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Preface

Visualization research aims to provide insight into large, complicated data
sets and the phenomena behind them. While there are different methods of
reaching this goal, topological methods stand out for their solid mathemat-
ical foundation, which guides the algorithmic analysis and its presentation.
Topology-based methods in visualization have been around since the begin-
ning of visualization as a scientific discipline, but they initially played only a
minor role. In recent years, interest in topology-based visualization has grown
and significant innovation has led to new concepts and successful applications.
The latest trends adapt basic topological concepts to precisely express user
interests in topological properties of the data.

This book is the outcome of the second workshop on Topological Methods
in Visualization, which was held March 4–6, 2007 in Kloster Nimbschen near
Leipzig, Germany. The workshop brought together more than 40 international
researchers to present and discuss the state of the art and new trends in the
field of topology-based visualization. Two inspiring invited talks by George
Haller, MIT, and Nelson Max, LLNL, were accompanied by 14 presentations
by participants and two panel discussions on current and future trends in
visualization research.

This book contains thirteen research papers that have been peer-reviewed
in a two-stage review process. In the first phase, submitted papers where
peer-reviewed by the international program committee. After the workshop
accepted papers went through a revision and a second review process taking
into account comments from the first round and discussions at the workshop.

About half the papers concern topology-based analysis and visualization of
fluid flow simulations; two papers concern more general topological algorithms,
while the remaining papers discuss topology-based visualization methods in
application areas like biology, medical imaging and electromagnetism.

The book starts with two articles demonstrating the use of finite-time Lya-
punov exponents (FTLE) in the visualization of fluid flow simulations (Garth
et al., Sadlo and Peikert). The third paper focuses on the calculation of sep-
aration surfaces in realistic CFD simulations (Wiebel et al.). It is followed
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by a paper on topology-based support for the visual analysis of complicated
molecules in biology using isosurfaces (Bajaj et al.). The calculation of con-
tour trees for scalar fields on arbitrary meshes is shown by Carr and Snoeyink.
Pathline attributes are suggested as an extension of well-known topological
concepts to unsteady fields by Shi et al. Salzbrunn and Scheuermann use
flow structures based on streamline predicates to select representative stream-
lines in three- dimensional flows. Max and Weinkauf present a method that
is guaranteed to find all critical points of a field generated by a finite set of
point charges and they demonstrate its use in the study of electrical fields
around molecules. Since the study of chaotic dynamical systems is a real chal-
lenge, Krauskopf et al. present a robust algorithm for the calculation of global
manifolds; furthermore they demonstrate it, applying it to the well-known
Lorenz system. Three applications of topological methods to fluid flow prob-
lems follow: first, a topology-guided analysis of vortex breakdown including
an approximate analytical model is given (Rütten and Böhme). Second, an
article by Peikert and Sadlo studies vortex rings using Poincaré sections. The
third article, authored by Laramee et al., identifies several tasks for topologi-
cal methods in industrial computational fluid dynamics (CFD) analysis based
on specific examples. Finally, the contribution by Thomas Wischgoll shows
the use of vector field topology for the calculation of center lines in medical
imaging data.

Overall, the book presents an informative overview of current research in
topology-based visualization and provides insight into various specific research
topics.
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Visualization of Coherent Structures
in Transient 2D Flows

Christoph Garth1, Guo-Shi Li2, Xavier Tricoche2, Charles D. Hansen2,
and Hans Hagen1

1 University of Kaiserslautern garth|hagen@rhrk.uni-kl.de
2 University of Utah lig|tricoche|hansen@sci.utah.edu

Summary. The depiction of a time-dependent flow in a way that effectively sup-
ports the structural analysis of its salient patterns is still a challenging problem
for flow visualization research. While a variety of powerful approaches have been
investigated for over a decade now, none of them so far has been able to yield repre-
sentations that effectively combine good visual quality and a physical interpretation
that is both intuitive and reliable. Yet, with the huge amount of flow data generated
by numerical computations of growing size and complexity, scientists and engineers
are faced with a daunting analysis task in which the ability to identify, extract,
and display the most meaningful information contained in the data is becoming
absolutely indispensable.

1 Introduction

Arguably the major hurdle that hampers the effort of visualization researchers
in the post-processing of transient flows is the difficulty to identify proper
defining criteria for the coherency of the structures that these flows exhibit.
Eulerian approaches focus on the patterns exhibited by streamlines at each
instant of time and lend themselves to a topological classification of the flow
features. While this leads to visualization algorithms that are computationally
efficient and benefit from a strong theoretical framework, the connection of
the corresponding structures to the physics of the flow remains unclear. The
Lagrangian perspective on the other hand offers a more intuitive account of
the material advection induced by the flow but, except in very specific cases,
there is an ambiguity attached to the definition of meaningful structures in
that setting. For this reason, some visualization techniques, most prominently
texture-based approaches, have proposed a variety of ad hoc combinations
of Eulerian and Lagrangian perspectives in order to overcome the challenge
posed by the ambiguity of patterns that is both coherent in space and time.

In this paper we leverage a concept called Finite-Time Lyapunov Exponent
(FTLE) that has its roots in dynamical systems theory and has been recently
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introduced in the fluid dynamics community to resolve this ambiguity. To
that end we propose to combine the visual effectiveness of texture-based rep-
resentations with the physically intuitive meaning of the coherent Lagrangian
structures characterized by FTLE. Our method leverages the performance of
the Graphics Processing Unit (GPU) to accelerate pre-computation of FTLE
and to create expressive animations of the flow that the user can interactively
adjust to fit the needs of his visual analysis. We present the application of
this approach to the visualization of three different transient flows obtained
through Direct Navier-Stokes simulations. While the use of a GPU implemen-
tation results in a significant speed-up of the FTLE computation, interactive
speeds are still out of reach. For this reason, and due to limitation of space,
we wish to concentrate on visualization aspects in the following and do not
discuss the technical details of a GPU implementation.

The paper is structured as follows. We first provide a brief introduction to
the notion of FTLE. We then discuss some related work in the fluid dynamics
and the visualization literature. Section 4 describes and justifies the visual-
ization methods we use while section 5 shows the results obtained for three
Computational Fluid Dynamics (CFD) data sets. Finally, we conclude our
presentation with a discussion of the benefits and current limitations of our
method and we point out interesting avenues for future work.

2 The Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE) is a geometric tool that can be
used to define and extract coherent structures in transient flows studied in a
Lagrangian framework. It has been the object of a growing interest in fluid
dynamics research over the last few years and has been successfully applied to
a variety of fluid dynamics problems. The Lyapunov exponent is in fact a basic
theoretical notion used in the analysis of dynamical systems where it permits
to characterize the rate of separation of infinitesimally close trajectories. Its
application to aperiodic time-dependent flows, however, has been only recently
proposed by Haller [6]. We introduce in the following the basic concepts that
are necessary to understand the steps involved in the FTLE computation as
we apply them in section 5. As such our presentation is voluntarily informal
and we refer the interested reader to the publications listed in section 3 for a
more in-depth treatment of this rich subject.

We start by introducing some notations. We consider a time-dependent
two-dimensional vector field v defined over a finite Euclidean domain U ⊂ IR2

and a (typically finite) temporal domain I ⊂ IR. The position x of a par-
ticle starting at position x0 at time t0 after advection along the resulting
flow is therefore a function x(t, t0,x0) satisfying x(t0, t0,x0) = x0 and
∂x
∂t

∣
∣
τ

= v(τ,x). The basic idea behind the notion of FTLE is to define asymp-
totically stable and unstable coherent structures in terms of loci of maximized
dispersion of closely seeded particles. Specifically, consider a fixed initial time
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t0 and a fixed time interval τ , defining t = t0 + τ . A linearization of the
local variations of the map x(t, t0, .) around the seed position x0 is obtained
by considering its spatial gradient Jx(t, t0,x0) := ∇x0x(t, t0,x0) at x0. We
can now use this gradient to determine the dispersion after time τ of particle
seeded around x0 at time t0 as a function of the direction dt0 along which
we move away from x0 at t0: dt = Jx(t, t0,x0) dt0 . Maximizing the norm
|dt| over all possible unit vector directions dt0 corresponds to computing the
norm of Jx(t, t0,x0) according to the matrix norm ||A|| := max|x|=1 |Ax|.
This norm is known to be the square root of the maximal eigenvalue λmax
of the positive definite matrix ATA. Therefore maximizing the dispersion of
particles around x0 at t0 over the space of possible directions around x0 is

equivalent to computing
√

λmax(Jx(t, t0,x0)T
Jx(t, t0,x0)). This quantity is

directly related to the largest finite-time Lyapunov exponent Λ(t, t0,x0) =
log(λmax(Jx(t, t0,x0)T Jx(t, t0,x0))

1
2 (t−t0)).

Practically, this quantity can be evaluated for both forward and backward
advection. Large FTLE values for forward advection correspond to repelling
material lines while large FTLE values for backward advection correspond to
attracting material lines. Assuming that the set of seed points correspond to
the vertices of a grid (e.g. the computational grid), the map x(t, t0, .) can be
evaluated by numerical integration of pathlines along the flow and its spatial
gradient can then be computed with respect to the underlying seeding grid.
As noted in [6] the proper identification of attracting and repelling material
lines requires to extract ridges from the FTLE field. Ridges of a scalar field
α correspond to loci where ∇α is orthogonal to the minor eigenvector of
the Hessian matrix ∇2α, under the assumption that the corresponding minor
eigenvalue is negative [1]. Observe that the solution proposed in [12] based on
the integration of particles along the gradient field of FTLE constitutes in fact
an approximation of an actual ridge line computation that is prone to errors.
Moreover it has performed poorly in our test cases, due in part to the noise
inherently present in our estimates of the FTLE gradient. For these reasons
we chose to present in our results the values of FTLE without extracting the
corresponding ridges. We show in section 5 that a proper color map is able to
emphasize those ridges without explicit extraction of their geometry.

3 Previous Work

As we mentioned previously, Haller has pioneered the use of FTLE as a means
to characterize coherent Lagrangian structures in transient flows [6]. In his
seminal paper he presented this approach as a geometric one, in contrast
to another analytic criterion that he proposed simultaneously based on the
notion of preservation of a certain stability type of the velocity gradient along
the path of a particle. This work followed previous papers by the same author
investigating similar criteria derived from the eigenvectors of the Jacobian
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of the flow velocity along pathlines to determine the location of Lagrangian
coherent structures in the two-dimensional setting [3, 4].

This initial research has generated in the fluid dynamics community a
significant interest in FTLE and its applications to the structural analysis of
transient flows, both from a theoretical and from a practical viewpoint. Haller
proposed a study of the robustness of the coherent structures characterized by
FTLE under approximation errors in the velocity field [7]. In the same paper,
he suggests to identify attracting and repelling material lines with ridge lines
of the FTLE field. Shadden et al. provided a formal discussion of the theory
of FTLE and Lagrangian coherent structure [13]. One major contribution of
their paper was to offer an estimate of the flow across the ridge lines of FTLE
and to show that it is small and typically negligible. An extension of FTLE to
arbitrary dimensions is discussed in [10]. These tools have been applied to the
study of turbulent flows [5, 2, 12]. They were used in the analysis of vortex
ring flows [14]. These notions were also applied to a control problem [8].

On the visualization side of things, multiple approaches have been explored
to permit the extraction and the effective depiction of the structures exhibited
by time-dependent flows. Topological methods have been applied to transient
flows in the Eulerian perspective [18, 16, 17]. Theisel et al. also proposed a
method to characterize the structure of pathlines by subdividing the domain
into sink, source, and saddle-like regions based on the divergence of the
restriction of the flow to a plane orthogonal to the pathline orientation in
space-time [17].

Additionally, texture-based representations have been considered to visu-
alize time-dependent flows while offering an effective depiction of salient
structures, see [9] and references therein. Because of the intrinsic difficulty
of defining structures that are both coherent in space and time, each of
these methods resorts to some form of ad hoc way to combine the Eulerian
and Lagrangian perspectives, leading to animations for which a physical
interpretation is typically ambiguous.

In the present work we therefore propose to combine a texture-based rep-
resentation method called GPUFLIC that we introduced recently [11] with a
visual encoding of FTLE in order to emphasize meaningful patterns in a com-
mon flow visualization modality and to clarify their relationship with coherent
Lagrangian structures.

4 Visualization of Coherent Structures

In this section, we show how a direct visualization of the FTLE field for a
given flow can be achieved. While the direct numerical computation of the
FTLE for a dense sampling of a given flow region with adequate resolution
is usually prohibitively expensive, we were able to reduce computation times
significantly be employing the computational power available through the use
of commodity graphics hardware (GPU). We will not give our method here,
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due to space considerations, but will present it in forthcoming work. Instead,
we will focus on visualization of the results of this computation.

4.1 Direct FTLE Visualization

The earliest work on direct FTLE visualization was again done by Haller [6],
who used a dense color mapping to visualize basic FTLE structures that cov-
ers all primary colors. With this approach, Lagrangian coherent structures
appear as local maximizing lines of the FTLE field. However, his visualization
is unfortunate in the sense that maximizing lines are not intuitively identifi-
able with a single color. If weaker coherent structures exist, the may have a
different color than the stronger structures elsewhere in the field. Therefore,
this technique does not lend itself well to an intuitive understanding. One
possible remedy for this is a ridge extraction followed by the visualization of
these locally maximizing lines. However, these approaches are usually highly
sensitive to numerical issues, and can result in false positives. Moreover, coher-
ent structures are presented in a skeletonized fashion, clearly describing their
existence but not the relative strength.

A second topic of importance is the temporal orientation of the FTLE com-
putation. Looking at the FTLE in forward time, it is essentially a measure
of the maximal stretching of pathlines, and is therefore a good candidate to
visualize coherent structures of a diverging nature. To achieve similar results
for converging structures, it is necessary to also look at the FTLE in back-
ward time, i.e. compute the measure of pathline convergence. In the following,
we will abbreviate these two different scalar measures FTLE+ and FTLE−

to indicate forward resp. backward temporal orientation. Again, naive color
mapping has difficulties of representing these two quantities for incompress-
ible flows, since they often show regions of saddle-type behavior where both
FTLE+ and FTLE− have a significant value together, simply because they
do not follow an exclusive-or relationship.

We therefore propose a two-dimensional color mapping scheme. First, we
normalize the FTLE fields over the space-time domain of the given dataset
to the unit interval, using the same normalization on both fields in order
to preserve the relative strength of coherent structures. Then, we apply the
two-dimensional colormap presented in Fig. 4, resulting in a visualization
that represents converging structures in blue and diverging structures in red,
encoding the relative strength through saturation. Figure 1 provides an exam-
ple. We will discuss how this enables an analysis of typical flow patterns from
FTLE visualizations in more detail in Section 5.

Although geometric context can be provided through explicit depiction
of domain boundaries and objects embedded in the flow, a more flow-centric
context is often needed to interpret FTLE visualizations in terms of flow
mechanics. In the next section, we will briefly discuss a simple yet intuitive
approach which, in combination with direct FTLE visualization, can provide
insightful visualizations.
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Fig. 1. Comparison: Direct FTLE visualization (top), UFLIC (middle), a
combination of both (bottom)

4.2 GPUFLIC

GPUFLIC [11] is the texture-based flow visualization method that we use in
conjunction with FTLE to depict the evolution of salient structures in the
transient flows introduced in the next section. This method constitutes an
efficient implementation on the GPU of an algorithm proposed by Shen and
Kao called UFLIC [15]. The basic idea of this scheme consists in advecting
a dense set of particles that deposit the color attribute that they carry as
they traverse the space time domain. At each instant in time, each pixel of
the texture covering the domain averages the contributions made by all the
particles that crossed it during the last time step, which creates a frame of
the animation. Additionally, to maintain a good contrast as the animation
progresses, a high-pass filtering step is applied to each frame and combined
with an input noise to produce the color attributes assigned to a whole new
set of particles – one per pixel – that are injected into the flow at each time
step. Refer to [11] for a more detailed description of the algorithm.
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4.3 In-context FTLE Visualization

To provide the necessary context for FTLE visualization, we propose a simple
combination of the FTLE and GPUFLIC flow visualizations. By multiplica-
tively weighting the color channels in the images generated by both methods
for the same domain (with the same integration parameters), we obtain more
expressive visualizations (see e.g. Fig. 1). This is essentially facilitated by the
dense nature of GPUFLIC in contrast to the sparse representation typically
obtained with FTLE in the presence of clearly defined structures. Where GPU-
FLIC expresses the basic Lagrangian information such as flow direction and
magnitude, FTLE complements this nicely with information about coherence
and convergence.

A slightly different visualization effect is achieved by encoding FTLE infor-
mation into a single scalar field, based on the balance of convergence and
divergence of pathlines. Since, in the total absence of either, the flow is uni-
form, these properties can be augmented with an interpretation in terms of
forcing the flow into certain patterns: at a point of high divergence, the flow
is forced away from this point. The opposite is true for points of high conver-
gence. A good analogy is the gradient field of a scalar height field. Therefore,
by encoding the balance between FTLE+ and FTLE− in a scalar field, we
draw on a natural physical understanding of height fields and their gradients.
Again, the resulting visualization is enhanced with the FTLE and GPUFLIC
results as texture. Fig. 6 demonstrates this.

Having discussed several possible techniques to apply the FTLE for direct
visualization of two-dimensional flow fields, we move on to specific datasets
and the visualization results obtained there using these methods.

5 Results

All specific visualization examples described in this section center on results
obtained from CFD datasets. They are adaptive-resolution, time-adaptive
unsteady direct numerical simulations of the incompressible Navier-Stokes
equations. Three basic types of flow were chosen because each of them lends
itself well to illustrate different aspects of FTLE-based visualization. We only
treat the first dataset in detail and, due to space limitations, only present
basic results for the other two.

5.1 Kármán Vortex Street

The Kármán Vortex Street is one of the most widely known patterns in fluid
mechanics. It consists of a vortex street behind a cylinder and is a special
case of unsteady flow separation from bluff bodies embedded in the flow. It is
quite well understood and therefore an ideal test case for many applications.
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Figure 1 illustrates the basic modes of direct unsteady flow visualization
presented in this work. The top image shows only the direct FTLE color map.
It identifies the separation structures behind the cylinder (red) that separate
the region of vortex genesis directly behind the cylinder from the surround-
ing flow. The curved attachment structures (blue) visualize the convergence
of material at the vortices. As the flow moves away from the cylinder, these
structures are essentially advected and grow weaker. We observe that for a
ridge-line type visualization (without encoding of feature strength), the weak-
ening of structures would not be observable. The combination of FTLE and
GPUFLIC (bottom image of Fig. 1) allows for a visual identification of indi-
vidual vortical structures. Since they are necessarily counterrotating, FTLE
depicts the boundaries as line-type divergent regions. GPUFLIC alone does
not achieve an identification of structures except close to the cylinder (mid-
dle image) and is only comprehensible if enhanced by FTLE visualization
(Fig. 6).

We further employ this well-understood example to study some of the
properties of the Finite-Time Lyapunov Exponent. Figure 5 shows the effect
of different integration lengths on the FTLE computation. As a general rule,
coherent structures become more pronounced with increasing integration time,
as pointed out in [12]. On the other hand, long integration (in comparison to
the reference time, in other words the natural time scale of the problem) may
yield coherent structures that are not actually meaningful for short-term flow
evolution, see [7]. We conclude from this that the reference time, which can
be interpreted as a measure for the rate of change of the flow field, seems like
a good choice for the integration length.

A related topic is the application of FTLE visualization to stationary flow
fields. If the integration length is (theoretically) increased to infinity in such
fields, the local maximum lines of the resulting coherent structures should
coincide with the topological graph of the flow field. Figure 2 illustrates the
resulting features (top image) in comparison to the unsteady results (bottom
image). Behind the cylinder, the structures are very topological in nature,
i.e. the are attracting and repelling material lines intersecting at saddle-like
points. However, the vortical characterization is lost as the flow is advected
(topology is not Galilean invariant), and the flow pattern is unclear. Over-
all, these results suggest that FTLE-type analysis is a possible adaptation of
topological methods to unsteady flows.

5.2 Heated Cylinder Flow

This example was computed using the classical Boussinesq approximation to
simulate the flow generated by a heated cylinder. This approximation adds a
source term proportional to the temperature (modeled as a diffusive material
property) to the vertical component of the velocity field. The cylinder serves
as a temperature source and thereby generates a plume of upward flowing
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Fig. 2. Comparison: Direct FTLE visualization, steady case (top), unsteady case
(bottom)

material. As the plume moves upward, its outer layers exchange heat with
the surrounding flow, resulting in inhomogeneous friction and hence turbu-
lent flow. Figure 7 shows four timesteps of the resulting visualization using
the proposed methods. The interpretation here is more difficult than for the
previous dataset since there is more structure on smaller scales, and hence
more detail. Quite evident, however, is the clear separation of plume-related
flow from the overall surrounding flow.

5.3 Rayleigh-Taylor instability

The term “Rayleigh-Taylor instability” essentially refers to the interactions
of two fluids of different density. In this example, we have chosen an initial
configuration in which a denser fluid rests on top of a lighter fluid. As the
simulation progresses, the upper fluid is drawn downwards by gravity, resulting
in the typical (inverse) mushroom structure. This flow differs from the already
presented examples in several respects.

First, the time resolution is limited by the appearance of small-scale struc-
tures at the material interface whose temporal evolution must be correctly
resolved. The resulting GPUFLIC visualization is unsatisfying due to the
strong variation of scales that makes it difficult to choose an integration time
that will equally accentuate all relevant structures. Therefore, to provide con-
text to the FTLE visualization, we have added the material interface to the
resulting images (Figure 3, black lines). This provides enough orientation to
make results comprehensible.
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Fig. 3. Direct FTLE visualization for the Rayleigh-Taylor instability, context is
provided by the boundary between the two fluids

Fig. 4. Colormap

The second difference to the previous examples is the relative weakness
and large extent of coherent structures. While one would expect the material
interface to show up clearly in the FTLE images, this is not the case. Enlarging
the integration time to provide for more coherent structures is ruled out by the
range of the simulation, since clearly it is not possible to integrate pathlines
past the end of the simulation. We conclude that this flow contains only few
long-term coherent structures and is mainly driven by small-scale motion. In
comparison to the previous examples, FTLE values are an order of magnitude
smaller, which is obscured in visualization by the normalization we apply
(see 4).
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Fig. 5. Comparison: Direct FTLE visualization, different integration times. 0.25
(top), 0.5 (middle), 0.75 (bottom)

Fig. 6. Height field visualization of FTLE with UFLIC texture and FTLE color
coding

6 Discussion

In this paper, we have empirically studied the Finite Time Lyapunov Exponent
and its applications in the visualization of time-dependent planar flows. We
have shown how the visualization can be greatly enhanced by an explicit choice
of color mapping and a combination with the GPUFLIC technique. Further-
more, we have taken first steps to examine various aspects of the FTLE such as
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Fig. 7. Four timesteps of the heated cylinder flow, with evolution from top-left to
bottom-right

dependence on integration time and application to steady flows. These aspects
were illustrated on three typical examples of unsteady, two-dimensional flows.

Future work seems promising and manifold: While we were able to produce
good visualization results for the test cases, we would like to study applica-
tion examples, where the FTLE can possibly help in solving some of the
more difficult problems in flow analysis, like the extraction of separation and
attachment lines on curve surfaces. As a general theme, a generalization of
the presented concepts and algorithms to higher dimensions seems necessary
to study unsteady volume flows.
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Visualizing Lagrangian Coherent Structures
and Comparison to Vector Field Topology

Filip Sadlo and Ronald Peikert

Computer Graphics Laboratory, Computer Science Department,
ETH Zurich, Switzerland {sadlo, peikert}@inf.ethz.ch

Summary. This paper takes a look at the visualization side of vector field anal-
ysis based on Lagrangian coherent structures. The Lagrangian coherent structures
are extracted as height ridges of finite-time Lyapunov exponent fields. The result-
ing visualizations are compared to those from traditional instantaneous vector field
topology of steady and unsteady vector fields: they often provide more and better
interpretable information. The examination is applied to 3D vector fields from a
dynamical system and practical CFD simulations.

1 Introduction

Vector field topology (VFT) is often used to obtain a simplified representa-
tion of a vector field or phase space of a dynamical system. Introduced to
the visualization community by Helman et al. [7], it also allows deeper insight
into the structure of vector fields. VFT deals with the detection, classifica-
tion and global analysis of critical points (isolated zeros of the vector field).
The manifolds that are defined by the eigenvectors of the velocity gradient at
these points can be computed by integrating streamlines (for 1D manifolds)
or stream surfaces (for 2D manifolds). According to the eigenvalues, the man-
ifolds can be stable (negative real part) or unstable (positive real part). In
other words, a stable manifold is the set of all trajectories that converge to
the critical point in positive time [1]. The manifolds are also called separatri-
ces because they separate regions of different flow behavior in the respective
direction of time.

However, there is one important drawback of the method: it is meaningful
in a direct sense only for steady vector fields (autonomous dynamical systems).
One reason for this limitation is that pathlines usually diverge from stream-
lines and that critical points often move in unsteady vector fields. Unsteady
vector fields are often analyzed by VFT of isolated time steps. Although this
is hard to interpret and gives no precise information about the true behavior,
it gives an instantaneous picture and can give insight especially when applied
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to derived fields. Other approaches to a time-dependent topology based on
path lines are that of Theisel et al. [16] and Shi et al. [14].

The advantage of the concept of coherent structures (Section 2) is that
it shows the true behavior, is clearly physically motivated, scale-aware and
therefore noise-insensitive, and easy interpretable, even for unsteady vector
fields.

This paper describes the concept of Lagrangian coherent structures and
how they are obtained by filtered ridge extraction from finite-time Lyapunov
exponent in Section 2. In Section 3 FTLE ridges are extracted from steady
and unsteady 3D vector field examples and compared to vector field topology.

2 Lagrangian Coherent Structures

In recent years, the concept of Lagrangian coherent structures (LCS) is
attracting attention in the field of vector field analysis, especially since Haller
[4] has shown that LCS can be obtained by detecting local extrema in the
finite-time Lyapunov exponent (FTLE) (explained in Section 2.1). Material
lines or surfaces (LCS) are attracting if infinitesimal perturbations converge
to these structures in forward time and repelling if they are attracting in back-
ward time. According to Haller [4], attracting LCS can be obtained as local
maxima, or ridges (approximated as height ridges described in Section 2.2), of
backward-time FTLE, and the repelling ones as ridges in forward-time FTLE.
Stable and unstable manifolds tend to have its analog in repelling and attract-
ing material lines or surfaces, at least for steady vector fields (see also results
in Section 3). In contrast to vector field topology, LCS tend to be insensitive
to short-term perturbations and small-scale noise, such as turbulence, due to
their Lagrangian definition. Additionally, LCS are usually more appropriate
for unsteady vector fields due to their clear physical motivation and inter-
pretability. Note that LCS of unsteady fields usually deform and move over
time but are still easy to interpret.

2.1 Finite-Time Lyapunov Exponent

The finite-time Lyapunov exponent (FTLE) measures the separation (or
expansion) rate of nearby particles when advected by the flow for a given
time T . For a n-dimensional vector field, there are n Lyapunov exponents.
Here we are only interested in the largest FTLE. It is a scalar Lagrangian
measure stored at the starting point of the respective trajectory. According to
Haller [4] the FTLE can be computed by advecting each sample point x ∈ D
of an arbitrary grid at time t0 with the flow for time T , resulting in a flow
map φt0+T

t0 (x) that maps x to its advected position. We decided to stop the
advection if the point reaches a domain boundary and store the position on
the boundary in the flow map.
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The maximum separation of two close particles can be computed from the
gradient of the flow map: it is the spectral norm of its gradient. In other words:
to measure the maximum separation one has to seed the two particles along
the direction of maximum expansion, which is the direction of the eigenvector
belonging to the largest eigenvalue of

Δ(x) = (∇φt0+T
t0 (x))� · ∇φt0+T

t0 (x). (1)

(1) is called the Right Cauchy-Green deformation tensor, measuring the square
of the distance change due to deformation. Accordingly, the maximum separa-
tion is the square root of the largest eigenvalue of Δ(x). Lyapunov exponents
are used to measure exponential growth rates of perturbations. Therefore the
logarithm of the resulting value is computed and additionally normalized by
absolute advection time |T |, leading to the following formulation for the largest
FTLE denoted as σT

t0 :

σT
t0(x) =

1
|T | ln

√

λmax(Δ(x)). (2)

The reader is referred to the work of Haller for further information on LCS
and FTLE [4, 5], and vortices and FTLE [6].

2.2 Height Ridges

Height ridges are local maxima in a relaxed sense. More precisely, height
ridges are locations where a scalar field s has a local maximum in at least
one direction. More general, height ridges are d-dimensional manifolds in n-
dimensional space with n > d ≥ 0.

The ridge criterion can be formulated using the gradient and the Hessian
of s. Note that for a height ridge, the eigenvectors belonging to the d largest
eigenvalues λi (i = 1, . . . , d) of the Hessian point along the ridge, whereas the
eigenvectors of the (n − d) smallest eigenvalues λj (j = d + 1, . . . , n) point
orthogonally to the ridge. One necessary condition for a ridge is that the
derivatives in λj -eigenvector directions are zero. This leads to the condition

ελj · ∇s = 0 (3)

with ελj the eigenvector belonging to λj . The other condition for a height
ridge is that the second derivatives in ελj directions are negative, formulated
as

λj < 0. (4)

Valley lines (the opposite of height ridges) are obtained by computing height
ridges of the field −s. The reader is referred to the work of Eberly [2],
Lindeberg [12], and the thesis of Majer [13] for further details.
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For the extraction of 2D ridges in the 3D domain, one would like to use
e.g. Marching Cubes. However, since an eigenvector is not oriented, direct
application of these methods to (3) fails because the eigenvectors at the
nodes of a cell can be inconsistently oriented. For their Marching Ridges,
Furst et al. [3] use PCA to achieve local consistency of the eigenvectors of
a cell. Kindlmann et al. [10] achieve per-cell eigenvector consistency by sam-
pling along each edge of the cell and observing eigenvector rotation. Inter-cell
consistency is circumvented by a subsequent pass over the triangles that fixes
their orientation.

In this work, per-cell eigenvector consistency is guided by PCA of the
eigenvectors at the nodes of the cell, according to Furst et al.. We experi-
enced non-orientable ridge surfaces in some applications. Flat shading and
bi-directional lighting was chosen in these cases.

2.3 FTLE Ridge Filtering

Because ridge extraction involves computation of second derivatives, noise
amplification can become an issue. Smoothing is applied in these cases in
order to obtain significant visualizations. One has to keep in mind however,
that this tends to deform the LCS, i.e. particles can permeate the computed
FTLE ridges to a certain degree. It is therefore advisable to verify the LCS
using trajectories (for steady vector fields) or animations of LCS and particles
(unsteady vector fields).

Smoothing is realized by incorporating it into the gradient computation.
In our case, the gradient at a given node is computed by fitting a linear
vector field to its neighboring nodes in a Least Squares sense. The degree of
smoothing can be controlled by adjustment of the neighborhood range.

The finite-time Lyapunov exponent measures the amount of separation.
It is therefore straight-forward to use it to filter out parts of ridges with
low separation property. This approach is physically motivated and therefore
results in relevant and consistent visualizations. It is therefore our favorite
method for FTLE ridge filtering.

Filtering connected components of the final mesh by their area is also an
effective method for improving the visualization. Small connected components
of ridges are likely to be noise, as long as the other filtering conditions did not
disrupt the ridges because of low tolerance.

Another approach is to use the second derivative across the ridge (λn) for
filtering out “flat” ridges. Although it turned out that its effect was compara-
ble to filtering by FTLE in our examples, it is only geometrically motivated
and therefore less preferable. Therefore it was not used for the results in
Section 3, except for the vortex ring in Section 3.4.

In order to filter out ridges that arise due to trajectories that reach the
domain boundary, it is allowed to filter out ridge regions by advection time of
the corresponding trajectories. As noted in Section 2.1, pathline integration
is stopped if the particle reaches a domain boundary. The advection time is
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smaller than T in these cases and a threshold can be used for suppressing
them.

During ridge extraction by marching ridges (Section 2.2), the necessary
ridge condition (4) and filtering conditions are tested at the vertices of the
resulting triangles and triangles that violate them are rejected. Triangle trim-
ming was not implemented in the current approach, leading to zigzag ridge
borders. Figures 9(c)–9(e) show an example of FTLE ridge filtering.

3 Results

The described methods are applied to different vector fields. The first example
is the analytic and steady ABC flow (Section 3.1). Then 3D saddles in isolated
time steps of an unsteady Francis water turbine CFD simulation are examined
(Section 3.2), and vector field topology is compared to FTLE ridges. In Sec-
tion 3.3 the flow around the divider of the same CFD result is analyzed but
this time both, in a steady and unsteady manner. Section 3.4 takes again a
look at the Francis dataset, but this time at two vortices. Finally, Section 3.5
examines a steady-type Pelton water turbine CFD simulation.

3.1 ABC Flow

Vector field topology and FTLE ridges are applied to the analytic steady ABC
flow field. This flow has three parameters A, B, and C, (in this example set to√

3,
√

2, and 1 according to Henon [8]) named after the researchers Arnold,
Beltrami, and Childress, and can be written as the dynamical system

ẋ = A sin z + C cos y
ẏ = B sinx + A cos z
ż = C sin y + B cosx

. (5)

It is triple-periodic in space and divergence-free. Despite of its simple Eulerian
nature, it exhibits complicated Lagrangian structure such as invariant tori
and chaotic advection [9] if considered as a three-dimensional torus. Other
interesting properties are that it is identical to its curl and therefore fully
helical. This is the cause why vortex core line detection based on helicity, such
as that by Levy et al. [11], fail on this flow. The ABC field was discretized on
a regular grid in order to show the applicability of the method to practical
vector fields.

Figure 8(a) shows the VFT view to the field. Critical points have been
determined and streamlines have been computed in positive and negative time.
Streamlines are seeded on two rings of seeds around the critical point. The
circles are usually chosen coplanar with the 2D manifold, have user defined
radius and user defined offset along the direction of the 1D manifold. Unfor-
tunately it turns out that the 2D manifolds are degenerate in this case of
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the ABC flow, meaning that one eigenvalue of the velocity gradient is zero.
Therefore this is a steady case where the vector field topology approach fails
or may not be practical to give a complete image of the flow structure.

Haller already investigated the ABC flow using FTLE [4], but without
extracting ridges. Figures 8(b)–8(d) show the LCS view to the field using
ridges. It can be seen that the ridges are consistent with the manifolds: the
critical points are located at the intersection of positive-time and negative-
time FTLE ridges, and the streamlines in positive and negative time follow the
corresponding ridges. FTLE was only computed at the “original” nodes in the
first period of the ABC flow consisting of 303 nodes, but the integration time
of 2 caused the trajectories to reach neighboring periods of the ABC flow
as well. Ridges were only generated in regions with FTLE higher or equal
to 0.9 for suppressing weak separation phenomena, gradient neighborhood
range for smoothing during ridge extraction was 2 (as in all examples), and
connected components below 50 triangles have been suppressed. The compu-
tation took 113 seconds. Figures 9(a) and 9(b) show another view and some
of the trajectories used for computation.

To also visualize the short-time separation aspect of the flow, short-time
FTLE was computed and color-coded on the long-time FTLE ridges. Fig-
ure 8(e) shows the result of integration time +0.001 (which took 22 seconds) on
the positive-time ridges. It can be seen that the short-time FTLE exhibits local
maxima near the critical points. Figure 8(f) shows additionally the negative-
time ridges with short-time FTLE of integration time −0.001. There are also
local maxima of the FTLE near the critical points in negative time direc-
tion. From the streamlines it can be seen, that the local maxima are not in
upstream or downstream direction of the critical points, as one may assume.
It has to be investigated to what extent this situation is sensitive to noise and
if it is a specialty of the ABC flow or a general principle.

3.2 3D Saddles in Francis Draft Tube

In this section the LCS and VFT approaches are compared for non-spiralling
3D saddles. As a first step one would think of applying the methods to
an analytic linear vector field containing a saddle, described by a Jacobian
with real eigenvalues. VFT performs well in these cases, unless the 2D man-
ifold of the saddle is degenerate as in Section 3.1. However, the FTLE ridge
approach is not able to capture linear saddles because all trajectories through
it would exhibit the same FTLE value and therefore there would be no
ridges corresponding to its manifolds. This is a drawback of the FTLE ridge
approach.

However, it is unlikely that purely linear saddle regions appear in practical
vector fields. Therefore the examination was applied to some of the saddles
in a CFD simulation of the draft tube of a Francis water turbine. As a first
approach, a single time step of the unsteady simulation was used for the
analysis. This results in instantaneous LCS based on streamlines, suited for
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Fig. 1. A 3D saddle in Francis draft tube. Same visualization as in Figures 9(f) and
9(g)

the comparison of VFT and LCS methods. The critical points were detected
and at each critical point two FTLE were computed on a regular grid of 603

nodes around the critical point, one with integration time +1 second and one
with −1 second. The choice of the integration time was based on a-priori
knowledge of the data. Computation at the first saddle took 321 and 427
seconds, respectively. Confer 9(d) and 9(e) for filtering details. The extracted
ridges are shown in Figures 9(f), 9(g), and 1. Figure 4 shows some streamlines
used for FTLE computation of Figure 1.

One can see that the 2D manifolds are well captured by the corresponding
ridges, resulting in smooth surfaces. It has to be noted that also the opposite-
time FTLE ridges result in surfaces, even though these surfaces exhibit more
curvature and folding. It can be seen that these ridges are well consistent
with the 1D manifolds of the saddles. We conclude that: the examined critical
points lie on the intersection curves of positive-time and negative-time FTLE
ridges. This was also observed in the ABC flow example of Section 3.1. The
2D manifolds have a ridge counterpart and the 1D manifolds are consistent
with the corresponding opposite-time 2D ridge. Therefore, generating FTLE
ridges in positive and negative time in regions around critical points tends
to convey more information than traditional VFT and can serve as topolog-
ical icons. Extracting and visualizing the intersection curves of positive-time
and negative-time FTLE ridges, similar to the saddle connectors of Theisel
et al. [15], seems promising and could serve as a kind of a topological skeleton,
which could be applicable even for unsteady vector fields.

Although our investigation did not result in any “purely linear” 3D saddle
regions in CFD simulations, it has to be examined how frequent they are
in practical vector fields and what extent they have. The extent is of some
importance because the FTLE ridge approach fails if the trajectories do not
escape from the linear regime of the vector field. Another thing to note is
that for short advection times |T | the FTLE ridges tend to be less smooth,
smaller, and less consistent with VFT. This turned out to be a problem for
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getting the unsteady positive and negative time FTLE ridges on the saddles:
the temporal domain of the simulation was too short with respect to the low
velocities in the region where the saddles reside.

3.3 Bifurcation in Francis Draft Tube

In this section the unsteady CFD flow around the divider of the Francis draft
tube is analyzed using steady and unsteady FTLE ridges. The divider is a
construct that divides the flow into the two channels. First, instantaneous
FTLE ridges were computed at the first time step of the simulation. Figure 2
(left) shows some of the positive-time streamlines used for FTLE computation,
Figure 2 (right) shows additionally the resulting ridge. One can see that the
ridge is deformed at the horizontal vortex core line (computed according to
Levy et al. as in all examples) in the upper part of the image. However,
the ridge does not exhibit a hole where it intersects that vortex core line.
For the instantaneous flow, this can be interpreted that the flow passes the
vortex core line at a critical point and is finally separated at the divider. On
the other hand, the ridge forms a tunnel around the vortex core line at the
bottom of the image. This is a case where the vortex is captured as a distinct
LCS.

Next, the instantaneous FTLE ridge of the first time step is compared to
the unsteady FTLE ridge of the first time step. Figure 3 shows the correspond-
ing visualizations. Both steady and unsteady FTLE ridges were computed on
a 30 × 40 × 50 grid using an advection time of 0.4 seconds and filtered by
requiring a minimum FTLE of 7.1. The computation took 631 seconds in the
steady case and 1255 seconds in the unsteady case. In order to remove other

Fig. 2. Flow in Francis draft tube. Left: Vortex core lines (gray tubes) and some
streamlines used for FTLE computation (arbitrary colored tubes started at white
spheres). Right: Additionally instantaneous positive-time FTLE ridge visualizing
the bifurcation at the divider
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Fig. 3. Flow in Francis draft tube. Left: Unsteady positive-time FTLE ridge (blue)
visualizing the bifurcation at the divider with some path lines used for FTLE com-
putation (arbitrary colored tubes). Vortex core lines have been omitted because they
move in time. Right: Comparing instantaneous positive-time FTLE ridge (light blue)
with unsteady FTLE ridge

Fig. 4. Opposite view to the visualization of Figure 1 (left), with arbitrary-color
tubes visualizing some of the positive-time streamlines

ridges that were not consistent with the ridge under consideration, the min-
imal connected component size was set to 2000 triangles. It is clearly visible
that the unsteady FTLE ridge differs in shape from the steady FTLE ridge.
One difference is that it does not divide the flow on the left hand side any-
more. Instead, it extends only to the right. Some trajectories are crossing the
unsteady ridge. This is likely to happen for unsteady LCS because they are
material surfaces at a given time whereas trajectories extend over time
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Fig. 5. Steady positive-time FTLE ridges (blue) around vortex core line (gray tube)
in front of the Francis divider

(a) (b)

(c) (d)

Fig. 6. Vortex breakdown bubble in Francis draft tube. (a) Unstable manifold of
vortex breakdown bubble. (b) Same as (a) with instantaneous negative-time FTLE
ridges. Ridge is consistent with fold. (c) Ridge from (b): cylindrical inside bubble.
(d) Same as (b) with some negative-time streamlines used for FTLE computation



Visualizing Lagrangian Coherent Structures and Comparison 25

and are immaterial. Trajectories with nearby seeds are visualizing the mech-
anisms of separation.

3.4 Vortices in Francis Draft Tube

Vortices are coherent structures and therefore they should show up in FTLE
ridge visualizations. Two vortices are examined, both using instantaneous
FTLE ridges because of the small temporal domain of the underlying CFD
simulation. The first vortex is in front of the divider from Section 3.3, but
this time at the last time step. Figure 5 shows the positive-time FTLE ridges
of this vortex. The vortex is nicely captured by the FTLE ridge that is also
indicating the separation by the divider. The grid consisted of 30 × 40 ×
50 nodes, advection time was 0.4 seconds, ridge regions with FTLE smaller
than 5.5 were suppressed, as well as connected components smaller than 1000
triangles, and the computation took 774 seconds.

The second one is a vortex ring (vortex breakdown bubble) in the right
channel of the draft tube. Figure 6 shows its unstable manifold and negative-
time FTLE ridges. Interestingly, the corresponding ridge does not exhibit the
bubble shape of the manifold, it is simply cylindrical, although consistent
with the fold of the manifold. FTLE was computed on a 603 grid with 4
seconds advection time, which took 704 seconds to compute. Ridge regions
with λn < 300 were suppressed in order to remove noise, as well as connected
components smaller than 2000 triangles.

3.5 Bifurcation in Pelton Distributor Ring

In this section, the steady CFD flow inside the distributor ring of a Pelton
water turbine is examined using FTLE ridges. Figure 7 shows positive-time

Fig. 7. Flow in Pelton distributor ring. Left: Positive-time FTLE ridges visualizing
bifurcation at sickle and a recirculation region. Right: Additionally some positive-
time streamlines used for FTLE computation, seeds are visualized by spheres
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. ABC flow. (a) Seeds around critical points (green spheres), and correspond-
ing streamlines in positive time (red) and negative time (blue). 2D manifolds are
1D-degenerate. (b) Same as (a) with additional positive-time FTLE ridges. (c) Same
as (b) but with negative-time FTLE ridges instead of positive-time FTLE ridges
(red). (d) Positive-time FTLE ridges (blue) and negative-time FTLE ridges (red).
Ridges are well consistent with manifolds. (e) Same as (a) with negative-time FTLE
ridges colored with short negative-time FTLE. (f) Additionally positive-time FTLE
ridges colored with short positive-time FTLE
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(a) (b)

(c) (d) (e)

(f) (g)

Fig. 9. (a)–(b): another view to the FTLE ridges from Figure 8(d) of the ABC
flow. (c)–(g): 3D saddle in Francis draft tube. Positive-time FTLE ridges (blue) and
negative-time FTLE ridges (red). (a) FTLE ridges. (b) Additionally positive-time
trajectories (arbitrary colors) started from nodes inside the first period of the ABC
flow, as used for FTLE computation. Trajectories are well consistent with FTLE
ridges. (c) No filtering. (d) Minimum FTLE 3.5 (positive-time) and 4.0 (negative-
time). (e) Additionally to (e) suppressing components smaller than 1000 (positive-
time) and 4000 triangles (negative-time). (f) Critical point (black) is close to the
intersection curve of the two ridges. (g) Seeds around critical point (green) and
streamlines in positive time (red) and negative time (blue) from seeds. Streamlines
visualizing the 1D manifold of the saddle lie inside positive-time FTLE ridge
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FTLE ridges computed at the sickle of the distributor ring. A sickle is a
construct where part of the main flow is bifurcated into the injector that
forms one of the jets that drive the turbine. One FTLE ridge shows clearly
how the flow is split and an other FTLE ridge visualizes a recirculation zone.
The FTLE was computed on a 100 × 100 × 40 grid with advection time 0.1
seconds which took 1381 seconds. Ridge regions with FTLE smaller than 22
were suppressed as well as connected components smaller than 2000 triangles.

4 Conclusion

2D height ridges were extracted from 3D FTLE. Several ridge-filtering tech-
niques were proposed in order to suppress noise but also for achieving
physically significant visualizations. The ridges were compared to the results
from vector field topology, usually resulting in a gain of information and
interpretability.
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Summary. The study of flow separation from walls or solid objects is still an
active research area in the fluid dynamics and flow visualization communities and
many open questions remain. This paper aims at introducing a new method for
the extraction of separation manifolds originating from separation lines. We address
the problem from the flow visualization side by investigating features in flow cross
sections around separation lines. We use the topological signature of the separation
in these sections, in particular the presence of saddle points and their separatrices, as
a guide to initiate the construction of the separation manifolds. Having this first part
we use well known stream surface construction methods to propagate the surface
further into the flow. Additionally, we discuss some lessons learned in the course of
our experimentation with well known and new ideas for the extraction of separation
lines.

1 Introduction

In the panel “Even more theory, or more practical applications to particu-
lar problems: In which direction will Topology-Based Flow Visualization go?”
of the previous workshop (TopoInVis 2005) the (still unsolved) question of
benchmark problems arose. These problems should be used to measure the
success of the visualization community and more specifically the success of
topological methods. The problem posed by one of the participants was the
following:

“Given a set of data, say of an ICE train, develop a visualization
software which is capable to produce these type of Schlichting1 flow
visualizations including the stream surfaces separating from the body,

1 The speaker refers to drawings in a major textbook for fluid dynamics by
Schlichting [9]. See Fig. 1 for an example.
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Fig. 1. Drawing of separation line (denoted as Ablöselinie) and separation manifold
(denoted as Ablösefläche). Image reprinted from Schlichting [9]

including the separation points, vortex core lines and the things which
you find in the textbook. [...] it would be really interesting if you could
do it in an automatic manner.”.

The fact that this problem was posed as a benchmark problem by a fluid
dynamics engineer shows that, despite much research and publications on
this topic (see Sec. 2), automatic vortex and separation feature visualization
are still problems that lack a satisfactory solution. The separation part of
this problem provides the motivation for this paper: we aim at automatically
extracting separating stream surfaces, one of the building blocks of the type
of representations we just mentioned.

The first and simplest idea for the extraction of separation surfaces is to
use previously computed separation lines, i.e. connected locations of flow sepa-
ration, as seeding curves to integrate stream surfaces in the three-dimensional
flow. As we will describe later in the paper, this idea and even some more
advanced techniques have limitations. This led us to the development of the
method presented in this paper. Namely, we compute the flow projection on
cross sections along a separation line, construct the topological skeleton of the
resulting planar vector fields, and use the saddle point which appears at the
separation locus as a guide for the seeding of the separation manifold near the
boundary. Having this first part of the surface we employ a standard stream
surface integration scheme to compute the remaining part of the surface.

The contents of this paper are organized as follows. We discuss previous
work in section 2. The computation of the topological signature of the sepa-
rated flow is described in section 3. We then provide results for a variety of
realistic CFD problems in section 4. Finally, we conclude our presentation by
pointing out topics of future research in section 5.
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2 Related Work

As mentioned in the introduction, flow separation has been a topic of cen-
tral interest for both the theoretical and experimental sides of fluid dynamics
research since the 1950’s. A complete overview of the topic is clearly beyond
the scope of this paper. Therefore we refer the interested reader to [2, 10]
and the references therein. Délery [2] described a variety of three-dimensional
topological configurations corresponding to separated flows in the smooth set-
ting2 and associates them with similar experimental visualizations obtained in
a wind tunnel. In a very recent paper Surana et al. [10] proposed a formal the-
ory connecting the Navier-Stokes equations to a topological characterization
of separation lines and associated 2-manifolds. The same authors also applied
their approach to numerical models computed over simple geometries in [11].
Unfortunately the topological characterization advocated by these authors
fails to extract the separation lines and manifolds present in CFD flows defined
over more complex polygonal geometries if only the spatial velocity and vortic-
ity data is provided and no access to the simulation is possible (precomputed
data). In this case it may be impossible to locate the saddles needed for three
of the four separation types mentioned by Surana et al. [10]. This is especially
true for the delta wing example they mention. A higher order saddle (or sev-
eral very close saddles) has to exist at the tip of the wing to serve as origin
for separation lines. It strongly depends on the discretization (at the pointed
tip) whether such a saddle can be found. Additionally, the skin friction field
derived from the precomputed data may be of minor quality prohibiting the
use of the formulas reported by Surana et al. [10].

From the visualization viewpoint, the extraction of line-type flow features
has motivated a significant body of research in recent years. In addition to
the definition and computation of vortex core lines (see [8] for a bibliogra-
phy), several authors have attempted to detect and display separation and
attachment lines on surfaces. The major contribution in this field was made
by Kenwright [6] who proposed a method that looks for the presence of sep-
aration lines on a cell-wise basis. Upon the assumption of local linearity of
the flow a section of separation line is extracted in each triangle as the inter-
section of specific lines present in the phase portrait of a first-order critical
point with the interior of the cell. The discontinuity across cell edges yields
disconnected line segments, which was addressed in a subsequent paper [7].
Making the observation that the criterion used in the original method is in
fact equivalent to that of zero streamline curvature the authors reformulated
their extraction algorithm as the computation of isolines of the flow curvature
field. The resulting curves must be filtered in a post-processing step to dis-
card false positives (see [8]). Moreover, the requirement of zero curvature is far
too restrictive to account for the general flow geometry associated with flow

2 Here “smooth setting” means the opposite of “discrete setting” like for vector
fields from CFD simulations.
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separation or attachment. In fact, this criterion was basically tailored to the
special case of delta wings, for which separation and attachment lines describe
almost straight lines linking the tip of the wing to its back edge. Based on this
observation Tricoche et al. [13] recently proposed a method combining a local
predictor (the flow divergence) and a global corrector (the one-dimensional
convergence behavior of streamlines) to provide a more flexible and robust
extraction mechanism. Yet, the corresponding method requires the integra-
tion of many streamlines to ensure reliable detection of flow convergence and
the filtering of false positives remains a non-trivial and error-prone task. Con-
cerning the use of cross-flow sections or cutting planes Tricoche et al. [12] and
Wu et al. [14] proposed methods related to ours. Tricoche uses the cutting
planes for general flow visualization problems on special application data sets
while Wu discusses cross sections explicitly in the field of flow separation from
the fluid dynamics side.

3 Extracting Separation Manifolds

In this section we propose an approach for seeding stream surfaces repre-
senting sheets that divide the flow at separation and attachment lines, i.e.
separation manifolds. First, we discuss the problems usually arising when try-
ing to compute such surfaces then we give possible solutions to the problems
and finally we describe the basic procedures involved in our solution.

3.1 Seeding Stream Surfaces

Stream surfaces are well known from the literature [4] and good implemen-
tations [3] are readily available for visualization of vector fields. The quality
of a stream surface or even the possibility to compute it, however, strongly
depends on the availability of a good seed curve for the integration of the
dense set of streamlines spanning the surface. The first and obvious idea to
get such line strips is to use the extracted feature lines. Unfortunately, this is
only a good idea at first sight, because the integration of streamlines in this
case starts directly from the surface. This poses problems resulting from the
discretization of the surface with polygons and from numerical inaccuracies.
The first problem means that if we start streamlines directly from the surface,
the integration may yield steps that lead out of the grid as the surface has
discontinuities at polygon edges and is not smooth. The second problem is
that vertices of feature lines may lie on the wrong side of the surface poly-
gon, i.e. outside of the grid, because of small numerical round-off added while
computing the line segments.

Our first attempt to solve these problems consisted in moving the feature
lines by a small distance in the direction of the surface normal in order to avoid
the issues caused by the irregularities of the polygonal surface while remaining
in its immediate vicinity. When we started stream surfaces from the shifted
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lines the integration ran well, but the surfaces, in some cases, did not capture
the separation manifold correctly. This is due to the fact that the separation
need not happen perpendicular to the surface. Therefore, this method requires
knowledge of the angle of the separation in relation to the surface normal.
Assuming that this information is available for a point on a feature line we
would be able to determine the correct offset vector for this point. We found
a formula to do this in the previously mentioned paper of Surana et al. [10].
However, we chose an alternative solution that we found simpler and for our
discrete numerical data more appropriate:3 we chose to compute the topology
of the projected flow in cutting planes along the feature lines and to use the
separatrix indicating the separation as guide for the movement of our feature
lines or, more precisely, the generation of new starting line strips. Near the
surface, the angle between the separation and the surface normal is the same
as the angle of this separatrix. The following subsection will describe this idea
in more detail.

3.2 Moving Cutting Planes

Cutting planes, a very basic and widely used technique, gain more informa-
tional value if they are moved along interesting curves (see Fig. 4a). In our
case, the type of curves to be used is inherent in the idea of using moving
cutting planes. The separation lines provide the natural paths for the moving
planes but also leave several degrees of freedom for the orientation of the plane.

Plane Orientation

The orientation of the plane is a critical parameter of our flow exploration
technique because the topological structure in the plane can change dramat-
ically when changing the orientation of the plane. Even when keeping the
center position of the plane constant, features can appear or disappear for
different orientations of the plane. We would like to use the topology in the
plane as a guide for the structure of the flow separation. As the structures
which are important for us appear normal to the flow along the separation,
we use the surface flow vector at the separation line as first approximation of
the normal vector for the cutting plane (see Fig. 4). With this choice, the pro-
jected vector field should exhibit a zero vector exactly where the separation
line intersects the plane. The zero is a half-saddle with one separatrix leading
away from the surface. Near the surface this separatrix indicates the direction
of the separation. However, the saddle point can only be found reliably in an
analytical setting. As our procedure requires resampling the data and project-
ing it into the plane, we introduce numerical noise and round-off error to some
extent. This can cause the saddle to move. Lying directly on the boundary

3 As mentioned before, we are only working on precomputed data. Thus, not all
quantities used in the formula by Surana et al. [10] are available.
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Fig. 2. Saddle moves when tilting plane in separating flow: a) no saddle is present
because flow is nowhere perpendicular to plane, b) half-saddle because plane is
perpendicular to wall and thus to surface flow, c) saddle moved a small distance
away from the wall because plane is perpendicular to separating flow

Fig. 3. The left image shows streamlines in a synthetic vector field representing
perfect separation and an example for a cutting plane. The image in the middle
gives an impression of the projected flow in the plane and the right image shows the
flow after tilting the plane. In the middle image only the upper part of the saddle
can be seen. The saddle lies exactly on the base plane bounding the flow from below.
All sectors of the saddle are observable after it is shifted in the lower image

of the body, even a small shift can cause the saddle to move out of the plane
and thus disappear. Hence, in the case where we do not find a saddle point
in the plane we have to adjust its orientation in order to move the desired
saddle back onto the plane. Figure 2 shows the basic idea of the adjustment
and Figure 3 gives an impression for a real 3D vector field. While we have
to tilt the plane against the flow direction for separating flow, we must tilt it
with the flow to move the saddle into the plane for attaching flow (see Fig. 2).

We said previously that the orientation of the plane can change the flow
dramatically. We have to keep this in mind when tilting the plane, i.e. we
have to change the orientation of the plane as little as possible. Changing the
inclination of all cutting planes along a line in the same way is the simplest
idea but it does not account for the different flow situations at the different
base positions along the line. Additionally, such a uniform change would surely
not be the smallest change possible for all planes at the same time. Hence,
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Fig. 4. a) Cutting Planes moving along feature line oriented normal to the flow at
their center position. b) Tilting the plane by tilting the normal vector in the plane
spanned by the normal vector of the plane and the normal vector of the surface

we do not change the inclination uniformly but instead compute the angle for
each separate plane through an iterative approach.

As mentioned earlier, we use the velocity as first approximation for the
plane normal. To tilt the plane, we turn its normal vector in the plane spanned
by the wall normal and the plane normal. This is illustrated in Figure 4b.
The iterative approaching works in two parts. All steps are described in the
following:

1. a) Set current angle to a small and constant user prescribed angle.
b) Tilt the original plane by the current angle (against the flow for

separation and with the flow in the attachment case).
c) Compute the flow in the tilted plane.
d) Extract the topological structures of the flow.
e) If there is no saddle, decrease the current angle and go back to 1b.
f) If there is a saddle go to 2a.

2. a) Set αmax to the current angle and αmin := 0.
b) Decrease the current angle.
c) Tilt the original plane by the current angle.
d) Compute the flow in the tilted plane.
e) Extract the topological structures of the flow.
f) If there is a saddle set αmax to the current angle.
g) If there is no saddle set αmin to the current angle.
h) Set the current angle value to 0.5(αmax + αmin) and go to 2c.

We iterate for both parts until a maximum number of iterations has been
reached. The first part tries to find an initial angle for which a saddle is
present on the plane. In the second part of the algorithm, we know that there
is a saddle in the plane and try to find the plane with smallest tilting angle
and a saddle.
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3.3 Construction of Seed Line for Separation Manifold

In the previous subsection we described how we compute the topological sig-
nature of the separation in the cutting planes. Having this signature, i.e. the
separatrices of the saddle point, we can use it to construct the first part of the
separation manifold and a start strip for the rest of the surface. At first we
have to choose the correct separatrix out of the four separatrices emanating
from the saddle point. For this task, we take the vector representing the first
segment of each of the separatrices and compute its dot product with the body
surface normal (all vectors normalized). The segment with the largest value
indicates the desired separatrix, as this separatrix is the one which leaves the
surface.

To construct the first part of the surface, we take a number of steps
along the chosen separatrices in all planes. The step size and the number
of steps m can be determined by the user. We then connect the steps of
neighboring planes to construct triangles. These triangles build up a sur-
face consisting of m rows of triangles. This surface is the first part of the
separation manifold. Splitting the distance for moving along the separatrix
into several steps is only important for constructing the triangles. The upper
boundary of the last row of triangles, i.e. the connection of the (last) step on
all separatrices, constitutes the starting line strip for the rest of the separation
manifold.

As mentioned before when discussing the tilting of the plane, it is impor-
tant to use only structures of the flow in the planes that are very close to the
separation line and thus to the body surface. This ensures that the separatrices
precisely approximate the structure of the separation manifold.

4 Results

In this section we demonstrate our method on two different datasets from CFD
simulations. We give a short overview of each dataset, apply our method and
discuss the resulting images.

4.1 Blunt Fin

Our first example is a standard reference for flow visualization, the well known
blunt fin dataset [5], courtesy of NASA. It represents a steady Mach 2.95 air-
flow over a flat plate with a blunt fin rising from the plate. The free inflow
with a Reynolds number of 2.1 · 106 is parallel to the plate and to the flat
part of the fin. The dataset represents only one half of the real flow, as it is
assumed to be symmetrical about center plane of the fin. In front of the fin
two horseshoe vortices coexist with a shock front. The first vortex causes the
flow reaching it to separate from the plate. This separation is what we are
interested in. The upper image in Figure 5 shows a LIC [1] visualization of
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Fig. 5. Blunt fin dataset: The upper image gives an overview of the dataset, the
separation line and a number of cutting planes with their topological skeletons. A
close-up of the same setting is provided in the middle left image. The middle right
and the lower images show the separation manifold constructed from the saddles. In
the middle right image the surface is compared with the separatrices in the cutting
planes. Streamlines in the lower image prove that the extracted surface is indeed
the separation manifold
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Table 1. Final angle of plane and distance of saddle to surface. Note: size of data
set is approx. 10 units

minimum maximum average

Angle (◦) 0.006 0.27 0.026
Distance 0 0.008 0.0016

the flow over the plate where patterns of converging flow indicate the sep-
aration. For the application of our method we extracted a separation line
(shown in black) and computed the topological skeleton of 38 section planes
moving along the separation line, which took us 2 minutes. We show the
section planes to illustrate the procedure. The closeup in the middle left
image shows how the separatrices of the saddles in the planes indicate the
separation.

The middle right and the lower images show a red surface representing the
separation manifold we constructed from the cutting planes. In the right image
it is combined with the separatrices of the saddles in the cutting planes. The
separatrices are tangential to the surface near the saddle point but intersect it
when the distance to the saddle increases. This supports what we mentioned
before: the separatrices are good guides for the surface construction but only
very close to the saddle. Finally, streamlines in the lower image prove that we
computed the correct stream surface, i.e. the one representing the separation
manifold.

4.2 ICE High Speed Train

The second dataset is a more practically relevant example. It is the high-speed
(ICE) train already mentioned in the introduction. This dataset is the result
of a simulation of the train traveling at a velocity of about 250 km/h with wind
blowing from the side at an angle of 30 degrees. The wind causes vortices to
form on the lee side of the train, creating a drop in pressure that has adverse
effects on the train’s track holding. The vortices and the flow passing over the
top of the train lead to separating flow at the upper angle on the lee side.
The separation line we extracted and the flow structure in the corresponding
cutting planes is shown in Figure 6. Note how there are no saddles along the
blue line where the line does not capture the location of separation correctly.
We observed this also in cases where the separation becomes very weak or
fuzzy along a line. Streamlines, the separation line, the separation surface we
seeded using the cutting planes, and a LIC on the surface of the train give a
picture of the complete situation in the lower image. The causal connection
between the separation and the vortex formation becomes obvious in this
image.

The computations for the 100 cutting planes took 12 minutes.
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Fig. 6. The upper images show the surface of the ICE train with one separation
line and the topological skeletons of about 100 cutting planes along the separation
line. Blue and green points mark sinks and source in the cutting planes. The lower
image shows a separation manifold generated from the guides in the cutting planes.
We additionally provide streamlines to prove that we found the correct separation
manifold

Table 2. Final angle of plane and distance of saddle to surface. Note: length of train
is approx. 5 · 104 mm

minimum maximum average

Angle (◦) < 10−8 3.26 0.60
Distance (mm) 0 82.04 16.75

5 Conclusion

We have presented a method for automatic computation of separation man-
ifolds from separation lines on bodies immersed in a flow. The method
constructs and uses flow cross-sections and the topological signature of the
separation therein to construct the surface section in the direct vicinity of
the boundary. The construction of the remaining part of the surface relies
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on standard techniques. Our method proved its usefulness and robustness
through application to several different CFD datasets.

For datasets with more intricate flow structures than those presented in
this paper, e.g. flows with a very small separation angle, we found problems
with the cross-flow in planes very close to the boundary. Thus, our future
work will include close collaboration with engineers in order to inspect what
is happening near the boundary in these simulations, to try to understand
what the problems are and how we can improve our method to handle these
problems. As mentioned previously the quality of the surfaces representing
the separating flow strongly depends on the accuracy of previously extracted
separation lines. Research in the direction of separation line extraction is thus
still necessary and will be part of our work until extraction can be performed
efficiently and reliably.
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Summary. The selection of appropriate level sets for the quantitative visualiza-
tion of three dimensional imaging or simulation data is a problem that is both
fundamental and essential. The selected level set needs to satisfy several topolog-
ical and geometric constraints to be useful for subsequent quantitative processing
and visualization. For an initial selection of an isosurface, guided by contour tree
data structures, we detect the topological features by computing stable and unstable
manifolds of the critical points of the distance function induced by the isosurface. We
further enhance the description of these features by associating geometric attributes
with them. We then rank the attributed features and provide a handle to them for
curation of the topological anomalies.

1 Introduction

Problem and Motivation

The selection of isosurfaces (or alternatively level sets of a trivariate function) for
the visualization of volumetric imaging or simulation data, is often subject to the
constraints imposed by the application domain. While some applications put more
stringent criteria on this process than others, every application requires an analysis
of topological and geometrical information to ensure that an appropriate choice is
made. Topological constraints require that the extracted level set should have a cer-
tain topology. Naturally, this problem has drawn the attention of researchers for a
long time. As a result, the basic topological information of level sets can be unam-
biguously encoded by the well-known data structure, called the Contour Tree [31].
The Contour Tree (CT) is a topological description of the entire volumetric data,
and furthermore encodes the information of the number of connected components.

While extremely useful, CT does not capture all the necessary information about
the topology of the level sets. In particular, information about the combinatorics
and topology of tunnels (complementary space) of every connected component of
the level set is not encoded in CT. To overcome this deficiency, an enhanced CT
data structure was proposed by Pascucci and Cole-McLaughlin [29], who gave an



46 C. Bajaj et al.

algorithm to further detect and store some additional information of the level set,
in an Augmented Contour Tree (ACT).

The ACT, while appropriate in encoding the topology related to the first 3 Betti
numbers [29] of each level set, it does not give a quantitative measure of the level
set and its complementary space features, to aid in its selection or curation . This is
the main motivation of our work. In this paper, we will show that suitable selection
of an isosurface in any application context must be additionally guided by a close
examination of the complementary space to the primal domain. Further, we will
show how relevant topological and geometrical features of a selected isosurface can
be calculated, ordered, visualized, and, if necessary, curated.

The significance of such complementary space features can be seen in the iso-
surface choices for the simple example of the ion channel Gramicidin A, obtained
from soil bacteria Bacillus brevis. The initial molecular surface selection process
makes use of the CT. In Figure 1 (a.1-4) we show two isosurfaces extracted from the
same edge of the contour tree for the volumetric data which has been synthetically
created from the atomic model obtained from Protein Data Bank (PDB) [5]. The
PDB entry of this molecule is 1MAG. Figure 1 (a.1) shows a snapshot of the volume
rendering of the data in our in-house interrogative volume visualization software
VolRover [13] along with the CT shown in the bottom panel. In Figure 1 (a.2)
we show the molecular surface selected using CT which does not accommodate any
tunnel through the molecular surface. Figures 1 (a.3,4) show two views of another
molecular surface selected from the same scalar volume which, on the other hand,
has the ion channel through the molecule present. This means the choice of the first
isosurface is incorrect. Note that there is no change in the number of components
as one contour is deformed into the other, hence the CT is not sufficient in guiding
our choice of isovalue. Further as can be seen in Figure 1 (a.4), the surface accom-
modates two more small tunnels (marked by black circles) which are merely the
artifacts of the selection process. Using the algorithm presented in this paper, we
can eliminate those small tunnels.

Figure 1 (b.1-3) shows another example of the isosurface of the molecule mouse
Acetylcholinesterase (mAchE). In this case, the active site of the molecule is buried
deep inside a depression on the molecular surface. We will later computationally
define such depressions and we will call them “pockets”. Correct extraction of the
molecular surface of mAchE, in this case, requires that the pocket near the active
site is properly preserved and also it should not be too narrow, e.g. narrower than
the diameter of Acetylcholine molecule which has to pass through the opening of
the pocket in order to bind to the active site of mAchE. Figure 1 (b.1) shows
all such pockets identified on the molecular surface of mAchE. The small pockets
on the surface arising from incorrect selection of isovalue, are not desired because
they adversely affect the calculation of molecular energetics. Using the algorithm
presented in this paper, we can rank the pockets based on their geometric attributes
(volume, for example) and that helps deleting those small pockets. Figure 1 (b.2)
shows the surface after selective removal of all the small pockets keeping only three
significant ones which include the one near the active site. Closeup of the main
pocket is shown in Figure 1 (b.3).

The selection of an isosurface should also aim to preserve inherent symmetry
in the data. In Figure 1 (c.1-3) we show two isosurfaces for the Nodavirus. This
icosahedral virus infects the central nervous system of fish and causes a disease called
viral nervous necrosis. The main point of contention while selecting an isosurface
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Fig. 1. Three examples of molecular surface selection are shown. (a.1-4) shows the
selection of Gramicidin A that preserves the ion channel. (b.1-3) shows the selection
of molecular surface for mouse Acetylcholinesterase (mAchE) where the pocket near
the active site for binding Acetylcholine is preserved. (c.1-3) shows the selection of
isosurface of the viral capsid of Nodavirus that brings out the inherent symmetry.
In all three examples, we show how our algorithm for detecting and evaluating
topological features aids the proper isosurface selection
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is preserving the symmetry of the viral capsid. We show the volume rendering of
the cryo-EM density map of the virus in Figure 1 (c.1). Figure 1 (c.2) shows one
plausible isosurface that does not respect the symmetry. In particular, near the
points of five-fold rotational symmetry, we ought to have five tunnels arranged in
a circle or none at all. In Figure 1 (c.3) we show another isosurface which actually
reflects the symmetry properly. Without careful investigation of the complementary
space topology, aided by the algorithm described in this paper, it is not possible to
apply the knowledge of these features to guide the isosurface selection. Therefore,
we seek both topological and geometrical details of the complementary space to an
extracted isosurface.

The overall isosurface extraction process from a scalar volume is thus guided by
the knowledge of both topology and domain-specific geometry of both the primal
and complementary space. As in [19], we also consider the homology as a measure of
topological complexity of the extracted level set. We further consider the depressions
on the surface as added complexity as they play a bio-chemically vital role in the
context of selection of molecular interface [18]. We call these depressions pockets.
The main contribution of this work is the attachment of geometry and possibly
other domain-specific attributes with the detected topological features that guides
the subsequent curation process.

Prior work

Systematic interrogation of topological and geometric attributes of the level sets
over a range of isovalues started with the introduction of two powerful data struc-
tures Contour Spectrum (CS) [4] and Contour Tree (CT) [31]. While CS focuses
mostly on the differential and integral attributes like, area, volume, curvature etc.,
CT encodes topological properties like, number of connected components etc., of
the contours over a range of isovalues. Historically, CT was first introduced in [6].
It was first used with regard to isosurfaces by van Kreveld et al. [31]. They also
used CT to compute seed sets, which help generate isosurfaces efficiently. Further
work by Carr et al. proved that contour trees of any dimension could be computed
in O(n log n) time, where n is the number of simplices in the geometrical decom-
position [8]. Pascucci and Cole-McLaughlin expanded the topological information
in the CT data structure by adding Betti number information to each edge of the
graph [29]. Recently, CT has been further enhanced by adding information about
domain specific geometric attributes and such multi-attributed CT (MACT) proved
to be very useful in analyzing the bio-chemical properties of the molecular interfaces
[35]. Carr, Snoeyink and van de Panne simplified the CT based on local geometric
data [9]. The algorithm in [9], although different from our approach, can be used to
further facilitate in simplification of the volume and selection of the isosurface.

Due to the fundamental nature of the problem, topology simplification of geo-
metric models have received attention from outside of visualization community as
well. In order to achieve controlled topological simplification of triangulated geom-
etry, Guskov and Wood [25] grow a small ball of radius ε on the surface to detect
small tunnels and remove them by cutting the mesh. Wood et al. [32] use the Reeb
graph of a height function to detect and delete small handles from an isosurface.
El-Sana and Varshney have worked on topology controlled simplification of CAD
models where they first detect the crease edges and roll a ball of small radius to
identify the holes which do not allow the ball to pass through [20]. Nooruddin and
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Turk have proposed an algorithm that converts a model into volumetric data and
apply dilation and erosion to perform simplification [28]. It is to be noted, that all
these techniques fall short of depicting the symmetry and a proper ranking of the
geometry of the depressions and tunnels of the geometry to be simplified.

A fundamentally different approach was due to Edelsbrunner et al. [19] who
proposed the notion of persistence in the context of the alpha complex to detect
topological features which prevail while the alpha complex undergoes a filtration. A
series of results followed along the same line which formalized the notion of persistent
homology in order to distinguish between stable topological features from unstable
or noisy features [7, 12, 37, 36]. A similar notion of persistence has also proved to
be useful in detecting short-lasting and noisy topological features in the context
of witness complex [15]. At this stage it is important to note the novelty of our
approach. We compute the topological features related to the homology group of
the level set and attach geometric attributes which are often meaningful in the
context of application the scalar volume has originated from.

The key ingredient of our algorithm in ranking the topological features of the
extracted level set is the distance function over R

3. The distance function has been
used earlier for reconstruction and image feature identification [1, 10, 17, 21]. Chazal
and Lieutier [11] have used it for stable medial axis construction. Dey, Giesen and
Goswami have used distance function for object segmentation and matching [16].
Goswami, Dey and Bajaj have used it for detailed feature analysis of shape via
an annotation of flat and tubular features in addition to shape segmentation [22].
Recently, Bajaj and Goswami have shown a novel use of distance function, induced
by a molecular surface, in order to detect secondary structural motifs of a protein
molecule [2]. The close connection between the critical point structure of the distance
function and the topology of the surface, and its complement, is what we utilize to
detect and remove small topological artifacts.

Approach

The main contribution of this work is the systematic use of the distance function
induced by an isosurface, to geometrically complement the encoding of the topology
by the Contour Tree, in yielding a curated, selection. With our new approach the
selected isosurface is extracted, and then filtered, with the aid of the critical point
structure of the distance function, which allows detection and a geometrical ranking
of the complementary structure of the isosurface, i.e. the tunnels and pockets.

First, a suitable isovalue is selected using CT in order to select an isosurface with
the required number of components. In the case of molecular interface selection, the
number of components is always one. The subsequent computations based on the
distance function are then applied to detect the tunnels and pockets. Finally, these
features are ranked according to some domain-aware “importance” function which
usually quantifies the geometric attributes of those features, and thereby allows the
removal of insignificant ones.

We first give a brief description of the distance function, here. Given a compact
surface Σ smoothly embedded in R

3, a distance function hΣ can be designed over
R

3 that assigns to each point its distance to Σ.

hΣ : R
3 → R, x �→ inf

p∈Σ
‖x − p‖
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In this context, Σ is the level set. For the ease of computation, we approximate
hΣ by hP which assigns to every point in R

3, the distance to the nearest point from
the set P which finitely samples Σ.

hP : R
3 → R, x �→ min

p∈P
‖x − p‖

We identify the maxima and index 2 saddle points of hP which lie outside the
level set. The stable manifolds of these critical points help detect the tunnels and
the pockets of Σ. Additionally these stable manifolds are used to compute geometric
attributes of the detected topological features that they correspond to. Thus we
obtain a description of the isosurface, and its complement, in terms of its topological
features quantified by their geometric properties, based on which the insignificant
features are removed.

2 Preliminary

2.1 Contour Tree

Isosurfaces and contour trees are derived from scalar fields. A scalar field can be
characterized as a domain M and a function f : M → R

1. In differential topology
and Morse theory, the critical values of f are formally defined as those values r ∈ R

1

for which the derivative map dfx is not surjective for some point x ∈ f−1(r) (see
[24], for example) Put differently, r is a critical value of f if and only if f−1(r) is
not a manifold of dimension dim(M) − 1. Each level set f−1(r) is a collection of
contours and the topology of these contours allows us to create the contour tree. We
note that in all of our examples, our domain M will be R

3, ensuring that our data
structure is in fact a tree and not the more general Reeb graph.

The unqualified term “contour tree” refers to a data structure created from
a subset of the critical values of f . The first such data structure to be computed
efficiently was a “minimal” contour tree by de Berg and van Kreveld [14]. A minimal
contour tree has nodes only for isovalues at which contours emerge, split, merge, or
vanish. The edges of a minimal contour tree connect nodes along which a contour
smoothly deforms and hence indicate the evolution of a contour over a range of
isovalues. A minimum contour tree of any dimension can be computed in O(n log n)
time as was proved by Carr et al. in [8]. Such trees can be used to compute seed
sets, that is, a set of points from which all contours of a particular level set can be
generated [31].

To capture more topological information, the augmented contour tree, as defined
by Carr, Snoeyink and Axen, was introduced in [8]. In their terminology, the aug-
mented contour tree refers to a contour tree with nodes for all values in the range of
the scalar field, not just the critical values. Thus, the augmented or “full” contour
tree can be reduced to the minimal contour tree by removing all degree two nodes.
Pascucci and Cole-McLaughlin expanded the data structure by attaching the Betti
numbers of each contour in a level set to its corresponding edge in the “full” contour
tree [29]. The Betti numbers of a surface, however, are a strictly topological feature
and thus do not indicate the geometrical significance of the tunnels and voids that
they count. Moreover, it is not clear how to use this data structure in order to
selectively remove some undesired topological artifacts.
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2.2 Voronoi-Delaunay

In this paper we always assume the distance metric to be Euclidean unless otherwise
stated. For a finite set of points P in R

3, the Voronoi cell of p ∈ P is

Vp = {x ∈ R
3 : ∀q ∈ P − {p}, ‖x − p‖ ≤ ‖x − q‖)}.

If the points are in general position, two Voronoi cells with non-empty intersection
meet along a planar, convex Voronoi facet, three Voronoi cells with non-empty inter-
section meet along a common Voronoi edge and four Voronoi cells with non-empty
intersection meet at a Voronoi vertex. A cell decomposition consisting of the Voronoi
objects, that is, Voronoi cells, facets, edges and vertices is the Voronoi diagram Vor P
of the point set P .

The dual of Vor P is the Delaunay diagram Del P of P which is a simplicial
complex when the points are in general position. The tetrahedra are dual to the
Voronoi vertices, the triangles are dual to the Voronoi edges, the edges are dual to
the Voronoi facets and the vertices (sample points from P ) are dual to the Voronoi
cells. We also refer to the Delaunay simplices as Delaunay objects.

2.3 Critical Points of hP

The distance function hP induces a flow at every point x ∈ R
3. This flow has been

characterized earlier [21, 22]. See also [17]. For completeness we briefly mention it
here.

The critical points of hP are the points in R
3 which lie within the convex hull of

its closest points from P . It was shown by Siersma [30] that the critical points of hP

are the intersection points of the Voronoi objects with their dual Delaunay objects
(Figure 2).

• Maxima are the Voronoi vertices contained in their dual tetrahedra,
• Index 2 saddles lie at the intersection of Voronoi edges with their dual Delaunay

triangles,
• Index 1 saddles lie at the intersection of Voronoi facets with their dual Delaunay

edges, and
• Minima are the sample points themselves as they are always contained in their

Voronoi cells.

In this discrete setting, the index of a critical point is the dimension of the lowest
dimensional Delaunay simplex that contains the critical point.

(a) (b) (c) (d)

index 1 saddle

Fig. 2. The relative position of Voronoi and their dual Delaunay objects that results
in the generation of critical points
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At every x ∈ R
3, a unit vector can be assigned that is oriented in the direction of

the steepest ascent of hP . The critical points are assigned zero vectors. This vector
field, which may not be continuous, nevertheless induces a flow in R

3. This flow tells
how a point x moves in R

3 along the steepest ascent of hP and the corresponding
path is called the orbit of x.

For a critical point c its stable manifold is the set of points whose orbits end at c.
The stable manifold of a maximum is a three dimensional polytope whose boundary
is composed of the stable manifolds of the index 2 saddle points which in turn are
bounded by the stable manifolds of index 1 saddle points and minima. See [16, 21]
for the detailed discussion on the structure and computation of the stable manifolds
of the critical points of hP .

2.4 Betti Numbers

The i-th Betti number of a manifold is formally defined as the rank of its i-th
homology group, Hi. Homology groups are quotient groups; Hi is the i-th cycle
group modulo the i-th boundary group. Therefore, Hi is the free abelian group
generated by cycles of i-chains that are not boundaries of (i + 1)-chains. Hence, the
i-th Betti number counts the number of independent (i.e. non-homologous) non-
bounding cycles. Based on these definitions, we have the following informal notions
of Betti numbers for 2-manifolds. The 0-th Betti number equals the number of
connected components, the 1-st Betti number equals twice the number of through
holes, and the 2-nd Betti number equals the number of voids. For an isosurface (or
in general a 2-manifold) only the first three Betti numbers can be non-zero.

3 Algorithm

In this section, we describe an algorithm that detects the tunnels and pockets using
the critical point structure of the distance function.

3.1 Sampling of Level Set

In order to successfully apply the critical point structure of the discrete approxima-
tion of the distance function hΣ by hP , we require a suitable discrete approximation
of the level set. Apparently primal contouring (Marching Cubes [27]) and dual con-
touring [26] are good choices to extract a discrete approximation of the level set
from the scalar volume. Although variants of these approaches have been researched
extensively to produce a topologically consistent isosurface, the main disadvantage
lies in the fact that the sampling of the extracted surface is oblivious to the feature.
Note, we need a set of points P to approximate hΣ by hP , and we also need hP to
follow hΣ closely so that we do not miss the topological features of Σ in this process
of translating it to the discrete setting. Recently, we have developed an algorithm
which ensures that the discretization of the level set has sufficiently dense sampling
for it to be a subcomplex of the Delaunay triangulation of the set of samples. This
guarantees that the sampling is feature-sensitive and therefore the discretization
follows closely the distance function induced by the true level set. Due to space
limitation, we omit the details of the algorithm here and refer the reader to [23].
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3.2 Classification and Clustering of Critical Points

The critical points of hP are detected by checking the intersection of the Voronoi and
its dual Delaunay diagram of the point set P sampled from Σ. The critical points
are primarily of three types depending on if the Voronoi/Delaunay object involved
lies interior, exterior to Σ, or if the Voronoi object crosses Σ. The maxima can not
lie on the surface and therefore they are only of two types - interior and exterior.
The minima are sample points themselves and therefore they are always on Σ. The
saddle points can be any of three types mentioned above.

We use C2 to denote the set of index 2 saddles which is partitioned into three
classes C2,I , C2,O and C2,S . The set of maxima is denoted as C3 which is partitioned
into two classes C3,I and C3,O . Using the hierarchical nature, we build an incidence
graph over C2 ∪C3 where an edge is formed between c2,∗ and c3,∗ if stable manifold
of c2,∗ is on the boundary of the stable manifold of c3,∗. The edges are colored
depending on if c3,∗ ∈ C3,I (red) or ∈ C3,O (green). The graph is further augmented
by the edges within C2 (blue) if two index 2 saddles’ stable manifold have non-empty
intersection. For the sake of compactification, we also need to consider the point at
infinity which acts as an infinite maximum (m∞) and therefore is an element of
C3,O.

We are now equipped with a well-defined structure over the set C2 ∪ C3 which
leads to a natural way of clustering the elements in the graph following the hierar-
chical nature of the stable manifolds. We employ the following three rules to perform
the clustering. The rules are applied only on the subsets C2,O , C2,S and C3,O\{m∞}.
• Rule 1: Two index 2 saddles ci, cj ∈ C2,O are in the same cluster if there is a

blue edge between them.
• Rule 2: Two maxima mi, mj ∈ C3,O \ {m∞} are in the same cluster if there

is a common index 2 saddle ck which is connected to both mi and mj via green
edge.

• Rule 3: Two index 2 saddles ci, cj ∈ C2,S are clustered together if they each
have a green edge to possibly two different maxima mi, mj ∈ C3,O where both
mi, mj are in the same cluster by Rule 2.

3.3 Detection of Tunnels and Pockets

These three rules produce a clustering of the set C2,O∪C2,S∪C3,O\{m∞}. Every clus-
ter is then examined more closely in order to bring out finer invariant features. The
index 2 saddles falling in a single cluster can again be of three types as enumerated
below.

• Type A: If the stable manifold of an index 2 saddle point is at the boundary of
two finite maxima, both from the set C3,O .

• Type B: If the stable manifold of an index 2 saddle point is incident upon m∞
and a single finite maximum from the set C3,O.

• Type C: If the stable manifold of an index 2 saddle point is at the boundary of
no finite maximum.

The index 2 saddles of type B or type C whose stable manifolds share a common
boundary are collected together to form sub-clusters. The combined stable manifold
of each such sub-cluster gives a polygonal patch, called mouth.
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(b) (c)(a)

Fig. 3. An illustration of our tunnel and pocket detection algorithm. An imaginary
molecular surface is shown with a 3-mouth tunnel and a single pocket. (a) Critical
points of hP are detected. Blue points are index 2 saddles and brown points are
maxima. (b) A point at infinity is added and critical points are clustered based on
adjacency of stable manifolds. (c) Based on the saddle points incident on infinity,
we detect and classify the tunnel (yellow with red mouths) and pocket (green with
purple mouth)

The number of mouths helps detect the following topological features.

• 0 Mouth indicates that the cluster belongs to a void.
• 1 Mouth indicates that the cluster belongs to a pocket.
• k ≥ 2 Mouths indicate the cluster belongs to a tunnel. We call it a k-mouthed

tunnel.

We use the algorithms described in [21] for computation of the stable manifolds
of index 2 saddles. In order to have a computational description of the detected fea-
tures, we also compute the stable manifolds of the maxima falling into every cluster
using the algorithm described in [16]. This produces a tetrahedral decomposition of
the features captured. Figure 3 illustrates this process.

3.4 Ranking and Selective Removal of Tunnels and Pockets

The tetrahedral solids describing the pockets and tunnels provide a nice handle to
those features and using these handles, the features can be ranked. We primarily
use the geometric attributes of the features in order to rank them. Such attributes
include, but are not limited to, the combined volume of the tetrahedra and the area
of the mouths. The pockets and tunnels are then sorted in order of their increasing
geometrically measured importance.

Removal of insignificant features are also made easy because of the volumetric
description of the features. As dictated by the applications, a cut-off is set below
which the features are considered noise. We remove the topological noise by marking
the outside tetrahedra as inside and updating the surface triangles.
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Contour TreeIsocontour Selection

Fig. 4. Results: Top row shows the interface selection for Rieske Iron-sulfur Pro-
tein molecule (PDB ID: 1RIE) from a blurred density map. Bottom row shows the
isosurface selection for the chaperonin GroEL from cryo-EM density map

4 Results

We show the results of our algorithm on two volumetric data. The top row in Figure 4
shows the electron density volume of Rieske Iron-Sulfur Protein (Protein Data Bank
Id: 1RIE). The volume rendering using VolRover [13] is shown in the leftmost subfig-
ure. The tool additionally supports the visualization and isosurface selection using
CT. The other subfigures show the selected interface and the detected tunnels and
pockets. Note, the mouth of the tunnel is drawn in red and the mouth of the pocket
is drawn in purple. The rest of the tunnel surface is drawn in yellow while the
pocket surface is drawn in green. The blue patches in the rightmost subfigure shows
the filling of the smaller tunnels and pockets. The second row shows the results on
the three dimensional scalar volume representing the electron density of the recon-
structed image of the chaperonin GroEL from a set of two dimensional electron
micrographs. The resolution is 8Å. Using VolRover, a suitable level set is chosen.
Note the CT is very noisy and has many branches, because of which it is not possible
to extract a single-component isosurface. Nevertheless only one component is vital
and the rest of them are merely artifacts caused by noise. The main component along
with the detected tunnel is shown next. The result is particularly useful in visual-
izing the symmetric structure of the chaperonin as depicted in the symmetric set
of mouths. In addition to detecting the principal topological feature, the algorithm
detects few small tunnels and pockets which are shown separately for visual clarity
(rightmost subfigure) and these are removed subsequently as part of the topological
noise removal process.

We must also mention that, the presented approach for curation can also be
applied to the modeling of smaller subunits of macromolecular complex, like viruses.
In such cases, the complex is first segmented from into its building blocks [33]
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and they are structurally analyzed either via image processing [34] or via geom-
etry processing [2]. A comprehensive survey on available computational approaches
for modeling biological entities from electron density maps can be found in [3].

5 Conclusion

In this paper, we have presented an algorithm which, given an isosurface extracted
from a scalar volume, captures the topological and geometric characteristics of the
isosurface and allows for the selective removal of unwanted features. The strength
of the algorithm lies in its ability to connect the topology of the level set with the
critical point structure of the distance function induced by the level set.
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Summary. Algorithms for computing contour trees for visualization commonly
assume that the input is defined by barycentric interpolation on simplicial meshes
or by trilinear interpolation on cubic meshes. In this paper, we describe a general
framework for computing contour trees from a graph that captures all significant
topological features. We show how to construct these graphs from any mesh-based
interpolant by using cell-by-cell “widgets,” and also how to avoid constructing the
entire graphs by making finite state machines that capture their traversals.

Our framework eases algorithm development and implementation, and can be
used to establish relationships between interpolants. For example, we use it to
demonstrate a formal equivalence between the topology defined by implicitly dis-
ambiguated marching cubes cases and the topology induced by 8-/18- digital image
connectivity.

1 Introduction

In a scalar field, a level set is the set of points with a specified isovalue: the con-
nected components of the isosurface are called contours. In three-dimensional
scalar fields, level sets are known as isosurfaces: isosurfaces and contours are
fundamental for segmenting and rendering these scalar fields. The nesting
relationships of contours for all possible isovalues is expressed by a diagram
called the contour tree, which has been used for isosurface extraction [31, 5],
for abstract representation of the field [1, 24, 7], to index individual con-
tours [3, 14, 5] and their geometric properties [7], to guide simplification of
input meshes [10], and to compare scalar fields [33].

Although recent algorithms for computing the contour tree are efficient,
they were originally defined only for simplicial meshes [1, 6], then extended to
trilinear meshes [24] and digital images [18]. In this paper, we give a firm the-
oretical base, not only for these extensions, but for extension to any arbitrary
mesh-based interpolant, tessellation kernel, or connectivity rule. We also sim-
plify methods for computing contour trees on bilinear, trilinear, and quadratic
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Bézier interpolants, Marching Cubes [16, 19], Marching Hypercubes [2] and
digital image connectivity.

Our motivation is that topological computations should be possible for
any interpolant chosen, since no interpolant is ideal for all cases.

For some purposes, users will want high order interpolants. For example,
numerical simulations often require higher-order interpolants to obtain high-
order continuity—the trilinear interpolant may not be enough because it is
only C0 continuous.

For other purposes, low order interpolants will suffice. Generating iso-
surfaces from a trilinear interpolant is already not easy, as many works
between [16] and [15, 21] demonstrate. Furthermore, contour tree algorithms
depend on sorting critical points, so numerical error, e.g., in positioning the
body saddle of a degree-3 polynomial, can result in incorrect topology. Quan-
tization and noise of sampled volumetric data can create spurious features
below the scales of interest. Thus, practical methods like implicitly disam-
biguated Marching Cubes cases (e.g., from [19]) or segmentation algorithms
with low-order digital connectivity remain popular for their simplicity, speed
and robustness.

In this paper, we describe a framework which can adapted to many inter-
polants and applied to any of the known contour tree algorithms. We do
so by extending the “oracle” of Pascucci & Cole-McLaughlin [24]. Section 2
gives a brief overview of the contour tree, its nesting properties and existing
algorithms for computing it, focussing on the graph-theoretic nature of the
algorithms. Section 3 then shows how to extend these algorithms by character-
izing the properties of topology graphs sufficient for the correct computation of
the contour tree, using the bilinear interpolant as a simple example. Section 4
shows some simple repeating graph structures, or widgets, that can be used
to construct topology graphs for bilinear and trilinear interpolants, Section 5
then shows how to represent the overall topology of an interpolant as a finite
state machine whose states correspond to the individual tessellation cases for
isosurface extraction, and how to use these finite state machines to define suit-
able graphs to compute the contour tree. Section 6 then extends this approach
to the Marching Cube cases of Montani et al. [19] and to Marching Hyper-
cubes [2], then shows that the topology of Marching Hypercubes is equivalent
to standard digital image connectivity rules. Section 7 gives some comments on
implementation, while Section 8 gives our conclusions, and future extensions.

2 The Contour Tree

In a scalar field f : IR3 → IR, the level set of an isovalue h is the set L(h) =
{(x, y, z) | f(x, y, z) = h}. A contour is a connected component of a level
set. As h increases, contours appear at local minima, join or split at saddles,
and disappear at local maxima. Shrinking each contour to a point gives the
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contour tree tracking this evolution: a tree because the domain IR3 is simply-
connected. In more general domains it is the Reeb graph [25, 26], which is used
to study manifold topology.

Data is not always a continuous function f : It may be represented by a
mesh M and a procedure that tessellates isosurfaces by cases that do not cor-
respond exactly to any mathematical interpolant. Or, as in digital images, it
may be explicitly discontinuous between samples that are implicitly connected
according to a known rule.

An older definition of the contour tree that applies also to non-continuous
representations is as the nesting relationship of a set of known contours [3].
We must be careful with boundary conditions, since nesting imports ideas of
enclosure, but most practical difficulties vanish if we consider nesting relation-
ship of connected subsets of the form {x : f(x) ≥ h} or {x : f(x) ≤ h}. An
example that we develop in Section 6 is the use of 4/8 connectivity in digital
imaging.

2.1 Previous Work

The contour tree has been used to index and extract contours [3, 31, 5], to
describe terrain [13, 27] or volumetric data [26, 1], to detect features [33, 28],
to simplify data [10, 7], to design transfer functions [28, 32] and to extract
contour properties [14, 7].

Known algorithms compute the contour tree for 4/8 connectivity [27],
8/26 connectivity [28, 18], simplicial meshes [31, 29, 6, 9], and trilinear inter-
polants [24]. We unify and extend all of these algorithms to arbitrary meshes
in any dimension and to surface tessellators such as Marching Cubes [16, 19]
or Marching Hypercubes [2] that are procedural, rather than derived from an
underlying interpolation scheme.

Takeshima et al. [27] computed contour trees in 2 dimensions from surface
networks of monotone paths between critical points. Later extended to three
dimensions [28], this algorithm runs in O(n2). Special treatment was required
for boundary cases and for multiple saddles. Chiang et al. [9] improved this
by using the surface network as input for the algorithm of Carr, Snoeyink &
Axen [6].

Van Kreveld et al. [31] swept an explicit polygonal contour through a sim-
plicial mesh in each isovalue direction then used the contour tree to accelerate
contour extraction. Extended by Tarasov & Vyalyi [29] and Pascucci [23] this
computes the contour tree in O(N log(N)) steps in any dimension, includ-
ing tracking topological genus. Multiple saddles and boundary cases required
special handling.

Carr, Snoeyink & Axen [6] achieved O(N + n log(n) + tα(t)) time for a
simplicial mesh M in any dimension with N cells, n vertices, and t criti-
cal points. Each vertex is assigned a value, and the function f is obtained
by piecewise linear (barycentric) interpolation over each simplex. Pascucci &
Cole-McLaughlin [24] parallelized this, modelled trilinear interpolants, and
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added topological genus, but did not handle arbitrary interpolants specifi-
cally. This algorithm has two basic phases: join/split tree computation and
tree merging.

The first phase computes the join tree and split tree for a simplicial mesh.
Since these are symmetric in the isovalue, we consider only the split tree.
Where the contour tree records the connectivity of {x : f(x) = h}, the split
tree records the connectivity of {x : f(x) ≥ h}. This is demonstrably equiv-
alent to the connectivity of {v ∈ G : f(v) ≥ h}, where G is the graph of the
vertices and edges of the mesh M (it’s one-skeleton). This equivalence follows
from three properties of the induced graph G:

I. Edges of G represent paths in the domain that are monotone in f .
II. G contains all splits and local maxima of the function f .

III. For any h, two vertices u, v ∈ G are connected above h iff u, v are
connected in the mesh by a path above h.

Based on this equivalence, the algorithm adds vertices and edges to a
union-find structure [30] in decreasing order, maintaining the connected sets
of {σ ∈ M : f(σ) ≥ h} incrementally for decreasing h. Local maxima are
detected as having no neighbors with higher-valued vertices, and splits are
detected as having neighbors in separate components, which are then unioned.
It is easy to construct a tree on local maxima, splits, and the global minimum
that records these changes.

The contour tree is a merge of the join and split trees, using a couple of
invariants: Every edge leading upwards from a leaf in the join tree always
appears in the contour tree. Similarly, every edge leading downwards from
a leaf in the split tree always appears in the contour tree. Moreover, this is
recursively true for the trees left over after the leaf vertex has been removed
from all three trees. Thus, the contour tree can be computed by repeatedly
choosing a suitable leaf vertex in the join or split trees, adding its edge to the
contour tree, and deleting it from join and split trees.

Pascucci & Cole-McLaughlin [24] also compute topological genus changes
by adding to the three trees all the Morse critical points [17], which are
the points at which local connectivity changes. These points are determined
numerically.

We will see shortly that the contour tree construction algorithm can be
extended to an arbitrary mesh by choosing any graph G that satisfies prop-
erties I and II above. This idea is already implicit in the divide-and-conquer
computation of the contour tree for the trilinear interpolant by Pascucci &
Cole-McLaughlin [24]. They captured the topology of the trilinear interpolant
by separately computing the join and split trees for subregions, and using
the unions of these trees as graph input to compute join, split and contour
trees for larger and larger regions. We extend this contour tree computation
to arbitrary meshes by varying the graph input further, and by computing
oracles directly from isosurface topology cases for the desired interpolant.
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3 Join and Split Graphs

As we saw above, the contour tree computation for a simplicial mesh M
exploits the fact that the induced graph G satisfies I-III of the following for
split trees and I, IV and V for join trees.

I. Edges of G represent paths in the domain that are monotone in f .
II. G contains all splits and local maxima of the function f .

III. For any h, two vertices u, v ∈ G are connected above h iff u, v are
connected in the mesh by a path above h.

IV. G contains all joins and local minima of the function f .
V. For any h, two vertices u, v ∈ G are connected below h iff u, v are

connected in the mesh by a path below h.

To extend contour tree computation to arbitrary interpolants, we can use
any graph that satisfies these properties. We use split graph to mean a graph
that satisfies I-III, and join graph to mean a graph that satisfies I, IV & V.
When genus information is also to be computed, we add all Morse critical
points to these graphs.

Global critical points (the minima, maxima, and saddles of the function)
that lie on interiors of cells must be critical points of cells to which they belong;
those that lie on boundaries of cells must be critical points of the intersections
between cells. Any graph that includes all local maxima and splits within cells
and their boundaries therefore satisfies II, while any graph that contains all
local minima or joins satisfies IV.

Any of the following graphs satisfies III: the contour tree, the Morse-Smale
Complex [12], the surface network [27], simplicial mesh edges, the union of
cellwise contour trees or split trees [24] or the union of cellwise split graphs.
In fact, our definition of split graphs is complementary to the “oracle” of Pas-
cucci & Cole-McLaughlin [24] as split graphs can be used by the oracle to
compute cellwise split trees. In the following sections, we will show how to
construct split graphs with widgets, which are graphs that capture all possi-
ble topological changes in a cell for a given interpolant, or with finite state
machines that track topological changes in the contours.

4 Graph Widgets for Standard Interpolants

For the two most common non-simplicial interpolants, bilinear in the plane
and trilinear in 3d, we need not explicitly construct a graph that satisfies
properties I-V; it is enough to define a standard small graph widget, a graph
that applies to all cells, and a procedure for each cell to determine the values
assigned to vertices in this graph. The graphs of the widgets for bilinear and
trilinear interpolants tell the join and split tree algorithm which unions and
finds to perform; the values assigned at vertices tell the order. Using one graph
for all cells saves memory and processing time.
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(a) Bilinear Contours (b) The Bilinear
Widget

(c) The Trilinear
Widget

Fig. 1. Widget Construction for Bilinear & Trilinear Interpolants. Where a bilinear
cell includes the saddle point, the saddle point is inserted with the edges marked.
Where no saddle point exists, the centre point will be a regular point, so this remains
a split graph. For the trilinear cell, each face is a bilinear widget with the value of
the face saddle or center, and two body saddles are inserted and connected to all
face saddles and all corner vertices but one by monotone paths

As shown in Figure 1, bilinear contours are families of hyperbolae with
vertical and horizontal asymptotes passing through a saddle point [22]. For
cells that include the saddle, therefore, the saddle point is a split and must
be included in the split graph. In addition, edges from the saddle point to
each vertex are necessary to satisfy III & V. For cells that do not include the
saddle, we can still include any point within the cell and edges to the vertices
without violating any of the properties. As a result, the graph widget shown
in Figure 1(b) is a sufficient join and split graph for the cell.

The value at the added vertex can be computed by observing where partial
derivatives of the interpolant vanish. Using fxy to denote the value of the
original vertex (x, y) of the unit square [0, 1]×[0, 1], the saddle point is outside
this cell if the signs of (f11 − f01) and (f00 − f10) are opposite or the signs of
(f11 − f10) and (f00 − f01) are opposite. If the saddle is in the cell or on the
boundary, the value of the new vertex is the saddle: (f00f11 − f01f10)/(f00 −
f01 + f11 − f10). Otherwise, we can simply average the values at the corners.

The graph widget of Figure 1(c) can be used for the trilinear interpolant:
For a cell, we build bilinear widgets in each face and add two vertices for the
cell body. From the quadratic equation given by Natarajan [20], there are at
most two body saddles [21], which are aligned along a major diagonal of the
cell. Each body saddle is connected to each face saddle and to each vertex
except the one occluded along the major diagonal by the other body saddle—
that is the only vertex that cannot be reached from the body saddle by a
path in the cell that is monotone in f . Where only one body saddle is in the
cell, the two body saddles may be set to the same point, and where no body
saddles occur, the two body saddles are set to the centre or a corner of the
cell. This solution has been implemented [32] and gives the same topology as
Pascucci & Cole-McLaughlin [24].
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5 Finite State Machines for Split Graphs

Because the algorithms to compute join and split trees essentially sweep the
underlying graph or graph widgets, we can reduce the computation further to
a process of generating the correct unions and finds by a finite state machine.
In fact, we can also generalize from interpolants with graph widgets, to any
method (interpolant or set of isosurface tessellation cases) that produces con-
tours that nest properly and move continuously across cell boundaries. As
long as there is an underlying graph that satisfies properties I-V, we can rest
assured that our contour tree is correctly captures the nesting.

Consider a marching algorithm that extracts contours in each cell. Such
an algorithm is accurate for a given interpolant if the contours extracted for
any isovalue are homotopic to the contours of the interpolant in the cell. Two
such extracted contours are equivalent if they are homotopic to each other and
partition the vertices of the cell in the same way. It follows that the tessellation
cases of the algorithm are the equivalence classes of contours it extracts.

Define vertices and Morse critical points of a cell to be potential critical
points : potential because they may not be global critical points. However,
all global critical points must be potential critical points for at least one cell.
Moreover, all topological changes occur at potential critical points: Morse crit-
ical points because the topology of the contours change, and vertices because
the vertex partition changes.

To extract a split graph, we track the vertex partition of that cell as an
isovalue sweep passes each potential critical point. At each potential critical
point v, we add at least one edge vw to the split graph for each component
that merges at v. Each vertex w may be any potential critical point in the
component: choosing the lowest valued one means that the resulting split
graph is the split tree. However, we assume the general case: split graph
rather than split tree.

Instead of computing split graphs in advance for each cell, we observe that
there are a finite number of tessellation cases for each algorithm, and that
the sweep always increases the number of potential critical points that have
been passed. It therefore follows that there are at most N2

c possible transitions
for Nc tessellation cases. Moreover, each transition corresponds exactly to a
sweep past a particular potential critical point.

We describe these transitions as a Mealy machine – a finite state machine
with outputs on transitions: FSM = {Σ, Λ, Q, qinit, F, δ}, where Σ, the input
alphabet, consists of the potential critical points, Λ, the output alphabet, con-
sists of edges for the split graph, Q, the set of states, consists of the tessellation
cases, qinit, the initial state, is the case with no potential critical points above
the isosurface, F , the set of terminal states, includes only the case with all
potential critical points above, δ, the transition function, permits transitions
for any potential critical point below the isosurface and outputs the edges to
be added to the split graph for the cell to represent topological differences
between the states before and after the transition.
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Fig. 2. Finite State Machine for a Bilinear Split Graph: Figures with states illustrate
the tessellation cases; transitions are annotated with the input vertex that is passed
and output edge added to the split graph. The grey region indicates the path of a
sweep through the single cell shown in the top right corner

Figure 2 shows the bilinear split graph finite state machine: the grey region
represents a sweep through the cell in the top right corner, progressing from
state 0 through states 1, 9A, 9B, 11 and 15, extracting the split graph shown
in the bottom left corner: the corresponding split tree is shown in the bottom
right corner.

Since this sweep is identical to the sweep through the function used to
compute the split tree, a side benefit of this is that the oracle can be discarded.
Instead of using an oracle to determine a split graph for each cell, we need only
store the connected components (i.e. state) associated with each cell during
the sweep. For each potential critical point in the entire mesh, we update
the state of all cells to which the potential critical point belongs, and add the
corresponding edges to the split graph for the cell or directly to the union-find
structure in the contour tree algorithm’s split tree sweep.

Figure 3 shows an overview of the finite state machine for split graphs
of the trilinear interpolant; a larger PDF-format version that can be explored
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Fig. 3. Overview of finite state machine (symmetry-reduced) for the split graph of
a trilinear interpolant; link to larger, on-line version in text. States display an iso-
surface, and are numbered first according to the Marching Cubes cases of Montani,
Scateni, & Scopigno [19], which depends on the pattern of vertices above/below the
isosurface, then these are divided by whether face and body saddles are above or
below. Transitions occur as the isosurface passes the value of a vertex, face saddle,
or body saddle, and produce edges that are added to the split graph; transition
labels have been omitted from the diagram to avoid futher clutter. Every possible
evolution of isosurface topology is reflected in a directed path through this graph
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in detail is available on-line at http://www.cs.unc.edu/~snoeyink/
trilinearFSM.pdf. This finite state machine was constructed directly from
the trilinear cases by examining which vertices could possibly be swept past
in each case. Cases are numbered according to the Marching Cubes cases of
Montani, Scateni, & Scopigno [19], which depends on the pattern of vertices
above and below a canonical value, then subdivided by the connectivity within
the cell body and faces. To conserve space, we reduce cases by symmetry and
omit transition annotations from the edges.

6 Marching (Hyper)Cubes and Digital Images

Given that we build our finite state machines directly from the tessellation
cases, it is natural to ask whether similar finite state machines exist for tes-
sellation cases that nest but are not accurate for any specific interpolant, e.g.
the original Marching Cubes [16]. Because of the well-known cracking prob-
lem [11], the original cases are not continuous across cell boundaries, so we
instead use the cases of Montani, Scateni, & Scopigno [19] in the split finite
state machine shown in Figure 4, which is simply the result of collapsing
subcases of our finite state machine for the trilinear interpolant.

In general, provided that the surfaces extracted nest inside each other, or
are homotopic to a set of surfaces that do so, these finite state machines rep-
resent the topology of any set of tessellations. Since the surfaces generated by
Marching Cubes are linear triangulations based on linearly interpolated edge
points, it is easy to see that each case sweeps out a range of surfaces over the
set of isovalues that use that case. Moreover, since the cases enclose an increas-
ing set of vertices, it is also true that the sequential cases are (topologically
at least) nested.

The more general Marching Hypercubes cases of Bhaniramka, Wenger &
Crawfis [2] define n-dimensional tessellation cases as the boundary of the
convex hulls of the set of all black vertices along with any points interpolated
along the edges. Since these sets of points get larger as the isovalue decreases,
and the convex hulls also expand outwards, it is clear that these cases satisfy
the nesting property required for the contour tree to be computable.

Moreover, we note that the effect of the Marching Hypercubes rule is that
any two black vertices in the cell are always enclosed within the same surface,
implying that when a given vertex is swept past (i.e. a transition in our finite
state machine occurs), it is connected not only to its black edge neighbours but
also to its black face- and body- diagonal neighbours. In comparison, during
the reverse sweep, white vertices are only connected to white edge-connected
neighbours.

These rules can be implemented for the split graph by connecting each
vertex to every other black vertex, and in the join graph by connecting each
vertex only to white edge neighbours, thus dispensing with the oracle and finite
state machine entirely, replacing them with a simple graph widget in every cell.
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Fig. 4. Finite State Machine (Marching Cubes [19]) (Symmetry-Reduced). March-
ing Cubes selects a subset of the cases identified for the trilinear interpolant, selects
and collapses the transitions between these cases. Topological consistency can be
checked along all directed paths. E.g., each path must be extendable from state 0
to 0C. Where the trilinear interpolant may have had a sequence of transitions on
face and body saddles that output a sequence of edges for the split graph, Marching
Cubes has a single transition that would output these edges all at once
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We note that since the downwards sweep connects every vertex to each
of its edge-, face- and body- neighbours, and each upwards sweep connects
to edge neighbours only, this widget is equivalent to the 26-/8- connectivity
rule used to compute foreground/background connectivity in digital images.
And, if we reverse the Marching Hypercubes rule to use the convex hull of the
white vertices, we will get the more commonly used 8-/26- connectivity rule
in three dimensions, 4-/8- connectivity in two dimensions, and 2d−/(3d−1)−
connectivity rule in d dimensions.

Working backwards from this observation, we now see that the March-
ing Cubes cases of Montani, Scateni & Scopigno [19] disambiguate faces by
assuming that black vertices are never face- or body- connected, while white
vertices are face- but not body- connected. This is equivalent to 8-/18- digital
connectivity, and can be converted to 8-/26- connectivity by substituting two
cases (4.1.2C for 4.1.1C).

7 Implementation and Results

We have identified two methods of computing suitable graphs for contour
tree computation, widgets and finite state machines. We find that widgets
are easier to implement than the more general finite state machines. We also
find that building and displaying a finite state machine generally leads to a
suitable widget that can be used in their place.

The trilinear widget shown in Figure 1 has been implemented successfully
by Weber et al. [32], and the 8-/18- rule was used for flexible isosurfaces [5].

Table 1 shows construction times for the contour tree using the minimal
5-fold subdivision scheme described in [4] and using our Marching Cubes
method. The contour tree sizes in this table are before removing perturbation,
but are similar since large scale topology is unaffected by local decisions.
Computation speed is similar, since the two methods process approximately
the same number of edges.

Using Marching Cubes, however, results in a clear gain in rendering speed,
as shown in Table 2. We took the minimum and maximum sampled isovalues,

Table 1. Comparison of Construction Times. Broadly speaking, Marching Cubes
topology is computed as rapidly as simplicial topology

Five Simplices Marching Cubes

File Data Size Join/Split Merge Tree Size Join/Split Merge Tree Size

3dknee 127× 256× 256 141.34s 32.28s 2,751,506 129.70s 31.12s 2,706,019
3dhead 109× 256× 256 89.05s 23.94s 2,231,900 81.62s 22.86s 2,196,594
1dog.0.8 72× 64× 60 1.63s 0.19s 18,498 1.61s 0.18s 17,656
3gap.0.8 29× 60× 131 1.31s 0.15s 14,290 1.28s 0.15s 13,164
neghip 64× 64× 64 1.00s 0.08s 2,544 0.99s 0.08s 2,063
fuel 64× 64× 64 0.91s 0.06s 299 0.94s 0.06s 227
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Table 2. Sample Isosurface Sizes for Simplicial Subdivision and Marching Cubes.
Marching Cubes outperforms simplicial subdivision by a factor of about 2.3, roughly
in accordance with the estimates in [8], while avoiding the directional biases in [4]

File Size Isovalue Five Simplices Marching Cubes Ratio

3dknee 127× 256× 256 1639.2 3,662,308 1,634,744 2.24
3dhead 109× 256× 256 1639.2 1,043,892 441,998 2.36
1dog.0.8 72× 64× 60 0.30 393,450 165,964 2.37
3gap.0.8 29× 60× 131 0.65 194,568 81,798 2.38
neghip 64× 64× 64 101.9 49,484 20,360 2.43
fuel 64× 64× 64 101.9 7,564 2,946 2.57

and arbitrarily chose an isovalue at 40% of this range. We then extracted the
isosurface using the minimal (five simplices) subdivision and the Marching
Cubes implementations. In each case, the simplicial subdivision resulted in
roughly two to two-and-a-half times as many triangles, which we expected
from the results of Carr, Theußl and Möller [8]. Moreover, we know from [4]
that simplicial subdivision produces isosurfaces with visible directional biases,
where Marching Cubes does not.

Marching Cubes is both faster and better quality than simplicial subdivi-
sion, which is the main reason why we have used it. In practice, the bottleneck
for exploratory visualization is triangle rendering, which dominates almost
any other cost. Thus, using Marching Cubes rather than simplices is a major
advantage in practice.

8 Conclusions and Future Work

In this paper, we have shown how to extend contour tree computation
from simplices and trilinear interpolants to arbitrary interpolants, to non-
interpolating tessellation cases such as Marching Hypercubes and to digital
images, while keeping execution times at least as fast as for simplicial meshes
when using Marching Cubes.

We have also demonstrated a finite state machine model that tracks the
topology of a given interpolant, aiding in understanding the evolution of iso-
surfaces in a single cell, and described simple graph widgets for bilinear and
trilinear interpolants that can be used instead of the oracle of Pascucci &
Cole-McLaughlin.

In the future, we intend to build finite state machines explicitly and
compare their performance with the simple widgets shown above, and to inves-
tigate similar widget and finite state machine representations of gradient and
flow interpolation.
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Summary. We describe an approach to visually analyzing the dynamic behavior
of 3D time-dependent flow fields by considering the behavior of the path lines. At
selected positions in the 4D space-time domain, we compute a number of local and
global properties of path lines describing relevant features of them. The resulting
multivariate data set is analyzed by applying state-of-the-art information visual-
ization approaches in the sense of a set of linked views (scatter plots, parallel
coordinates, etc.) with interactive brushing and focus+context visualization. The
selected path lines with certain properties are integrated and visualized as colored
3D curves. This approach allows an interactive exploration of intricate 4D flow struc-
tures. We apply our method to a number of flow data sets and describe how path
line attributes are used for describing characteristic features of these flows.

1 Introduction

An effective visual analysis of the dynamic behavior of 3D time-dependent
flow fields is still a challenging problem in scientific visualization. Although
a number of promising approaches have been introduced in recent years, the
size and complexity of the data sets as well as the dimensionality of the under-
lying space-time domain makes the data handling, the analysis and the visual
representation challenging and partially unsolved. In particular, it also proves
to be inherently difficult to actually comprehend (in detail) the important
characteristics of 3D time-dependent flow data.
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In addition to others (streak lines, time lines, etc.), there exist two impor-
tant kinds of characteristic curves for time-dependent flow fields: stream lines
and path lines. While stream lines describe the steady behavior of the flow
at a certain time step, path lines describe the paths of massless particles over
time in the flow. Hence, the analysis of the dynamic behavior of flow fields is
strongly related to the analysis of the behavior of the path lines.

One common approach to analyzing flow fields is to partition the flow
domain into areas of characteristically different flow properties. To do so, a
variety of different features have been proposed, such as topological features,
vortical structures, or shock waves. They reflect different properties of the flow
and therefore focus on the representation of different inherent structures. In
fact, not all features may give useful information for every flow data set, and
the selection of the relevant features is often left to the user in an unsupported
way. Moreover, among the features there may be correlations which are either
general due to their definition, or they occur in certain areas of particular
flows and give relevant information about the behavior of the flow. Therefore
we believe that not only the introduction and visualization of new features
leads to a deeper understanding of the dynamic behavior of the flow field,
but also an effective analysis of the relations between the features and the
applications of these results for a visual representation. Our paper is one step
along the recently challenging path towards a better understanding of 3D time
dependent flow fields.

Our approach starts with the extraction of a number of properties (fea-
tures, scalar values, and time series) at each point of a regular sampling of the
4D space-time domain. We have focused on properties describing the (local or
global) behavior of the path lines, being either classical and well-established
values in vector algebra, or properties newly proposed in this paper. The result
of this step is a path line attribute data set : a four-dimensional multivariate
data set collecting all computed path line properties.

The visual analysis of multidimensional multivariate data is a well re-
searched topic in information visualization. A variety of techniques has been
developed to visualizing such data sets making inherent correlations visible.
Because of this we attempt to use information visualization approaches to
analyzing the path line attributes data set. The results of this analysis (i.e.,
selections of path lines with certain combinations of properties) are then used
for a focus+context visualization of either the selected path lines or the inter-
esting properties. This way the user is able to do a simultaneous exploration in
the 4D space-time domain of the flow and in the abstract path line attribute
space. We show that this can give new insight into characteristic substruc-
tures of the flow which leads to a better understanding of time-dependent
flow fields.

The rest of the paper is organized as follows. Section 2 mentions related
work in the visualization of 3D time-dependent flow fields. Section 3 presents
the properties of path lines which we extract for the further analysis. Section
4 describes our information visualization approach and explains how to use
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it for a focus+context visualization of the flow data. Section 5 applies our
approach to a number of data sets. Section 6 draws conclusions and mentions
issues of future research.

2 Related Work

The idea to segment a flow domain into areas of certain flow properties has
been used for 3D steady flow fields for a variety of features, such as topological
features [7, 13, 14, 25, 31] or vortex regions [11, 18, 16]. [20] provides a general
framework of this in the context of topological features. [17] gives an overview
on flow visualization techniques focusing on feature extraction approaches.

The extension of these techniques to 3D time-dependent fields is usually
done by observing the feature regions over time, see [23, 22, 10] for topolog-
ical features and [2, 3, 1, 24] for vortex features. Although these approaches
provide insight into the flow behavior at arbitrary time steps, the analysis of
the dynamic behavior based on path lines make specialized approaches nec-
essary. [29] visualizes a number of carefully selected path lines to get static
representations of the dynamic flow. [27] considers a segmentation of the flow
domain based on local properties of the path lines. [28, 30] apply texture based
visualization approaches to capture path line characteristics.

The idea of connecting information visualization and scientific visualiza-
tion approaches is considered to be one of the “hot topics” in visualization
[12]. Salzbrunn et al. published an approach of streamline predicates for steady
flow [20]. The work closest to ours is the SimVis approach [4, 6] which uses
approaches of information visualization to analyzing various kinds of simu-
lation data. The main difference to our approach is that SimVis works on
multiple scalar data describing certain properties of the simulation. Contrary
to this, our approach works on dynamic flow data, focusing on local and global
properties of path lines, i.e. on a multi-variate properties data set, derived from
a 3D unsteady flow field.

3 Path Line Attributes

Given a 3D time-dependent vector field v(x, t), x describes the 3D domain
and t is the temporal component. Stream lines and path lines are generally
different classes of curves [26]. Stream lines are the tangent curves of v for a
fixed time t, while path lines describe the paths of massless particles in v over
time.

Given a point (x, t) in the space-time domain, the stream line starting at
(x, t) can be written in a parametric form

sx,t(τ) = x +
∫ τ

0

v(sx,t(s), t) ds (1)
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while the path line starting at (x, t) has the parametric form

px,t(τ) = x +
∫ τ

0

v(px,t(s), s + t) ds. (2)

Path lines depict the trajectory of massless particles in a time-dependent
flow. To characterize path lines, we consider two kinds of information: scalar
values that describes local or global properties of a path line, and time series
that collects information along a path line.

For scalar attributes, we compute a number of scalar properties of the
path line starting at a given point (x, t) which reflect either local or global
properties of the path lines. In the latter case, the value depends on the
considered integration time. Since we are interested in the global behavior of
the path lines, the integration time can be chosen rather large (relative to
the time interval in which v is defined). In particular, we compute the scalar
values in Table 1.
For time series we have investigated the attributes in Table 2.

Fig. 1. a) Mapping the direction vectors along a path line to a unit sphere and
calculating the bounding box approximation of the opening cone; b) Winding angle
along a path line; c) Curvature difference between the path line and stream line
pass through a specified point. d) LAD that records the Euclidean distance between
the point of a path line the corresponding stream line at the same time τ ; e)
ArcLAD that records the Euclidean distance between the point of a path line and
the corresponding stream line at the same arc length α from the start point
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Table 1. Scalar Attributes

Id Name Description

nonStraightV Non Straight Velocity
∫ τ
0 ‖v(px,t(s),s+t)‖ ds−|px,t(τ)−x|

τ

distSE Relative start end distance
|px,t(τ)−x|

τ

avDir Average direction
px,t(τ)−x

‖px,t(τ)−x‖

avParticleV Average particle velocity
∫ τ
0 ‖v(px,t(s),s+t)‖ ds

τ

lyapunov Lyapunov exponent
log(

√
λmax(AT A))

τ ,A=∇xpx,t(τ)[9, 19]
wind Winding Angle

∑n−2
i=0 ∠( (pi+1−pi),(pi+2−pi+1) ),Fig. 1b

lad Local acceleration displacement ‖px,t(τ)−sx,t(τ)‖,Fig. 1d

curvDiff Curvature difference (κs−κp)2,κp= ‖ṗ×p̈‖
‖ṗ‖3 ,κs=

‖ṡ×s̈‖
‖ṡ‖3 ,Fig 1c

div Local divergence div(v)

Table 2. Time Series Attributes

Id Name Description

DistEu Euclidean distance to start DistEu(τ)=‖px,t(τ)−x‖
LAD Local acceleration displacement LAD(τ)=‖px,t(τ)−sx,t(τ)‖,Fig. 1d
ArcLAD Arc local acceleration displacement Fig. 1e
Dir Direction vector
OpeningCone Opening cone Fig. 1a
Curvature Curvature
V elocity Velocity
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Fig. 2. Pipeline for analyzing path line attributes

4 System overview

Fig. 2 shows the pipeline of our path line attribute analysis approach. We start
with a 3D time-dependent flow field v to be analyzed. As a first step, we apply
a sampling of the space-time domain to obtain the points for which we com-
pute the path line attributes. Note that since the data lives in a 4D domain,
even a rather small sampling density may give a high amount of sample points.
Therefore, the sampling density should be a compromise between the spatio-
temporal accuracy of the analysis and the available computing resources. If the
analysis delivers interesting features in certain smaller regions of the domain,
this region can be analyzed using a higher sampling density to make sure the
sampling rate is above the Nyquist frequency. At this state of the approach
we also have to set the integration time for the path lines. Also this setting is
a tradeoff between the fact that we want to have the path lines to be analyzed
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as long as possible and the property that most of the path lines should be
integrated over the same time without leaving the domain.

The next step of the approach is the integration of the stream lines and
path lines starting from the sampled points over the set integration time. For
our examples we have used a 4th order Runge-Kutta integration. From these
integrations we compute all path line attributes introduced in section 3.

The set of all path line attributes is the input of our information visu-
alization core module which will be described in section 4.1 in more detail.
Interactive visual analysis on the basis of state-of-the-art information visual-
ization techniques and brushing in linked views is used to extract relevant
correlations, interesting feature combinations, or general properties of the
data. Note that the brushed features are not necessary physical variable. The
result of this analysis is used to steering the visualization of the path lines
and their attributes. If the interactive visual analysis delivers interesting fea-
tures in a certain scalar path line attribute, we can visualize it using standard
volume rendering techniques like direct volume rendering or slicing. Further-
more, the interactive visual analysis delivers a selection of interesting path
lines having a certain combination of properties. They are visualized as 3D
line structures with a color coded time component.

Our implementations of the visualization of the selected path lines and the
selected attributes are based on Amira [21], whereas our information visualiza-
tion analysis is based on the ComVis system which is described in section 4.1.

4.1 The ComVis system

ComVis is an interactive visualization tool. It supports conventional informa-
tion visualization views such as 2D and 3D scatter plots, parallel coordinates,
histograms, as well as a special curves view which is used for displaying func-
tion graphs. This combination of views makes it possible to analyze a wide
variety of data where in the same row of a multi-variate table some values are
scalar (just as it is usual) and others correspond to a function graph (common
in various kinds of scientific data)[15]. The tool offers multiple linked views
parallel to each other. Each view can be of any of the above mentioned view
type. ComVis pays great attention to interaction. Due to advanced brush-
ing and linking proved to be very powerful analytical tool. Users can brush
the visualized data in any view, all linked views reflect the data selections
by appropriate focus+context visualization. Furthermore, the user can use a
simple, yet powerful line brush in the curves view. The line brush selects all
curves which intersect the line. All brushes can be scaled and moved interac-
tively. The multiple brush mode makes it possible to flexibly combine various
brushes. The user selects brushes and boolean operations between them. AND,
OR, and SUB are supported. Furthermore, the tool creates a composite brush
in an iterative manner. This means that the user selects a current operation
(AND, OR, or SUB) and draws a brush. The previous brushing state is com-
bined with the new brush accordingly. The new state is computed, and it is
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used when the user draws another brush. In this way the user immediately
gets visual feedback, and can very easily broaden the selection (using OR),
or can further restrict the selection (using AND or SUB). Once the user is
satisfied with a selection (or in the meantime), a tabular representation of the
selected data can be shown and exported to file on demand.

5 Applications

We applied our approach to a number of data sets. Not surprisingly, not all
attributes are interesting in all data sets, and different path line attributes turn
out to be important for different data set. However, we can also identify several
interesting coherencies between different path line attributes which seem to
hold even for different data sets. Accordingly, we are optimistic that the here
described analysis indeed provides a useful basis for future generalization of
this approach.

5.1 3D time-dependent cylinder flow

Figures 3 and 4 present some results of analyzing a 3D time-dependent flow
behind a circular cylinder. The cylinder is put in the origin with radius 0.5
and height 8.0, while the data set domain D is [3.15, 19.74]× [−2.06, 2.06]×
[0.09, 1.89]× [0, 2π]. This data set was kindly provided by Gerd Mutschke (FZ
Rossendorf) and Bernd R. Noack (TU Berlin). We considered path lines at
a 28 × 14 × 7 × 6 (191MB attribute file to ComVis) sampling and used an
integration time of 1.5π (for the data set given in a 2π time slab). Figure 3a
shows the direct volume rendering of one of the attribute fields lyapunov. In
figure 3b, all path lines integrated from the sampled points are displayed. As
we can see from figure 3a, there are certain patterns in the lyapunov attribute
field. Low lyapunov values indicate stability of the path line. We use the
information visualization approach to select the area with low lyapunov, as
shown in the upper left of figure 4a. The visualization of the selected path
lines is shown in figure 4b. Fig. 4c shows the seed area of the selected path
lines at the time 0.

When investigating the visualized result, we can see that there are fur-
ther different patterns in the low lyapunov path lines. It is obvious when we

(a) (b) 0.0 2p0.0 5.0

Fig. 3. Flow behind a cylinder: a) Direct volume rendering of the lyapunov
attribute field at time 0; b) All considered path lines
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investigate the ComVis result of time series LAD, after choosing the cluster
as shown in the upper right of figure 4d. We get the path line cluster whose
LAD time series have small values at the end of the integration time. Fig.
4e and 4f present the visualization of the selected path lines and their seed
areas. We notice that they stay in the middle of the domain and along the
flow direction directly behind the cylinder.

5.2 Hurricane Isabel

Fig. 5 shows a visual analysis of the hurricane Isabel data set, which has been
previously analyzed in a number of papers [8, 5]. We sample the domain with
path lines at a resolution of 24×24×6×6 (253MB attribute file to ComVis),
and set the maximum integration time to 30 hours (the whole data set covers
48 hours). Fig. 5a shows the visualization of all considered path lines. Fig. 5b
show a direct volume rendering of nonStraightV at time 0 (the starting time
of the simulation).

(a)

6824
351.178

0

0

count
9

0

0.00173378 14.1196 - 14.2838 42.0271 0.0702504
distSE

46.0452

24.22871.1812711306.9753.801846.045242.027130

0
1. t 3. distSE

2. nonStraightV 4. avParticleV
5. lad

6.curvDiff
7. Iyapunov

8. wind

0.001733780.0702504 0.913846  0.256780.93174e-016.01483570.0522785

53.8018
avP

articleV
0.913846

nonStaightV

Curvature(t)
29.9599

(b)

1.2

0

48

48

00

(d) (e) (f)

Fig. 5. Analysis and visualization of data set Hurricane Isabel: a)A visualization of
all considered path lines. b) Direct volume rendering of the nonStraightV attribute
field at time 0; c) Selecting the area with high nonStraightV which corresponds
to swirling behavior in ComVis; d) Visualization of selected path lines of swirling
behavior; e) Visualization of the seeding area of the selected swirling path lines at
time 0; f) Visualization of the seeding area of the selected swirling path lines at all
time steps
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For this data set, we start the information visualization analysis, with the
observation of the avParticleV vs. distSE scatter plot (upper right of Fig. 5c),
showing a number of points on the diagonal but also a number scatter points
clearly above it. We expect the points on the diagonal to represent path lines
with a rather straight-line-like behavior, whereas the locations of the points
above the diagonal may indicate a swirling behavior. Since nonStraightV is
equivalent avParticleV vs. distSE, we selected all points above the diagonal,
by considering points with a rather high nonStraightV (upper left of Fig. 5c).
The parallel coordinate representation (lower right of Fig. 5c) shows that the
selected path lines have a rather low curvDiff. This indicates that in these
regions stream lines and path lines are locally rather similar. The curvature
plot of the selected path lines doesn’t have extreme values (lower left of Fig.
5c). The selected path lines are visualized in Fig. 5d, clearly showing that we
have selected the ones swirling around the moving eye of the hurricane. Fig.
5e shows the areas where the selected path lines originate at time t = 0, while
Fig. 5f shows the starting areas of the selected path lines for all time steps.

5.3 Airfoil

Figures 6 - 7 show a comparative visual analysis of 8 different data sets of
a flow around an airfoil. The difference between these 8 data sets are the
air injection frequency. The injection frequencies are 0(base), 0.2, 0.44, 0.6,
0.88, 1.0, 1.5 and 2.0. The goal of our analysis is to find the best air injection
frequency which contributes the best lift power. It is known that abnormal
vortex structures reduce the lift of the airfoil. Therefore, our visual analysis
focuses on the areas with vortices where the probability of abnormal flow
is high. We reduce our consideration to a small area around the areas with
vortices.

We sample the interesting area with path lines at a resolution of 36×12×
8× 10 for each data set, and set the maximum integration time to 30 seconds
(the whole data set covers different time domains for different frequencies and
the path line integration will usually leave the domain within 30 seconds for
each frequency). Fig. 6 shows the visualization of all considered path lines for

Fig. 6. The path lines started from the focus area of the airfoil flow field for different
air injection frequency
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Fig. 7. The comparative analysis result for the attribute nonStraightV of the
airfoil flow field for different air injection frequency. The pictures in the first column
depict the selections of 70 percent highest nonStraightV for different frequencies in
ComVis. The pictures in the second column depict the corresponding selected path
lines for the first column. The pictures in the third column are the corresponding
seeding area for the selections in the first column

different frequencies. We observe that most path lines behave well showing a
rather straight behavior. The abnormal flows correspond to those non straight
path lines. As our experience on these attributes, the nonStraightV is a good
attribute to reflect the characteristics of straightness of path lines. So we
compare this attribute computed at same location and same time for different
frequency data sets in ComVis.

Fig. 7 shows the comparative result of the analysis of the nonStraightV
for these 8 different frequencies. Relative analysis is popular in airfoil analy-
sis since the relative flow behavior for different parts of an airfoil determines
the lift power. We apply a relative selection here and select those path lines
for each data set with 70 percent highest nonStraightV attributes. Those
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selected path lines and the corresponding seeding areas are visualized. We
can see that these selected non straight path lines are closed to the area
with vortices. And we can clearly observe that for a frequency 0.6, there
are fewest non straight path lines and the non straight seeding areas are
the smallest. So we find that for frequency 0.6, the probability of abnor-
mal flow is less compared to others. We have tested several other percentage
of the highest nonStraightV . All the results present the equivalent infor-
mation. We conclude that 0.6 is the best air injection frequency among
the 8 tests. The experience from the industry partner confirms this result
successfully.

6 Conclusions

To getting insight into the dynamic behavior of path lines of 3D time-
dependent flow fields is still a challenging problem for the visualization
community. Path lines elude a straightforward extension from stream line
based methods because path lines can be integrated only over a finite time,
and they may intersect each other (at least when only considering their 3D
reference locations). This paper is the - to the best of our knowledge - first
approach to getting insight into the behavior of path lines by applying an
approach from information visualization. In particular, we made the following
contributions:

• We identified a number of local and global attributes of path lines which
we expect to contain relevant information about the path line behavior.

• We interactively analyzed these attributes by using an approach from infor-
mation visualization. The results were used to steering a 3D path line
visualization.

• We applied our approach to a number of data sets, in order to get new
insight into the path line behavior.

During our analysis it turned out that not all path line attributes gave useful
results for all data sets. However, inherent and data independent correla-
tions in the attribute data set can be expected, making a reduction of the
attribute set possible. In particular, we have the impression that the investi-
gation of path line attributes can indeed lead to a useful and practicable way
of accessing/segmenting interesting flow features in time-dependent data sets,
including swirling/vortical/rotating flow subsets, (e.g., via attributes wind and
nonStraightV), quasi-steady flow structures, (e.g., via attributes LAD and
ArcLAD, etc.), etc. We are optimistic with respect to these expectations, not
at the least because it was, for example, fairly straight forward and quite easy
to accomplish to extract the rotating main vortex of hurricane Isabel, which –
to the best of our knowledge – cannot so easily be accomplished with any of
the previously published vortex extraction methods.
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Summary. Visualizing vector fields using streamlines or some derived applications
is still one of the most popular flow visualization methods in use today. Besides the
known trade-off between sufficient coverage in the field and cluttering of streamlines,
the typical user question is: Where should I start my streamlines to see all important
behavior?

In previous work, we define flow structures as an extension of flow topology
that permits a partition of the whole flow tailored to the users needs. Based on the
skeletal representation of the topology of flow structures, we propose a 3D streamline
placement generating a minimal set of streamlines, that on the one hand exactly
illustrates the desired property of the flow and on the other hand takes the topology
of the specific flow structure into account. We present a heuristic and a deterministic
approach and discuss their advantages and disadvantages.

1 Introduction

Flow visualization is an important topic in scientific visualization. Various
science and engineering disciplines apply many of its well-established methods.
Especially streamlines are one of the most popular flow visualization methods
in use. One of the key aspects determining the quality of such a visualization
is to avoid occlusion of streamlines as much as possible while preserving as
much of the desired information about the flow. Therefore a elaborate seeding
strategy is of utmost importance. For 2D streamlines over a planar region
and even for 2D manifolds in 3D there are two strategies that fulfill this goal
satisfactorily. The image-guided strategy (e.g. Jobard et al. [4], Turk et al. [18])
tries to distribute streamlines evenly in space. The flow guided strategy (e.g.
Verma et al. [19]) starts streamlines first at distinct features (here critical
points) thus making them visible in the streamline pattern.

In 3D flow fields the clutter and occlusion problem is far more crucial. Mat-
tausch et al. [8] extend the image guided approach to 3D flow using evenly
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spaced illuminated streamlines. They address the occlusion problem by map-
ping scalar flow features to streamline density. Additionally they work with
depth cueing and halos along a streamline. Other works. e.g. Sadlo et al. [10]
also use physical properties of the flow like regions of high vorticity. Wester-
mann et al. [20] make use of level-set-methods relying on proximity of stream
boundaries. Recently, Ye et al. [21] proposed a seeding strategy based on vector
field topology with additional filtering via geometric and spatial properties.
These contributions have in common, that they use flow features of interest
to filter the streamlines and thus address the occlusion problem in contrast
to the evenly-placement strategies used for 2D vector fields. But what in our
view is lacking is a general framework that allows the user to clearly specify
which behavior or feature of the flow should be the basis for the streamline
seeding. A streamline seeding based on such a framework would result in a
sparse representation of the flow tailored to the users needs.

In previous work [11], we define flow structures as an extension of flow
topology. Flow structures allow to partition the whole flow according to spec-
ified properties. Based on these structures we propose a method for seeding
streamlines that illustrates the desired property of the flow with a minimal
set of streamlines while taking the topology of the specific flow structure into
account. Our seeding strategy involves several steps. Based upon a given flow
structure, we compute a skeletal representation of the topology of its parts.
Based on this skeleton and various quality criteria, we calculate a minimal
set of streamlines that exactly illustrates the desired property of the flow.
Furthermore, we show that our approach can be adapted to gradually reduce
the density of the streamlines in order to get an even sparser representation.

2 Related Work

Beside the previously discussed work on streamline placement, there is a wide
variety of techniques for visualizing 3D flow. Post et al.[9] give a detailed
overview of feature-extraction and tracking. Although this type of visual-
ization barely uses streamlines but rather abstract icons as visualization
primitives for local phenomena, the fundamental feature detection algorithms
can be used to build flow structures as we showed in [12]. Another group
of visualization uses dense and texture based techniques(Laramee et al. [6]).
Although these techniques cover the whole flow, they are rather useful for 2D
plane vector fields or 2D manifolds in 3D vector fields because of the inherent
occlusion problem. There are also attempts to get a sparse representation of
the flow by using clustering approaches (Heckel et al. [2] as well as Telea et al.
[15]) or algebraic multigrids (Griebel et al. [1]). A different approach is flow
topology (Helman et al. [3], Mahrous et al. [7], Theisel et al. [16], Tricoche
et al. [17], and Scheuermann et al. [13]) that can also be used as basis for
streamline seeding as shown by Ye et al. [21].
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3 Construction of Flow Structures

As our streamline seeding strategy builds upon flow structures, we review the
required formalism to construct such a flow structure. Let D ⊂ R3 be the
domain of our steady three-dimensional flow. Its velocity field is a Lipschitz
continuous map v : D → R3, x 	→ v(x). A streamline of v passing through
the point x ∈ D is a map Sx : Jx → R3 where 0 ∈ Jx ⊂ R is an interval of
maximal extent and Sx(0) = x and Ṡx(τ) = v(Sx(τ)) ∀τ ∈ Jx.

A streamline predicate SP is defined as a Boolean map on the set of
all streamlines S, i.e.

SP : S → { TRUE, FALSE },
S 	→ SP (S).

The corresponding characteristic set ASP is defined as

ASP =
⋃

Sx∈S, SP (Sx)=TRUE

Sx(Jx) ⊂ D

We need a grouping mechanism that creates a finite number of groups of
streamlines with common properties. We call the result of this grouping a flow
structure. Our mechanism assumes a finite set G of streamline predicates with
disjunct characteristic sets, i.e.

G = { SPλ | λ ∈ Γ }, ASPλ
∩ ASPμ = ∅ ∀λ, μ ∈ Γ, λ = μ,

where Γ is an index set. As flow structure we define the partition

D =
⋃

ASPλ
.

4 Flow Structure Examples

Our first dataset we use for the examples results from a simulation of the
flow around a sphere with a drilled hole in the center. The hole substantially
changes the flow behavior. The sphere center is located at the origin and it
has a diameter of 200. The underlying unstructured grid contains 2.5 million
tetrahedra. For discretization we sample a representative finite subset S̃ of
all streamlines S. Therefor we use a Cartesian grid in the area [−250; 250]×
[−125; 125] × [−125; 125] with a spacing of 6.25 in all directions as starting
positions. This is a set of 136,161 streamlines that fills the space around the
ball in a dense manner.

The second dataset we use corresponds to a single time step of an unsteady
simulation of the German train ICE. The train travels at a velocity of about
250 km/h with a wind blowing from the side at an angle of 30 degrees. The
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wind causes vortices to form on the lee side of the train, creating a drop in pres-
sure that has adverse effects on the trains track holding. For our computations
we choose a region of interest around the front wagon. To get a finite subset S̃
of S, we take a Cartesian grid in the area [−15000, 45000]× [−11000, 21000]×
[400, 5200] with 400 units as spacing in all directions as starting positions.

We use three flow structures as examples for our streamline seeding. First
we want to study the deviation of the flow from the principal input flow direc-
tion. We obtain the deviation by integrating the difference between tangent
vector direction and main inflow direction along the streamlines. Then we
compute the deviation and take as minimum deviation dmin = 0.1. We define
the streamline predicate: D - Deviation of S̃ from a given direction greater
than dmin. The discretized characteristic set is comprised of all voxels visited
by a streamline fulfilling the respective streamline predicate. For a formal
description of this kind of discretization we refer the reader to [3]. The result-
ing simple flow structure is GDev = { AD, ĀD }. Figure 1 shows the main flow
direction and the characteristic set AD for dmin = 0.1 (weak deviation) and
dmin = 0.6 (strong deviation).

Second we want to examine the swirling behavior of flow with respect to its
main vortices. For this purpose we use the streamline predicate developed in
[12]. It states, whether a given streamline swirls around a specific vortex v. We
apply the predicate on two different vortices resulting in two flow structures
Gv1 = { Av1, Āv1 } and Gv1 = { Av2, Āv2 } (with Avi being the characteristic
set containing all streamlines that swirl around vortex i). The discretization is
similarly to the first predicate. Figure 2 shows the vortex core lines of the flow
using the Sujudi-Haimes method[14]. The dominant flow pattern are three ring

Fig. 1. Main flow direction and corresponding characteristic sets AD for dmin = 0.1
(weak deviation) and dmin = 0.6 (strong deviation) (from left to right)

Fig. 2. Left image: Vortex cores lines of used dataset (according to the method of
Sujudi-Haimes [14]) after a filtering step. There are three main ring vortices. Middle
and right picture: Characteristic sets Av1 and Av2
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vortices on the lee side of the sphere. We label the inner ring vortex as vortex
v1 and the middle ring vortex as vortex v2. The corresponding characteristic
sets Av1 and Av2 are also shown in figure 2.

5 Streamline Seeding

In most cases the number of streamlines belonging to a characteristic set
is considerable less than the number of all streamlines from S̃. However,
showing all streamlines of a characteristic set still tends to produce visual clut-
ter. Therefore, we need a strategy to choose a minimal representative set of
streamlines from a characteristic set. Looking upon the respective discretized
characteristic set as a region, we can get a representation that captures the
essential topology of this region in an easy to understand and very compact
form using a skeleton representation (medial surface). We compute the skele-
ton of the discretized characteristic set with a thinning approach as suggested
in [5]. Figure 3 shows the discretized characteristic set of AD (left image) and
its corresponding skeleton (right image).

Every voxel of the resulting skeleton represents all the voxels of the discrete
characteristic set that have no shorter distance to any of the other skeleton
voxel. To get this set of voxels for every skeleton voxel we use a flood-fill-
algorithm starting for the first run with the skeleton voxels themselves and
we continue by assigning the next nearest neighbors (i.e. max 26 voxels) to the
respective skeleton voxels for the next runs. In case of conflicting assignments
concerning two skeleton voxels we have to calculate the actual distance and
assign the voxel to the skeleton voxel with the shortest distance. If the distance
is equal we take the first skeleton voxel. After several runs we get a partition of
the discrete characteristic set according to the assignment to a skeleton voxel.

We define that a streamline visits a skeleton voxel if the streamline inter-
sects the skeleton voxel itself or one of the voxels assigned to this skeleton
voxel. A set of streamlines from a discrete characteristic set that visits all its
skeleton voxels shows (approximately) its topological structure and hence can
be seen as a representative set of streamlines. We call such a set of streamlines

Fig. 3. Left side shows the boundary of the discrete characteristic set of AD. The
skeleton of this set together with the highly transparent boundary is shown on the
right side
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a configuration. Its obvious that the characteristic set itself is a configura-
tion. What we are looking for is a minimal configuration, i.e. a configuration
with as less streamlines as possible. Furthermore, every skeleton voxel should
be visited only once in the ideal case. This is not possible in most cases, since
most characteristic sets have sub-branches originating from a common main
branch. Hence, every skeleton voxel representing this main branch is visited
by all the streamlines coming from the separate sub-branches. That means,
one can only try to minimize the number of multiple visits.

5.1 Heuristic approach

To compute a minimal configuration with minimal multiple visits, we use
at first a heuristic approach. For the first run one of the skeleton voxels is
randomly chosen. As a skeleton voxel is always a voxel of the discrete char-
acteristic set, there is at least one streamline of the characteristic set that
intersects this skeleton voxel. We take a fitting streamline and note which
skeleton voxels are visited during its course. For every skeleton voxel a counter
is installed which is incremented if the voxel is visited (a streamline can incre-
ment a counter only once). For the next run a skeleton voxel not visited by
previous streamlines (i.e. the respective counter is zero) is used to get the next
streamlines. This process is repeated as long as an unvisited skeleton voxel
exists. In a last step we sum up all counters and subtract the number of skele-
ton voxel in order to get the number of multiple visits. This quality measure
is saved together with the computed configuration. In this way a number of
configurations is computed and the one with the best quality measure is used
for the streamline placement.

On top of the requirement that every branch of the characteristic set is
represented by a streamline, one could demand that a representative stream-
line additionally should not be at the border of a characteristic set but be
instead in the center. Looking at the discrete case, this translates into the
requirement that the streamlines of a configuration should be as near to the
skeleton as possible. Hence, another quality criteria could be the summed up
distances of the streamlines with respect to the skeleton voxels.

5.2 Deterministic approach

The heuristic approach does not guarantee to find the optimal solution. Its
main advantage is, that the runtime depends beside the number of configu-
rations mainly on the number of skeleton voxels. A deterministic algorithm
has to systematically compute all possibilities to find the guaranteed best
configuration:

Starting from the set of all unvisited skeleton voxels, for each streamline
the number of visited skeleton voxels from this set is counted. The streamline
with the largest number of visited skeleton voxels is moved from the set of all
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streamlines to the configuration. This has to be repeated as long as there are
unvisited skeleton voxels.

The drawback of the deterministic algorithm is, that for each iteration
its runtime depends on the number of streamlines. This number tends to
be exceedingly large for characteristic sets with high resolution. Tables 1-4
compare the heuristic and the deterministic approach by means of computa-
tion time and quality of the resulting configuration of the characteristic sets
discussed in section 7. While on the one hand the deterministic algorithm
needs proportional more computation time, on the other hand the heuristic
algorithm converges more slowly to the optimum for increasing numbers of
streamlines. (Note that the heuristic algorithm is optimized with respect to
multiple visits.)

6 Sparse Seeding

Even if there is a minimal configuration, the number of streamlines could
still be too high to avoid cluttering. How many streamlines a minimal con-
figuration has is basically determined by the number of skeleton voxels. This
number is determined again by the shape of the characteristic set, but also
by the resolution of the corresponding discrete characteristic set. Hence, one
can gradually use a coarser resolution for the discrete characteristic set to get

Table 1. Streamline placement for characteristic set Av1 (368 streamlines, 3957
voxels, and 609 skeleton voxels): heuristic (100 configurations) and deterministic
approach in comparison

computation time # streamlines # multiple visits

Deterministic 1.86[s] 21 8798
Heuristic (best/worst) 4.65[s] 22(29) 8309(12235)

Table 2. Streamline placement for characteristic set Av2 (2719 streamlines, 7237
voxels, and 521 skeleton voxels): heuristic (100 configurations) and deterministic
approach in comparison

computation time # streamlines # multiple visits

Deterministic 33.67[s] 21 12278
Heuristic (best/worst) 35.01[s] 24(27) 13127(27354)

Table 3. Streamline placement for characteristic set ĀD (131062 streamlines, 119207
voxels, and 7553 skeleton voxels): heuristic (100 configurations) and deterministic
approach in comparison

computation time # streamlines # multiple visits

Deterministic 37.51[s] 13 9883
Heuristic (best/worst) 39.38[s] 19(21) 5527(19859)
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Table 4. Streamline placement for characteristic set AD (4339 streamlines, 9000
voxels, and 328 skeleton voxels): heuristic (100/200 configurations) and deterministic
approach in comparison

computation time # streamlines # multiple visits

Deterministic 40.05[m] 347 27210
Heuristic 100 (best/worst) 18.55[m] 531(576) 45367(49775)
Heuristic 200 (best/worst) 35.75[m] 526(558) 44845(50416)

Fig. 4. Using different resolutions of voxelization. A coarser voxelization of char-
acteristic sets yields to a sparser streamline placement. Both pictures show the
streamlines of the minimal configuration of the characteristic set Av2. The different
voxel sizes (left 6.25, right 12.5) of the discrete characteristic set yields two different
streamline densities

less streamlines. This reduction is not for free, since structures of the charac-
teristic set from the size 2δ and up need a voxel size of δ. That means one has
to find a compromise between the accuracy of the representation of the char-
acteristic set of the streamlines and the number of streamlines used. Figure
4 shows a minimal configuration of the characteristic set Av2 with different
voxel sizes (6.25 and 12.5) for the discrete characteristic set. The double voxel
size yields to a significant reduction of streamlines while still representing the
main topological structures of Av2.

7 Results

We first apply our streamline seeding on the single characteristic set Av1.
The set is voxelized with a voxel size of 6.25. The pictures in the first row
of figure 5 show all streamlines of Av1. From this set, we have to choose a
representative subset. As quality criteria we use the number of multiple visits.
The pictures of the next two rows show the best (red streamlines) and the
worst (blue streamlines) minimal configuration from 500 configurations. The
two configurations only differ in detail. The worst configuration is more dense
around the vortex cores, because each extra circle around the inner vortex core
line probably increases the number of multiple visits. The pictures of the last
row show a random selection of streamlines from Av1 using the same number
of streamlines as in the best minimal configuration. The comparison of the
placement shows that it is useful to invest computing time in a methodical
selection of streamlines.
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Fig. 5. Streamline seeding based on flow structure Gv1. The first row shows all
streamlines of characteristic set Av1 (i.e. streamlines circling around the inner
ring vortex). The next two rows show the best (red) and worst (blue) streamline
placement according to our quality criteria. For a comparison the last row shows
a streamline placement by random selection of streamlines from Av1 (number of
streamlines equal to that of the best placement) The two columns show different
perspectives

In a second example we construct a streamline placement for the whole
flow. But instead of a regular seeding of the flow volume, we want to amplify
the deviation of the flow from the main direction. Therefore, we partition the
flow with the flow structure GDev = { AD, ĀD } introduced in section 3. The
picture of the first three rows of figure 6 show the best minimal configura-
tion for the characteristic sets AD (red streamlines), ĀD (purple streamlines),
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Fig. 6. Streamline placement for the whole flow using a partition by flow structure
GDev. The discrete characteristic sets are voxelized with voxel size 12.5. The first row
shows the minimal configuration of the characteristic set AD (left) and ĀD (right).
The second row shows both resulting sets of streamlines combined using two other
viewpoints

Fig. 7. Streamline placement based on flow structure GDev applied to the ICE-
dataset (top down): characteristic set AD, skeleton, and streamline placement

and both combined. Because the streamlines are still very dense, we use
additionally a coarser voxelization of the characteristic sets. The resulting
improvements concerning streamline density can be seen in direct comparison
on the picture of the right column. The pictures of the last row show the best
minimal set with coarse voxelization from to different perspectives. Although
the occlusion of the streamlines is very modest, one can approximately see the
parts of the flow where the deviation from the main flow is high. This results
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from the tailored flow structure the streamline placement was based on. Of
course many other streamline placements of the flow with a different empha-
sis of a flow behavior are possible. The user has just to define and compute a
fitting flow structure as basis for a new streamline placement - a streamline
placement tailored to the users needs.

In the last example we apply the flow structure GDev to the ICE-dataset.
Figure 7 shows the corresponding characteristic set AD, the skeleton, and
the streamline placement. The resulting streamlines (93 from a total of 4045)
represent the structure of the characteristic set in a good fashion.

8 Conclusion

We introduced a new streamline seeding method based on flow structures.
Applied to two realistic CFD-datasets, the method proved to bring out a min-
imal set of streamlines that illustrate the desired flow behavior with modest
occlusion. We compared a heuristic and a deterministic approach. Depend-
ing on the properties of the respective characteristic set (number of skeleton
voxels, number of streamlines) both approaches make sense. We also showed
how to reduce the streamline density step by step in order to achieve an even
sparser representation.
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tive Exploration of 3d Flow Using Evenly-Spaced Illuminated Streamlines. In
Proceedings of Spring Conference on Computer Graphics, pages 213–222, 2003.

9. F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. The State of
the Art in Flow Visualization: Feature Extraction and Tracking. 22(4):775–792,
2003.

10. F. Sadlo, R. Peikert, and E. Parkinson. Vorticity Based Flow Analysis and
Visualization for Pelton Turbine Design Optimization. In IEEE Visualization
2004, pages 179–186, Austin, Texas, 2004.

11. T. Salzbrunn and G. Scheuermann. Streamline Predicates As Flow Topology
Generalization. In Topo-In-Vis Proceedings 2005, 2005.

12. T. Salzbrunn and G. Scheuermann. Streamline Predicates. IEEE Transactions
on Visualization and Computer Graphics, 12(6):1601–1612, 2006.

13. G. Scheuermann, K.I. Joy, and W. Kollmann. Visualizing Local Vector Field
Topology. Journal of Electronic Imaging, 9:356–367, 2000.

14. D. Sujudi and R. Haimes. Identification of Swirling Flow in 3D Vector Fields.
Technical Report AIAA Paper 95–1715, American Institute of Aeronautics and
Astronautics, 1995.

15. A. Telea and J.J. van Wijk. Simplified representation of vector fields. In IEEE
Visualization 1999, pages 35–42, San Francisco, CA, 1999.

16. H. Theisel, T. Weinkauf, H.C. Hege, and H.P. Seidel. Saddle Connectors - An
Approach to Visualizing the Topological Skeleton of Complex 3d Vector Fields.
In IEEE Visualization 2003, pages 225–232, 2003.

17. X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topological Track-
ing for the Visualization of Timedependent Two-Dimensional Flows. Computers
& Graphics, 26(2):249–257, 2002.

18. G. Turk and D. Banks. Image-Guided Streamline Placement. In Computer
Graphics Annual Conference Series, pages 453–460, 1996.

19. V. Verma, D. Kao, and A. Pang. Flow-Guided Streamline Seeding Strategy. In
IEEE Visualization 2000, pages 163–170, Salt Lake City, Utah, 2000.

20. R. Westermann, C. Johnson, and T. Ertl. A Level-Set Method for Flow Visu-
alization. In IEEE Visualization 2000, pages 147–154, Salt Lake City, Utah,
2000.

21. X. Ye, D. Kao, and A. Pang. Strategy For Seeding 3d Streamlines. In IEEE
Visualization 2005, pages 471–478, Minneapolis, MN, 2005.



Critical Points of the Electric Field
from a Collection of Point Charges

Nelson Max1 and Tino Weinkauf2

1 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA,
94550, USA, max2@llnl.gov

2 Zuse Institute Berlin, Takustr. 7, D-14195 Berlin, Germany, weinkauf@zib.de

Summary. The electric field around a molecule is generated by the charge dis-
tribution of its constituents: positively charged atomic nuclei, which are well
approximated by point charges, and negatively charged electrons, whose proba-
bility density distribution can be computed from quantum mechanics (Atoms in
Molecules: A Quantum Theory, Clarendon, Oxford, 1990). For the purposes of
molecular mechanics or dynamics, the charge distribution is often approximated
by a collection of point charges, with either a single partial charge at each atomic
nucleus position, representing both the nucleus and the electrons near it, or as several
different point charges per atom.

1 Introduction

The critical points in the electric field are useful in visualizing its geometrical
and topological structure, and can help in understanding the forces and motion
it induces on a charged ion or neutral dipole. Most visualization tools for vector
fields use only samples of the field on the vertices of a regular grid, and some
sort of interpolation, for example, trilinear, on the grid cells. There is less
risk of missing or misinterpreting topological features if they can be derived
directly from the analytic formula for the field, rather than from its samples.
This work presents a method which is guaranteed to find all the critical points
of the electric field from a finite set of point charges. To visualize the field
topology, we have modified the saddle connector method of [Th03] to use the
analytic formula for the field.

The analysis below would also apply to gravity in astronomy, since the
Newtonian gravitational force outside a spherically symmetric body is the
same as if all its mass were concentrated at its center.
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2 Electric Potential and Field

The electrostatic potential P (X) at position X , resulting from a point charge
q at position A is

P (X) =
q

4πε|X − A| =
q

4πε((X − A) · (X − A))1/2

where ε is the permittivity of the medium. Since we are only interested in
the field topology here, we will for simplicity below neglect the factor 4πε. By
definition, the electrostatic field F is the negative gradient of the potential,
so, neglecting the factor 4πε,

F (X) = −∇ q

((X − A) · (X − A))1/2

=
q(X − A)

((X − A) · (X − A))3/2
. (1)

Therefore, for a set of n charges qi at positions Ai, the electrostatic field is

F (X) =
n∑

i=1

qi(X − Ai)
((X − Ai) · (X − Ai))3/2

. (2)

3 Octree Method for Finding Critical Points

Our method of finding critical points of F starts with a single cubical cell,
or a regular grid of such cells, guaranteed as in section 4 to contain all the
critical points of F . We describe below a test to prove that a cubical cell C
contains no critical points of F . This test is based on computing component-
wise bounds Fmax and Fmin for the possible values of F (X) within the cell.
In the column vectors Fmax and Fmin, if any of the three components are
both positive or both negative, we know that F (X) cannot be zero for any X
in C, so there are no critical points of the field in C, the test passes, and the
cell can be skipped. Otherwise, all of the components of F (X) could possibly
become zero inside C, and the test fails, so we divide the cell into eight equal
subcells, and recursively test these subcells. Thus we converge on the critical
points. At the limiting depth of the recursion, the centers of cells which fail
the test are written to an output list. This list is then pruned by averaging
clusters of points within a threshold distance of each other. (Currently, this
threshold is taken as 6 times the edge length of the cell at the recursion limit.)
The test will fail for cells containing any of the point charge locations, so these
locations will also be on the output list. The octree is never explicitly stored,
and the only memory it uses is for the portion in the stack for the recursion.
By trading space for time, one could store the force at vertices in some local
portion of the octree, saving some recomputation for neighboring cells.
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Consider a cubical cell C of side s, with vertices Vijk , where i, j, and k
are either 0 or 1, and count along the x, y, and z axes respectively. Our goal
is to get bounds Fmax and Fmin on the values of F (X) inside this cell, using
the values of F on the eight vertices Vijk , and bounds on the derivatives of F
inside C. Since F is the negative gradient of the potential P , its derivatives
are the entries in H, the negative of the Hessian matrix of second derivatives
of the potential, i.e.

H(X) =
n∑

i=1

(
qiI

|X − Ai|3/2
− 3

qi(X − Ai)(X − Ai)�

|X − Ai|5/2

)

. (3)

Here I is the identity matrix, and (X −Ai)(X −Ai)� is a square matrix, since
X and Ai are column vectors. Let Hj be the jth row of H and F j be the jth

component of the vector F . Let V be one of the vertices Vijk , and let X be
any point inside the cell. Applying the mean value theorem to the function
Ej(t) = F j(V +t(X−V )), for j = 1, 2, or 3, there is a value tj with 0 ≤ tj ≤ 1,
so that

F j(X) = F j(V ) + Hj(Yj)(X − V ) (4)

where Yj = V + tj(X − V ). Therefore bounds on the entries of H will help us
get bounds on the components of F .

Consider the denominators in equation (3). The quantity |Y −Ai| attains
its maximum in C at one of the vertices of the cube C. If Ai is not inside cell
C, then |Y − Ai| attains a positive minimum in C at a vertex of C, or at the
projection of Ai on one of the faces or edges of C. (Cells containing a point
charge Ai fail the test, and are recursively subdivided.)

For each point charge Ai and each of the 9 elements of H, we can find the
upper and lower bounds for each of the two terms in equation (3), using either
the minimum or the maximum value of the denominator, taking into account
the multiple possible signs of the numerator, and its upper and lower bounds.
By summing the bounds on these two terms over all the point charges, we can
get element-wise upper and lower bounds Hmax and Hmin for the matrix H(Y ).

Then, using each vertex Vijk in equation (4), we can obtain component-
wise upper and lower bounds Fmax

ijk and Fmin
ijk for F (X) with X in C, by

taking into account the signs of the components of the column vector factor
(X − V ) in equation (4). For example, if V in equation (4) is V011, then for
X in C, X − V is of the form (x, y, z)�, with 0 ≤ x ≤ s, −s ≤ y ≤ 0, and
−s ≤ z ≤ 0, so, as shown in 1D in figure 1, we get the component-wise bounds

Fmax
011 = F (V011) + max(0, Hmax(s, 0, 0)�) + max(0, Hmin(0,−s, 0)�)

+max(0, Hmin(0, 0,−s)�) ,

and

Fmin
011 = F (V011) + min(0, Hmin(s, 0, 0)�) + min(0, Hmax(0,−s, 0)�

+min(0, Hmax(0, 0,−s)�) .
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Fig. 1. A 1D example for computing bounds on a function F (x)

Finally, let Fmax = minijkFmax
ijk and Fmin = maxijkFmin

ijk be the component-
wise minimum and maximum from these eight respective estimates, giving the
tightest bounds they collectively impose on F (X) in C. As described above,
these bounds are used to limit the octree search. Note that in the 1D case
illustrated in figure 1, Fmax > 0, and Fmin < 0, so further subdivision would
be required. However, the lowest vertex of the parallelogram bounded by the
dotted lines of slope Hmax and Hmin from F (V0) and F (V1) is above the F = 0
axis, so we could actually skip this cell. In 3D, the range of F values satisfying
the eight pairs of linear inequalities could be found by low dimensional linear
programming [deB00], but this is more complicated, and so far we have not
done so.

4 Finding a Sphere Containing all the Critical Points

In order to make sure that all the critical points are found, we need to make
the initial root cube or grid large enough to contain them all. We instead find
a large enough sphere, and enclose it in the initial grid. To do this, we expand
equation (2) into a series of terms, which decrease with different inverse powers
of the distance r = |X | of the point X from the origin. This series is closely
related to the multipole expansion of the potential described in [Wiki], [Ja62],
or [Sch94], but is slightly different because we are expanding the field, and not
the potential. We will find a sphere outside of which the first non-vanishing
term of this series dominates the sum of the later terms, so that F (X) cannot
vanish.
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Consider first a single point charge q at position A, as in equation (1), let
r = |X |, and rewrite the denominator as follows:

F (X) =
q(X − A)

((X − A) · (X − A))3/2

=
q(X − A)

(|X |2 − 2A · X + |A|2)3/2

=
q(X − A)

(r2(1 + 1
r2 (−2A · X + |A|2))3/2

=
qr(X

r − A
r )

r3
(

1 +
(

|A|2
r2 − 2A

r · X
r

))3/2

=
q

r2

(

X̂ − A

r

)(

1 +
( |A|2

r2
− 2

A

r
· X̂
))−3/2

, (5)

where X̂ = X/r is the unit vector in the direction of X . Let

t =
|A|2
r2

− 2
A

r
· X̂ .

Then, expanding (1 + t)−3/2 by the binomial series (the same as its Taylor
expansion about t = 0), which converges for |t| < 1, we get

(1 + t)−3/2 =
(

1 + (−3/2)t + (−3/2)(−5/2)t2/2! + · · ·
)

=
∞∑

l=0

(− 3
2
l

)

tl (6)

where the generalized binomial coefficient
(

s
l

)

=
s(s − 1)(s − 2) · · · (s − l + 1)

l!
.

Substituting this binomial series into equation (5), and writing A ·X̂ as A�X̂,
we have

F (X) =
q

r2

(

X̂ − A

r

)(

1 +
(

−3
2

)

t +
(

−3
2

)(

−5
2

)
t2

2!

+ · · · +
(

−3
2

)(

−5
2

)

· · ·
(

−2l + 1
2

)
tl

l!
+ · · ·

)

(7)

=
q

r2

(

X̂ − A

r

)(

1 +
(

−3
2

)( |A|2
r2

− 2
A�X̂

r

)

+
(

−3
2

)(

−5
2

)( |A|2
r2

− 2
A�X̂

r

)2

/2 + · · ·
)
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=
q

r2

(

X̂ − A

r

)(

1 − 3
2

( |A|2
r2

− 2
A�X̂

r

)

+
15
8

( |A|4
r4

− 4
|A|2
r3

A�X̂ + 4
(A�X̂)2

r2

)

+ · · ·
)

=
q

r2

(

X̂ − A

r

)(

1 − 3
2
|A|2
r2

+ 3
A�X̂

r

+
15
8
|A|4
r4

− 15
2
|A|2A�X̂

r3
+

15
2

X̂�AA�X̂

r2
+ · · ·

)

(8)

Using the distributive law to multiply out the two parenthesized factors in
equation (8), and grouping terms with the same negative power of r, we get

F (X) =
qX̂

r2
+

q(3(A�X̂)X̂ − A)
r3

+
q

r4

(

−3
2
|A|2X̂ − 3AA�X̂ +

15
2

(X̂�AA�X̂)X̂
)

+ · · · . (9)

In the case of several point charges, we sum over the point charges to get

F (X) =
qtotalX̂

r2
+

3(D · X̂)X̂ − D

r3
+

MX̂ + (X̂�NX̂)X̂
r4

+ · · · , (10)

where the total charge qtotal =
∑n

i=1 qi , the dipole moment D =
∑n

i=1 qiAi ,
and the 3 by 3 matrices

M = −3
n∑

i=1

qiAiA
�
i −

(

3
2

n∑

i=1

qi|Ai|2
)

I

and

N =
15
2

n∑

i=1

qiAiA
�
i .

The first monopole term in equation (10) is linear in X̂ , the second dipole
term is quadratic in X̂, the third quadrupole term is cubic in X̂, and so on.
The monopole and dipole terms are as in equation 1.2.8 of [Sch94].

4.1 The monopole case

There are several cases, depending on which of these terms is the first non-zero
one. Our goal is to find the radius rm of a sphere containing all the critical
points. If qtotal is non-zero, we need to show that the magnitude |qtotal|/r2 of
the monopole term is greater than the magnitude of the sum of all the rest
of the terms, if r > rm, for some appropriate rm. If qtotal = 0, we will instead
use one of the higher order terms, as in sections 4.2 or 4.3.
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We can bound the term in the line numbered (7) of the binomial series by

∣
∣
∣
∣

(

−3
2

)(

−5
2

)

· · ·
(

−2l + 1
2

)
tl

l!

∣
∣
∣
∣

=
3

2 × 1
5

2 × 2
· · · 2l + 1

2 × l
|t|l ≤

∣
∣
∣
∣

3
2
t

∣
∣
∣
∣

l

.

Then this binomial series is dominated by a geometric series, and the sum of
all its terms after the first is dominated by the sum of the geometric series:

∞∑

l=1

∣
∣
∣
∣

(− 3
2
l

)

tl
∣
∣
∣
∣
≤

∞∑

l=1

∣
∣
∣
∣

3
2
t

∣
∣
∣
∣

l

=

∣
∣3
2 t
∣
∣

1 − ∣∣ 32 t
∣
∣

.

For the ith point charge, let

ti =
|Ai|2
r2

− 2
Ai

r
· X̂ .

If we chose rm ≥ 8k|Ai|, for an as yet undetermined k ≥ 1, and if r > rm,
then

|ti| ≤ |Ai|2
(8k|Ai|)2 + 2

|Ai|
8k|Ai|

≤ 1
64k2

+
2
8k

≤ 1
64k

+
2
8k

=
17
64k

so, using the fact that k ≥ 1
∣
∣
∣
∣
∣

∞∑

l=1

(− 3
2
l

)

tli

∣
∣
∣
∣
∣
≤

∣
∣ 3
2 ti
∣
∣

1 − ∣∣32 ti
∣
∣

≤
51

128k

1 − 51
128k

≤
51

128k

1 − 51
128

≤
51

128k
77
128

=
51
77k

.

If we take rm = maxi(8k|Ai|), for k =
∑n

i=1 |qi|/|
∑n

i=1 qi| ≥ 1, sum over the
contributions of all the the point charges, use the inequality |B−C| ≥ |B|−|C|
for any two vectors B and C, and use the fact that |X̂| = 1, we get, for r > rm,

|F (X)| =

∣
∣
∣
∣
∣

n∑

i=1

(
qi

r2

(

X̂ − Ai

r

)

(1 + ti)
−3/2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

i=1

(

qi

r2

(

X̂ − Ai

r

)(

1 +
∞∑

l=1

(− 3
2
l

)

tli

))∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

i=1

qi

r2
X̂ −

(
n∑

i=1

qi

r2

Ai

r
−

n∑

i=1

qi

r2

(

X̂ − Ai

r

) ∞∑

l=1

(− 3
2
l

)

tli

)∣
∣
∣
∣
∣
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≥
∣
∣
∣
∣
∣

n∑

i=1

qi

r2
X̂

∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣

n∑

i=1

qi

r2

Ai

r
−

n∑

i=1

qi

r2

(

X̂ − Ai

r

) ∞∑

l=1

(− 3
2
l

)

tli

∣
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

n∑

i=1

qi

r2

∣
∣
∣
∣
∣
−
(

n∑

i=1

|qi|
r2

|Ai|
8k|Ai| +

n∑

i=1

|qi|
r2

(

1 +
|Ai|

8k|Ai|
)

51
77k

)

=
|∑n

i=1 qi|
r2

−
∑n

i=1 |qi|
r2

(
1
8

+
51
77

(

1 +
1
8k

)) |∑n
i=1 qi|

∑n
i=1 |qi|

=
|∑n

i=1 qi|
r2

(

1 −
(

1
8

+
51
77

(

1 +
1
8k

)))

≥ |∑n
i=1 qi|
r2

(

1 −
(

1
8

+
51
77

(

1 +
1
8

)))

=
|∑n

i=1 qi|
r2

(

1 − 536
616

)

=
|∑n

i=1 qi|
r2

80
616

> 0 ,

and thus there are no critical points outside the sphere of radius rm.

4.2 The dipole case

If the total charge qtotal is zero, as on a neutral molecule, but the dipole
moment D is non-zero, we can proceed similarly, getting a lower bound on
the dipole term, and showing that it dominates the remaining terms outside
of a sufficiently large sphere.

To get the lower bound on the dipole term (3(D · X̂)X̂ −D)/r3, note that
the points in the set {(D ·X̂)X̂} lie on a sphere of diameter |D| centered at the
point 1

2D, since the point (D · X̂)X̂ is the foot of the perpendicular line from
the point D to the line from the origin in the direction X̂ . (See figure 2 for a

Fig. 2. Construction of the circle {3(D · X̂)X̂ − D} for all unit vectors X̂
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2D analog.) Thus the points of the form 3(D · X̂)X̂ lie on a sphere of radius
3
2D centered at 3

2D, and the translated points of the form 3(D · X̂)X̂ −D lie
on the translated sphere of radius 3

2D centered at 1
2D. The closest point on

this translated sphere to the origin is −D, and its distance to the origin is
|D|. Thus a lower bound on the dipole term is |D|/r3.

Since the dipole term arises from the terms l = 0 and l = 1 in the series
(6) and (7), to show that the dipole dominates, we separate these terms from
the remaining terms:

F (X) =
n∑

i=0

(

qi

r2

(

X̂ − Ai

r

)(

1 − 3
2

( |Ai|2
r2

− 2
A�

i X̂

r

)

+
∞∑

l=2

(− 3
2
l

)

tli

)

=
∑n

i=0 qiX̂

r2
−
∑n

i=0 qiAi

r3
+

3
(
∑n

i=0 qiAi · X̂
)

X̂

r3

−
3
2

∑n
i=0 qi|Ai|2X̂

r4
− 3

∑n
i=0 qiAiA

�
i X̂

r4
+

3
2

∑n
i=0 qi|Ai|2Ai

r5

+
n∑

i=0

qi

r2

(

X̂ − Ai

r

) ∞∑

l=2

(− 3
2
l

)

tli . (11)

Of the seven terms in equation (11), the first is the monopole term, which
we are assuming is zero, and the second and third are the dipole contribution,
for which we just derived a lower bound. Similar to the monopole case, we
can show that these dipole terms dominate the next three terms, because of
their higher powers of r in the denominator, and also the last term, using the
geometric series as above, if r > rm, with

rm = 36(maxn
i=1|Ai|)

n∑

i=1

|qi|/|D| . (12)

4.3 The quadrupole case

If both the total charge qtotal and the dipole moment D are zero, and the
quadrupole term is not zero, then the electric field decreases as 1/r4. Unlike
the dipole case, we have not been able to derive a simple lower bound on the
magnitude of the quadrupole term in equation (10). Instead, we apply the
techniques in section 3, using the mean value theorem to get a lower bound.

We cover the unit sphere with a regular 2D latitude longitude (θ, φ) grid.
Then, for each 2D grid cell, we find its 3D axis-aligned bounding box. For
this box, we find bounds on the entries of the 3 by 3 matrix Q for the partial
derivatives of the vector-valued function

G(X̂) = MX̂ + (X̂�NX̂)X̂ ,

with respect to the 3D Cartesian coordinates of X̂. By the chain rule, the
3 by 2 partial derivative matrix P of G(X̂(θ, φ)) with respect to θ and φ is
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the product of Q and the 3 by 2 Jacobian matrix J for the function X̂(θ, φ).
We use the minimum and maximum on the 2D grid cell for the entries of J
together with the lower and upper bounds on the 3D bounding box for the
entries of Q, to find bounds on the entries of P . A 2D version of the method
in section 3 can then give the bounds on the components of the vector G(X̂),
and thus a lower bound for |G(X̂)| over the 2D cell. Let B be the minimum
of this lower bound over all the 2D grid cells covering the sphere. (For the
examples in this paper, we directly found B > 0 for the initial grid, so quadtree
subdivision was not needed.) Then the norm of the quadrupole term is

∣
∣
∣
∣
∣

MX̂ + (X̂�NX̂)X̂
r4

∣
∣
∣
∣
∣
≥ B

r4
.

The vanishing monopole and dipole terms and the non-vanishing quadrupole
term come from the l = 0, 1, and 2 terms of the series in (6) and (7), so, as for
the dipole case, one can show that the quadrupole term dominates the sum of
the six other terms from taking l = 0, 1, and 2 in equation (7), plus the sum

n∑

i=1

qi

r2

(

X̂ − Ai

r

) ∞∑

l=3

(− 3
2
l

)

tli ,

when r > rm, with

rm = max

(

6 maxi|Ai|, 61
B

n∑

i=1

|qi||Ai|3
)

. (13)

We have not dealt with higher order cases, but they can be handled
similarly, and are not normally needed.

5 Results

Figure 3 shows the saddle connectors between the critical points of an alanine
residue isolated from a protein by cutting its peptide bonds. Standard par-
tial charges making qtotal zero were placed on the 10 atom centers, which are
sources and sinks of the electric field. It took the 15 seconds on one processor
of a dual 3.3 GHz Xeon workstation, to recursively search 457,328 octree cells
to depth 44, and locate to 12 decimal place accuracy the 10 saddle points,
using a sphere of size rm = 4, known to contain all the critical points. However
equation (12) gives rm = 238.4, and then it took 14 hours to find the same
critical points. Figure 4 shows the separation surface for this structure. These
figures were drawn by a modification of the integration methods in [Th03]
which uses the analytic gradient to integrate the separation surfaces and find
the saddle connectors. Figure 5 shows the saddle connectors for a benzene
molecule, with equal negative partial charges at each of its six carbon atoms,
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Fig. 3. The saddle connectors between the saddle points of an isolated alanine
residue from a protein. The 10 atom centers are shown as pink spheres for sources
(positive point charges), and blue spheres for sinks

Fig. 4. The separation surfaces for the saddle points of an isolated alanine residue
from a protein

Fig. 5. The saddle connectors for a benzene molecule with 12 point charges
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Fig. 6. A benzene molecule with 60 point charges

and positive charges at each of the six hydrogen atoms. Because of its sym-
metry, benzene has zero dipole moment as well as zero total charge, but it has
a non-zero quadrupole moment.

The partial charge assignment at the atom positions gives only a rough
approximation to the actual charge distribution generating the potential, and
is certainly an oversimplification in the case of benzene, where the π orbitals
from the carbon atoms lie above and below the plane of the 12 atom cen-
ters. We have obtained a more accurate quantum mechanical approximation
of the electrostatic potential described in [St96], using 60 point charges. Fig-
ure 6 shows the arrangement of these point charges, which are not all in the
same plane. It took 66 minutes to recursively search 23,290,456 octree cells
to a depth of 44 and find the 193 critical points, using rm = 4. However
equation (13) gives rm = 9633, and with this value, the algorithm ran for a
week without terminating. So the estimates (12) and (13) for rm are not very
practical. Of the octree cells examined for rm = 4, 14,833,200 were at level
8, while between 58,688 and 63,272 were at each of the levels 14 through 44.
This shows that once the search locates the critical point neighborhood, the
convergence is linear in the precision desired, and justifies our decision not
to use a less robust method like Newton-Raphson iteration at the final stage.
Figure 7 shows the saddle connectors for this collection of point charges, and
figure 8 shows the separation surfaces. These figures are close to the corre-
sponding figures in [Th03], which inspired the current work, but are different.
In [Th03], the field was sampled on a 1013 grid, and then trilinearly inter-
polated inside the grid cells. The critical points found for this interpolated
field, using the methods of [Ma02], were 40 sinks, 12 sources, and 132 saddles.
(Slightly different approximate numbers were reported in [Th03], but these are
the counts gotten by rerunning that code on the same input.) We reran code
in that paper on a 2553 grid, and found 42 sinks, 12 sources, and 129 saddles,
including 3 spurious saddles, one each in a face, an edge, and a vertex of the
cube bounding the data volume. However, the analytic method described in
the current paper found all 48 sinks and 12 sources at the input point charges,
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Fig. 7. The saddle connectors for a benzene molecule with 60 point charges

Fig. 8. The separation surfaces for a benzene molecule with 60 point charges

and 133 saddles. This includes 6 pairs of saddles and sinks, with the two so
close together in each pair that they could not be resolved by the sampling
method. Thus the analytic method is superior in this case.
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Summary. If one wants to study the global dynamics of a given system, key com-
ponents are the stable or unstable manifolds of invariant sets, such as equilibria
and periodic orbits. Even in the simplest examples, these global manifolds must be
approximated by means of numerical computations. We discuss an algorithm for
computing global manifolds of vector fields that is decidedly geometric in nature. A
two-dimensional manifold is built up as a collection of approximate geodesic level
sets, i.e. topological smooth circles. Our method allows to visualize the resulting
surface by making use of the geodesic parametrization.

As we show with the example of the Lorenz system, this is a big advantage when
one wants to understand the geometry of complicated two-dimensional global man-
ifolds. More precisely, for the standard system parameters, the origin of the Lorenz
system has a two-dimensional stable manifold — called the Lorenz manifold — and
the other two equilibria each have a two-dimensional unstable manifold. The inter-
sections of these manifolds in the three-dimensional phase space form heteroclinic
connections from the nontrivial equilibria to the origin. A parameter-dependent
visualization of these manifolds clarifies the transition to chaos in the Lorenz system.

1 Introduction

We are concerned here with the problem of understanding the global behav-
ior of a dynamical system that is defined by a set of ordinary differential
equations. Written in the form of a vector field, the system takes the general
form

ẋ = f(x, λ), (1)

where x is a point from an n-dimensional phase space X, λ is a multi-
dimensional parameter, and f is a sufficiently smooth (say, twice differentiable)
vector-valued function. Indeed countless mathematical models arising in appli-
cations can be represented in this general framework; see, for example, [8, 21]
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as general entry points to the dynamical systems literature. As a specific
example we consider below the well-known Lorenz system, which has the
three-dimensional phase space X = R

3.
In order to understand the behavior of the system, one first considers the

equilibria of (1), which are the points where f(x, λ) = 0. An equilibrium
is typically either an attractor, a repellor or a saddle point, depending on
whether the eigenvalues of the linearization Df at the equilibrium have exclu-
sively negative real parts, exclusively positive real parts, or are a mix of both,
respectively. (Typical means here that there are no eigenvalues with zero real
part.) The crucial role for organising the overall or global dynamics is played
by the saddle points. Namely, a saddle point x0 comes with a stable manifold
W s(x0) and an unstable manifold Wu(x0), which are defined as the sets of
all points in the phase space X that converge to x0 in forward and backward
time, respectively. According to the Stable Manifold Theorem [17] these sets
are actually smooth immersed manifolds that are tangent to (and of the same
dimension as) the stable and unstable eigenspaces. The importance of these
manifolds for the overall dynamics essentially lies in two facts. First of all,
stable manifolds often act as boundaries of basins of attraction and, secondly,
intersections of W s(x0) and Wu(x0) are associated with chaotic dynamics.

In this paper we demonstrate the opportunities for the visualization of
two-dimensional stable and unstable manifolds afforded by our approach to
computing these global geometric objects. Our method, which generates a
global manifold as a collection of geodesic level sets, is explained in Sect. 2.
Throughout this paper we use the famous Lorenz system as an example. It
is introduced in Sect. 3, where we also demonstrate how the knowledge of
the geodesic level sets can be used to understand the geometry of the Lorenz
manifold, that is, the stable manifold of the origin. We then take the visual-
ization further when considering how the organisation of chaos varies with the
Rayleigh number �, which is a key parameter in the Lorenz system. Specif-
ically, we show in Sect. 4 the transition of the Lorenz manifold through the
first homoclinic bifurcation, which is also known as a homoclinic explosion
point. We then show in Sect. 5 how the Lorenz manifold interacts with the
unstable manifolds of saddle-periodic orbits and secondary equilibria of the
Lorenz system when � is increased up to the classic value of � = 28. We
summarize our findings in Sect. 6.

2 Global manifolds as a collection of geodesic level sets

The computation of global invariant manifolds in dynamical systems is an
active field of research. The difficulty is that these objects are not given in the
form of an implicit equation. Therefore, they need to be ‘grown’ by starting
from local information, for example, near the saddle point. This is a nontrivial
task already for manifolds of dimension two, which is the case considered here.
Several methods are available today to compute global invariant manifolds
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(mostly of dimension two); see the recent survey [13]. Regardless of the choice
of method, one is faced with the problem of visualizing the resulting mani-
folds in an efficient manner in order to extract the information on the global
dynamics of the system.

Our method computes a global invariant manifold of, say, an equilibrium
x0 in a very geometrical way, namely, by building it up step by step as a
collection of geodesic level sets. Here, a geodesic level set is defined as the set
of all points that lie at the same geodesic distance (arclength of the short-
est connecting path on the manifold) from x0. Our method can be used,
in principle, for computing manifolds of arbitrary dimension that are asso-
ciated with arbitrary compact invariant objects, such as equilibria, periodic
orbits, or higher-dimensional normally hyperbolic manifolds. It is presently
implemented for two-dimensional manifolds in a phase space of any dimension.

We explain here how the method works for the important case of a two-
dimensional stable manifold W s(x0) of a saddle point x0, where we follow
[10, 5]. In this case the geodesic level sets that we seek are topological circles.
The computation starts from a regular mesh M0 on a small circle in the stable
eigenspace of x0. The piecewise-linear curve C0 through the mesh points in
M0 is the approximation of the first geodesic level set at some prescribed
small distance from x0. Let us now assume that we already computed an
approximation of W s(x0) up to the piecewise-linear curve Ci through mesh
points Mi. The next step consists of finding a new approximate geodesic level
set Ci+1 at a prescribed distance Δ from Ci, which is computed pointwise.
This step is illustrated in Fig. 1(a)–(c) for a given point r ∈ Mi. We construct a
plane Fr through r (approximately) perpendicular to Ci. Then W s(x0)∩Fr is
locally a smooth one-dimensional curve through r; see Fig. 1(a). By definition
of W s(x0), points on this curve lie on orbits that converge to x0. Hence, to
good approximation, these orbits pass through Ci; see Fig. 1(b). Therefore,
we identify each point on W s(x0)∩Fr locally near r as the start point of the
orbit segment u(t), 0 ≤ t ≤ τ , that satisfies the boundary conditions

u(0) = br ∈ Fr,

u(τ) = qr ∈ Ci,

where τ is the associated integration time. Starting from the trivial solution
u(t) ≡ 0, 0 ≤ t ≤ τ , with τ = 0, the solution family of this two-point bound-
ary value problem can be computed by continuation in the integration time τ .
We stop the continuation as soon as br lies at distance Δ from r. If Δ is small
enough, then such a point exists; see Fig. 1(c). In [5] this continuation proce-
dure was implemented by using the pathfollowing and collocation routines of
the package Auto [2, 3].

When the mesh points br ∈ Mi+1 have been found for all r ∈ Mi it is
checked whether neighbouring points are too close to or too far apart from
each other. In the former case, a mesh point is deleted from Mi+1. In the latter
case a new mesh point needs to be added. To ensure the overall accuracy of the
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(c) (d)
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Fig. 1. Illustration of the main step of the algorithm. For each mesh point r ∈ Ci

we consider the intersection of W s(x0) with a plane Fr approximately perpendicular
to Ci (a). To good approximation, points of W s(x0) ∩ Fr lie on orbits through Ci

(b). The new mesh point br ∈ Fr that we seek lies on such an orbit and exactly
at distance Δ from br (c). Additional mesh points are added by using the same
procedure for the point r̂ ∈ Ci that lies halfway in between two neighbouring mesh
points r1, r2 ∈ Ci (d)

mesh, we consider a new point r̂ ∈ Ci halfway in between the two underlying
base points, say, r1, r2 ∈ Mi. We then apply the above continuation procedure
to r̂ to find a new point in Mi+1; see Fig. 1(d).

Once a good representation of the next geodesic level set has been found
in this way, we check whether Δ satisfies

αmin < αr < αmax,

(Δα)min < Δ · αr < (Δα)max,

for user-specified accuracy constants αmin, αmax, (Δα)min and (Δα)max. Here,
αr is the angle between the three corresponding mesh points in Mi−1, r ∈ Mi

and br ∈ Mi+1. These accuracy constraints are used to adapt Δ according to
the local curvature of the manifold along geodesics [9, 10].
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When the entire approximate geodesic level set Ci+1 has been found, a
triangulated band between Ci and Ci+1 is added to the mesh representation
of the surface. The computation stops when a pre-specified geodesic distance
has been reached. A particular feature of our method is that the control
over the mesh quality guarantees correctness: any mesh that is computed
up to a prescribed geodesic distance with sufficient accuracy (as determined
by the user) lies within an ε-neighbourhood of the global manifold in the
Hausdorff metric; see [10] for details and the proof. What is more, the result
of a computation is a natural and geometric representation of the manifold in
terms of a geodesic mesh, which consists locally near each mesh point of a near-
perpendicular intersection of approximate geodesic level sets and approximate
geodesics. It is this property that we exploit in the visualizations presented
here. We used Geomview [19] for the rendering of the manifolds.

3 Visualizing the Lorenz manifold

The Lorenz system still fascinates many people because of the simplicity of the
equations that generate such complicated dynamics on the famous butterfly
attractor. It is arguably the most famous dynamical system exhibiting chaotic
dynamics. When Lorenz examined the behaviour of Rayleigh-Bénard convec-
tion in 1963, he found that for Rayleigh numbers well after the critical value of
onset of convection the behaviour of the fluid is aperiodic. Since the motion is
nevertheless bounded, he could prove that an attractor must exist along with
infinitely many unstable periodic orbits; see [14]. In his paper Lorenz uses
extremely simplified equations by considering only one mode for the velocity
and two modes for the temperature of the fluid. This results in the system
that is now know as the Lorenz system, which can be written in the form (1)
as the vector field

⎧

⎨

⎩

ẋ = σ(y − x),
ẏ = �x − y − xz,
ż = xy − βz.

(2)

The Lorenz system has the three-dimensional phase space R
3, and its main

parameter is the Rayleigh number �; note that system (2) is rescaled such that
the onset of convection occurs at � = 1. Lorenz provides physically relevant
values for the parameters in [14], namely, the now classic choice � = 28,
σ = 10 and β = 8

3 , for which Lorenz found sensitive dependence on the initial
condition and the well-known butterfly or Lorenz attractor [14].

We are interested here in the stable manifold W s(0) of the origin, which
is a saddle point with one unstable and two stable eigenvalues. Hence, W s(0)
is a two-dimensional smooth surface. Geometrically, it divides points that
initially go to one or the other ‘wing’ of the Lorenz attractor. More generally,
W s(0) organises the chaotic dynamics of the Lorenz system in a global way,
which is why we refer to it as the Lorenz manifold ; see also [15, 11]. The
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visualization of the Lorenz manifold is quite a challenge. Topologically, any
finite piece of W s(0) is a disk, but one whose embedding in R

3 becomes
increasingly complicated geometrically. The first images of W s(0) are the
hand-drawn sketches by Perelló from 1979 in [18]. His work formed the basis
for the drawings of Shaw in [1].

Figure 2 shows the Lorenz manifold W s(0) computed up to geodesic dis-
tance 151.75; the origin 0 is in the middle of the images and the vertical axis
is the z-axis, which is invariant under (2). Note further that, due to the sym-
metry (x, y) 	→ (−x,−y) of the Lorenz system, W s(0) is symmetric under a
rotation by π about the z-axis. The Lorenz manifold is rendered transparent in
Fig. 2 so that its ‘internal’ structure can be seen. The first feature one notices
is the main helix of W s(0) around the positive z-axis. Notice also the two sec-
ondary (and symmetrically related) helices near the main helix. These helices
arise because W s(0) spirals around two smooth symmetrical curves (the

(a) (b)

(c) (d)

Fig. 2. The Lorenz manifold W s(0) of system (2) for the classic value of � = 28
computed up to geodesic distance 151.75 and rendered transparent. To bring out its
complicated geometry, a contrastingly coloured transparent geodesic band is moved
over the surface; shown is the band covering geodesic distances 38.75–46.75 (a),
74.75–82.75 (b), 110.75–118.75 (c), and 144.75–151.75 (d)
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one-dimensional stable manifolds of a symmetric pair of nontrivial saddle
points; not shown in Fig. 2) in opposite directions.

Even when it is rendered transparent it is not easy to understand the
intricate geometry of W s(0). To help with the visualization we move a geodesic
band of a contrasting colour over the surface; it is shown in four different
positions in Fig. 2. A band near the origin is small and almost perfectly round.
For increasing geodesic distance from the origin the band starts to pick up
the spiralling along the main helix; see Fig. 2(a). It then spirals more near the
origin and simultaneously moves up the main helix; see Fig. 2(b) and (c). For
even larger geodesic distances this results in the creation of the two secondary
helices on the band, as is illustrated in Fig. 2(d) with the outer most band of
the computed surface.

It is important to realise that each geodesic band is unknotted. This cor-
responds to the fact that the Lorenz manifold itself is topologically simply
a disk. The geodesic mesh representation of W s(0) that we compute can be
interpreted as an illustration of an (unknown) smooth map that embeds the
standard disk into R

3. As is clear from Fig. 2, such an embedding can be
very complicated. We finally remark that the geodesic mesh computed by
our method translates naturally into crochet instruction, which allowed us to
make a real model of the Lorenz manifold; see [16] for details and images of
the crocheted Lorenz manifold.

4 Transition through the homoclinic explosion

At the homoclinic explosion at �hom ≈ 13.9162 each branch of the one-
dimensional unstable manifold of the origin forms a homoclinic loop after
a single rotation around one of the two secondary equilibria

p± = (±
√

β(� − 1),±
√

β(� − 1), � − 1).

As is well known, infinitely many periodic orbits of the Lorenz system are
created in this bifurcation, including a pair of saddle periodic orbits Γ±;
see [20, 4]. Due to the symmetry of rotation by π around the z-axis, p+ and
p−, and Γ+ and Γ−, are each other’s symmetric counterparts.

We are interested here in visualizing how this homoclinic bifurcation influ-
ences the geometry of W s(0). Figure 3 shows W s(0) just before, and just after
the homoclinic explosion, namely at � = 13 and at � = 15, respectively. The
manifold W s(0) is now shown up to geodesic distance 100 and again transpar-
ent. To highlight its exact geometric structure the outermost geodesic band
is shown in a contrasting colour.

Figure 3(a) illustrates the situation for � < �hom, namely for � = 13. In
this case the Lorenz manifold wraps around p± once, returning back near 0
at a negative z-value, after which it folds down (towards negative z) such
that it lies practically flat against the lower half-disk of W s(0). At the same
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(a) (b)

Fig. 3. The Lorenz manifold W s(0) computed up to geodesic distance 100 for � =
13 (a) and for � = 15 (b). To visualize how W s(0) changes in the transition through
the homoclinic explosion at �hom ≈ 13.9162, we show a contrastingly coloured outer
band (geodesic level sets at distances 97–100) and render the surfaces transparent

time, there is the helix along the positive z-axis. The visualization in Fig. 3
allows one to follow the coloured outer band of W s(0) to obtain an idea of the
overall geometry of the surface. To this end, consider starting at the lowest
point (0, 0,−100) and moving to the left. The outer band turns up and around
before making a relatively sharp turn slightly up and back down towards the
negative z-axis. With some practice, one can observe that the band continues
further to the right and starts winding its way up the helix until it reaches
(0, 0, 100). When moving right from (0, 0,−100) the symmetrical behaviour
can be observed.

The situation for � > �hom is visualized in Fig. 3(b) for � = 15. As one
follows the outer band to the left from the lowest point (0, 0,−100) the initial
behavior is as before; indeed this first part of the outer band is virtually
identical to that shown in Fig. 3(a). However, where the band in Fig. 3(a)
suddenly turns slightly up and back down towards the negative z-axis, in
Fig. 3(b) the relatively sharp turn is in the exact opposite direction and the
band never passes near the negative z-axis before reaching (0, 0, 100).

It is important to realize that this dramatic change in the geometry of
the geodesic level sets is not due to the relatively large gap between the two
�-values, 13 and 15, before and after the homoclinic bifurcation. The switch
between passing by the negative z-axis again or not is sudden and immediate
and a result of the existence of the homoclinic loop at �hom ≈ 13.9162. In
fact, exactly at the homoclinic explosion, the Lorenz manifold returns to and
‘closes up’ in a non-smooth way along a special curve known as the strong
stable manifold of the origin; see [4] for details.
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5 Intersections of two-dimensional manifolds

In the homoclinic explosion two periodic orbits Γ± are created, which are of
saddle type. Therefore, they come with two-dimensional unstable manifolds
Wu(Γ±). Due to the symmetry of the Lorenz system it suffices to compute
only, say, Wu(Γ+). As � is increased the periodic orbits Γ± shrink down in
size. The Lorenz attractor is created in a heteroclinic bifurcation between the
origin and Γ±, which takes place at �het ≈ 24.0579. Finally, the periodic orbits
disappear in a subcritical Hopf bifurcation of the secondary equilibria p± at
�H ≈ 24.7368. As a consequence, p± lose their stability and become saddles
with two-dimensional unstable manifolds Wu(p±). The manifolds Wu(p+) and
Wu(Γ+) consist of infinitely many layers that are extremely close together. By
identifying these layers one obtains a branched surface known as the template
of the Lorenz attractor, which can be used to describe the chaotic dynamics
in the Lorenz system [6, 7, 24].

The key in the transition from the homoclinic explosion at �hom to the
classic situation for � = 28 is to understand how the Lorenz manifold inter-
sects Wu(p±) and Wu(Γ±), respectively. To compute a suitable first part of
Wu(p+) or Wu(Γ+), which effectively represents the template, we continue
an orbit segment that starts on a fixed vector in the unstable eigenspace of
p+ and ends in the section {z = �−1} either near p+ or near p−. This contin-
uation is done with the package AUTO [2, 3]; see [4, 12] for a more detailed
description of this method.

Figure 4 shows the Lorenz manifold W s(0) for four values of � as it inter-
sects the unstable manifolds Wu(Γ±) (panels (a)–(c)) and Wu(p±) (panel
(d)). In these images W s(0) is rendered transparent, while Wu(Γ±) and
Wu(p±) are shown as solid surfaces. In this way, one gets an impression of
the intersection of the two surfaces. The viewpoint in Fig. 4 is fixed and cho-
sen exactly as for Fig. 3; compare Fig. 4(a) with Fig. 3(b). In particular, the
vertical axis is again the z-axis. Figure 4(a)–(c) shows Wu(Γ±) for � = 15,
� = 19 and � = 23, respectively. Notice how Wu(Γ±) grows while the periodic
orbits Γ± actually shrink. They surround the secondary equilibria p±, which
are attractors. Finally, in Fig. 4(d) the periodic orbits Γ± are gone and the
image shows the manifolds Wu(p±) of the equilibria p±, which are now saddle
points. We remark that this transition from Wu(Γ±) to Wu(p±) is smooth
(i.e., is not noticeable on the level of these two-dimensional surfaces). Notice
further that, as � increases, the amount of spiralling of the helix around the
positive z-axis decreases.

Keeping in mind that the red unstable manifolds Wu(Γ±) and Wu(p±) in
Fig. 4 actually consist of infinitely many sheets, we conclude that they have
infinitely many intersection curves with the Lorenz manifold W s(0). These
intersection curves are structurally stable heteroclinic orbits that connect the
origin with Γ± and p±, respectively. In fact, as is shown in [4], there is a
�-dependent hierarchy of heteroclinic orbits that can be described in terms of
symbolic dynamics.
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(a) (b)

(c) (d)

Fig. 4. Transparent renderings of the Lorenz manifold W s(0) computed up to
geodesic distance 100 as it intersects the unstable manifolds W u(Γ±) and W u(p±),
respectively, for � = 15 (a), for � = 19 (b), for � = 23 (c), and for � = 28 (d)

6 Conclusions

The computation of global stable and unstable manifolds is an important
tool when one wants to obtain an understanding of how the dynamics of a
vector field is organized. Particularly in the presence of chaotic dynamics, the
geometry of global invariant manifolds can be very complicated, so that an
appropriate visualization is a necessity.

We used the example of the Lorenz system to demonstrate how the
geodesic mesh representation that is the result of our method in [5, 10] can
be used to visualize two-dimensional global manifolds. First of all, we demon-
strated that moving a contrastingly coloured geodesic band over the Lorenz
manifold (the stable manifold of the origin) adds an new dimension to the visu-
alization of its intricate geometry. We then showed how the Lorenz manifold
changes during the homoclinic bifurcation that gives rise to the complicated
dynamics of the Lorenz system and how it intersects the unstable manifolds
of the bifurcating periodic orbits and secondary equilibria.
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Summary. The vortex breakdown phenomenon occurring in a rotating flow within
a closed cylinder is still a challenging research field. In particular the goal to describe
all significant order parameters of vortex breakdown is not reached. For further
insight the viscous and laminar Newtonian flow inside a cylinder with a rotating
lid has been calculated by solving the full Navier Stokes equations. During the sim-
ulation the rotational speed of the lid has been increased, which causes a gradual
transition of the internal flow field topology. Starting from a flow field without any
reversed flow at the vortex axis the vortex breakdown phenomenon develops indi-
cated by one or more vortex breakdown bubbles. A phenomenological description
of the vortex breakdown process is given by applying a topological analysis to the
flow field, which illustrates the main flow structures, their behaviour and changes.
By visualization of critical points, at which the velocity magnitude vanishes, the
topological flow structure change of the velocity field becomes obvious. Additionally
their associated separatrices are integrated into the field, which allows to illustrate
the shape of the vortex breakdown bubbles. In particular the spherical shape of the
first appearing breakdown bubble leads to the idea to introduce a streamfunction,
which describes the spherical breakdown bubble approximately. Applying a Taylor
expansion of the velocity field leads to an analytical description of the local stream-
line topology nearby one critical point of a breakdown bubble. The interpretation
of the appendant differential equations allows a deeper insight into the dynamical
behaviour of the breakdown phenomenon and its main enforcing parameters. The
paper presents the results of a local streamline and vortex line topology analysis,
especially the dynamical relation between the velocity and vorticity field in regard
to the topological structure of the vortex breakdown phenomenon in the lid driven
cylinder.

1 Introduction

This paper deals with the flow phenomenon called vortex breakdown. The
term vortex breakdown describes the abrupt change of a nearly columnar vor-
tex into a much larger flow structure: The former small streamsurface closely
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surrounding the vortex axis increases suddenly, then three types of new vorti-
cal flow structures can occur. For relatively low Reynolds numbers huge bubble
like flow structures, the vortex breakdown bubbles, can be observed. Those
bubbles consist of a recirculation zone with backward directed flow. In the
case of a medium Reynolds number the columnar vortex can decompose into
one or more meandering and spiraling sub vortices, also this vortex breakdown
type shows a reversed flow. A third type of vortex breakdown is characterized
by the fact that the former columnar vortex is spread into a highly turbulent
conical flow region, which almost consists of small scale turbulent flow struc-
tures. The last breakdown type can only occur in turbulent flows at a high
Reynolds number. The multifaceted appearance of the phenomenon vortex
breakdown has often been described since it occurs either in nature, i.e. in
tornadoes, or in many technical applications like delta wing flows, the flow in
burning chambers or in mixers. Beside many specific publications related to
certain aspects of the vortex breakdown the reviews of Leibovich [20], Escud-
ier [13], Delery [11] and Sarpkaya [25] provide a good overview of the difficult
issue. Although the topic is a long time research object, until now, there is no
complete theoretical description of all aspects of the flow phenomenon and its
development. Often only certain aspects of the vortex breakdown are regarded
in relation to a special class of technical applications.

The common overall goal is to control this flow phenomenon in the sense of
either preventing a vortex breakdown for instance in regard to aircraft appli-
cations and hydrodynamic turbines or enforcing it to aim a better mixing of
fluids, as in burning chambers or in pharmaceutical production processes.
Bearing this in mind there is the interest to find the significant physical
parameters of the vortex breakdown phenomenon. Unfortunately in almost
all applications the manifold of the related geometrical and physical parame-
ters prevents an analytical description or formulation of an exact theory for
the vortex breakdown. From the scientific point of view it is not convenient to
consider the flow of complex configurations keeping the goal in mind to catch
all order parameters without understanding simpler configuration. As a con-
sequence strong simplifications of the geometrical complexity or idealisations
are necessary. Hence, we concentrate on the Newtonian vortical flow and its
flow structure change inside a closed cylinder with an instationary rotating
lid. This type of cylinder flow depends on two parameters only: the aspect
ratio of the cylinder and the Reynolds number. By choosing a certain cylinder
height-to-diameter ratio the problem reduces to a one parameter case. The
remaining parameter Reynolds number Re is made up of the radius R of the
cylinder which is, at the same time, the radius of the rotating lid, the angular
velocity Ω and the kinematic viscosity ν of the liquid:

Re =
R2Ω

ν
. (1)

For this cylinder configuration two or three vortex breakdown bubbles can
occur.
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In the view of numerical parameter studies the torsionally driven cylin-
drical flow has further advantages: Geometrically caused there is one defined
vortex axis for both cases, the flow with and without breakdown bubbles. This
is the symmetry axis of the cylinder. Therefore, it is well known, where the
topological flow structure change in form of the vortex breakdown process will
begin. Hence it is possible to resolve the interesting region accurately regard-
ing the needs of CFD. Furthermore, the underlying symmetry can be used in
analysing the flow field allowing specific assumptions and simplifications.

Bearing in mind theses advantages Hussain et al. [18], Goldshik et al. [15],
Spohn et al. [28] and Lugt [22] have done a lot of experimental work to describe
the fundamental flow structure and its developing inside such a configuration.
By injecting dye into the cylinder they could observe the evolving of one
or more local stationary vortex breakdown bubbles with included backward
directed flow. Escudier [12] systematically investigated the flow behaviour in
such cylinders considering different aspect ratios and Reynolds numbers and
gave a detailed overview about the bubble like vortex breakdown structures
and their appearance.

One important feature of those breakdown bubbles is the formation of
two stagnation respectively critical points. Following the definition of Chong
[7] these are points in the free flow, at which the velocity vector vanishes.
Separatrices, starting from critical points, are limiting the bubble type vortex
breakdown and are describing the shape of the breakdown bubble. In the case
of a steady flow with a geometrically stable breakdown bubble the separatri-
ces are connecting both critical points, in the instationary lid driven flow the
bubbles are increasing or decreasing, then the separatrices, starting from one
critical point, are passing the other critical point nearby. Inside the bubble a
roughly toroidal flow establishes with a backwards directed velocity compo-
nent in the center of rotation. In this paper we will concentrate on Newtonian
flows only. Böhme et al. [4] could show that the vortex breakdown phenomenon
can also appear in shear-thinning non-Newtonian flows. Their numerical cal-
culations could match the experiments pretty well. However both, numerical
simulations and experiments reveal major differences to Newtonian flows: For
instance, at H/R = 2 no further breakdown bubble was found with a shear-
thinning non-Newtonian liquid although the observed breakdown bubble had
nearly the same shape as the observed primary bubble in the Newtonian flow
case.

We have organized the material presented here as follows: First the numer-
ical experiment with its parameters is described. Then an impression of
the main flow behaviour is given. The topological change of the principle
flow structure, the occurrence and decay of the vortex breakdown bubbles
is visualised by streamlines and isosurfaces. Therewith, a phenomenological
description of the vortex breakdown follows. The next part describes the topo-
logical analysis which starts with detection and visualisation of critical points
and calculating their separatrices. This approach allows to reduce the flow
field information strongly and to concentrate on the main flow pattern in the
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visualization. In particular the shape of the separatrices are interesting for the
further analysis.

Thereafter, to get a further link to a physical explanation of vortex break-
down the vortex lines nearby the vortex axis are calculated. Their behaviour
will be compared to that of the streamlines. For the present paper the stream-
line and vortex line topologies are the focal point. In contrast to Brons et al.
[5], who are applying dynamical system approaches for analysing the bifurca-
tion behaviour of degenerated critical points and their separatrices, differential
equations are formulated for the velocity field nearby non-degenerated crit-
ical points. By considering symmetry conditions of the global flow field and
concentrating on the shape of one breakdown bubble we are able to simplify
the set of equations and derive the streamfunction for the vortex breakdown
bubble. This enables us to analyse the dynamics of the related terms.

2 Numerical Experiment of the Lid Driven Cylinder
Flow

For the purpose of numerical flow simulation a closed cylinder with a height-
to-diameter ratio of one (H/R = 2) was considered. This geometry has the
advantage that two vortex breakdown bubbles can be expected, and the cylin-
der is relatively compact. This could be used to enlarge the spatial resolution of
the grid without exceeding the number of points. Symmetrical considerations
would allow to reduce the grid to a pie slice and to apply cylindrical symmet-
ric boundary conditions, decreasing the amount of grid points furthermore.
However, we decided to calculate the whole cylinder geometry. The disadvan-
tage to spend more points than necessary has been compensated by both the
advantage of an easier post-processing, in particular for the streamline inte-
gration, and avoiding the implementation of periodic boundary conditions.
For grid generation we choose a cylindrical coordinate system with origin at
the bottom. The grid has 80 points in radial direction, and 120 points in
circumferential direction and in axial direction. At the walls of the cylinder
the non-slip boundary condition was assumed. Thus, the velocity vanishes at
the fixed walls, whereas at the rotating lid on top a solid body rotation was
implemented.

To solve the Navier-Stokes equations and to carry out the laminar flow
simulation the incompressible DLR code THETA was used. This second order
finite volume code works on unstructured and hybrid grids, supporting tetra-
hedral, prismatic, pyramidal and hexahedral elements. Due to a dual grid
technique and an edge-based data structure, the flow solver is completely
independent of the cell types of the primary hybrid grid. The flow variables
are stored at the centers of the dual grid at the vertices of the primary grid. A
variant of the projection method of Chorin which enables a sequential calcu-
lation of velocity and pressure at each time step was used for time dependent
calculations. In order to solve the momentum equations a quadratic upwind
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differential scheme (QUDS) was applied, the pressure part was solved by a gen-
eralized minimal residual method (GMRES). Additionally an agglomeration
multi-grid method with integrated Jacobi smoothing steps was utilised.

Unsteady simulations were carried out, starting from a converged steady
solution. Initial Reynolds number was 1200. The kinematic viscosity was set
to a value of 1.4 ·10−4m2s−1, which represents a thin mineral oil. The starting
angular velocity of the lid was 0.672s−1 and as reference length a diameter
of 1m was selected. With these parameters the flow was calculated until the
residual was decreased to a value of 10−6. The initial solution for the unsteady
calculation represents a stable vortical flow structure. Unsteady flow simula-
tions were performed with an angular acceleration of the lid of 2.24 · 10−4s−2

and a physical time step of 1s. Setting these relatively small simulation param-
eters provided sufficient relaxation time for a very gentle and smooth flow
structure change, so all significant flow phenomena could be resolved. With
gradually increasing of the angular velocity of the lid first the domain of one
breakdown bubble was reached at a Reynolds number of 1450. Later at a
Reynolds number of 1800 the domain with two bubbles was reached. In the
following at a Reynolds number value of 2100 the second bubble vanishes, and
finally at a Reynolds number of 2950 the breakdown phenomenon disappeared
completely.

3 Phenomenological Description Of Vortex Breakdown

In the beginning of the simulation no vortex breakdown bubble is present.
Then the angular speed of the lid has been linearly increased. After exceeding
the Reynolds number of 1450 the first bubble occurs.

In figure 1 the increased revolution of the lid has enforced the first vortex
breakdown bubble. In 1(a) the vortex breakdown structure is indicated by
streamlines, which are seeded at a cylinder height of 0.1m above the bottom.
They are arranged on a small cycle with a diameter of 0.01m. As upper
integration limit a height of 0.9m was chosen to concentrate on the vortex core
by avoiding multiple line integration in the same region. This arrangement of
streamlines forms a streamtube that surrounds the vortex axis. The shape
change of the small streamtube can indicate the vortex breakdown bubble
which is additionally illustrated by an isosurface of the negative axial velocity
component. When observing the isosurfaces we have to remind that the outer
rolling in part encloses the back flow region, so the vortex structures are
somewhat larger and rounder than visualised by the axial velocity component.
As complement in figure 1(b) the meridional flow field is visualized by a line
integration convolution (LIC) texture [6] of the meridional velocity field. Here,
the breakdown bubble is indicated by the toroidal texture structure.

Further increasing of the angular velocity of the lid causes a spatial enlarge-
ment of the primary breakdown bubble until the second bubble arises. In
figure 2(a) the streamlines show a relatively big cylindrical structure above
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(a) Streamlines and isosurface of
negative axial velocity (-1e-4 m/s),
Reynolds number 1600

(b) LIC texture of the meridional
velocity field, Reynolds number 1600

Fig. 1. Flow structure visualization by streamlines and LIC Textures

(a) Streamlines and isosurface of
negative axial velocity (-1e-4 m/s),
Reynolds number 2000

(b) LIC texture of the meridional
velocity field, Reynolds number 2000

Fig. 2. Visualization of the fused breakdown bubbles

the nearly spherical region of the primary bubble. Inside this upper structure
the secondary bubble develops, which subsequently fuses with the primary
bubble. Inside the fused bubbles the former toroidal structure of the primary
breakdown bubble has begun to deform to a goblet like form, which reveals
the texture in figure 2(b).

After the fusion of both bubbles the decaying process of the vortex
breakdown bubbles begins. The primary bubble shifts downwards while
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(a) Cut through primary and
secondary breakdown bubble,
Reynolds number 2240

(b) Goblet like breakdown flow
structure, Reynolds number 2600

Fig. 3. Development of breakdown bubbles, visualized by streamlines and isosur-
faces of the negative axial velocity component

separating from the secondary bubble, figure 3(a) and it reshapes to an
inverted mushroom.

Although the second bubble rapidly shrinks, the streamlines are not so
constricted as in the beginning of the whole simulation. This means that
now fluid of the first bubble exhausts through the streamtube and prevents
a further shrinking of the streamtube radius. The collapse of the secondary
bubble is the next significant structure changing. In figure 3(b) the secondary
breakdown bubble is completely vanished and the primary bubble becomes
a mushroom like shape. Later on a vortex ring forms, which continuously
becomes thinner until it finally disappears.

4 Topological Analysis

In this consideration topological flow analysis concentrates on the detection of
stagnation points in the vector fields and on the calculation of their associated
separatrices. Following Chong [7] and Dallmann [8] critical points are locations
in the volume, where the vector, e.g. the velocity, vanishes and the vector field
becomes singular. The appearance of these points is an indisputable sign that
the structure of the flow has changed. Critical points cannot evolve alone:
Usually they are born as twins, only in degenerated cases more than two new
points can occur. The points are classified by their effect on the vector field
in their vicinity. In principle in the case of a two dimensional vector field five
different basic types may exist: node, saddle, focus, center and line. Often the
last one is considered as a sequence of critical points. In three dimensions (3D)
the type of a critical point is a mixing of three of the five basic types. The
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classification can be done by analysing the eigenvalues or invariants of the
appendant tensor field. An extensive description of classification algorithms
is given by Reyn [24] and Bakker et al. [1, 2]. Chong et al. [7], Perry et al.
[23] used it in fluid mechanics applications to describe vortical structures.
Dallmann [8, 9] used the critical point concept to identify flow separation and
vortical structures in flow fields.

In this research the critical point detection algorithm works on tetrahe-
dral grids, therefore, the hexahedral and prismatic grid cells were divided in
tetrahedra. Then to find the critical points in the flow field a simple solver
for linear equations can be applied for the corner point velocity vectors of
each tetrahedron. As a next step the local separatrices of each detected criti-
cal point have to be integrated. Separatrices are integral lines of the current
vector field with starting points nearby the critical point. “Nearby” means
that the start points of integration are shifted a bit from the critical point,
where the current vector entity vanishes, in direction of the “real” eigenvec-
tors of the tensor of the appendant gradient field. At those start points the
field is not singular anymore and a line integration can start. The principles of
such an algorithm and its implementation can be found in the work of Helman
et. al. [16] or Hesselink et al. [17]. Kenwright et al. [19] presented technical
flow applications. An overview of topological fluid mechanics related work can
be found in [29]. Newer developments in visualisation of critical points and
flow structure are demonstrated by Sadarjoen [26] using sophisticated icon
concepts. A combined approach of volume rendering technique and classical
topological flow analysis of the vortex breakdown using critical points has
been presented by Tricoche and Garth [30].

4.1 The Topology of Velocity

The topological analysis of the flow inside the cylinder starts with the velocity
field. The underlying idea is to reduce the flow field information significantly
by representing only critical points and their associated separatrices. Even
though the flow structure is strongly reduced to only a few flow patterns, the
main information is conserved. A first impression is given in figure 4(a), which
shows the detected critical points (red coloured points) and their separatrices
for the flow at a Reynolds number of 1600. As seen before the primary vortex
breakdown bubble is fully developed, building a nearly perfect sphere. This
observation will be used in the later analysis.

It is remarkable that the separatrices are not building a closed vortex bub-
ble, in fact by passing the upper critical point they reveal the growing process
of the breakdown bubble. Above the upper critical point the separatrices are
encapsulating a small cylinder. This is the region, where the secondary bubble
will occur later. The newly detected singular points validate that, which can
be seen in figure 4(b).
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(a) Reynolds number
1600

(b) Reynolds
number 1880

Fig. 4. Visualization of Vortex breakdown bubbles by critical points and their
separatrices

4.2 Vortex Lines

The analysis of the velocity field demonstrates that considering the derivative
fields of the velocity gives significant hints of the overall behaviour of the flow
structure. Hence, the vorticity field has to be analysed. In contrast to the
velocity field it is not possible to find isolated critical points in the vorticity
field. Alternatively vortex line integration has been started to illustrate the
structure of the vorticity field.

Looking closely to figure 5(a) the torsion of the vortex lines shows that
below the vortexbreakdown bubble, they are weakly rotating with the same
sense of rotation revolution like the streamlines in figure 1. Just before they
reach the breakdown region their winding sense has been inverted in compar-
ison to the winding of the streamlines, and their torsion is rapidly increased.
After the vortex lines have left the region of the breakdown bubbles they are
stretched and almost run parallel.

The same behaviour is depicted in figure 5(b). The reversed torsion can be
well seen at the secondary bubble. Before they reach it they begin to loop in
direction of the streamlines. Then they are skipping again in the other direc-
tion. After passing the bubble the vortex lines stretch again. Thus, a reversed
(compared to the winding of the streamlines) winding of the vortex lines is
connected with the vortex breakdown which is a generalisation of the theory
of Darmofal [10]. He concentrated on the azimuthal vorticity component as
a major parameter for vortex breakdown. Also Lopez et al. [21] showed the
importance of the azimuthal vorticity component in regard to vortex break-
down conditions. The physical cause of this observation is the focal point of
the following considerations.
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(a) Reynolds number 1600 (b) Reynolds number 2000

Fig. 5. Winded vortex lines surrounding the breakdown bubbles, stretched in the
upper field

5 Local Flow Analysis

One aspect of the flow field calculation was to look at the temporal develop-
ment of the main flow structures, which has been illustrated. Henceforth, the
further analysis concentrates on the solution of the flow field at a certain time
step: The flow state at a Reynolds number of 1600 is analyzed, when the first
vortex breakdown bubble has been developed in a manner that two critical
points can be found and their separatrices are forming a sphere like shape.
Furthermore, we assume that the time dependent parts of the solution can
be neglected in regard to the convective and diffusive parts, because we have
chosen a very small time step in respect to the time scale made up by the
acceleration of the lid and the occurring maximal velocity magnitude. Besides
that we assume an axial symmetric flow. This is justified by the visualized
results, we have shown above. Even when the vortex breakdown phenomenon
occurs, the axisymmetry is well fulfilled, which could impressively be shown
in the figures 1 and 4.

5.1 Streamfunction and Circulation near the Bubble

In order to analyse the flow locally near a vortex breakdown bubble, we use
a system of cylindrical coordinates (r, ϕ, z) where the lower stagnation point
is chosen as origin and the z - axis coincides with the vortex axis. We make
use of the known fact that the radial and the axial velocity component of an
incompressible axisymmetric flow can be derived by a streamfunction Ψ(r, z)
according to

vr(r, z) = −1
r

∂Ψ(r, z)
∂z

, (2)
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vz(r, z) =
1
r

∂Ψ(r, z)
∂r

. (3)

Note that streamlines are lying in the stream tubes Ψ(r, z) = const.
In addition to Ψ(r, z) we consider the azimuthal velocity component

vϕ(r, z) as primary kinematic variable or, more suitably, the corresponding
scalar field Γ (r, z) := r · vϕ(r, z) which we call circulation. Considering the
relations between the velocity and the vorticity components in the case of an
axisymmetric flow, it becomes obvious that Γ (r, z) is related to the vorticity
field ω := curlv in the same way as the streamfunction to the velocity field:

ωr(r, z) = −1
r

∂Γ (r, z)
∂z

, (4)

ωz(r, z) =
1
r

∂Γ (r, z)
∂r

. (5)

Thus, any surface Γ (r, z) = const. is made up by vortex lines and represents
a vortex tube.

Finally, the azimuthal vorticity component ωϕ(r, z) of an axisymmetric
incompressible flow is connected with the streamfunction according to

ωϕ(r, z) = − ∂

∂r

(
1
r

∂Ψ(r, z)
∂r

)

− 1
r

∂2Ψ(r, z)
∂z2

. (6)

Equation 6 is the axisymmetric counterpart of the well-known Poisson equa-
tion which connects the streamfunction to the vorticity in the case of a plane
flow. It is worth mentioning that the kinematics relations 3–6 are valid for
incompressible axisymmetric flows regardless of the material properties of the
liquid. Indeed, they turn out to be useful also when analysing axisymmetric
non-Newtonian flow fields (Böhme [3]). In the following we derive some new
theoretical findings which allow us a deeper insight into the vector fields near
the bubble and their interactions. We have to emphasize that the visualisation
we have done before was the initial cause of the development of the following
analysis. We are able to show on the basis of the Navier-Stokes equations that
near a free axis both Ψ(r, z) and Γ (r, z) are even functions concerning r. This
leads us to the following power series expansions near the lower stagnation
point:

Ψ(r, z) = r2(az + cr2 + bz2) + O(ε5) , (7)

Γ (r, z) = r2(d + ez) + O(ε4) (8)

where
ε =

√

r2 + z2 . (9)

Making use of eqs. 2–5 we get the velocity components:

vr(r, z) = −r(a + 2bz) + O(ε3) ,
vϕ(r, z) = r(d + ez) + O(ε3) ,
vz(r, z) = 2az + 2bz2 + 4cr2 + O(ε3)

(10)
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and the vorticity components

ωr(r, z) = −er + O(ε2) ,
ωϕ(r, z) = −(2b + 8c)r + O(ε2)
ωz(r, z) = 2d + 2ez + O(ε2)

, (11)

with a few independent coefficients only. Note that in contrast to the velocity
the vorticity does not vanish at the critical point, but possesses an absolute
summand in its z-component.

5.2 Identification of Expansion Coefficients

The local representation of the flow near the critical point given above con-
sists of five terms and, thus, can be understood as the superposition of five
elementary contributions: The terms with coefficients a, c, d and e repre-
sent an uniaxial elongational flow, a Poiseuille flow, a rigid body rotation
and a torsional flow, respectively. The remaining terms connected with b may
be interpreted as an axisymmetric flow towards a disk (at position z = 0)
where the fluid adheres in accordance with a no-slip condition. The mentioned
coefficients a, c, d and e rate the intensities of the different flow contributions.

We get some more insight into the kinematics restricting to situations
where the vortex breakdown bubble is nearly spherical as in figure 4(a). Under
this assumption the streamfunction Ψ(r, z) vanishes on a sphere of radius r0,
see figure 6(a), which allows us to write the bracket within eq. 7 in the following
form:

az + bz2 + cr2 = b((z − r0)2 + r2 − r2
0) . (12)

Thus, c = b and a = −2 b r0 which reduces the number of independent coef-
ficients. Concerning the sign of the coefficients we bear in mind that the
elongational rate

(a) Sphere model (b) Axial velocity curve progression

Fig. 6. (a) Sketch of a breakdown bubble approximated as a sphere. (b) Sketch of
the axial velocity component along the axis
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2a =
(

∂vz(0, z)
∂z

)

z=0

(13)

is negative, if the flow approaches the critical point from below, a < 0.
Hence, b = c > 0 in accordance with figure 6(b) as the coefficient 4b may
be interpreted as the second derivative of the velocity along the axis:

4b =
(

∂2vz(0, z)
∂z2

)

z=0

. (14)

Furthermore, the axial spin at the critical point,

d =
1
2
ωz(0, 0) , (15)

is positive due to the assumed sense of rotation of the lid, d > 0, whereas the
coefficient of the torsional flow contribution

e =
1
2

(
∂ωz(0, z)

∂z

)

z=0

(16)

is negative, e < 0, as the cross-section area of a vortex tube increases near the
critical point, see figure 5.

5.3 The Dynamics of the Breakdown Bubble

After having introduced the approximate description of the flow kinematics
in the breakdown bubble region we consider the corresponding information of
the equation of motion

1
2
grad |v|2 + ω × v = −1

ρ
grad p − νcurlω . (17)

ρ denotes the constant density of the fluid, p(r, z) is the pressure field. Near
the critical point where the velocity vanishes, the acceleration parts of eq. 17,
1
2grad |v|2 and ω × v, do not have absolute summands, they are O(ε) and
therefore not relevant.

In contrast to that the specific viscous force has one absolute component,
more precisely the specific viscous force is

−νcurlω =

⎛

⎝

0
0

4ν(b + 4c)

⎞

⎠+ O(ε) . (18)

Therefore, in the critical point the specific viscous force acts only in axial
direction. Furthermore, on the vortex axis the pressure gradient also reduces
to a z - component, reflecting the axial symmetry of the flow, which requires
(

∂p
∂r

)

r=0
= 0 in addition to ∂p

∂ϕ = 0. Consequently, it has to be emphasized
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that at the critical point the axial pressure gradient is proportional to the
viscous terms, given in eq. 18. Considering

1
ρ

(
∂p(0, z)

∂z

)

z=0

= 4ν(b + 4c) , (19)

the positive coefficients b and c lead to a positive axial pressure gradient. By
replacing b and c with the aid of eq. 14, we find the following remarkable
relation: (

∂p(0, z)
∂z

)

z=0

= 5ρν

(
∂2vz(0, z)

∂z2

)

z=0

. (20)

Thus the pressure gradient is simply connected with the second derivative of
the axial velocity, i.e. with the curvature of the graph shown in fig. 6(b). In
regard to spheres of different size it can be stated that for a small sphere like
bubble the pressure gradient has to be higher than for large bubbles. This
can be interpreted in a way that in case of initiation of a breakdown bubble a
higher axial pressure gradient is needed than in the case of a growing bubble.

5.4 The Sign of the Circumferential Vorticity Component near
the Axis

As mentioned above, we found that the vortex lines may change their winding
sense near a vortex breakdown region, see figures 5. Hence, the azimuthal
vorticity component ωϕ changes its sign along those vortex lines. In order to
detect the conditions under which the phenomenon occurs, we consider the
quantity ωϕ

r along the axis, i.e. in the limit r → 0 at arbitrary position z, and
link it to the axial gradient of the total pressure.

Starting with the expansion of the velocity component vz(r, z) near the
axis,

vz(r, z) = vz(0, z) +
1
2
r2

(
∂2vz(r, z)

∂r2

)

r=0

+ O(r4) , (21)

we come to the following representation of the streamfunction near the axis
of an axisymmetric flow:

Ψ(r, z) =
1
2
r2vz(0, z) +

1
8
r4

(
∂2vz(r, z)

∂r2

)

r=0

+ O(r6) . (22)

Inserting this into eq. 6 we get

lim
r → 0

ωϕ(r, z)
r

= −
(

∂2vz(r, z)
∂r2

)

r=0

+
1
2

∂2vz(0, z)
∂z2

(23)

= −1
2

(Δvz(r, z)) r=0

where Δ indicates the Laplace operator. The last equality follows in connection
with eq. 21 which states that we may substitute
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Fig. 7. Axial gradient of total pressure on a meridional cut, additionally vortex
lines visualised, Reynolds number 1880

(
1
r

∂vz(r, z)
∂r

)

r=0

=
(

∂2vz(r, z)
∂r2

)

r=0

. (24)

The equation of motion 17 allows us to eliminate the right side of eq. 23:

ν(Δvz(r, z))r=0 =
∂

∂z

(
p(0, z)

ρ
+

1
2
v2

z(0, z)
)

. (25)

Thus, we find that the following striking relation is valid along the axis of any
axisymmetric, incompressible, viscous flow:

lim
r → 0

ωϕ(r, z)
r

= − 1
2ρν

∂

∂z

(

p(0, z) +
ρ

2
v2

z(0, z)
)

. (26)

Among other things it tells us that vortex lines near the axis change their
winding sense at those positions where the axial gradient of the total pressure
p+ ρ

2v2
z changes its sign. This indeed may happen several times along the axis

between the bottom of the cylinder and the rotating lid, see figure 7.

6 Conclusion

Bearing the overall goal in mind to find mechanisms which allow to control the
vortical flow either in order to prevent vortex breakdown or to generate it, we
analysed the vortex breakdown phenomenon occurring in a cylinder with an
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instationary rotating lid. This simple cylindrical configuration allowed us to
study the vortex breakdown phenomenon depending only on one parameter,
the Reynolds number by fixing the height-to-diameter ratio of one. In the
numerical simulation the angular velocity of the lid was gradually increased: In
the beginning no vortex breakdown bubble occurred, while exceeding a certain
Reynolds number one vortex breakdown bubble occurs, later on a second one.
In the course of further increasing the angular velocity the secondary bubbles
disappears, then also the primary bubble and at last the complete breakdown
structure vanishes.

A topological flow analysis was done for the velocity field and extended
to the vorticity field. A comparison of the streamlines and vortex lines shows
that the vortex breakdown bubbles are correlating to a reversed torsion of the
vortex lines. Reversed means that the sense of revolution of the vortex lines
is contrary to that of the streamlines. Furthermore, based on an appropri-
ate visualization it could be shown that the winding of the vortex lines have
changed their revolution just before the breakdown begins. Only this obser-
vation has led to a new starting point for further analysis and discussion.
Together with the important observation that the primary vortex breakdown
bubble has approximately the shape of a sphere this has provided a new
analytical description of the phenomenon. Kinematic considerations concern-
ing the streamfunction led to a deduction of the dynamics of the breakdown
bubble at the critical point. It could be shown that in the singular points
viscous forces lead to a positive axial pressure gradient. Furthermore, it could
be visualized that vortex lines change their winding sense at those positions
where the axial gradient of the total pressure changes its sign. Again we have
to emphasize that without a proper comparative visualization of the break-
down bubbles, of streamlines and vortex lines we would not have been got the
essential ideas for our flow field analysis.

Further work is needed in order to develop a formal theory, which explains
and quantifies the topological and chronological interaction between the
different vector fields. Therefore, additional experiments, computational sim-
ulations and advanced visualization techniques are required for developing a
complete theory of vortex breakdown. This work, so far, has focused on the
behaviour of vortex breakdown bubbles in the confined container flow, may be,
the results will initiate further studies on the vortex breakdown mechanism
of free unbounded vortices.
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Summary. A pattern often found in regions of recirculating flow is the vortex ring.
Smoke rings and vortex breakdown bubbles are two familiar instances of this pattern.
A vortex ring requires at least two critical points, and in fact this minimum number
is observed in many synthetic or real-world examples. Based on this observation, we
propose a visualization technique utilizing a Poincaré section that contains the pair
of critical points. The Poincaré section by itself can be taken as a visualization of the
vortex ring, especially if streamlines are seeded on the stable and unstable manifolds
of the critical points. The resulting image reveals the extent of the structure, and
more interestingly, regions of chaos and islands of stability. As a next step, we
describe for the case of incompressible flow an algorithm for finding invariant tori in
an island of stability. The basic idea is to find invariant closed curves in the Poincaré
plane, which are then taken as seed curves for stream surfaces. For visualization
the two extremes of the set of nested tori are computed. This is on the inner side
the periodic orbit toward which the tori converge, and on the outer side, a torus
which marks the boundary between ordered and chaotic flow, a distinction which
is of importance for the mixing properties of the flow. For the purpose of testing,
we developed a simple analytical model of a perturbed vortex ring based on Hill’s
spherical vortex. Finally, we applied the proposed visualization methods to this
synthetic vector field and to two hydromechanical simulation results.

1 Introduction

Vector field topology, introduced by Helman and Hesselink [7], can be summa-
rized as the use of concepts from the theory of continuous dynamical systems
(see e.g. [3]) in scientific visualization. The main motivation for vector field
topology is its ability to provide a condensed representation of a vector field.
The most popular such representation is the topological skeleton which is
usually defined as the set of all critical points and all separatrices. In two
dimensions, the topological skeleton provides a segmentation of the domain
into regions of similar flow behavior. The separatrices can be obtained by
computing the stable and unstable manifolds of all critical points of saddle
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type. However, unless the vector field is irrotational, there may also exist peri-
odic orbits that behave like sources or sinks. If this is the case, the topological
skeleton computed this way is incomplete. Only if the set of (isolated) periodic
orbits is explicitly added to the skeleton, the full segmentation is obtained.
An algorithm for finding isolated periodic orbits was developed by Wischgoll
and Scheuermann [25].

When going to three dimensions, the topological skeleton can again be
defined as the set of all critical points and all separatrices. The separatrices are
the stable and unstable manifolds of saddles and spiral saddles (saddle foci),
coming in pairs of a 1D and a 2D manifold, i.e. a streamline and a stream
surface. The 1D manifolds are obviously not very useful for the purpose of
segmenting a 3D domain. Only in the case of spiral saddles, they have some
relevance, as they are sometimes understood as vortex core lines. The 2D
manifolds theoretically provide segmentation, but in practical flows, these
stream surfaces can become very convoluted. An alternative is to show only
their pairwise intersections, known as saddle connectors [23] or heteroclinic
orbits, resulting in a visualization of the connectivity between critical points.

The usage of vector field topology for scientific visualization is not restric-
ted to showing topological skeletons. For example, critical points can be used
for streamline placement [26]. Even if the full set of critical points is used
without any type analysis, this strategy was shown to yield effective visual-
izations by Weinkauf et al. [24]. Alternatively, a visualization of the local flow
behavior near critical points can be obtained by displaying icons showing the
linearized flow defined by the critical point type and by the eigenvectors of
the Jacobian of the vector field [4]. The same information can be used to seed
short streamlines near critical points [9], giving a slightly more global picture
of the flow.

It is interesting to notice that most work done so far in topology-based
visualization falls in one of two categories, either giving a global picture of
the entire domain or a local picture of neighborhoods of critical points. While
global effects are an interesting part of dynamical systems and chaos theory,
it can be argued that for flow visualization, they are less relevant because of
issues such as domain boundaries, simulation accuracy, or time-dependence.
But also the other extreme, independent visualization of critical points, can
be regarded as unsatisfactory, since much of the topological information is left
unused. We believe that vector field topology has much to offer for flow struc-
tures which fall in between the two extremes. One such structure is the vortex
ring, which is essentially determined by two critical points and a small number
of periodic orbits. In an earlier paper [17], we used a specialized stream surface
algorithm for the visualization of such middle-scale flow features. Garth et al.
[5] and Tricoche et al. [20] demonstrated how complex flow structures such
as vortex breakdown bubbles can effectively be visualized by using stream
surfaces and volume rendering, respectively. In this paper we present com-
plementary visualization techniques which are more closely oriented at the
topology.
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There has of course been previous work on visualization of dynamical
systems. In particular for visualizing the behavior near critical points of a
3D system, Löffelmann et al. introduced various techniques such as glyphs
[9], Poincaré maps [11] directly visualized in the context of the 3D field, and
bundles of trajectories [10] rendered as illuminated streamlines [19]. In all
these cases, the object to be visualized was a given dynamical system. What
we show in this work is that vector fields originating from other sources, such
as synthetic flow fields or industrial CFD results, are just as well suited for
being visualized as dynamical systems. In particular, we believe that is worth
looking at further concepts of the dynamical systems theory than those which
have made their way into the toolbox of vector field topology. As a source of
inspiration, the book by Abraham and Shaw [1] can be recommended.

2 Topology of vortex rings

A typical feature occurring in recirculation regions is a connected pair (C0, C1)
of critical points where C0 is a 1:2 spiral saddle (1 incoming and 2 outgoing
dimensions) and C1 is a 2:1 spiral saddle. By “connected” we mean that
the 2D unstable manifold Wu(C0) and the the 2D stable manifold W s(C1)
intersect. The intersection is then a set of saddle connectors. If the spiraling
at both C0 and C1 is sufficiently strong, the surface pair (Wu(C0), W s(C1))
roughly delimits a recirculation region. In its simplest form this region is a
vortex ring, as is illustrated in Figure 1. The saddle connectors alone give
already some idea of the geometry of the recirculation region. However, there
is usually more topological information available for visualization than just the
saddle connectors. Such features include chaotic regions, islands of stability,
and invariant tori having rational or irrational rotation numbers (i.e. frequency
ratios).

Fig. 1. Unstable manifold (solid) and stable manifold (dotted) of spiral saddles C0

and C1, respectively. Their intersection is a pair of saddle connectors σ and σ′
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If the (3D) vector field is divergence-free any such transversal intersection
of the 2D (un-)stable manifolds of two spiral saddles with sufficient spiral-
ing automatically implies a heteroclinic tangle. This phenomenon which is
also known as Shilnikov chaos [15, 18] is well known in the dynamical sys-
tems literature and can be described as follows. In general, the two manifolds
Wu(C0) and W s(C1) do not coincide, but intersect transversally. In this case
they intersect at an even number of saddle connectors, usually a pair σ and σ′

of them. Between the windings of the saddle connectors, the manifolds form
two “tubes” that are wrapped around the structure. The tubes have constant
flux (i.e. independent of cross sections) because the 2D manifolds are stream
surfaces, and the sum of the two fluxes is zero because of the divergence-
free condition. This implies that toward the critical points, where velocities
approach zero, the tubes must either have increasing cross section area or
develop folds that extend into regions of higher velocities. These folds, known
as lobes, are typical of vortex breakdown bubbles (see e.g. [16]). It might seem
strange to use the term vortex ring not only for structures such as smoke rings
but also for the chaotic structure of a vortex breakdown bubble. However, this
is consistent with the literature [8].

Much of dynamical systems theory deals with the special case of Hamil-
tonian systems, because of their area-conserving maps which are mainly
responsible for chaotic behavior. Among the vector fields, the divergence-free
ones play a similar role, and in fact they are related to Hamiltonian systems. In
2D, divergence free-vector fields (written as ODEs) and Hamiltonian systems
are even the same, with the stream function Ψ (with ∂Ψ

∂x = −ẏ and ∂Ψ
∂y = ẋ)

playing the role of the Hamiltonian function. In 3D, a divergence-free vec-
tor field is volume preserving, but does not necessarily have area-conserving
Poincaré maps. Nevertheless, the Poincaré map is at least flux-conserving,
which is the reason for the above mentioned Shilnikov chaos to occur.

The use of topological methods for time-dependent flow is sometimes ques-
tioned. Haller [6] says that structures such as chaotic tangles or KAM tori (i.e.
invariant tori of a Hamiltonian system) do not exist in finite-time turbulent
data sets. Nevertheless we believe that it is interesting to search for such
structures, first of all in steady flow fields (where time can be viewed as infi-
nite). It can be demonstrated that these topological features exist in practical
flow data, meaning that the catalog of features to be studied in vector field
topology must include invariant tori, chaotic regions, intersecting stable and
unstable manifolds and multiple saddle connectors. Clearly, the definition of
stable and unstable manifolds requires infinite-time flows, but this already
holds for the separatrices in the commonly treated 2D case. Practical flow has
often small enough time-dependence that their visualization as steady flow
is a good enough approximation. The fact that vortex breakdown bubbles
have been photographed in experiments [16] confirms that this holds even if
chaos is involved. Furthermore, the shapes observed in experiments have been
shown to be consistent with the manifolds of critical points in a steady vector
field [18].
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3 Analytical vortex ring model

For testing our algorithms, we developed a simple analytic vortex ring model
based on Hill’s spherical vortex (see e.g. [14]). An analytical vector field has
the advantage that artifacts due to discretization and interpolation can be
excluded. A second motivation was to demonstrate that a rich topology (Fig-
ure 7) is possible even if the vector field has only two critical points and can
be expressed with only quadratic terms (Eq. 3).

An instance of Hill’s spherical vortex can be described by the two velocity
fields

ui (x, y, z) =

⎛

⎝

xz
yz
z2 + 1 − 2r2

⎞

⎠ (1)

for points inside the unit sphere r =
√

x2 + y2 + z2 <= 1 and

uo (x, y, z) =

⎛

⎝

xzr−5

yzr−5

z2r−5 − 1
3r−3 − 2

3

⎞

⎠ (2)

for points outside it (r >= 1).
The field is divergence-free, and it solves the Navier-Stokes equations

(together with a matching pressure field). Furthermore, the field has zero
vorticity outside the unit sphere. See Figure 2.

By adding a swirl (ωy,−ωx, 0), a rotating vortex ring model is obtained.
This simple model does no more solve the Navier-Stokes equations but is capa-
ble of generating the topological phenomena that can be observed in vortex
rings. Physically correct variants of Hill’s vortex with swirl exist, but they are
more expensive to compute since Bessel functions have to be evaluated [14].
A different kind of generalization of Hill’s spherical vortex are the Norbury

C0

C

PP

Fig. 2. Hill’s spherical vortex (axial slice). C0, C1: critical points (spiral saddles),
P : periodic orbit
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Fig. 3. Hill’s spherical vortex with swirl (ω = 2π) and tilt (ε = 0.313). Slice of the
stable manifold of the critical point at (0, 0, 1)

vortex rings [13] where the vorticity is confined to toroidal regions instead of
the sphere.

In order to obtain the chaotic behavior of a real vortex ring, the symme-
try must be broken. In our model we do this by tilting the x-axis, which is
motivated by experimental studies of vortex rings (see [21]). By substituting
z′ = z + εx for z and w′ = w + εu for w in Eq. 1, and by adding the swirl, we
get the velocity fields

ui
εω (x, y, z) =

⎛

⎝

ωy
−ωx

0

⎞

⎠+

⎛

⎝

xz′

yz′

zz′ + 1 − 2r′2

⎞

⎠ (3)

for points inside the distorted unit sphere r′ =
√

x2 + y2 + z′2 <= 1 and

uo
εω (x, y, z) =

⎛

⎝

ωy
−ωx

0

⎞

⎠+

⎛

⎝
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for points outside of it.
This modified field is still divergence-free. It can be shown that the only

critical points are two spiral saddles at (0, 0,−1) and (0, 0, 1).
Figure 6 shows a x = 0 slice of the unstable manifold of the critical point at

(0, 0, 1), computed by seeding 200000 streamlines near the critical point and
allowing for a maximum of 200000 intersections with the plane. The coloring
of intersection points represents time, expressed in number of intersections
with the plane. A rainbow color map is used, starting with violet and ending
with red for intersection number 1000 and above. The system of three ODEs
was solved with the 4th order Runge-Kutta-Fehlberg routine from the Netlib
library.

If an even simpler model is needed, it is also possible to use just the inner
part ui

εω for the entire domain, see Figure 7.
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4 Visualization techniques for vortex rings

The visualization technique we propose for vortex rings consists of three steps.
First, the set of critical points is computed, and candidates for vortex rings are
generated among pairs of spiral saddles of opposite type. Then, a plane passing
through the two critical points is chosen, and a Poincaré section of Wu(C0)
and W s(C1) is taken. If an intersection of these is observed, the vortex ring is
confirmed. Finally, the Poincaré section is used to extract islands of stability,
i.e. to segment regions of chaotic and ordered flow.

4.1 Detection of vortex rings

The set of critical points is computed with the standard cell-by-cell method.
Only cells where all three vector components have a zero crossing have to be
processed. For classifying the critical points, the eigenvalues of the Jacobian
are needed. One positive real eigenvalue and a pair of complex eigenvalues with
negative real parts indicate a 2:1 spiral saddle, while opposite signs indicate
a 1:2 spiral saddle. Pairs (C0, C1) of these two kinds of spiral saddles are now
taken as candidates for vortex rings. We choose pairs simply based on vicinity
and leave it to the verification step described in Section 4.2 to eliminate wrong
pairs. Alternatively one could extract vortex core lines and make use of the
fact that critical points of spiral saddle type lie on core lines because they fulfill
both the Sujudi-Haimes and Levy criterion. Yet another approach would be
to compute the set of saddle connectors which gives the correct pairs directly.

4.2 Poincaré section

We choose a plane passing through C0 and C1, using the remaining degree
of freedom to fit the plane to the two real eigenvector directions of the two
critical points. This way, the section is taken close to the center line of the
vortex ring. Then a uniform grid is defined on the plane with an extent chosen
based on the distance d = ||C1 − C0||. We found a square with edge length
2d to be sufficient in most cases. The two manifolds Wu(C0) and W s(C1) are
now computed based on a discrete set of seed points, and the intersections
with the Poincaré section are stored as two (texture) images. Seed points for
the manifold of, say, C0 are generated as follows. A first seed s0 is chosen
at a small offset from C0 on the Poincaré plane where it intersects the plane
spanned by the two complex eigenvectors. From s0, a streamline is integrated
in the time direction where the distance from C0 increases. Its next iterate
(i.e. intersection with the Poincaré plane) is denoted by s1. Further seed points
are now generated on the straight line segment between s0 and s1 by loga-
rithmically interpolating the distance of the seed points to C0. Logarithmic
interpolation is appropriate because close to C0 streamlines are logarithmic
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spirals, and the error introduced by interpolating along a straight line falls off
with the streamlines converging to the 2D manifold.

Integrating streamlines for all seed points and for a given maximum num-
ber of intersections with the Poincaré plane results in an image showing the
intersection curve of the 2D manifold. By overlaying the images of C0 and
C1 it can be decided if the manifolds intersect. An example pair is shown in
Figure 10. In that case the image shows the lobes (folds) extending toward the
second critical point. It also shows the chaotic region formed by the inward
extending lobes, and it typically shows a hierarchy of islands of stability. The
islands of stability are toroidal regions around a periodic orbit of minimal
period. The inner part of stability islands is typically filled with nested invari-
ant tori with no flux across them (stream surfaces, known as KAM tori in the
case of Hamiltonian systems). Further out, chains of secondary islands can
often be seen. These can be separated from the primary island by first regions
of chaos. When the chaotic region is reached, so-called cantori [12] can appear.
These are porous tori of measure zero, which in some cases (if the rotation
number is a “noble” irrational number) have very little flux across them, and
act therefore as partial barriers.

4.3 Islands of stability

From the previous step the Poincaré sections of Wu(C0) and W s(C1) are now
given as scalar fields on a regular 2D grid (or image) where the data values
(or color indices) store the integration time or zero for cells that were not
intersected. The goal is now to segment in the overlay of the two images the
islands of stability. First, to clean the boundaries, a morphological closure
operation is performed. This is followed by a component labeling step. Any
component which does not extend to the image boundary is now checked for
being an island of stability. A problem here is to distinguish islands of stability
from holes that are formed by inward folding lobes. It can be observed that the
latter are reached after much shorter integration time, hence when the average
data value on their boundary is computed, this value is small compared to
that of stability islands (see Figures 6, 7, 9, 10).

The obtained candidates for islands of stability are now processed in order
of decreasing size. First, a streamline is seeded at the center of the island’s
bounding rectangle and whenever the Poincaré plane is intersected, the labeled
component of the intersection point is marked as being part of the same
island. If the streamline intersects the Poincaré section at a point outside of
a component with a valid label, the test has failed.

Given now an island of stability, we want to visualize its internal structure
which is a periodic orbit surrounded by nested invariant tori, with possible
island chains interspersed in the outer part. For the Hill’s vortex example, the
primary and secondary islands are shown in Figure 4.
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Fig. 4. Internal structure of primary and secondary island of Figure 3

We will visualize as two characteristic features the periodic orbit in the
center and the outermost torus. The streamline seeded at the center of the
island’s bounding rectangle is integrated for a few “rounds” (detectable by
increasing/decreasing x and y coordinates in the Poincaré plane). This should
produce a set of points lying densely on a closed curve, otherwise it has to
be retried from a slightly offset seed point. If a closed curve is obtained, the
center of its bounding rectangle can be used for the next iteration of the
process which is repeated until a fixed point is found.

This algorithm exploits the special structure of nested tori and is signif-
icantly faster than the general approach of looking for fixed points of the
Poincaré map, especially since in the case of secondary islands no fixed points
are found and successive powers of the Poincaré map must be computed and
searched for fixed points, too.

For finding the boundary of the island of stability, an iterative search is
started with a seed curve consisting of the outermost black (zero) pixels. At
pixels which are mapped to a pixel outside the boundary, the seed curve is
corrected inward by a pixel. This is repeated until all pixels of the seed curve
are mapped to pixels inside the island. Finally, on these pixels the map is
iterated a few times in order to reach a fixed curve. The obtained curve can
be used as a seed curve for a simplified stream surface algorithm which requires
only integration until the same component of the Poincaré plane is intersected
again. Figure 5 shows a pair of stream surfaces obtained this way.

With a similar technique, the manifolds Wu(C0) and W s(C1) can be
obtained as stream surfaces with seed curves extracted from the Poincaré sec-
tion. The stream surface can of course be computed directly, but this requires
a robust algorithm to cope with the highly curved lobes.
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Fig. 5. Primary (yellow) and secondary (red) islands rendered as stream surfaces

Fig. 6. Hill’s spherical vortex with swirl (ω = 2π) and tilt (ε = 0.313). Slice of the
stable manifold of the critical point at (0, 0, 1)

5 Results

We applied the techniques described in Section 4 to two CFD simulation
results. In both cases, the data are given at the nodes of unstructured hex-
ahedral grids. In principle, the computed velocity fields are divergence-free,
however this is only true for the integrals over the control volumes, but not
for the trilinearly interpolated data. Since we observed that any residual
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Fig. 7. Inner part ui
εω of Hill’s spherical vortex with swirl (ω = 2π) and tilt (ε =

0.442)

Fig. 8. Overview of the flow in the draft tube. Poincaré section used for Figure 10
shown as blue rectangle, vortex core lines shown in red

divergence left in the data causes the chaotic region to shrink, we did a diver-
gence cleaning of the data prior to the visualization. The standard method for
divergence cleaning is the Hodge projection method [2, 22] which is based on
the decomposition of u into a divergence-free part and an irrotational part,
u = u0 + ∇s. It follows ∇ · u = ∇ · ∇s which is a Poisson equation for s.
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Fig. 9. Overview of the flow in the river power plant. Poincaré section used for
Figure 11 shown as blue rectangle

Fig. 10. Stable (left) and unstable (right) manifolds of vortex ring in draft tube
dataset

5.1 Vortex ring in Francis draft tube

In the time-dependent simulation of the draft tube of a Francis turbine, we
found a vortex ring extending spanwise and with a temporally quite stable
behavior. An overview of the flow with the vortex ring and the rectangle used
for the Poincaré section can be seen in Figure 8. The stable and unstable 2D
manifolds of the two critical points show the structure of the vortex ring with
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Fig. 11. Left: Stable manifold of spiral saddle C0 in river power plant dataset.
Right: unstable manifold of periodic orbit P , approximated by seeding just below
spiral saddle C1, close-up on primary island of stability

two primary islands of stability, see Figure 10. The abrupt change of colors
near the islands of stability corresponds to jumps in integration time and
therefore indicates cantori. These are toroidal surfaces which act as partial
barriers for the mixing of the fluid.

In an earlier paper [17], we visualized the same flow structure with a
volumetric technique but without divergence cleaning. As a result, most of the
chaotic folding was lost because the flow was quickly attracted to a toroidal
surface.

5.2 Vortex ring in simulation of a river power plant

Our second example is the flow in a river power plant developing two large
vertical vortices at the surface, see Figure 9. We selected the left one of them,
and chose a Poincaré section in the vertical plane through the two critical
points. The result is shown in Figure 11.

In this example, the vortex ring extends to the (free slip) water surface
where one of the two spiral saddles is located. The unstable manifold of
the latter coincides with the stable manifold of a periodic orbit of saddle
type which is also located at the water surface. In order to be able to inte-
grate streamlines at the water surface, the normal velocity component had to
be set to exactly zero, i.e. residual normal velocities from the simulation had
to be removed.
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The seemingly ring-shaped lobes are an artifact of the slice plane which
does not follow well the curved center line of the structure. The effective shape
of the lobes is similar to the one in Figure 4.

6 Conclusion

We presented an algorithm for finding vortex rings in velocity fields and visu-
alizing them by means of a Poincaré section. Based on the latter, we described
how islands of stability can be identified and seed curves for invariant tori are
obtained, in particular for the outermost of the nested tori. A fast method
was presented for computing the central periodic orbit of an island of stability.
By applying these techniques to CFD data, we were able to find vortex rings
and visualize them. Finally, we developed an analytical model of a perturbed
vortex ring.

Part of the underlying theory requires divergence-free vector fields and thus
incompressible flow. However, some of the proposed visualization techniques
are also applicable to compressible flow. As an interesting future work we see
the application of the proposed techniques, possibly modified, to examples of
compressible flow such as smoke rings.

Although most of the vortex rings we found in CFD results contain just
two critical points, some others have four or more of them. Additional critical
points appear during events such as merging or splitting of vortex rings. Often
there are small additional vortex rings which exist only for a short time and
can thus be considered as noise. It would be an interesting topic to study how
the various topology simplification techniques could improve our visualization
technique.
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the underlying flow. In Mathematical Visualization. Proceedings of the Inter-
national Workshop on Visualization and Mathematics ’97 (1997), Hege H.-C.,
Polthier K., (Eds.), Springer, pp. 315–328.

12. MacKay R. S., Meiss J. D., Percival I. C.: Transport in hamiltonian systems.
Physica D 13D (1984), 55–81.

13. Norbury J.: A family of steady vortex rings. J. Fluid Mech. 57, Pt. 3 (1973),
417–431.

14. Saffman P. G.: Vortex Dynamics. Cambridge Univ. Press, Cambridge, UK,
1992.

15. Sil’nikov L. P.: A case of the existence of a denumerable set of periodic motions.
Sov. Math. Dokl. 6 (1965), 163–166.

16. Spohn A., Mory M., Hopfinger E.: Experiments on vortex breakdown in a
confined flow generated by a rotating disc. Journal of Fluid Mechanics 370
(1998), 73–99.

17. Sadlo F., Peikert R.: Topology-guided visualization of constrained vector
fields. In Proceedings of the 2005 Workshop on Topology-Based Methods in
Visualization, Budmerice, Slovakia (2007), p. (to appear).

18. Sotiropoulos F., Ventikos Y., Lackey T. C.: Chaotic advection in three-
dimensional stationary vortex-breakdown bubbles: Sil’nikov’s chaos and the
devil’s staircase. J. Fluid Mech. 444 (2001), 257–297.
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Summary. The visualization community is currently witnessing strong advances
in topology-based flow visualization research. Numerous algorithms have been pro-
posed since the introduction of this class of approaches in 1989. Yet despite the
many advances in the field, topology-based flow visualization methods have, until
now, failed to penetrate industry. Application domain experts are still, in general,
not using topological analysis and visualization in daily practice. We present a range
of state-of-the art topology-based flow visualization methods such as vortex core
line extraction, singularity and separatrix extraction, and periodic orbit extraction
techniques, and apply them to real-world data sets. Applications include the visual-
ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well
as flow around a spinning missile. The novel application of periodic orbit extraction
to the boundary surface of a cooling jacket is presented. Based on our experiences,
we then describe what we believe needs to be done in order to bring topological
flow visualization methods to industry-level software applications. We believe this
discussion will inspire useful directions for future work.

Key words: flow visualization, feature-based flow visualization, flow topol-
ogy, applications

1 Introduction

Great progress has been made in the advancement of topology-based flow visu-
alization methods since their introduction in 1989 [15]. Techniques for higher-
order singularity extraction from vector fields have been introduced including
a fast algorithm for 2D, steady-state data [43, 44]. Techniques for closed
streamline extraction have been presented [52], including a grid-independent
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method [48]. The topology of unsteady flow can be extracted and visualized
based on linear algebra [15], using streamline geometry [42], for 2D vector
fields [50], and the tracking closed streamlines can be performed [53]. Several
topology simplification algorithms have been written including multiresolu-
tion methods [8, 9], an area-based approach [10], topology-preservation-based
compression of vector fields [35], and for vector field design [54]. Surface-based
topology [16] such as detection of separation and attachment lines has been
investigated [24, 26], and a fast version of the aforementioned topology [49].
And many vortex core line and vortex core region algorithms have been imple-
mented [13], like the well-known λ2 vortex core region-based method [19]. Levy
et al. present an implementation that incorporates helicity [34]. Peikert and
Roth describe and implementation that searches for local, parallel velocity and
vorticity [39]. Roth and Peikert present an algorithm that extracts vortices
of high-curvature [41]. The eigenvector method of Sujudi and Haimes [46],
and the swirl parameter method of Berdahl and Thompson [4] both employ
the notion that a vortex core line occurs in a region of complex eigenvalues
where the velocity is parallel to the associated real eigenvector. Applications
of vortex core line extraction to aerodynamics is described by Kenwright and
Haimes [23, 25]. Vortex core line and region extraction techniques have also
been developed for unsteady flow like the well-known predictor-corrector algo-
rithm [1, 2] and an algorithm based on analysis of scalar values [3]. Reinders et
al. present an application of tracking vortices trailing a tapered cylinder [40].
For a more complete overview of topology-based flow visualization research,
we refer the readers to Laramee et al. [33].

Yet despite the many advances in topology-based analysis and visualiza-
tion, this class of techniques is generally not used by domain experts in their
daily routine. Functionality for the extraction and visualization of topology is
not normally included in industry-level application software. The goal of this
paper is to explore what needs to be done in order to bring topology-based
methods to the application domain. We do so by drawing on our own expe-
riences, namely, by applying topological methods to a collection of real-world
data sets, identifying the insight they provide and at the same time, identi-
fying the limitations of these approaches. We use topology-based extraction
such as vortex core line extraction, singularity and separatrix extraction, and
periodic orbit extraction techniques, in real engineering applications, includ-
ing the visualization of engine simulation data such as in-cylinder flow, cooling
jacket flow, as well as flow around a spinning missile. Our presentation includes
the extraction of periodic orbits at the boundary surface of a cooling jacket–
a novel application. We then describe what we believe needs to be done in
order to bring topological flow visualization methods to industry-level soft-
ware applications. We believe this discussion can play a role in steering future
directions in the field.

We note that the current discussion fits in well with a larger trend in the
visualization community. Can visualization survive without customers? [36]
was the question posed by Bill Lorensen at the 2004 NIH/NSF workshop
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on visualization and research challenges [22]. Visualization research is not
for the sake of visualization itself. In other words visualization is ultimately
meant to help a user, i.e., someone normally outside the visualization com-
munity, gain insight into the problem they are trying to solve or the goal
being sought after. Johnson called this problem “thinking about the sci-
ence” [21]. Interdisciplinary collaboration can be very challenging. However,
we do see signs of progress in this area. More quality, application-track papers
have been published in recent years. We also note the emergence of the
first Applied Visualization Conference (AppliedVis 2005) that took place in
Asheville, North Carolina in April of 2005 (more information available at
http://www.appliedvis.org ). This topic was also the subject of recent panel
discussions [14, 47] as well as a recent research paper [51].

2 Application: Simulation of In-Cylinder Flow

For flow entering and exiting a combustion chamber, the engineers responsible
for the design try to create an ideal pattern of motion. The motion can be
described as a swirling flow revolving around an imaginary, central axis resid-
ing inside the cylinder volume. One type of swirling motion, aptly called swirl
motion, is depicted in Figure 3, left. The ideal swirl motion spirals around an
axis aligned with the cylinder volume found at the center. Such an ideal is
often strived for in diesel engines.

Another important pattern of flow is tumble motion, depicted in Figure 3,
right. The axis of rotation in the tumble case is orthogonal to that of the
swirl case. Also, the ideal motion is closer to a simple circle rather than a
more spiral-like pattern. Since the axis of rotation is not aligned with the
combustion chamber itself, this pattern of motion is more difficult to realize.

Achieving these ideal patterns of flow optimizes the mixture of oxygen
and fuel during the ignition phase of the valve cycle. Optimal ignition leads to
very desirable consequences associated with the combustion process including:
more burnt fuel (less wasted fuel), lower emissions, and more output power.

2.1 Extraction and Visualization of Singularities and Separatrices

Extracting the singularities (or critical points) and related separatrices at the
boundary of the geometry can provide valuable insight into the behavior of
the flow directly, without the user having to search for the patterns of flow
manually [15, 16, 17, 33]. Figure 4 shows the boundary topology, including
singularities and separatrices for both cases of in-cylinder flow. In the case
of the swirl motion associated with the diesel engine, the red separatrix at
the boundary of the combustion chamber indicates a pattern of swirl motion
consistent with the ideal shown in Figure 3, left [11, 32]. We can validate this
to a certain extent by the addition of texture-based flow visualization, in this
case using texture-advection approaches [30], to depict the characteristics of
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the entire flow at the boundary, not just the topological skeleton. In Figure 4
right, we see that the ideal pattern of tumble motion is not being realized.
Instead of a single point-based recirculation zone directly in the middle of the
combustion chamber, we see two dominant singularities: a saddle point in the
upper, right-hand corner and a sink in the lower, left hand corner.

2.2 Future Direction: Extraction of Arbitrary Flow Patterns

Based on our experience of trying to extract the most important features
from in-cylinder flow [6, 11, 31, 32], we can make the following observation:
Tools capable of extracting more arbitrary patterns of flow motion, in 2D,
2.5D, or 3D would be very helpful to the engineering analysis community. (By
2.5D we mean surfaces in 3D.) For example, in the case of swirl motion, the
ability to extract a 3D helical pattern directly would be very useful. Ideally,
the user could specify an arbitrarily shaped curve and search the vector field
according to this set of user-specified geometry (and topology). This idea is
inspired by the fact that most geometries from automotive engineering have
an ideal pattern of flow that the engineers are trying to realize when designing
their models [11, 27, 28, 31, 32].

3 Application: Heat Transfer

The job of a cooling jacket is to transfer heat away from the engine block of
an automobile [31]. The cooling jacket has an extremely complex geometry.
The model grid consists of over 1.5 million unstructured, adaptive resolution
tetrahedra, hexahedra, pyramid, and prism volume elements, the volume of
which differs by more than six orders of magnitude. There are two main com-
ponents to the ideal pattern of flow through a cooling jacket: a longitudinal
motion lengthwise along the geometry and a transversal motion from cylinder
block to head and from the intake to the exhaust side. These two components
are sketched in Figure 1. The location of the inlet and outlet are also indi-
cated. Any flow that deviates from this ideal, essentially the most efficient
volume-filling path from inlet to outlet, results in less transfer of heat away
from the engine block.

3.1 Periodic Orbit Detection on Boundary Surfaces

Figure 5, left shows a novel application–the extraction of periodic orbits (also
known as closed streamlines) at the boundary surface of the cooling jacket
using the algorithm of Chen et al. [7]. The algorithm automatically extracts
and visualizes closed streamlines, 140 total in this example. In this appli-
cation, periodic orbits are very relevant because they indicate areas of flow
recirculation. Recirculation zones are very important to the engineers study-
ing the design of this engine component because they detract from the goal of
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Fig. 1. The major components of the flow through a cooling jacket include a lon-
gitudinal component, lengthwise along the geometry and a transversal component
in the upward-and-over direction. The inlet and outlet of the cooling jacket are also
indicated

transferring heat away from the engine block. Hence, one of the goals of the
engineer is to minimize the number of recirculation zones. Rather than having
to manually inspect the surface for recirculation, the user can now extract this
circular pattern of flow (tumble) directly.

Figure 5, right shows another very useful application of the periodic extrac-
tion algorithm, namely, to the boundary surface of a gas engine. In this
visualization, we can see a large green periodic orbit hinting at a recircu-
lation zone that corresponds very well to the ideal tumble motion depicted in
Figure 3, right.

3.2 Future Direction: Higher Dimensional Topology Simplification

The complexity of the result in Figure 5, left clearly motivates the need for
automatic or semi-automatic simplification algorithms for boundary topol-
ogy. Hundreds of topological elements, both singularities and periodic orbits
complicate the visualization result possibly adding undesirable noise. A fil-
tering operation based on parameters such as (1) the size of periodic orbits,
(2) the distance between neighboring singularities, (3) an error threshold or
(4) some other size/distance metric would be helpful to the engineer in order
to filter out some of the smaller scale (or larger) scale singularities. A similar
statement can be made for the case of 3D topology [31].

3.3 Future Direction: Further Development of Topological
Methods for Unsteady Flow

Practitioners typically deal with unsteady flow. Natural phenomena are time-
dependent. Yet, topology-based flow visualization methods are still not fully
understood in the context of time-dependent flow. For example, the interpreta-
tion of a separatrix for unsteady flow remains unclear. Separatrices are curves
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that segment the flow into different regions of asymptotic behavior. In the
case of unsteady flow pathlines appear to be a natural choice (as opposed to
streamlines) for separating the flow into regions of similar asymptotic behav-
ior. In 3D, pathsurfaces appear to be a natural choice but very little work on
pathsurfaces has been presented. Streaklines may also be a natural choice for
separating unsteady flow in 2D, but what about 3D? Are “streaksurfaces” a
better choice? To our knowledge, no work on streaksurfaces has been done.
What kind of separating behavior is most relevant in the case of unsteady
flow? What is the best approach to segmenting the different regions of flow
in the case of unsteady flow? Questions such as these are only starting to be
addressed [45].

Another problem lies in periodic orbit detection. Consensus lacks on
whether periodic orbit detection makes more sense in the context of steady
versus unsteady flow. One can argue that in fact, periodic orbit visualization is
misleading in the case of steady-state flow based on the argument that no such
paths exist in reality. This is because truly steady-state flow does not exist
if we define steady-state flow as instantaneous in time. On the other hand,
periodic orbits are unlikely to be detected in unsteady flow because spatio-
temporal behavior would have to remain identical over all cycles. Singular
orbit detection may make more sense in the context of unsteady flow. Further
development in this direction would also make topology-based methods more
appealing to practitioners.

4 Application: Spinning Missile

The spinning missile with dithering canards is representative of the type of
complex geometry routinely used in vehicle performance simulations. Several
properties of the spinning missile geometry contribute to the complexity of
the vortical flow surrounding it [5]. The missile is at a three degree angle with
respect to the supersonic incident flow. Fixed, canted tail fins cause the missile
to spin about its longitudinal axis at a rate of 8.75hz (Figure 2, upper left).
The missile’s dithering canards provide pitch and yaw control by rotating
about their attachment posts (Figure 2, lower right). To describe a single
rotation of the missile, 360 time steps are employed. The canards complete
several dither cycles during one missile rotation. The flow has some degree
of periodicity, but due to the missile’s nonzero angle of attack and spin, this
period does not match the dither cycle. The simulation was performed on a
mixed element mesh consisting of more than 35 million elements.

The engineers studying the missile were initially interested in whether the
vortices coming off the canard tips impinged on the tail fins. Feature based
vortex visualization was used to answer this question.
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Fig. 2. Missile geometry: Canted tail fins (upper left) cause missile to spin about
its longitudinal axis. Canards (lower right) rotate synchronously about axis passing
through the missile body to provide pitch and yaw control

Fig. 3. (left) The swirl motion of flow in the combustion chamber of a diesel engine.
Swirl is used to describe circulation about the axis aligned with the valve cylinder.
The intake ports at the top provide the tangential component of the flow necessary
for swirl. The data set consists of 776,000 unstructured, adaptive resolution grid
cells. (right) Some in-cylinder flows require a tumble motion flow pattern in order to
mix fuel with oxygen. Tumble flow circulates around an axis perpendicular to the
cylinder axis, orthogonal to the case of swirl motion

4.1 Feature-Based Vortex Visualization

The vortex visualization method of Jankun-Kelly et al. [18] extracts vortex
topology from computational fluid dynamics (CFD) data. Vortices can be
topologically characterized by their core line and extent. The vortex core line
is the curve about which streamlines swirl in a reference frame moving with
the vortex. Please note this method uses vortex topology, not vector field
topology (critical points, separatrices). This method exploits a technique to
extract the vortex core lines from the line-type extrema of scalar fields and a
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Fig. 4. (left) Swirl motion indicated by the helical separatrix at the boundary
of the combustion chamber and (right) deviant tumble motion indicated by the
boundary topology of the gas engine simulation For the singularities, green = source,
red = sink, orange = attracting focus, cyan = repelling focus, blue = saddle. Red
separatrices end at an attractor (sink). Green separatrices end at a repeller (source)

Fig. 5. (left) The flow topology, including 540 singularities and 140 periodic orbits
extracted at the boundary surface of the cooling jacket. (right) Periodic orbits and
singularities extracted at the boundary surface of the gas engine indicating tumble
motion (green = source, red = sink, orange = attracting focus, cyan = repelling
focus, blue = saddle)
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novel k-means clustering algorithm to identify topologically complex vortical
structures. The extent of a vortex is the boundary surface of the vortex core
region [12]. Given core line and extent, additional vortex characteristics can
be found. They include the sense of rotation, various measures of strength,
and field values at the core.

This method has several strengths. Vortex detection is automatic rather
than manual/interactive. Vortices can be extracted from practical engineering
data that may be noisy, unstructured, and not resolved as well as we might
like. Individual vortices of various strengths can be identified even in complex
flows of multiple, interacting and merging vortices. Low level, large CFD data
is distilled into compact, feature level vortex characteristic data such as core
line, extent, and strength. These compact vortex detection results can be
visualized interactively. All these properties of our method were requested by
users.

4.2 Insight From Vortex Visualization

We have produced an animated visualization of the time varying vortical
flow about the spinning missile. Several still images from the animation can
be seen in Figure 6. Vortex core line and associated extent surface image
pairs are shown from top to bottom, respectively. The color of each core line
indicates rotation, clockwise or counterclockwise with respect to the local axial
velocity. The extent surface is shaded by local tangential velocity, an indicator
of vortex strength. This visualization allowed the engineers to answer their
question: did canard tip vortices impinge on the tail fins and how strong

Fig. 6. Vortex core lines and extent for spinning missile with dithering canards
for time steps t=726, 728, 730, and 732 (top to bottom). Purple indicates a left
handed rotation while green indicates a right handed rotation. Alternate images
show vortex extent with surface colored by the local tangential velocity. The scale
on the non-dimensional tangential velocity is blue (0) to red (0.189)
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were the vortices that did impinge. Other interesting vortex behavior was
also observed. As the canards dithered, the strengths of their trailing vortices
changed. This appears as a change in the shading of vortex extent. At certain
roll angle/dither cycle combinations, each canard tip vortex changed its sense
of rotation. This can be seen at time step 730 (Figure 6, third row from the
top). The animation also revealed that vortices shed from the posts connecting
the canards to the missile body traveled toward the tail fins. Engineers had
originally been interested in canard tip vortices, but after seeing the vortex
visualization animation, they decided that the post vortices merit further
investigation. These insights were made possible by the topological feature
extraction capabilities of this visualization method.

4.3 Future Direction: Noise Mitigation and Reduction

Noise is often present in the data we are given. We must work with the data we
have, even when it is not quite ideal. This method is specifically designed to
handle noisy data because doing so improves the quality of the visualization.
More work needs to be done in the areas of noise reduction and mitigation
The two most pressing problems caused by noisy data are noisy core lines and
occasional C0 core line discontinuity. For feature level applications, complete
core lines are preferable to core line pieces. The vortex core line is needed
to compute all other vortex characteristics. Less noise in the core line would
make extent computation more robust. Therefore, improving core line quality
would have a significant impact on the overall quality of the results.

4.4 Future Direction: Improved Extent Computation

Several challenges need to be overcome in order to make extent computation
more accurate and robust. Extent outliers, which appear as jagged spikes
or indentations, are visually jarring inaccuracies. They can be removed by
smoothing the entire extent, but this adversely affects extent accuracy. More
work is needed to identify and locally repair extent outliers. A better extent
model is needed. The one currently used works well for isolated vortices but
has more difficulty with multiple, interacting vortices.

Further, the extent computation needs to be made Galilean invariant,
which could be accomplished by a shift of reference frame to one traveling
with the vortex if the translational motion of the vortex were known. It should
be noted that, for nonstationary vortices, the fluid velocity at the vortex core
will not be the velocity of the vortex core, thereby making Galilean invariance
difficult to achieve. These enhancements would facilitate application of the
feature based vortex visualization method to a wider range of data.
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4.5 Future Direction: Feature Level Verification by Determining
Whether a Detected Feature is a Vortex

Feature level verification is needed to automatically eliminate false positives,
a task currently done manually. Feature level verification would reduce visual
clutter and make visualization more meaningful and easier to interpret. All
methods that detect vortices by searching for line-type local extrema suffer
from false positives. This is because local extrema are a necessary but not
a sufficient condition for the existence of vortices. Swirling flow must also
be present. After detecting possible vortex core lines, Jiang et al. verified
vortices by checking for the presence of streamlines that made at least one
complete revolution about the vortex core line [20]. The limitation of this
vortex verification approach is that it is not Galilean invariant. Please note
that the preceding vortex detection can be Galilean invariant.

4.6 Future Direction: Vortex Tracking for Unsteady Flow

This method could be further enhanced through the incorporation of vortex
tracking. Vortex tracking would provide several benefits. Core line discontinu-
ities, which should not be present, could be identified by comparing vortices at
neighboring time steps. Vortex core velocity, needed for Galilean invariance,
could be determined. Tracking could be another means of feature verification
since vortices tend to persist over time, while some false positives are more
transient. Tracking would permit rule mining, the discovery of rules governing
vortical flow, leading to greater scientific insight [38].

5 Application Independent Directions

Here we describe some general future directions for bringing topology-based
visualization to the industry domain, independent of a specific application.

5.1 Future Direction: More Accessible Implementations

In general, topological extraction methods are complex and difficult to imple-
ment. We believe that the success of some algorithms, e.g., Marching Cubes [37]
or simple particle tracing is a result of an accessible implementation. Graceful
and easier implementations for topological analysis, extraction, and visual-
ization would help in bringing this class of methods to the domain experts.
Alternatively, if the visualization community provided engineers with source
code or pre-compiled software, they would be more likely to use our methods
than in the case of having to implement from scratch. However, perhaps some
methods can only be algorithmically simplified to a certain extent before they
become ineffective. In general, users would rather not re-implement methods.
They prefer off the shelf software with an easy to use and intuitive UI.
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5.2 Future Direction: Faster Computation Time

Clearly one aspect that would make topology-based flow visualization more
attractive to practitioners is faster computation. In general, literature on
feature-based flow visualization does not report performance times [33]. If
performance times are not reported, there is usually a reason. Topology-
based methods that are fast, or even interactive, would certainly enhance
their attractiveness to those outside the visualization community.

6 Summary and Conclusions

Despite the recent advances in topology-based flow visualization research,
topological methods are still generally not found in commercial software pack-
ages. We have presented a range of topological analysis and visualization tools
and their application to real-world problems. Included is a novel application–
the extraction and visualization of periodic orbits at the boundary surface of a
cooling jacket. Drawing on this experience, we presented a list of future work
in this area necessary in order to bring topology-based flow visualization to
the application domain. We have identified the following tasks:

1. Extraction of Arbitrary Flow Patterns: the ability to extract and visualize
user-defined patterns from flow

2. Higher Dimensional Topology Simplification: methods that can either
automatically or semi-automatically simplify topology on boundary sur-
faces and in 3D

3. More Accessible Implementations: implementations of extraction methods
which are easier and more accessible to the engineers that must write them

4. Faster Performance: implementations that are interactive, or nearly inter-
active, would be ideal

5. Further Development of Topological Methods for Unsteady Flow: a greater
understanding of topology-based methods in the context of unsteady flow
is needed

6. Noise Reduction and Mitigation: the development of topology-based meth-
ods which are less sensitive to noisy data

7. Improved Extent Computation: accurate methods to handle outliers in
the data

8. Feature Level Verification: automatic methods for the elimination of false
positives

9. Vortex Core Tracking for Unsteady Flow: including a formal definition of
a vortex

10. Improved Dissemination: a better transfer of knowledge from the visual-
ization community is necessary.

Lack of communication between communities is also a problem. Cur-
rently there is quite a gap between the visualization research community and



Topology-Based Flow Visualization to the Application Domain 173

prospective users. In fact, other communities such as the engineering analysis
community [29]. are not even aware that a visualization community exists.
Visualization scientists need to explain what tools and techniques are avail-
able and how they can be used to solve problems in science and engineering.
Practitioners could also explain why they would like to visualize their data
and what questions they’re trying to answer. Closely related is the lack of
inter-community knowledge transfer and a lack of educational literature.

We believe this discussion may play a role in steering future work in this
field to the point where topological methods may even be included in industry-
grade software. Certainly, a lot of work remains for topology-based methods
to spread beyond the visualization community.
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Summary. Curve-skeletons of 3-D objects are medial axes shrunk to a single line.
There are several applications for curve-skeletons. For example, animation of 3-D
objects, such as an animal or a human, as well as planning of flight paths for virtual
colonoscopy. Other applications are the extraction of center lines within blood vessels
where center lines are used to quantitatively measure vessel length, vessel diameter,
and angles between vessels. The described method computes curve-skeletons based
on a vector field that is orthogonal to the object’s boundary surface. A topological
analysis of this field then yields the center lines of the curve-skeletons. In contrast to
previous methods, the vector field does not need to be computed for every sampled
point of the entire volume. Instead, the vector field is determined only on the sample
points on the boundary surface of the objects. Since most of the computational time
was spent on calculating the force field in previous methods, the proposed approach
requires significantly less time compared to previous vector-based techniques while
still achieving a better accuracy and robustness compared to methods based on
Voronoi tessellations.

1 Introduction

Curve-skeletons describe the very basic features of an object. They describe a
thinned version of the object represented as some type of stick model result-
ing in the center-lines of the object. Therefore, the use of curve-skeletons can
prove useful for applications, such as animation [43] or flight planning for vir-
tual colonoscopy [19]. Similarly, accurate curve-skeleton methods can be used
for extracting quantitative measurements from computed tomography (CT)
scanned vascular structures. Here, the curve-skeleton describes the center lines
of the vessels. These can then be used to measure vessel radius, vessel lengths,
and angles between vessels within the volumetric data set retrieved by using
the CT scanner. This is the application that motivated the development of the
algorithm described in this paper. In order to derive these measurements from
the volumetric data set, an accurate extraction method for curve-skeletons is
desirable. For example, thinning-based techniques that work in the voxel space



178 T. Wischgoll

of the volumetric data set tend to generate jagged lines which are in no way
suitable for determining angles between vessels. Similarly, inaccuracies can
occur when computing the radii of the vessels. Hence, an approach that only
uses the volumetric data set in order to identify the boundary surface of the
contained object is more promising.

The algorithm described in this paper is exactly of this type. It is capable
of extracting the boundary surface of an object that is defined by a vol-
umetric data set at sub-voxel level. For this, it determines the location of
the maximal gradient within the volumetric data set similar to Canny’s [9]
maxima-suppression technique but extended to three dimensions. Since the
algorithm only relies on points extracted from the volumetric data set but
not on its underlying structured grid, it can also be applied to objects defined
by a point set without any restrictions.

Techniques used for computing the topological graph of a vector field are
applied to determine the curve-skeleton. First, for all points on the object’s
boundary vectors are computed that are orthogonal to the boundary surface.
There are different options for computing these vectors. They either can be
derived by determining the normal vector of a plane that is defined by a least-
square fit of the point and its neighbors. Or – in case of the object being defined
by a volumetric data set – the image gradients determined in the previous step
can be used. In both cases, the normal vectors can be determined in such a way
that they are facing inwards with respect to the object. The entire vector field
can then be determined by computing a tetrahedrization of the entire point
cloud and then linearly interpolating within the tetrahedra. In order to ensure
that only the curve-skeleton inside the object is extracted, all tetrahedra that
are located outside the object are removed based on the normal vectors.

A topological analysis of the vector field within the faces of every tetra-
hedron yields points on the curve-skeleton. By following the topology of the
tetrahedrization, points on the curve-skeleton within neighboring tetrahedra
can be connected resulting in the entire curve-skeleton.

A detailed description of the algorithm can be found in section 3. The next
section illustrates related work and compares it to the described approach.
Subsequently, the theoretical background with regard to the topological anal-
ysis of vector fields is explained. Section 4 shows results of the algorithm
applied to various data sets, followed by conclusions and future work.

2 Related Work

Several approaches for extracting curve-skeletons or medial axes can be found
in the literature. A very good overview of available techniques can be found
in the paper by Cornea et al. [11].

Some methods start with all voxels of a volumetric data set and use a
thinning technique to shrink down the object to a single line. Directional
thinning approaches use a specific order in which voxels are removed. For
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example, directions, such as up or down, are used to define this order and
conditions are used to identify endpoints [3, 8, 18, 23, 25, 30, 31, 34, 42]. Since
these methods are sensitive with respect to the order in which the voxels are
removed the resulting curve-skeleton may not be centered. Non-directional
methods [6, 39] or fully parallel approaches [14, 27, 29] do not suffer from this
disadvantage. Ideally, the topology of the object should be observed. Such an
approach was proposed by Lobregt et al. [24] which is the basic technique
used in commercial software systems, such as AnalyzeTM developed by the
Mayo Clinic. The disadvantage of this approach is that it tends to produce
jagged lines which do not allow accurate measurements of angles between
parts of the object, such as individual vessels of a vascular structure. Other
approaches [40] classify the voxels in different groups, such as edge, inner,
curve, or junction and re-classify after removal of a voxel. A similar algorithm
is proposed by Palagyi et al. [30]. The disadvantage of thinning algorithms is
that they can only be applied to volumetric data sets due to the nature of
these algorithms.

To avoid this disadvantage, other approaches deploy the distance trans-
form [17] or distance field in order to obtain a curve-skeleton. For each point
inside the object, the smallest distance to the boundary surface is determined.
For this, the Euclidian metric or the <3, 4, 5> metric [5] can be used. Also, fast
marching methods [36, 41] can be deployed to compute the distance field. Vox-
els representing the center lines of the object are identified by finding ridges
in the distance field. The resulting candidates must then be pruned first. The
resulting values are then connected using a path connection or minimum span
tree algorithm [38, 44, 48]. Methods used to identify points on the ridges
include distance thinning [10, 15, 16, 33], divergence computing [7], gradient
searching [4], thresholding the bisector angle [28], geodesic front propaga-
tion [32], or shrinking the surface along the gradient of the distance field [35].
The distance field can also be combined with a distance-from-source field to
compute a skeleton [49]. Based on an anisotropic diffusion applied to the image
gradients, Yu et al [47] extract skeletons from 2D images.

Techniques based on Voronoi diagrams [2, 13] define a medial axis using
the Voronoi points. Since this approach usually does not result in a single
line but rather a surface shaped object, the points need to be clustered and
connected in order to obtain a curve-skeleton. Voronoi-based methods can be
applied to volumetric data sets as well as point sets. Due to the fact that
clustering of the resulting points is required these approaches can lack some
accuracy.

3 Methodology

It is assumed that the reader is familiar with singularities in vector fields and
2-D vector field topology. If necessary, a good overview of these topics can be
found in [20, 45, 46].
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The algorithm for determining the curve-skeleton consists of several steps.
If the object is given as a volumetric data set the object’s boundary has
to be extracted first. Then, a vector field is computed that is orthogonal to
the object’s boundary surface. Once the vector field is computed, the curve-
skeleton can be determined by applying a topological analysis to this vector
field. The following subsections explain these steps in detail.

3.1 Extracting the Boundary of the Object

If the object is given as a set of points, for example measured by a laser
scanner, the object’s boundary is already defined. If the object is defined
by a volumetric data set, for example from a CT scan, the boundary of the
object has to be determined first. A volumetric data set consists of voxels
aligned along a regular, three-dimensional grid. Since it is generally not likely
that the boundary of the original object is exactly located at these voxels,
better precision can be achieved by finding the exact location between a set of
voxels. Since an accurate representation of the object’s boundary is crucial to
the algorithm, improving the precision is an essential step. The method used
within the described system uses similar techniques as described by Canny’s
non-maxima suppression [9, 21] but extended to three dimensions.

First, the image gradients are computed. Using a fixed threshold, all voxels
with a gradient length below this threshold are neglected. Then, the gradients
of the remaining voxels are compared to its neighbors to identify local maxima
along the gradient. In 3-D, the direct neighborhood of a single voxel generally
consists of 26 voxels forming a cube that surrounds the current voxel. In order
to find the local maximum along the current gradient, the gradients in the
neighborhood in positive and negative direction of the current gradient have
to be determined. The current implementation of the described system uses
tri-linear interpolation. Based on these three gradient values, i.e. the original
image gradient and the two interpolated values, the location of the maximal
gradient can be identified, resulting in a more accurate representation of the
object’s boundary and therefore a more precise center line. Hence, this step
improves the accuracy of the resulting curve-skeleton. However, the algorithm
would still work using the original voxels identified.

Once all points on the boundary are extracted from the volumetric data
set using this gradient approach with sub-voxel precision, the resulting point
cloud can be further processed in order to identify the skeleton.

3.2 Computing the Vector Field

The described method computes a curve-skeleton by applying a topological
analysis to a vector field that is determined based on the geometric configura-
tion of the object of which the curve-skeleton is to be determined. The vector
field is computed in such a way that the vectors are orthogonal to the object’s
boundary surface. The vectors inside the object are then interpolated linearly.
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Different approaches are possible for calculating such a vector field. A
repulsive force field can be determined that uses the surrounding points on
the object’s boundary surface as used by Cornea et al. [12]. The repulsive force
is defined similarly to the repulsive force of a generalized potential field [1, 22].
The basic idea is to simulate a potential field that is generated by the force
field inside the object by charging the object’s boundary. Another way is to
define a normal vector by using the neighboring points in addition to the
current one and then defining a plane that is approximated by these points.
The normal of this plane then defines the vector corresponding to the current
point.

If the data is given as a volumetric data set the image gradients can be used
to define the vectors on the object’s boundary surface. These image gradients
are computed already in the previous step as they are needed for extracting
the object’s boundary and determining the sub-voxel precision. The image
gradients are computed using the derivative of a Gaussian which also results
in a smoothing of the gradient vectors to address noise that may be present in
the data. In our experiments, the resulting gradient vectors were sufficiently
accurate to determine an accurate center line as shown by the validation of
the algorithm. Note that all three methods result in vectors pointing to the
inside of the object.

3.3 Determining the Curve-Skeleton

In order to determine the curve-skeleton of the object, a tetrahedrization of all
points on the object’s boundary is computed first. For this, Si’s [37] very fast
implementation of a Delaunay tetrahedrization algorithm is used. By using
the previously computed vectors that point to the inside of the object, outside
tetrahedra can be distinguished from tetrahedra that are located inside the
object. This way, all outside tetrahedra can be removed, leaving a Delaunay
tetrahedrization of the inside of the object only. Since vectors are known for
each vertex of every tetrahedron, the complete vector field can be computed
using this tetrahedrization by interpolating linearly within each tetrahedron.
This vector field is then used to identify points of the curve-skeleton which
are connected which each other later on.

Since the vector field is now defined within the entire object, one could
use an approach similar to the one used by Cornea et al. [12] at this point
and compute the 3-D topological skeleton of the vector field which yields the
curve-skeleton of the object. However, since singularities are very rare in a
3-D vector field Cornea et al. had to introduce additional starting points for
the separatrices, such as low divergence points and high curvature points, in
order to get a good representation of the curve-skeleton. Therefore, a different
approach is described in this paper that analyzes the vector field on the faces
of the tetrahedra. In order to be able to perform a topological analysis on the
faces of the tetrahedra, the vector field has to be projected onto those faces
first. Since linear interpolation is used within the tetrahedra, it is sufficient
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to just project the vectors at the vertices onto each face and then interpolate
linearly within the face using these newly computed vectors. Based on the
resulting vector field, a topological analysis can be performed on each face of
every tetrahedron.

Points on the curve-skeleton can then be identified by computing the sin-
gularities within the vector field interpolated within each and every face of
the tetrahedrization. For example, for a perfectly cylindrical object, the vec-
tors computed at the cylinder’s boundary point directly at the center of the
cylinder. When looking at the resulting vector field at a cross section of the
cylinder, a focus singularity is located at the center of the cylinder within this
cross section. The location of this focus singularity resembles a point on the
curve-skeleton of the cylinder. Hence, a singularity within a face of a tetrahe-
dron resembles a point of the curve-skeleton. Since the vectors at the object’s
boundary point inwards, only sinks need to be considered in order to identify
the curve-skeleton. Due to the fact that not all objects are cylindrical in shape
and due to numerical errors and tolerances, points on the curve-skeleton can
be identified by looking for sinks that resemble focus and spiral singularities.

Obviously, only faces that are close to being a cross section of the object
should be considered to identify points on the curve-skeleton. In order to deter-
mine tetrahedra whose faces resemble a cross-section of the object, the vectors
at the vertices can be used. If the vectors at the vertices, which are orthogo-
nal to the object’s boundary, are approximately coplanar with the face, then
this face describes a cross section of the object. As a test, the scalar product
between the normal vector of the face and the vector at all three vertices can
be used. If the result is smaller than a user-defined threshold this face is used
to determine points on the curve-skeleton. A fixed threshold works for most
data sets. However, in some cases a sub-optimal choice of this threshold can
result in false bifurcations where small segments (usually just a single line
segment) appears to be branching off of the main skeleton. Computing the
singularity on one of the faces fulfilling the threshold criterion then results in
a point which is part of the curve-skeleton. Since linear interpolation is used
within the face, only a single singularity can be present in each face.

Once individual points of the curve-skeleton are computed by identifying
the focus and spiral singularities within the faces of the tetrahedra, this set
of points needs to be connected in order to retrieve the entire curve-skeleton.
Since the tetrahedrization describes the topology of the object, the connec-
tivity information of the tetrahedra can be used. Thus, identified points of
the curve-skeleton of neighboring tetrahedra are connected with each other
forming the entire curve-skeleton. In some occurrences, an additional gap clos-
ing step is required. Particularly, this is sometimes necessary at bifurcations
where a smaller vessel branches off of a comparably large one. An example
can be seen in figure 1 where the connection between the major vessel and the
vessel branching off at the center of the image is missing. This can be easily
detected by looking at the terminal nodes of the graph representing the center
lines. For all these nodes, the algorithm checks if there is another graph it can
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Fig. 1. Sub-section of the porcine heart data set visualized as a volume rendered
image (left) and the extracted curve-skeleton of the same sub-section of the porcine
heart data set (right)

Fig. 2. Volume rendering (with shading enabled) of a previously perfused porcine
heart which was scanned using a standard hospital CT scanner (left) and curve-
skeleton of the porcine heart data set using the described algorithm before the gap
closing step; to enhance visibility in the paper the thickness of the lines and points
within the volumetric data set is increased (right)

be connected to. If this connection is within a vessel, the connection is added.
To check this, the tetrahedrization can be used since the connection is only
inside a vessel if it is entirely covered by tetrahedra.

4 Results

The algorithm was tested on several different data sets. It was mainly designed
for extracting center lines from CT scanned volumetric data sets of porcine
hearts where the arterials were previously perfused with a contrast enhancing
polymer and computing the vessel radii as the distance between the center line
and the vessel boundary. Figure 2(left) shows an example of such a data set.

The described algorithm is capable of extracting the curve-skeleton from
such a volumetric data set in order to identify the center lines of the arte-
rial vessels. The resulting curve-skeleton is depicted in figure 2(right). The
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figure shows the curve-skeleton extracted by the described algorithm before
the gap closing step was applied as well as the point set representing the vessel
boundaries.

Due to the densely located vessels of the right coronary arterial (RCA)
tree, the extracted curve-skeleton seems rather cluttered and it is difficult to
distinguish between lines at different depths. However, the extracted curve-
skeleton describes the center lines of the arterial vessels found within the data
set very well as illustrated below. When using a sub-section of the porcine
heart data set, it can be seen that the curve-skeleton is located at the center
of the arterial vessels, as shown in figure 3.

In order to validate the accuracy of the computed center lines, the vessel
radii were computed for the main trunk of the arterial branches of a series
of five porcine heart data sets as the distance between the center line and
the vessel boundary and then compared to manual optical measurements.
The optical measurements were performed by a domain expert after digesting
away the tissue leaving only the contrast enhancing polymer used to fill the
arteries. Based on the cast formed by the polymer, radii and distance to the
most proximal vessel were then measured. Figure 4 shows a comparison of

Fig. 3. Sub-section of the porcine heart data set showing the extracted center line
(left) and the underlying tetrahedrization used for identifying the center line (right)

Fig. 4. Comparison of computed vessel radii (red) and manual optical measurements
(green) for a typical specimen
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the two different measurements for a typical data set. The agreement between
the measurements is very good, with an error of 0.06mm (scan resolution
was 0.6mm), which underlines the accuracy of the center lines. For the three
major branches (LAD, LCX, and RCA) of the five procine hearts, the root
mean square error between the two measurements is 0.16mm and the average
deviation is 0.13mm.

The described algorithm for extracting curve-skeletons has some defi-
nite advantages over, for example, Voronoi-based approaches. Voronoi-based
approaches define a medial axis that is not necessarily a line, but more like a
set of points defining a surface. In a post-processing step, these points need to
be shrunk down to define a line. Even though the arterial vessels are rather
round due to the fact that they are pressurized, a Voronoi-based algorithm
only determines a fuzzy line around the actual center line of the vessels. In
addition, Voronoi-based approaches tend to generate significantly more false
bifurcations in form of small, short vessels branching off. The root mean square
error of the measurements computed using the presented technique of 0.16mm
are more precise compared to other techniques found in the literature[26],
where the root mean square error ranges from 0.2mm to 0.6mm with similar
scan resolutions. The performance of the algorithm was compared to another
vector-based algorithm by Conrea et al.[11]. The computation of the poten-
tial field as the first step of that algorithm would have taken several months.
The presented algorithm requires only little more than an hour for the entire
analysis of the data set.

The described algorithm works well with other types of data sets. The first
example is a pure cylindrical shaped data set. The cylinder is perfectly round;
hence, the algorithm should find a straight line as the curve-skeleton. As can
be seen in figure 5(a), the algorithm generates the correct curve-skeleton for
this data set exactly. The tetrahedrization of a small slice shown on the right

(a) (b) (c)

Fig. 5. Cylinder data set visualized as a volume rendered image (a) and the
extracted curve-skeleton of the same data set (center); to enhance visibility in the
paper the thickness of the lines and points within the image is increased. To illus-
trate the algorithm, the tetrahedrization within a small slice is shown as well (b).
Monster data set (c) visualized as a volume rendered image (left) and the extracted
curve-skeleton of the same data set (right); to enhance visibility in the paper the
thickness of the lines and points within the image is increased
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illustrates the principles of the algorithm. There are two large triangles cutting
through the cylinder with which a point on the center line is identified marked
with a dot at the center of the image.

Figure 5(c) depicts the results of the next example, the monster data set.
Again, both the volume rendered image and the curve-skeleton including the
point describing the object’s boundary are shown. This example shows that
the algorithm works well even with non-tubular objects. More examples can
be found in figures 6 to 9.

Fig. 6. Cylinder data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased

Fig. 7. Cow data set visualized as a volume rendered image (left) and the extracted
curve-skeleton of the same data set (right); to enhance visibility in the paper the
thickness of the lines and points within the image is increased

Fig. 8. Monster data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased
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Fig. 9. Mushroom data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased

5 Conclusions and Future Work

In this paper, an algorithm for extracting a curve-skeleton from data sets
given as point clouds or volumetric data sets was presented. The described
algorithm is based on a topological analysis of a vector field derived from the
configuration of the point set describing the object’s boundary contained in
the data set. Due to the fact that it is no longer necessary to compute the vec-
tor field on a multitude of points but instead only for points on the object’s
boundary the described algorithm is significantly faster while still preserv-
ing a high accuracy of the extracted curve-skeleton. It took the algorithm a
few seconds to extract the curve-skeleton for the smaller data sets. For the
porcine heart data set, the algorithm needed a little more than an hour to
determine the curve-skeleton. This is comparably fast, considering that in our
tests Cornea’s et al. [12] algorithm would have required several months to
compute the potential field alone.

It is planned to use the described algorithm for deriving precise quantita-
tive measurements from CT scanned specimens, such as vascular structures.
In order to be able to measure vessel lengths, vessel diameters, and bifur-
cation angles an accurate representation of the center lines of the vessels is
required. These center lines can be determined by the described algorithm for
extracting curve-skeletons applied to the volumetric data set generated by a
CT scanner.
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35. H. Schirmacher, M. Zöckler, D. Stalling, H. Hege, Boundary Surface Shrinking -
a Continuous Approach to 3D Center Line Extraction, Proc. of IMDSP, 25–28,
1998.

36. J. A. Sethian, Fast Marching Methods, SIAM Review, 41(2):199–235, 1999.
37. H. Si, TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional

Delaunay Triangulator, WIAS Technical Report No. 9, 2004.
38. H. Sundar, D. Silver, N. Gagvani, S. Dickinson, Skeleton Based Shape Matching

and Retrieval, Proc. Shape Modeling Int’l, 2003.
39. K. Suresh, Automating the CAD/CAE Dimensional Reduction Process, ACM

Symp. On Solid Modeling and Applications, 2003.
40. S. Svensson, I. Nystrom, G. Sanniti di Baja, Curve Skeletonization of Surface-

like Objects in 3D Images Guided by Voxel Classification, Pattern Recognition
Letters, 23 (12):1419–1426, 2002.

41. A. Telea, A. Vilanova, A robust level-set algorithm for centerline extraction,
Eurographics/IEEE Symp. On Data Visualization, pp. 185–194, 2003.

42. Y. F. Tsao and K. S. Fu, A parallel thinning algorithm for 3d pictures. Computer
Vision, Graphics and Image Proc., 17:315–331, 1981.



190 T. Wischgoll

43. L. Wade, R. E. Parent, Automated generation of control skeletons for use in
animation, The Visual Computer 18(2):97–110, 2002.

44. M. Wan, F. Dachille, A. Kaufman, Distance-Field Based Skeletons for Virtual
Navigation, IEEE Visualization 2001, pp. 239–246, 2001.

45. T. Wischgoll, Gerik Scheuermann, Detection and Visualization of Planar Closed
Streamlines, IEEE Transactions on Visualization and Computer Graphics, 7(2):
165–172, 2001.

46. T. Wischgoll, Closed Streamlines in Flow Visualization, Ph.D. Thesis, Univer-
sität Kaiserslautern, Germany, 2002.

47. Z. Yu, C. Bajaj, A Segmentation-Free Approach for Skeletonization of Gray-
Scale Images via Anisotropic Vector Diffusion, CVPR 2004, pp. 415–420, 2004.

48. Y. Zhou, A. Kaufman, A. W. Toga, Three-dimensional Skeleton and Centerline
Generation Based on an Approximate Minimum Distance Field, The Visual
Computer, 14, pp. 303–314, 1998.

49. Y. Zhou, A. W. Toga, Efficient skeletonization of volumetric objects, IEEE
Trans. Visualization and Comp. Graphics, 5(3):196–209, 1999.




