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Abstract. In this paper, we investigate how to design greedy routing to guaran-
tee packet delivery in a three-dimensional (3D) network. In 2D networks, many
position-based routing protocols apply face routing on planar routing structure as
a backup method to guarantee packet delivery when greedy routing fails at lo-
cal minimum. However, in 3D networks, no planar topology can be constructed
anymore. Even worse, a recent result [6] showed that there is no deterministic lo-
calized routing algorithm that guarantees the delivery of packets in 3D networks.
Therefore, we propose to set up the transmission radius large enough to eliminate
local minimum in the 3D network. In particular, we study the asymptotic critical
transmission radius for greedy routing to ensure the packet delivery in randomly
deployed 3D networks. Using similar techniques in [12], we theoretically prove
that for a 3D network, formed by nodes that are produced by a Poisson point

process of density n over a convex compact region of unit volume, 3
�

3β0 ln n
4πn

is
asymptotically almost surely (abbreviated by a.a.s.) the threshold of the critical
transmission radius for 3D greedy routing, where β0 = 3.2. We also conduct
extensive simulations to confirm our theoretical results.

1 Introduction

Most existing wireless systems and protocols are based on two-dimensional (2D) de-
sign, where all wireless nodes are distributed in a two dimensional plane. This assump-
tion is somewhat justified for applications where wireless devices are deployed on earth
surface and where the height of the network is smaller than transmission radius of a
node. However, 2D assumption may no longer be valid if a wireless network is de-
ployed in space, atmosphere, or ocean, where nodes of a network are distributed over
a 3D space and the difference in the third dimension is too large to be ignored. In fact,
recent interest in ad hoc and sensor networks (such as underwater sensor networks [2])
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hints at the strong need to design 3D wireless networks. Most current research in 3D
networks [11,3,13] primarily focuses on coverage and connectivity issues. In this paper,
we study 3D localized position-based routing.

Localized position-based routing makes the forwarding decision based solely on the
position information of the destination and local neighbors. It does not need the dis-
semination of route discovery information and the maintenance of routing tables. Thus,
it enjoys the advantages of lower overhead and higher scalability than other traditional
routing protocols. The popular localized routing is greedy routing, where a node finds
the next relay node whose distance to the destination is the smallest among all neigh-
bors. It is easy to construct an example to show that greedy routing will not succeed
to reach the destination but fall into a local minimum (a node without any “better”
neighbors). There are two ways to guarantee the packet delivery for greedy routing in
2D networks: (1) applying face routing, or (2) using large enough transmission power.
Many position-based routing protocols [5,8,9] applied face routing as a backup method
to get out of the local minimum after simple greedy heuristic fails. The idea of face rout-
ing is to walk along the faces which are intersected by the line segment st between the
source s and the destination t. To guarantee the packet delivery, face routing requires
the underlying routing topology to be a planar graph (i.e., no link/edge intersection).
The other way to guarantee packet delivery is letting all nodes have sufficiently large
transmission radii to avoid the existence of local minimum. Recently, Wan et al. [12]
studied the critical transmission radius (CTR) of greedy routing to guarantee the packet
delivery in randomly deployed 2D networks.

Though some protocols for 2D networks can be directly extended to 3D networks,
the design of 3D networks is surprisingly more difficult than that of 2D. In case of
position-based routing, the simple greedy routing can be easily extended to 3D. Several
3D routing protocols [10, 14] specifically designed for underwater sensor networks are
just variations of simple greedy routing. However, to guarantee the packet delivery of
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3D greedy routing is not straightforward and very challenging.
In 3D networks, there is no planar topology concept any more,
thus, face routing can not be applied directly to help the greedy
routing getting out of local minimum. Fevens et al. [7, 1] pro-
posed several 3D position-based routing protocols and tried to
find a way to still use face routing to get out of the local min-
imum. Their basic idea is projecting the 3D network to a 2D
plane (or multiple 2D planes), then applying the face routing in
the plane. However, as shown in Figure 1 [7], a planar graph
cannot be extracted from the projected graph. It is clear that
removing either v′3v′4 or v′1v′2 will break the connectivity. In
fact, Durocher et al. [6] have recently proven that there is no
deterministic localized routing algorithm for 3D networks that
guarantees the delivery of packets.

Therefore, in this paper, we adopt the second way to achieve delivery guarantee and
provide a completed theoretical study on the critical transmission radius of 3D greedy
routing that guarantees the delivery of packets between any source-destination pairs.
We prove that for a 3D network, formed by nodes that are generated by a Poisson
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point process of density n over a convex compact region of unit volume, the critical

transmission radius for 3D greedy routing is a.a.s. at most 3

√
3β ln n
4πn for any β > β0 and

at least 3

√
3β ln n
4πn for any β < β0. Here, β0 = 3.2.

2 Preliminaries

2.1 Critical Transmission Radius for Greedy Routing

In any greedy-based routing, the packet may be dropped by some intermediate node u
before it reaches the destination t when node u could not find any of its neighbors that
is “better” than itself. One way to ensure that the routing is successful for every source-
destination pairs is during the topology control (or power control) phase each wireless
node is set with a sufficiently large transmission radius such that each intermediate node
u will always find a better neighbor. Critical transmission radius for routing algorithm
is first studied by [12]. Here, we review its definition as in [12]. Assume that V is the set
of all wireless nodes in the network and each wireless node has a transmission radius r.
Let B (x, r) denote the open disk of radius r centered at x. Let

ρ (V ) = max
(u,v)∈V 2

u�=v

min
w∈B(v,‖u−v‖)

‖w − u‖ .

In the equation, (u, v) is a source-destination pair. Since w ∈ B (v, ‖u − v‖), we have
‖w − v‖ < ‖u − v‖. It means w is closer to v than u. If the transmission radius is not
less than ‖w − u‖, w might be the one to relay packets from u to v. Therefore, for each
(u, v), the minimum of ‖w − u‖ over all nodes on B (v, ‖u − v‖) is the transmission
radius that ensures there is at least one node that can relay packets from u to v, and the
maximum of the minimum over all (u, v) pairs guarantees the existence of relay nodes
between any source-destination pair. Clearly, if the transmission radius is at least ρ (V ),
packets can be delivered between any source-destination pairs. On the other hand, if
the transmission radius is less than ρ (V ), there must exist some source-destination
pair, e.g., the (u, v) that yields the value ρ (V ), such that packets can’t be delivered.
Therefore, ρ (V ) is called the critical transmission radius (CTR) for greedy routing
that guarantees the delivery of packets between any source-destination pair of nodes
among V . By assuming the nodes are randomly deployed in a unit area region, Wan et

al. [12] proved that
√

β1 ln n
πn is asymptotically almost surely the threshold of ρ (V ) for

greedy routing in 2D networks, where β1 = 1/(2
3 −

√
3

2π ).

2.2 Assumptions and Notations

In this paper, we consider the deliverability by the asymptotics of ρ (V ), where V is
given by a Poisson point process. By proper scaling, we assume the wireless devices
are represented by a Poisson point process of density n over a unit-volume cube D.
Po (n) denotes a Poisson RV with mean n, and Pn (A) represents a Poisson point
process of density n over a region A. Especially, Pn is shorthand for Pn (D). In what
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follows, ‖x‖ is the Euclidean norm of a point x ∈ R
3 and ‖x − y‖ is the Euclidean

distance between two points x, y ∈ R
3. For a countable and finite set S, we use # (S)

to denote its cardinality. |A| is shorthand for the volume of a measurable set A ⊂ R
3. All

integrals considered will be Lebesgue integrals. For a set A ⊂ R
3, diam (A) denotes

the diameter of A, and ∂A denotes the topological boundary of A. Let B (x, r) denote
the open sphere of radius r centered at x. For any two points u, v ∈ R

3, the intersection
of two spheres of radii ‖u − v‖ centered respectively at u and v, denoted by Luv, is
called the biconvex of u and v, i.e. Luv = B (u, ‖u − v‖)∩B (v, ‖u − v‖), and ‖u − v‖
is called the depth of the biconvex. An event is said to be asymptotic almost sure (a.a.s.)
if it occurs with a probability converges to one as n → ∞. To avoid trivialities, we
tacitly assume n to be sufficiently large if necessary.

2.3 Geometric Preliminaries

We first provide several geometric lemmas which will be used in the proof of our result
in next section. However, due to the space limit, we ignore the detailed proofs of them.

If ‖u − v‖ = 1, a straightforward calculation yields that |Luv| = 5π
12 . The volume of

a biconvex with respect to two unit-volume balls is 5π/12
4π/3 = 5

16 . Let β0 = 16
5 = 3.2.

Then, the volume of a biconvex with depth r is 1
β0

( 4
3πr3

)
. The following lemma gives

a lower bound of the volume of two intersecting biconvexes.

Lemma 1. Assume R > 0 and a1, b1, a2, b2 ∈ R
3. Let z1 = 1

2 (a1 + b1), r1 =
‖a1 − b1‖, z2 = 1

2 (a2 + b2) , and r2 = ‖a2 − b2‖. If r1, r2 ∈
[1
2R, R

]
, ‖z1 − z2‖ ≤√

3R, a1, b1 /∈ La2b2 , and a2, b2 /∈ La1b1 , there exist a constant c such that

|La1b1 ∪ La2b2 | − |La1b1 | ≥ cR2 ‖z1 − z2‖ .

For any convex compact set C ⊂ R
3, C−r denotes the set of points in C that are away

from ∂C by at least r. Next lemma gives a lower bound of the volume of C−r.

Lemma 2. Given a convex compact set C ⊂ R
3 with diameter at most d, |C−r| ≥

|C| − πd2r.

An ε-tessellation is a technique that divides the 3D space by vertical planes perpendic-
ular to either x-axis or y-axis and horizontal planes perpendicular to z-axis into equal-
size cubes, called cells, in which cells are with width ε. Without loss of generality, we
assume the origin is a corner of cells. In a tessellation, a polycube is a collection of cells
intersecting with a convex compact set. The x-span (and y-span, z-span, respectively)
of a polycube is the distance measured in the number of cells in the x-direction (and
y-direction, z-direction, respectively). If the span of a convex compact set is s and the
width of cells is l, the span of the corresponding polycube is at most �s/l
 + 1.

Lemma 3. If a convex compact set S consists of m cubes and τ is a positive integer
constant, the number of polycubes with span at most τ and intersecting with S is Θ (m).

Next, we introduce a technique to obtain the Jacobian determinant in the change of
variables that will be implicitly used in Subsection 3.2. Assume a tree topology is fixed
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over x1, x2, · · · , xk ∈ R
3. Without loss of generality, we may assume (xk−1, xk)

is one of edges. Let zk−1 = 1
2 (xk−1 + xk) and (r, φ, θ) be the spherical coordi-

nate of xk with the origin at zk−1. In other words, (xk − zk−1)X = r sinφ cos θ,
(xk − zk−1)Y = r sin φ sin θ, and (xk − zk−1)Z = r cosφ. For 1 ≤ i ≤ k − 2,
we use p (xi) to denote xi’s parent in the tree rooted at xk, and let zi = 1

2 (xi + p (xi)).
Let I3 and 03 denote a 3 × 3 identity matrix and a 3 × 3 zero matrix respectively, and

J =

⎡
⎣

sin φ cos θ r cosφ cos θ −r sin φ sin θ
sin φ sin θ r cosφ sin θ r sin φ cos θ

cosφ − sinφ 0

⎤
⎦ be the Jacobian matrix corresponding to

changing variables from the Cartesian coordinate to the spherical coordinate. Then, the
Jacobian determinant for changing variables x1,· · ·, xk−1, xk by z1,· · ·, zk−1, (r, φ, θ)

is
∣∣∣ ∂(x1,··· ,xk−1,xk)
∂(z1,··· ,zk−1,r,φ,θ)

∣∣∣ =
∣∣∣∂(x1+p(x1),··· ,xk−1+p(xk−1),xk)

∂(z1,··· ,zk−1,r,φ,θ)

∣∣∣ = 8k−1

∣∣∣∣∣∣
∂

(
x1+p(x1)

2 ,··· , xk−1+p(xk−1)
2 ,xk

)

∂(z1,··· ,zk−1,r,φ,θ)

∣∣∣∣∣∣

= 8k−1

∣∣∣∣∣∣
∂

�
x1+p(x1)

2 ,··· , xk−1+p(xk−1)
2 ,xk

�

∂(z1,··· ,zk−1,r,φ,θ)

∣∣∣∣∣∣

= 8k−1
∣∣∣∂(z1,··· ,zk−1,xk−zk−1)

∂(z1,··· ,zk−1,r,φ,θ)

∣∣∣ = 8k−1

∣∣∣∣∣∣∣∣∣

I3 · · · 03 03
...

. . .
...

...
03 · · · I3 03
03 · · · 03 J

∣∣∣∣∣∣∣∣∣
= 8k−1r2 sin φ. In the first

equality, each non-root variable is added by its parent variable. The equality stands
since the Jacobian determinant is equal to 1 as we add one variable to another. Note that∫ π

0 sin φdφ = 2.

2.4 Probabilistic Preliminaries

Let φ be the function over (0, ∞) defined by φ (μ) = 1 − μ + μ lnμ. A straightforward
calculation yields φ′ (μ) = lnμ and φ′′ (μ) = 1/μ . Thus, φ is strictly convex and has
the unique minimum zero at μ = 1. Let φ−1 : [0, 1) → (0, 1] be the inverse of the
restriction of φ to (0, 1]. We define a function L over (0, ∞) by

L (β) =
{

βφ−1 (1/β) if β > 1,
0 otherwise.

It can be verified that L is a monotonic increasing function of β. The following lemma
from [12] gives an estimation of the lower-tail distribution of Poisson RV’s.

Lemma 4. For any μ ∈ (0, 1), limλ→∞ Pr (Po (λ) ≤ μλ)= 1√
2π

1√
μ(1−μ)

1√
λ
e−λφ(μ).

The next lemma gives a lower bound for the minimum of a collection of Poisson RVs.
Due to space limit, we ignore its detailed proof.

Lemma 5. Assume that limn→∞ λn

ln n = β for some β > 1. Let Y1, Y2, · · · , YIn be

In Poisson RVs with means at least λn. If In = o
(
ns

√
ln n

)
for some real number

s ∈ (0, 1], then for any 1 < β′ < β, minIn

i=1 Yi > sL
( 1

sβ′) ln n a.a.s..

At last, we state the Palm theory [4] on the Poisson process.
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Theorem 1 ( [4]). Let n > 0. Suppose k ∈ N , and h (Y, X ) is a bounded measurable
function defined on all pairs of the form (Y, X ) with X ⊂ R

3 being a finite subset and
Y being a subset of X , satisfying h (Y, X ) = 0 except when Y has k elements. Then

E

⎡
⎣ ∑
Y⊆Pn

h (Y, Pn)

⎤
⎦ =

nk

k!
E [h (Xk, Xk∪Pn)]

where the sum on the left side is over all subsets Y of the random Poisson point set Pn,
and on the right side the set Xk is a binomial process with k nodes, independent of Pn.

We need to estimate the number of subsets with some specified topology, for example,
two nodes are local minima w.r.t. each other. But it is not so easy to estimate this among
Poisson point processes. The Palm theory allows us to place a set of random points first
and then estimate the expectation over the Poisson point process. This technique will
be used in Subsection 3.2 to prove Theorem 2(2).

3 Main Result: Critical Transmission Radius for 3D Greedy

The main result of our paper is the following theorem whose proof will be given in next
two subsections.

Theorem 2. Let β0 = 3.2 and n
(4

3πr3
n

)
= (β + o (1)) lnn for some β > 0. Then,

1. If β > β0, then ρ (Pn) ≤ rn is a.a.s..
2. If β < β0, then ρ (Pn) > rn is a.a.s..

To simplify the argument, we ignore boundary effects by assuming that there are nodes
outside D with the same distribution. So, if necessary, packets can be routed through
those nodes outside D.

3.1 Upper Bound of Theorem 2

The upper bound in Theorem 2 is going to be proved through a technique called minimal
scan statistics. For a finite point set V and a real number r > 0, we define S (V, r) =
minu,v∈D,‖u−v‖=r # (V ∩ Luv). S (V, r) is the minimal number of nodes of V that
can be covered by a biconvex with depth r. We claim that the event S (Pn, rn) >
0 implies the event ρ (Pn) ≤ rn. Assume to the contrary that ρ (Pn) > rn. Then
there exist a pair of nodes u and v such that u is a local minimum w.r.t. to v. In other
words, ‖u − v‖ > rn and no other nodes of Pn are in B (u, rn) ∩ B (v, ‖u − v‖).
Let w be the intersection point of the segment uv and the sphere ∂B (u, rn). Since
Luw ⊂ B (u, rn) ∩ B (v, ‖u − v‖), this implies that Luw contains no nodes of Pn.
Thus, S (Pn, rn) = 0, which is a contradiction. So, our claim is true.

To have the lower bound of minimal scan statistics, we apply the tessellation tech-
nique to discretize the scanning process. We tessellate the deployment region by prop-
erly choosing cell size such that: (1) each copy of the biconvex contains a polycube
with volume at least η ln n

n for some η > 1, and (2) the number of polycubes is O
(

n
ln n

)
.

Then, the next lemma follows Lemma 5.
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Lemma 6. Suppose that n
( 4

3πr3
n

)
= (β + o (1)) lnn for some β > β0. Then for any

constant β1 ∈ (β0, β), it is a.a.s. that S (Pn, rn) > L
(

β1
β0

)
ln n.

PROOF. Let d =
√

3rn which is the largest distance between any two points in a bi-

convex. For a given β1, choose a constant β2 ∈ (β1, β), and let ε = 4
27β0

(
1 − β2

β

)
.

Consider an εd-tessellation. (Note that ε is chosen such that each copy of the bicon-
vex contains a polycube with volume at least η ln n

n for some η > 1.) To prove this
inequality, it is sufficient to show that any biconvex of two points in D that are sepa-
rated by a distance of rn contains a polycube with span at most 1

ε and volume at least
β2
β0

( 4
3πr3

n

) 1
β .

For a biconvex L, let P denote the polycube induced by L−√
3εd. Then, P ⊆ L,

and the span of P is at most
⌈

d−2
√

3εd
εd

⌉
+ 1 < 1

ε . By Lemma 2 and the fact that

|L| = 4
3πr3

n
1
β0

= 4
9
√

3
πd3 1

β0
, we have |P | ≥

∣∣L−√
3εd

∣∣ ≥ |L| − πd2
(√

3εd
)

=

|L| −
√

3επd3 = |L| − 27β0
4 ε |L| > |L|

(
1 − 27β0

4 ε
)

= β2
β |L| = β2

β0

( 4
3πr3

n

) 1
β .

Let In denote the number of polycubes in D with span at most 1
ε and volume at least

β2
β0

( 4
3πr3

n

) 1
β =

(
β2
β0

+ o (1)
)

ln n
n , and Yi be the number of nodes on the i-th poly-

cubes. Then Yi is a Poisson RV with rate at least
(

β2
β0

+ o (1)
)

ln n. Since the number

of cells in D is O
(( 1

εd

)3
)

= O
(

n
lnn

)
, by Lemma 3, In = O

(
n

ln n

)
. By Lemma 5, it is

a.a.s. that minIn
i=1 Yi

ln n ≥ L
(

β2
β0

)
> L

(
β1
β0

)
. Thus, S (Pn, rn) ≥ minIn

i=1 Yi.

3.2 Lower Bound of Theorem 2

Theorem 2(2) can be proved by showing that if rn = 3

√
3β ln n
4πn for any β < β0, there

a.a.s. exists local minima. The space is going to be tessellated into equal-size cube
cells. For each cell, an event that implies the existence of local minima in the cell is
introduced, and a lower bound for the probability of the event is derived. Since these
events are identical and independent over cells, we can estimate a probability lower of
existence of local minima. By showing the lower bound is a.a.s. equal to 1, we prove
Theorem 2(2). The detail is given below.

Let β1 and β2 be two positive constants such that max
( 1

8β0, β
)

< β1 < β2 < β0.
In addition, let R1 and R2 be given by n

( 4
3πR3

1
)

= β1 ln n and n
(4

3πR3
2
)

= β2 ln n,
respectively. Since 1

8β0 < β1 < β2 < β0, we have 1
2R2 ≤ R1 ≤ R2. Divide D by(

4 3

√
lnn
nπ

)
-tessellation. Let In denote the number of cells fully contained in D. Here

we have In = O
(

n
ln n

)
. For each cell fully contained in D, we draw a ball of radius

1
2

3

√
ln n
nπ at the center of the cell. For 1 ≤ i ≤ In, let Ei be the event that there exists

two nodes X, Y ∈ Pn such that their midpoint is in the i-th ball, their distance is
between R1 and R2, and there is no other node in LXY . For any two nodes u and v
with ‖u − v‖ > rn, if there are no other nodes in Luv , u and v are local minima w.r.t.
each other. So, Ei implies existence of local minimum, and
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Pr [ρ (Pn) > rn] ≥ Pr [at least one Ei occurs] .

Let oi denote the center of the i-th ball, and u, v be two points such that 1
2 (u + v) is in

the i-th ball and R1 ≤ ‖u − v‖ ≤ R2. By triangle inequality, for any point w ∈ Luv, we

have ‖w − oi‖ ≤
∥∥w − 1

2 (u + v)
∥∥ +

∥∥oi − 1
2 (u + v)

∥∥ <
√

3
2

3

√
3β0 ln n

4nπ + 1
2

3

√
ln n
nπ <

2 3

√
lnn
nπ . Since the width of cells is 4 3

√
ln n
nπ , u, v, and Luv are contained in the i-th cube.

Therefore, E1, · · · , EIi are independent. In addition, E1, · · · , EIi are identical. Then,

Pr [none of Ei occurs] = (1 − Pr [E1])
In ≤ e−In Pr(E1).

If In Pr (E1) → ∞, we may have Pr [ρ (Pn) > rn] → 1, and Theorem 2(2) follows.
Next, we will prove that In Pr (E1) → ∞.

First, we introduce several relevant events and derive their probabilities. Let A denote

the disk with radius 1
2

3

√
ln n
nπ at the center of the first cube. Assume V is a point set and

T ⊂ V . Let h1 (T, V ) denote a function such that h1 (T = {x1, x2} , V ) = 1 only if
1
2 (x1 + x2) ∈ A, R1 ≤ ‖x1 − x2‖ ≤ R2, and there is no other node of V in Lx1x2 ;
otherwise, h1 (T, V ) = 0. In addition, under Boolean addition, for any {x1, x2, x3} ⊆
V , let h2 ({x1, x2, x3} , V ) = h1 ({x1, x2} , V ) ·h1 ({x1, x3} , V )+h1 ({x2, x1} , V ) ·
h1 ({x2, x3} , V )+ h1 ({x3, x1} , V ) · h1 ({x3, x2} , V ); for any {x1, x2, x3, x4} ⊆ V ,
let h3 ({x1, x2, x3, x4} , V ) = h1 ({x1, x2} , V )·h1 ({x3, x4} , V )+h1 ({x1, x3} , V ) ·
h1 ({x2, x4} , V ) + h1 ({x1, x4} , V ) · h1 ({x2, x3} , V ).

E1 is the event that there exists two nodes X, Y ∈ Pn such that h1 ({X, Y } , Pn) =
1. In the remaining of this subsection, we use X ′

1, X ′
2, X ′

3 and X ′
4 to denote elements of

Pn. Let F ′
1 ({X ′

1, X
′
2}) be the event that h1 ({X ′

1, X
′
2} , Pn) = 1; F ′

2 ({X ′
1, X

′
2, X

′
3})

be the event that h2 ({X ′
1, X

′
2, X

′
3} , Pn) = 1 which is the indicator of the event and

F ′
3 ({X ′

1, X
′
2, X

′
3, X

′
4}) be the event that h3 ({X ′

1, X
′
2, X

′
3, X

′
4} , Pn) = 1. Applying

Boole’s inequalities, we have

Pr [E1] ≥
�

{X′
1,X′

2}⊆Pn

Pr
�
F ′

1
��

X ′
1, X

′
2
���

−
�

{X′
1,X′

2,X′
3}⊆Pn

Pr
�
F ′

2
��

X ′
1, X

′
2, X

′
3
���

−
�

{X′
1,X′

2,X′
3,X′

4}⊆Pn

Pr
�
F ′

3
��

X ′
1, X

′
2, X

′
3, X

′
4
���

. (1)

For the sake of clarity, we use X1, X2, X3 and X4 to denote independent random
points with uniform distribution over D and independent of Pn. Let F1 be the event that
h1 ({X1, X2} , {X1, X2} ∪ Pn) = 1,F2 be the event that h2({X1, X2, X3} , {X1, X2,
X3} ∪ Pn) = 1, and F3 be the event that h3({X1, X2, X3, X4}, {X1, X2, X3, X4} ∪
Pn) = 1. According to the Palm theory (Theorem 1), we have

�
{X′

1,X′
2}⊆Pn

Pr
�
F ′

1
��

X ′
1, X

′
2
���

= E

	

� �

{X′
1,X′

2}⊆Pn

h1
��

X ′
1, X

′
2
�

, Pn

�
�

�

=
n2

2!
E [h1 ({X1, X2} , {X1, X2} ∪ Pn)] =

n2

2
Pr [F1] ; (2)
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�
{X′

1,X′
2,X′

3}⊆Pn

Pr
�
F ′

2
��

X ′
1, X

′
2, X

′
3
���

= E

	

� �

{X′
1,X′

2,X′
3}⊆Pn

h2
��

X ′
1, X

′
2, X

′
3
�

, Pn

�
�

�

=
n3

3!
E [h2 ({X1, X2, X3} , {X1, X2, X3} ∪ Pn)] = 3

n3

3!
Pr [F2] =

n3

2
Pr [F2] ; (3)

∑

{X′
1,X′

2,X′
3,X′

4}⊆Pn

Pr
[
F ′

3
({

X ′
1, X

′
2, X

′
3, X

′
4
})]

= E

⎡
⎢⎣

∑

{X′
1,X′

2,X′
3,X′

4}⊆Pn

h3
({

X ′
1, X

′
2, X

′
3, X

′
4
}

, Pn

)
⎤
⎥⎦

=
n4

4!
E [h3 ({X1, X2, X3, X4} , {X1, X2, X3, X4} ∪ Pn)] = 3

n4

4!
Pr [F3] =

n4

8
Pr [F3] .

(4)
From Eq. (1), (2), (3), and (4), we have

Pr [E1] ≥ n2

2
Pr [F1] − n3

2
Pr [F2] − n4

8
Pr [F3] . (5)

In the next, we will derive the probabilities of F1, F2, and F3. Let S1 denote the set{
(x1, x2)

∣∣ 1
2 (x1 + x2) ∈ A, R1 ≤ ‖x1 − x2‖ ≤ R2

}
. We have

Pr [F1] =
� �

S1

Pr [F1 | X1 = x1, X2 = x2] dx1dx2

=
� �

S1

e−n|Lx1x2 |dx1dx2 =
� �

S1

e
−n 1

β0

�
4
3 π‖x1−x2‖3�

dx1dx2.

Let z = x1+x2
2 and r = 1

2 ‖x1 − x2‖. Then,

Pr [F1] =
�

z∈A

� R2
2

r= R1
2

e
− n

β0
32
3 πr3

32πr2drdz =
�

z∈A

� R2
2

r= R1
2

e
− n

β0
32
3 πr3

d

�
32
3

πr3
�

dz

= −

�
� β0

n
e

− n
β0

32
3 πr3

����
R2
2

r= R1
2

�
� |A| =

β0

6n2

�
n

− β1
β0 − n

− β2
β0

�
ln n. (6)

Let S2 denote the set

��
�(x1, x2, x3)

������
x1+x2

2 , x1+x3
2 ∈ A;

R1 ≤ ‖x1 − x2‖ ≤ R2; x1, x2 /∈ Lx1x3 ;
R1 ≤ ‖x1 − x3‖ ≤ R2; x1, x3 /∈ Lx1x2

��
�. Applying

Lemma 1, if (x1, x2, x3) ∈ S2, we have

Pr [F2] =
� � �

S2

Pr
�
F2

���� Xi = xi

∀i = 1, 2, 3

�
dx1dx2dx3

≤ 3
� � �

S2

e−n|Lx1x2∪Lx1x3 |dx1dx2dx3

≤ 3
� � �

S2

e
−n

�
1

β0
4
3 π‖x1−x2‖3+cR2

2

��� x1+x2
2 − x1+x3

2

���
�
dx1dx2dx3.
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Let z1 = x1+x2
2 , z2 = x1+x3

2 , r = ‖x1−x2‖
2 , and ρ = ‖z1 − z2‖. Then,

Pr [F2] ≤ 3
�

z1∈A

� R2
2

r= R1
2

�
z2∈A

e
−n

�
1

β0
32
3 πr3+cR2

2‖z1−z2‖
�

· 256πr2drdz1dz2

≤ 24
�

z1∈A

� R2
2

r= R1
2

e
− n

β0
( 32

3 πr3)d
�

32
3

πr3
�

dz1 ·
�

z2∈A

e−cnR2
2‖z1−z2‖dz2

≤ 24
�

z1∈A

� R2
2

r1= R1
2

e
− n

β0
( 32

3 πr3)d
�

32
3

πr3
�

dz1 ·
� ∞

ρ=0
e−cnR2

2ρ4πρ2dρ

= 24
�

β0

6n2

�
n

− β1
β0 − n

− β2
β0

�
ln n

��
8π

(cnR2
2)

3

�

=
32πβ0

c3 (nR3
2)

2
n3

�
n

− β1
β0 − n

− β2
β0

�
ln n. (7)

Let S3 denote the set

��
�(x1, x2, x3, x4)

������
x1+x2

2 , x3+x4
2 ∈ A;

R1 ≤ ‖x1 − x2‖ ≤ R2; x1, x2 /∈ Lx3x4 ;
R1 ≤ ‖x3 − x4‖ ≤ R2; x3, x4 /∈ Lx1x2

��
�. Ap-

plying Lemma 1, if (x1, x2, x3, x4) ∈ S3, we have

Pr [F3] =
� � � �

S3

Pr
�
F3

���� Xi = xi,
∀i = 1, 2, 3, 4

�
dx1dx2dx3dx4

≤ 3
� � � �

S3

e−n|Lx1x2∪Lx3x4 |dx1dx2dx3dx4

≤ 3
� � � �

S3

e
−n

�
1

β0
4
3 π‖x1−x2‖3+cR2

2

��� x1+x2
2 − x3+x4

2

���
�

· dx1dx2dx3dx4.

Let z1 = x1+x2
2 , r1 = ‖x1−x2‖

2 , z2 = x3+x4
2 , r2 = ‖x3−x4‖

2 , and ρ = ‖z1 − z2‖. Then,

Pr [F3] ≤ 3
∫

z1∈A

∫ R2
2

r1= R1
2

∫

z2∈A

∫ R2
2

r2= R1
2

e
−n

(
1

β0
32
3 πr3

1+cR2
2‖z1−z2‖

)
·
(
32πr2

1dr1dz1
) (

32πr2
2dr2dz2

)

≤ 3

(∫

z1∈A

∫ R2
2

r1= R1
2

e
− n

β0
32
3 πr3

1d

(
32
3

πr3
)

dz

) (
32π

(
R2

2

)2 (
R2

2
− R1

2

) ∫ ∞

ρ=0
e−cnR2

2ρ4πρ2dρ

)

=
16π2β0

c3 (nR3
2) n4

(
1 − R1

R2

) (
n

− β1
β0 − n

− β2
β0

)
ln n.

(8)
Put Eq. (5), (6), (7) and (8) together. We have

Pr [E1] ≥
�

β0

12
− 16πβ0

c3 (nR3
2)

2 − 2π2β0

c3 (nR3
2)

�
1 − R1

R2

���
n

− β1
β0 − n

− β2
β0

�
lnn

∼ β0

12

�
n

− β1
β0 − n

− β2
β0

�
ln n.

Since In = Ω
( ln n

n

)
, we have Pr [E1] = Ω

((
n− β1

β0 − n−β2
β0

)
ln n

)
, and In Pr [E1] =

Ω
(
n1−β1

β0

)
→ ∞. This complete the proof of Theorem 2(2).
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4 Simulation

We have analyzed the theoretical bounds of the critical transmission radius for 3D
greedy routing. To confirm our theoretical analysis, we conduct several simulations to
see what is the practical value of transmission radius (r) such that greedy can guarantee
the packet delivery with high probability in random networks.

Critical Transmission Radius for Random Networks: We randomly generate 1000
networks with n wireless nodes in a 20 × 20 × 20 cubic region, where n is from
100 to 500. For each network V , we compute the critical transmission radius ρ(V )
by definition (the equation in Section 2.1). Figure 2 gives the histograms of the dis-
tribution of ρ(V ) for 1000 random networks. Figure 4(a) shows the probability dis-
tribution function of ρ(V ). It is clear that the critical transmission radius satisfies a
transition phenomena, i.e., there is a radius r0 such that the greedy can successfully
deliver the packet when r > r0 and can not deliver the packet when r < r0. We also
find that the transition becomes faster when the number of nodes increases. Notice that
the practical value of ρ(V ) is larger than the theoretical bound in our analysis. Re-
member the theoretical bound is true for n → ∞. However, the practical value will
approach the theoretical bound with the increasing of n . When n = 500, it already
becomes very near the theoretical bound. When n = 500, the theoretical bound is
3

√
3β0 lnn

4πn × 20 = 0.212 × 20 = 4.24 for a 20 × 20 × 20 cubic region.
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Fig. 2. The distribution of ρ(V ) for random networks with 100-500 nodes
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Fig. 4. (a) and (b): the probability distribution function of ρ(V ) for cubic and sphere networks;
(c): delivery ratio for 100-node random networks with various r

Delivery Ratio of Greedy Routing with Various Transmission Radii. We implement
the 3D greedy routing in our simulator. By setting various transmission radii, we gen-
erate 100 random networks with 100 wireless nodes again in a 20 × 20 × 20 cubic
region. Figure 3 shows a set of examples when the transmission radius r is from 3 to
8. Notice that when r ≤ 5, the network is not connected. In this simulation, we only
consider the connected networks. We randomly select 100 source-destination pairs for
each connected network and test the 3D greedy routing. Figure 4(c) (the blue curve
marked by crosses) illustrate the average delivery ratio of 3D greedy routing. Clearly,
the delivery ratio increases when r increases. After r is larger than a certain value, it
always guarantee the delivery. This also confirms our theoretical analysis. In addition,
from Figure 3 and Figure 4(c), we can conclude that the CTR for greedy routing (ap-
proaching 100% delivery ratio when r is around 7 in Figure 4(c)) is just a little bit
larger than the CTR for connectivity (network becomes connected when r is around 6
in Figure 3).

Besides deploying random networks in a cubic region, we also performed simu-
lations for networks deployed in a spherical region (with 20 as its radius). Figure 4(b)
gives the probability distribution function of ρ(V ) and Figure 4(c)(the red curve marked
by stars) illustrates the average delivery ratio of 3D greedy routing. The conclusions
from these simulations are consistent with the simulations for random network deployed
in cubic region.

5 Conclusion

In this paper, we study the critical transmission radius for 3D greedy routing which
leads to a delivery-guaranteed 3D localized routing. We theoretically prove that for a
random 3D network, formed by nodes that are generated by a Poisson point process
of density n over a convex compact region of unit volume, the critical transmission ra-

dius for 3D greedy routing is a.a.s. 3
√

3β0 ln n
4πn , where β0 = 3.2. This theoretical result

answers a fundamental question about how large the transmission radius should be set
in a 3D networks, such that the greedy routing guarantees the delivery of packets be-
tween any two nodes. We also conduct extensive simulations to confirm our theoretical
results.
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