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Abstract. The routing for Wireless Sensor Networks (WSNs) is a key
and hard problem, and it is a research topic in the field of WSN ap-
plications. Based on Ant Colony Optimization (ACO), this paper pro-
poses a novel adaptive intelligent routing scheme for WSNs. Following
the proposed scheme, a high performance routing algorithm for WSNs is
designed. The proposed routing scheme is very different from the exist-
ing ACO based routing schema for WSNs. On one hand, in the proposed
scheme, the search range for an ant to select its next-hop node is lim-
ited to a subset of the set of the neighbors of the current node. On the
other hand, by fusing the residual energy and the global and local lo-
cation information of nodes, the new probability transition rules for an
ant to select its next-hop node are defined. Compared with other ACO
based routing algorithms for WSNs, the proposed routing algorithm has
a better network performance on aspects of energy consumption, energy
efficiency, and packet delivery latency.

Keywords: WSN, routing, ACO, pheromone, transition probability,
simulation.

1 Introduction

1.1 Background

With the rapid growth of modern electronic and wireless communication tech-
niques, wireless sensor networks (WSNs) become more and more effective in
many fields, such as battlefield surveillance, biological monitor, smart space, in-
trusion detection and tracking for temperature, object movement, sound and
light [1J2)3l4]. Typically, a WSN consists of a large number of sensors. Each sen-
sor is also called a node, and the nodes have the capability of communicating
with each other and the base station (sink node) by multi-hop mode. The sink
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node may be considered as the center for processing data. Each node collabo-
rates with its neighboring nodes in a distributed manner to sense the physical
parameters in the environment surrounding this node. Then, as data packets,
the nodes process and deliver the sensed data to their neighbors. Some neighbors
continue to process and deliver the data packets toward the sink node by the
same mode, that is, the multi-hop mode. In WSNs, the energy of nodes is usu-
ally provided by micro-batteries with the very limited power. A large number of
nodes are usually deployed in the remote, harsh or hostile environment. Hence,
it is usually impossible to recharge or replace the batteries of nodes. However,
the lifetime of a WSN significantly depends on the batteries of nodes, and a long
lifetime is vital in most of WSN applications. Therefore, the energy efficiency
routing is a challenge to large-scale WSN applications. In addition, some WSN
applications also require a timely data delivery. For instance, when a moving tar-
get enters an area of interest, it may be very critical to reduce the delivery delay
of the sensed data from the source node (target) to the sink node. If the sensed
data is not received by the sink node within a certain acceptable period of time,
the sensed data may become useless. Hence, preserving energy efficiency and
reducing delivery delay are key issues in the applications of large-scale WNSs.
In recent years, more and more attention has been paid to these issues. Due to
the limited communication range of nodes, the data packets are delivered from
the source node to the sink node through some mediate nodes in a WSN. The
routing refers to select an energy-saving and short delivery delay route from the
source node to the sink node. Formally, a WSN may be considered as a weighted
undirected graph. It is usually a complex combinatorial optimization problem to
select a shortest route from the source node to the sink node, while considering
many factors, such as energy consumption, packet delivery delay, and energy
efficiency, and it has been proved to be an NP-complete problem [4] []]. Consid-
ering the frequent change of the topology of a WSN;, the location-aware routing
is needed. Due to some new characteristics of large-scale WSNs, such as high
density, limited energy and multi-hop communication, the routing becomes very
complex. The traditional routing protocols can not satisfy the requirements for
WSN applications, especially large-scale WSN applications. Hence, researchers
are trying to propose novel routing protocols for WSNs.

Although some routing schemes for WSNs have been proposed based on the
graph theory and the greedy search algorithm in the literature [12], the high
performance routing is still a research topic. Recently, the routing based on Ant
Colony Optimization (ACO) has drawn the attention from many researchers
[34], and the ACO based adaptive routing has shown promising results in solving
routing problem [3]. In fact, since the ACO model was proposed by Dorigo
[506], and it has been successfully applied in solving some complex optimization
problems, such as the routing of traffic in busy telecommunication networks,
the asymmetric traveling salesman problem, and the graph coloring problem
[12]. By using ants as models, we can design soft agents to solve the complex
routing problem in large-scale WSNs. Although the capability of each ant is
very limited and the cognitive system of each ant is also too simple to acquire



Ant Colony Optimization-Based Location-Aware Routing 111

the global knowledge of the environment surrounding the ant, the collective
behavior of ants emerges a natural model for solving the distributed parallel
problem without any extra centralized coordination [5l6].

1.2 Contribution

Our routing scheme is very different from the existing ACO based routing schema
for WSNs. Firstly, in our scheme, when an ant is at the node s; and selects its
next-hop node, the search range of the ant is limited to a subset of the set of
s;’s neighbors, instead of the total set of s;’s neighbors. On one hand, this guar-
antees that the data packets are delivered toward the sink node. On the other
hand, many useless searches for an ant to select its next hop node are effec-
tively avoided. Secondly, we propose a novel formula to calculate the transition
probability with which ants select their next hop nodes. Thirdly, we propose a
novel model to determine the amount of the pheromone which an ant will lay on
the route traveled by the ant. This diversifies the solutions that ants found, and
the probability of the local convergence of the proposed routing algorithm is de-
creased. In addition, we also propose a novel scheme to evaporate the pheromone
on the different segments of a certain route according to the residual energy and
the location information of nodes. This also effectively increases the diversity
of the solutions found by ants. The simulation results show that the proposed
ACO based routing algorithm has a better performance than other ACO based
routing algorithms for WSNs [4U7].

The remainder of the paper is organized as follows. In Section 2 the related
work is introduced. The novel ACO based routing scheme and the correspond-
ing algorithm for WSNs are proposed in Section Bl The simulation results are
presented in Section [l Section [B] concludes this paper.

2 Related Work

The biological research has shown that ants communicate with each other by
sensing the density of pheromone. The pheromone is a chemical substance which
ants lay on the routes traveled by themselves. Each ant prefers to moving toward
the route with a high density of pheromone. The more the ants which travel a
certain route are, the more the accumulated pheromone on this route is, thus
the greater the probability with which the other ants select this route is. As a
result, the amount of pheromone is gradually increased on this route. However,
pheromone may be evaporated over time. Biological experiments have shown
that each ant just interacts with the environment surrounding the ant, and
independently selects the route without any global knowledge. In the system
organized by a group of ants, ants can quickly find the shortest route by sensing
the density of pheromone on the routes from the nest to the food node. Inspired
by the real ant colony system, Dorigo et al [Bl6] first proposed artificial ant
colony algorithms, namely Ant Colony Optimization (ACO), to solve complex
combinatorial optimization problems [12].
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The ACO is particularly suitable for large-scale distributed self-organization
systems [4]. Recently, the ACO based adaptive routing draws the attention from
many researchers [34]. Despite that several ACO based routing algorithms for
WSNs have been proposed, those algorithms are based on the framework pro-
posed by Dorigo [5l6]. In fact, the core idea of ACO based routing lies in two
key points. One is to define the formula to calculate the transition probability
with which an ant selects its next-hop node, and the other is to determine the
rules used to update the pheromone on the routes. According to different WSN
applications, researchers defined the different formula to calculate the transition
probability, and modified the rules to update the amount of pheromone. In this
paper, we define a novel formula to calculate the transition probability under
the framework of the ACO based routing proposed by Dorigo, and we also de-
fine novel rules to update the amount of pheromone on the routes. Following
the proposed scheme, we design a new ACO based routing algorithm for WSNs.
Simulation results show that the proposed algorithm has a better comprehensive
performance than other ACO based routing algorithms for WSNs [4l[7].

3 ACO Based Location-Aware Routing for WSNs

3.1 Problem Description

A WSN consists of m static and identical wireless sensors. Each sensor is called
a node. The nodes are uniformly distributed in a flat region, as shown in Fig[ll
The nodes are equipped with omni-directional antennas, and the communication
range of each node is a circle area whose radius is r. A WSN is formally described
as a weighted undirected graph G(V, E, L). Here, V={s1, $2, ..., $m }, and each
s; € V represents a sensor node in a WSN. F is the set of edges, L is the

Fig.1. Ant colony optimization-based location-ware routing for WSNs
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set of weights, and £ C V x V x L. At any instant ¢, for any s;,s; € V, i#j,
the locations of s; and s; are denoted as (x;,y;) and (z;,y;), respectively. The
distance between s; and s; is denoted as d;;, and d;; is calculated by the following
formula.

dij Z\/(l“z — )2+ (yi —y;)? - (1)

For any s;,s; € V, if d;j < r, and s; and s; both are active, that is, s; and
s; both are working, then there is an undirected edge (s;, s;, ¥4;(t)) € E. Here,
the weight 1;;(t) € [0,1] is the cost to deliver a data packet from s; to s; at
instant ¢. For any s; € V, the residual energy of s; is denoted as e;(t) at instant
t. Traditionally, the set of s;’s neighbors is defined as follows.

N(si) ={sj|s; € Vidij <r} . (2)

In this paper, sqg is the source node, and s, is the sink node. The set of s;’s
next-hop neighbors is defined as follows.

Clsi) = {sj | sj € N(si),djp < dn} . (3)

The problem to be solved is to find the best optimal route from the source
node sq to the sink node sy, such that a given data packet may be delivered from
sp to sp, while energy consumption is minimized and packet delivery latency is
minimized. This is a hard combinatorial optimization problem. As shown in Fig.
[ before a given data packet is delivered from the source node to the sink node,
we need to find the best optimal route from the source node to the sink node. In
this paper, we propose a novel ACO based routing algorithm to effectively solve
this problem.

3.2 The Basic Principal of ACO

In the following, the basic principal of ACO is introduced based on the practical
procedure that ants find food. Similar to [3], suppose that there are three ants
a1, az and as at the nest node (source node) sg, and that there are three routes
@1, P2 and ¢3 from the nest node sp to the food node (sink node) s;. The length
of ¢ is greater than the length of ¢3 and the length of ¢3 is greater than the
length of ¢5. The route ¢; includes four nodes sg, s1, s2 and sp, the route ¢o
includes three nodes sg, s3 and sp, and the route ¢3 includes five nodes sg, s4,
s5, Sg and sp. Here, it is noted that the number of the nodes included in a route
is not generally related to the length of the route.

The procedure for ants to find the shortest route from sg to s; is described as
follows. Initially, at sg, the three ants have no knowledge about the routes from
so to sp. Each ant selects one of the three routes in a random mode. Suppose
that aq selects ¢1, as selects ¢2 and ag selects @3, and that the three ants move
at the same speed. At the initial instant ¢, the three ants start to move from
so to sp along the three routes. Clearly, due to the shorter length of ¢o, as first
reaches sp, then as reaches sy, and a; finally reaches s;. Once an ant reaches
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sp, the ant immediately returns toward sg along the route from which the ant
just comes. While returning, the ants will lay a different amount of pheromone
on the route traveled by themselves. At instant ¢, the pheromone on the route
from s; to s; is denoted as 1;;(t), here s; and s; are two neighboring nodes. The
pheromone which the ant & lays on the route from s; to s; is denoted as Az/)fj (t).
If the ant £ does not pass the route from s; to s;, then Ai/}fj (t) is equal to 0.
Usually, the value of Awfj (t) is inversely proportional to the length of the route
traveled by the ant k from sy to sp. Let the length of the route found by the ant
k be L* at instant £. When ay return to s before a; and a3, the value of ¥3(t)
is immediately set to 1/L2. Similarly, when a3 return to sq before a;, the value
of o4 (t) is immediately set to 1/L3. When a1 return to sg, the value of 1)1 (t)
is immediately set to 1/L'. When all the three ants return to sq, we say that
these ants complete a round travel. Next, the ants start the second round travel.
At sg, the ants prefer to choosing the route with a high density of pheromone.
Since 1/L% > 1/L® > 1/L*, ¢» is chosen by the ants. When the ants complete
the second round travel, the density of pheromone on ¢- is much greater than
that on ¢ or ¢o. Hence, ¢ is the shortest route from sy to sp.

In the above example, any ant at sg will be able to choose the optimal route
once other ants return to sg. If the ant k is at s;, and there is no pheromone
on any route from s; to s;’s next-hop neighbors, the ant £ makes a random
decision to select one route with the probability of 0.5. However, when there is
pheromone on routes, the ant k will select the route with a higher density of
pheromone. It is noted that there are other types of ants that use pheromone
to communicate with each other in different modes. Hence, there are still other
ACO approaches [3]. In addition, the pheromone on a route may be evaporated
over time. According to the different problems, different rules to lay or evaporate
pheromone are defined to effectively solve these different problems.

3.3 The Proposed Routing Scheme for WSNs

To select the best optimal route from the source node to the sink node, suppose
that each node in a WSN has a memory block in which the residual energy of
the node and its neighbors, the location information of the node, its neighbors
and the sink node are stored. Each ant is a mobile agent that has a contraindi-
cation list to memory the nodes traversed by the ant in a round travel. The
contraindication list may help each ant avoiding to select the nodes which have
been traversed by the ant. Furthermore, each ant may avoid to cycle on the
same route. In addition, when the ant k is at s; at instant ¢, the ant k& will select
the node s; € C(s;) as the next-hop node in a probability mode, as shown in
Fig. Bl We believe that the location information of nodes significantly influences
the probabilities with which the ant % selects s; as the next-hop node. Hence,
we define the location function §;; as follows.

doy
doi + dij + djp

> da

SIEC(Si)

§ij = ( ) x (1= ) - (4)
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Where d;; is the distance from s; to s;, doy is the distance from sg to sp, do; is
the distance from sg to s;, and d;;, is the distance from s; to sp. Clearly, 0< &;; <
1. The greater the value of &;; is, the greater the probability with which ants
select s; as the next-hop node is. If there is not any next-hop neighbor to select,
that is, C'(s;)\{s;} is empty, then the ant k returns to the previous-hop node of
s;. Let the previous-hop node of s; be s;. Before the ant k& makes a reselection
at s, s; is added to the contraindication list of the ant k, so that the ant k& does
not select s; as the next-hop node again.

In addition, we believe that the residual energy of nodes influences the prob-
abilities with which the ant k selects s; as the next-hop node. Therefore, we
define the energy function 7;;(t) as follows.

o €t
Th](t)_ Z 6[(t) . (5)

SIEC(Si)

Where ¢;(¢) is the residual energy of s; at instant ¢. The greater the value of n;;(¢)
is, the greater the probability with which the ant % selects s; as the next-hop
node is. To comprehensively consider the location information and the residual
energy of nodes, we define the novel transition probability with which the ant %
at the node s; selects s; € C(s;) as the next-hop node at instant ¢ as follows.

[ig (1)) x [€551° x [z (£)]7
> [a®)]> x [al? x ma ()]

SLEC(Si)

i) = (6)

Where «, 8 and +y are the adjustable weights of ;5 (t), &; and n;;(t), respectively.
Hence, the routing selection of ants may be tuned according to the different
values of «, B and . A higher value of « increases the chance for ants to choose
the route with a higher pheromone, a higher value of 3 increases the chance
for ants to choose the route with a shorter length, and a higher value of ~
increases the chance for ants to choose the node with more residual energy. In
general, different values of o, # and +y are selected for different situations. When
a WSN is not stable, a lower value of « is generally preferred. This is because
the pheromone on a route may not necessarily reflect the optimality of the route
at that time. As a WSN becomes stable, a higher value of « is preferred. If a
lower latency of packet delivery is needed, a higher value of 3 is preferred. This
is because a higher value of g means a shorter route to select. When the energy
of nodes is not uniformly distributed, a lower value of - is generally preferred. In
fact, it may improve the performance of ants’ cooperative routing to dynamically
change the values of ¢, § and v [3].

For each ant, it starts to move from sg to s,. When the ant k reaches s;, the
ant & finds a route R* from sg to s,. Suppose R* includes the nodes sg, s;, 55
and sp, denoted as Rk(so7 si,8j, sp). Then, the ant k& immediately starts to re-
turn to so from s, along the route R*. While returning, the ant k orderly updates
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the pheromone 3, ;; and ;. Suppose that there are n ants in a WSN. We
call it a round travel that n ants reach s, from sg, and then return to sg from
sp along the routes from which the ants just come, respectively. Suppose that it
takes a unit time for ants to finish a round travel. The rule used for updating
the pheromone on the route R;; (the segment between s; and s;) is defined as
follows.

Yij(t+1) = (1= p(t) X ¥i;(t) + Arhyj (7)

Where p(t) is the pheromone evaporating rate at instant ¢, and 0 < p(¢) < 1.
p(t) is calculated by the following formula.

p(t) = (1 —=mi (1) x (1 =&j) - (8)

The above formula implies that the pheromone evaporating rate p(t) is a
function of the residual energy and the location information of nodes, instead of
a constant. This scheme has a better adaptivity to the frequent change of the
topology of a WSN. In Formula (7), Ay;; is the pheromone increment on the
route between s; and s; in the current round travel. Avyy;; is calculated by the
following formula.

Mipij =D Ayl ©)
k=1

Where Aqﬁfj is the pheromone that the ant k laid on the route between s; and
sj in the current round travel. Az/)fj is calculated by the following formula.

d .
Ak — (d0i+d(1};i§jb)l/k if ant k passed from s; — s; (10)
" 0 otherwise

Where @ is a constant, do;, doy, dij and dj;, have the same meaning as that of
Formula (4), respectively. L* is the length of the route that is found by the ant
k in the current round travel.

3.4 The Proposed Routing Algorithm for WSNs

Our algorithm (ACLR) is composed of two phases. In the first phase, for each ant
k, following the proposed routing scheme, the ant & starts to look for an optimal
route from the source node sg to the sink node s,. When the ant k reaches the
sink node s, a route R* from the source node to the sink node is found by the
ant k. Let the length of R* be L*. In the second phase, each ant k returns to the
source node from the sink node along the route R*. At the meantime, follow-
ing the proposed pheromone updating rules, the ant k£ updates the pheromone
on each segment of R*. Let the total number of ants be n, and the total number of
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nodes in a WSN be m. num is the number of the round travels which the ants
complete in finding optimal routes. I'* is the contraindication list of the ant k
at instant ¢. The ACLR is described as follows.

1: Initialize the numbers n,num of ants and round travels, 1;;(0), and ¢t < 0

2: while the end iteration condition is not met do

3: t<=t+1

4: for k=1tondo

5: Ant k is positioned on the source node so

6: si<:so;Rk<:®;Fk<:®

T while s; # s, do

8: if C(s;) — I'* # & then

9: Select s; from C(s;)—I"" to move according to the probabilistic transition
rules

10: RF = RFU{s;; TP =T U s} i<

11: else

12: Return to the previous-hop of s;; I'* <= I'* U {s;}

13: end if

14: end while

15: Compute the length L* of R* by Formula ()

16: Calculate Ayf; by Formula (I0), here (s;,s;) is a segment of R*

17:  end for

18:  Update the pheromone ;;(t) by Formula (7)-(I0)
19:  Compare and update the best solution set

20: end while

21: Return(the best optimal solutions)

22: End.

4 Simulation Results

Through simulations, we compare the proposed algorithm (ACLR) with the fol-
lowing four algorithms: Basic Ant Routing (BAR), Sensor-driven Cost-aware
Ant Routing (SCAR), Flooded Piggybacked Ant Routing (FPAR) [7], and the
IAR [4], which are classical ACO based routing algorithms for WSNs. For dif-
ferent algorithms, we mainly compare energy consumption, packet transmission
delay and energy efficiency.

4.1 Simulation Environment

The simulations were conducted with the network simulation software OPNET to
evaluate the performance of algorithms. We compare ACLR with BAR, SCAR,
FPAR and IAR. The network area is set to 200x 300 (m?), 10000 sensors are uni-
formly deployed in this region, and the wireless communication radius of sensors is
30m. The datarate at MAC layer is 2Mbps. o = 3, 5 = 3,y = 3, and =100J. For
any node s;, suppose that s; is any next-hop node of s;. The initial pheromone on
the route between s; and s; is set to ¢;;(0)=0.01. The total number of ants are 20.
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For each case, by randomly choosing the locations of the source node, we simulate
each algorithm 50 times so as to get the average results.

4.2 Energy Consumption

Energy consumption refers to the used energy in the process of data packet deliv-
ery. Similar to [4], we assume that it consumes one unit energy to directly deliver
a data packet between two nodes. Hence, the total energy consumption may be
defined as the total number of the data packets which are directly sent between
nodes. Fig[2] shows that the energy consumption of ACLR is the smallest. The
main reason is that, for ACLR, the least number of redundant data packets are
delivered. Therefore, the least amount of energy is consumed.

4.3 Packet Delivery Latency

The packet delivery delay refers to the used time to transmit a data packet from
the source node to the sink node, that is, end-to-end delay. For each data packet,
suppose that the total time for each node to receive, process and send a data
packet is uniform. Since the delay time when a data packet is in a wireless channel
is much smaller than the time for a node to receive, process and send the data
packet, the delay time when the data packet is delivered in a wireless channel may
be neglected. Furthermore, we can use the average number of the nodes included
in a route to estimate the data packet delay time in different algorithms [4]. Fig[3l
shows that the data packet delivery delay of ACLR is smallest.

4.4 Energy Efficiency

In a WSN, energy efficiency refers to the ratio of the number of data packets
received at the sink node by the total consumed energy [9]. A higher energy
efficiency means that a specific WSN has a better energy-saving feature. Figl]
shows that ACLR has the highest energy efficiency among all the five algorithms.
We believe that the main reason is the search range of ants is effectively limited
in ACLR.

5 Conclusion

The routing for WSNs has been a topic in the field of WSN applications for a
long time. In this paper, we proposed a novel routing scheme for WSNs based
on Ant Colony Optimization (ACO). We define a novel formula to calculate
the transition probability with which an ant selects its next-hop node, and we
also propose some novel rules to update the pheromone on the routes traveled
by ants. By defining the transition probability as a function of the location
information of nodes, the residual energy of nodes and the pheromone on routes,
we effectively achieve the balance between node energy and packet transmission
delay. Moreover, we define the pheromone evaporating rate as a function of the



120 X. Wang et al.

residual energy and location information of nodes to overcome the disadvantage
that the constant rate of pheromone evaporating poses. The simulation results
show that the proposed algorithm has a better performance than that of BAR,
SCAR, FPAR proposed in [7], and IAR proposed in [4].
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