Scalable Grounded Conjunctive Query
Evaluation over Large and Expressive
Knowledge Bases

Julian Dolby!, Achille Fokoue!, Aditya Kalyanpur®, Li MaZ?, Edith Schonberg?,
Kavitha Srinivas!, and Xingzhi Sun?

! IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
{dolby,achille,adityakal,ediths,ksrinivs}Qus.ibm.com
2 IBM China Research Lab, Beijing 100094, China

{malli,sunxingz}@cn.ibm.com

Abstract. Grounded conjunctive query answering over OWL-DL on-
tologies is intractable in the worst case, but we present novel techniques
which allow for efficient querying of large expressive knowledge bases in
secondary storage. In particular, we show that we can effectively answer
grounded conjunctive queries without building a full completion forest
for a large Abox (unlike state of the art tableau reasoners). Instead we
rely on the completion forest of a dramatically reduced summary of the
Abox. We demonstrate the effectiveness of this approach in Aboxes with
up to 45 million assertions.

1 Introduction

Scalable conjunctive query answering is an important requirement for many
large-scale Semantic Web applications. In this paper, we present a tableau-based
reasoning solution for answering grounded conjunctive queries over large and
expressive Aboxes. Grounded conjunctive queries, which use distinguished vari-
ables only, are more realistic in practice and can also be answered more efficiently
than the more general case. Our approach is sound and complete for DL SHZN
(OWL-DL minus nominals and datatypes).

The naive tableau-based algorithm for grounded conjunctive query is to split
the query into its component membership atoms and relationship atoms, solve
each atom separately, and join the respective bindings at the end. For example,
consider a conjunctive query C(x) A R(x,y) A D(y) where z and y are distin-
guished variables, C' and D are concepts, and R and S are roles. Naively, the
membership atoms C(z) and D(z) and the relationship atom R(x,y) are solved
as three separate queries, and then the result bindings are joined. Without any
optimization, solving each membership atom requires testing every individual
in the Abox, and solving each relationship query requires testing every pair of
individuals in the Abox. For the membership atom C(z), for each individual
a, the assertion a : —=C' is added to the Abox, and the new Abox is tested for

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 403-FI8] 2008.
© Springer-Verlag Berlin Heidelberg 2008

404 J. Dolby et al.

consistency. For the relationship atom R(x,y), for each pair of individuals a and
b, the assertions a : =3dRN, and b : N, are added to the Abox, where N, is
a new concept. This abox is then tested for consistency. Optimizations reduce
the number of tests that need to be performed. However, this approach remains
fundamentally impractical for large Aboxes.

This paper builds on our previous technique for solving membership queries
over SHZN KBs containing millions of assertions [I]. The technique applies a
standard tableau algorithm to a summary Abox A’ rather than the original Abox
A. The summary A’ is created by aggregating individuals with the same concept
sets (i.e., the same set of explicit types) into a single summary individual (of that
same type). For a given membership query, its negation is added to the concept
set of each individual a in A’. If the summary is consistent, then all individuals
mapped to a can be ruled out as solutions to the query. If inconsistent, it is
possible that either (i) a subset of individuals mapped to a are instances of the
query or (ii) the inconsistency is a spurious effect of the summarization. We
determine the answer through refinement, a process which selectively expands
the summary Abox by focusing on inconsistency justifications (minimal assertion
sets implying the inconsistency), and making them more precise w.r.t the original
Abox. Precise justifications are then used to find query solutions. A key point
here is that the individuals in the summary Abox after each refinement step,
even individuals in precise justifications, still represent many individuals in the
original Abox. The scalability of the approach comes from the fact that it makes
decisions on groups of individuals as a whole in the summary.

We extend our summarization-based technique to solve grounded conjunc-
tive queries. Like the naive tableau-based conjunctive algorithm, we split a con-
junctive query into its atomic parts, solve each atom separately, and join the
respective bindings at the end. To find bindings for membership atoms, we ap-
ply our membership algorithm on the summary Abox (Section[3). The relation-
ship atoms provide additional optimization opportunities: potential membership
query bindings that do not satisfy relationship constraints are filtered out as can-
didates. We use the completion forest of the summary Abox to filter candidates,
and reduce the search space significantly. We prove that this optimization is
correct for summary Aboxes in Section Bl

Solving relationship atoms efficiently using the summary Abox is not as
straightforward. For a relationship atom R(z,y) and A’ individuals a and b, we
cannot simply add a : =3RN, to A’ and apply our summary Abox membership
algorithm. This is because both a and b in A’ each represent many individuals
in A. If a and b satisfy this relationship atom, we need to find all pairs a;, b;
in A that map to a and b respectively, such that R(a;,b;) holds in A. This re-
quires testing some individual pairs in the original Abox for completeness, which
defeats the advantage of summarization. Instead, we apply datalog reasoning
over the original Abox to conservatively estimate candidates, and apply a mod-
ified summary graph algorithm to determine which of these candidates are real
solutions. We present details in Section El

! For details, see [2].

Scalable Grounded Conjunctive Query Evaluation 405

Our contributions in this paper are as follows: (a) we present a technique to
perform scalable grounded conjunctive query answering over large and expres-
sive Aboxes which relies on an important new property — using the completion
forest of the summary Abox for various optimizations; (b) we demonstrate the
effectiveness of this technique with very large Aboxes on the UOBM benchmark;
(c) we demonstrate graceful degradation of our algorithm’s performance, such
that queries whose solutions do not exploit non-determinism in the KB (e.g., do
not require non-deterministic mergers between individuals) are performed very
efficiently.

2 Background

2.1 Definition of Conjunctive Query

Given a knowledge base (KB) K and a set of variables V' disjoint with the set
Ind of named individuals in K, a conjunctive query @ is of the form (1, ..., z,)
— qi\...\qm where, for 1 < i <n,z; € Vand, for 1 < j <m, g; is a query term.
A query term ¢ is of the form C(x) or R(z,y) where x and y are either variables
or named individuals in K, C' is a concept expression and R is a role. Var(Q)
refers to the set of variables occurring in query Q. Let 7 : Var(Q) — Ind be a
total function from variables in @ to named individual in K. For a query term
q, 7.q denotes the query term obtained by substituting in ¢ all occurrences of a
variable z by 7(z).

(a1, ...,ay) is a solution in the KB K of the conjunctive query @ of the form
(T1, ey Tn) “— @1 A oo A g, 1ff. there is a total function 7 : Var(Q) — Ind such
that the following hold : (1), for 1 <1i < n, w(x;) = a;, and (2), for 1 < j < m,
K | m.q; (ie. K entails 7.¢;).

2.2 Summarization and Refinement

In our earlier work, we presented an algorithm based on summarization and
refinement to scale consistency checking and membership query answering to
large Aboxes in secondary storage. A key feature of our algorithm is that we
perform consistency detection on a summarized version of the Abox rather than
the Abox in secondary storage [3]. A summary Abox A’ can be constructed by
mapping all individuals in the original Abox A with the same concept set to a
single individual in the summary.A’. Formally, an Abox A’ is a summary Abox of
a SHIMA Abox A’ if there is a mapping function f that satisfies the following
constraints:

(1) ifa:C € Athen f(a) : C € A
(2) if R(a.b) € A then R(f(a), £(b)) € A’

(3) if a#b € A then f(a)#f(b) € A’

2 We assume without loss of generality that .4 does not contain an assertion of the
form a=b

406 J. Dolby et al.

If the summary Abox A’ obtained by applying the mapping function f to A is
consistent w.r.t. a given Thox 7 and a Rbox R, then A is consistent w.r.t. 7
and R. However, the converse does not hold. In general, an inconsistency in the
summary may reflect either a real inconsistency in the original Abox, or could
simply be an artifact of the summarization process.

In the case of an inconsistent summary, we use a process of iterative refinement
described in [I] to make the summary more precise, to the point where we can
conclude that an inconsistent summary A’ reflects a real inconsistency in the
actual Abox A. Refinement is a process by which only the part of the summary
that gives rise to the inconsistency is made more precise, while preserving the
summary Abox properties(1)-(3). To pinpoint the portion of the summary that
gives rise to the inconsistency, we focus on the justification for the inconsistency,
where a justification is a minimal set of assertions which, when taken together,
imply a logical contradiction.

2.3 Tableau Completion Forest

As described in [], the tableau algorithm operates on a completion forest F' =
(G, L, £, =) where G is a graph, with nodes corresponding to individuals and
edges corresponding to relations; £ is a mapping from a node x in G to a set of
concepts, L(x), and from an edge < x,y > in G to a set of roles, L(< x,y >), in
R; = is an equivalence relation corresponding to the equality between nodes of
G; and # is the binary relation distinct from on nodes of G. At the beginning
of the execution of the tableaux algorithm on an Abox A, the completion forest
is initialized as follows: There is a node x in G iff there is an individual z in
A. <,y >is an edge in G with R € L(< x,y >) iff R(z,y) € A. For z and
y in G, x#£y iff z#£y € A. Initially, there are no x and y in G such that x=y.
The tableaux algorithm consists of executing a set of non-deterministic rules to
satisfy constraints in A. As soon as an obvious inconsistency, a clash, is detected,
the algorithm either backtracks and selects a different non-deterministic choice
or stops if all non-deterministic choices have already been made. A root node a
is a node present in the initial completion forest (it corresponds to the named
individual with the same name in A).

For a root node ¢ in the completion forest F', the root node «(c) is defined as
follows (informally, a(c) corresponds to the node in which ¢ has been directly or
indirectly merged):

cif L(c) 7&
alc) = ¢ dif L(c) =0, d is the unique root node in F
with £(d);é@andd c

3 Solving the Membership Query Part

The algorithm for solving membership queries on the summary Abox consists
of two phases: finding candidate individuals in the summary Abox, and then

Scalable Grounded Conjunctive Query Evaluation 407

applying the membership query algorithm as described in [I] to all of the can-
didates. The technique for finding candidates is described in Section Bl The
complete algorithm is described in Section 3.2

3.1 Optimizing Conjunctive Querying with the Summary
Completion Forest

To evaluate all the membership query atoms in the conjunctive query efficiently,
we restrict our tests to candidate individuals that conservatively satisfy all the
relationship atoms in the conjunctive query by making use of the completion
forest of the summary Abox. Note that in general (as described in [5]), the
completion forest of an Abox can be used to rule out candidates a,b to test
for a relationship query R(z,y). The intuition here is that a completion forest
F' represents an abstraction of a model of the Abox, and thus if b is not an
R—neighboifl of a in F (and R is not transitive), the relation R(a,b) cannot be
entailed by the KB. We apply the same principle to the completion forest of the
summary Abox, which is possible due to theorem [below.

By theorem [I], if F” denotes the clash-free completion forest resulting from
the consistency check on the summary A’ of A, then there exists a complete
and clash-free completion forest F' resulting from a direct application of tableau
rules on A, such that for two named individuals in A, a and b, if «(f(b)) is not
a R-neighbor of «(f(a)) then b is not a R-neighbor of a. In other words, we can
rule out the existence of R-neighbors of a in F based on the non-existence of
R-neighbors of «(f(a)) in F’. Therefore, candidate solutions for a query of the
form R(z,y) can be pruned based on completion forest checking on F’ instead
of F.

Theorem 1. Let K = (A,T,R) be a consistent knowledge base. Let £ be a
summary mapping function that maps A to a consistent summary Abox A’. Let
F' be the complete and clash-free completion forest resulting from a consistency
check on A" , T and R. There exists a complete and clash-free completion forest
F resulting from an application of tableau rules directly on A such that, for
named individuals a and b in F originally present in A and a role S in R,

(1) L(a) C L'(«a(f(a))) (where L(a) denotes the concept set of a in F, and
L' (a(f(a))) is the concept set of the a(f(a)) in F’
(2) if b is S-neighbor of a in F, then, in F', a(f(D)) is a S-neighbor of a(f(a)).

Proof. The proof relies on the following main ideas:

— First, to make sure that properties (1) and (2) of Theorem [hold, we use
F' to guide the execution of non-deterministic rules on A (i.e. we make the
same choices as in F’).

3 By definition, y is a R-neighbor of x iff. S(x,y) € A or P(y,z) € A where S and P~
are subroles of R

408 J. Dolby et al.

— Second, we maintain, during the execution of the tableau algorithm on A,
a mapping o that maps nodes x in the completion forest F' obtained from
A to nodes in F’, regardless of whether x refers to a root node, or to a
generated node. Furthermore, the relationship between a node x in F' and
o(x) should be compatible with properties (1) and (2) of Theorem [l This
mapping of z in F to nodes in F” is not straightforward in the presence of
blocking, because there is no guarantee that an unblocked generated node x
in F always maps to a node in F’ that is also not blocked.

We therefore formally define the function ¢ as mapping a node = in F' to a
pair (u,u’) of nodes in F”’, to handle the case when z is related to a blocked
node u/. The node u in the pair is the node that blocks v/ if ' is blocked; if u’
is not blocked, then u and u’ are the same (u = u’).

Let F' be the completion forest initialized from A in the standard way. Before
the start of the execution of tableau rules on F', the function o maps a root node
in F to a pair of nodes in F’ as follows:

— For a root node a in F, we define o(a) = (a(f(a)), a(f(a)))

As new generated nodes are introduced during the execution of the tableau
rules on F', the mapping o is extended to these new nodes as explained in the
treatment of the 3-rule and >-rule. o(a)[1] denotes the first element of the pair
o(a), and o(a)[2] is its second element.

We show by induction that at any given step k of a particular execution of
tableau rules on F' the following holds: for all nodes z and y in F'

(A) Li(x) C L'(o(z)[1]) (where L(x) denotes the concept set of a at step k of
the execution of the standard tableau algorithm on A, and L'(o(z)[1]) is
the concept set of the o(x)[1] in F”)

(B’) if y is a S-neighbor of z and y is either a root node or a generated child of
x, then, in F’, o(y)[2] is a S-neighbor of o(x)[1].

(C") for o(z) = (u,u’), u =" iff. u is not blocked

(D') for o(x) = (u,u), u # v iff. v’ is blocked by wu.

(E') if 2y holds in F, then o(x)[2]#£c(y)[2] holds in F’

It is very important to note that, since F” is clash-free, if, at any step k, (A4'),
(B’) and (E’) hold, then, at any step k, F is clash-free.
The details of the induction proof is given in [2].

3.2 Membership Query Algorithm

The algorithm SELECT-CANDIDATES-MQ to select test candidates is shown
below. Basically, the algorithm transforms the relationship atoms in the original
conjunctive query into a SPARQL query @, and issues it over the completion
forest of the summary F’. Solutions to @, give us candidates to test for the
membership constraints.

4 An execution in which non-deterministic choices are made based on choices made in
F’ as explained in the treatment of non-deterministic rules

Scalable Grounded Conjunctive Query Evaluation 409

SELECT-CANDIDATES-MQ(F’, R, f, Rj(zk, 1) (1 < j < n))

Input: F’ Completion forest of Summary Abox, R Rbox of the
original KB, f Abox Summary mapping function, R;(zx,x;) Set of
role atoms in original conjunctive query

Output: 7(z — i) mapping from variables to summary individuals

(1) Vs « set of all variables in role atoms R; (1 < j <n)
(2) R «— set of all role atoms R;(zx,z)(1 < j <n)
(3) For any constant ¢ in any of the role atoms in Rg, obtain

the summary individual s < f(c), and replace ¢ by s
(4) Create a SPARQL query @, whose SELECT clause is V;
and whose WHERE clause is A Rs.

(5) Issue @, over F’ with only Rbox inferencing using R to
obtain solution mapping 7(z +— 1)

(6) Remove individual solutions from 7 which are considered
‘anonymous’ in F’

(7) Since F’ may contain mergers between individuals in A’,
expand any individual binding ¢ in 7 by its equivalence set
(sameAs(i))

(8) return 7(z +— 1)

During the transformation, special care is taken for constants appearing in
role atoms. Since @, is evaluated on the summary, constants are replaced by the
corresponding summary individuals that they are mapped to. Since we assume
that all variables in the original conjunctive query are distinguished, we need
to consider the variables in role atoms in the select clause of Q.. The query
is evaluated considering the Rbox R of the original KB, as we would like to
capture relationships that can be inferred due to sub-property, inverse or tran-
sitive axioms in it (Note that the Thox need not be considered since we do not
care about concepts and concept-related axioms at this point). Since F’ is small,
evaluating this query is straightforward.

The result of executing @, is a mapping 7 from variable to summary individu-
als, the latter becoming test candidates for the membership query constraints on
the former. Note that the completion forest of the summary Abox may contain
‘anonymous’ individuals that are generated due to the presence of existential
quantifiers in the KB. Obviously, these anonymous summary individuals are not
present in the original Abox either and so we do not need to test them. Therefore,
we discard any anonymous individuals from 7.

Having identified suitable test candidates, we now proceed to test them for
their respective membership query atoms, using our summarization and refine-
ment algorithm [I]. While the previous work focused on testing a single member-
ship query on the summary, it can be easily extended to test multiple member-
ship queries on the summary at the same time. The main difference is that we
now start by adding the negation of all the membership types to their respective
summary individual candidates, before testing for inconsistency (for details of
other optimizations to membership querying, see [2]).

410 J. Dolby et al.

SOLVE-MQ), sketched below, captures the essence of the evaluation of mem-
bership queries.

SowE-MQ(Q, A T,R)

Input: @ the conjunctive query, A Abox, 7 Tbox, R Rbox
Output: A, consistent version of summary Abox, f. summary map-
ping function for A., F! completion forest of A, 3 mapping from a
variable to summary individuals satisfying its type constraints

(1) (A’,f) < compute summary abox of A and its mapping
function f
(2) (AL, f.) < consistent version of A’ and its mapping function

obtained through refinement
(3) F! < complete and clash-free completion forest of A,
(4) T + SELECT-CANDIDATES-MQ(F., R, f., Rj(zk, 1) € Q)
(5) foreach variable xj in Q
(6) if variable xx has type constraints in Q
(7) B(xr) < compute, through refinement, summary in-
dividuals in 7(x1) instances of concept mcp(zk)eQ Cp

(8) else
9) Bar) — 7(wk)
(10) return (A, , f., F., 3)

4 Solving the Relationship Query Part

In this section, we discuss how we evaluate each of the role atoms R(z,y) in the
conjunctive query. We solve an atomic role query in three steps:

1. Section LIk We estimate an upper bound on potential relationship solutions
for R(z,y) in the Abox by capturing all possible ways in which relation-
ships can be inferred in SHZN . We do this efficiently using the completion
forest of the summary Abox and a set of Datalog rules. The rules are re-
stricted to the membership query solutions that are output in the previous
step.

2. Section After estimating potential role assertion solutions in the Abox,
we identify definite or deterministically-derived role assertions, since we do
not have to test for them.

3. Section Finally, we test and solve the remaining potential relationship
solutions in the summary Abox.

4.1 Estimating Potential Solutions for an Atomic Role Query
R(z,y)

Our approach to estimate potential solutions to role queries consists in first un-
derstanding how, in the completion forest F' of an Abox A, a root node can
acquire new root node R-neighbors (i.e. root node R-neighbors that were not

Scalable Grounded Conjunctive Query Evaluation 411

<nQ

a7 NQ

® » o™
R Q R, Q
° é ° xis angsgerated
(B)

(A)

Fig. 1. Acquisition of named individual R-neighbors

(Init) InfTriple(X, R, Y) :+~R(X,Y)e A

(SameSym) same(X,Y) - same(Y, X)

(SameTrans) same(X, Y) - same(X,Z) and same(Z,Y)
(NamedMerge) same(X, Y) ~f(Z)=A and <nR € L' (a(A)) and

X # Y and InfTriple(Z, R, X)

and InfTriple(Z, R, Y)
(SameRell) InfTriple(X, R, Y) :- same(X,Z) and InfTriple(Z, R, Y)
(SameRel2) InfTriple(X, R, Y) - same(Y,Z) and InfTriple(X, R, Z)
(UnnamedMerge) InfTriple(X, R, Y) :-f(X)=A and f(Y) = B and

<nT € L (a(A)) and

(3S.C € L'(a(A)) or > mS € L'(a(A)))

and o(B) is a R-neigbhor of a(A) in F’

and {R,T} C ba and InfTriple(X, T, Y)

(SubRole) InfTriple(X, R, Y) =S C*" R and InfTriple(X, S, Y) and S # R
(InvRole) InfTriple(X, R, Y) =S~ = R and InfTriple(Y, S, X)
(Relevance) RellnfTriple(X, R, Y) :- InfTriple(X, R, Y) and £(X) = A

and £(Y) = B and R(z1,z2) € Q
and A € B(z1) and B € B(x2)

Fig. 2. PotentialRuleSet: Rules to compute potential new named individual neighbors
that are relevant to conjunctive query Q. Main output: RellnfTriple.

present before the beginning of rule execution). Then, we devise a set of simple
rules (see Figure[Z) to conservatively estimate potential R-neighbors. These rules
are simple enough to be efficiently evaluated using a datalog engine. Figure [l
illustrates the two ways a root node a in F' can acquire new R-neighbors that
are root nodes during the execution of the tableaux algorithm on F':

(A) The root node a is merged with another root node d and acquires root
node R-neighbors of d. The merger is performed to satisfy the maximum
cardinality restriction < n@ in the concept set of c¢. This case also cap-
tures acquisition of R-neighbors through mergers involving root neighbors
of a.

412 J. Dolby et al.

(B) The root node b is merged with a generated node x to satisfy the maximum
cardinality restriction < n@ in the concept set of a. As a result of this
merger, b becomes a R-neighbor of a since = was a R-neighbor of a.

Let us assume that F’ is a complete and clash-free completion forest of the
summary A" of the Abox A, and F' is the complete and clash-free completion
forest of A given by Theorem [

We can conservatively account for acquisition of named R-neighbors of a
through mergers with named individuals by applying rules (see NamedMerge,
SameRell, and SameRel2 in Figure) on the Abox that trigger a merger be-
tween a and d if (1) a is a @Q-neighbor of ¢ in A (explicitly or as a result of
evaluation of our simple rules), (2) d is a @Q-neighbor of ¢ in A (explicitly or as
a result of evaluation of our simple rules), and (3), in the completion forest F”,
<nQ € L'(a(f(c))) . If the last condition is not satisfied, Theorem [I] guarantees
that a merger between a and d is not possible in F' since < n@) cannot be the
concept set of ¢ in F.

One way to account for mergers between root nodes and generated nodes is
to have rules that create these generated nodes. However, this is not practical
because too many nodes might be generated, complex blocking mechanism will
be required to ensure termination, and the resulting rules will not be simple
enough to be efficiently evaluated by a datalog engine.

Our approach to conservatively account for mergers illustrated in Figure[Il (B)
is to first observe that in order for them to occur in F', the following conditions
must be satisfied:

— a role generator (35.C' or > mJS, where S is a role in the Rbox) must be
in the concept set of a (otherwise, a cannot have a generated node as its
neighbor), and

— a maximum cardinality restriction < n@) must be in the concept set of a
and, the following must hold:

e b must be a Q-neigbhor of a, and
e z must be a Q-neigbhor of a.

For a named individual ¢ in the abox A, Theorem [allows us to check whether
a maximum cardinality < n@ and a role generator concept (35.C or > mS)
can be present in the concept set of a in the completion forest I’ of A simply
by checking whether they are in concept set of a(f(a)) in F’. This reduces the
number of potential individuals a and b such that b can become a R-neighbor of
a through mergers of type (B). To further reduce this number, we need a good
upper bound on the set ¢, of roles P such that there is a generated node x
P-neighbor of @ in F, since R has to be in ¢,. A direct consequence of property
(B') in the proof of Theorem [[lis that the following set is such an upper bound:
{P| there is a P-neigbhor of «(f(a)) in F'}.

Let d;(;) be an upper bound of the set ¢, that depends only on information
in F’. We can now express all the necessary conditions for b to possibly become

Scalable Grounded Conjunctive Query Evaluation 413

a R-neighbor of a in F' through a merger of type (B) in terms of information
present in F’:

— an existential restriction 35.C' or a minimum cardinality restriction > m.S
must be in the concept set of a(f(a)) in F”.
— a maximum cardinality restriction < n@ must be in the concept set of
a(f(a)) and, the following must hold:
e b must be a Q-neigbhor of a (either explicitly in .4 or through the appli-
cation of rules to estimate potential new mergers)

—

o {Q, R} C ¢¢(q) (because there must be a generated node x which is both
a @-neighbor of @ and a R-neighbor of a in F).
— finally, o(f(b)) must be a R-neighbor of a(f(a))(direct consequence of The-
orem [[] and the fact that b has become R-neighbor of a in F)

Based on the previous necessary conditions, rule UnnamedM erge in Figure 2]
accounts for potential acquisition of new R-neighbors in F' through merger of
type (B).

For transitive roles, we perform the transitive closure over the estimated in-
ferred neigbhors (computed by rules in Figure). It is important to note that
new relations found after the application of the transitive closure cannot cause
merger rules to trigger because, in SHZN, maximum cardinality restrictions can
only be defined on simple roles (i.e. roles which are not transitive and do not
have transitive subrole).

Finally, the rule Relevance in Figure 2l forces the rule engine to focus only on
relationships appearing in the conjunctive query), and on the individual solu-
tions which satisfy the membership constraints in @, specified by the mapping
[in the output of algorithm SOLVE-MQ.

4.2 Finding Definite Role Assertions

After estimating potential role assertion solutions in the Abox, we identify defi-
nite or deterministically-derived role assertions, since we do not have to test for
them.

In particular, consider the rule NamedM erge in Figure[Zwhich conservatively
estimates potential mergers between named Abox individuals. We can be more
precise here for deterministic mergers if we somehow identify which Abox indi-
viduals mapped to summary individual A are entailed to be of type < 1.R. Con-
ceptually, this amounts to solving the membership query < 1.R(x), which we
evaluate efficiently using our membership query answering solution. Similar analy-
sis is done for the rule UnnamedM erge to identify Abox individuals that have
role-generators (> m.S or 35.C) as an entailed type. This gives us two new rules
— DefnNamedMerge, De fnUnnamedM erge — shown in Figure[3, which replace
the rules NamedMerge, UnnamedMerge in the Potential RuleSet (Figure [2)

414 J. Dolby et al.

(SummaryKB Defn) K =(A T, R)
(DefnNamedMerge) — same(X, Y) ~KE<SIR(Z)and X # Y
and InfTriple(Z, R, X)
and InfTriple(Z, R, Y)
(DefnUnnamedMerge) InfTriple(X, R, Y) :- K E< 1T(X)
and (K = 35.C(X) or K > mS(X))
and SC* R and SC* T
and InfTriple(X, T, Y)

Fig. 3. DefnRuleSet: Obtained by replacing NamedMerge and UnnamedMerge in
the PotentialRuleSet with the rules shown

to produce the rule set DefnRuleSet that computes definite Abox relationship
solutions.

4.3 Solving Remaining Potential Role Assertions

Having found potential role assertions solutions for R(z,y) in the Abox and
identifying the definite ones, we are left with testing the remaining potential
solutions.

Suppose the remaining potential tuples to test are {R(uy,v1),...R(tn,vpn)},
where ug, vk, (1 < k < n) are Abox individuals. Instead of testing these tuples
in the Abox, we test them in the summary, i.e., for a given tuple R(ug,vy) we
identify the summary individuals to which wuy, v, are mapped, say a;, b; respec-
tively, and test whether R(a;,b;) is entailed in the summary KB. This test is
done by reducing the problem to membership query answering as described in
the introduction. However, the limitation here is that when we find a tuple solu-
tion R(b;,b;) in the summary (where b;,b; are summary individuals), we cannot
compute all Abox relationship solutions from it — all we know is that every in-
dividual mapped to b; is entailed to have an R-relation to some individual in
b; (and vice-versa, every individual mapped to b; has an R~ relation to some
individual mapped to biﬁ.

In this case, for the sake of completeness, we are left with no choice other
than to split one of the summary individuals down to the level of the Abox
individuals mapped to it and test for relationships subsequently. Obviously, we
choose to split the summary individual which has less Abox individuals mapped
to it, to restrict the size of our summary Abox. Even in this worst case scenario,
the performance of the algorithm is not severely affected as only one end of the
tuple is split and the grouping of individuals is still preserved at the other end.
Also, other than the tested tuples, the rest of the summary remains unchanged
(so typically a large part of the Abox is still summarized).

We combine the three steps discussed in this section into an algorithm SOLVE-
RQ that finds all solutions to a relationship query.

® From a precise summary justification for R(b;, b;), we can issue an SQL query based
on the justification pattern to get some relationship pair solutions in the Abox, but
this would not be complete. For details, see [2]

Scalable Grounded Conjunctive Query Evaluation 415

SowveE-RQ(R(xi, z;), A, T, R, A., £., F., B3)

Input: R(z;,z;) Relationship query, A Abox, 7 Thox, R Rbox, A.

Consistent Summary of A, f. Abox — Summary mapping function,

F! Completion forest of A, 3 output mapping from SoLvE-MQ(..)

Output: S set of pairs (a,b) s.t. (4,7,R) = R(a,b)

(1) DefnInfTriple «<— RellnfTriple computed after evaluation
of DefnRuleSet using T, R, 3, A, (for A", f. (for f)

(2) S «— DefnInfTriple

(3) PotentiallnfTriple «<— RellnfTriple computed after evalua-
tion of Potential RuleSet using R, 3, A, (for A"), f. (for f)
and F, (for F') (Note: Init rule here initializes InfTriple
as a union of role assertions in A and DefnInfTriple)

(4) PotentiallnfTriple < PotentialInfTriple - DefnInfTriple (re-
maining potential Abox role assertion solutions)

(5) Test and Solve PotentiallInfTriple as described in Section
to get solution pairs S’

(6) S—Sus’

(7) return S

5 Computational Experience

5.1 Correctness and Scalability Tests

We evaluated our approach on the UOBM benchmark [6], which was modified
to SHIN expressivity. We used 14 of the 15 queries defined in the benchmark
(query Q2, which is a pure membership query, was not included in our evalu-
ation). The results are reported for 1, 5, 10, 30, 100 and 150 universities. We
compared our results against KAON2 [7]. (Pellet [8] did not scale to even one
university). For KAON2, we set all maximum cardinality restrictions to one
because of KAON2 limitations. Our experiments were conducted on a 2-way
2.4GHz AMD Dual Core Opteron system with 16GB of memory running Linux,
and a maximum heap size of 2G. The Abox was stored in a IBM DB2 V9.1 for
SHER and MySQL V5.0 for KAON2.

The size of the datasets are given in Table[d (a). Table [(b) summarizes the
times taken (in seconds) by KAON2 and SHER solely for query answering, i.e.,
in both cases, the times do not include the knowledge base pre-processing and
setup costs. KAON2 ran out of memory on UOBM-30. In 13 out of 14 queries
SHER and KAON2 had 100% agreement. The difference on query Q15 was due
to differences in the constraints used. As can be seen, the average runtimes for
SHER are significantly lower, usually by an order of magnitude, than those for
KAON2. [2] presents more detailed data on the evaluation performance for each
query on each KB. On all queries, except query 9, SHER scales almost linearly
from UOBM-1 to UOBM-150. Query 9, which has 3 role atoms, is an example
of a query where we can improve our performance by using a cost model based
approach to control the order of evaluation of query atoms as explained in [5].

416

J. Dolby et al.

Table 1. Evaluation data

Reasoner|Dataset|Avg. Time|St.Dev|Range
Dataset |t rtions|rol rtion KAON2 |1 18 > 14
e fgt | [KAON2 [5 166 102|376

KAON2 |10 667 508 1872
5 120K 928K

SHER |1 12 2 7
10 224K 1,816K

SHER |5 25 6 19
30 709K 6.5M

SHER |10 46 14 44
100 7.8M 22.4M
150 LM 33 5M SHER |30 150 50 140

. . SHER |100 531 322 1222
SHER |150 1066 706 |2818

(a) Dataset Statistics (b) Runtimes in sec

5.2 Handling Non-deterministic Mergers

In experiments described in the previous subsection, UOBM queries did not
exploit non-deterministic mergers between individuals in the Abox to produce
new inferred results. Therefore, we modified the UOBM dataset to generate new
relationships from non-deterministic mergers between named individuals, and
considered a new query whose solutions required this.

We added disjoint relations between the four UOBM concepts FineArts,
Science, HumanitiesAndSocial, Engineering representing course subjects,
and a set of Abox assertions each resembling the pattern shown in Figure [l
The newly added individual LS; had type LeisureStudent, which is defined as
(< 3. takesCourse) in the UOBM Thox. LS; was assigned four takesCourse
relations to individuals C;..Cy respectively. In general, we randomly added any
one of the four course subjects mentioned above as a type to C;, 1 <i <3 (Cy
is always assigned the type Course). In the case shown, Cy, Co, C3 are mutually
disjoint concepts and hence the maxCardinality restriction in the type of LS;
causes a non-deterministic merger between Cy and any one C; (1 < j < 3),
which in turn causes Cy4 to acquire a new isTaughtBy relation to the Lecturer
individual L;. To exploit this behavior, we considered the query: Qnp: (z, v,
z) < LeisureStudent(x) AtakesCourse(x,y) A Course(y) NisTaught By(y, z) A
Lecturer(z). In the example shown, there are 4 tuple solutions to Qnp, three
of which are explicit (LSy,Cy/Co/Cs, L), and one is inferred (LSy,Cy, L1) .

We modified UOBM-1, UOBM-5 and UOBM-10 by adding 100, 200 and 300
instances of LeisureStudent respectively. These numbers and datasets were
chosen since as the pattern in Figure@lshows, generation of new relationships due
to non-deterministic mergers is non-trivial and seldom seen in large quantities in
practice. We then evaluated @ yp on the modified datasets. KAON2 is unable to
handle this query since it cannot deal with non-deterministic mergers. Results
of this query evaluation using SHER are shown in Figure [0l In the table, the
column E (resp. I) stands for the number of explicit (resp. inferred) solutions
for the query introduced by our script, P4, computed in step (4) of SOLVE-
RQ, is the number of potential relationship pairs in the Abox that need to be

Scalable Grounded Conjunctive Query Evaluation 417

LeisureStudent (=3 takesCourse)

takesCourse

Dataset|Time| E | I |Pa|Pal|Sa
S Taughtty (in s)
38 [210] 70 (182|321 1
76 |480(160(335| 75| 1
Lecturer 10 165 [786(152|319|100| 15

5
¥
g

takesCourse
isTaughtBy =——

Fig. 4. Abox pattern creating new isTaughtBy Fig. 5. Evaluating Qnp
relations from non-deterministic mergers

tested, P4 is the number of summary pairs corresponding to the Abox pairs
counted in Py, and Sy is the number of summary solution tuples found using
the procedure described in Section [£3] which are eventually split down to the
individual level.

As the results show, the algorithm demonstrates a graceful degradation for
this query. For example, in UOBM-10, there are a total of 786+152 = 938 en-
tailed isTaughtBy relationships (152 due to non-deterministic mergertﬁ), how-
ever our algorithm finds, in step(4) of SOLVE-RQ, that only 319 need to be
tested. Moreover, they are first tested through their corresponding summary
pairs as explained in Section As result, only 15 out of 100 summary pairs
are found to be solutionaﬂ, and only one end of these 15 pairs are split down
to the individual level. We feel that the times shown are acceptable for realistic
use-cases.

6 Related Work and Conclusions

We have focused on answering grounded conjunctive queries instead of gen-
eral conjunctive queries because, to our knowledge, there is currently no practi-
cal algorithm for answering general conjunctive queries with respect to SHIN
ontologies [9]. Tt is for this reason that OWL-DL reasoner implementations
which support conjunctive query answering, such as Pellet [8], RACER [10] and
KAON2 [7], do so with the grounded conjunctive query semantics.At the same
time, even after using the grounded conjunctive query semantics, tableau-based

5 Only isTaughtBy relations can be inferred due to non-deterministic mergers.
7 Not all potential relationships are solutions since the script may not necessarily add
disjoint subject types to individuals C1, Ca, Cs.

418 J. Dolby et al.

reasoners such as Pellet and RACER do not scale to several millions of assertions
as SHER does. The fundamental limitation is that they work with the complete
Abox, and the complexity of the tableau reasoning algorithm makes it infeasible
to build a completion forest for a large and expressive Abox, which affects both
solution pruning and testing.

On the other hand, KAON2, which we included in our evaluation, is a non-
tableau based approach that relies on translating Description Logic to disjunctive
datalog and is able to scale to an Abox with a million assertions. However,
KAON?2 has problems dealing with max-cardinality restrictions (for cardinality
greater than 1) and even excluding such restrictions, is unable to scale to an
Abox with 7 million assertions.

In our experiments, our technique appears to scale almost linearly for con-
junctive queries of large, expressive Aboxes composed of 30-45 million Abox
assertions, and conceptually, nothing in our approach prevents it from scaling
to much larger datasets. As future work, we plan to integrate a cost-model to
determine an efficient join order for the query atoms.

References

1. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E.,
Srinivas, K.: Scalable semantic retrieval through summarization and refinement.
In: Proc. of the 22nd Conf. on Artificial Intelligence, AAAT 2007 (2007)

2. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K.,
Sun, X.: Scalable conjunctive query evaluation: Technical report (2008),
http://domino.research.ibm.com/comm/research projects.nsf/pages/
iaa.index.html/$FILE/techReportCQ.pdf

3. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary
abox: Cutting ontologies down to size. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 136-145. Springer, Heidelberg (2006)

4. Horrocks, 1., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ™. In: Proc. of 17th Int.Conf. on Automated Deduction, pp. 482-496
(2000)

5. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First
results. In: Proc. of the Description Logics Workshop, DL 2006 (2006)

6. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology
benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp.
124-139. Springer, Heidelberg (2006)

7. Hustadt, U., Motik, B., Sattler, U.: Reducing shiq description logic to disjunctive
datalog programs. In: Proc. of 9th Intl. Conf. on Knowledge Representation and
Reasoning (KR 2004), pp. 152-162 (2004)

8. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Description Logics (2004)

9. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic shiq. In: IJCAI, pp. 399-404 (2007)

10. Haarslev, V., Moller, R.: Racer system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701-705. Springer,
Heidelberg (2001)

http://domino.research.ibm.com/comm/research_projects.nsf/pages/iaa.index.html/$FILE/techReportCQ.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/iaa.index.html/$FILE/techReportCQ.pdf

	Scalable Grounded Conjunctive Query Evaluation over Large and Expressive Knowledge Bases
	Introduction
	Background
	Definition of Conjunctive Query
	Summarization and Refinement
	Tableau Completion Forest

	Solving the Membership Query Part
	Optimizing Conjunctive Querying with the Summary Completion Forest
	Membership Query Algorithm

	Solving the Relationship Query Part
	Estimating Potential Solutions for an Atomic Role Query R(x,y)
	Finding Definite Role Assertions
	Solving Remaining Potential Role Assertions

	Computational Experience
	Correctness and Scalability Tests
	Handling Non-deterministic Mergers

	Related Work and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

