

Lecture Notes in Computer Science 5235
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ralf Lämmel
Joost Visser
João Saraiva (Eds.)

Generative and
TransformationalTechniques
in Software Engineering II

International Summer School, GTTSE 2007
Braga, Portugal, July 2-7, 2007
Revised Papers

13

Volume Editors

Ralf Lämmel
Universität Koblenz-Landau, Fachbereich 4
Institut für Informatik, B127
Universitätsstraße 1, 56070 Koblenz, Germany
E-mail: rlaemmel@acm.org

Joost Visser
Software Improvement Group
A.J. Ernststraat 595-H, 1082 LD Amsterdam, The Netherlands
E-mail: j.visser@sig.nl

João Saraiva
Universidade do Minho, Departamento de Informática
Campus de Gualtar, 4710-057 Braga, Portugal
E-mail: jas@di.uminho.pt

Library of Congress Control Number: Applied for

CR Subject Classification (1998): B.2, C.1, C.2, C.5, D.2, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-88642-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88642-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12527151 06/3180 5 4 3 2 1 0

Preface

The second instance of the international summer school on Generative and
Transformational Techniques in Software Engineering (GTTSE 2007) was held
in Braga, Portugal, during July 2–7, 2007. This volume contains an augmented
selection of the material presented at the school, including full tutorials, short
tutorials, and contributions to the participants workshop.

The GTTSE summer school series brings together PhD students, lecturers,
technology presenters, as well as other researchers and practitioners who are
interested in the generation and the transformation of programs, data, models,
metamodels, documentation, and entire software systems. This concerns many
areas of software engineering: software reverse and re-engineering, model-driven
engineering, automated software engineering, generic language technology, to
name a few. These areas differ with regard to the specific sorts of metamodels
(or grammars, schemas, formats etc.) that underlie the involved artifacts, and
with regard to the specific techniques that are employed for the generation and
the transformation of the artifacts. The first instance of the school was held in
2005 and its proceedings appeared as volume 4143 in the LNCS series.

The 2007 instance of GTTSE offered eight tutorials, given by renowned rep-
resentatives of complementary approaches and problem domains. Each tutorial
combines foundations, methods, examples, and tool support. The program of the
summer school also featured eight invited technology presentations, which pre-
sented concrete support for generative and transformational techniques. These
presentations complemented each other in terms of the chosen application do-
mains, case studies, and the underlying concepts. Furthermore, the program of
the school included a participants workshop to which all students of the summer
school were asked to submit an extended abstract beforehand. The Organizing
Committee reviewed these extended abstracts and invited 12 students to present
their work at the workshop.

This volume contains extended and revised versions of the material presented
at the summer school. Each of the seven full tutorials included here was reviewed
by two members of the Scientific Committee of GTTSE 2007. The five included
short tutorials were reviewed by three members each. The four included par-
ticipant contributions were selected on the basis of three reviews for each such
submission. All submissions were carefully revised based on the reviews.

We are grateful to all lecturers and participants of the school for their enthu-
siasm and hard work in preparing excellent material for the school itself and for
these proceedings. Due to their efforts the event was a great success, which we
trust the reader finds reflected in this volume.

April 2008 Ralf Lämmel
Joost Visser
João Saraiva

Organization

GTTSE 2007 was hosted by the Departamento de Informática, Universidade do
Minho, Braga, Portugal.

Executive Committee

Program Co-chair Ralf Lämmel (Microsoft, Redmond, USA)
Program Co-chair Joost Visser (Software Improvement Group,

Amsterdam, The Netherlands)
Organizing Chair João Saraiva (Universidade do Minho, Braga,

Portugal)

Scientific Committee

Uwe Aßmann TU Dresden, Germany
Paulo Borba Universidade Federal de Pernambuco, Brazil
Mark van den Brand Technical University Eindhoven,

The Netherlands
Charles Consel LaBRI/INRIA, France
Jim Cordy Queen’s University, Canada
Alcino Cunha Universidade do Minho, Portugal
Jean-Luc Dekeyser Université des Sciences et Technologies de Lille,

France
Andrea DeLucia Università di Salerno, Italy
Stephen Freund Williams College, UK
Jeff Gray University of Alabama at Birmingham, USA
Reiko Heckel University of Leicester, UK
Görel Hedin Lund Institute of Technology, Sweden
Dirk Heuzeroth IBM Deutschland Entwicklung GmbH,

Germany
Zhenjiang Hu The University of Tokyo, Japan
Ralf Lämmel Microsoft Corporation, USA
Julia Lawall University of Copenhagen, Denmark
Cristina Lopes University of California at Irvine, USA
Tom Mens University of Mons-Hainaut, Belgium
Marjan Mernik University of Maribor, Slovenia
Klaus Ostermann Technical University Darmstadt, Germany
Jens Palsberg UCLA, USA
Benjamin C. Pierce University of Pennsylvania, USA
João Saraiva Universidade do Minho, Portugal
Andy Schürr Technical University Darmstadt, Germany

VIII Organization

Anthony Sloane Macquarie University, Australia
Perdita Stevens University of Edinburgh, UK
Peter Thiemann Universität Freiburg, Germany
Simon Thompson University of Kent, UK
Joost Visser Universidade do Minho, Portugal
Victor Winter University of Nebraska at Omaha, USA
Eric Van Wyk University of Minnesota, USA
Albert Zündorf University of Kassel, Germany

Organizing Committee

Alcino Cunha Universidade do Minho, Braga, Portugal
João Saraiva Universidade do Minho, Braga, Portugal
Ricardo Vilaça Universidade do Minho, Braga, Portugal
Joost Visser Software Improvement Group, Amsterdam,

The Netherlands

Sponsoring Institutions

Centro de Ciências e Tecnologias de Computação
Luso-American Foundation
Software Improvement Group

Table of Contents

I Full Tutorials

Design Space of Heterogeneous Synchronization . 3
Micha�l Antkiewicz and Krzysztof Czarnecki

Software Reuse beyond Components with XVCL (Tutorial) 47
Stan Jarzabek

.QL: Object-Oriented Queries Made Easy . 78
Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev,
Pavel Avgustinov, Torbjörn Ekman, Neil Ongkingco, and
Julian Tibble

Transforming Data by Calculation . 134
José N. Oliveira

How to Write Fast Numerical Code: A Small Introduction 196
Srinivas Chellappa, Franz Franchetti, and Markus Püschel

A Gentle Introduction to Multi-stage Programming, Part II 260
Walid Taha

WebDSL: A Case Study in Domain-Specific Language Engineering 291
Eelco Visser

II Short Tutorials

Model-Driven Engineering of Rules for Web Services 377
Marko Ribarić, Dragan Gašević, Milan Milanović, Adrian Giurca,
Sergey Lukichev, and Gerd Wagner

An Introduction to Context-Oriented Programming with ContextS 396
Robert Hirschfeld, Pascal Costanza, and Michael Haupt

A Landscape of Bidirectional Model Transformations 408
Perdita Stevens

Evolving a DSL Implementation . 425
Laurence Tratt

Adding Dimension Analysis to Java as a Composable Language
Extension (Extended Abstract) . 442

Eric Van Wyk and Yogesh Mali

X Table of Contents

III Participants Contributions

Model Transformations for the Compilation of Multi-processor
Systems-on-Chip . 459

Éric Piel, Philippe Marquet, and Jean-Luc Dekeyser

Implementation of a Finite State Machine with Active Libraries
in C++ . 474

Zoltán Juhász, Ádám Sipos, and Zoltán Porkoláb

Automated Merging of Feature Models Using Graph Transformations . . . 489
Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and
Pablo Trinidad

Modelling the Operational Semantics of Domain-Specific Modelling
Languages . 506

Guido Wachsmuth

Author Index . 521

Part I
Full Tutorials

Design Space of Heterogeneous Synchronization

Micha�l Antkiewicz and Krzysztof Czarnecki

University of Waterloo
Generative Software Development Lab
{mantkiew,k2czarne}@uwaterloo.ca

http://gsd.uwaterloo.ca

Abstract. This tutorial explores the design space of heterogeneous syn-
chronization, which is concerned with establishing consistency among
artifacts that conform to different schemas or are expressed in different
languages. Our main application scenario is synchronization of software
artifacts, such as code, models, and configuration files. We classify het-
erogeneous synchronizers according to the cardinality of the relation that
they enforce between artifacts, their directionality, their incrementality,
and whether they support reconciliation of concurrent updates. We then
provide a framework of artifact operators that describes different ways of
building heterogeneous synchronizers, such as synchronizers based on ar-
tifact or update translation. The design decisions within the framework
are described using feature models. We present 16 concrete instances
of the framework, discuss tradeoffs among them, and identify sample
implementations for some of them. We also explore additional design
decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchroniza-
tion result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software
engineering, model management, and model transformation.

1 Introduction

The sheer complexity of today’s software-intensive systems can only be con-
quered by incremental and evolutionary development. As Brooks points out [1],
“teams can grow much more complex entities in four months than they can
build,” where “build” refers to the traditional engineering approach of specify-
ing structures accurately and completely before they are constructed. However,
despite important advances in software methods and technology, such as agile
development and object orientation, evolving software to conform to a changed
set of requirements is notoriously hard. Evolution is hard because it requires
keeping multiple software artifacts such as specifications, code, configuration
files, and tests, consistent. A simple change in one artifact may require multi-
ple changes in many artifacts and current development tools offer little help in
identifying the artifacts and their parts that need to be changed and performing
the changes.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 3–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://gsd.uwaterloo.ca

4 M. Antkiewicz and K. Czarnecki

Synchronization is the process of enforcing consistency among a set of ar-
tifacts and synchronizers are procedures that automate—fully or in part—the
synchronization process. Heterogeneous synchronizers synchronize artifacts that
conform to different schemas or are expressed in different languages. Many pro-
cesses in software engineering can be viewed as heterogeneous synchronization.
Examples include reverse engineering models from code using code queries, com-
piling programs to object code, generating program code from models, round-
trip engineering between models and code, and maintaining consistency among
models expressed in different modeling languages.

While many approaches to synchronization of heterogeneous software arti-
facts exist, it is not clear how they differ and how to choose among them. The
purpose of this tutorial is to address this problem. We explore the design space
of heterogeneous synchronizers. We cover both the simpler synchronization sce-
narios where some artifacts are never edited directly but are re-generated from
other artifacts and the more complex scenarios where several artifacts that can
be modified directly need to be synchronized. Both kinds of scenarios occur
in software development. Example of the simpler scenario is generation of ob-
ject code from source code. The need for synchronizing multiple heterogeneous
artifacts that are edited directly arises in multi-view development [2, 3], where
each stakeholder can understand and change the system through an appropriate
view. The motivation for providing different views is that certain changes may
be most conveniently expressed in a particular view, e.g., because of conciseness
of expression or the familiarity of the a stakeholder with a particular view.

The tutorial is organized as follows. In Section 2, we present kinds of re-
lations among software artifacts and concrete examples of such relations. In
Section 3, we introduce kinds of synchronizers that can be used for reestab-
lishing the consistency among artifacts. We classify heterogeneous synchronizers
according to the cardinality of the relation that they enforce between artifacts,
their directionality, their incrementality, and whether they support reconciliation
of concurrent updates in Sections 4-6. The need for reconciliation arises in the
context of concurrent development, where developers need to concurrently mod-
ify multiple related artifacts. We provide a framework of artifact operators that
describes different ways of building heterogeneous synchronizers, such as syn-
chronizers based on artifact or update translation. The operator-based approach
is inspired by the manifesto for model merging by Brunet et al. [4]. The design
decisions within the framework are described using feature models. We present
16 concrete instances of the framework, discuss their properties, and identify
sample implementations for some of them. We summarize the synchronizers and
discuss the tradeoffs among the synchronizers in Section 7. In Section 8, we ex-
plore additional design decisions such as representation of updates, establishing
correspondence among model elements, and strategies for selecting a single syn-
chronization result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software engineer-
ing, model management, and model transformation in Section 9. We conclude
in Section 10.

Design Space of Heterogeneous Synchronization 5

Purpose and Approach. The purpose of the tutorial is to present a wide
family of scenarios that require heterogeneous synchronization and the different
solutions that can be applied in each scenario. The solutions are characterized
by the scenarios they support, such as unidirectional or bi-directional synchro-
nization, and the different design choices that can be made when constructing
a synchronizer. The discussion of the scenarios and design choices is made more
precise by considering the properties of the relations that are to be maintained
among sets of artifacts and formulating the synchronizers using a set of arti-
fact operators. The formalization does not consider the structure of the artifacts
or their semantics. Whereas such a treatment would allow more precision in
the analysis of choices, it would introduce a considerable amount of additional
complexity and detail. We leave this endeavor for future work.

The intended audience is primarily those interested in building heterogeneous
synchronizers. This audience can learn about the different design choices, the
tradeoffs among the choices, and examples of systems implementing particular
kinds of synchronizers. Furthermore, the operator-based formalization of the
different kinds of synchronizers may also be of interest to researchers studying
the semantics of model transformations.

2 Relations among Software Artifacts

Modern software development involves a multitude of artifacts of different types,
such as requirements and design models, program code, tests, XML configuration
files, and documentation. Since the artifacts describe the same software system,
they are related to each other in various ways. For example, a design model and
its implementation code should be related by refinement. Furthermore, both the
code and its XML configuration files have to use consistent names and identifiers.
Also, the design model should conform to the metamodel defining the abstract
syntax of the language in which the model is expressed.

In this tutorial, we usually consider software artifacts simply as typed values.
An artifact type is a set of artifacts and it may be viewed as an extensional
definition of a language. For example, assuming that J denotes the Java lan-
guage, we write P ∈ J in order to denote that the artifact P is a Java program.
Alternatively, we may also indicate the type of an artifact using a subscript, e.g.,
PJ . On few occasions, we also consider the internal structure of an artifact, in
which case we view an artifact as a collection of elements with attributes and
links among the elements.

When an artifact is modified, related artifacts need to be updated in order to
reestablish the relations. For example, when the design model is changed, the im-
plementation code may need to be updated, and vice versa. The general problem of
identifying relations among artifacts, detecting inconsistencies, handling of incon-
sistencies, and establishing relations among artifacts is referred to as consistency
management. Furthermore, the update of related artifacts in order to re-establish
consistency after changes to some of these artifacts is known as synchronization,

6 M. Antkiewicz and K. Czarnecki

change propagation, or co-evolution. We refer to synchronization as heterogeneous
if the artifacts being synchronized are of different types.

Definition 1. Consistent Artifacts. We say that two artifacts SS and TT are
consistent or synchronized with respect to the relation R ⊆ S×T iff (SS , TT) ∈ R.

In general, two or more artifacts need not be consistent at all times [2, 5]. For
example, the implementation code may be out of sync with its design model
while several changes are being applied to the model. In this case, the incon-
sistency between the code and the design is desirable and should be tolerated.
Only after the changes are completed, the code is updated and the consistency
re-established. Consequently, some authors use the term inconsistency manage-
ment [6, 7, 8].

The relations among software artifacts may have different properties. For a
binary relation R ⊆ S ×T , we distinguish among the following three interesting
cases:

1. R is a bijection. This is the one-to-one case where each artifact in S corre-
sponds to exactly one artifact in T and vice versa.

2. R is a total and surjective function. This is the many-to-one case where each
artifact in S corresponds to exactly one artifact in T and each artifact in T
corresponds to at least one artifact in S.

3. R is a total relation. This is the many-to-many case where each artifact in S
corresponds to at least one artifact in T and each artifact in T corresponds
to at least one artifact in S.

Note that all of the above cases assume total binary relations. In practice,
cases where R covers S or T only partially can be handled, e.g., by making
these sets smaller using additional well-formedness constraints or by introducing
a special value representing an error. For example, a source artifact that has no
proper translation into the target type would be mapped to such an error element
in the target type. Furthermore, the above cases are distinguished only in regard
to the correspondence between whole artifacts. In practice, the artifact relations
also need to establish correspondence between the structures within the artifacts,
i.e., the correspondence between the elements and links in one artifact and the
elements and links in another artifact. We will explicitly refer to this structural
correspondence whenever necessary. Finally, the artifact relations need not be
binary, but could be relating three or more sets of artifacts.

Examples. Let us look at some examples of relations among different kinds of
artifacts.

Example 1. Simple class diagrams and KM3.
KM3 [9] is a textual notation that can be used for the specification of simple
class diagrams. The relation between graphical class diagrams and their textual
specifications is a bijection. In this example, assuming that the layout of diagrams

Design Space of Heterogeneous Synchronization 7

and text is irrelevant, artifacts expressed in one language can be translated into
the other language without any loss of information.

Example 2. Java and type hierarchy.
A type hierarchy of a Java program is a graph in which classes and interfaces are
nodes and extends and implements relations are edges. Such a type hierarchy is
an abstraction of a Java program because it contains a subset of the information
contained in the program and it does not contain any additional information that
does not exist in the program. Furthermore, many different Java programs may
have the same type hierarchy. Therefore, the relation between a Java program
and its type hierarchy is a function.

Example 3. Java and XML and Struts Framework-Specific Modeling Language
(FSML).
Struts FSML [10] is a modeling language that can be used for describing how
Struts’ concepts actions, forms, and forwards are implemented in an application
consisting of Java code and XML configuration files. A model expressed in the
Struts FSML is an abstraction of the code and it can be fully recreated from the
code. Actions, forms, and forwards can be implemented in the code in various
ways, some of which are equivalent with respect to the model. For example, a
Java class is represented in the model as an action if it is a direct or indirect
subclass of the Struts’ Action class. The relation between the code and the
model expressed in Struts FSML is a function: parts of the code do not have
any representation in the model and equivalent ways of implementing actions,
forms, and forwards are represented the same way in the model.

Example 4. UML class diagrams and RDBMS.
This example considers UML class diagrams and relational database schemas.
The relation between the two languages is a general relation because inheritance
and associations in class diagrams can be represented in many different ways in
database schemas and every database schema can be represented using different
class diagrams with or without inheritance [11]. For example, each single class
can be mapped to a separate table or an entire class hierarchy can be mapped
to a single table. Furthermore, different class hierarchies may still be translated
into the same table structure.

Example 5. Statecharts and sequence diagrams.
The relation between statecharts and sequence diagrams is a general relation
because a statechart can be synthesized from multiple sequence diagrams and a
given sequence diagram can be produced by different statecharts.

Example 6. Metamodels and models.
In model-driven software development [12], the syntax of a modeling language is
often specified as a class model, which is referred to as a metamodel. A metamodel
defines all syntactically correct models and a model is syntactically correct if it
conforms to its metamodel. As any other software artifacts, metamodels evolve
over time. Some changes to the metamodels may break the conformance of ex-
isting models, in which case the models need to be updated [13]. The relation

8 M. Antkiewicz and K. Czarnecki

between a metamodel and a model is a general relation because many models
can conform to a single metamodel and a single model can conform to many
metamodels. As an example of the latter situation, consider two metamodels
representing the same set of models, but one using abstract and concrete classes
and the other using concrete classes only.

3 Mappings, Transforms, Transformations, Synchronizers,
and Synchronizations

We refer to the specifications of relations among artifacts as mappings. Fur-
thermore, we refer to programs that implement mappings as transforms and
executions of those programs as transformations. In this tutorial, we focus on
synchronizers, which are transforms used for (re-)establishing consistency among
related artifacts. Consequently, we refer to the execution of a synchronizer as
synchronization. Note that not every transform is a synchronizer. For exam-
ple, refactorings, which change the structure of an artifact while preserving the
artifact’s semantics are transforms, but they are not synchronizers.

Transforms are executable programs, which may be interactive. For example,
they may seek additional inputs from the user to decide among possible alter-
native results. In this tutorial, we model transforms as computable functions,
where any additional inputs are given to the functions up-front as arguments. In
particular, we represent interactive choices as decision functions that are passed
as parameters to the transforms.

In the following sections we present various kinds of heterogeneous synchro-
nizers that can be used to synchronize two artifacts, which we refer to as source
and target. At the highest level, a synchronizer falls into one of the three distinct
categories: unidirectional, bidirectional, and bidirectional with reconciliation (cf.
Figure 1). The three alternatives are represented as a feature model [14, 15]. A
feature model is a hierarchy of common and variable features characterizing the
set of instances of a concept that is represented by the root of the hierarchy.
In this tutorial, the features provide a terminology and a representation of the
design choices for heterogeneous synchronizers. The subset of the feature model
notation used in this tutorial is explained in Table 1. The three categories of
synchronizers are modeled in Figure 1 as a group of three alternative features.
Each of these alternative features is actually a reference to a more refined feature
model that is presented later.

Unidirectional synchronizer � Bidirectional synchronizer � Bidirectional synchronizer
with reconciliation �

Heterogeneous synchronizer

Fig. 1. Artifact synchronization synchronizers

Design Space of Heterogeneous Synchronization 9

Table 1. Feature modeling notation used in this tutorial

Symbol Explanation

F
Solitary feature with cardinality [1..1], i.e., mandatory feature

F
Solitary feature with cardinality [0..1], i.e., optional feature

F � Reference to feature F

XOR feature group (groups alternative features)

F
Grouped feature (a feature under a feature group)

Unidirectional synchronizers synchronize the target artifact with the source
artifact. Bidirectional synchronizers (without reconciliation) can be used to syn-
chronize the target artifact with the source artifact and vice versa. They syn-
chronize in one direction at a time, meaning that they are most useful if only
one of the artifacts was changed since the last synchronization. Bidirectional
synchronizers can also be used when both artifacts have changed since the last
synchronization; however, they cannot be used to resolve conflicting changes to
both artifacts, as one artifact acts as a slave and its changes may get overridden.
Finally, bidirectional synchronizers with reconciliation can be used to synchronize
both artifacts at the same time. Thus, these synchronizers are also applicable in
situations where both artifacts were changed since the last synchronization and
they can be used for conflict resolution in both directions.

4 Unidirectional Synchronizers

Unidirectional synchronization from S to T enforcing the relation R ⊆ S × T
involves up to four artifacts (cf. Figure 2):

1. SS is the original source artifact, i.e., the version of the source artifact before
it was modified by the developer;

2. TT is the original target artifact, i.e., the version of the target artifact that
co-existed with the original source artifact;

3. S′
S is the new source artifact, i.e., the version of the source artifact after it

was modified by the developer; and
4. T ′

T is the new target artifact, i.e., the version of the target artifact after
synchronization with the new source artifact.

The first three of these artifacts are the ones that typically exist before the
synchronization occurs. However, the first two are optional since the new source
could have been created from scratch and the original target might have not
been yet created. Note that we use the convention of marking new versions of
artifacts by a prime.

10 M. Antkiewicz and K. Czarnecki

SS TT

U∆S

?
?
y

?
?
y Y∆T

S′
S

R
←−−−→ T ′

T

Fig. 2. Artifacts involved in unidirectional synchronization

The fourth artifact, T ′
T , is the new target that needs to be computed during

the synchronization. The enclosing boxes in Figure 2 indicate elements that
are computed during the synchronization. The arrows pointing downwards in
the figure denote updates: U∆S is the update applied to the original source
and Y∆T is the target update resulting from the synchronization. The double-
headed arrow between the new artifacts indicates that they are consistent, i.e.,
(S′

S , T ′
T) ∈ R. Note that, in general, the original artifacts SS and TT do not have

to be consistent; however, some synchronizers might impose such a requirement.
A unidirectional synchronizer from S to T implementing the relation R ⊆

S × T computes the new target T ′
T given the new source S′

S , and optionally
the original source SS and the original target TT , as inputs, such that the new
source and the new target are consistent, i.e., (S′

S , T ′
T) ∈ R. Note that the new

source can also be passed as input to the synchronizer indirectly by passing both
the original source and the update of the source as inputs. Furthermore, some
synchronizer variants require the original source and the original target to be
consistent.

Unidirectional synchronizers can be implemented using different operators
and the choices depend first and foremost on the cardinality of the end of the
relation in the direction of which the synchronizers are executed. In particular, a
synchronizer can be executed towards the cardinality of one, which we refer to as
to-one case, and towards the cardinality of many, which we refer to as to-many
case (cf. Figure 3).

To-one � To-many �

Unidirectional synchronizer

Fig. 3. Unidirectional synchronizers

The to-one case corresponds to the situation where the mapping between
source and target is a function from source to target, which also covers the case
of a bijection. The mapping clearly specifies a single target artifact T ′

T that
a synchronizer has to return for a given source artifact S′

S . The to-many case
corresponds to the situation where the mapping between source and target is not
a function in the source-to-target direction. In other words, the relation is either
a function in the target-to-source direction or a general relation. Consequently,
the mapping may specify several alternative target artifacts that a synchronizer

Design Space of Heterogeneous Synchronization 11

could return for a given source artifact. Since all synchronizers are functions
returning only a single synchronization result, to-many synchronizers will require
a mechanism for selecting one target artifact from the set of possible alternatives.

4.1 Unidirectional Synchronizers in To-One Direction

The unidirectional to-one case could be described as computing a “disposable
view”, where the target T ′

T is fully determined by the source S′
S . In other words,

the source-to-target mapping is a function and the target can be automatically
re-computed whenever needed based on the source S′

S only.
In general, a disposable view can be computed in an incremental or a non-

incremental fashion. The non-incremental approach implies that the view is
completely re-computed whenever the source is modified, whereas the incremen-
tal approach involves computing only the necessary updates to the existing view
and applying these updates. As a result, all incremental synchronizers take the
original target as a parameter.

All to-one synchronizers are original-target-independent, meaning that the
computed new target does not depend on the original target in a mathematical
sense. Although the incremental to-one synchronizers take the original target as
a parameter, the new target depends only on the new source because the relation-
ship between the new source and the new target is a function. The original tar-
get is used by the synchronizer implementation purely to improve performance,
which is achieved by reusing structures from the original target and avoiding
recomputing these structures. We present examples of original-target-dependent
synchronizers in Section 4.2.

Depending on the operator that is used to translate between source and tar-
get artifact types, we distinguish among three fundamental ways of realizing
unidirectional to-one synchronizers (cf. Figure 4). The first synchronizer variant
is non-incremental and it uses artifact translation, an operator that translates
an entire source artifact into a consistent target artifact. The other two variants
are incremental. The second variant uses heterogeneous artifact comparison, an
operator that directly compares two artifacts of different types and produces an
update that can be applied to the second artifact in order to make it consistent
with the first artifact. The third variant uses update translation, an operator that

Artifact
translation

Heterogeneous
artifact

comparison

Homogeneous
artifact

comparison

Update
translation

To-one

Fig. 4. Operators used in to-one unidirectional synchronizers

12 M. Antkiewicz and K. Czarnecki

SS
R

←−−−→ T T

U∆S

?
?
y

?
?
y Y∆T

S′
S

R
←−−−→ T ′

T

Fig. 5. Artifacts involved in unidirectional synchronization using update translation

translates an update to the source artifact into a consistent update of the target
artifact. In addition, update translation expects the original source and the orig-
inal target to be consistent. The artifacts involved in the synchronization using
update translation are shown in Figure 5. The input artifacts are underlined. As
an option, the transform may use homogeneous artifact comparison to compute
the source update as a difference between the original and the new source.

Artifact translation. The non-incremental variant of the to-one synchronizer
uses an operator that translates a source artifact into a consistent target artifact.

Operator 1. Artifact translation: ATS,T : S → T . For an artifact SS , the
operator ATS,T (SS) computes ST such that (SS , ST) ∈ R.

In this tutorial, operators are defined generically over artifact types and the
type parameters are specified as subscripts. For example, the operator ATS,T
has the artifact type parameters S and T and these parameters are used in the
operator’s signature.

We are now ready to state the non-incremental to-one synchronizer. We
present all synchronizers using the form input+ precondition∗ =⇒ computation
=⇒ output+, which makes the input artifact(s), the precondition(s) (if any),
the computation steps, and the output artifact(s) explicit. This form may seem
too verbose for the following simple synchronizer, but its advantages become
apparent for more complex synchronizers.

Synchronizer 1. Unidirectional, non-incremental, and to-one synchronizer us-
ing artifact translation:
S1S,T : S → T

S′
S =⇒ T ′

T = ATS,T (S′
S) =⇒ T ′

T

In this non-incremental variant, the new source artifact is translated into the
new target artifact, which then replaces the original target artifact.

Examples for Synchronizer 1

Example 7. Type hierarchy.
Examples of Synchronizer 1 are type hierarchy extractors for object-oriented
programs (cf. Example 2). Such extractors are offered by many integrated de-
velopment environments (IDEs).

Design Space of Heterogeneous Synchronization 13

Example 8. Reverse engineering in FSMLs.
Another example of Synchronizer 1 is reverse engineering of framework-based
Java code in FSMLs (cf. Example 3). The result of reverse engineering is a
framework-specific model that describes how framework abstractions are imple-
mented in the application code [16,10]. For any application code, a unique model
is retrieved using code queries.

Example 9. Lenses in Harmony.
Synchronizer 1 corresponds to the get function in Lenses [17]. In Lenses, the
source-to-target relationship is many-to-one and the target is also referred to as
view. A get function takes the new source and creates the corresponding new
view for it. A full lens, as shown later, is a bidirectional synchronizer and consists
of two functions: get and putback.

Updates. Incremental synchronization can be achieved either by coercing the
original target artifact into conformance with the new source artifact or by trans-
lating updates of the source artifact into the updates of the target artifact. Both
variants require the notion of an update.

Definition 2. Update. An update U : S ⇀ S for artifact(s) of type S is a
partial function that is defined for at least one artifact SS . Artifacts on which
an update is defined are referred to as reference artifacts of that update.

The intuition behind an update is that it connects an original version of an
artifact with its new version, e.g., S′

S = U∆S(SS). Note that we abbreviate the
space of all partial functions S ⇀ S as ∆S and we use this abbreviation to
specify the type of an update.

The size of the set of reference artifacts of an update can vary. An extreme
case is when an update is applicable to only a single artifact. A more practical
solution is to implement updates so that they can be applied to a number of
artifacts that share certain characteristics. For example, an update could be
defined so that it applies to all artifacts that contain a certain structure that the
update modifies.

In practice, we can think of an update as a program that takes the origi-
nal version of an artifact and returns its new version. The update instructions,
such as inserting or removing elements, could be recorded while the user edits
the original artifact. The recorded sequence can then be applied to a reference
artifact, e.g., the original artifact.

Alternatively, an update can be computed using a homogeneous artifact com-
parison operator, which takes an original version of an artifact and its new
version and returns an update connecting the two. We refer to this comparison
operator as homogeneous since it takes two artifacts of the same type.

Operator 2. Homogeneous artifact comparison: ACS : S × S → ∆S. For ar-
tifacts SS and S′

S , the operator ACS(SS , S′
S) computes U∆S such that S′

S =
U∆S(SS).

We further discuss the design choices for creating and representing updates in
Section 8.1.

14 M. Antkiewicz and K. Czarnecki

Heterogeneous artifact comparison. The first incremental synchronizer uses
heterogeneous artifact comparison, an operator that directly compares two arti-
facts of different types and produces an update that can be applied to the second
artifact in order to make it consistent with the first artifact.

Operator 3. Heterogeneous artifact comparison: ACS,T : S × T → ∆T . For
artifacts S′

S and TT , the operator ACS,T (S′
S , TT) computes an update U∆T such

that (S′
S , U∆T (TT)) ∈ R.

The incremental synchronizer using heterogeneous artifact comparison takes the
original target in addition to the new source as an input and produces the new
target.

Synchronizer 2. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using heterogeneous artifact comparison:

S2S,T : S × T → T

S′
S , TT =⇒ U∆T = ACS,T (S′

S , TT)
T ′
T = U∆T (TT) =⇒ T ′

T

In general, the synchronizer needs to analyze the original target with respect
to the new source, compute the updates, and apply the updates to the original
target. Although the above formulation separates the update computation and
application, all these actions could be performed in one pass over the existing
target by synchronizing the target in place.

Note that the above operator and synchronizer assume the situation shown
in Figure 2, where SS and TT do not have to be consistent. However, in cases
where SS and TT are consistent and a small source update U∆S corresponds
to a small target update Y∆T , the performance savings from reusing TT in the
computation of T ′

T are expected to be high.

Update translation. The second incremental synchronizer assumes that the
original source SS and the original target TT are consistent (cf. Figure 5). The
key idea behind this synchronizer is to translate the update of the source into a
consistent update of the target.

Definition 3. Consistent Updates. Two updates U∆S and Y∆T of two con-
sistent reference artifacts SS and TT , respectively, are consistent iff application
of both updates results in consistent artifacts, i.e., (U∆S(SS), Y∆T (TT)) ∈ R.

We can now define the update translation operator. The operator takes not only
the update of the source artifact but also the original source and target artifacts
as parameters. The reason is that consistent updates are defined with respect to
these artifacts.

Operator 4. Update translation: UTS,T : ∆S × S × T → ∆T . For consis-
tent artifacts SS and TT , i.e., (SS , TT) ∈ R, and an update U∆S of the source
artifact SS , the operator UTS,T (U∆S , SS , TT) computes an update U∆T of the
target artifact TT such that U∆S and U∆T are consistent for SS and TT , i.e.,
(U∆S(SS), U∆T (TT)) ∈ R.

Design Space of Heterogeneous Synchronization 15

Using the update translation operator we can define the second incremental
synchronizer as follows.

Synchronizer 3. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using update translation:

S3S,T : S ×∆S × T → T

SS , U∆S , TT
(SS , TT) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT)

T ′
T = U∆T (TT) =⇒ T ′

T

The synchronizer requires the original source and the original target, which have
to be consistent, and an update to the original source.

Note that the update of the source artifact U∆S can also be computed by com-
paring the new source against the original source using the homogeneous artifact
comparison. This possibility allows us to rewrite Synchronizer 3 as follows.

Synchronizer 4. Unidirectional, incremental, original-target-independent, and
to-one synchronizer using homogeneous artifact comparison and update translation:

S4S,T : S × S × T → T

SS , S′
S , TT

(SS , TT) ∈ R =⇒ U∆S = ACS(SS , S′
S)

U∆T = UTS,T (U∆S , SS , TT)
T ′
T = U∆T (TT) =⇒ T ′

T

An example for Synchronizer 3

Example 10. Live Update.
An example implementation of Synchronizer 3 is live update [18]. In live update,
a target artifact is first obtained by executing a transformation on the source
artifact. The transformation execution context is preserved and later used for
incremental update of the target artifact in response to an update of the source
artifact. The update translation operator works by locating the points in the
transformation execution context that are affected by the source update. Update
application works by resuming the transformation from the identified points with
the new values from the source.

4.2 Unidirectional Synchronizers in To-Many Direction

The operators used in unidirectional to-many synchronizers are summarized in
Figure 6. The feature diagram is similar to the diagram for the to-one case in
Figure 4 except that each operator appears as a “with choice” variant. Further-
more, an additional variant using a special merge operator was added (on the
bottom left in the diagram). The to-many case implies that a given source arti-
fact may correspond to multiple target artifacts. Thus, each translating operator

16 M. Antkiewicz and K. Czarnecki

Homogeneous
asymmetric

artifact merge
with choice

Artifact
translation
with choice

Heterogeneous
artifact

comparison
with choice

Homogeneous
artifact

comparison

Update
translation
with choice

To-many

Fig. 6. Operators used in to-many unidirectional synchronizers

in its “with choice” variant produces a set of possible targets rather than a single
target. Consequently, all to-many synchronizers need a decision function as an
additional input that they use to select only one result from the set of possible
targets.

Like their to-one counterparts, the to-many synchronizers can be non-
incremental or incremental. However, whereas all to-one synchronizers are
original-target-independent, the to-many synchronizers have only one original-
target-independent variant. The remaining ones are original-target-dependent,
which means that values and structures from the original target are used in the
computation of the new target and the resulting new target depends both on
the new source and the original target.

The dependency on the original target is desirable for to-many synchronizers
if the target can be edited by developers. The original-target-dependent synchro-
nizers can preserve parts of the original target that have no representation in
the source artifact type when the target is updated. These parts could be added
to the target and edited by developers. Such edits should be preserved during
the synchronization of the target in order to preserve developers’ work.

The first two unidirectional to-many synchronizers are non-incremental and
correspond to the left branch of the feature diagram in Figure 6. The first one is
original-target-independent. It uses artifact translation with choice to translate
the new source into a set of possible new targets and selects one target using a
decision function. The second synchronizer is original-target-dependent. It also
uses artifact translation with choice to translate the new source into a set of
possible new targets, but then it merges the selected new target with the original
target. For this purpose, it uses homogeneous asymmetric artifact merge with
choice, an operation which merges a slave artifact with a master artifact while
preserving a certain property of the master artifact. As a result, some structures
from the original target can be preserved.

The remaining synchronizers are incremental and operate similarly to their
to-one counterparts. However, unlike the latter, they are original-target-depen-
dent. The first incremental variant uses heterogeneous artifact comparison with
choice. The other one uses update translation with choice. The source update

Design Space of Heterogeneous Synchronization 17

may optionally be computed using homogeneous artifact comparison between
the original source and the new source.

Artifact translationwithchoice. Let us first consider the first non-incremental
variant. This variant requires an artifact translation operator that returns a set of
possible results. Note that P+(T) denotes the power set of the set T without the
empty set. We mark all “with choice” variants of operators with ∗.

Operator 5. Artifact translation with choice: AT∗
S,T : S → P+(T). For an

artifact S′
S , the operator AT∗

S,T (S′
S) computes {S′

T : (S′
S , S′

T) ∈ R}.

A single resulting artifact can be chosen using a decision function.

Definition 4. Decision. A decision for an artifact type T is a function DDT :
P+(T) → T such that ∀X ∈ P+(T) : DDT (X) ∈ X. We denote a set of all
decision functions for an artifact type T as DT .

Intuitively, a decision function chooses one artifact out of a set of artifacts of a
given type. It models both the situation where the user makes a choice interac-
tively or the situation where a choice is made based on some predefined criteria
or default settings. We discuss some design choices for implementing decision
functions in Section 8.5.

Synchronizer 5. Unidirectional, non-incremental, original-target-independent,
and to-many synchronizer using artifact translation with choice:

S5S,T : S × DT → T

S′
S , DDT =⇒ T ′

T = DDT (AT∗
S,T (S′

S)) =⇒ T ′
T

Synchronizer 5 is only of interest for scenarios where the target artifact is not
supposed to be manually edited, e.g., code generation in model compilation.

Examples for Synchronizer 5

Example 11. Code and model compilation.
In compilation, the resulting artifacts, regardless if they are machine code, byte
code, or code in a high-level programming language, depend on many settings of
the compiler such as optimizations or coding style. Although the relation between
the source and target artifacts is many-to-many, the selection of options allows
the synchronizer (the compiler) to produce a single result.

Example 12. Pretty printing.
Similarly to the previous example, many code style options influence the result
of pretty printing an abstract syntax tree representing a program.

Homogeneous asymmetric artifact merge. Unlike the first variant, which
completely replaces the original target with the new one, the second non-incre-
mental variant uses a merge operator to preserve some structures from the orig-
inal target.

18 M. Antkiewicz and K. Czarnecki

The merge operator is homogeneous as it merges two artifacts of the same
type. It is also asymmetric as one of the artifacts is a master artifact and the
other one is a slave artifact, that is, the operator merges the master and slave
artifacts in such a way that the result of the merge satisfies the same property
as the master artifact does. The merge can be implemented in two ways: by
copying structures from the master artifact to the slave artifact or vice versa.

In our context, the slave artifact will be the original target and the master
artifact will be the target obtained by translating the new source into the target
artifact type. The property of the master artifact to be preserved will be its
consistency with the new source artifact.

We model artifact properties as binary functions.

Definition 5. Artifact Property. A property function φ for artifacts of type
T is a function with the following signature φ : T → {0, 1}. We say that the
property φ holds for an artifact TT iff φ(TT) = 1. We denote the set of all
properties for an artifact type T as ΦT .

Operator 6. Homogeneous asymmetric artifact merge with choice: M∗
T : T ×

T × ΦT → P+(T). For a slave artifact TT , a property φ, and a master artifact
ST such that φ(ST) = 1, the operator M∗

T (TT , ST , φ) computes a non-empty
subset of {T ′

T : φ(T ′
T) = 1}. The elements of the subset preserve structures from

both master and slave artifacts according to some criteria.

The key intention behind this operator, which is only partially captured by the
formal part, is that the resulting set contains artifacts obtained by combining
structures from both input artifacts such that each of the artifacts in the result-
ing set satisfies the input property. The merge returns a subset of all the artifacts
satisfying the property, meaning that some artifacts satisfying the property are
rejected if they do not preserve structures from both artifacts well enough ac-
cording to some criteria. The operator returns a set of artifacts rather than a
single artifact since, in general, there may be more than one satisfactory way to
merge the input artifacts.

Synchronizer 6. Unidirectional, non-incremental, original-target-dependent,
and to-many synchronizer using artifact translation with choice and homoge-
neous asymmetric artifact merge with choice:

S6S,T : S × T × DT ×DT → T

S′
S , TT , DDT , EDT =⇒ S′

T = DDT (AT∗
S,T (S′

S))
T ′
T = EDT (M∗

T (TT , S′
T , φΦT)) =⇒ T ′

T

where φΦT (T) =

{
1 if (S′

S , T) ∈ R

0 otherwise

The synchronizer takes two decision functions. The first function selects a trans-
lation of the new source artifact into the target artifact type from the alternatives
returned by the artifact translation with choice. The selected translation S′

T is

Design Space of Heterogeneous Synchronization 19

then merged with the original target artifact, where the property passed to the
merge is consistency with the new source artifact S′

S . The second decision function
is used to select one target artifact from the alternatives returned by the merge.

In practice, the decision functions are likely to be realized as default set-
tings allowing the entire synchronizer to be executed automatically. Furthermore,
practical implementations, while focusing on preserving manual edits from the
original target, often do not restore the full consistency during the merge. In such
cases, the developers are expected to complete the merge by manual editing.

An example for Synchronizer 6

Example 13. JET and JMerge.
An example implementation of artifact merge with choice is JMerge, which is
a part of Java Emitter Templates (JET) [19]. JET is a template-based code
generation framework in Eclipse.

JMerge can be used to merge an old version of Java code (slave artifact) with
a new version (master artifact), such that developers can control which parts of
the old versions get overridden by the corresponding parts from the new version.
JMerge replaces Java classes, methods, and fields of the slave artifact that are an-
notated with @generatedwith their corresponding new versions from the master
artifact. Developers can remove the @generated annotation from the elements
they modify in order to preserve their modifications during subsequent merges.
The behavior of JMerge is parameterized with a set of rules, which is an imple-
mentation of the decision function EDT . JMerge is not concerned with preserv-
ing the consistency of the master artifact with the new source, meaning that the
merged result might require manual edits in order to make it consistent. However,
JMerge guarantees that all program elements in the slave that are not annotated
with the @generated annotation remain unchanged in the merged result.

The code generator of Eclipse Modeling Framework (EMF) [20] implements
Synchronizer 6 and uses JMerge as an implementation of the merge operator.
The code generator is based on JET and takes a new EMF model as an input,
which is the new source artifact S′

S . Code generation is controlled by a separate
generator model, which specifies both global generation options and options that
are specific to some source model elements. The latter can be thought of as deco-
rations or mark-up of the source elements, but ones that are stored in a separate
artifact. Effectively, the generator model corresponds to the decision function
DDT . The code generator emits the Java code implementing the model, i.e., S′

T .
JMerge is then used to merge the freshly-generated code S′

T (master artifact)
with the original Java code TT (slave artifact) that may contain developer’s
customizations. The resulting new Java code T ′

T is now synchronized with the
new model in the sense that all code elements annotated with the @generated
annotation were replaced with the code elements generated from the new model.

The JMerge approach is an example of the concept of protected blocks. Pro-
tected blocks are specially marked code sections that are preserved during code
re-generation. In JMerge, protected blocks are marked by virtue of not being
annotated with @generated.

20 M. Antkiewicz and K. Czarnecki

Heterogeneous artifact comparison. Analogously to the incremental syn-
chronizers from the previous section, incremental to-many synchronizers can be
realized using either heterogeneous comparison or update translation. However,
both operators need to be modified to produce sets of results.

Operator 7. Heterogeneous artifact comparison with choice: AC∗
S,T : S ×T →

P+(∆T). For artifacts S′
S and TT , the operator AC∗

S,T (S′
S , TT) computes a

non-empty subset of {U∆T : (S′
S , U∆T (TT)) ∈ R}. The elements of the subset

preserve structures from TT according to some criteria.

We can now state the first incremental synchronizer as follows.

Synchronizer 7. Unidirectional, incremental, original-target-dependent, and to-
many synchronizer using heterogeneous artifact comparison with choice:

S7S,T : S × T × D∆T → T

S′
S , TT , DD∆T =⇒ U∆T = DD∆T (AC∗

S,T (S′
S , TT))

T ′
T = U∆T (TT) =⇒ T ′

T

An example for Synchronizer 7

Example 14. Lenses in Harmony.
Synchronizer 7 corresponds to the putback function in Lenses [17]. In Lenses, the
source-to-target relationship is many-to-one and putback is used in the target-
to-source direction. In other words, putback is a unidirectional to-many synchro-
nizer. The function takes the new view and the original source and returns the
new source. A full lens combines putback with get (cf. Example 9) to form a
bidirectional synchronizer (cf. Example 18).

Update translation with choice. The second incremental variant uses update
translation with choice.

Operator 8. Update translation with choice: UT∗
S,T : ∆S ×S×T → P+(∆T).

For two consistent artifacts SS and TT and an update U∆S of SS , the oper-
ator UT∗

S,T (U∆S , SS , TT) computes a non-empty subset of {U∆T : (U∆S(SS),
U∆T (TT)) ∈ R}. The elements of the subset preserve structures from TT accord-
ing to some criteria.

Synchronizer 8. Unidirectional, incremental, original-target-dependent, and to-
many synchronizer using update translation with choice:
S8S,T : S ×∆S × T × D∆T → T

SS , U∆S , TT , DD∆T

(SS , TT) ∈ R =⇒ U∆T = DD∆T (UT∗
S,T (U∆S , SS , TT))

T ′
T = U∆T (TT) =⇒ T ′

T

Design Space of Heterogeneous Synchronization 21

Examples for Synchronizer 8

Example 15. Incremental code update in FSMLs.
An example of Synchronizer 8 is incremental code update in FSMLs [10]. During
forward propagation of model updates to code, code update transformations are
executed for every added, modified, or removed model element. This translation
of element updates into corresponding code updates is an example of an update
translation function. Different code updates can be applied for a given model
update depending on the desired implementation variant. An example of an
implementation variant is the creation of an assignment to a field either as a
separate statement or as an expression of the field’s initializer. The variants can
be selected based on source model annotations that are provided by default and
can also be modified by the developer. This annotation mechanism represents
an implementation of the decision function DD∆T .

Example 16. Co-evolution of models with metamodels.
Wachsmuth [13] describes an approach to the synchronization of models in re-
sponse to certain well-defined kinds of updates in their metamodels. The updates
are classified into refactoring, construction, and destruction. These metamodel
updates are then translated into the corresponding updates of the models. The
model updates are an example of updates whose sets of reference artifacts con-
tain more than one artifact (cf. Definition 2).

5 Bidirectional Synchronizers

Propagating change only in one direction is often not practical as certain changes
may only be possible in certain artifacts. Bidirectional synchronization involves
propagating changes in both directions using bidirectional synchronizers. Bidi-
rectional synchronization is also referred to as round-trip engineering [21,22,23].

In this section, we focus on synchronization where changes to one artifact are
propagated to the other artifact only in one direction at a time, whereas in the
next section we focus on synchronization in which changes to both artifacts can
be reconciled and propagated in both directions at once.

SS TT

U∆S

?
?
y

?
?
y Y∆T

1

S′
S

R
←−−−→ T ′

T
1

U′
∆S

2

?
?
y

?
?
yY ′

∆T

S′′
S

2

R
←−−−→ T ′′

T

Fig. 7. Bidirectional synchronization scenario with a source-to-target synchronization
followed by a target-to-source synchronization

22 M. Antkiewicz and K. Czarnecki

Unidirectional synchronizer �

Towards target

Unidirectional synchronizer �

Towards source

Bidirectional synchronizer

Fig. 8. Bidirectional synchronizer

A sample bidirectional synchronization scenario with a source-to-target syn-
chronization followed by a target-to-source synchronization is shown in Figure 7.
The results of the first synchronization are placed in boxes with subscript one
and the results of the second synchronization are placed in boxes with subscript
two. The first synchronization is executed in response to update U∆S , and the
second synchronization is executed in response to update Y ′

∆T .
A bidirectional synchronizer can be thought of as a pair of unidirectional

synchronizers, one synchronizer for one direction, as shown in Figure 8. The
feature towards target represents the unidirectional synchronizer from source to
target, and the feature towards source represents the unidirectional synchronizer
from target to source. Both synchronizers could be constructed separately using
a unidirectional language, or they could be derived from a single description in
a bidirectional language. We discuss these possibilities in Section 8.6.

Properties. According to Stevens [24], the key property of a pair of unidi-
rectional synchronizers implementing bidirectional synchronization for a given
relation is that they are correct with respect to the relation. Correctness means
that each synchronizer enforces the relation between the source and target arti-
facts. Clearly, any pair (SiS,T , SjT ,S) of the unidirectional synchronizers defined
in the previous sections (where i and j may be equal) is correct with respect to
R by the definition of the synchronizers.

Another desired property of a synchronization synchronizer is hippocratic-
ness [24], meaning that the synchronizer should not modify any of the artifacts
if they already are in the relation. The hippocraticness property is also referred to
as check-then-enforce, which suggests that the synchronizer should only enforce
the relation if the artifacts are not in the relation.

Note that, in practice, a synchronization step may be partial in the sense
that it does not establish full consistency. Artifact developers may choose to
synchronize only certain changes at a time and ignore parts of the artifacts that
are not yet ready to be synchronized. Therefore, the correctness property only
applies to complete synchronization.

Examples of bidirectional synchronizers

Example 17. Triple Graph Grammars in FUJABA.
Giese and Wagner describe an approach to bidirectional synchronization us-
ing Triple Graph Grammars (TGG) [25]. Their approach is implemented in the

Design Space of Heterogeneous Synchronization 23

Fujaba tool suite [26]. TGG rules are expressed using a bi-directional, graphical
language. For two models, the user can choose the direction of synchronization.
Both models are then matched by TGG rules, which can be viewed as an im-
plementation of the heterogeneous artifact comparison. The updates determined
by each rule are applied to the target in a given direction, which amounts to
incremental synchronization. The authors assume that the relationship between
source and target is a bijection [25, p. 550]. Thus, the approach can be described
as (S2S,T , S2T ,S).

Example 18. Lenses in Harmony.
A lens [17] is a bidirectional synchronizer for the many-to-one case. It consist
of two unidirectional synchronizers: get (cf. Example 9) and putback (cf. Exam-
ple 14). In other words, a lens can be described as (S1S,T , S7T ,S). Note that
the second synchronizer executes in the target-to-source direction, i.e., the di-
rection towards the end with the cardinality of many, and the artifact at that
end can be edited. Consequently, the synchronizer should be one of the unidirec-
tional, to-many, and original-target-dependent synchronizers, which is satisfied
by S7T ,S .

6 Bidirectional Synchronizers with Reconciliation

In this section we focus on synchronization where both artifacts can be changed
simultaneously in-between two consecutive synchronizations and the changes can
be reconciled and propagated in both directions during a single synchronization.

Bidirectional synchronization with reconciliation involves up to six artifacts
(cf. Figure 9). Four of them are the same as in the case of unidirectional synchro-
nization (cf. Figure 2), except that the original source SS and the original target
TT are now assumed to be consistent. Furthermore, the new target T ′

T is given
as a result of a user update Y∆T just as the new source S′

S is given as a result
of another user update U∆S . The purpose of a bidirectional synchronizer with
reconciliation is to compute a reconciled source artifact S′′

S and a reconciled tar-
get artifact T ′′

T , such that the two are consistent. In essence, such a synchronizer
can also be viewed as a heterogeneous symmetric merge operation.

As in the unidirectional case, some of the four input artifacts may be missing.
The two extreme cases are when only the new source or only the new target

SS
R

←−−−→ TT

U∆S

?
?
y

?
?
yY∆T

S′
S T ′

T

U′
∆S

?
?
y

?
?
y Y ′

∆T

S′′
S

R
←−−−→ T ′′

T

Fig. 9. Artifacts involved in bidirectional synchronization with reconciliation

24 M. Antkiewicz and K. Czarnecki

Bidirectional
synchronizer �

Homogeneous
artifact

comparison and
reconciliation
with choice

Homogeneous
update

comparison and
reconciliation
with choice

Homogeneous

Heterogeneous
artifact

comparison and
reconciliation
with choice

Heterogeneous
update

comparison and
reconciliation
with choice

Heterogeneous

Bidirectional synchronizer with reconciliation

Fig. 10. Bidirectional synchronizer with reconciliation

exist. The synchronization in these cases corresponds to the initial generation
of the target artifact or the source artifact, respectively. The case where both
original artifacts are missing corresponds to the situation where two artifacts
are synchronized for the first time. Note that a “missing” artifact corresponds
to a special value that represents a minimal artifact, that is, an artifact that
contains the minimum structure required by its artifact type. We assume that
minimal artifacts of all types are always consistent.

In general, bidirectional synchronization with reconciliation involves

– Translation of updates, artifacts, or both;
– Identification of conflicting updates;
– Creation of updates that resolve conflicts and reconcile the artifacts; and
– Application of the updates.

The identification of conflicting updates and their resolution can be performed
in homogeneous or heterogeneous fashion as indicated in Figure 10.

Homogeneous reconciliation means that updates to both source and target ar-
tifacts are compared and then reviewed by the user in terms of one artifact type,
which is either the source or the target type. In other words, if the comparison
and review (and resolution of potential conflicts) is done on the target side, the
new source artifact or the update of the source artifact need to be first translated
into the target type. Depending whether the entire artifact or just the update
is translated, the comparison and reconciliation is done either by homogeneous
artifact comparison and reconciliation with choice or its update counterpart (cf.
Figure 10). Assuming reconciliation on the target side, both operators return
an update of the new source artifact (but expressed in the target artifact type)
and an update to the new target artifact, such that the two updates reconcile
both artifacts. Finally, the first update has to be translated back into the source
artifact type and applied to the new source artifact, and the second update is ap-
plied to the new target artifact. Note that the translation of artifacts or updates
in one direction and the translation of updates in the other direction essentially
requires a bidirectional synchronizer, as indicated in Figure 10 by a reference to
the feature bidirectional synchronizer.

Heterogeneous reconciliation implies a heterogeneous comparison between
the artifacts or the updates. A bidirectional synchronizer with heterogeneous

Design Space of Heterogeneous Synchronization 25

reconciliation can be implemented using the operator heterogeneous artifact com-
parison and reconciliation with choice or its update counterpart (cf. Figure 10).
The operators are similar to their homogeneous counterparts with the difference
that they directly compare artifacts of different types and thus do not require a
pair of unidirectional synchronizers for both directions.

6.1 Comparison and Reconciliation Procedures

In general, comparison and reconciliation operators work at the level of indi-
vidual structural updates that occurred within the overall update of the source
artifact U∆S and the overall update of the target artifact Y∆T . The updates can
be atomic, such as element additions, removals, and relocations and attribute
value modifications. The updates can also be composite, i.e., consisting of other
atomic and composite updates.

We categorize updates into synchronizing, propagating, consistent, conflicting,
non-reflectable, and inverse. An update in one artifact is synchronizing if it
establishes the consistency of the artifact with the related artifact. An update
in one artifact is propagating if it forces a synchronizing update in the related
artifact. Two updates, one in each artifact, are consistent if one is a synchronizing
update of the other one. On the other hand, two updates, one in each artifact,
are conflicting if the propagation of one update would override the other one.
An update in one artifact is non-reflectable if it does not force any synchronizing
update in the other artifact. An inverse update (intuitively undo) for a given
update and a reference artifact maps the result of applying the given update to
the reference artifact back to the reference artifact.

A maximal synchronizer [27] is one that propagates all propagating updates.
The following strategy is used to compute U ′

∆S and Y ′
∆T for achieving maximum

synchronization:

– Consistent and non-reflectable updates in U∆S and Y∆T are ignored since
both artifacts are already consistent with respect to these updates;

– Out of several conflicting updates in U∆S and Y∆T , exactly one update can
be accepted as a propagating update; and

– For each propagating update in U∆S , a synchronizing update needs to be
included in Y ′

∆T ; similarly, for each propagating update in Y∆T , a synchro-
nizing update needs to be included in U ′

∆S .

After the updates are classified into consistent, non-reflectable, conflicting,
and propagating by the comparison operator, the user typically reviews the clas-
sification, resolves conflicts by rejecting some of the conflicting updates, and then
the final updates U ′

∆S and Y ′
∆T are computed by determining and composing

the necessary synchronizing updates. In practice, simple acceptance or rejection
of updates might not be sufficient to resolve all conflicts, in which case the in-
put artifacts may need to be manually edited to resolve and merge conflicting
updates.

In general, conflict resolution is not the only possible conflict management
strategy. Other possibilities include storing all conflicting updates in each rec-
onciled artifact or allowing artifacts to diverge for conflicting updates [27].

26 M. Antkiewicz and K. Czarnecki

6.2 Bidirectional Synchronizers for One-to-One Relations

Note that due to the need for reconciliation, none of the synchronizers can be
fully non-incremental since at least one artifact needs to be updated by update
application. Let us first consider a target-incremental synchronizer. This variant
requires homogeneous artifact comparison and reconciliation with choice opera-
tion. The need for choice arises from the fact that conflicts may be resolved in
different ways.

Operator 9. Homogeneous artifact comparison and reconciliation with choice:
ACR∗

T : T ×T ×T → P+(∆T ×∆T). For two artifacts S′
T and T ′

T , and the ref-
erence artifact TT , the operator ACR∗

T (S′
T , T ′

T , TT) computes a non-empty sub-
set of {(U ′

∆T , Y ′
∆T) : U ′

∆T (S′
T) = Y ′

∆T (T ′
T)}. Each pair of updates (U ′

∆T , Y ′
∆T)

from that subset is such that the updates resolve conflicting changes and enforce
all propagating changes from U∆T and Y∆T , where U∆T = ACT (TT , S′

T) and
Y∆T = ACT (TT , T ′

T).

The operator ACR∗
T performs a three-way comparison of the artifacts and re-

turns a set of pairs of updates. The reference artifact is included in the three-way
comparison as it allows precisely determining the kind and location of updates.
In particular, it allows determining whether certain updates occurred consis-
tently in both artifacts, inconsistently in both artifacts, or only in one artifact.
Each resulting pair of updates modifies both artifacts S′

T and T ′
T such that they

become identical and all conflicting updates are resolved and all propagating up-
dates are propagated. The second condition is necessary: without it, the operator
could simply return updates that could, for example, revert each artifact back to
the reference artifact, or even to the minimal artifact. Each pair of resulting up-
dates represents one possible way of reconciling conflicts. The resulting updates
are constructed using the strategy given at the end of the previous section.

Now we are ready to formulate the target-incremental synchronizer. Note that
all discussed synchronizers perform reconciliation on the target side.

Synchronizer 9. Bidirectional, target-incremental, and one-to-one synchronizer
using artifact translation and homogeneous artifact comparison and reconciliation
with choice:

S9S,T : S × T × T × D∆T ×∆T → S × T

S′
S , T ′

T , TT ,
FD∆T ×∆T =⇒ S′

T = ATS,T (S′
S)

(, Y ′
∆T) = FD∆T ×∆T (ACR∗

T (S′
T , T ′

T , TT))
T ′′
T = Y ′

∆T (T ′
T)

S′′
S = ATT ,S(T ′′

T) =⇒ S′′
S , T ′′

T

In the target-incremental variant, source artifact is first translated into the target
artifact type. Next, the operator ACR∗

T computes new updates for each artifact.
In the target-incremental synchronizers, the update for the artifact S′

T is simply
ignored. Next, the reconciled target artifact T ′′

T is created by applying the update

Design Space of Heterogeneous Synchronization 27

Y ′
∆T to T ′

T . Finally, the reconciled source artifact S′′
S is obtained by translating

T ′′
T back into the artifact type S.
A fully-incremental variant, in which the new source S′

S is incrementally up-
dated, is also possible.

Synchronizer 10. Bidirectional, fully-incremental, and one-to-one synchronizer
using artifact translation, homogeneous artifact comparison and reconciliation with
choice, and update translation:

S10S,T : S × T × T × D∆T ×∆T → S × T

S′
S , T ′

T , TT ,
FD∆T ×∆T =⇒ S′

T = ATS,T (S′
S)

(U ′
∆T , Y ′

∆T) = FD∆T ×∆T (ACR∗
T (S′

T , T ′
T , TT))

T ′′
T = Y ′

∆T (T ′
T)

U ′
∆S = UTT ,S(U ′

∆T , S′
T , S′

S)
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

A fully-incremental variant can also be realized by translating updates instead
of translating the entire artifacts. The fully-incremental case requires a homoge-
neous update comparison and reconciliation operator.

Operator 10. Homogeneous update comparison and reconciliation with choice:
UCR∗

T : ∆T ×∆T × T → P+(∆T ×∆T). For two updates U∆T and Y∆T of a
reference artifact TT , the operator UCR∗

T (U∆T , Y∆T , TT) computes a non-empty
subset of {(U ′

∆T , Y ′
∆T) : U ′

∆T (U∆T (TT)) = Y ′
∆T (Y∆T (TT))}. Each pair of up-

dates (U ′
∆T , Y ′

∆T) from that subset is such that the updates resolve all conflicting
changes and enforce all propagating changes from U∆S and Y∆T .

Synchronizer 11. Bidirectional, fully-incremental, and one-to-one synchronizer
using update translation and homogeneous update comparison and reconciliation
with choice:

S11S,T : S × S ×∆S × T × T ×∆T × D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT) = T ′
T

(SS , TT) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT)
(U ′

∆T , Y ′
∆T) = FD∆T ×∆T (UCR∗

T (U∆T , Y∆T , TT))
T ′′
T = Y ′

∆T (T ′
T)

U ′
∆S = UTT ,S(U ′

∆T , T ′
T , S′

S)
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

Analogously to the non-incremental variant, the UCR∗
T operator performs the

three-way comparison of the updates with respect to the reference artifact TT .

28 M. Antkiewicz and K. Czarnecki

Again, the result is a pair of reconciled updates. The update U ′
∆T needs to be

translated into the artifact type S. Finally, the reconciled updates are applied.

6.3 Bidirectional Synchronizers for Many-to-One Relations

For many-to-one relations, we only consider homogeneous reconciliation on the
target side since source artifacts or updates can be unambiguously translated
in the target direction. We show two synchronizers in this category. The first
synchronizer uses a non-incremental unidirectional synchronizer in the source-
to-target direction, while the other uses an incremental one. For the target-to-
source direction, we need to use one of the unidirectional to-many synchronizers
that are original-target-dependent, where the “original target” corresponds to
the new source in our context. The reason is that we want to preserve non-
reflectable edits from the new source. Both synchronizers use update translation
with choice in the target-to-source direction.

Synchronizer 12. Bidirectional, fully-incremental, and many-to-one synchro-
nizer using artifact translation, homogeneous artifact comparison and reconcili-
ation with choice, and update translation with choice:

S12S,T : S × S × T × T × D∆S ×D∆T ×∆T → S × T

SS , S′
S , TT , T ′

T ,
DD∆S ,
FD∆T ×∆T

(SS , TT) ∈ R =⇒ S′
T = ATS,T (S′

S)
(U ′

∆T , Y ′
∆T) = FD∆T ×∆T (ACR∗

T (S′
T , T ′

T , TT))
T ′′
T = Y ′

∆T (T ′
T)

U ′
∆S = DD∆S (UT∗

T ,S(U ′
∆T , S′

T , S′
S))

S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

Synchronizer 13. Bidirectional, fully-incremental, and many-to-one synchro-
nizer using update translation, homogeneous update comparison and reconcilia-
tion with choice, and update translation with choice:

S13S,T : S × S ×∆S × T × T ×∆T × D∆S ×D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

DD∆S ,
FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT) = T ′
T

(SS , TT) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT)
(U ′

∆T , Y ′
∆T) = FD∆T ×∆T (UCR∗

T (U∆T , Y∆T , TT))
T ′′
T = Y ′

∆T (T ′
T)

U ′
∆S = DD∆S (UT∗

T ,S(U ′
∆T , T ′

T , S′
S))

S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

Design Space of Heterogeneous Synchronization 29

An example for Synchronizer 12

Example 19. Synchronization in FSMLs.
The FSML infrastructure [10] supports synchronization according to Synchro-
nizer 12. Source artifact is Java code, XML code, or a combination of both.
Target artifact is a model in an FSML designed for a particular framework,
e.g., Apache Struts (cf. Example 3). The relation between source and target is
many-to-one. The infrastructure performs homogeneous artifact comparison and
reconciliation on the model (target) side since every code update has a unique
representation on the model side. The reverse is not true: a model update can
be translated in different ways into code updates.

The first step of the synchronizer is to retrieve S′
T , i.e., the model of the new

code, from the new code S′
S using ATS,T , which is implemented by a set of code

queries (cf. Example 8).
The second step is a three-way compare between the model of the new code

S′
T and the new model T ′

T while using the original model TT as a reference
artifact. The original model corresponds to the initial situation when the model
and the code were consistent after the previous synchronization, and the new
model and the new code are the results of independent updates of the respective
original artifacts (cf. Figure 9).

The artifact comparison and reconciliation ACR∗
T operates on framework-

specific models. A model is an object structure conforming to a class model, i.e.,
the metamodel. The object structure consists of objects (i.e., model elements),
attributes with primitive values, and containment and reference links between
objects. The containment links form a containment hierarchy, which is a tree.
The comparison process starts with establishing the correspondence among the
model elements in all three models, namely S′

T , T ′
T , and TT . The correspondence

is established using structural matching, which takes into account the location
of the elements in the containment hierarchy and their identification keys that
are specified in the metamodel. Approaches to establishing correspondence are
further discussed in Section 8.2. The result of the matching is a set of 3-tuples,
where each tuple contains the corresponding elements from the three input mod-
els. Each position in a 3-tuple is dedicated to one of the three input models and
contains the corresponding element from the model or a special symbol repre-
senting the absence of the corresponding element from that model.

The comparison process continues by processing each 3-tuple to establish
the updates that occurred in the new source and the new target according to
Table 2. The first and the second column classifies each 3-tuple according to
whether all three elements or only some were present and whether the corre-
sponding elements were equal or not. Two elements are equal iff their corre-
sponding attribute values are equal, their corresponding reference links point
to the same element, and the corresponding contained elements are equal. The
third column describes the detected updates as element additions, modifications,
and removals, and the fourth column classifies the updates as propagating, con-
sistent, or conflicting (cf. Section 6.1).

30 M. Antkiewicz and K. Czarnecki

Table 2. Results of three-way compare of the corresponding elements t, s, and r in
the new artifacts T ′

T and S′
T , and the reference artifact TT , respectively. The absence

of a corresponding element is represented by -. Table adapted from [28].

T ′
T S′

T TT condition detected updates to element update classification

s t r t = s = r unchanged no updates
s t r t = s ∧ t �= r modified consistently in T ′

T & S′
T consistent updates

s t - t = s added consistently to T ′
T & S′

T consistent updates

s t r t �= s ∧ t = r modified in S′
T propagating update in S′

T
s t r t �= s ∧ s = r modified in T ′

T propagating update in T ′
T

s t r t �= s �= r �= t modified inconsistently in T ′
T & S′

T conflicting updates
s t - t �= s added inconsistently to T ′

T & S′
T conflicting updates

s - r t = r removed from S′
T propagating update in S′

T
s - r t �= r removed from S′

T , modified in T ′
T conflicting updates

s - - - added to T ′
T propagating update in T ′

T
- t r s = r removed from T ′

T propagating update in T ′
T

- t r s �= r removed from T ′
T , modified in S′

T conflicting updates
- t - - added to S′

T propagating update in S′
T

- - r - removed from T ′
T & S′

T consistent updates

The classification results are then presented to the user, who can review each
of the updates and decide to accept or reject it. More precisely, a propagating
update can be accepted or rejected and a pair of conflicting updates can be
enforced in the forward or the reverse direction or rejected all together. Note that
the decisions can be taken at different levels in the containment hierarchy. In a
extreme, the user might only review the updates at the level of the corresponding
model elements representing the model roots. The user might also desire to drill
down the hierarchy and review the updates at a finer granularity.

The conflict resolution decisions made by the user correspond to the decision
function FD∆T ×∆T . It is desirable that the decisions taken by the user should
result in a well-formed model T ′′

T before the code is updated. However, in prac-
tice, developers may choose to synchronize one element at a time. Also, only
accepting and/or rejecting updates may not be enough to arrive at the desired
model, meaning that developers might need to perform some additional edits
during reconciliation.

The last stage of ACR∗
T is to compute the resulting updates U ′′

∆T and Y ′′
∆T .

The resulting update U ′′
∆T for S′

T is computed by collecting the synchronizing
update for every accepted propagating and conflicting update to T ′

T and the in-
verse updates to the rejected propagating updates. An inverse update reverts an
element back to its state from TT . There is no need to include an inverse update
for the rejected update from a conflicting pair since the accepted update will over-
ride the corresponding element. The update Y ′′

∆T is computed in a similar way.
Finally, the update of the model representing the new code, U ′′

∆T , is translated
into the update of the new code, U ′′

∆S . The translation is achieved using update
translation UT∗

T ,S as described in Example 15. At last, both the new code and the
new model are incrementally updated by applying U ′′

∆S and Y ′′
∆T , respectively, and

the synchronizer returns the two reconciled artifacts S′′
S and T ′′

T .

Design Space of Heterogeneous Synchronization 31

6.4 Bidirectional Synchronizers for Many-to-Many Relations

Reconciliation for many-to-many relations can be performed in the homoge-
neous or heterogeneous fashion. A bidirectional synchronizer with homogeneous
reconciliation for a many-to-many relation needs to use unidirectional original-
target-dependent to-many synchronizers in both directions.

First we show a bidirectional synchronizer with homogeneous reconciliation
that uses update translation with choice in both directions.

Synchronizer 14. Bidirectional, fully-incremental, and many-to-many synchro-
nizer using update translation with choice and homogeneous update comparison
and reconciliation with choice:

S14S,T : S × S ×∆S × T × T ×∆T × D∆S ×D∆T ×D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

DD∆S , ED∆T ,
FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT) = T ′
T

(SS , TT) ∈ R =⇒ U∆T = ED∆T (UT∗
S,T (U∆S , SS , TT))

(U ′
∆T , Y ′

∆T) = FD∆T ×∆T (UCR∗
T (U∆T , Y∆T , TT))

T ′′
T = Y ′

∆T (T ′
T)

U ′
∆S = DD∆S (UT∗

T ,S(U ′
∆T , SS , TT))

S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

The heterogeneous variant of the many-to-many synchronizer requires a hetero-
geneous comparison and reconciliation operator.

Operator 11. Heterogeneous artifact comparison and reconciliation with choice:
ACR∗

S,T : S×T ×S×T → P+(∆S×∆T). For two artifacts S′
S and T ′

T , and two
consistent reference artifacts SS and TT , the operator ACR∗

S,T (S′
S , T ′

T , SS , TT)
computes a non-empty subset of {(U ′

∆S , Y ′
∆T) : (U ′

∆S(S′
S), Y ′

∆T (T ′
T)) ∈ R}. Each

pair of updates (U ′
∆T , Y ′

∆T) from that subset is such that the updates resolve con-
flicting updates and enforce all propagating updates from U∆S and Y∆T , where
U∆S = ACS(SS , S′

S) and Y∆T = ACT (TT , T ′
T).

Synchronizer 15. Bidirectional, fully-incremental, and many-to-many synchro-
nizer using heterogeneous artifact comparison and reconciliation with choice:

S15S,T : S × S × T × T × D∆S×∆T → S × T

SS , S′
S , TT , T ′

T ,
FD∆S×∆T

(SS , TT) ∈ R =⇒ (U ′
∆S , Y ′

∆T) = FD∆S×∆T (ACR∗
S,T (S′

S , T ′
T , SS , TT))

S′′
S = U ′

∆S(S′
S)

T ′′
T = Y ′

∆T (T ′
T) =⇒ S′′

S , T ′′
T

We introduce the last variant, Synchronizer 16, by first discussing its sample
implementation.

32 M. Antkiewicz and K. Czarnecki

An example for Synchronizer 16

Example 20. ATL Virtual Machine extension for synchronization.
An example of a bidirectional many-to-many synchronizer is an extension to the
Atlas Transformation Language (ATL) [29] virtual machine [30]. While the syn-
chronizer works in the reconciliation setting as illustrated in Figure 9 and allows
independent updates to the original source and the original target, it only sup-
ports partial reconciliation. More specifically, while the synchronizer propagates
all propagating updates, it does not support conflict resolution. Furthermore,
the synchronizer does not tolerate additions made to the original target model.
In any of the above situations, the synchronizer reports an error and terminates.

The mapping between source and target is given as an artifact translator ex-
pressed in ATL, which is a unidirectional transformation language. While an
ATL translator is a partial function, the extension supports many-to-many rela-
tions by merging the translation results with existing artifacts using asymmetric
homogeneous merge (cf. Operator 6). In this way, the non-reflectable updates
from the new source and the new target can be preserved.

The following synchronizer describes the synchronization procedure.

Synchronizer 16. Bidirectional, source-incremental, and many-to-many syn-
chronizer using artifact translation, homogeneous artifact comparison, update
translation with choice, and homogeneous asymmetric artifact merge with choice:

S16S,T : S × S × T × D∆S ×D∆S ×D∆T → S × T

SS , S′
S , T ′

T ,
DDS , EDS , FDT =⇒ TT = ATS,T (SS)

Y∆T = ACT (TT , T ′
T)

Y∆S = DDS (UT∗
T ,S(Y∆T , TT , SS))

SY
S = Y∆S(SS)

S′′
S = EDS (M∗

S(S′
S , SY

S , φ1
ΦS

))
S′′
T = ATS,T (S′′

S)
T ′′
T = FDT (M∗

T (T ′
T , S′′

T , φ2
ΦT

)) =⇒ S′′
S , T ′′

T

where φ1
ΦS

(S) =

{
1 if (T ′

T , S) ∈ R

0 otherwise

φ2
ΦT

(T) =

{
1 if (S′′

S , T) ∈ R

0 otherwise

First, the original target TT is obtained by executing an artifact translation writ-
ten in ATL. Next, the update of the original target Y∆T is translated into the cor-
responding update of the original source SS using the virtual machine extension.
The information that is necessary for the update translation in the reverse direc-
tion was recorded by the ATL virtual machine extension during the execution of
the artifact translation in the forward direction. Next, the new source S′

S is merged
with SY

S , which is the updated original source incorporating the source trans-
lation of Y∆T . The merged artifact S′′

S is the reconciled source artifact. Finally,

Design Space of Heterogeneous Synchronization 33

the reconciled source S′′
S is translated into the artifact S′′

T , which is then merged
with the new target T ′

T to produce the reconciled target artifact T ′′
T .

7 Summary of Synchronizers and Tradeoffs

In this section, we summarize the presented synchronizers and discuss the trade-
offs among them. Figure 11 presents a composite feature model of the design
space of heterogeneous synchronizers. The feature model serves two purposes: 1)
it consolidates the fragments of the feature model spread over the course of the
tutorial, and 2) it provides section and page numbers of the feature descriptions.
The leaf features that are not references, i.e., the leafs without �, correspond to
artifact operators.

Table 3 shows a feature comparison of the presented synchronizers and their
inputs. Synchronizers 1–8 are unidirectional, of which Synchronizers 1–4 are
to-one and Synchronizers 5–8 are to-many. Synchronizers 9–16 are bidirectional.
Among them, Synchronizers 9–11 are one-to-one, Synchronizers 12–13 are many-
to-one, and Synchronizers 14–16 are many-to-many.

Tradeoffs for unidirectional to-one synchronizers. The incremental vari-
ants offer higher performance than the non-incremental one because only indi-
vidual updates are considered instead of the whole artifacts. Consequently, they
enable more frequent synchronization for large artifacts. However, implement-
ing heterogeneous artifact comparison or update translation operators is usually
more complex than implementing artifact translation. The reason is that addi-
tional design decisions for implementing updates (cf. Section 8.1) and matching
(cf. Section 8.2) need to be considered.

Furthermore, while the incremental variant based on update translation is
likely to be more efficient than the one based on heterogeneous artifact compar-
ison, the additional requirement that the original versions of the artifacts need
to be consistent may be too restrictive in some situations. For example, it could
be sufficient for the original versions to be nearly consistent.

Tradeoffs for unidirectional to-many synchronizers. The first synchro-
nizer, i.e., the one based on artifact translation with choice and without homo-
geneous merge, is only useful if the target is not going to be manually edited
in between target regenerations, as in the case of compiling a program into ob-
ject code. If the target is intended to be edited, any of the remaining to-many
variants needs to be used.

The synchronizer using the merge operator is simple to implement for cases
where the structures of the target artifact that are non-reflectable in the source
are well separated from the structures that are reflectable in the source. Such
separation simplifies the implementation of the merge. If both kinds of structures
are strongly intertwined, one of the incremental to-many synchronizers may be
a better choice since they take the original target into account already in the
translation operator.

34 M. Antkiewicz and K. Czarnecki

A
rt

if
a
ct

tr
a
n
sl
a
ti
o
n

(A
T

S
,T

,
p
.
1
2
)

H
et

er
o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
(A

C
S

,T
,
p
.
1
4
)

H
o
m

o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
(A

C
S
,
p
.
1
3
)

U
p
d
a
te

tr
a
n
sl
a
ti
o
n

(U
T

S
,T

,
p
.
1
4
)

T
o
-o

n
e

(S
ec

ti
o
n

4
.1

,
p
.
1
1
)

H
o
m

o
g
en

eo
u
s

a
sy

m
m

et
ri

c
a
rt

if
a
ct

m
er

g
e

w
it
h

ch
o
ic

e
(M

∗ T
,
p
.
1
8
)

A
rt

if
a
ct

tr
a
n
sl
a
ti
o
n

w
it
h

ch
o
ic

e
(A

T
∗ S

,T
,
p
.
1
7
)

H
et

er
o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
w

it
h

ch
o
ic

e
(A

C
∗ S

,T
,
p
.
2
0
)

H
o
m

o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
(A

C
S
,
p
.
1
3
)

U
p
d
a
te

tr
a
n
sl
a
ti
o
n

w
it
h

ch
o
ic

e
(U

T
∗ S

,T
,
p
.
2
0
)

T
o
-m

a
n
y

(S
ec

ti
o
n

4
.2

,
p
.
1
5
)

U
n
id

ir
e
c
ti

o
n
a
l
sy

n
ch

ro
n
iz

e
r

(S
ec

ti
o
n

4
,
p
.
9
)

B
id

ir
ec

ti
o
n
a
l

sy
n
ch

ro
n
iz

er
�

(S
ec

ti
o
n

5
,
p
.
2
1
)

B
id

ir
ec

ti
o
n
a
l

sy
n
ch

ro
n
iz

er
w

it
h

re
co

n
ci

li
a
ti
o
n

�
(S

ec
ti
o
n

6
,
p
.
2
3
)

H
e
te

ro
g
e
n
e
o
u
s

sy
n
ch

ro
n
iz

e
r

U
n
id

ir
ec

ti
o
n
a
l

sy
n
ch

ro
n
iz

er
�

T
ow

a
rd

s
ta

rg
et

U
n
id

ir
ec

ti
o
n
a
l

sy
n
ch

ro
n
iz

er
�

T
ow

a
rd

s
so

u
rc

e

B
id

ir
e
c
ti

o
n
a
l
sy

n
ch

ro
n
iz

e
r

B
id

ir
ec

ti
o
n
a
l

sy
n
ch

ro
n
iz

er
�

H
o
m

o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
a
n
d

re
co

n
ci

li
a
ti
o
n

w
it
h

ch
o
ic

e
(A

C
R

∗ T
,
p
.
2
6
)

H
o
m

o
g
en

eo
u
s

u
p
d
a
te

co
m

p
a
ri
so

n
a
n
d

re
co

n
ci

li
a
ti
o
n

w
it
h

ch
o
ic

e
(U

C
R

∗ T
,
p
.
2
7
)

H
o
m

o
g
en

eo
u
s

(S
ec

ti
o
n
s

6
.2

,
p
.
2
6
,

6
.3

,
p
.
2
8
,
6
.4

,
p
.
3
1
)

H
et

er
o
g
en

eo
u
s

a
rt

if
a
ct

co
m

p
a
ri
so

n
a
n
d

re
co

n
ci

li
a
ti
o
n

w
it
h

ch
o
ic

e
(A

C
R

∗ S
,T

,
p
.
3
1
)

H
et

er
o
g
en

eo
u
s

u
p
d
a
te

co
m

p
a
ri
so

n
a
n
d

re
co

n
ci

li
a
ti
o
n

w
it
h

ch
o
ic

e
(n

o
t

sh
ow

n
)

H
et

er
o
g
en

eo
u
s

(S
ec

ti
o
n

6
.4

,
p
.
3
1
)

B
id

ir
e
c
ti

o
n
a
l
sy

n
ch

ro
n
iz

e
r

w
it

h
re

c
o
n
c
il
ia

ti
o
n

F
ig

.
1
1
.
D

es
ig

n
sp

a
ce

o
f
h
et

er
o
g
en

eo
u
s

sy
n
ch

ro
n
iz

er
s

Design Space of Heterogeneous Synchronization 35

Table 3. Summary of features and inputs of the synchronizers

→ 1 → ∗ 1 ↔ 1 ∗ ↔ 1 ∗ ↔ ∗

Synchronizer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

in
cr

em
en

t. non-incremental • · · · • • · · · · · · · · · ·
(target-) incremental · • • • · · • • • · · · · · · ·

source-incremental · · · · · · · · · · · · · · · •
fully-incremental · · · · · · · · · • • • • • • ·

original-target-dependent · · · · · • • • • • • • • • • •

SS (original source artifact) · · • • · · · • · · • • • • • •
S′
S (new source artifact) • • · • • • • · • • • • • • • •

U∆S (update of the orig. source art.) · · • · · · · • · · • · • • · ·
DDS (decision function on artifact) · · · · · · · · · · · · · · · •

DD∆S (decision function on update) · · · · · · · · · · · • • • · ·
EDS (decision function on artifact) · · · · · · · · · · · · · · · •

in
p
u
ts TT (original target artifact) · • • • · • • • • • • • • • • ·

T ′
T (new target artifact) · · · · · · · · • • • • • • • •

Y∆T (update of the orig. target art.) · · · · · · · · · · • · • • · ·
DDT (decision function on artifact) · · · · • • • · · · · · · · · ·

DD∆T (decision function on update) · · · · · · · • · · · · · · · ·
EDT (decision function on artifact) · · · · · • · · · · · · · • · ·

FD∆T ×∆T (decision fun. on updates) · · · · · · · · • • • • • • · ·
FD∆S×∆T (decision fun. on updates) · · · · · · · · · · · · · · • ·

FDT (decision function on artifact) · · · · · · · · · · · · · · · •

p
re

co
n
.

(SS , TT) ∈ R · · • • · · · • · · • • • • • ·
U∆S(SS) = S′

S · · · · · · · · · · · · • • · ·
Y∆T (TT) = T ′

T · · · · · · · · · · · · • • · ·

artifact translation • · · · · · · · • • · • · · · •
heterogeneous artifact comparison · • · · · · · · · · · · · · · ·

update translation · · • • · · · · · • • · • · · ·
homogeneous artifact comparison · · · • · · · · · · · · · · · •

o
p
er

a
ti
o
n
s artifact translation* · · · · • • · · · · · · · · · ·

update translation* · · · · · · · • · · · • • • · •
homog. asymmetric artifact merge* · · · · · • · · · · · · · · · •
heterogeneous artifact comparison* · · · · · · • · · · · · · · · ·

homog. artifact comp. & recon.* · · · · · · · · • • · • · · · ·
homog. update comp. & recon.* · · · · · · · · · · • · • • · ·

heterog. artifact comp. & recon.* · · · · · · · · · · · · · · • ·

The tradeoffs between the two incremental synchronizers, i.e., the one using het-
erogeneous artifact comparison with choice and the other one using update trans-
lation with choice, are similar to the tradeoffs between their to-one counterparts.

Tradeoffs for bidirectional synchronizers. The choice of the unidirectional
synchronizer mainly depends on the cardinalities of the relation’s ends, i.e., one
or many. Each of the synchronizers can be non-incremental or incremental de-
pending on the performance requirements. If the cardinality of the end towards
which the synchronizer should be executed is many, any of the unidirectional

36 M. Antkiewicz and K. Czarnecki

to-many synchronizers that are original-target-dependent should be used. The
synchronizer should be original-target-dependent because the target of the syn-
chronizer can be edited.

Tradeoffs for bidirectional synchronizers with reconciliation. Homoge-
neous reconciliation is most appropriate if the relation between the source and
target has at least one end with the cardinality of one because artifacts or up-
dates can be unambiguously translated in the direction of that end. In contrast,
heterogeneous reconciliation appears to be more appropriate for many-to-many
relations.

8 Additional Design Decisions

In this Section, we present additional design decisions related to the implemen-
tation of the synchronizers: creation and representation of updates, structure
identification and matching, modes of synchronization, implementation of deci-
sion functions, and construction and correctness of synchronizers.

8.1 Creation and Representation of Updates

An update describes the change of artifact’s internal structure. The applica-
tion of an update corresponds to the execution of a sequence of artifact update
operations such as element additions, removals, and relocations and attribute
value changes. One way of obtaining a sequence of artifact update operations
is by recording editing operations performed by the artifact’s developer. In this
case, the artifact at the beginning of the recording is a reference artifact of the
recorded update. We refer to updates obtained by recording developer’s edits as
history-based updates. The sequence of developer’s edits can be transformed into
a canonical form, which produces the same result as the original sequence, but
lacks redundant edits, such as, modifying the same attribute multiple times. An-
other way of creating an update is by comparing two artifacts using homogeneous
artifact comparison. We refer to updates obtained by comparing two artifacts as
state-based updates. History-based updates contain more information than state-
based updates, but may be more difficult to implement in practice. For example,
implementations have to ensure that all artifact updates are performed through
an appropriate change-tracking interface.

8.2 Structure Identification and Matching

Comparison operators such as homogeneous and heterogeneous artifact compar-
ison require a way to establish the correspondence between the elements of the
artifacts being compared. Furthermore, the implementation of an update func-
tion must also contain information about the elements it affects and a way to
identify them in the reference artifact. We refer to the process of establishing
the correspondence between elements as matching.

Design Space of Heterogeneous Synchronization 37

The two fundamentally different approaches to matching are non-structural
matching and structural matching. Non-structural matching assumes that ele-
ments receive globally unique, structure-independent identifiers at the time of
their creation. By “globally unique” we mean that the identifiers are unique at
least in the scope of the matched artifacts. Structure-independent means that
the identifiers are independent of the artifact structure, meaning that they re-
main constant when the structure evolves. For example, the identifier could be
generated as a combination of the IP address of the machine where the identifier
is generated, a timestamp, and a random number. This approach greatly sim-
plifies matching among different versions of an artifact as the correspondence of
elements can be established immediately based on the equality of the identifiers.
The main drawback of this approach is that it tends to be brittle with respect
to artifact evolution that involves a deletion and subsequent recreation of an
element. For example, consider the removal of a method from a class and its
later re-introduction. The new method would have a new identifier, which would
mark it as a new element even though it is probably just a new version of the
original method. Furthermore, identifiers tend to pollute and bloat the artifacts,
especially if they need to be stored in a human-readable textual form.

Structural matching avoids both problems by establishing correspondence
through the structural information that is already in the artifacts, e.g., element
nesting, element’s position in ordered lists, and attribute values such as element’s
local name. In our method evolution example, the old and the new version of the
method could be matched by using the fully qualified name of the containing
class and the method’s signature as an identifier. The matching can still use
precomputed identifiers, but these identifiers would be structure dependent as
they encode structural information. The main drawback of structural matching
is that sometimes the structural information needed for recovering a particular
relationship may be missing or difficult to identify. For example, while the fully
qualified name and signature of a method is sufficient to unambiguously match
a single call to that method within the body of another method, identifying
multiple calls within a single body is challenging. Using the lexical order of the
calls is a possible solution, but one that is brittle with respect to evolution when
the body is restructured, for example, when additional calls are inserted in the
middle of the body. A practical solution may need to use more local context in-
formation of each call in order to establish the correspondence between the two
versions. The problem of recognizing element relocations in nested structures is
an active research topic, e.g., [31].

In practice, both non-structural and structural matching can be used in com-
bination. For example, the model management infrastructure of IBM Rational
Software Modeler [32], which is IBM’s UML modeling tool, supports both non-
structural and structural matching.

Finally, matching could be realized at a semantic level rather than a structural
(i.e., syntactic) one. For example, Nejati et al. [33] present an approach for
matching and merging Statecharts specifications that respects the behavioral
semantics of the specifications.

38 M. Antkiewicz and K. Czarnecki

8.3 Instantaneous vs. On-Demand Synchronization

Another design decision is the time of update propagation. We distinguish be-
tween instantaneous and on-demand synchronization. Instantaneous synchroniza-
tion translates and applies updates to the target artifact immediately after the
updates occurred in the source artifact. On-demand synchronization translates
and applies updates at the time most convenient for the developer. Instantaneous
synchronization is likely to require an incremental synchronizer since translating
the entire source artifact after each update would be highly inefficient.

8.4 Disconnected vs. Live Synchronization

Update propagation can be implemented as a disconnected or a live transforma-
tion. Live transformation is a transformation that does not terminate [18,25] and
whose intermediate execution data, referred to as execution context, is preserved.
The context of a live transformation maintains the links between structures in
the source artifact and the resulting structures in the target artifact. The preser-
vation of the execution context allows for efficient propagation of updates made
to the source artifact (cf. Example 10). In contrast, a disconnected transforma-
tion terminates and its execution trace is lost, in which case a structure matching
mechanism is needed (cf. Section 8.2).

8.5 Strategies for Selecting Synchronization Result from Multiple
Choices

Synchronization in the “to-many” direction requires a way to select a single
target from the set of possible targets that are consistent with the source. We
distinguish among the following selection strategies:

– Pre-determined choice: The choice is fixed by the synchronizer developer and
hardcoded in the synchronizer.

– Interactive selection: The available choices, typically ranked according to
some criteria, are presented to the user interactively. While the number of
choices may be infinite, a finite number is presented at a time and the user
can ask for more.

– User-specified defaults : The user may use global options to specify prefer-
ence. Alternatively, the choices may be related to individual source elements,
in which case the source elements are annotated. Examples of annotation
mechanisms are Java annotations and UML profiles.

– Adaptive defaults : The default settings could be obtained by mining from the
original target or from a corpus of existing sample targets. An example of this
strategy is the automatic application of code formatting that was extracted
from a corpus of sample programs using data mining techniques [34].

– Target preservation: The available choices may be restricted by the desire to
preserve structures in the original target. We accounted for this possibility
in the original-target-dependent synchronizers.

Design Space of Heterogeneous Synchronization 39

8.6 Construction of Bidirectional Synchronizers

Bidirectional synchronizers can be constructed using either a bidirectional or a
unidirectional transformation language. Synchronizers constructed using a bidi-
rectional language can be directly executed in both directions from a single
specification.

Examples of bidirectional transformation languages include QVT Relations
[35], triple graph grammars [25, 36] (TGGs), and Lenses for trees [17]. In QVT
and TGGs, synchronizers are expressed by a set of rules, which can be executed
in both forward and reverse directions. Implementations of the QVT Relations
language include ModelMorf by TATA Research Development and Design Centre
and Medini QVT by IKV++. Tool support for creating TGG-based synchroniz-
ers exists as a plug-in for the FUJABA tool suite [26]. In the Lenses approach
complex bidirectional synchronizers are implemented by composing bidirectional
primitives using combinators. Similarly to lenses, Xiong et al. propose an ap-
proach to building bidirectional synchronizers using combinators that translate
modification operations performed on one artifact to synchronizing operations
on the other artifact [37]. In this approach, a synchronizer is defined by creating
a synchronizer graph, which consists of primitive synchronizers, input artifacts,
and intermediate (temporary) artifacts. The approach additionally supports dif-
ferent synchronization behaviors by parameterizing primitive synchronizers with
mode options.

Using a unidirectional transformation language requires either writing two
unidirectional synchronizers, one in each direction, or writing a unidirectional
synchronizer in one direction and automatically computing its inverse. Depend-
ing on the type of relation among the artifacts, the two unidirectional trans-
formations can be constructed in many ways. For some bijections, an inverse
transformation can be automatically computed from the transformation in one
direction. Pierce provides a list of examples of interesting cases of computing
such inverse transformations [38]. Xiong et al. [30] developed an approach that
can execute a synchronizer written in ATL, a unidirectional language, in the
reverse direction (cf. Example 20). The information that is necessary for the
reverse transformation is recorded by an extension to the ATL virtual machine
during the execution of the synchronizer in the forward direction.

8.7 Correctness of Synchronizers

In practice, establishing full consistency automatically may not always be possi-
ble. First, developers may desire to synchronize partially finished artifacts, i.e.,
the synchronizer may need to be able to handle artifacts of which only parts are
well-formed. Second, the complex semantics of some artifacts and relations can
sometimes be only approximated by programs implementing translation opera-
tors. For example, a synchronizer that operates on program code may need to
rely on static approximations of control and data flow.

Code queries for FSMLs exemplify both situations [16]. The precise FSML
semantics relate model elements with structural and behavioral patterns in Java

40 M. Antkiewicz and K. Czarnecki

code. However, the code queries implementing the reverse engineering for the
behavioral patterns are incomplete and unsound approximations of the behav-
ioral patterns. Furthermore, the code query evaluation engine relies on an incre-
mental Java compiler, which allows for querying code that does not completely
compile.

9 Related Work

In this section we discuss related works in three areas: data synchronization in
optimistic replication, inconsistency management in software development, and
model management and model transformation.

9.1 Data Synchronization in Optimistic Replication

The need for synchronization arises in the area of optimistic replication, which
allows replica contents to diverge in the short term in order to allow concur-
rent work practices and to tolerate failures in low quality communication links.
Optimistic replication has applications to file systems, personal digital assis-
tants, internet services, mobile databases, and software revision control. Saito
and Shapiro [39] provide an excellent survey of optimistic replication algorithms,
which are essentially synchronization algorithms. They distinguish the following
phases of synchronization: update submission at multiple sites, update propaga-
tion, update scheduling, conflict detection and resolution, and commitment to
final reconciliation result. The scheduling of update operations is of particular
interest in the context of multiple master sites with background propagation,
which leads to the challenge that not all update operations are received at all
sites in the same order. Furthermore, Saito and Shapiro distinguish several key
characteristics of optimistic replication:

– Single vs. multi-master synchronization: Synchronization scenarios can in-
volve different numbers of master sites. Master sites are those that can mod-
ify replicas. In contrast, slave sites store read-only replicas. The scope of this
tutorial is limited to master-slave (i.e., unidirectional) and master-master
(i.e., bidirectional) synchronization.

– State-transfer vs. operation transfer : We discussed this distinction in Sec-
tion 8.1.

– Conflict detections and resolution granularity: Conflicts may be easier to
resolve if smaller sub-objects are considered.

– Syntactic vs. semantic update operations : Replicas can be compared syntac-
tically or semantically. This distinction is concerned with the extent to which
the synchronizer system is aware of the application semantics of the replicas
and the update operations. Semantic approaches avoid some conflicts that
would arise in syntactic approaches, but are more challenging to implement.

– Conflict management : This characteristic is concerned with the way the sys-
tem defines and handles conflicts. Conflict detection policies can be syntactic
or semantic. Conflict resolution may involve selecting one update among a

Design Space of Heterogeneous Synchronization 41

set of conflicting ones while the others are discarded, storing all conflict-
ing updates in each synchronized replica, or allowing replicas to diverge for
conflicting updates [27].

– Update propagation strategy: This dimension includes the degree of syn-
chrony, e.g., pull vs. push strategies, and the communication topology, e.g.,
star vs. ad-hoc propagation.

– Consistency guarantees: Some synchronizers may guarantee consistency of
the accessed replicas while other may give weaker guarantees, such as guaran-
teeing that the state of replicas will eventually converge to being consistent.

An additional dimension given by Foster et al. [27] is

– Homogeneityvs.heterogeneity:Thisdimensionrefers to thedistinctionwhether
the data to be synchronized adheres to a single schema or to different schemas
expressed in the same schema language (e.g., relational algebra). The focus
of this tutorial is on heterogeneous synchronization.

Saito and Shapiro [39] and Foster et al. [27] give many example of existing
synchronization systems; however, Harmony [27] seems to be the only generic
synchronizer handling heterogeneous replicas. Harmony is concerned with the
special case of mappings which are functions. The same case is also studied in
databases as the view update problem, e.g., see Bancilhon and Spyratos [40] and
Gottlob et al. [41].

9.2 Data Integration and Schema Mapping

Another related area is data integration, which is concerned with integrating data
from multiple sources, such as different databases. A particular challenge in this
context is schema integration, i.e., the integration of the vocabularies defined by
the schemas, which is addressed by schema matching. Bernstein and Rahm [42]
provide an excellent survey of approaches to automated schema matching.

9.3 Inconsistency Management in Software Development

Software artifact synchronization is a topic in inconsistency management in soft-
ware engineering [2, 5, 6, 8, 43]. Spanoudakis and Zisman [8] provide a survey of
this area. They identify a broad set of activities related to inconsistency man-
agement: detection of overlaps (i.e., identification of relationships), detection of
inconsistencies, diagnosis of inconsistencies, handling of inconsistencies, tracking
(not all inconsistencies need to be resolved), and specification and application of
an inconsistency management policy. Grundy and Hosking [7] explore architec-
tures and user-interface techniques for inconsistency management in the context
of multiple-view development environments.

9.4 Model Management and Model Transformation

Software artifact synchronization is also closely related to model management
and model transformation. In model-driven software development (MDSD) [12],

42 M. Antkiewicz and K. Czarnecki

models are specifications that are inputs to automated processes such as code
generation, specification checking, and test generation. Furthermore, models in
MDSD are typically represented as object graphs conforming to a class model
usually referred to as a metamodel.

Model management is concerned with providing operators on models such as
comparison, splitting, and merging. Bernstein et al. argued for the need of such
generic model operators and the existence of mappings among models as first-
class objects [44]. Later, Bernstein applied the model management operators to
three problems: schema integration, schema evolution, and round-trip engineer-
ing [45]. Brunet et al. [4] wrote a manifesto for model management, in which they
argue for an algebraic framework of model operators as a basis for comparing
different approaches to model merging. Indeed, the use of operators in our design
space was partly inspired by this manifesto. The diff operator corresponds to the
homogeneous comparison operator presented in this tutorial. Furthermore, the
manifesto refers to updates as transformations and to the application of updates
as patching. The manifesto defines additional operators, e.g., split and slice. The
operators in this tutorial treat the relation R as an implicit parameter. In con-
trast, the operators in the manifesto are defined explicitly over artifacts and
relations. While the manifesto focuses on homogeneous merge, our design space
is concerned with heterogeneous synchronization. In fact, bidirectional synchro-
nizers with reconciliation can be understood as heterogeneous merge operations.
One of the uses of model management is detecting and resolving inconsisten-
cies in models, e.g., see work by Egyed [46] and Mens [47]. Sriplakich et al. [48]
discuss a middleware approach to exchanging model updates among different
tools. Finally, Diskin [49, 50] proposes using category theory as a mathematical
formalism for expressing the operators for both homogeneous and heterogeneous
generic model management.

Another related area is model transformation, which is concerned with pro-
viding an infrastructure for the implementation and execution of operations on
models. Mens et al. [51] provide a taxonomy of model transformation and apply
it to model transformation approaches based on graph transformations [52]. The
taxonomy discusses several tool-oriented criteria such as level of automation,
preservation, dealing with incomplete and inconsistent models, and automatic
suggestion of transformations based on context. Czarnecki and Helsen [53] sur-
vey 26 approaches to model transformation. The survey and the design space
presented in this tutorial both use a feature-based approach and have some
features in common, such as target incrementality, source incrementality, and
preservation of user edits in the target. In contrast to this tutorial, the survey
mainly focuses on the different paradigms of transformation specification, such
as relational, operational, template-based, and structure-driven approaches, and
it does not consider reconciliation. Some ideas for an algebraic semantics for
model transformations are presented by Diskin and Dingel [54].

The topic of bidirectional model transformation has recently attracted in-
creased attention in the modeling community. Stevens [24] analyzes proper-
ties of the relational part of OMG’s Query View Transformation (QVT) and

Design Space of Heterogeneous Synchronization 43

argues that more basic research on bidirectional transformation is needed before
practical tools will be fully realizable. Giese and Wagner [25] identify a set of
concepts around bidirectional incremental transformations. In particular, they
distinguish between bijective and surjective bidirectional transformations. The
latter correspond to the situation where several sources correspond to a single
target. Furthermore they refer to a transformation as fully incremental if the
effort of synchronizing a source model change is proportional to the size of the
source change. Finally, Ehrig et al. [36] study the conditions under which model
transformations based on triple-graph grammars are reversible.

10 Conclusion

In this tutorial we explored the design space of heterogeneous synchronization,
i.e., the synchronization of artifacts of different types. We presented a number
of artifact operators that can be used in the implementation of synchronizers
and presented 16 example synchronizers. The example synchronizers illustrate
different approaches to synchronization and can be characterized along a number
of dimensions, such as directionality, incrementality, original-target-dependency,
and support for the reconciliation of concurrent updates. For some of the syn-
chronizers, we provided examples of existing systems that implement a given
approach to synchronization. Furthermore, we discussed a number of additional
design decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchronization re-
sult from a set of alternatives. Finally, we discussed important works in related
fields including data synchronization, inconsistency management in software en-
gineering, model management, and model transformation.

Acknowledgments. The authors would like to thank Zinovy Diskin, Lech
Tuzinkiewicz, and the anonymous reviewers for their valuable comments on ear-
lier drafts of this tutorial.

References

1. Frederick, P., Brooks, J.: No silver bullet: essence and accidents of software engi-
neering. Computer 20(4), 10–19 (1987)

2. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between
multiple views in requirements specification. In: ICSE, pp. 187–196 (1993)

3. Maier, M.W., Emery, D., Hilliard, R.: Software architecture: Introducing ieee stan-
dard 1471. Computer 34(4), 107–109 (2001)

4. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa, pp. 5–12 (2006)

5. Balzer, R.: Tolerating inconsistency. In: ICSE, pp. 158–165 (1991)
6. Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.

BCS/IEE Software Engineering Journal 11(1), 31–43 (1996)
7. Grundy, J., Hosking, J., Mugridge, W.B.: Inconsistency management for multiple-

view software development environments. IEEE Trans. Softw. Eng. 24(11), 960–981
(1998)

44 M. Antkiewicz and K. Czarnecki

8. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329–380. World Scientific Publishing Co, Singapore (2001)

9. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006),
http://www.lina.sciences.univ-nantes.fr/Publications/2006/JB06a

10. Antkiewicz, M.: Framework-Specific Modeling Languages. PhD thesis, University
of Waterloo (2008) (submitted for review)

11. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, Reading (2002)

12. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons, Chichester (2006)

13. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609. Springer, Heidelberg (2007)

14. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

15. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
A progress report. In: OOPSLA International Workshop on Software Factories
(2005); On-line proceedings

16. Antkiewicz, M., Tonelli Bartolomei, T., Czarnecki, K.: Automatic extraction of
framework-specific models from framework-based application code. In: ASE, pp.
214–223 (2007)

17. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. In: POPL, pp. 233–246 (2005)

18. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

19. Eclipse Foundation: Java Emitter Templates Component (2007),
http://www.eclipse.org/modeling/m2t/?project=jet

20. Eclipse Foundation: Eclipse Modeling Framework Project (2007),
http://www.eclipse.org/modeling/emf/?project=emf

21. Nickel, U.A., Niere, J., Wadsack, J.P., Zündorf, A.: Roundtrip engineering with
FUJABA. In: WSR, Fachberichte Informatik, Universität Koblenz-Landau (2000)

22. Aßmann, U.: Automatic roundtrip engineering. Electr. Notes Theor. Comput.
Sci. 82(5) (2003)

23. Sendall, S., Küster, J.M.: Taming model round-trip engineering (2004)
24. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open

questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

25. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

26. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implemen-
tations, and application scenarios. Technical Report tr-ri-07-284, Software Engi-
neering Group, Department of Computer Science, University of Paderborn (2007)

27. Foster, J.N., Greenwald, M.B., Kirkegaard, C., Pierce, B.C., Schmitt, A.: Exploit-
ing schemas in data synchronization. J. Comput. Syst. Sci. 73(4), 669–689 (2007)

http://www.lina.sciences.univ-nantes.fr/Publications/2006/JB06a
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/emf/?project=emf

Design Space of Heterogeneous Synchronization 45

28. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages; examples
and algorithms. Technical Report 2007-18, ECE, Univeristy of Waterloo (2007)

29. ATLAS Group: ATLAS Transformation Language (2007),
http://www.eclipse.org/m2m/atl/

30. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE, pp. 164–173 (2007)

31. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and
merging of architectural views. In: ASE, pp. 47–58 (2006)

32. IBM: Rational Software Modeler (2007),
http://www-306.ibm.com/software/awdtools/modeler/swmodeler/

33. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: ICSE, pp. 54–64 (2007)

34. Reiss, S.P.: Automatic code stylizing. In: ASE, pp. 74–83 (2007)
35. Object Management Group: MOF QVT Final Adopted Specification. OMG

Adopted Specification ptc/05-11-01 (2005),
http://www.omg.org/docs/ptc/05-11-01.pdf

36. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

37. Xiong, Y., Hu, Z., Takeichi, M., Zhao, H., Mei, H.: On-site synchronization of
software artifacts. Technical Report METR 2008-21, Department of Mathematical
Informatics, University of Tokyo (2008),
http://www.ipl.t.u-tokyo.ac.jp/∼xiong/papers/METR08.pdf

38. Pierce, B.C.: The weird world of bi-directional programming (2006) ETAPS invited
talk, slides,
http://www.cis.upenn.edu/∼bcpierce/papers/lenses-etapsslides.pdf

39. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005)

40. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981)

41. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Trans. Database Syst. 13(4), 486–524 (1988)

42. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

43. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships are
difficult! In: ICSE, pp. 676–681 (2003)

44. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex
models. SIGMOD Rec. 29(4), 55–63 (2000)

45. Bernstein, P.: Applying model management to classical metadata problems. In:
CIDR (2003)

46. Egyed, A.: Fixing inconsistencies in UML design models. In: ICSE, pp. 292–301
(2007)

47. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsis-
tencies using transformation dependency analysis. In: Nierstrasz, O., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214. Springer,
Heidelberg (2006)

48. Sriplakich, P., Blanc, X., Gervais, M.P.: Supporting transparent model update in
distributed case tool integration. In: SAC, pp. 1759–1766 (2006)

49. Diskin, Z., Kadish, B.: Generic model management. In: Rivero, Doorn, Ferraggine
(eds.) Encyclopedia of Database Technologies and Applications, pp. 258–265. Idea
Group (2005)

http://www.eclipse.org/m2m/atl/
http://www-306.ibm.com/software/awdtools/modeler/swmodeler/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.ipl.t.u-tokyo.ac.jp/~xiong/papers/METR08.pdf
http://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf

46 M. Antkiewicz and K. Czarnecki

50. Diskin, Z.: Mathemtics of generic specifications for model management. In: Rivero,
Doorn, Ferraggine (eds.) Encyclopedia of Database Technologies and Applications,
pp. 351–366. Idea Group (2005)

51. Mens, T., Van Gorp, P.: A taxonomy of model transformation. In: Proc. Int’l
Workshop on Graph and Model Transformation (2005)

52. Mens, T., Van Gorp, P., Varro, D., Karsai, G.: Applying a model transformation
taxonomy to graph transformation technology. In: Proc. Int’l Workshop on Graph
and Model Transformation (2005)

53. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

54. Diskin, Z., Diengel, J.: A metamodel independent framework for model transfor-
mation: Towards generic model management patterns in reverse engineering. In:
Favre, J.-M., Gasevic, D., Laemmel, R., Winter, A. (eds.) 3rd Int.Workshop on
Metamodels, Schemas, Grammas and Ontologies for reverse engineering, ATEM
2006 (2006)

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 47–77, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Reuse beyond Components with XVCL
(Tutorial)

Stan Jarzabek

Department of Computer Science, School of Computing
National University of Singapore, Singapore 117543

stan@comp.nus.edu.sg

Abstract. The basic idea behind software reuse is to exploit similarities within
and across software systems to avoid repetitive development work. Conven-
tional reuse is based on components and architectures. We describe how reuse
of structural similarities extends the benefits of conventional component reuse,
and realization of the concept with a generative technique of XVCL1. Structural
similarities are repetition patterns in software of any type or granularity, from
similar code fragments to recurring architecture-level component configuration
patterns. We represent any significant repetition pattern in subject system(s)
with a generic, adaptable, XVCL meta-structure. We develop, reuse and evolve
software at the level of meta-structures, deriving specific, custom systems from
their meta-level representations. Lab studies and industrial applications of
XVCL show that by doing that, on average, we raise reuse rates and productiv-
ity by 60-90%, reducing cognitive program complexity and maintenance effort
by similar rates. The approach scales to systems of any size. The benefits are
proportional to system size, and to the extent of repetitions present in subject
system(s). The main application of this reuse strategy is in supporting software
Product Lines.

1 Introduction

Software reuse is such a tempting idea as we see so much similarity within and across
software systems. Experienced developers become aware of the fact that software de-
velopment involves common themes that recur in variant forms from project to pro-
ject, and from one software system to another. Effective reuse strategy should help us
avoid repetitive development work. With reuse, we hope to exploit productivity im-
provements similarities offer, rather than develop similar systems from scratch.

Software Product Line (PL) approach [12] focuses on domain-specific reuse,
within a family of software systems that are known to have much in common with
one another. Domain-specific reuse can be easier and more effective than reuse across
arbitrary, possibly very dissimilar systems.

Consider a family of Role Playing Games (RPG) for mobile phones (Fig. 1). An
RPG player takes the role of a fictional character and participates in an interactive

1 XVCL: XML-based Variant Configuration Language, xvcl.comp.nus.edu.sg

48 S. Jarzabek

Jump Feeding
DigGem

Hunt

Fig. 1. A Product Line of games for mobile phones

Functional requirements

Deletion

Confirmation
DEL_CONFIRM

no confirmation
NO_DEL_CONFIRM

Delete Facility

do not
delete

delete
later

delete
both fac
and resv

Reservation method

By Requester
himself

By Middleman/Admin
MIDDLEMAN

Email Notification
EMAIL

Payment Dued Email
PAYMENT_DUED_EMAIL

Reservations Made Email
RESV_MADE_EMAIL

Reservations Modified Email
RESV_MODIFY_EMAIL

Reservations Deleted
Email

RESV_DEL_EMAIL

Facility Charges
FACILITY_CHARGE

Block Reservation
(BLOCK_RESV)

basic charges

Deposit
DEPOSIT

Tax
TAX

DiscountMultiple
Time Slots

Multiple facilities
MUL_FAC

Block Reservation Discount
BLOCK_RESV_DISC

User Loyalty
Discount

USER_DISC

Recurring reservations (daily,
weekly, monthly)

MUL_RECUR_TIME

Ad hoc reservations
MUL_TIME

View reservations

By DateBy Facility By UserBy Facility

FRS_1.1

variant features

DigGemDigGem

HuntHunt

JumpJump

FeedingFeeding

software products
PL members

product

derivation

PLA
reusable components

Functional requirements

Deletion

Confirmation
DEL_CONFIRM

no confirmation
NO_DEL_CONFIRM

Delete Facility

do not
delete

delete
later

delete
both fac
and resv

Reservation method

By Requester
himself

By Middleman/Admin
MIDDLEMAN

Email Notification
EMAIL

Payment Dued Email
PAYMENT_DUED_EMAIL

Reservations Made Email
RESV_MADE_EMAIL

Reservations Modified Email
RESV_MODIFY_EMAIL

Reservations Deleted
Email

RESV_DEL_EMAIL

Facility Charges
FACILITY_CHARGE

Block Reservation
(BLOCK_RESV)

basic charges

Deposit
DEPOSIT

Tax
TAX

DiscountMultiple
Time Slots

Multiple facilities
MUL_FAC

Block Reservation Discount
BLOCK_RESV_DISC

User Loyalty
Discount

USER_DISC

Recurring reservations (daily,
weekly, monthly)

MUL_RECUR_TIME

Ad hoc reservations
MUL_TIME

View reservations

By DateBy Facility By UserBy Facility

FRS_1.1

variant features

DigGemDigGem

HuntHunt

JumpJump

FeedingFeeding

software products
PL members

product

derivation

PLA
reusable components

Fig. 2. Product Line Architecture (PLA) and product derivation

story. All RPGs are similar, but they also differ in some functional requirements, and
in characteristics of a specific mobile device on which they run. The goal of mobile
device contents providers is to support possibly large number of games, on a possibly
wide range of mobile devices. Games for new mobile device models should be deliv-
ered fast. Much similarity among games makes reuse a promising approach to cut
game development time and effort. Product Line (PL) approach targets this goal [48].

The core idea of a PL approach is to set up a base of reusable assets, so-called PL
Architecture, PLA for short. Specific products are then built by reusing assets stored
in a PLA.

Fig. 2 depicts the main concepts behind the PL approach. A range of variant fea-
tures supported by a PLA are shown as a feature diagram on the left-hand-side of the
figure (details are not meant to be read). Reuse-based development is called product
derivation. Product derivation starts by selecting variant features for a product we in-
tend to build. We try to understand the impact of variant features on PLA compo-
nents, and select component configurations “best matching” variant features for a
product. This is followed by component customization to accommodate the impact of
variant features on components. Then, we integrate components to form a custom
product, and validate the product. If component integration or validation fails, we may
need to repeat the component selection, customization, integration and validation cy-
cle until the requirements for a new PL member are properly met.

The above product derivation model generalizes experiences from a number of in-
dustrial PL projects [15], and we use it as a reference model in this paper.

 Software Reuse beyond Components with XVCL 49

Software architectures and components are the main concepts behind conventional
approaches to realizing reuse in PLs. Modern component platforms (e.g., JEE or
.NET), design patterns, parameterization (e.g., Java generics, C++ templates, higher-
level functions or macros) and inheritance also contribute useful reuse solutions in
certain situations. Platform mechanisms have many advantages, but reuse benefits are
mostly limited to common services and middleware layers. Reuse potentials on a sys-
tem-wide scale, especially in the application domain-specific areas of business logic
and user interfaces, are more difficult to realize with component platform mechanism
alone. By setting up a PL, companies can also aim at reuse in domain-specific areas.

Some companies established and benefited from PL programmes [12][27][37]. At
the same time, a number of problems have also been reported. First, companies ob-
serve explosion of similar component versions in PLA. This hinders selection and
customization of components for reuse when deriving new products from a PLA.
Functionality already implemented may be difficult to reuse in new products [15], de-
feating the very purpose of establishing a PL. Second, product derivation lacks auto-
mation, and is done mostly manually, with help of complementary techniques such as
wizards or configuration files. Finally, to our best knowledge, benefits of compo-
nent/architecture-based reuse are mainly observed during new development, but are
less evident in long-term evolution of successful products.

It is the role of variability management strategy to provide effective solution to the
above problems. The main challenge of reuse is to handle variability across PL mem-
bers: We wish to derive PL members from a common set of reusable software assets,
a PLA. PL members share similarities, but variability in a domain causes that they
also differ one from another in variant features. Effectiveness of a reuse strategy de-
pends on how well we can exploit similarities, and deal with differences.

It follows that the ability to represent software in a generic and highly adaptable
form should be a prerequisite for successful reuse, and a prominent characteristic of a
PLA. Genericity is needed to express similarities among PL members. Adaptability
takes care of variant features that differ from one PL member to another.

Generic, adaptable software representations are the heart and soul of reuse. How-
ever, they are difficult to build with conventional component architectures. Conse-
quently, genericity remains underutilized in realizing today’s reuse strategies. Com-
ponents typically stored in a PLA are not generic enough, and their adaptation, mostly
manual, is too difficult for effective reuse.

Generic design is easier to achieve at the meta-level program representation than
at the level of conventional components. In this paper, we show a pragmatic way to
strengthen generic design capabilities of conventional reuse techniques with a gen-
erative programming technique of XVCL [45]. The approach works as follows: We
do initial design using conventional techniques, and then apply XVCL to build ge-
neric, adaptable meta-level structures. By doing that, we unify and reuse structural
similarity patterns of all types and granularity (e.g., similar classes, components and
patterns of collaborating components) for which conventional generic representa-
tions may not exist.

Such approach reaps reuse opportunities beyond what is possible with conventional
component/architecture reuse. It works for common middleware services, as well as
for application domain layers of user interfaces and business logic, which are particu-
larly difficult to componentize for reuse. On average, we reduce cognitive program

50 S. Jarzabek

complexity (and maintenance effort) of a program solution by 60-90%, raising the
levels of reuse by similar rates.

PLA contains all types of software assets such as code, documentation, models,
and test cases. Similarities and differences occur in PLA software assets and variabil-
ity management should address all of them. XVCL can manage variability in any as-
sets that can be expressed as text, written in a formal or informal language. Having
said that, in this paper we focus only on code assets.

In Section 2, we discuss the software similarity phenomenon with examples.
Sections 3 motivates XVCL and describes its concepts. Section 4 introduces detailed
XVCL mechanisms by means of a toy example. Section 5 illustrates application of
XVCL. We evaluate the XVCL approach in Section 6. Related work and conclusions
end the paper.

2 Software Similarity Phenomenon

Similarities are inherent in software. They show within and across application do-
mains as recurring similar software structures, so-called software clones. Clones ap-
pear in software for variety of reasons. Ad hoc copy-paste-modify practice leads to
repetitions. Recurring patterns of software requirements or design also induce repeti-
tions (e.g., analysis patterns [19] or design patterns [21]). Some clones are intentional
and play a useful role in a program [31] while some clones occur because of the limi-
tations of a programming language [26][33]. Cordy [13] describes situations where
refactoring clones is not a viable option because of the risks involved in changing the
software. Similarly, Rajapakse [39] describes trade-offs involved in refactoring clones
in web applications developed with PHP. Clones can also be induced by a design
techniques, for example, by standardized architectures and pattern-driven develop-
ment (e.g., Web architectures, JEE or .NET). Uniformity of design is desirable despite
inducing many repetitions. The above observations suggest that in many situations,
refactoring clones from programs is neither possible nor even desirable.

In case of families of similar systems, such as Software Product Lines, repetitions
are expected, evident and pervasive. With XVCL, we capture similar program struc-
tures recurring in products in a generic, non-redundant form at the meta-level, while
preserving clones intact in the actual program derived from the meta-level program
representation.

In this paper, we show the benefits of and trade-offs involved in changing the per-
spective from component reuse, to meta-level reuse of any structurally similar soft-
ware representations.

2.1 Simple and Structural Clones

Software clones are any program structures of considerable size and significant simi-
larity, irrespective of their type and granularity. The actual size and similarity (which
can be measured, for example, in terms of percentage of repeated code) is subjective,
varies with context, hence is left to human judgment. Similarity is a multi-faceted
phenomenon that escapes precise definition.

 Software Reuse beyond Components with XVCL 51

GUI

Business
Logic

DB

CreateUser.UI

User.DB

executes

stores
accesses

CreateTask.UI

CreateTask.BL

Task.DB

executes

visualizes

Task table

stores
accesses

CreateUser.UI

User table

DB Entity Classes

Fig. 3. Structural clones spanning multiple tiers of DEMS

Clones may or may not represent program structures that perform well-defined
functions. It is structural similarity among program structures, not their function that
is of our interest in this paper.

Research so far mostly focused on similar code fragments, so-called simple clones.
Simple clones may differ in parametric or non-parametric ways, for example some
clone instances may have inserted or deleted code lines as compared to others.

Software similarities are not limited to simple clones; similarities also exist at
higher levels of software representation. We call large-granular, design-level similar
program structures as structural clones [1]. Structural clones are patterns of inter-
related components/classes. They are often induced by the application domain (analy-
sis patterns) or design techniques.

Cloning situation shown in Fig. 3 has been found in a Domain Entity Management
Subsystem (DEMS) of a command-and-control application developed in C# by our
industry partner ST Electronics Pte Ltd (STEE). DEMS involves domain entities such
as User, Task or Resource. For each entity, there are operations, such as Create, Up-
date, View, Delete, Find or Copy.

The design of each operation such as CreateUser or Create Task involves a pattern
of collaborating classes from GUI, service and database layers. Each box in Fig. 3
represents a number of classes: GUI classes implement various forms to display or en-
ter data; Business Logic classes implement data validation and actions specific to
various operations and/or entities; Entity classes define data access; classes at the bot-
tom contain table definitions. Classes in corresponding boxes at each level display
much similarity, but there are also differences induced by different semantics of do-
main entities: For example, operation CreateTask requires different types of data en-
try and data validation than CreateUser.

Patterns of components implementing operations such as CreateUser and Cre-
ateTask form a structural clone class.

2.2 Clones in the Buffer Library

A study of the Buffer library JDK 1.5 provides interesting insights into sources of
software similarities. It also sheds light on the reasons why it is difficult to avoid
repetitions with conventional programming techniques such as componentization,

52 S. Jarzabek

Buffer

Element Type
(T) Access Mode

(AM)
Memory Allocation

Scheme (MS)

Direct

Native

View Buffer
(VB)

Read-Only Writable

Heap

Non-nativeLittle-Endian Big-Endian
int

float

short

long
char

double byte

Alternative
features

Mandatory
features

Byte Order
(BO)

Optional
features

Fig. 4. Features of buffer classes

Buffer

DoubleBufferByteBuffer CharBuffer IntBuffer FloatBuffer LongBuffer ShortBuffer

MappedByteBuffer

HeapByteBuffer

DirectByteBuffer

HeapCharBuffer

DirectCharBufferS

DirectCharBufferU

HeapIntBuffer

DirecIntBufferS

DirectIntBufferU

HeapByteBuffeR

DirectByteBufferR

HeapCharBufferR

DirectCharBufferRS

DirectCharBufferRU

HeapIntBufferR

DirecIntBufferRS

DirectIntBufferRU

Level 1

Level 2

Level 3

Fig. 5. A fragment of the Buffer library

type parameterization or inheritance. Here, we summarize the results from the Buffer
library study, referring the reader to [26] for details. Code and step-by-step explana-
tion of the Buffer library study can be found on XVCL Web site [45]. A study of STL
[3,41] further strengthens observations we make in this section.

A buffer contains data in a linear sequence for reading and writing. Buffer classes
differ in buffer element type, memory allocation scheme, byte ordering and access
mode. Features of buffer classes are shown in Fig. 4, as a feature diagram [29]. We see
five features groups, with specific variant features listed below a respective feature
group. Each legal combination of features from various groups yields a unique buffer
class. As we combine features, buffer classes grow in number, as observed in [5,9].

Some of the buffer classes are shown in Fig. 5. A class name, such as DirectInt-
BufferRS, reflects combination of features implemented into a given class. Class
names are derived from a template:

 Software Reuse beyond Components with XVCL 53

[MS][T]Buffer[AM][BO],
where
MS – memory scheme: Heap or Direct;
T – type: int, short, float, long double, char, or byte;
AM – access mode: W – writable (default) or R - read-only;
BO – byte ordering: S – non-native or U – native;
B – BigEndian or L – LittleEndian.

Classes whose names do not include ‘R’, by default are ‘W’ – writable.
Examination of buffer classes reveals much similarity among classes in seven

groups, namely

[T]Buffer,
Heap[T]Buffer,
Heap[T]BufferR,
Direct[T]Buffer[S|U],
Direct[T]BufferR[S|U],
ByteBufferAs[T]Buffer[B|L], and
ByteBufferAs[T]BufferR[B|L].

Classes in each group differ in method signatures, data types, keywords, operators,
and other editing changes. Some of the classes have extra methods and/or attributes as
compared to other classes in the same group.

A non-redundant, generic representation for groups of similar classes seems a vi-
able approach to achieving a simpler representation of buffer classes. It is interesting
to see why buffer classes could not be represented in a generic form.

Any solutions to unifying similarities must be considered in the context of other de-
sign goals developers must meet. Usability, conceptual clarity and good performance
are important design goals for the Buffer library. In many situations, designers could
introduce a new abstract class or a suitable design pattern to avoid repetitions. How-
ever, such a solution would compromise the above design goals, and therefore, was not
implemented. Many similar classes or methods were replicated because of that.

Many similarities in buffer classes sparked from the fact that buffer features (Fig. 4)
could not be implemented independently of each other in separate implementation
units (e.g., class methods). Feature modularization, one of the goals of Feature-
Oriented Programming [7,38], did not work for the Buffer library. Code fragments re-
lated to specific features appeared with many variants in different classes, depending
on the context. Whenever such code could not be parameterized to unify the variant
forms, and placed in some upper-level class for reuse via inheritance, similar code
structures spread through classes.

Since JDK 1.5 includes generics, one could presume that type parameterization
should have a role to play in unifying parametric differences among similar classes.
However, generics have not been applied to unify similar buffer classes. Groups of
classes that differ only in data type are obvious candidates for generics. There are
three such groups comprising 21 classes, namely [T]Buffer, Heap[T]Buffer and
Heap[T]BufferR. In each of these groups, classes corresponding to Byte and Char
types differ in non-type parameters and are not generics-friendly. This leaves us with
15 generics-friendly classes whose unification with three generics eliminates 27% of
code. There is, however, one problem with this solution. In Java, generic types cannot

54 S. Jarzabek

/*Creates a new byte buffer containing a shared
 subsequence of this buffer's content. */

public ByteBuffer slice() {
int pos = this.position();
int lim = this.limit();
assert (pos <= lim);
int rem = (pos <= lim ? lim - pos : 0);
int off = (pos << 0);
return new DirectByteBuffer(this, -1, 0, rem, rem, off);

}

Fig. 6. Method slice() recurring in 13 Direct[T]Buffer[S|U] classes

be primitive types such as int or char. This is a serious limitation, as one has to create
corresponding wrapper classes just for the purpose of parameterization. Wrapper
classes introduce extra complexity and hamper performance. Application of generics
to 15 buffer classes is subject to this limitation.

Buffer classes and methods differ in parameters representing constants, keywords
or algorithmic elements rather than data types. This happens when the impact of vari-
ous features affects the same class or method. For example, method slice() (Fig. 6) re-
curs 13 times in all the Direct[T]Buffer[S|U] classes with small changes highlighted
in bold. Generics are not meant to unify this kind of differences in classes. We found
yet other cases of similar but generics-unfriendly classes and we refer the reader to
further details of the generics solution (including code) to our case studies on XVCL
Web site [45].

In summary, generics have a rather limited role to play in unifying similarity pat-
terns that we find in practical situations such as we observed in the Buffer library. It is
interesting to note that repetitions often occur across classes at the same level of in-
heritance hierarchy, as well as in classes at different levels of inheritance hierarchy.
Programming languages do not have a proper mechanism to handle such variations at
an adequate (that is a sufficiently small) granularity level. Therefore, the impact of a
small variation on a program may not be proportional to the size of the variation.

3 XVCL Concepts

XVCL (XML-based Variant Configuration Language) provides a systematic treat-
ment for generic design problems that cannot be easily solved using conventional
techniques. In the reuse context, XVCL adds generic design and variability manage-
ment capabilities to conventional component/architecture Product Line techniques.

XVCL technology includes a language that helps represent programs in generic,
adaptable form, methods guiding project application of XVCL, and tools. XVCL
Processor is an interpreter of the XVCL notation. The Processor automates derivation
of custom, executable programs from their generic meta-level XVCL representation.
XVCL Workbench is an eclipse-based plug-in with additional tools such as a
static/dynamic analyzer, debugger and meta-level visualizer.

 Software Reuse beyond Components with XVCL 55

XVCL [45] is not yet another programming language. Developers still use conven-
tional design techniques, programming languages and platforms to express the core of
their program solution – user interfaces, business logic or databases. XVCL is applied
together and in synergy with any base programming technology, to enhance its capa-
bilities to define generic, adaptable, changeable and extendible software representa-
tions, as needed for effective reuse and evolution. We call it mixed-strategy.

XVCL provides a mechanism for designing generic meta-level representations to
unify groups of similar program structures of any kind and granularity. It also pro-
vides a change propagation mechanism to instantiate generic structures in multiple
variant forms, as required in target programs (e.g., PL members). For example, any
group of simple clones (e.g., slice() methods recurring in buffer classes) has a generic
representation in XVCL; so does each of the seven groups of similar buffer classes
([T]Buffer, Heap[T]Buffer, etc.), and a group of DEMS structural clones (Fig. 3).

Product Line members typically display much similarity. In Fig. 7, S-1, S-2, S3,
and S-4 is a similar program structure that recurs in four games in variant forms. A
PLA, built with the help of XVCL, represents each such group of similar structures in
a generic form (S-gen). At the same time, we also make a record of differences among
instances of a program structure in different games (circles at the bottom numbered 1,
2, 3 and 4). This record as well as S-gen are formally expressed in XVCL. The XVCL
Processor interprets specifications deriving custom instances of a programs structure
required in different games.

Unification of similar program structures is done at all levels of software represen-
tations, from similar code fragments (such as class methods), to classes, components,
and subsystems. At the end, we build a generic representation of PL members as a
PLA from which custom products are derived.

Generic XVCL meta-components are called x-frames. A PLA built with XVCL is
called an x–framework. Custom systems are derived from x-frames based on specifi-
cations of required customizations.

To represent in a generic form any similar program structures, we need powerful,
unrestrictive parameterization, and refined mechanisms to separate commonalties
from differences. We also need to build generic design solutions in a hierarchical
way, with small-granularity structures (e.g., class methods) being building blocks of
larger-granularity structures (e.g., classes). This will allow us to achieve reuse at as
many levels as it is required.

DigGemDigGem

HuntHunt

JumpJump

FeedingFeeding

S-1

S-4

S-3

S-2

S-gen

1 2 3
4

product
derivation

XVCL
Processor

PLA in XVCL

Functional requirements

Deletion

Confirmation
DEL_CONFIRM

no confirmation
NO_DEL_CONFIRM

Delete Facility

do not
delete

delete
later

delete
both fac
and resv

Reservation method

By Requester
himself

By Middleman/Admin
MIDDLEMAN

Email Notification
EMAIL

Payment Dued Email
PAYMENT_DUED_EMAIL

Reservations Made Email
RESV_MADE_EMAIL

Reservations Modified Email
RESV_MODIFY_EMAIL

Reservations Deleted
Email

RESV_DEL_EMAIL

Facility Charges
FACILITY_CHARGE

Block Reservation
(BLOCK_RESV)

basic charges

Deposit
DEPOSIT

Tax
TAX

DiscountMultiple
Time Slots

Multiple facilities
MUL_FAC

Block Reservation Discount
BLOCK_RESV_DISC

User Loyalty
Discount

USER_DISC

Recurring reservations (daily,
weekly, monthly)

MUL_RECUR_TIME

Ad hoc reservations
MUL_TIME

View reservations

By DateBy Facility By UserBy Facility

FRS_1.1

variant features

Fig. 7. A PLA for RPGs and product derivation with XVCL Processor

56 S. Jarzabek

4 XVCL by Example

We introduce XVCL mechanisms by means of a toy Product Line (PL). We use sim-
plified XML-free XVCL notation and do not cover many XVCL features that are use-
ful in practice, but not essential to understanding the essence of the approach. For full
specifications of XVCL, we refer readers to XVCL Web site [45].

Consider a PL whose members are similar Java classes. Each class can print any
number of messages. One such class SavingAccount is shown in Fig. 8. The class
name and the messages, variant features of our PL, are shown in bold in Fig. 8.

class SavingsAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Savings Account”);

}
}

Fig. 8. Class SavingsAccount printing two messages

An x-frame Account in Fig. 9 forms a PLA, and a SPeCification x-frame (SPC)
describes how to derive class SavingAccount from it .

x-frame Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
}

class SavingsAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Savings Account”);

}
}

x-frame SPC
<set className = SavingsAccount />
<set messages = This is a bank account, Savings Account/>
<adapt Account />

XVCL Processor

Fig. 9. Deriving class SavingsAccount from a generic x-frame Account

For readability, Java code in x-frames is shown in italics. The non-italics parts of
the x-frame body are in XVCL. We highlight names of XVCL commands in bold.

XVCL variables ‘className’ and ‘messages’ are assigned values in <set> com-
mands, in SPC. The value of variable ‘className’ is ‘SavingsAccount’. The value of
variable ‘messages’ is a list of values, namely “This is a bank account” and “Savings
Account”. We call ‘messages’ a multi-value variable.

 Software Reuse beyond Components with XVCL 57

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}
class LoanAccount {

public static void main(String[] args) {
System.out.println(“This is a bank account”);
System.out.println(“Loan Account”);

}
}

Fig. 10. Classes CurrentAccount and LoanAccont

XVCL Processor interprets x-frames from the top to the bottom, emitting any non-
XVCL text (Java code, in our case) to the output “as is”, and interpreting any XVCL
commands found on the way.

In our example, XVCL Processor starts processing with SPC, setting values of
variables first, and then switching processing to x-frame Account (a class template),
as instructed by <adapt> command (indicated by arrow between x-frames in Fig. 9).

In x-frame Account, ‘@className’ is a reference to variable ‘className’. XVCL
Processor emits the current variable value, in this case ‘SavingsAccount’.

Loop command <while> is controlled by a multi-value variable ‘messages’. The i-
th iteration of the loop uses the i-th value of the variable ‘messages’. In each iteration
over the <while> body, XVCL Processor emits Java code to print a message.

We now wish to derive from the same x-frame two other classes, PL members,
shown in Fig. 10.

With simple modifications of SPC, we derive class CurrentAccount (Fig. 11).

x-frame Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
}

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}

x-frame SPC
<set className = CurrentAccount />
<set messages = This is a bank account, Current Account/>
<adapt Account />

XVCL Processor

Fig. 11. Deriving class CurrentAccount a generic x-frame Account

58 S. Jarzabek

x-frame Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
}

class SavingsAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Savings Account”);

}
}

x-frame SPC
<set className = SavingsAccount, CurrentAccount,

LoanAccount />
<set common = This is a bank account/>
<while className>

<select option = className>
<option SavingsAccount >

<set messages = @common, Savings Account />
<adapt Account />

<option CurrentAccount >
<set messages = @common, Current Account />
<adapt Account />

<option LoanAccount >
<set messages = @common, Loan Account />
<adapt Account />

</select>
</while>

XVCL Processor

class CurrentAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Current Account”);

}
}

class LoanAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Loan Account”);

}
}

Fig. 12. Deriving three classes from x-frames

class FcAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Foreign Account”);

// extra messages for Foreign Account:
System.out.println();
System.out.println("Currency Swiss Francs");

}
// extra methods for FcAccount

int convert () { … }
int interest () { … }

}

Fig. 13. Class FcAccount printing extra messages

Derivation of all three classes is shown in Fig. 12. We define a common message
in variable ‘common’ and then define messages specific to different classes in rele-
vant <option>s of <select> command. In each <option>, multi-value variable ‘mes-
sage’ is <set> to contain messages required for a given class, and x-frame Account is
<adapt>ed accordingly.

In the final example, suppose that we also need a foreign currency account. A class
named FcAccount requires two extra methods, convert() and interest(), in addition to

 Software Reuse beyond Components with XVCL 59

x-frame Account
class @className {

public static void main(String[] args) {
<while messages>

System.out.println(“@messages”);
</while>

}
<break extra-methods>
}

class SavingsAccount {
}

x-frame SPC
<set className = SavingsAccount, CurrentAccount, LoanAccount, FcAccount />
<set common = This is a bank account/>
<while className>

<select option = className>
<option SavingsAccount >

<set messages = @common, Savings Account />
<adapt Account />

<option CurrentAccount >
<set messages = @common, Current Account />
<adapt Account />

<option LoanAccount >
<set messages = @common, Loan Account />
<adapt Account />

<option FcAccount >
<set messages = @common, Foreign Account />
<adapt Account >

<insert extra-methods>
// extra methods for Foreign Account:

int convert () { … }
int interest () { … }

</insert>
</select>

</while>

XVCL Processor

class LoanAccount {
}

class CurrentAccount {
}

class FcAccount {
public static void main(String[] args) {

System.out.println(“This is a bank account”);
System.out.println(“Foreign Account”);

}
// extra methods for Foreign Account:

int convert () { … }
int interest () { … }

}

Fig. 14. Deriving four classes from x-frame Account

the methods defined in previous classes. This new requirement for class FcAccount
was unexpected at the time when we designed x-frame Account. Such unexpected
changes often happen in software, and techniques for software reuse and evolution
should provide suitable mechanisms to handle it.

We use XVCL command <insert> into <break> to insert extra methods into class
FcAccount (Fig. 14). XVCL <insert> plays a similar role to weaving aspect code
in Aspect-Oriented Programming [32]. With <insert> command, we can modify
x-frames at designated <break> points in arbitrary ways. Notice that <break> in
x-frame Account allows us to extend any class with extra methods, if necessary.
However, <break> does not affect classes that do not need extra methods. If not
affected by <insert>, <break extra-methods> does not have any impact on classes
derived from x-frame Account.

By now, the reader is already familiar with basic XVCL mechanisms. We summa-
rize them below, adding some more details, not explained in the above examples.

XVCL variables and expressions provide a basic parameterization mechanism to
make x-frames generic. XVCL <set> command assigns a value to a variable. Typi-
cally, names of program elements manipulated by XVCL, such as components,
source files, classes, methods, data types, operators or algorithmic fragments, are
represented by XVCL expressions, which references variable (e.g., @className) is
the simplest form. Names of x-frames in <adapt> commands are often provided as

60 S. Jarzabek

XVCL expressions rather than strings, allowing the actual name of an <adapt>ed
x-frame to be determined during processing.

XVCL expressions are then instantiated by the XVCL Processor, according to the
context. For example, class names and messages are represented by XVCL variables
in the examples of Account classes.

XVCL variables accept a single value or a list of values. The latter are called multi-
value variables.

Other than parameterization, XVCL variables control <while> loops and <select>
structures, playing an important role in exercising the control over the processing of
x-frames and the actual custom code that XVCL Processor emits during processing.

As variable values propagate across x-frames, variables can coordinate chains of
all the customizations related to the same source of variation or change, that spans
across multiple x-frames. XVCL variable scoping and propagation rules are important
for achieving the overall goal of building generic, adaptable program representations.
During processing of x-frames, values of variables propagate from an x-frame where
the value of a variable is set, down to the lower-level x-frames. While each x-frame
may set default values for its variables, values assigned to variables in higher-level x-
frames take precedence over the locally assigned default values. In other words, once
a value of variable is <set> in x-frame A, XVCL Processor ignores any subsequent
<set> commands trying to assign value to that variable in x-frames <adapt>ed from
A. Thanks to this overriding rule, x-frames become generic and adaptable, with poten-
tial for reuse in many contexts.

Other XVCL commands that help us design generic and adaptable x-frames in-
clude <select>, <insert> into <break> and <while>. We use <select> command to
direct processing into one of the many pre-defined branches (called options), based on
the value of a variable. With <insert> command, we can modify x-frames at desig-
nated <break> points in arbitrary ways. XVCL expressions, <select> <insert> into
<break> are analogous to AOP’s mechanism for weaving advices at specified join
points. The difference is that XVCL allows us to modify x-frames in arbitrary ways,
at any explicitly designated variation points.

A <while> command iterates over its body, with each iteration generating similar,
but also different, program structures. A <select> command in the <while> loop al-
lows us to define messages specific to Account classes in the example discussed in
the last section.

5 Buffer Library in Java/XVCL

Buffer library can be considered a special kind of a PL whose members are buffer
classes. The overall solution to Buffer library PL in Java/XVCL is shown in Fig. 15.
A PLA built with XVCL is called an x-framework.

An arrow between two x-frames: X → Y is read as “X adapts Y”, meaning that X
controls adaptation of Y. At Level 3, we have seven generic class x-frames, one for
each of the seven groups of similar classes described in Section 2.2. Only two of
them, namely [T]Buffer.gen and Heap[T]Buffer.gen, are shown in Fig. 15.

XVCL Processor derives all classes in group [T]Buffer from x-frame
[T]Buffer.gen, based on specifications contained in specification x-frames SPC and

 Software Reuse beyond Components with XVCL 61

an x-framework for buffer classes

hasArrayhasArray()()

attribute declarationsattribute declarations

slice()slice()

Heap[T]Buffer.sHeap[T]Buffer.s[T]Buffer.s[T]Buffer.s

[[T]Buffer.genT]Buffer.gen Heap[T]Buffer.genHeap[T]Buffer.gen

SPC

generic classes

class specifications

generic methods

Buffer specifications

method fragmentmethod fragmentgeneric fragments

XVCL Processor
IntBuffer

ByteBuffer

CharBuffer

Java buffer classes

Level 1:

Level 4:

Level 2:

Level 3:

Level 5:

…

…

adapt relationship between x-frames

Legend:

input/output

Fig. 15. A Java/XVCL x-framework for Buffer library

public abstract class IntBuffer extends Buffer
extendsBuffer implements Comparable
{ final int[] hb;

IntBuffer(int mark, int pos, int lim, int cap,
int[] hb, int offset) { … }

IntBuffer(int mark, int pos, int lim, int cap)
{… }
public static IntBuffer allocate(int capacity)
{ … return new HeapIntBuffer(capacity) }
public static IntBuffer wrap(int[] array) {… }
public abstract IntBuffer slice();
public abstract IntBuffer duplicate();
…

}

public abstract class ShortBuffer extends Buffer
extendsBuffer implements Comparable
{ final short[] hb;

ShortBuffer(int mark, int pos, int lim, int cap,
short[] hb, int offset) { … }

ShortBuffer(int mark, int pos, int lim, int cap)
{… }
public static ShortBuffer allocate(int capacity)
{ … return new HeapShortBuffer(capacity) }
public static ShortBuffer wrap(short[] array) …}
public abstract ShortBuffer slice();
public abstract ShortBuffer duplicate();
…

}

Fig. 16. Differences among IntBuffer and ShortBuffer

[T]Buffer.s (details to be exaplined). Classes in other groups are derived in a similar
way from their respective generic and specification x-frames.

Each generic x-frame defines common part of classes in the respective group.
Smaller granular generic building blocks for classes are defined below, at Level 4
(methods) and Level 5 (fragments of method implementation or attribute declaration
sections). Therefore, lower-level generic components are composed, after possible
adaptations, to construct required instances of higher-level generic components. Level
1 and 2 are specification x-frames – they tell the XVCL Processor how to generate
specific components (buffer classes, in our case) from generic ones. Top-most x-
frame SPC sets up global parameters and exercises the overall control over the gen-
eration process. Specifications of controls for each of the seven groups of similar
classes are at Level 2.

The XVCL Processor interprets an x-framework starting from the SPC, traverses
x-frames below, adapting visited x-frames and emitting buffer classes in each group
one-by-one.

62 S. Jarzabek

public abstract class TBuffer extends Buffer <T>
extendsBuffer implements Comparable
{ final T[] hb;

TBuffer(int mark, int pos, int lim, int cap,
T[] hb, int offset) { … }

TBuffer(int mark, int pos, int lim, int cap)
{… }
public static TBuffer allocate(int capacity)
{ … return new HeapTBuffer <T> (capacity) }
public static TBuffer wrap(T[] array) { … }
public abstract TBuffer slice();
public abstract TBuffer duplicate();
…

}

Fig. 17. Generic class unifying five numeric [T]Buffer classes

<x-frame [T]Buffer.gen outfile = @TypeBuffer.java >
public abstract class @TypeBuffer extends Buffer
extendsBuffer implements Comparable
{ final @type[] hb;

Buffer(int mark, int pos, int lim, int cap,
@type[] hb, int offset) { … }

@TypeBuffer(int mark, int pos, int lim, int cap)
{… }
public static @TypeBuffer allocate(int capacity)
{ … return new Heap@TypeBuffer (capacity) }

…
}

<x-frame SPC >
<set Type = Int />
<set type = int />
<adapt [T]Buffer.gen />

<adapt >

XVCL
Processor

buffer class in Java

IntBuffer

Fig. 18. Deriving class IntBuffer from x-frames

In the sections to follow, we show the steps in building a Java/XVCL representa-
tion for seven classes in the group [T]Buffer, namely IntBuffer, ShortBuffer, Float-
Buffer, LongBuffer, DoubleBuffer, CharBufer and ByteBuffer.

5.1 Five Generics-Friendly Buffer Classes

Numeric type buffer classes differ one from another in type names only. Fig. 16 high-
lights in bold differences among IntBuffer and ShortBuffer.

 Software Reuse beyond Components with XVCL 63

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double />
<set type = int, short, float, long, double />
<while Type, type>

<adapt [T]Buffer.gen />
</while>

XVCL
Processor

buffer classes in Java

IntBuffer

ShortBuffer

FloatBuffer

LongBuffer

DoubleBuffer

<adapt>ed five times

<x-frame [T]Buffer.gen outfile = @TypeBuffer.java >
public abstract class @TypeBuffer extends Buffer
extendsBuffer implements Comparable
{ final @type[] hb;

Buffer(int mark, int pos, int lim, int cap,
@type[] hb, int offset) { … }

@TypeBuffer(int mark, int pos, int lim, int cap)
{… }
public static @TypeBuffer allocate(int capacity)
{ … return new Heap@TypeBuffer (capacity) }

…
}

Fig. 19. Deriving numeric buffer classes from x-frames

Such classes usually can be unified with type parameterization, called generics in
Java or C# or templates in C++. A generic class is shown in Fig. 17.

Fig. 18 shows a generic x-frame [T]Buffer.gen parameterized by two XVCL vari-
ables, namely ‘Type’ and ‘type’. By setting variable values in SPC, we derive class
IntBuffer from x-frame [T]Buffer. Attribute ‘outfile’ in x-frame [T]Buffer.gen de-
fines the name of a file, IntBuffer.java, where we want XVCL Processor emit code for
this class.

Fig. 19 shows derivation of all five numeric buffer classes from x-frame [T]Buffer.gen.
The reader should notice a fundamental difference between generics and XVCL:

Generics are defined in a program and can be instantiated during program execution.
On the other hand, in XVCL, all the classes are built in their concrete form before
program runs. XVCL is used at the program construction time, not at runtime.

5.2 Classes CharBuffer and ByteBuffer

Fig. 20 shows some of the differences among numeric buffer classes and class Char-
Buffer. For CharBuffer, we must update ‘implements’ clause (the second line), re-
define implementation of method toString(), and insert extra methods required in
class CharBuffer, but not needed in numeric buffer classes.

In x-frames of Fig. 21, <option Char> of <select> defines customizations required
for class CharBuffer, but not needed in other classes. We use <insert> commands in
the <adapt> body to update the ‘implements’ clause, to override the implementation
of method toString() and to add extra methods. Notice that <break toString> in
x-frame [T]Buffer.gen contains implementation of method toString() for all five
numeric buffer classes as default. If no <insert> affects the <break>, the default

64 S. Jarzabek

public abstract class IntBuffer extends Buffer
extendsBuffer implements Comparable
{ final int[] hb;

IntBuffer(int mark, int pos, int lim, int cap,
int[] hb, int offset) { … }

public String toString() { … }
}

public abstract class CharBuffer extends Buffer
extendsBuffer implements Comparable,CharSequence
{ final char[] hb;

CharBuffer(int mark, int pos, int lim, int cap,
char[] hb, int offset) { … }

public String toString() { different implementation }
many extra methods in Char Buffer:
public static CharBuffer wrap(CharSequence csq) { }
etc.

}

Fig. 20. Differences among classes IntBuffer and CharBuffer

contents of the <break> is processed as if there was no <break>. Any <insert> af-
fecting the <break>, overrides the default contents of the <break>.

At the bottom of the <select> there is <otherwise> clause that caters for all the
numeric buffer classes that are derived from x-frame [T]Buffer.gen as shown before,
without any further customizations. <otherwise> is processed five times, in iterations
when none of the other <option>s under <select> is processed, producing five nu-
meric buffer classes.

<x-frame [T]Buffer.gen outfile = @TypeBuffer.java >
public abstract class @TypeBuffer extends Buffer
extendsBuffer implements Comparable <break implements>
{ final @type[] hb;

Buffer(int mark, int pos, int lim, int cap,
@type[] hb, int offset) { … }

<break toString >

implementation of method toString() for numeric classes

<break extraMethods >

implementation of methods specific to CharBuffer
}

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double, Char />
<set type = int, short, float, long, double, char />
<while Type, type>

<select option = Type>
<option Char>

<adapt [T]Buffer.gen />
<insert implements >

,CharSequence
<insert toString >

implementation of method toString() for CharBuffer
<insert extraMethods >

implementation of extra methods for CharBuffer
<otherwise>

<adapt [T]Buffer.gen />
</while>

<adapt>ed six times

XVCL
Processor

buffer classes in Java

IntBuffer

ShortBuffer

FloatBuffer

LongBuffer

DoubleBuffer

CharBuffer

Fig. 21. Deriving numeric buffer classes and class CharBuffer

 Software Reuse beyond Components with XVCL 65

<x-frame SPC >
<set Type = Int, Short, Float, Long, Double, Char, Byte />
<set type = int, short, float, long, double, char, byte />
<while Type>

<select option = Type>
<option Char>

<adapt [T]Buffer.gen>
customizations for CharBuffer

<option Byte>
<adapt [T]Buffer.gen>

customizations for ByteBuffer
<otherwise>

<adapt [T]Buffer.gen/>
</select>

</while>

Fig. 22. SPC to derive seven [T]Buffer classes

SPC

[T]Buffer.s

[T]Buffer.gen

Heap[T]Buffer.s

methodsForCharBuffer methodsForByteBuffer

Fig. 23. An overview a Java/XVCL x-framework for Buffer library

Class ByteBuffer has yet other extra methods, not found in other [T]Buffer classes.
The solution is the same as for extra methods in class CharBuffer, and the resulting
SPC is shown in Fig. 22 (x-frame [T]Buffer.gen is the same as in Fig. 21).

An outline of the x-framework for the Buffer library is shown in Fig. 23, and its
details in Fig. 24.

5.3 Evaluation of Java/XVCL Solution for the Buffer Library

The size of the Java/XVCL solution was 68% smaller than buffer classes in Java (in
terms of lines of code, without blanks or comments). For the sake of fair comparison,
we designed the Java/XVCL x-framework so that buffer classes generated from it
were no different from the original classes. The physical size of a program is just one
among many factors that collectively determine ease of understanding and changing a
software system. Conceptual complexity is by far more important than the physical
size. Therefore, we compared the number of conceptual elements in Java and
Java/XVCL solutions. A conceptual element in a Java program is a class, method/

66 S. Jarzabek

SPC // specifies how to generate all the buffer classes
<set Type = Int, Short, Float, Long, Double, Char, Byte />
<set type = int, short, float, long double, char, byte />
<set elmntSize = 0, 1, 3, 2, 2, 3, 1 />
<adapt [T]Buffer.s />
<adapt Heap[T]Buffer.s />
…
<adapt ByteBufferAs[T]BufferR[B|L.s] />

x-frame [T]Buffer.s // specifies how to generate [T]Buffer classes
<while Type, type, elmntSize>

<select option = Type>
<option Char>

<adapt [T]Buffer.gen />
<insert implements >

,CharSequence
<insert toString >

implementation of method toString() for CharBuffer
<insert extraMethods >

<adapt extra-methods-CharBuffer />
<option Byte>

<adapt [T]Buffer.gen />
<insert extraMethods >

<adapt extra-methods-ByteBuffer />
<otherwise>

<adapt [T]Buffer.gen />
</select>

</while>

x-frame extra-methods-CharBuffer
public static CharBuffer wrap(CharSequence csq) {
… }

<x-frame [T]Buffer.gen outfile = @TypeBuffer.java >
public abstract class @TypeBuffer extends Buffer
extendsBuffer implements Comparable <break implements>
{ final @type[] hb;

Buffer(int mark, int pos, int lim, int cap,
@type[] hb, int offset) { … }

<break toString >

public String toString() {
StringBuffer sb = new

StringBuffer();

sb.append(getClass().getName(
));

etc.
return sb.toString(); }

}
<break extraMethods >
// methods specific to CharBuffer or ByteBuffer

}

x-frame extra-methods-ByteBuffer
public static ByteBuffer allocateDirect(int capacity)
{ return new DirectByteBuffer(capacity); }

Fig. 24. A fragment of a Java/XVCL x-framework for Buffer library

constructor, declaration section or a fragment of method/constructor implementation
that plays a role in the Buffer domain or in class design. Among classes at Level 1
(Fig. 5), there were 258 conceptual elements comprising 3,720 LOC (without blanks
or comments) in the original Buffer classes, versus 79 conceptual elements compris-
ing 1,400 LOC in the Java/XVCL representation. In the entire library, there were
1,385 conceptual elements comprising 6,719 LOC in the original classes, versus 324
conceptual elements comprising 2,080 LOC in the Java/XVCL representation.

This contraction of the solution space achieved by XVCL was a consequence of
representing each of the important similarity patterns in a unique generic form.

Other than reducing the physical size and conceptual complexity, the XVCL solu-
tion also emphasized important relationships among program elements that matter to
programmers who try to understand and modify the program. Due to genericity, in-
stead of dealing with each class separately from others, we could understand classes
in groups such as [T]Buffer or Heap[T]Buffer. We could see exact similarities and
differences among specific classes in a group. This information helps in reusing exist-
ing classes when designing new buffer classes. It also reduces ripple effects and the
risk of update anomalies, simplifying changes: If we want to change one class, we can
check if the change also affects other similar classes. If we want to change a class
method, we can analyze the impact of change on all the classes that use that method in
the same or similar form.

 Software Reuse beyond Components with XVCL 67

The above relationships are implicit in the Java buffer classes (as well as in most of
other conventional programs). A programmer must recover them whenever a program
must be understood for change.

To further support claims of easier changeability of the XVCL solution, we ex-
tended the Buffer library with a new type of buffer element – Complex. Then, we
compared the effort involved in changing each of the two solutions, Java classes and
Java/XVCL representation. Many classes must be implemented to address the Com-
plex element type, but in this experiment we concentrated only on three of them,
namely ComplexBuffer, HeapComplexBuffer and HeapComplexBufferR. In Java,
class ComplexBuffer could be implemented based on the class IntBuffer, with 25
modifications that could be automated by an editing tool, and 17 modifications that
had to be done manually. On the other hand, in the Java/XVCL representation, all the
changes had to be done manually, but only 5 modifications were required. To imple-
ment class HeapComplexBuffer, we needed 21 “automatic” and 10 manual modifica-
tions in Java, versus 3 manual modifications in the Java/XVCL. To implement class
HeapComplexBufferR, we needed 16 “automatic” and 5 manual modifications in
Java, versus 5 manual modifications in Java/XVCL.

6 Evaluation of XVCL

Applying a new technique does not come for free, it entails costs and involves trade-
offs. Therefore, to be attractive, a new technique must solve some important engineer-
ing problems, providing benefits that outweigh the cost. In this section, we evaluate
trade-offs involved in project application of XVCL.

We summarize experiences with XVCL first. We applied XVCL to building Prod-
uct Lines in a range of application domains (business systems, Web Portals, command
and control), programming languages (Java, C++, C#, ASP, PHP) and platforms
(JEE, .NET, Unix, Windows) [3,24,26,37,46,48,49]. We typically found 50%-90% of
code contained in similar program structures. The reasons that triggered repetitions
were often similar to what we observed in the Buffer library. The logical structure
of XVCL solutions was similar to the one we developed for the Buffer library, but as
we were dealing with more complex program situations, we had to decompose
x-frameworks into more layers than in the Buffer library.

6.1 Strengths

In XVCL, we represent each of the important similarity patterns in a unique generic,
but adaptable form, along with the information necessary to obtain its instances – spe-
cific program structures. Such generic software representation offers some interesting
engineering benefits. In particular, it (1) reduces the code size (in our studies, by 50-
90%), (2) contains less number of conceptual elements than the number of conceptual
elements in the concrete program, (3) bridges the gap between domain concepts and
code, as similarity patterns often represent domain-specific abstractions, (4) enhances
the conceptual integrity of the design, which Brooks calls “the most important consid-
eration in system design” [10], and (5) in addition to program code, contains informa-
tion that is helpful in program understanding, evolution and reuse, such as a record of

68 S. Jarzabek

similarities/differences among program structures, and traces of how various features
affect program components.

Generic structures built with XVCL can unify similarity patterns of any granularity
and type – from a subsystem, to pattern of components, to component, to class and to
program statement in class implementation. We can specify arbitrary differences
among similar program structures. Many similarity patterns crosscut system layers
and involve many components. Such similarities offer reuse opportunities that are
usually missed by conventional architecture-centric and component-based approaches
to reuse. XVCL exploits these extra reuse opportunities, often extending the scope
and rates of reuse achievable by means of conventional techniques.

We can benefit from non-redundancy at the level of XVCL representation, and still
keep clones in executable programs (as it is often desirable or unavoidable for the rea-
sons we discussed in this paper, and as observed by others [13][33]).

A programmer can intervene in any detail of the transition from the generic struc-
tures to concrete programs. This allows XVCL to escape the problem of the tech-
niques based on abstractions disconnected from the base code, which are found diffi-
cult to work with by maintenance programmers [13].

From the XVCL perspective, there is no distinction between maintainability (un-
derstood as the ease of changing software) and reusability. Both are achieved by
means of generic design, with provisions for fine control over instantiating generic
structures, matching practical needs of software reuse and evolution [24].

6.2 Weaknesses and How We Address Them

Despite potential benefits, applying XVCL also induces certain complexities. Design-
ing generic, reusable and maintainable solutions is always a challenge which requires
more talent, skill and time than building a concrete program. A concrete program is
only a prerequisite for applying XVCL.

An XVCL solution is expressed at two inter-mixed levels, in base programming
language(s) and wrapped in XVCL meta-structures. Thinking in terms of a mixed-
level representation such as Java/XVCL or JEE/XVCL is different from thinking in
terms of conventional program. This creates extra difficulties. However, we must
keep in mind that an XVCL solution contains much useful information for evolution
and reuse, in addition to information about the program(s) itself. We do not apply
XVCL for quick gains during development, but for long-term gains. XVCL targets at
long-lived programs that undergo extensive evolutionary changes, or need be tailored
to needs of multiple customers.

As we relax the coupling between the parameterization mechanism and the rules
(syntax and semantics) of the underlying programming language, the power of the
parameterization mechanism increases. For example, with C++ templates we can
unify a wider class of variations than with Java generics. At the end of this spectrum,
there are techniques that manipulate program structures with no regard to language
rules. XVCL is such a technique. By separating genericity issues from the core pro-
gramming constructs, we can address genericity concerns without compromising run-
time properties of programs. But as we move towards less restrictive parameterization
mechanisms, we also decrease type-safety of a program representation. Therefore,
there are important trade-offs to consider.

 Software Reuse beyond Components with XVCL 69

Specification, analysis and validation methods that work for concrete programs are
not directly applicable to XVCL program representations. Before such methods are
invented, skillful design, informal documentation and tools can mitigate problems to
some extent. An x-framework can be organized based on the usual principles of the
abstraction and separation of concerns. “Good design” can minimize the scope of an
x-framework that has to be analyzed at any time when an x-framework is modified or
reused. As lower levels x-frames become stable and reliable over time, potential er-
rors tend to be located only in top-most, context-specific and still fragile x-frames.

The feedback from our industry partner indicates that, in practice, the benefit of
enhanced reusability and maintainability may outweigh the cost of the added com-
plexity [37]: the learning curve and development effort of an XVCL solution can be
reasonable even for large programs (provided that an XVCL expert is also familiar
with an application domain and program itself). At the same time, the return on in-
vestment may be quick and substantial.

Could we do better by raising the level of abstraction of XVCL? We consider the
current form of XVCL an assembly language for generic design. XVCL contains the
minimum constructs to specify any generic structures along with adaptation changes
required to obtain their instances. Direct articulation is the source of XVCL’s expres-
sive power. However, specifications can get tedious and complex. At this point, we do
not know how to raise the level of abstraction without compromising the expressive

Fig. 25. A snapshot of XVCL Workbench

70 S. Jarzabek

power of the XVCL mechanism. In the future, we hope to discover abstractions that
will allow us to define higher-level forms of XVCL, equally expressive but free of
current pitfalls.

Tools may considerably simplify application of XVCL. We are developing an IDE
for XVCL called XVCL Workbench that helps in editing, visualizing, debugging and
static/dynamic analysis of x-frameworks. The upper left-hand-side Project Explorer
window (Fig. 25) shows x-frameworks. The Outline window below shows x-frame
structure in XML-free format. The upper right-hand-side window shows an x-frame
in raw XML format. A context-sensitive help popup menu shows XML commands
valid at a given editing point. The Workbench reports errors and warnings in the
lower right-hand-side window. A developer can examine static structure of an x-
framework or only x-frames visited by the Processor for a given SPC. In the future, a
developer will be able to ask queries about properties of x-frames, and run the Proces-
sor in a debugging mode. XVCL Workbench is implemented as a plug-in to the
Eclipse platform.

XVCL affects conventional development processes in a similar way as any sys-
tematic reuse strategy does. Changing the way people think about software, changing
existing processes and company structures has always been a challenge. At this point,
we know how XVCL can raise productivity of small teams of highly-skilled software
developers. We are yet to learn what it takes to inject XVCL methods into large-scale
team-based industrial development processes.

7 Related Work

We contrast XVCL with other techniques that target the similar goals.
XVCL has its roots in Frame Technology™ by Netron, Inc [4]. A number of

frame-based systems have been implemented in both industrial and academic institu-
tions [18]. We believe any system based on frame principles can achieve similar en-
gineering benefits as XVCL, independently of a specific syntactic representation that
different systems may use.

Frame Technology™ has been extensively applied to maintain multi-million-line
COBOL-based information systems and to build reuse frameworks in companies [4].
An independent assessment by QSM Associates, Inc. showed that frames could
achieve up to 90% reuse, reduce project costs by over 84% and their time-to-market
by 70%, when compared to industry norms [4]. We are in the lucky situation that the
basic principles of XVCL have been already tested in practice, though in a different
setting than ours. Our contribution is that we refined frame concepts into a general-
purpose technique of XVCL. We also demonstrated that XVCL can enhance modern
programming paradigms in areas of maintainability and reusability.

Macro-processors work on the principle of code expansion, and so does XVCL.
However, from the point of view of detailed mechanisms and engineering goals, there
are more differences among macro-processors and XVCL than similarities. Macros
work in local scope, only at the implementation level, which causes well-known prob-
lems when trying to tackle more complex change situations with macros [30]. XVCL
is full-fledged technique for taking advantage of software similarities and for control-
ling changes, from software architecture down to every detail of code. We believe it is

 Software Reuse beyond Components with XVCL 71

difficult to solve the problems we discussed in the paper with macros and other low
level program manipulation techniques such as scripting languages, providing engi-
neering qualities comparable to those we demonstrated with XVCL.

Software Configuration Management (SCM) systems [44] have been applied to
handle variant features in software. Rather than unifying similarity patterns induced by
features, for each legal combination of features, an SCM system maintains a separate
component version. Thousands of component versions arise in industrial applications
of product lines, creating problems for effective reuse [15]. It is difficult to synthesize a
comprehendible view of domain similarities and differences from multiple component
versions. In XVCL, we avoid this problem by designing generics components, and
maintaining a record (both human-readable and executable by the XVCL Processor) of
how to generate concrete components in required variant forms.

Powerful domain-specific solutions can be built by formalizing the domain knowl-
edge, and using generation techniques [42] to produce custom programs in a domain.
Advancements in modeling and generation techniques led to recent interest in Model-
Driven Engineering (MDE) [40], where multiple, inter-related models are used to express
domain-specific abstractions. Models are used for analysis, validation (via model check-
ing), and code generation. Platforms such as Microsoft Visual Studio™ and Eclipse™
support generation of source code using domain-specific diagrammatic notations.

This is in contrast with XVCL which is an application domain- and programming
language-independent technique. There is no concept of DSL in XVCL. XVCL
targets the similarity patterns in any application domain. Such similarity patterns
often represent important domain concepts – this observation is one of important con-
tributions of the research described in this paper. Therefore, many XVCL structures
(x-frames) map into domain concepts. However, in XVCL approach, the very phi-
losophy of how to arrive at these structures and how to represent them is fundamen-
tally different from domain-specific generators. Rather than extending the language
towards domain-specific abstractions, in XVCL we focus on identifying similarity
patterns, in both top-down and bottom-up ways, and unifying differences among
instances of such patterns with generic representations.

XVCL provides simple yet powerful means to achieve that. While we do not come
up with all possible domain concepts, we usually address domain concepts that are of
practical engineering importance. XVCL generic meta-level structures show realiza-
tion of such abstractions in the design/implementation solution space. Bridging the
gap between domain concepts and their implementation is a by-product of the process
of similarity analysis and unification. From this perspective, XVCL can be viewed as
a domain-independent technique for capturing some of the domain-specific abstrac-
tions. Therefore, even though there is no direct competition between XVCL and
domain-specific generation approaches, and the principle of the approaches and tech-
nical means are different, there is a certain overlap in goals achieved by domain-
specific generators and domain-independent XVCL.

In contrast to generation approaches, XVCL offers programming language-neutral
mechanisms specifically dedicated to unifying arbitrary differences among similar pro-
gram structures whose unification is deemed to be useful. As such, XVCL’s principle
of operation does not rely on the underlying language syntax or semantics, or even
knowledge of what they are. XVCL does code expansion at arbitrary program points,
according to pre-defined “composition with adaptation” rules. The expansion points,

72 S. Jarzabek

meta-level structures (x-frames) that are subject of “composition with adaptation”,
forms of their parameterization, as well as concrete program structures that result from
expansion are not constrained by the rules of the underlying programming language.

We believe the strength of generators lies in their ability to hide a part of program
complexity from a programmer by encoding application domain knowledge, rather
than in providing general means for unifying similarity patterns, which is one of the
prime goals of XVCL. We are not aware of any study that would demonstrate the fea-
sibility of solving problems as discussed in this paper by means of systems based on
domain-specific generators or language-specific transformations.

Dijkstra introduced a principle of separation of concerns to the software domain in
early 1980’s [16]. Recently, there’ve been a number of attempts to bring separation of
concerns from the concept down to the design and implementation levels. Aspect-
Oriented Programming (AOP) [32], Multi-Dimensional Separation of Concerns
(MDSOC) from IBM [43], and Feature-Oriented Programming (FOP) [7,38] are
among most widely published such techniques. Separation of concerns helps in main-
tainability, long-term evolution, and is also supportive to building more generic, reus-
able software. Though we did not come across applications of techniques based on
separation of concern to unify software similarities such as we discussed in this paper,
the very principle and techniques that help in its realization are most relevant to the
theme of this paper.

FOP [38] applies separation of concerns principle in an attempt to modularize fea-
tures, and then provides a mechanism for composing features into a base program.
Mixin is the most common technique for feature composition. AHEAD [7] is a well-
known and the most advanced realization of FOP concepts. The premise of AHEAD
is that features can be modeled separately one from another, and programs can be
constructed, evolved and reused by feature refinements defined as mathematical func-
tions. Refinements can add, override or extend data declarations and methods of
classes. A combination of features a given program implements is elegantly described
by hierarchical algebraic equations in a GenVoca grammar [6]. While the concept is
very appealing, its realization and scalability is a challenge. Program features tend to
have delocalized, diverse and highly irregular impact on program structures. Such fea-
tures may not fit into the above model.

In AOP, various computational aspects are programmed separately and weaved
into the base of conventional program modules of primary decomposition (e.g.,
classes). Aspect code is weaved into program modules at join points that are specified
in a descriptive way. AOP can simply and elegantly separate a range of programming
aspects such as synchronization, persistence, security transaction management, or au-
thentication/authorization. Due to such separation, aspects can be easily modified and
also added or deleted to/from program modules, which automatically become more
generic and reusable in different contexts.

The trust of the MDSOC approach [43] is separation of concerns to overcome a
“tyranny of a dominant decomposition” of programs into functional modules. Hyper-
slices are meta-level abstractions that encapsulate specific concerns and can be com-
posed in various configurations to form custom programs. Hyperslices are written in
the underlying programming language and can be composed by merging or overriding
program units by name and in many other ways. Compositions yield programs with

 Software Reuse beyond Components with XVCL 73

modified or extended behavior. Unlike in AOP, it is typical for hyperslices to repre-
sent functional units.

XVCL’s mechanisms cater for both generic design and separation of concerns [47].
Like AOP, MDSOC or FOP, XVCL offers a mechanism to define alternative program
decompositions at the meta- level. While groups of inter-related x-frames often corre-
spond to concerns, analysis of similarity patterns and design of generic XVCL repre-
sentations unifying similarity patterns plays a driving role in the process of developing
an XVCL solution. XVCL construct <while> facilitates generation of multiple custom
program structures from their generic representation. <while> does not have a counter-
part in generative techniques based on the separation of concerns principle only.

At the level of actual mechanisms, unlike in other approaches, XVCL’s composi-
tions (a counterpart of weaving aspect code in AOP) are defined in operational way
and take place at designated program points marked with <adapt>, <break> and other
XVCL commands. Concerns encapsulated in x-frames, in areas where separation of
concerns with XVCL is feasible, are unconstrained in the sense that they may overlap
one with another or form concern hierarchies, as one concern may contain other con-
cerns. XVCL’s concerns can be parameterized with XVCL commands, which further
enhances programmer’s ability to define variations in code at any level of granularity
that is required, from a subsystem or component, to a single program statement.

We believe each of the discussed techniques has its unique strengths and weak-
nesses: For different types of software domains and engineering goals, either AOP,
MDSOC, FOP or XVCL may yield the simplest, most elegant and useful solution.

8 Conclusion

Conventional reuse is based on component reuse. We described a technique called
XVCL (XML-based Variant Configuration Language) that is based on reuse of any
structural similarities. Similar programs structures are captured in generic form at the
meta-level. XVCL Processor derives custom instances of program structures from
their generic representation. We develop, reuse and evolve software at the level of
XVCL meta-structures, deriving specific, executable programs from it. Lab studies
and industrial applications of XVCL show that reuse of structural similarities extends
the benefits of conventional component reuse. On average, we raise reuse rates and
productivity by 60-90%, reducing cognitive program complexity and maintenance ef-
fort by similar rates. The approach scales to systems of any size. The benefits are pro-
portional to system size and to the extent of repetitions present in a system. The main
application of XVCL is in building Product Line Architectures for reuse.

Adopting a new technique always brings overheads and XVCL is no different in
this respect. We evaluated trade-offs involved in applying XVCL. The ultimate test
for new techniques is industrial practice. The initial feedback from our industry part-
ner STEE who applied XVCL in two projects indicates that the benefits of enhanced
reusability and maintainability outweigh the cost of the added complexity.

Methodological guidelines and tool support for applying XVCL, as well as scaling
XVCL from small teams of experts to larger team-based projects is the main chal-
lenge and the subject of our on-going work. We continue studies of a software simi-
larity phenomenon, addressing issues such as repetitions induced by the underlying
programming language and design technique. We plan to study formal properties of

74 S. Jarzabek

XVCL program representation to come up with suitable specification and verification
methods for XVCL solutions.

In the context of large programs, purely manual analysis to find similarity patterns is
too laborious to be practical. We implemented a Clone Minder [1], a tool that auto-
mates the search for clones as candidates for generic XVCL representations. Clone
Miner extends capabilities of clone detection tools such as Duploc [17] or CCFinder
[28] from simple clones (code fragments) to design-level similarity patterns.

Large software systems today comprise tens of millions of LOC, with thousands
of inter-related components (MS Windows approaches 100 million LOC). Ultra-
Large-Scale systems will comprise of billions lines of code [35]. Even with much
more successful forms of componentization that we have today, at the level of con-
crete programs we are bound to be exposed to the complexity of validating and
maintaining software proportional to a system size. Exploiting potentials hidden in
similarity patterns opens a pragmatic way to reduce this complexity by the rates pro-
portional to the rates of similarities a system exhibits. XVCL approach described in
this paper is an attempt to do that.

XVCL addresses design issues that are poorly supported by today’s programming
paradigms. We believe the full potentials of this simple yet powerful approach have
yet to be discovered.

Acknowledgements

Thanks are due to numerous students at National University of Singapore who par-
ticipated in various projects. Their names appear as co-authors of publications cited in
this paper. Collaborations with Paul Bassett and Ulf Pettersson contributed a lot to the
results and interpretations described in this paper. This research was supported by Na-
tional University of Singapore Research Grant R-252-000-239-112.

References

1. Basit, A.H., Jarzabek, S.: Detecting Higher-level Similarity Patterns in Programs. In:
ESEC-FSE 2005, European Soft. Eng. Conf. and ACM Symp. on the Foundations of Soft.
Eng., Lisbon, pp. 156–165 (September 2005)

2. Basit, H.A., Rajapakse, D.C., Jarzabek, S.: Beyond Generics: Meta-Level Parameterization
For Effective Generic Programming. In: Proc. 17th Int. Conf. on Software Engineering and
Knowledge Engineering, SEKE 2005, Taipei (July 2005)

3. Basit, H.A., Rajapakse, D.C., Jarzabek, S.: Beyond Templates: a Study of Clones in the
STL and Some General Implications. In: Proc. Int. Conf. Software Engineering, ICSE 2005,
St. Louis, May 2005, pp. 451–459 (2005)

4. Bassett, P.: Framing software reuse - lessons from real world. Yourdon Press, Prentice
Hall, Englewood Cliffs (1997)

5. Batory, D., Singhai, V., Sirkin, M., Thomas, J.: Scalable software libraries. In: ACM
SIGSOFT 1993: Symp. on the Foundations of Software Engineering, Los Angeles, Cali-
fornia, pp. 191–199 (December 1993)

6. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software Sys-
tems with Reusable Components. ACM Trans. on Software Engineering and Methodol-
ogy 1(4), 355–398 (1992)

 Software Reuse beyond Components with XVCL 75

7. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: Proc. Int.
Conf. on Software Engineering, ICSE 2003, Portland, Oregon, pp. 187–197 (May 2003)

8. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract
syntax trees. In: Proc. Int. Conf. on Software Maintenance, pp. 368–377 (1998)

9. Biggerstaff, T.: The library scaling problem and the limits of concrete component reuse.
In: 3rd Int. Conf. on Software Reuse, ICSR 1994, pp. 102–109 (1994)

10. Brooks, P.B.: The Mythical Man-Month. Addison-Wesley, Reading (1995)
11. Brooks, F.P.: No Silver Bullet, Computer Magazine (April 1986)
12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley, Reading (2002)
13. Cordy, J.R.: Comprehending Reality: Practical Challenges to Software Maintenance

Automation. In: Proc. 11th IEEE Intl. Workshop on Program Comprehension (IWPC
2003), pp. 196–206 (2003)

14. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

15. Deelstra, S., Sinnema, M., Bosch, J.: Experiences in Software Product Families: Problems
and Issues during Product Derivation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154,
pp. 165–182. Springer, Heidelberg (2004)

16. Dijkstra, E.W.: On the role of scientific thought, Selected Writings on Computing: A Per-
sonal Perspective, pp. 60–66. Springer, New York (1982)

17. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting du-
plicated code. In: Int. Conference on Software Maintenance, ICSM 1999, Oxford, UK, pp.
109–118 (September 1999)

18. Emrich, M.: Generative Programming Using Frame Technology, Diploma Thesis, Univer-
sity of Applied Sciences Kaiserslautern, Department of Computer Science, and Micro-
System Engineering, 29 (July 2003)

19. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading (1997)
20. Fowler, M.: Refactoring - improving the design of existing code. Addison-Wesley, Read-

ing (1999)
21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
22. Garcia, R., et al.: A Comparative Study of Language Support for Generic Programming.

In: Proc. 18th ACM SIGPLAN Conf. on Object-oriented Programming, Systems, Lan-
guages, and Applications, pp. 115–134 (2003)

23. Goguen, J.A.: Parameterized Programming. IEEE Trans. on Software Engineering SE-
10(5), 528–543 (1984)

24. Jarzabek, S.: Effective Software Maintenance and Evolution: Reused-based Approach.
CRC Press, Taylor and Francis (2007)

25. Jarzabek, S.: Genericity - a Missing in Action Key to Software Simplification and Reuse.
In: 13th Asia-Pacific Soft. Eng. Conference, APSEC 2006, Bangalore, India, December 6-
8, pp. 293–300 (2006)

26. Jarzabek, S., Li, S.: Eliminating Redundancies with a Composition with Adaptation Meta-
programming Technique. In: Proc. ESEC-FSE 2003, European Soft. Eng. Conf. and ACM
Symp. on the Foundations of Soft. Eng., Helsinki, September 2005, pp. 237–246 (2005);
extended version: Jarzabek, S., Li, S.: Unifying clones with a generative programming
technique: a case study. Journal of Software Maintenance and Evolution: Research and
Practice 18(4), 267–292 (2006)

76 S. Jarzabek

27. Jensen, P.: Experiences with Product Line Development of Multi-Discipline Analysis
Software at Overwatch Textron Systems. In: 11th Int. Software Product Line Conference,
SPLC 2007, pp. 35–43 (September 2007)

28. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A multi-linguistic token based code clone
detection system for large scale source code. IEEE Trans. Software Engineering 28(7),
654–670 (2002)

29. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report, CMU/SEI-90-TR-21, Software Engineering Institute, CMU, Pittsburgh (November
1990)

30. Karhinen, A., Ran, A., Tallgren, T.: Configuring designs for reuse, International Confer-
ence on Software Engineering. In: ICSE 1997, Boston, MA, pp. 701–710 (1997)

31. Kapser, C., Godfrey, M.W.: Cloning Considered Harmful Considered Harmful. In: Proc.
13th Working Conference on Reverse Engineering, pp. 19–28 (2006)

32. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

33. Kim, M., Sazawai, V., Notkin, D., Murphy, G.: An Ethnographic Study of Code Clone
Genealogies. In: ESEC-FSE 2005, European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Lisbon, pp. 187–196.
ACM Press, New York (2005)

34. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of function
clones in a software system using metrics. In: In Proc. Intl. Conference on Software Main-
tenance (ICSM 1996), pp. 244–254 (1996)

35. Northrop, L.: Ultra-Large Scale Systems: The Software Challenge of the Future, Software
Engineering Institute (June 2006) ISBN 0-978656-0-7

36. Parnas, D.: On the Criteria To Be Used in Decomposing Software into Modules. Commu-
nications of the ACM 15(12), 1053–1058 (1972)

37. Pettersson, U., Jarzabek, S.: An Industrial Application of a Reuse Technique to a Web Por-
tal Product Line. In: ESEC-FSE 2005, European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering, Lisbon, [34],
pp. 326–335. ACM Press, New York (2005)

38. Proofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Proc. Europe.
Conf. Object-Oriented Programming (1997)

39. Rajapakse, D.C., Jarzabek, S.: Using Server Pages to Unify Clones in Web Applications:
A Trade-off Analysis. In: Int. Conf. Software Engineering, ICSE 2007, Minneapolis, USA
(May 2007)

40. Schmidt, D.: Model-Driven Engineering. IEEE Computer, 25–31 (February 2006)
41. SGI STL, http://www.sgi.com/tech/stl/
42. Smaragdakis, Y., Batory, D.: Application generators. In: Webster, J. (ed.) Software Engi-

neering volume of the Encyclopedia of Electrical and Electronics Engineering. John Wiley
and Sons, Chichester (2000)

43. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In: Proc. International Conference on Software Engineering, ICSE
1999, Los Angeles, pp. 107–119 (1999)

44. Tichy, W.: Tools for Software Configuration Management. In: Proc. Int. Workshop on
Software Configuration Management, pp. 1–20. Teubner, Grassau (1988)

45. XVCL (XML-based Variant Configuration Language) method and tool for managing
software changes during evolution and reuse, http://xvcl.comp.nus.edu.sg

 Software Reuse beyond Components with XVCL 77

46. Zhang, H., Jarzabek, S.: A Mechanism for Handling Variants in Software Product Lines.
special issue on Software Variability Management, Science of Computer Program-
ming 53(3), 255–436 (2004)

47. Zhang, H.Y., Jarzabek, S., Soe, M.S.: XVCL Approach to Separating Concerns in Product
Family Assets. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 36–47. Springer, Hei-
delberg (2001)

48. Zhang, W., Jarzabek, S.: Reuse without Compromising Performance: Experience from
RPG Software Product Line for Mobile Devices. In: Obbink, H., Pohl, K. (eds.) SPLC
2005. LNCS, vol. 3714, pp. 57–69. Springer, Heidelberg (2005)

49. Yang, J., Jarzabek, S.: Applying a Generative Technique for Enhanced Reuse on J2EE
Platform. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 237–255.
Springer, Heidelberg (2005)

.QL: Object-Oriented Queries Made Easy

Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev,
Pavel Avgustinov, Torbjörn Ekman, Neil Ongkingco, and Julian Tibble

Semmle Limited

Abstract. These notes are an introduction to .QL, an object-oriented
query language for any type of structured data. We illustrate the use
of .QL in assessing software quality, namely to find bugs, to compute
metrics and to enforce coding conventions. The class mechanism of .QL
is discussed in depth, and we demonstrate how it can be used to build
libraries of reusable queries.

1 Introduction

Software quality can be assessed and improved by computing metrics, finding
common bugs, checking style rules and enforcing coding conventions that are
specific to an API. Many tools for these tasks are however awkward to apply in
practice: they often detract from the main task in hand. Above all, it is tough
to customise metrics and rules to one’s own codebase, and yet that is where the
greatest benefit lies.

These lectures present a new approach, where all these tasks related to soft-
ware quality are phrased as queries over a relational representation of the code
base. Furthermore, the language for expressing these queries is object-oriented,
encouraging re-use of queries, and making it easy to tailor them to a specific
framework or project. While code queries have been considered before (both
in industry and academia), the object-oriented query language (named .QL) is
unique, and the key to creating an agile tool for assessing software quality.

As an advance preview of .QL, let us briefly consider a rule that is specific to
the Polyglot compiler framework [46]. Every AST node class that has children
must implement a method named “visitChildren”. In .QL, that requirement is
checked by the query:

class ASTNode extends RefType {
ASTNode() { this.getASupertype+().

hasQualifiedName(”polyglot.ast”,”Node”) }
Field getAChild() {

result = this.getAField() and
result.getType() instanceof ASTNode

}
}
from ASTNode n
where not(n.declaresMethod(”visitChildren”))
select n, n.getAChild()

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 78–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

.QL: Object-Oriented Queries Made Easy 79

Of course this may appear rather complex to the reader for now, but the example
still serves to illustrate a couple of important points. First, this is a very useful
query: in our own research compiler for AspectJ called abc [4], we found no
less than 18 violations of the rule. Second, the query is concise and in a syntax
resembling mainstream languages like SQL and Java. Third, as we shall see later,
the class definition for ASTNode is reusable in other queries.

.QL has been implemented as part of an Eclipse plugin named SemmleCode.
SemmleCode can be used to query any Java project. It provides an industrial-
strength editor for .QL, with syntax highlighting, autocompletion and so on (as
shown in Figure 1). Furthermore, the .QL implementation itself is quite efficient.
Java projects are stored in relational form in a standard database system. That
database system can be a cheap-and-cheerful pure Java implementation such as
H2 (which is distributed with SemmleCode), or a dedicated system such as Post-
greSQL or SQL Server. With a proper database system in place, SemmleCode
can easily query projects that consist of millions of lines of code. That scalabil-
ity is another unique characteristic that sets SemmleCode apart from other code
querying systems.

Fig. 1. The SemmleCode editor

.QL is in fact a general query language, and could be thought of as a replace-
ment for SQL — the application to software quality in these notes is just an
example of its power. Like SQL, it has a simple and intuitive syntax that is easy
to learn for novices. In SQL, however, that simple syntax does not carry over to
complex constructs like aggregates, while in .QL it does. Furthermore, recursion
is natural in .QL, and efficiently implemented. Compared to the direct use of
recursion in SQL Server and DB2, it can be orders of magnitude faster. Finally,
its object-oriented features offer unrivalled flexibility for the creation of libraries
of reusable queries.

80 O. de Moor et al.

The structure of these lectures is as follows:

– First we shall consider simple queries, using the existing library of classes
that is distributed with SemmleCode. An important concept here is the
notion of non-deterministic methods, which account for much of the concise-
ness of .QL queries. We shall also examine features such as casts and instance
tests, which are also indispensable for writing effective queries in .QL.

– In the second part of these lectures, we take a close look at the object-oriented
features of .QL. First we illustrate the ideas with a number of motivating
examples, and then zoom in on a number of subtle issues in the design of
.QL’s class mechanism. As indicated above, our notion of classes somehow
must be tied to a traditional database, and we outline how that is done by
appropriate annotation of a database schema.

1.1 Exercises

Exercises for the reader have been sprinkled throughout these notes. Most of the
exercises involve writing a new query in .QL, and it is strongly recommended
that readers follow along with SemmleCode running on a computer. For full
instructions on how to install SemmleCode, visit the Semmle website [53].

The Java project used in the exercises is JFreeChart 1.0.6 [33]. We have cho-
sen JFreeChart because it is a well-written piece of Java code, and its developers
already make extensive use of checkstyle [12], the most popular Eclipse plugin for
checking coding rules. Nevertheless, as we shall see, there are still several prob-
lems and possible improvements that are easily unearthed with SemmleCode.

There is a special web page accompanying these notes that takes you through
the steps required to load JFreeChart in Eclipse, and populate the database with
facts about the project [54].

Each exercise has an indicator of its difficulty at the end: one heart is easy (less
than five minutes), two hearts is medium (requiring at most ten minutes), and
three hearts is a tough exercise (requiring up to fifteen minutes). Full answers
can be found in an appendix to these notes.

2 Program Queries

2.1 A Simple Query

Program queries allow programmers to navigate their source code to identify pro-
gram fragments with arbitrary semantic properties. As a simple example of a pro-
gram query in .QL, let us attempt to find classes which violate Java’s compareTo
/ equals contract. The Java documentation for the compareTo method states:

The natural ordering for a class C is said to be consistent with equals if
and only if (e1.compareTo((Object)e2) == 0) has the same boolean
value as e1.equals((Object)e2) for every e1 and e2 of class C . . . It
is strongly recommended (though not required) that natural orderings be
consistent with equals.

.QL: Object-Oriented Queries Made Easy 81

The following .QL query identifies those classes that only implement the
compareTo method without implementing the equals method. This is likely
to indicate a bug, though it is not necessarily erroneous:

from Class c
where c.declaresMethod(”compareTo”)

and
not(c.declaresMethod(”equals”))

select c.getPackage(), c

This query consists of three parts. First, the from statement declares the vari-
ables of interest (in this case just the class c that we are looking for) together
with their types. The second part of the query is the where clause imposing
some conditions on the results. In this query, the condition is that the class c
should declare a method called compareTo but not a method called equals. The
final part of the query is the select statement, to choose the data to return for
each search result, namely the package in which the offending class c occurs,
together with c itself. The order of the select items is chosen so that results are
presented grouped by the package in which they occur in the source.

The type Class is an example of a .QL class. This type defines those programs
elements which are Java classes, and defines operations on them. For instance,
declaresMethod is a test on elements of type Class, to select only those Java
classes declaring a particular method. We will be describing .QL types and classes
in more detail in Section 3, but examples will appear throughout.

Exercise 1. Run the above query on JFreeChart. You can do that in a number
of ways, but here the nicest way to look at the results is as a table, so use the
run button marked with a table (shown below) at the top right-hand side of the
Quick Query window. You will get two results, and you can navigate to the relevant
locations in the source by double-clicking. Are both of them real bugs? ♥

2.2 Methods

Predicates such as declaresMethod are useful, but can only filter results. Another
common task is to compute some properties of an element. This is achieved
by more general .QL methods, which may return results. Let us illustrate this
with an example query. Unlike the previous query, which attempted to detect
violations of Java’s style rules, and therefore could easily be hard-coded into a
development environment, the next query is domain-specific.

Suppose that we are working on a compiler, and would like to identify the
children of nodes in the AST, for instance to ensure that appropriate methods
for visiting children are implemented. To code this as a query, we declare three

82 O. de Moor et al.

variables: child for the field, childType for type of that field, and parentType for
the parent class:

from Field child, ASTNode childType, ASTNode parentType
where child.getType() = childType

and
child .getDeclaringType() = parentType

select child

The ASTNode class is an example of a user-defined class, picking out those types
that are AST nodes, and described further in Section 3. The methods getType
and getDeclaringType are defined in the class Field, and are used to find the
declared type of a field and the type in which the field declaration appears,
respectively. The ASTNode types appearing in the from clause serve to restrict
the range of values for the variables they qualify, so that values of the wrong
type are simply ignored.

This query is concise, but not terribly satisfactory. In the from clause, we
define variables childType and parentType to denote the types of the field and
its containing class respectively. However we are not really interested in these
types, and indeed they do not appear in the select clause. To avoid polluting
queries with such irrelevant types, local declarations can be introduced through
the exists statement:

from Field child
where exists(ASTNode childType | child.getType() = childType)

and
exists(ASTNode parentType | child.getDeclaringType() = parentType)

select child

An advantage of the resulting query is that the scopes of the variables repre-
senting the types of the field and the container are made explicit. There is a
further improvement to be made, however. These fields are only used to restrict
the types we are looking for, as we are only interested in AST nodes. We do
not need to know the exact types of the child and parent, and so it would be
better not to introduce variables to hold these types. .QL offers an instanceof
construct to achieve this, and we can finally rewrite the query as:

from Field child
where child.getType() instanceof ASTNode

and
child .getDeclaringType() instanceof ASTNode

select child

Exercise 2. Write a query to find all methods named main in packages whose
names end with the string demo. You may find it handy to use the predicate
string.matches(”%demo”) (as is common in query languages, % is a wildcard
matching any string). ♥

.QL: Object-Oriented Queries Made Easy 83

2.3 Sets of Results

Methods in .QL are a convenient way of finding properties of elements, as well as
a powerful abstraction mechanism in conjunction with classes. The methods we
have seen so far define attributes of elements, such as the declaring type of a field.
This is only represent a special case, however, since the data model behind .QL
is relational and thus allows methods to define arbitrary relationships between
elements.

As an example, we will consider a query to find calls to the System.exit
method. This method terminates the Java virtual machine, without offering the
opportunity to clean up any state. This should therefore usually be avoided, and
identifying calls to this method allows potentially fragile code to be found. The
query is:

from Method m, Method sysexit, Class system
where system.hasQualifiedName(”java.lang”, ”System”)

and sysexit.getDeclaringType() = system
and sysexit.hasName(”exit”)
and m.getACall() = sysexit

select m

The first line of the where clause identifies the java.lang.System class, while
the second and third lines find the exit method in this class. The last line is of
more interest. The expression m.getACall() finds all methods that are directly
called by m. This method returns a result for each such call, and any logical
test on the result is performed for each possible result. In this case, each method
called by m is compared to the exit method. If one of the calls matches (i.e.,
m calls exit), then the equality succeeds and m is returned. Otherwise, this
value of m is not returned. The query thus singles out just those methods that
(directly) call exit.

Methods returning several results can be chained arbitrarily. In the following
example, we search for calls between packages, that is all the calls from any
method in one package to any method in another package. This may be used to
construct a call graph representing dependencies between packages, and identify
potential problems such as cycles of dependencies between packages.

from Package caller, Package callee
where caller.getARefType().getACallable().calls(

callee .getARefType().getACallable())
and caller.fromSource()
and callee.fromSource()
and caller != callee

select caller , callee

The expression caller.getARefType() finds any type within the package caller, so
that caller.getARefType().getACallable() finds any method or constructor (re-
ferred to as a callable) within some type in the caller package. The use of meth-
ods returning several values greatly simplifies this expression, and avoids the

84 O. de Moor et al.

need to name unimportant elements such as the type or callable, focusing only
on the pairs of packages that we are searching for. As this expression (and its
analogue for callee) return all callables in the package, the query succeeds exactly
for those pairs of packages in which any callable of caller calls some callable in
callee. The predicate fromSource(), which holds of program elements defined in a
source file (as opposed to a Java class file), serves to exclude results from library
code. Finally, the last line of the where statement removes trivial dependencies
of packages on themselves.

The use of sets of results is sometimes called nondeterminism, and a method
that possibly has multiple results (like getARefType above) is said to be nonde-
terministic. Nondeterminism can sometimes be a bit subtle when used inside a
negation. For instance, consider the .QL method getACallable that returns any
callable (constructor or method) of a class. We could find classes that define a
method named “equals” with the query

from Class c
where c.getACallable().hasName(”equals”)
select c

In words, for each class c, we try each callable, and test whether it is named
“equals”; if one of these tests succeeds, c is returned as a result. Now consider
the dual query, where we wish to identify classes that do not have a method
named “equals”. We can do that just by negating the above condition, as in

from Class c
where not (c.getACallable().hasName(”equals”))
select c

The negated condition succeeds only when none of the tests on the callables of
c succeeds.

Exercise 3. The above queries show how to find types that define a method
named “equals”, and how to find types that do not have such a method. Write
a query picking out types that define at least one method which is not called
“equals”. ♥

Exercise 4. Continuing Exercise 1 about compareTo. You will have found that
one class represents a real bug, whereas the other does not. Refine our earlier
query to avoid such false positives. ♥ ♥

Exercise 5. Write a query to find all types in JFreeChart that have a field of type
JFreeChart. Many of these are test cases; can they be excluded somehow? ♥

2.4 .QL Type Hierarchies and Casts

In the previous section we defined a query to find all dependencies between
packages, by looking for method calls from one package to another. However,
such calls are only one possible way in which a package may depend on another
package. For instance, a package might use a type from another package (say with

.QL: Object-Oriented Queries Made Easy 85

a field of this type), without calling any methods of this type. This is intuitively a
dependency which we would like to record, and indeed there are many more ways
in which a package may depend on another. This is encapsulated in a method
getADependency, defined as part of the metrics library for Java programs.

The metrics library, which we shall be using throughout these notes, extends
the basic .QL class definitions for Java programs with additional methods to
compute information about dependencies in source code, and to evaluate various
quantitative metrics to analyse the code. In order to separate these definitions
from the basic classes, some .QL classes representing program elements, e.g.
RefType, are extended by counterparts in the metrics library, in this case Metric-
RefType, which contains all methods for computing dependencies and metrics
on reference types, in addition to the standard methods defined in RefType.
The class MetricRefType does not, however, restrict the set of elements that it
contains — any RefType is also a MetricRefType, and the metric class merely
provides an extended view of the same object. Figure 2 describes the inheritance
hierarchy for (part of) the standard .QL library for Java programs, with the
metrics classes highlighted. The metrics library makes crucial use of multiple

Element

MetricElement

Package

Member

Type

RefTypeMetricPackage

Class Interface

MetricRefType
Field Callable

MetricCallableMethod ConstructorNestedClass

Fig. 2. Standard Library: Inheritance Hierarchy (excerpt)

86 O. de Moor et al.

Fig. 3. A fragment of the graph showing inter-package dependencies in JFreeChart

inheritance for .QL classes (described later in Section 3) — a MetricPackage is
both a Package and a MetricElement.

Using the metrics library it is straightforward to find precise dependencies
between packages, as the class MetricElement defines the methods getADepen-
dency to find dependent elements, and getADependencySrc to find dependencies
from source. The query is shown below:

from MetricPackage p
select p, p.getADependencySrc()

This query finds all packages p, and for each p finds those packages defined in
source that depend on p. The results of this query form a dependency graph, part
of which is shown in Figure 3. Suppose, now, that we do not want to inspect just
the other packages that p depends on, but instead also the types that inhabit
such packages. At first you might want to write a query that looks like this:

from MetricPackage p
select p, p.getADependencySrc().getARefType() // incorrect!

However, that is in fact not type correct, because the result of the method
getADependencySrc is a MetricElement , and MetricElement does not have the
method getARefType. The .QL compiler therefore rejects the above query. We
must amend it by casting the result of getADependencySrc to a Package:

from MetricPackage p
select p, ((Package) p.getADependencySrc()).getARefType()

The cast here will always succeed because when given a package as the receiver,
getADependencySrc always returns another package. Similarly, starting from a
MetricRefType, it will always return a RefType.

Casts in .QL also behave like instanceof tests, limiting results to those of a
certain type. For instance, this query will filter out all the types that are not an
instance of Class :

from MetricPackage p
select p, (Class) ((Package)p.getADependencySrc()).getARefType()

It follows that casts in .QL never lead to runtime exceptions as they do in
languages like Java: they are merely a test that a logical property (in this case
a reference type being a class) is satisfied.

.QL: Object-Oriented Queries Made Easy 87

2.5 Chaining

The queries that we have seen so far find relatively local properties of program
elements, such as the declaring type of a field, or the relationship of one method
directly calling another. However, many properties of interest are highly nonlo-
cal, justifying the introduction of chaining, also known as transitive closure.

As an example, we shall write a query to find all types that represent AST
nodes in a compiler (in this case the Polyglot compiler framework [46]), as sug-
gested previously by our use of the ASTNode class. In Polyglot, AST nodes must
implement the Node interface, and so we are interested in all subtypes of this
interface. The standard .QL library for Java provides a convenient hasSubtype
method to find subtypes of a type, but this only finds immediate subtypes, in
this case all classes that implement Node directly. As we are also interested in
classes that are indirect descendents of Node, we must use chaining, written in
.QL using the + postfix operator:

from RefType astNode, RefType rootNode
where rootNode.hasQualifiedName(”polyglot.ast”,”Node”)

and (rootNode.hasSubtype+(astNode)
or

astNode = rootNode)
select astNode

The method hasSubtype+ picks out all direct and indirect subtypes of a type
(in this case the Node interface). AST nodes are defined as subtypes of Node,
together with Node itself. As this pattern is extremely common, simpler notation
is provided for possibly empty chains, as the query is equivalent to:

from RefType astNode, RefType rootNode
where rootNode.hasQualifiedName(”polyglot.ast”,”Node”)

and rootNode.hasSubtype∗(astNode)
select astNode

The ∗ operator (known as reflexive transitive closure in mathematics) defines
possibly empty chains from given relationships, such as the subtype relationship.
The symbols +, ∗may be familiar from repetition in regular expressions where a*
denotes any number of occurrences of a, while a+ denotes at least one occurrence
of a, justifying the intentional similarity in notation.

Exercise 6. There exists a method named getASuperType that returns some
supertype of its receiver, and sometimes this is a convenient alternative to using
hasSubtype. Uses of methods such as getASuperType that return an argument can
be chained too. Using x .getASuperType∗(), write a query for finding all subtypes
of org.jfree.chart.plot.Plot. Try to use no more than one variable. ♥

Exercise 7. When a query returns two program elements plus a string you can
view the results as an edge-labelled graph by clicking on the graph button (shown
below). To try out that feature, use chaining to write a query to depict the hierar-
chy above the type TaskSeriesCollection in package org.jfree.data.gantt.

88 O. de Moor et al.

You may wish to exclude Object from the results, as it clutters the picture.
Right-clicking on the graph view will give you a number of options for display-
ing it. ♥ ♥

2.6 Aggregates

We have so far seen .QL used to find elements in a program with certain prop-
erties. The language also offers powerful features to aggregate information over
a range of values, to compute numerical metrics over query results. These fea-
tures are substantially more expressive than their SQL counterparts, and allow
a wide range of metrics to be computed straightforwardly. As a first example,
the following query computes the number of types in each package in a program:

from Package p
select p, count(RefType c | c.getPackage() = p)

The count expression in this query finds those elements c of type RefType (all
reference types) satisfying the condition c.getPackage() = p. The value of the
expression is just the number of results, that is the number of reference types in p.

The above query is a simple example of the aggregate constructs in .QL. Ag-
gregates in .QL adopt the Eindhoven Quantifier Notation [21,34], an elegant
notation introduced by Edsger W. Dijkstra and others for the purpose of rea-
soning about programs. The general syntax for aggregates is

aggregateFunction (localVariables | condition | expression)

The aggregateFunction is any function for aggregating sets of values. The func-
tions provided in .QL are count, sum, max, min and avg (average). The
localVariables define the range of the aggregate expression, namely the variables
over the values of which the aggregation is computed. The condition restricts
the values of interest. In our previous example, the condition was used to re-
strict counting to those types in the appropriate package. Finally, the expression
defines the value to be aggregated. In our above example, the expression was
omitted. This is always possible when counting, as the value of each result in the
aggregation is irrelevant. The expression becomes very useful in other aggregates
such as summation, however. As an example, the following query computes the
average number of methods per type in each package:

from Package p
where p.fromSource()
select p, avg(RefType c | c.getPackage() = p | c.getNumberOfMethods())

This aggregate finds all reference types in the appropriate package, finds the
number of methods for each such type (which itself is easily defined as an aggre-
gate), and averages these numbers of methods.

.QL: Object-Oriented Queries Made Easy 89

Exercise 8. Display the results of the above query as pie chart, where each slice of
the pie represents a package and the size of the slice the averagenumber of methods
in that package. To do so, use the run button marked with a chart (shown on the
next page), and select ‘as a pie chart’ from the drop-down menu. ♥

Aggregates may be nested, as the expression whose value is being aggregated
is often itself the result of an aggregate. The following example computes the
average number of methods per class over an entire project:

select avg(Class c
| c.fromSource()
| count(Method m | m.getDeclaringType()=c))

This query contains two aggregates. The outermost aggregate computes an av-
erage over all classes c that are defined in source files. For each such class, the
value of the innermost aggregate is computed, giving the number of methods in
the class, and the resulting values are averaged. This example does not include
from or where clauses, as only one result is returned, so it is not necessary to
define output variables.

Metrics. An important use of aggregates in program queries is to compute
metrics over the code. Such metrics may be used to identify problematic areas
of the program, such as overly large classes or packages, or classes that do not
encapsulate a single abstraction. It is not our aim here to describe the vast library
of software metrics that have been proposed (see, for instance, [8,14,18,36,41,56]),
but we shall use such metrics as examples of the use of aggregates in .QL.

Many of these metrics are provided as a library, and use the object-oriented
features of .QL to achieve encapsulation and reusability, as illustrated in Figure 2.
However, as we discuss these features in Section 3, we shall simply express metrics
as standalone queries for now.

Instability. Instability is a measure of how hard it is to change a package without
changing the behaviour of other packages. This is represented as a number be-
tween 0 (highly stable) and 1 (highly unstable). Instability is defined as follows:

Instability =
EfferentCoupling

AfferentCoupling + EfferentCoupling

where the efferent coupling of a package is the number of types outside the
package that the package depends on, while the afferent coupling is the number
of outside types that depend on this package. Typically a package that has
recently been added and is still experimental will have high instability, because
it depends on many more established packages, while few other packages depend
on the new package. Conversely, a package with many responsibilities that is at
the core of an existing project will have low instability, and indeed such packages
are hard to modify.

90 O. de Moor et al.

It is easy to define queries to compute efferent and afferent coupling. As these
are similar, we present afferent coupling only:

from Package p
select p, count(RefType t

| t .getPackage() != p and
exists(RefType u |

u.getPackage() = p and
depends(t, u)))

where the depends predicate, part of the metrics library, is fairly straightforward
but lengthy, and so is omitted.

We now aim to define the instability metric. This is a clear case for the
expressiveness of .QL classes. Without encapsulation mechanisms, there is no
easy means of reusing definitions such as afferent coupling. In section 3 we shall
see how definitions such as afferent coupling can be defined as methods. These
definitions are in fact part of the metrics library and we can write the instability
metric in a straightforward way:

from MetricPackage p, float efferent, float afferent
where efferent = p.getEfferentCoupling()

and
afferent = p.getAfferentCoupling()

select p, efferent / (efferent + afferent)

Without methods, the aggregate expressions for efferent and afferent coupling
would have to be inlined, leading to a far less readable query. The above defini-
tion of instability is in fact itself available as a method named getInstability on
MetricPackage, so a shorter version is

from MetricPackage p select p, p.getInstability()

Exercise 9. Not convinced that metrics are any good? Run the above query
and display the results as a bar chart—the chart icon mentioned earlier for
creating pie charts (shown below) is also used to create bar charts by selecting
the appropriate option from the drop-down menu. It will be convenient to display
the bars in descending order. To achieve that sorting, add “as s order by s desc”
at the end of the query. Now carefully inspect the packages with high instability.
Sorting the other way round (using asc instead of desc) allows you to inspect
the stable packages. ♥

Abstractness. Abstractness measures the proportion of abstract types in a pack-
age, as a number between 0 (not at all abstract) and 1 (entirely abstract).
Packages should be abstract in proportion to their incoming dependencies, and
concrete in proportion to their outgoing dependencies. That way, making changes

.QL: Object-Oriented Queries Made Easy 91

is likely to be easy. There is therefore a relationship between abstractness and
instability: the more abstract a package is, the lower its instability value should
be. A highly abstract, highly stable package is well designed for its purpose
and represents a good use of abstraction; conversely, concrete packages may
be unstable as nothing depends on concrete packages. Abstract and unstable
packages, however, are likely to be useless and represent design flaws.

Abstractness is easy to define: it is just the ratio of abstract classes in a
package to all classes in this package. For a package p this may be written as:

from Package p, float abstract, float all
where all = count(Class c | c.getPackage() = p)

and abstract = count(Class c
| c.getPackage() = p and

c.hasModifier(”abstract”))
and abstract > 0
and p.fromSource()

select p, abstract / all

This query computes the number of types in the variable all and the number of
abstract types in abstract, and for nonempty packages returns the ratio of the
two. Again we gave this definition merely for expository reasons, as a method
named abstractness has already been defined on MetricPackage; therefore an
alternative query (which also sorts its results in descending order) is:

from MetricPackage p where p.fromSource() and p.abstractness() > 0
select p, p.abstractness() as a order by a desc

As in the previous exercise, this is a suitable query for viewing as a bar chart.
The result is shown in Figure 4.

Fig. 4. A bar chart of the abstractness of packages in JFreeChart

92 O. de Moor et al.

Semantics of Aggregation. Aggregates in .QL are extremely general con-
structs, and while their use is largely intuitive as our above examples have shown,
it is worth describing the exact meaning of aggregate queries in a little more de-
tail. This section may be omitted on first reading, but forms a useful reference
for the semantics of aggregate expressions.

An aggregate query of the form

aggregate (T1 x1, T2 x2, . . . , Tn xn | condition | expression)

ranges over all tuples (x1, . . . , xn) of appropriately-typed values satisfying condi-
tion. The condition is a conditional formula in which the variables xi may appear,
and which allows some of the tuples to be excluded. Variables defined outside
the aggregate may appear in the condition — the value of such variables is com-
puted outside the aggregate, and the aggregate is evaluated for each possible
assignment of values to external variables.

For each tuple (x1, . . . , xn) making the condition true, the expression is evalu-
ated. The values of the expression are then collected and aggregated (counted,
added, . . .). It is important to note that these values are not treated as a set,
but allow duplicates. As an example, consider the following expression:

sum (int i | (i=0 or i=1) | 2)

Evaluation of this proceeds as described above: the set of integers i satisfying the
condition i = 0 or i = 1 is collected, giving just the set {0, 1}. The expression
has a constant value of 2, so the values to be summed are two copies of 2 — one
for the assignment i = 0 and the other for the assignment i = 1. The result of
the aggregate is therefore 4 = 2 + 2.

As another example, consider the following:

sum (int i, int j
| (i=3 or i=4) and (j=3 or j=4)
| i∗i + j∗j)

This sum ranges over four tuples: (3, 3), (3, 4), (4, 3) and (4, 4). The result of the
sum is thus 18 + 25 + 25 + 32 = 100.

This notation is convenient, but it would be cumbersome to have to include
all parts of the aggregate, including the term and condition, when these are not
needed. A number of shorthands are therefore provided:

1. Counting: the expression can always be omitted in a count aggregate, as it
is irrelevant

2. Numerical values. For other aggregates, such as sum, the expression can
be omitted in exactly one case, namely if the aggregate defines one local
variable of numerical type. For instance, the aggregate

sum (int i | i=0 or i=1)

is simply equivalent to

sum (int i | i=0 or i=1 | i)

.QL: Object-Oriented Queries Made Easy 93

and thus adds the values of i matching the condition. This obviously cannot
be extended to non-numerical variables — it does not make sense to add
classes together!

3. Omitting condition: if the condition is not required, it may be omitted al-
together. For instance, adding the number of types in each package may be
written:

sum (Package p | | p.getNumberOfTypes())

This is particularly simple for counting, as both condition and expression
can be omitted. Simply counting the number of packages can be achieved
with

count (Package p)

Exercise 10. The following questions are intended to help reinforce some of the
points made above; you could run experiments with SemmleCode to check them,
but really they’re just for thinking.

1. What is sum(int i | i = 0 or i = 0 | 2)?
2. Under what conditions on p and q is this a true equation?

sum(int i | p(i) or q(i)) = sum(int i | p(i)) + sum(int i | q(i)) ♥

3 Object-Oriented Queries

So far we have merely written one-off queries, without any form of abstraction
to reuse them. To enable reuse, .QL provides classes, including virtual methods
and overriding, making it easy to adapt existing queries to new requirements.
We present these features in a top-down fashion. First, we discuss some moti-
vating examples, to give the reader a general feel for the way classes are used
in practice. Next, we take a step back and examine the semantics of classes
and virtual dispatch in some detail through small artificial examples. Finally, we
demonstrate how a class hierarchy in .QL can be built on top of a set of simple
primitive relations, of the kind found in traditional databases.

3.1 Motivating Examples

Classes. A class in .QL is a logical property: when a value satisfies that property,
it is a member of the corresponding type. To illustrate, let us define a class for
‘Visible Instance Fields’ in Java, namely fields that are not static and not private.
Clearly it is a special kind of normal Java field, so our new class is a subclass of
Field :

class VisibleInstanceField extends Field {
VisibleInstanceField () {

not(this.hasModifier(”private”)) and
not(this.hasModifier(”static”))

}

94 O. de Moor et al.

predicate readExternally() {
exists(FieldRead fr |

fr .getField()=this and
fr . getSite (). getDeclaringType() != this.getDeclaringType())

}
}

This class definition states that a VisibleInstanceField is a special kind of Field .
The constructor actually makes the distinguishing property of the new class pre-
cise: this field does not have modifier private or static. The conjunction of
the constructor with the defining property of the supertype is called the charac-
teristic predicate of a class. It is somewhat misleading to speak of a ‘constructor’
in this context, as nothing is being constructed: it is just a predicate, and nam-
ing it the character might have been more accurate. However, we adopt the
terminology ‘constructor’ because it is familiar to Java programmers.

The above class also defines a predicate, which is a property of some Visible-
InstanceFields. It checks whether this field is read externally. In order to make
that check, it introduces a local variable named fr of type FieldRead : first we
check that fr is indeed an access to this field, and then we check that the read
does not occur in the host type of this. In general, a predicate is a relation
between its parameters and the special variable this.

Newly defined classes can be used directly in select statements. For instance,
we might want to find visible instance fields that are not read externally. Ar-
guably such fields should have been declared private instead. A query to find
such offending fields is:

from VisibleInstanceField vif
where vif.fromSource() and

not(vif.readExternally())
select vif .getDeclaringType().getPackage(),

vif .getDeclaringType(),
vif

It should now be apparent that all those predicates we have used in previous
queries were, in fact, defined in the same way in classes as we defined readEx-
ternally. We shall shortly see how methods (which can return a result as well as
check a property) are defined as class members. It follows that while at first it
may appear that .QL is specific to the domain of querying source code, in fact it
is a general query language — all the domain-specific notions have been encoded
in the query library.

Classless Predicates. Sometimes there is no obvious class to put a new pred-
icate, and in fact .QL allows you to define such predicates outside a class. To
illustrate, here is a classless predicate for checking that one Java field masks
another in a superclass:

.QL: Object-Oriented Queries Made Easy 95

predicate masks(Field masker, VisibleInstanceField maskee) {
maskee.getName()=masker.getName() and
masker.getDeclaringType().hasSupertype+(maskee.getDeclaringType())

}

In words, the two fields share the same name, but the masker is defined in a
subtype of the maskee, while the maskee is visible. Such field masking is often
considered bad practice, and indeed it can lead to confusing programming errors.
Indeed, most modern development environments, including Eclipse, provide an
option for checking for the existence of masked fields. In .QL, any such coding
conventions are easily phrased as queries. In particular, here is a query to find
all the visible instance fields that are masked:

from Field f, VisibleInstanceField vif
where masks(f,vif)
select f , vif

Exercise 11. Queries can be useful for identifying refactoring opportunities. For
example, suppose we are interested in finding pairs of classes that could benefit
by extracting a common interface or by creating a new common superclass.

1. As a first step, we will need to identify root definitions: methods that are
not overriding some other method in the superclass. Define a new .QL class
named RootDefMethod for such methods. It only needs to have a constructor,
and no methods or predicates.

2. Complete the body of the following classless predicate:

predicate similar(RefType t, RefType s, Method m, Method n) { ... }

It should check that m is a method of t , n is a method of s , and m and n
have the same signature.

3. Now we are ready to write the real query: find all pairs (t , s) that are in
the same package and have more than one root definition in common. All of
these are potential candidates for refactoring. If you have written the query
correctly, you will find two types in JFreeChart that have 99 root definitions
in common!

4. Write a query to list those 99 root definitions in a table. ♥

Methods. Often the introduction of a classless predicate is merely a stepping
stone towards introducing a new class. Wrapping predicates in a class has several
advantages. First, your queries become shorter because you can use method dis-
patch and so there is no need to name intermediate results. Second, when typing
queries you get much better content assist, so you do not need to remember
details of all existing predicates.

To illustrate, we introduce a class MaskedField as a subclass of the class
VisibleInstanceField defined earlier:

class MaskedField extends VisibleInstanceField {
MaskedField() { masks(,this) }

96 O. de Moor et al.

Field getMasker() { masks(result,this) }
string getIconPath() { result = ”icons/semmle−logo.png” }

}

The constructor for this .QL class consists of the property masks(, this) stating
that this is being masked by some other field. Here, as in many other logic
languages, we use the underscore to represent a fresh variable whose value is
not relevant. Next the class introduces two methods. The getMasker() method
returns the masker of this. In general, the body of a method is a relation between
two special variables named result and this; the relation may also involve any
method parameters. Our new class also defines a method getIconPath, which is
used to determine the icon that is displayed next to a program element in the
results views provided by an implementation. In fact this overrides a method of
the same signature in Field , and so from now on masked fields will be displayed
differently from other fields. Somewhat frivolously, we have decided to give them
the Semmle icon.

A query that uses the above class might read:

from MaskedField mf select mf,mf.getMasker()

and the results will be displayed with the new icon we just introduced.
Note that predicates in a class are really just a special kind of method that

returns no result; indeed one could think of them as analogous to void methods
in Java. Also note, once again, that methods may be nondeterministic. Indeed,
in the above example, it is possible that one field in a Java class C is masked
by several fields in different subclasses of C . Nondeterminism is a natural con-
sequence of the fact that the method body is a relation between this, result
and the method parameters. There is no requirement that result is uniquely
determined.

Framework-specific Classes. It is often worthwhile to define new classes that
are specific to a particular framework, and we already encountered an example of
that earlier, namely ASTNode (in Section 2.2). Now we have all the machinery
at hand to present the definition of ASTNode. We assume the context of the
Polyglot compiler framework [46], which is intended for experimentation with
novel extensions of the Java language. In Polyglot, every kind of ASTNode is
an implementation of the interface polyglot.ast.Node. This can be directly
expressed in .QL:

class ASTNode extends RefType {
ASTNode() { this.getASupertype+().

hasQualifiedName(”polyglot.ast”,”Node”) }

Field getAChild() {
result = this.getAField() and
result.getType() instanceof ASTNode

}
}

.QL: Object-Oriented Queries Made Easy 97

Note the use of nondeterminism in the constructor: effectively it says that
there exists some supertype that implements the Node interface. The method
getAChild returns a field of an AST class, that is itself of an AST type. Of course
it can happen that no such field exists (if the class represents a terminal in the
grammar), or there may be multiple such fields.

In Polyglot, there is a design rule which says that every AST class that has
a child must implement its own visitChildren method. We now aim to write a
query for violations to that rule: we seek AST classes that do not declare a
method named visitChildren, yet a child exists:

from ASTNode n
where not(n.declaresMethod(”visitChildren”))
select n, n.getAChild()

At first it may appear that the condition that a child exists has been omitted,
but in fact we do attempt to get a child in the select part of the query. If no
such child exists then n.getAChild() will fail, and so the query will return no
results for this value of n — exactly what we intended.

This type of coding convention is extremely common in non-trivial frame-
works. Normally the conventions are mentioned in the documentation, where
they may be ignored or forgotten. Indeed, in our own use of Polyglot in the abc
compiler, there are no less than 18 violations of the rule. Interestingly, there are
no violations in any of the code written by the Polyglot designers themselves —
they do as they say. By making the rule explicit as a query, it can be shipped
with the library code, thus ensuring that all clients comply with it as well.

As another typical example of a coding convention, consider the use of a
factory. Again in Polyglot, all AST nodes must be constructed via such a factory;
the only exceptions allowed are super calls in constructors of other AST nodes.
Violation of this rule leads to compilers that are difficult to extend with new
features.

Definition of a class that captures the essence of an AST node factory in
Polyglot can be expressed in .QL as follows:

class ASTFactory extends RefType {
ASTFactory() { this.getASupertype+().

hasQualifiedName(”polyglot.ast”,”NodeFactory”)
}
ConstructorCall getAViolation() {

result.getType() instanceof ASTNode and
not(result.getCaller().getDeclaringType()

instanceof ASTFactory) and
not(result instanceof SuperConstructorCall)

}
}
The constructor is not interesting; it is just a variation of our earlier example
in ASTNode. The definition of getAViolation is however worth spelling out in
detail. We are looking for an AST constructor call which does not occur inside

98 O. de Moor et al.

an AST factory, and which is also not a super call from an AST constructor.
Again, we successfully used this query to find numerous problems in our own
code for the abc compiler.

Exercise 12. We now explore the use of factories in JFreeChart.

1. Write a query to find types in JFreeChart whose name contains the string
“Factory.”

2. Write a class to model the Java type JFreeChart and its subtypes.
3. Count the number of constructor calls to such types.
4. Modify the above query to find violations in the use of a factory to construct

instances of JFreeChart.
5. There are 53 such violations; it is easiest to view them as a table. The inter-

esting ones are those that are not in tests or demos. Inspect these in detail —
they reveal a weakness in the above example, namely that we may also wish
to make an exception for this constructor calls. Modify the code to include
that exception. Are all the remaining examples tests or demos? ♥

Default Constructors. New .QL classes do not have to define a constructor;
when it is not defined, the default constructor is the same as that of the super-
class. A .QL class with no constructor of its own does not define a new logical
property, but this can often be handy when we want to define a new method
that did not exist in the superclass, but which really belongs there.

For instance, suppose that we wish to define a method named depth that
returns the length of a path from Object to a given type in the inheritance hier-
archy. That method is not defined in the standard library definition of RefType,
but it really is a property of any reference type. In .QL, we can add it as such
via the definition

class RT extends RefType {
int depth() {

(this.hasQualifiedName(”java.lang”, ”Object”) and result=0)
or
(result = ((RT)this.getASupertype()).depth() + 1)

}
int maxDepth() {

result = max(this.depth())
}

}
That is, the depth of Object itself is 0. Otherwise, we pick a supertype, com-

pute its depth and add 1 to it. In the recursive step, we cast a RefType to a
RT , just so we can call depth on it. That cast will always succeed, because the
characteristic predicates of RT and RefType are identical. Because Java allows
multiple inheritance for interfaces, there may be multiple paths from a type to
Object , and therefore we also define a method for finding the maximum depth
of a type. This example was just for illustration and the same result can be
obtained via MetricRefType.getInheritanceDepth().

.QL: Object-Oriented Queries Made Easy 99

3.2 Generic Queries

To conclude our introduction to object-oriented queries, we consider the defini-
tion of a metric that exists both on packages and on reference types: the Lakos
level [36]. This metric, which was first introduced by John Lakos, is intended to
give insight into the layers of an application: at the highest level, are the most
abstract parts of the program, and at the bottom, utility elements. The Lakos
metric is part of the metrics library, and we shall describe how many of the
methods from this library that have already been used in earlier sections may
be defined.

To appreciate the level metric, consider the well-known drawing framework
JHotDraw. When arranging packages according to level, the highest point is a
package containing sample applications, and a low point is a package of utility
classes for recording user preferences. When arranging reference types according
to level, most of the high level types are classes containing a main method. An
example of a low reference type is again a utility class, this time for recording
information about a locale.

As illustrated by these examples, Lakos’s level metric is useful in sorting the
components of a program (be it packages or types) in a top-down fashion, to
ease exploration and to gain a bird’s-eye view of the structure of a system.

Formally, an element has no level defined if it is cyclically dependent on itself.
Otherwise, it has level 0 if it does not depend on any other elements. It has
level 1 if it depends on other elements, but those occur in libraries. Finally, if it
depends on another element at level n then it has level n+1.

Now note that this definition is truly generic: it is the same whether we are
talking about dependencies between packages or dependencies between types.
Consequently we can define an abstract class, which is a superclass both of ref-
erence types and packages. All we need to do to use the metric on particular ex-
amples is override the abstract definition of dependency, once in MetricRefType
and once in MetricPackage.

The abstract class (named MetricElement) is a subclass of a common super-
type of Package and RefType, namely Element . The first method we define is
getADependency: this returns another element that this depends on; and the
definition needs to be overridden both in MetricPackage and in MetricRefType.
Next, we define the notion of a Source Dependency, simply restricting normal
dependency to source elements. We impose that restriction because it does not
make sense to trace dependencies through all the libraries: we are interested
in the structure of the source itself. It remains to fill in the dots in the class
definition below by defining the level metric itself, and we shall do that below.

class MetricElement extends Element {

MetricElement getADependency() {
result=this // to be overridden

}

100 O. de Moor et al.

MetricElement getADependencySrc() {
result = this.getADependency() and result.fromSource()

}
...

}
We only define the level of elements in the source. Furthermore, as stated

in the above definition, if an element participates in a dependency cycle, then
it does not have a level. Here we test that by taking the transitive closure of
getADependencySrc: in other words, we only consider cycles through source ele-
ments. Next come three cases: first, if an element depends on no other elements,
it has level 0. Second, if it depends on some other elements but none of those
are in source, it has level one. Finally, if it depends on level n, it has level n +1:

int getALevel() {
this.fromSource() and
not(this.getADependencySrc+()=this) and
((not(exists(MetricElement t | t=this.getADependency()))

and
result=0)

or (not(this.getADependency().fromSource()) and
exists(MetricElement e | this.getADependency() = e) and
result=1)

or (result = this.getADependency().getALevel() + 1))
}

Our definition of the Lakos level metric is now almost complete. The above
definition of getALevel possibly assigns multiple levels to the same element.
Therefore, we take the maximum over all those possibilities, and that is the
metric we wished to define:

int getLevel() {
result = max(int d | d = this.getALevel())

}

Exercise 13. The above definition of getLevel is in the default library; write queries
to display barcharts. Do the high points indeed represent components that you
would consider high-level? For types, write a query that calculates how many
classes that have maximum level do not define a method named “main”. ♥

3.3 Inheritance and Method Dispatch

We have introduced the class mechanism of .QL through a number of motivating
examples; it is now time to take a step back and examine more closely what the
precise semantics are. In this subsection we shall use minimal examples; they are
artificial, but intended to bring out some subtle points in the language design.

Inheritance. A class is a predicate of one argument. So for example, we can
define a class named All that is true just of the numbers 1 through 4:

.QL: Object-Oriented Queries Made Easy 101

class All {
All() { this=1 or this=2 or this=3 or this=4}
string foo() { result=”A”}
string toString() { result = ((int)this).toString() }

}
Note that All does not have a superclass. Any such class that does not have an
ancestor must define toString , just to ensure that the results of queries can be
displayed. We have also defined a method named foo, for illustrating the details
of method overriding below. The query

from All t select t

will return 1, 2, 3 and 4.
Defining a subclass means restricting a predicate by adding new conjuncts.

For instance, consider the class definition below:

class OneOrTwo extends All {
OneOrTwo() {this=1 or this=2 or this=5}
string foo() { result=”B”}

}
This class consists just of 1 and 2. That is, we take the conjunction of the char-
acteristic predicate of All and the constructor. While 5 is mentioned as an alter-
native in the constructor, it is not satisfied by the superclass All . Consequently
the query

from OneOrTwo t select t

returns just 1 and 2. More generally, the predicate corresponding to a class is
obtained by taking the conjunction of its constructor, and the predicate corre-
sponding to its superclass.

Because classes are logical properties, they can overlap: multiple properties
can be true of the same element simultaneously. For instance, here is another
subclass of All , which further restricts the set of elements to just 2 and 3.

class TwoOrThree extends All {
TwoOrThree() {this=2 or this=3}
string foo() { result=”C”}

}
Note that the element 2 is shared between three classes: All , OneOrTwo and
TwoOrThree. The overlap between subclass and superclass is natural, but here
OneOrTwo and TwoOrThree are siblings in the type hierarchy. Overlapping
siblings are allowed in .QL, but they can lead to nondeterminism in method
dispatch, and we shall discuss that further below.

Summarising our account of classes so far, classes are predicates, and inheri-
tance is conjunction of constructors. It is easy to see what multiple inheritance
means in this setting: it is again conjunction. So for example, the following class
is satisfied only by the number 2, because that is the only element that its
superclasses have in common:

102 O. de Moor et al.

class OnlyTwo extends OneOrTwo, TwoOrThree {
OnlyTwo() { any() }
string foo() { result = ”D” }

}

As remarked previously, in cases like this where the constructor is just true, its
definition may be omitted.

A precise definition of what the predicate corresponding to a class definition
can now be stated as: that predicate is the conjunction of all constructors of all
its supertypes in the type hierarchy. It is not allowed to define a circular type
hierarchy in .QL, so this notion is indeed well-defined. Figure 5 summarises the
example so far, showing for each class what elements are satisfied, and what the
value returned by foo is.

All
1, 2, 3, 4

foo() = "A"

OneOrTwo
1, 2

foo() = "B"

TwoOrThree
2, 3

foo() = "C"

OnlyTwo
2

foo() = "D"

AnotherTwo
2

foo() = "E"

Fig. 5. Example Classes: Inheritance Hierarchy

Method Dispatch. Let us now consider the definition of method dispatch. A
method definition m of class C is invoked on a value x if x satisfies the defining
property of C , and there is no subclass D of C which defines a method m of
the same signature, and x also satisfies D . In words, we always apply the most
specialised definition.

In the above example, the query

from All t select t.foo()

returns “A”, “B”, “C” and “D”. It returns “A” because 4 satisfies All , but none
of the other classes. It returns “B” because 1 satisfies OneOrTwo but none of
the other classes. Next, “C” is returned because 3 satisfies TwoOrThree, but not

.QL: Object-Oriented Queries Made Easy 103

any of its subclasses. Finally, “D” appears because OnlyTwo is the most specific
class of 2.

What happens if there are multiple most specific types? This can easily occur,
as illustrated by

class AnotherTwo extends All {
AnotherTwo() {this=2}
string foo() { result=”E” }

}

Now the number 2 has two most specific types, namely OnlyTwo and AnotherTwo.
In such cases all most specific implementations are tried. In particular the query

from OneOrTwo t select t.foo()

returns “B”, “D”, and “E”. It is quite rare for such nondeterminism to be in-
tended, and it is therefore important to take care when designing a class hierar-
chy that few unintended overlaps between siblings occur. Of course it is always
possible to resolve the nondeterminism by introducing another subclass that
simultaneously extends all the overlapping subclasses.

Programmers who are familiar with object-oriented programming in Java may
find it at first disconcerting that dispatch is entirely based on logical properties.
The inheritance hierarchy is used only to build up those logical properties via
conjunction and more primitive predicates. The semantics of runtime dispatch
is however entirely in terms of the semantics of classes as predicates. Upon
reflection, that is analogous to the way method dispatch works in Java, based
on the runtime type of objects, and not at all influenced by static typing. The
design of .QL is thus consistent with traditional notions of object-orientation, in
that static type-checking and runtime semantics are not intertwined.

There is one small exception to the principle that dispatch is entirely a run-
time phenomenon, to avoid unwanted confusion between method signatures. In
deciding what method definitions to consider as candidates for dispatch, at com-
pile time the compiler inspects the static type of the receiver (i.e. x in a call
x .bar(..)) and finds the root definitions of the corresponding method: those are
definitions (of bar) in supertypes of the receiver type that do not override a
definition in another superclass themselves. All definitions of bar in subtypes
of the root definitions are possible candidates. As said, this is just a device to
avoid accidental confusion of method names, and it is not a key element of the
semantics of .QL.

In summary, method dispatch occurs in two stages, one static and one dy-
namic. To resolve a call x .bar(..), at compile-time we determine the static type
of x , say T . We then determine all root definitions of bar above T (methods with
the same signature that do not themselves override another definition). This is
the set of candidates considered for dispatch at runtime. At runtime itself, each of
the candidates applies only if the value of x satisfies the corresponding predicate,
and there is no more specific type that x also satisfies.

104 O. de Moor et al.

Exercise 14. Suppose the class OnlyTwo does not override foo. Does that make
sense? What does the .QL implementation do in such cases? ♥

Exercise 15. Construct an example to demonstrate how dispatch depends on
the static type of the receiver. ♥ ♥

3.4 Database Schema

We have claimed earlier that .QL is a general query language, which is specialised
to a particular application by constructing a class hierarchy. Indeed, it is our
claim that .QL can be used on any relational database. A key ingredient of that
argument is still missing, however, and that is how the class mechanism interacts
with information stored in such a relational database, and that is explained now.

Column types. The primitive relations store information about the type hi-
erarchy, class definitions, method definitions and so on. The schema for these
relations is just like that found in a normal relational database, giving field names
and types. The twist needed to create class definitions is that every field in fact
has two types: one for the use of the underlying database (a representation type),
and one for .QL (a column type).

For example, here is the schema for the table that represents method decla-
rations.

methods(int id: @method,
varchar(100) nodeName: string ref,
varchar(900) signature: string ref,
int typeid: @type ref,
int parentid: @reftype ref,
int cuid: @cu ref,
int location: @location ref);

In words, we store a unique identifier for each method, a name, a signature, the
return type, the declaring type, the compilation unit it lives in, and its location.
The first type for each field (set in teletype font) is its representation type. For
example, the unique method identifier happens to be an integer. Representation
types describe the values stored in the database, but are not exposed to .QL
programs, since it is undesirable to leak such low-level implementation details.
As a result, each field has another type (the column type) for use in .QL, shown in
italics above. Conventionally, column types start with the character ’@’, except
for primitive types such as string or int.

The declaration of the methods.id field doubles as the declaration of the type
@method: we define that type to be any value occurring in this column of the
methods table. Such a type defined simultaneously with a field is called a column
type. All the other fields have types that are references to column types that
already exist elsewhere. For instance, the cuid field (short for Compilation Unit
IDentifier) is a reference to the @cu type; and that type is defined in the table
that represents compilation units.

.QL: Object-Oriented Queries Made Easy 105

Not all column types are introduced via a field declaration, however. Some of
these are defined as the union of other types. For example:

@reftype = @interface | @class | @array | @typevariable;

This defines the notion of a reference type: it is an interface, or a class, or an
array, or a type variable.

3.5 From Primitives to Classes

Now suppose we wish to write a new class for querying Java methods. As we
have seen, there is a primitive relation methods one can build on. Furthermore,
classes can extend column types, and this is the key that makes the connection
between the two worlds. The characteristic predicate of a column type is just
that a value occurs in its defining column. We can therefore define

class MyMethod extends @method {
string getName() {methods(this,result, , , , ,)}
string toString() {result=this.getName()}

}
Note how we can refer to primitive relations in the same way as we refer to
classless predicates.

It should now be apparent that the design of the .QL language is indepen-
dent of its application to querying Java code, of even querying source code more
generally. There is a collection of primitive relations that comes with the appli-
cation, and those primitive relations have been annotated with column types. In
turn, those column types then form the basis of a class library that is specific
to the application in hand. In principle, any existing relational database can be
queried via .QL.

Of course annotating the database schema and constructing a good class li-
brary is not a trivial exercise. In the case of querying Java, the current distri-
bution of .QL has a schema that consists of about forty primitive relations, and
approximately fifty column types (there are more column types than relations
because some column types are unions of others). The corresponding library
of classes contains 70 class definitions, and amounts to 941 lines of .QL code
(excluding white space and comments).

Exercise 16. Extend the above class definition with getDeclaringType. ♥

4 Implementation

In earlier sections we have seen the .QL query language, providing a convenient
and expressive formalism in which to write queries over complex data. We then
discussed the object-oriented features of .QL, which allow complex queries to be
packaged up and reused in a highly flexible fashion. These features are essential
to build up a library of queries over programs, but this begs the question of
how .QL may be implemented, and it is the aim of this last section to describe

106 O. de Moor et al.

the implementation strategy. We first describe the intermediate language used
for .QL queries, a deductive query language known as Datalog. We then sketch
the translation of .QL programs into Datalog, before briefly outlining the imple-
mentation of Datalog queries over relational databases.

4.1 Datalog

.QL is based on a simple form of logic programming known as Datalog, originally
designed as an expressive language for database queries [26]. All .QL programs
can be translated into Datalog, and the language draws on the clear semantics
and efficient implementation strategies for Datalog. In this section we describe
the Datalog language before outlining how .QL programs may be translated into
Datalog. Datalog is essentially a subset of .QL, and as such we shall be using
.QL syntax for Datalog programs.

Predicates. A Datalog program is a set of predicates defining logical relations.
These predicates may be recursive, which in particular allows the transitive
closure operations to be implemented. A Datalog predicate definition is of the
form:

predicate p(T1 x1, ..., Tn xn) { formula }

This defines a named predicate p with variables x1, . . . , xn . In a departure from
classical Datalog each variable is given a type. These restrict the range of the
relation, which only contains tuples (x1, . . . , xn) where each xi has the type Ti .

The body of a Datalog predicate is a logical formula over the variables defined
in the head of the clause. These formulas can be built up as follows:

formula ::= predicate(variable, . . . , variable)
| test(variable, . . . , variable)
| variable = expr
| not(formula)
| formula or formula
| formula and formula
| exists(Type variable | formula)

That is, a formula is built up from uses of predicates through the standard logical
operations of negation, disjunction, conjunction and existential quantification.
In addition to predicates, tests are allowed in Datalog programs. A test is distinct
from a predicate in that it can only be used to test whether results are valid,
not generate results. An example of a test is a regular expression match. The
test X matches ”C%” is intended to match all strings beginning with “C”.
Evidently such a test cannot be used to generate strings, as there are infinitely
many possible results, but may constrain possible values for X . In contrast, a
predicate such as depends(A, B) may generate values — in this case, the variables
A and B are bound to each pair of elements for which A depends on B . In a

.QL: Object-Oriented Queries Made Easy 107

manner of speaking, variable occurrences in a test are non-binding: such variables
must also occur in a predicate.

Arguments to predicates are simply variables in Datalog, but expressions allow
the computation of arbitrary values. Expressions are introduced through formula
such as X = Y + 1 defining the value of a variable, and include all arithmetic
and string operators. In addition, expressions allow aggregates to be introduced.

expr ::= variable
| constant
| expr + expr
| expr× expr
| · · ·
| aggregate

Our definition of Datalog differs from usual presentations of the language in sev-
eral respects. The first difference is largely inessential. While we allow arbitrary
use of logical operators in formulas, most presentations requires Datalog pred-
icates to be in disjunctive normal form, where disjunction can only appear at
the top level of a predicate and the only negated formulas are individual pred-
icates. However, any formula may be converted to disjunctive normal form, so
this does not represent a major departure from pure Datalog. Expressions, on
the other hand, are crucial in increasing the expressiveness of the language. In
pure Datalog expressions are not allowed, and this extension to pure Datalog is
nontrivial, with an impact on the semantics of the language.

Datalog Programs. A Datalog program contains three parts:

1. A query. This is just a Datalog predicate defining the relation that we wish
to compute.

2. A set of user-defined, or intensional predicates. These predicates represent
user-defined relations to be computed to evaluate the query.

3. A set of extensional predicates. These represent the elements stored in the
database to be queried.

The general structure of a Datalog program therefore mirrors that of a .QL
program. The query predicate corresponds to the query in a .QL program, while
classes and methods may be translated to intensional predicates. Finally, in the
context of program queries the extensional predicates define the information that
it stored about the program. Examples may include the inheritance hierarchy, for
instance represented as a table hasSubtype of each type and its direct subtypes;
or the set of classes in the program.

Semantics and Recursion. The semantics of Datalog program are very
straightforward, in particular in comparison to other forms of logic program-
ming such as Prolog. A key property is that termination of Datalog queries is
not an issue. The simplicity of the semantics of Datalog programs (and by impli-
cation of .QL programs) is an important factor in its choice as an intermediate

108 O. de Moor et al.

query language, as it is straightforward to generate Datalog code. It is worth
exploring the semantics in a little more detail, however, as a few issues crop up
when assigning meaning to arbitrary Datalog programs.

For our purposes, the meaning of a Datalog program is that each predicate
defines a relation, or set of tuples, between its arguments. Other, more general,
interpretations of Datalog programs are possible [58], but this will suffice for our
purposes. An important feature is that these relations should be finite, so that
they may be represented explicitly in a database or in memory. It is customary
to enforce this through range restriction, that is to say ensuring that each vari-
able that is an argument to a predicate should be restricted to a finite set. In
our case, this is largely straightforward, as each variable is typed. Types such as
@class or @reftype restrict variables to certain kinds of information already in
the database, in this case the sets of classes or reference types in the program.
As there can only be finitely many of these, any variable with such a type is
automatically restricted. However, primitive types such as int are more trouble-
some. Indeed it is easy to write a predicate involving such variables that defines
an infinite relation:

predicate p(int X, int Y) { X = Y }
This predicate contains all pairs (X , X), where X is an integer, which is infinite
and therefore disallowed. As a result, the type system of .QL ensures that any
variable of primitive type is always constrained by a predicate, restricting its
range to a finite set.

In the absence of recursion, the semantics of a Datalog program is very
straightforward. The program can be evaluated bottom-up, starting with the
extensional predicates, and working up to the query. Each relation, necessarily
finite by range-restriction, can be computed from the relations it depends on by
simple logical operations, and so the results of the query can be found.

The situation is more interesting in the presence of recursion. Unlike other
logic programs in which evaluation of a recursive predicate may fail to terminate,
in Datalog the meaning of a recursive predicate is simply given by the least fixed
point of the recursive equation it defines. As an example, consider the recursive
predicate

predicate p(int X, int Y) { q(X, Y) or (p(X,Z) and q(Z,Y)) }
where q denotes (say) the relation {(1, 2), (2, 3), (3, 4)}. Then p denotes the so-
lution of the relation equation P = q ∪ P ; q, in which ; stands for relational
composition. This is just the transitive closure of q, so the relation p is simply

p = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
This least fixed point interpretation of Datalog programs makes it easy to find
the value of any predicate. For instance, consider

predicate p(int X) { p(X) }
This predicate would be nonterminating as a Prolog program. However, in Dat-
alog this is just the least solution of the equation P = P . As every relation
satisfies this equation, the result is just the empty relation!

.QL: Object-Oriented Queries Made Easy 109

More precisely, the meaning of a Datalog program can be defined as follows.
First, break the program up into components, where each component represents
a recursive cycle between predicates (formally, a strongly-connected component
in the call graph). Evaluation proceeds bottom-up, starting with extensional
predicates and computing each layer as a least fixed point as above.

There are two technical restrictions to the use of recursion in Datalog. The
first is known as stratification, and is necessary to deal with negation properly.
The problem can be illustrated by this simple example:

predicate p(@class X) { not(p(X)) }
What should this predicate mean? It is defined as its own complement, so a class
lies in p iff it does not lie in p. There is no relation satisfying this property, so we
cannot assign a simple relational interpretation to this program. To avoid this
issue, we only consider stratified Datalog. In this fragment of Datalog, negation
cannot be used inside a recursive cycle. That is, a cycle through mutually recur-
sive predicates cannot include negation. This is not a problem in practice, and
stratification is not a substantial obstacle to expressiveness.

A similar problem is posed by our use of expressions, which does not lie
in the scope of classical Datalog. While expressions increase the power of the
language, their interaction with recursion is problematic. For instance, consider
the following:

predicate p(int Y) { Y = 0 or (Y = Z+1 and p(Z)) }
Clearly 0 lies in p. Therefore 1 must also lie in p from the recursive clause, and
in this manner every number n lies in p. The use of expressions in recursive
calls may therefore lead to infinite relations, and thus nontermination. In .QL
this may also lead to nonterminating queries, and so care must be used when
using arithmetic expressions in recursive calls — if, as in the above example, the
expression can create new values for each recursive call, then the query may be
nonterminating.

4.2 Translating .QL

The precise semantics of .QL programs are defined by their translation into
Datalog programs. The outline of this translation is quite straightforward, as
the overall structure of .QL programs closely mirrors that of Datalog programs.
In particular, the query in a .QL program is translated into a Datalog query,
while methods and classless predicates are translated to Datalog intensional
predicates.

Translating Queries. The general form of a .QL() query (ignoring order by
clauses, which merely amount to a post-processing step) is:

from T1 x1, T2 x2, ..., Tn xn
where formula
select e1, e2, ..., ek

where each ei is an expression, and each xi is a declared variable of type Ti .

110 O. de Moor et al.

It is straightforward to translate this to a Datalog query, which is just a
standard predicate. The resulting relation has k parameters (one for each se-
lected expression), and so the query predicate has k parameters. The variables
x1 through xn can be introduced as local variables, defined by an existential
quantifier. As a result, the Datalog translation of the above query, omitting
types, is:

predicate p(res1, res2, ..., resk) {
exists (T1 x1, T2 x2, ..., Tn xn |

formula2
and res1 = e1
and res2 = e2
and ...
and resk = ek

)
}

where formula2 is obtained from formula by translating away all non-Datalog
features of .QL, and in particular method calls, as described below

Translating Classes. Classes are translated into individual Datalog predicates,
representing constructors, methods and class predicates. In most cases the trans-
lation is straightforward, the key aspect being the translation of method calls.

A .QL method is merely a particular kind of Datalog predicate involving two
special variables — this and result. The this variable holds the value that is a
member of the class, while the result variable holds the result of the method. As
an example, consider the following method to compute a string representation
of the fully qualified name of a type:

class RefType {
...

string getQualifiedName() {
result = this.getPackage() + ”.” + this.getName()

}

...
}

This is translated into the following Datalog predicate

predicate RefType getQualifiedName(RefType this, string result) {
exists(string package, string type |

RefType getName(this, type)
and RefType getPackage(this, package)
and result = type + ”.” + package

)
}

.QL: Object-Oriented Queries Made Easy 111

This extends to methods taking an arbitrary number of parameters, in which case
the two parameters this and result are simply added to the list of parameters.
Apart from the translation of method calls, which we will describe shortly, there
are few differences between the body of the method and the body of the generated
predicate. Class predicates are similar, but as predicates do not return a value,
the result variable is not used. For instance, the method

class RefType {
...

predicate declaresField(string name) {
this.getAField().getName() = name

}

...
}

is translated to the following Datalog predicate:

predicate RefType declaresField(RefType this, string name) {
exists(Field field |

RefType getAField(this, field)
and Field getName(field, name)

)
}

Both examples highlight one of the crucial advantages of .QL methods over
Datalog predicates, in addition to extensibility. In Datalog, it is necessary to
name each intermediate result, as is the case with the field in the above example.
In contrast, methods returning (many) values allow queries to be written in a
much more concise and readable manner.

Finally, constructors are simply translated to Datalog predicates denoting the
character of each class. For instance, consider the definition of anonymous Java
classes:

class AnonymousClass extends NestedClass {
AnonymousClass() { this.isAnonymous() }

}

The constructor for this class is translated into a predicate defining precisely
those elements that are nested classes. These are the Java elements that are
nested classes, additionally satisfying the isAnonymous predicate:

predicate AnonymousClass(NestedClass this) {
NestedClass isAnonymous(this)

}
In the above, the type of this enforces the fact that an anonymous class must
be nested. When a class inherits from multiple classes, the translation is a little
more complicated. Consider the class Interface, with no constructor:

112 O. de Moor et al.

class Interface extends RefType, @interface {
...

}

This class extends both RefType and the column type @interface, and thus an
element is an Interface exactly when it is both a RefType and an @interface.
This is encoded in the generated constructor for Interface:

Interface (RefType this) { @interface(this) }

Despite the fact that Interface does not define a constructor, it restricts the
range of values that it encompasses by inheritance, and thus this characteristic
predicate must be generated.

Translating Method Calls. In the above, we have described the translation
of methods into Datalog predicates with extra arguments this and result, and
informally shown some method calls translated into calls to the generated pred-
icates. In our examples, the translation was straightforward, as the type of the
receiver was known, and so it was immediately apparent which predicate should
be called. However, as .QL uses virtual dispatch, the method that is actually
used depends on the value it is invoked on, and this translation scheme cannot
work in general.

To illustrate the translation of method dispatch in .QL, let us recall the class
hierarchy defined in Section 3, simplified for this example:

class All {
All() { this=1 or this=2 or this=3 or this=4 }
string foo() { result = ”A” }

}

class OneOrTwo extends All {
OneOrTwo() { this=1 or this=2 }
string foo() { result = ”B” }

}

class TwoOrThree extends All {
TwoOrThree() { this=2 or this=3 }
string foo() { result=”C” }

}

As we have seen previously, each of the implementations of foo is translated into
a Datalog predicate:

predicate All foo(All this, string result) { result = ”A” }
predicate OneOrTwo foo(OneOrTwo this, string result) { result = ”B” }
predicate TwoOrThree foo(TwoOrThree this, string result) { result = ”C” }

However, when a call to the foo method is encountered, the appropriate methods
must be chosen, depending on the value of the receiver of the call. .QL method

.QL: Object-Oriented Queries Made Easy 113

dispatch selects the most specific methods, of which there may be several due
to overlapping classes, and returns results from all most specific methods. Only
the most specific methods are considered, so that a method is not included if it
is ooverriddenby a matching method.

This virtual dispatch mechanism is implemented by defining a dispatch predi-
cate for each method, testing the receiver against the relevant types and choosing
appropriate methods. Testing the type of the receiver is achieved by invoking the
characteristic predicate for each possible class, leading to the following dispatch
method for foo:

predicate Dispatch foo(All this, string result) {
OneOrTwo foo(this, result)

or TwoOrThree foo(this, result)
or (not(OneOrTwo(this)) and not(TwoOrThree(this))

and All foo(this, result))
}

Let us examine this dispatch predicate a little more closely. The parameter this
is given type All, as this is the most general possible type in this case. The body
of the predicate consists of three possibly overlapping cases. In the first case,
the foo method from OneOrTwo is called. Note that this only applies when this
has type OneOrTwo, due to the type of the this parameter in OneOrTwo. As
OneOrTwo does not have any subclasses, its foo method cannot be ooverridden
and whenever it is applicable it is necessarily the most specific. The second case
is symmetrical, considering the class TwoOrThree. These cases are overlapping,
if this = 2, and so the method can return several results. Finally, the third
case is the “default” case. If this did not match either of the specific classes
OneOrTwo or TwoOrThree, the default implementation in All is chosen.

Suppose now that we extend the example to the full class hierarchy shown in
Figure 5, as follows:

class OnlyTwo extends OneOrTwo, TwoOrThree {
foo() { result = ”D” }

}
class AnotherTwo extends All {

AnotherTwo() { this = 2 }
foo() { result = ”E” }

}

In this new hierarchy, we added two classes with exactly the same characteris-
tic predicate. This changes method dispatch whenever this = 2, as the newly
introduced methods are more specific than previous methods for this case. To
extend the previous example with these new classes, we simply lift out the new
implementations of foo:

predicate OnlyTwo foo(OnlyTwo this, string result) { result = ”D” }
predicate AnotherTwo foo(AnotherTwo this, string result) { result = ”E” }

114 O. de Moor et al.

and change the dispatch predicate accordingly:

predicate Dispatch foo(All this, string result) {
OnlyTwo foo(this, result)

or AnotherTwo foo(this, result)
or (not(OnlyTwo(this))

and OneOrTwo foo(this, result))
or (not(OnlyTwo(this))

and TwoOrThree foo(this, result))
or (not(OneOrTwo(this))

and not(TwoOrThree(this))
and not (AnotherTwo(this))
and All foo(this, result))

}

The only changes, apart from the introduction of cases for the two new classes,
is that the existing cases for OneOrTwo, TwoOrThree and All must be amended
to check whether the method is indeed the most specific one.

4.3 Implementing Datalog Queries

Database Implementation. The use of Datalog as an intermediate language
for .QL has two benefits. The first is the simplicity of Datalog, making it straight-
forward to define the semantics of .QL by translation to Datalog. In addition,
Datalog was designed as a query language over relational databases, and can
be implemented efficiently over familiar relational query languages, in particular
SQL.

A .QL program ranges over a database schema defining the relations that
queries can inspect. In the translated Datalog program these just form the ex-
tensional predicates, while intensional predicates define new relations that are
computed by querying this data. Such Datalog queries can be translated directly
into SQL statements, and the aim of this section is to introduce this translation.

For each defined predicate, say

predicate p(A x, B y) {
exists (C z | q(x, z) and r(z, y))

}

a new table (also called p) is created. The table p has columns x and y, corre-
sponding to the query fields. The types of these columns can be deduced from the
.QL column types, but are not identical: .QL allows for rich user-defined column
types such as @class, while databases typically only provided simple scalar types
such as integers or characters. Primitive types can be represented directly in the
database, naturally, but for user-defined types some representation (typically
based on unique identifiers) must be chosen.

This table is then populated with the result of the query, as computed by an
SQL SELECT statement. The first step of this translation is to make the vari-
able types explicit. Recall that variable types restrict the range of values that

.QL: Object-Oriented Queries Made Easy 115

a variable can take, which must be represented in the SQL query. We therefore
make these types explicit in the Datalog query, resulting in the following (un-
typed) query:

predicate p(x, y) {
A(x) and B(y)

and exists(z | C(z) and q(x,z) and r(z,y))
}

This relation is essentially a join of the q and r relations, together with the type
restrictions on variables. This may be computed by the following SQL statement,
assuming that tables q(a,b) and r(c,d) have already been computed, as have
all type tables A(x), B(x) and C(x):

SELECT DISTINCT q.a, r.d
FROM q

INNER JOIN r
ON r.c = q.b

INNER JOIN C
ON C.x = q.b

INNER JOIN A
ON q.a = A.x

INNER JOIN B
ON r.d = B.x

The first line of this query selects the x and y variables from tables q and r.
The DISTINCT modifier is used to guarantee that the result is a set and does
not contain duplicates, as SQL queries otherwise produce bags of results. The
relation constructed in the FROM clause is simply the join of all predicates
conjoined together in the predicate p, joining on any variables that appear in
several predicates.

This implementation strategy allows arbitrary Datalog predicates to be im-
plemented as SQL queries. A conjunction may, as we have seen above, simply
be translated as an SQL join. More general formulas can be implemented by
converting the body of each predicate to disjunctive normal form, in which the
formula is expressed as a disjunction of conjunctions. As an example, consider
the following predicate (in disjunctive normal form), ignoring types for concision:

predicate p(x, y) {
exists (z | q(x,z) and r(z,y))

or (q(x, y) and not(t(y)))
}

This may be translated into the following SQL query, in which the disjunction is
simply turned into a union, where in addition to previous tables t(e) has been
computed:

SELECT DISTINCT q.a, r.d
FROM q

116 O. de Moor et al.

INNER JOIN r
ON r.c = q.b

UNION

SELECT DISTINCT q.a, q.b
FROM q
WHERE NOT EXISTS

(SELECT t.e
WHERE t.e = q.b)

These examples illustrate the principles behind the translation of Datalog
queries, and thus .QL programs, to SQL. The only Datalog feature that we
have not considered are the use of expressions and aggregates, which are beyond
the scope of these notes (note, however, that both are present in SQL, and so
do not give rise insurmountable obstacles). This translation is crucial for the
efficient implementation of .QL on very large data sets, thanks to the efficiency
of database query optimisers. However, it is clear that .QL is far better suited to
writing queries over complex data sets, such as the representations of programs,
than SQL.

Recursion. The translation from Datalog to SQL requires the program to be
evaluated bottom-up, so that a relation is computed only when all the relations
it depends on have themselves been evaluated. However, this is only possible for
nonrecursive programs. Any recursive predicate will depend on itself, and thus
the evaluation strategy is a little more involved. To conclude our description
of the implementation of .QL we therefore outline the translation of recursive
predicates. For simplicity, we exclude mutual recursion and consider only a single
recursive predicate.

The most straightforward translation of recursive queries is to use recursive
SQL queries as a direct translation. The SQL:1999 standard specifies common ta-
ble expressions, with which queries that refer to their own result set may be writ-
ten. However, support for common table expressions among widespread database
management systems is patchy, and available implementations suffer from perfor-
mance problems. As recursive queries are common when analysing programs, this
application of .QL requires good performance in the implementation of recursion.
As a result, we use our own implementation, based on well-known algorithms
for evaluating recursive equations.

A recursive query, say (omitting types):

predicate p(x, y) { q(x, y) or exists (z | q(x, z) and p(z, y)) }

gives rise to a recursive equation of the form p = F (p), where F is a function
from relations to relations. In the above case the function is simply:

F (R) = q ∪ q; R

That is, this function simply computes the value of the body of the predicate,
replacing the recursive occurrence of p with the parameter R. The semantics

.QL: Object-Oriented Queries Made Easy 117

of Datalog then prescribe that the value of p should be the least solution of
the equation p = F (p). To compute this, we may appeal to the Knaster-Tarski
fixpoint theorem, which asserts that such a least solution exists, as long as F is
monotonic (guaranteed in the absence of negated recursive calls), and that the
solution can be obtained by iterating the F function, starting with the empty
relation:

p = lim
n→∞

Fn(∅)

This suggests an algorithm for computing the fixpoint:

1 o ld = ∅
2 p = F(o ld)
3 while (p
= old)
4 o ld = p
5 p = F(o ld)

The assignment p = F (old) can be computed as a nonrecursive SQL query, this
clearly provides an implementation strategy. However, it is not optimal. The
successive iterations of this algorithm give the following values for p:

p = ∅
p = F (∅) = q ∪ q; ∅ = q
p = F (q) = q ∪ q; q = q ∪ q2

p = F (q ∪ q2) = q ∪ q; (q ∪ q2) = q ∪ q2 ∪ q3

· · ·

In general, after n iterations the value of p is q ∪ q2 ∪ · · · ∪ qn . The difference
between the results for iterations n and n + 1 is therefore just qn+1. However,
the relations q to qn are recomputed anyway, making this algorithm expensive.

The inefficiency of the naive algorithm for evaluating recursion leads to the
so-called “semi-naive” algorithm presented below [6]. The idea is to observe that
at each step, we need only apply the function F to values that were newly created
at the previous step. In our example, the new tuples at step n are those of qn .
In step n + 1 we thus only need to add the relation F (qn), and keep all other
tuples in the accumulated relation.

The semi-naive evaluation strategy is almost always applicable, but does im-
pose a restriction on the predicates it is used for. More precisely, the function F
corresponding to this predicate must be distributive, in the sense that

F (A ∪ B) = F (A) ∪ F (B)

This is always guaranteed for (safe) predicates with linear recursion, that is
predicates in which there is only one recursive call per disjunct in the disjunctive
normal form representation. Such predicates form the overwhelming majority of
recursive predicates, apart from artificial examples, and so this is not a great
restriction. In any other cases the naive strategy may be used.

118 O. de Moor et al.

The semi-naive keeps a frontier of tuples that were added in the last step:

1 p = ∅
2 f r o n t i e r = F(p)
3 while (f r o n t i e r
= ∅)
4 p = p ∪ f r o n t i e r
5 newFrontier = F(f r o n t i e r)
6 f r o n t i e r = newFrontier \ p

At each step, the current frontier is added to the accumulated relation, while
the new frontier is computed by applying F to the frontier from the previous
iteration. This is guaranteed to contain all new tuples, but may contain some
tuples already in the accumulated in the relation p. The last statement of the
loop therefore removes any such tuples. The algorithm stops when no more tuples
can be added. A proof of correctness of this algorithm may be found in [28].

To illustrate semi-naive evaluation, the following shows its iterations for our
example predicate:

Iteration p newFrontier frontier
0 ∅ q q
1 q q ∪ q2 q2

2 q ∪ q2 q ∪ q3 q3

3 q ∪ q2 ∪ q3 q ∪ q4 q4

4 q ∪ q2 ∪ q3 ∪ q4 q ∪ q5 q5

· · · · · · · · · · · ·

This example illustrates the efficiency gain offered by semi-naive evaluation.
While the accumulated relation p naturally grows at each iteration, the frontier
remains relatively constant as it contains only new tuples. The efficiency gain
arises because the possibly expensive function F is only applied to the frontier,
while the accumulated p is only used in inexpensive union and difference opera-
tions. Semi-naive evaluation is therefore crucial to the efficient implementation
of recursion in .QL.

5 Related Work

.QL builds on a wealth of previous work by others, and it is impossible to survey
all of that here. We merely point out the highlights, and give sources for further
reading.

5.1 Code Queries

The idea to use code queries for analysing source code has emerged from at
least three different communities: software maintenance, program analysis and
aspect-oriented programming. We discuss each of those below.

.QL: Object-Oriented Queries Made Easy 119

Software maintenance. As early as 1984, Linton proposed the use of a rela-
tional database to store programs [39]. His system was called Omega, and im-
plemented on top of INGRES, a general database system with a query language
named QUEL. Crucially, QUEL did not allow recursive queries, and as we have
seen in these notes, recursion is indispensable when exploring the hierarchical
structures that naturally occur in software systems. Furthermore, Linton already
observed extremely poor performance. In retrospect, that is very likely to have
been caused by the poor state of database optimisers in the 1980s. Furthermore,
in the implementation of .QL, we have found it essential to apply a large num-
ber of special optimisations (which are proprietary to Semmle and the subject
of patent applications) in the translation from .QL to SQL.

Linton’s work had quite a large impact on the software maintenance com-
munity as witnessed by follow-up papers like that on CIA (the C Information
Abstraction system) [13]. Today there are numerous companies that market
products based on these ideas, usually under the banner of “application mining”
or “application portfolio management”. For instance, Paris-based CAST has a
product named the ‘Application Intelligence Platform’ that stores a software
system in a relational database [11]. Other companies offering similar products
include ASG [3], BluePhoenix [9], EZLegacy [25], Metallect [43], Microfocus [44],
Relativity [49] and TSRI [51]. A more light-weight system, which does however
feature its own SQL-like query language (again, however, without recursion), is
NDepend [55].

The big difference between SemmleCode and all these other industrial systems
is the emphasis on agility: with .QL, all quality checks are concise queries that
can be adapted at will, by anyone involved in the development process. Some
of the other systems mentioned above have however one big advantage over the
free Java-only version of SemmleCode: they offer parsers for many different lan-
guages, making it possible to store programs in relational form in the database.
Indeed, large software systems are often heterogeneous, and so the same code
query technology must work for many different object languages. We shall return
to this point below.

Meanwhile, the drive for more expressive query languages, better suited to the
application domain of searching code, gathered pace. Starting with the XL C++
Browser [32], many researchers have advocated the use of the logic programming
language Prolog. In our view, there are several problems with the use of Prolog.
First, it is notoriously difficult to predict whether Prolog queries terminate.
Second, today’s in-memory implementations of Prolog are simply not up to the
job of querying the vast amounts of data in software systems. When querying the
complete code for the bonita workflow system, the number of tuples gathered by
SemmleCode is 4,349,156. In a very recent paper, Costa has demonstrated that
none of the leading Prolog implementations is capable of dealing with datasets
of that size. That confirms our own experiments with the XSB system, reported
in [29]. A few months ago, however, Kniesel et al. reported some promising
preliminary experiments with special optimisations in a Prolog-based system for
querying large software systems [35].

120 O. de Moor et al.

A modern system that uses logic programming for code querying is JQuery,
a source-code querying plugin for Eclipse [30,42]. It uses a general-purpose lan-
guage very similar to Prolog, but crucially, its use of tabling guarantees much
better termination properties. It is necessary to annotate predicate definitions
with mode annotations to achieve reasonable efficiency. We have resolutely ex-
cluded any such annotation features from .QL, leaving all the optimisation work
to our compiler and the database optimiser. Despite the use of annotations,
JQuery’s performance does not scale to substantial Java projects.

Instead of using a general logic programming language like Prolog, it might
be more convenient to use a language that is more specific to the domain. For
instance Consens et al. proposed GraphLog [16], a language for querying graph
structures, and showed that it has advantages over Prolog in the exploration of
software systems. Further examples of domain-specific languages for code search
are the relational query algebra of Paul and Prakash [48], Jarzabek’s PQL [31]
and Crew’s ASTLog [17]. A very recent proposal in this tradition is JTL (the
Java Tools Language) of Cohen et al. [15]. Not only is this query language specific
to code querying, it is specific to querying Java code. That has the advantage
that some queries can be quite concise, with concrete Java syntax embedded in
queries.

By contrast, there is nothing in .QL that is specific to the domain of code
querying, because its designers preferred to have a simple, orthogonal language
design. This is important if one wishes to use .QL for querying large, heteroge-
neous systems with artifacts in many different object languages. Furthermore,
the creation of dedicated class libraries goes a long way towards tailoring .QL
towards a particular domain. We might, however, consider the possibility of al-
lowing the embedding of shorthand syntax in scripts themselves. There is a long
tradition of allowing such user-defined syntactic extensions in a query language,
for instance [10].

Program Analysis. Somewhat independently, the program analysis community
has also explored the use of logic programming, for dataflow analyses rather
than the structural analyses of the software maintenance community. The first
paper to make that connection is one by Reps [50], where he showed how the use
of the so-called ‘magic sets’ transformation [7] helps in deriving demand-driven
program analyses from specifications in a restricted subset of Prolog, called Dat-
alog (the variant of Datalog employed here incorporates certain extensions, e.g.
expressions and aggregates).

Dawson et al. [19] demonstrate how many analyses can be expressed con-
veniently in Prolog — assuming it is executed with tabling (like JQuery men-
tioned above). Much more recently Michael Eichberg et al. demonstrated how
such analyses can be incrementalised directly, using existing techniques for in-
crementalisation of logic programs [23]. While this certainly improves response
times in an interactive environment for small datasets, it does not overcome the
general scalability problem with Prolog implementations outlined above.

Whaley et al. [37,59] also advocate the use of Datalog to express program
analyses. However, their proposed implementation model is completely different,

.QL: Object-Oriented Queries Made Easy 121

namely Binary Decision Diagrams (BDDs). This exploits the fact that in many
analyses, there are a large number similar sets (for instance of allocation sites),
and BDDs can exploit such similarity by sharing in their representation. Lhoták
et al. [38] have independently made the same observation; their system is based
on relational algebra rather than Datalog.

We have not yet experimented with expressing these types of program analysis
in .QL, because the Eclipse plugin does not yet store information about control
flow.

Aspect-oriented programming. Of course all these independent developments
have not gone unnoticed, and many of the ideas are brought together in re-
search on aspect-oriented programming. Very briefly, an ‘aspect’ instruments
certain points in program execution. To identify those points, one can use any
of the search techniques reviewed above.

One of the pioneers who made the connection between code queries and as-
pects was de Volder [20]. More recently, others have convincingly demonstrated
that indeed the use of logic programming is very attractive for identifying the
instrumentation points [27,47]. A mature system building on these ideas is Log-
icAJ [52]. In [5], the patterns used in AspectJ (an aspect-oriented extension of
Java) are given a semantics by translation into Datalog queries [5].

The connection is of course also exploited in the other direction, suggesting
new query mechanisms based on applications in aspect-oriented programming.
For example, in [24], Eichberg et al. propose that XQuery is an appropriate
notation for expressing many of the queries that arise in aspects. It appears
difficult, however, to achieve acceptable performance on large systems, even with
considerable effort [22].

Earlier this year, Morgan et al. proposed a static aspect language for checking
design rules [45], which is partly inspired by AspectJ, marrying it with some of
the advantages of code querying systems. In many ways, it is similar to JTL,
which we mentioned above. Like JTL, it is tailored to the particular application,
allowing concrete object syntax to be included in the queries. As said earlier,
because large software systems are often heterogeneous, written in many different
languages, we believe the query language itself should not be specific to the
object language. Many users of .QL at first believe it to be domain-specific as
well, because of the library of queries that tailor it to a particular application
such as querying Java in Eclipse.

5.2 Object-Oriented Query Languages

.QL is a general query language, and we have seen how one can build a class
library on top of any relational database schema, by annotating its fields with
column types. There exists a long tradition of research on object-oriented query
languages, so it behooves us to place .QL in that context.

In the 1980s, there was a surge of interest in so-called deductive databases,
which used logic programming as the query language. The most prominent
of these query languages was Datalog, which we mentioned above. In essence,

122 O. de Moor et al.

Datalog is Prolog, but without any data structures [26]; it thus lacks any
object-oriented features.

Since the late 80s saw a boom in object-oriented programming, it was only nat-
ural that many attempts were made to integrate the idea of deductive databases
and objects. Unfortunately a smooth combination turned out to be hard to
achieve, and in a landmark paper, Ullman [57] even went so far as to state that
a perfect combination is impossible.

Abiteboul et al. [1] proposed a notion of ‘virtual classes’ that is somewhat
reminiscent of our normal classes [1]. However, the notion of dispatch is very
different, using a ‘closest match’ rather than the ‘root definitions’ employed in
.QL. Their definition of dispatch leads to brittle queries, where the static type of
the receiver can significantly change the result. In our experience, such a design
makes the effective use of libraries nearly impossible.

Most later related work went into modelling the notion of object-identity in
the framework of a query language, e.g. [2,40]. In .QL that question is side-
stepped because there is no object identity: a class is just a logical property.
From that then follows the definition of inheritance as conjunction, and the
disarmingly simple definition of virtual dispatch. Previous works have had much
difficulty in defining an appropriate notion of multiple inheritance: here it is just
conjunction.

6 Conclusion

We have presented .QL, a general object-oriented query language, through the
particular application of software quality assessment. While this is the only con-
crete application we discussed, it was shown how, through appropriate annota-
tion of the fields in a normal relational database schema with column types, one
can build a library of queries on top of any relational database.

The unique features of .QL include its class mechanism (where inheritance
is just logical ‘and’), its notion of virtual method dispatch, nondeterministic
expressions, and its adoption of Dijkstra’s quantifier notation for aggregates.
Each of these features contributes to the fun of playing with queries in .QL.

We hope to have enthused the reader into further exploring the use of .QL. A
rich and interesting application area is the encoding of rules that are specific to
an application domain. We have already done so for J2EE rules [53], but that
only scratches the surface. Another application, which we hinted at in one of the
exercises, is the use of .QL to identify opportunities for refactoring.

References

1. Abiteboul, S., Lausen, G., Uphoff, H., Waller, E.: Methods and rules. In: Bune-
man, P., Jaodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 32–41. ACM Press, New York (1993)

2. Afrati, F.N.: On inheritance in object oriented datalog. In: International Workshop
on Issues and Applications of Database Technology (IADT), pp. 280–289 (1998)

.QL: Object-Oriented Queries Made Easy 123

3. ASG. ASG-becubicTM for understanding and managing the enterprise’s application
portfolio. Product description on company website (2007),
http://asg.com/products/product details.asp?code=BSZ

4. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: An extensible AspectJ com-
piler. In: Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software
Development. LNCS, vol. 3880, pp. 293–334. Springer, Heidelberg (2006)

5. Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J.,
Verbaere, M.: Semantics of static pointcuts in AspectJ. In: Felleisen, M. (ed.)
Principles of Programming Languages (POPL), pp. 11–23. ACM Press, New York
(2007)

6. Balbin, I., Ramamohanarao, K.: A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming 4(3), 259–262 (1987)

7. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange
ways to implement logic programs. In: Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, 1986, pp. 1–16. ACM
Press, New York (1986)

8. Basili, V., Brand, L., Melo, W.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10), 751–760
(1996)

9. BluePhoenix. IT discovery. Product description available from company (2004),
http://www.bphx.com/Discovery.cfm

10. Cardelli, L., Matthes, F., Abadi, M.: Extensible grammars for language specializa-
tion. In: Beeri, C., Ohori, A., Shasha, D. (eds.) Database Programming Languages,
pp. 11–31. Springer, Heidelberg (1993)

11. Cast. Application intelligence platform. Product description on company website
at, http://www.castsoftware.com (2007)

12. Checkstyle. Eclipse-cs: Eclipse checkstyle plug-in. Documentation and download
at, http://eclipse-cs.sourceforge.net/ (2007)

13. Chen, Y., Nishimoto, M., Ramamoorthy, C.V.: The C information abstraction
system. IEEE Transactions on Software Engineering 16(3), 325–334 (1990)

14. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

15. Cohen, T., Gil, J., Maman, I.: JTL - the Java Tools Language. In: 21st Annual
Conference on Object-oriented Programming, systems languages and applications
(OOPSLA 2006), pp. 89–108. ACM Press, New York (2006)

16. Consens, M., Mendelzon, A., Ryman, A.: Visualizing and querying software struc-
tures. In: ICSE 1992: Proceedings of the 14th international conference on Software
engineering, pp. 138–156. ACM Press, New York (1992)

17. Crew, R.F.: ASTLOG: A language for examining abstract syntax trees. In:
USENIX Conference on Domain-Specific Languages, pp. 229–242 (1997)

18. Darcy, D.P., Slaughter, S.A., Kemerer, C.F., Tomayko, J.E.: The structural com-
plexity of software: an experimental test. IEEE Transactions on Software Engi-
neering 31(11), 982–995 (2005)

19. Dawson, S., Ramakrishnan, C.R., Warren, D.S.: Practical program analysis using
general purpose logic programming systems. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pp.
117–126. ACM Press, New York (1996)

20. d. Volder, K.: Aspect-oriented logic meta-programming. In: Cointe, P. (ed.) Reflec-
tion 1999. LNCS, vol. 1616, pp. 250–272. Springer, Heidelberg (1999)

http://asg.com/products/product_details.asp?code=BSZ
http://www.bphx.com/Discovery.cfm
http://www.castsoftware.com
http://eclipse-cs.sourceforge.net/

124 O. de Moor et al.

21. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer, Heidelberg (1990)

22. Eichberg, M.: Open Integrated Development and Analysis Environments. PhD the-
sis, Technische Universität Darmstadt (2007),
http://elib.tu-darmstadt.de/diss/000808/

23. Eichberg, M., Kahl, M., Saha, D., Mezini, M., Ostermann, K.: Automatic incre-
mentalization of prolog based static analyses. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 109–123. Springer, Heidelberg (2007)

24. Eichberg, M., Mezini, M., Ostermann, K.: Pointcuts as functional queries. In: Chin,
W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 366–381. Springer, Heidelberg
(2004)

25. EZLegacy. EZ SourceTM. Product description on company website at,
http://www.ezlegacy.com (2007)

26. Gallaire, H., Minker, J.: Logic and Databases. Plenum Press, New York (1978)
27. Gybels, K., Brichau, J.: Arranging language features for more robust pattern-

based crosscuts. In: 2nd International Conference on Aspect-Oriented Software
Development, pp. 60–69. ACM Press, New York (2003)

28. Hajiyev, E.: CodeQuest: Source Code Querying with Datalog. MSc Thesis, Oxford
University Computing Laboratory (September 2005),
http://progtools.comlab.ox.ac.uk/projects/codequest/

29. Hajiyev, E., Verbaere, M., de Moor, O.: CodeQuest: scalable source code queries
with Datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27.
Springer, Heidelberg (2006)

30. Janzen, D., de Volder, K.: Navigating and querying code without getting lost.
In: 2nd International Conference on Aspect-Oriented Software Development, pp.
178–187 (2003)

31. Jarzabek, S.: Design of flexible static program analyzers with PQL. IEEE Trans-
actions on Software Engineering 24(3), 197–215 (1998)

32. Javey, S., Mitsui, K., Nakamura, H., Ohira, T., Yasuda, K., Kuse, K., Kamimura,
T., Helm, R.: Architecture of the XL C++ browser. In: CASCON 1992: Proceed-
ings of the 1992 conference of the Centre for Advanced Studies on Collaborative
research, pp. 369–379. IBM Press (1992)

33. JFreeChart. Website with documentation and downloads (2007),
http://www.jfree.org/jfreechart/

34. Kaldewaij, A.: The Derivation of Algorithms. Prentice-Hall, Englewood Cliffs
(1990)

35. Kniesel, G., Hannemann, J., Rho, T.: A comparison of logic-based infrastructures
for concern detection and extraction. In: LATE R 2007 – Linking Aspect Tech-
nology and Evolution. ACM, New York (2007),
http://www.cs.uni-bonn.de/∼gk/papers/knieselHannemannRho-late07.pdf

36. Lakos, J.: Large-Scale C++ Software Design. Addison-Wesley, Reading (1996)
37. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M., Un-

kel, C.: Context-sensitive program analysis as database queries. In: Proceedings of
PODS, pp. 1–12. ACM Press, New York (2005)

38. Lhoták, O., Hendren, L.: Jedd: A BDD-based relational extension of Java. In:
Programming Language Design and Implementation (PLDI), pp. 158–169 (2004)

39. Linton, M.A.: Implementing relational views of programs. In: Henderson, P.B. (ed.)
Software Development Environments (SDE), pp. 132–140 (1984)

40. Liu, M., Dobbie, G., Ling, T.W.: A logical foundation for deductive object-oriented
databases. ACM Transactions on Database Systems 27(1), 117–151 (2002)

http://elib.tu-darmstadt.de/diss/000808/
http://www.ezlegacy.com
http://progtools.comlab.ox.ac.uk/projects/codequest/
http://www.jfree.org/jfreechart/
http://www.cs.uni-bonn.de/~gk/papers/knieselHannemannRho-late07.pdf

.QL: Object-Oriented Queries Made Easy 125

41. Martin, R.C.: Agile Software Development, Principles, Patterns and Practices.
Prentice-Hall, Englewood Cliffs (2002)

42. McCormick, E., De Volder, K.: JQuery: finding your way through tangled code.
In: Companion to OOPSLA, pp. 9–10. ACM Press, New York (2004)

43. Metallect. IQ server. Product description on company website at,
http://www.metallect.com/what-we-offer/technology/ (2007)

44. MicroFocus. Application portfolio management. Product description on company
website at, http://www.microfocus.com/Solutions/APM/ (2007)

45. Morgan, C., De Volder, K., Wohstadter, E.: A static aspect language for checking
design rules. In: De Moor, O. (ed.) Aspect-Oriented Software Development (AOSD
2007), pp. 63–72 (2007)

46. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

47. Ostermann, K., Mezini, M., Bockish, C.: Expressive pointcuts for increased modu-
larity. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 214–240. Springer,
Heidelberg (2005)

48. Paul, S., Prakash, A.: Querying source code using an algebraic query language.
IEEE Transactions on Software Engineering 22(3), 202–217 (1996)

49. Relativity. Application analyzerTM. Product description on company website at,
http://www.relativity.com/pages/applicationanalyzer.asp (2007)

50. Reps, T.W.: Demand interprocedural program analysis using logic databases. In:
Ramakrishnan, R. (ed.) Applications of Logic Databases. International Series in
Engineering and Computer Science, vol. 296, pp. 163–196. Kluwer, Dordrecht
(1995)

51. The Software Revolution. Janus technologyTM. Product description on company
website (2007), http://www.softwarerevolution.com/

52. Rho, T., Kniesel, G., Appeltauer, M., Linder, A.: LogicAJ (2006),
http://roots.iai.uni-bonn.de/research/logicaj/people

53. Semmle Ltd. Company website with free downloads, documentation, and discussion
forums (2007), http://semmle.com

54. Semmle Ltd. Installation instructions for this tutorial (2007),
http://semmle.com/gttse-07

55. Smacchia, P.: NDepend. Product description on company website at,
http://www.ndepend.com (2007)

56. Spinellis, D.D.: Code Quality: the Open Source Perspective. Addison-Wesley, Read-
ing (2007)

57. Ullman, J.D.: A comparison between deductive and object-oriented database
systems. In: 2nd International Conference on Deductive and Object-Oriented
Databases. Springer Lecture Notes in Computer Science, pp. 263–277 (1991)

58. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–650 (1991)

59. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog and binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005)

Appendix: Answers to the Exercises

Exercise 1. Run the query to find suspicious declarations of compareTo in
JFreeChart. You can do that in a number of ways, but here the nicest way

http://www.metallect.com/what-we-offer/technology/
http://www.microfocus.com/Solutions/APM/
http://www.relativity.com/pages/applicationanalyzer.asp
http://www.softwarerevolution.com/
http://roots.iai.uni-bonn.de/research/logicaj/people
http://semmle.com
http://semmle.com/gttse-07
http://www.ndepend.com

126 O. de Moor et al.

to look at the results is as a table, so use the run button marked with a table
at the top right-hand side of the Quick Query window. You will get two results,
and you can navigate to the relevant locations in the source by double-clicking.
Are both of them real bugs? ♥

Answer: The table is not shown here. One of the matches, the class named
PieLabelRecord, is indeed an example where compareTo and equals are in-
consistent. The compareTo method will return 0 whenever the baseY values are
equal, but equals is inherited from Object and so compares object identity.
The other match Outlier is not a bug: in fact consistency between equals and
compareTo is clearly assured because compareTo calls equals.

Exercise 2. Write a query to find all methods named main in packages whose
names end with the string demo. You may find it handy to use the predicate
string.matches(”%demo”) (as is common in query languages, % is a wildcard
matching any string). ♥

Answer: We want to select a method, so that is what goes in the from clause.
Next, we want those methods to have name “main” and occur in a package with
a name that matches the given pattern. Note the repeated use of dispatch on the
result of methods. If you tried to write the same query in Prolog, you would have
to give a name to each of those intermediate results, considerably cluttering the
query.

from Method m
where m.hasName(”main”) and

m.getDeclaringType().getPackage().getName().matches(”%demo”)
select m.getDeclaringType().getPackage(),

m.getDeclaringType(),
m

Exercise 3. The above queries show how to find types that define a method
named “equals”, and how to find types that do not have such a method. Write
a query picking out types that define at least one method which is not called
“equals”. ♥

Answer: This query is more verbose, but straightforward. We use exists to find
a method and test that its name is not “equals”:

from Class c
where exists (Method m | m = c.getACallable()

and not (m.hasName(”equals”)))
select m

Note that getACallable returns several results, so this succeeds if at least one of
the methods is not called “equals”.

.QL: Object-Oriented Queries Made Easy 127

Exercise 4. Continuing Exercise 2.1. You will have found that one class repre-
sents a real bug, whereas the other does not. Refine our earlier query to avoid
such false positives. ♥

Answer: We exclude declarations of compareTo that make a call to equals:

from Class c, Method compare
where compare.getDeclaringType()=c and

compare.hasName(”compareTo”) and
not(c.declaresMethod(”equals”)) and
not(compare.getACall().hasName(”equals”))

select c.getPackage(),c,compare

An interesting point concerns the fact that the method getACall is nondetermin-
istic. Negating the nondeterministic call means that none of the methods called
by compare has name “equals”.

Exercise 5. Write a query to find all types in JFreeChart that have a field of type
JFreeChart. Many of these are test cases; can they be excluded somehow? ♥

Answer: Inspecting the results of the obvious query (the one below without the
extra conjunct in the where clause), it is easy to see that all of the test cases are
in fact subtypes of TestCase, so that is the condition we use to exclude them:

from RefType t
where t.getAField().getType().hasName(”JFreeChart”)

and
not t.getASupertype().hasName(”TestCase”)

select t

Exercise 6. There exists a method named getASuperType that returns some
supertype of its receiver, and sometimes this is a convenient alternative to using
hasSubtype. Uses of methods such as getASuperType that return an argument can
be chained too. Using x .getASuperType∗(), write a query for finding all subtypes
of org.jfree.chart.plot.Plot. Try to use no more than one variable. ♥

Answer: Again, note how the use of nondeterministic methods leads to very
concise queries:

from RefType s
where s.getASupertype∗().hasName(”Plot”)
select s

128 O. de Moor et al.

Exercise 7. When a query returns two program elements plus a string you can
view the results as an edge-labelled graph by clicking on the graph button (shown
below). To try out that feature, use chaining to write a query to depict the hierar-
chy above the type TaskSeriesCollection in package org.jfree.data.gantt.
You may wish to exclude Object from the results, as it clutters the picture.
Right-clicking on the graph view will give you a number of options for display-
ing it. ♥

Answer: First, find the TaskSeriesCollection type, and name it tsc. Now we
want to find pairs s and t that are supertypes of tsc, such that furthermore t
is a direct supertype of s . Finally, we don’t want to consider Object, so that is
our final conjunct. If we now select the pair (s , t) that becomes an edge in the
depicted graph:

from RefType tsc, RefType s, RefType t
where tsc.hasQualifiedName(”org.jfree.data.gantt”,”TaskSeriesCollection”)

and
s .hasSubtype∗(tsc)
and
t .hasSubtype(s)
and
not(t.hasName(”Object”))

select s , t

Exercise 8. Display the results of the above query as pie chart, where each slice
of the pie represents a package and the size of the slice the average number of
methods in that package. To do so, use the run button marked with a chart, and
select ‘pie chart’ from the drop-down menu. ♥

Answer: No comment; just an exercise to play with!

Exercise 9. Not convinced that metrics are any good? Run the above query; it
will be convenient to display the results as a bar chart, with the bars in descend-
ing order. To achieve that sorting, add “as s order by s desc’’ at the end. Now
carefully inspect the packages with high instability. Sorting the other way round
(using asc instead of desc) allows you to inspect the stable packages. ♥

Answer: The most unstable packages are precisely the experimental ones in
JFreeChart. The most stable package of all is java.lang. Amazing that such a
simple metric can make such accurate predictions!

.QL: Object-Oriented Queries Made Easy 129

Exercise 10. The following questions are intended to help reinforce some of the
subtle points about aggregates; you could run experiments with SemmleCode to
check them, but really they’re just for thinking.

1. What is sum(inti |i = 0 or i = 0|2)?
2. Under what conditions on p and q is this a true equation?

sum(int i | p(i) or q(i)) = sum(int i | p(i)) + sum(int i | q(i)) ♥

Answer:

1. It’s just 2. You can use normal logical equivalences to manipulate the range
condition in an aggregate.

2. This equation is true only if p and q are disjoint, that is: ∀i : ¬(p(i) ∧ q(i)).

Exercise 11. Queries can be useful for identifying refactoring opportunities. For
example, suppose we are interested in finding pairs of classes that could benefit
by extracting a common interface or by creating a new common superclass.

1. As a first step, we will need to identify root definitions: methods that are
not overriding some other method in the superclass. Define a new .QL class
named RootDefMethod for such methods. It only needs to have a constructor,
and no methods or predicates.

2. Complete the body of the following classless predicate:

predicate similar(RefType t, RefType s, Method m, Method n) { ... }

It should check that m is a method of t , n is a method of s , and m and n
have the same signature.

3. Now we are ready to write the real query: find all pairs (t , s) that are in the
same package, and have more than one root definition in common. All of
these are potential candidates for refactoring. If you have written the query
correctly, you will find two types in JFreeChart that have 99 root definitions
in common.

4. Write a query to list those 99 commonalities. ♥

Answer:

1. The class for root definitions is:

class RootDefMethod extends Method {
RootDefMethod() { not exists(Method m | overrides(this, m)) }

}

2. The definition of the predicate can be completed as follows:

130 O. de Moor et al.

predicate similar(RefType t, RefType s, Method m, Method n) {
m.getDeclaringType() = t and n.getDeclaringType() = s
and m.getSignature() = n.getSignature()

}

3. Finally, the required query is shown below. To try out the answer, just type
the class definition, the predicate and the query all together in the Quick
Query window. (Warning: this query takes a while to execute.)

from RefType t, RefType s, int c
where t.getPackage() = s.getPackage()

and
t .getQualifiedName() < s.getQualifiedName()
and
c = count(RootDefMethod m, RootDefMethod n | similar(t,s,m,n))
and
c > 1

select c, t .getPackage(), t , s order by c desc

4. This is a simple re-use of the predicate similar defined above:

from RefType t, RefType s, RootDefMethod m, RootDefMethod n
where t.hasName(”CategoryPlot”) and s.hasName(”XYPlot”)

and
t .getPackage() = s.getPackage()
and
similar (t ,s ,m,n)

select m,n

Exercise 12. We now explore the use of factories in JFreeChart.

1. Write a query to find types in JFreeChart whose name contains the string
“Factory.”

2. Write a class to model the Java type JFreeChart and its subtypes.
3. Count the number of constructor calls to such types.
4. Modify the above query to find violations in the use of a ChartFactory to

construct instances of JFreeChart.
5. There are 53 such violations; it is easiest to view them as a table. The inter-

esting ones are those that are not in tests or demos. Inspect these in detail —
they reveal a weakness in the above example, namely that we may also wish to
make an exception for this constructor calls. Modify the code to include that
exception. Are all the remaining examples tests or demos? ♥

Answer:

1. Here is a query to find factories in JFreeChart:

.QL: Object-Oriented Queries Made Easy 131

from RefType t
where t.getName().matches(”%Factory%”)
select t

We shall use the first result, ChartFactory, in the remainder of this exercise.
2. The class just has a constructor and no methods or predicates. The con-

structor says that this has a supertype named JFreeChart. If desired, that
could be refined by using a qualified name rather than a simple name.

class JFreeChart extends RefType {
JFreeChart() { this.getASupertype∗().hasName(”JFreeChart”) }

}

3. We want calls where the callee is a constructor of a JFreeChart type:

select count(Call c | c.getCallee() instanceof Constructor and
c.getCallee (). getDeclaringType() instanceof JFreeChart)

A shorter alternative (which does however require you to know the class
hierarchy quite well) is

select count(ConstructorCall c | c.getCallee (). getDeclaringType()
instanceof
JFreeChart)

The answer is 88.
4. The definitions are very similar to the ones in the ASTFactory example:

class ChartFactory extends RefType {
ChartFactory() { this.getASupertype∗().hasName(”ChartFactory”) }
ConstructorCall getAViolation() {

result.getType() instanceof JFreeChart and
not(result.getCaller().getDeclaringType()

instanceof ChartFactory) and
not(result instanceof SuperConstructorCall)

}
}

from ChartFactory f, Call c
where c = f.getAViolation()
select c. getCaller (). getDeclaringType().getPackage(),

c. getCaller (). getDeclaringType(),
c. getCaller (),
c

5. Change the getAViolation definition to:

ConstructorCall getAViolation() {
result.getType() instanceof JFreeChart and
not(result.getCaller().getDeclaringType()

instanceof ChartFactory) and

132 O. de Moor et al.

not(result instanceof SuperConstructorCall or
result instanceof ThisConstructorCall)

}
No, there are still two matches in the package org.jfree.chart.plot. One
of them says “An initial quick and dirty”; both matches seem to be real
mistakes. The other 49 are all in packages that do not use the factory at all,
so that is probably intended.

Exercise 13. The above definition of getLevel is in the default library; write queries
to display barcharts. Do the high points indeed represent components that you
would consider high-level? For types, write a query that calculates how many
classes that have maximum level do not define a method named “main”. ♥

Answer: The level metric is surprisingly effective in finding components that are
high-level in the intuitive sense.

from MetricPackage p, float c
where p.fromSource() and c = p.getLevel()
select p, c order by c desc

The following query calculates what proportion of the highest-level types do not
define a method named “main”:

predicate maxLevel(MetricRefType t) {
t .fromSource() and
t .getLevel() = max(MetricRefType t | | t.getLevel())

}

from float i, float j
where

i =count(MetricRefType t | maxLevel(t) and
not(t.getACallable().hasName(”main”)))

and
j = count(MetricRefType t | maxLevel(t))

select i/j

About 24% of high-level matches do not define a “main” method.

Exercise 14. Suppose the class OnlyTwo does not override foo. Does that make
sense? What does the .QL implementation do in such cases? ♥

Answer: There is then a choice of two different implementations that could be
overridden. At first it might seem that it makes sense to take their disjunction,
but clearly that is wrong as subclassing means conjunction. The implementation
forbids such cases and insists that foo be overridden to ensure a unique definition
is referenced.

.QL: Object-Oriented Queries Made Easy 133

Exercise 15. Construct an example to demonstrate how dispatch depends on
the static type of the receiver. ♥

Answer: We need two root definitions that have the same signature. For instance,
in the class hierarchy below, there are root definitions of foo both in class B and
in class C :

class A {
A() { this=1 }
string toString() { result=”A”}

}

class B extends A {
string foo() { result=”B” }

}

class C extends A {
string foo() { result=”C”}

}

from C c select c.foo()

The answer of the query is just “C”. If foo was also declared in class A, then
that would be the single root definition, and “B” would also be an answer.

Exercise 16. Extend the above class definition with getDeclaringType. ♥

Answer: The definition of getDeclaringType is just a minor variation on the
definition of getName we saw earlier:

class MyMethod extends @method {
string getName() { methods(this,result, , , , ,)}
string toString() { result = this.getName() }
RefType getDeclaringType() { methods(this, , , ,result, ,)}

}

Transforming Data by Calculation

José N. Oliveira

CCTC, Universidade do Minho, 4700-320 Braga, Portugal
jno@di.uminho.pt

Abstract. This paper addresses the foundations of data-model transformation. A
catalog of data mappings is presented which includes abstraction and representa-
tion relations and associated constraints. These are justified in an algebraic style
via the pointfree-transform, a technique whereby predicates are lifted to binary
relation terms (of the algebra of programming) in a two-level style encompassing
both data and operations. This approach to data calculation, which also includes
transformation of recursive data models into “flat” database schemes, is offered
as alternative to standard database design from abstract models. The calculus is
also used to establish a link between the proposed transformational style and bidi-
rectional lenses developed in the context of the classical view-update problem.

Keywords: Theoretical foundations, mapping scenarios, transformational design,
refinement by calculation.

1 Introduction

Watch yourself using a pocket calculator: every time a digit key is pressed, the corre-
sponding digit is displayed on the LCD display once understood by the calculator, a
process which includes representing it internally in binary format:

digits

input
��

binary

display

��

This illustrates the main ingredients of one’s everyday interaction with machines: the
abstract objects one has in mind (eg. digits, numbers, etc) need to be represented inside
the machine before this can perform useful calculations, eg. square root, as displayed
in the diagram below.

digits digits

input

��
binary

display

��

binary

√
��

However, it may happen that our calcu-
lator is faulty. For instance, sometimes the
digit displayed is not the one whose key was
just pressed; or nothing at all is displayed; or
even the required operation (such as triggered
by the square root key) is not properly com-
puted. It is the designer’s responsibility to
ensure that the machine we are using never
misbehaves and can thus be trusted.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 134–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transforming Data by Calculation 135

When using machines such as computers or calculators, one is subcontracting
mechanical services. Inside the machine, the same subcontracting process happens
again and again: complex routines accomplish their tasks by subcontracting (simpler)
routines, and so on and so forth. So, the data representation process illustrated above for
the (interaction with a) pocket calculator happens inside machines every time a routine
is called: input data are to be made available in the appropriate format to the subcon-
tracted routine, the result of which may need to change format again before it reaches
its caller.

Such data represent/retrieve processes (analogue to the input/display process
above) happen an uncountable number of times even in simple software systems. Sub-
contracting thus being the essence of computing (as it is of any organized society),
much trouble is to be expected once represent/retrieve contracts fail: the whole ser-
vice as subcontracted from outside is likely to collapse.

Three kinds of fault have been identified above: loss of data, confusion among data
and wrong computation. The first two have to do with data representation and the third
with data processing. Helping in preventing any of these from happening in software
designs is the main aim of this paper.

We will see that most of the work has to do with data transformation, a technique
which the average programmer is often unaware of using when writing, most often in
an ‘ad hoc’ way, middleware code to “bridge the gap” between two different technology
layers. The other part of the story — ensuring the overall correctness of software sub-
contracts — has to do with data refinement, a well established branch of the software
sciences which is concerned with the relationship between (stepwise) specification and
implementation.

Structure of the paper. This paper is organized as follows. Section 2 presents the over-
all spirit of the approach and introduces a simple running example. Section 3 reviews
the binary relation notation and calculus, referred to as the pointfree (PF) transform.
Section 4 shows how to denote the meaning of data in terms of such unified notation.
Section 5 expresses data impedance mismatch in the PF-style. While sections 6 to 8
illustrate the approach in the context of (database) relational modeling, recursive data
modeling is addressed from section 9 onwards. Then we show how to handle cross-
paradigm impedance by calculation (section 10) and how to transcribe operations from
recursive to flat data models (section 11). Section 12 addresses related work. In particu-
lar, it establishes a link between data mappings and bidirectional lenses developed in the
context of the view-update problem and reviews work on a library for data transforma-
tions (2LT) which is strongly related to the current paper. Finally, section 13 concludes
and points out a number of research directions in the field.

Technical sketch of the paper. This text puts informal, technology dependent approaches
to data transformation together with data calculation formalisms which are technology
agnostic. It is useful to anticipate how such schools of thought are related along the
paper, while pinpointing the key formal concepts involved.

The main motivation for data calculation is the need for data-mappings as introduced
in section 2: one needs to ensure that data flow unharmed across the boundaries of
software layers which use different technologies and/or adopt different data models. On

136 J.N. Oliveira

the technical side, this is handled (in section 2) by ordering data formats by degree of
abstraction and writing A ≤ B wherever format A is safely implemented by format
B. Technically,≤ is a preorder and ≤-facts are witnessed by relations telling how data
should flow back and forth between formats A and B.

The need for handling such relations in a compositional, calculational way leads to
the relational calculus and the pointfree transform. The whole of section 3 is devoted
to providing a summary of the required background, whose essence lies in a number of
laws which can be used to calculate with relations directly (instead of using set theory
to indirectly convey the same results). The fact that all relations are binary is not a hand-

icap: they can be thought of as arrows of the form A
R ��B which express data flow

in a natural way and can be composed with each other to express more complex data
flows. Data filtering is captured by relations of a particular kind, known as coreflexives,
which play a prominent role throughout the whole calculus.

The bridge between formal and informal data structuring becomes more apparent
from section 4 onwards, where typical data structures are shown to be expressible not
only in terms of abstract constructs such as Cartesian product (A × B), disjoint sum
(A + B) and equations thereof (as in the case of recursive types), but also in terms
of typed finite relations, thus formalizing the way data models are recorded by entity-
relationship diagrams or UML class diagrams, for instance.

Further to structure, constraints (also known as invariants) are essential to data mod-
eling, making it possible to enforce semantic properties on data. Central to such data

constraints is membership, a relation of type A TA
∈�� which is able to tell which

data elements can be found in a particular data structure of shape T. The key ingredient
at this point is the fact that set-theoretic membership can be extended to data containers
other than sets.

Sections 5 and 6 are central to the whole paper: they show how to calculate complex
data mappings by combining a number of ≤-rules which are proposed and justified
using (pointfree) relation calculus. Compositionality is achieved in two ways: by tran-
sitivity, suitably typed ≤-rules can be chained; by monotonicity, they can be promoted
from the parameters of a parametric type T to the whole type, for instance by inferring
TA ≤ TB from A ≤ B. The key of the latter result consists in regarding T as a relator,
a concept which traverses relation calculus from beginning to end and explains, in the
current paper, data representation techniques such as those involving dynamic heaps
and pointer dereferencing. On the practical side, a number of ≤-facts are shown to be
applicable to calculating database schemata from abstract models (sections 6 and 7) and
reasoning about entity-relationship diagrams (section 8).

Abstract (and language-based) data models often involve recursive data which pose
challenges of their own to data mapping formalization. Sections 9 to 11 show how the
calculus of fixpoint solutions to relational equations (known as hylomorphisms) offers
a basis for refining recursive data structures. This framework is set to work in section
10 where it is applied to the paper’s running example, the PTree recursive model
of pedigree trees, which is eventually mapped onto a flat, non-recursive model, after
stepping through a pointer-based representation. The layout of calculations not only
captures the ≤ relationships among source, intermediate and target data models, but

Transforming Data by Calculation 137

also the abstraction and representation relations implicit in each step, which altogether
synthesize two overall ‘map forward” and “map backward” data transformations.

Section 11 addresses the transcription level, the third component of a mapping sce-
nario. This has to do with refining operations whose input and output data formats have
changed according to such big-step ‘map forward” and “map backward” transforma-
tions. Technically, this can be framed into the discipline of data refinement. The exam-
ples given, which range from transcribing a query over PTree downto the level of its
flat version (obtained in section 10) to calculating low level operations handling heaps
and pointers, show once again the power of data calculation performed relationally, and
in particular the usefulness of so-called fusion-properties.

Finally, section 12 includes a sketch of how≤-diagrams can be used to capture bidi-
rectional (asymmetric) transformations known as lenses and their properties.

2 Context and Motivation

On data representation. The theoretical foundation of data representation can be writ-
ten in few words: what matters is the no loss/no confusion principle hinted above. Let
us explain what this means by writing c R a to denote the fact that datum c represents
datum a (assuming that a and c range over two given data types A and C, respectively)
and the converse fact a R◦ c to denote that a is the datum represented by c. The use of
definite article “the” instead of “a” in the previous sentence is already a symptom of the
no confusion principle — we want c to represent only one datum of interest:

〈∀ c, a, a′ :: c R a ∧ c R a′⇒ a = a′〉 (1)

The no loss principle means that no data are lost in the representation process. Put in
other words, it ensures that every datum of interest a is representable by some c:

〈∀ a :: 〈∃ c :: c R a〉〉 (2)

Above we mention the converse R◦ of R, which is the relation such that a(R◦)c
holds iff c R a holds. Let us use this rule in re-writing (1) in terms of F = R◦:

〈∀ c, a, a′ :: a F c ∧ a′ F c⇒ a = a′〉 (3)

This means that F , the converse of R, can be thought of as an abstraction relation
which is functional (or deterministic): two outputs a, a′ for the same input c are bound
to be the same.

Before going further, note the notation convention of writing the outputs of F on
the left hand side and its inputs on the right hand side, as suggested by the usual way
of declaring functions in ordinary mathematics, y = f x, where y ranges over outputs
(cf. the vertical axis of the Cartesian plane) and x over inputs (cf. the other, horizontal
axis). This convention is adopted consistently throughout this text and is extended to
relations, as already seen above 1.

1 The fact that a F c is written instead of a = F c reflects the fact that F is not a total function,
in general. See more details about notation and terminology in section 3.

138 J.N. Oliveira

Expressed in terms of F , (2) becomes

〈∀ a :: 〈∃ c :: a F c〉〉 (4)

meaning that F is surjective: every abstract datum a is reachable by F . In general, it
is useful to let the abstraction relation F to be larger that R◦, provided that it keeps
properties (3,4) — being functional and surjective, respectively — and that it stays
connected to R. This last property is written as

〈∀ a, c :: c R a ⇒ a F c〉

or, with less symbols, as

R◦ ⊆ F (5)

by application of the rule which expresses relational inclusion:

R ⊆ S ≡ 〈∀ b, a :: b R a⇒ b S a〉 (6)

(Read R ⊆ S as “R is at most S”, meaning that S is either more defined or less
deterministic than R.)

To express the fact that (R, F) is a connected representation/abstraction pair we draw
a diagram of the form

A

R

��≤ C

F

�� (7)

where A is the datatype of data to be represented and C is the chosen datatype of
representations 2. In the data refinement literature, A is often referred to as the abstract
type and C as the concrete one, because C contains more information than A, which is
ignored by F (a non-injective relation in general). This explains why F is referred to as
the abstraction relation in a (R, F) pair.

Layered representation. In general, it will make sense to chain several layers of ab-
straction as in, for instance,

I

R

��
≤ M

F

		

R′

��≤ D

F ′

�� (8)

where letters I , M and D have been judiciously chosen so as to suggest the words
interface, middleware and dataware, respectively.

2 Diagrams such as (7) should not be confused with commutative diagrams expressing properties
of the relational calculus, as in eg. [11], since the ordering ≤ in the diagram is an ordering on
objects and not on arrows.

Transforming Data by Calculation 139

���
���

���

���

���

���

DI M

R′
R

F ′

F

Fig. 1. Layered software architecture

In fact, data become “more concrete” as
they go down the traditional layers of soft-
ware architecture: the contents of interactive,
handy objects at the interface level (often pic-
tured as trees, combo boxes and the like) be-
come pointer structures (eg. in C++/C#) as
they descend to the middleware, from where
they are channeled to the data level, where
they live as persistent database records. A
popular picture of diagram (8) above is given
in figure 1, where layers I, M and D are rep-
resented by concentric circles.

As an example, consider an interface (I)
providing direct manipulation of pedigree
trees, common in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920

Mary, b. 1956 Joseph, b. 1955

����� �����

Peter, b. 1991

�����
�����

(9)

Trees — which are the users’ mental model of recursive structures — become pointer
structures (figure 2a) once channeled to the middleware (M). For archival purposes,
such structures are eventually buried into the dataware level (D) in the form of very
concrete, persistent records of database files (cf. figure 2b).

Modeling pedigree trees will be our main running example throughout this paper.

Mapping scenarios. Once materialized in some technology (eg. XML, C/C++/Java,
SQL, etc), the layers of figure 1 stay apart from each other in different programming
paradigms (eg. markup languages, object-orientated databases, relational databases,
etc) each requiring its own skills and programming techniques.

As shown above, different data models can be compared via abstraction/represen-
tation pairs. These are expected to be more complex once the two models under com-
parison belong to different paradigms. This kind of complexity is a measure of the
impedance mismatches between the various data-modeling and data-processing para-
digms 3, in the words of reference [42] where a thorough account is given of the many
problems which hinder software technology in this respect. Still quoting [42]:

Whatever programming paradigm for data processing we choose, data has the
tendency to live on the other side or to eventually end up there. (...) This myriad
of inter- and intra-paradigm data models calls for a good understanding of
techniques for mappings between data models, actual data, and operations on
data. (...)

3 According to [3], the label impedance mismatch was coined in the early 1990’s to capture (by
analogy with a similar situation in electrical circuits) the technical gap between the object and
relational technologies. Other kinds of impedance mismatch are addressed in [42, 67].

140 J.N. Oliveira

Given the fact that IT industry is fighting with various impedance mismatches
and data-model evolution problems for decades, it seems to be safe to start a
research career that specifically addresses these problems.

The same reference goes further in identifying three main ingredients (levels) in map-
ping scenarios:

– The type-level mapping of a source data model to a target data model;
– Two maps (“map forward” and “map backward”) between source / target data;
– The transcription level mapping of source operations into target operations.

Clearly, diagram (7) can be seen as a succinct presentation of the two first ingredi-
ents, the former being captured by the ≤-ordering on data models and the latter by the
(R, F) pair of relations. The third can easily be captured by putting two instances of
(7) together, in a way such that the input and output types of a given operation, say O,
are wrapped by forward and backward data maps:

A

R

��

O

≤ C

F

��

P

B

R′

��≤ D

F ′

��

(10)

The (safe) transcription of O into P can be formally stated by ensuring that the picture
is a commutative diagram. A typical situation arises when A and B are the same (and
so are C and D), and O is regarded as a state-transforming operation of a software
component, eg. one of its CRUD (“Create, Read, Update and Delete”) operations. Then
the diagram will ensure correct refinement of such an operation across the change of
state representation.

Data refinement. The theory behind diagrams such as (10) is known as data refinement.
It is among the most studied formalisms in software design theory and is available from
several textbooks — see eg. [20, 38, 49].

The fact that state-of-the-art software technologies don’t enforce such formal de-
sign principles in general leads to the unsafe technology which we live on today, which
is hindered by permanent cross-paradigm impedance mismatch, loose (untyped) data
mappings, unsafe CRUD operation transcription, etc. Why is this so? Why isn’t data
refinement widespread? Perhaps because it is far too complex a discipline for most
software practitioners, a fact which is mirrored on its prolific terminology — cf. down-
ward, upward refinement [31], forwards, backwards refinement [31, 48, 70], S,SP,SC-
refinement [21] and so on. Another weakness of these theories is their reliance on invent
& verify (proof) development strategies which are hard to master and get involved once
facing “real-sized” problems. What can we do about this?

The approach we propose to follow in this paper is different from the standard in two
respects: first, we adopt a transformational strategy as opposed to invention-followed-
by-verification; second, we adopt a calculational approach throughout our data trans-
formation steps. What do we mean by “calculational”?

Transforming Data by Calculation 141

• Margaret

1923

NIL

NIL

Mary

1956

NIL

NIL

Joseph

1955

•
•

Peter

1991

•
•

Luigi

1920

NIL

NIL

ID Name Birth

1 Joseph 1955
2 Luigi 1920
3 Margaret 1923
4 Mary 1956
5 Peter 1991

ID Ancestor ID

5 Father 1
5 Mother 4
1 Father 2
1 Mother 3

(a) (b)

Fig. 2. Middleware (a) and dataware (b) formats for family tree sample data (9)

Calculational techniques. Let us briefly review some background. The idea of using
mathematics to reason about and transform programs is an old one and can be traced
back to the times of McCarthy’s work on the foundations of computer programming
[46] and Floyd’s work on program meaning [26]. A so-called program transformation
school was already active in the mid 1970s, see for instance references [16, 19]. But pro-
gram transformation becomes calculational only after the inspiring work of J. Backus
in his algebra of (functional) programs [7] where the emphasis is put on the calculus of
functional combinators rather than on the λ-notation and its variables, or points. This is
why Backus’ calculus is said to be point-free.

Intensive research on the (pointfree) program calculation approach in the last thirty
years has led to the algebra of programming discipline [5, 11]. The priority of this
discipline has been, however, mostly on reasoning about algorithms rather than data
structures. Our own attempts to set up a calculus of data structures date back to
[51, 52, 53] where the≤-ordering and associated rules are defined. The approach, how-
ever, was not agile enough. It is only after its foundations are stated in the pointfree
style [54, 56] that succinct calculations can be performed to derive data representations.

142 J.N. Oliveira

Summary. We have thus far introduced the topic of data representation framed in two
contexts, one practical (data mapping scenarios) and the other theoretical (data refine-
ment). In the remainder of the paper the reader will be provided with strategies and tools
for handling mapping scenarios by calculation. This is preceded by the section which
follows, which settles basic notation conventions and provides a brief overview of the
binary relational calculus and the pointfree-transform, which is essential to understand-
ing data calculations to follow. Textbook [11] is recommended as further reading.

3 Introducing the Pointfree Transform

By pointfree transform [60] (“PF-transform” for short) we essentially mean the conver-
sion of predicate logic formulæ into binary relations by removing bound variables and
quantifiers — a technique which, initiated by De Morgan in the 1860s [61], eventually
led to what is known today as the algebra of programming [5, 11]. As suggested in
[60], the PF-transform offers to the predicate calculus what the Laplace transform [41]
offers to the differential/integral calculus: the possibility of changing the underlying
mathematical space in a way which enables agile algebraic calculation.

Theories “refactored” via the PF-transform become more general, more structured
and simpler [58, 59, 60]. Elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of “· · ·” notation, case analyses
and natural language explanations for “obvious” steps.

The main principle of the PF-transform is that “everything is a binary relation” once
logical expressions are PF-transformed; one thereafter resorts to the powerful calculus
of binary relations [5, 11] until proofs are discharged or solutions are found for the
original problem statements, which are mapped back to logics if required.

Relations. Let arrow B A
R�� denote a binary relation on datatypes A (source) and

B (target). We will say that B A�� is the type of R and write b R a to mean that

pair (b, a) is in R. Type declarations B A
R�� and A

R ��B will mean the same.
R ∪ S (resp. R ∩ S) denotes the union (resp. intersection) of two relations R and S.

� is the largest relation of its type. Its dual is ⊥, the smallest such relation (the empty
one). Two other operators are central to the relational calculus: composition (R · S)
and converse (R◦). The latter has already been introduced in section 2. Composition is
defined in the usual way: b(R · S)c holds wherever there exists some mediating a such
that bRa ∧ aSc. Thus we get one of the kernel rules of the PF-transform:

b(R · S)c ≡ 〈∃ a :: bRa ∧ aSc〉 (11)

Note that converse is an involution

(R◦)◦ = R (12)

and commutes with composition:

(R · S)◦ = S◦ · R◦ (13)

Transforming Data by Calculation 143

All these relational operators are⊆-monotonic, where⊆ is the inclusion partial order
(6). Composition is the basis of (sequential) factorization. Everywhere T = R ·S holds,
the replacement of T by R·S will be referred to as a “factorization” and that of R·S by T

as “fusion”. Every relation B A
R�� allows for two trivial factorizations, R = R · idA

and R = idB ·R where, for every X , idX is the identity relation mapping every element
of X onto itself. (As a rule, subscripts will be dropped wherever types are implicit or
easy to infer.) Relational equality can be established by ⊆-antisymmetry:

R = S ≡ R ⊆ S ∧ S ⊆ R (14)

Coreflexives and orders. Some standard terminology arises from the id relation: a

(endo) relation A A
R�� (often called an order) will be referred to as reflexive iff

id ⊆ R holds and as coreflexive iff R ⊆ id holds. Coreflexive relations are fragments
of the identity relation which model predicates or sets. They are denoted by uppercase
Greek letters (eg. Φ, Ψ) and obey a number of interesting properties, among which we
single out the following, which prove very useful in calculations:

Φ · Ψ = Φ ∩ Ψ = Ψ · Φ (15)

Φ◦ = Φ (16)

The PF-transform of a (unary) predicate p is the coreflexive Φp such that

b Φp a ≡ (b = a) ∧ (p a)

that is, the relation that maps every a which satisfies p (and only such a) onto itself. The
PF-meaning of a set S is Φλa.a∈S , that is, b ΦS a means (b = a) ∧ a ∈ S.

Preorders are reflexive and transitive relations, where R is transitive iff R · R ⊆
R holds. Partial orders are anti-symmetric preorders, where R being anti-symmetric
means R ∩ R◦ ⊆ id. A preorder R is an equivalence if it is symmetric, that is, if
R = R◦.

Taxonomy. Converse is of paramount importance in establishing a wider taxonomy of
binary relations. Let us first define two important notions: the kernel of a relation R,

ker R
def= R◦ ·R and its dual, img R

def= R ·R◦, the image of R 4. From (12, 13) one
immediately draws

ker (R◦) = img R (17)

img (R◦) = ker R (18)

Kernel and image lead to the following terminology:

Reflexive Coreflexive

ker R entire R injective R

img R surjective R simple R

(19)

4 As explained later on, these operators are relational extensions of two concepts familiar from
set theory: the image of a function f , which corresponds to the set of all y such that 〈∃ x ::
y = f x〉, and the kernel of f , which is the equivalence relation b(ker f)a ≡ f b = f a .
(See exercise 3).

144 J.N. Oliveira

In words: a relation R is said to be entire (or total) iff its kernel is reflexive and to be
simple (or functional) iff its image is coreflexive. Dually, R is surjective iff R◦ is entire,
and R is injective iff R◦ is simple.

Recall that part of this terminology has already been mentioned in section 2. In this
context, let us check formula (1) against the definitions captured by (19) as warming-up
exercise in pointfree-to-pointwise conversion:

〈∀ c, a, a′ :: c R a ∧ c R a′⇒ a = a′〉
≡ { rules of quantification [5] and converse }

〈∀ a, a′ : 〈∃ c :: a R◦ c ∧ c R a′〉 : a = a′〉
≡ { (11) and rules of quantification }

〈∀ a, a′ :: a(R◦ ·R)a′⇒ a = a′〉
≡ { (6) and definition of kernel }

ker R ⊆ id

Exercise 1. Derive (2) from (19). �

Exercise 2. Resort to (17,18) and (19) to prove the following four rules of thumb:

– Converse of injective is simple (and vice-versa)
– Converse of entire is surjective (and vice-versa)
– Smaller than injective (simple) is injective (simple)
– Larger than entire (surjective) is entire (surjective) �

A relation is said to be a function iff it is both simple and entire. Following a
widespread convention, functions will be denoted by lowercase characters (eg. f , g, φ)
or identifiers starting with lowercase characters. Function application will be denoted
by juxtaposition, eg. f a instead of f(a). Thus bfa means the same as b = f a.

The overall taxonomy of binary relations is pictured in figure 3 where, further to the
standard classes, we add representations and abstractions. As seen already, these are
the relation classes involved in ≤-rules (7). Because of ⊆-antisymmetry, img F = id
wherever F is an abstraction and ker R = id wherever R is a representation.

Bijections (also referred to as isomorphisms) are functions, abstractions and rep-
resentations at the same time. A particular bijection is id, which also is the smallest
equivalence relation on a particular data domain. So, b id a means the same as b = a.

Functions and relations. The interplay between functions and relations is a rich part
of the binary relation calculus [11]. For instance, the PF-transform rule which follows,
involving two functions (f, g) and an arbitrary relation R

b(f◦ · R · g)a ≡ (f b)R(g a) (20)

plays a prominent role in the PF-transform [4]. The pointwise definition of the kernel
of a function f , for example,

b(ker f)a ≡ f b = f a (21)

Transforming Data by Calculation 145

binary relation
�������������

�����
�

���������������

injective
��

entire
��

� ���
simple

������
surjective

���

representation
��

function
��

�
��

�
abstraction
			

injection
��

surjection
���

bijection

Fig. 3. Binary relation taxonomy

stems from (20), whereby it is easy to see that� is the kernel of every constant function,

1 A
!�� included. (Function ! — read “!” as “bang” — is the unique function of its

type, where 1 denotes the singleton data domain.)

Exercise 3. Given a function B A
f�� , calculate the pointwise version (21) of ker f

and show that img f is the coreflexive associated to predicate p b=〈∃ a :: b=f a〉.�

Given two preorders≤ and�, one may relate arguments and results of pairs of suitably
typed functions f and g in a particular way,

f◦· � = ≤ · g (22)

in which case both f, g are monotone and said to be Galois connected. Function f (resp.
g) is referred to as the lower (resp. upper) adjoint of the connection. By introducing
variables in both sides of (22) via (20), we obtain, for all a and b

(f b) � a ≡ b ≤ (g a) (23)

Quite often, the two adjoints are sections of binary operators. Given a binary operator
θ, its two sections (aθ) and (θb) are unary functions f and g such that, respectively:

f = (aθ) ≡ f b = a θ b (24)

g = (θb) ≡ g a = a θ b (25)

Galois connections in which the two preorders are relation inclusion (≤,� := ⊆,⊆)
and whose adjoints are sections of relational combinators are particularly interesting
because they express universal properties about such combinators. Table 1 lists connec-
tions which are relevant for this paper.

It is easy to recover known properties of the relation calculus from table 1. For in-
stance, the entry marked “shunting rule” leads to

h ·R ⊆ S ≡ R ⊆ h◦ · S (26)

for all h, R and S. By taking converses, one gets another entry in table 1, namely

R · h◦ ⊆ S ≡ R ⊆ S · h (27)

146 J.N. Oliveira

Table 1. Sample of Galois connections in the relational calculus. The general formula given on
top is a logical equivalence universally quantified on S and R. It has a left part involving lower
adjoint f and a right part involving upper adjoint g.

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

converse ()◦ ()◦

shunting rule (h·) (h◦·) h is a function

“converse” shunting rule (·h◦) (·h) h is a function

domain δ (�·) left ⊆ restricted to coreflexives

range ρ (·�) left ⊆ restricted to coreflexives

difference (− R) (R ∪)

These equivalences are popularly known as “shunting rules” [11]. The fact that at most
and equality coincide in the case of functions

f ⊆ g ≡ f = g ≡ f ⊇ g (28)

is among many beneficial consequences of these rules (see eg. [11]).
It should be mentioned that some rules in table 1 appear in the literature under dif-

ferent guises and usually not identified as GCs 5. For a thorough presentation of the
relational calculus in terms of GCs see [1, 5]. There are many advantages in such an
approach: further to the systematic tabulation of operators (of which table 1 is just a
sample), GCs have a rich algebra of properties, namely:

– Both adjoints f and g in a GC are monotonic;
– Lower adjoint f commutes with join and upper-adjoint g commutes with meet,

wherever these exist;
– Two cancellation laws hold, b ≤ g(f b) and f (g a) � a , respectively known as

left-cancellation and right-cancellation.

It may happen that a cancellation law holds up to equality, for instance f (g a) = a, in
which case the connection is said to be perfect on the particular side [1].

Simplicity. Simple relations (that is, partial functions) will be particularly relevant in
the sequel because of their ubiquity in software modeling. In particular, they will be
used in this paper to model data identity and any kind of data structure “embodying a
functional dependency” [58] such as eg. relational database tables, memory segments
(both static and dynamic) and so on.

In the same way simple relations generalize functions (figure 3), shunting rules (26,
27) generalize to

S · R ⊆ T ≡ (δ S) ·R ⊆ S◦ · T (29)

R · S◦ ⊆ T ≡ R · δ S ⊆ T · S (30)

5 For instance, the shunting rule is called cancellation law in [70].

Transforming Data by Calculation 147

for S simple. These rules involve the domain operator (δ) whose GC, as mentioned in
table 1, involves coreflexives on the lower side:

δ R ⊆ Φ ≡ R ⊆ � · Φ (31)

We will draw harpoon arrows B A
R� or A

R �B to indicate that R is simple.
Later on we will need to describe simple relations at pointwise level. The notation we
shall adopt for this purpose is borrowed from VDM [38], where it is known as mapping
comprehension. This notation exploits the applicative nature of a simple relation S by
writing b S a as a ∈ dom S ∧ b = S a, where ∧ should be understood non-strict
on the right argument 6 and dom S is the set-theoretic version of coreflexive δ S above,
that is,

δ S = Φdom S (32)

holds (cf. the isomorphism between sets and coreflexives). In this way, relation S itself
can be written as {a �→ S a | a ∈ dom S} and projection f · S · g◦ as

{g a �→ f(S a) | a ∈ dom S} (33)

provided g is injective (thus ensuring simplicity).

Exercise 4. Show that the union of two simple relations M and N is simple iff the
following condition holds:

M ·N◦ ⊆ id (34)

(Suggestion: resort to universal property (R ∪ S) ⊆ X ≡ R ⊆ X ∧ S ⊆ X .)
Furthermore show that (34) converts to pointwise notation as follows,

〈∀ a :: a ∈ (dom M ∩ dom N)⇒ (M a) = (N a)〉

— a condition known as (map) compatibility in VDM terminology [25]. �

Exercise 5. It will be useful to order relations with respect to how defined they are:

R � S ≡ δ R ⊆ δ S (35)

From � = ker ! draw another version of (35), R � S ≡ ! · R ⊆ ! · S, and use it to
derive

R · f◦ � S ≡ R � S · f (36)

�

Operator precedence. In order to save parentheses in relational expressions, we define
the following precedence ordering on the relational operators seen so far:

◦ > {δ , ρ } > (·) > ∩ > ∪

Example: R · δ S◦ ∩ T ∪ V abbreviates ((R · (δ (S◦))) ∩ T) ∪ V .

6 VDM embodies a logic of partial functions (LPF) which takes this into account [38].

148 J.N. Oliveira

Summary. The material of this section is adapted from similar sections in [59, 60],
which introduce the reader to the essentials of the PF-transform. While the notation
adopted is standard [11], the presentation of the associated calculus is enhanced via
the use of Galois connections, a strategy inspired by two (still unpublished) textbooks
[1, 5]. There is a slight difference, perhaps: by regarding the underlying mathematics
as that of a transform to be used wherever a “hard” formula 7 needs to be reasoned
about, the overall flavour is more practical and not that of a fine art only accessible to
the initiated — an aspect of the recent evolution of the calculus already stressed in [40].

The table below provides a summary of the PF-transform rules given so far, where
left-hand sides are logical formulæ (ψ) and right-hand sides are the corresponding PF
equivalents ([[ψ]]):

ψ [[ψ]]
〈∀ a, b :: b R a⇒ b S a〉 R ⊆ S
〈∀ a :: f a = g a〉 f ⊆ g
〈∀ a :: a R a〉 id ⊆ R

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ · R · g)a

TRUE b � a
FALSE b ⊥ a

(37)

Exercise 6. Prove that relational composition preserves all relational classes in the tax-
onomy of figure 3. �

4 Data Structures

One of the main difficulties in studying data structuring is the number of disparate (inc.
graphic) notations, programming languages and paradigms one has to deal with. Which
should one adopt? While graphical notations such as the UML [15] are gaining adepts
everyday, it is difficult to be precise in such notations because their semantics are, as a
rule, not formally defined.

Our approach will be rather minimalist: we will map such notations to the PF-
notation whose rudiments have just been presented. By the word “map” we mean a
light-weight approach in this paper: presenting a fully formal semantics for the data
structuring facilities offered by any commercial language or notation would be more
than one paper in itself.

The purpose of this section is two fold: on the one hand, to show how overwhelming
data structuring notations can be even in the case of simple data models such as our
family tree (running) example; on the other hand, to show how to circumvent such dis-
parity by expressing the same models in PF-notation. Particular emphasis will be put
on describing Entity-relationship diagrams [30]. Later on we will go as far as capturing
recursive data models by least fixpoints over polynomial types. Once again we warn the

7 To use the words of Kreyszig [41] in his appreciation of the Laplace transform.

Transforming Data by Calculation 149

Individual
ID: String
Name: String
Birth: Date

0..2

Parent

(a) (b)

Individual

ID

Name Birth

Parent

0:nof

0:2is

Fig. 4. ER and UML diagrams proposed for genealogies. Underlined identifiers denote keys.

reader that types and data modeling constructs in current programming languages are
rather more complex than their obvious cousins in mathematics. For the sake of sim-
plicity, we deliberately don’t consider aspects such as non-strictness, lazy-evaluation,
infinite data values [65] etc.

Back to the running example. Recall the family tree displayed in (9) and figure 2. Sup-
pose requirements ask us to provide CRUD operations on a genealogy database col-
lecting such family trees. How does one go about describing the data model underlying
such operations?

The average database designer will approach the model via entity-relationship (ER)
diagrams, for instance that of figure 4(a). But many others will regard this notation too
old-fashioned and will propose something like the UML diagram of figure 4(b) instead.

Uncertain of what such drawings actually mean, many a programmer will prefer to
go straight into code, eg. C

typedef struct Gen {
char *name /* name is a string */
int birth /* birth year is a number */
struct Gen *mother; /* genealogy of mother (if known) */
struct Gen *father; /* genealogy of father (if known) */
} ;

— which matches with figure 2a — or XML, eg.

<!-- DTD for genealogical trees -->
<!ELEMENT tree (node+)>
<!ELEMENT node (name, birth, mother?, father?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
<!ELEMENT mother EMPTY>
<!ELEMENT father EMPTY>
<!ATTLIST tree

ident ID #REQUIRED>

150 J.N. Oliveira

<!ATTLIST mother
refid IDREF #REQUIRED>

<!ATTLIST father
refid IDREF #REQUIRED>

— or plain SQL, eg. (fixing some arbitrary sizes for datatypes)

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)

);

CREATE TABLE ANCESTORS (
ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,
CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)

);

— which matches with figure 2b.
What about functional programmers? By looking at pedigree tree (9) where we

started from, an inductive data type can be defined, eg. in Haskell,

data PTree = Node {
name :: [Char],
birth :: Int ,
mother :: Maybe PTree,
father :: Maybe PTree
}

(38)

whereby (9) would be encoded as data value

Node
{name = "Peter", birth = 1991,
mother = Just (Node

{name = "Mary", birth = 1956,
mother = Nothing,
father = Nothing}),

father = Just (Node
{name = "Joseph", birth = 1955,
mother = Just (Node

{name = "Margaret", birth = 1923,
mother = Nothing, father = Nothing}),
father = Just (Node

{name = "Luigi", birth = 1920,
mother = Nothing, father = Nothing})})}

Of course, the same tree can still be encoded in XML notation eg. using DTD

<!-- DTD for genealogical trees -->
<!ELEMENT tree (name, birth, tree?, tree?)>

Transforming Data by Calculation 151

<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be pretty-printed as in (9). However,
how can one ensure that the same print-family-tree operation won’t loop forever while
retrieving data from eg. figure 2b? This would clearly happen if, by mistake, record
1 Father 2 in figure 2b were updated to 1 Father 5 : Peter would become

a descendant of himself!
Several questions suggest themselves: are all the above data models “equivalent”? If

so, in what sense? If not, how can they be ranked in terms of “quality”? How can we
tell apart the essence of a data model from its technology wrapping?

To answer these questions we need to put some effort in describing the notations
involved in terms of a single, abstract (ie. technology free) unifying notation. But syntax
alone is not enough: the ability to reason in such a notation is essential, otherwise
different data models won’t be comparable. Thus the reason why, in what follows, we
choose the PF-notation as unifying framework 8.

Records are inhabitants of products. Broadly speaking, a database is that part of an
information system which collects facts or records of particular situations which are
subject to retrieving and analytical processing. But, what is a record?

Any row in the tables of figure 2b is a record, ie. records a fact. For instance, record
5 Peter 1991 tells: Peter, whose ID number is 5, was born in 1991. A mathemati-

cian would have written (5, P eter, 1991) instead of drawing the tabular stuff and would
have inferred (5, P eter, 1991) ∈ IN ×String× IN from 5 ∈ IN , Peter ∈ String and
1991 ∈ IN , where, given two types A and B, their (Cartesian) product A×B is the set
{(a, b) | a ∈ A ∧ b ∈ B}. So records can be regarded as tuples which inhabit products
of types.

Product datatype A × B is essential to information processing and is available in
virtually every programming language. In Haskell one writes (A,B) to denote A×B,
for A and B two given datatypes. This syntax can be decorated with names, eg.

data C = C { first :: A, second :: B }

as is the case of PTree (38). In the C programming language, the A × B datatype is
realized using “struct”’s, eg.

struct { A first; B second; };

The diagram below is suggestive of what product A × B actually means, where f
and g are functions, the two projections π1, π2 are such that

π1(a, b) = a ∧ π2(a, b) = b (39)

8 The “everything is a relation” motto implicit in this approach is also the message of Alloy [36],
a notation and associated model-checking tool which has been successful in alloying a number
of disparate approaches to software modeling, namely model-orientation, object-orientation,
etc. Quoting [36]: (...) “the Alloy language and its analysis are a Trojan horse: an attempt to
capture the attention of software developers, who are mired in the tar pit of implementation
technologies, and to bring them back to thinking deeply about underlying concepts”.

152 J.N. Oliveira

A A×B
π1�� π2 �� B

C

f

		������������
〈f,g〉

��

g

��������������

and function 〈f, g〉 (read: “f split g”) is defined

by 〈f, g〉c def= (f c, g c). The diagram expresses
the two cancellation properties, π1 · 〈f, g〉 = f
and π2 · 〈f, g〉 = f , which follow from a more
general (universal) property,

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (40)

which holds for arbitrary (suitably typed) functions f , g and k. This tells that, given
functions f and g, each producing inhabitants of types A and B, respectively, there is a
unique function 〈f, g〉 which combines f and g so as to produce inhabitants of product
type A×B. Read in another way: any function k delivering results into type A×B can
be uniquely decomposed into its two left and right components.

It can be easily checked that the definition of 〈f, g〉 given above PF-transforms to
〈f, g〉 = π◦

1 · f ∩ π◦
2 · g. (Just re-introduce variables and simplify, thanks to (39), (20),

etc.) This provides a hint on how to generalize the split combinator to relations 9:

〈R, S〉 = π◦
1 · R ∩ π◦

2 · S (41)

To feel the meaning of the extension we introduce variables in (41) and simplify:

〈R, S〉 = π◦
1 · R ∩ π◦

2 · S

≡ { introduce variables; (37) }

(a, b)〈R, S〉c ≡ (a, b)(π◦
1 · R)c ∧ (a, b)(π◦

2 · S)c

≡ { (20) twice }

(a, b)〈R, S〉c ≡ π1(a, b) R c ∧ π2(a, b) S c

≡ { projections (39) }

(a, b)〈R, S〉c ≡ a R c ∧ b S c

So, relational splits enable one to PF-transform logical formulæ involving more than
two variables.

A special case of split will be referred to as relational product:

R × S
def= 〈R · π1, S · π2〉 (42)

So we can add two more entries to table (37):

ψ [[ψ]]
a R c ∧ b S c (a, b)〈R, S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

Finally note that binary product can be generalized to n-ary product A1×A2× . . .×
An involving projections {πi}i=1,n such that πi(a1, . . . , an) = ai.

9 Read more about this construct (which is also known as a fork algebra [28]) in section 7 and,
in particular, in exercise 27.

Transforming Data by Calculation 153

Exercise 7. Identify which types are involved in the following bijections:

flatr(a, (b, c)) def= (a, b, c) (43)

flatl((b, c), d) def= (b, c, d) (44)

�

Exercise 8. Show that the side condition of the following split-fusion law 10

〈R, S〉 · T = 〈R · T, S · T 〉 ⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S (45)

can be dispensed with in (at least) the following situations: (a) T is simple; (b) R or S
are functions. �

Exercise 9. Write the following cancellation law with less symbols assuming that R �
S and S � R (35) hold:

π1 · 〈R, S〉 = R · δ S ∧ π2 · 〈R, S〉 = S · δ R (46)

�

Data type sums. The following is a declaration of a date type in Haskell which is
inhabited by either Booleans or error strings:

data X = Boo Bool | Err String

If one queries a Haskell interpreter for the types of the Boo and Err constructors, one
gets two functions which fit in the following diagram

Bool
i1 ��

Boo

����������������� Bool + String

[Boo ,Err]

String
i2��

Err
�������������������

X

where Bool+String denotes the sum (disjoint union) of types Bool and String, func-
tions i1, i2 are the necessary injections and [Boo , Err] is an instance of the “either”
relational combinator :

[R , S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 ��

R
�������������� A + B

[R ,S]

B
i2��

S
��������������

C

(47)

In pointwise notation, [R , S] means

c[R , S]x ≡ 〈∃ a :: c R a ∧ x = i1a〉 ∨ 〈∃ b :: c S a ∧ x = i2b〉
10 Theorem 12.30 in [1].

154 J.N. Oliveira

In the same way split was used above to define relational product R× S, either can
be used to define relational sums:

R + S = [i1 ·R , i2 · S] (48)

As happens with products, A+B can be generalized to n-ary sum A1 +A2 + . . .+An

involving n injections {ii}i=1,n.
In most programming languages, sums are not primitive and need to be programmed

on purpose, eg. in C (using unions)

struct {
int tag; /* eg. 1,2 */
union {

A ifA;
B ifB;

} data;
};

where explicit integer tags are introduced so as to model injections i1, i2.

(Abstract) pointers. A particular example of a datatype sum is 1 + A, where A is an
arbitrary type and 1 is the singleton type. The “amount of information” in this kind of
structure is that of a pointer in C/C++: one “pulls a rope” and either gets nothing (1)
or something useful of type A. In such a programming context “nothing” above means
a predefined value NIL. This analogy supports our preference in the sequel for NIL as
canonical inhabitant of datatype 1. In fact, we will refer to 1 + A (or A + 1) as the
“pointer to A” datatype 11. This corresponds to the Maybe type constructor in Haskell.

Polynomial types, grammars and languages. Types involving arbitrary nesting of prod-
ucts and sums are called polynomial types, eg. 1 + A×B (the “pointer to struct” type).
These types capture the abstract contents of generative grammars (expressed in ex-
tended BNF notation) once non-terminal symbols are identified with types and terminal
symbols are filtered. The conversion is synthesized by the following table,

BNF NOTATION POLYNOMIAL NOTATION

α | β �→ α + β
αβ �→ α× β
ε �→ 1
a �→ 1

(49)

applicable to the right hand side of BNF-productions, where α, β range over sequences
of terminal or non-terminal symbols, ε stands for empty and a ranges over terminal
symbols. For instance, production X → ε | a A X (where X, A are non-terminals and
a is terminal) leads to equation

X = 1 + A×X (50)
11 Note that we are abstracting from the reference/dereference semantics of a pointer as under-

stood in C-like programming languages. This is why we refer to 1 + A as an abstract pointer.
The explicit introduction of references (pointers, keys, identities) is deferred to section 9.

Transforming Data by Calculation 155

which has A� — the “sequence of A” datatype — as least solution. Since 1 + A ×X
can also be regarded as instance of the “pointer to struct” pattern, one can encode the
same equation as the following (suitably sugared) type declaration in C:

typedef struct x {
A data;
struct x *next;

} Node;

typedef Node *X;

Recursive types. Both the interpretation of grammars [68] and the analysis of datatypes
with pointers [69] lead to systems of polynomial equations, that is, to mutually recursive
datatypes. For instance, the two typedef s above lead to Node = A × X and to X =
1 + Node. It is the substitution of Node by A×X in the second equation which gives
raise to (50). There is a slight detail, though: in dealing with recursive types one needs
to replace equality of types by isomorphism of types, a concept to be dealt with later
on in section 5. So, for instance, the PTree datatype illustrated above in the XML and
Haskell syntaxes is captured by the equation

PTree ∼= Ind× (PTree + 1)× (PTree + 1) (51)

where Ind = Name × Birth packages the information relative to name and birth
year, which don’t participate in the recursive machinery and are, in a sense, parameters
of the model. Thus one may write PTree ∼= G(Ind, PTree), in which G abstracts the
particular pattern of recursion chosen to model family trees

G(X, Y) def= X × (Y + 1)× (Y + 1)

where X refers to the parametric information and Y to the inductive part 12.
Let us now think of the operation which fetches a particular individual from a given

PTree. From (51) one is intuitively led to an algorithm which either finds the individual
(Ind) at the root of the tree, or tries and finds it in the left sub-tree (PTree) or tries and
finds it in the right sub-tree (PTree). Why is this strategy “the natural” and obvious
one? The answer to this question leads to the notion of datatype membership which is
introduced below.

Membership. There is a close relationship between the shape of a data structure and
the algorithms which fetch data from it. Put in other words: every instance of a given
datatype is a kind of data container whose mathematical structure determines the par-
ticular membership tests upon which such algorithms are structured.

Sets are perhaps the best known data containers and purport a very intuitive notion
of membership: everybody knows what a ∈ S means, wherever a is of type A and
S of type PA (read: “the powerset of A”). Sentence a ∈ S already tells us that (set)

membership has type A PA
∈�� . Now, lists are also container types, the intuition

12 Types such as PTree, which are structured around another datatype (cf. G) which captures its
structural “shape” are often referred to as two-level types in the literature [66].

156 J.N. Oliveira

being that a belongs (or occurs) in list l ∈ A� iff it can be found in any of its positions.

In this case, membership has type A A�∈�� (note the overloading of symbol ∈). But
even product A×A has membership too: a is a member of a pair (x, y) of type A×A
iff it can be found in either sides of that pair, that is a ∈ (x, y) means a = x ∨ a = y.
So it makes sense to define a generic notion of membership, able to fully explain the
overloading of symbol ∈ above.

Datatype membership has been extensively studied [11, 32, 59]. Below we deal with
polynomial type membership, which is what it required in this paper. A polynomial type
expression may involve the composition, product, or sum of other polynomial types,
plus the identity (Id X = X) and constant types (FX = K , where K is any basic
datatype, eg. the Booleans, the natural numbers, etc). Generic membership is defined,
in the PF-style, over the structure of polynomial types as follows:

∈K
def= ⊥ (52)

∈Id
def= id (53)

∈F×G
def= (∈F · π1) ∪ (∈G · π2) (54)

∈F+G
def= [∈F ,∈G] (55)

∈F·G
def= ∈G · ∈F (56)

Exercise 10. Calculate the membership of type FX=X×X and convert it to pointwise
notation, so as to confirm the intuition above that a ∈ (x, y) holds iff a=x ∨ a=y. �

Generic membership will be of help in specifying data structures which depend on each
other by some form of referential integrity constraint. Before showing this, we need to
introduce the important notion of reference, or identity.

Identity. Base clause (53) above clearly indicates that, sooner or later, equality plays
its role when checking for polynomial membership. And equality of complex objects
is cumbersome to express and expensive to calculate. Moreover, checking two objects
for equality based on their properties alone may not work: it may happen that two
physically different objects have the same properties, eg. two employees with exactly
the same age, name, born in the same place, etc.

This identification problem has a standard solution: one associates to the objects in
a particular collection identifiers which are unique in that particular context, cf. eg.
identifier ID in figure 2b. So, instead of storing a collection of objects of (say) type A in
a set of (say) typePA, one stores an association of unique names to the original objects,
usually thought of in tabular format — as is the case in figure 2b.

However, thinking in terms of tabular relations expressed by sets of tuples where
particular attributes ensure unique identification13, as is typical of database theory [45],
is neither sufficiently general nor agile enough for reasoning purposes. References
[56, 58] show that relational simplicity 14 is what matters in unique identification. So

13 These attributes are known as keys.
14 Recall that a relation is simple wherever its image is coreflexive (19).

Transforming Data by Calculation 157

Book
ISBN
Title
Author[0-5]
Publisher
id: ISBN

Reserved
Date

Borrower
PID
Name
Address
Phone
id: PID

0:N 0:N

Fig. 5. Sample of GER diagram (adapted from [30]). Underlined identifiers denote keys.

it suffices to regard collections of uniquely identified objects A as simple relations of
type

K ⇀ A (57)

where K is a nonempty datatype of keys, or identifiers. For the moment, no special
requirements are put on K . Later on, K will be asked to provide for a countably infinite
supply of identifiers, that is, to behave such as natural number objects do in category
theory [47].

Below we show that simplicity and membership are what is required of our PF-
notation to capture the semantics of data modeling (graphical) notations such as Entity-
Relationship diagrams and UML class diagrams.

Entity-relationship diagrams. As the name tells, Entity-Relationship data modeling
involves two basic concepts: entities and relationships. Entities correspond to nouns in
natural language descriptions: they describe classes of objects which have identity and
exhibit a number of properties or attributes. Relationships can be thought of as verbs:
they record (the outcome of) actions which engage different entities.

A few notation variants and graphical conventions exist for these diagrams. For its
flexibility, we stick to the generic entity-relationship (GER) proposal of [30]. Figure 5
depicts a GER diagram involving two entities: Book and Borrower. The latter pos-
sesses attributes Name, Address, Phone and identity PID. As anticipated above where
discussing how to model object identity, the semantic model of Borrower is a simple
relation of type TPID ⇀ TName × TAddress × TPhone, where by Ta we mean the
type where attribute a takes values from. For notation economy, we will drop the T...

notation and refer to the type Ta of attribute a by mentioning a alone:

Borrowers
def= PID ⇀ Name×Address × Phone

Entity Book has a multivalued attribute (Author) imposing at most 5 authors. The
semantics of such attributes can be also captured by (nested) simple relations:

Books
def= ISBN ⇀ Title× (5 ⇀ Author)× Publisher (58)

Note the use of number 5 to denote the initial segment of the natural numbers (IN) up
to 5, that is, set {1, 2, ..., 5}.

158 J.N. Oliveira

Books can be reserved by borrowers and there is no limit to the number of books
the latter can reserve. The outcome of a reservation at a particular date is captured by
relationship Reserved. Simple relations also capture relationship formal semantics, this
time involving the identities of the entities engaged. In this case:

Reserved
def= ISBN × PID ⇀ Date

Altogether, the diagram specifies datatype Db
def= Books×Borrowers ×Reserved

inhabited by triples of simple relations.
In summary, Entity-Relationship diagrams describe data models which are concisely

captured by simple binary relations. But we are not done yet: the semantics of the
problem include the fact that only existing books can be borrowed by known borrowers.
So one needs to impose a semantic constraint (invariant) on datatype Db which, written
pointwise, goes as follows

φ(M, N, R) def=
〈∀ i, p, d :: d R (i, p)⇒ 〈∃ x :: x M i〉 ∧ 〈∃ y :: y M p〉〉 (59)

where i, p, d range over ISBN, PID and Date, respectively.
Constraints of this kind, which are implicitly assumed when interpreting relation-

ships in these diagrams, are known as integrity constraints. Being invariants at the se-
mantic level, they bring along with them the problem of ensuring their preservation by
the corresponding CRUD operations. Worse than this, their definition in the predicate
calculus is not agile enough for calculation purposes. Is there an alternative?

Space constraints preclude presenting the calculation which would show (59) equiv-
alent to the following, much more concise PF-definition:

φ(M, N, R) def= R · ∈◦ � M ∧ R · ∈◦ � N (60)

cf. diagram

ISBN

M

ISBN × PID

R

∈=π1�� ∈=π2 �� PID

N

T itle× (5 ⇀
Author) ×
Publisher

Date
Name×
Address×
Phone

To understand (60) and the diagram above, the reader must recall the definition of the
� ordering (35) — which compares the domains of two relations — and inspect the

types of the two memberships, ISBN ISBN × PID
∈=π1�� in the first instance and

PID ISBN × PID
∈=π2�� in the second. We check the first instance, the second being

similar:

ISBN ISBN × PID
∈��

Transforming Data by Calculation 159

= { polynomial decomposition, membership of product (54) }

(∈Id ·π1) ∪ (∈PID ·π2)

= { (52) and (53) }

id · π1 ∪ ⊥ · π2

= { trivia }
π1

Multiplicity labels 0:N in the diagram of figure 5 indicate that there is no limit to the
number of books borrowers can reserve. Now suppose the library decrees the following
rule: borrowers can have at most one reservation active. In this case, label 0:N on the
Book side must be restricted to 0:1. These so-called many-to-one relationships are once
again captured by simple relations, this time of a different shape:

Reserved
def= PID ⇀ ISBN ×Date (61)

Altogether, note how clever use of simple relations dispenses with explicit cardinality
invariants, which would put spurious weight on the data model. However, referential
integrity is still to be maintained. The required pattern is once again nicely built up

around membership, φ(M, N, R) def= (∈ ·R)◦ � M ∧ R � N , see diagram:

ISBN

M

ISBN ×Date
∈=π1�� PID

R�

N

T itle× (5 ⇀
Author) ×
Publisher

Name×
Address×
Phone

In retrospect, note the similarity in shape between these diagrams and the corre-
sponding Entity-Relationship diagrams. The main advantage of the former resides in
their richer semantics enabling formal reasoning, as we shall see in the sequel.

Name spaces and “heaps”. Relational database referential integrity can be shown to be
an instance of a more general issue which traverses computing from end to end: name
space referential integrity (NSRI). There are so many instances of NSRI that genericity
is the only effective way to address the topic 15. The issue is that, whatever programming
language is adopted, one faces the same (ubiquitous) syntactic ingredients: (a) source
code is made of units; (b) units refer to other units; (c) units need to be named.

For instance, a software package is a (named) collection of modules, each module
being made of (named) collections of data type declarations, of variable declarations,
of function declarations etc. Moreover, the package won’t compile in case name spaces
don’t integrate with each other. Other examples of name spaces requiring NSRI are
XML DTDs, grammars (where nonterminals play the role of names), etc.

15 For further insight into naming see eg. Robin Milner’s interesting essay What’s in a name? (in
honour of Roger Needham) available from http://www.cl.cam.ac.uk/˜rm135.

160 J.N. Oliveira

In general, one is led to heterogeneous (typed) collections of (mutually dependent)
name spaces, nicely modeled as simple relations again

Ni ⇀ Fi(Ti, N1, . . . , Nj, . . . , Nni)

where Fi is a parametric type describing the particular pattern which expresses how
names of type Ni depend on names of types Nj (j = 1, ni) and where Ti aggregates all
types which don’t participate in NSRI.

Assuming that all such Fi have membership, we can draw diagram

Ni
Si �

∈i,j ·Si

������������������� Fi(Ti, N1, . . . , Nj , . . . , Nni)

∈i,j

Nj

where ∈i,j · Si is a name-to-name relation, or dependence graph. Overall NSRI will
hold iff

〈∀ i, j :: (∈i,j · Si)◦ � Sj〉 (62)

which, once the definition order� (35) is spelt out, converts to the pointwise:

〈∀ n, m : n ∈ dom Si : m ∈i,j (Si n)⇒m ∈ dom Sj〉

Of course, (62) includes self referential integrity as a special case (i = j).
NSRI also shows up at low level, where data structures such as caches and heaps can

also be thought of as name spaces: at such a low level, names are memory addresses. For

instance, IN
H � F (T, IN) models a heap “of shape” F where T is some datatype

of interest and addresses are natural numbers (IN). A heap satisfies NSRI iff it has no
dangling pointers. We shall be back to this model of heaps when discussing how to deal
with recursive data models (section 9).

Summary. This section addressed data-structuring from a double viewpoint: the one
of programmers wishing to build data models in their chosen programming medium
and the one of the software analyst wishing to bridge between models in different no-
tations in order to eventually control data impedance mismatch. The latter entailed the
abstraction of disparate data structuring notations into a common unifying one, that of
binary relations and the PF-transform. This makes it possible to study data impedance
mismatch from a formal perspective.

5 Data Impedance Mismatch Expressed in the PF-Style

Now that both the PF-notation has been presented and that its application to describing
the semantics of data structures has been illustrated, we are better positioned to restate
and study diagram (7). This expresses the data impedance mismatch between two data

Transforming Data by Calculation 161

models A and B as witnessed by a connected representation/abstraction pair (R, F).
Formally, this means that:⎧⎨

⎩
– R is a representation (ker R = id)
– F is an abstraction (img F = id)
– R and S are connected: R ⊆ F ◦

(63)

The higher the mismatch between A and B the more complex (R, F) are. The least
impedance mismatch possible happens between a datatype and itself:

A

id

��≤ A

id

�� (64)

Another way to read (64) is to say that the ≤-ordering on data models is reflexive. It
turns up that ≤ is also transitive,

A

R

��≤ B

F

�� ∧ B

S

��≤ C

G

�� ⇒ A

S·R
��≤ C

F ·G

�� (65)

that is, data impedances compose. The calculation of (65) is immediate: composition
respects abstractions and representations (recall exercise 6) and (F ·G, S · R) are con-
nected:

S ·R ⊆ (F ·G)◦

≡ { converses (13) }

S ·R ⊆ G◦ · F ◦

⇐ { monotonicity }

S ⊆ G◦ ∧ R ⊆ F ◦

≡ { since S, G and R, F are assumed connected }
TRUE

Right-invertibility. A most beneficial consequence of (63) is the right-invertibility prop-
erty

F · R = id (66)

which, written in predicate logic, expands to

〈∀ a′, a :: 〈∃ b :: a′ F b ∧ b R a〉 ≡ a′ = a〉 (67)

The PF-calculation of (66) is not difficult:

F · R = id

162 J.N. Oliveira

≡ { equality of relations (14) }

F · R ⊆ id ∧ id ⊆ F · R
≡ { img F = id and ker R = id (63) }

F · R ⊆ F · F ◦ ∧ R◦ ·R ⊆ F · R
≡ { converses }

F · R ⊆ F · F ◦ ∧ R◦ ·R ⊆ R◦ · F ◦

⇐ { (F ·) and (R◦·) are monotone }

R ⊆ F ◦ ∧ R ⊆ F ◦

≡ { trivia }

R ⊆ F ◦

≡ { R and F are connected (63) }
TRUE

Clearly, this right-invertibility property matters in data representation: id ⊆ F · R en-
sures the no loss principle and F ·R ⊆ id ensures the no confusion principle.

While (as we have just seen) F ·R = id is entailed by (63), the converse entailment
does not hold: F · R = id ensures R a representation and F surjective, but not simple.
It may be also the case that F · R = id and R ⊆ F ◦ does not hold, as the following
counter-example shows: R = !◦ and ⊥ ⊂ F ⊂ !.

Exercise 11. The reader may be interested to compare the calculation just above with
the corresponding proof carried out at pointwise level using quantified logic expres-
sions. This will amount to showing that (67) is entailed by the pointwise statement of
(R, F) as a connected abstraction/ representation pair. �

Exercise 12. Consider two data structuring patterns: “pointer to struct” (A × B + 1)
and “pointer in struct” ((A + 1) × B). The question is: which of these data patterns
represents the other? We suggest the reader checks the validity of

A×B + 1

R
��

≤ (A + 1)×B

f

�� (68)

where R
def= [i1 × id , 〈i2, !◦〉] and f = R◦, that is, f satisfying clauses f(i1 a, b) =

i1(a, b) and f(i2 NIL, b) = i2 NIL, where NIL denotes the unique inhabitant of type 1.
�

Right-invertibility happens to be equivalent to (63) wherever both the abstraction and
the representation are functions, say f, r:

A

r

��≤ C

f

�� ≡ f · r = id (69)

Transforming Data by Calculation 163

Let us show that f · r = id is equivalent to r ⊆ f◦ and entails f surjective and r
injective:

f · r = id

≡ { (28) }

f · r ⊆ id

≡ { shunting (26) }

r ⊆ f◦

⇒ { composition is monotonic }

f · r ⊆ f · f◦ ∧ r◦ · r ⊆ r◦ · f◦

≡ { f · r = id ; converses }

id ⊆ f · f◦ ∧ r◦ · r ⊆ id

≡ { definitions }

f surjective ∧ r injective

The right invertibility property is a handy way of spotting ≤ rules. For instance, the
following cancellation properties of product and sum hold [11]:

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (70)

[g , f] · i1 = g , [g , f] · i2 = f (71)

Suitable instantiations of f , g to the identity function in both lines above lead to

π1 · 〈id, g〉 = id , π2 · 〈f, id〉 = id

[id , f] · i1 = id , [g , id] · i2 = id

Thus we get — via (69) — the following≤-rules

A

〈id,g〉

≤ A×B

π1

�� B

〈f,id〉

≤ A×B

π2

�� (72)

A

i1

≤ A + B

[id ,f]

�� B

i2

≤ A + B

[g ,id]

�� (73)

which tell the two projections surjective and the two injections injective (as expected).
At programming level, they ensure that adding entries to a struct or (disjoint) union
is a valid representation strategy, provided functions f, g are supplied by default [17].
Alternatively, they can be replaced by the top relation � (meaning a don’t care

164 J.N. Oliveira

representation strategy). In the case of (73), even ⊥ will work instead of f, g, leading,
for A = 1, to the standard representation of datatype A by a “pointer to A”:

A

i1

≤ A + 1

i◦
1

��

Exercise 13. Show that [id ,⊥] = i◦1 and that [⊥ , id] = i◦2. �

Isomorphic data types. As instance of (69) consider f and r such that both

A

r

��≤ C

f

�� ∧ C

f

��≤ A

r

��

hold. This is equivalent to

r ⊆ f◦ ∧ f ⊆ r◦

≡ { converses ; (14) }

r◦ = f (74)

So r (a function) is the converse of another function f . This means that both are bijec-
tions (isomorphisms) — recall figure 3 — since

f is an isomorphism ≡ f◦ is a function (75)

In a diagram:

A

r=f◦

��∼= C

f=r◦

��

Isomorphism A ∼= C corresponds to minimal impedance mismatch between types A
and C in the sense that, although the format of data changes, data conversion in both
ways is wholly recoverable. That is, two isomorphic types A and C are “abstractly” the
same. Here is a trivial example

A×B

swap

��∼= B ×A

swap

�� (76)

where swap is the name given to polymorphic function 〈π2, π1〉. This isomorphism
establishes the commutativity of ×, whose translation into practice is obvious: one can

Transforming Data by Calculation 165

change the order in which the entries in a struct (eg. in C) are listed; swap the order
of two columns in a spreadsheet, etc.

The question arises: how can one be certain that swap is an isomorphism? A con-
structive, elegant way is to follow the advice of (75), which appeals to calculating the
converse of swap,

swap◦

= { (41) }

(π◦
1 · π2 ∩ π◦

2 · π1)◦

= { converses }

π◦
2 · π1 ∩ π◦

1 · π2

= { (41) again }
swap

which is swap again. So swap is its own converse and therefore an isomorphism.

Exercise 14. The calculation just above was too simple. To recognize the power of (75),
prove the associative property of disjoint union,

A + (B + C)

r
��

∼= (A + B) + C

f=[id+i1 ,i2·i2]

��
(77)

by calculating the function r which is the converse of f .
Appreciate the elegance of this strategy when compared to what is conventional in

discrete maths: to prove f bijective, one would have to either prove f injective and
surjective, or invent its converse f◦ and prove the two cancellations f · f◦ = id and
f◦ · f = id. �

Exercise 15. The following are known isomorphisms involving sums and products:

A× (B × C) ∼= (A×B)× C (78)

A ∼= A× 1 (79)

A ∼= 1×A (80)

A + B ∼= B + A (81)

C × (A + B) ∼= C ×A + C ×B (82)

Guess the relevant isomorphism pairs. �

Exercise 16. Show that (75) holds, for f a function (of course). �

Relation transposes. Once again let us have a look at isomorphism pair (r, f) in (74),
this time to introduce variables in the equality:

r◦ = f

166 J.N. Oliveira

≡ { introduce variables }

〈∀ a, c :: c (r◦) a ≡ c f a〉
≡ { (20) }

〈∀ a, c :: r c = a ≡ c = f a〉
This is a pattern shared by many (pairs of) operators in the relational calculus, as is

the case of eg. (omitting universal quantifiers)

k = ΛR ≡ R = ∈ · k (83)

where Λ converts a binary relation into the corresponding set-valued function [11], of

k = tot S ≡ S = i◦1 · k︸ ︷︷ ︸
untot k

(84)

where tot totalizes a simple relation S into the corresponding “Maybe-function” 16, and
of

k = curry f ≡ f = ap · (k × id)︸ ︷︷ ︸
uncurry k

(85)

where curry converts a two-argument function f into the corresponding unary func-
tion, for ap(g, x) = g x.

These properties of Λ, tot and curry are normally referred to as universal proper-
ties, because of their particular pattern of universal quantification which ensures unique-
ness 17. Novice readers will find them less cryptic once further (quantified) variables are
introduced on their right hand sides:

k = ΛR ≡ 〈∀ b, a :: b R a ≡ b ∈ (k a)〉
k = tot S ≡ 〈∀ b, a :: b S a ≡ (i1b) = k a〉

k = curry f ≡ 〈∀ b, a :: f(b, a) = (k b)a〉
In summary, Λ, tot and curry are all isomorphisms. Here they are expressed by ∼=-
diagrams,

(PB)A

(∈·)
��∼= A→ B

Λ

�� (B + 1)A

untot=(i◦
1
·)

��∼= A ⇀ B

tot

��

(BA)C

uncurry

��∼= BC×A

curry

��

(86)

where the exponential notation Y X describes the datatype of all functions from X to Y .
16 See [59]. This corresponds to the view that simple relations are “possibly undefined” (ie. par-

tial) functions. Also recall that A A + 1
i◦
1�� is the membership of Maybe.

17 Consider, for instance, the right to left implication of (85): this tells that, given f , curry f is
the only function satisfying f = ap · (k × id).

Transforming Data by Calculation 167

Exercise 17. (For Haskell programmers) Inspect the type of flip lookup and re-
late it to that of tot. (NB: flip is available from GHC.Base and lookup from
GHC.ListA.) �

Exercise 18. The following is a well-known isomorphism involving exponentials:

(B × C)A

〈(π1·),(π2·)〉
��

∼= BA × CA

〈 , 〉
��

(87)

Write down the universal property captured by (87). �

Exercise 19. Relate function (p2p p)b def= if b then (π1 p) else (π2 p) (read p2p
as “pair to power”) with isomorphism

A×A ∼= A2 (88)

�

Since exponentials are inhabited by functions and these are special cases of relations,
there must be combinators which express functions in terms of relations and vice versa.
Isomorphisms Λ and tot (83, 84) already establish relationships of this kind. Let us see
two more which will prove useful in calculations to follow.

“Relational currying”. Consider isomorphism

(C →A)B

()◦

��∼= B × C →A

()

��
(89)

and associated universal property,

k = R ≡ 〈∀ a, b, c :: a (k b) c ≡ a R (b, c)〉 (90)

where we suggest that R be read “R transposed”. R is thus a relation-valued function
which expresses a kind of selection/projection mechanism: given some particular b0,
R b0 selects the “sub-relation” of R of all pairs (a, c) related to b0.

This extension of currying to relations is a direct consequence of (83):

B × C →A
∼= { Λ/(∈·) (83, 86) }

(PA)B×C

∼= { curry/uncurry }

((PA)C)
B

∼= { exponentials preserve isomorphisms }

(C → A)B

168 J.N. Oliveira

The fact that, for simple relations, one could have resorted above to the Maybe-transpose
(84) instead of the power transpose (83), leads to the conclusion that relational “curry-
ing” preserves simplicity:

(C ⇀ A)B

()◦

��∼= B × C ⇀ A

()

��
(91)

Since all relations are simple in (91), we can use notation convention (33) in the follow-
ing pointwise definition of M (for M simple):

M b = {c �→M(b′, c) | (b′, c) ∈ dom M ∧ b′ = b} (92)

This rule will play its role in multiple (foreign) key synthesis, see section 6.

Sets are fragments of “bang”. We have already seen that sets can be modeled by core-
flexive relations, which are simple. Characteristic functions are another way to repre-
sent sets:

2A

λp.{a∈A|p a}
��∼= PA

λS.(λa.a∈S)

�� cf. p = (∈ S) ≡ S = {a | p a} (93)

Here we see the correspondence between set comprehension and membership testing
expressed by 2-valued functions, ie. predicates. By combining the tot/untot isomor-
phism (86) with (93) we obtain

PA

s2m

∼= A ⇀ 1

dom

�� (94)

where s2m S = ! · ΦS and dom is defined by (32). This shows that every fragment of
bang (!) models a set 18.

Exercise 20. Show that “obvious” facts such as S = {a|a ∈ S} and p x ≡ x ∈ {a|p a}
stem from (93). Investigate other properties of set-comprehension which can be drawn
from (93). �

Relators and ≤-monotonicity. A lesson learned from (69) is that right-invertible func-

tions (surjections) have a ≤-rule of their own. For instance, predicate f n
def= n
= 0

over the integers is surjective (onto the Booleans). Thus Booleans can be represented
by integers, 2 ≤ ZZ — a fact C programmers know very well. Of course, one expects
this “to scale up”: any data structure involving the Booleans (eg. trees of Booleans) can

18 Relations at most bang (!) are referred to as right-conditions in [32].

Transforming Data by Calculation 169

be represented by a similar structure involving integers (eg. trees of integers). However,
what does the word “similar” mean in this context? Typically, when building such a
tree of integers, a C programmer looks at it and “sees” the tree with the same geometry
where the integers have been replaced by their f images.

In general, let A and B be such that A ≤ B and let GX denote a type parametric on
X . We want to be able to promote the A-into-B representation to structures of type G :

A

R

��≤ B

F

�� ⇒ GA

G R

��
≤ GB

G F

��

The questions arise: does this hold for any parametric type G we can think of? and
what do relations GR and GF actually mean? Let us check. First of all, we investigate
conditions for (GF, GR) to be connected to each other:

GR ⊆ (GF)◦

⇐ { assume G(X◦) ⊆ (G X)◦, for all X }

GR ⊆ G(F ◦)

⇐ { assume monotonicity of G }

R ⊆ F ◦

≡ { R is assumed connected to F }
TRUE

Next, GR must be injective:

(GR)◦ · GR ⊆ id

⇐ { assume (G X)◦ ⊆ G(X◦) }

(GR◦) · GR ⊆ id

⇐ { assume (G R) · (G T) ⊆ G(R · T) }

G(R◦ ·R) ⊆ id

⇐ { assume G id ⊆ id and monotonicity of G }

R◦ · R ⊆ id

≡ { R is injective }
TRUE

The reader eager to pursue checking the other requirements (R entire, F surjective, etc)
will find out that the wish list concerning G will end up being as follows:

G id = id (95)

G (R · S) = (GR) · (GS) (96)

170 J.N. Oliveira

G (R◦) = (GR)◦ (97)

R ⊆ S ⇒ GR ⊆ GS (98)

These turn up to be the properties of a relator [6], a concept which extends that of a
functor to relations: a parametric datatype G is said to be a relator wherever, given a
relation R from A to B, GR extends R to G-structures. In other words, it is a relation
from GA to GB, cf.

A

R

GA

G R

B GB

(99)

which obeys the properties above (it commutes with the identity, with composition and
with converse, and it is monotonic). Once R, S above are restricted to functions, the
behaviour of G in (95, 96) is that of a functor, and (97) and (98) become trivial —
the former establishing that G preserves isomorphisms and the latter that G preserves
equality (Leibniz).

It is easy to show that relators preserve all basic properties of relations as in figure 3.
Two trivial relators are the identity relator Id, which is such that Id R = R and the
constant relator K (for a given data type K) which is such that K R = idK . Relators
can also be multi-parametric and we have already seen two of these: product R×S (42)
and sum R + S (48).

The prominence of parametric type GX = K ⇀ X , for K a given datatype K of
keys, leads us to the investigation of its properties as a relator,

B

R

K ⇀ B

K⇀R

C K ⇀ C

where we define relation K ⇀ R as follows:

N(K ⇀ R)M def= δ M = δ N ∧ N ·M◦ ⊆ R (100)

So, wherever simple N and M are (K ⇀ R)-related, they are equally defined and their
outputs are R-related. Wherever R is a function f , K ⇀ f is a function too defined by
projection

(K ⇀ f)M = f ·M (101)

This can be extended to a bi-relator,

(g ⇀ f)M = f ·M · g◦ (102)

provided g is injective — recall (33).

Exercise 21. Show that instantiation R := f in (100) leads to N ⊆ f ·M and f ·M ⊆ N
in the body of (100), and therefore to (101). �

Exercise 22. Show that (K ⇀) is a relator. �

Transforming Data by Calculation 171

Indirection and dereferencing. Indirection is a representation technique whereby data
of interest stored in some data structure are replaced by references (pointers) to some
global (dynamic) store — recall (57) — where the data are actually kept. The represen-
tation implicit in this technique involves allocating fresh cells in the global store; the
abstraction consists in retrieving data by pointer dereferencing.

The motivation for this kind of representation is well-known: the referent is more
expensive to move around than the reference. Despite being well understood and very
widely used, dereferencing is a permanent source of errors in programming: it is im-
possible to retrieve data from a non-allocated reference.

IN

S

G IN

G S

B GB

To see how this strategy arises, consider B in (99) the datatype
of interest (archived in some parametric container of type G, eg.
binary trees of Bs). Let A be the natural numbers and S be sim-
ple. Since relators preserve simplicity, GS will be simple too, as
depicted aside. The meaning of this diagram is that of declaring a
generic function (say rmap) which, giving S simple, yields GS
also simple. So rmap has type

(IN ⇀ B) → (G IN ⇀ GB) (103)

in the same way the fmap function of Haskell class Functor has type

fmap :: (a -> b) -> (g a -> g b)

(Recall that, once restricted to functions, relators coincide with functors.)
From (91) we infer that rmap can be “uncurried” into a simple relation of type

((IN ⇀ B) × G IN) ⇀ GB which is surjective, for finite structures. Of course we
can replace IN above by any data domain, say K (suggestive of key), with the same
cardinality, that is, such that K ∼= IN . Then

GB

R
��

≤ (K ⇀ B)× GK

Dref

�� (104)

holds for abstraction relation Dref such that Dref = rmap, that is, such that (recalling
(90))

y Dref (S, x) ≡ y(GS)x

for S a store and x a data structure of pointers (inhabitant of GK).
Consider as example the indirect representation of finite lists of Bs, in which fact

l′ Dref (S, l) instantiates to l′(S�)l, itself meaning

l′(S�)l ≡ length l′ = length l ∧
〈∀ i : 1 ≤ i ≤ length l : l i ∈ dom S ∧ (l′ i) = S(l i)〉

So, wherever l′S�l holds, no reference k in list l can live outside the domain of store S,

k ∈ l ⇒ 〈∃ b :: b S k〉 (105)

where ∈ denotes finite list membership.

172 J.N. Oliveira

Exercise 23. Check that (105) PF-transforms to (∈· l)◦ � S, an instance of NSRI (62)
where l denotes the “everywhere l” constant function. �

Exercise 24. Define a representation function r ⊆ Dref ◦ (104) for GX = X�. �

Summary. This section presented the essence of this paper’s approach to data calcula-
tion: a preorder (≤) on data types which formalizes data impedance mismatch in terms
of representation/abstraction pairs. This preorder is compatible with the data type con-
structors introduced in section 4 and leads to a data structuring calculus whose laws
enable systematic calculation of data implementations from abstract models. This is
shown in the sections which follow.

6 Calculating Database Schemes from Abstract Models

Relational schema modeling is central to the “open-ended list of mapping issues” iden-
tified in [42]. In this section we develop a number of≤-rules intended for cross-cutting
impedance mismatch with respect to relational modeling. In other words, we intend
to provide a practical method for inferring the schema of a database which (correctly)
implements a given abstract model, including the stepwise synthesis of the associated
abstraction and representation data mappings and concrete invariants. This method will
be shown to extend to recursive structures in section 9.

Relational schemes “relationally”. Broadly speaking, a relational database is a n-tuple
of tables, where each table is a relation involving value-level tuples. The latter are vec-
tors of values which inhabit “atomic” data types, that is, which hold data with no further
structure. Since many such relations (tables) exhibit keys, they can be thought of as sim-
ple relations. In this context, let

RDBT
def=

n∏
i=1

(
ni∏

j=1

Kj ⇀

mi∏
k=1

Dk) (106)

denote the generic type of a relational database [2]. Every RDBT -compliant tuple db
is a collection of n relational tables (index i = 1, n) each of which is a mapping from
a tuple of keys (index j) to a tuple of data of interest (index k). Wherever mi = 0 we
have

∏0
k=1 Dk

∼= 1, meaning — via (94) — a finite set of tuples of type
∏ni

j=1 Kj .
(These are called relationships in the standard terminology.) Wherever ni = 1 we are
in presence of a singleton relational table. Last but not least, all Kj and Dk are “atomic”
types, otherwise db would fail first normal form (1NF) compliance [45].

Compared to what we have seen so far, type RDBT (106) is “flat”: there are no
sums, no exponentials, no room for a single recursive datatype. Thus the mismatch
identified in [42]: how does one map structured data (eg. encoded in XML) or a text gen-
erated according to some grammar, or even a collection of object types, into RDBT ?

We devote the remainder of this section to a number of ≤-rules which can be used
to transform arbitrary data models into instances of “flat” RDBT . Such rules share the
generic pattern A ≤ B (of which A ∼= B is a special case) where B only contains
products and simple relations. So, by successive application of such rules, one is lead

Transforming Data by Calculation 173

— eventually — to an instance of RDBT . Note that (89) and (94) are already rules of
this kind (from left to right), the latter enabling one to get rid of powersets and the other
of (some forms of) exponentials. Below we present a few more rules of this kind.

Getting rid of sums. It can be shown (see eg. [11]) that the either combinator [R , S]
as defined by (47) is an isomorphism. This happens because one can always (uniquely)

project a relation (B + C) T ��A into two components B
R ��A and C

S ��A ,
such that T = [R , S]. Thus we have

(B + C)→ A

[,]◦

��
∼= (B→ A)× (C →A)

[,]

��
(107)

which establishes universal property

T = [R , S] ≡ T · i1 = R ∧ T · i2 = S (108)

When applied from left to right, rule (107) can be of help in removing sums from
data models: relations whose input types involve sums can always be decomposed into
pairs of relations whose types don’t involve (such) sums.

Sums are a main ingredient in describing the abstract syntax of data. For instance,
in the grammar approach to data modeling, alternative branches of a production in ex-
tended BNF notation map to polynomial sums, recall (49). The application of rule (107)
removes such sums with no loss of information (it is an isomorphism), thus reducing
the mismatch between abstract syntax and relational database models.

The calculation of (107), which is easily performed via the power-transpose [11],
can alternatively be performed via the Maybe-transpose [59] — in the case of simple
relations — meaning that relational either preserves simplicity:

(B + C) ⇀ A

[,]◦

��
∼= (B ⇀ A)× (C ⇀ A)

[,]

��
(109)

What about the other (very common) circumstance in which sums occur at the output
rather than at the input type of a relation? Another sum-elimination rule is applicable to
such situations,

A→ (B + C)

�+

��
∼= (A→B)× (A→ C)

+

�

��
(110)

where

M
+
� N

def= i1 ·M ∪ i2 ·N (111)

�+ M
def= (i◦1 ·M, i◦2 ·M) (112)

174 J.N. Oliveira

However, (110) does not hold as it stands for simple relations, because
+
� does not

preserve simplicity: the union of two simple relations is not always simple. The weakest
pre-condition for simplicity to be maintained is calculated as follows:

M
+
� N is simple

≡ { definition (111) }

(i1 ·M ∪ i2 ·N) is simple

≡ { simplicity of union of simple relations (34) }

(i1 ·M) · (i2 ·N)◦ ⊆ id

≡ { converses ; shunting (26, 27) }

M ·N◦ ⊆ i◦1 · i2
≡ { i◦1 · i2 = ⊥ ; (29,30) }

δ M · δ N ⊆ ⊥
≡ { coreflexives (15) }

δ M ∩ δ N = ⊥ (113)

Thus, M
+
� N is simple iff M and N are domain-disjoint.

Exercise 25. Show that
+
� ·�+ = id holds. (NB: property id + id = id can be of help

in the calculation.) �

Exercise 26. Do better than in exercise 25 and show that
+
� is the converse of �+, of

course finding inspiration in (75). Universal property (108) will soften calculations if

meanwhile you show that (M
+
� N)◦ = [M◦ , N◦] holds. �

Getting rid of multivalued types. Recall the Books type (58) defined earlier on. It
deviates from RDBT in the second factor of its range type, 5 ⇀ Author, whereby
book entries are bound to record up to 5 authors. How do we cope with this situation?
Books is an instance of the generic relational type A ⇀ (D × (B ⇀ C)) for arbitrary
A, B, C and D, where entry B ⇀ C generalizes the notion of a multivalued attribute.
Our aim in the calculations which follow is to split this relation type in two, so as to
combine the two keys of types A and B:

A ⇀ (D × (B ⇀ C))
∼= { Maybe transpose (86) }

(D × (B ⇀ C) + 1)A

≤ { (68) }

((D + 1)× (B ⇀ C))A

∼= { splitting (87) }

Transforming Data by Calculation 175

(D + 1)A × (B ⇀ C)A

∼= { Maybe transpose (86, 89) }

(A ⇀ D)× (A×B ⇀ C)

Altogether, we can rely on ≤-rule

A ⇀ (D × (B ⇀ C))

�n

��
≤ (A ⇀ D)× (A×B ⇀ C)

�n

��
(114)

where the “nested join” operator �n is defined by

M �n N = 〈M, N〉 (115)

— recall (91) — and�n is

�n M = (π1 ·M, usc(π2 ·M)) (116)

where usc (=“undo simple currying”) is defined in comprehension notation as follows,

usc M
def= {(a, b) �→ (M a)b | a ∈ dom M, b ∈ dom(Ma)} (117)

since M is simple. (Details about the calculation of this abstraction / representation pair
can be found in [63].)

Example. Let us see the application of ≤-rule (114) to the Books data model (58). We
document each step by pointing out the involved abstraction/representation pair:

Books = ISBN ⇀ (T itle× (5 ⇀ Author) × Publisher)
∼=1 { r1 = id ⇀ 〈〈π1, π3〉, π2〉 , f1 = id ⇀ 〈π1 · π1, π2, π2 · π1〉 }

ISBN ⇀ (T itle× Publisher)× (5 ⇀ Author)

≤2 { r2 = �n , f2 = �n, cf. (114) }

(ISBN ⇀ Title× Publisher)× (ISBN × 5 ⇀ Author)
= Books2

Since Books2 belongs to the RDBT class of types (assuming ISBN , T itle, Publisher
and Author atomic) it is directly implementable as a relational database schema.

Altogether, we have been able to calculate a type-level mapping between a source
data model (Books) and a target data model (Books2). To carry on with the mapping
scenario set up in [42], we need to be able to synthesize the two data maps (“map
forward” and “map backward”) between Books and Books2. We do this below as an
exercise of PF-reasoning followed by pointwise translation.

Following rule (65), which enables composition of representations and abstractions,
we synthesize r = �n ·(id ⇀ 〈〈π1, π3〉, π2〉) as overall “map forward” representation,

176 J.N. Oliveira

and f = (id ⇀ 〈π1 · π1, π2, π2 · π1〉) ·�n as overall “map backward” abstraction. Let
us transcribe r to pointwise notation:

r M = �n((id ⇀ 〈〈π1, π3〉, π2〉)M)

= { (102) }

�n(〈〈π1, π3〉, π2〉 ·M)

= { (116) }

(π1 · 〈〈π1, π3〉, π2〉 ·M, usc(π2 · 〈〈π1, π3〉, π2〉 ·M))

= { exercise 8 ; projections }

(〈π1, π3〉 ·M, usc(π2 ·M))

Thanks to (33), the first component in this pair transforms to pointwise

{isbn �→ (π1(M isbn), π3(M isbn)) | isbn ∈ dom M}

and the second to

{(isbn, a) �→ ((π2 ·M) isbn)a | isbn ∈ dom M, a ∈ dom((π2 ·M)isbn)}

using definition (117).
The same kind of reasoning will lead us to overall abstraction (“map backward”) f :

f(M, N) = (id ⇀ 〈π1 · π1, π2, π2 · π1〉)(M �n N)

= { (102) and (115) }

〈π1 · π1, π2, π2 · π1〉 · 〈M, N〉
= { exercise 8 ; projections }

〈π1 · π1 · 〈M, N〉, π2 · 〈M, N〉, π2 · π1 · 〈M, N〉〉
= { exercise 9; N is a function }

〈π1 ·M, N · δ M, π2 ·M〉
= { (92) }

{isbn �→ (π1(M isbn), N ′, π2(M isbn)) | isbn ∈ dom M}

where N ′ abbreviates {n �→ N(i, n) | (i, n) ∈ dom N ∧ i = isbn}.
The fact that N is preconditioned by δ M in the abstraction is a clear indication that

any addition to N of authors of books whose ISBN don’t participate in M is doomed
to be ignored when ‘backward mapping” the data. This explains why a foreign key
constraint must be added to any SQL encoding of Books2, eg.:

CREATE TABLE BOOKS (
ISBN VARCHAR (...) NOT NULL,
Publisher VARCHAR (...) NOT NULL,

Transforming Data by Calculation 177

Title VARCHAR (...) NOT NULL,
CONSTRAINT BOOKS PRIMARY KEY(ISBN)

);

CREATE TABLE AUTHORS (
ISBN VARCHAR (...) NOT NULL,
Count NUMBER (...) NOT NULL,
Author VARCHAR (...) NOT NULL,
CONSTRAINT AUTHORS_pk PRIMARY KEY (ISBN,Count)

);

ALTER TABLE AUTHORS ADD CONSTRAINT AUTHORS_FK
FOREIGN KEY (ISBN) REFERENCES BOOKS (ISBN);

It can be observed that this constraint is ensured by representation r (otherwise right-
invertibility wouldn’t take place). Constraints of this kind are known as concrete invari-
ants. We discuss this important notion in the section which follows.

Summary. This section described the application of the calculus introduced in section
5 to the transformation of abstract data models targeted at relational database imple-
mentations. It also showed how more elaborate laws can be derived from simpler ones
and how to synthesize composite “forward” and “backward” data mappings using the
underlying relational calculus. We proceed to showing how to take further advantage of
relational reasoning in synthesizing data type invariants entailed by the representation
process.

7 Concrete Invariants

The fact that R and F are connected (63) in every ≤-rule (7) forces the range of R to
be at most the domain of F , ρ R ⊆ δ F . This means that the representation space (B)
can be divided in three parts:

– inside ρ R — data inside ρ R are referred to as canonical representatives; the pred-
icate associated to ρ R, which is the strongest property ensured by the representa-
tion, is referred to as the induced concrete invariant, or representation invariant.

– outside δ F — data outside δ F are illegal data: there is no way in which they
can be retrieved; we say that the target model is corrupted (using the database
terminology) once its CRUD drives data into this zone.

– inside δ F and outside ρ R — this part contains data values which R never gen-
erates but which are retrievable and therefore regarded as legal representatives;
however, if the CRUD of the target model lets data go into this zone, the range of
the representation cannot be assumed as concrete invariant.

The following properties of domain and range

δ R = ker R ∩ id (118)

ρR = img R ∩ id (119)

ρ (R · S) = ρ (R · ρS) (120)

δ (R · S) = δ (δ R · S) (121)

178 J.N. Oliveira

help in inferring concrete invariants, in particular those induced by ≤-chaining (65).
Concrete invariant calculation, which is in general nontrivial, is softened wherever

≤-rules are expressed by GCs 19. In this case, the range of the representation (concrete
invariant) can be computed as coreflexive r · f ∩ id, that is, predicate 20

φ x
def= r(f x) = x (122)

As illustration of this process, consider law

A→ B × C

〈(π1·),(π2·)〉
��

≤ (A→ B)× (A→ C)

〈 , 〉

�� (123)

which expresses the universal property of the split operator, a perfect GC:

X ⊆ 〈R, S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S (124)

Calculation of the concrete invariant induced by (123) follows:

φ(R, S)

≡ { (122, 123) }

(R, S) = (π1 · 〈R, S〉, π2 · 〈R, S〉)

≡ { (46) }

R = R · δ S ∧ S = S · δ R

≡ { δ X ⊆ Φ ≡ X ⊆ X · Φ }

δ R ⊆ δ S ∧ δ S ⊆ δ R

≡ { (14) }

δ R = δ S

In other words: if equally defined R and S are joined and then decomposed again, this
will be a lossless decomposition [58].

Similarly, the following concrete invariant can be shown to hold for rule (114) 21:

φ(M, N) def= N · ∈◦ � M (125)

Finally note the very important fact that, in the case of ≤-rules supported by perfect
GCs, the source datatype is actually isomorphic to the subset of the target datatype
determined by the concrete invariant (as range of the representation function 22).

19 Of course, these have to be perfect (64) on the source (abstract) side.
20 See Theorem 5.20 in [1].
21 See [63] for details.
22 See the Unity of opposites theorem of [5].

Transforming Data by Calculation 179

Exercise 27. Infer (124) from (41) and universal property

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S) (126)

Moreover, show that (40) instantiates (124). �

Exercise 28. Show that (113) is the concrete invariant induced by rule (110), from left-
to-right, in case all relations are simple. �

Concrete invariants play an important role in data refinement. For instance, Morgan [49]
takes them into account in building functional abstractions of the form af · Φdti where
(entire) abstraction function af is explicitly constrained by concrete invariant dti. In the
section which follows we show how such invariants help in calculating model transfor-
mations. The reader is also referred to [8] for a PF-theory of invariants in general.

8 Calculating Model Transformations

References [30] and [43] postulate a number of model transformation rules (concerning
GERs in the first case and UML class diagrams in the second) which we are in position
to calculate. We illustrate this process with rule 12.2 of [30], the rule which converts a
(multivalued) attribute into an entity type:

A
A1
A2
A3[0:N]
id: A1

⇔

A’
A1
A2
id: A1

rA0:N

EA3
K3
A3
id: K3

1:N

The PF-semantics of entity A are captured by simple relations from identity A1 to
attributes A2 and A3, this one represented by a powerset due to being [0:N]:

A1 ⇀ A2 × PA3

The main step in the calculation is the creation of the new entity EA3 by indirection —
recall (104) — whereafter we proceed as before:

A1 ⇀ A2 × PA3

≤1 { (104) }

(K3 ⇀ A3)× (A1 ⇀ A2 × PK3)
∼=2 { (94) }

(K3 ⇀ A3)× (A1 ⇀ A2 × (K3 ⇀ 1))

≤3 { (114) }

(K3 ⇀ A3)× ((A1 ⇀ A2)× (A1 ×K3 ⇀ 1))
∼=4 { introduce ternary product }

(A1 ⇀ A2)︸ ︷︷ ︸
A′

× (A1 ×K3 ⇀ 1)︸ ︷︷ ︸
rA

× (K3 ⇀ A3)︸ ︷︷ ︸
EA3

180 J.N. Oliveira

The overall concrete invariant is

φ(M, R, N) = R · ∈◦ � M ∧ R · ∈◦ � N

— recall eg. (125) — which can be further transformed into:

φ(M, R, N) = R · ∈◦ � M ∧ R · ∈◦ � N

≡ { (54, 53) }

R · π◦
1 � M ∧ R · π◦

2 � N

≡ { (36) }
R �M · π1 ∧ R � N · π2

In words, this means that relationship R (rA in the diagram) must integrate referentially
with M (A’ in the diagram) on the first attribute of its compound key and with N (EA3
in the diagram) wrt. the second attribute.

The reader eager to calculate the overall representation and abstraction relations will
realize that the former is a relation, due to the fact that there are many ways in which
the keys of the newly created entity can be associated to values of the A3 attribute.
This association cannot be recovered once such keys are abstracted from. So, even re-
stricted by the concrete invariant, the calculated model is surely a valid implementation
of the original, but not isomorphic to it. Therefore, the rule should not be regarded as
bidirectional.

9 On the Impedance of Recursive Data Models

Recursive data structuring is a source of data impedance mismatch because it is not
directly supported in every programming environment. While functional programmers
regard recursion as the natural way to programming, for instance, database program-
mers don’t think in that way: somehow trees have to give room to flat data. Somewhere
in between is (pointer-based) imperative programming and object oriented program-
ming: direct support for recursive data structures doesn’t exist, but dynamic memory
management makes it possible to implement them as heap structures involving pointers
or object identities.

In this section we address recursive data structure representation in terms of non-
recursive ones. In a sense, we want to show how to “get away with recursion” [56]
in data modeling. It is a standard result (and every a programmer’s experience) that
recursive types using products and sums can be implemented using pointers [69]. Our
challenge is to generalize this result and present it in a calculational style.

As we have seen already, recursive (finite) data structures are least solutions to equa-
tions of the form X ∼= GX , where G is a relator. The standard notation for such a
solution is µG. (This always exists when G is regular [11], a class which embodies all
polynomial G.)

Programming languages which implement datatype µG always do so by wrapping
it inside some syntax. For instance, the Haskell declaration of datatype PTree (38)

Transforming Data by Calculation 181

involves constructor Node and selectors name, birth, mother and father, which
cannot be found in equation (51). But this is precisely why the equation expresses
isomorphism and not equality: constructor and selectors participate in two bijections
which witness the isomorphism and enable one to construct or inspect inhabitants of
the datatype being declared.

µG

out

∼= GµG

in

��

The general case is depicted in the diagram aside,
where in embodies the chosen syntax for constructing
inhabitants of µG and out = in◦ embodies the syntax for
destructing (inspecting) such inhabitants. For instance,
the in bijection associated with PTree (38) interpreted
as solution to equation (51) is

in((n, b), m, f) def= Node n b m f (127)

Programs handling µG can be of essentially two kinds: either they read (parse, in-
spect) µG-structures (trees) or they actually build such structures. The former kind is
known as folding and the latter as unfolding, and both can be pictured as diagrams
exhibiting their recursive (inductive) nature:

µG
out ��

fold R

��

GµG

G(fold R)

��
A GA

R
��

µG GµG
in��

A

unfold R

��

R
�� GA

G(unfold R)

��

Both fold and unfold are instances of a more general, binary combinator known as
hylomorphism [11], which is normally expressed using the bracketed notation [[,]] of
(129) below to save parentheses:

unfold R = [[in, R]] (128)

fold S = [[R, out]]

As fixed points (129), hylomorphisms enjoy a number of so-called fusion properties,
two of which are listed below for their relevance in calculations to follow 23:

C G C
T��

B

V

��

G B

G V

��

S��

K

[[S,H]]

��

H �� G K

G [[S,H]]

��

A

R

��

U
�� G A

G R

��

[[S, H]] = 〈µ X :: S · (GX) ·H〉 (129)

V · [[S, H]] ⊆ [[T, H]]⇐ V · S ⊆ T · (GV) (130)

[[S, H]] · R = [[S, U]]⇐ H ·R = (GR) · U (131)

23 These and other properties of hylomorphisms arise from the powerful µ-fusion theorem [5]
once the relational operators involved are identified as lower adjoints in GCs, recall table 1.

182 J.N. Oliveira

In (liberal) Haskell syntax we might write the type of the unfold combinator as
something like

unfold :: (a -> g a) -> a -> mu g

assuming only functions involved. If we generalize these to simple relations, we obtain
the following type for function unfold

(A ⇀ µG)(A⇀G A)

which, thanks to (89), “uncurries” into ((A ⇀ GA)× A) ⇀ µG.
Let us temporarily assume that there exists a datatype K such that simple relation

Unf , of type ((K ⇀ GK) × K) ⇀ µG and such that Unf = unfold , is surjective.
Then we are in condition to establish the ≤-equation which follows,

µG

R ��
≤

(K ⇀ GK)︸ ︷︷ ︸
“heap”

×K

Unf

�� (132)

where K can be regarded as a data type of “heap addresses”, or “pointers”, and K ⇀
GK a datatype of G-structured heaps 24. So, assertion t Unf (H, k) means that, if
pair (H, k) is in the domain of Unf , then the abstract value t = (unfold H)k will
be retrieved — recall (90). This corresponds to dereferencing k in H and carrying on
doing so (structurally) while building (via in) the tree which corresponds to such a walk
through the heap.

Termination of this process requires H to be free of dangling references — ie. satisfy
the NSRI property (62) — and to be referentially acyclic. This second requirement can

also be expressed via the membership relation associated with G: relation K K
∈G·H��

on references must be well-founded [23].
Jourdan [39] developed a pointwise proof of the surjectiveness of Unf (132) for K

isomorphic to the natural numbers and G polynomial (see more about this in section 13).
The representation relation R, which should be chosen among the entire sub-relations
of Unf ◦, is an injective fold (since converses of unfolds are folds [11]). Appendix A
illustrates a strategy for encoding such folds, in the case of G polynomial and K the
natural numbers.

“De-recursivation” law (132) generalizes, in the generic PF-style, the main result
of [69] and bears some resemblance (at least in spirit) with “defunctionalization” [35],
a technique which is used in program transformation and compilation. The genericity of
this result and the ubiquity of its translation into practice — cf. name spaces, dynamic
memory management, pointers and heaps, database files, object run-time systems, etc
— turns it into a useful device for cross-paradigm transformations. For instance, [56]
shows how to use it in calculating a universal SQL representation for XML data.

The sections which follow will illustrate this potential, while stressing on genericity
[37]. Operations of the algebra of heaps such as eg. defragment (cf. garbage-collection)
will be stated generically and be shown to be correct with respect to the abstraction
relation.
24 Technically, this view corresponds to regarding heaps as (finite) relational G-coalgebras.

Transforming Data by Calculation 183

10 Cross-Paradigm Impedance Handled by Calculation

Let us resume work on the case study started in section 2 and finally show how to map
the recursive datatype PTree (38) down to a relational model (SQL) via an intermedi-
ate heap/pointer representation.

Note that we shall be crossing over three paradigms — functional, imperative and
database relational — in a single calculation, using the same notation:

PTree
∼=1 { r1 = out , f1 = in, for G K

def

= Ind × (K + 1) × (K + 1) — cf. (51, 127) }

µG

≤2 { R2 = Unf ◦, F2 = Unf — cf. (132) }

(K ⇀ Ind× (K + 1)× (K + 1))×K

∼=3 { r3 = (id ⇀ flatr◦) × id , f3 = (id ⇀ flatr) × id — cf. (43) }

(K ⇀ Ind× ((K + 1)× (K + 1)))×K

∼=4 { r4 = (id ⇀ id × p2p) × id , f4 = (id ⇀ id × p2p◦) × id — cf. (88) }

(K ⇀ Ind× (K + 1)2)×K

∼=5 { r5 = (id ⇀ id × tot◦) × id , f5 = (id ⇀ id × tot) × id — cf. (84) }

(K ⇀ Ind× (2 ⇀ K))×K

≤6 { r6 = �n , f6 = �n — cf. (114) }

((K ⇀ Ind)× (K × 2 ⇀ K))×K

∼=7 { r7 = flatl , f7 = flatl◦ — cf. (44) }

(K ⇀ Ind)× (K × 2 ⇀ K)×K

=8 { since Ind = Name × Birth (51) }

(K ⇀ Name×Birth)× (K × 2 ⇀ K)×K (133)

In summary:

– Step 2 moves from the functional (inductive) to the pointer-based representation. In
our example, this corresponds to mapping inductive tree (9) to the heap of figure 2a.

– Step 5 starts the move from pointer-based to relational-based representation. Iso-
morphism (84) between Maybe-functions and simple relations (which is the main
theme of [59]) provides the relevant data-link between the two paradigms: pointers
“become” primary/foreign keys.

– Steps 7 and 8 deliver an RDBT structure (illustrated in figure 2b) made up of two
tables, one telling the details of each individual, and the other recording its im-
mediate ancestors. The 2-valued attribute in the second table indicates whether the
mother or the father of each individual is to be reached. The third factor in (133) is
the key which gives access to the root of the original tree.

184 J.N. Oliveira

In practice, a final step is required, translating the relational data into the syntax of
the target relational engine (eg. a script of SQL INSERT commands for each relation),
bringing symmetry to the exercise: in either way (forwards or backwards), data map-
pings start by removing syntax and close by introducing syntax.

Exercise 29. Let f4:7 denote the composition of abstraction functions f4 · (· · ·) · f7.
Show that (id ⇀ π1) · π1 · f4:7 is the same as π1. �

11 On the Transcription Level

Our final calculations have to do with what the authors of [42] identify as the transcrip-
tion level, the third ingredient of a mapping scenario. This has to do with diagram (10):
once two pairs of data maps (“map forward” and “map backward”) F, R and F ′, R′

have been calculated so as to represent two source datatypes A and B, they can be used

to transcribe a given source operation B A
O�� into some target operation D C

P�� .
How do we establish that P correctly implements O? Intuitively, P must be such that

the performance of O and that of P (the latter wrapped within the relevant abstraction
and representation relations) cannot be distinguished:

O = F ′ · P ·R (134)

Equality is, however, much too strong a requirement. In fact, there is no disadvantage
in letting the target side of (134) be more defined than the source operation O, provided
both are simple 25:

O ⊆ F ′ · P · R (135)

Judicious use of (29, 30) will render (135) equivalent to

O · F ⊆ F ′ · P (136)

provided R is chosen maximal (R = F ◦) and F � P . This last requirement is obvious:
P must be prepared to cope with all possible representations delivered by R = F ◦.

In particular, wherever the source operation O is a query, ie. F ′ = id in (136), this
shrinks to O · F ⊆ P . In words: wherever the source query O delivers a result b for
some input a, then the target query P must deliver the same b for any target value which
represents a.

Suppose that, in the context of our running example (pedigree trees), one wishes to
transcribe into SQL the query which fetches the name of the person whose pedigree tree
is given. In the Haskell data model PTree, this is simply the (selector) function name.
We want to investigate how this function gets mapped to lower levels of abstraction.

The interesting step is ≤2, whereby trees are represented by pointers to heaps. The
abstraction relation Unf associated to this step is inductive. Does this entail inductive

25 Staying within this class of operations is still quite general: it encompasses all deterministic,
possibly partial computations. Within this class, inclusion coincides with the standard defini-
tion of operation refinement [60].

Transforming Data by Calculation 185

reasoning? Let us see. Focusing on this step alone, we want to solve equation name ·
Unf ⊆ Hname for unknown Hname — a query of type ((K ⇀ GK) × K) ⇀
Name.

Simple relation currying (91) makes this equivalent to finding Hname such that, for
every heap H , name · (Unf H) ⊆ Hname H holds, that is, name · (unfold H) ⊆
Hname H . Since both unfold H and Hname H are hylomorphisms, we write them
as such, name · [[in, H]] ⊆ [[T, H]], so that T becomes the unknown. Then we
calculate:

name · [[in, H]] ⊆ [[T, H]]

⇐ { fusion (130) }

name · in ⊆ T · G(name)

≡ { name · Node = π1 · π1 (127) ; expansion of G(name) }

π1 · π1 ⊆ T · (id× (name + id)× (name + id))

⇐ { π1 · (f × g) = f · π1 }
T = π1 · π1

Thus

Hname H = [[π1 · π1, H]]

= { (129) }

〈µ X :: π1 · π1 · (id× (X + id)× (X + id)) ·H〉
= { π1 · (f × g) = f · π1 }

〈µ X :: π1 · π1 ·H〉
= { trivia }

π1 · π1 ·H

Back to uncurried format and introducing variables, we get (the post-condition of)
Hname

n Hname(H, k) ≡ k ∈ dom H ∧ n = π1(π1(H k))

which means what one would expect: should pointer k be successfully dereferenced
in H , selection of the Ind field will take place, wherefrom the name field is finally
selected (recall that Ind = Name× Birth).

The exercise of mapping Hname down to the SQL level (133) is similar but less
interesting. It will lead us to

n Rname (M, N, k) = k ∈ dom M ∧ n = π1(M k)

where M and N are the two relational tables which originated from H after step 2.
Rname can be encoded into SQL as something like

186 J.N. Oliveira

SELECT Name FROM M WHERE PID = k

under some obvious assumptions concerning the case in which k cannot be found in
M . So we are done as far as transcribing name is concerned.

The main ingredient of the exercise just completed is the use of fusion property
(130). But perhaps it all was much ado for little: queries aren’t very difficult to tran-
scribe in general. The example we give below is far more eloquent and has to do with
heap housekeeping. Suppose one wants to defragment the heap at level 2 via some real-

location of heap cells. Let K K
f�� be the function chosen to rename cell addresses.

Recalling (33), defragmentation is easy to model as a projection:

defragment : (K −→ K) −→ (K ⇀ GK) −→ (K ⇀ GK)
defragment f H

def= (G f) ·H · f◦ (137)

The correctness of defragment has two facets. First, H · f◦ should remain simple;
second, the information stored in H should be preserved: the pedigree tree recorded in
the heap (and pointer) shouldn’t change in consequence of a defragment operation. In
symbols:

t Unf (defragment f H, f k) ≡ t Unf (H, k) (138)

Let us check (138):

t Unf (defragment f H, f k) ≡ t Unf (H, k)

≡ { (132) ; (128) }

t [[in, defragment fH]] (f k) ≡ t [[in, H]] k

≡ { go pointfree (20); definition (137) }

[[in, (G f) ·H · f◦]] · f = [[in, H]]

⇐ { fusion property (131) }

(G f) ·H · f◦ · f = (G f) ·H
⇐ { Leibniz }

H · f◦ · f = H

≡ { since H ⊆ H · f◦ · f always holds }

H · f◦ · f ⊆ H

So, condition H · f◦ · f ⊆ H (with points:

k ∈ dom H ∧ f k = f k′ ⇒ k′ ∈ dom H ∧ H k = H k′

for all heap addresses k, k′) is sufficient for defragment to preserve the information
stored in the heap and its simplicity 26. Of course, any injective f will qualify for safe
defragmentation, for every heap.

26 In fact, H · f◦ · f ⊆ H ensures H · f◦ simple, via (30) and monotonicity.

Transforming Data by Calculation 187

Some comments are in order. First of all, and unlike what is common in data refine-
ment involving recursive data structures (see eg. [24] for a comprehensive case study),
our calculations above have dispensed with any kind of inductive or coinductive argu-
ment. (This fact alone should convince the reader of the advantages of the PF-transform
in program reasoning.)

Secondly, the defragment operation we’ve just reasoned about is a so-called rep-
resentation changer [34]. These operations (which include garbage collection, etc) are
important because they add to efficiency without disturbing the service delivered to the
client. In the mapping scenario terminology of [42], these correspond to operations
which transcribe backwards to the identity function, at source level.

Finally, a comment on CRUD operation transcription. Although CRUD operations in
general can be arbitrarily complex, in the process of transcription they split into simpler
and simpler middleware and dataware operations which, at the target (eg. database)
level end up involving standard protocols for data access [42].

The ubiquity of simplicity in data modeling, as shown throughout this paper, invites
one to pay special attention to the CRUD of this kind of relation. Reference [57] identi-
fies some “design patterns” for simple relations. The one dealt with in this paper is the
identity pattern. For this pattern, a succinct specification of the four CRUD operations
on simple M is as follows:

– Create(N): M �→ N †M , where (simple) argument N embodies the new entries
to add to M . The use of the override operator † [38, 59] instead of union (∪) ensures
simplicity and prevents from writing over existing entries.

– Read(a): deliver b such that b M a, if any.
– Update(f, Φ): M �→M †f ·M ·Φ. This is a selective update: the contents of every

entry whose key is selected by Φ get updated by f ; all the other remain unchanged.
– Delete(Φ): M �→M · (id−Φ), where R−S means relational difference (cf. table

1). All entries whose keys are selected by Φ are removed.

Space constraints preclude going further on this topic in this paper. The interested
reader will find in reference [57] the application of the PF-transform in speeding-up
reasoning about CRUD preservation of datatype invariants on simple relations, as a
particular case of the general theory [8]. Similar gains are expected from the same
approach applied to CRUD transcription.

Exercise 30. Investigate the transcription of selector functionmother (38) to the heap-
and-pointer level, that is, solve mother ·Unf ⊆ P for P . You should obtain a simple
relation which, should it succeed in dereferencing the input pointer, it will follow on
to the second position in the heap-cell so as to unfold (if this is the case) and show the
tree accessible from that point. The so-called hylo-computation rule — [[R, S]] = R ·
(F [[R, S]]) · S — is what matters this time. �

Summary. The transcription level is the third component of a mapping scenario whereby
abstract operations are “mapped forward” to the target level and give room to concrete
implementations (running code). In the approach put forward in this paper, this is per-
formed by solving an equation (134) where the unknown is the concrete implementa-
tion P one is aiming at. This section gave an example of how to carry out this task in

188 J.N. Oliveira

presence of recursive data structures represented by heaps and pointers. The topic of
CRUD operation transcription was also (briefly) addressed.

12 Related Work

This section addresses two areas of research which are intimately related to the data
transformation discipline put forward in the current paper. One is bidirectional pro-
gramming used to synchronize heterogeneous data formats [13]. The other is the design
of term rewriting systems for type-safe data transformation [17].

Lenses. The proximity is obvious between abstraction/representation pairs implicit in
≤-rules and bidirectional transformations known as lenses and developed in the context
of the classical view-update problem [13, 14, 27, 33]. Each lens connects a concrete data

type C with an abstract view A on it by means of two functions A× C
put ��C and

A C
get�� . (Note the similarity with (R, F) pairs, except for put’s additional argument

of type C.)
A lens is said to be well-behaved if two conditions hold,

get(put(v, s)) = v and put(get s, s) = s

known as acceptability and stability, respectively. For total lenses, these are easily PF-
transformed into

put · π◦
1 ⊆ get◦ (139)

〈get, id〉 ⊆ put◦ (140)

which can be immediately recognized as stating the connectivity requirements of ≤-
diagrams

A× C put

��
A

π◦
1 ��

≤ C

get

�� and C

〈get,id〉
��

≤ A× C

put

		

(141)

respectively.
Proving that these diagrams hold in fact is easy to check in the PF-calculus: stability

(140) enforces put surjective (of course 〈get, id〉 is injective even in case get is not).
Acceptability (139) enforces get surjective since it is larger than the converse of entire
put · π◦

1 (recall rules of thumb of exercise 2). Conversely, being at most the converse of
a function, put · π◦

1 is injective, meaning that

π1 · put◦ · put · π◦
1 ⊆ id

≡ { shunting (26, 27) and adding variables }

put(a, c) = put(a′, c′) ⇒ a = a′

holds. This fact is known in the literature as the semi-injectivity of put [27].

Transforming Data by Calculation 189

Exercise 31. A (total, well-behaved) lens is said to be oblivious [27] if put is of the
form f · π1, for some f . Use the PF-calculus to show that in this case get and f are
bijections, that is, A and C in (141) are isomorphic 27. Suggestion: show that get = f◦

and recall (75). �

Put side by side, the two ≤-diagrams displayed in (141) express the bidirectional na-
ture of lenses in a neat way 28. They also suggest that lenses could somehow be “pro-
grammed by calculation” in the same manner as the structural transformations investi-
gated in the main body of this paper. See section 13 for future research directions in this
respect.

2LT — a library for two-level data transformation. The 2LT package of the U.Minho
Haskell libraries [10, 17, 18] applies the theory presented in the current paper to data
refinement via (typed) strategic term re-writing using GADTs. The refinement process
is modeled by a type-changing rewrite system, each rewrite step of which animates
a ≤-rule of the calculus: it takes the form A �→ (C, to, from) where C, the target
type, is packaged with the conversion functions (to and from) between the old (A) and
new type (C). By repeatedly applying such rewrite steps, complex conversion functions
(data mappings) are calculated incrementally while a new type is being derived. (So,
2LT representation mappings are restricted to functions.)

Data mappings obtained after type-rewriting can be subject to subsequent simplifi-
cation using laws of PF program calculation. Such simplifications include migration
of queries on the source data type to queries on a target data type by fusion with the
relevant data mappings (a particular case of transcription, as we have seen). Further to
PF functional simplification, 2LT implements rewrite techniques for transformation of
structure-shy functions (XPath expressions and strategic functions), see eg. [18].

In practice, 2LT can be used to scale-up the data transformation/mapping techniques
presented in this paper to real-size case-studies, mainly by mechanizing repetitive tasks
and discharging housekeeping duties. More information can be gathered from the
project’s website: http://code.google.com/p/2lt.

13 Conclusions and Future Work

This paper presented a mathematical approach to data transformation. As main advan-
tages of the approach we point out: (a) a unified and powerful notation to describe
data-structures across various programming paradigms, and its (b) associated calculus
based on elegant rules which are reminiscent of school algebra; (c) the fact that data
impedance mismatch is easily expressed by rules of the calculus which, by construc-
tion, offer type-level transformations together with well-typed data mappings; (d) the
properties enjoyed by such rules, which enable their application in a stepwise, struc-
tured way.

The novelty of this approach when compared to previous attempts to lay down the
same theory is the use of binary relation pointfree notation to express both algorithms

27 This is Lemma 3.9 in [27], restricted to functions.
28 Note however that, in general, lenses are not entire [27].

190 J.N. Oliveira

and data, in a way which dispenses with inductive proofs and cumbersome reasoning. In
fact, most work on the pointfree relation calculus has so far been focused on reasoning
about programs (ie. algorithms). Advantages of our proposal to uniformly PF-transform
both programs and data are already apparent at practical level, see eg. the work reported
in [50].

Thanks to the PF-transform, opportunities for creativity steps are easier to spot and
carry out with less symbol trading. This style of calculation has been offered to Minho
students for several years (in the context of the local tradition on formal modeling) as
alternative to standard database design techniques 29. It is the foundation of the “2LT
bundle” of tools available from the UMinho Haskell libraries. However, there is still
much work to be done. The items listed below are proposed as prompt topics for re-
search.

Lenses. The pointwise treatment of lenses as partial functions in [27] is cpo-based,
entailing the need for continuity arguments. In this paper we have seen that partial
functions are simple relations easily accommodated in the binary relation calculus. At
first sight, generalizing put and get of section 12 from functions to simple relations
doesn’t seem to be particularly hard, even in the presence of recursion, thanks to the PF
hylomorphism calculus (recall section 9).

How much the data mapping formalism presented in the current paper can offer to
the theory of bidirectional programming is the subject of on-going research.

Heaps and pointers at target. We believe that Jourdan’s long, inductive pointwise argu-
ment [39] for≤-law (132) can be supplanted by succinct pointfree calculation if results
developed meanwhile by Gibbons [29] are taken into account. Moreover, the same law
should be put in parallel with other related work on calculating with pointers (read eg.
[12] and follow the references).

Separation logic. Law (132) has a clear connection to shared-mutable data represen-
tation and thus with separation logic [62]. There is work on a PF-relational model for
this logic [64] which is believed to be useful in better studying and further generalizing
law (132) and to extend the overall approach to in-place data-structure updating.

Concrete invariants. Taking concrete invariants into account is useful because these
ensure (for free) properties at target-data level which can be advantageous in the tran-
scription of source operations. The techniques presented in section 7 and detailed in
[63] are the subject of current research taking into account the PF-calculus of invari-
ants of [8]. Moreover, ≤-rules should be able to take invariants into account (a topic
suggested but little developed in [55]).

Mapping scenarios for the UML. Following the exercise of section 8, a calculational
theory of UML mapping scenarios could be developed starting from eg. K. Lano’s cat-
alogue [43]. This should also take the Calculating with Concepts [22] semantics for
UML class diagrams into account. For preliminary work on this subject see eg. [9].

29 The ≤-rules of the calculus are used in practical classes and lab assignments in the derivation
of database schemas from abstract models, including the synthesis of data mappings. The
proofs of such rules (as given in the current paper) are addressed in the theory classes.

Transforming Data by Calculation 191

PF-transform. Last but not least, we think that further research on the PF-transform
should go along with applying it in practice. In particular, going further and formalizing
the analogy with the Laplace transform (which so far has only been hinted at) would be
a fascinating piece of research in mathematics and computer science in itself, and one
which would put the vast storehouse in order, to use the words of Lawvere and Schanuel
[44]. In these times of widespread pre-scientific software technology, putting the PF-
transform under the same umbrella as other mathematical transforms would contribute
to better framing the software sciences within engineering mathematics as a whole.

Acknowledgments

The author wishes to thank his colleagues at Minho University and his (current and
former) students for the warm reception to his (ever evolving) ideas on data calculation.
Special thanks go to L.S. Barbosa, to C.J. Rodrigues, to J.C. Ramalho and to the 2LT
team core: Alcino Cunha, Joost Visser, Tiago Alves and Hugo Pacheco. Jeremy Gibbons
comments on the proceedings version of this paper are gratefully acknowledged.

The author is also indebted to the anonymous referees for detailed and helpful com-
ments which improved the paper’s presentation and technical contents.

Part of this research was carried out in the context of the PURE Project (Program
Understanding and Re-engineering: Calculi and Applications) funded by FCT contract
POSI/ICHS/44304/2002.

References

1. Aarts, C., Backhouse, R.C., Hoogendijk, P., Voermans, E., van der Woude, J.: A relational
theory of datatypes (December 1992), http://www.cs.nott.ac.uk/∼rcb

2. Alves, T.L., Silva, P.F., Visser, J., Oliveira, J.N.: Strategic term rewriting and its application
to a VDM-SL to SQL conversion. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM
2005. LNCS, vol. 3582, pp. 399–414. Springer, Heidelberg (2005)

3. Ambler, S.W.: The object-relational impedance mismatch (February15, 2006),
http://www.agiledata.org/essays/impedanceMismatch.html

4. Backhouse, K., Backhouse, R.C.: Safety of abstract interpretations for free, via logical rela-
tions and Galois connections. SCP 15(1–2), 153–196 (2004)

5. Backhouse, R.C.: Mathematics of Program Construction, pages 608. Univ. of Nottingham
(2004); Draft of book in preparation

6. Backhouse, R.C., de Bruin, P., Hoogendijk, P., Malcolm, G., Voermans, T.S., van der Woude,
J.: Polynomial relators. In: AMAST 1991, pp. 303–362. Springer, Heidelberg (1992)

7. Backus, J.: Can programming be liberated from the von Neumann style? a functional style
and its algebra of programs. CACM 21(8), 613–639 (1978)

8. Barbosa, L.S., Oliveira, J.N., Silva, A.M.: Calculating invariants as coreflexive bisimulations.
In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 83–99. Springer,
Heidelberg (2008)

9. Berdaguer, P.: Algebraic representation of UML class-diagrams, May, Dept. Informatics,
U.Minho. Technical note (2007)

10. Berdaguer, P., Cunha, A., Pacheco, H., Visser, J.: Coupled Schema Transformation and Data
Conversion For XML and SQL. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 290–
304. Springer, Heidelberg (2006)

http://www.cs.nott.ac.uk/~rcb
http://www.agiledata.org/essays/impedanceMismatch.html

192 J.N. Oliveira

11. Bird, R., de Moor, O.: Algebra of Programming. C.A.R. Hoare, series editor, Series in Com-
puter Science. Prentice-Hall International, Englewood Cliffs (1997)

12. Bird, R.S.: Unfolding pointer algorithms. J. Funct. Program. 11(3), 347–358 (2001)
13. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang: Resource-

ful lenses for string data. In: ACM SIGPLAN–SIGACT POPL Symposium, pp. 407–419
(January 2008)

14. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational lenses: A language for updateable
views. In: Principles of Database Systems (PODS) (2006)

15. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley Longman, Amsterdam (1999)

16. Burstall, R.M., Darlington, J.: A transformation system for developing recursive programs.
JACM 24(1), 44–67 (1977)

17. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 284–289. Springer, Hei-
delberg (2006)

18. Cunha, A., Visser, J.: Transformation of structure-shy programs: applied to XPath queries
and strategic functions. In: PEPM 2007, pp. 11–20. ACM, New York (2007)

19. Darlington, J.: A synthesis of several sorting algorithms. Acta Informatica 11, 1–30 (1978)
20. de Roever, W.-P., Engelhardt, K., Coenen, J., Buth, K.-H., Gardiner, P., Lakhnech, Y., Stomp,

F.: Data Refinement Model-Oriented Proof methods and their Comparison. Cambridge Uni-
versity Press, Cambridge (1999)

21. Deutsch, M., Henson, M., Reeves, S.: Modular reasoning in Z: scrutinising monotonicity and
refinement (to appear, 2006)

22. Dijkman, R.M., Pires, L.F., Joosten, S.: Calculating with concepts: a technique for the devel-
opment of business process support. In: pUML. LNI, vol. 7, pp. 87–98. GI (2001)

23. Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to mathematical
induction. Theoretical Computer Science 179(1–2), 103–135 (1997)

24. Fielding, E.: The specification of abstract mappings and their implementation as B+-trees.
Technical Report PRG-18, Oxford University (September 1980)

25. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques for Software
Development, 1st edn. Cambridge University Press, Cambridge (1998)

26. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Proc. Symposia in
Applied Mathematics Mathematical Aspects of Computer Science, vol. 19, pp. 19–32. Amer-
ican Mathematical Society (1967)

27. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst 29(3), 17 (2007)

28. Frias, M.F.: Fork algebras in algebra, logic and computer science. Logic and Computer Sci-
ence. World Scientific Publishing Co, Singapore (2002)

29. Gibbons, J.: When is a function a fold or an unfold?, Working document 833 FAV-12 avail-
able from the website of IFIP WG 2.1, 57th meeting, New York City, USA (2003)

30. Hainaut, J.-L.: The transformational approach to database engineering. In: Lämmel, R.,
Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 95–143. Springer, Heidelberg
(2006)

31. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R.
(eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196 (1986)

32. Hoogendijk, P.: A Generic Theory of Data Types. PhD thesis, University of Eindhoven, The
Netherlands (1997)

33. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured docu-
ments based on bidirectional transformations. In: Proc. ACM SIGPLAN symposium on Par-
tial evaluation and semantics-based program manipulation, pp. 178–189. ACM Press, New
York (2004)

Transforming Data by Calculation 193

34. Hutton, G., Meijer, E.: Back to basics: Deriving representation changers functionally. Journal
of Functional Programming (1993) (Functional Pearl)

35. Hutton, G., Wright, J.: Compiling exceptions correctly. In: Kozen, D. (ed.) MPC 2004.
LNCS, vol. 3125, pp. 211–227. Springer, Heidelberg (2004)

36. Jackson, D.: Software abstractions: logic, language, and analysis. The MIT Press, Cambridge
Mass (2006)

37. Jeuring, J., Jansson, P.: Polytypic programming. In: Advanced Functional Programming.
Springer, Heidelberg (1996)

38. Jones, C.B.: Systematic Software Development Using VDM, 1st edn. Series in Computer
Science. Prentice-Hall Int., Englewood Cliffs (1986)

39. Jourdan, I.S.: Reificação de tipos abstractos de dados: Uma abordagem matemática. Master’s
thesis, University of Coimbra (1992) (in Portuguese)

40. Kahl, W.: Refinement and development of programs from relational specifications.
ENTCS 4, 1–4 (2003)

41. Kreyszig, E.: Advanced Engineering Mathematics, 6th edn. J. Wiley & Sons, Chichester
(1988)

42. Lämmel, R., Meijer, E.: Mappings make data processing go round. In: Lämmel, R., Saraiva,
J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 169–218. Springer, Heidelberg (2006)

43. Lano, K.: Catalogue of model transformations,
http://www.dcs.kcl.ac.uk/staff/kcl/

44. Lawvere, B., Schanuel, S.: Conceptual Mathematics: a First Introduction to Categories. Cam-
bridge University Press, Cambridge (1997)

45. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
46. McCarthy, J.: Towards a mathematical science of computation. In: Popplewell, C.M. (ed.)

Proc. IFIP 62, pp. 21–28. North-Holland Pub.Company, Amsterdam (1963)
47. McLarty, C.: Elementary Categories, Elementary Toposes, 1st edn. Oxford Logic Guides,

vol. 21. Calendron Press, Oxford (1995)
48. Meng, S., Barbosa, L.S.: On refinement of generic state-based software components. In:

Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 506–520.
Springer, Heidelberg (2004) (Best student co-authored paper award)

49. Morgan, C.: Programming from Specification. C.A.R. Hoare, series (ed.), Series in Computer
Science. Prentice-Hall International, Englewood Cliffs (1990)

50. Necco, C., Oliveira, J.N., Visser, J.: Extended static checking by strategic rewriting of point-
free relational expressions. Technical Report FAST:07.01, CCTC Research Centre, Univer-
sity of Minho (2007)

51. Oliveira, J.N.: Refinamento transformacional de especificaşões (terminais). In: Proc. of XII
Jornadas Luso-Espanholas de Matemática, vol. II, pp. 412–417 (May 1987)

52. Oliveira, J.N.: A Reification Calculus for Model-Oriented Software Specification. Formal
Aspects of Computing 2(1), 1–23 (1990)

53. Oliveira, J.N.: Invited paper: Software Reification using the SETS Calculus. In: Denvir, T.,
Jones, C.B., Shaw, R.C. (eds.) Proc. of the BCS FACS 5th Refinement Workshop, Theory and
Practice of Formal Software Development, London, UK, pp. 140–171. Springer, Heidelberg
(1992)

54. Oliveira, J.N.: Data processing by calculation. In: 6th Estonian Winter School in Computer
Science, Palmse, Estonia, March 4-9, 2001. Lecture notes, pages 108 (2001)

55. Oliveira, J.N.: Constrained datatypes, invariants and business rules: a relational approach,
PUReCafé, DI-UM, 2004.5.20 [talk], PURE Project (POSI/CHS/44304/2002) (2004)

56. Oliveira, J.N.: Calculate databases with simplicity, Presentation at the IFIP WG 2.1 #59
Meeting, Nottingham, UK (September 2004) (Slides available from the author’s website)

57. Oliveira, J.N.: Reinvigorating pen-and-paper proofs in VDM: the pointfree approach. In: The
Third OVERTURE Workshop, Newcastle, UK, 27-28 November (2006)

http://www.dcs.kcl.ac.uk/staff/kcl/

194 J.N. Oliveira

58. Oliveira, J.N.: Pointfree foundations for (generic) lossless decomposition (submitted, 2007)
59. Oliveira, J.N., Rodrigues, C.J.: Transposing relations: from Maybe functions to hash tables.

In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 334–356. Springer, Heidelberg (2004)
60. Oliveira, J.N., Rodrigues, C.J.: Pointfree factorization of operation refinement. In: Misra,

J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085. pp. 236–251. Springer,
Heidelberg (2006)

61. Pratt, V.: Origins of the calculus of binary relations. In: Proc. of the 7th Annual IEEE Symp.
on Logic in Computer Science, pp. 248–254. IEEE Computer Society Press, Los Alamitos
(1992)

62. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp.
55–74 (2002)

63. Rodrigues, C.J.: Software Refinement by Calculation. PhD thesis, Departamento de In-
formática, Universidade do Minho (submitted, 2007)

64. Wang, S., Barbosa, L.S., Oliveira, J.N.: A relational model for confined separation logic. In:
TASE 2008, The 2nd IEEE International Symposium on Theoretical Aspects of Software
Engineering, June 17 - 19. LNCS. Springer, Heidelberg (2008)

65. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program 7(3), 231–264 (1997)
66. Sheard, T., Pasalic, E.: Two-level types and parameterized modules. Journal of Functional

Programming 14(5), 547–587 (2004)
67. Thomas, D.: The impedance imperative tuples + objects + infosets =too much stuff! Journal

of Object Technology 2(5) (September/ October 5, 2003)
68. Visser, J.: Generic Traversal over Typed Source Code Representations. Ph. D. dissertation,

University of Amsterdam, Amsterdam, The Netherlands (2003)
69. Wagner, E.G.: All recursive types defined using products and sums can be implemented using

pointers. In: Bergman, C., Maddux, R.D., Pigozzi, D. (eds.) Algebraic Logic and Universal
Algebra in Computer Science. LNCS, vol. 425. Springer, Heidelberg (1990)

70. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall, Inc.,
Upper Saddle River (1996)

A PTree Example in Haskell

This annex presents the exercise, in Haskell, of representing inductive type PTree (38)
by pointers and heaps. For simplicity, the datatype of PTree-shaped heaps is modeled
by finite lists of pairs, together with a pointer telling where to start from:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k

It is convenient to regard this datatype as a bifunctor 30:

instance BiFunctor Heap
where bmap g f

(Heap h k’) =
Heap [(f k) |-> (g a, fmap f p, fmap f p’)

| (k,(a,p,p’)) <- h]
(f k’)

30 Note the sugaring of pairing in terms of the infix combinator x |-> y = (x,y), as sug-
gested by (33). Class BiFunctor is the binary extension to standard class Functor offer-
ing bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d), the binary coun-
terpart of fmap.

Transforming Data by Calculation 195

The chosen (functional) representation is a fold over PTree,

r (Node n b m f) = let x = fmap r m
y = fmap r f

in merge (n,b) x y

where merge is the interesting function:

merge a (Just x) (Just y) =
Heap ([1 |-> (a, Just k1, Just k2)] ++ h1 ++ h2) 1

where (Heap h1 k1) = bmap id even_ x
(Heap h2 k2) = bmap id odd_ y

merge a Nothing Nothing =
Heap ([1 |-> (a, Nothing, Nothing)]) 1

merge a Nothing (Just x) =
Heap ([1 |-> (a, Nothing, Just k2)] ++ h2) 1

where (Heap h2 k2) = bmap id odd_ x
merge a (Just x) Nothing =

Heap ([1 |-> (a, Just k1, Nothing)] ++ h1) 1
where (Heap h1 k1) = bmap id even_ x

Note the use of two functions

even_ k = 2*k
odd_ k = 2*k+1

which generate the kth even and odd numbers. Functorial renaming of heap addresses
via these functions (whose ranges are disjoint) ensure that the heaps one is joining (via
list concatenation) are separate [62, 64]. This representation technique is reminiscent
of that of storing “binary heaps” (which are not quite the same as in this paper) as
arrays without pointers 31. It can be generalized to any polynomial type of degree n by

building n-functions fi k
def= nk + i, for 0 ≤ i < n.

Finally, the abstraction relation is encoded as a partial function in Haskell as follows:

f (Heap h k) = let Just (a,x,y) = lookup k h
in Node (fst a)(snd a)

(fmap (f . Heap h) x)
(fmap (f . Heap h) y)

31 See eg. entry Binary heap in the Wikipedia.

How to Write Fast Numerical Code:
A Small Introduction

Srinivas Chellappa, Franz Franchetti, and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University

{schellap,franzf,pueschel}@ece.cmu.edu

Abstract. The complexity of modern computing platforms has made it ex-
tremely difficult to write numerical code that achieves the best possible perfor-
mance. Straightforward implementations based on algorithms that minimize the
operations count often fall short in performance by at least one order of magni-
tude. This tutorial introduces the reader to a set of general techniques to improve
the performance of numerical code, focusing on optimizations for the computer’s
memory hierarchy. Further, program generators are discussed as a way to re-
duce the implementation and optimization effort. Two running examples are used
to demonstrate these techniques: matrix-matrix multiplication and the discrete
Fourier transform.

1 Introduction

The growth in the performance of computing platforms in the past few decades has
followed a reliable pattern usually referred to as Moore’s Law. Moore observed in
1965 [1] that the number of transistors per chip roughly doubles every 18 months and
predicted—correctly—that this trend would continue. In parallel, due to the shrinking
size of transistors, CPU frequencies could be increased at roughly the same exponential
rate. This trend has been the big supporter for many performance demanding applica-
tions in scientific computing (such as climate modeling and other physics simulations),
consumer computing (such as audio, image, and video processing), and embedded com-
puting (such as control, communication, and signal processing). In fact, these domains
have a practically unlimited need for performance (for example, the ever growing need
for higher resolution videos), and it seems that the evolution of computers is well on
track to support these needs.

However, everything comes at a price, and in this case it is the increasing difficulty
of writing the fastest possible software. In this tutorial, we focus on numerical software.
By that we mean code that mainly consists of floating point computations.

The problem. To understand the problem we investigate Fig. 1, which considers various
Intel architectures from the first Pentium to the (at the time of this writing) latest Core2
Extreme. The x-axis shows the year of release. The y-axis, in log-scale, shows both the
CPU frequency (in MHz) and the single/double precision theoretical peak performance
(in Mflop/s = Mega FLoating point OPerations per Second) of the respective machines.
First we note, as explained above, the exponential increase in CPU frequency. This

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 196–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How to Write Fast Numerical Code: A Small Introduction 197

free speedup

work required

Evolution of Intel Platforms

1 0

10 0

1 , 00 0

10 , 00 0

100 , 00 0

199 3 199 5 199 7 199 9 200 1 200 3 200 5 200 7
Y e a r

s i n g l e p r e c i s i o n

d o u b l e p r e c i s i o n

C P U f r e q u e n c y

F l o a t i n g p o i n t p e a k p e r f o r m a n c e [M f l o p / s]
C P U f r e q u e n c y [M H z]

P entium

P entium Pro

P entium II

P entium III

P entium 4
Core2
Duo

Core2
Extreme

data: ww w .sandpile.org

Fig. 1. The evolution of computing platform’s peak performance versus their CPU frequency
explains why high performance software development becomes increasingly harder

results in a “free” speedup for numerical software. In other words, legacy code writ-
ten for an obsolete predecessor will run faster without any extra programming effort.
However, the theoretical performance of computers has evolved at a faster pace due
to increases in the processors’ parallelism. This parallelism comes in several forms,
including pipelining, superscalar processing, vector processing and multi-threading.
Single-instruction multiple-data (SIMD) vector instructions enable the execution of an
operation on 2, 4, or more data elements in parallel. The latest generations are also
“multicore,” which means 2, 4, or more processing cores1 exist on a single chip. Ex-
ploiting parallelism in numerical software is not trivial, it requires implementation ef-
fort. Legacy code typically neither includes vector instructions, nor is it multi-threaded
to take advantage of multiple processor cores or multiple processors. Ideally, compilers
would take care of this problem by automatically vectorizing and parallelizing existing
source code. However, while much outstanding compiler research has attacked these
problems (e.g., [2, 3, 4]), they are in general still unsolved. Experience shows that this
is particularly true for numerical problems. The reason is, for numerical problems, tak-
ing advantage of the platform’s available parallelism often requires an algorithm struc-
tured differently than the one that would be used in the corresponding sequential code.
Compilers cannot be made to change or restructure algorithms since doing so requires
knowledge of the algorithm domain.

1 At the time of this writing 8 cores per chip is the best commonly available multicore CPU
configuration.

198 S. Chellappa, F. Franchetti, and M. Püschel

Similar problems are caused by the computer’s memory hierarchy, independently of
the available parallelism. The fast processor speeds have made it increasingly difficult
to “feed all floating point execution units” at the necessary rate to keep them busy.
Moving data from and to memory has become the bottleneck. The memory hierarchy,
consisting of registers and multiple levels of cache, aims to address this problem, but can
only work if data is accessed in a suitable order. One cache miss may incur a penalty of
20–100s CPU cycles, a time in which 100 or more floating point operations could have
been performed. Again, compilers are inherently limited in optimizing for the memory
hierarchy since optimization may require algorithm restructuring or an entirely different
choice of algorithm to begin with.

Adding to these problems is the fact that CPU frequency scaling is approaching its
end due to limits to the chip’s possible power density (see Fig. 1): since 2004 it has
hovered around 3 GHz. This implies the end of automatic speedup; future performance
gains will be exclusively due to increasing parallelism.

In summary, two main problems can be identified from Fig. 1:

– Years of exponential increase in CPU frequency meant free speed-up for existing
software but also have caused and worsened the processor-memory bottleneck. This
means to achieve the highest possible performance, code has to be restructured and
tuned to the memory hierarchy.

– The times of free speed-up are over; future performance gains are due to parallelism
in various forms. This means, code has to be rewritten using vector instructions and
multiple threads and in addition has to be optimized for the memory hierarchy.

To quantify the problem we look at two representative examples, which are among
the most important numerical kernels used: the discrete Fourier transform (DFT) and
the matrix-matrix multiplication (MMM). The DFT is used across disciplines and is the
most important tool used in signal processing; MMM is the crucial kernel in most dense
linear algebra algorithms.

It is well-known that the complexity of the DFT for input size n is O(n log(n)) due
to the availability of fast Fourier transform algorithms (FFTs) [5]. Fig. 2 shows the
performance of four different FFT implementations on an Intel Core platform with four
cores. The x-axis is the input size n = 24, . . . , 218. The y-axis is the performance in
Gflop/s. For all implementations, the operations count is estimated as 5n log2(n), so the
numbers are proportional to inverse runtime. The bottom line shows the performance of
the implementation by Numerical Recipes [6] compiled with the best available compiler
(the Intel vendor compiler icc 10.1 in this case) and all optimizations enabled. The next
line (best scalar) shows the performance of the fastest standard C implementation for
the DFT and is roughly 5 times faster due to optimizations for the memory hierarchy.
The next line (best vector) shows the performance when vector instructions are used in
addition, for a further gain of a factor of 3. Finally, for large sizes, another factor of 2
can be gained by writing multi-threaded code to use all processor cores. Note that all
four implementations have roughly the same operations count for a given size but the
performance difference is a factor of 12 for small sizes, and a factor of up to 30 for
large sizes. The uppermost three lines correspond to code generated by Spiral [7, 8]; a
roughly similar performance is achieved by FFTW [9, 10, 11].

How to Write Fast Numerical Code: A Small Introduction 199

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144
input size

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x

Numerical Recipes

Best scalar code

Best vector code

Best vector and parallel code

Fig. 2. Performance of four single precision implementations of the discrete Fourier transform.
The operations count is roughly the same.

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Extreme 3 GHz
Performance [Gflop/s]

Triple loop

Best scalar code

Best vector code

Best vector and parallel code

Multiple threads: 4x

Vector instructions: 2x

Memory hierarchy: 5-20x

matrix size

Fig. 3. Performance of four double precision implementations of matrix-matrix multiplication.
The operations count is exactly the same.

Fig. 3 shows a similar plot for MMM (assuming square matrices), where the bottom
line corresponds to a standard, triple loop implementation. Here the performance dif-
ference with respect to the best code can be as much as 160 times, including a factor
of 5-20 solely due to optimizations for the memory hierarchy. All the implementations
have exactly the same floating point operations count of 2n3. The top two lines are from
Goto BLAS [12]; the best scalar code is generated using ATLAS [13].

To summarize the above discussion, the task of achieving the highest performance
with an implementation usually lies to a great extent with the programmer. For a given
problem, he or she has to carefully consider different algorithms and possibly restruc-
ture them to adapt to the given platform’s memory hierarchy and available parallelism.
This is very difficult, time-consuming, and requires interdisciplinary knowledge about
algorithms, software optimizations, and the hardware architecture. Further, the tuning

200 S. Chellappa, F. Franchetti, and M. Püschel

process is platform-dependent: an implementation optimized for one computer will not
necessarily be the fastest one on another, since performance depends on many microar-
chitectural features including but not restricted to the details of the memory hierarchy.
Consequently, to achieve highest performance, tuning has to be repeated with the re-
lease of each new platform. Since the times of a free speedup (due to frequency scal-
ing) are over, this retuning has become mandatory if any performance gains are desired.
Needless to say, the problem is not merely an academic one, but one that affects the
software industry as a whole.

Automatic performance tuning. A number of research efforts have started to address
this problem in a new area called “automatic performance tuning” [14]. The general
idea is to at least partially automate the implementation and optimization procedure.
Two basic approaches have emerged so far in this area: adaptive libraries and source
code generators.

Examples of adaptive libraries include FFTW [10] for the discrete Fourier transform
and adaptive sorting libraries [15, 16]. In both cases, the libraries are highly optimized,
and beyond that, have degrees of freedom with regard to the chosen divide-and-conquer
strategy (both DFT and sorting are done recursively in these libraries). This strategy is
determined at runtime, on the given platform, using a search mechanism. This way, the
library can dynamically adapt to the computer’s memory hierarchy. Sparsity and OSKI
from the BeBOP group [17, 18, 19, 20] is are other examples of such a libraries, used
for sparse linear algebra problems.

On the other hand, source code generators produce algorithm implementations from
scratch. They are used to generate either crucial components, or libraries in their en-
tirety. For instance, ATLAS (Automatically Tuned Linear Algebra Software) and its
predecessor PHiPAC [18, 21, 22] generate the kernel code for MMM and other basic
matrix routines. They do so by generating many different variants arising from differ-
ent choices of blocking, loop unrolling, and instruction ordering. These are all measured
and the fastest one is selected using search methods.

FFTW also uses a generator to produce small size DFT kernels [23]. Here, no search
is used, but many optimizations are performed before the actual code is output. Spiral
[7, 24] is a library generator for arbitrary sized linear transforms including the DFT,
filters, and others. Besides enumerating alternatives, and in contrast to other work, Spi-
ral uses an internal domain-specific mathematical language to optimize algorithms at
a high level of abstraction before source code is generated. This includes algorithm
restructuring for the memory hierarchy, vector instructions, and multi-threaded code
[24, 25, 26]. FLAME considers dense linear algebra algorithm and is in spirit similar
to Spiral. It represents algorithms in a structural form and shows how to systematically
derive alternatives and parallelize them [27, 28, 29].

Other automatic performance tuning efforts include [17] for sparse linear algebra
and [30] for tensor computations.

This new research is promising but much more work is needed to automate the im-
plementation and optimization of a large set of library functionality. We believe that
program generation techniques will prove crucial for this area of research.

How to Write Fast Numerical Code: A Small Introduction 201

Summary. We summarize the main points of this section:

– End of free-speedup for legacy code. CPU frequencies have hit the power wall and
stalled. Future performance gains in computers will be obtained by increasing par-
allelism. This means that code has to be rewritten to take advantage of the available
parallelism and performance.

– Minimizing operations count does not mean maximizing performance. Floating-
point operations are much cheaper than cache misses. Fastest performance requires
code that is adapted to the memory hierarchy, uses vector instructions and multiple
cores (if available). As a consequence, we have the following problem.

– The performance difference between a straightforward implementation and the best
possible can be a factor of 10, 20, or more. This is true even if the former is based
on an algorithm that is optimal in its (floating-point) operations count.

– It is very difficult to write the fastest possible code. The reason is that performance-
optimal code has to be carefully optimized for the platform’s memory hierarchy
and available parallelism. For numerical problems, compilers cannot perform these
optimizations, or can only perform them to a very limited extent.

– Performance is in general non-portable. The fastest code for one computer may
perform poorly on another.

– Overcoming these problems by automation is a challenge at the core of computer
science. To date this research area is still in its infancy. One crucial technique that
emerges in this research area is generative programming.

Goal of this tutorial. The goal of this tutorial is twofold. First, it provides the reader
with a small introduction to the performance optimization of numerical problems, fo-
cusing on optimizations for the computer’s memory hierarchy, i.e., the dark area in
Fig. 1 is not discussed. The computers considered in this tutorial are COTS (commer-
cial off-the-shelf) desktop computers with the latest microarchitectures such as Core2
Duo or the Pentium from Intel, the Opteron from AMD, and the PowerPC from Apple
and Motorola. We assume that the reader has the level of knowledge of a junior (third
year) student in computer science or engineering. This includes basic knowledge of
computer architecture, algorithms, matrix algebra, and solid C programming skills.

Second, we want to raise awareness and bring this topic closer to the program gener-
ation community. Generative programming is an active field of research (e.g., [31, 32]),
but has to date mostly focused on reducing the implementation effort in producing cor-
rect code. Numerical code and performance optimization have not been considered. In
contrast, in the area of automatic performance tuning, program generation has started to
emerge as one promising tool as briefly explained in this tutorial. However, much more
research is needed and any advances have high impact potential.

The tutorial is in part based on the course [33].

Organization. Section 2 provides some basic background information on algorithm
analysis, the MMM and the DFT, features of modern computer systems relevant to this
tutorial, and compilers and their correct usage. It also identifies data access patterns that
are necessary for obtaining high performance on modern computer systems. Section 3
first introduces the basics of benchmarking numerical code and then provides a gen-
eral high-level procedure for attacking the problem of performance optimization given

202 S. Chellappa, F. Franchetti, and M. Püschel

an existing program that has to be tuned for performance. This procedure reduces the
problem to the optimization of performance-critical kernels, which is first studied in
general in Section 4 and then in Sections 5 and 6 using MMM and the DFT as exam-
ples. The latter two sections also explain how program generators can be applied in this
domain using ATLAS (for MMM) and Spiral (for the DFT) as examples. We conclude
with Section 7.

Along with the explanations, we provide programming exercises to provide the
reader with hands-on experience.

2 Background

In this section we provide the necessary background for this tutorial. We briefly review
algorithm analysis, introduce MMM and the DFT, discuss the memory hierarchy of off-
the-shelf microarchitectures, and explain the use of compilers. The following standard
books provide more information on algorithms [34], MMM and linear algebra [35], the
DFT [5, 36], and computer architecture and systems [37, 38].

2.1 Cost Analysis of Algorithms

The starting point for any implementation of a numerical problem is the choice of al-
gorithm. Before an actual implementation, algorithm analysis, based on the number of
operations performed, can give a rough estimate of the performance to be expected. We
discuss the floating point operations count and the degree of reuse.

Cost: asymptotic, exact, and measured. It is common in algorithm analysis to repre-
sent the asymptotic runtime of an algorithm in O-notation as O(f(n)), where n is the
input size and f , a function [34]. For numerical algorithms, f(n) is typically determined
from the number of floating point operations performed. The O-notation neglects con-
stants and lower order terms; for example, O(n3 + 100n2) = O(5n3). Hence it is only
suited to describe the performance trend but not the actual performance itself. Further,
it makes a statement only about the asymptotic behavior, i.e., the behavior as n goes to
infinity. Thus it is in principle possible that an O(n3) algorithm performs better than an
O(n2) algorithm for all practically relevant input sizes n.

A better form of analysis for numerical algorithms is to compute the exact number of
floating point operations, or at least the exact highest order term. However, this may be
difficult in practice. In this case, profiling tools can be used on an actual implementation
to determine the number of operations actually performed. The latter can also be used
to determine the computational bottleneck in a given implementation.

However, even if the exact number of operations of an algorithm and its implementa-
tion is known, it is very difficult to determine the actual runtime. As an example consider
Fig. 3: all four implementations require exactly 2n3 operations, but the runtime differs
by up to two orders of magnitude.

Reuse: CPU bound vs. memory bound. Another useful measure of an algorithm is the
degree of reuse. The asymptotic reuse for an O(f(n)) algorithm is given by O(f(n)/n)
if n is the input size. Intuitively, the degree of reuse measures how often a given input

How to Write Fast Numerical Code: A Small Introduction 203

value is used in a computation during the algorithm. A high degree of reuse implies
that an algorithm may perform better (in terms of operations per second) on a computer
with memory hierarchy, since the number of computations dominates the number of
data transfers from memory to CPU. In this case we say that the algorithm is CPU
bound. A low degree of reuse implies that the number of data transfers from memory to
CPU is high compared to the number of operations and the performance (in operations
per second) may deteriorate: in this case we say that the algorithm is memory bound.

A CPU bound algorithm will run faster on a machines with a faster CPU. A memory
bound algorithm will run faster on a machine with a faster memory bus.

2.2 Matrix-Matrix Multiplication

Matrix-matrix multiplication (MMM) is arguably the most important numerical kernel
functionality. It is used in many linear algebra algorithms such as solving systems of
linear equations, matrix inversion, eigenvalue computations, and many others. We will
use MMM, and the DFT (Section 2.3) as examples to demonstrate optimizations for
performance.

Definition. Given a k × m matrix A = [ai,j] and an m × n matrix B = [bi,j], the
product C = AB is a k × n matrix with entries

ci,j =
m∑

k=1

ai,kbk,j .

For actual applications, usually C = C + AB is implemented instead of C = AB.

Complexity and analysis. Given two n × n matrices A, B, MMM computed as C =
C + AB by definition requires n3 multiplications and n3 additions for a total of 2n3 =
O(n3) floating point operations. Since the input data (the matrices) have size O(n2),
the reuse is given by O(n3/n2) = O(n).

Asymptotically better MMM algorithms do exist. Strassen’s algorithm [39] requires
only O(nlog

2
7) ≈ O(n2.808) operations. The actual crossover point (i.e., when it re-

quires less operations than the computation by definition) is at n = 655. However, the
more complicated structure of Strassen’s algorithm and its weaker numerical stability
reduce its applicability. The best-known algorithm for MMM is due to Coppersmith-
Winograd and requires O(n2.376) [40]. The large hidden constant and a complicated
structure have so far made this algorithm impractical for real applications.

Direct implementation. A direct implementation of MMM is the triple loop shown
below.

// MMM - direct implementation
for(i=0; i<m; i++)

for(j=0; j<p; j++)
for(k=0; k<n; k++)
c[i][j] += a[i][k] * b[k][j];

BLAS and LAPACK. BLAS (Basic Linear Algebra Subprogram) is a set of standard-
ized basic linear algebra operations, including MMM [41]. Implementations of BLAS

204 S. Chellappa, F. Franchetti, and M. Püschel

LAPACK
BLAS

Static

Re-implemented or regenerated
for each platform

Fig. 4. LAPACK is implemented on top of BLAS

are provided by packages such as ATLAS and Goto BLAS. BLAS routines are used as
kernels in fundamental linear algebra algorithms such as linear equation solving, eigen-
value computations, singular value decompositions, LU/Cholesky/QR decompositions,
and others. Such higher level functions are implemented by the LAPACK (Linear Al-
gebra PACKage) library, [42] using MMM and other BLAS routines as kernels (see
Fig. 4). The idea behind this two-level design is to redesign and/or re-optimize the
BLAS implementations for new hardware architectures, while reusing LAPACK with-
out a need for modification. The performance improvements from the BLAS implemen-
tation then translate into performance gains for the LAPACK library. This design has
proven very successful until the release of multicore systems, which appears to require
a redesign of LAPACK.

Further reading

– Linear algebra. General information about numerical linear algebra can be found in
[35, 38].

– BLAS. ATLAS provides an implementation of BLAS, as does Goto BLAS. Further
information on ATLAS is available in [13, 21, 43]. Details on Goto BLAS can be
found at [12, 44].

– Linear algebra libraries. LAPACK is described in [42, 45]. The distributed memory
extension ScaLAPACK is described in [46, 47]. An alternative approach is pursued
by PLAPACK [48, 49] and FLAME [27, 28, 50].

2.3 Discrete Fourier Transform

The discrete Fourier transform (DFT) is another numerical kernel of importance in a
wide range of disciplines. In particular, in the field of signal processing, the DFT is ar-
guably the most important tool used. Even though the DFT seems at first glance based
on linear algebra, it is in its nature fundamentally different from MMM. In particular,
it is never computed by definition–fast algorithms are always used, instead. The tech-
niques used by these fast algorithms are different from the techniques used to speed up
MMM.

Definition. The discrete Fourier transform (DFT) of an input vector x of length n is
defined as the matrix-vector product

y = DFTn x, DFTn = [ωk�
n]0≤k,�<n, ωn = e−2πi/n, i =

√
−1.

In words, ωn is a primitive nth root of unity. In this tutorial we assume that n is a
two-power.

How to Write Fast Numerical Code: A Small Introduction 205

Complexity and analysis. Computing the DFT by definition requires O(n2) many op-
erations, and is never done in practice. There exists a number of fast algorithms, called
fast Fourier transforms (FFTs), that reduce the runtime to O(n log(n)) for all sizes n
[5]. For n = 2k, the FFTs used in practice require between 4n log2(n) + O(n) and
5n log2(n) + O(n) many operations. The best known FFT has a cost of 34

9 n log2 n +
O(n) [51]. The degree of reuse is hence O(log(n)), less than for MMM, which explains
the performance drop in Fig. 2 for large sizes when the working set is too large for the
L2 cache.

We defer a detailed introduction of FFTs to Section 6.

Direct implementation. In contrast to MMM, a straightforward implementation of the
DFT is not done by definition, but performed by a direct implementation of an FFT. One
example is the so-called iterative radix-2 FFT algorithm as implemented by Numerical
Recipes [6], whose performance was shown in Fig. 2. The corresponding code is shown
below.

#include <math.h>

#define SWAP(a,b) tempr=a;a=b;b=tempr
void four1(float *data, int *nn, int *isign)
{ /* altered for consistency with original FORTRAN.

/* Press, Flannery, Teukolsky, Vettering "Numerical

* Recipes in C" tuned up ; Code works only when *nn is

* a power of 2 */
int n, mmax, m, j, i;
double wtemp, wr, wpr, wpi, wi, theta, wpin;
double tempr, tempi, datar, datai,

data1r,data1i;
n = *nn * 2;
j = 0;
for(i = 0; i < n; i += 2)
{ if (j > i) { /* could use j>i+1 to help

* compiler analysis */
SWAP(data[j], data[i]);
SWAP(data[j + 1], data[i + 1]);

}
m = *nn;
while (m >= 2 && j >= m) {

j -= m;
m >>= 1;

}
j += m;

}
theta = 3.141592653589795 * .5;
if (*isign < 0)

theta = -theta;
wpin = 0; /* sin(+-PI) */
for(mmax = 2; n > mmax; mmax *= 2)
{ wpi = wpin;

206 S. Chellappa, F. Franchetti, and M. Püschel

wpin = sin(theta);
wpr = 1 - wpin * wpin - wpin * wpin;
/* cos(theta*2) */
theta *= .5;
wr = 1;
wi = 0;
for(m = 0; m < mmax; m += 2)
{ j = m + mmax;

tempr = (double) wr *(data1r = data[j]);
tempi = (double) wi *(data1i = data[j + 1]);
for(i = m; i < n - mmax * 2; i += mmax * 2)
{ /* mixed precision not significantly more

* accurate here; if removing double casts,

* tempr and tempi should be double */
tempr -= tempi;
tempi = (double) wr *data1i + (double) wi *data1r;
/* don’t expect compiler to analyze j > i+1 */
data1r = data[j + mmax * 2];
data1i = data[j + mmax * 2 + 1];
data[i] = (datar = data[i]) + tempr;
data[i + 1] = (datai = data[i + 1]) + tempi;
data[j] = datar - tempr;
data[j + 1] = datai - tempi;
tempr = (double) wr *data1r;
tempi = (double) wi *data1i;
j += mmax * 2;

}
tempr -= tempi;
tempi = (double) wr *data1i + (double) wi *data1r;
data[i] = (datar = data[i]) + tempr;
data[i + 1] = (datai = data[i + 1]) + tempi;
data[j] = datar - tempr;
data[j + 1] = datai - tempi;
wr = (wtemp = wr) * wpr - wi * wpi;
wi = wtemp * wpi + wi * wpr;

}
}

}

Further reading

– FFT algorithms. [36, 52] give an overview of FFT algorithms. [5] uses the Kro-
necker product formalism to describe many different FFT algorithms, including
parallel and vector algorithms. [53] uses the Kronecker formalism to parallelize
and vectorize FFT algorithms.

– FFTW. FFTW can be downloaded at [11]. The latest version, FFTW3, is described
in [10]. The previous version FFTW2 is described in [9] and the codelet generator
genfft in [23].

– SPIRAL. Spiral is a program generation system for transforms. The core system
is described in [7] and on the web at [8]. Using Kronecker product manipulations,

How to Write Fast Numerical Code: A Small Introduction 207

SIMD vectorization is described in [24, 54], shared memory (SMP and multicore)
parallelization in [25], and message passing (MPI) in [55].

– Open source FFT libraries. FFTPACK [56] is a mixed-radix Fortran FFT library.
The GNU Scientific library (GSL) [57] contains a C port of FFTPACK. UHFFT
[58, 59] is an adaptive FFT library. Numerical Recipes [6] contains the radix-2
FFT implementation shown above. FFTE [60] provides a parallel FFT library for
distributed memory machines.

– Proprietary FFT libraries. The AMD Core Math Library (ACML) [61] is the vendor
library for AMD processors. Intel provides fast FFT implementations as a part of
their Math Kernel Library (MKL) [62] and Integrated Performance Primitives (IPP)
[63]. IBM’s IBM Engineering and Scientific Software Library (ESSL) [64] and the
parallel version (PESSL) contain FFT functions optimized for IBM machines. The
vDSP library contains FFT functions optimized for AltiVec. The libraries of the
Numerical Algorithms Group (NAG) [65] and the International Mathematical and
Statistical Library (IMSL) [66] also contain FFT functionality.

2.4 State-of-the-Art Desktop and Laptop Computer Systems

Modern computers include several performance enhancing microarchitectural features
like cache systems, a memory hierarchy, virtual memory, and CPU features like vector
and parallel processing. While these features usually increase the achievable perfor-
mance, they also make the optimization process more complex. This section introduces
several microarchitectural features relevant to writing fast code. For further reading,
refer to [37, 38].

Memory hierarchy. Most computer systems use a memory hierarchy to bridge the
speed gap between the processor(s) and its connection to main memory. As shown in
Fig. 5, the highest levels of the memory hierarchy contain the fastest and the smallest
memory systems, and vice versa.

A hierarchical memory enables the processor to take advantage of the memory local-
ity of computer programs. Optimizing numerical programs for the memory hierarchy
is one of the most fundamental approaches to producing fast code, and the subject of
this tutorial. Programs typically exhibit temporal and spatial memory locality. Temporal
locality means that a memory location that is referenced by a program will likely be ref-
erenced again in the near future. Spatial locality means that the likelihood of referencing
a memory location by a program is higher if a nearby location was recently referenced.
High performance computer software must be designed so that the hardware can easily
take advantage of locality. Thus, this tutorial focuses on writing fast code by designing
programs to exhibit maximal temporal and spatial localities.

Registers. Registers inside the processor are the highest level of the memory hierarchy.
Any value (address or data) that is involved in computation has to eventually be placed
into a register. Registers may be designed to hold only a specific type of value (special
purpose registers), or only floating point values (e.g., double FP registers), vector values
(vector registers), or any value (general purpose registers). The number of registers in
a processor varies by architecture. A few examples are provided in Table 1. When an
active computation requires more values to be held than the register space will allow,

208 S. Chellappa, F. Franchetti, and M. Püschel

Registers

Hard Disk

Memory

L2 Cache

smaller
faster access
more expensive

~50,000 cycles ~50,000 cycles

L1 Cache

~300 cycles ~300 cycles

~1 - 2 cycles

~8 - 32 cycles

CPU

larger
slower

cheaper

Fig. 5. Memory hierarchy. Typical latencies for data transfers from the CPU to each of the levels
are shown. The numbers shown here are only an indication, and the actual numbers will depend
on the exact architecture under consideration.

Table 1. Sample scalar register space (per core) in various architectures. In addition to integer
and FP registers, the Core2 Extreme also has 16 multimedia registers.

Processor Integer Registers Double FP Registers

Core2 Extreme 16 16
Itanium 2 128 128
UltraSPARC T2 32 32
POWER6 32 32

a register spill occurs, and the register contents are written to lower levels of memory
from which they will be reloaded again. Register spills are expensive. To avoid them
and speed up computation, a processor might make use of internal registers that are not
visible to the programmer. Many optimizations that work on other levels of the memory
hierarchy can typically also be extended to the register level.

Cache memory. Cache memory is a small, fast memory that resides between the main
memory and the processor. It reduces average memory access times by taking advan-
tage of spatial and temporal locality. When the processor initially requests data from a
memory location (called a cache miss), the cache fetches and stores the requested data
and data spatially close. Subsequent accesses, called hits, can be serviced by the cache
without needing to access main memory. A well designed cache system has a low miss
to hit ratio (also known as just the miss ratio or miss rate).

Caches, as shown in Fig. 6 are divided into cache lines (also known as blocks) and
sets. Data is moved in and out of cache memory in chunks equal to the line size. Cache
lines exist to take advantage of spatial locality. Multiple levels of caches and sepa-
rate data and instruction caches may exist, as shown in Table 2. Caches may be direct
mapped (every main memory location is mapped to a specific cache location) or k-way
set associative (every main memory location can be mapped to precisely k possible

How to Write Fast Numerical Code: A Small Introduction 209

Tag
Remaining bits 3bits 2bits 2bits

Memory Address

8 Sets
[0..7]

FloatsCache line
index

Cache line

4 Ways [0..3]

S
et

 in
de

x

Fig. 6. 4-way set associative cache with cache line size of 4 single precision floats (4 bytes per
float) per line, and cache size of 128 floats (total cache size is 512 bytes). The figure also illus-
trates the parts of a memory address used to index into the cache. Since each data element under
consideration is 4 bytes long, the two least significant bits are irrelevant in this case. The number
of bits used to address into the cache line would be different for double precision floats.

Table 2. Cache system example: Intel Core2 Duo, Merom Notebook processor

Level/Type Size Associativity

L1 Data (per core) 32 KB 8-way set associative
L1 Instruction (per core) 32 KB 8-way set associative
L2 Unified (common) 4 MB 8-way set associative

cache locations). In addition to misses caused due to data being brought in for the first
time (compulsory misses) and those due to cache capacity constraints (capacity misses),
caches that are not fully associative can incur conflict misses [67].

Since cache misses are typically expensive, writing fast code involves designing pro-
grams to have low miss rates. This is accomplished using two important guiding prin-
ciples, illustrated in Fig. 7 and described below:

– Reuse: Temporal locality. Once data is brought into the cache, the program should
reuse it as much as possible before it gets evicted. In other words, programs must
try to avoid scattering computations made on a particular data location throughout
the execution of the program. Otherwise, the same data (or data location) has to go
through several cycles of being brought into the cache and subsequently evicted,
which increases runtime.

– Neighbor use (using all data brought in): Spatial locality. Data is always brought
into the cache in chunks the size of a cache line. This is seen in Fig. 7, where

210 S. Chellappa, F. Franchetti, and M. Püschel

x0 x1 x2 x3 x4 …
x8 x9 x10 x11 x12 … x0 x1 x2 x3

Main memory
Cache

CPU request x2

Cache line size
= 4 floats

Fig. 7. Neighbor use and reuse: When the CPU requests x2, x0, x1, and x3 are also brought into
the cache since the cache line size holds 4 floats

one data element x2 was requested, and three others are also brought in since they
belong to the same cache line. To take advantage of this, programs must be designed
to perform computations on neighboring data (physically close in memory) before
the line is evicted. This might involve reordering loops, for instance, to work on
data in small chunks.

These two principles work at multiple levels. For instance, code can be designed to
use and reuse all data within a single cache block, as well as within an entire cache level.
In fact, these principles hold throughout the memory hierarchy, and thus can be used
at various cache and memory levels. Depending on the computation being performed,
techniques that use these principles may not be trivial to design or implement.

In scientific or numerical computing, data typically consists of floating point num-
bers. Therefore, it helps to view the cache organization, lines, and sets in terms of the
number of floating point numbers that can be held. For instance, the cache shown in
Fig. 6 is a 512 byte, 4-way set associative cache with a line size of 16 bytes. There are
a total of 32 lines (512 bytes / 16 bytes per line), and 8 sets (32 lines / 4 lines per set).
If we note that each cache line can hold 4 floats (16 bytes / 4 bytes per float), we can
immediately see that the cache can hold a total of 128 floats. This means that datasets
larger than 128 floats will not fit in the cache. Also, if we make an initial access to 128
consecutive floats, there will be a total of 32 cache misses and 96 cache hits (since 4
floats in a line are loaded on each cache miss). This gives us a rough estimate of the
runtime of such a set of accesses, which is useful both in designing programs and in
performing sanity checks.

Cache analysis. We now consider three examples of accessing an array in various se-
quences, and analyze their effects on the cache.

Consider a simple direct mapped 16 byte data cache with two cache lines, each of
size 8 bytes (two floats per line). Consider the following code sequence, in which the
array X is cache-aligned (that is, X [0] is always loaded into the beginning of the first
cache line) and accessed twice in consecutive order:

float X[8];
for(int j=0; j<2; j++)

for(int i=0; i<8; i++)
access(X[i]);

How to Write Fast Numerical Code: A Small Introduction 211

line0 X0 m X1 h X0 X1 X4 m X5 h X4 X5 X0 m X1 h X0 X1 X4 m X5 h X4 X5

line1 X2 m X3 h X2 X3 X6 m X7 h X6 X7 X2 m X3 h X2 X3 X6 m X7 h

line0 X0 m X1 X4 m X5 X0 X1 m X4 X5 m X0 m X1 X4 m X5 X0 X1 m X4 X5 m

line1 X2 m X3 X6 m X7 X2 X3 m X6 X7 m X2 m X3 X6 m X7 X2 X3 m X6 X7 m

line0 X0 m X1 h X0 X1 X0 h X1 h X0 X1 X4 m X5 h X4 X5 X4 h X5 h X4 X5

line1 X2 m X3 h X2 X3 X2 h X3 h X2 X3 X6 m X7 h X6 X7 X6 h X7 h

Example 1: Sequential access

Example 2: Strided access

Example 3: Blocked access

Fig. 8. Cache access analysis: The state of the complete cache for each example is shown after
every two accesses, along with whether the two accesses resulted in hits or misses (shown by h
or m). The two requests just made are shown in black, while the remaining parts of the cache are
shown in gray. To save space, square brackets are not shown: X0 refers to X[0].

The top row on Fig. 8 shows the states of the cache after every two (out of the total
of sixteen) accesses for this example. To analyze the cache footprint and pattern of this
code sequence, we first observe that the size of the array (8 floats) exceeds the size of
the cache (4 floats). We then observe that a total of 16 accesses are made to the array.
To calculate how many result in hits, and how many in misses, we observe the cache
access pattern of the code. The pattern is “0123456701234567” (only the indices of
X accessed are shown). We note that an access to any even index of X results in that
element and the subsequent element being loaded since they are in the same cache line.
Thus, accessing X [0] loads X [0] and X [1] into the cache. We can then compute the
hit/miss pattern to be: “MHMHMHMHMHMHMHMH”. So in all, there are 8 hits and
8 misses.

We now look at another code sequence that again accesses the same array twice
(similar to the last example), albeit with a stride of 2:

float X[8];
for(int j=0; j<2; j++)
{ for(int i=0; i<7; i+=2)

access(X[i]);
for(int i=1; i<8; i+=2)

access(X[i]);
}

The middle row on Fig. 8 shows the corresponding cache states for this example.
The access pattern here is “0246135702461357”. A similar analysis shows us that the
miss ratio is even worse: every single access in this pattern results in a miss (with
a total of 16 misses and 0 hits). This example illustrates an important point: strided
accesses generally result in poor cache efficiency, since they effectively “make the cache
smaller.”

212 S. Chellappa, F. Franchetti, and M. Püschel

Finally, let us consider a third code sequence that again accesses the same array
twice:

float X[8];
for(i=0; i<2; i++)

for(k=0; k<2; k++)
for(j=0; j<4; j++)
access(X[j+(i*4]);

The bottom row on Fig. 8 shows the corresponding cache states for this example. The
access pattern here is “0123012345674567”. Counting the hits and misses, (“MHMH-
HHHHMHMHHHHH”), we observe that there are 12 hits and 4 misses. We also note
that if this rearrangement is legal, it is a cache optimized version of the original code
sequence. In fact, this rearrangement is an example of both of the previously mentioned
principles behind optimizing for the memory hierarchy: reuse and neighbor use. Un-
like the first example, the “0123” block is reused here before being evicted. Unlike the
second example, every time an even-indexed element is accessed, the succeeding odd-
indexed element which is a part of the same cache line is also immediately accessed.
Thus, analyzing the cache can help us estimate and improve the cache performance of
a program.

CPU features. Modern microprocessors also contain other performance enhancing fea-
tures. Most processors contain pipelined superscalar out-of-order cores with multiple
execution units. Pipelining is a form of parallelism where different parts of the proces-
sor work simultaneously on different components of different instructions. Superscalar
cores can retire more than one instruction per processor clock cycle. Out-of-order pro-
cessing cores can detect instruction dependencies and reschedule the instruction se-
quence for performance. The programmer has to be cognizant of these features in order
to be able to optimize for a particular architecture.

Most such aggressive cores also contain multiple execution units (for instance,
floating point units) for increased performance. This means that a processor might
be able to, for instance, simultaneously retire one floating point add instruction every
cycle, and one floating point multiplication instruction every other cycle. It is up to
the programmer and the compiler to keep the processor’s execution units adequately
busy (primarily via instruction scheduling and memory locality) in order to achieve
maximum performance.

The theoretical rate at which a processor can perform floating point operations
is know as the processor’s theoretical peak performance. This is measured in flop/s
(FLoating point OPerations per Second). For instance, a processor running at 1 GHz
that can retire one addition every cycle, and one multiplication every other cycle has
a theoretical peak of 1.5 Gflop/s. The theoretical peak of a Core2 Extreme processor
operating under various modes is shown in Table 3.

In practice, cache misses, pipeline stalls due to dependencies, branches, branch
mispredictions, and the fact that meaningful programs contain instructions other than
floating point instructions, do not allow a processor to perform at its theoretical peak
performance. Further, the achievable performance also depends on the inherent limita-
tions of the algorithm, such as reuse. For example, MMM, with a reuse degree of O(n)

How to Write Fast Numerical Code: A Small Introduction 213

Table 3. Core2 Extreme: Peak performance (in Gflop/s) for a 3 GHz Core2 Extreme processor in
various operation modes

1 core 2 cores 4 cores

x87 double 6 12 24
SSE2 double 12 24 48
x87 float 6 12 24
SSE float 24 48 96

can achieve close to the peak performance of 48 Gflop/s (as seen in Fig. 3), whereas the
DFT with a reuse degree of O(log(n)) reaches only about 50% (as seen in Fig. 2).

In summary, knowing a processor’s theoretical peak and an algorithm’s degree of
reuse gives us a rough estimate of the extent to which a program could potentially be
improved.

Modern processors also contain two major explicit forms of parallelism: vector pro-
cessing and multicore processing, which are important for writing fast code, but beyond
the scope of this tutorial.

Further reading

– General computer architecture. [37, 38].
– CPU/architecture specific. [68, 69].

2.5 Using Compilers

To produce fast code it is not sufficient to write and optimize source code–the program-
mer must also ensure that the code that is written gets compiled into an efficient binary
executable. This involves the careful selection and use of compiler flags, use of lan-
guage extensions, and monitoring and analyzing the compiler’s output. Furthermore,
in some situations, it is best to let the compiler know of all the degrees of freedom it
has, so it can optimize well. In other situations, it is best to direct the compiler to do
exactly what is required. This section goes over the compile process, what to keep in
mind before, while, and after compiling, and some of the common pitfalls related to the
compiling process.

Variable declaration: Memory allocation. Understanding how C handles the alloca-
tion of space for variables is beneficial. C assigns variables to different storage class
specifiers by default, based on where in the source code they appear. The default stor-
age class for a variable can be overridden by preceding a variable declaration with the
desired storage class specifier.

Variables that are shared among source files use the extern storage class. Global
variables belong to the static storage class, and typically exist in static memory
(as do extern variables), which means that they exist as long as the program executes.
Local variables belong to the auto (automatic) storage class, which means that they
are allocated on the stack automatically upon entering the local block within which they

214 S. Chellappa, F. Franchetti, and M. Püschel

are defined, and destroyed upon exit. The register storage class requests that the
compiler allocates space for the variable directly in the CPU registers. These are useful
to eliminate load/store latencies on heavily used variables. Keep in mind that depending
on the compiler being used, care should be taken to initialize variables before usage.

Variable declaration: Qualifiers. Most compilers provide further means to specify
variable attributes through qualifiers. A const qualifier specifies that a variable’s value
will never change. A volatile qualifier is used to refer to variables whose values
might be influenced by sources external to the compiler’s knowledge. Operations in-
volving volatile variables will not be optimized by the compiler, in order to preserve
correctness. A restrict qualifier is especially useful to writing fast code, since it
tells the compiler that a certain memory address will be restricted to access via the
specified pointer. This allows for effective compiler optimization.

Finally, memory alignment can also be specified by qualifiers.
Such qualifiers are specific to the compiler being used. For instance,
attribute ((aligned(128))) requests a variable to be aligned at the

specified 128-byte memory boundary. Such requests allow variables to be aligned to
cache line boundaries or virtual memory pages as desired. Similar qualifiers can be
used to tell the compiler that the address pointed to by a pointer is memory aligned.

Dynamic memory allocation. Dynamic memory allocation, using malloc for exam-
ple, involves allocating memory in the heap, and returning a pointer to the allocated
memory. If alignment is of importance, many libraries provide a memalign function
(the Intel equivalent is mm malloc) to allocate memory aligned to a specified bound-
ary. The alternative is to allocate more memory than required, and to then check and
shift the returned pointer adequately to achieve the required alignment.

Inline assembly and intrinsics. Sometimes, it is best to write assembly code to ac-
cess powerful features of the machine which may not be available via C. Assembly
can be included as a part of any program in C using inline assembly. However, inline
assembly use must be minimized as it might interfere with compiler optimizations. Ar-
chitecture vendors typically provide C language extensions to allow programmers to
access special machine instructions. These extensions, called intrinsics, are similar to
function calls that allow the programmer to avoid writing inline assembly. Importantly,
intrinsics allow the compiler to understand what data and/or control the programmer is
manipulating, thus allowing for better optimization. As an example, Intel’s MMX and
SSE extensions to the x86 ISA can be accessed via C intrinsics provided by Intel.

Compiler flags. Most compilers are highly configurable via a plethora of command line
options and flags. In fact, finding the right set of compiler options that yield optimal
performance is non-trivial. However, there are some basic ideas to keep in mind while
using a compiler, as listed below. Note that these ideas apply to most compilers.

– C standards. A compiler can be set to follow a certain C standard such as C99.
Certain qualifiers and libraries might need specific C standards to work. By switch-
ing to a newer standard, the programmer can typically communicate more to the
compiler, thus enabling it to work better.

How to Write Fast Numerical Code: A Small Introduction 215

– Architecture specifications. Most compilers will compile and optimize by default
for a basic ISA standard to maximize compatibility. Machine and architecture spe-
cific optimizations may not be performed as a result. For instance, a compiler
on an AMD Athlon processor may compile to the x86 standard by default, and
not perform Athlon-specific optimizations. Instructing the compiler to compile for
the correct target architecture may result in considerable performance gains. Addi-
tional flags may be required for these optimizations. For example, gcc requires the
“-sse” flag to include vector instructions.

– Optimization levels. Most compilers usually define several optimization levels that
can be selected. Determining the optimization level that yields maximum perfor-
mance is a black art usually done by trial and error. A more aggressive optimization
level doesn’t necessarily yield better performance. Optimization levels are usually
a shortcut to turn on or off a large set of compiler flags (discussed next).

– Specialized compiler options. Compilers typically perform numerous optimiza-
tions, many which can be selectively turned on or off and configured through com-
mand line flags. Loop unrolling, function inlining, instruction scheduling, and other
loop optimizations are only some of the available configurable optimizations. Usu-
ally, finding the right optimization level is sufficient, but sometimes, inspection of
assembly code provides insights that can be used to fine-tune compiler optimizations.

Compiler output. The output of the compiler is usually an executable binary. As men-
tioned earlier, the compiler can also be used to produce various intermediate stages,
including the preprocessed source, assembly code, and the object code. Sometimes, it
is important and useful to visually inspect the assembly code to better understand both
the performance of an executable and the behavior of the compiler.

Compilers also output warnings, which can be controlled through compiler flags.
Sometimes, a seemingly innocuous warning might provide excellent insights into the
source of a bug, which makes these warnings a significant debugging tool.

Optimization reports are an important part of the compiler output that must be in-
spected. For instance, a vectorizing compiler will inform the programmer of whether it
was able to successfully vectorize or not. A failure to vectorize a program that was ex-
pected to be vectorized is a reason for examining the program carefully, and modifying
or annotating the code as appropriate.

In conclusion, it is important for programmers to be knowledgeable about the compiler
that they use in order to be able to use the compiler efficiently, and to ensure that poor
compiler usage does not diminish the results of code designed for high performance.

Further reading

– Gnu compiler collection (gcc). [70].
– Intel compiler. [71].

2.6 Exercises

1. Direct implementations. Implement, execute, and verify:

– A direct implementation of MMM (code snippet given in Section 2.2),
– The Numerical Recipes code for the DFT as given in [6],

This code will also be used in the exercises of later sections.

216 S. Chellappa, F. Franchetti, and M. Püschel

2. Determining hardware information. In this exercise, you will determine the rel-
evant hardware configuration of your computer. You will use this information in
later exercises.

Determine the following information about your computer:

– CPU type and clock speed
– For each cache: size, associativity, and cache line size
– Size of main memory
– System bus speed

Here are a few tips on how to determine this information:

– Look in the computer’s manual.
– Look in the CPU manufacturer’s manual.
– To obtain CPU information in Linux, execute cat /proc/cpuinfo.
– To obtain cache information in Linux, search for lines with the

word “cache” in the kernel ring buffer. You can do so by typing:
dmesg | grep ’ˆCPU.*cache’ on most systems.

3. Loop optimization for the cache. Consider a 2-way set associative cache with
a cache size of 32KB, a cache line size of 32B, and a FIFO (First In, First Out)
replacement policy (this means if one of the two candidate cache lines has to be
replaced, it will be the one that was first brought into the cache). Consider two
single-precision floating point arrays (single precision float = 4B), A and B with n
elements, where n is much larger than the cache and is a multiple of the cache size.
Further, assume that A and B are both fully cache-aligned, i.e., A[0] and B[0] map
to the first position in the first cache line.

Now consider the following pseudo code snippet:

for(i from 0 to n-1)
A[i] = A[i] + B[f(i)]

where f(i) is an index mapping function that reads B at a stride of 8. (If for exam-
ple, B was 16 elements long, then reading it at stride 8 would result in this access
pattern: f(i) = 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15).

Assume an empty cache for each part of this exercise.

(a) (Disregard the code snippet for this part) What is the expected number of cache
misses incurred by streaming once completely through array A alone in se-
quential order, given the cache parameters above?

(b) (Disregard the code snippet for this part) What is the expected number of cache
misses incurred by streaming once completely through array B alone at stride
of 8 given the cache parameters above?

(c) How many cache misses is the given pseudo code snippet expected to incur?
(Assume, for simplicity, that index variables are not cached).

(d) Rewrite the code (without changing the semantics, i.e., overall computation) to
reduce the number of cache misses as much as possible. (Assume, for simplic-
ity, that index variables are not cached).

How to Write Fast Numerical Code: A Small Introduction 217

3 Performance Optimization: The Basics

In this section we will review the basic steps required to assess the performance of
a given implementation, also known as “benchmarking.” We focus on runtime bench-
marking as the most important case. (Other examples of benchmarking includes assess-
ing the usage of memory or other resources.)

For a given program, the basic procedure consists of three steps:

1. Finding the hotspots (hotspots are the most frequently executed code regions),
2. Timing the hotspots, and
3. Analyzing the measured runtimes.

It is essential to find the parts of the program that perform the bulk of the compu-
tation and restrict further investigation to these hotspots. Optimizing other parts of the
program will have little to no effect on the overall runtime. In order to obtain a mean-
ingful runtime measurement, one has to build a test environment for each hotspot that
exercises and measures it in the correct way. Finally, one has to assess the measured
data and relate it to the cost analysis of the respective hotspot. This way one can make
efficiency statements and target the correct (inefficient) hotspot for further optimization.

3.1 Finding the Hotspots

The first step in benchmarking is to find the parts of the program where most time is
spent. Most development platforms contain a profiling tool. For instance, the devel-
opment environment available on the GNU/Linux platform contains the GNU gprof
profiler. On Windows platforms, the Intel VTune tool [72] that plugs into Microsoft’s
Visual Studio [73] can be used to profile applications.

If no profiling tool is available, obtain first-order profiling information can be ob-
tained by inserting statements throughout the program that print out the current system
time. In this case, less is more, as inserting too many time points may have side effects
on the measured program.

Example: GNU tool chain. We provide a small example of using the GNU tool chain
to profile a sample program.

Consider the following program:

#include <stdio.h>

float function1()
{ int i; float retval=0;

for(i=1; i<1000000; i++)
retval += (1/i);

return(retval);
}

float function2()
{ int i; float retval=0;

for(i=1; i<10000000; i++)
retval += (1/(i+1));

218 S. Chellappa, F. Franchetti, and M. Püschel

return(retval);
}

void function3() { return; }

int main()
{ int i;

printf("Result: %.2f\n", function1());
printf("Result: %.2f\n", function2());
if (1==2) function3();
return(0);

}

Our final objective is to optimize this program. In order to do so, we first need to find
where the program spends most of its execution time, using gprof.

As specified in the gprof manual [74], three steps are involved in profiling using
gprof:

1. Compile and link with profiling enabled:

gcc -O0 -lm -g -pg -o ourProgram ourProgram.c

The resulting executable is instrumented. This means that in addition to executing
your program, it will also write out profiling data when executed. (Note: We use
the -O0 flag to prevent the compiler from inlining our functions and performing
other optimizing transforms that might make it difficult for us to make sense of the
profile output. For profiling to provide us with meaningful information, we would
need to compile at the level of optimization that we intend to finally use, with the
understanding that mapping the profiler’s output back to the source code in this
case might involve some effort.)

2. Execute the program to generate the profile data file

./ourProgram

The program executes and writes the profile data to gmon.out.
3. Run gprof on the profile data file to analyze the profile data

gprof ourProgram gmon.out > profile.txt

The analysis is now contained in profile.txt. This file shows you how many
times each function was executed, and how much time was spent in each function, and
plenty of other detail. For our example program, we obtain:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
92.68 0.38 0.38 1 380.00 380.00 function2
7.32 0.41 0.03 1 30.00 30.00 function1

We can see that most of the program runtime was spent in executing function2,
with relatively little spent on function1. This tells us that it is most important to
optimize the runtime of function2.

How to Write Fast Numerical Code: A Small Introduction 219

Further down in profile.txt, we see that gprof also tells us if the time taken
by a function was spent inside the function or inside other function calls made by the
function. Note that gprof can take several other arguments to produce different kinds
of profiling analyses for the executable, including the number of times a certain line in
the source code was executed.

3.2 Timing a Hotspot

Once the hotspots have been found, we need to measure their runtime for further anal-
ysis. Each hotspot must be timed separately with an appropriate timing routine. The
general idea is the following:

1. Read the current time (start time) from the appropriate time source.
2. Execute the kernel/hotspot. Iterate an adequate number of times to obtain a mean-

ingful value off the time source.
3. Read the current time (end time) from the appropriate time source.

4. Execution time of the kernel/hotspot =
End time− Start time
Number of iterations

.

We first discuss time sources, and reading the time from them; then we explain how
to write a timing routine to get meaningful results.

Time functions. Depending on the system one is using, a variety of time sources to
“get the current time” may be available:

– Most Unix systems define gettimeofday() to portably query the current time (as
defined in IEEE Std 1003.1).

– ANSI C defines ctime() and clock() as portable ways of obtaining the current
time.

– On Intel processors, the rdtsc instruction reads the time stamp counter which
allows near-cycle accurate timing. On PowerPC processors, the mfspr instruction
reads the time-base register.

Generally, portable time functions have much less precision than cycle-counter-
based methods. The pros and cons of various timing methods are listed below:

Timer type Advantages Disadvantages

Wall clock; Unix:
gettimeofday()

Simple to use, highly portable Low resolution, does not account
for background tasks

System timer; Unix:
time command

Gives wall clock, user-cpu, and
system-cpu times

Relatively low resolution

Hardware timestamp
counter (discussed
below)

High resolution, most precise and
accurate

Does not account for background
system load (effectively, wall
clock time), best for kernels with
short runtimes; non-portable

220 S. Chellappa, F. Franchetti, and M. Püschel

We give a simplified example of a timing macro based on rdtsc (a hardware times-
tamp counter) for a 32-bit Intel processor to be used with Microsoft VisualStudio:

typedef union
{ __int64 int64;

struct {__int32 lo, hi;} int32;
} tsc_counter;

#define RDTSC(cpu_c) \
{ __asm rdtsc \

__asm mov (cpu_c).int32.lo,eax \
__asm mov (cpu_c).int32.hi,edx \

}

The corresponding code sequence in GNU C looks slightly different:

typedef union
{ unsigned long long int64;

struct {unsigned int lo, hi;} int32;
} tsc_counter;

#define RDTSC(cpu_c) \
__asm__ __volatile__ ("rdtsc" : \
"=a" ((cpu_c).int32.lo), \
"=d"((cpu_c).int32.hi))

Timing routine. A timing routine calls the function that is to be timed without execut-
ing the original program. The objective is to isolate the kernel and measure the runtime
of the kernel with the least disturbance and highest accuracy possible. A timing routine
consists of the following steps:

– Initialize kernel-related data structures.
– Initialize kernel input data.
– Call kernel a few times to put microarchitectural components into steady state.
– Read current time.
– Call kernel multiple times to obtain an adequately precise value from the timing

source used.
– Read current time.
– Divide the time difference by the number of kernel calls.

To obtain more stable timing results, one often has to run multiple timings and take the
average or minimum value.

We give an example timing routine for an MMM function computing C = C + AB,
assuming all matrices are square N ×N . The RDTSC macro is defined above.

double time_MMM(int N, double *A, double *B, double *C)
{ // init C

for(i=0; i<N; i++)
C[i] = 0.0;

// put microarchitecture in steady state
MMM(A,B,C);

How to Write Fast Numerical Code: A Small Introduction 221

// time
RDTSC(t0);
for(int i=0; i<TIMING_REPETITIONS; i++)

MMM(A,B,C);
RDTSC(t1);

// compute runtime in cycles
return (double)((t1.int64-t0.int64)/TIMING_REPETITIONS);

}

Known problems. The following problems may occur when timing numerical kernels:

– Too few iterations of the function to be timed are executed between the two time
stamp readings, and the resulting timing is inaccurate due to poor timer resolution.

– Too many iterations are executed between the two time stamp readings, and the
resulting timing is affected by system events.

– The machine is under load and the load has side effects on the measured program.
– Multiple timing jobs are executed concurrently, and they interfere with one another.
– Data alignment of input and output triggers cache problems.
– Virtual-to-physical memory translation makes timing irreproducible.
– The time stamp counter overflows and either triggers an interrupt or produces a

meaningless value.
– Reading the timestamp counters requires hundred(s) of cycles, which itself affects

the timing.
– The linking order of object files changes locality of static constants and this pro-

duces cache interference.
– The machine was not rebooted in a long time and the operating system state causes

problems.
– The control flow in the numerical kernel being timed is data-dependent and the test

data is not representative.
– The kernel is in-place (e.g., the input is a vector x and the output is written back

to x), and the norm of the output is larger than the norm of the input. Repetitive
application of the kernel leads to an exponential growth of the norm and finally
triggers floating-point exceptions which interfere with the timing.

– The transform is timed with a zero vector, and the operating system is “smart,” and
responds to a request for a large zero-vector dynamic memory allocation by return-
ing a special zero-valued copy-on-write virtual memory page. Read accesses to this
“page” would be much faster than accesses to a page that is actually allocated, since
this page is a special one maintained by the operating system for efficiency.

One needs to be very careful when timing numerical kernels to rule out these prob-
lems. Getting highly accurate, reproducible, stable timing results for the full range of
problem sizes is often nontrivial. Note that small problem sizes may suffer from timer
resolution issues, while large problem sizes with longer runtimes may suffer from the
effects of intervening processes.

222 S. Chellappa, F. Franchetti, and M. Püschel

3.3 Analyzing the Measured Runtime

We now know how to calculate the theoretical peak performance and the memory band-
width for our target platform, and how to obtain the operations count and the runtime
for our numerical kernel. The next step is to use these to conduct a performance analysis
that answers two questions:

– What is the limiting resource, i.e., is the kernel CPU-bound or memory-bound?
This provides an idea of the various optimization methods that can be used.

– How efficient is the implementation with respect to the limiting resource? This
shows the potential performance increase we can expect through optimization.

Normalization. To assess the runtime behavior of a kernel as function of the problem
size, the runtime (or inverse runtime) has to be normalized with the asymptotic or exact
operations count. For instance, FFT performance is usually reported in pseudo Mflop/s.
This value is computed as 5n log2(n)/runtime for DFTn; 5n log2(n) is the operations
count of the radix-2 FFT. For MMM, the situation is easier, since all currently relevant
implementations have the exact operations count 2n3.

Let us now take a look at at Fig. 2. The Numerical Recipes FFT program achieves
almost the same pseudo Mflop/s value, independently of the problem size. This means
that all problem sizes run approximately at the same level of (in)efficiency. In contrast,
the best code shows a wide variation of performance, generally at a much higher pseudo
Mflop/s level. In particular, the performance ramps up to 25 Gflop/s and then drops dra-
matically. This means, the DFT becomes more and more efficient with larger problems,
but only up to a certain size. Analysis shows that the breakdown occurs once the whole
working set of the computation does not fit into the L2 cache any more and the prob-
lem switches from being CPU-bound to memory-bound, since the DFT’s reuse is only
O(log(n)).

In contrast, Fig. 3 shows that MMM maintains the performance even for out-of-cache
sizes. This is possible since MMM has a reuse of O(n), higher than the DFT.

Fig. 2 shows that performance plots for high-performance implementations can fea-
ture unanticipated characteristics. That is especially true if the kernel changes behavior,
for instance, if it slowly changes from being CPU-bound to memory-bound as the kernel
size is varied.

Relative performance. Absolute performance only tells a part of the story. Comparing
the measured performance to the theoretical peak performance shows how efficient the
implementation is. A low efficiency for an algorithm with sufficiently high reuse means
there is room for optimization.

We continue examining our examples from Fig. 2 and Fig. 3, with the target machine
being a Core2 Extreme at 3 GHz.

In Fig. 2, Numerical Recipes is a single-core single-precision x87 implementation
and thus the corresponding peak performance is 6 Gflop/s (see Table 3). As Numerical
Recipes reaches around 1 pseudo Gflop/s it runs at about 16% of the peak. Note that if
SSE (4-way vector) instructions and all four cores are used, the peak performance goes
up by a factor of 16. (see Table 3). The best scalar code achieves around 4 Gflop/s or
about 60% of the x87 peak. The fastest overall code uses SSE and 4 cores and reaches
up to 25 Gflop/s or 25% of the quad-core SSE peak.

How to Write Fast Numerical Code: A Small Introduction 223

In Fig. 2, the overall fastest code reaches and sustains about 42 Gflop/s or about 85%
of the quad-core SSE2 peak. This is much higher than the DFT and also due to the
higher degree of reuse in MMM compared to the DFT.

3.4 Exercises

1. Performance analysis. In this exercise, you will measure and analyze the perfor-
mance of the naive implementations of MMM and the DFT from Exercise 1 in
Section 2. The steps you will need to follow to complete this exercise are given
below. For this exercise, use the hardware configuration of your computer as you
determined in Exercise 2 on page 216.

(a) Determine your computer’s theoretical peak performance. The theoretical peak
performance is the number of floating point operations that can be done in a
second. This is found by determining the CPU clock speed, and examining the
microarchitecture to look at the throughput of floating point operations. For
instance, a CPU running at 900 MHz that can retire 2 floating point opera-
tions per cycle, has a theoretical peak performance of 1800 Mflop/s. If the type
of instructions that the CPU can retire at the same rate includes FMA (fused
multiply add) instructions, the theoretical peak would be 3600 Mflop/s (2 mul-
tiplies and 2 adds per cycle = 4 operations per cycle). For this exercise, do not
consider vector operations.

(b) Measure runtimes. Use your implementations of the MMM and DFT as com-
pleted in Exercise 1 on page 215. Use the techniques described in Section 3.2
to measure the runtimes of your implementations using at least two different
timers.

(c) Determine performance and interpret results.
– Performance: The performance of your implementation is its number of

floating point operations per unit time, measured in flop/s. For the DFT,
the number of operations should be assumed 5n log(n).

– Percentage peak performance: This is simply the percentage of theoretical
peak performance. For instance, if your measured code runs at 1.2 Gflop/s
on a machine with a peak performance of 3.6 Gflop/s, this implies that
your implementation achieves 33.3% of peak performance.

2. Micro-benchmarks: mathematical functions. We assume a Pentium compatible
machine. Determine the runtime (in cycles) of the following computations (x, y are
doubles) as accurately as possible:

– y = x
– y = 7.12x
– y = x + 7.12
– y = sin(x), x ∈ {0.0, 0.2, 4.1, 170.32}
– y = log(x), x ∈ {0.001, 1.00001, 10.65, 2762.32}
– y = exp(x), x ∈ {−1.234e− 17, 0.101, 3.72, 1.234e25}

224 S. Chellappa, F. Franchetti, and M. Püschel

There are a total of 15 runtimes. Explain the results. The benchmark setup should
be as follows:

(a) Allocate two vector doubles x[N] and y[N] and initialize all x[i] to be one
of the values from above.

(b) Use

for(i=0; i<N; i++)
y[i] = f(x[i]);

to compute y[i] = f(x[i]) , with f() being one of the functions above
and time this for loop.

(c) Choose N such that all data easily fits into L1 cache but there are enough iter-
ations to obtain a reasonable amount of work.

(d) Use the x86 time stamp counter via the interface provided by rdtsc.h, as
listed in Section 3.2.

To accurately measure these very short computations, use the following guidelines:
– Only time the actual work, leave everything else (initializations, timing related

computations, etc.) outside the timing loop.
– Use the C preprocessor to produce a parameterized implementation to easily

check different parameters.
– You may have to run your for(N) loop multiple times to obtain reasonable

timing accuracy.
– You may have to take the minimum across multiple such measurements to ob-

tain stable results. Thus, you might end up with three nested loops.
– You must put microarchitectural components into steady state before the exper-

iment: variables where you store the timing results, the timed routine and the
data vectors should all be loaded into the L1 cache, since cache misses might
result in inaccurate timing results.

– Alignment of your data vectors on cache line sizes or page sizes can influence
the runtime significantly.

– The use of CPUID to serialize the CPU before reading the RDTSC as explained
in the Intel manual produces a considerable amount of overhead and may be
omitted for this exercise.

4 Optimization for the Memory Hierarchy

In this section we describe methods for optimizations targeted at the memory hierarchy
of a state-of-the-art computer system. We divide the discussion into four sections:

– Performance-conscious programming.
– Optimizations for cache.
– Optimizations for the registers and CPU.
– Parameter-based performance tuning.

We first overview the general concepts, and then apply them to MMM and the DFT
later.

How to Write Fast Numerical Code: A Small Introduction 225

4.1 Performance-Conscious Programming

Before we discuss specific optimizations, we need to ensure that our code does not
yield poor performance because it violates certain procedures fundamental to writing
fast code. Such procedures are discussed in this section. It is important to note that
programming for high performance may go to some extent against standard software
engineering principles. This is justified if performance is critical.

Language: C. For high performance implementations, C is a good choice, as long as
one is careful with the language features used (see below). The next typical choice for
high-performance numerical code is Fortran, which tends to be more cumbersome to
use than C when dynamic memory and dynamic data structures are used.

Object-oriented programming (C++) must be avoided for performance-critical parts
since using object oriented features such as operator overloading and late binding incurs
significant performance overhead. Languages that are not compiled to native machine
code (like Java) should also be avoided.

Arrays. Whenever possible, one-dimensional arrays of scalar variables should be used.
Assume a two-dimensional array A is needed whose size is not known at compile
time. It is tempting to declare it as **A or A[][] but as a consequence, every access
A[i][j] results in a sequence of two dependent pointer dereferencings or two loads.
If linearized, only one dereferencing or load per access is needed (at the expensive of
a simple index computation). If the size of A is known at compile time the compiler
should perform the linearization but it is again safer to do it yourself.

Records. Using an abstract data type implemented as struct often prevents compiler
optimization. Further, it may introduce implicit index computations and alignment is-
sues that may not be handled well by the compiler. Hence, complicated struct and
union data types should be avoided. For example, to represent vectors of complex
numbers, vectors of real numbers of twice the size should be used, with the real and
imaginary parts appearing as pairs along the vector.

Dynamic data structures. Dynamically generated data structures like linked lists and
trees must be avoided if the algorithm using them can be implemented on array struc-
tures instead. Heap storage must be allocated in large chunks, as opposed to separate
allocations for each object.

Control flow. Unpredictable conditional branches are computationally expensive on
machines with long pipelines. Hence, while loops and loops with complicated ter-
mination conditions must be avoided. for loops with loop counters and loop bounds
known at compile-time must be used whenever possible. switch, ?:, and if state-
ments must be avoided in hot spots and inner loops, as they may be translated into con-
ditional branches. For small, repetitive tasks, macros are a better choice than functions.
Macros are expanded before compilation while the compiler must perform analysis on
inline functions.

4.2 Cache Optimization

For lower levels in the memory hierarchy (L1, L2, L3 data cache, TLB = translation
lookaside buffer) the overarching optimization goal is to reuse data as much as possible

226 S. Chellappa, F. Franchetti, and M. Püschel

once brought in. The architecture of a set-associative cache (Fig. 6) suggests three major
optimization methods that target different hardware restrictions.

– Blocking: working on data in chunks that fit into the respective cache level, to
overcome restrictions due to cache capacity,

– Loop merging: merging consecutive loops that sweep through data into one loop
to reuse data in the cache and hence make the best use of the restricted memory
bandwidth, and,

– Buffering: copying data into contiguous temporary buffers to overcome conflict
cache misses due to cache associativity.

The actual optimization process applies one or more of these ideas to some of the
levels of the memory hierarchy. It is not always a good idea to apply all methods to all
levels, as code complexity may increase dramatically.

Finally, the correct parameters for blocking and/or buffering on the targeted computer
system have to be found. A good approach is to write the program parameterized, i.e., col-
lect all parameters as named constants. Then it is easy to try different parameter settings
by hand or using a script to find the variant that achieves the highest performance.

Blocking. The basic idea of blocking is to perform the computation in “blocks” that
operate on a subset of the input data to achieve memory locality. This can be achieved
in different ways. For example, loops in loop nests, like the triple loop MMM in Sec-
tion 2.2 may be split and swapped (a transformation called tiling) so that the working set
of the inner loops fits into the targeted memory hierarchy level, whereas the outer loop
jumps from block to block. Another way to achieve blocking is to choose a recursive al-
gorithm to start with. Recursive algorithms naturally divide a large problem into smaller
problems that typically operate on subsets of the data. If designed and parameterized
well, at some level all sub-problems fit into the targeted memory level and blocking is
achieved implicitly. An example of such an algorithm is the recursive Cooley-Tukey
FFT introduced later in in (3).

Loop merging. Numerical algorithms often have multiple stages. Each stage accesses
the whole data set before the next stage can start, which produces multiple sweeps
through the working set. If the working set does not fit into the cache this can dramati-
cally reduce performance.

In some algorithms the dependencies do not require that all operations of a previous
stage are completed before any operation in a later stage can be started. If this is the case,
loops can be merged and the number of passes through the working set can be reduced.
This optimization is essential for implementing high-performance DFT functions.

Buffering. When working on multi-dimensional data like matrices, logically close ele-
ments can be far from each other in linearized memory. For instance, matrix elements
in one column are stored at a distance equal to the number of columns of that ma-
trix. Cache associativity and cache line size get into conflict if one wants to hold, for
instance, a small rectangular section of such a matrix in cache, leading to cache thrash-
ing. This means the elements accessed by the kernel are mapped to the same cache
locations and hence are moved in and out during computation.

How to Write Fast Numerical Code: A Small Introduction 227

One simple solution is to copy the desired block into a contiguous temporary buffer.
That incurs a one-time cost but alleviates cache thrashing. This optimization is often
called buffering.

4.3 CPU and Register Level Optimization

Optimization for the highest level in the memory hierarchy, the registers, is to some
extent similar to optimizations for the cache. However it also needs to take into account
microarchitectural properties of the target CPU. Current high-end CPUs are superscalar,
out-of-order, deeply pipelined, feature complicated branch prediction units, and many
other performance enhancing technologies. From a high-level point of view, one can
summarize the optimization goals for a modern CPU as follows. An efficient C program
should:

– have inner loops with adequately large loop bodies,
– have many independent operations inside an inner loop body,
– use automatic variables whenever possible,
– reuse loaded data elements to the extent possible,
– avoid math library function calls inside an inner loop if possible.

Some of these goals might conflict with others, or are constrained by machine parame-
ters. The following methods help us achieve the stated goals:

– Blocking
– Unrolling and scheduling
– Scalar replacement
– Precomputation of constants

We now discuss these methods in detail.

Blocking. Register-level blocking partitions the data into chunks on which the compu-
tation can be performed within the register set. Only initial loads and final stores but no
register spilling is required. Sometimes a small amount of spilling can be tolerated. We
show the blocking of a single loop as example. Consider the example code below.

for(i=0; i<8; i++)
{ y[2*i] = x[2*i] + x[2*i+1];

y[2*i+1] = x[2*i] - x[2*i+1];
}

We block the i loop, obtaining the following code.

for(i1=0; i1<4; i1++)
for(i2=0; i2<2; i2++)
{ y[4*i1+2*i2] = x[4*i1+2*i2] + x[4*i1+2*i2+1];

y[4*i1+2*i2+1] = x[4*i1+2*i2] - x[4*i1+2*i2+1];
}

On many machines registers are only addressable by name but not indirectly via other
registers (holding loop counters). In this case, once the data fits into registers, either

228 S. Chellappa, F. Franchetti, and M. Püschel

loop unrolling or software pipelining with register rotation (as supported by Itanium) is
required to actually take advantage of register-blocked computation.

Unrolling and scheduling. Unrolling produces larger basic blocks. That allows the
compiler to apply strength reduction to simplify expressions. It decreases the number
of conditional branches thus decreasing potential branch mispredictions and condition
evaluations. Further it increases the number of operations in the basic block and allows
the compiler to better utilize the register file. However, too much unrolling may increase
the code size too much and overflow the instruction cache. The following code is the
code above with unrolled inner loop i2.

for(i1=0; i1<4; i1++)
{ y[4*i1] = x[4*i1] + x[4*i1+1];

y[4*i1+1] = x[4*i1] - x[4*i1+1];
y[4*i1+2] = x[4*i1+2] + x[4*i1+3];
y[4*i1+3] = x[4*i1+2] - x[4*i1+3];

}

Unrolling exposes an opportunity to perform instruction scheduling. With unrolled
code, it becomes easy to determine data dependencies between instructions. Issuing
an instruction right after a preceding instruction that it is dependent upon will lead
to the CPU pipeline being stalled until the former instruction completes. Instruction
scheduling is the process of rearranging code to include independent instructions in
between two dependent instructions to minimize pipeline stalls.

Scheduling large basic blocks with complicated dependencies may be too challeng-
ing for the compiler. In this case source scheduling may help. Source scheduling is the
(legal) reordering of statements in the unrolled basic block. Different scheduling algo-
rithms apply different rules, aiming at, e.g., minimizing distance between producer and
consumer (which may potentially not be too short), and/or minimizing the number of
live variables for each statement in the basic block. It is sometimes better to source
schedule basic blocks and turn off aggressive scheduling by the compiler.

The number of registers, quality of the C compiler, and size of the instruction cache
limit the amount of unrolling, that increases performance. Experiments show that on
current machines, roughly 1,000 operations are the limit. Note, that unrolling always
increases the size of the loop body, but not necessarily the instruction-level parallelism.
Depending on the algorithm, more complicated loop transformations may be required.
One example is the MMM, discussed later.

Scalar replacement. In C compilers, pointer analysis is complicated, and using even
the simplest pointer constructs can prevent “obvious” optimizations. This observation
extends to arrays with known sizes. It is very important to replace arrays that are fully
inside the scope of an innermost loop by one automatic, scalar variable per array ele-
ment. This can be done as the array access pattern does not depend on any loop variable
and will help compiler optimization tremendously. As an example, consider the follow-
ing code:

double t[2];
for(i=0; i<8; i++)
{ t[0] = x[2*i] + x[2*i+1];

How to Write Fast Numerical Code: A Small Introduction 229

t[1] = x[2*i] - x[2*i+1];
y[2*i] = t[0] * D[2*i];
y[2*i+1] = t[0] * D[2*i];

}

Scalarizing t will result in code that the compiler can better optimize:

double t0, t1;
for(i=0; i<8; i++)
{ t0 = x[2*i] + x[2*i+1];

t1 = x[2*i] - x[2*i+1];
y[2*i] = t0 * D[2*i];
y[2*i+1] = t1 * D[2*i];

}

The difference is that t0 and t1 are automatic variables and can be held in registers
whereas the array t will most likely be allocated in memory, and loaded and stored
from memory for each operation.

If an input value x[i] or precomputed data D[i] is reused it makes sense to first
copy the value into an automatic variable (xi or Di, respectively), and then reuse the
automatic variable.

double t0, t1, x0, x1, D0;
for(i=0; i<8; i++)
{ x0 = x[2*i];

x1 = x[2*i+1];
D0 = D[2*i];
t0 = x0 + x1;
t1 = x0 - x1;
y[2*i] = t0 * D0;
y[2*i+1] = t1 * D0;

}

If the value of y[i] is used as source in operations like y[i] += t0, one should use
scalar replacement for y[i].

Precomputation of constants. In a CPU-bound kernel, all constants that are known
ahead of time should be precomputed at compile time or initialization time and stored
in a data array. At execution time, the kernel simply loads the precomputed data instead
of needing to invoke math library functions. Consider the following example.

for(i=0; i<8; i++)
y[i] = x[i] * sin(M_PI * i / 8);

The program contains an function call to the math library in the inner loop. Calling
sin() can cost multiple thousands of cycles on modern CPUs. However, all the con-
stants are known before entering the kernel and thus can be precomputed.

static double D[8];
void init()
{ for(int i=0; i<8; i++)

D[i] = sin(M_PI * i / 8);
}

230 S. Chellappa, F. Franchetti, and M. Püschel

...
// in the kernel
for(i=0; i<8; i++)

y[i] = x[i] * D[i];

The initialization function needs to be called only once. If the kernel is used over
and over again, precomputation results in enormous savings. If the kernel is used only
once, chances are that performance does not matter.

4.4 Parameter-Based Performance Tuning and Program Generation

Many of the optimizations for the memory hierarchy discussed above have inherent
degrees of freedom such as the block size for blocking or the degree of unrolling the
code. While it may be possible to derive a reasonable estimation of these parameters,
the complexity of modern microarchitecture makes an exact prediction impossible. In
fact, often the best value may come as a surprise to the programmer. As a consequence,
it makes sense to perform an empirical search to find those parameters. This means
creating the variants, ideally through a set of scripts, through parameterized coding (for
instance, defining all parameters as C preprocessor constants in a separate header file),
or through other program generation techniques, and measuring their performance to
find the best choice. Since the result may depend on the target platform, the search
should be repeated for each new platform.

This parameter-based performance optimization is one of the techniques used in re-
cent research on automatic performance tuning [14].

However, parameter based tuning is inherently not extensible in the sense that new
forms of code or algorithm restructuring cannot be incorporated easily. Examples could
be transformations for various forms of parallelism. A better solution than parameter-
based tuning may be properly designed domain-specific languages used in tandem with
rewriting systems. We will see the difference between these two approaches later in
Section 5.4 and 6.6 where we discuss program generation for MMM and the DFT.

5 MMM

In this section, we optimize matrix-matrix multiplication (MMM) for the memory hi-
erarchy. We explain the optimizations implemented by the ATLAS [13], and organize
the steps as in Section 4. ATLAS is a program generator for MMM and other BLAS
routines and also performs other optimizations not discussed here. It is introduced in
Section 5.4.

Our presentation closely follows the one in Yotov et al. [75], which presents a model-
based version of ATLAS.

For the rest of this section, we will assume the dimensions of the input matrices
A and B to be N × K and K × M respectively, which implies an N × M output
matrix C. For simplicity, we will further assume that various optimization parameters
are perfectly divisible by these dimensions whenever such a division is necessary. The
computation considered is C = C + AB.

Naive Implementation. Matrix-matrix multiplication (MMM), as defined in Sec-
tion 2.2, is naively implemented using the triple loop shown below. We use 2D array

How to Write Fast Numerical Code: A Small Introduction 231

notation (for instance, C[i][j]) to keep the code more readable. However, in an im-
plementation where the matrix sizes are not known at compile time, one should resort
to a linearized representation of C, A, and B (see Section 4.1).

// K, M, N are compile-time constants
double C[N][M], A[N][K], B[K][M];
// Assume C is initialized to zero
for(i=0; i<N; i++)

for(j=0; j<M; j++)
{ for(k=0; k<K; k++)

C[i][j] += A[i][k] * B[k][j];
}

The C language stores two-dimensional arrays in row-major order. Therefore, a
cache miss to a (memory aligned) matrix element causes that element and adjacent
elements in the same row being loaded into one cache line of the cache (see Fig. 7).
Thus, accessing a large matrix by rows is cache efficient, while accessing it by columns
is not.

Fig. 9 illustrates the data access pattern of the naive implementation. From this figure,
we see the output locality of the computation: all accesses to each element in C are
consecutive, and C is completed element by element, row by row. However, unless all
input and output arrays fit into the cache, the naive implementation has poor locality
with respect to A and B.

We analyze the naive implementation by counting the number of cache misses. We
assume a cache line size of 64 bytes, or 8 (double precision) floating point values, and
that N is large with respect to the cache size. To compute the first entry in C, we need
to access the entire first row of A and the entire first column of B. Accessing a row of
A results in N/8 misses (one for each group of 8) due to the row-major storage order,
while accessing a column of B results in a full N misses, yielding a total of (9/8)N
misses for the first entry in C.

To analyze the computation of the second entry of C, we first observe that the parts
of A and B that will be accessed first are not in the cache. That is, since N is much
larger than the cache, the first few elements of the first row of A were in cache but
were eventually overwritten. Similarly, the first elements of the second column of B
were already in cache (each element shared a cache line with its neighbor in the first
column) but also have been overwritten. This is illustrated in Fig. 10, which shows
in gray the parts of A and B that are in cache after the first entry of C is computed.
Consequently, the number of misses involved in computing the second entry (and every

N

K

A

kk

ii K

M

B

kk N

M

C

ii=x

jj

Fig. 9. Data access pattern for the naive MMM

232 S. Chellappa, F. Franchetti, and M. Püschel

cache line length

N

K

A

K

M

B

N

M

C

=x

1. column
1. row

Fig. 10. The state of the cache at the end of computation of the first element of C (small black
square) is shown. Areas of the input matrices marked in gray are cache resident at this point. The
next element of C to be computed is shown as small white square.

subsequent entry of C), produces also (9/8)N misses. Therefore, the total number of
misses generated by this algorithm (for the N2 entries in C) is (9/8)N3. In summary,
there is no reuse and no neighbor use, a problem resolved to the extent possible by the
optimizations in the next sections.

5.1 Cache Optimization

Blocking. One of the most important optimizations for MMM (and linear algebra prob-
lems in general) is blocking, as introduced in Section 4.2. Blocking involves performing
the addition and multiplication operations on blocks of the original matrix, instead of
individual elements. The idea is to increase locality by restricting the computation at
any point to work on small chunks that fit entirely into the cache. We will also see
that blocking essentially increases reuse and neighbor use, the concepts previously pre-
sented in Section 2.4.

The compiler loop transformation that implements blocking is known as tiling [13,
75, 76]. Blocking or tiling the MMM for each level of the memory hierarchy involves
adding three more nested loops to the basic triple loop implementation. The code for
the MMM blocked for one memory level with block size NB follows.

// MMM loop nest (j, i, k)
for(i=0; i<N; i+=NB)

for(j=0; j<M; j+=NB)
for(k=0; k<K; k+=NB)
// mini-MMM loop nest (i0, j0, k0)
for(i0=i; i0<(i + NB); i0++)

for(j0=j; j0<(j + NB); j0++)
for(k0=k; k0<(k + NB); k0++)

C[i0][j0] += A[i0][k0] + B[k0][j0];

Fig. 11 shows the data access pattern of blocking for the cache. The three additional
innermost loops cause each matrix to be divided into blocks of size NB × NB. Notice
the similarity in the access pattern to the naive implementation, except at the block level
instead of at the element level.

We now analyze this version of the MMM to determine the impact on the number
of cache misses. We assume that the block size is larger than the cache line size, and

How to Write Fast Numerical Code: A Small Introduction 233

NB

A B C

=x

NB

Fig. 11. Blocking for the cache: mini-MMMs

for now that several blocks can fit into the cache. This implies that accessing a block
results only in N2

B/8 misses, regardless of the access sequence.
Computing the first block of C requires the first block row of A, and the first block

column of B. This results in (N2
B/8 + N2

B/8)(N/NB) cache misses. Similar to the
reasoning used in the analysis of the naive version, computing each block of C results
in the same amount of misses, and therefore, the total number of misses generated by
this algorithm (for the (N/NB)2 blocks in C) is N3/(4NB), which is significantly less
than the (9/8)N3 misses in the naive version.

We call the smaller blocks operations mini-MMMs, following [75]. NB is an opti-
mization parameter that must be chosen such that the working set of the mini-MMM fits
entirely into the cache. A simple translation of our assumption that blocks from the two
input and output matrices (our working set) fit into a fully associative cache is expressed
by the following equation: 3N2

B ≤ Cs, where Cs is the cache size. ATLAS determines
NB by searching and trying different arbitrary values and picking the one that results
in the best performance.

In contrast, [75] use a model based approach, and chooses NB based directly on
cache parameters. Their careful examination of the data access pattern of the blocked
MMM reveals that the working set at a finer granularity consists only of a single element
in C (since each element in C is reused completely by the innermost k0 loop before
it moves on to the next element), a single row of A (since a row is fully reused before
the program moves on to the next row), and the entire B. Therefore, the following
relationship needs to hold: N2

B + NB + 1 ≤ Cs. Thus, a good choice for NB is the
largest value that satisfies this inequality.

Blocking for MMM works because it increases cache reuse and neighbor use, our
guiding principles discussed in Section 2. Cache reuse is increased because once a block
is brought into the cache, it is used several times before being overwritten. Neighbor use
is increased for the input matrix B, since all elements in the cache line are used before
eviction.

Typically, MMM is blocked for the L1 cache but blocking for the L2 cache may be
superior in certain cases [75].

An additional optimization that can be done for the cache is to exchange the i and
the j loops, depending upon the relative sizes of the A and B matrices.

Loop merging. Loop merging is not applicable to the MMM.

Buffering. Buffering (also known as copying) for MMM is applicable for large sizes.
The basic idea behind buffering is to copy tiles of the input and output matrices into
sequential order in memory to minimize cache conflict misses (and TLB misses if the

234 S. Chellappa, F. Franchetti, and M. Püschel

matrices span multiple pages), inside each mini-MMM. The following code illustrates
buffering. The matrix B is fully buffered at the beginning since it is accessed in full
during each iteration of the outermost i loop. Vertical panels of A are used during each
iteration of j, and are buffered just before the j loop begins. Finally, in some cases,
it might be beneficial to copy a single tile of C before the k loop, since a single tile
is reused by each iteration of the k loop. Note that the benefits of buffering have to
outweigh the costs, which might not hold true for very small or very large matrices.

// Buffer full B here
for(i=0; i<M; i+=NB)

// Buffer a panel of A here
for(j=0; j<N; j+=NB)
// Copy a block (tile) of C here
for(k=0; k<K; k+=NB)

// mini-MMM loop nest as before (i0, j0, k0)
...

5.2 CPU and Register Level Optimization

We now look at optimizing the MMM for the CPU. We continue with our MMM exam-
ple from the previous section.

Blocking. Blocking for the registers looks similar to blocking for the cache. Another
set of nested triple loops is added. The resulting code is shown below:

// MMM loop nest (j, i, k)
for(i=0; i<N; i+=NB)

for(j=0; j<M; j+=NB)
for(k=0; k<K; k+=NB)

// mini-MMM loop nest (i0, j0, k0)
for(i0=i; i0<(i + NB); i0+=MU)

for(j0=j; j0<(j + NB); j0+=NU)
for(k0=k; k0<(k + NB); k0+=KU)

// micro-MMM loop nest (j00, i00)
for(k00=k0; k00<=(k0 + KU); k00++)

for(j00=j0; j00<=(j0 + NU); j00++)
for(i00=i0; i00<=(i0 + MU); i00++)

C[i00][j00]+=A[i00][k00]*B[k00][j00];

Note that the innermost loop nest now has the loop order kij; this is explained later.
As Fig. 12 shows, each mini-MMM is now computed by blocking it into a sequence
of micro-MMMs. Each micro-MMM multiplies an MU × 1 block of A by a 1 × NU

block of B, with the output being a MU × NU block of C. At this level of blocking,
we have a degree of freedom in choosing MU and NU (The KU parameter controls the
degree of unrolling, and is discussed soon). These parameters must be chosen so that a
micro-MMM fits into register space (thus avoiding register spills).

ATLAS searches over arbitrary values for these parameters to choose the ones that
result in the fastest code. In [75], with a reasoning that is similar to the one used in
choosing NB in the previous section, selects these parameters based on the inequality
MU + NU + (MU ×NU) ≤ NR, where NR is the number of data (integer or floating
point) registers. This equality is then further refined.

How to Write Fast Numerical Code: A Small Introduction 235

NB

A B C

=x

NB NB NB

k

kMU

NU

Fig. 12. mini-MMMs and micro-MMMs (from [75])

Locality is not the only objective of blocking for register space. Note that in the code
above, the micro-MMM have a loop order of kij. While this reduces output locality, it
also provides better instruction level parallelism (all the MUNU addition/multiplication
pairs are independent) when combined with loop unrolling discussed next.

Unrolling and scheduling. Loop unrolling and scheduling, as discussed in Section 4.3,
can be used to further optimize MMM. We unroll the two innermost loops to get
MU × NU additions and multiplications. Note that these instructions are of the form
C+ = AB. As mentioned in [21], such an instruction will not execute well on machines
without a fused multiply-add unit, since the addition is dependent on the multiplication,
and will cause a pipeline stall until the multiplication is completed. Thus, it may be
beneficial to separate the addition and the multiplication operations here, and schedule
them with unrelated intervening instructions to minimize pipeline stalls.

The k00 loop can also be unrolled completely to reduce loop overhead. KU controls
the degree of unrolling, and is chosen so that the fully unrolled loop body (of the k0
loop) still fits into the L1 instruction cache.

Scalar replacement. When the innermost loops are unrolled, each array element ap-
pears multiple times in the unrolled code. For the reasons discussed earlier in Sec-
tion 4.3, replacing array references by scalar variables in unrolled code enables com-
piler optimizations to work better. As the MMM has a good reuse ratio, references to
input arrays are also replaced by first copying the value to automatic variables and then
reusing the automatic variable.

Precomputation of constants. Since the MMM does not have constants that can be
precomputed, this optimization does not apply.

5.3 Parameter-Based Performance Tuning

The above discussion identifies several parameters that can be used for tuning. ATLAS
performs this tuning automatically by generating the variants and selecting the fastest
using a search procedure.

Blocking for cache. NB is the main optimization parameter used to control the block
size of the mini-MMMs. If several levels of blocking are desired, additional blocking
parameters arise.

236 S. Chellappa, F. Franchetti, and M. Püschel

Blocking for registers. When blocking for the registers, MU , and NU are the main
tunable parameters, and must be chosen such that the micro-MMM does not produce
register spills. KU specifies the degree of unrolling and should be chosen as large as
possible without overflowing the instruction cache.

Besides that, several other parameters can be identified for performance tuning and
platform adaptation [21, 75].

5.4 Program Generation for MMM: ATLAS

The parameters shown in the previous section are only a small subset of all the parame-
ters that can be used to tune the MMM. In theory, searching over the space of all tunable
parameters will lead to the fastest code. Obviously, such a search would take an imprac-
tical amount of time to complete due to the vast search space. The best approach in this
scenario is to prune the search space in a reasonable way and to automate the search
over the remaining space. This in essence is the approach followed by ATLAS [21],
which is briefly discussed in this section. In terms of the language previously used in
this tutorial, ATLAS generates a mini-MMM with the highest performance, which is
then used as a kernel in a generic MMM function.

Fig. 13 shows the architecture of ATLAS. When ATLAS is first installed on a plat-
form, it runs a set of micro-benchmarks to determine a set of hardware parameters,
including the L1 cache size and the number of registers NR. These parameters are then
used to prune the originally unbounded search space to a finite one. ATLAS then pro-
ceeds by searching the space of possible mini-MMMs using a feedback loop. In this
feedback loop, a search engine decides on the parameters that specify a mini-MMM,
the corresponding code is generated, its performance evaluated, and the next set of pa-
rameters is tried.

Since the search space is too large, ATLAS uses an orthogonal line search to find
the optimal values for the set of parameters it searches over. Given a function y =
f(x1, x2, . . . , xn) to optimize, orthogonal line search determines an approximation by
solving a sequence of n 1-dimensional optimization problems, where each problem
corresponds to one of the n parameters. When optimizing for xi, the set of optimal
values already found for x1 . . . xi−1 are used, and reference values are used for the
remaining parameters xi+1 . . . xn. ATLAS provides the parameter sequence, and ranges
and reference values for each of the parameters, using a combination of built-in defaults
and the determined microarchitectural parameters.

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

xFetch
MulAdd
Latency

NB
MU, NU, KU

Mflop/s

ATLAS MMM
Code Generator

MiniMMM
Source

Compile
Execute
Measure

Fig. 13. Architecture of ATLAS (from [75])

How to Write Fast Numerical Code: A Small Introduction 237

It has been shown that a suitably designed model, based on a detailed understanding
of the microarchitecture, can replace the search in ATLAS to find the best parameters
deterministically [75].

Discussion. ATLAS has been very successful in generating very fast MMM code for
many architectures and has been widely used. In fact, ATLAS, and its predecessor
PHiPAC [22], were the first efforts on automatic performance tuning in the area of nu-
merical computing; as such, it raised awareness to the increasing difficulty of deciding
on coding choices and achieving high performance in general on machines with deep
memory hierarchies. As we have seen, in this case, using program generation is crucial
to efficiently evaluate the many possible choices of parameters.

However, since ATLAS is based on (properly chosen) parameters it is not clear how
to extend its approach to novel architectural paradigms such as vector instructions, mul-
ticore processing, or others. To date, these are not supported by ATLAS. We argue that
the reason is the lack of an internal domain-specific language that can express all the
necessary transformations at a higher abstraction level, which also enables the inclusion
of new transformations. This is the approach taken by Spiral, a program generator for
the domain of linear transforms discussed later in Section 6.6.

5.5 Exercises

1. Mini-MMM. The goal of this exercise is to implement a fast mini-MMM to multi-
ply two square NB ×NB matrices (NB is a parameter), which is then used within
an MMM.

(a) Based on definition. Use your naive implementation of the MMM as mini-
MMM (code from Exercise 1 in Section 2.

(b) Register blocking. Block into micro MMMs with MU = NU = 2, KU = 1.
The inner triple loop must have the kij order. Manually unroll the innermost
i and j loops and schedule your code to perform alternating additions and
multiplications (one operation per line of code). Perform scalar replacement
on this unrolled code manually.

(c) Unrolling. Unroll the innermost k loop by a factor of 2 and 4 (KU = 2, 4,
which doubles and quadruples the loop body) and again do scalar replacement.
Assume that 4 divides NB .

(d) Performance plot, search for best block size. Determine the L1 data cache size
C (in doubles, i.e., 8B units) of your computer. Measure the performance (in
Mflop/s) of your four codes for all NB with 16 ≤ NB ≤ min(80,

√
C) with

4 dividing NB . Create a plot with the x-axis showing NB , and y-axis showing
performance. The plot should contain 4 lines: one line for each of the programs
(MMM by definition, register blocking, and unrolling by a factor of 2 and 4).
Discuss the plot, including answers to the following questions: which NB and
which code yields the maximum performance? What is the percentage of peak
performance in this case?

(e) Loop order. Does it improve if in the best code so far you switch the outermost
loop order from ijk to jik? Create a plot to show the answer.

238 S. Chellappa, F. Franchetti, and M. Püschel

(f) Blocking for L2 cache. Consider now your L2 cache instead. What is its size
(in doubles)? Can you improve the performance of your fastest code so far by
further increasing the block size NB to block for L2 cache instead? Answer
through an appropriate experiment and performance plot.

2. MMM
(a) Implement an MMM for multiplying two square N × N matrices assuming

NB divides N , blocked into NB×NB blocks. Use your best mini-MMM code
from Exercise 1.

(b) Create a performance plot comparing this implementation and the implementa-
tion based on definition above for an interesting range of N (up to sizes where
the matrices do not fit into the L2 cache). Plot the size N on the x-axis, against
the performance (in Mflop/s or Gflop/s) on the y-axis.

(c) Analyze and discuss the plot.

6 DFT

In this section we describe the design and implementation of a high-performance func-
tion to compute the FFT. The approach we must take is different from the one taken to
optimize the MMM in Section 5: we do not start with a naive implementation that is
transformed into an optimized form, but design the code from scratch. This is due to
the more complex structure of the available FFT algorithms. Note that, in contrast to
MMM, an implementation based on the definition of the DFT is not competitive.

The first main problem is the choice of a suitable FFT algorithm, since many dif-
ferent variants are available that differ vastly in structure. It makes no sense to start
with the wrong FFT algorithm and optimize the implementation step by step. In par-
ticular, when targeting a machine with a memory hierarchy, starting the optimization
with the iterative radix-2 FFT used in Numerical Recipes (Section 2.3) is suboptimal
since it requires log2(input size) many sweeps through the input data, which results in
poor cache locality. Further, no unrolled and optimized basic block is used for optimal
register performance.

In our discussion below we design a recursive radix-4 FFT implementation. Gen-
eralization to a mixed-radix recursive implementation is relatively straightforward in
concept, but technically complex. The optimization steps taken follow to a large extent
the design of FFTW 2.x [9]. FFTW uses a program generator in addition, to automati-
cally implement optimized unrolled basic blocks [23].

In all our DFT code examples the (complex) data is assumed to be stored in inter-
leaved complex double-precision arrays (alternating real and imaginary parts of the vec-
tor elements). We pass around pointers of type double, and two neighboring double
elements are one complex number. All strides are relative to complex numbers.

6.1 Background

In this section we provide background on the DFT and FFTs. We explain these algo-
rithms using the Kronecker product formalism. We start with restating the DFT defini-
tion from Section 2.3. For code readability we denote the size of the input vector with

How to Write Fast Numerical Code: A Small Introduction 239

N . As usual, matrices are written as A = [ak,�], where ak,� are the matrix elements. An
index range for k, � may be given in the subscript.

Definition. The discrete Fourier transform (DFT) of a complex input vector x of length
N is defined as the matrix-vector product

y = DFTN x, DFTN = [ωk�
N]0≤k,�<N , ωN = e−2πi/N .

Kronecker product formalism. We describe fast algorithms for the DFT using the
Kronecker product formalism [5]. There are several reasons for using this formalism:
First, the representation is visual and index free and hence readable by humans. Second,
it is easy to translate algorithms expressed this way directly into code, as we shall
see later. Third, in this representation, algorithm variants are easily obtained by both
inserting recursions into each other and manipulating algorithms to match them to a
specific hardware architecture. For instance, the algorithms can be mapped to vector
and multicore architectures this way [25, 26].

These are also the reasons why the program generator Spiral (explained in Sec-
tion 6.6) uses this formalism as its internal domain-specific language.

We define In as the n × n identity matrix. The tensor (or Kronecker) product of
matrices is defined as

A⊗B = [ak,�B]k,� with A = [ak,�]k,� .

In particular,

In ⊗A =

⎡
⎢⎢⎢⎣

A
A

. . .
A

⎤
⎥⎥⎥⎦

is block-diagonal. We also introduce the iterative direct sum

n−1⊕
i=0

Ai =

⎡
⎢⎢⎢⎣
A0

A1

. . .
An−1

⎤
⎥⎥⎥⎦ ,

which generalizes In ⊗A.
We visualize I4 ⊗A below; the four As are shown with different shades of gray.

I4 ⊗A =

A
A

A
A

(1)

240 S. Chellappa, F. Franchetti, and M. Püschel

Now we look at the tensor product A⊗ In. This matrix also contains n blocks of A,
but they are spread out and interleaved at stride n. This is best understood by visualiza-
tion: the equivalent of (1) is

A⊗ I4 = (2)

where we assume that A is 4 × 4. All elements with the same shade of gray taken
together constitute one A, so the matrix again contains four As. The pattern shows that
multiplying (2) to an input vector x is equivalent to multiplying A to four subvectors of
x, extracted at stride 4, and writing the result into the same locations.

The stride permutation matrix Lmn
m permutes an input vector x of length mn as

in + j �→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

If x is viewed as an n × m matrix, stored in row-major order, then Lmn
m performs a

transposition of this matrix.

Recursive FFT. Using the above formalism, the well-known Cooley-Tukey FFT in its
recursive form can be written as a factorization of the DFTN matrix into a product of
sparse matrices. That is, for N = mn,

DFTmn = (DFTm⊗In)Dm,n(Im ⊗DFTn)Lmn
m . (3)

Here Dm,n is the diagonal “twiddle” matrix defined as

Dm,n =
m−1⊕
j=0

diag(ω0
mn, ω1

mn, . . . , ωn−1
mn)j . (4)

Equation (3) computes a DFT of size mn in four steps. First, the input vector is per-
muted by Lmn

m . Second, m DFTs of size n are computed recursively on segments of the
vector. Third, the vector is scaled element wise by Dm,n. Lastly, n DFTs of size m are
computed recursively at stride m.

The recursively called smaller DFTs are computed similarly until the base case n = 2
is reached, which is computed by definition using an addition and a subtraction:

DFT2 =
[
1 1
1 −1

]
. (5)

In summary, (3) and (5) are sufficient to compute DFTs of arbitrary two-power sizes.
To compute DFTs of other sizes, other FFT algorithms are required [5].

Algorithms and formulas. There is a degree of freedom in applying (3) to recursively
compute a DFT, namely in factoring the given DFT input size N . For instance one can

How to Write Fast Numerical Code: A Small Introduction 241

Table 4. Translating formulas to code. x denotes the input and y the output vector. The subscript
of A and B specifies the size of the (square) matrix. We use Matlab-like notation: x[b:s:e]
denotes the subvector of x starting at b, ending at e and extracted at stride s.

formula code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1];)

y = (Im ⊗ An)x
for(i=0;i<m;i++)

y[i*n:1:i*n+n-1] =
A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for(i=0;i<m;i++)

y[i:n:i+m-1] =
A(x[i:n:i+m-1]);

y =
`Lm−1

i=0
Ai

n

´
x
for(i=0;i<m;i++)

y[i*n:1:i*n+n-1] =
A(i, x[i*n:1:i*n+n-1]);

y = Dm,nx
for(i=0;i<m*n;i++)

y[i] = Dmn[i]*x[i];

y = Lmn
m x

for(i=0;i<m;i++)
for(j=0;j<n;j++)

y[i+m*j]=x[n*i+j];

factor 8 → 2× 4 → 2× (2× 2) using two recursive applications of (3). The complete
FFT algorithm for this factorization could then be written as the following formula:

DFT8 = (DFT2⊗I4)D8,4

(
I2 ⊗ (DFT2⊗I2)D4,2(I2 ⊗DFT2)L4

2

)
L8

2. (6)

Direct implementation. A straightforward implementation of (3) can be easily ob-
tained since the occurring matrix formulas have a direct interpretation in terms of code
as shown in Table 4. The implementation of (3) would hence have four steps corre-
sponding to the four factors in (3).

Observe in Table 4 that the multiplication of a vector by a tensor product containing
an identity matrix can be computed using loops. The working set for each of the m
iterations of y = (Im ⊗ An)x (see (1)) is a contiguous block of size n and the base
address is increased by n between iterations. In contrast, the working sets of size m of
the n iterations of y = (Am ⊗ In)x (see (2)) are interleaved, leading to stride n within
one iteration and a unit stride base update across iterations.

Cost analysis. Computing the DFT using (3) requires, independent of the recursion
strategy, n log2(n) + O(n) complex additions and 1

2n log2(n) + O(n) complex multi-
plications.

The exact number of real operations depends on the chosen factorizations of n and
is at most 5n log2(n) + O(n).

242 S. Chellappa, F. Franchetti, and M. Püschel

Iterative FFTs. The original FFT by Cooley and Tukey [77] was not the recursive algo-
rithm (3), but an iterative equivalent and for N = 2n. It can be obtained by expanding
the DFT recursively always using the factorization N = 2 ·N/2, and then rearranging
the parentheses and fusing adjacent permutations. The result is the iterative FFT

DFTN =

(
k∏

i=1

(I2i−1 ⊗DFT2⊗IN/2i)D′
N,i

)
RN , (7)

where the D′
N,i are diagonal matrices and RN is the bit-reversal permutation [5]. Nu-

merical Recipes implements a variant of (7), shown in Section 2.3.

6.2 Cache Optimization

In this section we derive the recursive skeleton and the kernel specification for our DFT
implementation.

Blocking. Blocking a DFT algorithm is done by choosing the recursive Cooley-Tukey
FFT algorithm (3) as starting point instead of the iterative FFT used by the Numerical
Recipes code in Section 2.3. The block size is the chosen radix m in (3), which is a
degree of freedom. We assume a radix-4 implementation with N = 4n, i.e., we factor
N = 4 · 4n−1. The corresponding recursion is

DFT4n = (DFT4⊗I4n−1)D4,4n−1(I4 ⊗DFT4n−1)L4n

4 . (8)

We visualize (8) below for n = 2. We see four stages, corresponding to the four factors
in the matrix factorization.

DFT4 ⊗I4 D4,4 I4⊗DFT4 L16

4

DFT16 =
stride 4

to
stride 1

(9)

For n > 1 our implementation will recursively apply (8) to the terms DFT4n−1 in
the right side of (8). The terms DFT4 are recursion leaves and not implemented using
(8). We will discuss their implementation in Section 6.3.

This recursion is right-expanded—the first stage gets recursively expanded while
the second stage uses radix-4 kernels. Right-expanded recursive implementations have
superior data locality as only a small amount of temporary storage is needed and the
second stage can be implemented in-place.

Loop merging. A naive implementation of (8) leads to a recursive function with four
stages (corresponding to the four matrix factors) and thus four sweeps through the data.
However, the stride permutation L4n

4 is just a data reordering and thus is a candidate for
loop merging. Similarly, the twiddle factor matrix D4,4n−1 is a diagonal matrix and can
be merged with the subsequent stage.

How to Write Fast Numerical Code: A Small Introduction 243

We now sketch the derivation of a recursive implementation of (8). We partition (8)
into two expressions as

DFT4n =
(

(DFT4⊗I4n−1)D4,4n−1

)
·
(

(I4 ⊗DFT4n−1)L4n

4

)
, (10)

which become two stages (instead of four) in the recursive function

void DFT(int N, double *Y, double *X);

that implements (8).
For n = 2 we visualize the merging of the stride permutation with the adjacent tensor

product, DFT4⊗I4, in (11) below. The merging of the diagonal D4,4 with the adjacent
tensor product I4 ⊗DFT4 cannot easily be visualized.

DFT4 ⊗I4 D4,4 (I4⊗DFT4)L16

4

DFT16 = (11)

The first stage of (10), y = (I4 ⊗DFT4n−1)L4n

4 x, is handled as follows. According
to Table 4, the tensor product I4 ⊗ DFT4n−1 alone is translated into a loop with 4
iterations. The same is true for (I4 ⊗ DFT4n−1)L4n

4 ; only, as (11) shows, the input
is now read at stride 4 but the output is still written at stride 1. This means that the
corresponding DFT function needs to have the stride as an additional parameter and
has to be implemented out-of-place, i.e., x and y need to be different memory regions.
Hence it is of the form

void DFT_rec(int N, int n, double *Y, double *X, int s)

We pass n together with N to avoid computing the logarithm.
Now the function DFT above just becomes a special case of DFT_rec and can hence

be implemented using a C macro (log4(), computes n from 4n):

#define DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)

For N = 4, we reach the leaf of the recursion and call a base case kernel function.

void DFT4_base(double *Y, double *X, int s);

The second stage, y = (DFT4⊗I4n−1)D4,4n−1x, first scales the input by a diagonal
matrix and then sweeps with a DFT4 kernel over it, applied at a stride. More precisely,
DFT4 operates on xj , xj+4n−1 , xj+2·4n−1 , and xj+3·4n−1 , where j is the loop iteration
number.

Again, we merge these two steps, this time by replacing the DFT4s in DFT4⊗I4n−1

by DFT4 Dj , where Dj is a 4 × 4 diagonal matrix containing the proper diagonal
elements from D4,4n−1 . Inspection shows that Dj (as a function of the problem size
4n) is given by

Dj = diag(ω0
4n , ωj

4n , ω2j
4n , ω3j

4n), 0 ≤ j < 4n−1. (12)

244 S. Chellappa, F. Franchetti, and M. Püschel

Hence, the function implementing y = (DFT4 Dj)x also needs a stride as parameter,
and j to compute the elements of Dj . Also, it can be in-place since it reads from and
writes to the same locations of input and output vector. Hence it takes the form:

void DFT4_twiddle(double *Y, int s, int n, int j);

The final recursive function is given below. There are some address multiplications
by 2, required to implement arrays of complex numbers as arrays (of twice the size) of
real numbers.

// recursive radix-4 DFT implementation

// compute the exponent
#include <math.h>
#define log4(N) (int)(log(N)/log(4))

// top-level call to DFT function
#define DFT(N, Y, X) DFT_rec(N, log4(N), Y, X, 1)

// DFT kernels
void DFT4_base(double *Y, double *X, int s);
void DFT4_twiddle(double *Y, int s, int N, int j);

// recursive radix-4 DFT function
// N: problem size
// Y: output vector
// X: input vector
// s: stride to access X
void DFT_rec(int N, int n, double *Y, double *X, int s)
{ int j;

if (N==4)
// Y = DFT_4 X
DFT4_base(Y, X, s);

else {
// Y = (I_4 x DFT_N/4)(LˆN_4) X
for(j=0; j<4; j++)

DFT_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4);
// Y = (DFT_4 x I_{N/4})(D_N,4) Y
for(j=0; j<N/4; j++)

DFT4_twiddle(Y+2*j, N/4, n, j);
}

}

Buffering. The kernel DFT4_twiddle accesses both input and output in a stride. For
large sizes N = 4n, this stride is a large two-power, which means that all elements
accessed by the kernel are mapped to the same set in the cache (see Fig. 6). If the cache
does not have sufficient associativity, cache thrashing occurs. Namely, each iteration
of the DFT4 twiddle loop has to load 4 cache lines and all these cache lines get
evicted before the next iteration of the DFT4 twiddle loop can use the already loaded
remaining cache lines.

How to Write Fast Numerical Code: A Small Introduction 245

Buffering alleviates these problems to a certain degree. An initial and final copy
operation introduce overheads, but all intermediate steps are done on contiguous data,
preventing cache thrashing.

As an example, buffering is performed on the second loop of the preceding code,
leading to the following code. We assume a cache line size of LS complex numbers
(= 4 doubles). (If LS is larger than the radix size, one needs special cases for some
recursion steps.) To implement buffering, we first split the j loop into N/(2*LS)× LS
iterations. We add copying to the body of the outer tiled j1 loop. Our copy operation
handles cache lines and thus data for multiple DFTs. In particular, we copy 4 sets of
LS consecutive complex elements (4 cache lines) into a local buffer. The inner tiled
j2 loop performs LS DFTs on the local contiguous buffer. The large, performance
degrading complex stride 4n−1 in the original j loop gets replaced by a small complex
stride LS in the j2 loop at the cost of two copy operations that copy whole cache lines.
The threshold parameter th controls the sizes for which the second loop gets buffered.

// cache line size = 2 complex numbers (16 bytes)
define LS 2

// recursive radix-4 DFT function with buffering
// N: problem size
// Y: output vector
// X: input vector
// s: stride to access X
// th: threshold size to stop buffering

void DFT_buf_rec(int N, int n, double *Y, double *X, int s, int th)

{ int i, j, j1, j2, k;
// local buffer
double buf[8*LS];

if (N==4)
// Y = DFT_4 X
DFT4_base(Y, X, s);

else
{ // Y = (I_4 x DFT_{N/4})(LˆN_4) X
if (N > th)

for(j=0; j<4; j++)
DFT_buf_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4, th);

else
for(j=0; j<4; j++)

DFT_rec(N/4, n-1, Y+(2*(N/4)*j), X+2*j*s, s*4);

// Y = (DFT_4 x I_{N/4})(D_{N,4}) Y, buffered for LS
// j loop tiled by LS
for(j1=0; j1<N/(4*LS); j1++)
{ // copy 4 chunks of 2*LS double to local buffer

for(i=0; i<4; i++)
for(k=0; k<2*LS; k++)
buf[2*LS*i+k] = Y[(2*LS*j1)+(2*(N/4)*i)+k];

246 S. Chellappa, F. Franchetti, and M. Püschel

// perform LS DFT4 on contiguous data
// buf = (DFT4 Dj x I_LS) buf
for(j2=0; j2<LS; j2++)

DFT4_twiddle(buf+2*j2, LS, n, j1*LS+j2);

// copy 4 chunks of 2*LS double to output
for(i=0; i<4; i++)

for(k=0; k<2*LS; k++)
Y[(2*LS*j1)+(2*(N/4)*i)+k] = buf[2*LS*i+k];

}
}

}

One can perform a similar buffering operation on the inputX for the call to DFT rec,
as X is accessed at a large stride. This buffering must take place as special case for
N = 16 in DFT rec and requires a third variant of the recursive function DFT rec.

6.3 CPU and Register Level Optimization

This section describes the design and implementation of optimized DFT base cases (ker-
nels). We again restrict the discussion to the recursive radix-4 FFT algorithm. Exten-
sions to mixed-radix implementations requires different kernel sizes, all implemented
following the ideas presented in this section. High-performance implementations may
use kernels of up to size 64 [23, 78].

Blocking. We apply (3) to the DFT4:

DFT4 = (DFT2⊗I2)D4,2(I2 ⊗DFT2)L4
2. (13)

As (13) is a recursive formula, an implementation based on (13) is automatically
blocked.

Unrolling and scheduling. We implement (13) according to the rules summarized in
Table 4. We aim at implementing recursion leafs. Thus the code needs to be unrolled.
Due to the recursive nature of (13), kernels derived from (13) are automatically reason-
ably scheduled.

For DFT kernels, larger unrolled kernels lead to slightly less operations, as more
twiddle factors are known at optimization time and one can take better advantage of
trivial complex multiplications. However, larger kernels do not increase the available
instruction level parallelism as much as in MMM, since the DFT data flow is more
complicated and imposes stronger constraints on the operation ordering.

Scalar replacement. We next apply scalar replacement as described in Section 4.3.
Every element in the input array X is only referenced twice, and every location of the
output array Y is written once. Hence, we only replace the temporary array t by scalar
variables, but do not replace accesses to X and Y. Experiments suggest that this strategy
is sufficient for obtaining maximum performance. This leads to the following code for
DFT4_base. From the discussion in Section 6.2 we know that this function loads at
complex stride s from *X and writes at unit stride to *Y. We obtain the following code:

How to Write Fast Numerical Code: A Small Introduction 247

// DFT4 implementation
void DFT4_base(double *Y, double *X, int s)
{ double t0, t1, t2, t3, t4, t5, t6, t7;

t0 = (X[0] + X[4*s]);
t1 = (X[2*s] + X[6*s]);
t2 = (X[1] + X[4*s+1]);
t3 = (X[2*s+1] + X[6*s+1]);
t4 = (X[0] - X[4*s]);
t5 = (X[2*s+1] - X[6*s+1]);
t6 = (X[1] - X[4*s+1]);
t7 = (X[2*s] - X[6*s]);
Y[0] = (t0 + t1);
Y[1] = (t2 + t3);
Y[4] = (t0 - t1);
Y[5] = (t2 - t3);
Y[2] = (t4 - t5);
Y[3] = (t6 + t7);
Y[6] = (t4 + t5);
Y[7] = (t6 - t7);

}

Precomputation of constants. The kernel DFT4_twiddle computes y =
(DFT4 Dj)x, which contains multiplication with the complex diagonal Dj as defined
in (12). The entries of Dj are complex roots of unity (twiddle factors) that depend on
the recursion level and the loop counter j. Computing the actual entries of Dj requires
evaluations of sin kπ

N and cos kπ
N for suitable values of k and N , which requires expen-

sive calls to the math library. Hence these numbers should be precomputed.
We introduce an initialization function init_DFT that precomputes all diagonals

required for size N and stores pointers to the tables (one table for each recursion level)
in the global variable double **DN, as shown below.

#define PI 3.14159265358979323846
// twiddle table, initialized by init_DFT(N)
double **DN;

void init_DFT(int N)
{ int i, j, k, size_Dj = 16, n_max = log4(N);

DN = malloc(sizeof(double*)*(n_max-1));

for (j=1; j<n_max; j++, size_Dj*=4)
{ double *Dj = DN[j-1] = malloc(2*sizeof(double)*size_Dj);
for (k=0; k<size_Dj/4; k++)

for (i=0; i<4; i++)
{ *(Dj++) = cos(2*PI*i*k/size_Dj);

*(Dj++) = sin(2*PI*i*k/size_Dj);
}

}
}

248 S. Chellappa, F. Franchetti, and M. Püschel

The function DFT4_twiddle is shown below.

// C macro for complex multiplication
#define CMPLX_MULT(cr, ci, a, b, idx, s) \
{ double ar, ai, br, bi; \

ar = a[2*s*idx]; ai = a[2*s*idx+1]; \
br = b[2*idx]; bi = b[2*idx+1]; \
cr = ar*br - ai*bi; \
ci = ar*bi + ai*br; \

}

// DFT4*D_j implementation
void DFT4_twiddle(double *Y, int s, int n, int j)
{ double t0, t1, t2, t3, t4, t5, t6, t7,

X0, X1, X2, X3, X4, X5, X6, X7;
double *Dj;

// complex multiplications from D_N
Dj = DN[n-2]+8*j;
CMPLX_MULT(X0, X1, Y, Dj, 0, s);
CMPLX_MULT(X2, X3, Y, Dj, 1, s);
CMPLX_MULT(X4, X5, Y, Dj, 2, s);
CMPLX_MULT(X6, X7, Y, Dj, 3, s);

// operations from DFT4
t0 = (X0 + X4);
t1 = (X2 + X6);
t2 = (X1 + X5);
t3 = (X3 + X7);
t4 = (X0 - X4);
t5 = (X3 - X7);
t6 = (X1 - X5);
t7 = (X2 - X6);
Y[0] = (t0 + t1);
Y[1] = (t2 + t3);
Y[4*s] = (t0 - t1);
Y[4*s+1] = (t2 - t3);
Y[2*s] = (t4 - t5);
Y[2*s+1] = (t6 + t7);
Y[6*s] = (t4 + t5);
Y[6*s+1] = (t6 - t7);

}

6.4 Performance Evaluation

We now evaluate the performance of the recursive radix-4 FFT derived in this section
and compare it to the Numerical Recipes and the sequential, scalar (single core, x87)
version of FFTW 3.1.2. All implementations are run on a single core of a 2.66 GHz In-
tel Core2 Duo, with a theoretical scalar peak performance of 5.32 Gflop/s. We compile
all implementation with the Intel C++ compiler 10.0 with options “/O3 /QxT” to obtain

How to Write Fast Numerical Code: A Small Introduction 249

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10 12 14 16 18 20 22 24

log2(input size)

Recursive Radix-4 FFT
(double-precision, out-of-place)

Numerical Recipes Radix-2 FFT
(single-precision, inplace)

FFTW 3.1.2
(double-precision, out-of-place)

DFT on 2.66 GHz Core2 Duo (32-bit Windows XP, Single Core, x87)
performance [Gflop/s]

Fig. 14. Performance results for three FFT implementations on a 2.66 GHz Intel Core2 Duo. All
implementations are sequential and scalar (single core, x87). Higher is better.

maximum optimization. The radix-4 implementation was copied directly from the code
listings above. The Numerical Recipes FFT implementation is in single-precision and in-
place while both our radix-4 FFT and FFTW are double-precision and out-of-place. This
gives a slight performance advantage to the Numerical Recipes FFT implementation.

Fig. 14 shows the performance results for the three FFT implementations. We see
that Numerical Recipes reaches about 1 Gflop/s and drops sharply to 160 Mflop/s when
the memory footprint for the problems is too large for the L2 cache. The radix-4 FFT
implementation we derived in this tutorial reaches about 2 Gflop/s for problem sizes that
fit into the L2 cache. For larger sizes the performance drops down to about 1 Gflop/s.
FFTW 3.1.2 in sequential scalar mode shows the upper bound for practically achievable
performance when using x87 instructions and a single core. FFTW reaches about 2.5–3
Gflop/s for cache-resident sizes and 1.6 Gflop/s for out-of-cache sizes.

Analysis of the above data can be summarized as follows.

– The recursive radix-4 FFT is twice as fast as Numerical Recipes for in-cache sizes
and about 6 times faster for out-of-cache sizes.

– The radix-4 FFT implementation reaches more than two thirds of the performance
of scalar FFTW. The performance difference is mainly due to FFTW’s larger basic
block sizes (codelets), its ability to choose different radices at different recursion
steps, and a few additional loop optimizations.

– There is still a lot of room for further improvement using Intel’s SSE instructions
and both cores (see Fig. 2).

250 S. Chellappa, F. Franchetti, and M. Püschel

In addition, our experiments show that buffering does not produce any performance
gain in this case, since the cache associativity on the Core2 architecture is 8, which is
large enough for a radix-4 kernel.

6.5 Parameter-Based Performance Tuning

We now discuss the parameters in our DFT implementation that can be tuned to the
memory hierarchy.

Base case sizes. The most important parameter tuning is the selection of base cases. To
allow for multiple base cases DFT_base and DFT_twiddle, the program structure
must become more complex, as a data structure describing the recursion and containing
function pointers to the appropriate kernels replaces the two parameters N and n in
DFT_rec. The resulting program would be very similar to FFTW 2.x.

After this infrastructural change the system can apply any function DFT_twiddle
in the second stage of the recursion and any function DFT_base as recursion leaf. The
tuning process needs to find for each recursion step the right kernel size. FFTW uses
both a cost estimation and runtime experiments based on dynamic programming to find
good parameter choices [10]. Showing the full implementation is beyond the scope of
this tutorial.

Threshold for buffering. The second parameter decides the sizes for which buffering
should be applied. This depends on the cache size of the target machine, as buffering
only becomes beneficial for problem sizes that are not resident in the L2 cache.

Buffer size. Finally, we need to set the buffer size based on the cache line size of the
target machine to prevent cache thrashing. The cache line size can be either looked up
or found experimentally.

6.6 Program Generation for DFT: Spiral

Spiral [7] is a program generator for linear transforms. It can generate optimized fixed-
size and variable-size code for the DFT, the Walsh-Hadamard transform (WHT), the
discrete cosine and sine transforms, finite impulse response (FIR) filters, the discrete
wavelet transform, and others. Spiral builds on the Kronecker product framework for the
DFT, described in Section 6.1, but extends it to the whole domain of linear transforms.
Further, Spiral automates the optimization process outlined in Sections 6.2–6.5 as well
as many other optimizations including various forms of parallelization [26, 54, 79, 80].
The fastest FFT implementation shown in Fig. 2 is generated using Spiral.

In contrast to ATLAS, Spiral is not based on searching a parameterized space, but
on a domain-specific language (DSL) that enables the enumeration and systematic op-
timization of algorithms. More specifically, there are two key ideas underlying Spiral:

1. Mathematical, structural, declarative DSL. Spiral uses a DSL to describe algo-
rithms. The DSL is called SPL [81] and is directly derived from the transform
domain: it is precisely (an extension of) the Kronecker formalism described in Sec-
tion 6.1. The language describes only the structure of algorithms and is hence

How to Write Fast Numerical Code: A Small Introduction 251

declarative. This property enables structural algorithm optimizations including
parallelization that is not practical to perform on C code.

2. Optimization through rewriting. Spiral uses rewriting systems [82] for both the gen-
eration of alternative algorithms and the structural optimization of algorithms at a
high level of abstraction. The rewriting rules for the former are divide-and-conquer
algorithms specified as in (3) and for the latter, they are known matrix identities.

Architecture. The input to Spiral is a formally specified transform (for instance,
DFT384); the output is a highly optimized C program implementing the transform.
These highly optimized programs may use language extensions or software libraries to
access special machine features like multiple cores or SIMD vector instructions. We
show the architecture of Spiral in Fig. 15 and discuss it below.

– Algorithm level. This stage is responsible for generating and optimizing algorithms
for the specified transforms.
• Formula generation. A transform like DFT384 is considered to be a non-

terminal. Spiral uses breakdown rules to describe recursive algorithms for lin-
ear transforms. For example, (3) and (7) are breakdown rules expressing larger
DFTs in terms of smaller DFTs. Base cases terminate the recursion. For in-
stance, (5) is the DFT base rule.

A rewriting system recursively applies breakdown rules to the specified
transform to produce alternative algorithms represented as SPL expressions,
also called formulas.

• Formula optimization. Formulas are structurally optimized, also using a rewrit-
ing system. Loop fusion is performed using rewriting rules which essentially
perform the same reasoning and restructuring as described in Section 6.2. The
loop fusion by rewriting requires the extension of SPL to a more powerful

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

Se
ar

ch

controls

controls

performance

algorithm as formula
in SPL language

C/Fortran
implementation

Algorithm
Level

Implementation
Level

Evaluation
Level

Fig. 15. The architecture of Spiral (from [7])

252 S. Chellappa, F. Franchetti, and M. Püschel

language called Σ-SPL [24]. Further, rewriting is used for various forms of
parallelization including the efficient mapping to multiple processor cores or
SIMD vector instructions. The next section will provide more details on this
topic.

– Implementation level. Spiral contains a special-purpose compiler that translates for-
mulas into code. The compiler is based on (an extension of) Table 4. Moreover, it
performs all kernel-level optimizations described in Section 6.3. Depending upon
an unrolling threshold, subformulas smaller than the threshold are treated as ker-
nels, while larger formulas are implemented using loops.

– Evaluation level. This stage is responsible for compiling and measuring the runtime
of the generated code.

– Search. The measured runtime guides Spiral in picking a new candidate formula
by changing the breakdown of the non-terminal. The feedback loop is guided by a
search strategy, usually a form of dynamic programming. The main purpose of the
search is adaptation to the platform’s memory hierarchy.

Structural optimization through rewriting. A core component of Spiral’s optimiza-
tion process is the structural optimization of formulas using a rewriting system. As
briefly discussed above, two major optimization goals are achieved through rewriting:
1) loop merging [24], and 2) the mapping of algorithms to parallel architectures like
multicore CPUs or SIMD vector extensions [26, 54]. Loop merging is beyond the scope
of this tutorial as it requires the introduction of a new language, Σ-SPL. Thus, we only
briefly discuss the mapping to parallel architectures.

Analysis of the access pattern of tensor products shows that certain tensor products
can be mapped very well to some architectures but only poorly to others. As example,
in (3) the construct

Im ⊗DFTn (14)

has a perfect structure for m-way parallel machines with either shared or distributed
memory. However, implementing it with SIMD vector instructions introduces consid-
erable overhead [54]. Similarly, the construct

DFTm⊗In (15)

has a perfect structure for n-way vector SIMD architectures. However, implementing
it on shared memory machines leads to false sharing, while on distributed memory
machines tiny messages would be required, which degrades performance.

Using algebraic identities [53] one can change the structure of formulas. For in-
stance, the identity

DFTm⊗In = Lmn
m (In ⊗DFTm)Lmn

n (16)

replaces a vector formula by a parallel formula and introduces two stride permutations.
Spiral uses a rewriting system to perform formula manipulations like (16), using a

tagging mechanism to steer the manipulation toward the final formula optimized for a
certain architecture. Spiral’s rewriting system consists of three main components.

How to Write Fast Numerical Code: A Small Introduction 253

– Tags encode target architecture types and parameters. They contain high-level in-
formation about the target architecture. For instance, Spiral uses the tags “vec(ν)”
for SIMD vector extensions (ν encodes the vector length of the architecture) and
“smp(p, µ)” for shared memory (p is the number of processors and µ the length of
cache lines).

– Base cases describe formula constructs that are guaranteed to be mapped efficiently
to the target hardware. Spiral uses special operator variants to encode base cases.
For instance, a p-way parallel base case is denoted by the tagged operator “⊗‖”;
An is any n× n matrix expression.

– Rewriting rules encode formula manipulation identities, but in addition “know” the
target machine and thus deduce the “right” parameters for identities with degrees
of freedom. For instance, the identity (16) is translated into the rewriting rule

Am ⊗ In︸ ︷︷ ︸
smp(p,µ)

→ Lmn
m︸︷︷︸

smp(p,µ)

(
Ip ⊗‖ (In/p ⊗Am)

)
Lmn

n︸︷︷︸
smp(p,µ)

.

This rule has the additional knowledge of the target system’s processor count, and
utilizes this knowledge when applying the helper identity

Imn = Im ⊗ In.

The stride permutations Lmn
m and Lmn

n will be handled by further rewriting.

For every type of parallelism, these three components are added to Spiral to enable
the corresponding structural optimization. In addition, every class of target machines
may require a small extension of the SPL compiler to translate tagged operators into
target code. For instance, “⊗‖” will be translated into OpenMP parallel for loops, when
Spiral generates shared memory code using OpenMP.

Discussion. Spiral fully automates the process of optimizing linear transforms for a
large class of state-of-the-art architectures. The code it generates is competitive with
expertly hand-tuned implementations and often outperforms these. The key is Spiral’s
domain-specific, declarative, mathematical language to describe algorithms. Spiral’s al-
gorithm (breakdown rule) database contains the algorithmic knowledge of more than a
hundred journal papers on transform algorithms. Spiral’s rewriting system is the key to
structural optimization and parallelization of algorithms. With this approach it is possi-
ble to re-target Spiral to new parallel platforms. So far Spiral successfully generated (at
least prototypical) fast implementations for SIMD vector extensions, multicore CPUs,
cluster computers, graphics processors (GPUs), and the Cell BE processor. In addition,
Spiral generates hardware designs for field-programmable gate arrays (FPGAs), and
hardware-software partitioned implementations.

While Spiral focuses on transforms, the basic principles underlying it may be appli-
cable to other numerical problem domains.

6.7 Exercises

1. WHT: Operations count. The Walsh-Hadamard transform (WHT) is related to the
DFT but has a simpler structure and simpler algorithms. The WHT is defined only

254 S. Chellappa, F. Franchetti, and M. Püschel

for 2-power input sizes N = 2n, as given by the matrix

WHT2n = DFT2⊗DFT2⊗ . . .⊗DFT2︸ ︷︷ ︸
n factors

,

where DFT2 is as defined in (5).

(a) How many entries of the WHT are zeros and why? Determine the number
of additions and the number of multiplications required when computing the
WHT by definition.

(b) The WHT of an input vector can be computed iteratively or recursively using
the following formulas:

WHT2n =
n−1∏
i=0

(I2n−i−1 ⊗DFT2⊗I2i) (iterative) (17)

WHT2n = (DFT2⊗I2n−1)(I2 ⊗WHT2n−1) (recursive) (18)

(c) Determine the exact operations counts (again, additions and multiplications
separately) of both algorithms. Also determine the degree of reuse as defined
in Section 2.1.

2. WHT: Implementation
(a) Implement a recursive implementation of the WHT based on (18).
(b) Implement the triple loop (iterative) version of the WHT using (17). Create a

performance plot (size versus Mflop/s) for sizes 21–220 comparing the iterative
and the recursive versions. Discuss the plot.

(c) Create unrolled WHTs of sizes 4 and 8 based on the recursive WHT algorithm.
(The number of operations should match the cost computed in Exercise 1c on
page 254).

(d) Now implement recursive radix-4 and radix-8 implementations of the WHT
based on the formulas

WHT2n = (WHT4⊗I2n−2)(I4 ⊗WHT2n−2) (radix-4)

WHT2n = (WHT8⊗I2n−3)(I8 ⊗WHT2n−3) (radix-8)

In these implementations, the left hand side WHT (of size 4 or 8) should be
your unrolled kernel (which then has to handle input data at a stride) called in
a loop; the right hand side is a recursive call (also called in a loop). Further, in
both implementations, you may need one step with a different radix to handle
all input sizes.

Measure the performance of both implementations, again for sizes 21–220

and add it to the previous plot (four lines total).
(e) Try to further improve the code or perform other interesting experiments. For

example, what happens if one considers more general algorithms based on

WHT2n = (WHT2i ⊗I2n−i)(I2i ⊗WHT2n−i)

The unrolled code could be the WHT on the left hand side of the above equa-
tion. Alternatively, one could run a search to find the best radix in each step
independently.

How to Write Fast Numerical Code: A Small Introduction 255

7 Conclusions

Writing fast libraries for numerical problems is difficult and requires a thorough under-
standing of the interaction between algorithms, software, and microarchitecture. Look-
ing ahead, the situation is likely to get worse due to the recent shift to parallelism in
mainstream computing, triggered by the end of frequency scaling. We hope this guide
conveys the problem, its origin, and a set of basic methods to write fast numerical code.

However, problems also open research opportunities. In this case the problem is the
need to automate high performance library development, a difficult challenge that, in
its nature, is at the core of computer science. To date this problem has been attacked
mostly by the scientific computing and compiler community, and the list of successes is
still short. We believe that other areas of computer science need to get involved, includ-
ing programming languages, and in particular domain-specific languages, generative
programming, symbolic computation, and optimization and machine learning. For re-
searchers in these areas, we hope that this tutorial can serve as an entry point to the
problem and the existing work on automatic performance tuning.

Acknowledgment

This work was supported by DARPA through the DOI grant NBCH1050009 and the
ARO grant W911NF0710416, by NSF through awards 0325687 and 0702386, and by
an Intel grant.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Readings in computer
architecture, 56–59 (2000)

2. Meadows, L., Nakamoto, S., Schuster, V.: A vectorizing, software pipelining compiler for
LIW and superscalar architecture. In: Proceedings of Risc (1992)

3. Group, S.S.C.: SUIF: A parallelizing & optimizing research compiler. Technical Report
CSL-TR-94-620, Computer Systems Laboratory, Stanford University (May 1994)

4. Franke, B., O’Boyle, M.F.P.: A complete compiler approach to auto-parallelizing C programs
for multi-DSP systems. IEEE Trans. Parallel Distrib. Syst. 16(3), 234–245 (2005)

5. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM, Philadelphia
(1992)

6. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The
Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

7. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B.W., Xiong, J.,
Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE Special issue on Program
Generation, Optimization, and Adaptation 93(2), 232–275 (2005)

8. Website: Spiral (1998), http://www.spiral.net
9. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Proc.

IEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 1381–1384
(1998)

http://www.spiral.net

256 S. Chellappa, F. Franchetti, and M. Püschel

10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the
IEEE Special issue on Program Generation, Optimization, and Adaptation 93(2), 216–231
(2005)

11. Website: FFTW, http://www.fftw.org
12. Goto, K., van de Geijn, R.: On reducing TLB misses in matrix multiplication, FLAME work-

ing note 9. Technical Report TR-2002-55, The University of Texas at Austin, Department of
Computer Sciences (November 2002)

13. Whaley, R.C., Dongarra, J.: Automatically Tuned Linear Algebra Software (ATLAS). In:
Proc. Supercomputing (1998)

14. Moura, J.M.F., Püschel, M., Padua, D., Dongarra, J.: Scanning the issue: Special issue on
program generation, optimization, and platform adaptation. Proceedings of the IEEE, special
issue on Program Generation, Optimization, and Adaptation 93(2), 211–215 (2005)

15. Bida, E., Toledo, S.: An automatically-tuned sorting library. Software: Practice and Experi-
ence 37(11), 1161–1192 (2007)

16. Li, X., Garzaran, M.J., Padua, D.: A dynamically tuned sorting library. In: Proc. Int’l Sym-
posium on Code Generation and Optimization (CGO), pp. 111–124 (2004)

17. Im, E.-J., Yelick, K., Vuduc, R.: Sparsity: Optimization framework for sparse matrix kernels.
Int’l J. High Performance Computing Applications 18(1), 135–158 (2004)

18. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, C., Yelick,
K.: Self adapting linear algebra algorithms and software. Proceedings of the IEEE Special
issue on Program Generation, Optimization, and Adaptation 93(2), 293–312 (2005)

19. Website: BeBOP, http://bebop.cs.berkeley.edu/
20. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned sparse ma-

trix kernels. In: Proc. SciDAC. Journal of Physics: Conference Series, vol. 16, pp. 521–530
(2005)

21. Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimization of software and the
ATLAS project. Parallel Computing 27(1-2), 3–35 (2001)

22. Bilmes, J., Asanović, K., whye Chin, C., Demmel, J.: Optimizing matrix multiply using
PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In: Proc. Int’l Con-
ference on Supercomputing (ICS), pp. 340–347 (1997)

23. Frigo, M.: A fast Fourier transform compiler. In: Proc. Programming Language Design and
Implementation (PLDI), pp. 169–180 (1999)

24. Franchetti, F., Voronenko, Y., Püschel, M.: Formal loop merging for signal transforms. In:
Proc. Programming Language Design and Implementation (PLDI), pp. 315–326 (2005)

25. Franchetti, F., Voronenko, Y., Püschel, M.: FFT program generation for shared memory:
SMP and multicore. In: Proc. Supercomputing (2006)

26. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization of signal
transforms. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C.
(eds.) VECPAR 2006. LNCS, vol. 4395. Springer, Heidelberg (2006)

27. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Orti, E., van de Geijn, R.: The science
of deriving dense linear algebra algorithms. ACM Trans. on Mathematical Software 31(1),
1–26 (2005)

28. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: Formal linear al-
gebra methods environment. ACM Trans. on Mathematical Software 27(4), 422–455 (2001)

29. Quintana-Orti, G., Quintana-Orti, E.S., van de Geijn, R., Van Zee, F.G., Chan, E.: Program-
ming algorithms-by-blocks for matrix computations on multithreaded architectures (submit-
ted for publication)

http://www.fftw.org
http://bebop.cs.berkeley.edu/

How to Write Fast Numerical Code: A Small Introduction 257

30. Baumgartner, G., Auer, A., Bernholdt, D.E., Bibireata, A., Choppella, V., Cociorva, D., Gao,
X., Harrison, R.J., Hirata, S., Krishanmoorthy, S., Krishnan, S., Lam, C.C., Lu, Q., Nooi-
jen, M., Pitzer, R.M., Ramanujam, J., Sadayappan, P., Sibiryakov, A.: Synthesis of high-
performance parallel programs for a class of ab initio quantum chemistry models. Proceed-
ings of the IEEE 93(2), 276–292 (2005); Special issue on Program Generation, Optimization,
and Adaptation

31. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading (2000)

32. Lämmel, R., Saraiva, J., Visser, J. (eds.): GTTSE 2005. LNCS, vol. 4143. Springer, Heidel-
berg (2006)

33. Püschel, M.: How to write fast code.Course 18-645, Electrical and Computer Engineer-
ing, Carnegie Mellon University (2008), http://www.ece.cmu.edu/∼pueschel/
teaching/18-645-CMU-spring08/course.html

34. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to algorithms. MIT
Press, Cambridge (2001)

35. Demmel, J.W.: Applied numerical linear algebra. SIAM, Philadelphia (1997)
36. Tolimieri, R., An, M., Lu, C.: Algorithms for discrete Fourier transforms and convolution,

2nd edn. Springer, Heidelberg (1997)
37. Hennessy, J.L., Patterson, D.: Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, San Francisco (2002)
38. Bryant, R.E., O’Hallaron, D.R.: Computer Systems: A Programmer’s Perspective. Prentice-

Hall, Englewood Cliffs (2003)
39. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 14(3), 354–356

(1969)
40. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal

of Symbolic Computation 9, 251–280 (1990)
41. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux,

M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An
updated set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. on Mathematical
Software 28(2), 135–151 (2002)

42. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd
edn. SIAM, Philadelphia (1999)

43. Website: ATLAS, http://math-atlas.sourceforge.net/
44. Website: Goto BLAS, http://www.tacc.utexas.edu/general/staff/goto/
45. Website: LAPACK, http://www.netlib.org/lapack/
46. Website: ScaLAPACK, http://www.netlib.org/scalapack/
47. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,

Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

48. Website: PLAPACK, http://www.cs.utexas.edu/users/plapack/
49. Chtchelkanova, A., Gunnels, J., Morrow, G., Overfelt, J., van de Geijn, R.: Parallel imple-

mentation of BLAS: General techniques for level 3 BLAS. Concurrency: Practice and Expe-
rience 9(9), 837–857 (1997)

50. Website: FLAME, http://www.cs.utexas.edu/users/flame/
51. Johnson, S.G., Frigo, M.: A modified split-radix FFT with fewer arithmetic operations. IEEE

Trans. Signal Processing 55(1), 111–119 (2007)
52. Nussbaumer, H.J.: Fast Fourier Transformation and Convolution Algorithms, 2nd edn.

Springer, Heidelberg (1982)

http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html
http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html
http://math-atlas.sourceforge.net/
http://www.tacc.utexas.edu/general/staff/goto/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
http://www.cs.utexas.edu/users/plapack/
http://www.cs.utexas.edu/users/flame/

258 S. Chellappa, F. Franchetti, and M. Püschel

53. Johnson, J.R., Johnson, R.W., Rodriguez, D., Tolimieri, R.: A methodology for designing,
modifying, and implementing FFT algorithms on various architectures. Circuits Systems
Signal Processing 9(4), 449–500 (1990)

54. Franchetti, F., Püschel, M.: Short vector code generation for the discrete Fourier transform.
In: Proc. IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS), pp. 58–67
(2003)

55. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed memory computers. In:
Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006.
LNCS, vol. 4330. Springer, Heidelberg (2006)

56. Website: FFTPACK, http://www.netlib.org/fftpack/
57. GNU: GSL http://www.gnu.org/software/gsl/
58. Mirković, D., Johnsson, S.L.: Automatic performance tuning in the UHFFT library. In:

Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-
ComputSci 2001. LNCS, vol. 2073, pp. 71–80. Springer, Heidelberg (2001)

59. Website: UHFFT, http://www2.cs.uh.edu/∼mirkovic/fft/parfft.htm
60. Website: FFTE, http://www.ffte.jp
61. Website: ACML, http://developer.amd.com/acml.jsp
62. Website: Intel MKL, http://www.intel.com/cd/software/products/asmo-

na/eng/307757.htm
63. Website: Intel IPP, http://www.intel.com/cd/software/products/asmo-

na/eng/perflib/ipp/302910.htm
64. Website, I.B.M.: ESSL and PESSL,

http://www-03.ibm.com/systems/p/software/essl.html
65. Website: NAG, http://www.nag.com/
66. Website: IMSL, http://www.vni.com/products/imsl/
67. Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. IEEE Trans. Com-

put. 38(12), 1612–1630 (1989)
68. Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference Manual (2007),

http://www.intel.com/products/processor/manuals/index.htm
69. Advanced Micro Devices (AMD) Inc.: Software Optimization Guide for AMD Athlon 64

and AMD Optero Processors (2005),
http://developer.amd.com/devguides.jsp

70. GNU: GCC:optimization options,
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

71. Intel: Quick-reference guide to optimization with intel compilers version 10.x,
http://cache-www.intel.com/cd/00/00/22/23/222300 222300.pdf

72. Intel: Intel VTune
73. Microsoft: Microsoft Visual Studio
74. GNU: Gnu gprof manual, http://www.gnu.org/software/binutils/manual/

gprof-2.9.1/html mono/gprof.html
75. Yotov, K., Li, X., Ren, G., Garzaran, M.J., Padua, D., Pingali, K., Stodghill, P.: Is search

really necessary to generate high-performance BLAS? Proceedings of the IEEE Special issue
on Program Generation, Optimization, and Adaptation 93(2), 358–386 (2005)

76. Wolfe, M.: Iteration space tiling for memory hierarchies. In: SIAM Conference on Parallel
Processing for Scientific Computing (1987)

77. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Math. of Computation 19, 297–301 (1965)

78. Püschel, M., Singer, B., Xiong, J., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., John-
son, R.W.: SPIRAL: A generator for platform-adapted libraries of signal processing algo-
rithms. Int’l Journal of High Performance Computing Applications 18(1), 21–45 (2004)

http://www.netlib.org/fftpack/
http://www.gnu.org/software/gsl/
http://www2.cs.uh.edu/~mirkovic/fft/parfft.htm
http://www.ffte.jp
http://developer.amd.com/acml.jsp
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/302910.htm
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/ipp/302910.htm
http://www-03.ibm.com/systems/p/software/essl.html
http://www.nag.com/
http://www.vni.com/products/imsl/
http://www.intel.com/products/processor/manuals/index.htm
http://developer.amd.com/devguides.jsp
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://cache-www.intel.com/cd/00/00/22/23/222300_222300.pdf
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html

How to Write Fast Numerical Code: A Small Introduction 259

79. D’Alberto, P., Milder, P.A., Sandryhaila, A., Franchetti, F., Hoe, J.C., Moura, J.M.F., Püschel,
M., Johnson, J.: Generating FPGA accelerated DFT libraries. In: Proc. Symposium on Field-
Programmable Custom Computing Machines (FCCM) (2007)

80. Milder, P.A., Franchetti, F., Hoe, J.C., Püschel, M.: Formal datapath representation and
manipulation for implementing DSP transforms. In: Proc. Design Automation Conference
(DAC) (2008)

81. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: A language and compiler for DSP algo-
rithms. In: Proc. Programming Language Design and Implementation (PLDI), pp. 298–308
(2001)

82. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning, vol. 1,
pp. 535–610. Elsevier, Amsterdam (2001)

A Gentle Introduction to Multi-stage

Programming, Part II�

Walid Taha

Department of Computer Science, Rice University, Houston, TX, USA
taha@rice.edu

Abstract. As domain-specific languages (DSLs) permeate into main-
stream software engineering, there is a need for economic methods for
implementing languages. Following up on a paper with a similar title,
this paper focuses on dynamically typed languages, covering issues rang-
ing from parsing to defining and staging an interpreter for an interesting
subset of Dr. Scheme. Preliminary experimental results indicate that
the speedups reported in previous work for smaller languages and with
smaller benchmarks are maintained.

1 Introduction

A natural question to ask when we consider implementing a new language is
whether an existing language implementation can be reused. If reuse is possible,
then we have reduced the new problem to one that we have (or someone else has)
already solved. The reduction process materializes as a translator from the new
language to the old. In “A Gentle Introduction to Multi-stage Programming,”
[8] we introduced the reader to the basics of a semantically inspired approach to
building such translators, namely, a staged interpreter. We refer to that paper
as Part I. It introduces the basic approach consisting of three steps:

1. Write an interpreter and check its correctness.
2. Stage the interpreter by adding staging annotations.
3. Check the performance of the staging implementation.

Based on practical experience, when we get to the third step we should expect
that we need to convert to continuation-passing style to achieve satisfactory
staging.

The focus of Part I was a simple language called Lint, which has only one
type, namely integers, and supports only functions from one integer to another
integer. The goal of this paper (Part II) is to expand the reader’s repertoire of
staging expertise to the point where he or she can implement a dynamically typed
language as expressive as a substantial subset of the Dr. Scheme programming
language.

� Supported by NSF CCR SoD 0439017, CSR/EHS 0720857, and CCF CAREER
0747431.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 260–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Gentle Introduction to Multi-stage Programming, Part II 261

1.1 Prerequisites

To follow the explanation of the reference interpreter (Section 3), basic familiar-
ity with OCaml, lambda abstractions, and the OCaml List library are needed.

Some familiarity with continuation-passing style (CPS) and CPS conversion is
useful but not necessary. Section 4 explains the conversion process and provides
a detailed discussion of how to convert an interpreter. Friedman, Wand, and
Haynes’ text [3] explains how to perform CPS conversion, and Sabry’s thesis [6]
provides an accessible introduction to its meta-theory.

Familiarity with the basics of multi-stage programming and with the basics of
staged interpreters is needed for Section 5. For a reader not familiar with these
topics, “A Gentle Introduction to Multi-stage Programming,” [8] would provide
the necessary background.

1.2 Contributions

The key novelties driving this tutorial paper are the scale and the type disci-
pline of the language being interpreted. We focus on a larger language than has
previously been analyzed in the context of writing staged interpreters, and the
focus is on the sources of difficulty that arise during the process of building a
staged interpreter for this language.

Our focus is on a class of languages that is both increasingly popular in
practice and is (often surprisingly) easy to interpret in a modern, statically typed,
functional language: dynamically typed languages. Writing such an interpreter
is facilitated by the fact that we can easily define one data type that would serve
as the universal value domain.

The new expository material presented in this paper includes the following:

1. The use of a small, practical parser combinator library as well as the use
of universal concrete and abstract syntax to facilitate practical language
prototyping. We have found that the absence of a default starting point
for building simple parsers and doing simple file IO is a practical problem
for someone trying to build a staged interpreter in MetaOCaml. This is
especially the case when one has background in languages other than OCaml.

2. Case-by-case analysis of an OCaml interpreter for a more expressive language
than the one we covered in Part I. This language includes higher-order func-
tions with multiple arguments, a dynamic data structure (lists), and mutable
structures.

3. Detailed explanation of how to translate a direct style interpreter into CPS.

1.3 Organization

Section 2 introduces a method that we have found useful for quickly building
parsers. As that section points out, a practical method for circumventing the
issue of building parsers and designing concrete syntax for a programming lan-
guage is to use a universal syntax, such as that of HTML, XML, or the LISP syn-
tax for representing data (s-expressions). Section 3 presents an interpreter for a

262 W. Taha

basic subset of Dr. Scheme that we call Aloe (Another Language of Expressions).
This subset includes booleans, integers, strings, mutable variables, mutable lists,
and higher-order functions. This section explains how to interpret variable arity
operators and functions, syntactic sugar, and how to use side effects to imple-
ment recursive definitions. Section 4 explains how to convert the staged inter-
preter into CPS, giving special attention to the more interesting cases. Section 5
explains how to stage the interpreter that resulted from the previous step. Sec-
tion 6 presents a new optimization technique for untyped languages, and shows
how this technique can be used to improve the Aloe staged interpreter.

The complete code for the parsers and the various interpreters and test in-
puts described in this paper, along with other examples, are available online at
http://www.metaocaml.org/examples.

2 Parsing

Concrete syntax tends to be much more concise than abstract syntax, so it is
notationally convenient. Furthermore, if we want to be able to store and load
programs in files, it must be done with some concrete syntax. To accommodate
this practical concern, this section will provide the reader with a minimal tool
for dealing with the issue of parsing.

In the source code accompanying this paper, we use Hutton and Meijer’s
parser combinators [4]. We have reimplemented this library in OCaml for con-
venience, and the mapping is mostly mechanical. The key change is that Haskell
is lazy and so allows pure, memoized streams to be implemented concisely. We
simply used lambda abstraction to delay computations. Certainly, memoizing
implementations are possible [10], but the examples considered here are simple
enough that there is no pressing need for this optimization.

To avoid having to define a parser for every new language that we consider,
it is helpful to use a single, universal concrete representation for programs. Rep-
resenting programs concretely (where “concretely” means “as strings of charac-
ters”) is no different from representing any other form of data. Universal con-
crete representations include HTML and the XML and the LISP data formats
(widely known as s-expressions). Because it is syntactically lighter-weight, we
use s-expressions for this paper. Specifically, we use the following grammar for
s-expressions:

s-expression ::= integer | symbol | string | (s-expression∗)

where integer, symbol and string are primitive grammars for integers, symbols,
and strings, respectively; and where e∗ means zero or more repetitions of e.
We use the combinator library described above to write a single parser for s-
expressions. Succesful parsing produces a value of the following OCaml type:

type sxp =
| I of int (* Integer *) | A of string (* Atoms *)
| S of string (* String *) | L of sxp list (* List *)

A Gentle Introduction to Multi-stage Programming, Part II 263

Whereas s-expressions are a universal concrete syntax, this data type can be
viewed as a universal abstract syntax. Our interpreters for Aloe always take a
value of this type as input.

To illustrate how s-expressions using the traditional concrete syntax would be
represented in the OCaml type sxp, we consider a few small examples. The list
(1 2 3 4) would be represented by the value

L [I 1; I 2; I 3; I 4]

The type naturally allows for nesting of lists. For example, ((1 2) (3 4)) would
be represented as

L [L [I 1; I 2]; L [I 3; I 4]]

The type also naturally allows us to mix elements of different types, so we can
represent (lambda (x) (repeat x \"ping \"))

L [A "lambda"; L [A "x"]; L [A "repeat"; A "x"; S "ping "]]

To automate the process of parsing an s-expression, we provide the following
utilities:

read_file : string -> string
parse : string -> (sxp * string) list
print : sxp -> string

The first function simply takes the name of a file and reads it into a string. The
second function takes a string and tries to parse it. It returns a list of possible
ways in which it could have been parsed, as well as the remaining (unparsed)
string in each case. For s-expressions, we always have at most one way in which
a string can be parsed. The third function takes an s-expression and returns a
string that represents it.

3 An Interpreter for Aloe

This section presents an interpreter for a small programming language that we
call Aloe. This language is the running example for this paper, and the interpreter
drives the discussion of CPS conversion and staging.

The Aloe programming language is a subset of Dr. Scheme that includes
booleans, integers, strings, mutable variables, mutable lists, and higher-order
functions. We begin the design of the interpreter by considering the appropriate
definitions for values and environments, and then move to defining the interpreter
itself. We will conclude this section by describing a timing benchmark, a timing
experiment, and the results from this timing experiment. These results serve as
the baseline for assessing the performance of the staged interpreter.

3.1 Denotable Values and Tags

The first question to consider when writing an interpreter for an untyped lan-
guage is to determine the kinds of values that the language supports. For Aloe,
we are interested in the following kinds of values:

264 W. Taha

type dom = Bool of bool | Int of int | Str of string
| Fun of int * (dom list -> dom) | Undefined
| Void | Empty | Cons of dom ref * dom ref

Thus, our language supports three interesting base types: booleans, integers,
and strings. It also supports functions and mutable lists. Each function value is
tagged with an integer that represents the number of arguments it expects. In
addition, the set of values includes two special values, Undefined and Void. The
first special value is used for un-initialized locations, and the second for denoting
the absence of a result from a side-effecting computation.

It is worth noting that the type we have defined for values is computational
and not a purely mathematical type. This allows us to avoid having to specify
explicitly where non-termination or exceptions can occur. It also makes it easy
for us to represent values that can change during the lifetime of a computation
by using the OCaml ref type constructor.

3.2 Exceptions and Untagging

To allow for the possibility of error during the computation of an Aloe program,
we introduce one OCaml exception:

exception Error of string

and we immediately use this exception to define specific untagging operations
that allow us to extract the actual value from a tagged value when we expect a
certain tag to be present. For example, for the Fun tag we write:

let unFun d =
match d with
| Fun (i,f) -> (i,f)
| _ -> raise (Error "Encountered a non-function value")

3.3 Environments and Assignable Variables

We represent environments simply as functions, where the empty environment
env0 produces an error on any lookup.1 We define both a simple environment
extension function ext that introduces one new binding, as well as one that
extends the environment with several bindings at a time lext:

let env0 x =
raise (Error ("Variable not found in environment "^x))

let ext env x v = fun y -> if x=y then v else env y

1 Some readers are surprised by the use of functions to represent environments, rather
than using a first-order collection type. When studying programming language se-
mantics, and especially denotational or translational semantics, it is common to
think of environments as simply being functions.

A Gentle Introduction to Multi-stage Programming, Part II 265

let rec lext env xl vl =
match xl with
| [] -> env
| x::xs -> match vl with

| [] -> raise (Error "Not enough arguments")
| y::ys -> lext (ext env x y) xs ys

An important technical aside for Aloe is that, being a subset of Dr. Scheme,
some but not all variables can be assigned. For example, functional arguments
are immutable. To reflect this difference, we require that all environments map
names to values of the following type:

type var = Val of dom | Ref of dom ref

3.4 Concrete Syntax

As noted earlier, we use the OCaml data type for s-expressions to represent
the abstract syntax for our programs. Nevertheless, it is still useful to state the
concrete syntax for the language that we are interested in.

I is the set of integers
S is the set of strings
A is the set of symbols (“A” for “Atomic”)

U ::= not | empty? | car | cdr

B ::= + | - | * | < | > | = | cons | set-car! | set-cdr!

E ::= true | false | empty | I | "S" | A | (U E) | (B E E) |
(cond (E E)(else E)) | (set! A E) | (and E E∗) | (or E E∗)
| (begin E E∗) | (lambda (A∗) E) | (E E∗)

P ::= E | (define A E)P | (define (A A∗) E)P

The first three lines indicate that we assume that we are given three sets,
one for integers, one for strings, and one for symbols (or “atoms”). Integers are
defined as sequences of digits possibly preceded by a negative sign. Strings are
sequences of characters with some technical details the definition of which we
relegate here to the implementation. Symbols are also sequences of characters,
with the most notable restriction being the absence of spaces.

The next line defines the set U of unary operator names. This set consists of
four terminal symbols. The next set B, which consists of nine terminals, is the
names of binary operators. The set of expressions E contains terminals to denote
booleans and the empty list, and it also embeds integers, strings, and symbols.
When we get to symbols, the user should note that there is a possibility for
ambiguity here. The expression true, for example, can match either the first or
the sixth (symbol) production. For this reason we consider our productions order

266 W. Taha

dependent, and the derivation of a string always uses the production that appears
left-most in the definition. This does not change the set of strings defined, but
it makes the derivation of each string unique. The significance of the order of
production is also important for ensuring the proper behavior from the main
case analysis performed in the interpreter.

The last line defines the set of programs P . A program can be an expression,
or a nested sequence of variable or function definitions.

Note 1 (Practical Consideration: Validating the Reference Interpreter). We cau-
tion the reader that even though Aloe is a small language, we spent considerable
time removing seemingly trivial bugs from the first version of the interpreter.
Staging provides no help with this problem, and in fact any problems present
in the original interpreter and that go unnoticed are also present in the staged
interpreter. Thus, we strongly recommend developing an extensive acceptance
test that illustrates the correct functionality of each of the language constructs
while developing the original interpreter. Such tests will also be useful later when
developing the staged interpreter and when assessing the performance impact of
staging.

A helpful by-product of using both the syntax and the semantics of Dr. Scheme
for Aloe was that it was easy to validate the correct behavior of our test exam-
ples using the standard Dr. Scheme implementation. Because the correctness of
language implementations is of such great importance, the benefits of devising a
new syntax for your language should be weighed carefully against the benefits of
having such a direct method of validating the implementation. This is not just
relevant in cases when we are evaluating new implementation technology such
as staged interpreters. Consider how the development of ML implementations
could have been different if it used Scheme syntax, or XML if it used s-expression
syntax. Change in syntax can often impede reuse and obfuscate new ideas.

3.5 The Interpreter for Expressions

The Aloe interpreter consists of two main functions, one interpreting expressions,
and the other interpreting programs. To follow the order in which the syntax is
presented, we start by covering the interpreter for expressions, which takes an
expression and an environment and returns a value. It is structured primarily as
a match statement over the input expression. The match statement is surrounded
by a try statement, so that exceptions are caught immediately, some informative
debugging information is printed, and the exception is raised again. Thus, the
overall structure of the interpreter is as follows:

let rec eval e env =
try (match e with

...)
with

Error s -> (print_string ("\n"^(print e)^"\n");
raise (Error s))

A Gentle Introduction to Multi-stage Programming, Part II 267

where the ... represents the body of the interpreter. The reader should note
that we choose to have the interpreter traverse the syntax represented by s-
expressions to save space. This choice makes the different branches of the match
statement order sensitive. Thus, this tutorial does trade good interpreter de-
sign for presentation space. The reader interested in better interperter design is
encourage to consult a standard reference [3].

In the rest of this section, we discuss the key issues that arise when interpreting
the various constructs of Aloe.

Note 2 (Practical Consideration: Reporting Runtime Errors). Our Aloe inter-
preter provides minimal contextual information to the user when reporting run-
time error. More comprehensive reporting about errors as well as debugging
support would not only be useful to the users of the language but would also
help the implementor of the language as well. Thus, these issues should be given
careful consideration when implementing any language of size comparable to or
larger than the Aloe.

Atomic Expressions, Integers, and Strings. The semantics of most atomic
expressions in Aloe are fairly straightforward:

| A "true" -> Bool true | A "false" -> Bool false
| A "empty" -> Empty
| A x -> (match env x with Val v -> v | Ref r -> !r)
| I i -> Int i | S s -> Str s

Booleans, the empty list, integers, and strings are interpreted in a direct manner.
Variables are defined as any symbols that did not match the first three cases
in the match statement are interpreted by first looking up the name in the
environment. Because an environment lookup might fail, it is possible that an
exception may be raised when we apply env to the string x. If we do get a value
back, the interpreter checks to see whether it is assignable or not. If it is a simple
value, we return it directly. If it is an assignable value, then we de-reference the
assignable value and return the value to which it is pointing.

Unary and Binary Operators. The interpretation of unary and binary oper-
ators is a bit more involved, but still largely direct. It should be noted, however,
that we have to explicitly define the action of all primitive operations somewhere
in our interpretation. For convenience this can be done inline, as we do for each
case in our case analysis:

| L [A "not"; e1] -> Bool (not (unBool (eval e1 env)))
| L [A "+"; e1; e2] -> Int ((unInt (eval e1 env)

+ (unInt (eval e2 env))))

Interpreting logical negation in Aloe is done by evaluating the argument, remov-
ing the Bool tag, applying OCaml’s logical negation to the resulting value, and
then tagging the resulting value with Bool. The pattern of untagging and re-
tagging repeats in our interpreter, which is a necessity when being explicit about

268 W. Taha

the semantics of a dynamically typed language. Because OCaml is statically
typed, this forces us to make the tag manipulation explicit. While this may
seem verbose at first, we see in later discussion that being explicit about tags
may be convenient for discussing different strategies for implementing the same
dynamically typed computation.

The binary operation of addition follows a similar pattern, as do most of the
unary and binary operations in Aloe. An interesting binary operation is the cons
operation, which creates a new list from a new element and an old list:

| L [A "cons"; e1; e2] ->
Cons (ref (eval e1 env), ref (eval e2 env))

This implementation of the list constructor is sometimes described as being
unchecked, in that it does not check that the second element is a list. Another
interesting case is mutation, namely, of the set-car! or set-cdr! of a list. Both
operations are interpreted similarly. The first is interpreted as follows:

| L [A "set-car!"; e1; e2] ->
(match (eval e1 env) with

| Cons (h,t) -> (h:=(eval e2 env);Void)
| _ -> raise (Error ("Can’t assign car of "

^(print e1))))

Performing this computation first evaluates the first argument, checks that it
is a non-empty list, and if so, evaluates the second expression and assigns the
result to the head of the list. If the first value is not a non-empty list, an error
is detected. For set-cdr!, the same is done, and the tail of the list is modified.

Variable Arity Constructs. It is not unusual for programming language con-
structs to allow a varying number of arguments. An example of such a variable
arity construct is the equality construct = which takes one or more arguments
and returns “true” only if all of them are equal integers. We interpret this con-
struct as follows:

| L ((A "=") :: e1 :: l) ->
Bool (let v = unInt (eval e1 env) in

let l = List.map (fun x -> unInt (eval x env)) l
in List.for_all (fun y -> y=v) l)

First, the first expression is evaluated, and its integer tag is removed. This reflects
the fact that this operator is intended to work only on integer values. Then, we
map the same operation to the elements of the rest of the list of arguments.
Finally, we check that all the elements of that list are equal to the first element.

Logical conjunction and disjunction are implemented in a similar manner.

Conditionals and Syntactic Sugar. Conditional expressions are easy to de-
fine. However, we limit them to having two arguments and leave the gener-
alization as an exercise to the reader in applying the variable arity technique
presented above.

A Gentle Introduction to Multi-stage Programming, Part II 269

We use conditionals to illustrate how to deal with syntactic sugar. In partic-
ular, Aloe includes if statements, which can be interpreted by a recursive call
to the interpreter applied to the de-sugared version of the expression:

| L [A "if"; c2; e2; e3] ->
eval (L [A "cond"; L [c2 ; e2]; L [A "else"; e3]]) env

The key issue that requires attention using this technique to support syntactic
sugar is that the we should make sure that it does not introduce non-termination.
While this may seem inconsequential in a setting in which the language being
interpreted can itself express diverging computation, the distinction between
divergence in the interpretation and divergence in the result of the interpretation
will become evident when we stage such interpreters.

Lambda Abstraction. If lambda abstractions in Aloe were allowed only to
have one argument, then the interpretation of lambda abstractions would be
expressible in one line:

| L [A "lambda" ; L [S x] ; e] ->
Fun (1, fun l -> match l with

[v] -> eval e (ext env x (Val v)))

The pattern matching requires that there is only one argument, that it is a string,
and that the value of that string is bound to x. The pattern also requires that
this be followed precisely by one expression. The interpretation returns a value
tagged with the Fun tag. The first component of this value represents the number
of arguments that this function expects (in this case one). The second argument
is an OCaml lambda abstraction that takes a value and pattern matches it to
assert that it is a list of one element, which is called v. The result of the OCaml
lambda abstraction is the result of evaluating the body of the Aloe lambda
abstraction, namely, the expression e. Evaluation of this expression occurs under
the environment env extended with a mapping from the name x to the value
Val v. We tag the value v with the tag Val to reflect the fact that we do not
allow the arguments to lambda abstractions to be mutated.

To handle the fact that lambda abstractions in Aloe can handle multiple
arguments, the interpretation becomes a bit more verbose, but in reality it is
essentially doing little more than what the case for one argument is doing:

| L [A "lambda" ; L axs ; e] ->
let l = List.length axs
in Fun (l, fun v ->

eval e (lext env
(List.map (function A x -> x) axs)
(List.map (fun x -> Val x) v)))

Here, we are simply allowing the argument to be a list of names and handling
this extra degree of generality by mapping over lists and using the function for
extending the environment with a list of mappings (introduced earlier).

270 W. Taha

Function Application. Function application is similarly easier to understand
if we first consider only the case of single-argument functions:

| L [e1; e2] -> let (1,f) = unFun (eval e1 env) in
let arg = eval e2 env
in f [arg]

The pattern match assumes that we only have an application of one expression
to another. The first let statement evaluates the first expression, removes the
Fun tag, checks that the first component is 1, and calls the second component
f. The second let statement evaluates the argument expression, and calls the
resulting value arg. While these two let statements can be interchanged, the
order is highly significant in a language that allows side effects, as Aloe does.
Finally, the result of the interpretation is simply the application of the function
f to the singleton list [arg]. The interpretation for function application in full
generality is as follows:

| L (e::es) ->
let (i,f) = unFun (eval e env) in
let args = List.map (fun e -> eval e env) es in
let l = List.length args
in if l=i
then f args
else raise (Error ("Function has "^(string_of_int l)^

" arguments but called with "^(string_of_int i)))

This generalization also evaluates the operator expression first, then it uses a
list map to evaluate each of the argument expressions. Once that has been done,
the arguments are counted, and we check that the number of arguments we have
is consistent with the number of arguments that the function expects. If that is
the case, then we simply perform the application. Otherwise, an error is raised.

3.6 The Interpreter for Programs

The interpreter for Aloe programs takes a program and an environment and pro-
duces a value. Compared with expressions, Aloe programs are relatively simple,
and thus the interpreter for programs can be presented in one-shot, as follows:

let rec peval p env =
match p with
| [e1] -> eval e1 env
| (L [A "define"; A x; e1])::p ->

let r = ref Undefined in
let env’ = ext env x (Ref r) in
let v = eval e1 env’ in
let _ = (r := v)
in peval p env’

| (L [A "define"; L ((A x)::xs); e1])::p ->

A Gentle Introduction to Multi-stage Programming, Part II 271

peval (L [A "define"; A x;
L [A "lambda" ; L xs ; e1]]::p) env

| _ -> raise (Error "Program form not recognized")

The first case, the case in which a program is simply an expression, is easy to
recognize because it is the only case in which a program is a singleton list. In that
case, we simply use the interpreter for expressions. The second case is a define
statement. We wish to interpret all define statements as recursive, and there are
many ways in which this can be achieved. In this interpreter, we employ a useful
trick that can provide an efficient implementation in the presence of side effects-
in the interpretation, we create a reference cell initialized to the special value
Undefined. Then, we create an extension of the current environment mapping
the variable that we are about to define to this reference. Next, we evaluate the
body of the reference. Finally, we update the reference with the result of the
evaluation of the body and continue the evaluation of the rest of the program in
the extended environment. Clearly, this technique only produces a useful value
if the definition of the variable that we are about to define is not strict in its
use of that variable. This is generally the case, for example, if the definition is
a lambda abstraction or an operation that produces a function value (which are
often used, for example, to represent lazy streams).

The last case of the interpreter produces an error if any other syntactic form
is encountered at the top level of a program.

With this, we have completed our overview of the key features of the reference
interpreter for the Aloe language.

3.7 A Benchmark Aloe Program

To collect some representative performance numbers, we use one Aloe program
that defines and uses a collection of functions, including a number of alternative
definitions for the factorial, Fibonacci, and Takeuchi (tak) functions using num-
bers and lists to perform the core computation, as well as a CPS version of the
insertion sort. As a sanity check for the correctness of the implementation, the
suite includes a function that applies these various functions to different inputs
and compares the output. To facilitate the use of the suite for performance eval-
uation, the main function executes this test 1000 times. For simplicity, all the
functions that form the test suite are included in one file called test.aloe.

3.8 The Experiment

To study their relative performance, the same experiment is carried out for
the interpreter and for the staged versions of the interpreter. The code for the
experiment for the interpreter described above is as follows:

let test1 () =
let f = "test.aloe" in
let _ = Trx.init_times () in
let s = Trx.time 10 "read_file" (fun () -> read_file f) in

272 W. Taha

let [(L p,r)]
= Trx.time 10 "parse" (fun () -> parse ("("^s^")")) in

let a = Trx.time 1 "peval" (fun () -> peval p env0) in
let a = Trx.time 1 "readeval" (fun () -> freadeval f) in
let _ = Trx.print_times ()
in a

The functions Trx.init_times, Trx.time, and Trx.print_times are all stan-
dard functions that come with MetaOCaml, and they are provided to assist with
timing. The function freadeval performs all the steps in one shot. The exper-
iment times ten different readings of the file into a string, ten parsings of the
string into an abstract syntax tree, a single evaluation of the parse program, and
a combined run through of all of these steps.

3.9 Benchmarking Environment

All results reported in this paper are for experiments performed on a machine
with the following specifications: MacBook running Mac OS X version 10.4.11,
2 GHz Intel Core 2 Duo, 4 MB L2 cache per processor, 2 GB 667 MHz DDR2
DRAM. All results were collected using MetaOCaml version 3.09.1 alpha 030
using the interactive top-level loop.

3.10 Baseline Results

The results of the first experiment are as follows:

test1 ();;
__ read_file __________________ 10x avg = 1.982000E - 01 ms
__ parse ______________________ 10x avg = 6.398430E + 01 ms
__ peval _______________________ 1x avg = 1.408170E + 04 ms
__ readeval ___________________ 1x avg = 1.417668E + 04 ms

For this baseline implementation, reading the file is fast, parsing is a little bit
slower, but evaluation has the dominant cost.

4 Converting into Continuation-Passing Style (CPS)

Consel and Danvy [1] recognized the utility of CPS converting programs before
they are partially evaluated. The same is observed for CPS converting programs
before they are staged [7,9]. Intuitively, having a program in CPS makes it
possible to explore specialization opportunities in all branches of a conditional
statement even when the condition is not statically known.

We begin this section with a brief review of CPS conversion, and then proceed
to discussing the CPS conversion of the interpreter that we developed above.

A Gentle Introduction to Multi-stage Programming, Part II 273

4.1 CPS Conversion

Consider the Fibonacci function, which can be implemented in OCaml as follows:

let rec fib n = if n<2 then n
else fib (n-1) + fib (n-2)

This function has type int -> int. Converting this function into CPS yields
the following:

let rec fib_cps n k = if n<2 then k n
else fib_cps (n-1)

(fun r1 -> fib_cps (n-2)
(fun r2 -> k

(r1 + r2)))
let k0 = fun r -> r
let fib n = fib_cps n k0

Where fib_cps is a function of type int -> (int -> ’a) -> ’a. This new
code is derived as follows.

Functions Get an Extra Parameter. We add the extra parameter k to the
function that we are converting. This parameter is called the continuation, and
its job is to process whatever value was being simply returned in the original
function. So, because the original function returns a value of type int, the con-
tinuation has type int -> ’a. This type confirms that the continuation is a
function that expects an integer value. It also says that the continuation can
return a value of any type: CPS conversion does not restrict what we do with
the value after it is “returned” by applying the continuation to it. Note, how-
ever, that the final return value of the new function (fib_cps) is also ’a. In
other words, whatever value the continuation returns, it is also the value that is
returned by the converted function.

Only the Branches in Conditionals are Converted. The if statement is
converted by converting the branches. In particular for the purposes of staging
interpreters, the condition need not be converted, and can stay the same as
before.

Simple Values are Returned by Applying the Continuation. Any simple
value such as a constant, a variable, or any value that does not involve compu-
tation is converted by simply applying the continuation parameter to it. Thus,
the true branch of the conditional is converted from being n to k n.

For Composite Computations, Convert Sub-Expressions. The most in-
teresting part of the Fibonacci example is the else branch, as it has two function
calls and an addition operation. Converting any such composite computation
proceeds by identifying the first expression to be evaluated and creating a con-
tinuation (a function) which spells out what is done after the first computation
is done. Technically, identifying the first computation requires familiarity with

274 W. Taha

the evaluation with the order of evaluation in our language. For the purposes
of staging, any reasonable choice, independently of the actual language seman-
tics, seems to work fine. In our example, we consider the left-most function
call to be the first one. Thus the converted code for this branch starts with
fib_cps (n-1) The rest of the code for this branch builds the continua-
tion for this computation. In general, when we are building a new continuation
during CPS conversion, we create a lambda abstraction that names the value
that is passed from the result of the first computation to this continuation for fur-
ther processing. This explains the new code up to the level of (fun r1 -> ...).
In building the body of the lambda abstraction of this continuation, we simply
repeat the process for the rest of the code in the original function. The next
“first” computation is the right-most function call, and so the continuation be-
gins with fib_cps (n-2) Then we need to construct a continuation for
this computation. All that remains at this point is add the two values r1 and r2
and apply the continuation k to this sum.

Using a CPS Function as a Regular Function. The last two lines of the
example above show how a function such as fib_cps can be packaged up to
behave to the external world just as the original function did. All that is needed
is to construct an initial continuation k0 that simply takes its argument and
returns it unchanged. Then, we define fib as a function that calls fib_cps with
the same argument and the initial continuation.

Indentation of CPS Code. For consistency and clarity, a particular indenta-
tion style is often used to make code written in CPS easier to read. For example
the code above is written as follows:

let rec fib_cps n k = if n<2 then k n
else fib_cps (n-1) (fun r1 ->

fib_cps (n-2) (fun r2 ->
k (r1 + r2)))

Writing the code in this indentation style allows us to make a half-accurate,
semi-formal pun with the following code:

let k r = r
let rec fib n = if n<2 then k n

else let r1 = fib (n-1) in
let r2 = fib (n-2) in
k (r1 + r2)

Where to Stop Converting. Often, we will find that full CPS conversion is
not necessary. In our experience, it is enough to start by converting the main
interpreter program, and only convert helper functions as needed. In general, the
functions that need to be converted are the functions that need to be in CPS
for all the recursive calls to the main interpreter program to be in CPS.

A Gentle Introduction to Multi-stage Programming, Part II 275

4.2 Effect of CPS Conversion on the Type of the Interpreter

As noted in Part I, it is generally useful to convert a program into CPS before
staging it. To convert our interpreter for the expressions

eval : sxp -> (string -> var) -> dom

into CPS requires systematically rewriting the code to

1. Take in an extra “continuation” argument in every function call, and to
2. apply this continuation to every value that we would normally simply return

in the original code.

This yields a new function

keval : sxp -> (string -> var) -> (dom -> dom) -> dom

4.3 CPS Converting the Interpreter

We now turn to CPS converting the code of an interpreter similar to the one
for Aloe. We conclude the section by reporting the results of running our timing
experiments on the CPS-converted interpreter.

4.4 Taking in the Continuation

Only minor change is needed to the outer-most structure of the interpreter for
expressions:

let rec keval e env k =
try
(match e with
...)

with Error s -> (print_string ("\n"^(print e)^"\n");
raise (Error s))

In the first line, we have added an extra parameter k, through which we pass
the continuation function. This is the function that we apply in the rest of the
interpreter to every value that we simply returned in the original interpreter.

A natural question to ask when we consider the next line is: why not simply
add an application of k around the try statement, and be done with the con-
version to CPS? While this would be valid from the point of view of external
behavior, to achieve our goal of effective staging, it is important that we push
the applications of the continuation k as far down as possible to the leaves of
our program. In particular, this means that we push the applications down over
try statements and match statements.

A useful observation to make at this point is that pushing this single ap-
plication of the continuation from around a match statement duplicates this
application around all the branches. While this duplication is inconsequential
in normal evaluation of a match statement, it is significant when evaluating the
staged version of a match statement.

276 W. Taha

4.5 Cases That Immediately Return a Value

When we get to the branches of the match statement, the simple cases in which
the interpretation returns a value without performing an interesting computa-
tion, the CPS version of this code simply applies the continuation k to this value
as follows:

| A "true" -> k (Bool true)
| A "false" -> k (Bool false)
| A "empty" -> k (Empty)

The cases for integer and string literals are similar.

4.6 Match Statements and Primitive Computation

The case for variables allows us to illustrate two points. First, if we encounter
another nested try, match, or if statement, we simply push the continuation to
the branches:

| A x ->
(match env x with
| Val v -> k v
| Ref r -> k (! r))

In the second branch, we also notice that even though the expression ! r is
a computation (and not a value) that consists of applying the de-referencing
function ! to the variable r, we leave this expression intact and simply apply
the continuation k to its result. For general function applications, we see that
this is not the case. However, for primitive functions such as de-referencing we
simply leave their application intact in the CPS-converted program. The use of
primitive functions is seen in several other cases in the interpreter, including
logical negation, arithmetic operations, and many others.

4.7 Simple, Non-primitive Function Calls

Function calls are converted by replacing the call to the original function with a
call to the new function. Because our goal is to push CPS conversion as deeply
as possible, we assume that we have already CPS-converted the function being
applied. An easy special case is when the function we are converting is an appli-
cation of a function inside its definition (we are converting a recursive call inside
a recursive definition), we do both things at the same time.

Converting a function call involves providing a continuation at the call site,
and this requires some care. Passing the current continuation k to the recursive
call would mean that we simply want the result of the current call to be used
as the rest of the computation for the recursive call. This would only be correct
if we were immediately returning result of this recursive call. In our interpreter,
this situation arises only in the case of our interpretation of syntactic sugar, such
as our interpretation of the if statement in terms of the cond statement:

A Gentle Introduction to Multi-stage Programming, Part II 277

| L [A "if"; c2; e2; e3] ->
keval (L [A "cond"; L [c2 ; e2];

L [A "else"; e3]]) env k

We address how to deal with general function calls next.

4.8 Extending Continuations and Naming Intermediate Results

Generally speaking, however, having one case of a recursive function defined
directly as a recursive call to the same function (with different arguments) is the
exception, and not the rule. So, the question is, what continuation do we pass
when the continuation for the recursive call is not simply the current continuation
k? The basic rule is to look at the computation that surrounds the recursive call
in the original expression that we are converting. Whatever happens there to the
original result is really what the continuation that we pass to the recursive call
needs to do before the current continuation is applied. This is illustrated clearly
by considering the case of logical negation:

| L [A "not"; e1] -> keval e1 env (fun r ->
k (Bool (not (unBool r))))

Compared with the code for logical negation in the reference interpreter (Sub-
section 3.5), CPS conversion has turned the expression inside-out: the recursive
call, which used to be the innermost expression, is now the outermost. In ad-
dition, what happens after we return the result of the computation, which was
previously implicit in the outermost surrounding context for the code, is now
explicitly represented as k and is deeply nested in the expression.

This example also illustrates two patterns that frequently arise in CPS conver-
sion. First, we create new continuations by extending existing ones, as created in
the expression fun r -> k (Bool (not (unBool r))). Second, when we cre-
ate new continuations in this manner we also end up introducing a new name
r for what was previously simply an unnamed, intermediate computation: the
application of eval to e1 and env. In other words, a natural side-effect of CPS
conversion is to produce code in which all intermediate computations are named
and each step of the computation cannot be further reduced into smaller steps.

4.9 Multiple, Non-primitive Functions Calls

The “inside-out” metaphor about CPS conversion should help us to see how to
convert functions where several non-primitive functions are applied. The case of
addition (Subsection 3.5) is an example of such a situation, where we make two
recursive calls

| L [A "+"; e1; e2] -> keval e1 env (fun r1 ->
keval e2 env (fun r2 ->
k (Int ((unInt r1) + (unInt r2)))))

278 W. Taha

The converted code is indented to suggest a particular, convenient way of reading
the code. In particular, while the expression (fun r1 -> ... only ends at the
very end of the statement, and even though this whole expression is technically
being passed to the first application of keval as a argument, we know how this
argument is going to be used: it is applied to the result of the keval e1 env
computation. This means that we can read the code line by line as follows:

1. Apply keval to e1 and env, and “call” the result r1. The name r1 is used
in the following lines to refer to this value,

2. Apply keval to e2 and env, and “call” the result r2, and finally
3. “Return” or “continue” with the value Int ((unInt r1) + (unInt r2)).

As we gain more familiarity with CPS-converted code, we find that this reading
is both accurate and intuitive. The reader would be justified in thinking that
CPS conversion seems to add a somewhat imperative, step-by-step feel to the
code.

4.10 Passing Converted Functions to Higher-Order Functions

The equality construct (Subsection 3.5) allows us to illustrate two important
issues that arise with CPS conversion. This section addresses the first issue,
which concerns what conversion should do when we are passing a converted
function as an argument to another (higher-order) function.

For example, the reference interpreter creates functions that internally make
calls to the interpreter eval and passes them to map so that they can be applied to
a list of arguments. What continuation do we pass to these calls? Clearly, passing
the current continuation to each of these elements would not be appropriate: it
would have the effect of running the rest of the computation on each of the
elements of the list as a possible, alternate, result. In fact, generally speaking,
the result of CPS should only apply the current continuation exactly once. Only
in situations where we are essentially backtracking do we consider sequentially
applying the same continuation more than once. A practical alternative for what
to pass to eval in this situation would be to pass the identity function as the
continuation. This is not unreasonable, but passing the identity function as the
continuation essentially means that we are locally switching back to direct style
rather than CPS. The most natural way to convert the expression that maps the
interpretation function to the list elements is to change the map function itself
to accommodate functions that are themselves in CPS, as follows:

let rec kmap f l k = match l with
| [] -> k []
| x::xs -> kmap f xs (fun r1 ->

f x (fun r2 ->
k (r2::r1)))

We need to not only change the list but also to really push the CPS conversion
process through. In addition we need to replace the use of List.for_all by a

A Gentle Introduction to Multi-stage Programming, Part II 279

function that follows CPS. Fortunately, there is no need to rewrite the whole
List.for_all function; instead, we can rewrite it using the List.fold_left
function. Thus, CPS converting the code for the equality construct we get:

| L ((A "=") :: e1 :: l) ->
keval e1 env (fun r1 ->
let v = unInt r1
in kmap (fun x k -> keval x env (fun r -> k (unInt r))) l

(fun r ->
k (Bool (List.fold_left

(fun bc nc -> (bc && nc=v))
true r))))

where the List.fold_left application realizes the List.for_all application
in the original code.

Before proceeding further, we recommend that the reader work out the deriva-
tion of this code from the original, direct-style code. While converting an expres-
sion into CPS it is useful to keep in mind that pushing the conversion as deep
into the code as possible will generally improve the opportunities for staging.

4.11 Needing to Convert Libraries

The second issue that the equality construct allows us to illustrate is an undesir-
able side-effect of CPS conversion: converting our code may require converting
libraries used by the code as well. In our experience, this has only been a limited
problem. In particular, interpreters tend to require only a few simple library
routines for the interpretation itself rather than for the operations performed
by or on the values interpreted. Again, this distinction becomes clear when we
consider staging the interpreter.

4.12 Lambda Abstraction

Except for one interesting point, the case for lambda abstraction is straightfor-
ward:

| L [A "lambda" ; L axs ; e] ->
let l = List.length axs
in k (Fun (l, fun v ->

keval e (lext env
(List.map (function A x -> x) axs)
(List.map (fun x -> Val x) v))
(fun r -> r)))

The interesting point is that we pass in the identity function as the continuation
to keval. This is the correct choice here because what we need to return (or pass
to the continuation k) is a Fun-tagged function that takes in an argument and
returns the interpretation of the expression e in the context of that argument.
We simply do not have the continuation for the result of the interpretation at

280 W. Taha

this point because that continuation only becomes available if and when this
function is applied.

Note that it is possible to change the type of the Fun tag to allow it to carry
functions that are themselves in CPS. In that case, we would construct a function
that takes a continuation along with the argument, and we can pass this function
to eval. This choice, however, is not necessitated by the decision to CPS-convert
the interpreter itself, and, we see in the next section, it is possible to get the
basic benefits of staging without making this change to our value domain.

The rest of the cases in the interpreter are relatively straightforward.

Note 3 (Practical Consideration: The time needed to convert to CPS). In our
experience, converting the interpreter into CPS takes almost as much time as
writing the interpreter itself in the first place. While this process can be auto-
mated, we find that doing the conversion by hand helps us better understand
the code and leaves us better prepared for staging this code.

4.13 Experiment 2

The results of running our experiment on the CPS-converted interpreter are as
follows:

test2 ();;
__ read_file __________________ 10x avg = 1.526000E - 01 ms
__ parse ______________________ 10x avg = 6.843940E + 01 ms
__ kpeval ______________________ 1x avg = 2.082415E + 04 ms
__ readeval _____________________1x avg = 2.092970E + 04 ms

First, while there was no change to the implementations of read_file and
parsing, there is some fluctuation in that reading. In our experience, it seems
that there is more fluctuation with smaller values. Repeating the experiment
generally produced kpeval and readeval timings within 1-2% of each other.

Contrasting these numbers to the baseline readings, we notice that CPS con-
version has slowed down the implementation by about 45%.

5 Staging the CPS-Converted Interpreter

In this section, we explain the issues that arise when CPS-converting the inter-
preter introduced above. We focus on the cases where we need to do more than
simply add staging annotations.

5.1 Types for the Staged Interpreter

The reader will recall from Part I that MetaOCaml provides a code type con-
structor that can distinguish between regular values and delayed (or staged)
values. For conciseness, we elide the so-called environment classifier parame-
ter from types. For example, we simply write int code rather than the full
(’a, int) code used in the MetaOCaml implementation.

A Gentle Introduction to Multi-stage Programming, Part II 281

Adding staging annotations transforms our interpreter from

keval : sxp -> (string -> var) -> (dom -> dom) -> dom

into

seval : sxp -> (string -> svar) -> (dom code -> dom code)
-> dom code

where svar is a modified version of the var type defined as follows:

type svar = Val of dom code | Ref of (dom ref) code

5.2 A Quick Staging Refresher

The reader will also recall that MetaOCaml has three staging constructs. Brack-
ets delays a computation. So, where as 1+1 has type int and evaluates to 2,
the bracketed term .< 1+1 >. has type int code and evaluates to .< 1+1 >..
Escape allows us to perform a computation on a sub-component of a bracketed
term. Thus,

let lefty left right = left in
.< 1+ .~(lefty .<2+3>. .<4+5>.) >.

contains the escaped expression .~(lefty .<2+3>. .<4+5>.). The whole ex-
ample evaluates to .< 1+(2+3)>.. Run is the last construct, and it allows us to
run a code value. Thus, .! .<1+2>. evaluates to 3.

The rest of the paper does make heavy use of these constructs, so a good
understanding of how these constructs are used for staging is needed. If the
reader has not already read Part I at this point, we recommend doing so before
continuing.

5.3 Staging the Interpreter

It would be clearly useful if staging the code of the interpreter was only a matter
of adding a few staging annotations at a small number of places in the interpreter.
A few features of the interpreter remain unchanged. For example, the overall
structure of the interpreter, and all the code down to the main match statement
do not change. But when we consider the different cases in the match statement
of the Aloe interpreter, it transpires that only one case can be effectively staged
by simply adding staging annotations. That is the case for if statements. We
can expect this to be generally the case for the interpretation of all syntactic
sugar, because those cases are by definition interpreted directly into calls to the
interpreter with modified (source abstract syntax tree) inputs.

5.4 Cases That Require only Staging Annotations

For most of the cases in the interpreter, staging is achieved by simply adding stag-
ing annotations. Examples include booleans, list construction, integers, strings,

282 W. Taha

variables, and unary, binary, and variable-arity operators. We include here some
simple examples for illustration:

| A "true" -> k .<Bool true>.
| I i -> k .<Int i>.
| A x ->

(match env x with
| Val v -> k v
| Ref r -> k .< ! .~r >.)

| L [A "not"; e1] ->
seval e1 env (fun r ->
k .<Bool (not (unBool .~r))>.)

In all cases, the application of the continuation occurs outside brackets and is
therefore always performed statically.

5.5 Lambda Abstraction

With one exception, the case for lambda abstraction is staged simply by adding
brackets and escapes. In particular, because we know the number of arguments
that the lambda abstraction takes statically, we would like to generate the code
for extracting the individual parameters from the parameter list statically. This
can be achieved by essentially eta-expanding the list of arguments by taking
advantage of the fact that we know the number of arguments. A function that
performs this operation would have the type:

eta_list : int -> ’a list code -> ’a code list

The CPS version of such a function is expressed as follows:

let keta_list l v k =
let rec el_acc l v a k =
if l<=0 then k []
else .<match .~v with

| x::xs -> .~(el_acc (l-1) .<xs>. (a+1) (fun r ->
k (.<x>. :: r)))

| _ -> raise (Error "Expecting more arguments")>.
in el_acc l v 0 k

The staged version of the lambda abstraction is simply:

| L [A "lambda" ; L axs ; e] ->
let l = List.length axs
in k .<Fun (l, fun v ->

.~(keta_list l .<v>. (fun r->
seval e (lext env

(List.map (function A x -> x) axs)
(List.map (fun x -> Val x) r))

(fun r -> r))))>.

A Gentle Introduction to Multi-stage Programming, Part II 283

Note that it would have been difficult to perform lext statically without per-
forming something similar to eta-expansion.

5.6 Function Application

Similarly, function application requires only one main change. Because the ab-
stract syntax tree provides us with a static list of expressions that we map to a
static list of interpretations of these expressions, we need a function to convert
the second type of list into a corresponding code fragment for inclusion in the
generated code. In other words, we need a function with the following type:

lift_list : ’a code list -> ’a list code

This function can be expressed as follows:

let rec lift_list l =
match l with | [] -> .<[]>.

| x::xs -> .< .~x :: .~(lift_list xs)>.

Using this function, we stage the application case as follows:

| L (e::es) ->
seval e env (fun r1 ->
.<let (i,f) = unFun .~r1
in .~(kmap (fun e -> seval e env) es (fun r2 ->

let args = r2 in
let l = List.length args
in .<if l= i
then let r = f .~(lift_list args)

in .~(k .<r>.)
else raise
(Error ("Function has "^(string_of_int l)^

" arguments but called with "^
(string_of_int i)))>.))>.)

Note 4 (Practical Consideration: What to Expect When Staging). To help give
the reader a clear picture of the process of staging, we describe the author’s
experience in developing the interpreter presented in this section. The first pass
of putting staging annotations without running the type-checker was relatively
quick and revealed only a small number of questions. The main question was
about what to do with the semantics of lambda, and then the need for intro-
ducing the two-level eta-expansion [2]. Once this pass was completed, we ran
the compiler on this staged code. There was a syntax error every 20-50 lines.
Once those were fixed, the compiler began reporting typing errors. There were
approximately twice as many typing errors as there were syntax errors. Many of
these typing errors also revealed interesting issues that required more care while
staging than originally anticipated during the first pass.

284 W. Taha

5.7 Experiment 3

The results of running the experiment on the staged interpreter are as follows:

test3 ();;
__ read_file __________________ 10x avg = 1.707000E - 01 ms
__ parse ______________________ 10x avg = 6.788850E + 01 ms
__ speval ______________________ 1x avg = 1.018300E + 01 ms
__ compile ___________________ 1x avg = 2.407380E + 02 ms
__ run __________________________1x avg = 6.653610E + 02 ms
__ readeval _____________________1x avg = 9.668440E + 02 ms

Looking at the overall time from file to result, staging provided us with a speedup
of about 14 times over the original unstaged version. While the speedup is greater
when compared to the CPS’ed version, CPS conversion was carried out only as
a step towards staging.

6 The Interpretation of a Program as Partially Static
Data Structures

In almost any imaginable language that we may consider, there are many pro-
grams that contain computation that can be performed before the inputs to the
program are available. In other words, even when we ignore the possibility of
having one of the inputs early, programs themselves are a source of partially
static data. If we look closely at the way we have staged programs in the previ-
ous section, we notice that we made no attempt to search for or take advantage
of such information. A standard source of partially static information is closed
expressions, meaning expressions that contain no variables, and therefore, con-
tain no unknown information. Some care must be taken with this notion, because
some closed programs can diverge. Another, possibly more interesting and more
profitable type of partially static information that can be found in programs
in untyped languages is partial information about types. This information can be
captured by the data type tags that allow the runtime of an untyped language to
uniformly manipulate values of different types. Because the introduction and the
elimination of such tags at runtime can be expensive, reducing such unnecessary
work can be an effective optimization technique.

6.1 A Partially Static Type for Denotable Values

For Aloe, we can further refine our types for the staged interpreter to facilitate
taking advantage of partially static type information in a given untyped program.
In particular, instead of having our staged interpreter produce only values of type
dom code, we allow it to produce values of a staged dom type, which we call sdom
defined as follows:

A Gentle Introduction to Multi-stage Programming, Part II 285

type sdom =
| SBool of bool code | SInt of int code | SStr of string code
| SFun of int * (sdom list -> sdom) | SUndefined | SVoid
| SEmpty | SCons of dom ref code * dom ref code
| SAny of dom code.

In essence, this type allows us to push tags out of the code constructor when
we know their value statically. The last constructor allows us to also express the
case when there is no additional static information about the tags (which was
what we assumed all the time in the previous interpreter).

An important special case above is the case of Cons. Because each of the
components of a cons cell is mutable, we cannot use the same techniques that
we consider here to push information about tags out of the ref constructor.

A side effect of this type is that case analysis can become somewhat redundant,
especially in cases in which we expect only a particular kind of data. To minimize
and localize changes to our interpreter when we make this change, we introduce
a matching function for each tag along the following lines:

let matchBool r k =
let m = "Expecting boolean value" in
match r with
| SBool b -> k b
| SAny c -> .<match .~c with Bool b -> .~(k ..)

| _ -> raise (Error m)>.
| _ -> k .<raise (Error m)>.

It is crucial in the last case that we do not raise an error immediately. We return
to this point in the context of lazy language constructs.

We also change the type for values stored in the environment as follows:

type svar = Val of sdom | Ref of dom ref code

Again, we cannot really expect to pull tag information over the ref constructor,
as side-effects change the value stored in a reference cell.

6.2 Refining the Staged Interpreter

To take advantage of partially static information present in a typical program
and that can be captured by the data type presented above, we make another
pass over the staged interpreter that we have just developed.

The Easy Cases. The basic idea of where we get useful information is easy to
see from the simple cases in our interpreter:

| A "true" -> k (SBool .<true>.)
| A "empty" -> k SEmpty
| I i -> k (SInt .<i>.)
| S s -> k (SStr .<s>.)

286 W. Taha

In all of these cases, it is easy to see that changing the return type from dom code
to sdom allows us to push the tags out of the brackets. Naturally, the first case
has more static information than we preserve in the value we return, but we
focus on issues relating to tag information.

Marking the Absence of Information. The first case in which we encounter
an absence of static tag information is environment lookup:

| A x -> match env x with | Val v -> k v
| Ref r -> k (SAny .<(! .~r)>.)

Static tag information is absent in r because it has dom code type, rather than
sdom. We accommodate this situation by using the SAny tag. The intuition here
is that, because the de-referencing has to occur at runtime, there is no easy way
to statically know the tag on that value. Similar absence of information about
the resulting tag also occurs in the interpretation of car and cdr because they
also involve de-referencing.

Reintroducing Information. Ground values are not the only source of static
information about tags. Generally speaking, the tags on the result of most prim-
itive computations are known statically. For example, we can refine the case for
logical negation as follows:

| L [A "not"; e1] ->
xeval e1 env (fun r ->
matchBool r (fun x ->
k (SBool .<not .~x>.)))

Knowing that the tag always has to be SBool in the rest of the computation
allows us to make sure that this tag does not occur in the generated code when
this code fragment occurs in a context that expects a boolean.

Similarly, tag information is reintroduced by all other primitive operations in
Aloe.

Strictness and Laziness. Care is needed when refining the cases of lazy lan-
guage constructs. In particular, unlike a static type system, dynamic languages
allow lazy operations to succeed even when an unneeded argument has a type
that would lead to failure if it was needed. The multi-argument logical operators
of Aloe, and and or are examples of such lazy language constructs. It is also
interesting to note that this issue does not arise with conditionals, because even
though they are lazy they are indifferent about the type tags on the arguments
on which they are lazy.

The refined interpretation for and is as follows:

| L ((A "and") :: es) ->
let rec all l k =
(match l with
| [] -> k .<true>.

A Gentle Introduction to Multi-stage Programming, Part II 287

| x::xs ->
xeval x env (fun r ->
matchBool r (fun x ->

.<if .~x
then .~(all xs k)
else .~(k .<false>.)>.)))

in all es (fun r -> k (SBool r))

This code is essentially what we would expect from the last two examples. What
is interesting here is that using matchBool instead of the dynamic if unBool
operation would be incorrect if we were not careful about the last case in the
definition of matchBool. In particular, if that case immediately raised an ex-
ception, then an expression such as (and true 7) would fail. In that case, we
would be evaluating the types and checking them too strictly. By making sure
that we return a code fragment that would raise an error only if we evaluate it,
we ensure that the correct semantics is preserved.

Loss of Information at Mutable Locations. Intuitively, the boundaries
at which we have to lose static information about tags are places where the
connection between the source and the target of this information computation
must be postponed to the second stage. Cases that involve assignment and the
construction of new reference cells are examples of this situation. The places
where there is a clear need for losing the static tag information in the following
two cases are marked by the use of the lift function:

| L [A "set!"; A x; e2] ->
(match env x with
| Val v ->
raise (Error "Only mutable variables can be set!")

| Ref v ->
xeval e2 env (fun r ->
.<let _ = (.~v:= .~(lift r)) in .~(k SVoid)>.))

| L [A "cons"; e1; e2] ->
xeval e1 env (fun r1 ->
xeval e2 env (fun r2 ->
k (SCons (.<ref .~(lift r1)>., .<ref .~(lift r2)>.))))

The lift function has type sdom -> dom code and is defined as follows:

let rec lift x =
match x with
| SBool b -> .<Bool .~b>.
| SInt i -> .<Int .~i>.
| SStr s -> .<Str .~s>.
| SFun (n,f) -> .<Fun (n,fun v ->

.~(keta_list n .<v>. (fun args ->
(lift (f (List.map (fun x -> SAny x)

args))))))>.

288 W. Taha

| SUndefined -> .<Undefined>.
| SVoid -> .<Void>.
| SEmpty -> .<Empty>.
| SCons (h,t) -> .<Cons (.~h, .~t)>.
| SAny c -> c

Most cases are self evident. The case functions is probably the most interesting,
and there we unfold the statically known function into a dynamic function that
explicitly unpacks its argument and also lifts the result of this computation.
Lifting the result of the function call is easier than this code makes it seem,
and the function does not necessarily need to be recursive. In particular, our
interpreter only constructs functions that return values tagged with SAny.

Loss of Information at Function Boundaries. Pushing static tag informa-
tion across function boundaries can be difficult. This can be seen by analyzing
what happens both in lambda abstractions and in function applications. In a
lambda abstraction, we create a function with a body that computes by an in-
terpretation. What continuation should this interpretation use? Previously, we
used the identity function, but now the type of the continuation is different. It
expects a sdom value, and yet it must still return a code value. The natural
choice seems to be to use lift as the continuation and to mark this loss of
information in the result by using SAny:

| L [A "lambda" ; L axs ; e] ->
let l = List.length axs
in k (SFun (l, fun r ->

SAny (xeval e (lext env
(List.map (function A x -> x) axs)
(List.map (fun x -> Val x) r))

lift)))

In the case of application, because we generally do not know what function
ultimately results from the expression in the function position, we cannot prop-
agate information across this boundary. If we introduce additional machinery,
we can find useful situations in which information can be propagated across this
boundary. The simplest solution, however, is as follows:

| L (e::es) ->
xeval e env (fun r1 ->
.<let (i,f) = unFun .~(lift r1)
in .~(kmap (fun e -> xeval e env) es (fun r2 ->

let args = (List.map lift r2) in
let l = List.length args
in .<if l= i
then let r = f .~(lift_list args)

in .~(k (SAny .<r>.))
else raise
(Error ("Function has "^(string_of_int l)^

A Gentle Introduction to Multi-stage Programming, Part II 289

" arguments but called with "^
(string_of_int i)))>.))>.)

| _ -> raise (Error "Expression form not recognized")

Using lift on the result in the function position and on the arguments means
that we are blocking this information from being propagated further. The one
use of SAny reflects the fact that, without performing the application, we do not
know anything statically about what applying the function returns.

6.3 Experiment 4

For a rough quantitative assessment of the impact of this refinement of our
staged interpreter, we collect the results of running our experiment with this
interpreter:

test4 ();;
__ read_file __________________ 10x avg = 1.679000E - 01 ms
__ parse ______________________ 10x avg = 6.519040E + 01 ms
__ xpeval ______________________ 1x avg = 1.045800E + 01 ms
__ compile _____________________ 1x avg = 2.199970E + 02 ms
__ run _________________________ 1x avg = 4.569750E + 02 ms
__ readeval ____________________ 1x avg = 7.614950E + 02 ms

It appears that for overall runtime we tend to get a speedup of around 30%
when we take advantage of some of the partially static tag information in our
test program. When we look only at the run time for the generated computations,
the speedup from this optimization could be as high as 45%.

It is interesting to note that our generation time did not go up when we
introduced this optimization, and in fact, compilation time (for the generated
code) went down. The shorter compilation time is possibly due to the smaller
programs that are generated with this optimization (they contain fewer tagging
and untagging operations).

Comparing the overall runtime to the original interpreter, we have a speedup
of about 18 times. Comparing just the run time for the generated computation
to the original interpreter, we have a speedup of about 30 times.

7 Conclusions

In this paper we have explained how to apply the basic techniques introduced
in Part I to a large language with higher-order functions and multiple types. We
also introduced an optimization technique that can be incorporated into staged
interpreters and that is of particular utility to dynamic languages. We find that
reasonable speedups are attainable through the use of staging.

To best address the most novel and most interesting ideas, we have not at-
tempted to produce the most effective staged interpreter. For example, we do not
consider inlining, which was outlined in Part I. And while we do consider par-
tially static information relating to the typing tags that values carry, we ignore

290 W. Taha

partially static information relating to the values themselves. In fact, we also
ignored the propagation of this information across function boundaries, which
is a topic we expect to be able to address in future work. Similarly, we have
used the simplest possible implementation of multiple-argument functions, and
one can imagine that alternative strategies (possibly using arrays) might yield
better results. These are only a few examples of additional optimizations that
are available to the multi-stage programmer and that can be applied to improve
the performance of a staged interpreter.

Acknowledgments. I would very much like to thank the organizers and the
participants of the Generative and Transformational Techniques in Software En-
gineering (GTTSE 2007) and University of Oregon Programming Languages
Summer School (2007) for organizing these events and for all the excellent in-
put that they provided. I would like in particular to thank Ralf Lämmel for his
constant support, and Dan Grossman, and Ron Garcia for their technical input
on the material of the lectures. Dan asked excellent questions at the Oregon
Summer School. His fresh prespective lead to significant new material being in-
troduced. I thank Raj Bandyopadhyay, Jun Inoue, Cherif Salama and Angela
Zhu for proof reading and commenting on a version of this paper. Ray Hardesty
helped us greatly improve our writing.

References

1. Consel, C., Danvy, O.: For a better support of static data flow. In: Hughes, R.J.M.
(ed.) FPCA 1991. LNCS, vol. 523, pp. 496–519. ACM Press, Cambridge (1991)

2. Danvy, O., Malmkjaer, K., Palsberg, J.: Eta-expansion does the trick. Technical
Report RS-95-41, University of Aarhus, Aarhus (1995)

3. Friedman, D.P., Want, M., Haynes, C.T.: Essentials of Programming Languages.
MIT Press, Cambridge (2003)

4. Hutton, G., Meijer, E.: Monadic Parsing in Haskell. Journal of Functional Pro-
gramming 8(4), 437–444 (1998)

5. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR
97291-1000, USA, ftp://cse.ogi.edu/pub/tech-reports/README.html

6. Sabry, A.: The Formal Relationship between Direct and Continuation-Passing Style
Optimizing Compilers: A Synthesis of Two Paradigms. PhD thesis, Rice University
(August 1994)

7. Taha, W.: Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology (1999) Available from [5]

8. Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C.,
Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation.
LNCS, vol. 3016, pp. 30–50. Springer, Heidelberg (2004)

9. Thiemann, P.: Correctness of a region-based binding-time analysis. In: Mathe-
matical Foundations of Programming Semantics, Thirteenth Annual Conference,
Pittsburgh, Pennsylvania, Carnegie Mellon University, p. 26. Elsevier, Amsterdam
(1997)

10. Wadler, P., Taha, W., MacQueen, D.B.: How to add laziness to a strict language
withouth even being odd. In: Proceedings of the 1998 ACM Workshop on ML,
Baltimore, pp. 24–30 (1998)

ftp://cse.ogi.edu/pub/tech-reports/README.html

WebDSL: A Case Study in

Domain-Specific Language Engineering

Eelco Visser

Software Engineering Research Group
Delft University of Technology

visser@acm.org

Abstract. The goal of domain-specific languages (DSLs) is to increase
the productivity of software engineers by abstracting from low-level boil-
erplate code. Introduction of DSLs in the software development process
requires a smooth workflow for the production of DSLs themselves. This
requires technology for designing and implementing DSLs, but also a
methodology for using that technology. That is, a collection of guidelines,
design patterns, and reusable DSL components that show developers how
to tackle common language design and implementation issues. This paper
presents a case study in domain-specific language engineering. It reports
on a project in which the author designed and built WebDSL, a DSL
for web applications with a rich data model, using several DSLs for DSL
engineering: SDF for syntax definition and Stratego/XT for code gener-
ation. The paper follows the stages in the development of the DSL. The
contributions of the paper are three-fold. (1) A tutorial in the application
of the specific SDF and Stratego/XT technology for building DSLs. (2) A
description of an incremental DSL development process. (3) A domain-
specific language for web-applications with rich data models. The paper
concludes with a survey of related approaches.

1 Introduction

Abstraction is the key to progress in software engineering. By encapsulating
knowledge about low level operations in higher-level abstractions, software de-
velopers can think in terms of the higher-level concepts and save the effort of
composing the lower-level operations. By stacking layers of abstraction, devel-
opers can avoid reinventing the wheel in each and every project. That is, after
working for a while with the abstractions at level n, patterns emerge which give
rise to new abstractions at level n + 1.

Conventional abstraction mechanisms of general purpose programming lan-
guages such as methods and classes, are no longer sufficient for creating new
abstraction layers [32, 82]. While libraries and frameworks are good at encap-
sulating functionality, the language which developers need to use to reach that
functionality, i.e. the application programmers interface (API), is often awk-
ward. That is, utterances take the form of (complex combinations of) method
calls. In some cases, an API provides support for a more appropriate language,

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 291–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

292 E. Visser

but then utterances take the form of string literals that are passed to library
calls (e.g. SQL queries) and which are not checked syntactically, let alone se-
mantically, by the host language. Application programs using such frameworks
typically consist of large amounts of boilerplate code, that is, instantiations of
a set of typical usage patterns, which is needed to cover the variation points
of the framework. Furthermore, there is often a considerable distance between
the conceptual functionality of an application and its encoding in the program
code, leading to disproportionate efforts required to make small changes. The
general-purpose host language of the framework has no knowledge of its appli-
cation domain, and cannot assist the developer with for instance verification or
optimization.

In recent years, a number of approaches, including model-driven architec-
ture [76], generative programming [32, 33], model-driven engineering [61, 82],
model-driven software development [87], software factories [30, 51], domain-
specific modeling [60], intentional software [84], and language oriented program-
ming [36], have been proposed that aim at introducing new meta-abstraction
mechanisms to software development. That is, mechanisms that enable the cre-
ation of new layers of abstraction.

Domain-Specific Languages. Common to all these approaches is the encap-
sulation of design and implementation knowledge from a particular application
or technical domain. The commonalities of the domain are implemented directly
in a conventional programming language or indirectly in code generation tem-
plates, while the variability is configurable by the application developer through
some configuration interface. This interface can take the form of a wizard for
simple domains, or full fledged languages for domains with more complex vari-
ability [32]. Depending on the approach, such languages are called modeling lan-
guages, domain-specific languages, or even domain-specific modeling languages.

In this paper the term domain-specific language is used with the following
definition:

A domain-specific language (DSL) is a high-level software implementa-
tion language that supports concepts and abstractions that are related
to a particular (application) domain.

Lets examine the elements of this definition:
A DSL is a language, that is, a collection of sentences in a textual or visual

notation with a formally defined syntax and semantics. The structure of the sen-
tences of the language should be defined by means of a grammar or meta-model,
and the semantics should be defined by means of an abstract mathematical se-
mantics, or by means of a translation to another language with a well understood
semantics. Thus, the properties and behavior of a DSL program or model should
be predictable.

A DSL is high-level in the sense that it abstracts from low-level implementa-
tion details, and possibly from particularities of the implementation platform.
High-level is a matter of perspective, though. Algol was introduced as a language
for the specification of algorithms [8] and was high-level with respect to assembly

WebDSL: A Case Study in Domain-Specific Language Engineering 293

language. Now we consider the Algol-like languages such as C and Java as
low-level implementation languages.

A DSL should support software implementation. This does not require that a
DSL be a procedural language, like many familiar programming languages. In-
deed, declarative DSLs are preferable. However, DSLs should contribute in the
creation of components of executable software systems. There are many examples
of declarative languages that specify computations. For example, a context-free
grammar does not consist of instructions to be executed (‘directly’) by a com-
puter. Rather it is a declarative definition of the sentences of a language. Yet a
grammar may also be used to generate an executable parser for that language.

Finally, the concepts and abstractions of a DSL are related to a particular
domain. This entails that a DSL does not attempt to address all types of com-
putational problems, or not even large classes of such problems. This allows the
language to be very expressive for problems that fall in the domain and com-
pletely useless for other problems. For problems that are on the edge of the
domain (as perceived by the DSL designer), the language may not be adequate.
This gray area typically leads to pressure for the DSL to grow beyond its (orig-
inal) domain. What makes a suitable domain cannot be determined in general;
the closest we can get is maybe the circular definition that a domain is a coherent
area of (software) knowledge that can be captured in a DSL.

The success of a DSL is measured in terms of the improvement of the software
development process it enables. First, it is important that the DSL is actually
effective in its intended domain, that is, applications that are considered to
fit the domain should be expressible with the DSL1. This can be expressed as
the completeness of the DSL or its coverage of the domain. Next, building an
application with a DSL should take substantially less effort than with other
means. An approximation of this metric, is the number of DSL lines of code
(LOC) that is needed for an application compared to what would be needed
with conventional programming techniques. An expressive DSL requires few lines
of code. There is a natural tension between coverage and expressivity. Non-
functional requirements are just as important as functional requirements. In
addition to providing the required functionality, a system should be efficient,
safe, secure, and robust, to the extent required. Finally, first-time development
of applications may be cheap, but systems usually have a long life span. The
question then is how well the DSL supports maintenance and how flexible it is in
supporting new requirements. Van Deursen and Klint [98] discuss maintainability
factors of DSLs.

History. Domain-specific languages pre-date the recent modeling approaches
mentioned above by decades. The name of the programming language for sci-
entific computing fortran, developed by Backus in the late 1950s, is an ab-
breviation of ’formula translation’ [7]. The language borrowed notation from
mathematics so that programmers could write mathematical formulas directly,
instead of encoding these in low-level stack and register operations, resulting in a
1 ‘Application’ can be read either as a complete software system or as a component of

a software system; DSLs do typically not address all aspects of a software system.

294 E. Visser

dramatic improvement of programmer productivity. The 1970s Structured Query
Language (SQL) [24] provided special notation for querying databases based on
Codd’s [27] relational database model. So called little languages [12] prospered in
the Unix environment. Languages such as LEX (lexical analysis), YACC (pars-
ing), PIC (for drawing pictures), and Make (for software building) were de-
veloped in the 1970s and 1980s. Another strand in the history are the so called
fourth generation languages supported by application generators [91], which were
supposed to follow-up the third generation general purpose languages. There are
several surveys of domain-specific languages, including [73, 85, 86, 98, 99].

Textual vs Visual. One aspect of the recent modeling approaches that could be
perceived as novel is the preference for visual (graphical) languages in many ap-
proaches. For example, model-driven architecture and its derivatives are largely
based on the use of UML diagrams to model aspects of software systems. Using
UML profiles, the general purpose UML can be used for domain-specific mod-
eling. MetaCase [60] and the Visual Studio DSL Tools [30] provide support for
defining domain-specific diagram notations. There is no fundamental difference
in expressivity between visual and textual languages. The essence of a language
is that it defines structures to which meaning is assigned. Viewing and creating
these structures can be achieved with a variety of tools, where various represen-
tations are interchangeable. On the one hand, visual diagrams can be trivially
represented using text, for instance by taking an XML rendering of the internal
structure. On the other hand, textual models can be trivially represented ‘visu-
ally’ by displaying the tree or graph structure resulting from parsing followed by
static semantic analysis. Of course, there are non-trivial visualizations of textual
models that may provide an alternative view. Some notations are more appro-
priate for particular applications than others. However, most (successful) DSLs
created to date are textual, so text should not be easily discarded as a medium.
Another factor is the impact on tools required for viewing and creating models.

Systematic Development. Rather than a preference for visual languages,
more significant in recent approaches is the emphasis — with support from in-
dustry (e.g. Microsoft) and standardization organizations (e.g. OMG) — on the
systematic development and deployment of DSLs in the software development
process. While the DSLs and 4GLs of the past were mostly designed as one-
off projects by a domain stakeholder or tool vendor, DSLs should not just be
used during the software development process, but the construction of DSLs
should also become part of that process. Where developers (or communities of
developers across organizations) see profitable opportunities for linguistic ab-
straction, new DSLs should be developed. Rather than language design artistry,
this requires a solid engineering discipline, which requires an effective collection
of techniques and methods for developing domain-specific languages. In their
survey of DSL development methods, Mernik et al. [73] describe patterns for de-
cision, analysis, design, and implementation of DSLs. They conclude that most
existing work focuses on supporting the implementation of DSLs, but fails to
provide support, be it methodological or technological, for earlier phases in the

WebDSL: A Case Study in Domain-Specific Language Engineering 295

DSL life cycle. Thus, a challenge for a software engineering discipline in which
DSLs play a central role is a systematic and reproducible DSL development
methodology. As for the use of DSLs, important criteria for the effectiveness
of such a methodology are the effort it takes to develop new DSLs and their
subsequent maintainability.

In previous work I have focused on the creation of language implementa-
tion technology, that is, a set of DSLs and associated tools for the development
and deployment of language processing tools. The SDF syntax definition for-
malism [53, 101], the Stratego/XT program transformation language and tool
set [17, 19, 103], and the Nix deployment system [37, 39] provide technology for
defining languages and the tools needed for their operation. Publications result-
ing from this research typically present innovations in the technology, illustrated
by means of case studies. This paper for a change does not present technological
innovations in meta technology, but rather an application of that technology in
domain-specific language engineering, with an attempt at exploring the design
space of DSL development methodology.

WebDSL. This paper presents a case study in domain-specific language engi-
neering. The paper tracks the design and implementation of WebDSL, a DSL
for web applications with a rich data model. The DSL is implemented using
Stratego/XT and targets high-level Java frameworks for web engineering. The
contributions of this paper are

– A tutorial on DSL design, contributing to the larger goal of building a method-
ology for the design and implementation of domain-specific languages. This
includes an incremental (agile) approach to analysis, design, and implemen-
tation, and the illustration of best practices in language design, such as the use
of a core language and the introduction of syntactic abstractions to introduce
higher-level abstractions.

– A tutorial on the application of Stratego/XT to building (textual) domain-
specific languages, illustrating the utility of techniques such as term rewrit-
ing, concrete object syntax, and dynamic rewrite rules.

– The introduction of WebDSL, a domain-specific language for the implemen-
tation of web applications with a rich data model.

The next section describes the development process and introduces the setup of
sections 3 to 9, which discuss the stages in the development of WebDSL. Sections
10 to 12 evaluate the resulting WebDSL language and its development process,
also with respect to related work.

2 Process Definition and Domain Analysis

According to the DSL development patterns of Mernik et al. [73], the DSL life
cycle consists of (1) a decision phase in which the decision whether or not to build
a DSL is taken, (2) an analysis phase in which the application domain is analyzed,
(3) a design phase in which the architecture and language are designed, and

296 E. Visser

finally, (4) an implementation phase in which the DSL and supporting run-time
system are constructed. We can add (5) a deployment phase, in which DSLs and
the applications constructed with them are used, and (6) a maintenance phase in
which the DSL is updated to reflect new requirements. In this paper, I propose
an incremental, iterative, and technology-driven approach to DSL development
in which analysis, design, and implementation are combined in the spirit of
agile software development [11]. Deployment and maintenance are left for future
work. In this section, I describe and motivate this process model and relate it to
the patterns of Mernik et al. [73]. The bulk of the paper will then consist of a
description of the iterations in the design of WebDSL.

2.1 When to Develop a DSL?

The development of a DSL starts with the decision to develop one in the first
place. Libraries and frameworks form a good alternative for developing a DSL.
Many aspects of application development can be captured very well in libraries.
When a domain is so fresh that there is little knowledge about it, it does not
make sense to start developing a DSL. First the regular software engineering
process should be applied in order to determine the basic concepts of the field,
develop a code base supported with libraries, etc. When there is sufficient insight
in the domain and the conventional programming techniques fail to provide the
right abstractions, there may be a case for developing a DSL. So, what were the
deciding factors for developing WebDSL?

The direct (personal) inspiration for developing WebDSL are wiki systems
such as MediaWiki used for wikipedia, and more concretely TWiki used for
program-transformation.org and other web sites maintained by the author. Wikis
enable a community — the entire web population or the members of an organiza-
tion — to contribute to the content of a site using a browser as editor. However,
the data model for that content is poor, requiring all structured information to
be encoded in the text of a page. This lack of structure entails that querying
data and data validation depend on text operations. The initial goal of WebDSL
is to combine the flexible, online editing of content as provided by wikis with a
rich data model that allows presentation of and access to the underlying data in
a variety of ways.

The scope of WebDSL is interactive dynamic web applications with a rich
application-specific data model. That is, web applications with a database for
data storage and a user interface providing several views on the data in the
database, but also the possibility to modify those data via the browser. An
additional assumption is that the data model is static, i.e. it is designed during
development and cannot be changed online.

The engineering of web applications is a fairly mature field. There is an abun-
dance of libraries and frameworks supporting the construction of web appli-
cations. The state-of-the art for the construction of robust industrial strength
web applications are the Java and C# web engineering platforms. Based on the
portability of Java and the availability of infrastructure for generation of Java
in Stratego/XT, I have decided to restrict my attention to this platform for this

WebDSL: A Case Study in Domain-Specific Language Engineering 297

case study. While current frameworks provide good support for the basic me-
chanics of web applications — such as handling requests, parsing form data, and
producing XHTML — there is a strong case for the development of a DSL for
this domain; several of the decision patterns of Mernik et al. [73] apply to the
domain of web applications.

Task Automation. Compared to the CGI programming of early web applica-
tions, a mature web engineering platform takes care of low-level concerns. For
example, Java servlets deal with the mechanics of receiving requests from and
sending replies to clients. Java Server Faces (JSF) deal with the construction of
web pages and with the analysis of form data received from the client. Despite
such facilities, web programming often requires a substantial amount of boiler-
plate code; many Java classes or XML files that are very similar, yet not exactly
the same either. Conventional abstraction mechanisms are not sufficient for ab-
stracting over such patterns. Thus, one case for a web DSL is programming-task
automation, i.e. preventing the developer from having to write and maintain
boilerplate code.

Notation. The current platform provides an amalgam of often verbose languages
addressing different concerns, which are not integrated. For example, the Java-
JPA-JSF-Seam platform is a combination of XHTML extended with JSF compo-
nents and EL expressions (Java-like expressions embedded in XML attributes),
Java with annotations for declaration of object-relational mapping and depen-
dency injection, and SQL queries ‘embedded’ in Java programs in the form of
string literals. A concise and consistent notation, that linguistically integrates
the various aspects of web application construction would lighten development
and maintenance. Note that linguistic integration does not necessarily mean a
loss of separation of concerns, but rather that different concerns can be expressed
in the same language.

Verification. Another consequence of the lack of integration of web application
technologies is the lack of static verification of implementations. Components
linked via dependency injection are only checked at run-time or deployment-time.
Queries embedded in strings are not checked syntactically or for compatibility
with the data model until run-time. References in EL expressions in XHTML files
are only checked at run-time. These issues clearly illustrate that the abstraction
limits of GPLs have been reached; the static typechecking of Java programs does
not find these problems. A static verification phase, which would be enabled by
an integrated language would avoid the tedious debugging process that these
problems cause.

GUI Construction. The user interface portion of a web application is typically
defined by means of a template mechanism. JSP-style templates consist of plain
text with anti-quotations in which fragments of Java code are used to insert
‘dynamic’ content derived from data objects. The framework has no knowledge
of the structure of the HTML code generated by the template, so it is very easy
to generate non well-formed documents. Java Server Faces templates are more

298 E. Visser

advanced in that they define the complete document by means of a structured
XML document, which is parsed at deployment-time. XHTML is generated by
rendering this structure. Insertion of content from data object is achieved by
means of ‘EL expressions’ in XML attributes. Still, templates are very verbose
and concerned with low-level details. Furthermore, the EL expressions are only
parsed and checked at run-time.

Analysis and Optimization. There are also opportunities for domain-specific
analysis and optimization. For example, optimization of database queries in the
style of Wiedermann and Cook [108] might be useful in improving the perfor-
mance of applications without resorting to manual tuning of generated queries.
These concerns are not (yet) addressed in WebDSL.

2.2 Domain Analysis

Domain analysis is concerned with the analysis of the basic properties and re-
quirements of the problem domain. For example, a first analysis of the domain
would inform us that the development of a web application involves a data model,
an object-relational mapping, a user interface, data input and output methods,
data validation, page flow, and access control. Additionally, it may involve file
upload, sending and receiving email, versioning of data, internationalization, and
higher-level concerns such as work-flow. A more thorough analysis studies each
of the concerns of a domain in more detail, and establishes terminology and
requirements, which are then input for the design of a DSL.

Deductive. The traditional development process for domain-specific languages
follows a top-down or deductive track and starts with an exhaustive domain
analysis phase, e.g. [29, 73, 98]. The advantage of this approach is a thorough
analysis. The risk of such a deductive (top-down) approach is that the result
is a language that is difficult to implement. Furthermore, a process developing
an all encompassing DSL for a domain runs the usual risks of top-down design,
such as over design, late understanding of requirements, leading to discovery of
design and implementation problems late in the process.

Inductive. Rather than designing a complete DSL before implementation, this
paper follows an inductive approach by incrementally introducing abstractions
that allow one to capture a set of common programming patterns in software de-
velopment for a particular domain. This should enable a quick turn-around time
for the development of such abstractions. Since the abstractions are based on
concrete programming patterns, there are no problems with implementing them.

Technology-driven. Rather than designing a DSL based on an analysis of the
domain in the abstract, the approach is technology-driven, i.e. considers best
practices in the implementation of systems in the domain. This is similar to
architecture-centric model-driven software development [87] or designing DSLs
based on a program family [28]. After the initial determination of the scope of
the domain, domain analysis then is concerned with exploring the technology
that is available, and analyzing how it is typically used.

WebDSL: A Case Study in Domain-Specific Language Engineering 299

Selecting a specific technology helps in keeping a DSL design project grounded;
there is a specific reference architecture to target in code generation. However,
a risk with this approach is that the abstractions developed are too much tied
to the particularities of the target technology. In domains such as web appli-
cations there are many virtual machines. Each combination of implementation
languages, libraries, and frameworks defines a virtual machine to target in soft-
ware development. Each enterprise system/application may require a different
virtual machine. This is similar to the situation in embedded systems, where the
peculiarities of different hardware architectures have to be dealt with. Thus, a
consideration for the quality of the resulting DSL is the amount of leakage from
the (concrete) target technology into the abstractions of the DSL; how easy is
it to port the DSL to other virtual machines?

Iterative. Developing the DSL in iterations can mitigate the risk of failure. In-
stead of a big project that produces a functional DSL in the end, an iterative
process produces useful DSLs for sub-domains early on. This can be achieved by
extending the coverage of the domain incrementally. First the domain concerns
addressed can be gradually extended. For example, the WebDSL project starts
with a data model DSL, addressing user interface issues only later in the project.
Next, the coverage within each concern does not have to be complete from the
start either. The WebDSL coverage of user interface components is modest at
first, concentrating on the basic architecture, rather than covering all possible
fancy features. This approach has the advantage that DSLs for relevant areas
of the domain are available early and can start to be used in development. The
feedback from applying the DSL under development can be very valuable for
evaluating the design of abstractions and improving them. Considering the col-
lection of patterns will hopefully lead to a deeper insight in how to make even
better abstractions for the application domain.

2.3 Outline

The rest of this paper discusses the iterations in the design and implementation
of WebDSL. These iterations are centered around three important DSL design
patterns: finding programming patterns, designing a core language, and building
syntactic abstractions on top of the core language.

Programming Patterns. The first step in developing a new DSL is to explore
the technology for building systems in the domain to find common program-
ming patterns. That is, program fragments that occur frequently with slight
variations. This exploration can take the form of inspecting legacy code, but
preferably the technical literature and reference implementations. These typi-
cally present ideal programming patterns, as opposed to legacy code exposed
to design erosion. The idea then is to capture the variability in the patterns by
an appropriately designed abstraction. The commonality in the patterns is cap-
tured in code templates used in the generator that translates the abstractions
to target code.

300 E. Visser

In Sections 3 to 5 we explore the domain of web applications built with
Java/JSF/JPA/Seam and the techniques for implementing a DSL for this do-
main. Section 3 starts with looking at programming patterns for the implemen-
tation of data models using the Java Persistency API (JPA). A simple DSL for
declaration of JPA entities is then developed, introducing the techniques for its
implementation, including syntax definition and term rewriting in Stratego/XT2.
Section 4 develops a generator for deriving from a data model declaration, stan-
dardized pages for viewing and editing objects. In Section 5 the coverage of the
data model DSL is increased in various directions.

Core Language. The abstractions that result from finding programming pat-
terns tend to be coarse grained and capture large chunks of code. In order to
implement a variation on the functionality captured in the generator templates,
complete new templates need to be developed. The templates for generating view
and edit pages developed in Section 4 are very specific to these interaction pat-
terns. Extending this approach to include other, more sophisticated, interaction
patterns would lead to a lot of code duplication within the generator. To increase
the coverage of the DSL it is a good idea to find the essential abstractions underly-
ing the larger templates and develop a core language that supports freely mixing
these abstractions. In Section 6 a core language for web user interfaces is developed
that covers page flow, data views, and user interface composition. In Section 7 the
core language is extended with typechecking, data input, and queries.

Abstraction Mechanisms. A good core language ensures an adequate cov-
erage of the domain. However, this may come at a loss of abstraction. Core
language constructs are typically relatively low-level, which leads to frequently
occurring patterns combining particular constructs. To capture such patterns
and provide high-level abstractions to DSL programmers we need abstraction
mechanisms.

Some of these patterns can be captured in templates or modules in a library
of common components. In Section 8 WebDSL is extended with abstraction
mechanisms for web developers. Template definitions allow developers to create
reusable page elements. Modules support the division of an application into
reusable files.

Other patterns require reflection over types or other properties of program
elements, which may not be so easily defined using the abstraction facilities
of the language. Advanced reflection and analysis mechanisms carry a run-time
cost and considerably increase the complexity of the language. Such patterns are
typically more easily defined using linguistic abstraction, i.e. the extension of the
language with syntactic abstractions, which are implemented by means of trans-
formations to the core language — as opposed to transformations to the target
language. Building layers of abstractions on top of a core language is a key fea-
ture of software development with DSLs; new abstractions are defined relatively
2 While the concepts underlying Stratego/XT are explained (to the extent necessary

for the tutorial), the details of operating Stratego/XT are not. To get acquainted
with the tools the reader should consult the Stratego/XT tutorial and manual [18].

WebDSL: A Case Study in Domain-Specific Language Engineering 301

easily, by reusing the implementation knowledge captured in the generator for
the core language. Section 9 illustrates this process by defining a number of
syntactic abstractions for data input and output.

3 Programming Patterns: Data Model

The first step in the process of designing a DSL is to consider common pro-
gramming patterns in the application domain. We will turn these patterns into
templates, i.e. program fragments with holes. The holes in these templates can
be filled with values to realize different instantiations of the programming pat-
tern. Since the configuration data needed to fill the holes is typically an order
of magnitude smaller than the programming patterns they denote, a radical de-
crease in programming effort is obtained. That is, when exactly these patterns
are needed, of course. With some thought the configuration data can be turned
into a proper domain-specific language. Instead of doing a ‘big design up front’
to consider all aspects a DSL for web applications should cover and the language
constructs we would need for that, we develop the DSL in iterations. We start
with relatively large patterns, i.e., complete classes.

3.1 Platform Architecture

As argued before, we take a particular technology stack as basis for our WebDSL.
That is, this technology stack will be the platform on which code generated from
DSL models will run. That way we have a concrete implementation platform
when considering design and implementation issues and it provides a concrete
code base to consider when searching for programming patterns. Hopefully, we
will arrive at a design of abstractions that transcend this particular technology.

In this work we use the Seam architecture for web applications. That is, ap-
plications consist of three layers or tiers. The presentation layer is concerned
with producing web pages and interpreting events generated by the user. For
this layer we use JavaServer Faces (JSF) [72]. The persistence layer is concerned
with storing data in the database and retrieval of data from the database. This
layer really consists of two parts. The database proper is a separate service im-
plemented by a relational database. In the implementation of a web application,
however, we approach the database via an object-relational mapping (ORM)
framework, which takes care of the communication with the database and trans-
lates relational data into objects that can be used naturally in an object-oriented
setting. Thus, after defining a proper mapping between objects and database
tables, we need no longer worry about the database side. Finally, to connect
the JSF pages defining the user-interface with the objects obtained from the
database we use EJB3 session beans [56, 74].

While it used to be customary for these types of frameworks to require a
large portion of an application to be implemented in XML configuration files,
this trend has been reversed in the Seam architecture. Most of the configura-
tion is now expressed as annotations in Java classes building on the concept of

302 E. Visser

dependency injection [46]. A little XML configuration remains, for instance, to
define where the database is to be found. This configuration is mostly static and
will not be a concern in this paper.

In this section, we start with considering entity beans, i.e. Java classes that
implement persistent objects. We will build a generator for such classes, starting
with a syntax definition for a data model language up to the rewriting rules
defining Java code generation. As such, this section serves as an introduction to
these techniques. In the next section we then consider the generation of basic
web pages for viewing and editing the content of persisted objects.

3.2 Programming Patterns for Persistence

The Java Persistence API (JPA) [90] is a standard proposed by Sun for object-
relational mapping (ORM) for Java. The API is independent of vendor-specific
ORM frameworks such as Hibernate; these frameworks are expected to imple-
ment JPA, which, Hibernate 3 indeed does [10]. While earlier versions of Hi-
bernate used XML configuration files to define the mapping between database
schemas and Java classes, the JPA approach is to express these mappings using
Java 5 annotations in Java classes. Objects to be persisted in a database are rep-
resented using ‘plain old Java objects (POJOs)’. Classes are mapped to database
tables and properties (fields with getters and setters) are mapped to database
columns. We will now inspect the ingredients of such classes as candidates for
code generation.

Entity Class. An entity class is a Java class annotated with the @Entity
annotation and with an empty constructor, which guarantees that the persistence
framework can always create new objects.

@Entity

public class Publication {

public Publication () { }

// properties

}

An entity class is mapped to a database table with the same name. If desired,
an alternative name for the table can be specified, but we will not be concerned
with that (for the time being at least). In general, for many of the patterns we
consider here there are alternatives that have (subtly) different semantics. For
now, we consider ‘vanilla’ patterns. Later, if and when the need arises we can
introduce more variability.

Identity. Entities should have an identity as primary key. This identity can be
any value that is a unique property of the object. The annotation @Id is used to
indicate the property that represents the identity. However, the advice is to use
an identity that is not directly linked to the logic of the object, but rather to
use a synthetic identity, for which the database can generate unique values [10].
This then takes the following pattern:

WebDSL: A Case Study in Domain-Specific Language Engineering 303

@Id @GeneratedValue

private Long id;

public Long getId() { return id; }

private void setId(Long id) { this.id = id; }

Properties. The values of an object are represented by properties, class member
fields with getters and setters. Such properties are mapped to columns in the
database table for the enclosing class.

private String title;

public String getTitle() { return title; }

public void setTitle(String title) { this.title = title; }

Entity Associations. No annotations are needed for properties with simple
types. However, properties referring to other entities, or to collections of entities,
require annotations. The following property defines an association to another
entity:

@ManyToOne

private Person author = new Person();

public Person getAuthor() { return author; }

public void setAuthor(Person author) { this.author = author; }

The @ManyToOne annotation states that many Publications may be authored
by a single Person. Alternatively, we could use a @OneToOne annotation to model
that only one Publication can be authored by a Person, which implies owner-
ship of the object at the other end of the association.

3.3 A Data Model DSL

Entity classes with JPA annotations are conceptually simple enough. However,
there is quite a bit of boilerplate involved. First of all, the setters and getters are
completely redundant, and also the annotations can be become fairly complex.
However, the essence of an entity class is simple, i.e., a class name, and a list
of properties, i.e., (name, type) pairs. This information can be easily defined in
a structure of the form A{ prop* } with A a name (identifier) and prop* a list
of properties of the form x : t, i.e., a pair of a field name x and a type t. For
example, the following entity declarations

entity Publication {

title : String

author : Person

year : Int

abstract : String

pdf : String

}

entity Person {

fullname : String

email : String

homepage : String

}

define the entities Publication and Person, which in Java take up easily 100
lines of code.

304 E. Visser

The collection of data used in a (web) application is often called the domain
model of that application. While this is perfectly valid terminology it tends to
give rise to confusion when considering domain-specific languages, where the
domain is the space of all applications. Therefore, in this paper, we stick to the
term data model for the data in a web application.

3.4 Building a Generator

In the rest of this section we will examine how to build a generator for the simple
data modeling language sketched above. A generator typically consists of three
main parts, a parser, which reads in the model, the code generator proper, which
transforms an abstract syntax representation of the model to a representation of
the target program, and a pretty-printer, which formats the target program and
writes it to a text file. Thus, we need the following ingredients. A definition of
the concrete syntax of the DSL, for which we use the syntax definition formalism
SDF2. A parser that reads model files and produces an abstract representation.
A definition of that abstract representation. A transformation to the abstract
representation of the Java program to be generated, for which we use term
rewrite rules. And finally, a definition of a pretty-printer.

3.5 Syntax Definition

For syntax definition we use the syntax definition formalism SDF2 [101]. SDF2
integrates the definition of the lexical and context-free syntax. Furthermore, it
is a modular formalism, which makes it easy to divide a language definition
into reusable modules, but more importantly, it makes it possible to combine
definitions for different languages. This is the basis for rewriting with concrete
syntax and language embedding; we will see examples of this later on.

The syntax of the basic domain modeling language sketched above is defined
by the following module DataModel. The module defines the lexical syntax of
identifiers (Id), integer constants (Int), string constants (String)3, whitespace
and comments (LAYOUT). Next the context-free syntax of models, entities, prop-
erties, and sorts is defined. Note that SDF productions have the non-terminal
being defined on the right of the -> and the body on the left-hand side.

module DataModel

exports

sorts Id Int String Definition Entity Property Sort

lexical syntax

[a-zA-Z][a-zA-Z0-9_]* -> Id

[0-9]+ -> Int

"\"" ~[\"\n]* "\"" -> String

[\ \t\n\r] -> LAYOUT

"//" ~[\n\r]* [\n\r] -> LAYOUT

context-free syntax

3 Integer and string constants are not used in this version of the language.

WebDSL: A Case Study in Domain-Specific Language Engineering 305

Definition* -> Model {cons("Model")}

Entity -> Definition

"entity" Id "{" Property* "}" -> Entity {cons("Entity")}

Id ":" Sort -> Property {cons("Property")}

Id -> Sort {cons("SimpleSort")}

Abstract Syntax. An SDF syntax definition defines the concrete syntax of
strings in a language. For transformations we want an abstract representation,
i.e. the tree structure underlying the grammar. This structure can be expressed
concisely by means of an algebraic signature, which defines the constructors of
abstract syntax trees. Such a signature can be derived automatically from a syn-
tax definition (using sdf2rtg and rtg2sig). Each context-free production gives
rise to a constructor definition using the name declared in the cons attribute
of the production as constructor name, and the non-literal sorts as input ar-
guments. Thus, for the DataModel language defined above, the abstract syntax
definition is the following:

signature

constructors

Model : List(Definition) -> Model

: Entity -> Definition

Entity : Id * List(Property) -> Entity

Property : Id * Sort -> Property

SimpleSort : Id -> Sort

: String -> Id

Signatures describe well-formed terms. Terms are isomorphic with structures of
the following form:

t := c(t1, ..., tn)

That is, a term is an application of a constructor c to zero or more terms ti. In
practice, the syntax is a bit richer, i.e., terms are defined as

t := s | i | f | c(t1, ..., tn) | [t1, ..., tn] | (t1, ..., tn)

including special notation for string (s), integer (i), and float (f) constants, and
for lists ([]), and tuples (()). A well-formed term according to a signature is
defined according to the following rules. (1) If t1, ..., tn are well-formed terms of
sorts s1, ..., sn, respectively, and c : s1 ∗ ... ∗ sn → s0 is a constructor declaration
in the signature, then c(t1, ..., tn) is a well-formed term of sort s0. (2) If t1, ...,
tn are well-formed terms of sort s, then [t1, ..., tn] is a well-formed term of sort
List(s). (3) If t1, ..., tn are well-formed terms of sorts s1, ..., sn, respectively,
then (t1, ..., tn) is a well-formed term of sort (s1, ..., sn).

Parsing. A parser reads a textual representation of a model, checks it against
the syntax definition of the language, and builds an abstract syntax represen-
tation of the underlying structure of the model text. Parse tables for driving
the sglr parser can be generated automatically from a syntax definition (using
sdf2table). The sglr parser produces an abstract syntax representation in the

306 E. Visser

Annotated Term (ATerm) Format [96], as illustrated by the following parse of a
data model:

entity Person {

fullname : String

email : String

homepage : String

}

⇒

Entity("Person",

[Property("fullname", SimpleSort("String"))

, Property("email", SimpleSort("String"))

, Property("homepage", SimpleSort("String"))

]

)

3.6 Code Generation by Rewriting

Programs in the target language can also be represented as terms. For example,
Figure 1 shows the abstract representation of the basic form of an entity class
(as produced by the parse-java tool, which is based on an SDF definition of the
syntax of Java 5). This entails that code generation can be expressed as a term-
to-term transformation. Pretty-printing of the resulting term then produces the
program text. The advantage of generating terms over the direct generation of
text is that (a) the structure can be checked for syntactic and type consistency,
(b) a pretty-printer can ensure a consistent layout of the generated program
text, and (c) further transformations can be applied to the generated code. For
example, in the next section we will see that an interface can be derived from
the generated code of a class.

Term rewriting. Term rewriting is a formalism for describing term transfor-
mations [6]. A rewrite rule p1 -> p2 defines that a term matching the term
pattern p1 can be replaced with an instantiation of the term pattern p2. A term

@Entity

public class Publication {

public Publication () { }

}

⇓
ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id("Publication")

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id("Publication"),[],None()),

ConstrBody(None(), []))

])

)

Fig. 1. Abstract syntax for a Java class

WebDSL: A Case Study in Domain-Specific Language Engineering 307

entity-to-class :

Entity(x, prop*) ->

ClassDec(

ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()]

, Id(x)

, None(), None(), None()),

ClassBody(

[ConstrDec(

ConstrDecHead([Public()],None(),Id(x),[],None()),

ConstrBody(None(), []))

])

)

Fig. 2. Term rewrite rule

pattern is a term with variables. In standard term rewriting, rewrite rules are
applied exhaustively until a normal form is obtained. Term rewriting engines
employ a built-in rewriting strategy to determine the order in which subterms
are rewritten. Stratego [20, 105] is a transformation language based on term
rewriting. Rewrite rules are named and can be conditional, i.e., of the form l
: p1 -> p2 where s, with l the name and s the condition. Stratego extends
basic term rewriting by providing programmable rewriting strategies that allow
the developer to determine the order in which rules are applied. The rewrite
rule in Figure 2 defines the transformation of an Entity term in the data model
language to the basic Java class pattern that we saw above. Note that the rule
generalizes over the particular class by using instead of the name "Publication",
a variable x for the class and the constructor. Thus, the rule generates for an
arbitrary Entity x, a class x.

In Stratego, a rewrite rule is a special case of a rewriting strategy [105]. A
strategy is an algorithm that transforms a term into another term, or fails. A
strategy definition can invoke rewrite rules and other strategies by name. Strate-
gies can be parametrized with strategies and terms, supporting the definition of
reusable strategies.

Concrete Syntax. The entity-to-class rewrite rule defines a template for
code generation. However, the term notation, despite its advantages for code
generation as noted above, is not quite as easy to read as the corresponding
program text. Therefore, Stratego supports the definition of rewrite rules using
the concrete syntax of the subject language [102]. For example, the following
rule is the concrete syntax equivalent of the rule in Figure 2:

entity-to-class :

|[entity x_Class { prop* }]| ->

|[@Entity

public class x_Class {

public x_Class () { }

}]|

308 E. Visser

Note that the identifier x_Class is recognized by the Stratego parser as a meta-
variable, i.e. a pattern variable in the rule.

While rewrite rules using concrete syntax have the readability of textual tem-
plates, they have all the properties of term rewrite rules. The code fragment is
parsed using the proper syntax definition for the language concerned and thus
syntax errors in the fragment are noticed at compile-time of the generator. The
transformation produces a term and not text; in fact, the rule is equivalent to
the rule using terms in Figure 2. And thus the advantages of term rewriting
discussed above hold also for rewriting with concrete syntax.

3.7 Pretty-Printing

Pretty-printing is the inverse of parsing, i.e. the conversion of an abstract syntax
tree (in term representation) to a, hopefully readable, program text. While this
can be done with any programmatic method that prints strings, it is useful to
abstract from the details of formatting program texts by employing a specialized
library. The GPP library [35] supports formatting through the Box language,
which provides constructs for positioning text blocks. For pretty-printing Java
and XML, the Stratego/XT tool set provides custom built mappings to Box.
For producing a pretty-printer for a new DSL that is still under development it
is most convenient to use a pretty-printer generator (ppgen), which produces a
pretty-print table with mappings from abstract syntax tree constructors to Box
expressions. The following is a pretty-print table for our DataModel language:

[

Entity -- V[V is=2[KW["entity"] H[_1 KW["{"]] _2] KW["}"]],

Entity.2:iter-star -- _1,

Property -- H[_1 KW[":"] _2],

SimpleSort -- _1

]

Here V stands for vertical composition, H stands for horizontal composition,
and KW stands for keyword. While a pretty-printer generator can produce a cor-
rect pretty-printer (such that parse(pp(parse(prog))) = parse(prog)), it is not
possible to automatically generate pretty-printers that generate a pretty result
(although heuristics may help). So it is usually necessary to tune the pretty print
rules.

3.8 Generating Entity Classes

Now that we have seen the techniques to build the components of a generator we
can concentrate on the rules for implementing the DataModel language. Basically,
the idea is to take the program patterns that we found during the analysis of
the solution domain, and turn them into transformation rules, by factoring out
the application-specific identifiers. Thus, an entity declaration is mapped to an
entity class as follows:

WebDSL: A Case Study in Domain-Specific Language Engineering 309

entity-to-class :

|[entity x_Class { prop* }]| ->

|[@Entity public class x_Class {

public x_Class () { }

@Id @GeneratedValue private Long id;

public Long getId() { return id; }

private void setId(Long id) { this.id = id; }

~*cbds

}]|

where cbds := <mapconcat(property-to-gettersetter(|x_Class))> prop*

Since an entity class always has an identity (at least for now), we include
it directly in the generated class. Furthermore, we include, through the anti-
quotation ~*, a list of class body declarations cbds, which are obtained by map-
ping the properties of the entity declaration with property-to-gettersetter.
Here mapconcat is a strategy that applies its argument strategy to each element
of a list, concatenating the lists resulting from each application.

Value Types. The mapping for value type properties simply produces a private
field with a public getter and setter.

property-to-gettersetter(|x_Class) :

|[x_prop : s]| ->

|[private t x_prop;

public t get#x_prop() { return title; }

public void set#x_prop(t x) { this.x = x; }]|

where t := <builtin-java-type> s

This requires a bit of name mangling, i.e. from the name of the property, the
names of the getter and setter are derived. This is achieved using an extension
of Java for name composition. The # operator combines two identifiers into one,
observing Java naming conventions, i.e. capitalizing the first letter of all but the
first identifier. Note that the name of the enclosing class (x Class) is passed to
the rule as a term parameter. Stratego distinguishes between strategy and term
parameters of a rule or strategy by means of the |; the (possibly empty) list of
parameters before the | are strategies, the ones after the | are terms.

The fact that the property is for a value type is determined using the strat-
egy builtin-java-type, which defines a mapping for the built-in types of the
DataModel language to types in Java that implement them. For example, the
String type is defined as follows:

builtin-java-type :

SimpleSort("String") -> type|[java.lang.String]|

Reference Types. Properties with a reference to another type are translated
to a private field with getters and setters with the @ManyToOne annotation. For
the time being, we interpret such an association as a non-exclusive reference.

310 E. Visser

property-to-gettersetter(|x_Class) :

|[x_prop : s]| ->

|[@ManyToOne

private t x_prop;

public t get#x_prop() { return x_prop; }

public void set#x_prop(t x_prop) { this.x_prop = x_prop; }]|

where t := <defined-java-type> s

Propagating Declared Entities. The previous rule decides that the property
is an association to a reference type using the strategy defined-java-type,
which maps entities declared in the data model to the Java types that implement
them. Since the collection of these entity types depends on the data model, the
defined-java-type mapping is defined at run-time during the transformation
as a dynamic rewrite rule [20]. That is, before generating code for the entity dec-
larations, the following declare-entity strategy is applied to each declaration:

declare-entity =

?Entity(x_Class, prop*)

; rules(

defined-java-type :

SimpleSort(x_Class) -> type|[x_Class]|

)

This strategy first matches (?p with p a term pattern) an entity declaration
and then defines a rule defined-java-type, which inherits from the match the
binding to the variable x_Class. Thus, for each declared entity a corresponding
mapping is defined. As a result, the property-to-gettersetter rule fails when
it is applied to a property with an association to a non-existing type (and an
error message might be generated to notify the user). In general, dynamic rewrite
rules are used to add new rewrite rules at run-time to the transformation system.
A dynamic rule inherits variable bindings from its definition context, which is
typically used to propagate context-sensitive information.

3.9 Composing a Code Generator

Using the ingredients discussed above, the basic version of the code generator
for WebDSL is defined as the following Stratego strategy:

webdsl-generator =

xtc-io-wrap(webdsl-options,

parse-webdsl

; alltd(declare-entity)

; collect(entity-to-class)

; output-generated-files

)

The strategy invokes xtc-io-wrap, a library strategy for handling command-line
options to control input, output, and other aspects of a transformation tool. The

WebDSL: A Case Study in Domain-Specific Language Engineering 311

Fig. 3. person page Fig. 4. editPerson page

argument of xtc-io-wrap is a sequence of strategy applications (s1;s2 is the
sequential composition of two strategies). parse-webdsl parses the input model
using a parse table generated from the syntax definition, producing its abstract
syntax representation. The alltd strategy is a generic traversal, which is used
here to find all entity declarations and generate the defined-java-type map-
ping for each. The generic collect strategy is then used to create a set of Java
entity classes, one for each entity declaration. Finally, the output-generated-
files strategy uses a Java pretty-printer to map a class to a program text and
write it to a file with the name of the class and put it in a directory corresponding
to the package of the class.

4 Programming Patterns: View/Edit Pages

The next step towards full fledged web applications is to create pages for viewing
and editing objects in our DataModel language. That is, from a data model
generate a basic user interface for creating, retrieving, updating and deleting
(CRUD) objects. For example, consider the following data model of Persons
with Addresses, and Users.

entity Person {

fullname : String

email : String

homepage : String

photo : String

address : Address

user : User

}

entity Address {

street : String

city : String

phone : String

}

entity User {

username : String

password : String

person : Person

}

For such a data model we want to generate view and edit pages as displayed in
Figures 3 and 4. Implementing this simple user interface requires an understand-
ing of the target architecture. Figure 5 sketches the architecture of a JSF/Seam
application for the editPerson page in Figure 4. The /editPerson.seam client

312 E. Visser

Fig. 5. Sketch of JSF/Seam architecture

view of the page on the far left of Figure 5 is a plain web page implemented in
HTML, possibly with some JavaScript code for effects and cascading style sheets
for styling. The rendered version of this code is what is shown in Figure 4. The
HTML is rendered on the server side from the JavaServer Faces (JSF) com-
ponent model [72] defined in the editPerson.xhtml file. In addition to regular
HTML layout elements, the JSF model has components that interact with a ses-
sion bean. The EditPersonBean session bean retrieves data for the JSF model
from the database (and from session and other contexts). For this purpose the
session bean obtains an EntityManager object through which it approaches the
database, with which it synchronizes objects such as Person p. When the input
field at the client side gets a new value and the form is submitted by a push of
the Save button, the value of the input field is assigned to the field pointed at
by the expression of the h:inputText component (by calling the corresponding
setter method). Subsequently, the save() action method of the session bean,
which is specified in the action attribute of the h:commandButton correspond-
ing to the Save button, is called. This method then invokes the entity manager
to update the database.

Thus, to implement a view/edit interface for data objects, the generator must
produce for each page a JSF XHTML document that defines the layout of the

<html ...> ... <body>

<h:form>

<table>

<tr><td> <h:outputText value="Fullname"/> </td>

<td> <h:inputText value="#{editPerson.person.fullname}"/>

</td> </tr>

<tr><td><h:commandButton value="Save" action="#{editPerson.save()}"/>

</td> <td></td></tr>

</table>

</h:form>

</body> </html>

Fig. 6. editPage.xhtml with JSF components

WebDSL: A Case Study in Domain-Specific Language Engineering 313

user interface and the data used in its elements, and a Seam session bean that
manages the objects referred to in the JSF document.

4.1 Generating JSF Pages

Figure 6 illustrates the structure of the JSF XHTML document for the edit
page in Figure 4. Besides common HTML tags, the document uses JSF com-
ponents such as h:form, h:outputText, h:inputText, and h:commandButton.
Such a document can again be generated using rewrite rules transforming entity
declarations to XHTML documents.

entity-to-edit-page :

|[entity x_Class { prop* }]| ->

%><html ...> ... <body><h:form><table>

<%= rows ::* %>

<tr><td>

<h:commandButton value="Save" action="#{<%=editX%>.save()}"/>

</td><td></td></tr>

</table></h:form></body></html><%

where editX := <concat-strings>["edit", x_Class]

; x_obj := <decapitalize-string> x_Class

; rows := <map(row-in-edit-form(|editX, x_obj))> props

This rule generates the overall setup of an edit page from an entity declaration.
Just as was the case with generation of Java code, this rule uses the concrete
syntax of XML in the right-hand side of the rule [15]. (The quotation marks
%> and <% were inspired by template engines such as JSP [100]). The XML
fragment is syntactically checked at compile-time of the generator and the rule
then uses the underlying abstract representation of the fragment. For this syntax
embedding we do not have # operator to create composite identifiers. Instead
names are create by simple string manipulation (concatenation in this case).
Note that the ellipses ... are not part of the formal syntax, but just indicate
that some elements were left out of this paper to save space.

The entity-to-edit-page rule calls row-in-edit-form to generate for each
property a row in the table.

row-in-edit-form(|editX, x_obj) :

prop@|[x_prop : s]| ->

%><tr><td><h:outputText value="<%=x_prop%>"/></td>

<td><%= input %></td></tr><%

where input := <property-to-edit-component(|editX, x_obj)> prop

The left column in the table contains the name of the property, and the right col-
umn an appropriate input component, which is generated by the property-to-
edit-component rule. In the case of the String type a simple inputText com-
ponent is generated.

property-to-edit-component(|editX, x_obj) :

|[x_prop : String]| ->

%><h:inputText value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}"/><%

314 E. Visser

Other types may require more complex JSF configurations. For instance, an
entity association (such as the user property of Person) requires a way to enter
references to existing entities. The page in Figure 4 uses a drop-down selection
menu for this purpose, which is generated by the following rule:

property-to-edit-component(|editX, x_obj) :

|[x_prop : s]| ->

%> <h:selectOneMenu value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}">

<s:selectItems value="#{<%=editX%>.<%=x_prop%>List}"

var="<%= x %>" label="#{<%= x %>.name}"

noSelectionLabel="" />

<s:convertEntity />

</h:selectOneMenu> <%

where SimpleSort(_) := s; <defined-java-type> s; x := <new>

The h:selectOneMenu JSF component sets the value of editX.x prop to the
object corresponding to the item selected from the editX.x prop#List list. This
list should be provided by the editX session bean with the objects to select from,
which could be a list of all objects of type s.

The generation of a view page is largely similar to the generation of an edit
page, but instead of generating an inputText component, an outputText com-
ponent is generated:

property-to-view-component(|editX, x_obj) :

|[x_prop : String]| ->

%><h:outputText value="#{<%=editX%>.<%=x_obj%>.<%=x_prop%>}"/><%

4.2 Seam Session Beans

As explained above, the JSF components get the data to display from an EJB
session bean. The Seam framework provides an infrastructure for implementing
session beans such that the connections to the environment, such as the appli-
cation logger and the entity manager, are made automatically via dependency
injection [46]. To get an idea, here is the session bean class for the editPerson
page:

@Stateful

@Name("editPerson")

public class EditPersonBean implements EditPersonBeanInterface{

@Logger private Log log;

@In private EntityManager em;

@In private FacesMessages facesMessages;

@Destroy @Remove public void destroy() { }

// specific fields and methods

}

EJB3 and Seam use Java 5 annotations to provide application configuration in-
formation within Java classes, instead of the more traditional XML configuration
files. The use of annotations is also an alternative to implementing interfaces;

WebDSL: A Case Study in Domain-Specific Language Engineering 315

instead of having to implement a number of methods with a fixed name, fields
and methods can be named as is appropriate for the application, and declared
to play a certain role using annotations.

The @Stateful annotation indicates that this is a stateful session bean, which
means that it can keep state between requests. The @Name annotation specifies
the Seam component name. This is the prefix to object and method references
from JSF documents that we saw in Figure 6. Seam scans class files at deploy-
ment time to link component names to implementing classes, such that it can
create the appropriate objects when these components are referenced from a JSF
instance. The destroy method is indicated as the method to be invoked when
the session bean is @Removed or @Destroyed.

The fields log, em, and facesMessages are annotated for dependency injec-
tion [46]. That is, instead of creating the references for these objects using a
factory, the application context finds these fields based on their annotations and
injects an object implementing the expected interface. In particular, log and
facesMessages are services for sending messages, for system logging, and user
messages, respectively. The em field expects a reference to an EntityManager,
which is the JPA database connection service.

All the above was mostly boilerplate that can be found in any session bean
class. The real meat of a session bean is in the fields and methods specific for
the JSF page (or pages) it supports. In the view/edit scenario we are currently
considering, a view or edit page has a property for the object under consideration.
That is, in the case of the editPerson page, it has a property of type Person:

private Person person;

public void setPerson(Person person) { this.person = person; }

public Person getPerson() { return person; }

Next, a page is called with URL /editPerson.seam?person=x, where x is the
identity of the object being edited. The problem of looking up the value of the
person parameter in the request object, is also solved by dependency injection
in Seam. That is, the following field definition

@RequestParameter("person") private Long personId;

declares that the value of the @RequestParameterwith the name person should
be bound to the field personId, where the string value of the parameter is
automatically converted to a Long value.

To access the object corresponding to the identity passed in as parameter, the
following initialize method is defined:

@Create

public void initialize() {

if (personId == null) {

person = new Person();

} else {

person = em.find(Person.class, personId);

}

}

316 E. Visser

The method is annotated with @Create to indicate that it should be called upon
creation of the bean (and thus the page). The method uses the entity manager em
to find the object with the given identity. The case that the request parameter
is null occurs when no identity is passed to the request. Handling this case
supports the creation of new objects.

Finally, a push of the Save button on the editPage leads to a call to the
save() method of the bean class, which invokes the entity manager to save the
changes to the object to the database:

public String save() {

em.persist(this.getPerson());

return "/person.seam?person=" + person.getId();

}

The return value of the method is used to determine the page flow after saving,
which is in this case to go to the view page for the object just saved.

4.3 Generating Session Beans

Generating the session beans for view and edit pages comes down to taking the
programming patterns we saw above and generalizing them by taking out the
names related to the entity under consideration and replacing them with holes.
Thus, the following rule sketches the structure of such a generator rule:

entity-to-session-bean :

|[entity x_Class { prop* }]| ->

|[@Stateful @Name("~viewX")

public class x_ViewBean implements x_ViewBeanInterface {

...

@Destroy @Remove public void destroy() { }

}]|

where viewX := ...; x_ViewBean := ...; x_ViewBeanInterface := ...

Such rules are very similar to the generation rules we saw in Section 3.

4.4 Deriving Interfaces

A stateful session bean should implement an interface declaring all the methods
that should be callable from JSF pages. Instead of having a separate (set of)
rule(s) that generates the interface from an entity, such an interface can be
generated automatically from the bean class. This is one of the advantages of
generating structured code instead of text. The following strategy and rules
define a (generic) transformation that turns a Java class into an interface with
all the public methods of the class.

create-local-interface(|x_Interface) :

class -> |[@Local public interface x_Interface { ~*methodsdecs }]|

where methodsdecs := <extract-method-signatures> class

WebDSL: A Case Study in Domain-Specific Language Engineering 317

extract-method-signatures =

collect(method-dec-to-abstract-method-dec)

method-dec-to-abstract-method-dec :

MethodDecHead(mods, x , t, x_method, args, y) ->

AbstractMethodDec(mods, x, t, x_method, args, y)

where <fetch(?Public())> mods

The name of the interface defined is determined by the parameter x Interface.
The collect(s) strategy is a generic traversal that collects all subterms for
which its parameter strategy s succeeds. In this case the parameter strategy
turns a method declaration header into the declaration of an abstract method,
if the former is a public method.

5 Programming Patterns: Increasing Coverage

In the previous two sections we analyzed basic patterns for persistent data and
view/edit pages in the Seam architecture. We turned these patterns into a simple
DSL for data models and a generator for entity classes and view/edit pages.
The analysis has taught us the basics of the architecture. We can now use this
knowledge to expand the DSL and the generator to cover more sophisticated
web applications; that is, to increase the coverage of our DSL. Surely we should
consider creating custom user interfaces, instead of the rigid view/edit pages that
we saw in the previous section. However, before we consider such an extension,
we first take a look at the coverage that the data model DSL itself provides.

5.1 Strings in Many Flavors

The association types that we saw in the previous sections were either Strings or
references to other defined entities. While strings are useful for storing many (if
not most) values in typical applications, the type name does not provide us with
much information about the nature of those data. By introducing application-
domain specific value types we can generate a lot of functionality ‘for free’. For
example, the following data models for Person and User still use mostly string
valued data, but using alias types the role of those data is declared.

entity Person { entity User {

fullname : String username : String

email : Email password : Secret

homepage : URL person : Person

photo : Image }

address : Address

user : User

}

Thus, the type Email represents email addresses, URL internet addresses, Image
image locations, Text long pieces of text, and Secret passwords. Based on these

318 E. Visser

types a better tuned user interface can be generated. For example, the following
rules generate different input fields based on the type alias:

property-to-edit-component(|x_component) :

|[x_prop : Text]| ->

%><h:inputTextarea value="#{<%=x_component%>.<%=x_prop%>}"/><%

property-to-edit-component(|x_component) :

|[x_prop : Secret]| ->

%><h:inputSecret value="#{<%=x_component%>.<%=x_prop%>}"/><%

A text-area, providing a large input box, is generated for a property of type Text,
and a password input field, turning typed characters into asterisks, is generated
for a property of type Secret.

5.2 Collections

Another omission so far was that associations had only singular associations.
Often it is useful to have associations with collections of values or entities. Of
course, such collections can be modeled using the basic modeling language. For
example, define

entity PersonList { hd : Person tl : PersonList }

to model lists of Person. However, in the first place this is annoying to define for
every collection, and furthermore, misses the opportunity for attaching standard
functionality to collections. Thus, we introduce a general notion of generic sorts,
borrowing from Java 5 generics the notation X<Y,Z> for a generic sort X with sort
parameters Y and Z. For the time being this notation is only used to introduce
collection associations using the generic sorts List and Set. For example, a
Publication with a list of authors and associated to several projects can then
be modeled as follows:

entity Publication {

title : String

authors : List<Person>

year : Int

abstract : Text

projects : Set<Project>

pdf : File

}

Many-to-Many Associations. Introduction of collections requires extending
the generation of entity classes. The following rule maps a property with a list
type to a Java property with list type and persistence annotation @ManyToMany,
assuming that objects in the association can be referred to by many objects from
the parent entity:

WebDSL: A Case Study in Domain-Specific Language Engineering 319

property-to-property-code(|x_Class) :

|[x_prop : List<y>]| ->

|[@ManyToMany private List<t> x_prop = new ArrayList<t>();]|

Collections also require an extension of the user interface. This will be discussed
later in the paper.

5.3 Refining Associations

Yet another omission in the data modeling language is with regard to the nature of
associations, i.e. whether they are composite aggregations or not. That is, does the
referring entity own the objects at the other end of the association or not? Since
both scenarios may apply, we cannot fix a choice for all applications, but need to
let the developer define it for each association. Thus, we refine properties to be
either value type (e.g. title :: String), composite (e.g. address <> Address),
or reference (e.g. authors -> List<Person>) associations. Figure 7 illustrates the
use of special value types, collections, and composite and reference associations.

entity Publication {

title :: String

authors -> List<Person>

year :: Int

abstract :: Text

projects -> Set<Project>

pdf :: File

}

entity Person {

fullname :: String

email :: Email

homepage :: URL

photo :: Image

address <> Address

user -> User

}

entity Address {

street :: String

city :: String

phone :: String

}

Fig. 7. Data model with composite and reference associations

Based on the association type different code can be generated. For example,
the objects in a composite collection, i.e. one in which the referrer owns the
objects in the collection, are deleted with their owner. In contrast, in the case
of a reference collection, only the references to the objects are deleted when the
referring object is deleted. Furthermore, collections of value types are treated
differently than collections of entities.

Unfolding Associations. One particular decision that can be made based on
association type is to unfold composite associations in view and edit pages. This
is what is already done in Figures 3 and 4. In Figure 7 entity Person has a
composite association with Address. Thus, an address is owned by a person.
Therefore, when viewing or editing a person object we can just as well view/edit
the address. The following rule achieves this by unfolding an entity reference,
i.e. instead of including an input field for the entity, the edit rows for that entity
are inserted:

row-in-edit-form(|editY) :

|[x_prop <> s]| ->

320 E. Visser

%><tr><td><h:outputText value="<%=x_prop%>"/></td><td></td></tr>

<%= row* ::*%><%

where <defined-java-type> s

; prop* := <properties> s

; editYX := <concat-strings>[editY,".",x_prop]

; row* := <map(row-in-edit-form(|editYX))> prop*

As an aside, note how the EL expression passed to the recursive call of
row-in-edit-form is constructed using string concatenation (variable editYX).
This rather suspect style is an artifact of the XML representation for JSF; the
attributes in which EL expressions are represented are just strings without struc-
ture. This can be improved upon by defining a proper syntax of JSF XML by
embedding a syntax of EL expressions.

6 Core Language: Scrap Your Boilertemplate

In the previous sections we have developed a data model DSL with fairly sophis-
ticated types and associations. Furthermore, we have developed a generator for
a standard view/edit user interface for objects in the data model. The DSL and
generator in the previous sections are based on the analysis of the programming
patterns for entity classes and for view/edit pages implemented using JSF and
Seam. We factored out the commonality in these programming patterns and
turned them into code generation rules with the data modeling DSL as input.

The boilerplate in the generated code is considerable. For example, for the
entity Publication in Figure 7 the table in Figure 8 contains a breakdown of
the source files generated and their size.

file LOC
Publication.java 121
EditPublicationBeanInterface.java 56
EditPublicationBean.java 214
ViewPublicationBeanInterface.java 28
ViewPublicationBean.java 117
editPublication.xhtml 181
viewPublication.xhtml 153
total 870

Fig. 8. LOCs generated for Publication

With 8 lines of model input, the
ratio of generated lines of code to
source lines of code is over 100! Now
the question is what that buys us.
If there was a market for boring
view/edit applications this would
be great, but in practice we want
a much richer application with fine
tuned view and edit pages. If we
would continue on the path taken
here, we could add new sets of gen-
erator rules to generate new types
of pages. For example, we might
want to have pages for searching
objects, pages that list all objects
of some type, pages providing selections and summaries, etc. But then we would
hit an interesting barrier: code duplication in the code generator. The very phe-
nomenon that we were trying to overcome in the first place, code duplication
in application code, shows up again, but now in the form of target code fragments

WebDSL: A Case Study in Domain-Specific Language Engineering 321

that appear in more than one rule (in slightly different forms), sets of generator
rule that are very similar, but generate code for a different type of page, etc. In
other words, this smells like boilerplate templates, or boilertemplates, for short.

The boilertemplate smell is characterized by similar target coding patterns
used in different templates, only large chunks of target code (a complete page
type) considered as a reusable programming pattern, and limited expressivity,
since adding a slightly different pattern (type of page) already requires extending
the generator.

High time for some generator refactoring. The refactoring we are going to use
here is called find an intermediate language also known as scrap your boil-
ertemplate. In order to gain expressivity we need to better cover the variability
in the application domain. While implementing the data model DSL, we have
explored the capabilities of the target platform, so by now we have a better idea
how to implement variations on the view/edit theme by combining the basics
of JSF and EJB in different ways. What we now need is a language that sits
in between the high-level data modeling language and the low-level details of
JSF/Seam and allows us to provide more variability to application developers
while still maintaining an advantage over direct programming.

Frameworks such as JSF provide a large number of features (components) for
composing user interfaces. It would be tempting to expose all these components
to the DSL programmer to allow for maximal expressivity. However, this is not
a good idea for productivity. Rather we would like to provide a small set of basic
combinators for declaring the UI, and relying on different sets of definitions
for their implementation. A good analogue is the complexity of TEX vs the
standardization of LATEX. TEX provides low-level expressivity for typesetting [66].
With it one can do amazingly complex things. However, for common writing of
articles, this complexity is not necessary. LATEX harnesses the power of TEX by
providing interfaces (APIs) for building documents with a standardized structure
(e.g. \section, \item, etc.) [69]. Using different style files, documents using
this interface can be typeset in very different formats. While one could say that
HTML serves a similar goal, the customization to implement a certain style
requires quite a bit of HTML coding.

entity ResearchGroup {

acronym :: String (name)

fullname :: String

mission :: Text

logo :: Image

members -> Set<Person>

projects -> Set<ResearchProject>

colloquia -> Set<Colloquium>

news -> List<News>

}

Fig. 9. Entity ResearchGroup

Consider the data model for an
entity ResearchGroup in Figure 9.
While a standard edit page is suffi-
cient for this model, we want to cre-
ate custom presentation pages that
highlight different elements. We will
use this example to design a basic
language for page flow and presen-
tation. Then we develop a generator
that translates page definitions to JSF
pages and supporting Seam session
beans.

322 E. Visser

6.1 Page Flow

The pages in Section 4 had URLs of the form /researchGroup.seam?g=x with
x the identity of the object to be presented. Thus, a page has a name and
arguments, so analogously to function definitions, a natural syntax for page
definitions is:

define page researchGroup(g : ResearchGroup) {

<presentation>

}

The parameter is a variable local to the page definition. The URL to request a
page uses object identities. Within a page definition the parameter variable can
be treated as referring to the corresponding object. Of course, a page definition
can have any number of parameters, including zero.

If a page definition is similar to a function definition, page navigation should
be similar to a function call. Thus, if pers.group refers to a ResearchGroup
object, then researchGroup(pers.group) refers to the researchGroup page
for that object. However, a link in a web page not only requires the destination
of the link, but also a name to display it with. The navigate form

navigate(researchGroup(pers.group)){text(pers.group.acronym)}

combines a page reference with a name for the link. The first argument is a ‘call’
to the appropriate page definition. The second argument is a specification of the
text for the anchor, which can be a literal string, or a string value obtained from
some data object.

6.2 Content Markup and Layout

Next we are concerned with presenting the data of objects on a page. For in-
stance, a starting page for a research group might be presented as in Figure 10(a).
The layout of such a page is defined using a presentation markup language that
can access the data objects passed as arguments to a page. The elements for com-
position of a presentation are well known from document definition languages
such as LATEX, HTML, and DocBook and do not require much imagination. We
need things such as sections with headers, paragraphs, lists, tables, and text
blocks. Figure 10(b) shows the top-level markup for the view in Figure 10(a).
It has sections with headers, nested sections, lists, and a text block obtained
by taking the Text from group.mission. The intention of these markup con-
structs is that they do not allow any configuration for visual formatting. That
is, section does not have parameters or attributes for declaring the font-size,
text color, or text alignment mode. The markup is purely intended to indicate
the structure of the document. Visual formatting can be realized using cascading
style sheets [106], or some higher level styling language.

While the presentation elements above are appropriate for text documents,
web pages often have a more two-dimensional layout. That is, in addition to the

WebDSL: A Case Study in Domain-Specific Language Engineering 323

define page researchGroup

(group:ResearchGroup){

section {

header{text(group.fullname)}

section {

header{"Mission"}

outputText(group.mission)

}

section {

header{"Recent Publications"}

list { ... }

}

section {

header{"People"}

list { ... }

}

} }

Fig. 10. View of ResearchGroup object: (a) screenshot, (b) markup

body, which is laid out as a text document, a web page often contains elements
such as a toolbar with drop-down menus, a sidebar with (contextual) links, a
logo, etc. Figure 11 illustrates this by an extension of the ResearchGroup view
page of Figure 10 with a sidebar, menubar with drop-down menus and a logo.

WebDSL takes a simple view at the problem of two-dimensional layout. A
page can be composed of blocks, which can be nested, and which have a name
as in the right-hand side page definition in Figure 11. This definition states that a
page is composed of two main blocks, outersidebar and outerbody, which form
the left and right column in Figure 11. These blocks are further subdivided into
logo and sidebar, and menubar and body, respectively. By mapping blocks to
divs in HTML with the block name as CSS class, the layout can be determined
again using CSS.

Other layout problems can be solved in a similar way using CSS. For example,
the sidebar in Figure 11 is simply structured as a list:

block("sidebar"){

list {

listitem { navigate(researchGroup(group)){text(group.acronym)} }

listitem { navigate(groupMembers(group)){"People"} }

listitem { navigate(groupPublications(group)){"Publications"} }

listitem { navigate(groupProjects(group)){"Projects"} list{ ... } }

}

}

Using CSS the default indented and bulleted list item layout can be redefined
to the form of Figure 11 (no indentation, block icon for sub lists, etc.).

Drop-down menus can be defined using a combination of CSS and some
javascript, which can be generated from a declarative description of the menus.

324 E. Visser

define page researchGroup

(g : ResearchGroup) {

block("outersidebar"){

block("logo"){ ... }

block("sidebar"){ ... } }

block("outerbody"){

menubar{ ... }

block("body"){

section {

header{text(g.name)}

... } }

}}

Fig. 11. Two-dimensional layout with logos, sidebars, drop-down menus

For example, the drop-down menus of Figure 11 are defined using elements such
as menu and menuitem:

menubar{

menu{ menuheader{"People"} menuitem{...} ...}

menu{ menuheader{"Projects"} menuitem{...} ...}

...

}

Thus, using simple structural markup elements without visual configuration,
a good separation of the definition of the structure of a page and its visual layout
using cascading style sheets can be achieved. This approach can be easily ex-
tended to more fancy user interface elements by targetting java-script in addition
to pure HTML. There again the aim should be to keep WebDSL specifications
free of visual layout.

6.3 Language Constructs

We have now developed a basic idea for a page presentation language with
concepts such as sections, lists, and blocks. The next question is how to define
a language in which we can write these structures. The approach that novice
language designers tend to take is to define a syntactic production for each
markup element. Experience shows that such language definitions become rather
unwieldy and make the language difficult to extend. To add a new markup
construct, the syntax needs to be extended, and thus all operations that operate
on the abstract syntax tree. Lets be clear that a rich syntax is a good idea, but
only where it concerns constructs that are really different. Thus, rather than
introducing a syntactic language construct for each possible markup element,
we use the generic template call syntactic construct (why it is called template
call will become clear later).

WebDSL: A Case Study in Domain-Specific Language Engineering 325

Template Call. A template call has the following form:

f(e1,...,em) {elem1 ... elemn}

That is, a template call has a name f , a list of expressions e1,...,em and a list of
template elements elem1 ... elemn. Both the expression and element argument
lists are optional.

The name of the call determines the type of markup and is mapped by the
back-end to some appropriate implementation in a target markup language.

The element arguments of a call are nested presentation elements. For exam-
ple, a section has as arguments, among others, headers and paragraphs

section{ header{ ... } par{ ... } par{ ... } }

a list has as elements listitems

list { listitem { ... } ... }

and a table has rows

table { row{ ... } row{ ... } }

The expression arguments of a call can be simple strings, such as the name of
a block:

block("menu") { list { ... } }

However, mostly expressions provide the mechanism to access data from entity
objects. For example, the text element takes a reference to a string value and
displays it:

text(group.name)

Similarly, the navigate element takes page invocation as expression argument
and nested presentation elements to make up the text of the link.

navigate(publication(pub)){text(pub.name)}

Iteration. While the template call element is fairly versatile, it is not sufficient
for everything we need to express. In particular, we need a mechanism for it-
erating over collections of objects or values. This is the role of the for iterator
element, which has the following concrete syntax:

for(x : s in e) {elem∗}
The reason that this construct cannot be expressed using the syntax of a tem-
plate call is the variable which is bound locally in the body of the iterator. The
iterator is typically used to list objects in a collection. For example, the following
fragment of a page involving g of type ResearchGroup, which has a collection
of projects, presents a list of links to the projects in g.

list {

for(p : ResearchProject in g.projects) {

listitem { navigate(researchProject(p)){text(p.acronym)} }

} }

326 E. Visser

entity User{ name :: String }

page user(u : User) {

text(u.name)

}

⇒

⇓

<html ...> ...

<body>

<h:outputText

value="#{user.u.name}"/>

</body>

</html>

@Stateful @Name("user")

class UserBean {

@In EntityManager em;

@RequestParameter("u")

private Long uId;

property User u;

@Create

public void initialize() {

u = em.find(User.class,uId);

}

}

Fig. 12. Mapping from page definition (upper left) to session bean (right) and JSF
(lower left)

6.4 Mapping Pages to JSF+Seam

In Section 4 we saw how to generate a web application for viewing and editing
objects in a data model using a row-based interface targetting the JSF and Seam
frameworks. We can now use the knowledge of that implementation approach to
define a mapping from the new fine grained presentation elements to JSF+Seam.
Figure 12 illustrates the mapping for a tiny page definition. The mapping from a
page definition to JSF involves creating an XML JSF document with as body the
body of the page definition, mapping presentation elements to JSF components
and HTML, and object access expressions to JSF EL expressions. The mapping
from a page definition to a Seam session bean involves creating the usual boiler-
plate, @RequestParameters with corresponding properties (using property as
an abbreviation to indicate a private field with a getter and a setter), and ap-
propriate statements in the initialization method. In the rest of this section we
consider some of the translation rules.

6.5 Generating JSF

The mapping from page elements to JSF is a fairly straightforward set of recur-
sive rules that translate individual elements to corresponding JSF components.
Note that while the syntax of template calls is generic, the mapping is not
generic. First, while the syntax allows to use arbitrary identifiers as template
names, only a (small) subset is actually supported. Second, there are separate
generation rules to define the semantics of different template calls. The essence
of the domain-specific language is in these code generation rules. They store the
knowledge about the target domain that we reuse by writing DSL models. We
consider some representative examples of the mapping to JSF.

Text. The rule for text is a base case of the mapping. A text(e) element dis-
plays the string value of the e expression using the outputText JSF component.

WebDSL: A Case Study in Domain-Specific Language Engineering 327

elem-to-xhtml :

|[text(e)]| -> %> <h:outputText value="<%=el%>"/> <%

where el := <arg-to-value-string> e

The arg-to-value-string rules translate an expression to a JSF EL expression.

Block. The rule for block is an example of a recursive rule definition. Note the
application of the rule elems-to-xhtml in the antiquotation.

elem-to-xhtml :

|[block(str){elem*}]| ->

%><div class="<%= str %>">

<%= <elems-to-xhtml> elem* ::*%>

</div><%

The auxiliary elems-to-xhtml strategy is a map over the elements in a list:

elems-to-xhtml = map(elem-to-xhtml)

Iteration. While iteration might seem one of the complicated constructs of
WebDSL, its implementation turns out the be very simple. An iteration such as
the following

list{ for (project : ResearchProject in group.projectsList) {

listitem { text(group.project.acronym) }

}}

is translated to the JSF ui:repeat component, which iterates over the elements
of the collection that is produced by the expression in the value attribute, using
the variable named in the var attribute as index in the collection.

 <ui:repeat var="project"

value="#{researchGroup.group.projectsList}">

 <h:outputText value="#{project.acronym}"

</ui:repeat>

This mapping is defined in the following rule:

elem-to-xhtml :

|[for(x : s in e) { elem1* }]| ->

%><ui:repeat var="<%= x %>" value="<%= el %>">

<%= elem2* ::*%>

</ui:repeat><%

where el := <arg-to-value-string> e

; elem2* := <elems-to-xhtml> elem1*

Navigation. The translation of a navigation element is slightly more compli-
cated, since it involves context-sensitive information. As example, consider the
following navigate element:

navigate(viewPerson(prs)){text(prs.name)}

328 E. Visser

Such a navigation should be translated to the following JSF code:

<s:link view="/person.xhtml">

<f:param name="p" value="#{prs.id}" />

<h:outputText value="#{prs.name}" />

</s:link>

While most of this is straightforward, the complication comes from the parame-
ter. The f:param component defines for a URL parameter the name and value.
However, the name of the parameter (p in the example) is not provided in
the call (person). The following rule solves this by means of the dynamic rule
TemplateArguments:

elem-to-xhtml :

|[navigate(p(e*)){elem1*}]| ->

%><s:link view = "/<%= p %>.xhtml">

<%= <conc>(param*,elem2*) ::*%>

</s:link><%

where <IsPage> p

; farg* := <TemplateArguments> p

; param* := <zip(bind-param)> (farg*, e*)

; elem2* := <elems-to-xhtml> elem1*

In a similar way as declare-entity in Section 3 declares the mapping of de-
clared entities to Java types, for each page definition, dynamic rules are defined
that (1) record the fact that a page with name p is defined (IsPage), and (2) map
the page name to the list of formal parameters of the page (TemplateArguments).
Then, creating the list of f:params is just a matter of zipping together the list of
formal parameters and actual parameters using the following bind-param rule:

bind-param :

(|[x : $X]|, e) ->

%><f:param name="<%= x %>" value="<%= el %>" /><%

where <defined-java-type> $X

; el := <arg-to-value-string> |[e.id]|

The rule combines a formal parameter x and an actual parameter expression e
into an f:param element with as name the name of the formal parameter, and
as value the EL expression corresponding to e.

Sections. A final example is that of nested sections. Contrary to the custom
of using fixed section header levels, WebDSL assigns header levels according to
the section nesting level. Thus, a fragment such as

section { header{"Foo"} ... section { header{"Bar"} ... } }

should be mapped to HTML as follows:

<h1>Foo</h1> ... <h2>Bar</h2> ...

WebDSL: A Case Study in Domain-Specific Language Engineering 329

This is again an example of context-sensitive information, which is solved using
a dynamic rule. The rules for section just maps its argument elements. But
before making the recursive call, the SectionDepth counter is incremented.

elem-to-xhtml :

|[section() { elem1* }]| -> %> elem2* <%

where {| SectionDepth

: rules(SectionDepth := <(SectionDepth <+ !0); inc>)

; elem2* := <elems-to-xhtml> elem1*

|}

The dynamic rule scope {| SectionDepth : ... |} ensures that the variable
is restored to its original value after translating all elements of the section.

The rule for the header element uses the SectionDepth variable to generate
an HTML header with the correct level.

elem-to-xhtml :

|[header(){ elem* }]| ->

%><~n:tag><%= <elems-to-xhtml> elems ::*%></~n:tag><%

where n := <SectionDepth <+ !1>

; tag := <concat-strings>["h", <int-to-string> n]

Interesting about this example is that the dynamic rules mechanism makes it
possible to propagate values during translation without the need to store these
values in parameters of the translation rules and strategies.

6.6 Generating Seam Session Beans

The mapping from page definitions to Seam is less interesting than the mapping
to JSF. At this point there are only two aspects to the mapping. First, a page
definition gives rise to a compilation unit defining a stateful session bean using
the name of the page as Seam component name, and the usual boilerplate for
session beans.

page-to-java :

|[define page x_page(farg*) { elem1* }]| ->

|[@Stateful @Name("~x_page")

public class x_Page#Bean implements x_Page#BeanInterface {

@In private EntityManager em;

@Create public void initialize() { bstm* }

@Destroy @Remove public void destroy() {}

cbd*

}]|

where x_Page := <capitalize-string> x_page

; cbd* := <map(argument-to-bean-property)> farg*

; bstm* := <map(argument-to-initialization)> farg*

Second, for each argument of the page, a @RequestParameter with correspond-
ing property is generated as discussed in Section 4.

330 E. Visser

argument-to-bean-property :

|[x : x_Class]| ->

|[@RequestParameter("~x") private Long x#Id;

private x_Class x;

public void set#x(x_Class x) { this.x = x; }

public x_Class get#x() { return x; }]|

Finally, code is generated for initializing the property by loading the object
corresponding to the identity when the session bean is created.

argument-to-initialization :

|[x : x_Class]| ->

|[if (x_Id == null) { x = new x_Class(); }

else { x = em.find(x_Class.class, x_Id); }]|

where x_Id := <concat-strings>[x, "Id"]

6.7 Boilertemplate Scrapped

This concludes the generator refactoring ‘scrap your boilertemplate’. We have
introduced a language that provides a much better coverage of the user interface
domain, and which can be used to create a wide range of presentations. The
resulting mapping now looks much more like a compiler; each language construct
expresses a single concern and the translation rules are fairly small. Next we
consider several extensions of the language.

7 Core Language: Extensions

In the first design of the core language for page definitions some aspects were
ignored to keeps things simple. In this section we consider several necessary
extensions.

7.1 Type Checking

Java is a statically typed language, which ensures that many common program-
ming errors are caught at compile-time. Surprisingly, however, this does not
ensure that web applications developed with frameworks such as JSF and Seam
are free of ‘type’ errors after compilation.

JSF pages are ‘compiled’ at run-time or deployment-time, which means that
many causes of errors are unchecked. Typical examples are missing or non-
supported tags, references to non-existing properties, and references to non-
existing components. Some of these errors cause run-time exceptions, but others
are silently ignored.

While this is typical of template-like data, it is interesting to observe that
a framework such as Seam, which relies on annotations in Java programs for
configuration, has similar problems. The main cause is that Seam component
annotations are scanned and linked at deployment-time, and not checked at

WebDSL: A Case Study in Domain-Specific Language Engineering 331

compile-time for consistency. Thus, uses of components (e.g. in JSF pages)
are not checked. Dependency injection enables loose coupling between compo-
nents/classes, but as a result, the compiler can no longer check data flow prop-
erties, such as guaranteeing that a variable is always initialized before it is used.
Another symptom of interacting frameworks is the fact that a method that is
not declared in the @Local interface of a session bean, is silently ignored when
invoked in JSF.

Finally, JPA and Hibernate queries are composed using string concatenation.
Therefore, syntactic and type errors (e.g. non-existing column) become manifest
only at run-time. Most of these types of errors will show up during testing, but
vulnerabilities to injection attacks in queries only manifest themselves when the
system is attacked, unless they are tested for.

Type Checking WebDSL. To avoid the kind of problems mentioned above,
WebDSL programs are statically type checked to find such errors early. The
types of expressions in template calls are checked against the types of defini-
tion parameters and properties of entity definitions to avoid use of non-existing
properties or ill-typed expressions. The existence of pages that are navigated to
is checked. For example, for the following WebDSL program

entity User { name :: String }

define page user(u : User) {

text(u.fullname)

text(us.name)

navigate(foo()){"bar"}

}

the type checker finds the following errors:

$ dsl-to-seam -i test.app

[error] entity ’User’ has no property ’fullname’

[error] variable ’us’ has no declared type

[error] link to undefined page ’foo’

Type Checking Rules. The type checker is a transformation on WebDSL
programs, which checks the type correctness of expressions and annotates ex-
pressions with their type. These annotations will turn out useful when consid-
ering higher-level abstractions. The following type checking rule for the iterator
construct, illustrates some aspects of the implementation of the type checker.

typecheck-iterator :

|[for(x : s in e1){elem1*}]| -> |[for(x : s in e2){elem2*}]|

where in-tc-context(id

; e2 := <typecheck-expression> e1

; <should-have-list-type> e2

; {| TypeOf

: if not(<java-type> s) then

typecheck-error(|["index ", x, " has invalid type ", s])

else

332 E. Visser

rules(TypeOf : x -> s)

end

; elems2 := <typecheck-page-elements> elems1

|}

| ["iterator ", x, "/"])

First, the type checker performs a transformation, that is, rather than just check-
ing, constructs are transformed by adding annotations. Thus, in this rule, the
iterator expression and elements in the body are replaced by the result of type
checking them. Next, constraints on the construct are checked and errors re-
ported with typecheck-error. The in-tc-context wrapper strategy is respon-
sible for building up a context string for use in error messages. Finally, the local
iterator variable x is bound to its type in the TypeOf dynamic rule [20]. The dy-
namic rule scope {| TypeOf : ... |} ensures that the binding is only visible
while type checking the body of the iterator. The binding is used to annotate
variables with their type, as expressed in the typecheck-variable rule:

typecheck-variable :

Var(x) -> Var(x){Type(t)}

where if not(t := <TypeOf> x) then

typecheck-error(|["variable ", x, " has no declared type"])

; t := "Error"

end

7.2 Data Input and Actions

The language of the previous section only dealt with presentation of data. Data
input is of course an essential requirement for interactive web applications. To
make edit pages, we need constructs to create input components that bind data
to object fields, forms, and buttons and actions to save the data. Figure 13
shows a WebDSL page definition for a simple edit page with a single input
field and a Save button, as well as the mapping to JSF and Java/Seam. The
language constructs are straightforward. The form element builds a form, the
inputString(e) element creates an input field bound to the contents of the
field pointed at by e, and the action element creates a button, which executes
a call to a defined action when pushed. The mapping to Seam is straightforward
as well. The action definition is mapped to a method of the session bean.

Action Language. The statement language that can be used in action defi-
nitions is a simple imperative language with the usual constructs. Assignments
such as person.blog := Blog{title := name}; bind a value to a variable or
field. Method calls such as publication.authors.remove(author); invoke an
operation on an object. Currently, the language only supports a fixed set of
methods, such as some standard operations on collections, and persistence oper-
ations such as save. The latter can be applied directly to entity objects, hiding
the interaction with an entity manager from the WebDSL developer. The return
statement is somewhat unusual, as it is interpreted as a page-flow directive, that

WebDSL: A Case Study in Domain-Specific Language Engineering 333

User { name :: String }

page editUser(user : User) {

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return user(user);

}

}

}

⇒

@Stateful @Name("editUser")

class EditUserBean {

property User user;

public String save() {

em.persist(this.getUser());

return "/user.seam"

+ "?u=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{editUser.user.name}"/>

<h:commandButton type="submit" value="Save"

action="#{editUser.save()}"/>

</h:form>

Fig. 13. Mapping form, input field, and action to JSF and Java/Seam

is, a statement return user(u); is interpreted as a page redirect with appro-
priate parameters. Conditional execution is achieved with the usual control-flow
constructs.

Expressions consist of variables, constant values (e.g. strings, integers), field
access, and object creation. Rather than having to assign values to fields after
creating an object, this can be done with the creation expression. Thus, object
creation has the form Person{ name := e ... }, where fields can be directly
given a value. There is also special syntax for creating sets ({e1, e2,...}) and
lists ([e1, e2,...]).

Java Embedding. The current design of the action language is somewhat
ad hoc and should be generalized. A conventional critique of domain-specific
languages is that they require the redesign of such things as statements and
expressions, which is hard to get right and complete.

An alternative approach would be to directly embed the syntax of Java state-
ments and expressions, and insert the embedded Java fragments into the gener-
ated session bean classes. This would give complete access to the full expressivity
of Java. Indeed this is what is done with the Hibernate Query Language later
in this section. However, Java is a large and complex language; an embedding
would entail importing a type checker for Java as well. Furthermore, it would
entail tying the DSL to the Java platform and preclude portability to other plat-
forms. HQL and SQL are more portable than Java. That is, as long as we rely on
a platform with a relational database, chances are that we can access the data
layer through an SQL query. A more viable direction seems to keep the action
language simple, but provide a foreign function interface, which gives access to
functionality implemented in external libraries to be linked with the application.

334 E. Visser

entity User{ name :: String }

page createUser() {

var user : User := User{};

form{

inputString(user.name)

action("Save", save())

action save() {

user.save();

return user(user);

}

}

}

⇒

@Stateful @Name("editUser")

class createUserBean {

property User user;

@Create

public void initialize() {

user = new User();

}

public String save() {

em.persist(this.getUser());

return "/user.seam"

+ "?user=" + user.getId();

}

}

⇓
<h:form>

<h:inputText value="#{editUser.user.username}"/>

<h:commandButton type="submit" value="Save"

action="#{editUser.save()}"/>

</h:form>

Fig. 14. Page local variables

7.3 Page Local Variables

So far we have considered pages that operate on objects passed as parameters.
Sometimes it is necessary for a page to have local variables. For example, a
page for creating a new object cannot operate on an existing object and needs
to create a fresh object. Page local variables support this scenario. Figure 14
illustrates the use of a local variable in the definition of a page for creating
new User objects, which is mostly similar to the edit page, except for the local
variable.

7.4 Queries

The presentation language supports the access of data via (chained) field ac-
cesses. Thus, if we have an object, we can access all objects to which it has
(indirect) associations. Sometimes, we may want to access objects that are not
available through associations. For example, in the data model in Figure 7,
a Publication has a list of authors of type User, but a User has no (in-
verse) association to the publications he is author of. In these situations we need
a query mechanism to reconstruct the implicit association. In general, queries
allow filtering of data.

There is no need to invent a DSL for querying. The Hibernate Query Language
(HQL), an adaptation of the relational query language SQL to ORM, provides an
excellent query language [10]. To make HQL available in WebDSL we follow the
language embedding pattern described in earlier work [102]. Figure 15 illustrates
the embedding and its implementation. The query retrieves the publications for

WebDSL: A Case Study in Domain-Specific Language Engineering 335

entity User{ name :: String }

entity Publication{ authors -> List<User> }

page user(user : User) {

var pubs : List<Publication> :=

select pub from Publication as pub, User as u

where (u = ~user) and (u member of pub.authors)

order by pub.year descending;

for(p : Publication in pubs) { ... }

}

⇓

class UserBean {

property List<Publication> pubs;

@Factory("pubs") public void initPubs() {

pubs = em.createQuery(

"select pub from Publication as pub, User as u" +

" where (u = :param1) and (u member of pub.authors)" +

" order by pub.year descending"

).setParameter("param1", this.getUser())

.getResultList();

}

}

Fig. 15. Mapping embedded HQL queries to string-based query construction in Java

which the user is an author. An HQL query is added to the WebDSL syntax
as an expression. For now we assume the result of a query is assigned to a local
page variable, which can then be accessed anywhere on the page. Queries can
refer to values of page objects by means of the antiquotation ~. In Figure 15, this
is used to find the user with the same identity as the user object of the page.
The query is translated to a @Factory method, which uses the entity manager
to create the query using string composition. Antiquoted expressions become
parameters of the query.

While the use of HQL in WebDSL does not provide a dramatic decrease in
code size, there are some other advantages over the use of HQL in Java. In Java
programs, Hibernate queries are composed as strings and parsed at run-time.
This means that syntax errors in queries are only caught at run-time, which is
hopefully during testing, but maybe during production if testing is not thorough.
The getParameter mechanism of HQL takes care of escaping special characters
to avoid injection attacks. However, use of this mechanism is not enforced and
developers can splice values directly into the query string, so the risk of injection
attacks is high. In WebDSL, queries are not composed as strings, but integrated
in the syntax of the language. Thus, syntactic errors are caught at compile-time
and it is not possible to splice in strings without escaping. This embedding of
HQL in WebDSL is a variant of the StringBorg approach, which provides a safe
way of embedding query-like languages without the risk of injection attacks [16].

336 E. Visser

entity Blog {

title :: String (name)

author -> Person

entries <> List<BlogEntry>

}

entity BlogEntry {

title :: String (name)

created :: Date

intro :: Text

}

Fig. 16. Data model for blogs and blog entries

Another advantage is that the WebDSL type checker can check the consistency of
queries against the data model and local variable declarations. The consistency
of HQL queries in Java programs is only checked at run-time.

8 Abstraction Mechanisms: Templates and Modules

In the previous two sections we have extended the data modeling language with
a core language for presentation, data input, and page flow. The generator now
encapsulates a lot of knowledge about basic implementation patterns. The re-
sulting language provides the required flexibility such that we can easily create
different types of pages without having to extend or change the generator. How-
ever, this same flexibility entails that page definitions will consist of fragments
that occur in other definitions as well. We need to balance the flexibility of the
core language with abstraction mechanisms that allow developers to abstract
from low-level implementation patterns. We can distinguish two forms; genera-
tive and non-generative abstraction mechanisms.

Literal code duplication can be addressed by providing a mechanism for nam-
ing and parametrizing code fragments. In this section we extend the language
with templates, named pieces of code with parameters and hooks. Next, we add
modules, named collections of definitions defined in a separate file, which can be
imported into other modules. Modules are essential for organizing a code base
and to form a library of reusable code. These mechanisms are non-generative, in
the sense that the definitions of patterns are done by the DSL programmer and
do not require an extension of the generator.

In the next section, we consider syntactic abstractions, extensions to the lan-
guage providing higher-level abstractions, which are implemented by means of
‘model-to-model’ transformations in the generator. These abstraction mecha-
nisms are generative (like the ones we saw before). Implementation in the gen-
erator allows reflection over the model and non-local transformations.

8.1 Reusing Page Fragments with Template Definitions

Template definitions provide a mechanism for giving a name to frequently used
page fragments. A template definition has the form
define f(farg∗){elem∗}

with f the name of the template, farg∗ a list of formal parameters, and elem∗
a list of template elements. The use of a defined template in a template call,

WebDSL: A Case Study in Domain-Specific Language Engineering 337

Fig. 17. Instance of blog page

leads to the replacement of the call
by the body of the definition. The
markup elements we introduced in
Section 6 are also template calls;
these are not defined by tem-
plate definitions, but by the gen-
erator. To illustrate the use of
template definitions, we consider
pages such as the one in Figure 17.
The body of the page presents en-
tries in a blog, as represented in the
data model in Figure 16, but sur-
rounding that are elements that ap-
pear in many other pages as well. The
following parameterless template def-
initions define the literal fragments
logo, footer, and menu:

define logo() { navigate(home()){image("/img/serg-logo.png")} }

define footer() {

"generated with "

navigate(url("http://www.strategoxt.org")){"Stratego/XT"}

}

define menubar() {

menu{ menuheader{"People"} for(p : Person){ menuitem{...} } } ...

}

Such fragments can be reused in many pages, as in the following page definition:

define page home() {

block("menubar"){ logo() menubar() }

section{ ... }

footer()

}

Literal template definitions are of limited use. To support reuse of partial frag-
ments, which have holes that should be filled in by the reuse context, templates
can have hooks in the form of template calls that can be locally (re)defined.
For example, the following main template calls logo, sidebar, menu, body, and
footer.

define main() {

block("outersidebar") { logo() sidebar() }

block("outerbody") {

block("menubar") { menubar() }

body()

footer()

}

}

338 E. Visser

Some of these templates may have a global definition, such as the ones above, but
others may be defined locally in the context where main is called. For example,
the following page definition calls the main template and defines sidebar and
body (overriding any top-level definitions), thus instantiating the calls to these
templates in the definition of main:

define page blog(b : Blog) {

main()

define sidebar(){ blogSidebar(b) }

define body() {

section{ header{ text(b.title) }

for(entry : BlogEntry in b.entries) { ... }

} } }

Templates may need to access objects. Therefore, templates can have parameters.
For example, the following definition for a sidebar defines links specific to a
particular Person object p.

define personSidebar(p : Person) {

list {

listitem { navigate(person(p)){text(p.name)} }

listitem { navigate(personPublications(p)){"Publications"} }

listitem { navigate(blog(p.blog)){"Blog"} blogEntries() }

listitem { "Projects" listProjectAcronyms(p) }

} }

This allows templates to be reused in different contexts. For example, the tem-
plate above can be used to create the sidebar for the view page for a Person, as
well as for the publications page of that person.

define page person(p : Person) {

main()

define sidebar() { personSidebar(p) } ...

}

define page personPublications(p : Person) {

main()

define sidebar() { personSidebar(p) } ...

}

Note that the template mechanism is a form of dynamic scoping; template calls
may be instantiated depending on the use site of the enclosing template defi-
nition. However, the variables used in expressions are statically bound and can
only refer to lexically visible variable declarations, i.e. template parameters, local
variables, or global variables. The combination is similar to method overriding in
object oriented languages, where variables are lexically scoped, but method invo-
cations may be dynamically bound to different implementations. The template
calls in a template definition provide a requires interface of internal variation
points.

WebDSL: A Case Study in Domain-Specific Language Engineering 339

Template Expansion. Template expansion is a context-sensitive transforma-
tion, which again relies on dynamic rules for its implementation. For each tem-
plate definition a dynamic rule TemplateDef is defined that maps the name of
the template to its complete definition.

declare-template-definition =

?def@|[define mod* x(farg*){elem*}]|

; rules(TemplateDef : x -> def)

The dynamic rule is used to retrieve the definition when encountering a template
call. Subsequently, all bound variables in the definition are renamed to avoid
capture of free variables.

expand-template-call :

|[x(e*){elem1*}]| -> |[elem2*]|

where <TemplateDef; rename> x => |[define mod* x(farg*){elem3*}]|

; {| Subst

: <zip(bind-variable)> (farg*, <alltd(Subst)> e*)

; elem2* := <map(expand-element)> elem3*

; str := x

|}

The formal parameters of the template are bound to the actual parameters of
the call in the dynamic rule Subst:

bind-variable = ?(Arg(x, s), e); rules(Subst : Var(x) -> e)

8.2 Modules

A module system allows a code base to be organized into coherent and possibly
reusable units, which is a requirement for building a library. Module systems
come in different levels of complexity. Module systems supporting separate com-
pilation can become quite complex, especially if the units of compilation in the
DSL do not match the units of compilation of the target platform. For this ver-
sion of WebDSL a very simple module system has been chosen that supports
distributing functionality over files, without separate compilation. A module is
a collection of domain model and template definitions and can be imported into
other modules as illustrated in Figures 18 and 19. The generator first reads in all
imported modules before applying other transformations. The implementation
of import chasing is extremely simple:

import-modules =

topdown(try(already-imported <+ import-module))

already-imported :

Imports(name) -> Section(name, [])

where <Imported> name

340 E. Visser

module publications

section domain definition

Publication {

title :: String (name)

year :: Int

authors -> List<Person>

abstract :: Text

}

section presenting publications

define showPublication(pub : Publication) {

for(author : Person in pub.authors){

navigate(person(author)){text(author.name)} ", " }

navigate(publication(pub)){text(pub.name)} ", "

text(pub.year) "."

}

Fig. 18. Module definition

application org.webdsl.serg

imports templates

imports people

imports blog

imports publications

Fig. 19. Application importing modules

import-module :

Imports(name) -> mod

where mod := <parse-webdsl-module>FILE(<concat-strings>[name,".app"])

; rules(Imported : name)

The dynamic rule Imported is used to prevent importing a module more than
once.

9 Abstraction Mechanisms: Syntactic Sugar

With the core language introduced in Sections 6 and 7 we have obtained expres-
sivity to define a wide range of presentations. With the templates and modules
from the previous section we have obtained a mechanism for avoiding code dupli-
cation. However, there are more generic patterns that are tedious to encode for
which templates are not sufficient. Even if a language provides basic expressivity,
it may not provide the right-level of abstraction. So if we encounter reoccurring
programming patterns in our DSL, the next step is to design higher-level ab-
stractions that capture these patterns. Since the basic expressivity is present we
can express these abstractions by means of transformations from the extended

WebDSL: A Case Study in Domain-Specific Language Engineering 341

DSL to the core DSL. Such transformations are known as desugarings, since the
high-level abstractions are known as syntactic sugar. In this section we discuss
three abstractions and their corresponding desugarings.

9.1 Output Entity Links

A convention in WebDSL applications is to define for each entity type a cor-
responding page definition for viewing objects of that type with the name of
the entity in lowercase. For example, for entity Publication, a page defini-
tion publication(p : Publication) is defined. Given an object, say pub :
Publication, creating a link to such a page is then realized with navigate as
follows:

navigate(publication(pub)){text(pub.name)}

While not a lot of code to write, it becomes tedious, especially if we consider
that the code can be derived from the type of the variable. Thus, we can replace
this pattern by the simple element

output(pub)

This abstraction is implemented by the following desugaring rule, which uses the
type of the expression to determine that the expression points to an entity object:

DeriveOutputSimpleRefAssociation :

|[output(e){}]| -> |[navigate($y(e)){text(e.name)}]|

where |[$Y]| := <type-of> e

; <defined-java-type> |[$Y]|

; $y := <decapitalize-string> $Y

This desugaring is enabled by the type annotations on expressions produced by
the type checker. Similar desugaring rules can be defined for other types, as
illustrated by the following rules:

DeriveOutputText :

|[output(e){}]| -> |[navigate(url(e)){text(e)}]|

where |[URL]| := <type-of> e

DeriveOutputText :

|[output(e){}]| -> |[image(e){}]|

where |[Image]| := <type-of> e

As a consequence of this abstraction, it is sufficient to write output(e) to pro-
duce the default presentation of the object indicated by the expression e.

9.2 Editing Entity Collection Associations

Editing a collection of entities is not as simple as editing a string or text property.
Instead of typing in the value we need to select an existing object from some

342 E. Visser

Fig. 20. Editing collection association

kind of menu. Consider the edit page for a publication in Figure 20. Editing the
authors association requires the following ingredients: a list of names of entities
already in the collection; a link [X] to remove the entity from the collection; a
select menu to add a new (existing) entity to the collection. This is implemented
by the following WebDSL pattern:

list { for(person : Person in publication.authors) {

listitem{ text(person.name) " "

actionLink("[X]", removePerson(person)) }

} }

select(person : Person, addPerson(person))

action removePerson(person : Person) {

publication.authors.remove(person);

}

action addPerson(person : Person) {

publication.authors.add(person);

}

The select creates a drop-down menu with (names of) objects of some type.
Upon selection of an element from the list, the corresponding action (addPerson
in this case), is executed. This fragment illustrates the flexibility of the pre-
sentation language; a complex interaction pattern can be composed using basic
constructs. However, repeating this pattern for each entity association is tedious.
Creating this pattern can be done automatically by considering the type of the
association, which is expressed by the first desugaring rule in Figure 21. Thus,
input(pub.authors) is now sufficient for producing the implementation of an

WebDSL: A Case Study in Domain-Specific Language Engineering 343

DeriveInputAssociationList :

elem|[input(e){}]| ->

elem|[list { for(x : $X in e){

listitem{text(x.name) " " actionLink("[X]", $removeX(x))}

} }

select(x : $X, $addX(x))

action $removeX(x : $X) { e.remove(x); }

action $addX(x : $X) { e.add(x); }]|

where |[List<$X>]| := <type-of> e

; x := <decapitalize-string; newname> $X

; $removeX := <concat-strings; newname>["remove", $X]

; $addX := <concat-strings; newname>["add", $X]

DeriveInputText :

|[input(e){}]| -> |[inputText(e){}]|

where SimpleSort("Text") := <type-of> e

DeriveInputSecret :

|[input(e){}]| -> |[inputSecret(e){}]|

where SimpleSort("Secret") := <type-of> e

Fig. 21. Desugaring rules for input

association editor4. Similar rules can be defined for other types, as illustrated in
Figure 21. As a consequence, the input(e) call is now sufficient for producing
the appropriate input interface.

9.3 Edit Page

The presentation language supports the flexible definition of custom user inter-
faces. Based on this language the generation of the standard view/edit interface
can now be reformulated as a model-to-model transformation. Rather than di-
rectly generating Java and JSF code, a presentation model can be generated
from an entity declaration. The generator for the core language then generates
the implementation. We consider edit pages such as in Figure 22, which consist
of an input box for each property of an entity, organized in a table, and Save
and Cancel buttons. The pattern for the (body of) an edit page is:

form {

table {

row{ "Blog" input(entry.blog) }

row{ "Title" input(entry.title) }

row{ "Created" input(entry.created) }

row{ "Category" input(entry.category) }

row{ "Intro" input(entry.intro) }

4 At the time of producing the final version of this paper, the editing of collection
associations has been replaced with a different implementation.

344 E. Visser

row{ "Body" input(entry.body) }

}

action("Save", save()) action("Cancel", cancel())

action cancel() { cancel blogEntry(entry); }

action save() { entry.save(); return blogEntry(entry); }

}

Generation of pages of this form is now defined by the entity-to-edit-form
rule in Figure 23. Note that $x is used both as the argument of the edit page

Fig. 22. Edit BlogEntry

entity-to-edit-form :

|[entity $X { prop* }]| ->

|[define page $editX($x : $X) {

form {

table { elem* }

action("Save", save())

action("Cancel", cancel())

}

action cancel() { return $x($x); }

action save() { $x.save(); return $x($x); }

}]|

where $x := <decapitalize-string> $X

; $editX := <concat-strings>["edit", $X]

; elem* := <map(property-to-edit-row(|$x))> prop*

property-to-edit-row(|x) :

|[y k s (anno*)]| -> |[row { str input(x.y) }]|

where str := <capitalize-string> y

Fig. 23. Derivation of edit page from entity declaration

WebDSL: A Case Study in Domain-Specific Language Engineering 345

and the name of the view page. For each property a table row with an input
element is generated using the property-to-edit-row rule. Application of the
previously defined desugaring rules for input then take care of implementing
the interaction pattern corresponding to the type of the property.

10 Discussion: Web Engineering

The development of WebDSL in this paper touches on the development of
domain-specific languages and on abstractions for web engineering. WebDSL was
intended in the first place as a case study in the development of domain-specific
languages. By now it has turned into a practically useful language. Since the
first version of WebDSL, which is described in this paper, the language has been
improved to increase coverage and has been extended with higher-level abstrac-
tions. List comprehensions support easy filtering and ordering of lists. Entity and
global function definitions are useful for separating logic from presentation. En-
tity inheritance and extension support separation of concerns in data modeling.
Recursive templates support the presentation of nested structures. Declarative
access control rules regulate the access to pages and actions [52]. Furthermore,
some of the implementation patterns have been replaced by others, without af-
fecting the design of the language.

This section gives an assessment of WebDSL as a solution in the domain of
web engineering. The criteria for the success of a DSL from the introduction are
reiterated and the WebDSL project is evaluated with respect to these criteria.
WebDSL is compared to alternative web engineering approaches, giving rise to
ideas for further improvements and extensions. The next section considers other
approaches and techniques for DSL engineering with respect to the criteria.
Section 12 considers several challenges for language engineering.

10.1 DSL Engineering Evaluation Criteria

For the process of developing a domain-specific language we consider the follow-
ing criteria:

– Productivity: What is the expected time to develop a new language? Dis-
tinguish the costs of domain analysis, language design, and language imple-
mentation.

– Difficulty: How difficult is it to develop a language? Can it be done by
an average programmer or does it require special training? Does it require
special infrastructure?

– How systematic and predictable is the process?
– Maintainable: How well does the process support language evolution? How

difficult is it to change the language? Can languages be easily extended with
new abstractions?

For the domain-specific language produced by a language engineering project we
consider the following criteria:

346 E. Visser

– Expressivity: Do the language abstractions support concise expression of
applications? What is the effect on the productivity of developing applications
using the DSL compared to the traditional programming approach?

– Coverage: Are the abstractions of the language adequate for developing ap-
plications in the domain? Is it possible to express every application in the
domain?

– Completeness: Does the language implementation create a complete imple-
mentation of the application or is it necessary to write additional code?

– Portability: Can the abstractions be implemented on a different platform?
Does the language encapsulate implementation knowledge? To what extent
do the abstractions leak implementation details of the target platform?

– Code quality: Is the generated code correct and efficient?
– Maintainability: How well does the language support evolution? What is the

impact of changing a model? What is the impact of changes to the language?

In the following we evaluate the WebDSL design and development with respect
to these criteria.

10.2 Evaluation of the WebDSL Development Process

The version of WebDSL described in this paper emerged from a project con-
ducted by the author (non full-time) between September 2006 to June 2007.
Several master’s students conducted related research activities that provided in-
put for the project. In particular, Sander Mak developed a concurrent DSL for
web applications [71] from which the idea of page definitions and navigations
analogous to function definitions and calls originated.

Productivity and Difficulty. The effort of a language engineering project is
divided into domain analysis, language design, and language implementation.
In the WebDSL project, by far the most effort was spent in the first stage,
i.e. becoming adequately knowledgeable in (one configuration of) the Java web
programming platform. To give an indication of the effort involved, here is a
brief description of the time line of the project.

In September 2006 a simple wiki application was built with MySQL, JSP,
JDBC, and Java Servlets. The application included a wiki markup parser and
HTML renderer. In February and March 2007 the wiki application was rewrit-
ten using Hibernate as object-relational mapping solution, greatly simplifying
the implementation and improving the code quality. The reimplementation con-
sisted of several iterations and introduced some complex features such as nested
wiki pages and uploading legacy wiki content from XML data. At the end of
March 2007, refactoring the code of the wiki application to try out new archi-
tectural ideas became too painful, and a start was made with building WebDSL.
In April 2007, JSF, Seam, and Hibernate with annotations (instead of XML
configuration) were ‘discovered’ and used as target platform in the emerging
generator. Generation of a basic CRUD application (Section 4) and refinement
of the data model DSL (Section 5) were realized by mid April. With this basic

WebDSL: A Case Study in Domain-Specific Language Engineering 347

generator in place it was now possible to experiment with much larger data mod-
els than the one for the wiki application. The running example was changed to
the ‘research group’ application with publications, home pages, project, blogs,
etc. that features in this paper. The presentation language and desugaring trans-
formations for higher-level abstractions (Section 6) were developed in May 2007.
The embedding of HQL queries, the module system, and numerous refinements
and improvements were realized in June 2007.

Language design can be further divided into discovering the conceptual ab-
stractions and formalizing these abstractions by means of a syntax definition.
Again, most of the effort was spent in abstraction discovery; syntax definition
with SDF is straightforward once the desired notation has been designed. The
data model notation is not particularly original; it is basically a variation on
record declarations in C or Pascal. The presentation layer language took a
while to emerge. Although with hindsight it is a fairly obvious abstraction from
JSF templates. In general, WebDSL liberally borrows designs from existing lan-
guages, which is a good idea since these designs will be familiar to developers.

Language implementation was heavily interleaved with design. The author
has ample experience in language design and implementation, and is, as pri-
mary designer, intimately familiar with the Stratego/XT implementation tech-
nology. Thus, implementation of the generator required mainly the ‘encoding’
of the implementation patterns as rewrite rules and strategies using standard
Stratego/XT practices. Getting to this level of language implementation pro-
ductivity requires training in language design and a particular implementation
technology such as Stratego/XT. A few innovations of Stratego/XT were made
during the development of WebDSL. In particular, some utilities for the gen-
eration of multiple output files were developed. Furthermore, in a refactoring
of the WebDSL generator several measures were taken to increase the locality
of generation rules [54]. In particular, an extension of Java has been developed
to support identifier composition, partial classes, partial methods, and interface
derivation.

Systematic. The inductive, technology driven approach to DSL design adopted
in the WebDSL project ensures a natural scope. The domain is defined by what-
ever is being programmed in practice. Abstractions are discovered by studying
programming patterns; common codes ends up as constant code in templates,
variable parts are inserted based on information in the model. This approach
initially just leads to straightforward abstractions from existing programming
practice. However, identification of these abstractions leads to better insight in
the domain, which may give rise to reformulations not directly inspired by pro-
gramming patterns. For example, the access control extension of WebDSL [52]
is not based on the facilities for access control provided by the Seam framework.
Rather an expressive and declarative mechanism is developed enabled by the
possibility to perform desugaring transformations on the DSL itself.

Language design requires some creativity and cannot be very predictable.
At first, abstractions can be formulated as enumeration of configuration data,
possibly in some XML schema. However, good DSLs require a readable concrete

348 E. Visser

syntax. Language design can be inspired by existing language design patterns.
For example, the design of the user interface language of WebDSL was inspired
took some inspiration from LATEX, not so much in its concrete syntax, as in
concepts of separation of structure and style. A catalog of reusable language
design patterns could be helpful in the design of new DSLs.

The implementation of WebDSL follows standard architectural patterns for
DSL generators.

Maintainable. The extensibility of Stratego strategy definitions makes a gener-
ator naturally extensible to support new constructs of the same nature as existing
ones. However, the extension of WebDSL with access control and the addition
of new user interface components, eventually required a number of refactorings
to maintain the modularity of the generator [54].

10.3 Evaluation of the WebDSL Language

Expressivity. Programming web applications in WebDSL is a breeze compared
with programming in the underlying Seam architecture. Implementations are
small and the data model and presentation are easily adapted when insights
in the design of an application change. To objectively measure the decrease in
effort (say lines of code) that is obtained by using WebDSL it is necessary to
simultaneously develop the same web application in WebDSL and using some
other techniques. Alternatively, we can exactly rebuild existing web applications
and compare the two implementations. As an approximation we can take metrics
from WebDSL projects as an indication.

For the website of webdsl.org we are developing a software project man-
agement application using WebDSL. The current prototype counts 2800 lines of
WebDSL code and provides blog, forum, wiki, and issue tracker sub-applications.
Access to the applications is controlled by a declarative access control policy
(see below). The various applications support cross-linking from user-provided
content via wiki-like links, which can address pages symbolically, for example
[[issue(WEBDSL-10)]] creates a link from a blog entry to an issue in the issue
tracker. The generated implementation of this application takes about 44K lines
of Java code (3.6K for entity classes, the rest for beans) and some 25K lines of
XHTML. Of course, this code is not necessarily as compact as it would be pro-
grammed manually. But a factor of 5 to 10 decrease in size compared to manually
programmed applications appears to be a realistic (conservative) estimate.

The order of magnitude decrease in code size implies a significant increase
in productivity. In particular, refactoring the design of an application can be
realized much faster than is the case in the target platform, simply because less
code is involved. However, the reduction of accidental complexity reduces appli-
cation development to the hard part of development, i.e., requirements analysis
and application design. Once it is known what the structure and functionality of
an application should be, it is easy to realize that. However, WebDSL does not
(yet) provide much help for coming up with a design. Further abstractions, such
as for workflow, can help guide the design of certain ‘genres’ of applications.

WebDSL: A Case Study in Domain-Specific Language Engineering 349

While macro productivity is increased, micro productivity is not ideal. The
time it takes to generate code, compile it, and deploy it in a JBoss application
server determine the development feedback cycle. This cycle entails a penalty
that is felt most when making small changes. A better model for incremental
compilation and deployment should improve this factor.

Coverage. The WebDSL language supports the creation of a wide range of
web applications with a rich data model. There are numerous ways in which the
coverage of WebDSL can be extended and refined. In the rest of this section
several ideas are discussed.

Completeness. The WebDSL generator generates complete code. There is no
need to fill in or manually tune generated code skeletons. Sometimes it is nec-
essary to add new built-in types. For instance, to represent patches for version
management of the wiki application of webdsl.org, a patch library implemented
in Java was added to the collection of libraries comprising the run-time system.
Such built-in types are implemented as a separate module with rules plugging
into the type checker and code generator. This extensibility should be made less
intrusive by by supporting the declaration of new types and operations in the
language itself.

Portability. The portability of WebDSL to other Java web frameworks, or
other implementation platforms such as PHP or C# has not yet been realized,
so no hard claims about the quality of the WebDSL abstractions can be made.
However, there is some evidence that the abstractions are fairly robust and target
platform independent. Several of the programming patterns that gave rise to
the WebDSL abstractions have been replaced by others, without changing the
language constructs that they gave rise to. In Section 8 the template mechanism
is implemented through expansion. This precludes the use of recursive template
invocations, which would be useful for the presentation of hierarchical, nested
structure such as a document with sections and subsections. Recently, we figured
out how to translate separate template definitions. This required a change in
the back-end of the generator, but the language itself already supported the
expression of recursive template invocations.

Code Quality. WebDSL applications inherit properties such as performance,
robustness, and safety from the target architecture. The technology driven ap-
proach underlying the design of WebDSL starts from the assumption that the
target architecture is solid. However, Seam itself is new and under development.
No experiments have been performed yet to establish these properties in a pro-
duction setting.

Evolution. Complete code generation ensures that regular evolution of an ap-
plication is a matter of reapplying the generator to obtain an implementation for
a new version. Otherwise, the evolution of web applications and the version of
WebDSL they are constructed with has been ignored in this paper. It is however,
an important consideration in a software development process based on DSLs.
Section 12 outlines (research) challenges for evolution of DSL-based software
development.

350 E. Visser

10.4 Static Verification

WebDSL statically checks application definitions. Expressions accessing, manip-
ulating, and creating data are checked for consistency with the declared entities
and the variable declarations in scope. The existence of pages in navigations is
checked, the types of actual parameters to page navigations are checked against
the formal parameters of page definitions. Embedded HQL queries can also be
checked against the declared entities; implementation of this feature is not yet
complete. The remaining errors are logical errors in actions (e.g. accessing a prop-
erty with null value), and errors in the composition of web pages. In practice,
most errors that occur during development are application design errors. That is,
realization during testing that pages and interactions should be organized differ-
ently. Due to code generation, the generated code correctly implements the spec-
ification. Errors normally made in boilerplate code are avoided. Any remaining
errors are bugs in the generation templates, which only need to be repaired once.

Logical errors cannot be completely eliminated. Well-formedness of generated
web pages could be checked statically by extending the type checker to check for
valid combinations. The only error of this kind encountered in practice, is forget-
ting to embed form elements in a form{...}. The other template elements can
be combined fairly liberally due to the leniency of browsers. However, checking
such properties would ensure better HTML documents. This is done in systems
such as <bigwig> [14], JWIG [25], WASH [92] and Ocsigen [9]. In particular, the
<bigwig> and JWIG systems provide sophisticated correctness checks of docu-
ment well-formedness. Templates in these systems are used to dynamically create
documents, including the use of recursive definitions. Data-flow analysis is used to
verify that all possible documents that can be generated by a program are valid.

10.5 Input Validation and Data Integrity

Properties and entities may need to satisfy more strict constraints than can be
expressed using types alone. First, in some cases it is required to restrict the form
of value types. For example, the syntax of an email address should be checked
on submission and an error reported if not conforming. Next, constraints on
combinations of objects should be checked. For example, in a conference system,
the author of a paper may not be a reviewer of that same paper. Violations
to this constraint should be detected when changes are made. Both types of
constraints can be expressed declaratively, using regular expressions for input
validation and Boolean expressions over object graphs for structural invariants.
The PowerForms tool of the <bigwig> project provides a declarative language
for declaring the client-side validation of form fields using regular expressions
and interdependencies between form fields [13]. We plan to include support for
the specification of data integrity constraints in a future version of WebDSL.

10.6 Access Control

A related concern is controlling the access to data and the pages that present
and modify them. Access control checks can be expressed in WebDSL page

WebDSL: A Case Study in Domain-Specific Language Engineering 351

definitions by means of a conditional content construct (if condition holds, show
this content). However, directly expressing access control with that mechanism
would result in a tangling of concerns. We have designed an extension of WebDSL
with declarative rules for user authentication and access control that supports
separate specification [52].

10.7 Presentation

Presentations in WebDSL depend on the basic page elements defined by the gen-
erator. The elements supported currently cover the basics of HTML, abstracting
from visual layout by relying on cascading stylesheets (CSS). Fancier elements
can be added by extending the generator with new mappings from page ele-
ments to JSF components. It should be possible to provide such extensions as a
plug-in to the generator, which requires an extensibility mechanism. Using the
extensibility of strategy definitions in Stratego and an extension of Java to sup-
port partial classes, such extensibility is realized in a refactoring of the WebDSL
generator [54]. A concern in the design of such extensions should be a proper
separation between declaration of the structure of page content and visual for-
matting. Many JSF components are variations on the same theme, e.g. a list, vs
a table, vs a grid, which are different visualizations of the same information.

The current design of WebDSL is page-centric, with actions and navigations
leading to requests of complete new pages. The trend in web application design
is towards inclusion of elements from rich (desktop) user interfaces, in which only
parts of the page get updated as a reaction to user actions. An experiment with
targetting the Echo2 Ajax framework [2] has shown that it might be feasible
to develop rich user interfaces with the WebDSL abstractions. The central idea
of the experiment was to use templates as the components to be replaced as a
response to user actions. A less ambitious approximation of richer user interfaces
can be obtained by targetting Ajax JSF components, which is already done to
some extent.

10.8 Control-Flow

WebDSL provides a high-level language for implementing web applications by
abstracting away from low-level details. However, in its core the language has
the same page-centric model as the underlying Seam architecture. It could even
be observed that WebDSL makes this architecture more explicit; where in Seam
a page is defined by means of a number of separate artifacts, WebDSL unifies
the elements of a page in a single definition. This architecture implies that user
interactions take the shape of a series of requests and responses.

The Mawl [4] form processing language introduced a paradigm for model-
ing web interactions in the form of traditional console interaction. That is, web
pages are considered as the input and output actions of a sequential program
that control the interaction. The following Mawl example defines a session in

352 E. Visser

which first the user should provide a name (GetName), which is echoed in the
next step (ShowInfo) [4]:

global int access_cnt = 0;

session Greet {

local form {} -> { string id } GetName;

local form { string id, int cnt } -> {} ShowInfo;

local string i = GetName.put({}).id;

ShowInfo.put({i, ++access_cnt});

}

Here GetName and ShowInfo are the names of separately defined HTML tem-
plates with parameters filled by the put operation. The statelessness of the http
protocol requires the server to remember where to resume the program after the
user submits a request.

In an application of Scheme to web applications, Queinnec [80] observed that
capturing of the interaction state can be implemented elegantly by means of
continuations, in particular the call/cc feature of Scheme. This approach has
subsequently been adopted and refined in the PLT Scheme web server [67]. The
Seaside Smalltalk web programming environment uses callbacks with closures to
model control flow [40]. The OCaml web framework Ocsigen uses continuation
passing style and stores continuations server-side on disk between requests [9].
The WASH [92] framework uses a monad to capture the continuation of a re-
sponse. While continuations appear to be a very elegant formalization of sequen-
tial series of interactions with a single user, it is not clear that continuations can
also be used to capture interactions involving (many) different users over multi-
ple sessions as is needed for implementing workflows.

The Seam [56, 74] framework, which WebDSL targets, supports a notion of
conversations to deal with the problem of keeping state in different threads of the
same session separate. The solution here is basically to encode the continuation
in a combination of data and context, i.e., the page being visited. In WebDSL
it has not appeared necessary yet to build on this mechanism. First of all, the
typical interaction that consists of presenting a form and receiving its inputs can
be realized with a single page definition (based on the JSF facilities for forms).
Next, WebDSL has session entities for storing data relevant for all interactions in
a session (a feature not discussed in this paper). We have chosen to model state in
sequential interactions, as well as in more complex interaction scenarios such as
workflows, using regular WebDSL entities. Figure 24 illustrates this by encoding
the Mawl example discussed above (including the forms for presentation). The
definition introduces a Counter entity to keep track of the number of visits using
an application global variable. The Visitor entity is used to store the name of a
visitor obtained in the getname page. The object is then passed as a parameter
of the greet page, where it is used to obtain the name. The go() action of
the getname page creates the Visitor object and makes it persistent. This is
the difference with the Mawl approach, where the session data is transient and
restricted to the session. The advantage is that interactions become naturally
persistent such that users can come back to an interaction in later sessions.

WebDSL: A Case Study in Domain-Specific Language Engineering 353

entity Counter { accesses :: Int }

globals { var stats : Counter := Counter { accesses := 0 }; }

entity Visitor { name :: String }

define page getname() {

form {

var n : String;

"Enter your name: " input(n)

action("Go", go())

action go() {

var v : Visitor := Visitor{ name := n };

stats.accesses := stats.accesses + 1;

v.persist();

return greet(v); } } }

define page greet(v : Visitor) {

"Hello, " output(v.name)

" you are visitor number " output(stats.accesses)

}

Fig. 24. Interaction sequence using pages in WebDSL

Scenarios in which multiple stakeholders in different roles need to interact are
naturally modeled in this style as well. Using an appropriate access control policy,
the visibility of the objects can be restricted. While this mechanism provides
flexible expressivity for implementing all kinds of control flows, we will consider
adding higher-level abstractions for defining complex workflows. For short-lived
conversations (e.g. filling in a multi-page form) it would still be useful to have
in-memory non-persistent (transient) state, for which the Seam conversations
model may be the right implementation solution.

10.9 Testing

An important open issue is the testing of web application developed with
WebDSL. We need two types of tests. First, regression testing for the language
and generator, is needed to make sure that the implementations generated by the
generator are correct. For this purpose we would need to make a set of small test
applications, that exercise specific constructs of the language. Secondly, WebDSL
application developers need to test that their program satisfies its specification.
It should not be necessary to test basic, low-level functionality, since correctness
of the language construct should ensure their functionality. Thus, application
tests should test application behavior. For both kinds of tests we need a DSL
for expressing high-level tests.

354 E. Visser

10.10 Model-View-Controller

WebDSL programs combine the user interface implementation with the logic asso-
ciated with user interface events. This design violates the model-view-controller
pattern, which dictates that the user interface (view) should be separated from
the controller [48]. There are several reasons why such a separation is desirable.

First, to distribute functionality over different nodes in the network in order
to distribute the load to more than one server. Typically, the application is sep-
arated into tiers, each of which is implemented as a process on a different server.
This goal is not precluded by the WebDSL approach. Even while an application
definition integrates UI and logic, in the implementation these are separated
into JSF pages and session beans, which are designed for a layered architecture.

Secondly, motivation for applying the MVC pattern is to be able to use dif-
ferent views with the same logic and/or to let developers with different skills
work on view and controller separately. This requires not so much that logic
and view should be separated (as a policy), but rather requires mechanisms that
allows them to be separated when that is necessary. The template mechanism of
WebDSL allows views and actions, performed in those views, to be implemented
separately, where the view calls an abstract template, defined by the controller,
as illustrated in the following example:

define view(field1 : String, field2 : String) {

form{ input(field1) input(field2) submit(field1, field2) }

}

define control(m : Model) {

view(o.field1, o.field2)

define submit(field1 : String, field2 : String) {

action("Submit", submit())

action submit(){ m.field1 := field1; m.field2 := field2; }

}

}

Here the view template definition can be an elaborate structure definition, which
only takes basic data types as input values. Invoking an action is delegated to
an abstract submit template. The control uses the view to display the data,
and defines a concrete submit to implement the action.

11 Discussion: Language Engineering Paradigms

An application domain is a collection of concepts. The description of an applica-
tion in a domain is a collection of statements involving those concepts using the
‘language of the domain’. For example, ‘make a page that displays the properties
of this object’ is a sentence in the domain of web applications. A conceptual do-
main language can be implemented in many different forms, even as a library in
a ‘conventional’ general-purpose programming language. Language engineering
is concerned with the design and implementation of languages in all their differ-
ent forms. This section provides a brief survey of existing language engineering

WebDSL: A Case Study in Domain-Specific Language Engineering 355

paradigms and their impact on the language development process. A complete
and in-depth survey of language engineering is out of the scope of this paper.
There are many surveys on domain-specific languages and their development
from different perspectives, including [32, 33, 60, 73, 85, 86, 87, 99].

Approaches. The discussion is organized by considering the distance of the
approach to the implementation platform. Application frameworks are based on
the concept of ‘a library as a language’ (Section 11.1). Domain-specific embedded
languages encode a language using the syntactic facilities of the host language
(Section 11.2). Interpreted DSLs are separate languages, which are passed to an
interpreter library (Section 11.3). Domain-specific language extensions add new
syntax to a general purpose language (Section 11.4). Compiled domain-specific
languages are defined completely separately from the implementation platform,
and can in principle be translated to more than one platform (Section 11.5).

Technologies. These approaches entail fundamentally different architectures
for capturing domain-specific knowledge with implications for development and
usage. Somewhat orthogonal to these basic approaches are specific technologies
for realizing them. Technological frameworks are typically designed for use with
a particular approach, but their use may be stretched to other approaches as
well. Section 11.6 outlines the main ingredients of language implementations,
and gives an overview of some typical tool sets.

Criteria. In the previous section we applied the set of evaluation criteria to
WebDSL. In this section we use these criteria to compare the properties of
different approaches. Of course, it is not possible to make generic statements
about all products of a particular approach. For example, the quality of generated
code is not magically guaranteed by using a particular generator technology,
but will depend the efforts of the generator developer performing meticulous
research into the properties of the target platform. However, certain approaches
may facilitate better results in some area than others.

11.1 Application Frameworks

The most accessible approach to encapsulating domain knowledge is by means
of a library or (object-oriented) framework. The language defined by a library is
the application programmer’s interface (API). That is, a library provides data
structures (objects) with operations (methods). The basic elements of the lan-
guage are the calls to operations. The composition mechanism is generic, that
is, not specific for the domain. For example, an object-oriented programming
language provides object creation, method calls, subclassing, and inversion of
control [46].

Developing Frameworks. An application framework is directly implemented
in a third-generation general-purpose programming language such as Java. Thus,
framework development can directly use all the productivity advantages pro-
vided by modern programming languages and their interactive development en-
vironments. While frameworks are developed in a basic programming language,

356 E. Visser

designing a good framework is not easy and requires well trained software devel-
opers. However, there is a rich literature with design patterns [48] for developing
object-oriented software and frameworks. Maintenance of frameworks is tricky
when many client applications exist. Changing the interface breaks the build of
client code, but only changing the implementation may not be safe either, since
client code may depend on implementation details of the framework.

Developing with Frameworks. The primary advantage of a framework com-
pared to other approaches discussed later, is that they integrate well with other
programming tasks. However, the implementation technology does not support
domain-specific verification. Only constraints that can be encoded in the host
type system can be checked at compile time. Frameworks are expected to cover a
complete (technical) domain, which tends to make them large and complex. The
expressivity of a framework is low, as the notation based on the generic compo-
sition mechanisms of the host language are typically not tuned to the applica-
tion domain. Modern frameworks such as Hibernate [10] and Seam [56, 74] are
fairly high-level due to the use of annotations and dependency injection, which
are targeted by run-time or deployment-time compilation and instrumentation.
Software developed with a particular framework is not portable to a different
platform. The framework ties client code to its host language. To support all pos-
sible functionality, frameworks may provide multiple layers of abstractions which
are not removed by the compiler. The internal structure is not completely en-
capsulated and are for example manifest in stack traces produced by exceptions.
Frameworks use mechanisms such as inheritance and annotation processing to
allow client code to specialize the generic functionality it provides. This form of
extensibility is built into the infrastructure.

11.2 Domain-Specific Embedded Languages

While one could view the API provided by a framework as a language, this is
not typically the perspective of programmers. The idea behind domain-specific
embedded languages (DSELs) is to build DSLs in the form of libraries in a
general-purpose language. Hudak argues that combinator libraries in higher-
order functional languages such as Haskell are especially suited for building
domain-specific languages [55]. In essence, DSELs are the same as frameworks,
but the differences in abstraction mechanisms between object-oriented and func-
tional languages, give them a different flavor.

Developing Combinator Libraries. The core advantage of DSELs is the
reuse of abstraction mechanisms in the host language. It is not necessary to
design and implement a mechanism for functional or modular abstraction. Also
control-flow constructs are easily defined in a lazy functional language such as
Haskell. Infix operators get a long way to approach domain-specific notation.
Thus, the developer can concentrate on the truly domain-specific aspects of
the language. Furthermore, there is no need to write code generators; language
‘constructs’ are combinators, which are defined by means of function definition.

WebDSL: A Case Study in Domain-Specific Language Engineering 357

Developing with Combinator Libraries. DSELs share with frameworks the
good integration with the host language, the lack of portability, and the lack of
domain-specific verification, syntax, optimization, and error messages. However,
domain-specific type checking can be achieved to some extent using phantom
types [70].

11.3 Interpreted Domain-Specific Languages

Interpreted DSLs are proper languages with their own syntax and semantics sep-
arately defined from a host language by means of an interpreter, which executes
sentences.

Developing Interpreters. Developing an interpreted language requires devel-
opment of a syntax (with corresponding parser) and the interpreter itself. The
problem of building an interpreter can be mitigated by organizing an interpreter
as a factory that creates instantiations of a class hierarchy. After initialization
of the objects, it functions as a ‘normal’ program. Thus, an existing framework
can be given domain-specific notation through an interpreter.

Developing with Interpreters. When the interpreter is built into a library,
it can be invoked from a general-purpose program and may fit in a software
development approach otherwise based on a general-purpose language. For ex-
ample, SQL and XSLT can be used in this fashion. Models can be executed on
any platform with an interpreter, which entails that the interpreter is needed
at run-time. It is typically not easy to support interaction between interpreted
code and code in a GPL. However, a combination of the factory approach men-
tioned above and reflection may support some form of interaction, e.g. a foreign
function interface that supports calling (host) library functions from the DSL
program. Usually, interpretation incurs overhead compared to compiled code,
since the interpreter must parse and inspect the (abstract) representation of the
model. Extension of the language may not be easy, as it the requires extension
of the interpreter.

11.4 Domain-Specific Language Extension

The idea of domain-specific language extension is to extend a general-purpose
host language with domain-specific guest notation. In contrast to domain-specific
embedded languages, the syntax of the host language is actually extended to
truly accommodate the domain-specific notation. An assimilation transforma-
tion maps extension back to base language [21]. This can be implemented as a
pre-processor of the base language or by a proper extension of the host language
compiler. Dmitriev advocates this approach with the name language oriented
programming [36].

Developing Language Extensions. Developing a good language extension im-
plementation is difficult, since it requires extension or reimplementation of a
considerable part of the host language infrastructure. First, a complete syntax

358 E. Visser

definition of the host language is needed, which can be extended with the domain-
specific notation. This requires some form of syntactic extensibility. Second, the
extension needs to be implemented either by extending the host compiler or by
means of a translation down to the base language. (This is basically similar to
DSL compilation, discussed below.) Third, the type checker of the host language
needs to be extended. There are a number of approaches for realizing this scenario.

Extensible languages are languages that are prepared (to some extent) for
extension with new syntactic constructs. The prototypical example of an exten-
sible language is Scheme, which provides macros for introducing new ‘syntactic
forms’ [26]. Macro definitions define a translation from the new language con-
struct to more basic language constructs. Macros are applied by the interpreter.
Thus, programs can introduce and use extensions. Other incarnations of this
approach are Template Haskell [83], which supports compile-time generation
of program fragments (but no syntactic extensions), and Converge [95], which
provides compile-time meta-programming support for the definition of new em-
bedded languages and their assimilation. Language workbenches [47] are IDEs
supporting the creation of macro-like language extensions.

Pre-processing is another popular approach to realize language extension. The
advantage over extensible languages is that a pre-processor can be built for any
base language, also those not designed with macro-like facilities. An example
of a pre-processor based language extension approach is MetaBorg [21], which
relies on the modularity of SDF to create the syntactic extension of a language
and on Stratego for expressing assimilation rules. MetaBorg extends the frame-
work approach to DSL implementation with proper syntax, thus providing a
domain-specific notation for the abstract syntax defined by an API. A partic-
ular instance of MetaBorg is StringBorg [16], a technique for providing proper
syntax checking for interpreted DSLs such as SQL. Instead of encoding queries in
string literals, which makes applications vulnerable to injection attacks, queries
are defined in an embedded DSL, which is syntactically checked. Under the hood
a string representation of the query is eventually constructed, but without the
risks of malicious injections. The disadvantage of pre-processors is that they do
usually not provide proper integration with the semantic checking of the host
language, since that requires re-implementation of those parts of the compiler in
the pre-processor.

Extensible compilers avoid the incompleteness of pre-processors by exposing
the internal structure of the compiler to extensions. Thus, the implementation
of an extension can extend the type checker to guarantee that only statically
correct programs are compiled, and that error messages are phrased in terms of
the source program, not the assimilated one. Examples of extensible compilers
for Java are Polyglot [75], Silver [109] and JastAddJ [45]. The latter two are
based on extensible attribute grammars formalisms, which supports declarative
and compositional specification of the type system of a language [44, 109].

The disadvantage of an extensible compiler is that an extension is based on
white box reuse of the base compiler, rather than a semantic description of
the language. This requires intimate knowledge of the implementation of the

WebDSL: A Case Study in Domain-Specific Language Engineering 359

compiler and exposes extensions to changes in the implementation. The approach
of compilation by normalization [58] avoids this problem by providing a mixed
source and byte code language as target for a pre-processor. By means of tracing
information, type and run-time errors can be reported in terms of the original
source code. By exposing the target language as part of the source language, pre-
processors can produce low-level implementations where needed without invasive
extension of a compiler.

While extending compilers to support extended languages is understood to
some extent, modern languages require rich interactive development environ-
ments. Exploration of the design and implementation of such IDEs for embedded
languages is only recently started [59].

Developing with Language Extensions. Provided that also the IDE is ex-
tended, a general purpose language with domain-specific extensions can provide
a very expressive programming environment that allows to use a DSL where
needed, and the general-purpose language for ‘normal’ programming. As is the
case with frameworks and combinator libraries, models in an embedded lan-
guages are tied to their host language and cannot be used with a different plat-
form. It is important that assimilations do not leak, that is, expose the developer
to the result of translating embedded models to host code, for example in the
form of error messages at compilation or run-time.

11.5 Compiled Domain-Specific Languages

WebDSL falls in the category of compiled domain-specific languages, that is,
a language dedicated to a particular application domain, not embedded in a
particular host language or implementation platform. Models in such languages
are implemented by compilation or code generation, i.e. translation to a program
in some target language.

The main disadvantage of the approach is that implementation of a DSL
compiler can be a significant undertaking. Unlike DSELs, there is no linguistic
reuse of abstraction facilities of a host language, implying that all the basic
constructs that a language requires, need to be implemented in addition to the
actual domain-specific elements. For example, WebDSL has an action language,
which is a subset of imperative language with object-oriented elements.

The main advantage is that the language can be designed to be independent of
the target platform, and that models in the language can thus be implemented on
more than one platform. To achieve portability one should guard against leakage
of implementation details from the target platform. While abstractions cannot
be borrowed from a host language, the gain is that there are no constraints
imposed on the design of abstractions. Furthermore, the compiler can provide
domain-specific error checking and optimization.

There are many variant approaches including generative programming [32, 33]
and model-driven engineering [82] and technologies for realizing them. However,
the essential architecture is the same in all approaches. In addition, to proper
DSL compilers there are less complete variations, scaffolding and light weight
languages.

360 E. Visser

Scaffolding. The term ‘code generation’ is understood in some contexts as the
generation of incomplete code skeletons from configuration data, e.g. a UML
model. For example, from a class diagram a set of Java classes is generated with
the attributes and operations as specified in the diagram, but the implementation
of the methods needs to be filled in. Another example is Ruby on Rails [93], a
framework for web application implementation based on the Ruby programming
language, which generates boilerplate code from a database schema.

The advantage of a scaffolding generator is that it is relatively easy to build.
There is no need not design and implement abstractions for areas where the
developer is expected to do heavy customization. The big disadvantage is that
it requires maintenance at the level of the generated code. This requires round-
trip engineering or carefully marking in the generated code which parts where
generated and which parts customized, such that only generated parts can be
re-generated. However, this will remain fragile and prone to inconsistencies be-
tween model and code. Often, re-generation is not supported as it carries a
substantially higher implementation cost than the scaffolding generator itself.
More importantly, the approach exposes the developer to the implementation,
which breaks encapsulation of the generator and limits its scalability.

Lightweight Languages. Another category of DSL implementations is that
of lightweight languages [86]. These are languages with a very restricted scope,
possibly used in a single software project. Such languages are economically viable
because they are implemented cheaply, for instance using regular expressions in
Perl. The translation consists of simple local translations and does not include
static error checking, placing the burden of creating a correct model on the
programmer. This approach does not scale to languages that need to be used in
many projects and/or by many developers.

Heavyweight Languages. A proper domain-specific language is constructed
according to well established architectural patterns for compilers [3]. A generator
consists of a front-end that parses the model from a concrete syntax representa-
tion (be it a visual or textual) to an abstract representation. This representation
is subsequently checked against the static semantic constraints. After optionally
applying a number of transformations to the model itself, it is translated to code
in some target language. There is a long tradition of tool kits with DSLs for re-
ducing the effort of building compilers, e.g. [5, 49, 57, 62, 63, 81]. Stratego/XT
fits in this tradition and so do the various MDE tool sets introduced recently.
Within these architectural boundaries there are different styles for implementing
the various aspects of a generator.

11.6 Language Engineering Tools

For the development of a framework or combinator library only an appropriate
host language is required. For the other approaches discussed above, i.e. inter-
preted DSLs, language extensions, and compiled DSLs, tool infrastructure for
language engineering is required. A language implementation requires parsing,

WebDSL: A Case Study in Domain-Specific Language Engineering 361

analysis, transformation, generation, and/or interpretation as discussed in Sec-
tion 3.4. As with any domain, these tasks can be expressed in general purpose
programming languages. However, by its nature this domain is a fertile breeding
ground for tools and domain-specific languages. The rest of this section gives a
brief summary of the main variation points and illustrates how some existing
tool sets bind these variation points.

Parsing. The definition of a textual DSL requires a parser that turns the text
of a model into a structured representation, which can be used for further pro-
cessing. Most parser generators are based on deterministic subsets of the set
of all context-free grammars, such as LL (recursive descent) implemented by
ANTLR [77] or LR [64] as implemented by YACC [57]. While these subsets
guarantee unambiguous syntax definitions and (near) linear time parsing, the
restrictions can require awkward encodings of linguistic constructs. Generalized
parsing algorithms such as Earley [41], GLR [94], or SGLR [101] do not suffer
these limitations. However, the support for error messages and error recovery is
typically not as good as with deterministic parsers.

Model Representation. The abstract representation of a model is the data
structure that analysis, transformation, and generation operate on. The prop-
erties of a representation determine how costly (in terms of time and space) it
is to perform certain operations. Unfortunately there is no single representation
that makes all operations equally cheap [104].

With a functional representation such as the Annotated Terms (ATerms) used
in Stratego [96], or the algebraic data types in (pure) functional languages such
as Haskell [79], performing transformations is cheap since copying of sub-trees
constitutes of copying references, instead of cloning. Also, a functional represen-
tation is persistent in the sense that a transformation does not destroy the old
representation. However, the directed acyclic graph (DAG) structure does not
admit extending the tree with references to other parts of the tree. Hence, con-
text information needs to be stored in symbol tables or similar data structures.

In contrast, graph structures (including object graphs in object-oriented lan-
guages) allow extension of nodes with arbitrary cross references in the graph,
which can be used to make context information into local information. For ex-
ample, add a reference from a variable to its declaration. This makes the result
of analyses much easier to express. The downside is that transformations on
graphs are not persistent, i.e. require a destructive update, or copying of the
entire graph structure. Meta models in modeling frameworks such as EMF [23]
define graph structures, and thus require graph transformation solutions. Of
course, EMF can be used to model more restricted representations, including
functional representations.

Analysis and Transformation. Analysis and transformations of models are
used to prepare the model for code generation, for example by enriching it
with type annotations (Section 7.1) or by desugaring high-level constructs as
lower-level ones (Section 9). In principle, analyses and transformations can be

362 E. Visser

expressed in any functional, imperative, or logical programming language. How-
ever, specialized transformation languages may allow more declarative and/or
more concise expression of transformations. As discussed above, the representa-
tion of models has consequences for the applicable transformation paradigms.

Term rewriting [6] is a useful paradigm for transformation of a functional
representation. Rewrite rules are declarative specifications of one step transforma-
tions. Exhaustive application of rewrite rules is performed by an implied rewrit-
ing strategy. Rewriting is useful for repeated, cascading transformations such as
desugaring, where model elements are rewritten to combinations of other model
elements, which can subsequently again be rewritten. This approach requires an
easy way to construct large patterns of model elements. Concrete object syntax
[102] enables the natural construction of model fragments of hundreds of nodes,
which is extremely tedious using abstract object construction techniques. In pure
term rewriting, rewrite rules are applied exhaustively to the entire term. Because
of non-confluence and non-termination more control over the application of rules
may be necessary. Various approaches for controlling rules have been developed
[104], among which the programmable rewriting strategies of Stratego.

Analysis typically requires non-local information, e.g. the declaration of a vari-
able and its use. While rewriting approaches can express context-sensitive analy-
ses and transformations, e.g. the type checker in Section 7.1), a more declarative
approach to expressing analyses is provided by attribute grammars [65], which
are supported by systems such as JastAdd [44] and Silver [109]. An attribute
grammar assigns values to attributes of tree nodes. Attribute values are defined
by means of attribute equations in terms of other attributes. The scheduling of
attribute value computations is left to the attribute grammar compiler. The value
of an attribute may depend on the entire tree. Applying just a single local trans-
formation in principle invalidates all attribute values in the tree, and requires
re-computing all attribute values. Therefore, attribute grammars are useful for
performing analyses of static trees, while rewriting approaches are more suitable
for performing transformations. It is a research challenge to find a combination
of the formalisms such that analysis and transformation can be mixed.

There are numerous approaches to transformation of graph representations
as occur in modeling approaches. Czarnecki and Helsen [34] give an extensive
survey of features of model transformation approaches.

Generation. Many tool sets provide a template engine such as Velocity [89],
StringTemplate [78], or Xpand [43] for translation of models to program text.
A template is a quotation of a static piece of code. Variability in the code is
realized by means of anti-quotation expressions that allow insertion of names,
expressions, or sub-templates specialized for the input model. Templates are an
improvement over the practice of printing string literals in a regular program-
ming language, which require escaping of special characters and often do not
support multi-line fragments. Textual templates do not check the syntax of the
quoted code fragments. This makes the technique easily adaptable to any target
language. However, it may result in syntactically incorrect code being generated.
More importantly, the generator does not have access to the structure of the

WebDSL: A Case Study in Domain-Specific Language Engineering 363

generated code. This makes it impossible to apply transformations, e.g. instru-
mentation, to the generated code.

The approach used in this paper can be characterized as ‘code generation
by model transformation’ [54]. The generator produces a model representation
of the target program, which is amenable to further transformation. Produc-
ing large fragments of target models is often inconvenient using the abstract
syntax notation. Concrete object syntax combines the surface syntax used in
a template engine with the underlying model representation of the generated
code. Implementation of concrete syntax requires a grammar formalism that
supports the modular composition of the context-free and lexical syntax of lan-
guages [22, 102]. Eventually, the model representation needs to be rendered as
text. This is a straightforward one-to-one rendering of each node also known as
pretty-printing.

Tool Sets. A tool set for language engineering provides a particular combi-
nation of support choosing some point in the design space sketched above. In
addition, this configuration is realized on a particular programming platform,
which may be a specific operating system and usually a particular programming
language. Thus, while in principle the architectures of the tool sets is compa-
rable, in practice the choice for a particular tool set may be based on other
factors than just the techniques supported. Furthermore, for branding purposes,
tool producers, be it industrial, open source, or academic, tend to emphasize the
differences between tools, rather than their commonalities. The following list of
tool sets gives an impression of the variability in the domain, without pretending
to be complete.

Rewriting languages

– ASF+SDF [97] is a compiled language based on first-order term rewriting
with traversal functions, providing concrete syntax for patterns in rules.

– TXL [31] is an interpreted, rule-based functional language with concrete
syntax patterns, and a form of deep application of rules.

– Stratego/XT [17] is a compiled transformation language based on rewriting
with programmable rewriting strategies; rules can use abstract or concrete
syntax.

– Strafunski [68] is a combinator library for strategic programming (in the
sense of Stratego) in Haskell.

Attribute grammar formalisms

– Eli [50] is a composition of language processing tools including statically
scheduled attribute grammars.

– JastAdd [44] is a compiled language based on rewriteable reference attributed
grammars.

– Silver [109] is a compiled attribute grammar formalism with forwarding and
dynamic scheduling of attribute evaluation.

364 E. Visser

Modelware

– Open ArchitectureWare [43] is an Eclipse-based tool set for textual DSL
definition and code generation. It uses EMF [23] for the representation of
models. The xText grammar formalism, which is based on ANTLR, is used to
define textual syntax of DSLs and the generation of an Eclipse editor plugin.
The xTend ‘functional’ language is used for model transformation, and the
xPand textual template language is used for model to text transformation.

– MetaCase [60] supports the creation of visual domain-specific modeling lan-
guages.

– Visual Studio DSL Tools [30] is a meta-modeling framework for visual mod-
eling languages. Code generation is achieved using a textual template engine.

12 Discussion: Language Engineering Challenges

A discussion of some challenges for research in language engineering.

DSL Interaction. WebDSL is a composition of several languages, that is, a
data model language, a presentation language, a query language (HQL), and
an expression and action language. The language is a good basis for further
abstractions, such as ones for access control and workflow. Template definitions
and modules support the creation of reusable components. While these different
languages support different aspects of web applications, they are integrated into
a composite language to ensure smooth interaction between the different aspects;
as opposed to the heterogeneous architecture of web applications implemented
in Java. Although inspired by similar features in other languages, the language
was designed and implemented from scratch. It would be useful to have language
design and implementation patterns to be reused when creating new languages,
if possible supported by tools or reusable libraries of language components.

A particular issue that arises in domain-specific language engineering is the
design of language interaction. Software development typically requires the in-
teraction between several technical and application domains. How can programs
in different languages refer to each other? Can modules be compiled, or even
type checked separately? Warmer [107] has developed a collection of DSLs for
web applications using the Microsoft DSL Tools. In that work the assumption is
that separate models are compiled to separate target files. Interaction of models
is achieved using a registry that records interface information (key, value pairs).
This approach precludes weaving of code from different models. Mak [71] has
explored the separation and interaction of languages in a variant of WebDSL.
Basically, the separation was into a data model language and presentation lan-
guage, which map to separate target code components.

Development Environment. Software developers, especially those develop-
ing in Java or C# are accustomed to sophisticated development environments
(IDEs), which help the programmer by means of syntax highlighting, cross-
referencing, access to documentation, and code completion. When developing

WebDSL: A Case Study in Domain-Specific Language Engineering 365

a new DSL, the barrier to being used can be lowered considerably, if such in-
teractive support would be available as well. The challenge here is to generate
from the definition of a language an IDE, for example by creating an Eclipse
plug-in supporting syntax highlighting, syntax checking, typechecking, refactor-
ing, code completion, and cross-referencing. Despite research projects such as
the Synthesizer Generator [81] and the ASF+SDF MetaEnvironment [62], the
creation of an IDE for a new language remains a laborious process. The Eclipse
IDE Meta-tooling Platform [1] may reduce the effort to develop IDEs for new
languages. A first step on the path to the integration of the language definition
techniques used in this paper (Stratego and SDF), is the generation of Eclipse
plug-ins based on the IMP framework from SDF definitions [59].

Deployment. A DSL generator only automates one step in the development
process of a software system. While the generator encapsulates knowledge about
developing applications in the domain, more knowledge is required for success-
fully deploying an application. Therefore, a good DSL should also hide irrelevant
deployment details. Ideally, the DSL programming environment offers a virtual
machine for operating DSL programs, which completely hides its run-time sys-
tem. Thus, in the domain of web applications such a virtual machine would ap-
pear to run WebDSL applications directly, and behind the scenes generate the
Java/XML implementation code, compile it, and activate the application server
to run the application. The Nix software deployment system [37, 39] provides a
suitable infrastructure for realizing this scenario. Using a functional language,
deployment configurations from source builds to service activation can be de-
scribed [38]. Using this approach a first experimental setup has been created for
deploying WebDSL applications, which is being used to deploy the webdsl.org
website.

Extensibility. A language should be designed for growth [88] in order to ac-
commodate future requirements. Therefore, the implementation of a language
should be easily extensible with new basic types, new constructs, new abstrac-
tions, and new sub-languages. Systems such as Silver [109], JastAdd [44], and
Stratego/XT [103] (used in this paper), provide source level extensibility. That
is, a language definition can be separated into modules and new features can be
implemented by providing new modules. However, the new combination needs to
be compiled from source as a whole. True extensibility would entail that users
of the language can combine extensions provided by different producers for a
particular application without recompiling the generator. This requires separate
binary extensibility of language definitions and generators.

Evolution. The introduction of domain-specific languages can greatly improve
the evolution of software by drastically reducing the amount of source code
needed for systems. Paradoxically, reliance on DSLs also introduces a new soft-
ware evolution problem. The number of languages in which software is written
increases, requiring developers with knowledge of multiple languages [91]. Fur-
thermore, while software applications may become easier to maintain, the imple-
mentations of the languages need to be maintained as well [98]. A problem that

366 E. Visser

is seen as one of the factors for the failure of fourth generation languages. The
next paragraphs discuss a number of challenges for evolution of domain-specific
languages.

Data Migration. Evolving applications based on DSLs should become easier.
The size of an application is an order of magnitude smaller than before, which
should make understanding and modifying programs easier. Complete code gen-
eration ensures that a complete system can be generated after modifying the
DSL program. However, the data models that are implemented as the database
schemas of deployed applications may have changed, requiring the database to
be migrated to the new data model. To ease the evolution of applications, it is
necessary to automate data migration as much as possible. At least there should
be a language for specification of the migration between two data models at the
level of the data model language (abstracting from implementation details of the
database schema). Furthermore, the mapping between two data models could be
inferred to some extent by considering the two versions.

Model Migration. The problem of data migration also plays a role on a level
higher-up in the modeling hierarchy. Changing the definition of a DSL requires
adapting existing DSL models. To increase the acceptability of DSL evolution, it
is desirable to support language changes with automatic conversion tools. First
of all, that requires the definition of a transformation from models in the old lan-
guage to models in that new language such that the new models have the same
semantics as the old models. Supporting such semantics preserving transforma-
tions, requires the new language to at least support the functionality of the old
language, which imposes some constraints on evolution. As in the case of data
migration it would be desirable if the migration of models can be derived from
the evolution of the grammar. In practice, language designers take great care to
design language changes to be backwards compatible. Better migration solutions
will enable language designers to make more drastic (re)design decisions, which
are sometimes needed when insight in the domain grows.

An important practical consideration in the migration of programs is the
treatment of white-space and comments (layout). Developers do not appreciate
the look of their programs to be drastically changed by automatic transforma-
tions. As a result, a semantics preserving transformation on the abstract syntax
structure of a program is not sufficient. One solution direction is to support
transformation with layout preservation. However, true layout preservation is
not a solvable problem, since comments in programs do not have a formal re-
lation to the surrounding code. Instead it would be a good idea to reduce the
role of layout in languages. First, by making comments part of the syntactic
structure, it can be treated like any other structures in transformations. Next,
domain-specific languages should be designed to support self documenting code.
After all, one of the ideas of DSLs is that they should express high-level ap-
plication concerns, not implementation details. Finally, introducing enforceable
coding standards (for layout) can eliminate the problem of re-formatting. (Note
that these issues hold for visual (diagrammatic) languages as much as they do
for textual languages.)

WebDSL: A Case Study in Domain-Specific Language Engineering 367

Abstraction Evolution. A particular variant of DSL evolution is the addition of
new abstractions to the language. In that case it may be worthwhile to trans-
form existing DSL models to use the new abstractions. This requires recognizing
the use of the implementation patterns that the new abstraction mechanism
abstracts from. Semi-automatic support for pattern recognition and subsequent
transformation would be useful to support developers in migrating to the higher-
level abstractions.

Harvesting from Legacy Code. Finally, after having developed a new DSL, it
may be necessary to migrate existing legacy applications to the new DSL, which
requires recognizing implementation patterns in legacy code. Even while a DSL
design may be based on the abstraction of implementation patterns, these pat-
terns may not be used exactly in an existing code base. As a concrete case,
consider transforming legacy EJB applications to WebDSL programs, where JSF
pages are translated to page definitions, entity classes to entity declarations, and
session beans to page actions.

13 Conclusion

This paper has presented a case study in domain-specific language engineering.
Based on this experience let’s make an attempt at answering the questions ‘when
and how to develop a domain-specific language?’.

When to develop a DSL? Starting to develop a DSL should only be done
when there is a good understanding of the application domain and there exists
a considerable code base for systems in the domain. That code base should ex-
hibit clear signs of inadequate abstraction facilities in the form of boilerplate
code in large quantities, even if best practices are being applied. Another sign
is that mechanisms that have been introduced to raise the level of abstraction
elude the verification facilities of the implementation language. Typical exam-
ples are XML configuration files, interpreter literal strings (SQL queries), and
dependency injection annotations.

How to develop a DSL? Choose a high-level target technology; the DSL
should not readdress problems that have already been solved by existing tech-
nology. Start with considering relatively large chunks of programs as candidate
patterns. Study and understand the technology and recognize common patterns.
Set up a basic generator early on. That makes it easy to experiment with al-
ternative implementation strategies in the target architecture without having to
write a lot of code. Do not overspecialize syntax. For example, a separate syntac-
tic construct for each page element such as section, header, list in WebDSL,
would lead to hard wiring in such constructs and a much larger implementation.
Do not overgeneralize syntax either. Ending up with a completely generic syntax
such as XML does not lead to readable programs. A core language that captures
the essential operations of the domain is essential for achieving good coverage.
But do not try to identify a core language from the start. The result may be

368 E. Visser

too close to the target target technology. For example, a modeling language that
covers all EJB concepts provides 100% coverage, but is too low-level. Extend the
core language with syntactic abstractions that allow concise expression. Include
facilities to build a library, such as modules for organization of the code base
and parametric abstraction over DSL fragments.

Acknowledgments

In August 2006 Ralf Lämmel and Joost Visser invited me to give a tutorial at
the GTTSE summer school to be held in July 2007. This invitation provided a
perfect target and outlet for the rather uncertain sabbatical project that I had
conceived to build a domain-specific language for web applications. Along the
way I had many inspiring discussions about various aspects of this enterprise
and received feedback on drafts of this paper. I would like to thank the follow-
ing people for their input (in more or less chronological order of appearance):
Martin Bravenboer, Jos Warmer, Sander Mak, William Cook, Anneke Kleppe,
Jonathan Joubert, Rob Schellhorn, Danny Groenewegen, Zef Hemel, Paul Klint,
Jan Heering, Ron Kersic, Nicolae Vintae, Charles Consel, and the GTTSE’07 re-
viewers. The research was supported by NWO/JACQUARD project 638.001.610,
MoDSE: Model-Driven Software Evolution.

References

1. Eclipse IDE Meta-tooling Platform (IMP),
http://www.eclipse.org/proposals/imp/

2. Echo web framework (July 2007), http://echo.nextapp.com/site/echo2
3. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, techniques, and tools.

Addison-Wesley, Reading (1986)
4. Atkins, D.L., Ball, T., Bruns, G., Cox, K.: Mawl: A domain-specific language for

form-based services. IEEE Transactions on Software Engineering 25(3), 334–346
(1999)

5. Augusteijn, A.: Functional Programming, Program Transformations and Com-
piler Construction. PhD thesis, Department of Computing Science, Eindhoven
University of Technology, The Netherlands (1993)

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, Cambridge (1998)

7. Backus, J.W.: Automatic programming: properties and performance of FOR-
TRAN systems I and II. In: Proceedings of the Symposium on the Mechanisation
of Thought Processes, Teddington, Middlesex, England, The National Physical
Laboratory (November 1958)

8. Backus, J.W., et al.: Report on the algorithmic language ALGOL 60. Communi-
cations of the ACM 3(5), 299–314 (1960)

9. Balat, V.: Ocsigen: typing web interaction with objective Caml. In: Kennedy, A.,
Pottier, F. (eds.) Proceedings of the ACM Workshop on ML, Portland, Oregon,
USA, pp. 84–94. ACM, New York (September 2006)

10. Bauer, C., King, G.: Java Persistence with Hibernate. In: Manning, Greenwhich,
NY, USA (2007)

http://www.eclipse.org/proposals/imp/
http://echo.nextapp.com/site/echo2

WebDSL: A Case Study in Domain-Specific Language Engineering 369

11. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (2000)
12. Bentley, J.L.: Programming pearls: Little languages. Communications of the

ACM 29(8), 711–721 (1986)
13. Brabrand, C., Møller, A., Ricky, M., Schwartzbach, M.I.: PowerForms: Declarative

client-side form field validation. World Wide Web Journal 3(4), 205–314 (2000)
14. Brabrand, C., Möller, A., Schwartzbach, M.I.: The < bigwig > project. ACM

Transactions on Internet Technology 2(2), 79–114 (2002)
15. Bravenboer, M.: Connecting XML processing and term rewriting with tree gram-

mars. Master’s thesis, Utrecht University, Utrecht, The Netherlands (November
2003)

16. Bravenboer, M., Dolstra, E., Visser, E.: Preventing injection attacks with syntax
embeddings. A host and guest language independent approach. In: Lawall, J. (ed.)
Generative Programming and Component Engineering (GPCE 2007), pp. 3–12.
ACM, New York (October 2007)

17. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.16.
Components for transformation systems. In: ACM SIGPLAN 2006 Workshop on
Partial Evaluation and Program Manipulation (PEPM 2006), Charleston, South
Carolina, pp. 95–99. ACM SIGPLAN, New York (January 2006)

18. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT Tutorial,
Examples, and Reference Manual (latest). Department of Information and Com-
puting Sciences, Universiteit Utrecht, Utrecht, The Netherlands (2006),
http://www.strategoxt.org

19. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17.
A language and toolset for program transformation. In: Science of Computer
Programming (2008); Special issue on Experimental Systems and Tools

20. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program transformation
with scoped dynamic rewrite rules. Fundamenta Informaticae 69(1–2), 123–178
(2006)

21. Bravenboer, M., Visser, E.: Concrete syntax for objects. Domain-specific language
embedding and assimilation without restrictions. In: Schmidt, D.C. (ed.) Proceed-
ings of the 19th ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA 2004), Vancouver, Canada, pp.
365–383. ACM Press, New York (October 2004)

22. Bravenboer, M., Visser, E.: Designing syntax embeddings and assimilations for
language libraries. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.)
MODELS 2007. LNCS, vol. 4735. Springer, Heidelberg (2007)

23. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison-Wesley, Reading (2004)

24. Chamberlin, D.D., Boyce, R.F.: SEQUEL: A structured english query language.
In: Rustin, R. (ed.) Proceedings of 1974 ACM-SIGMOD Workshop on Data De-
scription, Access and Control, Arbor, Michigan, pp. 249–264. ACM, New York
(May 1974)

25. Christensen, A.S., Möller, A., Schwartzbach, M.I.: Extending Java for high-level
web service construction. ACM Transactions on Programming Languages and
Systems 25(6), 814–875 (2003)

26. Clinger, W.: Macros in scheme. SIGPLAN Lisp Pointers 4(4), 17–23 (1991)
27. Codd, E.F.: A relational model of data for large shared data banks. Communica-

tions of the ACM 13(6), 377–387 (1970)
28. Consel, C.: From a program family to a domain-specific language. In: Lengauer,

C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Genera-
tion. LNCS, vol. 3016, pp. 19–29. Springer, Heidelberg (2004)

http://www.strategoxt.org

370 E. Visser

29. Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and
PLILP 1998. LNCS, vol. 1490, pp. 170–194. Springer, Heidelberg (1998)

30. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with
Visual Studio DSL Tools. Addison-Wesley, Reading (2007)

31. Cordy, J.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

32. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,
et al. (eds.) UPP 2004. LNCS, vol. 3566, pp. 313–328. Springer, Heidelberg (2005)

33. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and
applications. Addison-Wesley, New York (2000)

34. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

35. de Jonge, M.: A pretty-printer for every occasion. In: Ferguson, I., Gray, J.,
Scott, L. (eds.) Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools (CoSET 2000). University of Wollongong, Australia
(2000)

36. Dmitriev, S.: Language Oriented Programming: The next programming paradigm
(2004), http://www.onboard.jetbrains.com/articles/04/10/lop/

37. Dolstra, E.: The Purely Functional Software Deployment Model. PhD thesis,
Utrecht University, Utrecht, The Netherlands (January 2006)

38. Dolstra, E., Bravenboer, M., Visser, E.: Service configuration management. In:
James Whitehead, J.E., Dahlqvist, A.P. (eds.) 12th International Workshop on
Software Configuration Management (SCM-12), Lisbon, Portugal, pp. 83–98.
ACM, New York (September 2005)

39. Dolstra, E., Visser, E., de Jonge, M.: Imposing a memory management discipline
on software deployment. In: Estublier, J., Rosenblum, D. (eds.) 26th International
Conference on Software Engineering (ICSE 2004), Edinburgh, Scotland, pp. 583–
592. IEEE Computer Society, Los Alamitos (May 2004)

40. Ducasse, S., Lienhard, A., Renggli, L.: Seaside: A flexible environment for building
dynamic web applications. IEEE Software, pp. 56–63 (September/ October 2007)

41. Earley, J.: An Efficient Context-free Parsing Algorithm. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA (1968) (see also [42])

42. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2), 94–102 (1970)

43. Efftinge, S., Friese, P., Haase, A., Kadura, C., Kolb, B., Moroff, D., Thoms, K.,
Völter, M.: openArchitectureWare User Guide. Version 4.2 (2007),
http://www.openarchitectureware.org

44. Ekman, T., Hedin, G.: Rewritable reference attributed grammars. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 144–169. Springer, Heidelberg (2004)

45. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIGPLAN No-
tices 42(10), 1–18 (2007)

46. Fowler, M.: Inversion of control containers and the dependency injection pattern
(January 2004), http://www.martinfowler.com/articles/injection.html

47. Fowler, M.: Language workbenches: the killer-app for domain specific languages
(2005), http://www.martinfowler.com/articles/languageWorkbench.html

48. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

49. Gray, R.W., Heuring, V.P., Levi, S.P., Sloane, A.M., Waite, W.M.: Eli: A com-
plete, flexible compiler construction system. Communications of the ACM 35,
121–131 (1992)

http://www.onboard.jetbrains.com/articles/04/10/lop/
http://www.openarchitectureware.org
http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/languageWorkbench.html

WebDSL: A Case Study in Domain-Specific Language Engineering 371

50. Gray, R.W., Levi, S.P., Heuring, V.P., Sloane, A.M., Waite, W.M.: Eli: a complete,
flexible compiler construction system. Commun. ACM 35(2), 121–130 (1992)

51. Greenfield, J., Short, K.: Software Factories. Assembling Applications with Pat-
terns, Models, Frameworks, and Tools. Wiley, Chichester (2004)

52. Groenewegen, D., Visser, E.: Declarative access control for WebDSL: Combin-
ing language integration and separation of concerns. In: Schwabe, D., Curbera,
F. (eds.) International Conference on Web Engineering (ICWE 2008). IEEE CS
Press, Los Alamitos (July 2008)

53. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formal-
ism SDF – reference manual. SIGPLAN Notices 24(11), 43–75 (1989)

54. Hemel, Z., Kats, L., Visser, E.: Code generation by model transformation. In: Val-
lecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063. Springer,
Heidelberg (2008)

55. Hudak, P.: Building domain-specific embedded languages. ACM Comput.
Surv. 28, 196 (1996)

56. Seam, J.: Seam - Contextual Components. A Framework for Java EE 5, 1.2.1.ga
edition (2007), http://www.jboss.com/products/seam

57. Johnson, S.C.: YACC—yet another compiler-compiler. Technical Report CS-32,
AT & T Bell Laboratories. Murray Hill, N.J (1975)

58. Kats, L., Bravenboer, M., Visser, E.: Mixing source and bytecode. A case for
compilation by normalization. In: Kiczales, G. (ed.) Proceedings of the 23rd ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA 2008). ACM Press, New York (2008)

59. Kats, L.C.L., Kalleberg, K.T., Visser, E.: Generating editors for embedded lan-
guages. integrating SGLR into IMP. In: Johnstone, A., Vinju, J. (eds.) Proceed-
ings of the Eigth Workshop on Language Descriptions, Tools, and Applications
(LDTA 2008), Budapest, Hungary (April 2008)

60. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. Enabling Full Code Gener-
ation. John Wiley & Sons, Inc, Chichester (2008)

61. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

62. Klint, P.: A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology 2(2), 176–201 (1993)

63. Knuth, D.E.: Backus Normal Form vs. Backus Naur Form. Communications of
the ACM 7(12), 735–736 (1964)

64. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8, 607–639 (1965)

65. Knuth, D.E.: Semantics of context-free languages. Mathematical Systems The-
ory 2(2), 127–145 (1968); Correction in: Mathematical Systems Theory 5(1), 95–
96 (1971)

66. Knuth, D.E.: The TEXbook. vol. A, Computers and Typesetting. Addison-
Wesley, Reading (1984)

67. Krishnamurthi, S., Hopkins, P.W., McCarthy, J.A., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the plt scheme web server. Higher-Order
and Symbolic Computation 20(4), 431–460 (2007)

68. Lämmel, R., Visser, J.: Typed combinators for generic traversal. In: Krishna-
murthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 137–154.
Springer, Heidelberg (2002)

69. Lamport, L.: LaTeX: A Documentation Preparation System. Addison-Wesley,
Reading (1986)

http://www.jboss.com/products/seam

372 E. Visser

70. Leijen, D., Meijer, E.: Domain specific embedded compilers. In: Proceedings of
the 2nd conference on Domain-specific languages (DSL 1999), pp. 109–122. ACM
Press, New York (1999)

71. Mak, S.: Developing interacting domain specific languages. Master’s thesis,
Utrecht University, Utrecht, The Netherlands, INF/SCR-07-20 (November 2007)

72. Mann, K.D.: JavaServer Faces in Action. Manning, Greenwhich, NY, USA (2005)
73. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Computing Surveys 37(4), 316–344 (2005)
74. Nusairat, J.F.: Beginning JBoss Seam. Apress, New York (2007)
75. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler

framework for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152.
Springer, Heidelberg (2003)

76. OMG Architecture Board ORMSC. Model driven architecture. OMG document
number ormsc/2001-07-01 (July 2001), www.omg.org

77. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages
by Terence Parr. The Pragmatic Programmers (2007)

78. Parr, T.J.: Enforcing strict model-view separation in template engines. In: WWW
2004: Proceedings of the 13th international conference on World Wide Web, pp.
224–233. ACM, New York (2004)

79. Peyton Jones, S.L. (ed.): Haskell98 Language and Libraries. The Revised Report.
Cambridge University Press (2003)

80. Queinnec, C.: The influence of browsers on evaluators or, continuations to pro-
gram web servers. In: International Conference on Functional Programming
(ICFP 2000), pp. 23–33. ACM, New York (2000)

81. Reps, T., Teitelbaum, T.: The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer, New York (1988)

82. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), 25–31 (2006)
83. Sheard, T., Peyton Jones, S.L.: Template metaprogramming for Haskell. In:

Chakravarty, M.M.T. (ed.) ACM SIGPLAN Haskell Workshop 2002, pp. 1–16
(October 2002)

84. Simonyi, C., Christerson, M., Clifford, S.: Intentional software. In: Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications (OOPSLA 2006), pp. 451–464. ACM, New
York (2006)

85. Spinellis, D.: Notable design patterns for domain specific languages. Journal of
Systems and Software 56(1), 91–99 (2001)

86. Spinellis, D., Guruprasad, V.: Lightweight languages as software engineering tools.
In: USENIX Conference on Domain-Specific Languages, , pp. 67–76. USENIX
Association (October 1997)

87. Stahl, T., Völter, M.: Model-Driven Software Development. Wiley, Chichester
(2005)

88. Steele Jr, G.L.: Growing a language. Higher-Order and Symbolic Computation 12,
221–236 (1998); (Text of invited talk at OOPSLA 1998)

89. Sturm, T., von Voss, J., Boger, M.: Generating code from uml with velocity
templates. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS,
vol. 2460, pp. 150–161. Springer, Heidelberg (2002)

90. Sun Microsystems. JSR 220: Enterprise JavaBeansTM, Version 3.0. Java Persis-
tence API (May 2, 2006)

91. Tharp, A.L.: The impact of fourth generation programming languages. SIGCSE
Bull 16(2), 37–44 (1984)

www.omg.org

WebDSL: A Case Study in Domain-Specific Language Engineering 373

92. Thiemann, P.: WASH/CGI: Server-side web scripting with sessions and typed,
compositional forms. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL
2002. LNCS, vol. 2257, pp. 192–208. Springer, Heidelberg (2002)

93. Thomas, D., Hansson, D.H.: Agile Web Development with Rails. The Pragmatic
Bookshelf (2005)

94. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, Dordrecht (1985)

95. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. ACM Transactions on Programming Languages and Systems (to
appear, 2009)

96. van den Brand, M.G.J., de Jong, H., Klint, P., Olivier, P.: Efficient annotated
terms. Software, Practice & Experience 30(3), 259–291 (2000)

97. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the ASF+SDF compiler. ACM Transactions on Programming Lan-
guages and Systems 24(4), 334–368 (2002)

98. van Deursen, A., Klint, P.: Little languages: Little maintenance? Journal of Soft-
ware Maintenance 10(2), 75–92 (1998)

99. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices 35(6), 26–36 (2000)

100. van Wijngaarden, J.: Code generation from a domain specific language. Design-
ing and implementing complex program transformations. Master’s thesis, Utrecht
University, Utrecht, The Netherlands, INF/SCR-03-29 (July 2003)

101. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University
of Amsterdam (September 1997)

102. Visser, E.: Meta-programming with concrete object syntax. In: Batory, D., Con-
sel, C., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 299–315. Springer,
Heidelberg (2002)

103. Visser, E.: Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In: Lengauer, C., Batory, D., Consel, C., Odersky,
M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 216–238.
Springer, Heidelberg (2004)

104. Visser, E.: A survey of strategies in rule-based program transformation systems.
Journal of Symbolic Computation 40(1), 831–873 (2005); Special issue on Reduc-
tion Strategies in Rewriting and Programming

105. Visser, E., Benaissa, Z.-e.-A., Tolmach, A.: Building program optimizers with
rewriting strategies. In: Proceedings of the third ACM SIGPLAN International
Conference on Functional Programming (ICFP 1998), pp. 13–26. ACM Press,
New York (1998)

106. W3C. Cascading Style Sheets, level 2. CSS2 Specification (May 1998),
http://www.w3.org/TR/REC-CSS2/

107. Warmer, J.: A model driven software factory using domain specific languages. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp.
194–203. Springer, Heidelberg (2007)

108. Wiedermann, B., Cook, W.R.: Extracting queries by static analysis of transpar-
ent persistence. In: Felleisen, M. (ed.) Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2007), pp.
199–210. ACM, New York (2007)

109. Wyk, E.V., Krishnan, L., Bodin, D., Schwerdfeger, A.: Attribute grammar-based
language extensions for Java. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 575–599. Springer, Heidelberg (2007)

http://www.w3.org/TR/REC-CSS2/

Part II
Short Tutorials

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 377–395, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Engineering of Rules for Web Services

Marko Ribarić1, Dragan Gašević2, Milan Milanović3,
Adrian Giurca4, Sergey Lukichev4, and Gerd Wagner4

1 Mihailo Pupin Institute, Serbia
marko.ribaric@gmail.com

2 School of Computing and Information Systems, Athabasca University, Canada
dgasevic@acm.org

3 FON-School of Business Administration, University of Belgrade, Serbia
milan@milanovic.org

4 Institute of Informatics, Brandenburg University of Technology at Cottbus, Germany
{lukichev,giurca,wagnerg}@tu-cottbus.de

Abstract. Web services are proposed as a way to enable loosely-coupled inte-
gration of business processes of different stakeholders. This requires effective
development mechanisms that focus on modeling of business logic rather than
on low-level technical details. This problem has been recognized by several re-
searchers, and they have mainly proposed the use of process-oriented languages
(e.g., UML Activity Diagrams). However, process-oriented approaches limit the
definitions of Web services only to the context of concrete business processes
(where the services are used). To overcome this limitation, in this paper, we
propose a modeling approach that enables one to model Web services from the
perspective of the underlying business logic regulating how Web services are
used regardless of the context where they are used. This is done by modeling
Web services in terms of message-exchange patterns, where each service is de-
scribed by a (set of) rule(s) regulating how Web services’ messages are ex-
changed. By leveraging the principles of model-driven engineering, we define a
rule-based modeling language supporting the proposed modeling approach.
More specifically, the rule-based modeling language supports reaction rules
(also known as Event-Condition-Action rules) to model Web services in terms
of message exchange patterns. Our approach is supported by an extension of the
well-known UML tool Fujaba and by a number of model transformations for
round-trip engineering between Web services and reaction rules.

1 Introduction

Developing interoperable and loosely coupled components is one of the most impor-
tant goals for Web-based software industry with the main goal to bridge the gaps
between many different stakeholders. Web services proved to be the most mature
framework toward achieving that goal [32], since they are based on a set of XML-
based standards for their description, publication, and invocation ([1], [2], [3]). Al-
though Web services offer many benefits, here we name three important factors that
constrain their development and use, as well as indicate the approach we propose to
address these constraints.

378 M. Ribarić et al.

First, developers of Web services mainly focus on platform specific and low-level
implementation details (e.g., elements of Web Service Description Language –
WSDL) [4]. The consequence is that they can hardly focus on the development of a
system under study (e.g., a business process), and because of this, their productivity is
affected. Moreover, developers have to implement many things manually, which may
lead to potential execution errors, especially when trying to enrich the existing Web
services with new functionalities. A promising way to solve this problem is to use a
high-level modeling approach which will allow developers to focus on a problem
domain rather than on an implementation technology. This is exactly why we propose
using an approach based on Model Driving Engineering (MDE). By using MDE, we
can first define a modeling language (i.e., metamodeling) that is suited for modeling
specific problem domains (in our case business logic that should be supported by Web
services). Models created by such modeling languages can later be transformed (by
using model transformation languages) into different implementation platforms [8].
Although, there have been several attempts to leverage MDE principles to model Web
services, they are still very low level oriented, as they again focus on technical details
covered either by WSDL [4][9] or OWL-S [10][11].

Second, a higher-level approach to modeling business logic would be to use proc-
ess- or workflow-oriented languages to model business process rather than just adding
service constructs in existing modeling languages such as UML (i.e., creating UML
Profiles) [10][11]. Examples of such languages are Business Process Modeling Nota-
tion and UML Activity Diagrams. In fact, researchers have already experimented with
these languages where Web services are typically extracted from a global process-
oriented model [5]. However, in that case, the definition of each specific Web service
is depended on a context of its use inside the workflow [5]. The recent research on
services indicates that one can hardly predict in which contexts services will be used
[6]. Thus, there is a need to support workflow-independent services modeling, and yet
to consider some potential patterns or conditions under which a specific service can
be used. In this paper, we propose focusing the design perspective from the question
where (or in what context) to the question how a service is used. To do so, our pro-
posal is to leverage message-exchange patterns (MEPs) as an underlying perspective
integrated into a Web service modeling language. This perspective has already been
recognized by Web service standards [1], and our contribution is to raise this to the
level of models.

Third, there are no/limited automatic mechanisms for updating Web services based
on the business process changes. This is due to the fact that business systems are
highly-dynamic and may change quite often. This is very important in policy driven-
systems where policies are deleted, created or updated very often. On the other hand,
the use of rules implies that they are defined in a declarative way, for example, by
means of a language such as Jess or ILOG’s JRules. That is why one, by using rules,
can dynamically reflect business logic changes at run-time without the need to redes-
ign the system. Since Web services are used for integration of business processes of
various stakeholders, it is important for them to reflect changes in business logic, or
policies, as good as possible. This means if we can support the definitions of services
based on rules, we can also reflect changes in service-oriented processes dynamically.
This has already been recognized in the service community, where Charfi and Mezini
[7] demonstrate how rules can be used to make more dynamic business processes

 Model-Driven Engineering of Rules for Web Services 379

based on service-oriented architectures. However, developers need development
mechanisms that will allow them for building and later updating Web services based
on such changes. Thus, we propose using rule-based approaches to modeling Web
services [12] [13].

In this paper, we propose a modeling framework that integrates the three abovemen-
tioned perspectives for modeling Web services. In a nutshell, by using the MDE prin-
ciples, we develop (i.e., extend) a modeling language that integrates both the rule and
MEP perspectives indicated above. Besides the highlighted benefits, the MDE ap-
proach also allows us to integrate our modeling framework with languages commonly
used for modeling vocabularies (e.g., UML class models) and constraints (e.g., OCL).

To explain in detail our modeling framework, in the next section, we first give a
brief overview of the existing (standard) languages for Web services, rules, and rule
modeling. In section 3, we describe our rule-based modeling foundation, including,
UML-based Rule Language (URML) and REWERSE Rule Markup Language
(R2ML) [15] with the emphasis on reaction rules, a type of rules that allows for mod-
eling Web services from the perspective of MEPs, as described in Section 4. In Sec-
tion 5, we describe process of transforming between rule-based models to the Web
service standards, as a part of the tooling support that we have implemented to sup-
port our approach [16]. Before we conclude the paper, in Section 6, we compare our
approach with some related works on modeling Web services.

2 Background

In this section, we give a brief overview of the technologies and techniques relevant
to the problem under study. This includes a short description of Web services, rule
language definitions based on MDE principles, and Web rule languages.

2.1 Web Services

A Web service is a loosely coupled component that exposes functionality to a client
over the Internet (or an intranet) by using web standards such as HTTP, XML, SOAP,
WSDL, and UDDI [10].

SOAP is an XML-based protocol for exchanging information in a decentralized,
distributed environment. SOAP builds on XML and common Web protocols (HTTP,
FTP, and SMTP) [17]. A SOAP message is the basic unit of communication between
SOAP nodes. The “envelope” element represents the root of a SOAP message struc-
ture. It contains a mandatory body construct and an optional header construct [3]. The
header construct is where meta-information can be hosted. In a large number of ser-
vice-oriented architectures, the header is an important part of the overall architecture,
and although it is optional it is rarely omitted.

Web Service Desription Language (WSDL) is a language for describing both the
abstract functionality of a service and the concrete details of a Web service [1]. At an
abstract level, WSDL describes a Web service in terms of interfaces and the opera-
tions supported by the interfaces. An operation is an interaction with the service con-
sisting of a set of (input, output, infault and outfault) messages exchanged between

380 M. Ribarić et al.

the service and the other parties involved in the interaction [1]. The messages are
described independently of a specific wire format by using a type system, typically
XML Schema. WSDL also describes the point of contact for a service provider,
known as the endpoint – it provides a formal definition of the endpoint interface and
also establishes the physical location (address) of the service.

Potential requestors need a way to discover Web services descriptors. It is neces-
sary that these descriptors are collected and stored in a central registry. The key part
of the Universal Description Discovery and Integration (UDDI) specification [2]
presents standardizing information inside such a registry as well as specifying the way
the information can be searched and updated.

Regardless of how complex tasks performed by a Web service are, almost all of
them require the exchange of multiple messages (e.g., SOAP) [18]. It is important to
coordinate these messages in a particular sequence, so that the individual actions
performed by the message are executed properly. Message exchange patterns (MEPs)
are a set of templates that provide a group of already mapped out sequences for the
exchange of messages [18]. This basically means that MEPs define how services
should be used. The WSDL 2.0 specification defines three MEPs: 1) in-only pattern –
supports a standard fire-and-forget pattern (i.e., only one message is exchanged); 2)
robust in-only pattern – presents a variation of the in-only pattern that provides an
option of sending a fault massage, as a result of possible errors generated while
transmitting, or processing data; 3) in-out pattern – presents a request-response pat-
tern where two messages (input and output) must be exchanged.

2.2 Rule Modeling

There are currently two different standards for business (rule) modeling that have
been developed for the different audiences. Semantics of Business Vocabulary and
Rules (SBVR) is a standardization effort for business modeling that currently is now
being finalized at the OMG [21]. Production Rule Representation (PRR) addresses the
requirement for a common production rule representation, as used in various vendors'
rules engines with normative considerations and high level modeling [22].

The SBVR standard [21] provides a number of conceptual vocabularies for model-
ing a business domain in the form of a vocabulary and a set of rules, and it is not
suitable for rule specification and reasoning. In SBVR, meaning is kept separate from
expression. As a consequence, the same meaning can be expressed in different ways.
The SBVR specification defines a structured English vocabulary for describing vo-
cabularies and verbalizing rules called SBVR Structured English.

The PRR standard [22] represents a formal modeling specification for production
rules. It represents a vendor-neutral UML-friendly rule representation, by using
metamodeling principles (i.e., it is defined by a metamodel for production rules). The
PRR consists of two levels. First, the PRR core that is a standard rule representation
model for general use. Second, PRR OCL that includes the PRR core and the ex-
tended OCL expression languages for the use of UML. PRR supports widely used
rules (e.g., ILOG JRules or JBoss Rules). It should be indicted that both PRR and
SBVR have a weak relation to Web standards, including, standards for Web services,
rules, and ontologies.

 Model-Driven Engineering of Rules for Web Services 381

2.3 Web Rules

As already mentioned, Web services are technology that is primarily used for integra-
tion of different processes. This basically means that different parties, besides using a
standard for publishing descriptions of Web services (WSDL), also have to be able to
share (and “understand”) their business vocabularies and rules. Since our approach is
rule-based, we naturally expect that our rule-based models are compliant to the on-
going efforts in the area of rule interchange. In that area, researchers are trying to
define a standard for rule interchange at the W3C consortium in the scope of the Rule
Interchange Format (RIF) [14] initiative. The current state of this initiative is that it
defines a set of requirements and use cases for sharing rules on the Web. However,
there is no official submission to this standard yet, and we will name a few most
relevant initatives.

RuleML is a markup language for publishing and sharing rule bases on the Web
[19]. RuleML builds a hierarchy of rule sublanguages upon the XML, RDF, XSLT,
and Web Ontology Language (OWL) languages. The current RuleML hierarchy con-
sists of derivation (e.g., SWRL and FOL), integrity (e.g., OCL invariants), reaction,
transformation (e.g., XSLT) and production rules (e.g., Jess). RuleML is based on
Datalog and its rules are defined in the form of an implication between an antecedent
and a consequent, meaning that if a logical expression in the antecedent holds, the
consequent must also hold.

Semantic Web Rule Language (SWRL) is a rule language defined on top of the
OWL language [20]. Similar to RuleML rules, a SWRL rule is also in the form of an
implication and is considered another (and more advanced) type of an axiom defined
on top of the intrinsic OWL axiom types. This means that SWRL rules are usually
used for defining integrity constraints similar to OCL in UML, but they can also be
used for defining derivation rules. Both consequent and antecedent are collections
(e.g., conjunctions) of atoms.

3 Modeling Foundation

Both the Web rule and rule modeling approaches presented in the previous section,
serve very nicely the purpose of rule interchange and representation, respectively,
independent of any specific platform. However, none of these languages offers a
suitable modeling foundation that can be used for modeling Web services from a
more abstract perspective of business rules and MEPs as requested in the introduction.
Furthermore, neither of the Web rule languages can be used for modeling Web ser-
vices. SWRL does not have a reaction behavior needed, while RuleML is only used
for rule interchange without any syntax suitable for human comprehension and mod-
eling. More importantly, neither of the language is developed by using MDE princi-
ples, which basically means that there is no separation between abstract syntax (i.e.,
metamodel), concrete syntax (both graphical and textual), and semantics. For each
modeling language, this is important, as typically a textual concrete syntax is more
suitable for machine processing; graphical concrete syntax is more suitable for human
comprehension; and semantic constraints defined on top of the abstract syntax (e.g.,

382 M. Ribarić et al.

OCL constraints over MOF-based metamodels) allow for more advanced processing
(transformations, queries, views, and consistency checks) of language constructs.

In addition to the above aspects, which have to be supported by a Web service
modeling language, we also set the following requirements. First, a rule-based ap-
proach to Web service modeling should be closely related to the already existing
software modeling languages such as UML and preferably defined by MDE princi-
ples. Second, the language should be closely related to existing Web standards for
defining ontologies (OWL) and rules (RIF) as discussed in Section 2.3.

We decided to use REWERSE I1 Rule Markup Language (R2ML), as it fully satis-
fies the above requirements. The language is defined by a MOF-based metamodel
which is refined by OCL constraints that precisely define relations between the lan-
guage’s constructs, in addition to those defined by the metamodel; it has an XML
schema defined as its concrete syntax; it has a UML-based graphical concrete syntax,
so called UML-based Rule Modeling Language (URML); and it has a number of
transformations with other rule languages (e.g., JBoss’ Drools and OCL) allowing us
to translate Web service models to the rule-based languages that can then regulate the
use of Web services. In the rest of the section, we introduce R2ML and URML by
mainly focusing on their support for modeling vocabularies and reaction rules (given
the fact that our modeling of Web services is based on the use of this type of rules as
explained in Sect. 4).

3.1 Rule-Based Modeling Language

R2ML is a rule language that addresses all the requests defined by the W3C working
group for the standard rule interchange format [14]. The R2ML language is defined
by MDE principles. The R2ML language can represent different types of rule con-
structs, that is, it can represent different types of rules [23], including, integrity rules,
derivation rules, production rule, and reaction rules. Integrity rules in R2ML, also
known as (integrity) constraints, consist of a constraint assertion, which is a sentence
in a logical language such as first-order predicate logic or OCL. Derivation rules in
R2ML are used to derive new knowledge (conclusion) if a condition holds. Produc-
tion rules in R2ML produce actions if the conditions hold, while post-conditions must
also hold after the execution of actions. A reaction rule is a statement of program-
ming logic [24] that specifies the execution of one or more actions in the case of a
triggering event occurrence and if rule conditions are satisfied. Optionally, after the
execution of the action(s), post-conditions may be made true.

R2ML also allows one to define vocabularies by using the following constructs:
basic content vocabulary, functional content vocabulary, and relational content vo-
cabulary. Here we give short description of vocabulary constructs that we use in this
paper. Vocabulary is a concept (class) that can have one or more VocabularyEntry
concepts. VocabularyEntry is abstract concept (class) that is used for representing
other concepts by its specialization. For example, one of the VocabularyEntry-s is an
R2ML Class concept which represents the class element similar to the notion of the
UML Class. An R2ML Class can have attributes (class Attribute), reference proper-
ties (class ReferenceProperty) and operations (class Operation).

Due to the importance for our Web service modeling approach, here we only
describe the details of R2ML reaction rules. Reaction rules represent a flexible way

 Model-Driven Engineering of Rules for Web Services 383

Fig. 1. The definition of reaction rules in the R2ML metamodel

Fig. 2. Event expressions in the R2ML metamodel

for specifying control flows, as well as for integrating events/actions from a real life
[24]. Reaction rules are represented in the R2ML metamodel as it is shown in Fig. 1:
triggeringEvent is an R2ML EventExpression (Fig. 2); conditions are represented as a
collection of quantifier free logical formulas; producedAction is an R2ML EventEx-
pression and represents a system state change; and (optional) postcondition must hold
when the system state changes.

The R2ML event metamodel defines basic concepts that are needed for dynamic rule
behavior (Fig. 2). For the sake of modeling Web services, we are using MessageEven-
tExpression for both triggering events and produced actions. MessageEventExpression
is used for modeling messages that are part of the definition of Web services, including,
input, output, in-fault, and out-fault messages. Each MessageEventExpression has its
own type – EventType. In terms of WSDL, message types are defined by XML Schema
complex types, while in R2ML, EventType is a subclass of Class (already defined as a
part of the R2ML Vocabulary). This means that each EventType has its own attributes,
associations, and all other features of R2ML classes.

384 M. Ribarić et al.

3.2 UML-Based Rule Modeling Language

UML-Based Rule Modeling Language (URML) is a graphical concrete syntax of
R2ML. URML is developed as an extension of the UML metamodel to be used for
rule modeling. In URML, modeling vocabularies is done by using UML class models.
Rules are defined on top of such models.

The URML reaction rules metamodel, which we use for modeling services, is
shown in Fig. 3a. The figure shows components of a reaction rule: Condition, Post-
condition, RuleAction and EventCondition. The figure also shows that reaction rules
are contained inside the UML package which represents Web services operation. This
means, that such packages have a stereotype <<operation>> in UML diagrams.

An instance of the EventCondition class is represented on the URML diagram as
incoming arrow (e.g., see Fig. 4), from a UML class that represents either an input
message or an input fault message of the Web service operations, to the circle that
represents the reaction rule. The UML class that represents the input message (input-
Message in Fig. 3b) of the Web service operation is MessageEventType (a subclass of
EventType from Fig. 2) and it is represented using the <<message event type>>
stereotype on UML classes. The UML class that represents the input fault message
(inFault in Fig. 3b) of the Web service operation is FaultMessageEventType in the
URML metamodel. In URML diagrams, FaultMessageEventType is represented by
the <<fault message event type>> stereotype on UML classes. EventCondition con-
tains an object variable (ObjectVariable in Fig. 3c), which is a placeholder for an
instance of the MessageEventType class. The object variable has a name that corre-
sponds to the arrow annotation (u in Fig. 5), which represents EventConditon.

An instance of the RuleAction class is represented as an outgoing arrow on the
URML diagram, from the circle that represents the reaction rule to the class that repre-
sents either an output message or an output fault message of the Web service operation.
The UML class that represents the output message (outputMessage in Fig. 3c) of the
Web service operation is MessageEventType and it is represented with the <<message
event type>> stereotype on UML classes. The UML class that represents the output
fault message (outFault) of the Web service operation is FaultMessageEventType in
the URML metamodel and it is represented with the <<fault message event type>>

a) b) c)

Fig. 3. a) Extension of the URML metamodel for reaction rules; b) Part of the URML meta-
model for EventCondition; c) Extension of the URML metamodel for actions

 Model-Driven Engineering of Rules for Web Services 385

Fig. 4. PIM level of the in-out message exchange pattern with out-fault, presented in URML

Fig. 5. The robust in-only message exchange pattern presented in URML

stereotype on UML classes. RuleAction contains an object variable (ObjectVariable),
which represents an instance of the MessageEventType class.

4 Rule-Based Modeling of Services

In the previous section, we have introduced the definitions of both R2ML and URML
that are used as a modeling foundation for modeling Web services. In our approach of
modeling Web services, we look from the perspective of the potential patterns of the
use of services. That is, we model services from the perspective of MEPs. Our model-
ing approach is message-oriented according to IBM’s classification of service model-
ing approaches [31]. It is important to point out that we first start from the definition
of a business rule that corresponds to a MEP under study, but without considering the
Web services that might be developed to support that rule. In this way, unlike other
approaches to modeling of Web services, we are focused on the business rules de-
scribing how particular services are used, but without explicitly stating that we are

386 M. Ribarić et al.

talking about Web services. This approach enables us, not only to focus on the prob-
lems under study and the underlying business logic regulating the process of the use
of Web services, but also we are able to translate such Web service modeling to both
Web service languages and rule-based languages that can regulate how services are
used at run-time. This is the core benefit of our approach, which distinguishes it from
other relevant solutions

In order to illustrate how our rule-based modeling approach is used, in the rest of
the section, we describe how two MEPs are modeled in URML, including, the in-out
MEP and the robust in-only MEP.

4.1 In-Out Message Exchange Pattern

The in-out MEP consists of exactly two messages: when a service receives an input
message, it has to reply with an output message. According to the WSDL specifica-
tion [1], the so-called “message triggers fault propagation rule” can be applied to this
pattern. This means that a fault message must be delivered to the same target node as
the message it replaces, unless otherwise specified by an extension or binding exten-
sion. Here, we consider the case when the fault message replaces the output message
of the service. To show how this variation of the in-out MEP can be modeled by using
reaction rules, we start our discussion from an example of the in-out MEP with an
out-fault message. Let us consider the following business rule:

On a customer request for checking availability of a hotel room during some period
of time, if the specified check-in date is before the specified check-out date, and if the
room is available, then return to the customer a response containing the information
about availability of the room, or if this is not the case return a fault message.

The business rule is an in-out MEP and can be represented by two reaction rules,
represented in semi-formal pseudo rule syntax:

ON CheckAvailability(checkinDate, checkoutDate)
IF checkinDate < checkoutDate AND isAvailable(Room)
THEN DO CheckAvailabilityResponse("YES")

ON CheckAvailability(checkinDate, checkoutDate)
IF NOT checkinDate < checkoutDate THEN
DO InvalidDataError("Check-in date is more than check-out date")

In order to have these rules represented using our modeling notation, and also to be
able to relate the rules with the elements of vocabularies, we model these rules by using
URML. It is important to stress, as already indicated in the beginning of Sect. 3, that all
rules-based systems define business rules on top of business vocabularies. Thus, the
URML graphical notation enables us to define business rules regulating the use of Web
services by leveraging a human-comprehendible, and yet formally consistent representa-
tion, with the underlying business vocabularies (i.e., UML class models). These above-
mentioned two reaction rules represented in URML are shown in Fig. 4.

Once we have modeled the business rule with the two reaction rules, we map the
above reaction rules to Web services. In this particular case, we have the following
situation: triggering event of either rule (i.e., CheckAvailability) maps to the input
message of the Web service operation. The action of the first reaction rule (i.e.,
CheckAvailabilityResponse), which is triggered when a condition is true, maps to the

 Model-Driven Engineering of Rules for Web Services 387

output message of the Web service operation. The action of the second reaction rule
(i.e., InvalidDataError), triggered on a false condition, maps to the out-fault message
of the Web service operation. Let us stress again that these two reaction rules are used
to represent a business rule modeling the in-out MEP with the variation “message
triggers fault propagation rule” (in URML, they are grouped in the <<operation>>
package). Otherwise, for modeling the basic in-out MEP, only one (first) reaction rule
would be used. Besides the classes that model exchanged messages, the URML
diagrams also model conditions (e.g., checkinDate < checkoutDate). Such condition
constructs are modeled by using OCL filters. OCL filters are based on a part of OCL
that models logical expressions, which can be later translated to R2ML logical
formulas, as parts of reaction rules. However, these OCL filters can not be later
translated to Web service descriptions (e.g., WSDL), as those languages can not
support such constructs. But, we can translate our URML models into rule-based
languguges (e.g., Jess or Drools). This means that for each Web service, we can
generate a complementary rule, which fully regulates how its attributed service is
used. Another benefit of this approach is that our generated Web services, and their
regulating rules, are consistent, as they originate (i.e., that are generated from) the
same rule-based Web service model.

4.2 Robust In-only Message Exchange Pattern

The robust in-only MEP consists of exactly one input message: service expects one
message and it is not obliged to send a response back, but it considers an option of
sending a fault message as a result of generated errors in the process of transmitting or
processing data. An example of the robust in-only pattern that we use in this section is
presented with the following business rule:

When a customer sends a logging request, if the authentication fails send a mes-
sage to the customer informing her of the failed login.

This business rule is represented with one reaction rule that has a triggering event
UserLoginRequest, condition NOT Authenticate, and action LoginFailed:

ON UserLoginRequest(username, password)
IF NOT Authenticate(username, password)
DO LoginFailed ("Wrong password")

An URML diagram that models the corresponding Web service operation is pre-
sented in Fig. 5. The input message of the operation is the UserLoginRequest <<mes-
sage event type>> stereotyped class, with the username and password attributes. The
event arrow from the <<message event type>> stereotyped class to the rule circle is
annotated with the rule variable u. The rule has a condition, which checks whether the
username and password, provided in the event, correspond to the internal username
and password. If username and password are not correct, then the out-fault Login-
Failed is sent back to the user.

5 Model Transformations

In this section, we briefly describe how we automate the mappings between Web
services (i.e., WSDL) and URML as described in the previous section. In Fig. 6, we

388 M. Ribarić et al.

Fig. 6. Transformation chain for bidirectional mapping between URML and WSDL

give the tools and transformations that we have developed to support our modeling
framework. For modeling with URML, we have developed a plug-in (so called
Strelka) for the well-known Fujaba UML tool. This plug-in fully supports the URML
modeling as described in Section 4. The native serialization of URML models in
Strelka is the R2ML XML concrete syntax. To support generation of WSDL-based
Web services, we need to translate R2ML XML-based models to WSDL. It is impor-
tant to say that in Strelka, we also support transformation from WSDL documents to
R2ML models (i.e., the reverse transformation), in order to enable reverse engineering
of existing Web services, thus enabling an extraction of business rules that were al-
ready integrated into to the implementation of Web services.

We have decided to implement transformation from R2ML to WSDL at the level
of metamodels by using the model transformation language ATL. An alternative
could be to use the XSTL language to implement transformation between the R2ML
and WSDL XML-based concrete syntax. However, as per our requirements defined in
the beginning of Section 3, we consider that a definition of a modeling language such
as R2ML, consists of several components, including, abstract syntax (i.e., meta-
model), one or more concrete syntax, and semantics. As on top of a metamodel (i.e.,
abstract syntax) one can define constraints (i.e., OCL invariants) to fully support the
language’s semantics, we then need to enforce such constraints during the transforma-
tion process in order to produce semantically compliant models to the target lan-
guage’s semantics. This is especially important in the case of rule languages, as they
use automatic reasoning (e.g., based on the RETE algorithm) as a way for determin-
ing the flow of actions to be executed. XML and its definition languages (DTD and
XML Schema) do not have any constraining mechanism such as OCL, and thus it is
not possible to have a guaranty that XSLT-translated models are fully semantically
correct with respect to the semantics of the target language. This is particularly impor-
tant for the transformation from WSDL to R2ML. Simply, XSLT can not check
whether a model being transformed is complaint with its MOF-based metamodel and
its additional OCL constraints (as model transformation languages can). One can only
check whether the obtained XML model is compliant to the target XML Schema, but
not during the transformation process. Yet, as already indicated, XML schema per see
does not have constraining mechanism as OCL provides to MOF-based metamodels.

 Model-Driven Engineering of Rules for Web Services 389

Given that this exploration significantly overcomes the scope of the discussion in this
paper, we refer interested readers to the surveys such as [33] where they can find
further benefits stemming from the use of model transformation languages over those
specially tailored for XML (i.e., XSTL).

To support our approach, we needed to implement a number of transformations be-
tween different languages and their representation (all of them are bidirectional):

− URML and R2ML XML concrete syntax (transformation 1. on Fig. 6). This is the
only transformation that is not implemented by using ATL [25], because Fujaba
does not have explicitly defined metamodel in a metamodeling language such as
MOF. We based this transformation by using JAXB1. JAXB guarantees that the
R2ML XML rule sets comply with the R2ML XML schema.

− R2ML XML-based concrete syntax and R2ML metamodel (transformation 2. on
Fig. 6). This transformation is important to bridge concrete (XML) and abstract
(MOF) syntax of R2ML. This is done by using ATL and by leveraging ATL’s
XML injector and extractor for injecting/extracting XML models into/from the
MOF-based representation of rules.

− R2ML metamodel and WSDL metamodel (transformation 3. on Fig. 6). This trans-
formation is the core of our solution and presents mappings between R2ML and
WSDL at the level of their abstract syntax.

− WSDL XML-based concrete syntax and WSDL metamodel (transformation 4. on
Fig. 6). This transformation is important to bridge concrete (XML) and abstract
(MOF) syntax of WSDL. This is also done by using ATL by leveraging ATL’s
XML injector and extractor.

Due to the size constraints for this paper, we only explain mappings between
R2ML and WSDL. In Table 1, we present the conceptual mapping between the
R2ML and WSDL metamodels. Even in this table, due to the same size constraint, we
do not present parts related to the mapping between the XML Schema language
(which WSDL uses for defining message types and vocabularies) and the R2ML
vocabulary.

Fig. 7 shows a transformation rule named Description, presented in the QVT
graphical notation [26]. This rule maps R2ML RuleBase (root) element to the WSDL
Description (root) element. This rule applies that R2ML Vocabulary is mapped to
WSDL ElementType and R2ML ReactionRuleSet is mapped to both WSDL Service

Table 1. An excerpt of the mapping between the WSDL metamodel to the R2ML metamodel

WSDL metamodel R2ML metamodel
Description RuleBase
ElementType Vocabulary
Interface ReactionRuleSet
Operation ReactionRule
Input MessageEventExpression
Infault MessageEventExpression
Output MessageEventExpression
Outfault MessageEventExpression

1 https://jaxb.dev.java.net/

390 M. Ribarić et al.

Fig. 7. Mappings between R2ML rules and WSDL service definitions

Fig. 8. Mapping between R2ML reaction rule sets and WSDL interfaces

Fig. 9. Mappings between R2ML reaction rules and WSDL messages

and Interface. The where compartment indicates that every time the Description rule
is executed, the Interface and ElementType rules must also be executed.

Fig. 8 shows a transformation rule called Interface. This rule transforms an R2ML
ReactionRuleSet element to WSDL Service and Interface elements. The where com-
partment indicates that every time the Interface rule is executed, the Operation rule
also has to be executed (i.e., Operation rule is a lazy rule). The WSDL Interface

 Model-Driven Engineering of Rules for Web Services 391

element can contain multiple Operation elements, so for every Operation element an
Operation rule will be executed.

Fig. 9 shows a transformation rule named Operation. This rule transforms the
R2ML ReactionRule element, to the WSDL Operation element. We do not have a
where compartment in this figure, because WSDL Operation does not have to contain
Input, Output, Infault and Outfault elements. This figure also defines a constraint on
the producedAction element of R2ML, which specifies that the output (message)
element is created from the producedAction element of type R2ML!MessageType,
while the outfault element is created from the producedAction element of the type
R2ML!FaultMessageType (i.e., it is not R2ML!MessageType).

6 Related Work

In this section, we compare the proposed approach with some relevant solutions to the
modeling of Web services that are based on the MDE principles.

Bezivin et al. [9] demonstrate how one can take advantage of MDE to develop
e-business applications. In their approach, they start from UML and the UML profile
for Enterprise Distributed Object Computing (EDOC) to define platform-independent
models of e-business applications. In the next step, they translate such models into
models that are based on metamodels of Java, WSDL, and JWSDP. Although this
approach uses ATL, similar to what we do, it does not provide two way transforma-
tions between models and service implementation. This is unlike our solution, be-
cause we support two-way transformations, and thus we enable reverse engineering of
the existing Web services. Next, the translation of regular UML models, i.e., UML
class related elements, into WSDL is limited, as one does not have enough expressiv-
ity in UML diagrams to define all details of WSDL (i.e., one can not distinguish be-
tween input and output messages). This issue is addressed by using the UML profile
for EDOC, but this approach is more focused on modeling distributed components
rather on modeling business logics. In our approach, the use of reaction rules in
URML models enables us to be closer to business processes, while OCL filter expres-
sions can even further specify conditions under which a message can happen. This is
very useful for potential integration of business process based on the use of Web
services [27]. Of course, such filter expressions overcome the potentials of the Web
service technology, as they presume that there should also be a rule-based engine,
which is able to interpret such conditions. However, the research on semantic Web
services [6] and Web rules [28] demonstrates that this issue attracts more attention in
the Web service research community.

Vara et al. [4] define a metamodel for WSDL and its corresponding UML profile
that is used for modeling of Web services in the MIDAS-CASE MDA-based tool for
Web information system development. They also support automatic generation of the
respective WSDL description for the Web services that is being modeled. Although
the MIDAS framework supports platform-independent models of services and service
compositions, their definitions are very incomplete and one can hardly generate com-
plete service models automatically. In our approach, we do not strictly base models of
services on workflows in which services will be used, as we wanted to focus on how
services are used (i.e., MEPs) .

392 M. Ribarić et al.

Gronmo et al. [11] and Timm and Gannod [10] propose an approach to modeling
semantic Web services by using UML profiles. Gronmo et al. have the goal to define
platform-independent models of services, which can be translated to semantic Web
services (OWL-S and WSMO). In their work, they abstract concepts from OWL-S
and WSMO, and extend UML activity diagrams (i.e., they define a UML profile)
accordingly, while for defining vocabularies they use the Ontology Definition Meta-
model, and its corresponding UML profile defined in [29]. Since both these ap-
proaches use XSLT, they can hardly translate service pre- and post-conditions from
their UML definitions (i.e., OCL) to the languages of the potential target platforms
(e.g. Jess). This approach does not consider modeling usage patterns or MEPs or error
handling (i.e., business logic) like we do, but instead it focuses on the details specific
for service platforms.

Manolescu et al. propose a model-driven approach to designing and deploying
service-enabled web applications [5]. This work is different from the ones above in
the following aspects: i) it extends WebML, a well-known modeling language for
developing Web applications; ii) it uses E-R models for defining data types; and iii) it
focuses on the usage patterns (MEPs) of Web services in order to define WebML
extensions. Their modeling approach is based on the use of MEPs, but they are con-
sidering MEPs used in WSDL 1.1, and for each MEP they define corresponding
WebML primitive. These new WebML primitives can be used in hypertext models of
Web applications. This approach is the most similar to ours; both approaches fully
focus on modeling business processes and potential usage patterns. However, the
WebML approach does not explicitly define a Web service description, but it infers it
from the definitions of hypertext models in which the service is used, which makes
this process context dependent. That is, services are defined inside specific WebML
workflows unlike our approach where we define workflow-independent services. In
addition, they do not consider the use of preconditions of Web services, which is
important for the reusability of services in different contexts. Although WebML has
support for exception handling [30], this is also focused on the workflow level rather
than on a service level. Finally, the WebML approach does not support reverse engi-
neering of Web services.

7 Conclusion

In the paper, we have demonstrated how the use of MDE principles can enable for
rule-based modeling of Web services. By using the MDE principles we have been
able to develop a framework for modeling Web services from the perspective of how
services are used in terms of message-exchange patterns (MEPs). Our approach en-
ables developers to focus on the definition of business rules, which regulate MEPs,
instead of focusing on low level Web service details or on contexts where services
are used (i.e., workflows). Rules in modeling services are a metaphor that is much
closer to the problem domain. As such, rule-based models of services are much closer
to business experts, and the process of knowledge/requirements elicitation is more
reliable, as well as collaboration between service developers and business experts.
Due to the declarative nature of rules, the business logic can easier be updated without

 Model-Driven Engineering of Rules for Web Services 393

the need to change to whole system. We only have to update rules responsible for a
part of logic that has changed and the update will automatically be reflected in the rest
of the system. By leveraging MDE, we have defined a rule-based modeling language
that can be managed by universal MDE tools (e.g., QVT). The use of model transfor-
mations allows for transforming platform independent models of business logic to
specific platforms such as Web services. Moreover, for each Web service, we can also
generate a rule that will fully regulate the behavior of the service (i.e., how the service
is used), and thus make sure that the business logic is fully followed. In this paper, we
have not explained that part of the solution, but we are going to report on that in our
future papers.

Our solution has much broader potentials that overcome the pure translation be-
tween rule-based business models and Web services. Unlike the WSDL definition of
Web services, our models also have an option for defining pre- and post-conditions of
services. However, WSDL can not express pre- and post-conditions in the descrip-
tions of Web services. That is, Web service tools can not automatically support condi-
tions under which some services can be used (as defined by OCL filters in Section 4).
To address this problem, our current activities are two-fold. First, we expand our
approach on W3C’s Semantic Annotations for WSDL (SAWSDL) recommendation.
In that case, we use R2ML rules along with WSDL documents to enable for publish-
ing pre- and post-conditions of services. Second, we are exploring how the W3C’s
Web Service Policy Framework (WS-Policy) recommendation can be integrated into
our solution. While these activities are covering description and publishing of pre-
and post-conditions of rules, we have mechanisms for regulating the use of services as
already mentioned. In our current activities, we have developed transformations from
our R2ML reaction rule-based models to several production rule languages (e.g.,
Drools, Jena2, and Jess). Our particular focus is on Drools, as the use of Drools al-
lows us to directly enforce business rules to regulate the use of Web services de-
ployed on JBoss’ application server.

References

[1] Web Services Description Language (WSDL) Ver. 2.0 Part 1: Core Language. W3C
Candidate Rec, http://www.w3.org/TR/2007/REC-wsdl20-20070626

[2] UDDI Ver. 3.0.2. OASIS v3.htm (2004), http://uddi.org/pubs/uddi
[3] SOAP Ver. 1.2 Part 1: Messaging Framework. W3C Recommendation,

 http://www.w3.org/TR/soap12-part1/
[4] Vara, J., de Castro, V., Marcos, E.: WSDL Automatic Generation from UML Models in a

MDA Framework. Int. J. of Web Services Pract. 1(1-2), 1–12 (2005)
[5] Manolescu, I., et al.: Model-driven design and deployment of service-enabled web appli-

cations. ACM Trans. Inter. Tech. 5(3), 439–479 (2005)
[6] Sheth, A., Verma, K., Gomadam, K.: Semantics to energize the full services spectrum.

Communication of the ACM 49, 55–61 (2006)
[7] Charfi, A., Mezini, M.: Hybrid Web service composition: Business processes meet busi-

ness rules. In: Proc. of 2nd Int’l Conf. on Service Oriented Comp., pp. 30–38 (2004)
[8] Schmidt, D.C.: Model-Driven Engineering. Computer 39(2), 25–31 (2006)

394 M. Ribarić et al.

[9] Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach for Web
Service Platform. In: Proc. of the 8th IEEE Int. Conf. on Enterprise Distributed Object
Computing Conf., pp. 58–70 (2004)

[10] Timm, J., Gannod, G.: A Model-Driven Approach for Specifying Semantic Web Ser-
vices. In: Proc. of IEEE Int’l Conf. on Web Services, pp. 313–320 (2005)

[11] Gronmo, R., Jaeger, M.C., Hoff, H.: Transformations between UML and OWL-S. In:
Proc. of the 1st European Conf. on Model Driven Architecture - Foundations and Appli-
cations, pp. 269–283 (2005)

[12] McClintock, C., de Sainte Marie, C.: ILOG’s position on rule languages for interoperabil-
ity. In: W3C Rule Languages for Interoperability (2005)

[13] Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley, Reading (2003)
[14] RIF Use Cases and Requirements. W3C Working Draft,

 http://www.w3.org/TR/rif-ucr
[15] Lukichev, S., Wagner, G.: Visual rules modeling. In: Proceedings of the 6th International

Conference Perspectives of Systems Informatics, pp. 467–673 (2006)
[16] Lukichev, S., Wagner, G.: UML-based rule modeling with Fujaba. In: Proceedings of the

4th International Fujaba Days 2006, pp. 31–35 (2006)
[17] Coyle, F.: XML, Web Services, and the Data Revolution. Addison Wesley, Reading

(2002)
[18] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall

PTR, Englewood Cliffs (2005)
[19] Hirtle, D., et al.: Schema Specification of RuleML 0.91 (2006),

 http://www.ruleml.org/spec/
[20] Horrocks, I., et al.: SWRL: A Semantic Web Rule Language Combining OWL and

RuleML, W3C Member Sub. (2004), http://www.w3.org/Submission/SWRL/
[21] Object Management Group: Semantics of Business Vocabulary and Business Rules

(SBVR) – Interim Specification. OMG Document – dtc/06-03-02 (2006)
[22] Object Management Group: Production Rule Representation (PRR) – revised sumbission.

OMG Document - bmi/07-08-01 (2007)
[23] Wagner, G., Giurca, A., Lukichev, S.: R2ML: A General Approach for Marking up

Rules, In: Dagstuhl Seminar Proc. 05371 (2006)
[24] Giurca, A., Lukichev, S., Wagner, G.: Modeling Web Services with URML. In: Proceed-

ings of Workshop Semantics for Business Process Management (2006)
[25] Atlas Transformation Language - User Manual, ver. 0.7, ATLAS group, Nantes,

 http://www.eclipse.org/gmt/atl/doc/ATL_User_Manual.v0.7.pdf
[26] MOF 2.0 Query/View/Transformation Specification, OMG document ptc/05-11-01

(2005), http://www.omg.org/docs/ptc/05-11-01.pdf
[27] Milanovic, M., Gasevic, D., Giurca, A., Wagner, G., Devedzic, V.: On interchanging be-

tween OWL/SWRL and UML/OCL. In: Proc. of the OCLApps Workshop, pp. 81–95
(2006)

[28] Nagl, C., Rosenberg, F., Dustdar, S.: VIDRE– A distributed service oriented business rule
engine based on RuleML. In: Proc. of the 10th IEEE Int’l Enterprise Distributed Object
Computing Conference, pp. 35–44 (2006)

[29] Gasevic, D., Djuric, D., Devedzic, V.: Bridging MDA and OWL ontologies. Journal of
Web Engineering 4(2), 119–134 (2005)

[30] Brambilla, M.S., et al.: Exception handling in workflow-driven web applications. In:
Proc. of the 14th Int’l WWW Conference, pp. 170–179 (2005)

 Model-Driven Engineering of Rules for Web Services 395

[31] Brown, A.W., et al.: A Practical Perspective on the Design and Implementation of Ser-
vice-Oriented Solutions. In: Proc. of the 10th ACM/IEEE 10th Int’l Conf. on Model
Driven Engineering Languages and Systems, pp. 390–404 (2007)

[32] Margaria, T.: Service Is in the Eyes of the Beholder. Computer 40(11), 33–37 (2007)
[33] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches.

IBM Systems Journal 45(3), 621–645 (2006)

An Introduction to

Context-Oriented Programming
with ContextS

Robert Hirschfeld1, Pascal Costanza2, and Michael Haupt1

1 Hasso-Plattner-Institut, Universität Potsdam, D-14482 Potsdam, Germany
{robert.hirschfeld,michael.haupt}@hpi.uni-potsdam.de

2 Programming Technology Lab, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
pascal.costanza@vub.ac.be

Abstract. Context-oriented Programming, or COP, provides program-
mers with dedicated abstractions and mechanisms to concisely represent
behavioral variations that depend on execution context. By treating con-
text explicitly, and by directly supporting dynamic composition, COP
allows programmers to better express software entities that adapt their
behavior late-bound at run-time. Our paper illustrates COP constructs,
their application, and their implementation by developing a sample sce-
nario, usingContextS in theSqueak/Smalltalkprogrammingenvironment.

1 Introduction

Every intrinsically complex application exhibits behavior that depends on its
context of use. Here, the meaning of context is broad and can range from obvi-
ous concepts such as location, time of day, or temperature over more technical
properties like connectivity, bandwidth, battery level, or energy consumption to
a user’s subscriptions, preferences, or personalization in general.

Besides these examples of context that are often associated with the domain of
ambient computing, the computational context of the program itself, for example
its control flow or the sets or versions of libraries used, can be an important source
of information for affecting the behavior of parts of the system.

Even though context is a central notion in a wide range of application do-
mains, there is no direct support of context-dependent behavior from traditional
programming languages and environments. Here, the expression of variations
requires developers to repeatedly state conditional dependencies, resulting in
scattered and tangled code.

This phenomenon, also known as crosscutting concerns, and some of the
associated problems were documented by the aspect-oriented programming
(AOP [16]) and the feature-oriented programming (FOP [2]) communities. The
focus of AOP is mainly on the establishments of inverse one-to-many relation-
ships [17] to achieve their vision of quantification and obliviousness [10]. FOP’s
main concern is the compile-time selection and combination of variations, and
the necessary algebraic means to reason about such layer compositions [3].

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 396–407, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Introduction to Context-Oriented Programming with ContextS 397

Scoping

Dynamic

activation

Layers

1:n

relationships

Inverse

dependencies

COPFOPAOP

Fig. 1. Properties of AOP, FOP, and COP

Context-oriented programming (COP [6,14]) addresses the problem of dynam-
ically composing context-dependent concerns, which are potentially crosscutting.
COP takes the notion of FOP layers and provides means for their selection and
composition at run-time. While FOP mechanisms are applied at compile-time—
with the effect that, during program execution, layers as a distinct entity are no
longer available—, COP preserves layers, adds the notion of dynamic layer acti-
vation and deactivation, and provides dynamic scoping to delimit the visibility of
their composition as needed (Figure 1). With the dynamic scoping mechanisms
offered by COP implementations, layered code can be associated with the units
it belongs to and can be composed into or removed from the system depending
on its context of use.

There are several COP extensions to popular programming languages such as
ContextL for Lisp [6], ContextS for Squeak/Smalltalk [14], ContextR for Ruby,
ContextPy for Python, and ContextJ* for Java [14]. Here, we will focus on Con-
textS. Our paper is meant to be used mainly as a tutorial, describing ContextS
in how it can be applied to the implementation of context-dependent behavioral
variations.

The remainder of our paper is organized as follows: We give an overview
of COP in Section 2. In Section 3 we introduce some of the COP extensions
provided with ContextS which are applied to an example presented in Section 4.
After some recommendations for further reading in Section 5 we conclude our
paper with Section 6.

2 Context-Oriented Programming

COP, as introduced in [6,14], facilitates the modularization of context-dependent
behavioral variations. It provides dedicated programming abstractions and mech-
anisms to better express software entities that need to change their behavior
depending on their context of use.

398 R. Hirschfeld, P. Costanza, and M. Haupt

Based on the implementation of several application scenarios and the devel-
opment of language extensions necessary for them, we have identified behavioral
variations, layers, dynamic activation, contextual information, and proper scop-
ing mechanisms as essential properties of COP support:

Behavioral variations. There is a means to specify behavioral variations, typ-
ically ranging from new to modified or even removed behavior. Here, partial
definitions of modules of the underlying programming model such as pro-
cedures, methods, or classes are prime candidates for being expressed as
behavioral variations.

Layers. There needs to be a means to group related behavioral variations into
layers. As first-class entities, layers can be explicitly referred to at run-time.

Activation/deactivation. Individual layers or combinations of them can be
dynamically activated and deactivated, giving explicit control to program-
mers over their composition – including the point in time of their activa-
tion/deactivation as well as the desired sequence of their application.

Context. COP adopts a very broad definition of context: Context is everything
that is computationally accessible. With that, we do not limit context to a
particular concept, but encourage a wide spectrum of context representations
most suitable for a specific application or system.

Scope. The scope of a layer activation or deactivation can be controlled explic-
itly so that simultaneous compositions affect each other only to the degree
required by the program.

In the following, we will use message dispatch to show how COP is a continu-
ation of previous work. While we do not require message dispatch as a base for
any COP implementation, we do believe that this illustration will help to bet-
ter understand how COP builds on procedural, object-oriented, and subjective
programming (Figure 2).

1D dispatch. Procedural programming offers only one dimension to associate a
unit of behavior with its activation [18]. Names used in procedure calls are
directly mapped to procedure implementations (<m>, Figure 2a).

2D dispatch. Object-oriented programming already uses two dimensions to as-
sociate a unit of behavior with its activation [18]. Names used at the activa-
tion site are mapped to a method implementation with the same name and
the receiver it is defined in (<m, R>, Figure 2b).

m mR mR

S

mR

S
C

a b c d

Fig. 2. Multi-dimensional Message Dispatch

An Introduction to Context-Oriented Programming with ContextS 399

3D dispatch. Subjective programming as introduced in [18] goes one step fur-
ther than object-oriented programming in that it adds a third dimension
to message dispatch. Here, method implementations are selected not only
by their name and the receiver they are defined in, but also the sender the
message send originated from (<m, R, S>, Figure 2c).

4D dispatch. COP considers yet another dimension by dispatching not only on
the name of a behavioral unit, the receiver it is defined in, and the sender the
message originated from, but also on the context of this particular message
send (<m, R, S, C>, Figure 2d).

3 ContextS

ContextS is our COP extension to Squeak/Smalltalk to explore COP in late-
bound class-based programming environments [12,15]. In Squeak/Smalltalk
there are only objects, and messages exchanged between them. Since every-
thing else is built on top of these concepts, and due to late-binding being used
extensively throughout the system, the realization of ContextS was simple and
straightforward. Only small changes to the language kernel needed to be made
to achieve useful results. In this section we give a brief introduction to the small
set of constructs provided with ContextS, leaving the illustration of their appli-
cation to Section 4. We try to refrain from discussing implementation details,
but will mention some alternatives we are currently investigating.1

3.1 Implementation-Side Constructs

There are two main concepts to be used at the implementation side of concerns
implemented in ContextS: Layers and advice-based partial method definitions.

Layers are simply represented as subclasses of CsLayer. In current versions of
ContextS, layers are containers for partial method definitions. In future versions,
we will move such method definitions away from the layers, into the classes they
belong to. For a detailed discussion on why that should be done, please refer to
our reading list, presented in Section 5.

CsLayer subclass: #MyLayer

instanceVariableNames: ’’

classVariableNames: ’’

poolDictionaries: ’’

category: ’My Category’

Partial method definitions, as shown here, still use an advice-based style as
introduced in PILOT [19] and popularized by CLOS [4] and AspectJ-style lan-
guage extensions [16]. The style presented here is inherited from AspectS [13],
to take advantage of a set of metaobjects called method wrappers AspectS was
built on [5].
1 We use ContextS version 0.0.10 throughout the paper, available from

http://www.swa.hpi.uni-potsdam.de/cop/.

400 R. Hirschfeld, P. Costanza, and M. Haupt

MyLayer>>adviceCopLeafEvaluate

^ CsAroundVariation

target: [MyTargetClass -> #myTargetSelector]

aroundBlock: [:receiver :arguments :layer :client :clientMethod |

"my layer-specific code"

...]

Here we can see that a partial method definition (adviceCopLeafEvaluate) be-
longs to a particular layer (MyLayer). The name of each such method definition
needs to start with advice and has to have no arguments. These properties are ex-
ploited by the underlying framework to collect and compose all partial definitions
associated with a layer. With CsAroundVariationwe state that we will apply an
around advice with class MyTargetClass and method myTargetSelector as its
target. Layer-specific code provided by this partial method definition is stated in
the around block and has full access to its environment, including the sender and
the receiver of the message, its arguments, as well as the defining layer.

3.2 Activation-Side Constructs

At the client side of a concern implemented using ContextS, useAsLayersFor:
is about the only construct ever used.

receiver useAsLayersFor: argument

useAsLayersFor: is a regular message that can be sent to collections or arrays
that contain instances of CsLayer, or to code blocks that eventually return such
collections or arrays.

All layers (instances of CsLayer) enumerated or computed by the receiver
object are composed into the Squeak image in the order of their appearance
in the list. This composition is only effective in the current process (Squeak’s
version of a thread) and for the dynamic extent of the execution of the block
(an instance of BlockContext which is provided as the second argument).

4 Pretty-Printing as an Example

We use the task of pretty-printing an expression tree in infix, prefix, and postfix
notation as well as an evaluation of the same as an example to show the differ-
ences between a regular object-oriented solution, an approach using the Visitor
design pattern [11], and our context-oriented version.

The basic implementation of the nodes and leaves used to construct our ex-
pression trees is shown in Figure 3. A CopNode (left-hand side of Figure 3) has
three instance variables for the first operand, the second operand, and the oper-
ation to combine the two. Each CopLeaf (right-hand side of Figure 3) has only
one instance variable providing its value. Both classes provide accessor methods
for their instance variables.

An expression tree can be assembled by the creation of individual instances of
CopNode and CopLeaf and their combination. The example tree used throughout

An Introduction to Context-Oriented Programming with ContextS 401

Object subclass: #CopNode Object subclass: #CopLeaf
instanceVariableNames: ’first op second’ instanceVariableNames: ’value’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopNode class>>first: aFirstCopNodeOrCopLeaf CopLeaf class>>value: anInteger
op: aSymbol second: aSecondCopNodeOrCopLeaf ^ self new value: anInteger

^ self new
first: aFirstCopNodeOrCopLeaf;
op: aSymbol;
second: aSecondCopNodeOrCopLeaf

CopNode>>first CopLeaf>>value
"^ <CopNode | CopLeaf>" "^ <Integer>"
^ first ^ value

CopNode>>first: anCopNodeOrCopLeaf CopLeaf>>value: anInteger
first := anCopNodeOrCopLeaf. value := anInteger.

CopNode>>op
"^ <Symbol>"
^ op

CopNode>>op: aSymbol
op := aSymbol.

CopNode>>second
"^ <CopNode | CopLeaf>"
^ second

CopNode>>second: anCopNodeOrCopLeaf
second := anCopNodeOrCopLeaf.

Fig. 3. Basic Node and Leaf Implementation

tree := CopNode
first: (CopNode

first: (CopNode
first: (CopLeaf value: 1)
op: #+
second: (CopLeaf value: 2))

op: #*
second: (CopNode

first: (CopLeaf value: 3)
op: #-
second: (CopLeaf value: 4)))

op: #/
second: (CopLeaf value: 5).

Fig. 4. Construction of an Expression

our paper is built in Figure 4. Figure 5 provides a graphical representation of
the tree created in Figure 4.

4.1 Regular Objects

A simple and straightforward object-oriented implementation of pretty-printing is
listed in Figure 6. The desired behavior is implemented in-place in both classes as
methods evaluate, printInfix, printPostfix, and printPrefix respectively.

402 R. Hirschfeld, P. Costanza, and M. Haupt

+

a CopNode

1

a CopLeaf

2

a CopLeaf

-

a CopNode

3

a CopLeaf

4

a CopLeaf

5

a CopLeaf

*

a CopNode

/

a CopNode

first second first second

first second

first second

Fig. 5. Expression Tree

CopNode>>evaluate CopLeaf>>evaluate
^ (self first evaluate) ^ self value

perform: self op with: (self second evaluate)

CopNode>>printInfix CopLeaf>>printInfix
^ ’(’, self first printInfix, ^ self value asString

self op, self second printInfix, ’)’

CopNode>>printPostfix CopLeaf>>printPostfix
^ ’(’, self first printPostfix, ^ self value asString

self second printPostfix, self op, ’)’

CopNode>>printPrefix CopLeaf>>printPrefix
^ ’(’, self op, ^ self value asString

self first printPrefix, self second printPrefix, ’)’

Fig. 6. In-place Traversals

Transcript cr; show: tree printInfix. ==> (((1+2)*(3-4))/5)
Transcript cr; show: tree printPrefix. ==> (/(*(+12)(-34))5)
Transcript cr; show: tree printPostfix. ==> (((12+)(34-)*)5/)
Transcript cr; show: tree evaluate. ==> (-3/5)

Fig. 7. Use of In-place Traversals

Because these methods need to coexist side-by-side at the same time, they
are named differently. And because of that, client side code needs to explicitly
decide which one to use.

An application of our system so far is copied down in Figure 7, with the
code executed on its left-, and the resulting print-outs on its right-hand side. In
Squeak, objects are printed to the system console called Transcript by sending
it the message show: with the object as argument.

4.2 Visitors

Our solution to the implementations of pretty-printing as presented previously
is used as a motivation for the Visitor design pattern [11]. From its intent, we
take that a visitor represents “an operation to be performed on the elements of
an object structure” where the Visitor makes it easy to add new operations to

An Introduction to Context-Oriented Programming with ContextS 403

CopNode>>accept: aCopVisitor CopLeaf>>accept: aCopVisitor
^ aCopVisitor visitNode: self ^ aCopVisitor visitLeaf: self

Fig. 8. Visitor-ready Base Objects

the entire structure. This is because all new operations can be defined outside
this object structure it operates on, and so without the need to change it.

However, the resulting client code of Visitor-based systems is very hard to
understand, with the manual simulation of double dispatch being one of the
main reasons for that. Figure 8 lists the basic framework used for that in CopNode
and CopLeaf, adding implementations of accept: to both classes that then call
back to the argument, providing itself and the proper type information needed
for further processing.

The actual implementation of two of the four visitors,CopPrintPrefixVisitor
and CopEvaluateVisitor, can be seen in Figure 9. Here, our visitLeaf: and
visitNode:methods control both local computation and follow-up traversals.

CopVisitor subclass: #CopPrintPrefixVisitor CopVisitor subclass: #CopEvaluateVisitor
instanceVariableNames: ’’ instanceVariableNames: ’’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopPrintPrefixVisitor>>visitLeaf: aCopLeaf CopEvaluateVisitor>>visitLeaf: aCopLeaf
^ aCopLeaf value asString ^ aCopLeaf value

CopPrintPrefixVisitor>>visitNode: aCopNode CopEvaluateVisitor>>visitNode: aCopNode
^ ’(’, ^ (aCopNode first accept: self)

aCopNode op, perform: aCopNode op
(aCopNode first accept: self), with: (aCopNode second accept: self)
(aCopNode second accept: self),
’)’

Fig. 9. Visitor Examples

Transcript cr; show: (tree accept: CopPrintInfixVisitor new). ==> (((1+2)*(3-4))/5)
Transcript cr; show: (tree accept: CopPrintPrefixVisitor new). ==> (/(*(+12)(-34))5)
Transcript cr; show: (tree accept: CopPrintPostfixVisitor new). ==> (((12+)(34-)*)5/)
Transcript cr; show: (tree accept: CopEvaluateVisitor new). ==> (-3/5)

Fig. 10. Use of Visitors

An application of our Visitor-based system so far is transcribed in Figure 10,
again with the code executed on its left, and the resulting print-outs on its right.

4.3 Layers

Now we are going to implement our expression traversal example using Con-
textS by applying the constructs introduced in Section 3. Here, we present two
of our four layers, CopPrintInfixLayer and CopEvaluateLayer, in Figure 11.
Each layer is a subclass of CsLayer, provides two partial method definitions
with class CopLeaf, class CopNode, and their methods printOn: as targets. As

404 R. Hirschfeld, P. Costanza, and M. Haupt

CsLayer subclass: #CopPrintPrefixLayer CsLayer subclass: #CopEvaluateLayer
instanceVariableNames: ’’ instanceVariableNames: ’’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopPrintPrefixLayer>>adviceCopLeafPrintOn CopEvaluateLayer>>adviceCopLeafEvaluate
^ CsAroundVariation ^ CsAroundVariation

target: [CopLeaf -> #printOn:] target: [CopLeaf -> #evaluate]
aroundBlock: [:receiver :arguments aroundBlock: [:receiver :arguments

:composition :client :clientMethod | :composition :client :clientMethod |
receiver value printOn: arguments first] receiver value]

CopPrintPrefixLayer>>adviceCopNodePrintOn CopEvaluateLayer>>adviceCopNodeEvaluate
| stream | ^ CsAroundVariation
^ CsAroundVariation target: [CopNode -> #evaluate]

target: [CopNode -> #printOn:] aroundBlock: [:receiver :arguments
aroundBlock: [:receiver :arguments :layer :client :clientMethod |

:layer :client :clientMethod | receiver first evaluate
stream := arguments first. perform: receiver op
stream nextPut: $(. with: receiver second evaluate]
stream nextPutAll: receiver op.
receiver first printOn: stream.
receiver second printOn: stream.
stream nextPut: $)]

Fig. 11. Layered Traversal Code

[{ CopPrintInfixLayer new }] useAsLayersFor: [
Transcript cr; show: tree]. ==> (((1+2)*(3-4))/5)

[{ CopPrintPrefixLayer new }] useAsLayersFor: [
Transcript cr; show: tree]. ==> (/(*(+12)(-34))5)

[{ CopPrintPostfixLayer new }] useAsLayersFor: [
Transcript cr; show: tree]. ==> (((12+)(34-)*)5/)

[{ CopEvaluateLayer new }] useAsLayersFor: [
Transcript cr; show: tree evaluate]. ==> (-3/5)

Fig. 12. Use of Layered Traversal Code

already stated previously, objects are printed to the Transcript by sending it
the message show: with the object as argument. show: itself sends printOn: to
the object, with a stream as its argument. This is the method we would override
in a subclass to change the behavior of show:, and this is also the method we
adapt using COP-style refinements.

In this example, our context-dependent behavior simply overrides the original
behavior present before its layer activation by using an around construct without
a proceed. More method combinations including around with proceed, before, or
after semantics can be achieved as well, but are beyond the scope of this tutorial.

In an upcoming version of ContextS, the need for AOP-style inverse relation-
ships will be reduced, since our traversal code belongs to the objects and should
be defined in the scope of their classes so that programmers reading their code
are aware of its impact (Figure 13).

The activation-side of our context-dependent behavior looks as simple and
straightforward as promised (Figure 12): The programmer of the client code

An Introduction to Context-Oriented Programming with ContextS 405

states or computes the desired layer combination (only one layer in our example),
and uses it via the useAsLayersFor:message. This causes the layer activation to
be composed into the system and visible in the dynamic extent of the execution
of the provided block argument.

Please note that the provided block arguments are the same in all four cases.
The method show: is used all the time to print out our expression tree. Only
the layer used is different from case to case. It is also important to point out
that in the code block provided to useAsLayersFor: the message show: is sent
to Transcript whereas our layers adapt printOn: of CopLeaf and CopNode
respectively.

5 Further Reading

Related work of COP including AOP, FOP, or delegation have been presented
and discussed in other publications In the following we list some of them for
further reading:

Language Constructs for Context-oriented Programming – An Overview of Con-
textL [6]. That paper presents ContextL, our first COP extension. It supplements
the Common Lisp Object System (CLOS) with layers, layered classes, layered
and special slots, layered accessors, and layered functions. In ContextL, layered
classes, slots and functions can be accumulated in layers. ContextL’s layers or
their combinations are dynamically scoped, allowing us to associate partial be-
havioral variations with the classes they belong to, while, at the same time,
changing their specific behavior depending on the context of their use.

Efficient Layer Activation for Switching Context-dependent Behavior [8]. In that
paper, we illustrate how ContextL constructs can be implemented efficiently. As
an interesting result, ContextL programs using repeated layer activations and de-
activations are about as efficient as without, underlining the fact that apparently
other things are more important regarding performance and its optimization. We
also show an elegant and efficient implementation of the prominent AOSD figure
editor example, even without the need to resort to cflow-style constructs in the
first place.

Reflective Layer Activation in ContextL [7]. That paper describes a reflective
approach to the expression of complex, application-specifc layer dependencies,
without compromising efficiency.

Context-oriented Programming [14]. In that contribution, we summarize our
previous work and present COP as a novel approach to the modularization
of context-dependent behavior. We show that, by treating context explicitly
and by providing dedicated abstractions and mechanisms to represent context-
dependent variations, programs can be expressed more concisely than without.
Several examples are provided to illustrate COP’s advantages over more tradi-
tional approaches.

406 R. Hirschfeld, P. Costanza, and M. Haupt

CopNode>>printOn: aStream CopNode>>printOn: aStream
<<layer: PrintPrefix>> <<layer: Evaluate>>
^ ’(’, ^ self first evaluate

self op, perform: self op
self first printPrefix, with: (self second evaluate)
self second printPrefix,
’)’

CopLeaf>>printOn: aStream CopLeaf>>printOn: aStream
<<layer: PrintPrefix>> <<layer: Evaluate>>
^ self value asString ^ self value

Fig. 13. Another Representation of Layered Traversal Code

6 Summary and Outlook

In our tutorial-style introduction to ContextS we have presented both activation-
side and implementation-side constructs of our COP extension to Squeak/
Smalltalk. We provided sample implementations illustrating three different ap-
proaches to printing out an expression tree: plain and straightforward object-
oriented programming, a Visitor-based application, as well as a COP-based so-
lution using ContextS.

Our intent was not to discuss advantages of COP-style development but rather
to present some of the mechanics involved in working with ContextS. One of the
issues we are working on right now is to allow for specifying context-specific
code outside of layers and inside the classes it belongs to. Figure 13 presents
one of our approaches to this issue. Here we can see different versions of the
printOn: method, associated with one and the same class at the same time.
The difference is the layer expressed via <<layer: ...>> denoting the layer the
particular method belongs to.

While ContextS provides means to express heterogeneous crosscutting behav-
ioral variations, we look into its extension to concisely implement homogeneous
crosscutting concerns as well [1].

We are currently working on medium- to large-sized examples and case studies
to illustrate to what extent COP helps to better express software entities that
need to adapt their behavior to their context of use, and to further refine our
language extensions.

Acknowledgements

We thank Marcus Denker, Tudor Girba, Robert Krahn, Dave Thomas, and Jan
Wloka for their fruitful discussions and valuable contributions, and Ralf Lämmel
for his patience.

References

1. Apel, S.: The Role of Features and Aspects in Software Development. PhD thesis,
Otto-von-Guericke University Magdeburg (March 2007)

2. Batory, D.: Feature-oriented programming and the ahead tool suite. In: Proceed-
ings of the International Conference on Software Engineering 2004 (2004)

An Introduction to Context-Oriented Programming with ContextS 407

3. Batory, D., Rauschmeyer, A.: Scaling step-wise refinement. IEEE Transactions on
Software Engineering (June 2004)

4. Daniel, G., Bobrow, L.G., De Michiel, R.P., Gabriel, S.E.: Common lisp object
system specification: 1. programmer interface concepts. Lisp and Symbolic Com-
putation 1(3-4), 245–298 (1989)

5. Brant, J., Foote, B., Johnson, R.E., Roberts, D.: Wrappers to the rescue. In: Jul,
E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 396–417. Springer, Heidelberg (1998)

6. Costanza, P., Hirschfeld, R.: Language constructs for context-oriented program-
ming — an overview of ContextL. In: Wuyts, R. (ed.) Proceedings of the 2005
Dynamic Languages Symposium, ACM Press, New York (2005)

7. Costanza, P., Hirschfeld, R.: Reflective layer activation in ContextL. In: Proceed-
ings of the Programming for Separation of Concerns (PSC) of the ACM Symposium
on Applied Computing (SAC). LNCS. Springer, Heidelberg (2007)

8. Costanza, P., Hirschfeld, R., De Meuter, W.: Efficient layer activation for switch-
ing context-dependent behavior. In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC
2006. LNCS, vol. 4228. Springer, Heidelberg (2006)

9. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software
Development. Addison-Wesley, Boston (2005)

10. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and
obliviousness. In Filman et al., [9], pp. 21–35.

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995)

12. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston (1983)

13. Hirschfeld, R.: AspectS – aspect-oriented programming with Squeak. In: Akşit, M.,
Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp. 216–232. Springer,
Heidelberg (2003)

14. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology (JOT) 7(3), 125–151 (2008)

15. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: the
story of squeak, a practical smalltalk written in itself. In: OOPSLA 1997: Pro-
ceedings of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pp. 318–326. ACM Press, New York (1997)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

17. Nordberg III, M.E.: Aspect-oriented dependency management. In: Filman et al.,
[9], pp. 557–584

18. Smith, R.B., Ungar, D.: A simple and unifying approach to subjective objects.
TAPOS special issue on Subjectivity in Object-Oriented Systems 2(3), 161–178
(1996)

19. Teitelman, W.: Pilot: A step towards man-computer symbiosis. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA (1966)

A Landscape of Bidirectional Model

Transformations

Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh
Fax: +44 131 667 7209
perdita@inf.ed.ac.uk

Abstract. Model transformations are a key element in the OMG’s Model
Driven Development agenda. They did not begin here: the fundamental
idea of transforming, automatically, one model into another is at least
as old as the computer, provided that we take a sufficiently broad view
of what a model is. In many contexts, people have encountered the need
for bidirectional transformations. In this survey paper we discuss the vari-
ous notions of bidirectional transformation, and their motivation from the
needs of software engineering. We discuss the state of the art in work tar-
geted specifically at the OMG’s MDD initiative, and also, briefly, related
work from other communities. We point out some areas which are so far
relatively under-researched, and propose research topics for the future.

Keywords: bidirectional model transformation, QVT, graph transfor-
mation, triple graph grammar, bidirectional programming language.

1 Introduction

Bidirectional model transformations are both new and old. New in that they have
recently come to prominence in the context of the Object Management Group’s
Model Driven Architecture initiative. Old in the sense that the problems which
arise in considering them turn out to be similar to problems that have been
studied in other contexts for decades.

In this paper, we explore the landscape of bidirectional model transformations
as it appears to the author at the time of writing, autumn 2007 to spring 2008.
We attempt to summarise the perceived need for bidirectional model transfor-
mations, drawing out the various different assumptions that may be made about
the environment in which the transformation operates, since this has important
effects on the technology and underlying theory available. We discuss the state
of the art in model transformations in the OMG sense, and then move on to
survey related work in other fields. Finally, we mention some areas which have
been relatively under-studied to date, and suggest some directions for further
research.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 408–424, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Landscape of Bidirectional Model Transformations 409

2 Background: Why Bidirectional Model
Transformations?

A model, for purposes of this paper, is any artefact relating to a software system.
For example, its code or any part of it; UML models for it, or for a product-line
of which it is a member; its database schema; its test set; its configuration man-
agement log; its formal specification, if any. We will be mostly concerned with
formal artefacts and will therefore not usually consider, for example, the natu-
ral language document that describes the systems architecture, or the physical
computer on which the system will run, to be models; however, it is surprisingly
difficult to draw a hard-and-fast line between formal and informal artefacts.

Model transformations aim to make software development and maintenance
more efficient by automating routine aspects of the process. For example, a com-
mon scenario is that two models have to be consistent in some sense, and that
it is possible to codify the process of restoring consistency when one model is
changed. In such a case, it is helpful if this notion of consistency and restoration
process can be captured in a model transformation. In the simplest case, only
one of the two models (the source) is ever modified by humans: the other (the
target) is simply generated by a tool. The tool is deterministic, or at least, if it
is possible for it to produce several different targets from the same source, the
various targets are seen as having equal value, so that the difference between
them is immaterial. In such a case, in practice we will never check consistency:
if there is any doubt that the target was produced from the source, the trans-
formation will be re-run. The old target model is discarded and replaced by the
newly-generated version. For example, this is typically the case when a program
in a high-level language is compiled. If the sets of models are M and N , a uni-
directional transformation of this kind can be modelled as f : M −→ N ; in the
simplest case, the consistency relation will be simply that m and n are consistent
iff n = f(m).

More interesting, more difficult and arguably more typical is the situation
where both models may be modified by humans. Examples include:

1. The classic MDA situation: a platform independent model (PIM) is trans-
formed into a platform specific model (PSM).

2. The database view problem, in which a user is presented with a view of a
selected subset of the data from the database, and may modify the view: at
the same time, the full database may change in the usual way.

3. Many kinds of integration between systems or parts of systems, which are
modelled separately but must be consistent: for example, a database schema
must be kept consistent with the application that uses it.

Even if the consistency restoration process has to be manual – for example,
because there may be several different ways to restore consistency, with different
values, and nobody can formalise rules which capture which way is best – it
may still be worthwhile to have an automatic check of whether the models are
consistent.

410 P. Stevens

A bidirectional model transformation is some way of specifying algorithmi-
cally how consistency should be restored, which will (at least under some cir-
cumstances) be able to modify either of the two models. Within this broad
definition, there are many variants which we shall explore.

Even when transformation technologies are first thought of as unidirectional,
it often turns out that bidirectionality is required. In [32], it is interesting to
note that the ability to write bidirectional transformations appears high in the
list of users’ priorities, even though the original call for proposals for the OMG’s
language for expressing Queries, Views and Transformations, QVT [28] listed
bidirectionality as an optional feature.

2.1 Related Work

Consistency management has as mentioned a long history, which we will not go
into here. In the field of models, an interesting early paper focusing on pragmatic
issues that arise in round-trip engineering – connecting a model with source code
– is Sendall and Küster’s position paper [29]. Czarnecki and Helsen in [8] present
a survey of model transformation techniques with a particular emphasis on rule-
based approaches such as those based on graph transformations. They mention
directionality, but do not focus on it. Similarly Mens and Van Gorp in [24] discuss
the wider field of model transformations, not necessarily bidirectional.

The present author in [30] discussed bidirectional transformations in the spe-
cific context of the QVT Relations (hereinafter QVT-R) language. The paper
proposed a framework for bidirectional transformations in which a bidirectional
transformation is given by three elements, flexible enough to describe any of the
approaches considered here. We write R(m, n) if and only if the pair of mod-
els is deemed to be consistent. Associated with each relation R will be the two
directional transformations:

−→
R : M ×N −→ N

←−
R : M ×N −→M

The idea is that −→R looks at a pair of models (m, n) and works out how to modify
n so as to enforce the relation R: it returns the modified version. Similarly, ←−R
propagates changes in the opposite direction. The paper proposed postulates to
ensure that the transformation should be coherent.

2.2 Terminology

In a truly symmetric situation, there is an arbitrary choice about which model to
call the “source” and which the “target”: nevertheless, the terminology is widely
used and useful, and there is usually some asymmetry in the situation. Generally,
the “source” model is the one which is created first, and it is more probable that
a change to the source model will necessitate a change to the target model than
the other way round.

A Landscape of Bidirectional Model Transformations 411

Note that this paper does not attempt to discuss extra problems that may
arise when checking or restoring consistency between more than two models –
multidirectional transformations.

3 Important Differences in Circumstances

Discussions of bidirectional transformations often turn out to hinge on what
assumptions are made about the situation: a solution which seems good with
one set of assumptions can be infeasible with another. In this section, we draw
out some of the most important differences in circumstances of use of a trans-
formation. These differences are among the chosen design assumptions of the
developers of a bidirectional transformation approach; looked at from the point
of view of users who need to choose an appropriate approach for their circum-
stances, they are factors that may influence that choice. Our aim here is not to
classify existing approaches: indeed, in this section we will discuss several issues
where all the approaches we will later cover are in accord. Such issues are not
useful for distinguishing between existing approaches, but they may be useful in
pointing out lacunae in the current research. This is our main aim.

In later sections, we will discuss approaches to bidirectional transformations,
trying to make clear how they fit into the framework of differences presented in
this section. However, we do not claim to have exhaustively addressed every issue
for every tool. Where there is a majority approach, we say so in this section, and
point out exceptions later.

3.1 Is There an Explicit Notion of Two Models Being Consistent?

Situations where bidirectional transformations may be applied always involve at
least an informal notion of consistency: two models are consistent if it is accept-
able to all their stakeholders to proceed with these models, without modifying
either. Since we have said that the job of the bidirectional transformation is to
restore consistency, we may alternatively say that two models are consistent if
no harm would result from not running the transformation. Note that this is not
quite the same as to say that running the transformation would have no effect:
some transformation approaches may modify a pair of models, even if they are
already consistent.

Typically, bidirectional transformation languages described as “relational”,
such as QVT-R and BOTL (to be discussed), make their notion of consistency
explicit: part of what they do is to define a consistency relation on two sets of
models. Many other presentations of bidirectional transformations do not make
their notion of consistency explicit. In such a case, any situation which may
arise from a (successful) application of the transformation may be considered
consistent by definition. However, it can be hard to characterise this other than
by describing exactly what the transformation tool will do.

412 P. Stevens

3.2 Does One Expression Represent Both Transformation
Directions?

Superficially, the easiest way to write a bidirectional transformation is to write
it (in text or in diagrams) as a pair of functions, one in either direction, maybe
also giving an explicit consistency relation. This avoids the need to write spe-
cial purpose languages for bidirectional transformations, enabling instead the
reuse of established programming languages. However, even if we make explicit
constraints on the two functions which suffice to make the different expressions
coherent, we have an obvious danger: that the coherence of the different expres-
sions will not be maintained as time passes.

Notice that the concern here is how actual transformations are written down.
There is no objection to modelling a transformation as a pair of functions, if
both functions are represented by one expression (textual or graphical).

Perhaps, if a framework existed in which it were possible to write the directions
of a transformation separately and then check, easily, that they were coherent,
we might be able to have the best of both worlds. However, no such framework
exists today.

Since this paper is focused on work which aims specifically at addressing
bidirectional transformations, it is unsurprising that all the approaches to be
discussed involve writing a single text (or equivalently, a single set of diagrams).

3.3 Is the Transformation Bijective, Surjective or Neither?

This is probably the most important assumption to clarify when looking at a
particular tool or technology: however, this is not always easy if the approach
does not have an explicit notion of consistency (because one may have to study
the syntax of the language to understand which implicit consistency relations
can be defined).

Given a consistency relation on the pairs of models, we call a transformation
bijective if the consistency relation is a bijection: that is, for any model (source,
rsp. target) there exists a unique corresponding model (target, rsp. source) which
is consistent with it. This is a very strong condition: in effect, it says that the
two models contain identical information, presented differently. In particular, it
is impossible to define a bijective bidirectional transformation between two sets
of models which have different cardinalities.

If the reader has in mind an approach whose notion of consistency is implicit,
this may not be quite obvious. Consider, for example, a transformation which
defines (in any way) a function

f : M −→ N

with the implicit understanding that m and n are consistent iff n = f(m). This
consistency relation is a bijective relation if and only if f is a bijective function,
and in that case there is an inverse function

f−1 : N −→M

A Landscape of Bidirectional Model Transformations 413

satisfying the usual identities. This situation cannot arise if, to give a trivial
example, completely defining m ∈ M requires three boolean values while com-
pletely defining n ∈ N requires three integer values.1

Thus, an approach that permits only bijective transformations is in most prac-
tical situations much too restrictive. A more realistic, but still quite restrictive,
condition is that one of the models should be a strict abstraction of the other:
that is, one model contains a superset of the information contained in the other.

3.4 Must the Source Model Be Modified When the Target
Changes?

This issue does not strictly concern bidirectional transformations, but it does
concern transformations which do not fit into the unidirectional transformation
framework (f : M −→ N) initially presented.

Suppose we have a source and target model which are consistent, perhaps
because the target was produced from the source by compilation. Suppose further
that changes may be made to the target model, but they are small in the sense
that they will not cause the target to become inconsistent with the source. Two
examples are:

1. Optimising the code produced by a compiler (using a suitably restrictive
class of optimisations)

2. Taking skeleton code generated from a UML class diagram, and adding
method bodies.

(Notice that the allowable changes to the target depend crucially on the notion
of consistency chosen.)

In this restricted case, changes to the target model never require changes to
the source model. The reason why this does not fit into the straightforward uni-
directional transformation framework presented above is that it is not acceptable
to discard changes to the target, when the source model changes and the target
needs to be updated to reflect those changes. This kind of transformation might
be represented as a function

f : M ×N −→ N

assuming that a default value from N , representing “no interesting information”
is available for use in the initial generation.

All the approaches discussed here assume that the source model may have to
be modified when the target changes.

3.5 Must the Transformation Be Fully Automatic, or Interactive?

If there may be a choice about how to restore consistency, there are two options:
either the transformation programmer must specify the choice to be made, or
1 Of course, which model sets actually have the same cardinality depends crucially on

whether we define our models using machine integers or mathematical integers, etc.;
but either way, not all model sets have the same cardinality.

414 P. Stevens

the tool must interact with a user. The ultimate interactive bidirectional trans-
formation would consist simply of a consistency checker: the tool would report
inconsistencies and it would be up to the user to restore consistency. Intermedi-
ate scenarios, in which the programmer specifies how most kinds of inconsistency
can be dealt with, but exceptional cases are referred to the user, might be imag-
ined. Another variant, [7], is discussed later.

Any approach which involves a tool behaving non-deterministically has an ob-
vious interactive counterpart in which the user resolves the non-determinism; we
will mention one such case. However, none of the work discussed here explicitly
addresses interaction with the user.

3.6 Is the Application of the Transformation under User Control?

A slightly different question is whether the user of the transformation tool con-
trols when consistency is restored, or whether this is done automatically without
user involvement. Practically, applying the transformation automatically entails
that the transformation should be fully automatic, but not vice versa. There
are advantages to automatically applied transformations (compare automatic
recompilation of changed source files in Eclipse and similar development envi-
ronments, or the demand for “pushed” changes to data e.g. web pages): the
user does not have to remember to apply the transformation, and the danger of
work being wasted because it is done on an outdated model is reduced. How-
ever, the fact that users’ actions have effects which are invisible to them may
also be confusing, e.g. if the transformation is not undoable in the sense of [30].
Intermediate situations such as transformations being applied every night, or on
version commit, may sometimes be good compromises.

3.7 Is There a Shared Tool?

If the people modifying the two models use the same model transformation tool,
then the tool may perhaps keep and make use of information other than the
models themselves. For example, it may keep what is called “trace” information
in QVT or “correspondence” information in triple graph grammars: a persistent
record of which elements of one model are related to a given element in the
other. This can simplify the programming of model transformations, in that
provided the notion of corresponding elements can be somehow established, it
can be used throughout the transformation definition. If this extra information
were itself extractable in a standard format which could be read by several tools,
then of course the same could be done even without a literally shared tool, at
the expense of giving the user another artefact to manage.

3.8 Is It Permissible to Cache Extra Information in the Models?

As discussed above, there may be information in each model which is not con-
tained in the other. One approach is to pick one of the models and modify it so
that it contains all of the information from both models, in a form which is not

A Landscape of Bidirectional Model Transformations 415

evident to the user of the model. For example, if we consider a transformation
between a UML model and the code that implements it, the method bodies may
be hidden in the model, and/or the diagrammatic layout information may be
encoded in comments in the generated source files.

By this means, the bidirectional transformation can be made surjective, or
even bijective, while leaving the models looking the same to their users. In
effect, we are adding extra transformations: instead of a general bidirectional
transformation

M ←→ N

we have
M ↪→ M ′ ←→ N ′ ←↩ N

where the outer transformations are implicit, being invisible to the user, and it
can be arranged that the inner transformation is bijective.

This is a very useful and pragmatic approach widely used in, for example,
generation of code from UML models. It carries the same kind of problems as
any other kind of non-user-visible transformation, however. There is a possibility
that the user, not understanding the extra information, may accidentally modify
it, for example. Moreover, this approach only works if the transformation tool
has complete control over the models. If a different tool is also being used to
modify one of the models, information may be lost.

3.9 What Must the Scope of the Model Sets Be?

Much of the work to be discussed works with XML; some with relational database
schemas; some with MOF metamodels. Some problems are more tractable if
the language of models can be restricted. For example, [2] discusses round-trip
engineering of models in the context of a framework-specific language. If the
models are trees, e.g. XML documents, are idrefs and similar ways to turn a
tree into a graph permitted? If lists occur, is order important? If the models are
graphs, are attributes permitted, and with what restrictions?

4 The QVT Relations Language and Tools

QVT-R is the relational language which forms part of the OMG’s Queries, Views
and Transformations standard [28]. A single text describes the consistency re-
lation and also the transformations in both directions. [30] discusses the use of
the language for bidirectional transformations, pointing out in particular that
there is some ambiguity about whether the language is supposed to be able to
describe transformations which are not bijective.

Despite the heavy emphasis placed on model transformation by the OMG’s
model-driven development strategy, and the clear importance of bidirectionality
to users, tool support for bidirectional transformations expressed in QVT-R
remains limited. However, IKV++’s Medini QVT2 incorporates an open-source
2 http://projects.ikv.de/qvt, last accessed March 13th 2008.

http://projects.ikv.de/qvt

416 P. Stevens

QVT-R engine; TCS’s ModelMorf tool3 is also available, but is still in “pre
beta” release, with no clear sign of a forthcoming true release. QVT-R is not yet
supported in the Eclipse M2M project, though such support is planned.

5 Approaches Using MOF but Outside QVT

ATL, the ATLAS Transformation Language, is a widely used transformation
language often described as “QVT-like”, which has good tool support. (The
term ATL gets used both for the entire architecture and for the middle abstrac-
tion layer.). It is a hybrid language, encouraging declarative programming of
transformations but with imperative features available. Its most abstract layer,
the ATLAS Model Weaving language (AMW) [10] 4 allows the specification of
a consistency relation between sets of models, which as we have discussed is
an important aspect of bidirectional transformations. AMW does not, however,
provide general capabilities for the programmer to choose how inconsistencies
should be resolved; in ATL, a bidirectional transformation must be written as a
pair of unidirectional transformations [17]. In passing, let us remark that while
[10] distinguishes model weaving from model transformation, the terminological
distinction of that paper does not seem to be in widespread use: both concepts,
as described there, are within “model transformation” as covered in this paper,
and in fact the term “model weaving” is used in other senses by other authors.

MOFLON [1] provides, among other things, the ability to specify transforma-
tions using triple graph grammars (discussed below).

BOTL [5], the Basic (or elsewhere, Bi-directional) object-oriented transforma-
tion language, builds from first principles a relational approach to transformation
of models conforming to metamodels in a simple sublanguage of MOF. Although
it discusses the point that relations may not be bijective, when considering trans-
formations it only addresses bijective relations: the language does not provide
the means to specify how consistency should be restored if there is a choice.

6 XML-Based Options

A number of approaches to bidirectional transformations between XML docu-
ments (or between an XML document and another kind of model) have arisen in
the programming languages community: programming languages, possibly with
sophisticated type systems, have been developed for writing single programs
which can be read as forward or as backward transformations. Unlike the graph
transformation approach, a program is conceived as a whole, with a defined order
of execution and some degree of statically checkable correctness.

Of these, biXid [18] is the most similar to QVT-R and graph grammar work, as
it adopts a relational approach to bidirectional transformations between pairs of

3 See http://www.tcs-trddc.com/ModelMorf/index.htm, last accessed March 13th
2008.

4 See also http://www.eclipse.org/gmt/amw/, last accessed March 13th 2008.

A Landscape of Bidirectional Model Transformations 417

XML languages. It allows non-bijective relations (ambiguity, in the terminology
of the paper) and discusses the implications of this for the transformation engine;
however, a consistent model is chosen non-deterministically from among the
possibilities. There is deliberately no way for the programmer to specify how
consistency should be restored when there is a choice. This makes sense in the
context addressed, which is where different formats for the same information
must be synchronised: the non-bijectivity is expected to come from the existence
of different but semantically equivalent orderings of the same information, not
from the presence of different information which must be retained. It also makes
a point of the design decision that a variable on one side of a relational rule
may occur several times on the other side (non-linearity), which is important for
permitting the restructuring of information.

The Harmony project [3,12] defines a language called Boomerang (building on
earlier work on a language called Focal) in which bidirectional programs – termed
lenses – are built up from a deliberately limited set of primitive lenses and combi-
nators. Compositionality is thus a major concern of the approach, in contrast to
the relational approaches. Transformations are always between a “concrete” set
of models and a strict abstraction of this, the “abstract” set of models which con-
tains strictly less information: hence, there is an explicit notion of consistency in
which two models are consistent exactly when one is an abstraction of the other.
The transformationprogrammer has control of how consistency should be restored
where there is a choice (which only happens when the abstract model has been
modified and the concrete model needs to be changed).

Hu, Mu and Takeichi [16,25,26] define a language called Inv, a language de-
fined in “point free” style (that is, without variable names: this has obvious
advantages for bidirectional languages, as also argued by [27], but can be a
readability barrier) in which only injective functions can be defined. In order
to capture useful behaviour, the codomain is enriched with a history part, thus
making an arbitrary function injective. In model transformation terms, this ap-
proach modifies the metamodel in order to be able to define transformations.
The language is targeted at the authors’ Programmable Structured Document
project: [16] develops an editor for structured documents, in which the user edits
a view of a full document, and these edits induce edits on the transformation
between the full document and the view. This is different from the more usual
bidirectional transformation scenario in which the two models are disconnected
while they are being edited: that is, the work assumes a shared tool, although
note that it does not assume that the transformation is automatically applied.
A view in this sense may duplicate information, retaining dependencies between
the copies – the transformation may be non-linear – but it is still the case that a
document uniquely determines a view, that is, the transformation is surjective.

XRound [6] is a template-based language for bidirectional transformations.
Template-based transformation languages have been widely used for unidirec-
tional transformations such as code generation from models. In that application,
the transformation gives a boiler-plate piece of code containing metavariables.
The metavariables are replaced by values obtained by interrogating the input

418 P. Stevens

model, to give the output code. The novelty in XRound is to use a similar
technique bidirectionally by using unification between variables of the target
application (e.g., from the output code) and the results of queries on the in-
put model. Thus XRound provides a bidirectional, but asymmetric, language of
transformations particularly adapted to cases where an XML document must be
synchronised with a simpler structure associated with another tool. The original
application was security analysis of models presented as XMI files.

Finally, XSugar [4], which, being aimed at transforming between two syntaxes
for the same language, naturally insists that transformations should be bijective.

It is tempting to think that the work on transformations of XML documents
should be immediately applicable to models in MOF-based languages, since these
can be represented by XMI files. However, there are significant obstacles not yet
overcome. Although XML files represent trees, models typically make essential
use of xmiids or similar mechanisms to turn the trees into general graphs. None
of the existing XML transformation languages work well in this context ([16],
for example, explicitly forbids IDRef use, though it is not clear that it forbids
the use of other information for the same purpose.)

7 Graph Transformations

In the context of model transformations, almost all formal work on bidirectional
transformations is based on graph grammars, especially triple graph grammars
(TGGs) as introduced by Schürr (see, for example, [20]). Two graphs represent
the source and target models, and a third graph, the correspondence graph,
records information about the matches between nodes in the source and target.
Thus TGGs are an approach which relies on developers of the source and tar-
get model using a shared tool which can retain this information, or at least on
its being retained somehow, possibly by modification of one of the two meta-
models. Each rule has a top, or precondition, part which specifies when the
rule applies: that is, what triples consisting of a subgraph of each of the three
graphs should be examined. The bottom part of the rule then specifies con-
sistency by describing what else should be true of each of the three graphs in
such a case. The transformation programmer controls how consistency should
be restored by marking in the bottom part of the rule which nodes should be
created if no such node exists in its graph. Thus, it is possible to use TGGs
to specify bidirectional transformations with non-bijective consistency relations.
However, extending this to programming model transformations introduces new
issues, such as how to describe how to restore any consistency relations that are
specified between attributes that are not modelled as part of the graphs.

For a discussion of the use of TGGs for model transformation, see [14]. In-
deed, the definition of the QVT core language was clearly influenced by TGGs.
Greenyer and Kindler have given an informative comparison between QVT core
and triple graph grammars in [13]. In the process of developing a translation of
(a simplified version of) QVT core to a variant of TGGs that can be input into a
TGG tool, they point out close similarities between the formalisms and discuss
some semantic issues relating to bidirectionality.

A Landscape of Bidirectional Model Transformations 419

The main tool support for TGGs is FUJABA 5, which provided the founda-
tion for MOFLON mentioned above. FUJABA (like other tools) provides the
means for rules to be given different priorities in order to resolve conflicts where
more than one rule applies. This can improve the performance of a transforma-
tion engine, but it can also be another means for the programmer to specify
how consistency is restored when there is a choice. Anecdotally, it can be hard
to understand the implications of choices expressed in this way and hence to
maintain the transformation.

More broadly, the field of model transformations using graph transformation is
very active, with several groups working and tools implemented. We mention in
particular [21,31]. Most recently, the paper [9] by Ehrig et al. addresses questions
about the circumstances in which a set of TGG rules can indeed be used for
forward and backward transformations which are information preserving in a
certain technical sense.

7.1 Miscellaneous

Meertens [23] writes about bidirectional transformations – “constraint maintain-
ers” – in a very basic and general setting of sets and relations. His maintainers
are given as three components, a relation and a transformation in each direc-
tion. He discusses the conditions which relate them, with particular concern for
minimising the “edit distance” involved in restoring consistency.

Finally, [7] is unusual in exploring the effects of using interactivity of a tool
to loosen the constraints imposed by the metamodels. If a target model is gen-
erated from a source by a model transformation, and then manually modified,
possibly in such a way that it no longer conforms to the target metamodel, how
should consistency be restored between this modified target model and the orig-
inal source? The authors propose using Answer Set Programming to produce a
set of possible source models which, on application of the original forward trans-
formation, give target models close to the manually modified one. The user then
chooses from among these “approximations”.

8 Research Directions

At the time of writing, autumn 2007, there is still a wide gap between the vision
of model transformations as first-class artefacts in the software engineering of
systems, and the reality of the techniques and tools available. In this relatively
immature field there is obviously a need for further work in many directions. In
this section, we focus on some areas which seem to have been relatively under
studied, but which will be important in practice.

8.1 Compositionality

To get beyond toy examples, we need clean mechanisms to compose model trans-
formations in (at least) two senses. We need good semantic understanding of the
5 http://www.fujaba.de, last accessed March 13th 2008.

http://www.fujaba.de

420 P. Stevens

consequences of composing transformations, and also good engineering under-
standing and tool support to make it practical to do so, even when the trans-
formations originate from different groups. Both of these senses sound fairly
unproblematic, but in fact, problems can arise: see [30] for more discussion.

Spatial composition. If two systems are composed of parts (such as components
or subsystems) which themselves can be acted on by model transformations, we
will need to be able to compose those part transformations to give a transfor-
mation of the whole systems. We will need to be able to understand the effect
of the composed transformation by understanding the parts. Ideally, this would
apply even if the system parts were not themselves encapsulated parts of the
systems: for example, given transformations of aspects of systems, we would like
to be able to construct transformations of the woven systems.

Sequential composition. Given unidirectional transformations f : A −→ B and
g : B −→ C, we can obviously compose them to yield gf : A −→ C. This extends
to bidirectional transformations if they are bijective. In the general case, however,
composition does not work because of the need to “guess” matching elements in
the elided middle model space. Part of the attraction of allowing bidirectional
transformations to relate models to their strict abstractions is that it permits a
reasonable notion of composition: see [30], and also [23] for discussion.

8.2 Specification

Specifications of programs are (ideally) useful in a variety of ways. Because they
focus on what the program must do, not how, they can be written before the
program, and can guide the programmer in writing the program that is required.
Depending on the kind of specification, we may be able to verify the program
against the specification, and/or we may be able to check at runtime than the
specification is not violated by a particular run of the program. If we do find
a discrepancy between the specification and the program, this may as easily
indicate a defect in the specification as in the program; but either way, under-
standing is improved. The specification can also be used by potential reusers of
the program, and for various other purposes. The most useful specifications are
precise, but simpler and easier to understand than the program they specify.

What kinds of specification of model transformations may prove useful? How
can we write specifications of model transformations which are simpler than the
transformations themselves? One pragmatic approach would be to have a precise
formal specification of the intended consistency relation, together with natural
language description of how to choose between several consistent models.

8.3 Verification, Validation and Testing

To date, most work on verification or validation of model transformations turns
out to be concerned not with verification or validation in the usual software en-
gineering sense, of ensuring that the transformation conforms to its specification

A Landscape of Bidirectional Model Transformations 421

and correctly expresses the user’s requirements, but in the special sense of mak-
ing sure that the transformation is sane. For example, [22] focuses on ensuring
that a graph transformation is terminating and confluent; that is, well-defined.
This is obviously crucial, but after this is achieved, we still have to address the
“are we building the right transformation?” sense of validation and the “are we
building the transformation right?” sense of verification.

To validate, or to test, an ordinary function, we will normally run it on various
inputs. A difficulty in importing this to model transformations is the relative
difficulty of constructing or finding suitable input models, which will tend to limit
the amount of testing or validation done. Model transformations are expected
to be written in a wide range of business contexts. If the model transformation
itself is regarded as a product having value, it may be seen as legitimate to invest
effort in validating it. If, however, a model transformation is developed for use
within a single organisation, perhaps initially on a small range of models, this
less likely. Compounding this problem is the complexity of the models to which
transformations are likely to be applied, and the difficulty of telling at a glance
when a transformation is erroneous.

Given a precise specification of a model transformation, and the definition of
the transformation in a semantically well-defined form, we may expect to be able
to apply the body of work on formal verification of programs, and perhaps more
usefully of concurrent systems. This brief statement, though, doubtless hides a
need for hundreds of papers to work out the details.

In the field of testing, too, we will have to answer again a host of theoretical and
engineering questions. How can test suites be generated (semi-)automatically?
What are appropriate coverage criteria, and can they be automatically checked?
Can mutation testing be helpful? etc.

8.4 Debugging

Once a test or a verification fails, the model transformation must be debugged:
that is, the user must be helped to localise, understand and fix the problem.
This may be done “live”, in the tool that is applying the transformation, or
“forensically”, based on records of the transformation. In the latter field, [15] is
interesting early work, done in the context of Tefkat transformations with link
(traceability) information available. Much more remains to be done, however. We
may note that even the debugging facilities available for models themselves are
not yet very sophisticated, compared with what is routinely used for programs.

8.5 Maintenance

To date, we lack serious experience of what issues may arise in the maintenance
of model transformations. Experience with maintenance of other software arte-
facts suggests that easily usable specifications will be useful, but that they will,
in any case, get out of date; that readability of the representation will be cru-
cial; and that a notion of refactorings of model transformations will be needed
to prevent architectural degradation of large transformations. We may expect in

422 P. Stevens

the long run to have to define model transformation languages with clear mod-
ularity permitting well-defined interfaces that can hide information; this returns
us to the issue of compositionality. What the relationship should be between
modularity of models and modularity of model transformations also remains to
be seen. A concrete fear is that pattern-based identification of areas of a model
where a transformation is relevant may possibly turn out to be particularly frag-
ile. [19] describes interesting early work in this field, focusing on structuring and
packaging bidirectional model transformations, specifically TGGs.

8.6 Tolerating Inconsistency

Anyone using bidirectional transformations asks: to what extent can inconsis-
tency be tolerated? If not at all, then we need frameworks in which edits are
applied simultaneously to both models, even though the user doing the editing
sees only part of the effect of their edit. In most of the work we have discussed,
the assumption is that inconsistency can be tolerated temporarily – it is ac-
ceptable for one, or even both, models to be edited independently – but that
consistency must eventually be restored by the application of a model transfor-
mation. The other end of the spectrum is to accept that the two models will be
inconsistent and work on pragmatic means to tolerate the inconsistency. But is
this different from using a different, weaker notion of consistency? The body of
work exploring this territory includes for example [11]: it might prove fruitful to
explore applications to model driven development.

9 Conclusions

We have surveyed the field of bidirectional model transformations, as it appears
at the beginning of 2008. We have pointed out some of the assumptions between
which the developers of model transformation approaches must choose, and we
have discussed some of the main existing tools. Finally, we have pointed out
some areas where further work is needed.

What general conclusion can we draw about the future of bidirectional model
transformations? Do they, indeed, have a long-term future, or will the languages
developed for writing them die without being replaced? This paper has pointed
out a number of areas – support for interactivity, for debugging, for verification,
validation and testing, for maintenance, among others – that are only begin-
ning to be addressed. In the author’s opinion, realisation of the full potential of
bidirectional transformations depends on progress in these areas.

Acknowledgements. The author would like to thank the anonymous reviewers
for their comments, and Joel Greenyer, Reiko Heckel, Conrad Hughes, Gabriele
Taentzer and especially Benjamin Pierce for helpful discussions. Any errors are
the author’s own.

A Landscape of Bidirectional Model Transformations 423

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066. pp. 361–375. Springer,
Heidelberg (2006)

2. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006)

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, California (January
2008)

4. Brabrand, C., Møller, A., Schwartzbach, M.I.: Dual syntax for XML languages. In:
Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774. Springer, Heidelberg
(2005)

5. Braun, P., Marschall, F.: Transforming object oriented models with botl. Electronic
Notes in Theoretical Computer Science, 72(3) (2003)

6. Chivers, H., Paige, R.F.: Xround: Bidirectional transformations and unifications
via a reversible template language. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 205–219. Springer, Heidelberg (2005)

7. Cicchetti, A., Di Ruscio, D., Eramo, R.: Towards propagation of changes by model
approximations. In: Proceedings of the Tenth IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2006), p. 24. IEEE Computer So-
ciety, Los Alamitos (2006)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, special issue on Model-Driven Software Devel-
opment 45(3), 621–645 (2006)

9. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

10. Del Fabro, M.D., Jouault, F.: Model transformation and weaving in the AMMA
platform. In: Proceedings of GTTSE 2005 (2006)

11. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency
handling in multi-perspective specifications. Transactions on Software Engineer-
ing 20(8), 569–578 (1994)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

13. Greenyer, J., Kindler, E.: Reconciling TGGs with QVT. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 16–30.
Springer, Heidelberg (2007)

14. Grunske, L., Geiger, L., Lawley, M.: A graphical specification of model transforma-
tions with triple graph grammars. In: proceedings of 2nd European Conference on
Model Driven Architecture - Foundations and Applications (ECMDA-FA) (Novem-
ber 2005)

15. Hibberd, M., Lawley, M., Raymond, K.: Forensic debugging of model transforma-
tions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007.
LNCS, vol. 4735, pp. 589–604. Springer, Heidelberg (2007)

424 P. Stevens

16. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: Proceedings of the 2004
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation (PEPM 2004), pp. 178–189 (2004)

17. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

18. Kawanaka, S., Hosoya, H.: biXid: a bidirectional transformation language for XML.
In: Proceedings of the International Conference on Functional Programming, ICFP
2006, pp. 201–214 (2006)

19. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: Proceedings
of the 6th joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, pp. 285–294. ACM, New York
(2007)

20. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
In: Heckel, R. (ed.) Proceedings of the SegraVis School on Foundations of Visual
Modelling Techniques. Electronic Notes in Theoretical Computer Science, vol. 148,
pp. 113–150. Elsevier Science Publ., Amsterdam (2006)

21. Königs, A.: Model transformation with triple graph grammars. In: Proceedings of
the Workshop on Model Transformations in Practice, at MODELS 2005 (Septem-
ber 2005)

22. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling (SoSyM) 5(3), 233–259 (2006)

23. Lambert Meertens. Designing constraint maintainers for user interaction. Unpub-
lished manuscript (June 1998),
http://www.kestrel.edu/home/people/meertens/

24. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electr. Notes Theor.
Comput. Sci. 152, 125–142 (2006)

25. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004)

26. Mu, S.-C., Hu, Z., Takeichi, M.: An injective language for reversible computation.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 289–313. Springer, Heidelberg
(2004)

27. Oliveira, J.N.: Data transformation by calculation. In: Informal GTTSE 2007 Pro-
ceedings, pp. 139–198 (July 2007)

28. OMG. MOF2.0 query/view/transformation (QVT) adopted specification. OMG
document ptc/05-11-01 (2005), www.omg.org

29. Sendall, S., Küster, J.M.: Taming model round-trip engineering. In: Proceedings of
Workshop on Best Practices for Model-Driven Software Development, Vancouver,
Canada (2004)

30. Stevens, P.: Bidirectional model transformations in qvt: Semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007)

31. Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovsky, T.,
Prange, U., Varro, D., Varro-Gyapay, S.: Model transformation by graph transfor-
mation: A comparative study. In: Proceedings of the Workshop on Model Trans-
formations in Practice, at MODELS 2005 (September 2005)

32. Witkop, S.: MDA users’ requirements for QVT transformations. OMG document
05-02-04 (2005), www.omg.org

http://www.kestrel.edu/home/people/meertens/
www.omg.org
www.omg.org

Evolving a DSL Implementation

Laurence Tratt

Bournemouth University, Poole, Dorset, BH12 5BB, United Kingdom
laurie@tratt.net, http://tratt.net/laurie/

Abstract. Domain Specific Languages (DSLs) are small languages de-
signed for use in a specific domain. DSLs typically evolve quite radically
throughout their lifetime, but current DSL implementation approaches
are often clumsy in the face of such evolution. In this paper I present a
case study of an DSL evolving in its syntax, semantics, and robustness,
implemented in the Converge language. This shows how real-world DSL
implementations can evolve along with changing requirements.

1 Introduction

Developing complex software in a General Purpose Language (GPL) often leads
to situations where problems are not naturally expressible within the chosen
GPL. This forces users to find a workaround, and encode their solution in as
practical a fashion as they are able. Whilst such workarounds and encodings are
often trivial, they can be exceedingly complex. DSLs aim to tackle the lack of
expressivity in GPLS by allowing users to use mini-languages defined for specific
problem areas. [1] define DSLs as ‘languages tailored to a specific application do-
main. They offer substantial gains in expressiveness and ease of use compared
with GPLs in their domain of application’. [2] describes the typical costs of a
DSL, noting that a small extra initial investment in a DSL implementation typ-
ically leads to long term savings, in comparison to alternative routes. Exactly
what identifies a particular language as being a ‘DSL’ is subjective, but intu-
itively I define it as a language with its own syntax and semantics, and which is
smaller and less generic than a typical GPL such as Java.

Traditionally DSLs – for example the UNIX make program or the yacc parsing
system – have been implemented as stand alone systems. The resulting high
implementation costs, primarily due to the difficulties of practical reuse, have
hindered the development of DSLs. Implementing DSLs as stand alone systems
also leads to problems when DSLs evolve. DSLs tend to start out as small,
declarative languages [3], but most tend to acquire new features as they are
used in practise; such features tend to be directly borrowed from GPLs [2]. So
while DSL implementations tend over time to resemble programming language
implementations, they frequently lack the quality one might expect in such a
system due to the unplanned nature of this evolution.

Recently, dedicated DSL implementation approaches such as Stratego [4], the
commercial XMF [5], Converge [6], and others (e.g. [7,8,9]) have substantially
reduced implementation costs through the embedding of DSLs in host languages.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 425–441, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

426 L. Tratt

As noted in [2,3], DSLs tend to start small but grow rapidly when users find
them useful, and desire more power. Specifically, such evolution often takes the
form of functionality influenced by that found in GPLs. Continual evolution
of DSL implementations is often difficult because such evolution is generally
both unplanned and unanticipated, and therefore leads to the implementation
becoming increasingly difficult to maintain [2]. In this paper I present a case
study of a DSL for state machines implemented within Converge. I then show
how this example can be easily evolved to a substantially more powerful version
without compromising the quality of the implementation, and indeed improving
the user experience. The evolution in this paper is intended to show typical
unplanned evolution, where an implementation is gradually edited to reflect new
and changing requirements.

This paper is structured as follows. First I present a brief overview of Con-
verge, and its DSL related features (section 2). I then outline the case study and
present an initial implementation (section 3) before extending its functionality
(section 4) and increasing its robustness (section 5).

2 Converge

This section gives a brief overview of basic Converge features that are relevant to
the main subject of this paper. Whilst this is not a replacement for the language
manual [10], it should allow readers familiar with a few other programming lan-
guages the opportunity to quickly come to grips with the most important areas
of Converge, and to determine the areas where it differs from other languages.

2.1 Fundamental Features

Converge’s most obvious ancestor is Python [11] resulting in an indentation based
syntax, a similar range and style of datatypes, and general sense of aesthetics.
The most obvious initial difference is that Converge is a slightly more static
language: all namespaces (e.g. a modules’ classes and functions, and all variable
references) are determined statically at compile-time. Converge’s scoping rules
are different from many other languages, and are intentionally very simple. Es-
sentially Converge’s functions are synonymous with both closures and blocks.
Converge is lexically scoped, and there is only one type of scope. Variables do
not need to be declared before their use: assigning to a variable anywhere in a
block makes that variable local throughout the block, and accessible to inner
blocks. Variable references search in order from the innermost block outwards,
ultimately resulting in a compile-time error if a suitable reference is not found.
Fields within a class are not accessible via the default scoping mechanism: they
must be referenced via the self variable which is the first argument in any bound
function (functions declared within a class are automatically bound functions).
The overall justification for these rules is to ensure that, unlike similar languages
such as Python, Converge’s namespaces are entirely statically calculable.

Evolving a DSL Implementation 427

Converge programs are split into modules, which contain a series of definitions
(imports, functions, classes and variable definitions). Each module is individually
compiled into a bytecode file, which can be linked to other files to produce an
executable which can be run by the Converge VM. If a module is the main mod-
ule of a program (i.e. passed first to the linker), Converge calls its main function
to start execution. The following module shows a caching Fibonacci generat-
ing class, and indirectly shows Converge’s scoping rules (the i and fib cache
variables are local to the functions they are contained within), printing 8 when
run:

import Sys

class Fib_Cache:
func init():

self.cache := [0, 1]

func fib(x):
i := self.cache.len()
while i <= x:
self.cache.append(self.cache[i - 2] + self.cache[i - 1])
i += 1

return self.cache[x]

func main():
fib_cache := Fib_Cache.new()
Sys::println(fib_cache.fib(6))

2.2 Compile-Time Meta-programming

For the purposes of this paper, compile-time meta-programming can be largely
thought of as being equivalent to macros; more precisely, it allows the user of a
programming language a mechanism to interact with the compiler to allow the
construction of arbitrary program fragments by user code. Compile-time meta-
programming allows users to e.g. add new features to a language [7] or apply ap-
plication specific optimizations [9]. Converge’s compile-time meta-programming
facilities were inspired by those found in Template Haskell (TH) [12], and are
detailed in depth in [6]. In essence Converge provides a mechanism to allow its
concrete syntax to naturally create Abstract Syntax Trees (ASTs), which can
then be spliced into a source file.

The following program is a simple example of compile-time meta-programming,
trivially adopted from its TH cousin in [8]. expand power recursively creates an
expression that multiplies x n times; mk power takes a parameter n and creates
a function that takes a single argument x and calculates xn; power3 is a specific
power function which calculates n3:

func expand_power(n, x):
if n == 0:

return [| 1 |]
else:

return [| ${x} * ${expand_power(n - 1, x)} |]

428 L. Tratt

func mk_power(n):
return [|

func (x):
return ${expand_power(n, [| x |])}

|]

power3 := $<mk_power(3)>

The user interface to compile-time meta-programming is inherited directly
from TH. Quasi-quoted expressions [| ... |] build ASTs that represent the
program code contained within them whilst ensuring that variable references
respect Converge’s lexical scoping rules. Splice annotations $<...> evaluate the
expression within at compile-time (and before VM instruction generation), re-
placing the splice annotation itself with the AST resulting from its evaluation.
This is achieved by creating a temporary module containing the splice expression
in a function, compiling the temporary module into bytecode, injecting it into
the running VM, and then evaluating the function therein. Insertions ${...}
are used within quasi-quotes; they evaluate the expression within and copy the
resulting AST into the AST being generated by the quasi-quote.

When the above example has been compiled into VM instructions, power3
essentially looks as follows:

power3 := func (x):
return x * x * x * 1

2.3 DSL Blocks

A DSL can be embedded into a Converge source file via a DSL block. Such a
block is introduced by a variant on the splice syntax $<<expr>> where expr

should evaluate to a function (the DSL implementation function). The DSL
implementation function is called at compile-time with a string representing the
DSL block, and is expected to return an AST which will replace the DSL block
in the same way as a normal splice: compile-time meta-programming is thus the
mechanism which facilitates embedding DSLs. Colloquially one uses the DSL
implementation function to talk about the DSL block as being ‘an expr block’.
DSL blocks make use of Converge’s indentation based syntax; when the level of
indentation falls, the DSL block is finished.

An example DSL block for a railway timetable DSL is as follows:

func timetable(dsl_block, src_infos):
...

$<<timetable>>:
8:25 Exeter St. Davids
10:20 Salisbury
11:49 London Waterloo

As shall be seen later, DSL blocks have several useful features, particularly re-
lating to high quality error reporting. Although in this paper I only discuss DSL
blocks, Converge also supports DSL phrases which are essentially intra-line DSL
inputs, suitable for smaller DSLs such as SQL queries.

Evolving a DSL Implementation 429

3 Initial Case Study

The example used in this paper is that of a generic state machine. Although state
machines are often represented graphically, they are easily represented textually.
I start with a particularly simple variant of state machines which represents the
basics: states and transitions with events. For example, Figure 1 shows a state
machine which we wish to represent textually so that we can have a running
state machine we can fire events at and examine its behaviour. In the rest of this
section, I show the complete definition of a simple textual state machine DSL.

Fig. 1. Simple state machine of a door

3.1 DSL Grammar

Since we use DSL blocks within Converge, much of the potential difficulty with
embedding a DSL is automatically taken care of. The first action of a DSL author
is therefore to define a grammar his DSL must conform to. Converge allows DSL
authors to parse the text of a DSL block in any way they choose. However most
DSLs can be defined in a way which allows them to make use of Converge’s
flexible tokenizer (sometimes called a lexer), and its built-in Earley parser. This
allows the implementation work for a DSL to be minimised as Earley parsing
can deal with any context free grammar, without the restrictions common to
most parsing approaches [13]. Expressing a suitable grammar for simple state
machines is thus simple:

parse := $<<DSL::mk_parser("system", ["state", "transition", "and", \
"or", "from", "to"], [])>>:

system ::= element ("NEWLINE" element)*
element ::= state

| transition
state ::= "STATE" "ID"
transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event
event ::= ":" "ID"

|

As this code fragment suggests, grammars are themselves a DSL in Converge.
The above example creates a parser which uses Converges default tokenizer,
adds new keywords (state, transition etc.) and using a specified top-level
rule system.

430 L. Tratt

3.2 Creating a Parse Tree

The DSL implementation function is passed a DSL block string which it should
parse against the DSL’s grammar. Since DSL implementation functions tend to
follow the same form, Converge provides a convenience function CEI::dsl parse
which performs parsing in one single step. The state machine DSL implementa-
tion function and an example DSL block look as follows:

func sm(dsl_block, src_infos):
parse_tree := CEI::dsl_parse(dsl_block, src_infos, ["state", \
"transition", "and", "or", "from", "to"], [], GRAMMAR, "system")

return SM_Translator.new().generate(parse_tree)

Door := $<<sm>>:
state Opened
state Closed

transition from Opened to Closed: close
transition from Closed to Opened: open

The CEI (Compiler External Interface) dsl parse convenience function takes
a DSL block, a list of src infos, a list of extra keywords above and beyond
Converge’s standard keywords, a list of extra symbols, a grammar, and the
name of the grammar’s start rule. It returns a parse tree (that is, a tree still
containing tokens). Parse trees are Converge lists, with the first element in the
list representing the production name, and the resulting elements being either
tokens or lists representing the production. Tokens have two slots of particular
interest: type contains the tokens type (e.g. ID); value contains the particular
value of the token (e.g. foo). A subset of the parse tree for the above DSL block
is as follows:

["system", ["element", ["state", <STATE state>, <ID Opened>]],
<NEWLINE>, ["element", ["state", <STATE state>, <ID Closed>]], ...]

3.3 Translating the Parse Tree to an AST

The second, final, and most complex action a DSL author must take is to trans-
late the parse tree into a Converge AST, using quasi-quotes and so on. Con-
verge provides a simple framework for this translation, where a translation class
(SM Translator in the above DSL implementation function) contains a function
t production name for each production in the grammar. For the simple state
machine DSL, we wish to translate the parse tree into an anonymous class which
can be instantiated to produce a running state machine, which can then receive
and act upon events. The starting state is taken to be the first state in the
DSL block. Transitions may have an event attached to them or not; if they have
no event, they are unconditionally, and non-deterministically, taken. A slightly
elided version of the translation is as follows:

Evolving a DSL Implementation 431

1 class SM Translator(Traverser::Strict Traverser):
2 func t system(self, node):
3 sts := [all translated states]

4 tns := [all translated transitions]
5

6 return [|
7 class:
8 states := ${CEI::ilist(sts)}
9 transitions := ${CEI::ilist(tns)}

10

11 func init(self):
12 self.state := ${sts[0]}
13 while self.transition("")
14

15 func event(self, e):
16 if not self.transition(e):
17 raise Exceptions::User Exception.new(Strings::format(\
18 "Error: No valid transition from state."))
19 while self.transition("")
20

21 func transition(self, e):
22 for tn := self.transitions.iter():
23 if tn.from == self.state & tn.event == e:
24 Sys::println("Event ", e, \
25 " causes transition to state ", tn.to)
26 self.state := tn.to
27 break
28 exhausted:
29 return fail
30 |]
31

32 func t element(self, node):
33 return self. preorder(node[1])
34

35 func t state(self, node):
36 // state ::= "STATE" "ID"
37 return CEI::istring(node[2].value)
38

39 func t transition(self, node):
40 // transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event
41 return [| Transition.new(${CEI::istring(node[3].value)}, \
42 ${CEI::istring(node[5].value)}, ${self. preorder(node[-1])}) |]
43

44 func t event(self, node):
45 // event ::= ":" "ID"
46 // |
47 if node.len() == 1:
48 return [| "" |]
49 else:
50 return CEI::istring(node[2].value)
51

52 class Transition:
53 func init(self, from, to, event):
54 self.from := from
55 self.to := to
56 self.event := event

432 L. Tratt

At a high level, this translation is relatively simple: states are transformed
into strings; transitions are transformed into instantiations of the Transition
class. The resulting anonymous class thus knows the valid states and transitions
of the state machine, and given an event can transition to the correct state,
or report errors. Certain low-level details require more explanation. The calls to
self. preorder reference a method which, given a node in a parse tree, calls the
appropriate t function. The CEI module defines functions for every Converge
AST type allowing them to be created manually when quasi-quotes do not suffice.
For example a call such as CEI::istring("foo") (e.g. lines 37) returns an AST
string whose content is ‘foo’. The reference to the Transition class in line 41
is possible since quasi-quotes can refer to top-level module definitions, as these
inherently cross compile-time staging boundaries.

3.4 Using the DSL

Given the complete, if simplistic, definition of state machine DSL we now have,
it is possible to instantiate a state machine and fire test events at it:

door := Door.new()
door.event("close")
door.event("open")

which results in the following output:
Event close causes transition to state Closed
Event open causes transition to state Opened

As this section has shown, we have been able to create a functioning DSL with its
own syntax, whose complete definition is less than 75 lines of code. I assert that
a corresponding implementation of this DSL as a stand-alone application would
be considerably larger than this, having to deal with external parsing systems,
IO, error messages and other boiler-plate aspects which are largely invisible in
the Converge DSL implementation approach.

4 Extending the Case Study

As noted in [2,3], DSLs tend to start small but grow rapidly when users find them
useful, and desire more power. In a traditional stand alone implementation, such
changes might be difficult to integrate. In this section I show how we can easily
extend the Converge DSL implementation.

4.1 An Extended State Machine

As an example of a more complex type of state machine, we define a state
machine of a vending machine which dispenses drinks and sweets:

drinks := 10
sweets := 20

state Waiting
state Vend_Drink
state Vend_Sweet
state Empty

Evolving a DSL Implementation 433

transition from Waiting to Vend_Drink: Vend_Drink \
[drinks > 0] / drinks := drinks - 1
transition from Vend_Drink to Waiting: Vended [drinks > 0 or sweets > 0]

transition from Waiting to Vend_Sweet: Vend_Sweet \
[sweets > 0] / sweets := sweets - 1
transition from Vend_Sweet to Waiting: Vended [sweets > 0 or drinks > 0]

transition from Vend_Sweet to Empty: Vended [drinks == 0 and sweets == 0]
transition from Vend_Drink to Empty: Vended [drinks == 0 and sweets == 0]

This state machine makes use of variables, guards, and actions. Variables can
hold integers or strings, and must be assigned an initial value. Guards such as
[drinks > 0] are additional constraints to events; they must hold in order for a
transition to be taken. Actions such as sweets := sweets - 1 are executed once a
transitions constraints have been evaluated and the transition has been taken.

4.2 Extending the Grammar

As before, the DSL author’s first action is to define – or in this case, to extend
– the grammar of his DSL. An elided extension to the previous grammar is as
follows:

element ::= state
| transition
| var_def

transition ::= "TRANSITION" "FROM" "ID" "TO" "ID" event guard action
var_def ::= "ID" ":=" const
guard ::= "[" B "]"

|
action ::= "/" C

::=
B ::= B "AND" B %precedence 5

| B "OR" B %precedence 5
| B "==" B %precedence 10
| B ">" B %precedence 10
| E

C ::= A (";" A)*
A ::= "ID" ":=" E

| E
E ::= E "+" E

| E "-" E
| var_lookup
| const

The %precedence markings signify to the Earley parser which of several al-
ternatives is to be preferred in the event of an ambiguous parse, with higher
precedence values having greater priority. Essentially the extended grammar im-
plements a syntax in a form familiar to many state machine users. Guards are
conditions or expressions; actions are sequences of assignments or expressions;
and expressions include standard operators.

434 L. Tratt

4.3 Extending the Translation

The first thing to note is that the vast majority of the translation of section
3.3 can be used unchanged in our evolved DSL. The anonymous state machine
class gains a vars slot which records all variable names and their current values,
and get var / set var functions to read and update vars. Transitions gain
guard and action slots which are functions. transition is then updated to call
these functions, passing the state machine to them, so that it can read and write
variables. The updated transition function is as follows:
func transition(self, e):

for tn := self.transitions.iter():
if tn.from == self.state & tn.event == e & tn.guard(self):

Sys::println("Event ", e, " causes transition to state ", tn.to)
self.state := tn.to
tn.action(self)
break

exhausted:
return fail

The remaining updates to the translation are purely to translate the new pro-
ductions in the grammar. The full translation is less than 200 lines of code, but in
the interests of brevity I show a representative subset; the translation of guards,
and the translation of variable lookups and constants.

1 func t guard(self, node):
2 // guard ::= "[" B "]"
3 // |
4 if node.len() == 1:
5 guard := [| 1 |]
6 else:
7 guard := self. preorder(node[2])
8 return [|
9 func (&sm):

10 return ${guard}
11 |]
12

13 func t B(self, node):
14 // B ::= B "AND" B
15 // | B "OR" B
16 // | B "==" B
17 // | B ">" B
18 // | E
19 if node.len() == 4:
20 lhs := self. preorder(node[1])
21 rhs := self. preorder(node[3])
22 ndif node[2].type == "AND":
23 return [| ${lhs} & ${rhs} |]
24 elif node[2].type == "OR":
25 return [| ${lhs} | ${rhs} |]
26 elif node[2].type == "==":
27 return [| ${lhs} == ${rhs} |]
28 elif node[2].type == ">":
29 return [| ${lhs} > ${rhs} |]
30 else:
31 return self. preorder(node[1])
32

Evolving a DSL Implementation 435

33 func t const(self, node):
34 // const ::= "INT"
35 // | "STRING"
36 ndif node[1].type == "INT":
37 return CEI::iint(Builtins::Int.new(node[1].value))
38 elif node[1].type == "STRING":
39 return CEI::istring(node[1].value)
40

41 func t var lookup(self, node):
42 // var lookup ::= "ID"
43 return [| &sm.get var(${CEI::istring(node[1].value)}) |]

The majority of this translation is simple, and largely mechanical. Guards are
turned into functions (lines 8–11) which take a single argument (a state machine)
and return true or false. An empty guard always evaluates to 1 (line 5), which can
be read as ‘true’. The translation of guards (lines 20–29) is interesting, as it shows
that syntactically distinct DSLs often have a very simple translation into a Con-
vergeAST, as Converge’s expression language is unusually rich in expressive power
by imperative programming language standards (including features such as back-
tracking which we do not use in this paper). State machine constants (strings and
integers) are directly transformed into their Converge equivalents (lines 36–39).

4.4 Communication between AST Fragments

One subtle aspect of the translation deserves special explanation, which are
the two &sm variables (lines 43 and 9). These relate to the fact that the state
machine which is passed by the transition function to the generated guard
function (lines 8-11) needs to be used by the variable lookup translation (line
43). The effect we wish to achieve is that the translated guard function looks
approximately as follows:

func (sm):
return sm.get_var("x") < 1

By default, Converge’s quasi-quote scheme generates hygienic ASTs. The con-
cept of hygiene is defined in [14], and is most easily explained by example.
Consider the Converge functions f and g:

func f():
return [| x := 4 |]

func g():
x := 10
$<f()>
Sys::println(x)

The question to ask oneself is simple: when g is executed, what is printed to
screen? In older macro systems, the answer would be 4 since when, during com-
pilation, the AST from f was spliced into g, the assignment of x in f would
‘capture’ the x in g. This is a serious issue since it makes embeddings and macros
‘treacherous [, working] in all cases but one: when the user ... inadvertently picks
the wrong identifier name’ [14].

436 L. Tratt

Converge’s quasi-quote scheme therefore preemptively α-renames variables
to a fresh name – guaranteed by the compiler to be unique – thus ensuring
that unintended variable capture can not happen. While this is generally the
required behaviour, it can cause practical problems when one is building up an
AST in fragments, as we are doing in our state machine translation. In normal
programming, one of the most common way for local chunks of code to interact
is via variables; however, hygiene effectively means that variables are invisible
between different code chunks. Thus, by default, there is no easy way for the
variable passed to the generated guard function (lines 8-11) to be used by the
variable lookup translation (line 43).

The traditional meta-programming solution to this problem is to manually
generate a fresh name, which must then be manually passed to all translation
functions which need it. A sketch of a solution for Converge would be as follows:

func _t_guard(self, node):
// guard ::= "[" B "]"
// |
sm_var_name := CEI::fresh_name()
if node.len() == 1:

guard := [| 1 |]
else:

guard := self._preorder(node[2], sm_var_name)
return [|

func (${CEI::iparam(CEI::ivar(sm_var_name))}):
return ${guard}

|]

func _t_var_lookup(self, node, sm_var_name):
// var_lookup ::= "ID"
return [| ${CEI::ivar(sm_var_name)}.get_var(\
${CEI::istring(node[1].value)}) |]

This idiom, while common in other approaches, is intricate and verbose. Indeed,
the quantity and spread of the required boilerplate code can often overwhelm
the fundamentals of the translation.

Converge therefore provides a way to switch off hygiene in quasi-quotes; vari-
ables which are prefixed by & are not α-renamed. Thus the sm variable in line
43 dynamically captures the sm variable defined in line 9, neatly obtaining the
effect we desire. This is a very common translation idiom in Converge, and is
entirely safe in this translation1.

5 Evolving a Robust DSL

In the previous section, I showed how a Converge DSL can easily evolve in
expressive power. The DSL defined previously suffers in practice from one fun-
damental flaw. When used correctly, it works well; when used incorrectly, it is

1 Although I do not show it in this paper, translations which integrate arbitrary user
code can cause this idiom to become unsafe; Converge provides a relatively simple
work around for such cases.

Evolving a DSL Implementation 437

difficult to understand what went wrong. This is a common theme in DSLs: ini-
tial versions with limited functionality are used only by knowledgeable users; as
the DSLs grow in power, they are used by increasingly less knowledgeable users.
This has a dual impact: the more powerful the DSL it is, the more difficult it is
to interpret errors; and the less knowledgeable the user, the less their ability to
understand whether they caused the error, if so, how to fix it.

In this section, I show how Converge DSLs can easily add debugging support
which makes the use of complex DSLs practical.

5.1 DSL Errors

Returning to the vending machine example of section 4.1, let us change the
guard on the first transition from drinks > 0 to drinks > "foo". The vending
machine state machine is contained in a file ex.cv and the state machine DSL
definition in SM.cv. As we might expect, this change causes a run-time exception,
as Converge does not define a size comparison between integers and strings. The
inevitable run-time exception and traceback look as follows:

Traceback (most recent call at bottom):
1: File "ex2.cv", line 29, column 22
2: File "SM.cv", line 118, column 27
3: File "SM.cv", line 124, column 57
4: File "SM.cv", line 235, column 21
5: (internal), in Int.>

Type_Exception: Expected arg 2 to be conformant to Number but got
instance of String.

This traceback gives very little clue as to where in the DSL the error occurred.
Looking at line 235 of SM.cv merely pinpoints the t B translation function.
Since we know in this case that comparing the size of a number and a string is
invalid, we can rule out the translation itself being incorrect. The fundamental
problem then becomes that errors are not reported in terms of the users input.
Knowing that the error is related to an AST generated from the t B translation
function is of limited use as several of the vending machines guards also involve
the greater than comparison.

5.2 Src Infos

DSL implementation functions take two arguments: a string representing the
DSL block and a list of src infos. A src info is a (src path, char offset) pair
which records a relationship with a character offset in a source file. The Converge
tokenizer associates a src info with every token; the parse tree to AST conversion
carries over the relevant src infos; and the bytecode compiler associates every
bytecode instruction with the appropriate src infos. As this suggests, the src info
concept is used uniformly throughout the Converge parser, compiler, and VM.

From this papers perspective, an important aspect of src infos is that tokens,
AST elements, and bytecode instructions can be associated with more than one
src info. Converge provides a simple mechanism for augmenting the src infos
that quasi-quoted code is associated with. Quasi-quotes have an extended form

438 L. Tratt

[<e >| ... |] where e is an expression which must evaluate to a list of src
infos. As we shall see, a standard idiom is to read src infos straight from tokens
(via its src infos slot) into the extended quasi-quotes form.

5.3 Augmenting Quasi-quoted Code

Using the extended form of quasi-quotes, we can easily augment the translation
of section 4.3 to the following:

func _t_B(self, node):
// B ::= B "<" B
...
elif node[2].type == ">":

return [<node[2].src_infos>| ${lhs} > ${rhs} |]
...

In other words, we augment the quasi-quoted code with src infos directly relating
it to the specific location in the user’s DSL input where the size comparison was
made. When we re-compile and re-run the altered vending machine DSL, we get
the following backtrace:

Traceback (most recent call at bottom):
1: File "ex2.cv", line 29, column 22
2: File "SM.cv", line 118, column 27
3: File "SM.cv", line 124, column 57
4: File "SM.cv", line 235, column 21

File "ex2.cv", line 15, column 74
5: (internal), in Int.>

Type_Exception: Expected arg 2 to be conformant to Number but got
instance of String.

The way to read this is that the fourth entry in the backtrace is related to two
source locations: one is the quasi-quoted code itself (in SM.cv) and the other is
a location within the vending machine DSL (in ex2.cv). This allows the user to
pinpoint precisely where within their DSL input the error occurred, which will
then allow them – one hopes – to easily rectify it. This is a vital practical aid,
making DSL debugging feasible where it was previously extremely challenging.
Because of the extended form of quasi-quotes, augmenting a DSL translation
with code to record such information is generally a simple mechanical exercise.

5.4 Statically Detected Errors

Src infos are not only useful for aiding run-time errors. Converge also uses the
same concept to allow DSL implementations to report errors during the trans-
lation of the DSL. For example, as our state machine DSL requires the up-front
declaration of all variables to be used within it, we can easily detect references to
undefined variables. The CEI::error function takes an arbitrary error message,
and a list of src infos and reports an error to the user. Given that the translation
class defines a slot var names which is a set of known variables, we can then
alter the t var lookup function as follows:

Evolving a DSL Implementation 439

func _t_var_lookup(self, node):
// var_lookup ::= "ID"
if not self.var_names.find(node[1].value):
CEI::error(Strings::format("Unknown state-machine variable ’%s’.", \
node[1].value), node[1].src_infos)

return [<node[1].src_infos>| &sm.get_var(\
${CEI::istring(node[1].value)}) |]

When an unknown variable is encountered, an error message such as the following
is printed, and compilation halts:

Error: Line 53, column 66: Unknown state-machine variable ’amuont’.

6 Related Work

Several approaches have been suggested for DSL implementation. Hudak pre-
sented the notion of Domain Specific Embedded Languages (DSELs) [2] where
DSLs are implemented using a languages normal features. The advantage of this
approach is that it allows an otherwise entirely ignorant language to be used to
embed DSLs, and also allows DSLs to be relatively easily combined together.
The disadvantage is that the embedding is indirect, and limited to what can
be easily expressed using these pre-existing components. DSLs implemented in
Converge have considerably more syntactic flexibility.

TXL [15] and ASF+SDF are similar, generic source to source transformation
languages [16]. Both are are mature and efficient; TXL has been used to process
billions of lines of code [15]. Furthermore such approaches are inherently flexible
as they can be used with arbitrary source and target languages; unlike Converge,
they can embed DSLs into any host language. However this flexibility means that
they have little knowledge of the host language’s semantics beyond the simple
structure recorded in parse trees. This makes safe embeddings hard to create,
whereas Converge based systems can use the compilers inherent knowledge of
the host language to avoid such issues.

MetaBorg uses a combination of tools to allow language grammars to be
extended in an arbitrary fashion using a rule rewriting system [4]. Although
MetaBorg by default operates on parse trees in the same way as TXL, it comes
with standard support for representing some of the semantics of languages such
as Java. This allows transformation authors to write more sophisticated trans-
formations, and make some extra guarantees about the safety of their transfor-
mations. Although MetaBorg is in theory capable of defining any embedding, its
authors deliberately narrow their vision for MetaBorg to a ‘method for promoting
APIs to the language level.’ This is a sensible restriction since DSLs that result
from promoting a particular API to the language level will tend to shadow that
API; therefore instances of the DSL will generally translate fairly directly into
API calls which limits the potential for safety violations. In contrast, Converge
provides coarser-grained support for implementing larger DSLs.

Macro systems have long been used to implement DSLs. Lisp was the first
language with a macro system, and although its syntax is inherently flexible, it

440 L. Tratt

is not possible to change it in a completely arbitrary fashion as Converge allows
– Lisp DSLs are limited to what can be naturally expressed in Lisp’s syntax. Fur-
thermore whilst this mechanism has been used to express many DSLs, its tight
coupling to Lisp’s syntactic minimalism has largely prevented similar approaches
being applied to other, more modern programming languages [17]. Therefore de-
spite Lisp’s success in this area, for many years more modern systems struggled
to successfully integrate similar features [6]. More recently languages such as
Template Haskell [12] (which is effectively a refinement of the ideas in MetaML
[18]; see [6] for a more detailed comparison of these languages with Converge)
have shown how sophisticated compile-time meta-programming systems can be
implemented in a modern language. However such languages still share Lisp’s
inability to extend the languages syntax.

Nemerle uses its macro system to augment the compilers grammar as compi-
lation is in progress [19]. However only relatively simple, local additions to the
syntax are possible and the grammar extensions must be pre-defined; it is not
intended, or suitable, for implementing complex DSLs. In comparison to Ne-
merle, MetaLua allows more flexible additions to the grammar being compiled
but has no support for e.g. hygiene as in Converge, which makes implementing
large DSLs problematic [20].

7 Conclusions

In this paper, I showed a case study of a state machine DSL evolving in terms of
functionality and robustness. There are many other areas in which the DSL could
evolve, including showing how DSL code can naturally interact with ‘normal’
Converge code. However I hope this papers’ case study gives a clear indication
as to how a dedicated DSL implementation approach can make DSL evolution
– in whatever form it takes – practical.

I am grateful to the anonymous referees whose comments have helped to
improve this paper. Any remaining mistakes are my own.

This research was partly funded by Tata Consultancy Services.
Free implementations of Converge (under a MIT / BSD-style license) can

be found at http://convergepl.org/, and are capable of executing all of the
examples in this paper.

References

1. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. Technical report, Centrum voor Wiskundeen Informatica (December
2003)

2. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth
International Conference on Software Reuse, pp. 134–142 (June 1998)

3. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, vol. 35, pp. 26–36 (June 2000)

Evolving a DSL Implementation 441

4. Bravenboer, M., Visser, E.: Concrete syntax for objects. Domain-specific language
embedding and assimilation without restrictions. In: Schmidt, D.C. (ed.) Proc.
OOPSLA 2004, Vancouver, Canada. ACM SIGPLAN, New York (2004)

5. Clark, T., Evans, A., Sammut, P., Willans, J.: An executable metamodelling facility
for domain specific language design. In: Proc. 4th OOPSLA Workshop on Domain-
Specific Modeling (October 2004)

6. Tratt, L.: Compile-time meta-programming in a dynamically typed OO language.
In: Proceedings Dynamic Languages Symposium, pp. 49–64 (October 2005)

7. Sheard, T., el Abidine Benaissa, Z., Pasalic, E.: DSL implementation using staging
and monads. In: Proc. 2nd conference on Domain Specific Languages. SIGPLAN,
vol. 35, pp. 81–94. ACM, New York (1999)

8. Czarnecki, K., O’Donnell, J., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, Template Haskell, and C++. In: Lengauer, C., Batory, D., Consel,
C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp.
50–71. Springer, Heidelberg (2004)

9. Seefried, S., Chakravarty, M., Keller, G.: Optimising Embedded DSLs using Tem-
plate Haskell. In: Third International Conference on Generative Programming and
Component Engineering, Vancouver, Canada, pp. 186–205. Springer, Heidelberg
(2004)

10. Tratt, L.: Converge Reference Manual (July 2007),
http://www.convergepl.org/documentation/ (accessed August 16, 2007)

11. van Rossum, G.: Python 2.3 reference manual (2003),
http://www.python.org/doc/2.3/ref/ref.html (accessed August 31, 2005)

12. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings
of the Haskell workshop 2002. ACM, New York (2002)

13. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13(2) (February 1970)

14. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Symposium on Lisp and Functional Programming, pp. 151–161. ACM, New
York (1986)

15. Cordy, J.R.: TXL - a language for programming language tools and applications.
In: Proc. LDTA 2004, ACM 4th International Workshop on Language Descriptions,
Tools and Applications (April 2004)

16. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the asf+sdf compiler, vol. 24, pp. 334–368. ACM Press, New York
(2002)

17. Bachrach, J., Playford, K.: D-expressions: Lisp power, Dylan style (1999),
http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf (accessed November
22, 2006)

18. Sheard, T.: Using MetaML: A staged programming language, 207–239 (September
1998)

19. Skalski, K., Moskal, M., Olszta, P.: Meta-programming in Nemerle (2004),
http://nemerle.org/metaprogramming.pdf (accessed November 5, 2007)

20. Fleutot, F., Tratt, L.: Contrasting compile-time meta-programming in metalua and
converge. In: Workshop on Dynamic Languages and Applications (July 2007)

http://www.convergepl.org/documentation/
http://www.python.org/doc/2.3/ref/ref.html
http://www.ai.mit.edu/people/jrb/Projects/dexprs.pdf
http://nemerle.org/metaprogramming.pdf

Adding Dimension Analysis to Java as a

Composable Language Extension�

(Extended Abstract)

Eric Van Wyk and Yogesh Mali

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, MN 55455, USA
{evw,yomali}@cs.umn.edu

Abstract. In this paper we describe a language extension that adds
dimension analysis to Java. Dimension analysis can be used to check that
values that represent physical measurements such as length and mass
are not used inconsistently. What distinguishes this work from previous
work that adds dimension analysis to programming languages is that
here the extension is implemented as a composable language extension.
This means that it can easily be combined with other extensions, possibly
developed by other parties, to create an extended implementation of Java
with new features that address concerns from several different domains.

1 Introduction

Dimension analysis can be used to check that a computer program does not in-
correctly use values that represent physical measurements. For example, it can
ensure that a value representing a length is not added to a value representing
a mass. This analysis may be extended to also take into account the units of
measurements of these values and thus check, for example, that a length mea-
surement in feet is not added to a length measurement in meters.

Modern programming languages rarely provide support for this type of anal-
ysis and it is the source of a number of highly publicized software failures. For
example, in September 1999, the unsuccessful landing of the Mars Climate Or-
biter on the surface of Mars was traced back to a software failure in which a
measurement in English units was interpreted as a measurement in metric units
by the navigation software [13].

This paper is not the first to add dimension analysis to a programming lan-
guage. To mention just a few, Wand and O’Keefe [20] and Kennedy [11] add
dimension inference and analysis to ML and House [9] add it to Pascal. The
work presented here differs from these in that it adds dimension analysis to Java
as a composable language extension. The others add dimension analysis by cre-
ating a new monolithic language that cannot be easily extended with some other
� This work is partially funded by NSF CAREER Award #0347860, NSF CCF Award

#0429640, and the McKnight Foundation.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 442–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adding Dimension Analysis to Java as a Composable Language Extension 443

features that may be desired. Our goal is to extend a language with dimension
analysis in such a way that it is composable with other language extensions.

Our dimension analysis extension is implemented in the ableJ extensible lan-
guage framework [17]. ableJ currently supports Java 1.4, but some aspects of
Java 1.5 have been added. It is often the case in ableJ that the composition of
the host language (Java) and several extensions can be done automatically. Thus,
a programmer can direct the tools to build a customized language implementa-
tion for the host language extended with the unique set of extensions that he
or she requires to handle the task at hand. This paper describes how dimension
analysis can be implemented as a composable language extension. This exten-
sion follows the pattern described in previous work on ableJ and composable
language extensions [17].

To get a sense of the type of dimension analysis that is supported by this ex-
tension, consider the sample program in Figure 1. The key features include the
new type expressions for specifying dimensions in types. For example, the fields
len and wid are defined with dimension type “Dim<int, L>” whose dimension
expression L indicates that this is a length measurement and whose representa-
tion type specifies that this measurement value is represented as an integer. These
type expressions share the syntax of Java generics but are implemented as new
types; Dim is a new keyword, not the name of a parameterized class. Another fea-
ture to note is that arithmetic operators such as +, *, and others are overloaded
for dimension types so that we can check that dimension values are added and

public class Sample {

Dim<int, L> len, width, perimeter ;

Dim<int, L^2> area ;

public Dim<int, a b> product (Dim<int, a> x, Dim<int, b> y)

{ return x * y ; }

public Dim<int, a> sum (Dim<int, a> x, Dim<int, a> y)

{ return x + y ; }

void demo (int l, int w) {

len = (Dim<int, L>) l ; // cast from primitive types

wid = (Dim<int, L>) w ;

perimeter = len + wid + len + wid ; // a valid sum

Dim<int, T> t = (Dim<int, T>) 3 ;

Dim<int, L/T^2> acc ; // an acceleration variable

area = len * wid ; // a valid product

len = sum(len, wid) ; // valid call to method sum

area = product(len, wid) ; // valid call to method product

len = sum(len, area) ; // invalid call to method sum

len = len + area ; // a dimension error

acc = len / (t * t) ; // an acceleration

}

}

Fig. 1. A sample program using the dimension analysis extension

444 E. Van Wyk and Y. Mali

multiplied correctly. Assignment is similarly overloaded. An overloaded method
call operator ensures that for any method call, the dimension variables (a and b)
in the dimension expressions in methods product and sum are substituted for
types in a consistent manner. In the second assignment to area in demo we check
that the dimension variable a is instantiated to the same dimension expression,
in this case L, in both of the input types and in the output type and that these
instantiated dimension expressions match those in the types of the actual argu-
ments. In processing this program, the extended language implementation will
check that the dimension types are used correctly and translate the program to
a pure Java program in which the dimension types are translated to their repre-
sentation types. Although this example program is a bit contrived it highlights
the key features of the language extension.

In Section 2 we describe the ableJ framework and the attribute grammar that
defines Java. In Section 3 we describe the attribute grammar that defines the
language extension that implements dimension analysis. In Section 4 we describe
some related work and conclude in Section 5.

2 The AbleJ 1.4 Extensible Language Framework

In this section we briefly describe the ableJ extensible language framework. Java
1.4 and the dimension analysis language extension are implemented as attribute
grammars written in the Silver [15] attribute grammar specification language.
Many aspects of the ableJ grammar have been simplified for presentation reasons.
Additional information about ableJ can be found in previous work [17].

Silver has many features beyond those originally introduced by Knuth [12].
These include higher-order attributes [19], collection attributes [3], forward-
ing [16], various general-purpose constructs such as pattern matching and type-
safe polymorphic lists. Silver also has mechanisms for specifying the concrete
syntax of languages and language extensions. It passes these specifications to
Copper, our parser and scanner generator that implements context-aware scan-
ning [18]. In this approach the scanner uses information from the LR-parser’s
state to disambiguate lexical syntax. The resulting scanner and parser are deter-
ministic and also support the composition of language extensions. In this paper
we will only present the abstract syntax of ableJ and the dimension extension.

Figure 2 presents a significantly simplified subset of the Silver specification
of Java 1.4 which is used in our actual implementation. This grammar defines
nonterminal symbols, terminal symbols, productions, and attributes. The non-
terminals Stmt, Expr, and Type represent, respectively, Java statements, expres-
sions, and type expressions that appear in the abstract syntax tree of a Java
program. The nonterminal TypeRep is used in the symbol table (the attribute
env) in bindings of names to type representations.

Synthesized attributes such as the pretty print attribute, named pp, are de-
fined. The pp attribute has type String and decorates (occurs on) tree nodes
of type Expr, Stmt, and others. An errors attribute is used to collect type errors,
and later dimension errors, found in a program. Both of these attributes are

Adding Dimension Analysis to Java as a Composable Language Extension 445

grammar edu:umn:cs:melt:ableJ14 ;

nonterminal Stmt, Expr, Type, TypeRep ;

terminal Id_t /[a-zA-Z][a-zA-Z0-9_]*/ ;

syntheszied attribute pp::String occurs on Expr, Stmt, Type;

synthesized attribute errors::[String] occurs on Expr, Stmt, ...

synthesized attribute typerep::TypeRep occurs on Expr, Type ;

synthesized attribute hostStmt::Stmt occurs on Stmt ;

synthesized attribute hostType::Type occurs on Type ;

abstract production if_then s::Stmt ::= cond::Expr body::Stmt

{ s.pp = "if (" ++ cond.pp ++ ") {\n" ++ body.pp ++ "}\n" ;

s.hostStmt = if_then(cond.hostExpr, body.hostStmt) ;

cond.env = s.env ; body.env = s.env ;

s.errors = case cond.typerep of

booleanTypeRep() => []

| _ => ["Error: condition must be boolean."]

end ++ cond.errors ++ body.errors ; }

abstract production add e::Expr ::= l::Expr r::Expr

{ e.pp = "(" ++ l.pp ++ " + " ++ r.pp ++ ")" ;

attribute transforms :: [Expr] with ++ ;

transforms := [] ;

forwards to if length(transforms) == 1 then head(transforms)

else if length(transforms) == 0 then exprWithErrors(

["Type error on addition, types not supported."])

else exprWithErrors(["Internal compiler error."]) ; }

abstract production localVarDcl s::Stmt ::= t::Type id::Id_t

{ s.pp = t.pp ++ " " ++ id.lexeme ++ "\n" ;

s.defs = [varBinding(id.lexeme, t.typerep)] ; }

abstract production boundId e::Expr ::= id::Id_t t::TypeRep

{ e.pp = id.lexeme ;

attribute transforms :: [Expr] with ++ ; transforms := [] ;

forwards to if length(transforms) == 1 then head(transforms)

else generic_boundId(id,t) ; }

abstract production booleanTypeExpr te::TypeExpr ::= b::’Boolean’

{ te.typerep = booleanTypeRep() ; te.pp = "Boolean" ;

te.hostType = booleanTypeExpr(b); }

abstract production booleanTypeRep tr::TypeRep ::= { tr.pp="boolean"; }

aspect production add e::Expr ::= l::Expr r::Expr

{ transforms <- if match(intTypeRep(), l) && match(intTypeRep(), r)

then add_int(l,r) else [] ; }

abstract production add_int e::Expr ::= l::Expr r::Expr

{ e.typerep = intTypeRep (); e.hostExpr = add(l.hostExpr,r.hostExpr); }

Fig. 2. Highlights of a simplified Java host language attribute grammar

446 E. Van Wyk and Y. Mali

defined on the if then production. The definition of the errors attribute uses
pattern matching to check that the type (typerep) of the condition is Boolean.
This production also passed the error messages from it children up the abstract
syntax tree (AST).

The production localVarDcl creates a binding of the name of its identifier
(id.lexeme) to its type representation (t.typerep) and passes this up the tree
in the defs attribute. At the statement-block level (and others) this information
is collected to form the symbol table and passed back down the tree in the
inherited attribute env.

Forwarding: We have previously introduced forwarding[16] as an extension to
attribute grammars that is useful in specifying languages in a highly modular
way. To use forwarding, a production specifies (using the forwards to clause)
how to build a new AST that will be queried for any attributes that are not
explicitly defined by an equation on the “forwarding” production. This new
AST, called the “forwarded-to tree”, can be seen as the semantic equivalent
of the original forwarding AST. If the original tree does not explicitly define
an attribute a, its value is automatically computed by copying it from the a
attribute on the forwarded-to tree.

Forwarding is used by productions that define new language extensions to
specify the semantically equivalent construct in the host language that they will
“translate” to. The type expression “Dim<int, L>” used in the declaration of
len and wid in the second line of Figure 1 will be represented in the program’s
AST by a production that forwards to the type expression tree for int. As we
will see below (Figure 4), the extension production will define some attributes to
facilitate dimension analysis but it will not define any of the hostNT attributes
that are used to translate the extended program to a semantically equivalent
host language program. Each nonterminal NT in the host language is decorated
by a synthesized attribute hostNT of type NT that holds a node’s translation
to the host language. This attribute is defined only on host language produc-
tions and computes the translation using the host language production and the
host language translations of its children (stored in their hostNT attribute) to
compute this. This can be seen on the if then production. When the dimension
type expression tree for “Dim<int, L>” is queried for the value of its hostType
attribute it will forward that query to the type expression tree for “int” which
will return a copy of itself. In this manner, we can extract the translation of the
extended program to the host language.

Operator Overloading: Operator overloading also uses forwarding and this can
be seen in the production add. This production is used by the parser in con-
structing the original AST. It is a place holder that will forward to a new Expr
tree constructed by a production specific to the types of the operands. In the
simplified example in the figure, this production specifies a collection attribute [3]
named transforms that is given an initial value (by the := operator) of an empty

Adding Dimension Analysis to Java as a Composable Language Extension 447

list. The aspect production for add near the bottom of the figure can remotely
define values for attributes for the original add abstract production. In this case,
it may add an Expr tree to the transforms list, using the <- operator, if the
types of the operands l and r are both integers. The tree that it may add is
constructed by the add int production. This production defines the errors and
typerep attributes for integer addition. When the original tree built by add is
queried for its typerep attribute, for example, it forwards that query to the
first tree in the transforms list. If transforms is empty, then there is a type
error in the program; there is no implementation for add for the types of the
child expressions. If there is more than one tree in transforms then an internal
compiler error has occurred since more than one aspect production has specified
an implementation for addition for the types of the child expressions. This can
only occur when language extensions overload operators for host language types,
which they rarely do. Extensions typically overload operators for the new types
that they introduce; such overloading do not trigger this error and it is thus
rare in practice. In Section 3 we will see that the dimension analysis extension
overloads addition and other constructs in a similar fashion.

Language Extensions: In the following section we describe the attribute gram-
mar specification of the dimension analysis language extension. This extension
follows the pattern of other extensions to the ableJ framework. Extensions may
introduce new language constructs, either by specifying new concrete syntax so
that their abstract syntax is placed into the original AST, or by using opera-
tor overloading facilities so that a “place holder” production will forward to a
production specified in the language extension. In either case, the productions
defined in the extension will (and must) specify their transformation to a se-
mantically equivalent host language construct using forwarding. In effect, the
translation of the extended program to a host language program is carried out
by the many local transformations that forwarding specifies. Different language
extension constructs are not isolated from one another in the AST however since
they can communicate when declarations add information to the symbol table
that may be retrieved in other parts of the AST. The extension productions will
do some semantic analysis (by explicitly defining some attributes). Forward-
ing is then used to specify their translation to the host language. The dimension
analysis extension follows this pattern. The new productions perform the dimen-
sion analysis and then forward to pure Java constructs on which the dimension
information has been translated away.

3 Dimension Analysis Extension

In this section we discuss some principles of dimension analysis and then show
how dimension analysis can be added as a composable language extension to
the ableJ specification of Java. This language extension defines new syntax for
type expressions and overloads some existing host language syntax for arithmetic

448 E. Van Wyk and Y. Mali

operators, among others, to perform dimension analysis and ensure that mea-
surement values are not incorrectly used.

3.1 Principles of Dimension Analysis

Dimensions describe a specific type of measurement. These include length, mass,
temperature, among others. These are not to be confused with units that specify
the unit of measurement for a particular dimension. For example, the dimension
of length can be measured in units of feet or meters. Dimensions can be clas-
sified as base dimensions or derived dimensions. Traditionally, base dimensions
include length, mass, temperature, time, electric current, amount of material
and luminosity. Derived dimensions are specified in terms of these. For example,
area is derived from the base dimension of length as length squared; acceleration
is derived from length and time as length divided by time squared. Dimension
expressions are generated from base dimensions and dimension variables using
the operations of product and inverse. From these operations we can define di-
vision and exponentiation. A unit dimension is represented as 1. We represent
dimension expressions in our language extension using the nonterminal DimExpr
and the productions shown in Figure 3. A nonterminal and productions for base
dimensions are also shown. The acceleration dimension expression L / T^2 is
represented by the tree divide(basedim(L()), power(basedim(time()),2)).

We will define a few functions on DimExpr trees for use in type checking.
A unify function is used to unify two dimension expressions and if successful,
return the set of substitutions for dimension variables that unifies them. This
function will be used in checking that two expressions that have dimension types
can be added or copied in an assignment. If the dimension expressions that are
components of their types can be unified then it is safe to add or copy them.
Note that multiplication of values of different dimensions is always allowed. The
dimension of the resulting product is the product of their respective dimension
expressions. If unit checking is added, then multiplication can fail if the operands
use units inconsistently.

nonterminal DimExpr ;

abstract production product de::DimExpr ::= l::DimExpr r::DimExpr { }

abstract production divide de::DimExpr ::= l::DimExpr r::DimExpr { }

abstract production power de::DimExpr ::= b::DimExpr e::Integer { }

abstract production dimvar de::DimExpr ::= v::String { }

abstract production basedim de::DimExpr ::= bd::BaseDim { }

abstract production unit de::DimExpr ::= { }

nonterminal BaseDim ;

abstract production M bd::BaseDim ::= { } -- Mass

abstract production L bd::BaseDim ::= { } -- Length

abstract production T bd::BaseDim ::= { } -- Time

Fig. 3. Grammar for dimension expressions

Adding Dimension Analysis to Java as a Composable Language Extension 449

3.2 Type Expressions for Dimension Analysis

New type expressions: We need new type expressions so that programmers can
specify dimension types. Thus, an abstract production dimTypeExpr with the
left hand side as the host language nonterminal Type is introduced in the ex-
tension. This production is shown in Figure 4. This production specifies that
dimension types consist of a representation type rep (int, float, Integer, etc)
and a dimension expression d that specifies the dimensionality of the values to
be represented. This production defines a pretty print attribute and errors at-
tribute as expected. The typerep attribute specifies the representation of the
type. This is used by productions such as the localVarDcl production from
Figure 2 to add information to the symbol table that binds variable names to
types. The end result is that there are entries in the symbol table env that bind
variable names to information about their type. The dimTypeExpr production
passes the symbol table env down the tree to its components and also forwards
to the representation type rep.

This extension does not check that the underlying representation types are
type correct. Dimension analysis productions, such as dimTypeExpr, will forward
to constructs on which the dimension types have been erased that do additional
type checking on the translated version to ensure that the underlying represen-
tation types are used correctly. Such errors are reported to the programmer.

Dimension Expressions: Concrete syntax productions are used to parse dimen-
sion expressions like those shown in the Dim type expressions in Figure 1 to
construct abstract syntax trees (ASTs) using the productions in Figure 3. These
trees are the representation of the dimensions used in dimension analysis. We do
not describe the specification of the concrete syntax here as it is what one would
expect. A normalization function (normalize) converts these expressions into a
normalized form that simplifies the dimension analysis. For example, normalize
would simplify the dimension expression (L T) / (M T^2 M^(-1)) to L / T.

Type representations: The host language nonterminal TypeRep is used for in-
ternal representations of types that are used in type checking in ableJ. For our
dimension extension to fit into the ableJ framework we define productions that
define type representations for dimension types. There are two such represen-
tations. The first production, dimTypeRep ST, is used in the symbol table and

abstract production dimTypeExpr te::Type ::= rep::Type d::DimExpr

{ te.pp = "Dim<" ++ rep.pp ++ "," ++ d.pp ++ ">" ;

te.errors := rep.errors ++ d.errors;

te.typerep = dimTypeRep_ST(rep.typerep, normalize(d)) ;

rep.env = te.env ; d.env = te.env ;

forwards to rep ; }

abstract production dimTypeRep_ST tr::TypeRep ::= rep::TypeRep de::DimExpr

abstract production dimTypeRep_Ex tr::TypeRep ::= de::DimExpr reptree::Expr

Fig. 4. Type expression and representation productions

450 E. Van Wyk and Y. Mali

specifies the dimensionality and the representation type of variables declared as
dimension types. The signature of this production is shown in Figure 4. This
production is used in dimTypeExpr to define the type representation of the di-
mension type. The second, dimTypeRep Ex, is used in type representations that
decorate expressions. This one also specifies the dimensionality of the expression
but instead of the type of the representation it specifies the tree that this expres-
sion will translate to. The type representation on this tree is the representation
type. Thus, expressions (Expr trees) that have a dimension typerep will forward
to this representation tree that is part of their type. This TypeRep production
is used below in the Expr productions that overload arithmetic operators.

3.3 Overloading Existing Host Language Syntax

When introducing a new type, we often find it useful to overload the certain host
language operations to provide type-specific behavior to these operations. For
example, we will overload the host addition production add so that we can check
that the dimensions of the operands are compatible on addition. This subsection
describes several of the operators (productions) that are overloaded.

Overloading variable references: It is sometimes useful to overload the variable
reference production so that variables that are bound to dimension types get
their own type-specific production in the AST.

The ableJ infrastructure handles Java name disambiguation1 and the looking
up of names and binding them to their types. The abstract productions that
perform this task are not relevant here. What matters is that they will forward
to the production boundId shown in Figure 2. This production has a collection
attribute called transforms that has the type [Expr]. Language extension will
add new trees to this list if they want to overload a specific instance of a variable
reference. This is similar to the way in which add is overloaded.

The aspect production at the top of Figure 5 from the dimension extension
specifies that if the type bound to this identifier is a dimension type, then add
the AST that is constructed with the bound identifier production specific to
dimension types (boundId dims) to the list of possible trees that the original
boundId can transform to. If there is only one such tree, then the boundId pro-
duction will forward to that and we effectively overload variable references with
the boundId dims production. This production, also in Figure 5, defines the type
(typerep attribute) to be the dimension type that contains the dimension ex-
pression of the type (dimexpr(t)) and the tree that this will eventually translate
to (reptree). The tree reptree is constructed with the boundId production but
the type given to that production is the representation type of the dimension.
As an example, consider the variable len in the example program in Figure 1.
On the multiplication of len with wid, the len identifier in the original AST
is overloaded using the production boundId dims and sets its type to be a di-
mension type that contains a representation tree that is just the bound identifier

1 This determines, for example, if “a” in “a.b.c” is a package, a class, or an object.

Adding Dimension Analysis to Java as a Composable Language Extension 451

aspect production boundId e::Expr ::= id::Id_t t::TypeRep

{ transforms <- if match(dimTypeRep_ST(_,_), t)

then [boundId_dims(id,t)] else [] ; }

abstract production boundId_dims e::Expr ::= id::Id_t t::TypeRep

{ e.pp = id.lexeme ;

e.typerep = dimTypeRep_Ex(dimexpr(t), reptree) ;

forwards to reptree ;

local attribute reptree :: Expr ;

reptree = boundId(id, reptyperep(t)) ; }

Fig. 5. Overloading variable references

“len” that has as its type the type int. Thus, we essentially erase the dimension
information in the translation to Java once we have verified that the dimension
values are used in a correct manner.

Overloading arithmetic operations: In Section 2 we showed how addition can
be overloaded with a type specific production. In Figure 6 are the aspect and
dimension-type-specific productions that accomplish this for dimension types.
The production add dims will unify the dimension expressions from the type
representations of the two operands l and r. If unification succeeds, this pro-
cess returns a list of bindings (bnds of type [UnifyBnd]) that map dimension
variables to dimension expressions that will unify the two dimension expres-
sions and an empty list of errors. Otherwise an empty list of bindings and a list
with one error message specifying that unification failed is returned. The type of
unify is given in Figure 7. If the case of the addition in Figure 1 of x and y in
method sum which both have the dimension expression a, the unification succeeds
and returns no bindings since they are the same expression. In the case of the

aspect production add e::Expr ::= l::Expr r::Expr

{ transforms <- if match(dimTypeRep_Ex(_,_), l) &&

match(dimTypeRep_Ex(_,_), r)

then [add_dims(l,r)] else [] ; }

abstract production add_dims e::Expr ::= l::Expr r::Expr

{ e.pp = l.pp ++ " + " ++ r.pp ;

local attribute bnds :: [UnifyBnd] ;

local attribute errs :: [String];

(bnds,errs) = unify (get_dimexpr(l.typerep), get_dimexpr(r.typerep)) ;

e.typerep = dimTypeRep_Ex(apply(bnds, get_dimexpr(l.typerep)), rep_tree);

forwards to if null(l.errors ++ r.errors) then rep_tree

else exprWithErrors(l.errors ++ r.errors) ;

local attribute rep_tree :: Expr ;

rep_tree = if null(errs)

then add (get_rep_tree(l.typerep), get_rep_tree(r.typerep))

else exprWithErrors(["Dimensions incompatible on addition."]);}

Fig. 6. Overloading addition

452 E. Van Wyk and Y. Mali

function unify ([UnifyBnd],[Error]) ::= d1::DimExpr d2::DimExpr { ... }

function apply DimExpr ::= b::[UnifyBnd] de::DimExpr { ... }

function compose [UnifyBnd] ::= b1::[UnifyBnd] b2::[UnifyBnd] { ... }

Fig. 7. Function headers for unify, compose, and apply

additions that compute perimeter the dimension expressions are always L which
also unify. If we were to unify dimension expressions L and a unification would
succeed with the binding a �→ L. In these cases the bindings are applied (using
the apply function) to the dimension expression of l to get the new dimension
expression used in the typerep for the type of the sum. For the erroneous ad-
dition of len and area, the dimension expressions L and L L will not unify. In
this case the dimension expression in the typerep is an erroneous dimension
expression. Our extension uses the unification algorithm given by Kennedy in
his work on extending ML with dimension analysis [11].

The tree that the add dims production will forward to (rep tree) is either
the sum of the representation trees of l and r (constructed by the production
add) or an erroneous tree indicating that the dimensions were incompatible.
It is this tree that this production will forward to. When unification succeeds,
rep tree is simply the same expression in which the dimension information has
been removed and the variables and expressions have the type of the underlying
representation type instead of the dimension type.

Overloading multiplication is done in a similar fashion except that we need
only generate the product of the dimension expressions of the operands since
multiplication of any dimensions is valid.

Overloading assignment and parameter passing: The productions for assignment
and method call can also be overloaded in a similar fashion. For many language
extensions that introduce new types this is often not necessary however since, if
these productions are not overloaded, they forward to trees that use the copy
production whose signature is shown below:

abstract production copy e::Expr ::= s::Expr t::TypeRep { ... }
By overloading this production, an extension in essence overloads assignment, the
copying of parameters into a method, and the copying of the return value back
out. In the dimension extension we overload this production with a copy dims
production that unifies the dimension expressions on s and t to check that the
dimensions are compatible. It is quite similar to add dims and we thus do not
show it here.

Overloading method calls: Although the copy production above would ensure
that on method calls the dimension expressions of the formal and actual param-
eters unify individually, we must check that they unify in a consistent manner
and that we provide consistent substitutions for dimension variables in all places.
For example, the call to sum in Figure 1 with arguments len and area is incor-
rect because we must unify the dimension variable a to the same dimension

Adding Dimension Analysis to Java as a Composable Language Extension 453

expression. Although copy would unify a to L and a to L L for each parameter
individually this is not enough. Thus, we will overload the method call produc-
tion with a type specific production for dimension types if any of the arguments
have a dimension type. (In the case where only the return type is a dimension
type the overloading of copy is sufficient.)

This new method call production calls the function check call shown in
Figure 8 and passes it the dimension expressions of the formal parameters and
actual parameters that have dimension types. It also passes in an empty set of
bindings. It will first check that for each parameter either both the formal and
the actual parameter or neither have a dimension type. The check call func-
tion calls unify on the first dimension expression in the formals and actuals
lists after applying any previously discovered substitutions (psubs) to them. If
unification succeeds, then it calls itself with the tails of the lists and the new sub-
stitutions (new subs) and the application of them to the dimension expressions
in the previous bindings psubs.

In the case of the incorrect call to sum mentioned above, check call will first
unify a to L for the first parameter len. It will then pass this binding in psubs
in the recursive call. On the second call, it first applies this substitution to a,
the dimension expression of the formal parameter y to get L, and then applies it
to L L, the dimension expression the actual parameter area, to get L L. It then
attempts to unify L and L L and fails—thus indicating that the arguments to
sum have incompatible dimensions.

If the call to check call succeeds, the returned set of substitutions are applied
to the dimension expression of the return type to get the dimension expression
that is used in the type representation of the method call. In the case of the
valid call to sum with parameters len and wid, the substitution mapping a to
L is applied to the return type dimension expression a to yield L—the length
dimension that is then correctly used in the assignment to len.

function check_call ([UnifyBnd], [String])

::= formals::[DimExpr] actuals::[DimExpr] psubs::[UnifyBnd]

{ return

if null(formals) && null(actuals)

then (psubs, [])

else if null(formals) || null(actuals)

then (psubs, ["incorrect number of arguments"])

else if ! null(unify_errors)

then (psubs, ["incompatible dimensions:" ++ head(formals).pp ++

" and " ++ head(actuals).pp])

else check_call(tail(formals), tail(actuals),

new_subs ++ compose(new_subs,psubs)) ;

local attribute new_subs :: [UnifyBnd] ;

local attribute unify_errs :: [String] ;

(new_subs, unify_errs) = unify (apply(psubs,head(formals)) ,

apply(psubs,head(actuals))) ; }

Fig. 8. The check call function

454 E. Van Wyk and Y. Mali

3.4 Composing AbleJ and the Dimension Analysis Language
Extension

The attribute grammar fragment presented above in this section defines the
dimension analysis constructs and analysis needed to extend the ableJ attribute
grammar specification of Java with dimension analysis. The process of composing
these two attribute grammars is performed by the Silver tools. A component-
wise union of the sets of nonterminals, terminals, productions, and attribute
definitions on productions is straightforward and implements the composition
of the host language and the language extension. This is easily extended to
handle more than one language extension. Since this composition is performed
by the Silver tools, non-experts can specify a host language and a desired set of
language extensions that can be automatically composed to create a specification
of a unique language that has features tailored to a particular task at hand.
For more information on the composition process readers are directed to our
previously published paper on this topic [17].

4 Related Work

Dimension analysis: Previous research in this area has illustrated different tech-
niques for adding dimension and unit analysis to programming languages. House
[9] implemented the extension of dimensions to Pascal. He implemented a poly-
morphic dimension type system in the monomorphic type system of Pascal.
Wand and O’Keefe [20] designed dimensional inference in an ML-like type sys-
tem. In their extension, they extended single numeric types parameterized on
dimension. They assumed a fixed number of base dimensions. Delft [5] extended
Java with dimension analysis in a monolithic way. Kennedy [11] has implemented
dimension extension to Standard ML programming using the ML’s capabilities
of polymorphism and type inference. It is his dimension unification algorithm
that is used in our extension.

Allen et al. [2] provide a solution that differs from ours and the others de-
scribed above. They first add meta-programming facilities (meta-classes) to an
extension of Java called MixGen. They then use those to implement dimension
and unit analysis. Their extension of dimension types integrates well with gener-
ics and subtypes, something not investigated in our extension.2 This approach
also supports composition of extensions since a programmer can use meta-classes
from different libraries. It does not however allow the extension writer to create
new syntactic constructs that reflect the notation of the domain. This is less
critical for extensions that add new numeric types for dimension analysis, but
it is critical for language extensions that, for example, extend Java with SQL to
support static checking for syntax and type errors [17].

Extensible languages: Mechanisms for implementing programming languages
have been an active research area for many years and thus there is much work

2 ableJ supports extensions that add new types and sub-type relationships [17].

Adding Dimension Analysis to Java as a Composable Language Extension 455

on this topic in general and, more specifically, on the topic of extending Java
with different language features. We are thus necessarily very brief here. A more
complete description of related work can be found in previous work [16,17].

In the attribute grammar community there have been many investigations
into the modular specification of languages [1,7,8,10,14], to cite just a few. Of
particular interest is the JastAdd [6] system and its implementation of Java 1.5.
Where as we use forwarding to add a form of (non-destructive) transformation to
attribute grammars JastAdd adds destructive rewriting. Both allow for the im-
plicit specification of semantics (that is attributes) through some transformation
technique. Destructive rewriting has the advantage of not keeping both trees in
memory at the same time and thus uses less memory than forwarding. It can also
be used for traditional optimizations implemented as rewrite rules. Forwarding,
on the other hand, has the advantage of allowing attributes to be computed on
either the original extension AST or the forwarded-to host language AST. This
supports a more modular specification of languages.

JavaBorg is an extensible Java tool that uses MetaBorg [4], an embedding
tool that allows one to extend a host language by adding concrete syntax for
objects. It is based on term rewriting and uses conditional rewriting of the AST
to process programs. Thus, one must encode semantic analysis as rewrite rules.

5 Conclusion

There are several features that we are in the process of adding to our extension.
The first adds the notion of units so that these can also be checked. This ex-
tension is straight forward since unit specifications like ft (for feet) might be
used instead of L in dimension expressions. The unification algorithm must be
extended to track units and multiplication must be checked for consistent use
of units as well. A second may add the automatic conversion of non-dimension
types (like int) to appropriate dimension types. Although more convenient, this
is less safe than the current implementation. In extending ableJ 1.4 with Java
1.5 features we will investigate how new extension-introduced types such as the
dimension types presented here can integrate with Java generics.

The language extension presented here adds dimension analysis to Java. Al-
though it is less complete than some previous work on dimension analysis, it is
distinguished in that it is added to Java as a composable language extension that
also introduces new syntactic constructs. Thus, several extensions may be simul-
taneously added to Java so that the composed language contains new language
features from more than one domain.

References

1. Adams, S.R.: Modular Grammars for Programming Language Prototyping. PhD
thesis, University of Southampton, Department of Elec. and Comp. Sci., UK (1993)

2. Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., Guy, J., Steele, L.: Object-
oriented units of measurement. In: Proc. Conf. on Object-oriented programming, sys-
tems, languages, and applications (OOPSLA), pp. 384–403. ACM, New York (2004)

456 E. Van Wyk and Y. Mali

3. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
4. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language

embedding and assimilation without restrictions. In: Proc. ACM Conf. on Object-
oriented programming, systems, languages, and applications (OOPSLA), pp. 365–
383. ACM, New York (2004)

5. Delft, A.V.: A java extension with support for dimensions. Software-Practice and
Experience 29(7), 605–616 (1999)

6. Ekman, T., Hedin, G.: The Jastadd extensible Java compiler. In: Proc. Conf. on Ob-
ject oriented programming systems and applications (OOPSLA), pp. 1–18. ACM,
New York (2007)

7. Farrow, R., Marlowe, T.J., Yellin, D.M.: Composable attribute grammars. In: 19th
ACM Symp. on Prin. of Programming. Languages, pp. 223–234 (1992)

8. Ganzinger, H.: Increasing modularity and language-independency in automatically
generated compilers. Science of Computer Programing 3(3), 223–278 (1983)

9. House, R.T.: A proposal for an extended form of type checking of expressions. The
Computer Journal 26(4), 366–374 (1983)

10. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta
Informatica 31, 601–627 (1994)

11. Kennedy, A.: Dimension types. In: Sannella, D. (ed.) ESOP 1994. LNCS, vol. 788,
pp. 348–362. Springer, Heidelberg (1994)

12. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968; Corrections in 5, 95–96 (1971)

13. NASA. Mars climate orbiter - mishap investigation report. Technical report
(November 1999),
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO report.pdf

14. Saraiva, J., Swierstra, D.: Generic Attribute Grammars. In: 2nd Workshop on
Attribute Grammars and their Applications, pp. 185–204 (1999)

15. Van Wyk, E., Bodin, D., Krishnan, L., Gao, J.: Silver: an extensible attribute
grammar system. In: Proc. of LDTA 2007, 7th Workshop on Language Descriptions,
Tools, and Analysis (2007)

16. Van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: Forwarding in at-
tribute grammars for modular language design. In: Horspool, R.N. (ed.) CC 2002.
LNCS, vol. 2304, pp. 128–142. Springer, Heidelberg (2002)

17. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute grammar-based
language extensions for Java. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609,
pp. 575–599. Springer, Heidelberg (2007)

18. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible
languages. In: Intl. Conf. on Generative Programming and Component Engineering
(GPCE). ACM Press, New York (2007)

19. Vogt, H., Swierstra, S.D., Kuiper, M.F.: Higher-order attribute grammars. In: ACM
Conf. on Programming Language Design and Implementation (PLDI), pp. 131–145
(1990)

20. Wand, M., O’Keefe, P.: Automatic dimensional inference. In: Computational Logic
- Essays in Honor of Alan Robinson, pp. 479–483 (1991)

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

Part III
Participants Contributions

Model Transformations for the Compilation of

Multi-processor Systems-on-Chip

Éric Piel, Philippe Marquet, and Jean-Luc Dekeyser

INRIA Lille – Nord Europe & LIFL, University of Lille, France
e.a.b.piel@tudelft.nl, {philippe.marquet,jean-luc.dekeyser}@lifl.fr

Abstract. With the increase of amount of transistors which can be
contained on a chip and the constant expectation for more sophisticated
applications, the design of Systems-on-Chip (SoC) is more and more
complex. In this paper, we present the use of model transformations in
the context of SoC co-design. Both the hardware part and the software
part of a SoC can be represented as a model using the MARTE standard
from the OMG. We introduce the use of Model-Driven Engineering in
order to generate executable code from a self-contained model of SoC.

First, we detail the restrictions and extensions we have brought to the
MARTE profile in order to permit the complete description of the SoC
as a model.

The compilation is a sequence of small and maintainable transfor-
mations that allows to pass gradually from a high-level description into
models closer in abstraction to the final model, which is then converted
into code. An in-depth view of one of the several transformation chains
composing our tool is given. The implementation relies on the use of
our experimental Java-based transformation engine which uses a hybrid
declarative-imperative language.

We later discuss why model transformations fit better the compila-
tion of the SoCs than traditional compilers. In particular, the re-use of
transformations can greatly help with the fast evolution of SoC design,
allowing development time reduction. Additionally, as each rule is small
and relatively self-contained, their correctness is easier to ensure, which
leads to more reliable compilation and indirectly more reliable SoCs.

1 Introduction

At the same time as advances in technology allow to integrate more and more
transistors on a single chip, the embedded system applications get always more
sophisticated. Although these two evolutions fit well in term of computation
power, the combination put a strong pressure on the designers’ capacity to design
and verify the resulting very complex systems. As the International Technology
Roadmap for Semiconductors has highlighted [1], there is a strong need for en-
hancing the design productivity. New design methodologies have to be adopted
for the development of these large and complex Systems-on-Chip (SoCs).

A SoC contains on a single chip all the components of a computer: memory,
processor, interconnection network, A/D and D/A converters. . . With the size

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 459–473, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 É. Piel, P. Marquet, and J.-L. Dekeyser

increase of chips, it is possible to put more components in a SoC. Additionally,
due to physical restrictions in terms of frequency and voltage, to expand the
processing power it is not possible to simply increase the size of the processor.
It is necessary to put several processors in the system. Requiring from the soft-
ware developers to handle the parallel programming paradigm in addition to
the traditional concerns. Typically, the embedded systems are used in areas like
multimedia (such as video encoding/decoding, HDTV), detection systems (such
as radars, sonars), or telecommunications (such as mobile phones, antennas). All
these applications are inherently multidimensional data flow applications.

In this paper, after introducing the specificities of SoC design, we will mention
different approaches proposed until now for improving the productivity. Then
we will give a brief description of a possible usage of Model-Driven Engineering
in this context by presenting our development environment. The description of
the metamodel for the specification will be followed by a close look at several
model transformations allowing the compilation of a SoC model into simulation
code. Then, mainly based on the acquired experience during the development of
the presented transformations, we will highlight the benefits of model transfor-
mations for this particular purpose.

1.1 SoC Co-Design

One of the particularities of SoCs is that they are built for one specific appli-
cation. Each new application leads to the design of a new architecture and new
software, both exactly fitted to the task and specifically adapted to each other.
Another particularity is that the initial cost for realization on the silicon (the
creation of the mask of the chip) is very high, this mostly forbids the usage of
prototypes. The SoC developers have to rely on simulations to test and verify
their design.

The development of a SoC usually consists in the concurrent design of both
the application and the hardware architecture, as illustrated in Figure 1. Each
part is handled by different people, specialized on one of these domains. Then
the application is mapped on the hardware, during the phase of association.
This leads to generations of simulations of the full system. These simulations
of both the hardware and the software together vary depending on the level of

Fig. 1. Overview of the usual SoC development organization

Model Transformations for the Compilation of Multi-processor SoC 461

abstraction. From the simulation results, the SoC designers can correct the SoC
specification (the application, the architecture or the association) and obtain
a new simulation. This is represented by the information feedback arrows on
the figure. Gradually, the abstraction levels used for the description and the
simulation are reduced in order to obtain more accurate observations.

At first, simulations at high levels of abstraction are used in order to rapidly
obtain results about the system behaviour. Although there do not exist uni-
versally accepted levels of abstraction, typically those levels highly abstract the
communications between the hardware components as well as their inner behav-
ior between each cycle [2]. In some cases, the application is also abstracted such
as proposed in [3] by using a special OS layer designed for the simulator or as
proposed in [4] by only executing once each phase composing the application
execution. The lowest abstraction level is usually the RTL (Register Transfer
Level), from which the SoC can be synthesized. This journey through the rep-
resentation of the same system at successive abstraction levels is typical of the
SoC development. Classically, each time the abstraction level is reduced, the
simulation has to be entirely re-written.

1.2 Related Works

In order to speed up the design flow, several methodologies have been proposed.
The system synthesis methodology consists in transforming through successive
refinements the original sequential specification into a concurrent specification
defining all the implementation details. This relies on the use of high-level lan-
guages. At the beginning the system is represented only as a network of processes
following a specific Model of Computation (MoC) such as KPN [5] (Kahn Process
Network) or SDF [6] (Synchronous DataFlow). It is then rewritten in languages
targeted toward hardware specification such as SystemC [7] or SpecC [8]. These
languages allow to gradually specify the architecture part of the system with
different levels of refinements down to a physical description. Such approaches
have been proposed though projects such as COSMOS [9], Chinook [10], or
Specsyn [11]. They have been the first approaches proposing automated trans-
formations from a high abstraction level to a lower one. However, one of the
main drawback was that the transformations were not complete, various tasks
had to be done manually.

Another approach called platform-based design [12] aimed at reducing the
work of the designers by supplying a parametrizable architecture. A specific
tool allows the SoC designer to compose and configure a hardware platform in
order to adapt it to the specific requirements of the application. The software is
expressed using a high-level API. Tools such as VCC by Cadence [13], or N2C by
Coware [14] offer such kind of platform. However, the platform provided by the
tool is often specific to a particular application and targeting a different domain
requires the costly introduction of a new platform into the tool by its makers.

The approach called component-based design [15,16] strives to provide the ad-
vantages of the two previous presented methodologies. The designers describe the
whole SoC as a hierarchical network of virtual components and communication

462 É. Piel, P. Marquet, and J.-L. Dekeyser

channels. Each virtual component is a primitive internally specified at a low level
of abstraction, typically at the RTL level for the hardware components and C
or assembly language for the software components. The interconnection of the
components is done via wrappers. This bottom-up approach allows designers to
reuse efficient custom solutions with best performances. Unfortunately, the ab-
straction level at which the system is initially defined is limited, requiring from
the developer to have already defined which part is hardware and which one is
software and to write the system as a code.

Recently some propositions have appeared suggesting the usage of Model-
Driven Engineering [17] in the specific context of SoC design. Early proposi-
tions have focused on the modeling side of this approach. In particular, several
UML profiles dedicated to the representation of such systems have emerged.
However, either they display the same problem as UML which has too many
variation points to allow a complete specification only at the model level, such
as SysML [18], or they tend to be very specific to one given implementation
language, such as the standardization proposal by Fujistu [19] which is very tied
to SystemC.

Some works are starting to appear on the usage of the second side of this ap-
proach: the model transformations. They highlight the need for model notation
to have an entirely executable semantics [20], that is not having any semantic
variation points and containing information so that each part of the system can
be completely realized. Unfortunately, so far the propositions [20,21,22] have
been limited as direct transformations from UML profiles to SystemC simula-
tions. Similarly, in [23] a model transformation is used to pass from a high level
model of the software to a compilable level. In our project called Gaspard [24],
we went further in the usage of MDE by abstracting more the level of specifica-
tion of the SoC and leveraging the model transformations to target the multiple
types of outputs that might be needed during the SoC design. Moreover, each
target is obtained not by the execution a one big transformation but by a chain
of smaller and maintainable transformations.

2 Executable Models of SoC

In our project Gaspard the specification of the SoC is done exclusively via
models. These models conform to the new UML profile called MARTE [25] stan-
dardized by the OMG. The MARTE profile consists in defining foundations for
model-based description of real-time and embedded systems. It is specifically de-
signed to permit description of both the hardware and the software parts of those
systems. From the user point of view, using this profile has the benefits of using
a standard representation (in other words, not being tied to a vendor specific
representation) and of providing a high abstraction level, which is not directly as-
sociated to an implementation and more closely fits the generic concepts manipu-
lated during SoC design. Additionally, one particular point of interest in our case
for developing multi-processor SoCs (MPSoC) is the introduction of concepts

Model Transformations for the Compilation of Multi-processor SoC 463

Fig. 2. Overview of a quadri-processor SoC with an association of an H.263 encoder
application

for Repetitive Structure Modeling [26]. It allows to represent in a compact way
both parallel architectures and parallel applications.

To use the MARTE profile as a means to represent a fully executable system,
additional concepts and restrictions have been introduced as a supplementary
profile. The necessity is twofold: first, the semantic variation points have to be
eliminated to allow a non-ambiguous interpretation by the model transforma-
tions, and second, all the implementation details (down to the complete code of
each function) have to be specified. In the Gaspard supplementary profile, the
first point has been addressed by defining additional strict semantics on each
package of the profile. For instance, the hardware components are defined to be
represented only via the notions of components, ports and connectors, each of
them having a precise meaning on the implementation. On the application side,
while in MARTE the behaviour can be represented in ways nearly as broad as
in UML, in Gaspard we have restrained the set of notions to a model of com-
putation (MoC) based on ArrayOL [27]. It focuses on the expression of data
flow applications with all their data and task parallelism. It is particularly well
suited to the context of Gaspard that aims to design intensive signal processing
applications. This is not a restriction of MDE: if the need arises to support a
more generic context, another, less specific, MoC would have to be employed.

As an example, an overview of an MPSoC model using this profile is provided
in Figure 2. On the left side is the main component of the architecture (four
processors, a memory, and a crossbar). On the right side are the first two levels
of an application dedicated to H.263 video encoding. Multiplicity (the numbers
between brackets) allows to specify the repetition of a component in a compact
and explicit way. In this example it is used for representing the four processors,
as well as the 11×9 repetitions of the task H263mb (each repetition processing a
different part of the picture). Not only this allows the designer to easily modify
the configuration of the system, but it also permits to express the parallelism of

464 É. Piel, P. Marquet, and J.-L. Dekeyser

Application Architecture

Association

Deployment
Specification

Package Uses

Key

Fig. 3. Main packages used during an MPSoC design with Gaspard

the application. Stereotyped dependencies specify the distribution of tasks of the
application on the processors and the distribution of the data on the memory.

To address the second point required to specify an executable system, a pack-
age of the Gaspard profile called deployment specification permits to link the
elementary components (which can be considered as “black boxes”) to source
code. This mechanism can be used both for the architecture and the application
components. In addition, special concepts allow to precisely map the interfaces
of the components to the input and output of the functions. For a given func-
tionality (e.g., Fast Fourier Transform, MIPS processor) several implementations
can be provided, in different languages, or abstraction levels. With the creation
of component libraries, this simplifies the SoC designer work as the deployment
specification can be selected only once for each component and reused for each
compilation target.

Figure 3 illustrates the relationships between the main packages used for the
specification of an MPSoC in Gaspard. The two packages at the top define the
architecture and the application. The deployment specification package intro-
duces additional information concerning the implementation details, while the
association package permit the mapping of the application on the architecture.
Each of these packages correspond to a specific task during the design of the
SoC. In particular, there is no dependency between the architecture and the
application: it is possible to work on them concurrently.

3 Model Transformations for MPSoC Compilation

From the MPSoC model Gaspard provides several transformation chains. As
output of a transformation chain, the user expects compilable code which can
be used in already available tools. The Gaspard environment permits to select
a target into which the SoC should be transformed. The most obvious target is
a synthesizable hardware description and application code compilable for this
particular hardware. As shown in Figure 4, other target possibilities encompass
synchronous specification for formal verification, and simulations of the MPSoC
at various abstraction levels. Each chain is a sequence of several model transfor-
mations separated by metamodels and finished by a code generation. For now
the two code generations leading to SystemC/PVT and SystemC/CABA have
not yet been fully implemented.

Model Transformations for the Compilation of Multi-processor SoC 465

Fig. 4. The Gaspard compilation chains. From an MPSoC model in UML, indicated
here as MARTE/Gaspard, each chain leads to a different target.

In the following subsections we will give an overview of the implementation
of the transformations and the transformations chains. Interested readers are
invited to refer to the Gaspard website [24] for downloading the environment
(with the four transformation chains working) and examples of SoC models.

3.1 Implementation of the Transformations

Following the MDE recommendations, most of the transformations have a model
as input and produce a model as output. They are called model-to-model trans-
formations. In order to generate code, the final transformation of a chain takes a
model as input but produces text as output. Such a transformation is are called
model-to-text transformation (we sometimes use simply code generation).

Figure 5 presents the organization of a model-to-model transformation. A
point to emphasize is that both the input and output are clearly defined by the
metamodels to which they conform to. Using the declarative language approach,
each transformation is actually an organized set of rules. Each rule works on a
small part of the input metamodel specified as a pattern called the left hand side
and produces a small part of the output metamodel called the right hand side.

The transformation is executed using a transformation engine. All the model-
to-model transformations in Gaspard have been implemented for MoMoTE, a
transformation engine developed by the team based on EMF [28] (Eclipse Mod-
eling Framework). Each transformation has one top-level rule which is called
initially. It usually matches the root component of the input model. From this
rule, all the other rules are called (directly or indirectly).

466 É. Piel, P. Marquet, and J.-L. Dekeyser

Fig. 5. Organization of a model-to-model transformation

Figure 6 presents an example of a transformation rule. It converts the concept
of HardwareComponentInstance of the Gaspard metamodel into a equivalent
concept of the Polyhedron metamodel. In MoMoTE, each rule is expressed as a
Java class which contains five methods:

– The constructor for defining the sub-rules, and where the elements created by
the sub-rules should be added. This is done via the addRule()method. In the
example, it delegates the transformations of the shape and the portInstances
to sub-rules.

– getCondition() for defining the left hand side using EMFT Query
syntax (a part of EMF). In the example, the query looks for every
HardwareComponentInstance.

– create() for defining the base element of the right hand side. In the exam-
ple, it defines the right hand side as a HardwareComponentInstance of the
Polyhedron metamodel.

– process() expresses how the new elements have to be created depending on
the input. It is called once for each input element processed. In the example
rule, it copies the name.

– processReferences() expresses how the references between the elements
are produced depending on the input. In the example, it creates an equivalent
reference as in the original model but pointing to the element created via
another rule.

The last two methods are written with the usual Java imperative syntax,
which confers a strong expressivity power to the rules. That is the place where
the domain specific algorithms are situated. Even if for brevity, we have presented
a rather straightforward rule, in the transformations that we have developed, one
can find rules doing graph re-organization, static task scheduling, conversion be-
tween linear system representations, etc. Using Java as the underlying platform
also proved to be advantageous for easily interfacing with external libraries or
programs implementing a specific conversion.

These points are one of the reasons we used a Java-based transformation
engine. Another reason is that at the beginning of this work, higher level engines

Model Transformations for the Compilation of Multi-processor SoC 467

public class GaspardHI2PolyhedronHI extends Rule{

public GaspardHI2PolyhedronHI ()
{

super ();
setQueryFromContext(true);
addRule(PolyhedronPackage.eINSTANCE.getComponentInstance_Dim (),

new Gaspard2Shape2PolyhedronShape ());
addRule(PolyhedronPackage.eINSTANCE.getComponentInstance_PortInstance (),

new Gaspard2PortInstance2PolyhedronPortInstance ());
}

protected EObjectCondition getCondition(EObject srcElementContext)
{

return new EObjectTypeRelationCondition(
Gaspard2Package.eINSTANCE.getHardwareComponentInstance ());

}

protected EObject create(EObject srcElement)
{

return PolyhedronFactory.eINSTANCE.createHardwareComponentInstance ();
}

protected void process(EObject srcElement , EObject tgtElement)
{

HardwareComponentInstance hci=(HardwareComponentInstance) srcElement;
gaspard2.metamodel.polyhedron.HardwareComponentInstance shci=

(gaspard2.metamodel.polyhedron.HardwareComponentInstance) tgtElement;
shci.setName(hci.getName ());

}

protected void processReferences(EObject srcElement , EObject tgtElement)
{

HardwareComponentInstance hci=(HardwareComponentInstance) srcElement;
gaspard2.metamodel.polyhedron.HardwareComponentInstance shci=

(gaspard2.metamodel.polyhedron.HardwareComponentInstance) tgtElement;
shci.setComponent (((gaspard2.metamodel.polyhedron.HardwareComponent)

getTransformation (). getGlobalRefs ().get(hci.getComponent ())));
}

}

Fig. 6. Example of transformation rule using MoMoTE

such as TrML [29], or QVT [30] (Query, View, Transform) were not ready to be
used. On the long term these kind of transformation engines will likely ease the
development of the transformations.

In Gaspard, the code generations are executed using another engine, called
MoCodE. This engine, also developed internally, can be seen as a layer over
JET [31] (Java Emitter Templates). It allows to associate one (or several) tem-
plate for each class of the input metamodel. The transformation is then rep-
resented as a set of templates which are called depending on the type of the
elements in the input model. Each template is the text as it should appear in
the output intermixed with Java code.

3.2 Example of Transformation Chain

As an example, we will describe here the transformation chain towards System-
C/PA. The PA level is a very high-level of abstraction of the simulation which per-
mits a quick simulation and allows the user to see the execution of the program in

468 É. Piel, P. Marquet, and J.-L. Dekeyser

8

>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

p0 ≤ 0, 3 − p0 ≤ 0

4 × mh0 − p0 + 1 × q0 + 1 × q1

+ 0 × d0 + 0 × d1 + 0 = 0

−16 × ms0 − x0 + 2 × q0 + 0 × q1

+ 1 × d0 + 0 × d1 + 0 = 0

−16 × ms1 − x1 + 0 × q0 + 2 × q1

+ 0 × d0 + 1 × d1 + 0 = 0

q0 ≤ 0, 7 − q0 ≤ 0

q1 ≤ 0, 7 − q1 ≤ 0

d0 ≤ 0, 1 − d0 ≤ 0

d1 ≤ 0, 1 − d1 ≤ 0

x0 ≤ 0, 15 − x0 ≤ 0

x1 ≤ 0, 15 − x1 ≤ 0

Fig. 7. Example of input and output of one of the rules of the Gaspard to Polyhedron
transformation

term of pattern usages, the data element of a Gaspard program, instead of reads
and writes of bytes. More information on this level can be found in [32].

The first transformation of the chain is one common to all the chains. It takes
as an input the UML model conform to the MARTE/Gaspard profile, created by
the SoC designer, and outputs a model conform to a metamodel featuring the
same concepts than in the profile. Deliberately, this transformation is limited
to a simple translation: this allows to convert the standardized view in UML
which benefits the user into the representation specific to the domain in the
metamodel which is much easier to manipulate in the transformations (because
the only required concepts are present, there is no need to go through stereotype
mechanism of UML, etc.).

The second transformation, from the Gaspard metamodel to the Polyhedron
metamodel is composed of approximately 60 rules. They mainly allow us: to
express the repetitions as polyhedrons, to separate the application tree following
the association specification, to map the data arrays on the memories, and to
simplify the deployment specifications. A polyhedron is a set of linear equations
and inequations. Works on parallel scheduling often rel because –explained very
rapidly– they permit to compute which iteration of a loop should be executed
on which processor. A whole set of theories and tools are already available.

Figure 7 illustrates the effect of the rule producing a polyhedron from a distri-
bution of a task on a processor. On the left side is the information as defined by
the user, on the right side is a text representation of the polyhedron computed
by the rule. The rule is called for every ApplicationComponent which has one (or
several) Distribution starting from it. Using the various information specified on
the ApplicationComponent, the HardwareComponent, the Tilers, and the Distri-
bution, a set of equations and inequations are generated. It is then inserted as a
specific attribute of the element generated out of the ApplicationComponent.

Model Transformations for the Compilation of Multi-processor SoC 469

The third model transformation of the chain, from the Polyhedron metamodel
to the Loop metamodel, converts the mapping expressed by the polyhedrons into
pseudo-code expressions, as used by the code implementations. Each polyhedron
is transformed into nested-loops. Even if theoretically this transformation could
be merged with the previous one, we have decided to separate them for technical
reasons: the computation is done via the call to an external program, CLooG [33],
it is easier to maintain and troubleshoot this call independently from the rest of
the transformations.

The final transformation of the chain is a SystemC code generation from the
Loop metamodel. Based on the usage of templates as described previously, it
generates both the simulation of the hardware components and the application
components. Each hardware component is transformed into a SystemC mod-
ule with its ports linked. For each processor, the part of the application which
has to be executed on this processor is generated as a set of activities dynam-
ically scheduled and synchronised, following the model of execution defined for
the Gaspard applications on MPSoCs. Additionally, the framework needed to
automatically compile all the simulation code is also generated (as a Makefile).

4 Advantages of Model Transformations for SoC
Compilation

The usage of models for the design of multi-processor SoC is on its own a great
improvement over current practice because it provides a higher abstraction level
that especially helps for component reuse and parallel coding. The graphical
representation also facilitates the global vision of complex systems and of in-
teractions between the parts of of the system. As shown in [34], model-based
approaches help the system designers to reuse preexistent works and to adapt
it to new applications, increasing their productivity. Nonetheless MDE transfor-
mations also bring their batch of benefits into the SoC co-design when used for
the compilation flow.

In Gaspard, the use of transformations permits to generate the various ab-
straction levels of the SoC out of the same model. This relieves the designer from
manually re-writing the system each time a lower level of abstraction is targeted.
In turn, this allows the designer to explore more configurations of the system to
find one as close as possible from the optimal.

As Alanen et al. have emphasized in [21], one benefit of the introduction
of transformations is the break down into small parts of the SoC compilation
which can be more easily understood by the SoC designer. In contrast to custom
monolithic tools where the meaning of the SoC model is only associated to the
final output of the code generator, the compilation chains bring transparency.
This transparency is useful for the users, as it helps to grasp the meaning of the
concepts used for the SoC design at the different levels of compilation and see
their evolution until the generated code.

The compilation flow is a chain of several small transformations. Of course,
this can also be achieve with traditional methods, but the MDE simplifies the

470 É. Piel, P. Marquet, and J.-L. Dekeyser

separation between each transformation. Transformation inputs and outputs are
formally and explicitly described by metamodels. Each intermediate metamodel
is a strongly documented “synchronization point” of the compilation flow, which
is complex to conceive within traditional compilers. The ease of expressing
intermediate representations leads to the benefit of maximizing the reuse of
transformations while compiling toward different targets. As in SoC compilation
several targets are always necessary, at least for the different abstraction levels
of simulation, and each compilation may have strong common points with the
other compilations, the reuse possibility is very high. This is illustrated in the
overview of our compilation chain available in Figure 4. The first transformation
is reused across all the six chains and, similarly, the two successive transforma-
tions between the Gaspard metamodel and the Loop metamodel are shared by
four chains. For the different SystemC targets, the chains vary only on the code
generation. This minimizes the work required to create a transformation chain
towards a new target and favors the use of already-validated transformations.

Additionally, the explicit separation between the various stages of compila-
tion permits to easily share the development work of the compiler among several
developers while maintaining the coherency of the global project. For instance,
in our case, the current compilation flow of Gaspard have been carried out si-
multaneously by up to seven persons.

Moreover, model transformations can be written in a declarative way: the
transformation is a set of mostly independent rules which have explicit decla-
rations of their input and output patterns. In SoC design, the hardware is as
versatile as the software. Likewise, the employed technologies evolve very quickly
between the development of two products. For example, a few years ago all the
SoCs were mono-processor. With the need to handle multi-processors, tools had
to be adapted to manage the additional specificities introduced both on the
hardware and the software parts. As another example, new abstraction levels
for the simulation are proposed in order to accelerate the simulation as the size
and complexity of the systems increase, such as described in [2]. The compilation
flows have to be modified to also permit code generation at those higher abstrac-
tion levels. This fast evolution is typical of the SoC design. During its existence,
the compilation flow is not static but must constantly adapt to the technology
evolutions, be updated with the evolution of the standards used to represent
the SoC, and has to integrate the improvements proposed by researchers on the
already existing algorithms. Writing transformations in a declarative language
increases their maintainability and simplifies their modification because it is eas-
ier to identify which part of the model they affect. This flexibility of evolution
of the compiler speeds up the development of a SoC which is based on novel
technologies.

In addition, independence in-between the rules is advantageous for reuse as
they can be easily separated and regrouped. In Gaspard, the rules of the trans-
formation from the Gaspard metamodel to the Polyhedron metamodel used to
simplify the deployment specification have been integrated mostly as-is in the
compilation chains towards VHDL and Synchronous languages.

Model Transformations for the Compilation of Multi-processor SoC 471

Furthermore, correctness and reliability of the compiler are important factors
in SoC design, especially in regard to the high cost of errors in its output.
The constant evolution imposed on the compiler impedes on its quality. Model
transformations permit to improve the quality for two reasons. First, this is due
to the increased reuse and maintainability provided at the fine grain level of the
rules and at the coarse grain level of the transformations. Second, the fact that
each transformation has its output conform to metamodels allows to formally
verify the structure of the models, at each stage of the compilation chain.

5 Conclusions

In this article we have first presented the various needs and constraints existing
in the context of SoC co-design. The usage of Model-Driven Engineering in this
context have been detailed using an example, our project Gaspard. First, the
SoC designer creates a model of the SoC with all the information needed for the
implementation, that is: without ambiguity and with all the details concerning
the realization of even the most elementary components. Second, the model is
used as the input of a chain of transformations taking the role of a compiler.
Depending on the target selected by the user, a specific sequence of transforma-
tions is executed until the generation of code is reached. Each transformation
has its input and output conforming to specific metamodels and is actually a set
of rules. In addition, each rule is written in a declarative way, having an input
pattern and an output pattern.

Then, we have emphasized the benefits of model transformations in the par-
ticular context of SoC compilation. The transparency brought by the transfor-
mations to the compiler contrasts with the usual monolithic tools and helps the
user to better understand the concepts he has to manipulate. The strong sep-
aration between each transformation facilitates the simultaneous development
of the compiler by different persons. Model transformations also ease the reuse
between the numerous compilation chains present in the SoC design. Moreover,
the separation of each transformation in rules permits not only to reuse them
easily in different chains but also smooth the necessary constant evolution of the
SoC compiler. Finally, another advantage is that the reliability of the compila-
tion is improved thanks to better maintainability and the formal representation
of each stage of the compilation as a metamodel.

The Gaspard environment already produces simulations capable of providing
performance and consumption estimations. One of the topics we are now investi-
gating is the automatization of the design space exploration. In order to remove
a bottleneck pointed out by the generated simulation, the environment should be
able to automatically find out which part of the original model has to be modi-
fied, and in which way. The traceability of a whole chain of transformations is an
important step to achieve this goal. In future works we will explore additional
features of the usage of MDE. In particular we will consider transformation com-
position as a way to facilitate even more the reuse within the compilation chains.
Another perspective is the description of the transformations as models, which
would allow a graphical representation of the transformation rules.

472 É. Piel, P. Marquet, and J.-L. Dekeyser

References

1. ITRS, International Technology Roadmap for Semiconductors: Design, 2005 edition
(2005), http://www.itrs.net/

2. Donlin, A.: Transaction level modeling: flows and use models. In: Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Stockholm,
Sweden, pp. 75–80 (2004)

3. Honda, S., Wakabayashi, T., Tomiyama, H., Takada, H.: RTOS-centric hardware/-
software cosimulator for embedded system design. In: Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS 2004), Stockholm, Swe-
den (September 2004)

4. Hamerly, G., Perelman, E., Lau, J., Calder, B.: Simpoint 3.0: Faster and more flex-
ible program analysis. In: Workshop on Modeling, Benchmarking and Simulation,
Madison, Wisconsin, USA (June 2005)

5. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing 1974: Proceedings of the IFIP Congress
1974, pp. 471–475. North-Holland, Amsterdam (1974)

6. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. on Computers (January 1987)

7. Grotker, T., Liao, S.: Al: System Design with SystemC. Kluwer Publishers, Dor-
drecht (2002)

8. Gerstlauer, D., Peng, G.: System Design: A Practical Guide with SpecC. Kluwer
Academic Publishers, Dordrecht (2001)

9. Ismail, T.B., Abid, M., Jerraya, A.: COSMOS: a codesign approach for communi-
cating systems. In: CODES 1994: Proceedings of the 3rd international workshop on
Hardware/software co-design, Los Alamitos, CA, USA, pp. 17–24. IEEE Computer
Society Press, Los Alamitos (1994)

10. Chou, P., Ortega, R., Borriello, G.: The chinook hardware/software co-synthesis
system. Technical Report TR-95-03-04 (1995)

11. Gajski, D., Vahid, F., Narayan, S., Gong, J.: Specsyn: An environment support-
ing the specify-explorerefine paradigm for hardware/software system design. IEEE
Transactions on Very Large Scale Integration Systems 6(1), 84–100 (1998)

12. Chang, H., Cooke, L., Hunt, M., Martin, G., McNelly, A.J., Todd, L.: Surviving the
SOC revolution: a guide to platform-based design. Kluwer Academic Publishers,
Norwell (1999)

13. Schirrmeister, F., Sangiovanni-Vincentelli, A.: Virtual component co-design – ap-
plying function architecture co-design to automotive applications. In: Proceedings
of the IEEE International Vehicle Electronics Conference, Tottori, Japan (Septem-
ber 2001)

14. CoWare inc.: CoWare N2C (2001), http://www.coware.com/cowareN2C.html

15. Cesário, O.W., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jerraya, A. A.,
Gauthier, L., Diaz-Nava, M.: Multiprocessor SoC platforms: A component-based
design approach. IEEE Des. Test 19(6), 52–63 (2002)

16. Jerraya, A.A., Yoo, S., Bouchhima, A., Nicolescu, G.: Validation in a component-
based design flow for multicore SoCs. In: ISSS, pp. 162–167. IEEE Computer So-
ciety, Los Alamitos (2002)

17. Planet MDE: Model Driven Engineering (2007), http://planetmde.org

18. Object Management Group, Inc., ed.: Final Adopted OMG SysML Specification
(May 2006), http://www.omg.org/cgi-bin/doc?ptc/06-0504

http://www.itrs.net/
http://www.coware.com/cowareN2C.html
http://planetmde.org
http://www.omg.org/cgi-bin/doc?ptc/06-0504

Model Transformations for the Compilation of Multi-processor SoC 473

19. Object Management Group, Inc., ed.: UML Extension Profile for SoC RFC (March
2005), http://www.omg.org/cgi-bin/doc?realtime/2005-03-01

20. Nguyen, K.D., Sun, Z., Thiagarajan, P.S., Wong, W.F.: Model-driven SoC design
via executable UML to SystemC. In: RTSS 2004: Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS 2004), Washington, pp. 459–
468. IEEE Computer Society, Los Alamitos (2004)

21. Alanen, M., Lilius, J., Porres, I., Truscan, D., Oliver, I., Sandstrom, K.: Design
method support for domain specific soc design. In: MBD-MOMPES 2006: Pro-
ceedings of the Fourth Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MBD-MOMPES 2006), pp. 25–32. IEEE
Computer Society, Washington (2006)

22. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A model-driven design en-
vironment for embedded systems. In: DAC 2006: Proceedings of the 43rd annual
conference on Design automation, pp. 915–918. ACM, New York (2006)

23. Szemethy, T., Karsai, G., Balasubramanian, D.: Model transformations in the
Model-Based Development of real-time systems. In: ECBS 2006: Proceedings of
the 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems, Washington, pp. 177–186. IEEE Computer Society, Los
Alamitos (2006)

24. WEST Team LIFL, Lille, France: Graphical array specification for parallel and dis-
tributed computing (GASPARD-2) (2005), http://www.lifl.fr/west/gaspard/

25. ProMarte partners: UML Profile for MARTE, Beta 1 (August 2007),
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04

26. Boulet, P., Marquet, P., Piel, E., Taillard, J.: Repetitive Allocation Modeling with
MARTE. In: Forum on specification and design languages (FDL 2007), Barcelona,
Spain, (September 2007) (Invited Paper)

27. Boulet, P.: Array-OL revisited, multidimensional intensive signal processing spec-
ification. Research Report RR-6113, INRIA (February 2007)

28. Eclipse Consortium: EMF (2007), http://www.eclipse.org/emf
29. Etien, A., Dumoulin, C., Renaux, E.: Towards a unified notation to represent model

transformation. Research Report RR-6187, INRIA (May 2007)
30. Object Management Group, Inc.: MOF Query / Views / Transformations, OMG

paper (November 2005), http://www.omg.org/docs/ptc/05-11-01.pdf
31. Eclipse Consortium: JET, Java Emitter Templates (2007),

http://www.eclipse.org/modeling/m2t/?project=jet

32. Atitallah, R.B., Piel, E., Niar, S., Marquet, P., Dekeyser, J.L.: Multilevel MPSoC
simulation using an MDE approach. In: IEEE International SoC Conference (SoCC
2007), Hsinchu, Taiwan (September 2007)

33. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, Juan-les-Pins, France, pp. 7–16 (September 2004)

34. Bunse, C., Gross, H.G., Peper, C.: Applying a model-based approach for embed-
ded system development. In: EUROMICRO 2007: Proceedings of the 33rd EU-
ROMICRO Conference on Software Engineering and Advanced Applications (EU-
ROMICRO 2007), Washington, pp. 121–128. IEEE Computer Society, Los Alami-
tos (2007)

http://www.omg.org/cgi-bin/doc?realtime/2005-03-01
http://www.lifl.fr/west/gaspard/
http://www.omg.org/cgi-bin/doc?ptc/2007-08-04
http://www.eclipse.org/emf
http://www.omg.org/docs/ptc/05-11-01.pdf
http://www.eclipse.org/modeling/m2t/?project=jet

Implementation of a Finite State Machine with

Active Libraries in C++�

Zoltán Juhász, Ádám Sipos, and Zoltán Porkoláb

Department of Programming Languages and Compilers
Faculty of Informatics

Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány 1/C

{cad,shp,gsd}@inf.elte.hu

Abstract. Active libraries are code parts playing an active role during
compilation. In C++ active libraries are implemented with the help of
template metaprogramming (TMP) techniques. In this paper we present
an active library designed as an implementation tool for Finite state ma-
chines. With the help of various TMP constructs, our active library car-
ries out compile-time actions like optimizations via state-minimalization,
and more sophisticated error-detection steps. Our library provides ex-
tended functionality to the Boost::Statechart library, the popular FSM
implementation of the Boost library. We describe the implementation
and analyze the efficiency.

1 Introduction

Generative programming is one of today’s popular programming paradigms. This
paradigm is primarily used for generating customized programming components
or systems. C++ template metaprogramming (TMP) is a generative program-
ming style. TMP is based on the C++ templates. Templates are key language
elements for the C++ programming language [25], and are essential for captur-
ing commonalities of abstractions. A cleverly designed C++ code with templates
is able to utilize the type-system of the language and force the compiler to exe-
cute a desired algorithm [31]. In template metaprogramming the program itself
is running during compilation time. The output of this process is still checked
by the compiler and run as an ordinary program.

Template metaprograming is proved to be a Turing-complete sublanguage of
C++ [6]. We write metaprograms for various reasons, here we list some of them:

– Expression templates [32] replace runtime computations with compile-time
activities to enhance runtime performance.

– Static interface checking increases the ability of the compile-time to check
the requirements against template parameters, i.e. they form constraints on
template parameters [18,23].

� Supported by GVOP-3.2.2.-2004-07-0005/3.0.

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 474–488, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementation of a Finite State Machine with Active Libraries 475

– Language embedding makes it possible to introduce domain-specific code into
a C++ program via a metaprogramming framework. Examples include SQL
embedding [11], and a type-safe XML framework [13].

– Active libraries [29]. act dynamically during compile-time, making decisions
based on programming contexts and making optimizations. These libraries
are not passive collections of routines or objects, as are traditional libraries,
but take an active role in generating code. Active libraries provide higher
abstractions and can optimize those abstractions themselves.

Finite State Machines (FSMs) are well-known mathematical constructs, their
practical applications include but are not limited to lexical analyzers, perfor-
mance tests, and protocol definition implementations. Most protocols are de-
scribed by a FSM, since FSMs provide a clear framework for distinguishing the
possible state transitions when the protocol is in a certain state. However, since
often only the results of test cases of a protocol are obtainable, the developer
himself has to define and implement his own state machine description.

FSMs play a central role in many modern software systems. Besides their
functionality, their correctness and effectiveness is also crucial. Unfortunately,
recent implementation techniques provide no support for features like detecting
unreachable states and carrying out automatic state reductions. This lack of
features may reduce the quality and the effectiveness of FSM code used in critical
applications.

With the help of active libraries we are able to define state machines, do
sanity checking on their state tables, and enhance their run-time effectiveness at
compile-time in a fully automated manner. Such process can either detect consis-
tency errors during the compilation process, or produce a correct and optimized
FSM for run-time usage.

Our goal is to demonstrate the possibility to implement and effectively use
active libraries matching the above criteria. Our library is capable of carrying
out compile-time operations and performs various checkings and optimizations
on a state machine.

The paper is organized as follows. In section 2 we discuss C++’s templates and
template metaprogramming concepts. Section 3 introduces the Finite State Ma-
chine’s formal definition. Section 4 describes common implementation techniques
for finite state machines. We discuss the possible implementation techniques in
section 5. The code efficiency and compilation time measurement results are pre-
sented in section 6. Future development directions and related work are discussed
in section 7.

2 C++ Template Metaprograms

2.1 Compile-Time Programming

Templates are an important part of the C++ language, by enabling data struc-
tures and algorithms to be parameterized by types. This abstraction is frequently
needed when using general algorithms like finding an element in a data struc-
ture, or data types like a list of elements. The mechanism behind a list containing

476 Z. Juhász, Á. Sipos, and Z. Porkoláb

integer numbers, or strings is essentially the same, it is only the type of the con-
tained objects that differs. With templates we can express this abstraction, thus
this generic language construct aids code reuse, and the introduction of higher
abstraction levels. Let us consider the following code:

template <class T> int main()
class list {
{ ...
public: list<int> li; // instantiation

list(); li.insert(1928);
void insert(const T& x); }
T first();
void sort();
//...

};

This list template has one type parameter, called T, referring to the future type
whose objects the list will contain. In order to use a list with some specific type,
an instantiation is needed. This process can be invoked either implicitly by the
compiler when the new list is first referred, or explicitly by the programmer.
During instantiation the template parameters are substituted with the concrete
arguments. This newly generated code part is compiled, and inserted into the
program.

The template mechanism of C++ is unique, as it enables the definition of
partial and full specializations. Let us suppose that for some type (in our example
bool) we would like to create a more efficient type-specific implementation of
the list template. We may define the following specialization:

template<>
class list<bool>
{

// a completely different implementation may appear here
};

The specialization and the original template only share the name. A specializa-
tion does not need to provide the same functionality, interface, or implementation
as the original.

2.2 Metaprograms

In case the compiler deduces that in a certain expression a concrete instance of
a template is needed, an implicit instantiation is carried out. Let us consider the
following code demonstrating programs computing the factorial of some integer
number by invoking a recursion:

// compile-time recursion // runtime recursion
template <int N> int Factorial(int N)

Implementation of a Finite State Machine with Active Libraries 477

struct Factorial {
{ if (N==1) return 1;

enum { value = N * return N*Factorial(N-1);
Factorial <N-1>::value }; }

};

template<>
struct Factorial<1>
{

enum { value = 1 };
};

int main() int main()
{ {

int r=Factorial<5>::value; int r=Factorial(5);
} }

As the expression Factorial<5>::valuemust be evaluated in order to initialize
r with a value, the Factorial template is instantiated with the argument 5.
Thus in the template the parameter N is substituted with 5 resulting in the
expression 5 * Factorial<4>::value. Note that Factorial<5>’s instantiation
cannot be finished until Factorial<4> is instantiated, etc. This chain is called
an instantiation chain. When Factorial<1>::value is accessed, instead of the
original template, the full specialization is chosen by the compiler so the chain
is stopped, and the instantiation of all types can be finished. This is a template
metaprogram, a program run in compile-time, calculating the factorial of 5.

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms.

C++ template metaprogram actions are defined in the form of template defi-
nitions and are “executed” when the compiler instantiates them. Templates can
refer to other templates, therefore their instantiation can instruct the compiler
to execute other instantiations. This way we get an instantiation chain very sim-
ilar to a call stack of a runtime program. Recursive instantiations are not only
possible but regular in template metaprograms to model loops.

Conditional statements (and stopping recursion) are solved via specializations.
Templates can be overloaded and the compiler has to choose the narrowest ap-
plicable template to instantiate. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters to
other metaprograms [6].

Data is expressed in runtime programs as variables, constant values, or liter-
als. In metaprograms we use static const and enumeration values to store

478 Z. Juhász, Á. Sipos, and Z. Porkoláb

quantitative information. Results of computations during the execution of a
metaprogram are stored either in new constants or enumerations. Furthermore,
the execution of a metaprogram may trigger the creation of new types by the
compiler. These types may hold information that influences the further execution
of the metaprogram.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favorite implementation forms
of expression templates [32]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [16].

2.3 Active Libraries

With the development of programming languages, user libraries also became
more complex. FORTRAN programs already relied heavily on programming
libraries implementing solutions for re-occuring tasks. With the emerging of
object-oriented programming languages the libraries also transformed: the sets
of functions were replaced by classes and inheritance hierarchies. However, these
libraries are still passive: the writer of the library has to make substantial de-
cisions about the types and algorithms at the time of the library’s creation. In
some cases this constraint is a disadvantage. Contrarily, an active library [29]
acts dynamically, makes decisions in compile-time based on the calling context,
chooses algorithms, and optimizes code. In C++ active libraries are often im-
plemented with the help of template metaprogramming. Our compile-time FSM
active library also utilizes TMP techniques.

3 Finite State Machine

The Finite State Machine (FSM) is a model of behavior composed of a finite
number of states, transitions between those states, and optionally actions. The
transitions between the states are managed by the transition function depending
on then input symbol (event). In the rest of this paper we use the expression
Finite State Machine (FSM), automaton or machine in terms of Deterministic
Finite State Machine (DFSM). Deterministic Finite State Machines, Determin-
istic Finite Tree Automatons etc. are a widespread model for implementing a
communication protocol, a program drive control flow or lexical analyzer among
others. The solution of a complex problem with a FSM means the decomposition
of the problem into smaller parts (states) whose tasks are precisely defined.

3.1 A Mathematical Model of Finite State Machine

A transducer Finite State Machine is a six tuple [20], consisting of

– Let Σ denote a finite, non empty set of input symbols. We are referring to
this set as the set of events

– Let Γ denote a finite, non empty set of output symbols

Implementation of a Finite State Machine with Active Libraries 479

– Let S denote a finite set of States
– Let q0 ∈ Q denote the Start or Initial state, an element of S
– A Transition function: δ : Q × Σ → Q
– Let ω denote an Output function

The working mechanism of a FSM is as follows. First the FSM is in the
Start state. Each input symbol (event) makes the FSM move into some state
depending on the transition function, and the current state. If the event-state
pair is not defined by the function, the event in that state is not legal. For
practical purposes we introduce a 7th component to the FSM, which is a set
of actions. These actions that are executed through a transition between two
states. Note that our model uses the Moore machine [20].

4 Common Implementation Techniques

There are a number of different FSM implementation styles from hand-crafted
to professional hybrid solutions. In the next section we review some common
implementation techniques.

4.1 Procedural Solution

This is the simplest, but the least flexible solution of the implementation of a
DFSM. The transition function’s rules are enforced via control structures, like
switch-case statements. States and events are regularly represented by enumer-
ations, actions are plain function calls.

The biggest drawback of this implementation is that it is suitable only for
the representation of simple machines, since no framework for sanity checking is
provided, therefore the larger the automaton, the more error prone and hard to
read its code [22]. Such implementations are rare in modern industrial programs,
but often used for educational or demonstrational purposes.

4.2 Object-Oriented Solution with a State Transition Table

The object-oriented representation is a very widespread implementation model.
The transition function behavior is modeled by the state transition table (STT).
Table 1 shows a sample STT:

Table 1. State Transition Table

Current State Event Next State Action

Stopped play Playing start playback
Playing stop Stopped stop playback

Current State contains a state of the automaton, Event is an event that
can occur in that state, Next State is the following state of the state machine
after the transition, and Action is a function pointer or a function object that
is going to be executed during the state transition.

480 Z. Juhász, Á. Sipos, and Z. Porkoláb

A good example of such an automaton implementation is the OpenDiam-
eter communication protocol library’s FSM [10]. One of the main advantages
of the Object-Oriented solution over the hand-crafted version is that the state
transition rules and the code of execution are separated and it supports the in-
crementality development paradigm in software engineering. The drawback of
an average OO FSM implementation is that the state transition table is defined
and built at runtime. This is definitely not free of charge. Sanity checking also
results in runtime overhead and incapable of preventing run-time errors.

4.3 Hybrid Technique

The most promising solution is using the Object-Oriented and template-based
generative programming techniques side by side. States, events and even actions
are represented by classes and function objects, and the STT is defined at com-
pilation time with the heavy use of C++ template techniques, like Curiously
Recurring Template Pattern (CRTP) [8].

An outstanding example of such DFSM implementation is Boost::Statechart
Library [9], which is UML compatible, supports multi-threading, type safe and
can do some basic compile time consistency checking. However, Boost::Statechart
is not based on template metaprograms, therefore it does not contain more
complex operations, like FSM minimization.

5 Our Solution

As soon as the STT is defined at compilation time, algorithms and transfor-
mations can be executed on it, and also optimizations and sanity checking of
the whole state transition table can be done. Therefore we decided to step for-
ward towards using template metaprograms to provide automatic operations at
compile-time on the FSM. Our goal was to develop an inital study that:

– carries out compound examinations and transformation on the state transi-
tion table,

– and shows the relationship between Finite State Machines and Active Li-
braries over a template metaprogram implementation of the Moore reduction
procedure.

The library is based on a simplified version of Boost::Statechart ’s State Transi-
tion Table. In the future we would like to evolve this code base to a library that
can cooperate with Boost::Statechart library and function as an extension.

5.1 Applied Data Structures and Algorithms

We used many C++ template facilities extensively, such as SFINAE, template
specialization, parameter deduction etc [21]. In a metaprogram you use com-
pile time constants and types instead of variables and objects respectively; class
templates and function templates instead of funtions and methods. To simu-
late cycles and if-else statements we used recursive template instantiations and
partial and full template specializations.

Implementation of a Finite State Machine with Active Libraries 481

template< typename T, typename From, typename Event, typename To,

bool (T::* transition_func)(Event const&)>

struct transition

{

typedef T fsm_t;

typedef From from_state_t;

typedef Event event_t;

typedef To to_state_t;

typedef typename Event::base_t base_event_t;

static bool do_transition(T& x, base_event_t const& e)

{

return (x.*transition_func)(static_cast<event_t const &>(e));

}

};

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >

// +-----------+----------+-------------+----------------------+

>::type sample_transition_table; // end of transition table

Fig. 1. Implementation of our State Transition Table

Assignment is also unknown in the world of metaprograms, we use typedef
specifiers to introduce new type aliases, that hold the required result.

We used Boost::MPL [5], which provides C++ STL-style [19] compile-time
containers and algorithms.

In our model the State Transition Table defines a directed graph. We imple-
mented the Moore reduction procedure, used the Breadth-First Search (BFS)
algorithm to isolate the graph’s main strongly connected component and with
the help of a special “Error” state we made it complete.

Much like the Boost::Statechart’s STT, in our implementation states and events
are represented by classes, structs or anybuilt-in types. The STT’s implementation
based on the Boost::MPL::List compile-time container is described in Figure 1:

A transition table built at compile-time behaves similarly to a counterpart
built in runtime. The field transition func pointer to member function repre-
sents the tasks to be carried out when a state transition happens. The member
function do transition() is responsible for the iteration over the table. The
state appearing in the first row is considered the starting state.

5.2 A Case Study

In this section we present a simple use case. Let us imagine that we want to
implement a simple CD player, and the behavior is implemented by a state
machine. The state transition table skeleton can be seen in Figure 2.

482 Z. Juhász, Á. Sipos, and Z. Porkoláb

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... duplicated functionality ...

trans < Stopped , play , Running , &p::start_running >,

trans < Running , stop , Stopped , &p::stop_running >,

trans < Running , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... unreachable states ...

trans < Recording , pause , Pause_rec , &p::pause_recording>,

trans < Paused_rec, resume , Recording , &p::resume_rec >

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 2. Sample State Transition Table

The programmer first starts to implement the Stopped, Playing, and Paused
states’ related transitions. After implementing a huge amount of other transi-
tions, eventually he forgets that a Playing state has already been added, so he
adds it again under the name Running. This is an unnecessary redundancy, and
in generaly could indicate an error or sign of a bad design. A few weeks later it
turns out, that a recording functionality needs to be added, so the programmer
adds the related transitions. Unfortunately, the programmer forgot to add a few
transitions, so the Recording and Paused state cannot be reached. In general
that also could indicate an error. On the other hand if the state transition ta-
ble contains many unreacheable states, these appear in the program’s memory
footprint and can cause runtime overhead.

Our library can address these cases by emitting warnings, errors messages, or
by eliminating unwanted redundancy and unreacheable states. The result table
of the reduction algorithm can be seen here:

template struct fsm_algs::reduction< sample_trans_table >;

After this forced template instantiation, the enhanced_table typedef within
this struct holds an optimized transition table is described in Figure 3:

5.3 Implementation of the Algorithms

In the following we present the minimization algorithm implemented in our active
library.

Locating Strongly Connected Components. The first algorithm executed
before the Moore reduction procedure is the localization of the strongly connected

Implementation of a Finite State Machine with Active Libraries 483

typedef mpl::list<

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stopped , play , Playing , &p::start_playback >,

trans < Playing , stop , Stopped , &p::stop_playback >,

trans < Playing , pause , Paused , &p::pause >,

trans < Paused , resume , Playing , &p::resume >,

... duplicated functionality has been removed ...

... unreachable states have been removed too ...

// +-----------+----------+-------------+----------------------+

>::type sample_trans_table; // end of transition table

Fig. 3. Reduced Transition Table

component of the STT’s graph from a given vertex. We use Breadth-First Search
to determine the strongly connected components. After we have located the main
strongly connected component from a given state, we can emit a warning / error
message if there is more than one component (unreachable states exist) or we can
simply delete them. The latter technique can be seen in Figure 4 (several lines of
code have been removed):

Making the STT’s Graph Complete. The Moore reduction algorithm re-
quires a complete STT graph, so the second algorithm that will be executed
before the Moore reduction procedure is making the graph complete. We intro-
duce a special “Error” state, which will be the destination for every undefined
state-event pair. We test every state and event and if we find an undefined event
for a state, we add a new row to the State Transition Table. (Figure 5.)

The destination state is the “Error” state. We can also define an error-handler
function object [19]. After this step, if the graph was not complete, we’ve intro-
duced a lot of extra transitions. If they are not needed by the user of the state
machine, these can be removed after the reduction. The result after the previ-
ously executed two steps is a strongly connected, complete graph. Now we are
able to introduce the Moore reduction procedure.

The Moore Reduction Procedure. Most of the algorithms and methods
used by the reduction procedure have already been implemented in the previous
two steps.

First we suppose that all states may be equivalent i.e. may be combined into
every other state. Next we group non-equivalent states into different groups
called equivalence partitions. When no equivalence partitions have states with
different properties, states in the same group can be combined. We refer to
equivalent partitions as sets of states having the same properties. [14]

We have simulated partitions and groups with Boost::MPL’s compile time
type lists. Every partition’s groups are represented by lists in lists. The outer
list represents the current partition, the inner lists represent the groups. Within
two steps we mark group elements that need to be reallocated. These elements
will be reallocated before the next step into a new group (currently list).

484 Z. Juhász, Á. Sipos, and Z. Porkoláb

// Breadth-First Search

template < typename Tlist, typename Tstate, typename Treached,

// STT ^ Start state ^ Reached states ^

typename Tresult = typename mpl::clear<Tlist>::type,

// ^ Result list is initialized with empty list

bool is_empty = mpl::empty<Treached>::value >

struct bfs

{

// Processing the first element of the reached list

typedef typename mpl::front<Treached>::type process_trans;

typedef typename process_transition::to_state_t next_state;

// (...) Removing first element

typedef typename mpl::pop_front<Treached>::type

tmp_reached_list;

// (...) Adding recently processed state table rows

// to the already processed (reachead) list

typedef typename merge2lists<tmp_result_list, tmp_reached_list>

::result_list tmp_check_list;

// (...) Recursively instantiates the bfs class template

typedef typename bfs< Tlist, next_state, reached_list,

tmp_result_list, mpl::empty<reached_list>::value>

::result_list result_list;

};

Fig. 4. Implementation of Breadth-First Search

After the previous three steps the result is a reduced, complete FSM whose
STT has only one strongly connected component. All of these algorithms are exe-
cuted at compile time, so after the compilation we are working with a minimized
state machine.

6 Results

The aim of the previously introduced techniques is to prove that we are able
to do sanity checks and transformations on an arbitrary FSM State Transition
Table. With the help of these utilities we can increase our automaton’s efficiency
and reliability without any runtime cost. We can also help the developer since
compile-time warnings and errors can be emitted to indicate STT’s inconsistency
or unwanted redundancy. Our algorithms are platform independent because we
are only using standard facilities defined in the C++ 2003 language standard
(ISO/IEC 14882) [21], and elements of the highly portable Boost library. Sup-
ported and tested platforms are the following:

Implementation of a Finite State Machine with Active Libraries 485

// Current state Event Next state Action

// +-----------+----------+-------------+----------------------+

trans < Stop , pause , Error , &p::handle_error >

Fig. 5. Adding new transition

– Comeau C/C++ 4.2.45, 4.3.3
– Compaq C++ (Tru64 UNIX) 6.5
– GCC 3.2.2, 3.3.1, 3.4, 4.1.0
– Intel C++ 7.1, 8.0, 9.1
– Metrowerks CodeWarrior 4.2.45, 4.3.3
– Microsoft Visual C++ 7.1

In the following we present code size and compilation time measurements with
the gcc 4.1.0 20060304 (Red Hat 4.1.0-3) compiler. The test consists of the
definition and consistency checking of a state transition table.

6.1 Code Size

The x axis represents the number of states, while y shows the resulting code
size in bytes. At 0 states the program consisits of our library, while no state
transition table is used. Binary code size is increased only when the first state
is introduced. The graph shows no further code size increase when the FSM
consists of more states. (Figure 6) The reason is that the representation of each
state is a type, which is compile-time data. This data is not inserted into the
final code.

4740

4760

4780

4800

4820

4840

4860

0 10 20 30 40 50

bytes

number of states

size of code

Fig. 6. Number of states and size of code

486 Z. Juhász, Á. Sipos, and Z. Porkoláb

6.2 Compilation Time

The testing method is essentially the same as above. Compilation time does not
grow linearly with the introduction of new states (Figure 7).

0

0.5

1

1.5

2

0 10 20 30 40 50

s

number of states

compilation time

Fig. 7. Number of states and compilation time

7 Related Work and Future Work

Final State Machine implementations vary from fully procedural [22] to object-
oriented solutions [10]. Flexibility and maintanibility are becoming better, but
the correctness of the created automaton ultimately depended on the program-
mers caution. Template techniques were introduced to enhance run-time perfor-
mance [8], but not for providing sanity checks on the FSM.

The Boost Statechart Library supports a straightforward transformation of
UML statecharts to executable C++ code [9]. The library is type safe, supports
thread-safety and performs some basic compile time consistency checking. How-
ever, Boost::Statechart is not based on template metaprograms, therefore it does
not contain more complex operations, like FSM minimization.

In the future we intend to extend the library with the following functionalities.

– Warnings, error messages - The library minimizes the graph without asking
for confirmation from the programmer. Warnings and errors could be emitted
by the compiler whenever an isolated node or reducible states are found.

– Joker states, events - In some cases it would be convenient to have a state
in the FSM that acts the same regardless of the input event. Now we have
to define all such state transitions in the STT. With future “joker” states
and events, the STT definition would be simpler for the user, and also the

Implementation of a Finite State Machine with Active Libraries 487

reduction algorithm would have a smaller graph to work on. On the other
hand the representation and the library logic would get more complex.

– Composite states - A composite state is a state containing a FSM. In case
such state is reached by the outer machine, this inner automaton is activated.
This FSM might block the outer automaton.

8 Conclusion

We created an active library to implement Final State Machines functionally
equivalent to the Boost::Statechart library [9]. Our library is active in the sense
that it carries out various algroritms at compile time. Algorithms include state
machine reduction, and extended error checking.

The library carries out checking and transformations on a FSM’s State Transi-
tion Table. The active library contains an implementation of the Moore reduction
procedure and other algorithms. The algorithms are executed during compilation
in the form of template metaprograms, therefore no runtime penalties occur. If
the reduction is possible, the FSM is expected to be faster during its execution
in runtime. The usage of such compile time algorithms has little impact on the
code size.

On the other hand, with the aid of compile time checking and the emitted
warnings and error messages the program code will be more reliable, since the
program can only be compiled if it meets the developer’s requirements. These
requirements can be assembled through compile time checking.

Our implementation is based on the Boost::MPL and Boost::Statechart Li-
braries. As the library uses only standard C++ features, it is highly portable
and successfully tested in different platforms.

References

1. Abrahams, D., Gurtovoy, A.: C++ template metaprogramming, Concepts, Tools,
and Techniques from Boost and Beyond. Addison-Wesley, Boston (2004)

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, Reading (2001)

3. ANSI/ISO C++ Committee. Programming Languages – C++. ISO/IEC
14882:1998(E). American National Standards Institute (1998)

4. Boost Concept Checking library,
http://www.boost.org/libs/concept check/concept check.html

5. Boost Metaprogramming library,
http://www.boost.org/libs/mpl/doc/index.html

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Reading (2000)

7. Czarnecki, K., Eisenecker, U.W., Glck, R., Vandevoorde, D., Veldhuizen, T.L.:
Generative Programmind and Active Libraries. Springer, Heidelberg (2000)

8. James, O.: Coplien: Curiously Recurring Template Patterns. C++ Report (Febru-
ary 1995)

9. Dnni, A.H.: Boost:Statechart,
http://boost-sandbox.sourceforge.net/libs/statechart/doc/index.html

http://www.boost.org/libs/concept_check/concept_check.html
http://www.boost.org/libs/mpl/doc/index.html
http://boost-sandbox.sourceforge.net/libs/statechart/doc/index.html

488 Z. Juhász, Á. Sipos, and Z. Porkoláb

10. Fajardo, V., Ohba, Y.: Open Diameter, http://www.opendiameter.org/
11. Gil, Y., Lenz, K.: Simple and Safe SQL Queries with C++ Templates. In: Proceed-

ings of the 6th international conference on Generative programming and component
engineering, pp. 13–24, Salzburg, Austria (2007)

12. Gregor, D., Jrvi, J., Siek, J.G., Reis, G.D., Stroustrup, B., Lumsdaine, A.: Con-
cepts: Linguistic Support for Generic Programming in C++. In: Proceedings of
the 2006 ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA 2006) (October 2006)

13. Solodkyy, Y., Järvi, J., Mlaih, E.: Extending Type Systems in a Library — Type-
safe XML processing in C++. In: Workshop of Library-Centric Software Design at
OOPSLA 2006, Portland Oregon (2006)

14. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2000)

15. Juhász, Z.: Implementing Finite State Automata with Active Libraries M.Sc. The-
sis. Budapest (2006)

16. Karlsson, B.: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley, Reading (2005)

17. Knuth, D.E.: An Empirical Study of FORTRAN Programs. Software - Practice
and Experience 1, 105–133 (1971)

18. McNamara, B., Smaragdakis, Y.: Static interfaces in C++. In: First Workshop on
C++ Template Metaprogramming (October 2000)

19. Musser, D.R., Stepanov, A.A.: Algorithm-oriented Generic Libraries. Software-
practice and experience 27(7), 623–642 (1994)

20. Hopcroft, J.E., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (1969)

21. Programming languages C++, ISO/IEC 14882 (2003)
22. Samek, M.: Practical Statecharts in C/C++. CMP Books (2002)
23. Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in

C++. In: First Workshop on C++ Template Metaprogramming (October 2000)
24. Siek, J.: A Language for Generic Programming. PhD thesis, Indiana University

(August 2005)
25. Stroustrup, B.: The C++ Programming Language Special Edition. Addison-

Wesley, Reading (2000)
26. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, Reading

(1994)
27. Unruh, E.: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462
28. Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-

Wesley (2003)
29. Veldhuizen, T.L., Gannon, D.: Active libraries: Rethinking the roles of compilers

and libraries. In: Proceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientic and Engineering Computing (OO 1998), pp. 21–23.
SIAM Press, Philadelphia (1998)

30. Veldhuizen, T.: Five compilation models for C++ templates. In: First Workshop
on C++ Template Metaprogramming (October 2000)

31. Veldhuizen, T.: Using C++ Template Metaprograms. C++ Report 7(4), 36–43
(1995)

32. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26–31 (1995)
33. Zólyomi, I., Porkoláb, Z.: Towards a template introspection library. In: Karsai, G.,

Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 266–282. Springer, Heidelberg
(2004)

http://www.opendiameter.org/

Automated Merging of Feature Models Using Graph
Transformations�

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad

University of Seville, Spain
{sergiosegura,benavides,aruiz,ptrinidad}@us.es

Abstract. Feature Models (FMs) are a key artifact for variability and common-
ality management in Software Product Lines (SPLs). In this context, the merging
of FMs is being recognized as an important operation to support the adoption and
evolution of SPLs. However, providing automated support for merging FMs still
remains an open challenge. In this paper, we propose using graph transformations
as a suitable technology and associated formalism to automate the merging of
FMs. In particular, we first present a catalogue of technology-independent visual
rules to describe how to merge FMs. Next, we propose a prototype implementa-
tion of our catalogue using the AGG system. Finally, we show the feasibility of
our proposal by means of a running example inspired by the mobile phone indus-
try. To the best of our knowledge, this is the first approach providing automated
support for merging FMs including feature attributes and cross-tree constraints.

1 Introduction

Software Product Line (SPL) engineering is an approach to developing families of soft-
ware systems in a systematic way [10]. Roughly speaking, an SPL can be defined as
a set of software products sharing a common set of features. A feature is defined as
an increment in product functionality [5]. In this context, Feature Models (FMs) are
commonly used to provide a compact and visual representation of all the products of an
SPL in terms of features.

Typical SPL adoption strategies involve building an SPL from a set of existing soft-
ware products or extending an existing SPL to include new products [17]. In both cases,
the artifacts of different software systems must be combined into a single SPL. In this
context, the usage of specific SPL refactoring techniques is emerging as a key practice
to support the adoption and evolution of SPLs [1,18,30].

It is accepted that not only programs should be refactored in the context of an SPL
but also FMs. In particular, the merging of FMs emerges as an appealing operation
to support the evolution of SPLs at the model level [1,12]. In this context, different
semantics for the operation of merging of FMs have been proposed in the literature
[26]. For the proof of concept presented in this paper, we consider the merging of FMs
as an operation that takes as input a set of FMs and returns a new FM representing, as a

� This work has been partially supported by the European Commission (FEDER) and Span-
ish Government under CICYT project Web-Factories (TIN2006-00472) and the Andalusian
Government project ISABEL (TIC-2533).

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 489–505, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

490 S. Segura et al.

minimum, the same set of products than the input FMs. Once this FM representing all
products is generated, it may be used as a starting point for driving future development.

Graph Transformations are a very mature approach, having been used for 30 years
for the generation, manipulation, recognition and evaluation of graphs [25]. Most visual
languages can be interpreted as a type of graph (directed, labeled, etc.). This makes
graph transformations a natural and intuitive way for transforming models [11,13,21].
Graph transformations are defined in a visual way and are provided with a set of tested
tools to define, execute and test transformations. Additionally, graph transformation
theory provides a solid formal foundation enabling the checking of interesting formal
properties such as confluence, sequential and parallel (in)dependence, etc. [15]. All
these characteristics make graph transformations a suitable technology and associated
formalism for model refactoring [20,23] and software merging [19,31].

In previous work [27] we detailed our intention of providing automated tool support
for FM refactoring using graph transformations. In this paper we present our first results
in that direction. In particular, the contribution of this paper is twofold:

– We propose a catalogue of 30 visual rules to merge FMs. In contrast to existing
proposals, our catalogue includes rules to describe how to merge FMs including
feature attributes and cross-tree constraints.

– We propose using graph transformations as a suitable technology to automate the
merging of FMs. In order to show the feasibility of our proposal, we present a
prototype implementation of our catalogue of rules using the AGG system [29]. To
the best of our knowledge, this is the first approach providing automated support
for merging FMs including feature attributes and cross-tree constraints.

The remainder of the paper is structured as follows: in Section 2, the main concepts
of feature models and graph transformations are introduced. Our proposal is presented
in Section 3. In Section 4, we survey related work. We describe the main challenges
remaining for our future work in Section 5. Finally, we summarize our main conclusions
in Section 6.

2 Preliminaries

2.1 Feature Models

Feature Models (FM) [16] are used to model sets of software systems in terms of fea-
tures and relations among them (see Figure 1). A feature can be defined as an increment
in product functionality [5]. FMs are commonly used as a compact representation of all
the products of an SPL in terms of features.

A FM is visually represented as a tree-like structure in which nodes represent features,
and connections illustrate the relationships between them. Figure 1 depicts a simplified
example FM inspired by the mobile phone industry. The model illustrates how features
are used to specify and build software for mobile phones. The software loaded in the
phone is determined by the features that it supports. The root feature identifies the SPL.
The relationships between a parent feature and its child features can be divided into:

Automated Merging of Feature Models Using Graph Transformations 491

Mobile Phone

Calls

Voice Data Alarm clock

Utility Functions

Messaging

SMS MMSEMS

Connectivity

WifiBluetooth

Settings

MP3

CameraJava supportRinging tones

Games

USB

MP4

Media

OS

Symbian WinCE

Mandatory

Optional

Alternative

Or

Requires

Excludes
Name: Cost
Domain: Real
Value: 85.5

Name: Memory
Domain: Real
Value: 725

Fig. 1. A sample feature model

– Mandatory. If a child feature is mandatory, it is included in all products in which
its parent feature appears. Hence, for instance, according to the sample model, all
mobile phones must provide support for ringing tones.

– Optional. If a child feature is defined as optional, it can be optionally included in
all products in which its parent feature appears. For instance, the sample feature
model defines games as an optional feature.

– Alternative. A set of child features are defined as alternative if only one feature can
be selected when its parent feature is part of the product. As an example, according
to the model, a mobile phone will use a Symbian or a WinCE operating system but
not both in the same product.

– Or-Relation. A set of child features are said to have an or-relation with their parent
when one or more of them can be included in the products in which its parent fea-
ture appears. Hence, for instance, according to the sample model, a mobile phone
can provide connectivity support for bluetooth, USB, wifi or any combination of the
three.

Notice that a child feature can only appear in a product if its parent feature does.
The root feature is a part of all the products within the SPL. In addition to the parental
relationships between features, a FM can also contain cross-tree constraints between
features. These are typically of the form:

– Requires. If a feature A requires a feature B, the inclusion of A in a product implies
the inclusion of B in such product. Hence, for instance, in the example shown,
mobile phones including games require Java support.

– Excludes. If a feature A excludes a feature B, both features cannot be part of the
same product. As an example, the SPL represented in Figure 1 removes the possi-
bility of offering support for MP3 and MP4 formats in the same product.

Feature Models were first introduced as a part of the Feature-Oriented Domain Anal-
ysis method (FODA) by Kang back in 1990 [16]. Since then, multiple extensions to the
traditional notation have been proposed in order to increase its expressiveness [7]. In
this context, some well known extensions are the so-called Extended Feature Models
[4,5,6]. Roughly speaking, extended FMs propose adding extra-functional information
to the features using attributes. There is no consensus on a notation to define attributes.

492 S. Segura et al.

However, most proposals agree that an attribute should consist at least of a name, a
domain and a value. For instance, the feature ’MMS’ in Figure 1 includes some fea-
ture attributes using the notation proposed by Benavides et al. in [6]. As illustrated,
attributes can be used to specify extra-functional information such as cost, speed or
RAM memory required to support the feature.

2.2 Graph Transformations

Graph Grammars are a mature approach for the generation, manipulation, recognition
and evaluation of graphs [25]. Graph grammars have been studied and applied in a
variety of different domains such as pattern recognition, syntax definition of visual lan-
guages, model transformations, description of software architectures, etc. This develop-
ment is documented in several surveys, tutorials and technical reports [3,13,20,21,25].

Graph grammars can be considered as the application of the classic string grammar
concepts to the domain of graphs. Hence, a graph grammar is composed of an initial
graph, a set of terminal labels and a set of transformation rules (sometimes also called
graph productions). A transformation rule is composed mainly of a source graph or
Left-Hand Side (LHS) and a target graph or Right-Hand Side (RHS). The application
of a transformation rule to a so-called host graph, also called direct derivation, consists
of looking for an occurrence of the LHS graph in the host graph. If this match is found,
the occurrence of the LHS in the graph is replaced by the RHS of the given rule. Thus,
each rule application transforms a graph by replacing a part of it by another graph. The
set of all graphs labelled with terminal symbols that can be derived from the initial
graph by applying the set of transformation rules iteratively is the language specified
by the graph grammar.

The application of transformation rules to a given graph is called Graph Transfor-
mation. Graph transformations are usually used as a general rule-based mechanism to
manipulate graphs. Most visual modelling languages can be interpreted as a type of
graph (directed, labelled, attributed, etc.). This makes graph transformations recognized
as a suitable technology for the specification and application of model transformations
[11,13,21], model refactoring [20,23] and software merging [19,31]. Hence, as docu-
mented in the literature, the reasons to select graph transformations as a suitable ap-
proach for the transformation and refactoring of visual models are manifold:

– Graph transformations are a natural and intuitive way of performing pattern-based
visual model transformations.

– The maturity of graph transformations has provided it with a solid theoretical foun-
dation in the form of useful properties [15,22]. Hence, for instance, the properties
of sequential and parallel dependence are used to detect the set of transformation
rules that must be applied in a given sequence and the set of rules that can be applied
in parallel.

– There is a variety of mature tools to define, execute and test transformations rules.
Fujaba 1 and the AGG System2 are two of the most popular general-purpose graph

1 http://wwwcs.uni-paderborn.de/cs/fujaba/
2 http://tfs.cs.tu-berlin.de/agg/

Automated Merging of Feature Models Using Graph Transformations 493

transformation tools within the research community. Nevertheless, other tools such
as GReAT3, VIATRA24 or GROOVE5 are also starting to emerge as a consequence
of the increasing popularity of graph transformations in the model-driven develop-
ment domain.

3 Our Proposal

In this section we present our proposal. In particular, we first propose a catalogue of vi-
sual rules describing how to merge FMs. Then, we present a prototype implementation
of the proposed catalogue using graph transformations and the AGG system. Finally, we
clarify our contribution by means of an example inspired by the mobile phone industry.

3.1 Catalogue of Rules

In Appendix A (see page 503), we present a catalogue of 30 visual, technology-indepen-
dent rules to describe how to merge FMs. More specifically, our catalogue of merge
rules describes how to build a FM including all the products represented by two given
FMs.

Each merge rule consists of two input patterns of the FMs to be merged (precondi-
tions) and an output pattern of the new FM generated as a result of the merging (post-
conditions). The rules can be iteratively applied by looking for matches in the input
patterns on the two FMs to be merged. A match is an assignment of the variables of the
patterns to concrete values. The elements not mentioned in any of the patterns remain
unchanged by default. The result of the merging is defined as a new FM including all
the products represented by the merged FMs. This resulting FM could be later used as
an input model in any other merging operation.

As previously mentioned in Section 1, the merging of FMs makes sense especially
when dealing with a set of related products in an SPL domain. Therefore, in order to
make this first proposal possible, we make a double assumption:

– Input FMs represent related products using a common catalogue of features. For
the sake of simplicity, we assume that features with the same name6 refer to the
same feature and consequently to the same software artifacts.

– The parental relationship between features is equal in all the FMs. That is, a feature
must have the same parent feature in all the models in which it appears.

Figure 2 depicts one of the merge rules defined in our catalogue. The input and
output patterns of the rule are placed on the left and right side of the arrow respectively.
The sample rule illustrates the case in which a feature is defined as a child of an or-
relationship and as a mandatory feature in both inputs FMs respectively. As a result of
the merging operation, the feature is included in an or-relationship in the resulting FM
preserving the configurability options (products) and the grouping structure.

3 http://www.escherinstitute.org/Plone/tools
4 http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2
5 http://groove.sf.net
6 A name could be a string, an identifier, a signature, etc.

494 S. Segura et al.

A

BB

A

B

A

Fig. 2. A sample merge rule

A
Attribute Name: N
Domain: D1
Value: V

A
Attribute Name: N
Domain: D2
Value: V

A
Attribute Name: N
Domain: {D1} U {D2}
Value: V

Fig. 3. Merging feature attributes

Providing basic support for merging extended FMs is also a part of our contribution.
To this aim, we also define rules describing how to merge feature attributes. As an
example, Figure 3 illustrates the case in which a given feature has an attribute with the
same name in both input FMs. More specifically, both attributes have the same name
and value but different domains. As a result of the merging operation, an attribute with
the same name and value is created in the resulting model. The domain of the new
attribute consists of the union of the domains of the merged attributes. This way we
guarantee that the attribute can take the same values as in the input FMs.

3.2 Correctness of the Catalogue

We consider our catalogue of merge rules to be correct if it guarantees that the set of
products represented by the resulting FM includes, as a minimum, the set of products
represented by the merged FMs. Performing an exhaustive check of the correctness
and completeness of the catalogue of rules is out of the scope of this paper. However,
in order to perform a preliminary validation of the catalogue, we used FAMA7 [8], a
framework for the edition and automated analysis of FMs. Next, we describe the main
steps we followed to test each merge rule:

1. We modelled two example input FMs that matched the input patterns of the merge
rule to be validated.

2. We used FAMA to extract the set of products represented by the example input
FMs.

3. We created a new FM simulating the application of the given merge rule to the
example input FMs.

4. We used FAMA again to extract the set of products represented by the new FM.
5. We finally checked that the set of products represented by the input FMs were

included in the set of products represented by the output FM.

7 http://www.isa.us.es/fama

Automated Merging of Feature Models Using Graph Transformations 495

3.3 Implementation Using Graph Transformations

In this section we propose using model transformations as an appropriate mechanism
to provide automated tool support for merging FMs. In particular, we present a pro-
totype implementation of our catalogue of merge rules for merging FMs using graph
transformations.

In order to implement our proposal, we selected a popular tool within the graph
grammar community: The Attributed Graph Grammar System (AGG)8 [29]. AGG is a
free Java graphical tool for editing and transforming graphs by means of graph trans-
formations. AGG graphs may be typed over a type graph and attributed by Java objects
and types. Rule application order may be controlled by dividing rules into layers. Due to
its formal foundation, AGG offers validation support for consistency-checking of graph
transformation systems according to graph constraints, critical pair analysis to find con-
flicts between rules [20,22] and checking of termination criteria. All these reasons made
us select AGG as a suitable tool to implement our proposal.

AGG graph transformation rules consist of three parts: a left-hand side graph (LHS)
and a right-hand side graph (RHS), a mapping between nodes and edges on both sides
and a set of Negative Application Conditions (NACs). NACs are preconditions pro-
hibiting certain object structures on the graph from being transformed. Figure 4 shows
a screenshot of the AGG GUI. On the left hand side, a tree view displays the working
graph and the rules of the proposed grammar. In the upper central area, the NAC (if any)
and the LHS and RHS graphs of the selected rule are displayed. Finally, the central area
is reserved for the host graph.

Merge rules and graph transformation rules are based on very similar concepts. In
particular, both approaches use visual patterns to describe modifications in the structure
of a model/graph in terms of pre- and postconditions. Hence, in order to implement our
proposal, we mapped our catalogue of merge rules into AGG rules. Next, we outline
the main steps we followed to implement our proposal in AGG:

1. Firstly, we defined a set of typed nodes and edges in order to represent FM as
graphs. Hence, for instance, we defined a feature as a type of node and an optional
relationship as a type of edge. Additionally, we set different visual layouts for the
different types of nodes and edges in order to make graphs easily comprehensi-
ble. As an example, we used solid and dashed edges to represent mandatory and
optional relationships respectively.

2. Next, we created an attributed type graph. From an intuitive point of view, a type
graph may be considered as a meta-graph expressing the well-formedless rules that
must hold for all graphs. AGG type graphs may include abstract nodes (i.e. not in-
stantiable), node type inheritance and UML-like multiplicities. Graphs obtained as
a result of a transformation rule are automatically checked for compliance with the
type graph. This way, consistency-checking is automatically performed during the
merging process. In the current version of our prototype, the type graph was based
on a simplified version of the meta-model for attributed FMs presented in [9].

8 Version 1.6.2.2.

496 S. Segura et al.

Fig. 4. The AGG System

3. The following step was mapping each merge rule into one or more AGG rules. To
this aim, we implemented the input and output patterns of the merge rules as the
LHS and RHS graphs of the graph transformation rule respectively.

4. In addition to the LHS and RHS graphs, we finally defined additional NACs to
restrict when rules can be applied. Hence, for instance, typical NACs avoid the
execution of a transformation rule more than once.

As an example, Figure 5 shows a screenshot of the AGG rules used to implement the
merge rule presented in Figure 2. From left to right, the NAC, LHS and RHS graphs
of each rule are presented. As illustrated, different typed nodes are used to represent
features and or relationships. In a similar way, different types of edges are used to
represent the relationships between features. Additionally, both nodes and edges are
provided with attributes which are used to set properties such as the name of features or
the kind of FM a node/edge is representing (i.e. input or output).

In addition to the elements of the model, we also used some helper structures and
attributes to implement our proposal. This is a common practice when implementing
graph transformations [13]. For instance, we used auxiliary nodes (visually represented
as circles) to maintain traceability between the or relationships in the input and output
graphs. In a similar way, we used attributes to define helpful properties as the number
of children of the or relationships (see Figure 5).

Both AGG rules execute the same merging operation on the models but assume a
different starting situation. On the one hand, transformation rule 1 is executed when the
or-relation has not been created on the output FM yet. In this case, the application of
the rule implies the creation of the or-relation. On the other hand, transformation rule 2
illustrates the case in which the or-relation has been previously created as a result of a
previous transformation rule. In both cases, a NAC is used to guarantee that the rule is
applied to the same elements only once.

Automated Merging of Feature Models Using Graph Transformations 497

TRANSFORMATION RULE 1

TRANSFORMATION RULE 2

Fig. 5. AGG rules

Mobile Phone (A)

Calls

Voice Data

Utility Functions

Messaging

SMS MMS

Connectivity

Bluetooth

Settings

USBOS

Symbian WinCE Name: Speed
Domain: Real
Value: 12

Name: Memory
Domain: Real
Value: 200

Mobile Phone (B)

Calls

Voice Data

Utility Functions

Messaging

SMS MMS

Settings

MP3CameraJava supportGames

Media

OS

Symbian WinCE

Name: Memory
Domain: Real
Value: 200

EMS

Fig. 6. Feature models to be merged

AGG works exclusively with the graphs created using its editor and not with exter-
nal models. Thus, input models must be represented as AGG graphs before applying
transformations. In a similar way, once the transformation is performed, the obtained
graph must be translated to the target model. The automated translation of a FM to an
AGG graph and vice versa is out of the scope of this paper. However, since AGG uses
XML to store the graphs, we consider XSL transformations could be used as a suitable
strategy for the translations model-to-graph and graph-to-model in the context of AGG.

3.4 Overview and Running Example

A software company specialized in mobile phone control systems provides two main
families of products to its customers. The company has noticed that both families of
products share a wide common set of features, and it has decided to combine all of
them into an SPL in order to reduce development costs and time-to-market.

498 S. Segura et al.

Fig. 7. Automated merging of feature models in AGG

As a first step, the software architect has decided to design the FM of the SPL as a
starting point for driving future development. However, the high number and complex-
ity of existing products make the design of this FM a time-consuming and error-prone
activity. As a result of this, the software architect decides to use an automated approach
like the one presented in this paper in order to improve the efficiency and reliability of
the process. Next, we summarize the main steps he/she should follow to apply or re-use
our proposal:

1. Design the catalogue of merge rules to be used. Notice that different application
domains could require different merging criteria. In a similar way, other extensions
to the traditional notation of FMs could require a different set of merge rules. In our
example, the software architect selects our catalogue of rules as a suitable approach
to merge extended FMs.

2. Check the correctness of the catalogue. We have proposed using automated analysis
of FMs by means of FAMA. However, other alternatives such as using theorem
provers may be also feasible [1].

3. Implement the catalogue of rules. We propose using graph transformations and the
AGG system as a suitable approach. However, we consider other graph transforma-
tion engines could also be used for this purpose. In the context of our example, the
software architect decides to use our implementation of the catalogue in AGG.

4. Design a common catalogue of features and use it to model the FMs to be merged.
Figure 6 depicts the simplified FMs of the two families of products of the company.

5. Execute the merging process. Figure 7 illustrates a screenshot of the FM generated
in AGG as a result of the automated merging process. Notice that the input FMs
and some of the attributes are not included due to space constraints.

Once the resulting FM is generated, it could be automatically analysed to extract
helpful information such as the number of potential products, commonality of features,
set of features of minimum cost, etc [8]. This information could be later used to make
relevant design decisions such as selecting the set of features that should be part of the
core architecture of the SPL [24].

Automated Merging of Feature Models Using Graph Transformations 499

4 Related Work

This work is partially inspired by the proposal of Alves et al. [1], in which they mo-
tivate the need for refactoring FMs. In their work, the authors propose a catalogue of
refactoring rules describing the refactoring operations that can be performed on sin-
gle FMs. They also motivate the need for merging FMs (what they call bidirectional
refactorings). Additionally, the authors propose using the automated analysis of FMs,
using Alloy as a suitable mechanism, to check the correctness of the catalogue [14].
In contrast to our work, the merging of extended FMs or the automated support for
FM refactoring are topics not covered by their proposal. Nevertheless, we presume that
graph transformation could be also used as a suitable mechanism to implement their
catalogue. This way, their proposal could be complementary to ours for providing a
complete tool support for FM refactoring.

Schobbens et al. [26] survey feature diagrams variants and generalize the various
syntaxes through a generic artifact called Free Feature Diagrams (FFD). In their work,
the authors identify and define three kinds of merging operations on FMs: intersection,
union and reduced product. To the best of our knowledge, they do not provide auto-
mated support for the merging of FMs. However, we consider this a complement to
our proposal, since it states clearly the semantic of the different merging operations on
FMs. In this context, we presume that our proposal could be used to implement any of
the identified merging operations by designing an appropriate catalogue of rules.

Czarnecki et al. [12] propose an algorithm to compute a FM from a given proposi-
tional formula. They point at reverse engineering and merging of FMs as some of the
main applications of their approach. In contrast to our work, their algorithm does not
support the merging of feature attributes and cross-tree constraints.

Another related work is proposed by Apel et al. [2], who present an algebra for
Feature-Oriented Software Development (FOSD). As part of their approach, they in-
troduce the so-called Feature Structure Trees (FST) as a mechanism to organize the
structural elements of a feature hierarchically. In this context, the authors present a pro-
cedure for composing features based on the composition (merging) of FST using tree
superimposition. Roughly speaking, tree superimposition describes how to compose
trees by starting from the root and proceeding recursively. As in our work, they assume
that nodes with the same name refer to the same software artifacts. Compared to our
work, they focus on single features instead of complete FMs. In addition, they do not
consider cross-tree constraints or feature attributes as we explore in our proposal.

Liu et al. study SPL refactoring at the code level and propose what they call Feature
Oriented Refactoring (FOR) [18]. They focus on providing a semi-automatic refactoring
methodology to enable the decomposition of a program, usually legacy, into features.
This approach complements our work, since it could be used as a suitable strategy to
obtain the FMs of the legacy systems to be merged into an extractive approach.

5 Discussion and Future Work

In this paper we present our first research results toward the automated merging of FMs
by using graph transformations. However, there still are many open issues that must be

500 S. Segura et al.

addressed to provide a solid tool support. In particular, we identify several challenges
for our future work:

– Providing formal semantics to our approach. To this aim, we plan to define the
merge operation using a formal semantic for FMs [26].

– Validating the catalogue or rules to be correct and complete according to the given
semantics. We consider that the tools for the automated analysis of FMs may be
helpful for that purpose. However, we also plan to study theorem provers and model
checkers such as PVS9 or Groove10 for that aim.

– For the proof of concept performed in this paper, we deliberately made some strong
assumptions (e.g. feature must have the same name). A more complex approach
should allow the merging of FMs including synonym names or different attribute
domains. We plan to study the works in the area of the integration of database
schemas and ontologies for this aim [28].

– As we previously mentioned, some of the main advantages of using AGG are its
mechanisms for consistency-checking and conflict analysis of rule applications.
Exploiting massively these mechanisms and especially the critical pair analysis
technique to detect conflicts between merge rules [22] is an important part of our
on-going research.

– Finally, we plan to make our proposal available by integrating it into the FAMA
plug-in [8].

6 Conclusions

In this paper we propose using graph transformations as a suitable technology and as-
sociated formalism to implement the merging of FMs. In particular, we first presented a
catalogue of visual rules to describe how to merge FMs. In this context, we detailed how
we used the FAMA plug-in for a basic validation of the catalogue. Then, we introduced
a prototype implementation of our catalogue using graph transformations and the AGG
system. Finally, we looked at how to apply and re-use our proposal by means of a run-
ning example inspired by the mobile phone industry. In contrast to existing proposals,
we support the merging of FMs including feature attributes and cross-tree constraints.
We also emphasize that our proposal could be extended or adapted to support other
merging criteria (e.g. intersection) or FM’s notations.

Acknowledgments

We would like to thank the reviewers of the Second Summer School on Generative and
Transformational Techniques in Software Engineering, whose comments and sugges-
tions helped us to improve the paper substantially. We also thank Patrick Heymans for
his useful comments.

9 http://pvs.csl.sri.com/
10 http://groove.sf.net

Automated Merging of Feature Models Using Graph Transformations 501

References

1. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring product
lines. In: GPCE 2006: Proceedings of the 5th international conference on Generative pro-
gramming and component engineering, pp. 201–210. ACM Press, New York (2006)

2. Apel, S., Lengauer, C., Batory, D., Möller, B., Kästner, C.: An algebra for feature-oriented
software development. Technical Report MIP-0706, Department of Informatics and Mathe-
matics, University of Passau, Germany (July 2007)

3. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software engineering
perspective. In: ICGT 2002: Proceedings of the First International Conference on Graph
Transformation, London, UK, pp. 402–429. Springer, Heidelberg (2002)

4. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

5. Batory, D., Benavides, D., Ruiz-Cortés, A.: Automated analysis of feature models: Chal-
lenges ahead. Communications of the ACM (December 2006)

6. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated reasoning on feature models. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer,
Heidelberg (2005)

7. Benavides, D., Ruiz-Cortés, A., Trinidad, P., Segura, S.: A survey on the automated analyses
of feture models. In: Jornadas de Ingenierı́a del Software y Bases de Datos (JISBD) (2006)

8. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: FAMA: Tooling a framework for the
automated analysis of feature models. In: Proceeding of the First International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS), pp. 129–134 (2007)

9. Benavides, D., Trujillo, S., Trinidad, P.: On the modularization of feature models. In: First
European Workshop on Model Transformation (September 2005)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison-Wesley, Reading (2001)

11. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Syst. J. 45(3), 621–645 (2006)

12. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again. In: 11th
International Software Product Line Conference (SPLC 2007), pp. 23–34. IEEE Computer
Society, Los Alamitos (2007)

13. Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky, T., Prange, U., Taentzer, G.,
Varró, D., Varró-Gyapay, S.: Model transformation by graph transformation: A comparative
study. In: MTiP 2005, International Workshop on Model Transformations in Practice (Satel-
lite Event of MoDELS 2005) (2005)

14. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in alloy. In: First Alloy Work-
shop, pp. 71–80, Portland, United States (November 2006)

15. Heckel, R., Malte Küster, J., Taentzer, G.: Confluence of typed attributed graph transforma-
tion systems. In: ICGT 2002: Proceedings of the First International Conference on Graph
Transformation, London, UK, pp. 161–176. Springer, Heidelberg (2002)

16. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature–Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (November 1990)

17. Krueger, C.W.: Easing the transition to software mass customization. In: PFE 2001: Revised
Papers from the 4th International Workshop on Software Product-Family Engineering, Lon-
don, UK, pp. 282–293. Springer, Heidelberg (2002)

18. Liu, J., Batory, D., Lengauer, C.: Feature oriented refactoring of legacy applications. In: ICSE
2006: Proceeding of the 28th international conference on Software engineering, pp. 112–121.
ACM Press, New York (2006)

502 S. Segura et al.

19. Mens, T.: Conditional graph rewriting as a domain-independent formalism for software evo-
lution. In: AGTIVE 1999: Proceedings of the International Workshop on Applications of
Graph Transformations with Industrial Relevance, London, UK, pp. 127–143. Springer, Hei-
delberg (2000)

20. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel, R., Saraiva,
J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257. Springer, Heidelberg (2006)

21. Mens, T., Gorp, P.V., Varró, D., Karsai, G.: Applying a model transformation taxonomy
to graph transformation technology. Electronic Notes in Theoretical Computer Science
(ENTCS) 152, 143–159 (2006)

22. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph transfor-
mation. Software and Systems Modeling 6(3), 269–285 (2007)

23. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2), 126–
139 (2004)

24. Peña, J., Hinchey, M., Ruiz-Cortés, A., Trinidad, P.: Building the core architecture of a multi-
agent system product line: With an example from a future nasa mission. In: 7th International
Workshop on Agent Oriented Software Engineering. LNCS (2006)

25. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tions. Foundations, vol. 1. World Scientific, Singapore (1997)

26. Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Feature Diagrams: A Survey and A
Formal Semantics. In: Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE 2006), Minneapolis, Minnesota, USA (September 2006)

27. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Toward automated refactoring of
feature models using graph transformations. In: Pimentel, E. (ed.) VII Jornadas sobre Pro-
gramación y Lenguajes, PROLE 2007, Zaragoza, Spain, pp. 275–284 (September 2007)

28. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics IV, 146–171 (2005)

29. Taentzer, G.: Agg: A graph transformation environment for modeling and validation of soft-
ware. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062. Springer,
Heidelberg (2004)

30. Trujillo, S., Batory, D., Diaz, O.: Feature refactoring a multi-representation program into a
product line. In: GPCE 2006: Proceedings of the 5th international conference on Generative
programming and component engineering, pp. 191–200. ACM Press, New York (2006)

31. Westfechtel, B.: Structure-oriented merging of revisions of software documents. In: Proceed-
ings of the 3rd international workshop on Software configuration management, pp. 68–79.
ACM, New York (1991)

Automated Merging of Feature Models Using Graph Transformations 503

Appendix A. Merge Rules

A

B

A

B B

A

B

A

B B

A

B

A

B B

FM-A FM-B FM

Root Root Root

A

B

A A

B

A

B

A A

B

A

A

A

B Features (FM-B)

B Features (FM-B)

(a) Root and binary relationships

FM-A FM-B FM

A
Attribute Name: N

Domain: D1

Value: V1
A

Attribute Name: N

Domain: D2

Value: V2
A

Attribute Name: N

Domain: {D1} U {D2}

Value:

A
Attribute Name: N

Domain: D

Value: V

A A
Attribute Name: N

Domain: D

Value: V

A
Attribute Name: N

Domain: D1

Value: V
A

Attribute Name: N

Domain: D2

Value: V
A

Attribute Name: N

Domain: {D1} U {D2}

Value: V

V1 V2

(b) Feature attributes

504 S. Segura et al.

A

B

FM-A FM-B FM

B

A

A

BB

A

B

A

B

A

B

B

A

B

A

B

B

A

A

A

A

B Features (FM-B)

A

BB

A

A

B BB

A

B

A

B

A

B

A

A

A

B Features (FM-B)

B

A

B

A

A

B

A

B

A

B

B

A

(c) Or-/Alternative relationships

Automated Merging of Feature Models Using Graph Transformations 505

FM-A FM-B FM

A B A B A B

A B A B A B

A B

A B

A B A B A B

A B

A B

A B

A B

A B A B A B

A B A B

A B A B

A B A A B

A B B A B

A B A A B

A B B A B

A,B Features (FM-B)

A,B Features (FM-B)

B Features (FM-B)

A Features (FM-B)

B Features (FM-B)

A Features (FM-B)

(d) Cross-tree constraints

Modelling the Operational Semantics of

Domain-Specific Modelling Languages

Guido Wachsmuth

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
guwac@gk-metrik.de

Abstract. Domain-specific modelling languages provide modelling mea-
ns tailored to a particular domain. In Model-driven Engineering, it is com-
mon practice to specify such languages by modelling means as well. In this
paper, we investigate structural operational semantics for domain-specific
modelling languages. Thereby, we rely completely on standard modelling
means as provided by the Object Management Group. As examples, we
specify structural operational semantics forPetri nets aswell as for a stream
-oriented language from thedomain of earthquakedetection.The approach
is useful to provide prototypical tool support for domain-specific modelling
languages. It can be instrumented to specify interpreters and debuggers in
a generic way.

1 Introduction

Domain-specificmodelling languages. In Model Driven Engineering (MDE),
models are the primary engineering artefacts. Models are expressed by means
of modelling languages. This includes general-purpose languages like the Unified
Modeling Language (UML) [1] as well as domain-specific modelling languages
(DSMLs). In contrast to general-purpose languages, DSMLs provide modelling
means tailored to a particular domain [2,3]. They include concepts and notations
to which experts from this domain are used. This enables domain experts to par-
ticipate in software engineering by capturing their knowledge in precise and com-
prehensible models. Requirements for a DSML are often sketchy and evolve over
time. Thus, prototypical tool support is needed. Since the application range of a
DSML and thus its reuse will usually be limited, generative or generic solutions are
preferable. In this paper, we instrument standardised modelling means to specify
interpreters and debuggers for DSMLs in a generic way.

Model-driven language engineering. In MDE, it is common practice to spec-
ify modelling languages by modelling means. Metamodels capture the abstract
syntax of these languages. Language semantics are usually expressed by model
transformations. Thereby, language instances are transformed into instances of
another language. Often, this language is somehow executable, for example a stan-
dardprogramming language like Java.This process of code generation corresponds

R. Lämmel, J. Visser, and J. Saraiva (Eds.): GTTSE 2007, LNCS 5235, pp. 506–520, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modelling the Operational Semantics of DSMLs 507

to traditional compilation. In this paper, we address model interpretation. There-
fore, we adopt the idea of structural operational semantics from grammar-based
language engineering [4]. The semantics of a modelling language is not given by
a translation but by a transition system. A transition system consists of a set
of valid configurations and a transition relation between configurations. For the
modelling of transition systems, we rely completely on modelling means stan-
dardised by the Object Management Group (OMG). We instrument metamodels
to model configuration sets, and use model transformations to specify transition
relations.

Our approach has several advantages. First, we stay in the expert domain
to describe its semantics in terms of its structure. Domain experts understand
these structures and should be able to explain the effects of execution. Second,
semantics descriptions are instantly executable in the expert domain. This en-
ables us to test and validate the specified behaviour together with the domain
experts. Thus, our approach is well suited for prototyping. Third, we rely only
on standard modelling technologies. In a MDE setting, language engineers are
used to these. Finally, we help to transfer the good habit to define language
semantics formally from traditional DSLs [5] to DSMLs.

Structure of the paper. In the next section, we give a brief introduction to
metamodels, model transformations, and operational semantics. In Section 3,
we define the operational semantics of Petri nets by syntactic manipulation. In
Section 4, we discuss the semantics of a stream-oriented language from the do-
main of earthquake detection as a more sophisticated example. Here, we specify
the operational semantics by a transition relation between configurations. In
Section 5, we discuss the benefits of our approach in the context of language
prototyping and generic tool support for DSMLs. Related work is discussed in
Section 6. The paper is concluded in Section 7.

2 Preliminaries

Metamodels. Metamodels model the structure of models. From a language
perspective, they define an abstract syntax for a modelling language. With its
MetaObject Facility (MOF) [6], the OMG provides standard description means
for metamodels. The MOF is rooted in the UML and reuses its basic concepts
like packages, classes, properties, and associations. Constraints expressed in the
Object Constraint Language (OCL) [7] can be used to restrict the instance set of
a MOF compliant metamodel. Additionally, MOF offers sophisticated features
like property redefinition, union sets, and package merge. The semantics of these
features was formally defined in [8].

Example 1 (Petri net metamodel). Fig. 1 provides a MOF compliant metamodel
for Petri nets. A Petri net consists of places and transitions. Each transition
has input and output places. Places are marked with a number of tokens. This
number is constrained to be non-negative.

508 G. Wachsmuth

Transition

Net

Place

token : Integer token >= 0

src
0..*

snk
0..*

snk
0..*

src
0..*

transitions 0..*

1

places0..*

1

Fig. 1. A metamodel for Petri nets

Model transformations. Model transformations take a central place in MDE.
They are used to translate models to other models, e.g. platform-independent
models into platform-specific ones. Furthermore, model transformations can be
instrumented to translate models into an executable language, e.g. Java. The
OMG standard for model transformations is Query/View/Transformation(QVT)
[9]. QVT defines three model transformation languages: QVT Relations and
QVT Core are declarative languages at two different levels of abstraction. The
QVT Operational Mappings language is an imperative language. In this paper,
we focus on QVT Relations, the high-level declarative language. It extends OCL
and its semantics is given in a self-descriptive way by a mapping to QVT Core.

In QVT Relations, a transformation needs to declare parameters for holding
the models involved in the transformation. These parameters are typed over
appropriate metamodels. Upon invocation, the user needs to specify the direction
for the execution of a transformation. A transformation can be executed in the
direction of one parameter. The model held by this parameter is the target
model of the transformation. All models held by other parameters are source
models. In special cases, the target model is one of the source models. Then, the
transformation is executed as an in-place transformation, i.e. the target model
results from changing the source model.

A transformation consists of queries and relations. A query returns the result
of an OCL expression. A relation declares several domains. A domain is bound
to a model held by a parameter. Furthermore, it declares a pattern which will
be bound to elements from this model. A pattern consists of a variable and
a type declaration which may specify some of the properties of this type by
sub-patterns. All relations of a transformation which are declared as top need
to hold. If a relation does not hold, the transformation tries to satisfy it by
changing elements in domains which are bound to the target model and declared
as enforce. Relations can have two kinds of clauses: A when clause specifies a
condition under which a relation applies. A where clause specifies additional
constraints among the involved model elements, which may need to be enforced.
These concepts are illustrated in the example that follows.

Example 2 (Queries and relations in QVT Relations). Figure 2 shows a trans-
formation in QVT Relations. The transformation has two parameters input and
output both typed with the Petri net metamodel given in Ex. 1. As parame-
ter names suggest, we assume the execution of the transformation in direction

Modelling the Operational Semantics of DSMLs 509

transformation petri_sos(input:petri, output:petri) {
top relation run {

trans: Transition;
checkonly domain input net:Net{};
enforce domain output net:Net{};
where { trans = getActivated(net); fire(trans); }

}

relation fire {
checkonly domain input trans:Transition{};

}

query isActivated(trans: Transition): Boolean {
trans.src -> forAll(place | place.token > 0)

}

query getActivated(net: Net): Transition {
net.transitions -> any(trans | isActivated(trans))

}

top relation produce {
checkonly domain input p:Place{ src = t:Transition{}, token = n:Integer{} };
enforce domain output p:Place{ token = n+1 };
when { fire(t); t.src -> excludes(p); }

}

top relation consume {
checkonly domain input p:Place{ snk = t:Transition{}, token = n:Integer{} };
enforce domain output p:Place{ token = n-1 };
when { fire(t); t.snk -> excludes(p); }

}

top relation preserve {
checkonly domain input p:Place{ token = n:Integer{} };
enforce domain output p:Place{ token = n };
when { not produce(p, p); not consume(p, p); }

}
}

Fig. 2. Operational semantics for Petri nets

output. Thus, input and output will hold the source and target model, re-
spectively. The transformation is designed for in-place execution. Thus, both
parameters must be bound to the same model. Otherwise, the execution will not
yield correct results. The transformation declares the queries isActivated and
getActivated. The first query returns whether a given transition in a Petri net
is activated or not. It inspects all input places of the transition. If they are all
marked with tokens, the transition is activated and the query returns true. The
second query returns an activated transition of a given Petri net. Therein, the
OCL predicate any ensures a non-deterministic choice. Furthermore, the trans-
formation contains several relations. The relation run declares two domains. The
first domain pattern binds the variable net to a Petri net in the source model
(held by input). The second domain pattern specifies the same Petri net to occur
in the target model (held by output). The second domain is declared enforced.
Thus, the net will be created in the target model if it does not already exist.
A net in the target model, for which no corresponding net in the source model
can be found, will be deleted. In its where clause, the relation run obtains an
activated transition of the net by calling the query getActivated. Additionally,

510 G. Wachsmuth

the unary relation fire needs to hold for this transition. fire simply checks if
the transition can be found in the source model. The first relation run is declared
as top. Therefore, it has to hold to process the transformation successfully. Since
the relation fire is not declared as top, it only has to hold to fulfil other rela-
tions calling it from their where clauses. We will discuss the remaining relations
later on.

Operational semantics. The operational semantics of a language describes
the meaning of a language instance as a sequence of computational steps. Gen-
erally, a transition system 〈Γ,→〉 forms the mathematical foundation, where Γ is
a set of configurations and →⊆ Γ ×Γ is a transition relation. Inference rules are
a common way to define the valid transitions in the system inductively. Plotkin
pioneered these ideas. In his work on structural operational semantics [4], he
proposed to describe transitions according to the abstract syntax of the lan-
guage. This allows for reasoning about programs by structural induction and
correctness proofs of compilers and debuggers [10]. The structural operational
semantics of a language defines an interpreter for this language working on its ab-
stract syntax. This can be instrumented as a reference to test implementations
of compilers and interpreters. Starting from Plotkin’s ideas, structural opera-
tional semantics became very popular in traditional grammar-based language
engineering [11,12]. In this paper, we apply the idea of structural operational
semantics to model-driven language engineering. Thereby, we rely only on stan-
dard modelling techniques: Configuration sets are captured in MOF compliant
metamodels. Transition relations are specified in QVT Relations.

3 Syntactic Manipulation: Petri Nets

For some simple languages, configurations can be expressed in the language itself.
Thus, computational steps can be expressed as purely syntactic manipulation of
language instances. A well-known example for this is the lambda calculus [13].
Petri nets provide another example. In this section, we give an operational se-
mantics for Petri nets based on the metamodel given in Fig. 1. A computation
step in a Petri net chooses an activated transition non-deterministically and fires
it. The marking of a place is

(i) Increased by one token iff it is only an output place,
(ii) Decreased by one token iff it is only an input place,
(iii) Preserved otherwise.

The transformation given in Fig. 2, specifies these semantics in QVT Relations.
We discussed its relations run and fire as well as the queries getActivated and
isActivated already in Ex. 2. The relations produce, consume, and preserve
cover the different cases for places:

(i) The relation producematches a place p in the input, an incoming transition
t of this place, and its number of tokens n. It enforces an increase of the

Modelling the Operational Semantics of DSMLs 511

number of tokens in the output by one. The relation needs to hold only
if the matched transition is fired and if the matched place is not an input
place of this transition.

(ii) The relation consume works similarly. It matches a place in the input, an
outgoing transition of this place, and its number of tokens. The number of
tokens in the output is decreased by one. The relation only has to hold if the
transition is fired and if the place is not an output place of the transition.

(iii) Otherwise, preserve keeps places unchanged.

4 Configuration Transitions: A Stream-Oriented
Language

Describing operational semantics by syntactic manipulation works only for sim-
ple languages. In this section, we provide operational semantics for a stream-
oriented language by transitions between configurations. We rely on MOF to
define a metamodel for configurations and on QVT Relations to capture the
transition relation between configurations.

The language. Our group develops technologies for earthquake early warning
systems. Earthquake detection algorithms form an integral part of such systems.
Developing such algorithms requires knowledge from the domain of seismology.
To involve domain experts in the system engineering process, we provide them
with domain-specific modelling means [14].

DetectionTimeFilter

threshold : Integer

StaLtaFilter

staTime : Integer
ltaTime : Integer
threshold : Integer

DetectionWarning

processWarning()

SimulationSensor

readAcceleration()

TextWarning

processWarning()

AccelerationSensor

readAcceleration()

DatabaseSensor

readAcceleration()

SimulationWarning

processWarning()

Source Sink

Filter

sink

1

source

1

Fig. 3. A metamodel for a stream-oriented language

512 G. Wachsmuth

StaLtaFilter

staTime : Integer
ltaTime : Integer
threshold : Integer

AccelerationSensor

readAcceleration()

DetectionTimeFilter

threshold : Integer

StaLtaCfg

buffer : Integer [0..*]

DetectionTimeCfg

counter : Integer

SensorCfg

SourceSourceCfg

data : Integer [0..1]

Configuration source

11

{redefines source}
filter

11

{redefines source}
sensor

11

{redefines source}
filter

11

configs

0..*

config

1

Fig. 4. A metamodel for configurations

Seismologists might think of earthquake detection in terms of streams: Sensors
produce streams of measured data, filters process these streams, and sinks con-
sume the provided data. Fig. 3 shows a MOF compliant metamodel for a stream-
oriented language. In this paper, we mention only one kind of source, that is
acceleration sensors, and only one kind of sink, that is detection warnings.

For acceleration sensors, various implementations of readAcceleration()
can be used to provide sensor readings. For example, the method can connect to
a database of sensor readings stored during former earthquake events. Alterna-
tively, simulation of a wave propagation model might calculate the data needed.
In the same way, processWarning() can be customised to write detection warn-
ings to a file or to provide it to other simulations, e.g. for evacuation.

Filters process data. Therefore, a filter acts as a source and as a sink. We
consider two kind of filters: The Short Term Averaging/Long Term Averag-
ing (STA/LTA) detection algorithm [15] is realised by STA/LTA filters. The
idea of this algorithm is to determine the acceleration average in the short and
the long term. If the ratio between both averages exceeds a threshold, an earth-
quake is detected. The filters can be configured with values for the STA time,
the LTA time, and the threshold. Detection time filters refrain from forwarding
data for a certain amount of time. Once a filter forwards data from its source,
it stops considering data from its source for the specified amount of time.

Configurations. Configurations form the central concept for the structural
operational semantics of the stream-oriented language. As a first step, we need
to define the set of valid configurations by a metamodel as shown in Fig. 4. The
metamodel defines a configuration for each kind of sources in the stream-oriented
language. Generally, the configuration for a source contains the current data
provided by the source. Additionally, configurations for STA/LTA filters keep a
buffer of input data. Detection time filter configurations store a time counter.

Modelling the Operational Semantics of DSMLs 513

: DetectionTimeFilter

threshold = 5000

: DetectionTimeCfg

counter = 0

: DatabaseSensor

: SensorCfg

: Configuration

: StaLtaCfg

: StaLtaFilter

staTime = 1000
ltaTime = 10000
threshold = 4

: TextWarning

Fig. 5. Initial configuration of a stream-oriented model

Figure 5 shows an abstract representation of an initial configuration model for an
example stream-oriented model. Here, model elements from the stream-oriented
model are filled white while model elements from the configuration model are
filled grey.

Transition relation. The operational semantics of the stream-oriented lan-
guage is now expressed as a transition relation between configurations in time.
For simplicity, we assume equidistant time steps. We define the transition rela-
tion in QVT Relations. As in the Petri net example, the transformation changes
a configuration in-place. Its relations and queries are given in Fig. 6. We will
now discuss the details.

In each step, sensors need to provide new acceleration data. The configuration
of a sensor is updated by the new value. The relation readSensor defines this
behaviour. It matches a sensor configuration in the input and in the output model.
The output configuration is enforced to contain new data read from the sensor.

If a source provides data to a warning sink, a detection warning has to be pro-
cessed. The behaviour is specified by the relation processWarning. It matches
source configurations in the input which provide data and for which the sink
of the configured source is a warning sink. The configuration is preserved in
the output model. As specified in the where clause, the warning is processed by
calling the corresponding method on the sink.

The relation processStaLtamatches the configuration for a STA/LTA filter in
the input and the output model. Furthermore, the corresponding filter, its source,
and the configuration of the source are matched in the input model. For the output
configuration, new values for the buffer and the filter data are enforced. The new
buffer is empty if the source does not provide any data. Otherwise, the new buffer
consists of the data provided from the source and the values from the old buffer.
If the new buffer overflows, older elements will be removed from the buffer. The
ratio between short and long term average is calculated in terms of the new buffer.
If it exceeds the specified threshold of the filter, it will be used as the new filter
data. Otherwise, the filter does not provide any data.

514 G. Wachsmuth

top relation readSensor {
checkonly domain input cfg:SensorCfg{ sensor = sensor:AccelerationSensor{} };
enforce domain output cfg:SensorCfg{ data = sensor.readAcceleration() };

}

top relation processWarning {
checkonly domain input cfg:SourceCfg{

source = src:Source{ sink = warn:DetectionWarning{} }, data = d:Integer{}
};
enforce domain output cfg:SourceCfg{};
where { warn.processWarning(); }

}

top relation processStaLta {
checkonly domain input fcfg1:StaLtaCfg{

filter = filter:StaLtaFilter{
source = src:Source{}, staTime = sta:Integer{},
ltaTime = lta:Integer{}, threshold = threshold:Integer{}

},
config = cfg:Configuration{ configs = scfg:SourceCfg{ source = src } }

};
enforce domain output fcfg2:StaLtaCfg{

buffer = fillBuffer(fcfg1.buffer, lta, scfg.data),
data = provideRatio(calculateRatio(fcfg2.buffer, sta, lta), threshold)

};
when { fcfg1 = fcfg2; }

}

query fillBuffer(buffer: Sequence(Integer), size: Integer, value: Integer): Sequence(Integer) {
if value -> oclIsUndefined() then Sequence{} else

trimBuffer(buffer -> prepend(value), size)
endif

}

query trimBuffer(buffer: Sequence(Integer), size: Integer): Sequence(Integer) {
if buffer -> size() <= size then buffer else buffer -> subSequence(1, size) endif

}

query calculateRatio(buffer: Sequence(Integer), sta: Integer, lta: Integer): Integer {
if buffer -> size() >= lta then

trimBuffer(buffer, sta) -> sum() div trimBuffer(buffer, lta) -> sum()
else

undefined
endif

}

query provideRatio(ratio: Integer, threshold: Integer): Integer {
if ratio >= threshold then ratio else undefined endif

}

top relation processDetectionTime {
checkonly domain input tcfg:DetectionTimeCfg{

filter = filter:DetectionTimeFilter{ source = src:Source{}, waitTime = wait:Integer{} },
counter = 0,
config = cfg:Configuration{

configs = scfg:SourceCfg{ source = src, data = data:Integer{} }
}

};
enforce domain output tcfg:DetectionTimeCfg{ data = data, counter = wait };

}

top relation updateDetectionTime {
checkonly domain input tcfg:DetectionTimeCfg{ counter = cnt:Integer{} };
enforce domain output tcfg:DetectionTimeCfg{ data = undefined, counter = (cnt - 1).max(0) };
when { not processDetectionTime(tcfg, tcfg); }

}

Fig. 6. Operational semantics for the stream-oriented language

Modelling the Operational Semantics of DSMLs 515

The relations processDetectionTime and updateDetectionTime specify the
desired behaviour of detection time filters. The former relation matches a configu-
ration for a detection time filter with a reset counter, its source, the configuration
of this source in the input model, and the provided data. In the new configuration,
this data is provided by the filter and the counter is started. The latter relation
updates the internal counter and ensures that no data is provided by the filter. It
only has to hold if the first relation fails. The counter is decreased by one until it
equals zero.

5 Applications

Interpreters. Modelling the structural operational semantics of a language
with MOF and QVT Relations provides a generic way for interpretation. For a
compliant metamodel, the MOF standard defines how to serialise the abstract
representation of models. This ensures tool interoperability. Thus, we can load
any model compliant to a metamodel together with the QVT transformation
describing the language’s semantics into a QVT engine. Then, execution of the
transformation interprets the model.

Example 3 (Interpreting stream-oriented models). Wewant to interpret themodel
fromFig. 5.Therefor,we load the transformation specifying the operational seman-
tics of the stream-oriented language into a QVT engine. We discussed this transfor-
mation in the preceding section. Then, we apply the transformation to the initial
configuration of the stream-oriented model. This results in a new configuration.
We can instruct the QVT engine to apply the transformation until the configura-
tion is not affected anymore. During the execution, the transformation will call the
method readAcceleration to read sensor data from a database. If an earthquake
is detected, the transformation will call the method processWarning to present a
textual warning to the user.

We can benefit from the direct executability for language prototyping. Structural
operational semantics descriptions provide a generic way to specify interpreters.
The specification depends on the structure of the language and can be expressed
in the particular modelling domain which the language addresses. Thereby, exe-
cution takes place in the expert domain. In contrast to translational semantics,
error and debug information remain in the modelling domain. Thus, domain
experts can be involved into a prototyping cycle for language semantics.

Once the semantics meet the expectations of domain experts, equivalent se-
mantics can be implemented in another style. Usually, translational semantics
will be preferred to include platform-dependent information or for performance
issues. We can test these semantics as well as generated or hand written lan-
guage processors against the generic interpreter. Thereby, the interpreter acts
as a reference. Then, generated code and hand written processors should lead to
the same result as specified in the operational semantics.

516 G. Wachsmuth

Transition

/isActivated : Boolean
isSelected : Boolean

TransitionBP

onActivated : Boolean

Breakpoint

isEnabled : Boolean

PlaceBP

onToken : Boolean

Place

token : Integer

Net

isActivated = src -> forAll(token > 0) token >= 0

breakpoints

0..*

1

transition

1

place
1

0..*
snk

0..*
src

0..*
src

0..*
snk

transitions 0..*

1

places0..*

1

Fig. 7. Petri nets metamodel extended for debugging purposes

Debuggers. Debugging differs from interpretation in two ways: The user is
interested in the internal state of the execution, and the user wants to control
the execution. With our approach, we can extend operational semantics to offer
generic support for debugging. The internal state of the execution is represented
by configurations. In order to provide debugging information, the metamodel
for configurations has to include this information. The introduction of derived
attributes can provide such extra information not needed for interpretation.

Example 4 (Debugging Petri nets). When we debug Petri nets, we want to know
if a transition is currently activated or not. Furthermore, we want to trigger
which transition fires in the execution step. We can easily extend the meta-
model from Fig. 1 to include these features. The new metamodel is shown in
Fig. 7. For transitions, we introduce a derived attribute isActivated which in-
dicates the activation of the transition. Additionally, we introduce an attribute
isSelected. Only selected transitions will be fired. Furthermore, we specify
breakpoints. There are two kinds of breakpoints: Transition breakpoints inter-
rupt the execution if the referred transition becomes activated or inactivated.
Place breakpoints interrupt the execution if the referred place is marked with
the specified number of tokens.

We need to modify the transition relation in two ways: First, the query
isActivated must be expressed in terms of the new attributes. Second, ad-
ditional relations that interrupt the execution at breakpoints are required. We
omit the result due to space limitations.

In general, the configuration metamodel needs only a few extensions for debug-
ging purposes. Usually, the runtime state already provides many of the infor-
mation needed for debugging. Only a few additions are needed particular for

Modelling the Operational Semantics of DSMLs 517

debugging, e.g. breakpoints or watch expressions. Since debugging affects the
control flow of the execution, more changes are needed for the transition rela-
tion. Though, parts concerned with basic language constructs will usually stay
unchanged.

Implementation. We implemented our approach in theEclipseModelingFrame-
work [16]. Furthermore, we rely on a QVT Relations engine provided by ikv [17],
an industrial partner of our research group. We developed abstract interpreters
and debuggers for various kinds of Petri nets, an extended version of the stream-
oriented language, and for a scripting language formetamodel adaptation [18]. The
latter language provides over 50 language concepts. Its operational semantics is de-
fined by over 200 relations.

Efficiency of the developed interpreters and debuggers depends basically on
the efficiency of the QVT engine. The engine we use is designed for industrial
projects. Amongst others, it was applied in a project between ikv and the biggest
consumer electronics vendor in Korea in the area of embedded systems. The
engine provides an efficiency which is adequate for prototyping purposes. For
the metamodel adaptation language, an adaptation script of over 40 adaptation
steps is interpreted in less than a second.

Furthermore, we provide a combination of operational semantics and model-
based visualisation techniques. The approach allows for the prototyping of graph-
ical interpreters and debuggers for visual DSMLs [19]. As a technological
foundation, we rely on the Eclipse Modeling Framework and the Graphical Mod-
eling Framework for the Eclipse platform.

6 Related Work

Translational approaches. Model-to-model transformations are a common
way to define the semantics of a language model by translation into a target
language. Usually, this ends in an executable model, e.g. a program in a gen-
eral purpose programming language. For example, the Model Driven Architec-
ture [20], the OMG’s standard for MDE, suggests the transformation of platform
independent models into platform specific models. By providing standard means
for these transformations, QVT forms the center of this approach.

Translational semantics are harmful in a domain-specific context. The cor-
responding transformations are specified in terms of the source and the target
language model. While we can expect domain experts to understand the source
language model, we cannot do so with respect to the target language. Further-
more, complicated translations hide the underlying language semantics in the
details of the target language. Executing the target program, another prob-
lem arises. To assist domain experts, error messages and debugging information
need to be mapped into the source domain which is a sophisticated task. Thus,
translational semantics do not provide an appropriate level of abstraction for
prototyping purposes.

An operational approach is more suited to testing, validation, and even formal
verification than the translational approach. We stay in the expert domain to

518 G. Wachsmuth

describe the operational semantics of the language in terms of its structure. The
domain experts understand these structures and should be able to explain the
effects of execution. Furthermore, the structural operational semantics descrip-
tion is instantly executable in the expert domain. This enables us to test and
validate the specified behaviour together with the domain experts. Thus, our
approach is well suited for prototyping.

Nevertheless, translational semantics are needed in addition. They allow for
the integration of platform dependent details, can match a particular target
platform, can address existing tools and provide a higher efficiency.

Semantics description languages. Several approaches address a metamodel
based formalisation of language semantics. All these provide their own descrip-
tion means, sometimes a variation or extension of existing modelling languages.
Hausmann et al. describe the operational semantics of UML behaviour diagrams
in terms of collaboration diagrams and graph transformations [21,22]. Sunyé et
al. recommend UML action semantics for executable UML models [23]. Fur-
thermore, they suggest activities with action semantics for language modelling.
Scheidgen and Fischer follow this suggestion and provide description means for
the operational semantics of MOF compliant language models [24].

Other approaches originate in language development frameworks. The AMMA
framework integrates Abstract State Machines for the specification of execution
semantics [25]. Muller et al. integrate OCL into an imperative action language [26]
to provide semantics description means for the Kermeta framework [27]. In a sim-
ilar way, OCL is extended with actions to provide semantics description means in
the Mosaic framework [28].

All these approaches have in common the fact that they use languages par-
ticularly designed for semantics description. Users have to learn these languages
in order to use a certain tool. Then, they are restricted to a certain tool, its lan-
guage modelling formalism, and a particular way to describe the semantics of the
intended language. In contrast, our approach relies only on standard modelling
techniques. Both, MOF and QVT are OMG standards. One goal of the OMG
standards is to provide interoperability between various tools. In a MDE setting,
users are accustomed to apply these techniques. They are used to define model
transformations, e.g. for translational semantics. With our approach, they can
benefit from language engineering knowledge without switching to a different
technology space.

7 Conclusion

Contribution. In this paper, we demonstrated how to define operational se-
mantics of a language in a model-driven way. Thereby, only standard modelling
techniques were applied. The abstract syntax of a language as well as runtime
configurations were captured in MOF compliant models. The operational seman-
tics were defined inductively in a declarative way by means of QVT Relations.
Furthermore, we discussed the applications of our approach in the areas of lan-
guage prototyping.

Modelling the Operational Semantics of DSMLs 519

Future work. We plan to integrate the work presented in the paper with our
existing work on metamodel adaptation and model co-adaptation [18]. That
work is concerned with well-defined adaptation steps for metamodels similarly
to object-oriented refactoring. Adaptation steps are performed by transforma-
tion. Language instances are automatically co-adapted. It provides a first step
to agile model-driven language engineering. Generic support for execution as
mentioned in this paper is a second step. To integrate both steps, we need to
consider co-adaptation of semantics. So far, co-adaptation of language instances
only concerns the syntax. When adapting a metamodel, language instances are
co-adapted to comply to the new metamodel. Considering semantics, language
instances and semantics descriptions need to be co-adapted in a way that pre-
serves the meaning of those instances. Furthermore, adaptation of semantics is
a topic on its own. Here, we can think of transformations that extend, preserve,
or restrict semantics descriptions.

Acknowledgement. This work is supported by grants from the DFG (German
Research Foundation, Graduiertenkolleg METRIK). The author is indebted to
the anonymous referees for valuable comments as well as to Eckhardt Holz,
Daniel Sadilek, and Markus Scheidgen for encouraging discussion and helpful
suggestions. Daniel Sadilek invented the first versions of the stream-oriented
language used as the second example in this paper. The author is thankful to
Hajo Eichler, Omar Ekine, and Jörg Kiegeland for help with ikv’s QVT engine.

References

1. Object Management Group: Unified Modeling Language: Infrastructure, version
2.0 (July 2005)

2. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. IEEE Computer Society, Los
Alamitos (2008)

3. Cook, S.: Domain-specific modeling. Microsoft Architect Journal 9 (August 2006)
4. Plotkin, G.D.: A structural approach to operational semantics. Technical Report

DAIMI FN-19, University of Aarhus (1981)
5. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated

bibliography. SIGPLAN Not 35(6), 26–36 (2000)
6. Object Management Group: Meta Object Facility Core Specification, version 2.0

(January 2006)
7. Object Management Group: Object Constraint Language, version 2.0 (May 2006)
8. Alanen, M., Porres, I.: Basic operations over models containing subset and union

properties. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 469–483. Springer, Heidelberg (2006)

9. Object Management Group: MOF Query/View/Transformation, Final Adopted
Specification (July 2007)

10. da Silva, F.Q.B.: Correctness Proofs of Compilers and Debuggers: an Approach
Based on Structural Operational Semantics. PhD thesis, University of Edinburgh
(1992)

11. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal Introduction.
Wiley, Chichester (1992)

520 G. Wachsmuth

12. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra. Elsevier, Amsterdam
(2001)

13. Barendregt, H.: The Lambda Calculus its Syntax and Semantics, 2nd edn. North
Holland, Amsterdam (1987)

14. Sadilek, D., Theisselmann, F., Wachsmuth, G.: Challenges for model-driven devel-
opment of self-organising disaster management information systems. In: IRTGW
2006: Proceedings of the International Research Training Groups Workshop,
Dagstuhl, Germany, Berlin, GITO-Verlag, pp. 24–26 (November 2006)

15. Stewart, S.W.: Real time detection and location of local seismic events in central
California. Bull. Seism. Soc. Am. 67, 433–452 (1977)

16. Budinsky, F., Merks, E., Steinberg, D.: Eclipse Modeling Framework, 2nd edn.
Addison-Wesley, Reading (2006)

17. ikv: Company home page (2007), http://www.ikv.de
18. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.

(ed.) ECOOP 2007. LNCS, vol. 4609. Springer, Heidelberg (2007)
19. Sadilek, D.A., Wachsmuth, G.: Prototyping visual interpreters and debuggers for

domain-specific modelling languages. In: Schieferdecker, I., Hartman, A. (eds.)
ECMDA-FA 2008. LNCS, vol. 5095. Springer, Heidelberg (2008)

20. Object Management Group: MDA Guide Version 1.0.1 (June 2003)
21. Hausmann, J.H.: Dynamic meta modeling: A semantics description technique for

visual modeling languages. PhD thesis, University of Paderborn (2005)
22. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: A

graphical approach to the operational semantics of behavioral diagrams in uml.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000)

23. Sunyé, G., Pennaneach, F., Ho, W.M., Guennec, A.L., Jéquel, J.M.: Using uml
action semantics for executable modeling and beyond. In: Dittrich, K.R., Gep-
pert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 433–447. Springer,
Heidelberg (2001)

24. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable speci-
fications of operational semantics. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA 2007. LNCS, vol. 4530, pp. 157–171. Springer, Heidelberg (2007)

25. Di Ruscio, D., Jouault, F., Kurtev, I., Bezivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Technical Report
HAL - CCSd - CNRS, Laboratoire D’Informatique de Nantes-Atlantique (2006)

26. Muller, P., Fleurey, F., Jézéquel, J.: Weaving executability into object-oriented
meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,
vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

27. Fleurey, F., Drey, Z., Vojtisek, D., Faucher, C.: Kermeta language (October 2006)
28. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied metamodelling: A founda-

tion for language driven development (September 2004), www.xactium.com

http://www.ikv.de
 www.xactium.com

Author Index

Antkiewicz, Micha�l 3
Avgustinov, Pavel 78

Benavides, David 489

Chellappa, Srinivas 196
Costanza, Pascal 396
Czarnecki, Krzysztof 3

Dekeyser, Jean-Luc 459
de Moor, Oege 78

Ekman, Torbjörn 78

Franchetti, Franz 196

Gašević, Dragan 377
Giurca, Adrian 377

Hajiyev, Elnar 78
Haupt, Michael 396
Hirschfeld, Robert 396

Jarzabek, Stan 47
Juhász, Zoltán 474

Lukichev, Sergey 377

Mali, Yogesh 442
Marquet, Philippe 459
Milanović, Milan 377

Oliveira, José N. 134
Ongkingco, Neil 78

Püschel, Markus 196
Piel, Éric 459
Porkoláb, Zoltán 474

Ribarić, Marko 377
Ruiz-Cortés, Antonio 489

Segura, Sergio 489
Sereni, Damien 78
Sipos, Ádám 474
Stevens, Perdita 408

Taha, Walid 260
Tibble, Julian 78
Tratt, Laurence 425
Trinidad, Pablo 489

Van Wyk, Eric 442
Verbaere, Mathieu 78
Visser, Eelco 291

Wachsmuth, Guido 506
Wagner, Gerd 377

	Title Page
	Preface
	Organization
	Table of Contents
	Part I Full Tutorials
	Design Space of Heterogeneous Synchronization
	Introduction
	Relations among Software Artifacts
	Mappings, Transforms, Transformations, Synchronizers, and Synchronizations
	Unidirectional Synchronizers
	Unidirectional Synchronizers in To-One Direction
	Unidirectional Synchronizers in To-Many Direction

	Bidirectional Synchronizers
	Bidirectional Synchronizers with Reconciliation
	Comparison and Reconciliation Procedures
	Bidirectional Synchronizers for One-to-One Relations
	Bidirectional Synchronizers for Many-to-One Relations
	Bidirectional Synchronizers for Many-to-Many Relations

	Summary of Synchronizers and Tradeoffs
	Additional Design Decisions
	Creation and Representation of Updates
	Structure Identification and Matching
	Instantaneous vs. On-Demand Synchronization
	Disconnected vs. Live Synchronization
	Strategies for Selecting Synchronization Result from Multiple Choices
	Construction of Bidirectional Synchronizers
	Correctness of Synchronizers

	Related Work
	Data Synchronization in Optimistic Replication
	Data Integration and Schema Mapping
	Inconsistency Management in Software Development
	Model Management and Model Transformation

	Conclusion
	References

	Software Reuse beyond Components with XVCL (Tutorial)
	Introduction
	Software Similarity Phenomenon
	Simple and Structural Clones
	Clones in the Buffer Library

	XVCL Concepts
	XVCL by Example
	Buffer Library in Java/XVCL
	Five Generics-Friendly Buffer Classes
	Classes CharBuffer and ByteBuffer
	Evaluation of Java/XVCL Solution for the Buffer Library

	Evaluation of XVCL
	Strengths
	Weaknesses and How We Address Them

	Related Work
	Conclusion
	References

	.QL: Object-Oriented Queries Made Easy
	Introduction
	Exercises

	Program Queries
	A Simple Query
	Methods
	Sets of Results
	.QL Type Hierarchies and Casts
	Chaining
	Aggregates

	Object-Oriented Queries
	Motivating Examples
	Generic Queries
	Inheritance and Method Dispatch
	Database Schema
	From Primitives to Classes

	Implementation
	Datalog
	Translating .QL
	Implementing Datalog Queries

	Related Work
	Code Queries
	Object-Oriented Query Languages

	Conclusion
	References

	Transforming Data by Calculation
	Introduction
	Context and Motivation
	Introducing the Pointfree Transform
	Data Structures
	Data Impedance Mismatch Expressed in the PF-Style
	Calculating Database Schemes from Abstract Models
	Concrete Invariants
	Calculating Model Transformations
	On the Impedance of Recursive Data Models
	Cross-Paradigm Impedance Handled by Calculation
	On the Transcription Level
	RelatedWork
	Conclusions and Future Work
	References

	How to Write Fast Numerical Code: A Small Introduction
	Introduction
	Background
	Cost Analysis of Algorithms
	Matrix-Matrix Multiplication
	Discrete Fourier Transform
	State-of-the-Art Desktop and Laptop Computer Systems
	Using Compilers
	Exercises

	Performance Optimization: The Basics
	Finding the Hotspots
	Timing a Hotspot
	Analyzing the Measured Runtime
	Exercises

	Optimization for the Memory Hierarchy
	Performance-Conscious Programming
	Cache Optimization
	CPU and Register Level Optimization
	Parameter-Based Performance Tuning and Program Generation

	MMM
	Cache Optimization
	CPU and Register Level Optimization
	Parameter-Based Performance Tuning
	Program Generation for MMM: ATLAS
	Exercises

	DFT
	Background
	Cache Optimization
	CPU and Register Level Optimization
	Performance Evaluation
	Parameter-Based Performance Tuning
	Program Generation for DFT: Spiral
	Exercises

	Conclusions
	References

	A Gentle Introduction to Multi-stage Programming, Part II
	Introduction
	Prerequisites
	Contributions
	Organization

	Parsing
	An Interpreter for Aloe
	Denotable Values and Tags
	Exceptions and Untagging
	Environments and Assignable Variables
	Concrete Syntax
	The Interpreter for Expressions
	The Interpreter for Programs
	A Benchmark Aloe Program
	The Experiment
	Benchmarking Environment
	Baseline Results

	Converting into Continuation-Passing Style (CPS)
	CPS Conversion
	Effect of CPS Conversion on the Type of the Interpreter
	CPS Converting the Interpreter
	Taking in the Continuation
	Cases That Immediately Return a Value
	Match Statements and Primitive Computation
	Simple, Non-primitive Function Calls
	Extending Continuations and Naming Intermediate Results
	Multiple, Non-primitive Functions Calls
	Passing Converted Functions to Higher-Order Functions
	Needing to Convert Libraries
	Lambda Abstraction
	Experiment 2

	Staging the CPS-Converted Interpreter
	Types for the Staged Interpreter
	A Quick Staging Refresher
	Staging the Interpreter
	Cases That Require only Staging Annotations
	Lambda Abstraction
	Function Application
	Experiment 3

	The Interpretation of a Program as Partially Static Data Structures
	A Partially Static Type for Denotable Values
	Refining the Staged Interpreter
	Experiment 4

	Conclusions
	References

	WebDSL: A Case Study in Domain-Specific Language Engineering
	Introduction
	Process Definition and Domain Analysis
	When to Develop a DSL?
	Domain Analysis
	Outline

	Programming Patterns: Data Model
	Platform Architecture
	Programming Patterns for Persistence
	A Data Model DSL
	Building a Generator
	Syntax Definition
	Code Generation by Rewriting
	Pretty-Printing
	Generating Entity Classes
	Composing a Code Generator

	Programming Patterns: View/Edit Pages
	Generating JSF Pages
	Seam Session Beans
	Generating Session Beans
	Deriving Interfaces

	Programming Patterns: Increasing Coverage
	Strings in Many Flavors
	Collections
	Refining Associations

	Core Language: Scrap Your Boilertemplate
	Page Flow
	Content Markup and Layout
	Language Constructs
	Mapping Pages to JSF+Seam
	Generating JSF
	Generating Seam Session Beans
	Boilertemplate Scrapped

	Core Language: Extensions
	Type Checking
	Data Input and Actions
	Page Local Variables
	Queries

	Abstraction Mechanisms: Templates and Modules
	Reusing Page Fragments with Template Definitions
	Modules

	Abstraction Mechanisms: Syntactic Sugar
	Output Entity Links
	Editing Entity Collection Associations
	Edit Page

	Discussion: Web Engineering
	DSL Engineering Evaluation Criteria
	Evaluation of the WebDSL Development Process
	Evaluation of the WebDSL Language
	Static Verification
	Input Validation and Data Integrity
	Access Control
	Presentation
	Control-Flow
	Testing
	Model-View-Controller

	Discussion: Language Engineering Paradigms
	Application Frameworks
	Domain-Specific Embedded Languages
	Interpreted Domain-Specific Languages
	Domain-Specific Language Extension
	Compiled Domain-Specific Languages
	Language Engineering Tools

	Discussion: Language Engineering Challenges
	Conclusion
	References

	Part II Short Tutorials
	Model-Driven Engineering of Rules for Web Services
	Introduction
	Background
	Web Services
	Rule Modeling
	Web Rules

	Modeling Foundation
	Rule-Based Modeling Language
	UML-Based Rule Modeling Language

	Rule-Based Modeling of Services
	In-Out Message Exchange Pattern
	Robust In-only Message Exchange Pattern

	Model Transformations
	Related Work
	Conclusion
	References

	An Introduction to Context-Oriented Programming with ContextS
	Introduction
	Context-Oriented Programming
	ContextS
	Implementation-Side Constructs
	Activation-Side Constructs

	Pretty-Printing as an Example
	Regular Objects
	Visitors
	Layers

	FurtherReading
	Summary and Outlook
	References

	A Landscape of Bidirectional Model Transformations
	Introduction
	Background: Why Bidirectional Model Transformations?
	Related Work
	Terminology

	Important Differences in Circumstances
	Is There an Explicit Notion of Two Models Being Consistent?
	Does One Expression Represent Both Transformation Directions?
	Is the Transformation Bijective, Surjective or Neither?
	Must the Source Model Be Modified When the Target Changes?
	Must the Transformation Be Fully Automatic, or Interactive?
	Is the Application of the Transformation under User Control?
	Is There a Shared Tool?
	Is It Permissible to Cache Extra Information in the Models?
	What Must the Scope of the Model Sets Be?

	The QVT Relations Language and Tools
	Approaches Using MOF but Outside QVT
	XML-BasedOptions
	Graph Transformations
	Miscellaneous

	Research Directions
	Compositionality
	Specification
	Verification, Validation and Testing
	Debugging
	Maintenance
	Tolerating Inconsistency

	Conclusions
	References

	Evolving a DSL Implementation
	Introduction
	Converge
	Fundamental Features
	Compile-Time Meta-programming
	DSL Blocks

	Initial Case Study
	DSL Grammar
	Creating a Parse Tree
	Translating the Parse Tree to an AST
	Using the DSL

	Extending the Case Study
	An Extended State Machine
	Extending the Grammar
	Extending the Translation
	Communication between AST Fragments

	Evolving a Robust DSL
	DSL Errors
	Src Infos
	Augmenting Quasi-quoted Code
	Statically Detected Errors

	Related Work
	Conclusions
	References

	Adding Dimension Analysis to Java as a Composable Language Extension
	Introduction
	The AbleJ 1.4 Extensible Language Framework
	Dimension Analysis Extension
	Principles of Dimension Analysis
	Type Expressions for Dimension Analysis
	Overloading Existing Host Language Syntax
	Composing AbleJ and the Dimension Analysis Language Extension

	Related Work
	Conclusion
	References

	Part III Participants Contributions
	Model Transformations for the Compilation of Multi-processor Systems-on-Chip
	Introduction
	SoC Co-Design
	Related Works

	ExecutableModelsofSoC
	Model Transformations for MPSoC Compilation
	Implementation of the Transformations
	Example of Transformation Chain

	Advantages of Model Transformations for SoC Compilation
	Conclusions
	References

	Implementation of a Finite State Machine with Active Libraries in C++
	Introduction
	C++ Template Metaprograms
	Compile-Time Programming
	Metaprograms
	Active Libraries

	Finite State Machine
	A Mathematical Model of Finite State Machine

	Common Implementation Techniques
	Procedural Solution
	Object-Oriented Solution with a State Transition Table
	Hybrid Technique

	Our Solution
	Applied Data Structures and Algorithms
	A Case Study
	Implementation of the Algorithms

	Results
	Code Size
	Compilation Time

	Related Work and Future Work
	Conclusion
	References

	Automated Merging of Feature Models Using Graph Transformations
	Introduction
	Preliminaries
	FeatureModels
	Graph Transformations

	Our Proposal
	Catalogue of Rules
	Correctness of the Catalogue
	Implementation Using Graph Transformations
	Overview and Running Example

	Related Work
	Discussion and Future Work
	Conclusions
	References

	Modelling the Operational Semantics of Domain-Specific Modelling Languages
	Introduction
	Preliminaries
	Syntactic Manipulation: Petri Nets
	Configuration Transitions: A Stream-Oriented Language
	Applications
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

