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Abstract. Domain experts should provide relevant domain knowledge to an In-
telligent Tutoring System (ITS) so that it can guide a learner during problem-
solving learning activities. However, for many ill-defined domains, the domain 
knowledge is hard to define explicitly. In previous works, we showed how se-
quential pattern mining can be used to extract a partial problem space from 
logged user interactions, and how it can support tutoring services during prob-
lem-solving exercises. This article describes an extension of this approach to 
extract a problem space that is richer and more adapted for supporting tutoring 
services. We combined sequential pattern mining with (1) dimensional pattern 
mining (2) time intervals, (3) the automatic clustering of valued actions and (4) 
closed sequences mining. Some tutoring services have been implemented and 
an experiment has been conducted in a tutoring system 

1   Introduction  

Domain experts should provide relevant domain knowledge to an Intelligent Tutoring 
System (ITS) so that it can guide a learner during problem-solving activities. One 
common way of acquiring such knowledge is to use the method of cognitive task 
analysis that aims at producing effective problem spaces or task models by observing 
expert and novice users for capturing different ways of solving problems. However, 
cognitive task analysis is a very time-consuming process [1] and it is not always pos-
sible to define a satisfying complete or partial task model, in particular when a prob-
lem is ill-structured. According to Simon [2], an ill-structured problem is one that is 
complex, with indefinite starting points, multiple and arguable solutions, or unclear 
strategies for finding solutions. Domains that include such problems and in which, 
tutoring targets the development of problem-solving skills are said to be ill-defined 
(within the meaning of Ashley et al. [3]). An alternative to cognitive task analysis is 
constraint-based modeling (CBM) [4], which consist of specifying sets of constraints 
on what is a correct behavior, instead of providing a complete task description. 
Though this approach was shown to be effective for some ill-defined domains, a do-
main expert has to design and select the constraints carefully.   
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Contrarily to these approaches where domain experts have to provide the domain 
knowledge, a promising approach is to use knowledge discovery techniques for auto-
matically learning a partial problem space from logged user interactions in an ITS, 
and to use this knowledge base to offer tutoring services. 

We did a first work in this direction [5] by proposing a framework to learn a 
knowledge base from user interactions in procedural and ill-defined domains [5]. The 
framework takes as input sequences of user actions performed by expert, intermediate 
and novice users, and consist of applying two knowledge discovery techniques. First, 
sequential pattern mining (SPM) is applied to discover frequent action sequences. 
Then, association rules discovery find associations between these significant action 
sequences, relating them together. The framework was applied in a tutoring system to 
extract a partial problem space that is used to guide users, and thus showed to be a 
viable alternative to the specification of a problem-space by hand for the same domain 
[5, 7]. This framework differs from other works that attempt to construct a task model 
from logged student interactions such as [8], [9] and [10], since these latter are devoid 
of learning, reducing these approaches to simple ways of storing or integrating raw 
user solutions into structures.  

Although the framework [5] was shown to be useful, it can be improved in differ-
ent ways. Particularly, in this paper, we present an extended SPM algorithm for ex-
tracting a problem space that is richer and more adapted for supporting tutoring ser-
vices. This work was done following our application of the framework in the Roman-
Tutor tutoring system [5].  

The rest of the paper is organized as follow. First, it introduces RomanTutor [6] 
and the problem of SPM from user actions. Then it presents the limitations of the 
framework encountered and extensions to address these issues. Finally, it presents 
preliminary results of the application of the improved framework in RomanTutor, 
future work and a conclusion. 

2   The RomanTutor Tutoring System 

RomanTutor [6] (cf. fig. 1) is a simulation-based tutoring system to teach astronauts 
how to operate Canadarm2, a 7 degrees of freedom robot manipulator deployed on the 
International Space Station (ISS). During the robot manipulation, operators do not 
have a direct view of the scene of operation on the ISS and must rely on cameras 
mounted on the manipulator and at strategic places in the environment where it oper-
ates.  The main learning activity in RomanTutor is to move the arm to a goal configu-
ration. To perform this task, an operator must select at every moment the best cameras 
for viewing the scene of operation among several cameras mounted on the manipula-
tor and on the space station.  

In previous work [7], we attempted to model the Canadarm2 manipulation task with 
a rule-based knowledge representation model. Although, we described high-level rules 
such as to set the parameters of cameras in a given order, it was not possible to go  
in finer details to model how to rotate the arm joint(s) to attain a goal configuration. 
The reason is that for a given robot manipulation problem, there are many possibilities 
for moving the robot to a goal configuration and thus, it is not possible to define a 
complete and explicit task model. In fact there is no simple ‘legal move generator’ for 
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finding all the possibilities at each step. Hence, RomanTutor operates in an ill-defined-
domain. As a solution, we identified 155 actions that a learner can take, which are (1) 
selecting a camera, (2) performing a small/medium/big increase or decrease of the 
pan/tilt/zoom of a camera and (3) applying a small/medium/big positive/negative rota-
tion value to an arm joint. Then, we applied SPM to mine frequent action sequences 
from logged users’ interactions [5]. The resulting knowledge base served in RomanTu-
tor to track the patterns that a learner follows, and to suggest the next most probable 
actions that one should execute.  

 

 

Fig. 1. The RomanTutor User Interface 

3   Sequential Patterns Mining from User Actions  

The problem of mining sequential patterns is stated as follows [11]. Let D be a trans-
actional database containing a set of transactions (here also called plans) and a set of 
sequence of items (here called actions). An example of D is depicted in figure 2.a. Let 
A = {a1, a2, …, an} be a set of actions. We call a subset X  A an actionset and |X|, its 
size. Each action in an actionset (enclosed by curly brackets) are considered simulta-
neous. A sequence s = (X1, X2, … , Xm) is an ordered list of actionsets, where Xi  A, 
i ∈ {1,…,m}, and where m is the size of s (also noted |s|). A sequence sa = (A1, A2, 
…, An) is contained in another sequence sb = (B1, B2,…, Bm) if there exists integers 1 
≤ i1 < i2 < … < in ≤ m such that A1  Bi1 , A2  Bi2 , . . . , An  Bin. The relative sup-
port of a sequence sa is defined as the percentage of sequences s ∈ D that contains sa, 
and is denoted by supD(sa). The problem of mining sequential patterns is to find all 
the sequences sa such that supD(sa) ≥ minsup for a database D, given a support thresh-
old minsup.  

Consider the dataset of figure 2.a. The size of the plan 2 is 6. Suppose we want to 
find the support of S2. From figure 2.a, we know that S2 is contained in plan 1, 2 and 
5. Hence, its support is 3 (out of a possible 6), or 0.50. If the user-defined minimum 
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support value is less than 0.50, then S2 is deemed frequent. To mine sequential pat-
terns several algorithms have been proposed [11, 12, 13]. In our first experiment in 
RomanTutor, we chose PrefixSpan [12] as it is a promising approach for mining large 
sequence databases having numerous patterns and/or long patterns, and also because 
it can be extended to mine sequential patterns with user-specified constraints. Figure 
2.b shows some sequential patterns extracted by PrefixSpan from the data in figure 
2.a using a minimum support of 25%. In RomanTutor, one mined pattern is for exam-
ple, to select the camera 6, which gives a close view of the arm in its initial position, 
slightly decrease the yaw of camera 6, select the elbow joint and decrease a little bit 
its rotation value. Although, the set of patterns extracted for RomanTutor constitutes a 
useful problem space that capture different ways of solving problems, we present next 
the limitations of SPM encountered in our first experiment, and extensions to Prefix-
Span to address these issues. 

 
ID Sequences of actions  ID Seq. patterns Support 
1 
2 
3 
4 
5 
6 

1 2 25 46 48 {9 10 11 31}  
1 25 46 54 {10 11 25} 48  
1 2 3 {9 10 11 31} 48  
2 3 25 46 11 {14 15 48} 74  
4 1 25 27 46 48  
1 3 44 45 46 48 

 
 
  

S1 
S2 
S3 
S4 
S5 
… 

1 46 48 
1 25 46 48  
1 25 46 {10 11} 
1 {9 10 31} 
1 {9 11 31} 
… 

66 % 
50 % 
33 % 
33 % 
33 % 
… 

Fig. 2. (a) A Data Set of 6 Plans (b) Example of Sequential Patterns Extracted 

4   Extending Sequential Pattern Mining with Time Intervals 

A first limitation that we encountered is that extracted patterns often contain “gaps” 
with respect to their containing sequences. For instance, in the example of figure 2, 
action “2” of plan 1 has not been kept in S1. A gap of a few actions is ok in a tutoring 
context because it eliminates non-frequent learners’ actions. But when a sequence 
contain many or large gap(s), it becomes difficult to use this sequence to track a 
learner’s actions and to suggest a next relevant step. Thus, there should be a way of 
limiting the size of the gaps in mined sequences. Another concern is that some pat-
terns are too short to be useful in a tutoring context (for example, sequences of size 
1). In fact, there should be a way of specifying a minimum sequential pattern size. 

An extension of SPM that overcomes these limitations is to mine patterns from a  
database with time information. A time-extended database is defined as a set of time-
extended sequences s = <(t1,X1), (t2,X2),…, (tn,Xn)>, where each actionset Xx is anno-
tated with a timestamp tx. Each timestamp represents the time elapsed since the first 
actionset of the sequence. Actions within a same actionset are considered simultaneous. 
For example, one time-extended sequence could be <(0, a), (1, b c), (2, d)>, where  
action d was done one time unit after b and c, and two time units after a. The time inter-
val between two actionsets (tx,Xx) and (ty,Xy) is calculated as |tx – ty|. In this work, we 
suppose a time interval of one time unit between any adjacent actionsets, so that |tx – ty| 
become a measure of the number of actionsets between (tx, Xx) and (ty, Xy). The prob-
lem of Generalized Sequential Pattern Mining with Time Intervals (GSPM) [14] is  
to extract all time-extended sequences s from a time-extended database, such that 
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supD(s) ≥ minsup and that s respect all time constraints. Four types of constraints are 
proposed by Hirate and Yamana [14]. The constraints C1 and C2 are the minimum and 
maximum time interval required between two adjacent actionsets of a sequence (gap 
size). The constraints C3 and C4 are the minimum and maximum time interval required 
between the head and tail of a sequence. For example, for the sequence <(0, a), (1, b c), 
(2, d)>, the time interval between the head and the tail is 2 and the time interval between 
the actionset (0, a) and (1, b c) is 1.  

Hirate and Yamana [14] have proposed an extension of the PrefixSpan algorithm 
for the problem of GPSM. We present it below –with slight modifications- as it is the 
basis of our work. The algorithm finds all frequent time-extended sequences in a 
database ISDB that respect minsup, C1, C2, C3 and C4, by performing a depth-first 
search. The algorithm is based on the property that if a sequence is not frequent, any 
sequence containing that sequence will not be frequent. The algorithm proceeds by 
recursively projecting a database into a set of smaller projected databases. This proc-
ess allows growing patterns one action at a time by finding locally frequents actions.  

In the following, the notation ISDB|(t,i) represents the time-extended database re-
sulting from the operation of projecting a time-extended database ISDB with a pair 
(timestamp, item). ISDB|(t, i) is calculated as follow.  

ISDB((t,i))  
  ISDB|(t,i) := Ø. 
  FOR each sequence σ=<(t1,X1),(t2,X2)…(tn,Xn)> of 
ISDB. 
  FOR each actionset (tx,Xx) of σ containing i. 
    IF Xx/{i} = Ø 
      s :=<(tx+1-tx,ax+1), … (tn-tx,Xn)> 
    ELSE 
      s :=<(0, Xx/{i}), (tx+1-tx, ax+1), … (tn-tx, Xn)> 
    IF s ≠ Ø  and s satisfies C1, C2 and C4 
      Add s to ISDB|(t,i). 
  Return ISDB|(t,i). 

The Hirate-Yamana algorithm (described below) discovers all frequent time-extended 
sequences. 
algoHirate(ISDB, minsup, C1, C2, C3, C4)  

  R := ø.  

  Scan ISDB and find all frequent items with support   
   higher than minsup. 
  FOR each frequent item i,  
    Add (0, i) to R. 
    algoProjection(ISDB|(0, i), R, minsup,C1,C2,C3,C4). 

  RETURN R; 

algoProjection(ISDB|prefix, R, minsup, C1, C2, C3, C4)  
  Scan ISDB|prefix to find all pairs of item and  
   timestamp, denoted (t, i) satisfying minsup, C1 and 
C2. 
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  FOR each pair (t, i) found  
    newPrefix := Concatenate(prefix, (t, i)). 
    IF newPrefix satisfies C3 and C4 
      Add newPrefix to R. 
      IF (size of ISDB|newPrefix) >= minsup  
       algoProjection(ISDB|newPrefix, R, minsup,C1,C2 
C3,C4). 

To illustrate the Hirate-Yamana algorithm, let’s consider applying it to the data-
base ISDB depicted in figure 3, with a minsup of 50 % and the constraint C2 equals to 
2 time units. In the first part of algoHirate, frequent actions a, b and c are found. As a 
result <(0,a)>, <(0,b)> and <(0,c)> are added to R, the set of sequences found. Then, 
for a, b and c, the projected database ISDB|(0,a), ISDB|(0,b) and ISDB|(0,c) are cre-
ated, respectively. For each of these databases, the algorithm algoProjection is exe-
cuted. algoProjection first finds all frequent pairs (timestamp, item) that verify the 
constraints C1, C2 and minsup. For example, for ISDB| (0,a), the frequent pair (0,b) 
and (2,a) are found. These pairs are concatenated to (0,a) to obtain sequences <(0,a), 
(0,b)> and <(0,a), (2,a)>, respectively. Because these sequences respect C3 and C4, 
they are added to the set R of sequences found. Then, the projected database 
ISDB|<(0,a), (0,b)> and ISDB|<(0,a), (2,a)> are calculated. Because these databases 
contain more than minsup sequences, algoProjection is executed again. After com-
pleting the execution of the algorithm, the set of sequences R contains <(0,a)>, <(0,a), 
(0,b)>, <(0,a), (2,a)>, <(0,b)> and <(0,c)>. 

 
Fig. 3. An application of the Hirate-Yamana Algorithm (adapted from [10]) 

5   Extending SPM with Automatic Clustering of Valued Actions 

A second limitation that we encountered when we applied PrefixSpan to extract a 
problem space is that it relies on a finite set of actions. As a consequence, if some 
actions were designed to have parameters or values, they have to be defined as one or 
more distinct actions. For example, in our first experiment in RomanTutor, we catego-
rized the joint rotations as small, medium and big, which correspond respectively to 0 
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to 60, 60 to 100, and more than 140 degrees. The disadvantage with this categoriza-
tion is that it is fixed. In order to have dynamic categories of actions, we extended the 
Hirate-Yamana algorithm to perform an automatic clustering of valued actions.  

We propose to define a valued sequence database as a time-extended sequence da-
tabase, where sequences can contain valued actions. A valued action a{value}, is 
defined as an action a that has a value value. In this work, we consider that a value is 
an integer. For example, the sequence <(0,a{2}), (1,b), (2,bc{4})> contains the valued 
action a, and b with values 2 and 4, respectively. The left part of figure 4 shows an 
example of a sequence database containing valued actions. 

 
ID Time-extended sequences  Mined valued seq. patterns  Supp. 
1 
2 
3 
4 
5 
6 

<(0,a{2}), (1,bc{4})> 
<(0,a{2}), (1,c{5}))> 
<(0,a{5}), (1,c{6}))> 
< (0,f), (1,a{6}))>  
<(0, f b{3}), (1,e) , (2,f))> 
<(0,b{2}), (1,d))> 

 
  

 

<(0,a{2})> 
<(0,a{5})> 
<(0,a{2}), (1, c{5})> 
<(0,c{5})> 
<(0,f)> 
… 

33 % 
33 % 
33 % 
50 % 
33 % 
… 

Fig. 4. Applying Hirate-Yamana with Automatic Clustering of Valued Actions 

To mine patterns from a valued database, we added a special treatment for valued 
actions. We modified the action/pair counting of the Hirate-Yamana algorithm to note 
the values of the action being counted, and their sequence ids. We modified the data-
base projection operation ISDB|(t,i) so that it can be called with a valued action i and 
a set of values V={v1, v2…, vn}. If the support of i in ISDB is higher or equals to 2 * 
minsup, the database projection operation calls the K-Means algorithm [15] to find 
clusters. The K-Means algorithm takes as parameter K, a number of clusters to be 
created, and the set of values V to be clustered. K-Means first creates K random clus-
ters. Then it iteratively assigns each value from V to the cluster with the nearest  
median value until all clusters remain the same for two successive iterations. In the 
database projection operation, K-Means is executed several times starting with K=2, 
and incrementing K until the number of frequent clusters found (with size >= minsup) 
does not increase. This larger set of frequent clusters is kept. Then, the sequences of 
ISDB|(t,i) are separated into one or more databases according to these clusters. After-
ward, algoProjection is called for each of these databases with size equal or greater 
than minsup.  

Moreover, if ISDB|(t,i) is called from algoHirate and n clusters are found, instead 
of just adding <(o,{i})> to the set R of sequences found, <(0, i{vx1})>, <(0, i{vx2})> 
… <(0, i{vxn})> are added, where vx1, vx2, .. vxn are the median value of each cluster. 
Similarly, we have adapted algoProjection so that sequences are grown by executing 
Concatenate with (t, i{vx1}), (t, i{vx2}) … (t, i{vxn}, instead of only <(t,{i})>.  

The right part of figure 4 shows some sequences obtained from the execution of the 
modified algorithm with a minsup of 32 % (2 sequences) on the valued sequence 
database depicted in the left part of figure 4. From this example, we can see that the 
action “a” is frequent (with a support of 4) and that two clusters were dynamically 
created from the set of values {2, 2, 5, 6} associated to “a”. The first cluster contained 
the values 2 and 2 with a median value of 2 and the second one contained 5 and 6 
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with a median value of 5. This resulted in frequent sequences containing “a{2}”and 
some other sequences containing “a{5}”. 

The advantage of the modified algorithm over creating fixed action categories is 
that actions are automatically grouped together based on their similarity and that the 
median value is kept as an indication of the values grouped. Note that more informa-
tion could be kept such as the minimum and maximum values for each cluster, and 
that a different clustering algorithm could be used.  

A test with logs from RomanTutor permitted extracting sequential patterns contain-
ing valued actions. One such pattern indicates that learners performed a rotation of 
joint EP with a median value of 15º, followed by selecting camera 6. Another pattern 
found consists of applying a rotation of joint EP with a median value of 53º followed 
by the selection of the camera 4. In this case, the dynamic categorization enhanced the 
quality of the extracted patterns, since otherwise both patterns would be considered as 
starting with a “small rotation” of the joint EP.  

6   Extending the Hirate-Yamana Algorithm to Mine the Compact 
Representation of Closed Sequences 

A third limitation of the Hirate-Yamana algorithm and of the SPM algorithms such as 
Prefixspan is that among the mined sequences, there can be many redundant se-
quences. For example, the Hirate-Yamana algorithm could find the three frequent 
sequences <(0,a)> , <(0,a), (0,b)> and <(0,a), (0,b), (0,c)> in a database. In a tutoring 
context where we want to extract a task model, only the frequent closed or maximal 
sequences could be kept, as we are interested by the longer sequences, and this would 
allow reducing the number of sequences to consider by tutoring services. 

“Closed sequences” are sequences that are not contained in another sequence hav-
ing the same support. A closed pattern induces an equivalence class of pattern sharing 
the same closure, i.e. all the patterns belonging to the equivalence class are verified by 
exactly the same set of plans. Those patterns are partially ordered, e.g. considering the 
inclusion relation. The smallest elements in the equivalence class are called minimal 
generators, and the unique maximal element is called the closed pattern.  On the other 
hand, “maximal sequences” are sequences that are not contained in any other se-
quence. In this work, we extend our algorithm to mine closed sequences instead of 
maximal sequences, since closed sequences are a lossless compact representation of 
the set of frequent sequences. In other words, the set of closed frequent sequences 
allows reconstituting the set of all frequent sequences and their support [16] (no in-
formation is loss). 

We have extended our modified Hirate-Yamana algorithm to find only closed se-
quences. To achieve this, we have integrated the BI-Directional Extension closure 
(BIDE) checking of the BIDE+ algorithm [16], which was proposed as an extension 
of the PrefixSpan algorithm, and permits checking if a sequence is closed without 
having to maintain a set of closed sequences candidates (as many closed pattern min-
ing algorithm do). The BIDE scheme basically checks if a pattern is closed by check-
ing in the original sequences that contains the pattern if there exist one action with the 
same support that could extend the pattern. We have also implemented the BackScan 
pruning of the BIDE+ algorithm that allows stopping growing some sequences that 
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are guaranteed to not produce any closed sequences (see [16] for further information). 
The BackScan pruning has the advantage of often increasing the time performance 
over regular SPM algorithms such as PrefixSpan [16]. Because of limited space, the 
reader is invited to refer to [16] for more details on the BIDE algorithm. 

7   Extending Sequential Pattern Mining with Context Information 

A fourth limitation that we encountered when applying the PrefixSpan algorithm is 
that it does not consider the context of each sequence. In a tutoring system context, it 
would be useful, for instance, to annotate sequences with success information and the 
expertise level of a user and to mine patterns containing this information. Our solution 
to this issue is to add dimensional information to sequences. Pinto et al. [12] origi-
nally proposed Multi-dimensional Sequential Pattern Mining (MDSPM), as an exten-
sion to SPM. A Multidimensional-Database (MD-Database) is defined as a sequence 
database having a set of dimensions D={D1, D2,… Dn}. Each sequence of a MD-
Database (an MD-Sequence) possesses a symbolic value for each dimension. This set 
of value is called an MD-Pattern and is noted {d1, d2… dn}. For example, consider the 
MD-Database depicted in the left part of figure 5. The MD-Sequence 1 has the MD-
Pattern {“true”, ”novice”} for the dimensions “success” and “expertise level”. The 
symbol “*”, which means any values, can also be used in an MD-Pattern. This symbol 
subsumes all other dimension values. An MD-Pattern Px={dx1, dx2… dxn} is said to be 
contained in another MD-Pattern Py={dy1, dy2… dym} if there exists integers 1 ≤ i1 < i2 
< … in ≤ m such that dx1 ⊆ dy1, dx2 ⊆ dy2 , . . . , dxn ⊆ dyn. The problem of MDSPM 
is to find all MD-Sequence appearing in a database with a support higher than minsup. 
Figure 5 shows an MD-Database with time information and some patterns that can be 
extracted from it, with a minsup of 2 sequences.  

 
An MD-Database  Mined MD-Sequences 

ID Dimensions  Sequences  Dimensions Sequences 
1 
2 
3 
4 
5 
6 

true, novice 
true, expert 
false, novice 
false, interm. 
true, novice 
true, expert 

<(0,a),(1,bc)> 
<(0,d) > 
<(0,a),(1,bc)> 
<(0,a),(1,c), (2,d)> 
<(0,d), (1,c)> 
<(0,c), (1,d) 

 
 

 

*, novice,   
*, *    
*, novice  
true, *    
true, novice  
true, expert  

<(0,a)> 
<(0,a)> 
<(0,a), (1,b)> 
<(0,d)> 
<(0,c)> 
<(0,d)> 

Fig. 5. An Example of SPM with Dimensions and Time Information 

Pinto et al. [17] proposed three algorithms for MDSPM. The first one cannot be ap-
plied in combination with the Hirate-Yamana algorithm, as it required embedding 
dimensions as additional actions in sequences. The two other algorithms, SeqDim and 
DimSeq are based on the idea that the problem of MDSPM can be broken in two steps: 
finding sequential patterns with an algorithm such as PrefixSpan, and finding MD-
Patterns with an itemset mining algorithm such as Apriori [18, 19]. The first algorithm, 
SeqDim is executed as follow. First, frequent sequences are found by SPM. Then, for 
each sequence, the containing MD-Sequences are used to mine frequent MD-Patterns 
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which are then combined with the sequence to form MD-Sequence(s). Alternatively, 
the second algorithm, DimSeq, first perform a search for frequent MD-Patterns. Then, 
for each pattern, the containing MD-Sequences are used to mine frequent sequences, 
which are then combined with the pattern to form MD-Sequence(s). 

In our implementation, we chose SeqDim and integrated it with our extended Hi-
rate-Yamana algorithm. For MD-Patterns mining, we applied the AprioriClose algo-
rithm [19], but any itemset mining algorithm such as Apriori [17] can be used. We 
chose AprioriClose as it allows mining the set of closed MD-Patterns, and thus to 
eliminate some redundancy among the mined sequences. It is important to note that 
combining closed MD-Patterns mining and closed SPM does not results in closed 
MDSPM [20]. In future work we plan to adapt our algorithm as suggested by [20] to 
achieve closed MDSPM, and remove more redundancy.  

Applying our modified algorithm with MDSPM in RomanTutor showed to be use-
ful as it allowed to successfully identify patterns common to all expertise levels that 
lead to failure (“*, failure”), for example. Currently, we have encoded two dimen-
sions: expertise level and success. But additional dimensions can be easily added. In 
future work, we plan to encode skills involved as dimensional information (each skill 
could be encoded as a dimension). This will allow computing a subset of skills that 
characterize a pattern by finding common skills demonstrated by users who used that 
pattern. This will allow diagnosing missing and misunderstanding skill for users who 
demonstrated a pattern. 

8   Dividing Long Problems into Sub-problems  

The last improvement that we made is to how we apply the algorithm to extract a 
partial problem space. Originally, we mined frequent patterns from sequences of user 
actions for a whole problem-solving exercise. But, we noticed that in general, after 
more than 6 actions performed by a learner, it becomes hard for the system to tell 
which pattern the learner is doing. For this reason, we added the definition of “prob-
lem states”. For example, in the RomanTutor, where an exercise consists of moving a 
robotic arm to attain a specific arm configuration, the 3D space was divided into 3D 
cubes, and the problem state at a given moment is defined as the set of cubes contain-
ing the arm joints. An exercise is then viewed as going from a problem state P1 to a 
problem state PF. For each attempt at solving the exercise, we log (1) the sequence of 
problem states visited by the learner A={P1, P2… Pn} and (2) the list of actions per-
formed by the learner to go from each problem state to the next visited problem state 
(P1 to P2, P2 to P3, … Pn-1 to Pn). After many users performed the same exercise, we ex-
tract sequential patterns from (1) the sequences of problems states visited, and (2) 
from the sequences of actions performed for going from a problem state to another.  

Dividing long problems into sub-problems allow a better guidance of the learner, 
because at any moment, only the patterns starting from the current problem state have 
to be considered.  

We describe next how the main tutoring services are implemented. To recognize a 
learner’s plan, the system proceeds as follow. The first action of the learner is com-
pared with the first action of each pattern for the current problem state. The system 
discards the patterns that do not match. Each time the learner makes an action, the 
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system compares the actions done so far by the learner with the remaining patterns. 
When the problem-state changes, the system considers the set of patterns associated to 
the new problem state. If at any given moment a user action does not match with any 
patterns, the algorithm ignores the last user action or the current action to match for 
each pattern. This makes the plan recognizing algorithm more flexible and has shown 
to improve its effectiveness. At a more coarse grain level, a tracking of the problem 
states visited by the learners is achieved similarly as the tracking for actions.  

One utility of the plan recognizing algorithm for actions/problem states is to assess 
the expertise level of the learner (novice, intermediate or expert) by looking at the 
patterns applied. The plan recognizing algorithm also allows suggesting to the learner 
the possible actions from the current state. In RomanTutor, this functionality is trig-
gered when the student selects “What should I do next?” in the interface menu. In this 
case, the tutoring service selects the action among the set of patterns that has the high-
est relative support and that is the most appropriate for the estimated expertise level of 
the learner. When no actions can be identified, RomanTutor relies on a path-planner 
[6] to generate an approximate path to the goal.  

9   A Preliminary Experiment 

We conducted a preliminary experiment in RomanTutor. We have set up two scenar-
ios consisting each of moving a load with the Canadarm2 robotic arm to one of the 
two cubes (figure 6). A total of 12 users (a mix of novices, intermediates and experts) 
have been invited to execute these scenarios using the CanadarmII robot simulator. 
The number of primitive actions that have been retained is 112 (some have been rede-
fined from the original 155 to have values, thus reducing the number of different 
possible actions). The expertise levels and success/failure information was added 
manually to sequences. From this data set, we extracted 558 sequential patterns for 
problem-states and actions with the extended SPM algorithm. These patterns were 
then used as input by the tutoring services of RomanTutor. In a subsequent work 
session, we asked the users to compare the tutoring services offered in our first ex-
periment with RomanTutor with those offered with the newly extracted knowledge 
base. On the whole, users preferred the newer version, as the hints offered were gen-
erally more precise and more appropriate, and help could be provided in more situa-
tions. It was also observed that the system more often correctly inferred the estimated 
expertise level of learners by using the dimensional information. 

Figure 7 illustrates a hint message given to a learner upon request during scenario 
1. The guiding tutoring service selected the pattern that has the highest support value, 
matches the last student actions and problem-state, is marked “success” and corre-
sponds with the estimated expertise level of the learner. The given hint is to decrease 
the rotation value of the joint “EP”, increase the rotation value of joint “WY”, and 
finally to select camera “CP2” on “Monitor1”. The values on the right column indi-
cate the values associated to the action. In this context, the values “2” and “3” means 
to rotate the joints 20 º and 30 º, respectively (1 unit equals 10º). By default, three 
steps are showed to the learners in the hint window depicted in figure 7. However, the 
learner can click on the “More” button to ask for more steps or click on the “another 
possibility” button to ask for an alternative.  
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Fig. 6. The two manipulation scenarios 

 

Fig. 7. A hint generated by the guiding tutoring service 

10   Conclusion  

Following our first experiment of applying a SPM based framework [5] in RomanTu-
tor, we reported in this paper several limitations of SPM for learning procedural 
knowledge associated to a task, and proposed a new SPM framework to overcome 
these limitations. The SPM algorithm combines (1) time intervals, (2) closed sequen-
tial pattern mining, (3) multi-dimensional pattern mining and (4) the automatic clus-
tering of valued actions. We also suggested dividing problems into problem states to 
enhance the relevance of the tutoring services.  

The framework was used to extract a problem space, and support tutoring services 
in RomanTutor. Since the framework proposed in this paper and its inputs and outputs 
are domain independent, the framework can be potentially applied to any ill-defined 
procedural domains where the problem can be stated in the same way. 

For future work, we are first working on including skills as dimensional informa-
tion, and on conducting an experiment with a larger group of learners. We are also 
planning to develop new tutoring services to exploit the problem space.   

Finally, we plan to use association rules mining as in our previous work, to find as-
sociations between patterns over a whole problem-solving exercise [5]. This could 
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improve the effectiveness of the tutoring services, as it would be complementary to 
dividing the problem into problem states. For example, if a learner performed a pat-
tern p, an association rule could indicate that the learner has a higher probability of 
applying another pattern q later during the exercise than another pattern r that is avail-
able for the same problem state. 
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