level 1 if it depends on other elements, but those occur in libraries. Finally, if it
depends on another element at level n then it has level n+1.

Now note that this definition is truly generic: it is the same whether we are
talking about dependencies between packages or dependencies between types.
Consequently we can define an abstract class, which is a superclass both of ref-
erence types and packages. All we need to do to use the metric on particular ex-
amples is override the abstract definition of dependency, once in MetricRefType
and once in MetricPackage.

The abstract class (named MetricElement) is a subclass of a common super-
type of Package and RefType, namely Element. The first method we define is
getADependency: this returns another element that this depends on; and the
definition needs to be overridden both in MetricPackage and in MetricRefType.
Next, we define the notion of a Source Dependency, simply restricting normal
dependency to source elements. We impose that restriction because it does not
make sense to trace dependencies through all the libraries: we are interested
in the structure of the source itself. It remains to fill in the dots in the class
definition below by defining the level metric itself, and we shall do that below.

class MetricElement extends Element {

MetricElement getADependency() {
result=this // to be overridden
}

100 O. de Moor et al.

MetricElement getADependencySrc() {
result = this.getADependency() and result.fromSource()

}

We only define the level of elements in the source. Furthermore, as stated
in the above definition, if an element participates in a dependency cycle, then
it does not have a level. Here we test that by taking the transitive closure of
getA DependencySrc: in other words, we only consider cycles through source ele-
ments. Next come three cases: first, if an element depends on no other elements,
it has level 0. Second, if it depends on some other elements but none of those
are in source, it has level one. Finally, if it depends on level n, it has level n + 1:

int getALevel() {

this.fromSource() and

not(this.getADependencySrc+()=this) and

((not(exists(MetricElement t | t=this.getADependency()))
and
result=0)

or (not(this.getADependency().fromSource()) and
exists(MetricElement e | this.getADependency() = e) and
result=1)

or (result = this.getADependency().getALevel() 4+ 1))

}

Our definition of the Lakos level metric is now almost complete. The above
definition of getALevel possibly assigns multiple levels to the same element.
Therefore, we take the maximum over all those possibilities, and that is the
metric we wished to define:

int getLevel() {
result = max(int d | d = this.getALevel())
}

Ezercise 13. The above definition of getLevel is in the default library; write queries
to display barcharts. Do the high points indeed represent components that you
would consider high-level? For types, write a query that calculates how many
classes that have maximum level do not define a method named “main”. Q

3.3 Inheritance and Method Dispatch

We have introduced the class mechanism of .QL through a number of motivating
examples; it is now time to take a step back and examine more closely what the
precise semantics are. In this subsection we shall use minimal examples; they are
artificial, but intended to bring out some subtle points in the language design.

Inheritance. A class is a predicate of one argument. So for example, we can
define a class named All that is true just of the numbers 1 through 4:

.QL: Object-Oriented Queries Made Easy 101

class All {
All() { this=1 or this=2 or this=3 or this=4}
string foo() { result="A"}
string toString() { result = ((int)this).toString() }

}

Note that All does not have a superclass. Any such class that does not have an
ancestor must define toString, just to ensure that the results of queries can be
displayed. We have also defined a method named foo, for illustrating the details
of method overriding below. The query

from All t select t

will return 1, 2, 3 and 4.
Defining a subclass means restricting a predicate by adding new conjuncts.
For instance, consider the class definition below:

class OneOrTwo extends All {
OneOrTwo() {this=1 or this=2 or this=5}
string foo() { result="B"}

This class consists just of 1 and 2. That is, we take the conjunction of the char-
acteristic predicate of All and the constructor. While 5 is mentioned as an alter-
native in the constructor, it is not satisfied by the superclass All. Consequently
the query

from OneOrTwo t select t

returns just 1 and 2. More generally, the predicate corresponding to a class is
obtained by taking the conjunction of its constructor, and the predicate corre-
sponding to its superclass.

Because classes are logical properties, they can overlap: multiple properties
can be true of the same element simultaneously. For instance, here is another
subclass of All, which further restricts the set of elements to just 2 and 3.

class TwoOrThree extends All {
TwoOrThree() {this=2 or this=3}
string foo() { result="C"}

Note that the element 2 is shared between three classes: All, OneOrTwo and
TwoOrThree. The overlap between subclass and superclass is natural, but here
OneOrTwo and TwoOrThree are siblings in the type hierarchy. Overlapping
siblings are allowed in .QL, but they can lead to nondeterminism in method
dispatch, and we shall discuss that further below.

Summarising our account of classes so far, classes are predicates, and inheri-
tance is conjunction of constructors. It is easy to see what multiple inheritance
means in this setting: it is again conjunction. So for example, the following class
is satisfied only by the number 2, because that is the only element that its
superclasses have in common:

102 O. de Moor et al.

class OnlyTwo extends OneOrTwo, TwoOrThree {

OnlyTwo() { any() }
string foo() { result =”D” }

As remarked previously, in cases like this where the constructor is just true, its
definition may be omitted.

A precise definition of what the predicate corresponding to a class definition
can now be stated as: that predicate is the conjunction of all constructors of all
its supertypes in the type hierarchy. It is not allowed to define a circular type
hierarchy in .QL, so this notion is indeed well-defined. Figure [}l summarises the
example so far, showing for each class what elements are satisfied, and what the
value returned by foo is.

All
1,2, 3 4
foo() = "A"
| |
AnotherTwo OneOrTwo TwoOrThree
2 1,2 2, 3
foo() = "E" foo() = "B" foo() = "C"

|
OnlyTwo
2
fOO() = uDu

Fig. 5. Example Classes: Inheritance Hierarchy

Method Dispatch. Let us now consider the definition of method dispatch. A
method definition m of class C' is invoked on a value z if z satisfies the defining
property of C, and there is no subclass D of C' which defines a method m of
the same signature, and z also satisfies D. In words, we always apply the most
specialised definition.

In the above example, the query

from All t select t.foo()

returns “A”, “B”, “C” and “D”. It returns “A” because 4 satisfies All, but none
of the other classes. It returns “B” because 1 satisfies OneOrTwo but none of
the other classes. Next, “C” is returned because 3 satisfies TwoOrThree, but not

.QL: Object-Oriented Queries Made Easy 103

any of its subclasses. Finally, “D” appears because OnlyTwo is the most specific
class of 2.

What happens if there are multiple most specific types? This can easily occur,
as illustrated by

class AnotherTwo extends All {
AnotherTwo() {this=2}
string foo() { result="E” }

Now the number 2 has two most specific types, namely OnlyTwo and AnotherTwo.
In such cases all most specific implementations are tried. In particular the query

from OneOrTwo t select t.foo()

returns “B”, “D”, and “E”. It is quite rare for such nondeterminism to be in-
tended, and it is therefore important to take care when designing a class hierar-
chy that few unintended overlaps between siblings occur. Of course it is always
possible to resolve the nondeterminism by introducing another subclass that
simultaneously extends all the overlapping subclasses.

Programmers who are familiar with object-oriented programming in Java may
find it at first disconcerting that dispatch is entirely based on logical properties.
The inheritance hierarchy is used only to build up those logical properties via
conjunction and more primitive predicates. The semantics of runtime dispatch
is however entirely in terms of the semantics of classes as predicates. Upon
reflection, that is analogous to the way method dispatch works in Java, based
on the runtime type of objects, and not at all influenced by static typing. The
design of .QL is thus consistent with traditional notions of object-orientation, in
that static type-checking and runtime semantics are not intertwined.

There is one small exception to the principle that dispatch is entirely a run-
time phenomenon, to avoid unwanted confusion between method signatures. In
deciding what method definitions to consider as candidates for dispatch, at com-
pile time the compiler inspects the static type of the receiver (i.e. z in a call
z.bar(..)) and finds the root definitions of the corresponding method: those are
definitions (of bar) in supertypes of the receiver type that do not override a
definition in another superclass themselves. All definitions of bar in subtypes
of the root definitions are possible candidates. As said, this is just a device to
avoid accidental confusion of method names, and it is not a key element of the
semantics of .QL.

In summary, method dispatch occurs in two stages, one static and one dy-
namic. To resolve a call z.bar(..), at compile-time we determine the static type
of z, say T. We then determine all root definitions of bar above T (methods with
the same signature that do not themselves override another definition). This is
the set of candidates considered for dispatch at runtime. At runtime itself, each of
the candidates applies only if the value of z satisfies the corresponding predicate,
and there is no more specific type that = also satisfies.

104 O. de Moor et al.

Ezercise 14. Suppose the class OnlyTwo does not override foo. Does that make
sense? What does the .QL implementation do in such cases? V)

Ezercise 15. Construct an example to demonstrate how dispatch depends on
the static type of the receiver. © Q

3.4 Database Schema

We have claimed earlier that .QL is a general query language, which is specialised
to a particular application by constructing a class hierarchy. Indeed, it is our
claim that .QL can be used on any relational database. A key ingredient of that
argument is still missing, however, and that is how the class mechanism interacts
with information stored in such a relational database, and that is explained now.

Column types. The primitive relations store information about the type hi-
erarchy, class definitions, method definitions and so on. The schema for these
relations is just like that found in a normal relational database, giving field names
and types. The twist needed to create class definitions is that every field in fact
has two types: one for the use of the underlying database (a representation type),
and one for .QL (a column type).

For example, here is the schema for the table that represents method decla-
rations.

methods(int id: @method,
varchar (100) nodeName: string ref,
varchar (900) signature: string ref,
int typeid: @type ref,
int parentid: @reftype ref,
int cuid: @cu ref,
int location: @location ref);

In words, we store a unique identifier for each method, a name, a signature, the
return type, the declaring type, the compilation unit it lives in, and its location.
The first type for each field (set in teletype font) is its representation type. For
example, the unique method identifier happens to be an integer. Representation
types describe the values stored in the database, but are not exposed to .QL
programs, since it is undesirable to leak such low-level implementation details.
As aresult, each field has another type (the column type) for use in .QL, shown in
italics above. Conventionally, column types start with the character ’Q’, except
for primitive types such as string or int.

The declaration of the methods.id field doubles as the declaration of the type
@method: we define that type to be any value occurring in this column of the
methods table. Such a type defined simultaneously with a field is called a column
type. All the other fields have types that are references to column types that
already exist elsewhere. For instance, the cuid field (short for Compilation Unit
IDentifier) is a reference to the @cu type; and that type is defined in the table
that represents compilation units.

.QL: Object-Oriented Queries Made Easy 105

Not all column types are introduced via a field declaration, however. Some of
these are defined as the union of other types. For example:

@reftype = Qinterface | Qclass | Qarray | Qtypevariable;

This defines the notion of a reference type: it is an interface, or a class, or an
array, or a type variable.

3.5 From Primitives to Classes

Now suppose we wish to write a new class for querying Java methods. As we
have seen, there is a primitive relation methods one can build on. Furthermore,
classes can extend column types, and this is the key that makes the connection
between the two worlds. The characteristic predicate of a column type is just
that a value occurs in its defining column. We can therefore define

class MyMethod extends @method {
string getName() {methods(this,result, , ,,,)}
string toString() {result=this.getName()}

}

Note how we can refer to primitive relations in the same way as we refer to
classless predicates.

It should now be apparent that the design of the .QL language is indepen-
dent of its application to querying Java code, of even querying source code more
generally. There is a collection of primitive relations that comes with the appli-
cation, and those primitive relations have been annotated with column types. In
turn, those column types then form the basis of a class library that is specific
to the application in hand. In principle, any existing relational database can be
queried via .QL.

Of course annotating the database schema and constructing a good class li-
brary is not a trivial exercise. In the case of querying Java, the current distri-
bution of .QL has a schema that consists of about forty primitive relations, and
approximately fifty column types (there are more column types than relations
because some column types are unions of others). The corresponding library
of classes contains 70 class definitions, and amounts to 941 lines of .QL code
(excluding white space and comments).

Exercise 16. Extend the above class definition with getDeclaring Type. Q

4 Implementation

In earlier sections we have seen the .QL query language, providing a convenient
and expressive formalism in which to write queries over complex data. We then
discussed the object-oriented features of .QL, which allow complex queries to be
packaged up and reused in a highly flexible fashion. These features are essential
to build up a library of queries over programs, but this begs the question of
how .QL may be implemented, and it is the aim of this last section to describe

106 O. de Moor et al.

the implementation strategy. We first describe the intermediate language used
for .QL queries, a deductive query language known as Datalog. We then sketch
the translation of .QL programs into Datalog, before briefly outlining the imple-
mentation of Datalog queries over relational databases.

4.1 Datalog

.QL is based on a simple form of logic programming known as Datalog, originally
designed as an expressive language for database queries [26]. All .QL programs
can be translated into Datalog, and the language draws on the clear semantics
and efficient implementation strategies for Datalog. In this section we describe
the Datalog language before outlining how .QL programs may be translated into
Datalog. Datalog is essentially a subset of .QL, and as such we shall be using
.QL syntax for Datalog programs.

Predicates. A Datalog program is a set of predicates defining logical relations.
These predicates may be recursive, which in particular allows the transitive
closure operations to be implemented. A Datalog predicate definition is of the
form:

predicate p(T1 x1, ..., Tn xn) { formula }

This defines a named predicate p with variables zy, ..., z,. In a departure from
classical Datalog each variable is given a type. These restrict the range of the
relation, which only contains tuples (z1,. .., z,) where each z; has the type T;.

The body of a Datalog predicate is a logical formula over the variables defined
in the head of the clause. These formulas can be built up as follows:

formula ::= predicate(variable, . . ., variable)
test(variable, . .. , variable)

variable = expr

formula or formula

|

|

| not(formula)
|

| formulaand formula
|

exists(Type variable | formula)

That is, a formula is built up from uses of predicates through the standard logical
operations of negation, disjunction, conjunction and existential quantification.
In addition to predicates, tests are allowed in Datalog programs. A test is distinct
from a predicate in that it can only be used to test whether results are valid,
not generate results. An example of a test is a regular expression match. The
test X matches "C%” is intended to match all strings beginning with “C”.
Evidently such a test cannot be used to generate strings, as there are infinitely
many possible results, but may constrain possible values for X. In contrast, a
predicate such as depends(A, B) may generate values — in this case, the variables
A and B are bound to each pair of elements for which A depends on B. In a

.QL: Object-Oriented Queries Made Easy 107

manner of speaking, variable occurrences in a test are non-binding: such variables
must also occur in a predicate.

Arguments to predicates are simply variables in Datalog, but expressions allow
the computation of arbitrary values. Expressions are introduced through formula
such as X = Y 4 1 defining the value of a variable, and include all arithmetic
and string operators. In addition, expressions allow aggregates to be introduced.

expr ::= variable
constant
expr + expr

\
\
| exprx expr
\
\

aggregate

Our definition of Datalog differs from usual presentations of the language in sev-
eral respects. The first difference is largely inessential. While we allow arbitrary
use of logical operators in formulas, most presentations requires Datalog pred-
icates to be in disjunctive normal form, where disjunction can only appear at
the top level of a predicate and the only negated formulas are individual pred-
icates. However, any formula may be converted to disjunctive normal form, so
this does not represent a major departure from pure Datalog. Expressions, on
the other hand, are crucial in increasing the expressiveness of the language. In
pure Datalog expressions are not allowed, and this extension to pure Datalog is
nontrivial, with an impact on the semantics of the language.

Datalog Programs. A Datalog program contains three parts:

1. A query. This is just a Datalog predicate defining the relation that we wish
to compute.

2. A set of user-defined, or intensional predicates. These predicates represent
user-defined relations to be computed to evaluate the query.

3. A set of extensional predicates. These represent the elements stored in the
database to be queried.

The general structure of a Datalog program therefore mirrors that of a .QL
program. The query predicate corresponds to the query in a .QL program, while
classes and methods may be translated to intensional predicates. Finally, in the
context of program queries the extensional predicates define the information that
it stored about the program. Examples may include the inheritance hierarchy, for
instance represented as a table hasSubtype of each type and its direct subtypes;
or the set of classes in the program.

Semantics and Recursion. The semantics of Datalog program are very
straightforward, in particular in comparison to other forms of logic program-
ming such as Prolog. A key property is that termination of Datalog queries is
not an issue. The simplicity of the semantics of Datalog programs (and by impli-
cation of .QL programs) is an important factor in its choice as an intermediate

108 O. de Moor et al.

query language, as it is straightforward to generate Datalog code. It is worth
exploring the semantics in a little more detail, however, as a few issues crop up
when assigning meaning to arbitrary Datalog programs.

For our purposes, the meaning of a Datalog program is that each predicate
defines a relation, or set of tuples, between its arguments. Other, more general,
interpretations of Datalog programs are possible [58], but this will suffice for our
purposes. An important feature is that these relations should be finite, so that
they may be represented explicitly in a database or in memory. It is customary
to enforce this through range restriction, that is to say ensuring that each vari-
able that is an argument to a predicate should be restricted to a finite set. In
our case, this is largely straightforward, as each variable is typed. Types such as
Q@Qclass or Qreftype restrict variables to certain kinds of information already in
the database, in this case the sets of classes or reference types in the program.
As there can only be finitely many of these, any variable with such a type is
automatically restricted. However, primitive types such as int are more trouble-
some. Indeed it is easy to write a predicate involving such variables that defines
an infinite relation:

predicate p(int X, int Y) { X =Y }

This predicate contains all pairs (X, X), where X is an integer, which is infinite
and therefore disallowed. As a result, the type system of .QL ensures that any
variable of primitive type is always constrained by a predicate, restricting its
range to a finite set.

In the absence of recursion, the semantics of a Datalog program is very
straightforward. The program can be evaluated bottom-up, starting with the
extensional predicates, and working up to the query. Each relation, necessarily
finite by range-restriction, can be computed from the relations it depends on by
simple logical operations, and so the results of the query can be found.

The situation is more interesting in the presence of recursion. Unlike other
logic programs in which evaluation of a recursive predicate may fail to terminate,
in Datalog the meaning of a recursive predicate is simply given by the least fixed
point of the recursive equation it defines. As an example, consider the recursive
predicate

predicate p(int X, int Y) { (X, Y) or (p(X,Z) and q(Z,Y)) }

where ¢ denotes (say) the relation {(1,2),(2,3),(3,4)}. Then p denotes the so-
lution of the relation equation P = ¢ U P; ¢, in which ; stands for relational
composition. This is just the transitive closure of ¢, so the relation p is simply

b= {(17 2)7 (17 3)7 (174)7 (27 3)7 (274)7 (374)}
This least fixed point interpretation of Datalog programs makes it easy to find
the value of any predicate. For instance, consider
predicate p(int X) { p(X) }

This predicate would be nonterminating as a Prolog program. However, in Dat-
alog this is just the least solution of the equation P = P. As every relation
satisfies this equation, the result is just the empty relation!

.QL: Object-Oriented Queries Made Easy 109

More precisely, the meaning of a Datalog program can be defined as follows.
First, break the program up into components, where each component represents
a recursive cycle between predicates (formally, a strongly-connected component
in the call graph). Evaluation proceeds bottom-up, starting with extensional
predicates and computing each layer as a least fixed point as above.

There are two technical restrictions to the use of recursion in Datalog. The
first is known as stratification, and is necessary to deal with negation properly.
The problem can be illustrated by this simple example:

predicate p(Qclass X) { not(p(X)) }

What should this predicate mean? It is defined as its own complement, so a class
lies in p iff it does not lie in p. There is no relation satisfying this property, so we
cannot assign a simple relational interpretation to this program. To avoid this
issue, we only consider stratified Datalog. In this fragment of Datalog, negation
cannot be used inside a recursive cycle. That is, a cycle through mutually recur-
sive predicates cannot include negation. This is not a problem in practice, and
stratification is not a substantial obstacle to expressiveness.

A similar problem is posed by our use of expressions, which does not lie
in the scope of classical Datalog. While expressions increase the power of the
language, their interaction with recursion is problematic. For instance, consider
the following:

predicate p(int Y) { Y = 0 or (Y = Z+1 and p(Z)) }

Clearly 0 lies in p. Therefore 1 must also lie in p from the recursive clause, and
in this manner every number n lies in p. The use of expressions in recursive
calls may therefore lead to infinite relations, and thus nontermination. In .QL
this may also lead to nonterminating queries, and so care must be used when
using arithmetic expressions in recursive calls — if, as in the above example, the
expression can create new values for each recursive call, then the query may be
nonterminating.

4.2 Translating .QL

The precise semantics of .QL programs are defined by their translation into
Datalog programs. The outline of this translation is quite straightforward, as
the overall structure of .QL programs closely mirrors that of Datalog programs.
In particular, the query in a .QL program is translated into a Datalog query,
while methods and classless predicates are translated to Datalog intensional
predicates.

Translating Queries. The general form of a .QL() query (ignoring order by
clauses, which merely amount to a post-processing step) is:

from T1 x1, T2 x2, ..., Tn xn
where formula
select el, e2, ..., ek

where each e; is an expression, and each z; is a declared variable of type T;.

110 O. de Moor et al.

It is straightforward to translate this to a Datalog query, which is just a
standard predicate. The resulting relation has k parameters (one for each se-
lected expression), and so the query predicate has k parameters. The variables
21 through z, can be introduced as local variables, defined by an existential
quantifier. As a result, the Datalog translation of the above query, omitting
types, is:

predicate p(resl, res2, ..., resk) {
exists (T1 x1, T2x2, ..., Tnxn |
formula2

and resl = el
and res2 = e2
and ...

and resk = ek

)
}

where formula2 is obtained from formula by translating away all non-Datalog
features of .QL, and in particular method calls, as described below

Translating Classes. Classes are translated into individual Datalog predicates,
representing constructors, methods and class predicates. In most cases the trans-
lation is straightforward, the key aspect being the translation of method calls.

A .QL method is merely a particular kind of Datalog predicate involving two
special variables — this and result. The this variable holds the value that is a
member of the class, while the result variable holds the result of the method. As
an example, consider the following method to compute a string representation
of the fully qualified name of a type:

class RefType {

string getQualifiedName() {
result = this.getPackage() + ”.” + this.getName()

}

-

This is translated into the following Datalog predicate

predicate RefType getQualifiedName(RefType this, string result) {
exists(string package, string type |
RefType getName(this, type)
and RefType getPackage(this, package)

9”9

and result = type + ”.” 4 package

)
}

.QL: Object-Oriented Queries Made Easy 111

This extends to methods taking an arbitrary number of parameters, in which case
the two parameters this and result are simply added to the list of parameters.
Apart from the translation of method calls, which we will describe shortly, there
are few differences between the body of the method and the body of the generated
predicate. Class predicates are similar, but as predicates do not return a value,
the result variable is not used. For instance, the method

class RefType {

predicate declaresField(string name) {
this.getAField().getName() = name

}

is translated to the following Datalog predicate:

predicate RefType declaresField(RefType this, string name) {
exists(Field field |
RefType getAField(this, field)
and Field getName(field, name)
)
}

Both examples highlight one of the crucial advantages of .QL methods over
Datalog predicates, in addition to extensibility. In Datalog, it is necessary to
name each intermediate result, as is the case with the field in the above example.
In contrast, methods returning (many) values allow queries to be written in a
much more concise and readable manner.

Finally, constructors are simply translated to Datalog predicates denoting the
character of each class. For instance, consider the definition of anonymous Java
classes:

class AnonymousClass extends NestedClass {
AnonymousClass() { this.isAnonymous() }

}

The constructor for this class is translated into a predicate defining precisely
those elements that are nested classes. These are the Java elements that are
nested classes, additionally satisfying the isAnonymous predicate:

predicate AnonymousClass(NestedClass this) {
NestedClass isAnonymous(this)

}

In the above, the type of this enforces the fact that an anonymous class must
be nested. When a class inherits from multiple classes, the translation is a little
more complicated. Consider the class Interface, with no constructor:

112 O. de Moor et al.

class Interface extends RefType, Qinterface {

-

This class extends both RefType and the column type @interface, and thus an
element is an Interface exactly when it is both a RefType and an @interface.
This is encoded in the generated constructor for Interface:

Interface (RefType this) { Qinterface(this) }

Despite the fact that Interface does not define a constructor, it restricts the
range of values that it encompasses by inheritance, and thus this characteristic
predicate must be generated.

Translating Method Calls. In the above, we have described the translation
of methods into Datalog predicates with extra arguments this and result, and
informally shown some method calls translated into calls to the generated pred-
icates. In our examples, the translation was straightforward, as the type of the
receiver was known, and so it was immediately apparent which predicate should
be called. However, as .QL uses virtual dispatch, the method that is actually
used depends on the value it is invoked on, and this translation scheme cannot
work in general.

To illustrate the translation of method dispatch in .QL, let us recall the class
hierarchy defined in Section B] simplified for this example:

class All {
All() { this=1 or this=2 or this=3 or this=4 }
string foo() { result ="A” }

class OneOrTwo extends All {
OneOrTwo() { this=1 or this=2 }
string foo() { result ="B” }

}

class TwoOrThree extends All {
TwoOrThree() { this=2 or this=3 }
string foo() { result="C” }

As we have seen previously, each of the implementations of foo is translated into
a Datalog predicate:

predicate All foo(All this, string result) { result = 7A” }
predicate OneOrTwo foo(OneOrTwo this, string result) { result = "B” }
predicate TwoOrThree foo(TwoOrThree this, string result) { result = 7C” }

However, when a call to the foo method is encountered, the appropriate methods
must be chosen, depending on the value of the receiver of the call. .QL method

.QL: Object-Oriented Queries Made Easy 113

dispatch selects the most specific methods, of which there may be several due
to overlapping classes, and returns results from all most specific methods. Only
the most specific methods are considered, so that a method is not included if it
is ooverriddenby a matching method.

This virtual dispatch mechanism is implemented by defining a dispatch predi-
cate for each method, testing the receiver against the relevant types and choosing
appropriate methods. Testing the type of the receiver is achieved by invoking the
characteristic predicate for each possible class, leading to the following dispatch
method for foo:

predicate Dispatch foo(All this, string result) {
OneOrTwo foo(this, result)
or TwoOrThree foo(this, result)
or (not(OneOrTwo(this)) and not(TwoOrThree(this))
and All foo(this, result))
}

Let us examine this dispatch predicate a little more closely. The parameter this
is given type All, as this is the most general possible type in this case. The body
of the predicate consists of three possibly overlapping cases. In the first case,
the foo method from OneOrTwo is called. Note that this only applies when this
has type OneOrTwo, due to the type of the this parameter in OneOrTwo. As
OneOrTwo does not have any subclasses, its foo method cannot be ooverridden
and whenever it is applicable it is necessarily the most specific. The second case
is symmetrical, considering the class TwoOrThree. These cases are overlapping,
if this = 2, and so the method can return several results. Finally, the third
case is the “default” case. If this did not match either of the specific classes
OneOrTwo or TwoOrThree, the default implementation in All is chosen.

Suppose now that we extend the example to the full class hierarchy shown in
Figure Bl as follows:

class OnlyTwo extends OneOrTwo, TwoOrThree {
foo() { result ="D” }

class AnotherTwo extends All {
AnotherTwo() { this =2}
foo() { result ="E” }

In this new hierarchy, we added two classes with exactly the same characteris-
tic predicate. This changes method dispatch whenever this = 2, as the newly
introduced methods are more specific than previous methods for this case. To
extend the previous example with these new classes, we simply lift out the new
implementations of foo:

predicate OnlyTwo foo(OnlyTwo this, string result) { result = "D” }
predicate AnotherTwo foo(AnotherTwo this, string result) { result = "E” }

114 O. de Moor et al.

and change the dispatch predicate accordingly:

predicate Dispatch foo(All this, string result) {
OnlyTwo foo(this, result)
or AnotherTwo foo(this, result)
or (not(OnlyTwo(this))
and OneOrTwo foo(this, result))
or (not(OnlyTwo(this))
and TwoOrThree foo(this, result))
or (not(OneOrTwo(this))
and not(TwoOrThree(this))
and not (AnotherTwo(this))
and All foo(this, result))

}

The only changes, apart from the introduction of cases for the two new classes,
is that the existing cases for OneOrTwo, TwoOrThree and All must be amended
to check whether the method is indeed the most specific one.

4.3 Implementing Datalog Queries

Database Implementation. The use of Datalog as an intermediate language
for .QL has two benefits. The first is the simplicity of Datalog, making it straight-
forward to define the semantics of .QL by translation to Datalog. In addition,
Datalog was designed as a query language over relational databases, and can
be implemented efficiently over familiar relational query languages, in particular
SQL.

A QL program ranges over a database schema defining the relations that
queries can inspect. In the translated Datalog program these just form the ex-
tensional predicates, while intensional predicates define new relations that are
computed by querying this data. Such Datalog queries can be translated directly
into SQL statements, and the aim of this section is to introduce this translation.

For each defined predicate, say

predicate p(A x, By) {
exists (C z | q(x, z) and r(z, y))

a new table (also called p) is created. The table p has columns x and y, corre-
sponding to the query fields. The types of these columns can be deduced from the
.QL column types, but are not identical: .QL allows for rich user-defined column
types such as @class, while databases typically only provided simple scalar types
such as integers or characters. Primitive types can be represented directly in the
database, naturally, but for user-defined types some representation (typically
based on unique identifiers) must be chosen.

This table is then populated with the result of the query, as computed by an
SQL SELECT statement. The first step of this translation is to make the vari-
able types explicit. Recall that variable types restrict the range of values that

.QL: Object-Oriented Queries Made Easy 115

a variable can take, which must be represented in the SQL query. We therefore
make these types explicit in the Datalog query, resulting in the following (un-

typed) query:
predicate p(x, y) {
A(x) and B(y)
and exists(z | C(z) and q(x,z) and 1(z,y))

}

This relation is essentially a join of the q and r relations, together with the type
restrictions on variables. This may be computed by the following SQL statement,
assuming that tables q(a,b) and r(c,d) have already been computed, as have
all type tables A(x), B(x) and C(x):

SELECT DISTINCT q.a, r.d

FROM q

INNER JOIN r
ON r.c = q.b

INNER JOIN C
ON C.x = qg.b

INNER JOIN A
ON g.a = A.x

INNER JOIN B
ON r.d = B.x

The first line of this query selects the x and y variables from tables q and r.
The DISTINCT modifier is used to guarantee that the result is a set and does
not contain duplicates, as SQL queries otherwise produce bags of results. The
relation constructed in the FROM clause is simply the join of all predicates
conjoined together in the predicate p, joining on any variables that appear in
several predicates.

This implementation strategy allows arbitrary Datalog predicates to be im-
plemented as SQL queries. A conjunction may, as we have seen above, simply
be translated as an SQL join. More general formulas can be implemented by
converting the body of each predicate to disjunctive normal form, in which the
formula is expressed as a disjunction of conjunctions. As an example, consider
the following predicate (in disjunctive normal form), ignoring types for concision:

predicate p(x, y) {
exists (z | q(x,z) and r(z,y))
or (q(x, y) and not(t(y)))

This may be translated into the following SQL query, in which the disjunction is
simply turned into a union, where in addition to previous tables t (e) has been
computed:

SELECT DISTINCT q.a, r.d
FROM q

116 O. de Moor et al.

INNER JOIN r
ON r.c = g.b
UNION

SELECT DISTINCT q.a, q.b
FROM q
WHERE NOT EXISTS

(SELECT t.e

WHERE t.e = q.b)

These examples illustrate the principles behind the translation of Datalog
queries, and thus .QL programs, to SQL. The only Datalog feature that we
have not considered are the use of expressions and aggregates, which are beyond
the scope of these notes (note, however, that both are present in SQL, and so
do not give rise insurmountable obstacles). This translation is crucial for the
efficient implementation of .QL on very large data sets, thanks to the efficiency
of database query optimisers. However, it is clear that .QL is far better suited to
writing queries over complex data sets, such as the representations of programs,
than SQL.

Recursion. The translation from Datalog to SQL requires the program to be
evaluated bottom-up, so that a relation is computed only when all the relations
it depends on have themselves been evaluated. However, this is only possible for
nonrecursive programs. Any recursive predicate will depend on itself, and thus
the evaluation strategy is a little more involved. To conclude our description
of the implementation of .QL we therefore outline the translation of recursive
predicates. For simplicity, we exclude mutual recursion and consider only a single
recursive predicate.

The most straightforward translation of recursive queries is to use recursive
SQL queries as a direct translation. The SQL:1999 standard specifies common ta-
ble expressions, with which queries that refer to their own result set may be writ-
ten. However, support for common table expressions among widespread database
management systems is patchy, and available implementations suffer from perfor-
mance problems. As recursive queries are common when analysing programs, this
application of .QL requires good performance in the implementation of recursion.
As a result, we use our own implementation, based on well-known algorithms
for evaluating recursive equations.

A recursive query, say (omitting types):

predicate p(x, y) { q(x, y) or exists (z | q(x, z) and p(z, y)) }

gives rise to a recursive equation of the form p = F(p), where F' is a function
from relations to relations. In the above case the function is simply:

F(R)=qUqR

That is, this function simply computes the value of the body of the predicate,
replacing the recursive occurrence of p with the parameter R. The semantics

.QL: Object-Oriented Queries Made Easy 117

of Datalog then prescribe that the value of p should be the least solution of
the equation p = F(p). To compute this, we may appeal to the Knaster-Tarski
fixpoint theorem, which asserts that such a least solution exists, as long as F' is
monotonic (guaranteed in the absence of negated recursive calls), and that the
solution can be obtained by iterating the F' function, starting with the empty
relation:

p= lim F"(0)

n—oo

This suggests an algorithm for computing the fixpoint:
old =0
p = F(old)
while (p # old)

old = p
p = F(old)

The assignment p = F(old) can be computed as a nonrecursive SQL query, this
clearly provides an implementation strategy. However, it is not optimal. The
successive iterations of this algorithm give the following values for p:

=0

F0)=qUgq0=q

= F(q)=qUqgq=qUq’

= F(qU¢)=qUq(qU¢*) =qUq’Uq’

T W N —

R"BRR"I

In general, after n iterations the value of p is ¢ U ¢ U---U ¢". The difference
between the results for iterations n and n + 1 is therefore just ¢™*!'. However,
the relations ¢ to ¢™ are recomputed anyway, making this algorithm expensive.

The inefficiency of the naive algorithm for evaluating recursion leads to the
so-called “semi-naive” algorithm presented below [6]. The idea is to observe that
at each step, we need only apply the function F' to values that were newly created
at the previous step. In our example, the new tuples at step n are those of ¢™.
In step n + 1 we thus only need to add the relation F(¢™), and keep all other
tuples in the accumulated relation.

The semi-naive evaluation strategy is almost always applicable, but does im-
pose a restriction on the predicates it is used for. More precisely, the function ¥
corresponding to this predicate must be distributive, in the sense that

F(AUB) = F(A) U F(B)

This is always guaranteed for (safe) predicates with linear recursion, that is
predicates in which there is only one recursive call per disjunct in the disjunctive
normal form representation. Such predicates form the overwhelming majority of
recursive predicates, apart from artificial examples, and so this is not a great
restriction. In any other cases the naive strategy may be used.

118 O. de Moor et al.

The semi-naive keeps a frontier of tuples that were added in the last step:

p==~0

frontier = F(p)

while (frontier # 0)
p =p U frontier
newFrontier = F(frontier)
frontier = newFrontier \ p

DD O = W N~

At each step, the current frontier is added to the accumulated relation, while
the new frontier is computed by applying F' to the frontier from the previous
iteration. This is guaranteed to contain all new tuples, but may contain some
tuples already in the accumulated in the relation p. The last statement of the
loop therefore removes any such tuples. The algorithm stops when no more tuples
can be added. A proof of correctness of this algorithm may be found in [2§].

To illustrate semi-naive evaluation, the following shows its iterations for our
example predicate:

Iteration P newFrontier frontier
0 0 q q
1 q qU ¢ ¢
2 qU¢* quU¢® ¢
3 qU¢U ¢ qUq* q*
4 q°

qUPU@FUgt qud

This example illustrates the efficiency gain offered by semi-naive evaluation.
While the accumulated relation p naturally grows at each iteration, the frontier
remains relatively constant as it contains only new tuples. The efficiency gain
arises because the possibly expensive function F' is only applied to the frontier,
while the accumulated p is only used in inexpensive union and difference opera-
tions. Semi-naive evaluation is therefore crucial to the efficient implementation
of recursion in .QL.

5 Related Work

.QL builds on a wealth of previous work by others, and it is impossible to survey
all of that here. We merely point out the highlights, and give sources for further
reading.

5.1 Code Queries

The idea to use code queries for analysing source code has emerged from at
least three different communities: software maintenance, program analysis and
aspect-oriented programming. We discuss each of those below.

.QL: Object-Oriented Queries Made Easy 119

Software maintenance. As early as 1984, Linton proposed the use of a rela-
tional database to store programs [39]. His system was called Omega, and im-
plemented on top of INGRES, a general database system with a query language
named QUEL. Crucially, QUEL did not allow recursive queries, and as we have
seen in these notes, recursion is indispensable when exploring the hierarchical
structures that naturally occur in software systems. Furthermore, Linton already
observed extremely poor performance. In retrospect, that is very likely to have
been caused by the poor state of database optimisers in the 1980s. Furthermore,
in the implementation of .QL, we have found it essential to apply a large num-
ber of special optimisations (which are proprietary to Semmle and the subject
of patent applications) in the translation from .QL to SQL.

Linton’s work had quite a large impact on the software maintenance com-
munity as witnessed by follow-up papers like that on CIA (the C Information
Abstraction system) [I3]. Today there are numerous companies that market
products based on these ideas, usually under the banner of “application mining”
or “application portfolio management”. For instance, Paris-based CAST has a
product named the ‘Application Intelligence Platform’ that stores a software
system in a relational database [I1]. Other companies offering similar products
include ASG [3], BluePhoenix [9], EZLegacy [25], Metallect [43], Microfocus [44],
Relativity [49] and TSRI [51]. A more light-weight system, which does however
feature its own SQL-like query language (again, however, without recursion), is
NDepend [55].

The big difference between SemmleCode and all these other industrial systems
is the emphasis on agility: with .QL, all quality checks are concise queries that
can be adapted at will, by anyone involved in the development process. Some
of the other systems mentioned above have however one big advantage over the
free Java-only version of SemmleCode: they offer parsers for many different lan-
guages, making it possible to store programs in relational form in the database.
Indeed, large software systems are often heterogeneous, and so the same code
query technology must work for many different object languages. We shall return
to this point below.

Meanwhile, the drive for more expressive query languages, better suited to the
application domain of searching code, gathered pace. Starting with the XL C++
Browser [32], many researchers have advocated the use of the logic programming
language Prolog. In our view, there are several problems with the use of Prolog.
First, it is notoriously difficult to predict whether Prolog queries terminate.
Second, today’s in-memory implementations of Prolog are simply not up to the
job of querying the vast amounts of data in software systems. When querying the
complete code for the bonita workflow system, the number of tuples gathered by
SemmleCode is 4,349,156. In a very recent paper, Costa has demonstrated that
none of the leading Prolog implementations is capable of dealing with datasets
of that size. That confirms our own experiments with the XSB system, reported
in [29]. A few months ago, however, Kniesel et al. reported some promising
preliminary experiments with special optimisations in a Prolog-based system for
querying large software systems [35].

120 O. de Moor et al.

A modern system that uses logic programming for code querying is JQuery,
a source-code querying plugin for Eclipse [30/42]. Tt uses a general-purpose lan-
guage very similar to Prolog, but crucially, its use of tabling guarantees much
better termination properties. It is necessary to annotate predicate definitions
with mode annotations to achieve reasonable efficiency. We have resolutely ex-
cluded any such annotation features from .QL, leaving all the optimisation work
to our compiler and the database optimiser. Despite the use of annotations,
JQuery’s performance does not scale to substantial Java projects.

Instead of using a general logic programming language like Prolog, it might
be more convenient to use a language that is more specific to the domain. For
instance Consens et al. proposed GraphLog [16], a language for querying graph
structures, and showed that it has advantages over Prolog in the exploration of
software systems. Further examples of domain-specific languages for code search
are the relational query algebra of Paul and Prakash [48], Jarzabek’s PQL [31]
and Crew’s ASTLog [I7]. A very recent proposal in this tradition is JTL (the
Java Tools Language) of Cohen et al. [I5]. Not only is this query language specific
to code querying, it is specific to querying Java code. That has the advantage
that some queries can be quite concise, with concrete Java syntax embedded in
queries.

By contrast, there is nothing in .QL that is specific to the domain of code
querying, because its designers preferred to have a simple, orthogonal language
design. This is important if one wishes to use .QL for querying large, heteroge-
neous systems with artifacts in many different object languages. Furthermore,
the creation of dedicated class libraries goes a long way towards tailoring .QL
towards a particular domain. We might, however, consider the possibility of al-
lowing the embedding of shorthand syntax in scripts themselves. There is a long
tradition of allowing such user-defined syntactic extensions in a query language,
for instance [10].

Program Analysis. Somewhat independently, the program analysis community
has also explored the use of logic programming, for dataflow analyses rather
than the structural analyses of the software maintenance community. The first
paper to make that connection is one by Reps [50], where he showed how the use
of the so-called ‘magic sets’ transformation [7] helps in deriving demand-driven
program analyses from specifications in a restricted subset of Prolog, called Dat-
alog (the variant of Datalog employed here incorporates certain extensions, e.g.
expressions and aggregates).

Dawson et al. [I9] demonstrate how many analyses can be expressed con-
veniently in Prolog — assuming it is executed with tabling (like JQuery men-
tioned above). Much more recently Michael Eichberg et al. demonstrated how
such analyses can be incrementalised directly, using existing techniques for in-
crementalisation of logic programs [23]. While this certainly improves response
times in an interactive environment for small datasets, it does not overcome the
general scalability problem with Prolog implementations outlined above.

Whaley et al. [37/59] also advocate the use of Datalog to express program
analyses. However, their proposed implementation model is completely different,

.QL: Object-Oriented Queries Made Easy 121

namely Binary Decision Diagrams (BDDs). This exploits the fact that in many
analyses, there are a large number similar sets (for instance of allocation sites),
and BDDs can exploit such similarity by sharing in their representation. Lhotak
et al. [38] have independently made the same observation; their system is based
on relational algebra rather than Datalog.

We have not yet experimented with expressing these types of program analysis
in .QL, because the Eclipse plugin does not yet store information about control
flow.

Aspect-oriented programming. Of course all these independent developments
have not gone unnoticed, and many of the ideas are brought together in re-
search on aspect-oriented programming. Very briefly, an ‘aspect’ instruments
certain points in program execution. To identify those points, one can use any
of the search techniques reviewed above.

One of the pioneers who made the connection between code queries and as-
pects was de Volder [20]. More recently, others have convincingly demonstrated
that indeed the use of logic programming is very attractive for identifying the
instrumentation points [27/47]. A mature system building on these ideas is Log-
icAJ [52]. In [5], the patterns used in AspectJ (an aspect-oriented extension of
Java) are given a semantics by translation into Datalog queries [5].

The connection is of course also exploited in the other direction, suggesting
new query mechanisms based on applications in aspect-oriented programming.
For example, in [24], Eichberg et al. propose that XQuery is an appropriate
notation for expressing many of the queries that arise in aspects. It appears
difficult, however, to achieve acceptable performance on large systems, even with
considerable effort [22].

Earlier this year, Morgan et al. proposed a static aspect language for checking
design rules [45], which is partly inspired by AspectJ, marrying it with some of
the advantages of code querying systems. In many ways, it is similar to JTL,
which we mentioned above. Like JTL, it is tailored to the particular application,
allowing concrete object syntax to be included in the queries. As said earlier,
because large software systems are often heterogeneous, written in many different
languages, we believe the query language itself should not be specific to the
object language. Many users of .QL at first believe it to be domain-specific as
well, because of the library of queries that tailor it to a particular application
such as querying Java in Eclipse.

5.2 Object-Oriented Query Languages

.QL is a general query language, and we have seen how one can build a class
library on top of any relational database schema, by annotating its fields with
column types. There exists a long tradition of research on object-oriented query
languages, so it behooves us to place .QL in that context.

In the 1980s, there was a surge of interest in so-called deductive databases,
which used logic programming as the query language. The most prominent
of these query languages was Datalog, which we mentioned above. In essence,

122 O. de Moor et al.

Datalog is Prolog, but without any data structures [26]; it thus lacks any
object-oriented features.

Since the late 80s saw a boom in object-oriented programming, it was only nat-
ural that many attempts were made to integrate the idea of deductive databases
and objects. Unfortunately a smooth combination turned out to be hard to
achieve, and in a landmark paper, Ullman [57] even went so far as to state that
a perfect combination is impossible.

Abiteboul et al. [I] proposed a notion of ‘virtual classes’ that is somewhat
reminiscent of our normal classes [I]. However, the notion of dispatch is very
different, using a ‘closest match’ rather than the ‘root definitions’ employed in
.QL. Their definition of dispatch leads to brittle queries, where the static type of
the receiver can significantly change the result. In our experience, such a design
makes the effective use of libraries nearly impossible.

Most later related work went into modelling the notion of object-identity in
the framework of a query language, e.g. [2/40]. In .QL that question is side-
stepped because there is no object identity: a class is just a logical property.
From that then follows the definition of inheritance as conjunction, and the
disarmingly simple definition of virtual dispatch. Previous works have had much
difficulty in defining an appropriate notion of multiple inheritance: here it is just
conjunction.

6 Conclusion

We have presented .QL, a general object-oriented query language, through the
particular application of software quality assessment. While this is the only con-
crete application we discussed, it was shown how, through appropriate annota-
tion of the fields in a normal relational database schema with column types, one
can build a library of queries on top of any relational database.

The unique features of .QL include its class mechanism (where inheritance
is just logical ‘and’), its notion of virtual method dispatch, nondeterministic
expressions, and its adoption of Dijkstra’s quantifier notation for aggregates.
Each of these features contributes to the fun of playing with queries in .QL.

We hope to have enthused the reader into further exploring the use of .QL. A
rich and interesting application area is the encoding of rules that are specific to
an application domain. We have already done so for J2EE rules [53], but that
only scratches the surface. Another application, which we hinted at in one of the
exercises, is the use of .QL to identify opportunities for refactoring.

References

1. Abiteboul, S., Lausen, G., Uphoff, H., Waller, E.: Methods and rules. In: Bune-
man, P., Jaodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 32-41. ACM Press, New York (1993)

2. Afrati, F.N.: On inheritance in object oriented datalog. In: International Workshop
on Issues and Applications of Database Technology (IADT), pp. 280-289 (1998)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

.QL: Object-Oriented Queries Made Easy 123

. ASG. ASG-becubic™ for understanding and managing the enterprise’s application

portfolio. Product description on company website (2007),
http://asg.com/products/product details.asp?code=BSZ

. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoték, J., Lhotédk, O.,

de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: An extensible AspectJ com-
piler. In: Rashid, A., Aksit, M. (eds.) Transactions on Aspect-Oriented Software
Development. LNCS, vol. 3880, pp. 293-334. Springer, Heidelberg (2006)

. Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J.,

Verbaere, M.: Semantics of static pointcuts in AspectJ. In: Felleisen, M. (ed.)
Principles of Programming Languages (POPL), pp. 11-23. ACM Press, New York
(2007)

. Balbin, I., Ramamohanarao, K.: A generalization of the differential approach to

recursive query evaluation. Journal of Logic Programming 4(3), 259-262 (1987)

. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange

ways to implement logic programs. In: Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, 1986, pp. 1-16. ACM
Press, New York (1986)

. Basili, V., Brand, L., Melo, W.: A validation of object-oriented design metrics as

quality indicators. IEEE Transactions on Software Engineering 22(10), 751-760
(1996)

. BluePhoenix. IT discovery. Product description available from company (2004),

http://www.bphx.com/Discovery.cfm

Cardelli, L., Matthes, F., Abadi, M.: Extensible grammars for language specializa-
tion. In: Beeri, C., Ohori, A., Shasha, D. (eds.) Database Programming Languages,
pp. 11-31. Springer, Heidelberg (1993)

Cast. Application intelligence platform. Product description on company website
at, http://www.castsoftware. com| (2007)

Checkstyle. Eclipse-cs: Eclipse checkstyle plug-in. Documentation and download
at, http://eclipse-cs.sourceforge.net/| (2007)

Chen, Y., Nishimoto, M., Ramamoorthy, C.V.: The C information abstraction
system. IEEE Transactions on Software Engineering 16(3), 325-334 (1990)
Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering 20(6), 476-493 (1994)

Cohen, T., Gil, J., Maman, I.: JTL - the Java Tools Language. In: 21st Annual
Conference on Object-oriented Programming, systems languages and applications
(OOPSLA 2006), pp. 89-108. ACM Press, New York (2006)

Consens, M., Mendelzon, A., Ryman, A.: Visualizing and querying software struc-
tures. In: ICSE 1992: Proceedings of the 14th international conference on Software
engineering, pp. 138-156. ACM Press, New York (1992)

Crew, R.F.: ASTLOG: A language for examining abstract syntax trees. In:
USENIX Conference on Domain-Specific Languages, pp. 229-242 (1997)

Darcy, D.P., Slaughter, S.A., Kemerer, C.F., Tomayko, J.E.: The structural com-
plexity of software: an experimental test. IEEE Transactions on Software Engi-
neering 31(11), 982-995 (2005)

Dawson, S., Ramakrishnan, C.R., Warren, D.S.: Practical program analysis using
general purpose logic programming systems. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
117-126. ACM Press, New York (1996)

d. Volder, K.: Aspect-oriented logic meta-programming. In: Cointe, P. (ed.) Reflec-
tion 1999. LNCS, vol. 1616, pp. 250-272. Springer, Heidelberg (1999)

http://asg.com/products/product_details.asp?code=BSZ
http://www.bphx.com/Discovery.cfm
http://www.castsoftware.com
http://eclipse-cs.sourceforge.net/

124

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

O. de Moor et al.

Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer, Heidelberg (1990)

Eichberg, M.: Open Integrated Development and Analysis Environments. PhD the-
sis, Technische Universitdt Darmstadt (2007),
http://elib.tu-darmstadt.de/diss/000808/

Eichberg, M., Kahl, M., Saha, D., Mezini, M., Ostermann, K.: Automatic incre-
mentalization of prolog based static analyses. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 109-123. Springer, Heidelberg (2007)

Eichberg, M., Mezini, M., Ostermann, K.: Pointcuts as functional queries. In: Chin,
W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 366-381. Springer, Heidelberg
(2004)

EZLegacy. EZ Source™. Product description on company website at,
http://www.ezlegacy.com| (2007)

Gallaire, H., Minker, J.: Logic and Databases. Plenum Press, New York (1978)
Gybels, K., Brichau, J.: Arranging language features for more robust pattern-
based crosscuts. In: 2nd International Conference on Aspect-Oriented Software
Development, pp. 60-69. ACM Press, New York (2003)

Hajiyev, E.: CodeQuest: Source Code Querying with Datalog. MSc Thesis, Oxford
University Computing Laboratory (September 2005),
http://progtools.comlab.ox.ac.uk/projects/codequest/

Hajiyev, E., Verbaere, M., de Moor, O.: CodeQuest: scalable source code queries
with Datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2-27.
Springer, Heidelberg (2006)

Janzen, D., de Volder, K.: Navigating and querying code without getting lost.
In: 2nd International Conference on Aspect-Oriented Software Development, pp.
178-187 (2003)

Jarzabek, S.: Design of flexible static program analyzers with PQL. IEEE Trans-
actions on Software Engineering 24(3), 197-215 (1998)

Javey, S., Mitsui, K., Nakamura, H., Ohira, T., Yasuda, K., Kuse, K., Kamimura,
T., Helm, R.: Architecture of the XL. C4++ browser. In: CASCON 1992: Proceed-
ings of the 1992 conference of the Centre for Advanced Studies on Collaborative
research, pp. 369-379. IBM Press (1992)

JFreeChart. Website with documentation and downloads (2007),
http://www.jfree.org/jfreechart/

Kaldewaij, A.: The Derivation of Algorithms. Prentice-Hall, Englewood Cliffs
(1990)

Kniesel, G., Hannemann, J., Rho, T.: A comparison of logic-based infrastructures
for concern detection and extraction. In: LATE R 2007 — Linking Aspect Tech-
nology and Evolution. ACM, New York (2007),
http://www.cs.uni-bonn.de/~gk/papers/knieselHannemannRho-late07.pdf
Lakos, J.: Large-Scale C++ Software Design. Addison-Wesley, Reading (1996)
Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Un-
kel, C.: Context-sensitive program analysis as database queries. In: Proceedings of
PODS, pp. 1-12. ACM Press, New York (2005)

Lhoték, O., Hendren, L.: Jedd: A BDD-based relational extension of Java. In:
Programming Language Design and Implementation (PLDI), pp. 158-169 (2004)
Linton, M.A.: Implementing relational views of programs. In: Henderson, P.B. (ed.)
Software Development Environments (SDE), pp. 132-140 (1984)

Liu, M., Dobbie, G., Ling, T.W.: A logical foundation for deductive object-oriented
databases. ACM Transactions on Database Systems 27(1), 117-151 (2002)

http://elib.tu-darmstadt.de/diss/000808/
http://www.ezlegacy.com
http://progtools.comlab.ox.ac.uk/projects/codequest/
http://www.jfree.org/jfreechart/
http://www.cs.uni-bonn.de/~gk/papers/knieselHannemannRho-late07.pdf

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

.QL: Object-Oriented Queries Made Easy 125

Martin, R.C.: Agile Software Development, Principles, Patterns and Practices.
Prentice-Hall, Englewood Cliffs (2002)

McCormick, E., De Volder, K.: JQuery: finding your way through tangled code.
In: Companion to OOPSLA, pp. 9-10. ACM Press, New York (2004)

Metallect. 1Q server. Product description on company website at,
http://www.metallect.com/what-we-offer/technology/| (2007)

MicroFocus. Application portfolio management. Product description on company
website at, http://www.microfocus.com/Solutions/APM/| (2007)

Morgan, C., De Volder, K., Wohstadter, E.: A static aspect language for checking
design rules. In: De Moor, O. (ed.) Aspect-Oriented Software Development (AOSD
2007), pp. 63-72 (2007)

Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138-152. Springer,
Heidelberg (2003)

Ostermann, K., Mezini, M., Bockish, C.: Expressive pointcuts for increased modu-
larity. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214-240. Springer,
Heidelberg (2005)

Paul, S., Prakash, A.: Querying source code using an algebraic query language.
IEEE Transactions on Software Engineering 22(3), 202-217 (1996)

Relativity. Application analyzer™. Product description on company website at,
http://www.relativity.com/pages/applicationanalyzer.asp| (2007)

Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases. International Series in
Engineering and Computer Science, vol. 296, pp. 163-196. Kluwer, Dordrecht
(1995)

The Software Revolution. Janus technology™. Product description on company
website (2007), http://www.softwarerevolution.com/

Rho, T., Kniesel, G., Appeltauer, M., Linder, A.: LogicAJ (2006),
http://roots.iai.uni-bonn.de/research/logicaj/people

Semmle Ltd. Company website with free downloads, documentation, and discussion
forums (2007), http://semmle.com

Semmle Ltd. Installation instructions for this tutorial (2007),
http://semmle.com/gttse-07

Smacchia, P.: NDepend. Product description on company website at,
http://www.ndepend. com (2007)

Spinellis, D.D.: Code Quality: the Open Source Perspective. Addison-Wesley, Read-
ing (2007)

Ullman, J.D.: A comparison between deductive and object-oriented database
systems. In: 2nd International Conference on Deductive and Object-Oriented
Databases. Springer Lecture Notes in Computer Science, pp. 263-277 (1991)

van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620-650 (1991)

Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog and binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97-118. Springer, Heidelberg (2005)

Appendix: Answers to the Exercises

Exercise 1. Run the query to find suspicious declarations of compareTo in
JFreeChart. You can do that in a number of ways, but here the nicest way

http://www.metallect.com/what-we-offer/technology/
http://www.microfocus.com/Solutions/APM/
http://www.relativity.com/pages/applicationanalyzer.asp
http://www.softwarerevolution.com/
http://roots.iai.uni-bonn.de/research/logicaj/people
http://semmle.com
http://semmle.com/gttse-07
http://www.ndepend.com

126 O. de Moor et al.

to look at the results is as a table, so use the run button marked with a table
at the top right-hand side of the Quick Query window. You will get two results,
and you can navigate to the relevant locations in the source by double-clicking.
Are both of them real bugs? Q

Answer: The table is not shown here. One of the matches, the class named
PieLabelRecord, is indeed an example where compareTo and equals are in-
consistent. The compareTo method will return 0 whenever the baseY values are
equal, but equals is inherited from Object and so compares object identity.
The other match Outlier is not a bug: in fact consistency between equals and
compareTo is clearly assured because compareTo calls equals.

Exercise 2. Write a query to find all methods named main in packages whose
names end with the string demo. You may find it handy to use the predicate
string.matches(” %demo”) (as is common in query languages, % is a wildcard
matching any string). Q

Answer: We want to select a method, so that is what goes in the from clause.
Next, we want those methods to have name “main” and occur in a package with
a name that matches the given pattern. Note the repeated use of dispatch on the
result of methods. If you tried to write the same query in Prolog, you would have
to give a name to each of those intermediate results, considerably cluttering the
query.
from Method m
where m.hasName(”main”) and
m.getDeclaring Type().getPackage().getName(). matches(” %demo”)

select m.getDeclaringType().getPackage(),

m.getDeclaringType(),

m

b2

Ezercise 3. The above queries show how to find types that define a method
named “equals”, and how to find types that do not have such a method. Write
a query picking out types that define at least one method which is not called
“equals”. Q

Answer: This query is more verbose, but straightforward. We use exists to find
a method and test that its name is not “equals”:

from Class c
where exists (Method m | m = c.getACallable()

and not (m.hasName(”equals”)))
select m

Note that getACallable returns several results, so this succeeds if at least one of
the methods is not called “equals”.

.QL: Object-Oriented Queries Made Easy 127

Exercise 4. Continuing Exercise 211 You will have found that one class repre-
sents a real bug, whereas the other does not. Refine our earlier query to avoid
such false positives. Q

Answer: We exclude declarations of compareTo that make a call to equals:

from Class ¢, Method compare

where compare.getDeclaringType()=c and
compare.hasName(” compareTo”) and
not(c.declaresMethod(”equals”)) and
not(compare.get ACall().hasName(” equals”))

select c.getPackage(),c,compare

An interesting point concerns the fact that the method getA Call is nondetermin-
istic. Negating the nondeterministic call means that none of the methods called
by compare has name “equals”.

Exercise 5. Write a query to find all types in JFreeChart that have a field of type
JFreeChart. Many of these are test cases; can they be excluded somehow? Q

Answer: Inspecting the results of the obvious query (the one below without the
extra conjunct in the where clause), it is easy to see that all of the test cases are
in fact subtypes of TestCase, so that is the condition we use to exclude them:

from RefType t
where t.getAField().getType().hasName(” JFreeChart”)
and
not t.getASupertype().hasName(” TestCase”)
select t

Exercise 6. There exists a method named getASuperType that returns some
supertype of its receiver, and sometimes this is a convenient alternative to using
hasSubtype. Uses of methods such as getA SuperType that return an argument can
be chained too. Using z.getASuperTypex (), write a query for finding all subtypes
of org.jfree.chart.plot.Plot. Try to use no more than one variable. Q@

Answer: Again, note how the use of nondeterministic methods leads to very
concise queries:

from RefType s
where s.getASupertypex().hasName(” Plot”)
select s

128 O. de Moor et al.

Ezercise 7. When a query returns two program elements plus a string you can
view the results as an edge-labelled graph by clicking on the graph button (shown
below). To try out that feature, use chaining to write a query to depict the hierar-
chy above the type TaskSeriesCollection in package org. jfree.data.gantt.
You may wish to exclude Object from the results, as it clutters the picture.
Right-clicking on the graph view will give you a number of options for display-
ing it. Q

Answer: First, find the TaskSeriesCollection type, and name it tsc. Now we
want to find pairs s and ¢ that are supertypes of tsc, such that furthermore ¢
is a direct supertype of s. Finally, we don’t want to consider Object, so that is
our final conjunct. If we now select the pair (s, t) that becomes an edge in the
depicted graph:

from RefType tsc, RefType s, RefType t
where tsc.hasQualifiedName(” org.jfree.data.gantt”,” TaskSeriesCollection”)
and
s.hasSubtypex(tsc)
and
t.hasSubtype(s)
and
not(t.hasName(” Object”))
select s,t

Ezercise 8. Display the results of the above query as pie chart, where each slice
of the pie represents a package and the size of the slice the average number of
methods in that package. To do so, use the run button marked with a chart, and
select ‘pie chart’ from the drop-down menu. Q

Answer: No comment; just an exercise to play with!

Exercise 9. Not convinced that metrics are any good? Run the above query; it
will be convenient to display the results as a bar chart, with the bars in descend-
ing order. To achieve that sorting, add “as s order by s desc’ at the end. Now
carefully inspect the packages with high instability. Sorting the other way round
(using asc instead of desc) allows you to inspect the stable packages. Q@

Answer: The most unstable packages are precisely the experimental ones in
JFreeChart. The most stable package of all is java.lang. Amazing that such a
simple metric can make such accurate predictions!

.QL: Object-Oriented Queries Made Easy 129

Exercise 10. The following questions are intended to help reinforce some of the
subtle points about aggregates; you could run experiments with SemmleCode to
check them, but really they’re just for thinking.

1. What is sum(inti|i = 0 or ¢ = 0]2)?
2. Under what conditions on p and g is this a true equation?

sum(int i | p(i) or ¢(i)) = sum(int i | p(i)) + sum(int i | ¢(i)) ©

Answer:

1. It’s just 2. You can use normal logical equivalences to manipulate the range
condition in an aggregate.
2. This equation is true only if p and ¢ are disjoint, that is: Vi : =(p(i) A ¢q(4)).

Exercise 11. Queries can be useful for identifying refactoring opportunities. For
example, suppose we are interested in finding pairs of classes that could benefit
by extracting a common interface or by creating a new common superclass.

1. As a first step, we will need to identify root definitions: methods that are
not overriding some other method in the superclass. Define a new .QL class
named RootDefMethod for such methods. It only needs to have a constructor,
and no methods or predicates.

2. Complete the body of the following classless predicate:

predicate similar(RefType t, RefType s, Method m, Method n) { ... }

It should check that m is a method of ¢, n is a method of s, and m and n
have the same signature.

3. Now we are ready to write the real query: find all pairs (¢, s) that are in the
same package, and have more than one root definition in common. All of
these are potential candidates for refactoring. If you have written the query
correctly, you will find two types in JFreeChart that have 99 root definitions
in common.

4. Write a query to list those 99 commonalities. Q

Answer:

1. The class for root definitions is:

class RootDefMethod extends Method {
RootDefMethod() { not exists(Method m | overrides(this, m)) }
}

2. The definition of the predicate can be completed as follows:

130

3.

O. de Moor et al.

predicate similar(RefType t, RefType s, Method m, Method n) {
m.getDeclaringType() = t and n.getDeclaringType() = s
and m.getSignature() = n.getSignature()

}

Finally, the required query is shown below. To try out the answer, just type
the class definition, the predicate and the query all together in the Quick
Query window. (Warning: this query takes a while to execute.)

from RefType t, RefType s, int ¢
where t.getPackage() = s.getPackage()
and
t.getQualifiedName() < s.getQualifiedName()
and
¢ = count(RootDefMethod m, RootDefMethod n | similar(t,s,m,n))
and
c>1
select ¢, t.getPackage(), t,s order by c desc

This is a simple re-use of the predicate similar defined above:

from RefType t, RefType s, RootDefMethod m, RootDefMethod n
where t.hasName(” CategoryPlot”) and s.hasName(” XYPlot”)
and
t.getPackage() = s.getPackage()
and
similar (t,s,m,n)
select m,n

Ezercise 12. We now explore the use of factories in JFreeChart.

1.

bt

Write a query to find types in JFreeChart whose name contains the string
“Factory.”

Write a class to model the Java type JFreeChart and its subtypes.

Count the number of constructor calls to such types.

Modify the above query to find violations in the use of a ChartFactory to
construct instances of JFreeChart.

There are 53 such violations; it is easiest to view them as a table. The inter-
esting ones are those that are not in tests or demos. Inspect these in detail —
they reveal a weakness in the above example, namely that we may also wish to
make an exception for this constructor calls. Modify the code to include that
exception. Are all the remaining examples tests or demos? Q

Answer:

1.

Here is a query to find factories in JFreeChart:

.QL: Object-Oriented Queries Made Easy 131

from RefType t
where t.getName().matches(” %Factory%”)
select t

We shall use the first result, ChartFactory, in the remainder of this exercise.
. The class just has a constructor and no methods or predicates. The con-
structor says that this has a supertype named JFreeChart. If desired, that
could be refined by using a qualified name rather than a simple name.

class JFreeChart extends RefType {
JFreeChart() { this.getASupertypex().hasName(” JFreeChart”) }

. We want calls where the callee is a constructor of a JFreeChart type:

select count(Call ¢ | c.getCallee() instanceof Constructor and
c.getCallee (). getDeclaringType() instanceof JFreeChart)

A shorter alternative (which does however require you to know the class
hierarchy quite well) is

select count(ConstructorCall ¢ | c.getCallee (). getDeclaringType()
instanceof
JFreeChart)

The answer is 88.
. The definitions are very similar to the ones in the ASTFactory example:

class ChartFactory extends RefType {
ChartFactory() { this.getASupertypex().hasName(” ChartFactory”) }
ConstructorCall getAViolation() {
result.getType() instanceof JFreeChart and
not(result.getCaller (). getDeclaringType()
instanceof ChartFactory) and
not(result instanceof SuperConstructorCall)

}
}

from ChartFactory f, Call ¢

where ¢ = f.getAViolation()

select c. getCaller (). getDeclaringType().getPackage(),
c. getCaller (). getDeclaringType(),
c. getCaller (),
¢

. Change the getAViolation definition to:

ConstructorCall getAViolation() {
result.getType() instanceof JFreeChart and
not(result.getCaller (). getDeclaringType()
instanceof ChartFactory) and

132 O. de Moor et al.

not(result instanceof SuperConstructorCall or
result instanceof ThisConstructorCall)

}

No, there are still two matches in the package org. jfree.chart.plot. One
of them says “An initial quick and dirty”; both matches seem to be real
mistakes. The other 49 are all in packages that do not use the factory at all,
so that is probably intended.

Ezercise 13. The above definition of getLevel is in the default library; write queries
to display barcharts. Do the high points indeed represent components that you
would consider high-level? For types, write a query that calculates how many
classes that have maximum level do not define a method named “main”. Q@

Answer: The level metric is surprisingly effective in finding components that are
high-level in the intuitive sense.

from MetricPackage p, float ¢
where p.fromSource() and ¢ = p.getLevel()
select p, ¢ order by c desc

The following query calculates what proportion of the highest-level types do not
define a method named “main”:

predicate maxLevel(MetricRefType t) {
t.fromSource() and
t.getLevel() = max(MetricRefType t | | t.getLevel())

}

from float i, float j
where
i =count(MetricRefType t | maxLevel(t) and
not(t.getACallable().hasName(”main”)))
and
j = count(MetricRefType t | maxLevel(t))
select i/]

About 24% of high-level matches do not define a “main” method.

Exercise 1/. Suppose the class OnlyTwo does not override foo. Does that make
sense? What does the .QL implementation do in such cases? Q

Answer: There is then a choice of two different implementations that could be
overridden. At first it might seem that it makes sense to take their disjunction,
but clearly that is wrong as subclassing means conjunction. The implementation
forbids such cases and insists that foo be overridden to ensure a unique definition
is referenced.

.QL: Object-Oriented Queries Made Easy 133

Ezercise 15. Construct an example to demonstrate how dispatch depends on
the static type of the receiver. Q

Answer: We need two root definitions that have the same signature. For instance,
in the class hierarchy below, there are root definitions of foo both in class B and
in class C":
class A {

A() { this=1 }

string toString() { result="A"}

}

class B extends A {
string foo() { result="B” }

class C extends A {
string foo() { result="C"}

from C c select c.foo()

The answer of the query is just “C”. If foo was also declared in class A, then
that would be the single root definition, and “B” would also be an answer.

Ezercise 16. Extend the above class definition with getDeclaring Type. Q

Answer: The definition of getDeclaringType is just a minor variation on the
definition of getName we saw earlier:

class MyMethod extends @method {
string getName() { methods(this,result, , ,, ,)}
string toString() { result = this.getName() }
RefType getDeclaringType() { methods(this, , , ,result, ,)}

}

Transforming Data by Calculation

José N. Oliveira

CCTC, Universidade do Minho, 4700-320 Braga, Portugal
jno@di.uminho.pt

Abstract. This paper addresses the foundations of data-model transformation. A
catalog of data mappings is presented which includes abstraction and representa-
tion relations and associated constraints. These are justified in an algebraic style
via the pointfree-transform, a technique whereby predicates are lifted to binary
relation terms (of the algebra of programming) in a two-level style encompassing
both data and operations. This approach to data calculation, which also includes
transformation of recursive data models into “flat” database schemes, is offered
as alternative to standard database design from abstract models. The calculus is
also used to establish a link between the proposed transformational style and bidi-
rectional lenses developed in the context of the classical view-update problem.

Keywords: Theoretical foundations, mapping scenarios, transformational design,
refinement by calculation.

1 Introduction

Watch yourself using a pocket calculator: every time a digit key is pressed, the corre-
sponding digit is displayed on the LCD display once understood by the calculator, a
process which includes representing it internally in binary format:

digits
4
display input

binary

This illustrates the main ingredients of one’s everyday interaction with machines: the
abstract objects one has in mind (eg. digits, numbers, etc) need to be represented inside
the machine before this can perform useful calculations, eg. square root, as displayed
in the diagram below.

However, it may happen that our calcu-
lator is faulty. For instance, sometimes the

digit displayed is not the one whose key was djg its digits
just pressed; or nothing at all is displayed; or ,)

. . A display input
even the required operation (such as triggered ,
by the square root key) is not properly com- binary binary
puted. It is the designer’s responsibility to <
ensure that the machine we are using never v

misbehaves and can thus be trusted.

R. Lammel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 134 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Transforming Data by Calculation 135

When using machines such as computers or calculators, one is subcontracting
mechanical services. Inside the machine, the same subcontracting process happens
again and again: complex routines accomplish their tasks by subcontracting (simpler)
routines, and so on and so forth. So, the data representation process illustrated above for
the (interaction with a) pocket calculator happens inside machines every time a routine
is called: input data are to be made available in the appropriate format to the subcon-
tracted routine, the result of which may need to change format again before it reaches
its caller.

Such data represent/retrieve processes (analogue to the input/display process
above) happen an uncountable number of times even in simple software systems. Sub-
contracting thus being the essence of computing (as it is of any organized society),
much trouble is to be expected once represent/retrieve contracts fail: the whole ser-
vice as subcontracted from outside is likely to collapse.

Three kinds of fault have been identified above: loss of data, confusion among data
and wrong computation. The first two have to do with data representation and the third
with data processing. Helping in preventing any of these from happening in software
designs is the main aim of this paper.

We will see that most of the work has to do with data transformation, a technique
which the average programmer is often unaware of using when writing, most often in
an ‘ad hoc’ way, middleware code to “bridge the gap” between two different technology
layers. The other part of the story — ensuring the overall correctness of software sub-
contracts — has to do with data refinement, a well established branch of the software
sciences which is concerned with the relationship between (stepwise) specification and
implementation.

Structure of the paper. This paper is organized as follows. Section 2 presents the over-
all spirit of the approach and introduces a simple running example. Section [3] reviews
the binary relation notation and calculus, referred to as the pointfree (PF) transform.
Section [] shows how to denote the meaning of data in terms of such unified notation.
Section [3] expresses data impedance mismatch in the PF-style. While sections 6] to
illustrate the approach in the context of (database) relational modeling, recursive data
modeling is addressed from section [9] onwards. Then we show how to handle cross-
paradigm impedance by calculation (section[IQ) and how to transcribe operations from
recursive to flat data models (section[IT). Section[I2]addresses related work. In particu-
lar, it establishes a link between data mappings and bidirectional lenses developed in the
context of the view-update problem and reviews work on a library for data transforma-
tions (2LT) which is strongly related to the current paper. Finally, section[I3] concludes
and points out a number of research directions in the field.

Technical sketch of the paper. This text puts informal, technology dependent approaches
to data transformation together with data calculation formalisms which are technology
agnostic. It is useful to anticipate how such schools of thought are related along the
paper, while pinpointing the key formal concepts involved.

The main motivation for data calculation is the need for data-mappings as introduced
in section [2k one needs to ensure that data flow unharmed across the boundaries of
software layers which use different technologies and/or adopt different data models. On

136 J.N. Oliveira

the technical side, this is handled (in section[2)) by ordering data formats by degree of
abstraction and writing A < B wherever format A is safely implemented by format
B. Technically, < is a preorder and <-facts are witnessed by relations telling how data
should flow back and forth between formats A and B.

The need for handling such relations in a compositional, calculational way leads to
the relational calculus and the pointfree transform. The whole of section [3|is devoted
to providing a summary of the required background, whose essence lies in a number of
laws which can be used to calculate with relations directly (instead of using set theory
to indirectly convey the same results). The fact that all relations are binary is not a hand-

icap: they can be thought of as arrows of the form A ® - B which express data flow
in a natural way and can be composed with each other to express more complex data
flows. Data filtering is captured by relations of a particular kind, known as coreflexives,
which play a prominent role throughout the whole calculus.

The bridge between formal and informal data structuring becomes more apparent
from section] onwards, where typical data structures are shown to be expressible not
only in terms of abstract constructs such as Cartesian product (A x B), disjoint sum
(A + B) and equations thereof (as in the case of recursive types), but also in terms
of typed finite relations, thus formalizing the way data models are recorded by entity-
relationship diagrams or UML class diagrams, for instance.

Further to structure, constraints (also known as invariants) are essential to data mod-
eling, making it possible to enforce semantic properties on data. Central to such data

constraints is membership, a relation of type A< € TA which is able to tell which
data elements can be found in a particular data structure of shape T. The key ingredient
at this point is the fact that set-theoretic membership can be extended to data containers
other than sets.

Sections [and[6] are central to the whole paper: they show how to calculate complex
data mappings by combining a number of <-rules which are proposed and justified
using (pointfree) relation calculus. Compositionality is achieved in two ways: by tran-
sitivity, suitably typed <-rules can be chained; by monotonicity, they can be promoted
from the parameters of a parametric type T to the whole type, for instance by inferring
TA < TB from A < B. The key of the latter result consists in regarding T as a relator,
a concept which traverses relation calculus from beginning to end and explains, in the
current paper, data representation techniques such as those involving dynamic heaps
and pointer dereferencing. On the practical side, a number of <-facts are shown to be
applicable to calculating database schemata from abstract models (sections[@land[7) and
reasoning about entity-relationship diagrams (section[S)).

Abstract (and language-based) data models often involve recursive data which pose
challenges of their own to data mapping formalization. Sections Q] to [[1] show how the
calculus of fixpoint solutions to relational equations (known as hylomorphisms) offers
a basis for refining recursive data structures. This framework is set to work in section
where it is applied to the paper’s running example, the PTree recursive model
of pedigree trees, which is eventually mapped onto a flat, non-recursive model, after
stepping through a pointer-based representation. The layout of calculations not only
captures the < relationships among source, intermediate and target data models, but

Transforming Data by Calculation 137

also the abstraction and representation relations implicit in each step, which altogether
synthesize two overall ‘map forward” and “map backward” data transformations.

Section [[1] addresses the transcription level, the third component of a mapping sce-
nario. This has to do with refining operations whose input and output data formats have
changed according to such big-step ‘map forward” and “map backward” transforma-
tions. Technically, this can be framed into the discipline of data refinement. The exam-
ples given, which range from transcribing a query over PTree downto the level of its
flat version (obtained in section[I0) to calculating low level operations handling heaps
and pointers, show once again the power of data calculation performed relationally, and
in particular the usefulness of so-called fusion-properties.

Finally, section[[2]includes a sketch of how <-diagrams can be used to capture bidi-
rectional (asymmetric) transformations known as lenses and their properties.

2 Context and Motivation

On data representation. The theoretical foundation of data representation can be writ-
ten in few words: what matters is the no loss/no confusion principle hinted above. Let
us explain what this means by writing ¢ R a to denote the fact that datum c represents
datum a (assuming that ¢ and c range over two given data types A and C, respectively)
and the converse fact a R° c to denote that a is the datum represented by c. The use of
definite article “the” instead of “a” in the previous sentence is already a symptom of the
no confusion principle — we want c to represent only one datum of interest:

(Ve,a,a" 2 cRa AN cRad =a=ad) (1)

The no loss principle means that no data are lost in the representation process. Put in
other words, it ensures that every datum of interest a is representable by some c:

MVa : (3c : cRa)) (2)

Above we mention the converse R° of R, which is the relation such that a(R°)c
holds iff ¢ R a holds. Let us use this rule in re-writing (I in terms of F' = R°:

(Ve,a,a = aFeNd Fe=a=ad) 3)

This means that F', the converse of R, can be thought of as an abstraction relation
which is functional (or deterministic): two outputs a, a’ for the same input ¢ are bound
to be the same.

Before going further, note the notation convention of writing the outputs of F' on
the left hand side and its inputs on the right hand side, as suggested by the usual way
of declaring functions in ordinary mathematics, y = f x, where y ranges over outputs
(cf. the vertical axis of the Cartesian plane) and x over inputs (cf. the other, horizontal
axis). This convention is adopted consistently throughout this text and is extended to
relations, as already seen aboveEl.

! The fact that @ F ¢ is written instead of @ = F ¢ reflects the fact that F' is not a total function,
in general. See more details about notation and terminology in section 3

138 J.N. Oliveira

Expressed in terms of F, (@) becomes
Ma :: (3e :: aFe)) 4)

meaning that F' is surjective: every abstract datum a is reachable by F'. In general, it
is useful to let the abstraction relation F' to be larger that R°, provided that it keeps
properties (Bl4) — being functional and surjective, respectively — and that it stays
connected to R. This last property is written as

(Va,c s cRa=aF c)
or, with less symbols, as
R°CF (5)
by application of the rule which expresses relational inclusion:
RCS = (Vba::bRa=bSa) (6)

(Read R C S as “R is at most S”, meaning that S is either more defined or less
deterministic than R.)

To express the fact that (R, F') is a connected representation/abstraction pair we draw
a diagram of the form

R

A < C (N

F

where A is the datatype of data to be represented and C' is the chosen datatype of
representations E In the data refinement literature, A is often referred to as the abstract
type and C' as the concrete one, because C' contains more information than A, which is
ignored by F' (anon-injective relation in general). This explains why F' is referred to as
the abstraction relation in a (R, F') pair.

Layered representation. In general, it will make sense to chain several layers of ab-
straction as in, for instance,

R R’
AN AN
. < M < D (8)
~
F F’

where letters I, M and D have been judiciously chosen so as to suggest the words
interface, middleware and dataware, respectively.

2 Diagrams such as (Z) should not be confused with commutative diagrams expressing properties
of the relational calculus, as in eg. [Iﬁl], since the ordering < in the diagram is an ordering on
objects and not on arrows.

Transforming Data by Calculation 139

In fact, data become “more concrete” as
they go down the traditional layers of soft-

ware architecture: the contents of interactive,
handy objects at the interface level (often pic-
tured as trees, combo boxes and the like) be-
come pointer structures (eg. in C++/C#) as
they descend to the middleware, from where
they are channeled to the data level, where

they live as persistent database records. A

popular picture of diagram (8)) above is given

in figure[Il where layers I, M and D are rep-

resented by concentric circles. Fig. 1. Layered software architecture
As an example, consider an interface (/)

providing direct manipulation of pedigree

trees, common in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920 ©)]
\ _
Mary, b. 1956 Joseph, b. 1955
\ /

Peter, b. 1991

Trees — which are the users’ mental model of recursive structures — become pointer
structures (figure 2h) once channeled to the middleware (M). For archival purposes,
such structures are eventually buried into the dataware level (D) in the form of very
concrete, persistent records of database files (cf. figure2b).

Modeling pedigree trees will be our main running example throughout this paper.

Mapping scenarios. Once materialized in some technology (eg. XML, C/C++/Java,
SQL, etc), the layers of figure [I] stay apart from each other in different programming
paradigms (eg. markup languages, object-orientated databases, relational databases,
etc) each requiring its own skills and programming techniques.

As shown above, different data models can be compared via abstraction/represen-
tation pairs. These are expected to be more complex once the two models under com-
parison belong to different paradigms. This kind of complexity is a measure of the
impedance mismatches between the various data-modeling and data-processing para-
digms B, in the words of reference [42] where a thorough account is given of the many
problems which hinder software technology in this respect. Still quoting [42]:

Whatever programming paradigm for data processing we choose, data has the
tendency to live on the other side or to eventually end up there. (...) This myriad
of inter- and intra-paradigm data models calls for a good understanding of
techniques for mappings between data models, actual data, and operations on
data. (...)

3 According to [B], the label impedance mismatch was coined in the early 1990’s to capture (by
analogy with a similar situation in electrical circuits) the technical gap between the object and
relational technologies. Other kinds of impedance mismatch are addressed in [@, @].

140 J.N. Oliveira

Given the fact that IT industry is fighting with various impedance mismatches
and data-model evolution problems for decades, it seems to be safe to start a
research career that specifically addresses these problems.

The same reference goes further in identifying three main ingredients (levels) in map-
ping scenarios:

— The type-level mapping of a source data model to a target data model,
— Two maps (“map forward” and “map backward”) between source / target data;
— The transcription level mapping of source operations into target operations.

Clearly, diagram () can be seen as a succinct presentation of the two first ingredi-
ents, the former being captured by the <-ordering on data models and the latter by the
(R, F') pair of relations. The third can easily be captured by putting two instances of
([@ together, in a way such that the input and output types of a given operation, say O,
are wrapped by forward and backward data maps:

R

A < C (10)

<~

B!

o

e

Y
B

~

IN

o
The (safe) transcription of O into P can be formally stated by ensuring that the picture
is a commutative diagram. A typical situation arises when A and B are the same (and
so are C' and D), and O is regarded as a state-transforming operation of a software
component, eg. one of its CRUD (“Create, Read, Update and Delete”) operations. Then
the diagram will ensure correct refinement of such an operation across the change of
state representation.

Data refinement. The theory behind diagrams such as (I0) is known as data refinement.
It is among the most studied formalisms in software design theory and is available from
several textbooks — see eg. [@, @,].

The fact that state-of-the-art software technologies don’t enforce such formal de-
sign principles in general leads to the unsafe technology which we live on today, which
is hindered by permanent cross-paradigm impedance mismatch, loose (untyped) data
mappings, unsafe CRUD operation transcription, etc. Why is this so? Why isn’t data
refinement widespread? Perhaps because it is far too complex a discipline for most
software practitioners, a fact which is mirrored on its prolific terminology — cf. down-
ward, upward refinement [|Zl|], forwards, backwards refinement [@, R @], S,SP.SC-
refinement [Iﬂ] and so on. Another weakness of these theories is their reliance on invent
& verify (proof) development strategies which are hard to master and get involved once
facing “real-sized” problems. What can we do about this?

The approach we propose to follow in this paper is different from the standard in two
respects: first, we adopt a transformational strategy as opposed to invention-followed-
by-verification; second, we adopt a calculational approach throughout our data trans-
formation steps. What do we mean by “calculational”?

Transforming Data by Calculation 141

° Margaret
1923
NIL
NIL
Mary
1956 ID Name Birth
NIL 1 Joseph 1955
NI 5 Mgt 1923

argare

Joseph 4 Mfry 1956
1955 5 Peter 1991

ID Ancestor ID

Peter 5 Father 1
1991 5 Mother 4
° 1 Father 2
. 1 Mother 3

Luigi

1920

NIL

NIL

(@) (b)

Fig. 2. Middleware (a) and dataware (b) formats for family tree sample data (9)

Calculational techniques. Let us briefly review some background. The idea of using
mathematics to reason about and transform programs is an old one and can be traced
back to the times of McCarthy’s work on the foundations of computer programming
] and Floyd’s work on program meaning [@]. A so-called program transformation
school was already active in the mid 1970s, see for instance references [IE,]. But pro-
gram transformation becomes calculational only after the inspiring work of J. Backus
in his algebra of (functional) programs [ﬂ] where the emphasis is put on the calculus of
functional combinators rather than on the A\-notation and its variables, or points. This is
why Backus’ calculus is said to be point-free.

Intensive research on the (pointfree) program calculation approach in the last thirty
years has led to the algebra of programming discipline [B,]. The priority of this
discipline has been, however, mostly on reasoning about algorithms rather than data
structures. Our own attempts to set up a calculus of data structures date back to
, ,] where the <-ordering and associated rules are defined. The approach, how-
ever, was not agile enough. It is only after its foundations are stated in the pointfree
style [@, @] that succinct calculations can be performed to derive data representations.

142 J.N. Oliveira

Summary. We have thus far introduced the topic of data representation framed in two
contexts, one practical (data mapping scenarios) and the other theoretical (data refine-
ment). In the remainder of the paper the reader will be provided with strategies and tools
for handling mapping scenarios by calculation. This is preceded by the section which
follows, which settles basic notation conventions and provides a brief overview of the
binary relational calculus and the pointfree-transform, which is essential to understand-
ing data calculations to follow. Textbook] is recommended as further reading.

3 Introducing the Pointfree Transform

By pointfree transform [@] (“PF-transform” for short) we essentially mean the conver-
sion of predicate logic formul into binary relations by removing bound variables and
quantifiers — a technique which, initiated by De Morgan in the 1860s [@], eventually
led to what is known today as the algebra of programming [B,]. As suggested in
[@], the PF-transform offers to the predicate calculus what the Laplace transform [|Il|]
offers to the differential/integral calculus: the possibility of changing the underlying
mathematical space in a way which enables agile algebraic calculation.

Theories “refactored” via the PF-transform become more general, more structured
and simpler [@, , @]. Elegant expressions replace lengthy formule and easy-to-
follow calculations replace pointwise proofs with lots of ““- - -”” notation, case analyses
and natural language explanations for “obvious” steps.

The main principle of the PF-transform is that “everything is a binary relation” once
logical expressions are PF-transformed; one thereafter resorts to the powerful calculus
of binary relations [B,] until proofs are discharged or solutions are found for the
original problem statements, which are mapped back to logics if required.

Relations. Let arrow B< " A denote a binary relation on datatypes A (source) and
B (target). We will say that B< A is the type of R and write b R a to mean that

pair (b, a) is in R. Type declarations B< " Aand A " =B will mean the same.

R U S (resp. RN S) denotes the union (resp. intersection) of two relations R and S.
T is the largest relation of its type. Its dual is L, the smallest such relation (the empty
one). Two other operators are central to the relational calculus: composition (R - .S)
and converse (R°). The latter has already been introduced in section 21 Composition is
defined in the usual way: b(R - S)c holds wherever there exists some mediating a such
that bRa A aSc. Thus we get one of the kernel rules of the PF-transform:

b(R-S)c = (Ja = bRa A aSc) (11)
Note that converse is an involution
(R°)°=R (12)
and commutes with composition:

(R-S)° =5° R° (13)

Transforming Data by Calculation 143

All these relational operators are C-monotonic, where C is the inclusion partial order
(@). Composition is the basis of (sequential) factorization. Everywhere T' = R - S holds,
the replacement of 7" by R-S will be referred to as a “factorization” and that of R-S by T’

as “fusion”. Every relation B< R A allows for two trivial factorizations, R = R-idx
and R = idp- R where, for every X, idx is the identity relation mapping every element
of X onto itself. (As a rule, subscripts will be dropped wherever types are implicit or
easy to infer.) Relational equality can be established by C-antisymmetry:

R=S = RCSASCR (14)

Coreflexives and orders. Some standard terminology arises from the id relation: a

(endo) relation A< Boa (often called an order) will be referred to as reflexive iff
td C R holds and as coreflexive ifft R C id holds. Coreflexive relations are fragments
of the identity relation which model predicates or sets. They are denoted by uppercase
Greek letters (eg. @, ¥) and obey a number of interesting properties, among which we
single out the following, which prove very useful in calculations:

PV =NV = V.- (15)
P =d (16)

The PF-transform of a (unary) predicate p is the coreflexive &, such that
bP,a=(b=a) A (pa)

that is, the relation that maps every a which satisfies p (and only such a) onto itself. The
PF-meaning of a set S is @y4.qcs, thatis, b Pg a means (b =a) A a € S.

Preorders are reflexive and transitive relations, where R is transitive iff R - R C
R holds. Partial orders are anti-symmetric preorders, where R being anti-symmetric
means R N R° C id. A preorder R is an equivalence if it is symmetric, that is, if
R =R°.

Taxonomy. Converse is of paramount importance in establishing a wider taxonomy of

binary relations. Let us first define two important notions: the kernel of a relation R,

kerR " Re. Randits dual, img R df p. R°, the image of RHA. From (121 [13) one

immediately draws

ker(R°) =img R (17)
img (R°) = kerR (18)
Kernel and image lead to the following terminology:
Reflexive Coreflexive
ker R entire R injective R (19)

imgR surjective R simple R

* As explained later on, these operators are relational extensions of two concepts familiar from
set theory: the image of a function f, which corresponds to the set of all y such that (3 ::
y = f), and the kernel of f, which is the equivalence relation b(ker fla = fb = fa.
(See exercise [3).

144 J.N. Oliveira

In words: a relation R is said to be entire (or total) iff its kernel is reflexive and to be
simple (or functional) iff its image is coreflexive. Dually, R is surjective iff R° is entire,
and R is injective iff R° is simple.

Recall that part of this terminology has already been mentioned in section [2l In this
context, let us check formula () against the definitions captured by (I9) as warming-up
exercise in pointfree-to-pointwise conversion:

c,a,a : cRa AN cRd=a=a

(v ! Ra A cRd "

= { rules of quantification [3] and converse }

(Va,a' : (3e 2 aR°c¢cAcRd): a=d)
{ (@D and rules of quantification }

(Va,a" :: a(R°-R)d' = a=ad)
{ (@) and definition of kernel }

ker R C id

Exercise 1. Derive @) from (19). |
Exercise 2. Resort to (IZIT8) and (T9) to prove the following four rules of thumb:

Converse of injective is simple (and vice-versa)

Converse of entire is surjective (and vice-versa)

Smaller than injective (simple) is injective (simple)

Larger than entire (surjective) is entire (surjective) O

A relation is said to be a function iff it is both simple and entire. Following a
widespread convention, functions will be denoted by lowercase characters (eg. f, g, ¢)
or identifiers starting with lowercase characters. Function application will be denoted
by juxtaposition, eg. f a instead of f(a). Thus bfa means the same as b = f a.

The overall taxonomy of binary relations is pictured in figure 3] where, further to the
standard classes, we add representations and abstractions. As seen already, these are
the relation classes involved in <-rules (7). Because of C-antisymmetry, img F = id
wherever I is an abstraction and ker R = id wherever R is a representation.

Bijections (also referred to as isomorphisms) are functions, abstractions and rep-
resentations at the same time. A particular bijection is id, which also is the smallest
equivalence relation on a particular data domain. So, b id a means the same as b = a.

Functions and relations. The interplay between functions and relations is a rich part
of the binary relation calculus]. For instance, the PF-transform rule which follows,
involving two functions (f, g) and an arbitrary relation R

b(f°- R-gla=(fb)R(ga) (20)

plays a prominent role in the PF-transform [4]. The pointwise definition of the kernel
of a function f, for example,

bkerfla = fb= fa (21)

Transforming Data by Calculation 145

binary relation

— ~
injective entire simple surjective
™~ —~ ~ — ~ ~
representation function abstraction
~ — ™~ ~
injection surjection
~ —
bijection

Fig. 3. Binary relation taxonomy

stems from (20), whereby it is easy to see that T is the kernel of every constant function,
(13 ‘7’

!
1< A included. (Function ! — read as “bang” — is the unique function of its
type, where 1 denotes the singleton data domain.)

Exercise 3. Given a function B< * A, calculate the pointwise version 1) of ker f
and show that img f is the coreflexive associated to predicate p b=(3a :: b=f a).O

Given two preorders < and C, one may relate arguments and results of pairs of suitably
typed functions f and g in a particular way,

f©E = <-y9 (22)

in which case both f, g are monotone and said to be Galois connected. Function f (resp.
g) is referred to as the lower (resp. upper) adjoint of the connection. By introducing
variables in both sides of (22) via 20), we obtain, for all ¢ and b

(fO)Ca = b<(ga) (23)

Quite often, the two adjoints are sections of binary operators. Given a binary operator
0, its two sections (af) and (0b) are unary functions f and g such that, respectively:

f=(@@d) = fb=abb (24)

g=(0b) = ga=abd (25)

Galois connections in which the two preorders are relation inclusion (<, C := C, Q)

and whose adjoints are sections of relational combinators are particularly interesting

because they express universal properties about such combinators. Table [[lists connec-
tions which are relevant for this paper.

It is easy to recover known properties of the relation calculus from table [Tl For in-
stance, the entry marked “shunting rule” leads to

h-RCS=RCh°-S (26)
for all h, R and S. By taking converses, one gets another entry in table[I] namely

R-WCS=RCS-h 27)

146 J.N. Oliveira

Table 1. Sample of Galois connections in the relational calculus. The general formula given on
top is a logical equivalence universally quantified on S and R. It has a left part involving lower
adjoint f and a right part involving upper adjoint g.

(fR)SS=RC(959)

Description f g Obs.
converse ()° ()°
shunting rule (h) (h®) h is a function
“converse” shunting rule (-h°) (-h) h is a function
domain 1) (T9) left C restricted to coreflexives
range p (-T) left C restricted to coreflexives
difference (—R)(RU)

These equivalences are popularly known as ““shunting rules” ([L1]]. The fact that ar most
and equality coincide in the case of functions

JCg=[f=9g=[2g (28)

is among many beneficial consequences of these rules (see eg. [IE]).

It should be mentioned that some rules in table [[l appear in the literature under dif-
ferent guises and usually not identified as GCs B. For a thorough presentation of the
relational calculus in terms of GCs see , B]. There are many advantages in such an
approach: further to the systematic tabulation of operators (of which table [l is just a
sample), GCs have a rich algebra of properties, namely:

— Both adjoints f and g in a GC are monotonic;

— Lower adjoint f commutes with join and upper-adjoint g commutes with meet,
wherever these exist;

— Two cancellation laws hold, b < g(f b) and f (g a) C a, respectively known as
left-cancellation and right-cancellation.

It may happen that a cancellation law holds up to equality, for instance f (g a) = a, in
which case the connection is said to be perfect on the particular side [|I|].

Simplicity. Simple relations (that is, partial functions) will be particularly relevant in
the sequel because of their ubiquity in software modeling. In particular, they will be
used in this paper to model data identity and any kind of data structure “embodying a
functional dependency” [@] such as eg. relational database tables, memory segments
(both static and dynamic) and so on.

In the same way simple relations generalize functions (figure B)), shunting rules (26
27 generalize to

S-RCT=(S)-RCS°-T (29)
R-S°CT=R-6SCT-S (30)

5 For instance, the shunting rule is called cancellation law in [@].

Transforming Data by Calculation 147

for S simple. These rules involve the domain operator (6) whose GC, as mentioned in
table[I] involves coreflexives on the lower side:

ORCP=RCT- - (3D

We will draw harpoon arrows B- " AorA " <B toindicate that R is simple.
Later on we will need to describe simple relations at pointwise level. The notation we
shall adopt for this purpose is borrowed from VDM [38], where it is known as mapping
comprehension. This notation exploits the applicative nature of a simple relation S by
writing b S a as a € dom S N b= S a, where A should be understood non-strict
on the right argumentﬁ and dom S is the set-theoretic version of coreflexive ¢ S above,
that is,

08 = ¢dom S (32)

holds (cf. the isomorphism between sets and coreflexives). In this way, relation .S itself
can be written as {a — S a | a € dom S} and projection f - S - ¢° as

{ga— f(Sa)|acdomS} (33)
provided g is injective (thus ensuring simplicity).

Exercise 4. Show that the union of two simple relations M and N is simple iff the
following condition holds:

M- N°Cid (34)

(Suggestion: resort to universal property (RUS) € X = R C XA S C X))
Furthermore show that (34)) converts to pointwise notation as follows,

Ma :: a€(dom MNdom N)= (M a) = (N a))
— a condition known as (map) compatibility in VDM terminology 23]. a

Exercise 5. 1t will be useful to order relations with respect to how defined they are:

R<S=§RC4S (35)

From T = ker! draw another version of 33), R < S = !- R C!- S, and use it to
derive

R-f°<S=R=<S-f (36)

O

Operator precedence. In order to save parentheses in relational expressions, we define
the following precedence ordering on the relational operators seen so far:

°>{d,pt>()>nNn>U
Example: R - § S° NT UV abbreviates (R - (6 (5°)))NT)UV.

® VDM embodies a logic of partial functions (LPF) which takes this into account [@].

148 J.N. Oliveira

Summary. The material of this section is adapted from similar sections in [@, @],
which introduce the reader to the essentials of the PF-transform. While the notation
adopted is standard], the presentation of the associated calculus is enhanced via
the use of Galois connections, a strategy inspired by two (still unpublished) textbooks
(1, [5]. There is a slight difference, perhaps: by regarding the underlying mathematics
as that of a rransform to be used wherever a “hard” formula [needs to be reasoned
about, the overall flavour is more practical and not that of a fine art only accessible to
the initiated — an aspect of the recent evolution of the calculus already stressed in [@].

The table below provides a summary of the PF-transform rules given so far, where
left-hand sides are logical formule (/) and right-hand sides are the corresponding PF
equivalents ([¢]):

0 [¥]

MVa,b :: bRa=bSa) RCS

(Va :: fa=ga) fCy

Va = aRa) idC R

(Ha ::bRa N aSc) bR-S)c 37)

bRa AN bSa b(RNS)a
bRaVbSa b(RUS)a
(fb) R(ga) b(f°-R-g)a

TRUE bTa

FALSE bla

Exercise 6. Prove that relational composition preserves all relational classes in the tax-
onomy of figure 3 O

4 Data Structures

One of the main difficulties in studying data structuring is the number of disparate (inc.
graphic) notations, programming languages and paradigms one has to deal with. Which
should one adopt? While graphical notations such as the UML (15] are gaining adepts
everyday, it is difficult to be precise in such notations because their semantics are, as a
rule, not formally defined.

Our approach will be rather minimalist: we will map such notations to the PF-
notation whose rudiments have just been presented. By the word “map” we mean a
light-weight approach in this paper: presenting a fully formal semantics for the data
structuring facilities offered by any commercial language or notation would be more
than one paper in itself.

The purpose of this section is two fold: on the one hand, to show how overwhelming
data structuring notations can be even in the case of simple data models such as our
family tree (running) example; on the other hand, to show how to circumvent such dis-
parity by expressing the same models in PF-notation. Particular emphasis will be put
on describing Entity-relationship diagrams 130]. Later on we will go as far as capturing
recursive data models by least fixpoints over polynomial types. Once again we warn the

7 To use the words of Kreyszig [|Il|] in his appreciation of the Laplace transform.

Transforming Data by Calculation 149

Parent

5 [-

L Individual
0: 2 ID: String
Inleldual Name: String
of — 0 n ; ; Birth: Date

(@) (b)

Fig. 4. ER and UML diagrams proposed for genealogies. Underlined identifiers denote keys.

reader that types and data modeling constructs in current programming languages are
rather more complex than their obvious cousins in mathematics. For the sake of sim-
plicity, we deliberately don’t consider aspects such as non-strictness, lazy-evaluation,
infinite data values [|65] etc.

Back to the running example. Recall the family tree displayed in (@) and figure 2l Sup-
pose requirements ask us to provide CRUD operations on a genealogy database col-
lecting such family trees. How does one go about describing the data model underlying
such operations?

The average database designer will approach the model via entity-relationship (ER)
diagrams, for instance that of figure [(a). But many others will regard this notation too
old-fashioned and will propose something like the UML diagram of figure d(b) instead.

Uncertain of what such drawings actually mean, many a programmer will prefer to
go straight into code, eg. C

typedef struct Gen {
char *name /* name is a string */
int birth /* birth year is a number =x/
struct Gen *mother; /* genealogy of mother (if known) =x/
struct Gen =*father; /* genealogy of father (if known) =*/

o

— which matches with figure 2h — or XML, eg.

<!-- DTD for genealogical trees -->
<!ELEMENT tree (node+)>
<!ELEMENT node (name, birth, mother?, father?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
<!ELEMENT mother EMPTY>
<!ELEMENT father EMPTY>
<!ATTLIST tree
ident ID #REQUIRED>

150 J.N. Oliveira

<!ATTLIST mother

refid IDREF #REQUIRED>
<!ATTLIST father

refid IDREF #REQUIRED>

— or plain SQL, eg. (fixing some arbitrary sizes for datatypes)

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY (ID)

)

CREATE TABLE ANCESTORS (

ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,

CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)
)

— which matches with figure 2b.
What about functional programmers? By looking at pedigree tree @) where we
started from, an inductive data type can be defined, eg. in Haskell,

data PTree = Node {

name :: [Char 1,
birth :: Int ,
(38)
mother :: Maybe PTree,
father :: Maybe PTree

}

whereby (9) would be encoded as data value

Node
{name = "Peter", birth = 1991,
mother = Just (Node
{name = "Mary", birth = 1956,

mother = Nothing,
father = Nothing}),
father = Just (Node

{name = "Joseph", birth = 1955,
mother = Just (Node
{name = "Margaret", birth = 1923,

mother = Nothing, father = Nothing}),
father = Just (Node

{name = "Luigi", birth = 1920,

mother = Nothing, father = Nothing})})}

Of course, the same tree can still be encoded in XML notation eg. using DTD

<!-- DTD for genealogical trees -->
<!ELEMENT tree (name, birth, tree?, tree?)>

Transforming Data by Calculation 151

<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be pretty-printed as in (@). However,
how can one ensure that the same print-family-tree operation won’t loop forever while
retrieving data from eg. figure Bb? This would clearly happen if, by mistake, record

1 Father 2 infigurePb wereupdatedto 1 Father 5 : Peter would become
a descendant of himself!

Several questions suggest themselves: are all the above data models “equivalent”? If
so, in what sense? If not, how can they be ranked in terms of “quality”? How can we
tell apart the essence of a data model from its technology wrapping?

To answer these questions we need to put some effort in describing the notations
involved in terms of a single, abstract (ie. technology free) unifying notation. But syntax
alone is not enough: the ability to reason in such a notation is essential, otherwise
different data models won’t be comparable. Thus the reason why, in what follows, we
choose the PF-notation as unifying framework .

Records are inhabitants of products. Broadly speaking, a database is that part of an
information system which collects facts or records of particular situations which are
subject to retrieving and analytical processing. But, what is a record?

Any row in the tables of figurePb is a record, ie. records a fact. For instance, record

5 Peter 1991 tells: Peter, whose ID number is 5, was born in 1991. A mathemati-

cian would have written (5, Peter, 1991) instead of drawing the tabular stuff and would
have inferred (5, Peter,1991) € IN x String x IN from 5 € IN, Peter € String and
1991 € IN, where, given two types A and B, their (Cartesian) product A x B is the set
{(a,b) | a € ANb € B}.So records can be regarded as tuples which inhabit products
of types.

Product datatype A x B is essential to information processing and is available in
virtually every programming language. In Haskell one writes (A, B) to denote A x B,
for A and B two given datatypes. This syntax can be decorated with names, eg.

data C = ¢ { first :: A, second :: B }

as is the case of PTree (38). In the C programming language, the A x B datatype is

999

realized using “struct”’s, eg.
struct { A first; B second; };

The diagram below is suggestive of what product A x B actually means, where f
and g are functions, the two projections 71, o are such that

m(a,b) =a A m(a,b) =10 (39)

8 The “everything is a relation” motto implicit in this approach is also the message of Alloy [@],
anotation and associated model-checking tool which has been successful in alloying a number
of disparate approaches to software modeling, namely model-orientation, object-orientation,
etc. Quoting [36]: (...) “the Alloy language and its analysis are a Trojan horse: an attempt to
capture the attention of software developers, who are mired in the tar pit of implementation
technologies, and to bring them back to thinking deeply about underlying concepts”.

152 J.N. Oliveira

A< ™ AxB ™ ~p andfunction (f,g) (read: “f split g”)is defined
" >’\ by (f,g)c def (f ¢, g). The diagram expresses
f 9 g the two cancellation properties, 71 - (f,g) = f
C and 7 - (f,g) = f, which follow from a more
general (universal) property,
k=(fg) = m-k=fANm-k=g (40)

which holds for arbitrary (suitably typed) functions f, g and k. This tells that, given
functions f and g, each producing inhabitants of types A and B, respectively, there is a
unique function (f, g) which combines f and g so as to produce inhabitants of product
type A X B. Read in another way: any function k delivering results into type A x B can
be uniquely decomposed into its two left and right components.

It can be easily checked that the definition of (f, g) given above PF-transforms to
(f,g) =75 - f N7 - g. (Just re-introduce variables and simplify, thanks to (39), @0),
etc.) This provides a hint on how to generalize the split combinator to relations B

(R,S)=n7-RNmy-S 41)
To feel the meaning of the extension we introduce variables in () and simplify:
(R,S) =7y -RNmwg -8
= { introduce variables; 37) }

(a,b)(R,S)c = (a,b)(n - R)e A (a,b)(ns - S)c

{ @0 twice }
(a,0)(R,S)e = mi(a,b) Re A ma(a,b) Sc

{ projections 39 }
(a,b)(R,S)c = aRc ANbSc

So, relational splits enable one to PF-transform logical formule® involving more than
two variables.
A special case of split will be referred to as relational product:

def

RxSY¥ (R 7,8 m) (42)
So we can add two more entries to table (37):

0 [¥]
aRecANbSc (a,b){(R,S)c
bRa AN dSc (bd)(RxS)(a,c)

Finally note that binary product can be generalized to n-ary product A1 x Ag X ... %

A,, involving projections {m;},_, ,, such that m;(a1,...,a,) = a;.

% Read more about this construct (which is also known as a fork algebra [@]) in section 7] and,
in particular, in exercise 271

Transforming Data by Calculation 153

Exercise 7. Identify which types are involved in the following bijections:

flatr(a, (b, c)) e (a,b,c) (43)

flatl((b,c),d) = (b, c,d) (44)

n

o
n

Exercise 8. Show that the side condition of the following split-fusion law [
(R,S) - T=(R-T,S-T) « R-(imgT)CRVS-(imgT)CS (45

can be dispensed with in (at least) the following situations: (a) 7" is simple; (b) R or S
are functions. O

Exercise 9. Write the following cancellation law with less symbols assuming that R =<
S and S < R (@3) hold:

m(R,S)=R-68 A m-(R,S)=S-0R (46)

O

Data type sums. The following is a declaration of a date type in Haskell which is
inhabited by either Booleans or error strings:

data X = Boo Bool | Err String
If one queries a Haskell interpreter for the types of the Boo and Exrr constructors, one

gets two functions which fit in the following diagram

Bool " > Bool + String < 2 String

[Boo ,Err]
Boo v Err

X

where Bool+ String denotes the sum (disjoint union) of types Bool and String, func-
tions 41, io are the necessary injections and [Boo , Err] is an instance of the “either”
relational combinator :

R.S]=(R-i)U(S-i3) cf. A " =A+B<" B @7

n (R ,5] S
v

In pointwise notation, [R , S| means
c[R,Slx = (Ja :¢cRa ANx=ia)V{(Ib: cSa N x=id)

19 Theorem 12.30 in [E|].

154 J.N. Oliveira

In the same way split was used above to define relational product R x S, either can
be used to define relational sums:

R+S=li R,is- 8] (48)

As happens with products, A 4+ B can be generalized to n-ary sum Ay + As + ...+ A,
involving n injections {7;},_, ..

In most programming langﬁages, sums are not primitive and need to be programmed
on purpose, eg. in C (using unions)

struct {
int tag; /* eg. 1,2 x/
union {
A 1fA;
B ifB;
} data;

b

where explicit integer tags are introduced so as to model injections i1, ¢5.

(Abstract) pointers. A particular example of a datatype sum is 1 + A, where A is an
arbitrary type and 1 is the singleton type. The “amount of information” in this kind of
structure is that of a pointer in C/C++: one “pulls a rope” and either gets nothing (1)
or something useful of type A. In such a programming context “nothing” above means
a predefined value NTL. This analogy supports our preference in the sequel for NIL as
canonical inhabitant of datatype 1. In fact, we will refer to 1 + A (or A + 1) as the
“pointer to A” datatype [T, This corresponds to the Maybe type constructor in Haskell.

Polynomial types, grammars and languages. Types involving arbitrary nesting of prod-
ucts and sums are called polynomial types, eg. 1 + A x B (the “pointer to struct” type).
These types capture the abstract contents of generative grammars (expressed in ex-
tended BNF notation) once non-terminal symbols are identified with types and terminal
symbols are filtered. The conversion is synthesized by the following table,

BNF NOTATION POLYNOMIAL NOTATION

alp — a+f

af — axf (49)
€ — 1

a — 1

applicable to the right hand side of BNF-productions, where «, 3 range over sequences
of terminal or non-terminal symbols, € stands for empty and a ranges over terminal
symbols. For instance, production X — €|a A X (where X, A are non-terminals and
a is terminal) leads to equation

X=14+4AxX (50)

' Note that we are abstracting from the reference/dereference semantics of a pointer as under-
stood in C-like programming languages. This is why we refer to 1 + A as an abstract pointer.
The explicit introduction of references (pointers, keys, identities) is deferred to section[0l

Transforming Data by Calculation 155

which has A* — the “sequence of A” datatype — as least solution. Since 1 + A x X
can also be regarded as instance of the “pointer to struct” pattern, one can encode the
same equation as the following (suitably sugared) type declaration in C:

typedef struct x {
A data;
struct x *next;
} Node;

typedef Node =*X;

Recursive types. Both the interpretation of grammars [@] and the analysis of datatypes
with pointers [69] lead to systems of polynomial equations, that is, to mutually recursive
datatypes. For instance, the two fypedef's above lead to Node = A x X andto X =
1+ Node. It is the substitution of Node by A x X in the second equation which gives
raise to (30). There is a slight detail, though: in dealing with recursive types one needs
to replace equality of types by isomorphism of types, a concept to be dealt with later
on in section[3l So, for instance, the PTree datatype illustrated above in the XML and
Haskell syntaxes is captured by the equation

PTree > Ind x (PTree+1) x (PTree+ 1) (51)

where Ind = Name x Birth packages the information relative to name and birth
year, which don’t participate in the recursive machinery and are, in a sense, parameters
of the model. Thus one may write PTree = G(Ind, PTree), in which G abstracts the
particular pattern of recursion chosen to model family trees

CX V) X x (Y +1)x (Y +1)
where X refers to the parametric information and Y to the inductive part.

Let us now think of the operation which fetches a particular individual from a given
PTree. From (1) one is intuitively led to an algorithm which either finds the individual
(Ind) at the root of the tree, or tries and finds it in the left sub-tree (P71 'ree) or tries and
finds it in the right sub-tree (PT'ree). Why is this strategy “the natural” and obvious
one? The answer to this question leads to the notion of datatype membership which is
introduced below.

Membership. There is a close relationship between the shape of a data structure and
the algorithms which fetch data from it. Put in other words: every instance of a given
datatype is a kind of data container whose mathematical structure determines the par-
ticular membership tests upon which such algorithms are structured.

Sets are perhaps the best known data containers and purport a very intuitive notion
of membership: everybody knows what a € S means, wherever a is of type A and
S of type P A (read: “the powerset of A”). Sentence a € S already tells us that (set)

membership has type A< € PA. Now, lists are also container types, the intuition

12 Types such as PTree, which are structured around another datatype (cf. G) which captures its
structural “shape” are often referred to as two-level types in the literature [@].

156 J.N. Oliveira

being that a belongs (or occurs) in list [€ A* iff it can be found in any of its positions.

In this case, membership has type A< oA (note the overloading of symbol €). But
even product A x A has membership too: a is a member of a pair (z,y) of type A x A
iff it can be found in either sides of that pair, that is a € (x,y) meansa = x V a = y.
So it makes sense to define a generic notion of membership, able to fully explain the
overloading of symbol € above.

Datatype membership has been extensively studied (11,32, 59]. Below we deal with
polynomial type membership, which is what it required in this paper. A polynomial type
expression may involve the composition, product, or sum of other polynomial types,
plus the identity (Id X = X) and constant types (F X = K, where K is any basic
datatype, eg. the Booleans, the natural numbers, etc). Generic membership is defined,
in the PF-style, over the structure of polynomial types as follows:

def

€K 1 (52)
def .

Eq = id (53)
Erxe & (€F-m) U (€c - m2) (54)
eric & [er , €] (55)
crc & eg - eF (56)

Exercise 10. Calculate the membership of type F X=X x X and convert it to pointwise
notation, so as to confirm the intuition above that a € (x,y) holds iff a=z V a=y. O

Generic membership will be of help in specifying data structures which depend on each
other by some form of referential integrity constraint. Before showing this, we need to
introduce the important notion of reference, or identity.

Identity. Base clause (33) above clearly indicates that, sooner or later, equality plays
its role when checking for polynomial membership. And equality of complex objects
is cumbersome to express and expensive to calculate. Moreover, checking two objects
for equality based on their properties alone may not work: it may happen that two
physically different objects have the same properties, eg. two employees with exactly
the same age, name, born in the same place, etc.

This identification problem has a standard solution: one associates to the objects in
a particular collection identifiers which are unique in that particular context, cf. eg.
identifier ID in figure2b. So, instead of storing a collection of objects of (say) type A in
a set of (say) type P A, one stores an association of unique names to the original objects,
usually thought of in tabular format — as is the case in figure Zb.

However, thinking in terms of tabular relations expressed by sets of tuples where
particular attributes ensure unique identiﬁcatiorﬁ, as is typical of database theory [@],
is neither sufficiently general nor agile enough for reasoning purposes. References
[@, @] show that relational simplicityEI is what matters in unique identification. So

13 These attributes are known as keys.
14 Recall that a relation is simple wherever its image is coreflexive (I9).

Transforming Data by Calculation 157

Book Borrower
ISBN PID
Title] Reserved] Name
Author[0-5] — O:N Date ON Address
Publisher Phone
id: ISBN id: PID

Fig. 5. Sample of GER diagram (adapted from [@]). Underlined identifiers denote keys.

it suffices to regard collections of uniquely identified objects A as simple relations of
type

K—A (57)

where K is a nonempty datatype of keys, or identifiers. For the moment, no special
requirements are put on K. Later on, K will be asked to provide for a countably infinite
supply of identifiers, that is, to behave such as natural number objects do in category
theory [@].

Below we show that simplicity and membership are what is required of our PF-
notation to capture the semantics of data modeling (graphical) notations such as Entity-
Relationship diagrams and UML class diagrams.

Entity-relationship diagrams. As the name tells, Entity-Relationship data modeling
involves two basic concepts: entities and relationships. Entities correspond to nouns in
natural language descriptions: they describe classes of objects which have identity and
exhibit a number of properties or attributes. Relationships can be thought of as verbs:
they record (the outcome of) actions which engage different entities.

A few notation variants and graphical conventions exist for these diagrams. For its
flexibility, we stick to the generic entity-relationship (GER) proposal of 130]. Figure[3]
depicts a GER diagram involving two entities: Book and Borrower. The latter pos-
sesses attributes Name, Address, Phone and identity PID. As anticipated above where
discussing how to model object identity, the semantic model of Borrower is a simple
relation of type TPID - TName X TAddress X TPhone, where by Ta we mean the
type where attribute a takes values from. For notation economy, we will drop the T
notation and refer to the type Ty, of attribute a by mentioning a alone:

Borrowers © prp ~ Name x Address x Phone

Entity Book has a multivalued attribute (Author) imposing at most 5 authors. The
semantics of such attributes can be also captured by (nested) simple relations:

Books *¢ ISBN — Title x (5 — Author) x Publisher (58)

Note the use of number 5 to denote the initial segment of the natural numbers (INV) up
to 5, that is, set {1,2, ..., 5}.

158 J.N. Oliveira

Books can be reserved by borrowers and there is no limit to the number of books
the latter can reserve. The outcome of a reservation at a particular date is captured by
relationship Reserved. Simple relations also capture relationship formal semantics, this
time involving the identities of the entities engaged. In this case:

Reserved < ISBN x PID — Date

Altogether, the diagram specifies datatype Db ' Books x Borrowers x Reserved
inhabited by triples of simple relations.

In summary, Entity-Relationship diagrams describe data models which are concisely
captured by simple binary relations. But we are not done yet: the semantics of the
problem include the fact that only existing books can be borrowed by known borrowers.
So one needs to impose a semantic constraint (invariant) on datatype Db which, written
pointwise, goes as follows

(M, N, R) &
Mi,p,d = dR (i,p)= 3z = a Mi) N By == y M p)) (39)

where ¢, p, d range over ISBN, PI1D and Date, respectively.

Constraints of this kind, which are implicitly assumed when interpreting relation-
ships in these diagrams, are known as integrity constraints. Being invariants at the se-
mantic level, they bring along with them the problem of ensuring their preservation by
the corresponding CRUD operations. Worse than this, their definition in the predicate
calculus is not agile enough for calculation purposes. Is there an alternative?

Space constraints preclude presenting the calculation which would show (39) equiv-
alent to the following, much more concis