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Abstract. This paper describes the first steps towards developing a methodol-
ogy for testing and evaluating the performance of reasoners for the probabilistic
description logic P-SHZ Q(D). Since it is a new formalism for handling uncer-
tainty in DL ontologies, no such methodology has been proposed. There are no
sufficiently large probabilistic ontologies to be used as test suites. In addition,
since the reasoning services in P-SHZ Q(D) are mostly query oriented, there is
no single problem (like classification or realization in classical DL) that could be
an obvious candidate for benchmarking. All these issues make it hard to evalu-
ate the performance of reasoners, reveal the complexity bottlenecks and assess
the value of optimization strategies. This paper addresses these important prob-
lems by making the following contributions: First, it describes a probabilistic
ontology that has been developed for the real-life domain of breast cancer which
poses significant challenges for the state-of-art P-STHZ Q(D) reasoners. Second,
it explains a systematic approach to generating a series of probabilistic reason-
ing problems that enable evaluation of the reasoning performance and shed light
on what makes reasoning in P-SHZ Q(D) hard in practice. Finally, the paper
presents an optimized algorithm for the non-monotonic entailment. Its positive
impact on performance is demonstrated using our evaluation methodology.

1 Introduction

Probabilistic description logic P-SHZ Q(D) has been proposed to handle uncertainty in
OWL ontologies [1]]. Such formalisms have received significant research attention over
the latest years, strongly driven by BioHealth and Semantic Web applications. In gen-
eral, the capability of representing uncertain knowledge does not come for free: some
extra reasoning complexity is usually incurred (not to mention various modeling diffi-
culties) [2]. This problem is complicated because even classical DL reasoning is known
to be worst case intractable for expressive languages, e.g., SHZ Q(D). Thus, optimiza-
tion strategies are required to make the reasoning practical in real-life applications.
Optimization research can hardly be fruitful without a systematic evaluation method-
olody and reasonably characteristic test data. Unfortunately, there were few, if any, tools
for developing or using P-SHZ Q(D) ontologies, thus no modelers have used it, and
thus there are no applications using such ontologies and, indeed, no such ontologies at
all. This makes the optimization research unguided and the principled comparison of
different reasoning algorithms, implementations and approaches nearly impossible.
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Another difficulty is the lack of reasoning problems that can be easily used for bench-
marking, like, for example, classification problem in classical DL. That is, we can treat
classification time as a reasonable proxy for the efficacy of reasoner optimizations (at
least, as a first approximation). Conversely, P-SHZ Q(D) reasoning services are mostly
query-oriented and focused on individual, antecedently given, entailments. We address
this problem by the generation of queries against a bespoke ontology such that both the
ontology and the queries are sensible from an application perspective.

This paper presents the first steps towards a systematic evaluation methodology for
P-SHZ Q(D) by making the following contributions:

1. It describes a custom P-SHZ Q(D) ontology about breast cancer which we believe
is a solid starting point for evaluating P-SHZ Q(D) implementations. Breast cancer
risk assessment (BRCA) is a rich field with several general models, e.g., Gail model
[3]], and a wealth of online information and risk calculators. Thus, there are both
clear statements to be formalized and deployed applications that can be used for
determining characteristic queries. The ontology we developed, though not large,
is very challenging to reason with. We believe that reasoners that can handle this
ontology will work for an interesting range of applications.

2. It proposes a methodology for generating P-SHZ Q(D) reasoning problems includ-
ing fragments of probabilistic ontologies with a series of probabilistic queries for
each. The methodology has been implemented in the library PREVAL-DIL[] and
applied to the BRCA ontology. The results are presented and discussed.

3. It demonstrates the utility of the methodology by evaluating the optimization strat-
egy of lexicographic entailment in P-SHZ Q(D) that is now implemented in the
new version of Prontd] [4]. The results clearly show both positive impacts of the
strategy and the remaining issues.

The remainder of the paper is organized as follows: Section 2] briefly provides pre-
liminaries on P-SHZ Q(D) as a representation and reasoning formalism. Section 3] de-
scribes the modeling of the BRCA ontology, the approach to generating the reasoning
problems including probabilistic models and queries. It also presents the results of eval-
uating Pronto that help to understand the complexity of P-SHZ Q(D) in general. Section
M sketches the developed optimization strategy and discusses the results of its evaluation
using the new approach. Finally, the future work in this line is delineated in Section 3

2 Technical Preliminaries on P-SHZ Q(D)

2.1 Syntax and Semantics of P-SHZ Q(D)

The syntactic constructs of P-SHZ Q(D) include those of SHZ Q(D) together with con-
ditional constraints. Constraints are expressions of the form (D|C)[l, u] where D, C
are SHZ Q(D) concept expressions (called conclusion and evidence respectively) and
[I,u] C [0,1] is a closed interval. Constraints can be default or strict corresponding to

" PREVAL-DL is an open source framework for testing and evaluating P-SHZ Q(D) reasoners:
http://www?2.cs.man.ac.uk/klinovp/projects/prevaldl/index.html
% Pronto 0.2: http://pellet.owldl.com/pronto



Optimization and Evaluation of Reasoning in Probabilistic Description Logic 215

statements that are generally or always true respectively. Informally, default statements
represent (probabilistic) knowledge that is true most of the time but might not apply in
specific cases since details about the specific cases alters the probabilities. For exam-
ple, we might have a general sense of the probability of the flu in the general population
(say, low), whereas a subpopulation (say, old people and children) are more vulnerable
thus have a higher probability of having the flu. There also could be a subsubpopula-
tion (say, immunized old people and children) which has a very low probability of flu
infection. P-SHZ Q(D) allows us to represent this situation using default statements.

A probabilistic TBox (PTBox) is a 2-tuple PT = (T, P) where T is a classical DL
TBox and P is a finite set of default conditional constraints (or just defaults). Infor-
mally, a PTBox axiom (D|C')[l, u] means that “generally, if a randomly chosen indi-
vidual belongs to C, its probability of belonging to D is in [, u]”. A probabilistic ABox
(PABox) is a finite set of strict conditional constraints pertaining to a single probabilis-
tic individual o [T]]. All constraints in a PABox are of the restricted form (D|T)[l, u].
Informally, they mean that “the individual o is a member of D with probability between
[, u]” [T]]. A probabilistic knowledge base PK B is a combination of one PTBox and a
set of PABoxes, one for each probabilistic individual.

The semantics of P-SHZQ(D) is standardly explained in terms of the notion of a
possible world which is a somewhat non-standard to DL and is defined with respect
to a DL vocabulary (set of basic concepts) @ [3]. A possible world I is a set of DL
concepts from @ such that {a : C|C € I} U{a : -C|C ¢ I} is satisfiable for a fresh
individual a. The set of all possible worlds with respect to ¢ is denoted as Zg. A world
T satisfies a concept C denoted as I |= C'if C' € 1. Satisfiability of basic concepts is
inductively extended to complex concepts as usual.

A world T is said to be a model of a DL axiom Az denoted as I = Ax if Az U {a:
C|C € I} U{a : =C|C ¢ I} is satisfiable for a fresh individual a. A world [ is a
model of a classical DL knowledge base K B denoted as = K B if it is a model of all
axioms of K B. Existence of a world that satisfies KB is equivalent to the satisfiability
in the classical model-theoretic DL semantics [3]].

We define probabilistic models in terms of the possible world semantics. A proba-
bilistic interpretation Pr is a function Pr : Zg — [0,1] such that >, Pr(I) = 1.
Pr is said to satisfy a DL knowledge base K B denoted as Pr = KB iff VI €
Zp,Pr(I) > 0 = I = KB. Next, the probability of a concept C' € &, denoted as
Pr(C), is defined as 3 ;_ Pr(I). Pr(D|C) is used as an abbreviation for Pr(C N
D)/Pr(C) given Pr(C') > 0. A probabilistic interpretation Pr satisfies a conditional
constraint (D|C)[l,u], denoted as Pr = (D|C)[l, u], iff Pr(C) = 0 or Pr(D|C) €
[, u]. Finally, Pr satisfies a set of conditional constraints F' iff it satisfies each of the
constraints. A PTBox PT = (T, P) is called satisfiable iff there exists a probabilistic
interpretation that satisfies 7'U P.

A conditional constraint (D|C)[l,u] is a logical consequence of a TBox T and a
set of conditional constraints P, denoted as T U P = (D|C)[l,u], if VPr : Pr |=
TUP = Pr(D|C) € [l,u]. Itis a tight logical consequence of T U P denoted as
U P Fun (DIO)Lul if I = infer(c)sorprrup(Pr(D[C)) and
u = SupPr(C)>O/\PTFTUP(PT(D|C))'
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2.2 Reasoning in P-SHZ Q(D)

Lehmann’s lexicographic entailment has been suggested as a non-monotonic conse-
quence relation for P-SHZ Q(D) because of satisfying certain properties that are desir-
able for default reasoning [6] [[7]. A few definitions are required to formulate it:

— A probabilistic interpretation Pr verifies a default (D|C)[l, u] iff Pr(C) = 1 and
Pr(D|C) € [l,u].

- Pr falsifies a default (D|C)[l, u] iff Pr(C') = 1 and Pr(D|C) ¢ [I,u].

— A default d is tolerated by a set of defaults P under a classical TBox 7" iff 3Pr :
Pr =T U P and Pr verifies d.

— dis in conflict with P under T iff it is not tolerated by P under 7.

— A default ranking o is admissible for PTBox PT = (T, P) ifft VP’ C P,Vd € P, d
is in conflict with P’ under T' = 3d’ € P’ s.t. o(d') < o(d).

— A PTBox is called consistent iff an admissible default ranking exists [7].

An admissible default ranking, if one exists, can be computed in the form of an or-
dered partition { P;}*_, known as a z-partition. When using lexicographic entailment,
those models that satisfy more defaults with higher ranks are considered lexicograph-
ically preferable. Models such that no other model is lexicographically preferable to
them are called lexicographically minimal. A conditional constraint (D|C)[l,u] is a
lexicographic consequence of a PTBox PT = (P,T) and a set of conditional con-
straints F' if it is satisfied by every lexicographically minimal model of F'U PT'. Itis a
tight lexicographic consequence iff [ (resp. w) is a minimum (resp. maximum) subject
to all lexicographically minimal models [7].

It has been shown that lexicographically minimal models can be characterized via
lexicographically minimal sets of conditional constraints [3]:

Definition 1 (Lexicographically minimal sets). Given a consistent PTBox PT =
(T, P) with a z-partition { P;}%_, and a set of conditional constraints F, a set P' C P
is lexicographically preferable to P" C P given F iff:

(T, P"UF)and (T, P" UF) are satisfiable. (1)
For some i = {1..k},|P' N P;| > |P" N P )
Forall j = {i + 1.k},P' NP, = P" N P, 3)

The set P' C P given F is lexicographically minimal iff no P" C P is lexicographi-
cally preferable to P’ given F.

The set of all lexicographically minimal sets of PTBox PT given F is denoted
LMS(PT,F)

Informally, lexicographic entailment corresponds to standard logical entailment from
lexicographically minimal sets. Computing LM S(PT, F) is the first phase of comput-
ing the entailment. Section ] will explain how that step can be optimized and will also
present the evaluation of the proposed optimization.
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The following are the core reasoning problems of P-SHZ Q(D) [[7]:

— Probabilistic Satisfiability (PSAT). PSAT is the problem of deciding whether exists
a probabilistic interpretation that satisfies given PTBox.

— Probabilistic Generic Consistency (PGCon). PGCon is the problem of deciding
whether an admissible default ranking exists for the given PTBox.

— Tight Logical Entailment (TLogEnt). TLogEnt is the problem of computing the
tightest probability intervals for logical consequences.

— Tight Lexicographic Entailment (TLexEnt). TLexEnt is the problem of computing
the tightest probability intervals for lexicographic consequences.

3 Performance Evaluation Methodology

Probabilistic deduction in general and lexicographic entailment in P-SHZ Q(D) in par-
ticular are known to be computationally hard [2] [3]. Both PSAT and TLexEnt problems
in P-SHZ Q(D) are EXPTIME-Complete where hardness follows from the complexity
of SHZQ(D) and completeness from the small model theorem for satisfiability
problem in probabilistic first-order logic [2].

These theoretical results do not necessarily say much about the practicality of rea-
soning in P-SHZ Q(D). It is known that even harder tableau-based algorithms for clas-
sical DL can be successfully used in applications. However, the picture is much less
clear with respect to P-SHZ Q(D). It has been recently shown that reasoning tasks in P-
SHZQ(D) require a massive amount of classical DL reasoning, namely, classical SAT
instances to be solved [3]] [4]]. At the same time the number of SATSs varies greatly over
probabilistic inputs so that the distribution required deeper investigation.

In this paper we use present a systematic approach to performance evaluation that
is based on random sampling. Both, fragments of probabilistic ontology (samples) and
probabilistic queries will be randomly generated. The main dataset for sampling will be
a probabilistic ontology for breast cancer risk assessment (BRCA).

3.1 The BRCA Ontology

The BRCA ontologyﬁ was created as an attempt to model the problem of breast cancer
risk assessment in a clear, ontological manner. The central idea behind the design the
ontology was to reduce risk assessment to probabilistic entailment in P-SHZ Q(D).

The ontology consists of two major parts: a classical OWL ontology and a proba-
bilistic part that represents domain uncertainty. It is anticipated that extensive medical
vocabularies will be used as classical parts of such models. To emphasize this possi-
bility in our experiments, we used the NCI thesaurud] augmented with a collection of
classes to represent the risk factors used by the NCI risk calculator. The thesaurus is a
large medical ontology of more than 27,500 classes.

The ontology aims at modeling two types of risk of developing breast cancer. First, it
models absolute risk, i.e., the risk that can be measured without reference to other cat-
egories of women. Statements like “an average woman has up to 12.3% of developing

3 Available at: http://www?2.cs.man.ac.uk/klinovp/pronto/brc/cancer cc.owl
* http://www.mindswap.org/2003/CancerOntology/nciOncology.owl
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breast cancer in her lifetime” are examples of absolute risk [9]]. Such risk is modeled us-
ing subclasses of WomanUnder Absolute BRC Risk. Subclasses distinguish between
the risk of developing cancer over a lifetime vs. in the short term (e.g., ten years).

Second, the ontology models relative breast cancer risk. This is useful for represent-
ing the impact of various risk factors by describing how they increase or decrease the
risk compared to an average woman. Statements like “having BRCAI gene mutation in-
creases the risk of developing breast cancer by a factor of four” express relative risk [9].
The ontology provides classes for different categories of relative risk, e.g., for increased
risk or decreased risk.

The ontology defines risk factors that are relevant to breast cancer using subclasses
of RiskFactor. It makes the distinction between the factors that should be known
to a woman, e.g., age, family cancer history, breastfeeding and those that can only
be inferred on the basis of other factors or by examination, e.g., BRCA gene mu-
tation, breast and bone densities, etc. It also defines different categories of women:
first, those that have certain risk factors (subclasses of WomanWithRiskFactors);
and, second, those distinct in terms of the risk of developing cancer (subclasses of
WomanUnder BRC Risk).

With this classical ontology, it is possible to define the task of assessing the risk
in terms of probabilistic entailment. The problem is to compute the conditional
probability that a certain woman is an instance of some subclass of
WomanUnder BRC Risk given probabilities that she is an instance of some
subclasses of WomanWithRiskFactors. This requires probabilistic entailment of
PABox axioms. In addition, it might also be useful to infer the generic probabilistic
relationships  between classes under WomanUnder BRCRisk and under
WomanWithRiskFactors. This can be done by computing TLexEnt for the corre-
sponding PTBox axioms.

Following the assumption that the subjective probabilities representing risk factors
for a certain individual can be combined with objective probabilities representing the
statistical knowledge, the model contains a set of PABox and PTBox axioms. The
PABox axioms define risk factors that are relevant to a particular individual. The PTBox
axioms model generic probabilistic relationships between classes in the ontology, i.e.,
those that are assumed to hold for a randomly chosen individual.

The model represents absolute risk using the subclasses of WomanUnder Absolute
BRC Risk as conclusions in conditional constraints. For example, the above statement
that an average woman has risk up to 13.2% can be expressed as the following TBox
axiom:

(WomanUnder Absolute BRC Risk|W oman)|0, 0.132].

Similarly, the model represents the impact of various risk factors by PTBox constraints
with subclasses WomanWithRiskFactors as evidence. For example, the influence
of age can be represented by the following constraint:

(WomanWithBRCInShortT erm|W oman50Plus)[0.027,0.041]

which expresses that a woman after the age of fifty has a certain risk of developing
breast cancer in short term. Relative risk can be captured analogously by using the
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subclasses of WomanUnder Relative BRC Risk as conclusions. For example, the im-
pact of BRCA gene mutation can be described as:

(WomanUnderStrongBRC Risk|WomanWithBRC AMutation)[0.9, 1]

which means that a woman having BRCA (BRCA1 or BRCA2) gene mutation is almost
certainly in the highest risk category.

The model also allows one to express various inter-relationships between risk factors.
One possibility is to represent how the presence of one risk factor allows one to guess
on the presence of others. This is the principal way to use inferred risk factors, i.e.,
those unknown to a woman. For example, it is statistically true that Ashkenazi Jews
are more likely to develop the BRCA gene mutation [9]. Although the person being
questioned may not be aware of her chances of having a gene mutation, they can be
estimated based on her ethnicity or other factors. Such relationships are captured using
the PTBox constraints with evidence and conclusions being subclasses of Woman or
WomanUnder BRC Risk, such as:

(WomanWithBRC AMutation|AshkenaziJewishWoman)[0.025,0.025]

In addition, the model allows to represent how different risk factors strengthen or
weaken each other. The classical part of the ontology provides classes that are com-
binations of multiple risk factors. For example, Woman50PlusMother BRCA is a
subclass of both Woman Aged50Plus and WomanWithMother BRC A, i.e., it rep-
resents women after the age of 50 whose mothers developed breast cancer in the past.
The model can define the risk for such women to be much higher than if they had just
one of the factors. This is possible using the previously described overriding feature.
Informally, PTBox axioms for the combination of factors, such as:

(WomanUnderStrongBRC Risk|Woman50PlusMother BRC'A)[0.9, 1]

overrides the axioms for each individual factor, thus allowing the system to make a more
relevant and objective inference. It is theoretically possible to define an exponential
number of such risk factor combinations but in practice only some of them require
special attention.

Finally, the ontology contains a number of PABoxes that represent risk factors for
specific individuals. The motivation is that while the generic probabilistic model that
provides all the necessary statistics that can be developed and maintained by a central
cancer research institute, individual women can supply the knowledge about the risk
factors that are known to them, e.g., age. It is also possible to express uncertainty in
having some particular risk factor. This is particularly important for inferred risk factors,
for example, breast or bone density.

3.2 Random Sampling

Given the test data (BRCA ontology) the next step is to generate instances of reasoning
problems to evaluate the performance. We chose to generate instances of PSAT and
TLexEnt where TLexEnt also includes PGCon as a sub-problem.
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Currently the full version of BRCA ontology cannot be handled by P-SHZ Q(D)
reasoners mainly because linear system even for a single PSAT becomes too large (i.e.,
exponential in the number of conditional constraints). Therefore we decided to evaluate
the performance on selected fragments of the ontology. As mentioned above, the perfor-
mance varies significantly over fragments and it was originally unclear which fragments
are “hard” and which are “easy”. Thus it was natural to begin with the random sampling
method.

In all the following experiments, the performance (or hardness) is measured in the
number of classical DL SAT instances that need to be solved during probabilistic rea-
soning. This helps to abstract from platform-dependent metrics such as time.

Instances of PSAT have been generated using simple random sampling. Each sample
was an independent probabilistic KB with the full classical part of the BRCA ontology
and a subset of the PTBox constraints. The number of conditional constraints varied
from 10 to 15 to maintain the balance between the size of each sample and the number
of trials for each size. The latter was 200.

Instances of TLexEnt are less straighforward to generate. First note that entailments
of PABox constraints are usually harder than PTBox because of interactions between
default PTBox knowledge and strict PABox knowledge during non-monotonic reason-
ing. Simple random samples of PKB are insufficient for generating PABox queries. It
is also required to have a probabilistic individual with PABox costraints. For example,
in the case of BRCA ontology, such individual would be a woman with her personal
probabilistic facts (risk factors that apply to her).

Such individual can be selected from the collection of predefined PABoxes (anal-
ogously to selecting a fragment of PTBox). But in this case it is hard to ensure the
interaction between a randomly selected fragment of PTBox and a independently se-
lected probabilistic individual. Intuitively, it is desirable to generate realistic problem
instances so that the strict knowledge about the individual can be usefully combined
with the statistical knowledge in the PTBox. Again, in the case of BRCA ontology,
there should be PTBox constraints that represent statistics about the risk factors that are
relevant to some probabilistic individual. Otherwise the latter are useless for assessing
the breast cancer risk.

Our approach to generating such reaslistic TLexEnt instances is summarized by the
following steps:

— Generate fragments of the PTBox using simple random sampling.

— Generate a probabilistic individual and the corresponding PABox. Each PABox
constraint (C| T)[l, ] is generated such that C'is a class appearing in some of the
previously selected PTBox constraints and [/, u] is a random interval.

- Generate a PABox query of the form (C|T)[?, ?] where C'is selected from a domain-
specific set of classes. In BRCA that set includes classes that represent women under
absolute or relative breast cancer risk.

The effect of the first two steps is that the reasoner has to consider both PTBox and
PABox constraints during reasoning, instead of eliminating some as irrelevant (which
might have been the case if they had been generated completely independently). The
third step ensures that the queries will be meaningful in that particular domain.
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3.3 Results

We have applied the methodology to the latest version of Pronto. As expected it was
observed that the hardness of PSAT grows exponentially with the number of conditional
constraints. The interesting fact was that the exponential blowup did not happen in all
cases. Moreover, some samples of size k (k-samples) happened to be easier that some
samples of size k — 1. For example, for £ = 10, the number of SATs varied from 699 to
14,200 whereas for £ = 11 it varied from 1, 091 to 38, 522. Such variation is important
to investigate in order to understand what exactly makes probabilistic KBs hard or easy
for reasoning. This might lead to developing reasoning algorithms that can exploit such
characteristics of PKBs.

The lower bound on the number of needed SATs is the number of variables in the
linear system generated during PSAT. Each variable corresponds to some world and
a SAT should be solved in order to show that the world is possible, i.e., satisfies the
classical part of the KB. Thus it is natural to investigate how the number of variables
(or size of the index set [3]]) varies over the random samples and what factors have an
impact on it.

The variation of the index set size is similar to the variation of the number of SAT as
expected: for 10-samples the minimal size was 447 and maximal was 8, 064. The more
interesting problem is to identify what factors determine the size of the index set. Then
it would be possible to assess hardness of samples in advance and potentially exploit
this information during reasoning.

With this aim in mind we attempted to develop a metric for estimating hardness
of a PTBox. It can be conjectured that the size of the index set should depend on the
number of relations (e.g., subsumption, disjointness, etc.) that can be proven for classes
appearing in conditional constraints [[I]]. In the extreme case, if no such relation exists,
the size would be 3" where N is the number of constraints [I]]. In practice, however,
many index set items can correspond to classical models that do not satisfy classical part
of KB and should be pruned. As an example, consider TBox T' = { Penguin C Bird}
and the world { Penguin, - Bird}. Clearly this world is not possible. Thus the metric
should reflect the number of such relations between classes in constraints which we call
the connectivity of PTBox). We have implemented and experimented with this metric
by computing, for each pair of constraints, the number of subsumptions between classes
and their negations (i.e. 9 SAT tests for each pair of constraints). The results for 200
samples were compared with the actual hardness of PTBox, i.e., the number of SATs
solved during PSAT, in Figure 1.

The results show the anticipated correspondence between the connectivity of PTBox
and its actual hardness which means that some prediction of reasoning complexity can
be done in advance. It is an interesting question whether the phase transition phenom-
enon can be observed for PSAT. Phase transition is a property of many known
NP-hard problems which says that the hardest instances are groupped in a relatively
small region of the problem space which is characterized by a critical value of some
order parameter. For example, for SAT in propositional logic such parameter would be
the average number of literals in clauses. So around the critical value there is a tran-
sition from the set of underconstrained problems to overconstrained ones. Reasonable
algorithms are often capable of solving most of the problems that do not fall into the
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Fig. 1. Performance of PSAT plotted against the predicted hardness of PTBox

hard region efficiently, for example, such problems as 3-SAT, graph coloring, etc. are
often tractable in practice.

The diagrams above do not show typical phase transition pattern although the con-
nectivity metric is related to the extent to which a given instance is constrained. Less
connectivity means that the classes in the conditional constraints are weakly related to
each other so that the chance of conflicts is small. This is similar for underconstrained
instances of SAT in propositional logic. Similarly, highly connected instances of PSAT
are overconstrained. Thus it is reasonable to expect that some sort of phase transition
phenomenon would occur. Why does it not happen?

The answer is that the PSAT algorithm [[7] does not exploit the heuristical estimation
of hardness in any way. Differently from many known algorithms for NP-complete
problems it does not try to quickly find a solution for an underconstrained problem
or quickly prove inexistence of solutions for an overconstrained problem. This might
be one possible reason why PSAT is intractable for P-SHZ Q(D), and thus can be a
promising direction for the optimization research on P-SHZ Q(D). More sophisticated
evaluation techniques may need to be developed to support or falsify this conjecture.

The results for TLexEnt look similar to the results for single PSAT. The same met-
ric proved to be predictive for a different problem. This is natural to expect because
complexity of TLexEnt strongly depends on the complexity of PSAT which is its sub-
problem. The results plotted on the Figure 2 (again 200 samples were taken).
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Fig. 2. Performance of TLexEnt plotted against the predicted hardness of PTBox

The important outcome is that for the latest TLexEnt algorithm (see Section @ for
details) there do not seem to be other factors except PSAT that affect its complexity.
Interestingly this is not the case for the original algorithms that are due to Lukasiewicz
[1] [5]. The same evaluation methodology can show that the original algorithm per-
forms on some PKBs much worse than predicted by the metric. The reason is that the
naive computation of lexicographically minimal sets during the non-monotonic phase
of reasoning causes too many PSATs to be solved.

4 Evaluating Optimization Strategies

This section will demonstrate how new optimization strategies can be evaluated and
compared to th existing algorithms using the proposed evaluation methodology. We
start by briefly describing the optimization technique for computing lexicographically
minimal models during TLexEnt.

4.1 Optimized TLexEnt Algorithm

The original TLexEnt algorithm computes the tightest interval for probabilistic query
(D|C)[?, 7] in two phases [7] [1]:
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1. Model selection. Conclusions in P-SHZ Q(D) are drawn from the set of lexico-
graphically minimal models that are selected by computing lexicographically min-
imal sets (LM-sets) of constraints (see Definition [IJ).

2. Entailment from preferred models. Once models have been selected, the tightest
interval can be computed by performing linear optimizations.

The complexity of the first phase determines the overall complexity of TLexEnt.
Models selection can be done by solving O(e?Y) instances of PSAT each of which
requires O(e’Y) instances SAT. Such a high complexity is caused by an uninformed
search for LM-sets that runs over the powerset of constraints [5]]. This is avoided in the
improved algorithm that proceeds by eliminating the minimal conflicting subsets.

Definition 2 (Minimal conflict sets). For a set of conditional constraints F and PTBox
PT = (T, P), a conflict set of PT given F is a set of conditional constraints Q s.t.
Q C Pand (T,Q U F) is unsatisfiable.

A conflict set Q of PT = (T, P) given F is minimal if VQ' C Q, (T,Q" U F) is
satisfiable.

The set of all minimal conflict sets of PT given F is denoted as MCS(PT, F).

Informally, conflict sets identify those fragments of a probabilistic ontology that require
conflict resolution during default reasoning. See the example below:

Example 1. Consider the following PTBox
PT =({Penguin C Bird},

{(Fly|Bird)[0.9,0.95], )
(Fly|Penguin)|0,0.05], (2)
(Wings|Bird)[0.95,1]}) 3)

MCS(PT,{(Penguin|T)[1,1]}) = {1, 2}, but MCS(PT,{(Bird|T)[1,1]}) = {}
As it will be shown below, conflict sets can be very useful for computing LM-sets.

Computing Minimal Conflict Sets. Finding all MCS is an NP-complete problem, so
it may seem that an exponential number of PSAT instances will need to be generated
and solved. However, it turns out that it is necessary to generate only a single PSAT
instance to find all MCS thus avoiding a double exponential number of classical SAT
tests. At the same time, it may be required to check an exponential number of linear
systems for solvability. Fortunately, that step is computationally easier as it does not
involve any classical DL reasoning.

The idea is as follows: First, some initial MCS is found by repeatedly removing lin-
ear inequalities from the linear system corresponding to (7', P U F). The resulting sys-
tem contains only those inequalities that correspond to conflicting constraints in MCS.
Then it is possible to employ a standard technique for computing all explanation sets in
classical DLs [[T1]. Each next MCS can be found by eliminating some constraints from
all the previous MCS from the original PTBox and repeating the process of removing
inequalities. The entire process terminates when no further MCS can be found.

It can be seen that there is only a single PSAT instance is generated during the com-
putation of the first MCS. All other MCS are discovered by performing operations on
linear systems and do not require any SAT tests at all.
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Computing Lexicographically Minimal Sets. As mentioned before, the main goal of
the optimization is to avoid solving an exponential number of PSATs during the search
for lexicographically minimal sets while solving TLexEnt. It appears that it can be done
by using the idea of conflict sets to compute maximal satisfiable subsets of PTBox by
generating only a linear number of PSATs.

Definition 3 (Maximal satisfiable subsets). Given a PTBox PT = (T, P) and a set
of conditional constraints F, set R C P is the maximal satisfiable subset of PT' given
Fiff (T, RU F) is satisfiable but (T, S U F) is not for every S C P s.t. R C S.

The set of all maximal satisfiable subsets of PT given F is denoted as M SS(PT, F).

The crucial observation is that lexicographically minimal sets can be computed by iter-
ating over the z-partition and computing M S'S' at each subset. More formally:

Lemma 1. Given a consistent PTBox PT = (T, P) with z-partition { Py, ..., Py} and a
set of constraints F, LM S(PT, F) is equivalent to the set of all unions Uf:o M; where
My € MSS((T, Pk), f) and M; € {MSS((T, .PZ), MZ+1)‘MSS((T, Pi); Mi+1) has
subsets of maximal cardinality subject to all M, 1}

Lemma[Tl essentially describes the algorithm for computing LM S(PT, F). 1t is suffi-
cient to iterate over all subsets of the z-partition in the order of decreasing specificity
and compute M S'S at each subset of the partition. It only remains to show how to com-
pute M SS(PT, F). It is well known that maximal satisfiable subsets are related with
minimal unsatisfiable subsets in the following sense [12]:

Lemma 2. Given a PTBox PT = (T, P) and a set of constraints F, M SS(PT, F) is
the set of all M C P s.t. for every M there exists a set H s.t. M = P\ H, HNQ # ()
forall @ € MCS(PT,F) and for any H' C H there exists Q € MCS(PT,F) s.t.
HnNnQ=10

Such sets H are called minimal hitting sets in the literature. Lemma [ states a known
approach to computing M SS that is based on computing all minimal hitting sets for all
minimal conflict sets and then removing them from the initial set [12].

Using this technique the optimized algorithm computes a set of A/.S'S that is linear in
the number of subsets in the z-partition. Each M SS can be reduced to the computation
of M C'S and minimal hitting sets over the M C'S. The latter is a known NP-complete
problem but fortunately it is limited in its size and does not involve any classical DL
reasoning. So, this algorithm computes lexicographically minimal sets by generating
only a linear number of PSATs as opposed to the exponential number required by the
Lukasiewicz algorithm. A simple example illustrates the advantage:

Example 2. Consider the following PTBox:
PT =({Penguin C Bird},

{(Fly|Bird)[0.9,0.95], )
(Fly|Penguin)|0,0.05], (2)
(Wings|Bird)[0.95,1]}) 3)

F ={(Penguin|T)[1,1]}



226 P. Klinov and B. Parsia

The z-partition is {{lL B}, {2} }. Lukasiewicz’s algorithm would compute LM S(PT
F) in the following steps (* means that a PSAT instance has to be generated):

Check satisfiability of (T, F)*. Result: true.

Check satisfiability of (7', F U *. Result: true.
Check satisfiability of (77, F U 3} )*. Result: false.
Check satisfiability of (7', F U *. Result: false.
Check satisfiability of (7, F U *. Result: true.
LMS(PT,F):=FU

There are two negative PSAT tests that are avoided in the new algorithm:
1. Check satlsﬁablhty *. Result: true.

of (T'
2. Compute M S S *. Result:
3. Compute M SS .7-" . Result:
4. LMS(PT,F):

SNk LD~

4.2 Evaluation of the Optimized Algorithm

The developed methodology enables us to systematically evaluate the performance of
the optimized algorithm. The methodology can be applied to both algorithms and the
results are easily comparable. This has been done by running both algorithms on ran-
dom instances of TLexEnt generated as explained in the Section[3.21 We performed 200
runs where each PKB had 10 PTBox and 3 PABox constraints. The results are plotted
on the Figure 3.

Simple visual comparison yields a few important observations. First, the new algo-
rithm performs better as expected. Second, its behavior is more amenable to predictions
using our connectivity metric. In other words, the relationship between the metric values
and the actual hardness is apparent and resembles the same graph for PSAT. The naive
algorithm, in contrast, produced a lot more outliers. There are some “hard” outliers —
instances of TLexEnt that involve much more classical SATs than expected.

Finally, it can be noted that the fraction of such hard outliers is not large. This is a
direct consequence of simple random sampling method which selects subsets of PTBox
constraints with equal probability. Therefore, the chance that there will be conflicts
similar to those shown in Example[lis relatively small.

There is a question, however, whether such conflicts would be frequent in practice.
At this point it is not fully clear because no P-SHZQ(D) ontologies are employed
in real applications. The BRCA ontology is the first attempt we know of to provide
such model. In this ontology, conflicts can be expected because strict knowledge about
particular women or their categories can often override general statistical knowledge.
One example is African American and Ashkenazi Jew women for whom the statistical
relationships from the Gail model are known to be imprecise or even incorrect.

In any case the evaluation methodology is useful because, first, it can systemati-
cally generate and run many random samples and therefore help to find “interesting
cases”, i.e., hard or easy outliers. Second, it can be used to compare different reasoning
techniques and find inputs on which the techniques demonstrate similar or drastically
different performance. At the same time it may be required to have a more intelligent
problem generation method rather than random sampling. For example, a possible next
step in the development of a benchmarking suite might be generation of only hard in-
stances analogously to how it was done for other logics [13].
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Fig. 3. Performance of TLexEnt plotted against the predicted hardness of PTBox. 200 runs.

5 Summary

The paper described first steps towards a systematic performance evaluation methodol-
ogy for P-SHZ Q(D) reasoners. We have developed an approach to generating instances
of the most important reasoning problems in P-SHZ Q(D) and provided a probabilis-
tic ontology to serve as a basis for the generation. The methodology has been used to
illustrate benefits of our optimizations for computing entailments.

Even though our approach is methodologically straighforward, to our knowledge, it
has not been applied in this area before. Our experimental results show that being sys-
tematic in the evaluation of performances validates our analytical understanding of the
reasoning tasks and algorithms but also yields important insights, such as the notion of
connectivity for a set of conditional constraints and its impact on reasoning complexity.

The approach is flexible and extensible in the sense that one can contribute problem
generators for their specific reasoning tasks. For example, as learned from the eval-
uation of the improved TLexEnt algorithm, a bias towards “hard” problem instances
might be desirable. Also, there might be domain-specific evaluation. For instance, in
the BRCA domain, it would be natural to generate PABoxes that only have constraints
describing individual risk factors as opposed to randomly generated constraints. All
such extensions can be smoothly plugged into the framework.

It is our expectation that the approach will also stimulate further reasoning optimiza-
tion research for P-SHZ Q(D). The most important reasoning task to be optimized is
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PSAT because it is currently responsible for the limited scalability of reasoners, e.g.,
Pronto. The evaluation strategy can highlight the problem instances on which the al-
gorithm performs poorly so that specific optimization techniques might be developed
to alleviate it. In this respect, current results can be considered as an important step
towards practical reasoning in P-SHZ Q(D).
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