Amit Sheth Steffen Staab

Mike Dean Massimo Paolucci
Diana Maynard Timothy Finin
Krishnaprasad Thirunarayan (Eds.)

The Semantic Web -
ISWC 2008

7th International Semantic Web Conference, ISWC 2008
Karlsruhe, Germany, October 2008
Proceedings

LNCS 5318

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5318

Amit Sheth Steffen Staab Mike Dean
Massimo Paolucci Diana Maynard
Timothy Finin Krishnaprasad Thirunarayan (Eds.)

The Semantic Web —
ISWC 2008

7th International Semantic Web Conference, ISWC 2008
Karlsruhe, Germany, October 26-30, 2008
Proceedings

@ Springer

Volume Editors

Amit Sheth

Krishnaprasad Thirunarayan

Wright State University, Dayton, OH 45435-0001, USA
E-mail: {amit.sheth,t.k.prasad} @wright.edu

Steffen Staab
University of Koblenz, 56016 Koblenz, Germany
E-mail: staab@uni-koblenz.de

Mike Dean
BBN Technologies, Ann Arbor, MI 48103, USA
E-mail: mdean@bbn.com

Massimo Paolucci
DOCOMO Euro-Labs, 80687 Munich, Germany
E-mail: paolucci@docomolab-euro.com

Diana Maynard
University of Sheffield, Sheffield S1 4DP, UK
E-mail: d.maynard @dcs.shef.ac.uk

Timothy Finin
University of Maryland Baltimore County, Baltimore, MD 21250, USA
E-mail: finin@umbc.edu

The picture of Karlsruhe Castle on the cover of this volume was kindly provided by
Monika Miiller-Gmelin from the Bildstelle Stadtplanungsamt Karlsruhe

Library of Congress Control Number: 2008937502
CR Subject Classification (1998): H.4, H.3, C.2, H.5, F3,1.2, K4

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-88563-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88563-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12548668 06/3180 543210

Preface

The Web is a global information space consisting of linked documents and linked
data. As the Web continues to grow and new technologies, modes of interaction,
and applications are being developed, the task of the Semantic Web is to unlock
the power of information available on the Web into a common semantic infor-
mation space and to make it available for sharing and processing by automated
tools as well as by people. Right now, the publication of large datasets on the
Web, the opening of data access interfaces, and the encoding of the semantics of
the data extend the current human-centric Web. Now, the Semantic Web com-
munity is tackling the challenges of how to create and manage Semantic Web
content, how to make Semantic Web applications robust and scalable, and how
to organize and integrate information from different sources for novel uses. To
foster the exchange of ideas and collaboration, the International Semantic Web
Conference brings together researchers and practitioners in relevant disciplines
such as artificial intelligence, databases, social networks, distributed computing,
Web engineering, information systems, natural language processing, soft com-
puting, and human—computer interaction.

This volume contains the main proceedings of ISWC 2008, which we are ex-
cited to offer to the growing community of researchers and practitioners of the
Semantic Web. We got a tremendous response to our call for research papers
from a truly international community of researchers and practitioners from 41
countries submitting 261 papers. Each paper received an average of 3.25 reviews
as well as a recommendation by one of the Vice Chairs who read the papers
under investigation as well as the comments made by PC members. Based on a
first round of reviews, authors had the opportunity to rebut leading to further
discussions among the reviewers and—where needed—to additional reviews. Re-
views for all papers with marginal chances of acceptance were discussed in the
Programme Committee meeting attended by the Vice Chairs.

As the Semantic Web field develops we have observed the existence of a stable
set of subjects relevant to the Semantic Web, such as reasoning (19)*, knowledge
representation (14), knowledge management (12), querying (9), applications (8),
semantic Web languages (7), ontology mapping (6), ontology modelling (6), data
integration (6), and semantic services (5). Some of the paper topics substantiate
the role of the Semantic Web as being at the intersection of several technologies,
e.g., collaboration and cooperation (5), interacting with Semantic Web data (5),
human-computer interaction (4), information extraction (4), content creation
and annotation (4), uncertainty (3), database technology (3), social networks

! Numbers in parentheses indicate the frequency of this topic among the set of accepted
papers as given by the authors at the time of submission. Many papers addressed
multiple topics.

VI Preface

(3), data mining and machine learning (3), semantic search (3), information re-
trieval (3), Semantic Wikis (3), social processes (2), peer-to-peer (2), personal
information management (2), visualization (2), multimedia (1), grid (1), seman-
tic desktop (1), trust (1), and middleware (1). Eventually, new areas that are core
to the Semantic Web field gain prominence as data and ontologies become more
widespread on the Semantic Web, e.g., ontology evaluation (4), ontology reuse
(4), searching and ranking ontologies (3), ontology extraction (2), and ontology
evolution (1).

Overall, as the field matures, ISWC Programme Committee members have
adopted high expectations as to what constitutes high-quality Semantic Web re-
search and what must be delivered in terms of theory, practice and/or evaluation
in order to be accepted in the research track. Correspondingly, the Programme
Committee accepted only 43 papers (i.e., 16.7%); three of the submissions were
accepted for the in-use track after further discussion with its Track Chairs.

The Semantic Web In-Use Track received 26 submissions, each of which was
reviewed by 3 members of the In-Use Track Programme Committee. We accepted
11 papers, along with 3 papers referred from the Research Track. Submissions
came from both research and commercial organizations, reflecting the increased
adoption and use of Semantic Web technologies. Traditional business, Web, and
medical applications were joined with home automation, context-aware mobile
computing, and satellite control. Papers also addressed deployment, scalability,
and explanations.

This year ISWC 2008 hosted, for the fourth consecutive year, a doctoral con-
sortium for Ph.D. students within the Semantic Web community, giving them
the opportunity to discuss in detail their research topics and plans, and to get
extensive feedback from leading scientists in the field. This year, in order to min-
imize overlap with other events and to increase attendance, the consortium was
held on the day before the main conference. There were 39 submissions in total,
which is approximately a 33% increase over 2007 and the highest ever submis-
sion rate to the ISWC DC. Submissions were reviewed by a panel of experienced
researchers. The acceptances comprised 7 papers and 12 posters, which were pre-
sented in a full-day session. Each student was also assigned a mentor who led the
discussions following the presentation of the work, and provided more detailed
feedback and comments, focusing on the PhD proposal itself and presentation
style as well as on the actual work presented. The mentors were drawn from the
set of reviewers and comprised some leading researchers in the field—both from
academia and from industry.

A unique aspect of the International Semantic Web Conferences is the Se-
mantic Web Challenge. This is a competition in which participants from both
academia and industry are encouraged to show how Semantic Web techniques
can provide useful or interesting applications to end-users. This year the Se-
mantic Web Challenge was organized by Jim Hendler and Peter Mika. It was
further extended to include the Billion Triple Challenge. Here the focus was not
so much on having a sleek and handsome application, but rather on managing

Preface VII

a huge mass of heterogeneous data — semantic data, microformat data or data
scraped from syntactic sources that one finds out there on the Semantic Web.

Keynote Talks from prominent scientists and managers further enriched ISWC
2008: Ramesh Jain, an eminent figure in the field of multimedia and beyond, gave
a talk indicating the importance of semantics in the field of experiential comput-
ing. Stefan Decker, one of the founding members of the Semantic Web field in
research and practice, presented his ideas about further developing the Semantic
Web in order to give the common user the power of the Semantic Web at his fin-
gertips. Finally, John Giannandrea considered the Semantic Web from the point
of view of a business person. As co-founder and CTO of MetaWeb technologies,
he explained how the Semantic Web helps his customers, showing the impor-
tance of thinking out of the box in order to exploit the strength of Semantic
Web technologies. In addition, there were seven invited talks from industry that
focused on the development and application of Semantic Web Technology along
with a panel titled “An OWL 2 Far?” moderated by Peter F. Patel Schneider.

The conference was enlivened by a highly attractive Poster and Demo Session
organized by Chris Bizer and Anupam Joshi and a large Tutorial Program super-
vised by Lalana Kagal and David Martin and including 11 unique events to learn
more about current Semantic Web technologies. A great deal of excitement was
generated by 13 workshops, which were selected from 22 high-quality proposals
under the careful supervision of Melliyal Annamalai and Daniel Olmedilla.

The final day of the conference included a Lightning Talk session, where
ISWC attendees could submit one slide and get five minutes of attention from
a broad audience to report on what they learned and liked or disliked and how
they see the Semantic Web continuing to evolve.

We are much indebted to Krishnaprasad Thirunarayan, Proceedings Chair,
who provided invaluable support in compiling the printed proceedings. We also
offer many thanks to Richard Cyganiak and Knud Moller, Meta data Co-chairs,
for their expert coordination of the prodution of the semantic mark-up associated
with contributions to the conference.

The meeting would not have been possible without the tireless work of the Lo-
cal Organization Chair, Rudi Studer, the Local Organizing Committee including
Anne Eberhardt, Holger Lewen and York Sure and their team from Karlsruhe.

We thank them all for providing excellent local arrangements. We would also
like to thank the generous contribution from our sponsors and the fine work
of the Sponsorship Chairs, John Domingue and Benjamin Grosof, and Li Ding,
Publicity Chair. Finally, we are indebted to Andrei Voronkov and his team for
providing the sophisticated yet free service of EasyChair, and to the team from
Springer for being most helpful with publishing the proceedings.

October 2008 Amit Sheth
Steffen Staab

Diana Maynard

Mike Dean

Massimo Paolucci

Tim Finin

Organization

General Chair

Tim Finin University of Maryland Baltimore Country

Programme Chairs

Amit Sheth Wright State University
Steffen Staab Universitdt Koblenz Landau

Semantic Web In Use Chairs

Mike Dean BBN
Massimo Paolucci DOCOMO Euro-Labs

Semantic Web Challenge Chairs

Jim Hendler Rensselaer Polytechnic Institute
Peter Mika Yahoo! Research

Doctoral Consortium Chair

Diana Maynard University of Sheffield

Proceedings Chair

Krishnaprasad Wright State University
Thirunarayan

Local Chair

Rudi Studer Universitat Karlsruhe

Local Organizing Committee

Anne Eberhardt Universitat Karlsruhe
Holger Lewen Universitat Karlsruhe
York Sure SAP Research Karlsruhe

X Organization

Workshop Chairs

Melliyal Annamalai
Daniel Olmedilla

Tutorial Chairs

Lalana Kagal
David Martin

Oracle
Hannover University

MIT
SRI

Poster and Demos Chairs

Chris Bizer
Anupam Joshi

Sponsor Chairs

John Domingue
Benjamin Grosof

Metadata Chairs

Richard Cyganiak
Knud Moéller

Publicity Chair
Li Ping
Fellowship Chair

Joel Sachs

Freie Universitat Berlin
University of Maryland Baltimore County

The Open University
Vulcan Inc.

DERI/Freie Universitiat Berlin
DERI

Rensselaer Polytechnic Institute

University of Maryland Baltimore County

Vice Chairs - Research Track

Abraham Bernstein
Vassilis Christophides
Thomas Eiter
Yolanda Gil

Vasant Honavar
Anupam Joshi

David Karger

Craig Knoblock
Riichiro Mizoguchi
Enrico Motta

Wolfgang Nejdl
Natasha Noy

Uli Sattler

Guus Schreiber
Luciano Serafini
Umberto Straccia
Gerd Stumme
Frank van Harmelen
Kunal Verma

Organization

Programme Committee - Research Track

Karl Aberer

Mark Ackerman
Harith Alani
Boanerges Aleman-Meza
José Julio Alferes
Dean Allemang
José Luis Ambite
Anupriya Ankolekar
Grigoris Antoniou
Kemafor Anyanwu
Marcelo Arenas
Lora Aroyo

Naveen Ashish
Uwe Assmann
Yannis Avrithis
Wolf-Tilo Balke
Leopoldo Bertossi
Olivier Bodenreider
Paolo Bouquet
Francois Bry
Christoph Bussler
Vinay Chaudhri
Paul - Alexandru Chirita
Philipp Cimiano
Oscar Corcho
Isabel Cruz
Bernardo Cuenca Grau
Carlos Damasio
David De Roure
Mike Dean

Stefan Decker
Paola Di Maio
Tharam Dillon
John Domingue
Marlon Dumas
Martin Dzbor
Jérome Euzenat
Gerhard Friedrich
Aldo Gangemi
Chiara Ghidini

C. Lee Giles

Fausto Giunchiglia
Carole Goble

Jennifer Golbeck
Marko Grobelnik
Daniel Gruhl
Ramanathan Guha
Asunciéon Gémez-Pérez
Peter Haase
Siegfried Handschuh
Kevin Hass
Manfred Hauswirth
Jeff Heflin

Pascal Hitzler
Andreas Hotho
Jane Hunter

David Huynh

Eero Hyvonen
Vipul Kashyap
Michael Kifer

Jihie Kim
Hong-Gee Kim
Matthias Klusch
Mieczyslaw Kokar
Yiannis Kompatsiaris
Manolis Koubarakis
Georg Lausen
Kristina Lerman
Bertram Ludaescher
Thomas Lukasiewicz
Carsten Lutz
Alexander Loser
Jan Maluszynski
Tiziana Margaria
Trevor Martin
David Martin
Wolfgang May
Pankaj Mehra
Peter Mika

John Miller

Dunja Mladenic
Ralf Moeller
Premand Mohan
Boris Motik

Daniel Oberle

Jeff Z. Pan

XI

XII Organization

Massimo Paolucci
Bijan Parsia

Terry Payne

Axel Polleres
Alexandra Poulovassilis
Valentina Presutti
Wolfgang Prinz
Yuzhong Qu
Gerald Reif
Riccardo Rosati
Lloyd Rutledge
Marta Sabou

Elie Sanchez

Lars Schmidt-Thieme
Thomas Schneider
Marco Schorlemmer
Daniel Schwabe
Pavel Shvaiko

Wolf Siberski
Munindar P. Singh
Michael Sintek
Evren Sirin

Sergej Sizov

Derek Sleeman
Giorgos Stamou
Robert Stevens
Veda Storey
Heiner Stuckenschmidt
York Sure
Valentina Tamma
Philippe Thiran
Raphael Troncy
Victoria Uren
Kunal Verma
Peter Vojtas
Raphael Volz

Dan Weld

Jan Wielemaker
Marianne Winslett
Michael Witbrock
Peter Yeh

Yong Yu

Hai Zhuge
Claudia d’Amato
Claudio Gutierrez
Jacco van Ossenbruggen

Programme Committee - Semantic Web in Use

Jans Aasman
Rama Akkiraju
Juergen Angele
Vinay Chaudhri
John Davies
Michael Denny
Tan Emmons
Tom Heath
Ivan Herman
Terry Janssen
David Karger
Elisa Kendall
Brian Kettler

Deepali Khushraj
Holger Knublauch
Shoji Kurakake
Marko Luther
Christopher Matheus
Libby Miller
Dave Reynolds
Joe Rockmore
Leo Sauermann
Michael Smith
Susie Stephens
Mike Uschold
Matthias Wagner

Programme Committee - Doctoral Consortium

Chris Bizer
Martin Dzbor
Jérome Euzenat
Adam Funk

Aldo Gangemi
Marko Grobelnik
Peter Haase
Siegfried Handschuh
Michael Hausenblas
Conor Hayes
Natasha Noy
Horacio Saggion
Guus Schreiber
Elena Simperl
York Sure

Holger Wache

External Reviewers

Faisal Alkhateeb
Ricardo Amador
Renzo Angles
Manuel Atencia
Grigori Babitski
Claudio Baldassarre
Sruthi Bandhakavi
Andreas Bartho
Sean Bechhofer
Khalid Belhajjame
Dominik Benz

Veli Bicer

Stephan Bloehdorn
Eva Blomqvist
Jirgen Bock

Uldis Bojars
Nicolas Bonvin
Stefano Bortoli
Amancio Bouza
Shawn Bowers
Saartje Brockmans
Adriana Budura
Alexandros Chortaras
David Corsar
James Cunningham
Richard Cyganiak
Maciej Dabrowski
Brian Davis

Jan Dedek

Marco de Gemmis

Organization

Geeth de Mel

Renaud Delbru

Stefan Dietze

Jiri Dokulil

Christian Drumm
Alistair Duke

Georges Dupret

Alan Eckhardt

Savitha Emani

Irma Sofia Espinosa Peraldi
Nicola Fanizzi

Bettina Fazzinga

Blaz Fortuna

Ronan Fox

Thomas Franz

Yusuke Fukazawa
George Georgakopoulos
Fausto Giunchiglia
Birte Glimm

Tim Glover

Carole Goble

Karthik Gomadam
Miha Grcar

Gunnar Grimnes

Paul Groth

Tudor Groza

Slawomir Grzonkowski
Alessio Gugliotta

Jun Han

Ramaswamy Hariharan

XIIT

X1V Organization

Ragib Hasan

Kevin Hass

Jakob Henriksson
Raphael Hoffmann
Aidan Hogan
Thomas Hornung
Matthew Horridge
David Huynh

Luigi Tannone
Robert Jéaschke
Bo-Yeong Kang

Zoi Kaoudi

Patrick Kapahnke
Alissa Kaplunova
Malte Kiesel

Jihie Kim

Nick Kings
Joachim Kleb
Alexander Kleiner
Pavel Klinov

Mitch Kokar

Beate Krause
Markus Krotzsch
Joey Sik-Chun Lam
Sébastien Laborie
Dave Lambert
Christoph Lange
Jiwen Li
Yuan-Fang Li

Nuno Lopes

Nikos Loutas
Alessandra Martello
Paolo Massa
Christian Meilicke
Anousha Mesbah Shoulami
Martin Michalowski
Matthew Michelson
Zoltan Miklos

Iris Miliaraki
Manuel Moeller
Fergal Monaghan
Mauricio Monsalve
Michael Mrissa
Sergio Munoz-Venegas
Eetu Makela

Knud Moéller

Takefumi Naganuma

Rammohan Narendula

Stefan Nesbigall

Spiros Nikolopoulos

Andriy Nikolov

Barry Norton

Vit Novacek

Kieron O’Hara

Kemafor Ogan

Carlos Pedrinaci

Paul Peitz

Rafael Penaloza

Jorge Perez

Jan Polowinski

Livia Predoiu

Guilin Qi

Angus Roberts

Marco Rospocher

Sujith Ravi

Quentin Reul

Christoph Ringelstein

Brahmananda Sapkota

Saket Sathe

Simon Scerri

Simon Schenk

Anne Schlicht

Florian Schmedding

Michael Schmidt

Joo Seco

Nigam Shah

Erin Shaw

Kostyantyn Shchekotykhin

Rob Shearer

Amandeep Sidhu

Heiko Stoermer

Giorgos Stoilos

Mari Carmen Sudrez
de Figueroa Baonza

Martin Szomszor

Stuart Taylor

Arash Termehchy

VinhTuan Thai

David Thau

Yannis Theodoridis

Christopher Thomas
Dmitry Tsarkov
Tuvshintur Tserendorj
Anastasios Venetis

Le Hung Vu

Gabriela Vulcu
Sebastian Wandelt
Horst Werner

Organization

Michael Wessel
Matthias Winkler
Fei Wu

Philipp Zaltenbach
Markus Zanker
Maciej Zaremba
Filip Zavoral
Zheng Zhang

XV

XVI Organization
Sponsors

Platinum Sponsors
— Ontoprise
Gold Sponsors

— BBN

— eyeworkers
Microsoft

— NeOn

— SAP Research
— Vulcan

Silver Sponsors

— ACTIVE
— ADUNA
— Saltlux
— SUPER
— X-Media
— Yahoo

9 :
aontoprise

know how to use Know-how

BBN %

TECHNOLOGIES ~ VULCANj»

A Paul G. Allen Company

Microsoft’ |

Research

° eyeworkers

interactive gmbh SAP RESEARCH

Table of Contents

I Research Track

1. Ontology Engineering

Involving Domain Experts in Authoring OWL Ontologies 1
Vania Dimitrova, Ronald Denauzx, Glen Hart, Catherine Dolbear,
Ian Holt, and Anthony G. Cohn

Supporting Collaborative Ontology Development in Protégé 17
Tania Tudorache, Natalya F. Noy, Samson Tu, and Mark A. Musen

Identifying Potentially Important Concepts and Relations in an
ONtOlOZY . o vttt 33
Gang Wu, Juanzi Li, Ling Feng, and Kehong Wang

RoundTrip Ontology Authoring........... i, 50
Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin Tablan,
Kalina Bontcheva, Hamish Cunningham, and Siegfried Handschuh

2. Data Management

nSPARQL: A Navigational Language for RDF 66
Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez

An Experimental Comparison of RDF Data Management Approaches

in a SPARQL Benchmark Scenario 82
Michael Schmidt, Thomas Hornung, Norbert Kiichlin,
Georg Lausen, and Christoph Pinkel

Anytime Query Answering in RDF through Evolutionary Algorithms . .. 98
Eyal Oren, Christophe Guéret, and Stefan Schlobach

The Expressive Power of SPARQL 114
Renzo Angles and Claudio Gutierrez
3. Software and Service Engineering

Integrating Object-Oriented and Ontological Representations: A Case
Study in Java and OWL 130
Colin Puleston, Bijan Parsia, James Cunningham, and Alan Rector

XVIII Table of Contents

Extracting Semantic Constraint from Description Text for Semantic
Web Service DIiSCOVETYo
Dengping Wei, Ting Wang, Ji Wang, and Yaodong Chen

Enhancing Semantic Web Services with Inheritance
Simon Ferndriger, Abraham Bernstein, Jin Song Dong,
Yuzhang Feng, Yuan-Fang Li, and Jane Hunter

4. Non-standard Reasoning with Ontologies

Using Semantic Distances for Reasoning with Inconsistent Ontologies . . .
Zhisheng Huang and Frank van Harmelen

Statistical Learning for Inductive Query Answering on OWL
Ontologiest
Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

Optimization and Evaluation of Reasoning in Probabilistic Description
Logic: Towards a Systematic Approach
Pavel Klinov and Bijan Parsia

5. Semantic Retrieval

Modeling Documents by Combining Semantic Concepts with

Unsupervised Statistical Learning o ...
Chaitanya Chemudugunta, America Holloway, Padhraic Smyth, and
Mark Steyvers

Comparison between Ontology Distances (Preliminary Results)
Jérome David and Jérome Euzenat

Folksonomy-Based Collabulary Learning
Leandro Balby Marinho, Krisztian Buza, and Lars Schmidt- Thieme

6. OWL

Combining a DL Reasoner and a Rule Engine for Improving
Entailment-Based OWL Reasoning i,
Georgios Meditskos and Nick Bassiliades

Improving an RCC-Derived Geospatial Approximation by OWL
AXIOIMIS .ot
Rolf Griitter, Thomas Scharrenbach, and Bettina Bauer-Messmer

OWL Datatypes: Design and Implementation........................
Boris Motik and Ian Horrocks

178

Table of Contents XIX

Laconic and Precise Justifications in OWL 323
Matthew Horridge, Bijan Parsia, and Ulrike Sattler

7. Ontology Alignment

Learning Concept Mappings from Instance Similarity 339
Shenghui Wang, Gwenn Englebienne, and Stefan Schlobach

Instanced-Based Mapping between Thesauri and Folksonomies......... 356
Christian Wartena and Rogier Brussee

Collecting Community-Based Mappings in an Ontology Repository 371
Natalya F. Noy, Nicholas Griffith, and Mark A. Musen

Algebras of Ontology Alignment Relations 387
Jérome Fuzenat

8. Description Logics

Scalable Grounded Conjunctive Query Evaluation over Large and

Expressive Knowledge Bases......... i 403
Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Li Ma,
Edith Schonberg, Kavitha Srinivas, and Xingzhi Sun

A Kernel Revision Operator for Terminologies — Algorithms and

Evaluation 419
Guilin Qi, Peter Haase, Zhisheng Huang, Qiu Ji, Jeff Z. Pan, and
Johanna Volker

Description Logic Reasoning with Decision Diagrams: Compiling
SHZQ to Disjunctive Datalog i 435
Sebastian Rudolph, Markus Krotzsch, and Pascal Hitzler

9. User Interfaces

RDF123: From Spreadsheets to RDF 451
Lushan Han, Tim Finin, Cynthia Parr, Joel Sachs, and
Anupam Joshi

Evaluating Long-Term Use of the Gnowsis Semantic Desktop for

P . 467
Leo Sauermann and Dominik Heim
Bringing the IPTC News Architecture into the Semantic Web 483

Raphaél Troncy

10. Web Data and Knowledge

RDFS Reasoning and Query Answering on Top of DHTs.............. 499
Zoi Kaoudi, Iris Miliaraki, and Manolis Koubarakis

XX Table of Contents

An Interface-Based Ontology Modularization Framework for Knowledge
Encapsulation
Faezeh Ensan and Weichang Du

On the Semantics of Trust and Caching in the Semantic Web..........
Simon Schenk

11. Semantic Web Services

Semantic Web Service Choreography: Contracting and Enactment.
Dumitru Roman and Michael Kifer

Formal Model for Semantic-Driven Service Execution.................
Tomas Vitvar, Adrian Mocan, and Maciej Zaremba

Efficient Semantic Web Service Discovery in Centralized and P2P

Environments
Dimitrios Skoutas, Dimitris Sacharidis, Verena Kantere, and
Timos Sellis

12. Semantic Social Networks

Exploring Semantic Social Networks Using Virtual Reality
Harry Halpin, David J. Zielinski, Rachael Brady, and Glenda Kelly

Semantic Grounding of Tag Relatedness in Social Bookmarking
SYSTEIMS . . ottt
Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme

Semantic Modelling of User Interests Based on Cross-Folksonomy
ANalysis ..o
Martin Szomszor, Harith Alani, Ivan Cantador,
Kieron O’Hara, and Nigel Shadbolt

13. Rules and Relatedness

ELP: Tractable Rules for OWL 2
Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler

Term Dependence on the Semantic Web
Gong Cheng and Yuzhong Qu

Semantic Relatedness Measure Using Object Properties in an
ONtOlogY . oot
Laurent Mazuel and Nicolas Sabouret

Table of Contents

IT Semantic Web in Use Track

1. Knowledge Management

Thesaurus-Based Search in Large Heterogeneous Collections

Jan Wielemaker, Michiel Hildebrand, Jacco van Ossenbruggen, and
Guus Schreiber

Deploying Semantic Web Technologies for Work Integrated Learning in

Industry - A Comparison: SME vs. Large Sized Company

Conny Christl, Chiara Ghidini, Joanna Guss, Stefanie Lindstaedt,
Viktoria Pammer, Marco Rospocher, Peter Scheir, and
Luciano Serafini

Creating and Using Organisational Semantic Webs in Large Networked

Organisationsco i

Ravish Bhagdev, Ajay Chakravarthy, Sam Chapman,
Fabio Ciravegna, and Vita Lanfranchi

An Architecture for Semantic Navigation and Reasoning with Patient

Data - Experiences of the Health-e-Child Project.....................

Tamds Hauer, Dmitry Rogulin, Sonja Zillner, Andrew Branson,
Jetendr Shamdasani, Alexey Tsymbal, Martin Huber,
Tony Solomonides, and Richard McClatchey

2. Business Applications

Requirements Analysis Tool: A Tool for Automatically Analyzing

Software Requirements Documents

Kunal Verma and Alex Kass

OntoNaviERP: Ontology-Supported Navigation in ERP Software

Documentation

Martin Hepp and Andreas Wechselberger

Market Blended Insight: Modeling Propensity to Buy with the Semantic

WD . .

Manuel Salvadores, Landong Zuo, SM Hazzaz Imtiaz,
John Darlington, Nicholas Gibbins, Nigel R. Shadbolt, and
James Dobree

3. Applications from Home to Space

DogOnt - Ontology Modeling for Intelligent Domotic Environments

Dario Bonino and Fulvio Corno

XXI

790

XXII Table of Contents

Introducing IYOUIT e 804
Sebastian Boehm, Johan Koolwaaij, Marko Luther,
Bertrand Souville, Matthias Wagner, and Martin Wibbels

A Semantic Data Grid for Satellite Mission Quality Analysis 818
Reuben Wright, Manuel Sanchez-Gestido, Asuncion Gdomez-Pérez,
Maria S. Pérez-Herndndez, Rafael Gonzalez-Cabero, and
Oscar Corcho

4. Services and Infrastructure

A Process Catalog for Workflow Generation 833
Michael Wolverton, David Martin, Ian Harrison, and
Jerome Thomere

Inference Web in Action: Lightweight Use of the Proof Markup
Language 847

Paulo Pinheiro da Silva, Deborah McGuinness,
Nicholas Del Rio, and Li Ding

Supporting Ontology-Based Dynamic Property and Classification in
WebSphere Metadata Server............. ... 861
Shengping Liu, Yang Yang, Guotong Xie, Chen Wang, Feng Cao,
Cassio Dos Santos, Bob Schloss, Yue Pan, Kevin Shank, and
John Colgrave

Towards a Multimedia Content Marketplace Implementation Based on
TripleSpaces . . .« oot 875
David de Francisco, Lyndon JB Nizon, and Germdn Toro del Valle

ITIT Doctoral Consortium Track

Semantic Enrichment of Folksonomy Tagspaces 889
Sofia Angeletou

Contracting and Copyright Issues for Composite Semantic Services 895
Christian Baumann

Parallel Computation Techniques for Ontology Reasoning 901
Jirgen Bock

Towards Semantic Mapping for Casual Web Users.................... 907
Colm Conroy

Interactive Exploration of Heterogeneous Cultural Heritage
COlleCtiONS . . . vttt 914
Michiel Hildebrand

Table of Contents XXIII

End-User Assisted Ontology Evolution in Uncertain Domains. 920
Thomas Scharrenbach

Learning Methods in Multi-grained Query Answering 926
Philipp Sorg

Author Index 933

Involving Domain Experts in Authoring OWL
Ontologies”

Vania Dimitroval, Ronald Denauxl, Glen Hartz, Catherine Dolbearz,
Ian Holtz, and Anthony G. Cohn'

'School of Computing, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
2 Ordnance Survey Research, Romsey Rd, Southampton, SO16 4GU, UK
{vania, rdenaux, agc}@comp.leeds.ac.uk
{Glen.Hart,Catherine.Dolbear, Ian.Holt}@ordnancesurvey.co.uk

Abstract. The process of authoring ontologies requires the active involvement
of domain experts who should lead the process, as well as providing the rele-
vant conceptual knowledge. However, most domain experts lack knowledge
modelling skills and find it hard to follow logical notations in OWL. This paper
presents ROOQ, a tool that facilitates domain experts' definition of ontologies in
OWL by allowing them to author the ontology in a controlled natural language
called Rabbit. ROO guides users through the ontology construction process by
following a methodology geared towards domain experts’ involvement in on-
tology authoring, and exploiting intelligent user interfaces techniques. An
evaluation study has been conducted comparing ROO against another popular
ontology authoring tool. Participants were asked to create ontologies based on
hydrology and environment modelling scenarios related to real tasks at the
mapping agency of Great Britain. The study is discussed, focusing on the us-
ability and usefulness of the tool, and the quality of the resultant ontologies.

Keywords: Ontology Authoring, Controlled Natural Language Interfaces,
Evaluation of Ontology Building Tools, Geographical Ontologies.

1 Introduction

The need to construct ontologies — ranging from small domain ontologies to large
ontologies linked to legacy datasets— hinders the ability and willingness of organisa-
tions to apply Semantic Web (SW) technologies to large-scale data integration and
sharing initiatives [1,7,9]. This is due to the time and effort required to create ontolo-
gies [1,19]. Most ontology construction tools aggravate the situation because they are
designed to be used by specialists with appropriate knowledge engineering and logic
skills, but who may lack the necessary domain expertise to create the relevant ontolo-
gies. At present, it is knowledge engineers who usually drive the ontology authoring
process, which creates an extra layer of bureaucracy in the development cycle [19].

" The work reported here is part of a research project, called Confluence, funded by the Ord-
nance Survey and conducted by an interdisciplinary team from the University of Leeds and
Ordnance Survey. The main goal of the project is the development of the ontology construc-
tion tool ROO, presented in this paper.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 12008.
© Springer-Verlag Berlin Heidelberg 2008

2 V. Dimitrova et al.

Furthermore, this knowledge engineer led approach can hinder the ontology construc-
tion process because the domain expert and domain knowledge may become secon-
dary to the process of efficient knowledge modelling. This is especially true where
the domain expert has no understanding of the languages and tools used to construct
the ontology. The development of approaches that facilitate the engagement of do-
main experts in the ontology construction process can lead to a step change in the
deployment of the Semantic Web in the public and industrial sector.

Such an approach, drawn upon extensive experience in creating topographic on-
tologies at Ordnance Survey, the mapping agency of Great Britain, is described here.
Ordnance Survey is developing a topographic domain ontology to empower the inte-
gration and reuse of their heterogeneous topographic data sets with third party data
[9]. At the heart of Ordnance Survey’s ontology development process is the active
involvement of domain experts [20]. They construct conceptual ontologies that record
domain knowledge in a human readable form with appropriate formality using a con-
trolled language, Rabbit’ [14], that is translated into OWL DL [8].

The paper presents ROO (Rabbit to OWL Ontology authoring), a user-friendly tool
that guides the authoring of a conceptual ontology which is then converted to a logical
ontology in OWL. The distinctive characteristics of our approach are: (a) catering for
the needs of domain experts without knowledge engineering skills; (b) exploiting
techniques from intelligent user interfaces to assist the ontology construction process
by following an ontology authoring methodology (the current implementation follows
the methodology used at Ordnance Survey for developing several large ontologies
with the active involvement of domain experts [20]); (c) providing an intuitive inter-
face to enter knowledge constructs in Rabbit. We describe an experimental study that
examines the degree to which domain experts (i.e. not knowledge engineers) can
build ontologies® following real scenarios based on work at Ordnance Survey.

An analysis of related work (§2) positions ROO in the relevant SW research. §3
presents the ROO tool and gives illustrative examples of user interaction taken from
an experimental study reported in §4. §5 discusses the findings of the study, and out-
line implications for SW research.

2 Related Work

Recent developments of ontology authoring tools are increasingly recognising the
need to cater for users without knowledge engineering skills. Controlled language
(CL) interfaces have been provided for entering knowledge constructs in an intuitive
way close to Natural Language (NL) interface (see [11,23] for recent reviews). ROO
builds on the strengths and minimises the usability limitations of existing CL tools.
Positive usability aspects have been followed in the design of ROO, such as: look

! Named after Rabbit in Winnie the Pooh, who is actually cleverer than Owl.

2 Our expectation is not that domain experts will be able to completely author large complex
ontologies without assistance (although this might be for small ontologies), but to establish
that they can actively participate in the authoring process and construct significant portions of
the ontology themselves. This means that domain experts can capture much of the ontology in
a form that can be manipulated by knowledge engineers, who can in turn concentrate on the
“hard modelling”.

Involving Domain Experts in Authoring OWL Ontologies 3

ahead to provide suggestions by guessing what constructs the users might enter [24];
showing the parsed structure to help the user recognise correct sentence patterns
([10,21,26]); providing a flexible way to parse English sentences using robust lan-
guage technologies [8,11,24]; automatically translating to OWL ([17,4,11]); using
templates to facilitate the knowledge entering process [22,24]; maintaining a text-
based glossary describing parsed concepts and relationships [26]; and distributing the
CL tool as a Protégé plug-in [10]. At the same time, we have tried to minimise the
negative usability issues exhibited in existing CL tools, such as reliance on the user
having knowledge engineering skills to perform ontology authoring (all existing tools
suffer from this to an extent) and lack of immediate feedback and meaningful error
messages [10,11,26].

Although the goal of CL tools is to assist in entering knowledge constructs, the ex-
isting tools focus solely on the CL aspect - they do not aim to provide assistance for
the whole ontology construction process. In this vein, the HALO project’ makes an
important contribution by offering holistic and intuitive support at all stages of ontol-
ogy authoring [2]. This key design principle is also followed in ROO. HALO focuses
on providing advanced functionality based on the state-of-the-art SW technologies,
e.g. sophisticated NL parsing of source documents, graphical interface for entering
ontology constructs and rule-based queries. In contrast, ROO offers simpler function-
ality and follows the Ordnance Survey’s practice in ontology construction when tak-
ing design decisions. For example, we do not use information extraction techniques to
pull out domain concepts from documents, as domain experts normally know what the
key concepts are. Our experience shows that the major challenge is to perform ab-
straction and to a lesser degree reformulation (from NL to CL) and to formulate on-
tology constructs in a CL, which is the main focus in ROO. It provides intelligent
support for ontology definition by offering proactive guidance based on monitoring
domain experts’ activities when performing ontology construction steps. Essentially,
certain knowledge engineering expertise has been embedded into ROO to compensate
for the lack of such skills in domain experts. This ensures rigour and effectiveness of
the ontology development process, and can lead to better quality ontologies (ontology
“quality” is described further in §4.3). Furthermore, ROO aims to improve users’ un-
derstanding of the knowledge engineering process, and to gradually develop their
ontology modelling skills. The study presented in this paper is an initial examination
of some of these assumptions.

3 The ROO Tool

The design of ROO takes into account factors that may hinder the involvement of
domain experts in the ontology authoring process. As identified through Ordnance
Survey’s experience in ontology construction, they are: the need to follow a system-
atic methodology for capturing the knowledge of domain experts; the difficulty in
expressing knowledge constructs in a formal language; and the need to cater for the
lack of knowledge engineering skills in domain experts.

ROO follows the main steps in Kanga, the Ordnance Survey’s methodology for
involving domain experts in the authoring of conceptual ontologies [20]. It includes

3 www.projecthalo.com

4 V. Dimitrova et al.

the following steps: (a) identify the scope, purpose and other requirements of the on-
tology; (b) gather sources of knowledge (e.g. documents and external ontologies); (c)
define lists of concepts, relationship and instances supplied with NL descriptions; (d)
formalise core concepts and their relations in structured English sentences; (e) gener-
ate the OWL ontology. Once step (a) is complete, steps (b)-(d) are performed itera-
tively by domain experts, while step (e) is performed by ROO automatically. Note
that the focus in Kanga is to capture domain experts’ knowledge and encode it in
OWL, so it can be further examined, validated and improved by knowledge engineers
who can use ROO in combination with other ontology engineering tools, for example
querying tools [3,18,28,31].

The formalisation, step (d), uses a controlled natural language, called Rabbit, de-
veloped in response to a need for domain experts to be able to understand and author
ontologies [14]. Rabbit covers every construct in OWL 1.1 [14,8], allowing domain
experts to express sufficient detail to describe the domain.

ROO* is an open

. . ROO reuses Guards the
source tool distributed as |prowge user from Rabot 2| Parse
a Protégé 4 plugln [6] for managing interacting R Lﬁ;anguage Septence
. the OWL directly with rocessor

Lol Ontology OowL !
ROO extends the Protégé ‘ Convert Sentence Domdin Expert
4 user interface by simpli- J o OWL
fying it as much as possi- o
Y 5g L. P «<externaly E ——=— ROO Model $:| —(=— roo Léj
ble” - hldlng advanced Protége 4 OWL Manage | Manager Construgt | User Interface

options from the user and OWL Ontolagy . Ontolagy
. . ‘alidale
using what we believe to _ Ontology
. . Validates the quality of the
be less-confusing termi- | consincted ontologyand
. guides the user through the ~=~>| Kanga Methodology El
nology (e.g. instead Of |cntology construction process. Model

‘classes and properties’,

ROO shows ‘concepts’
p Fig. 1. UML 2.0 component diagram shows the architec-

and ‘relations’).
. tural elements, interfaces and inter-element connections in
In order to explain the 0

services provided by the

Rabbit Language Processor, the Kanga Methodology Model and the ROO Model
Manager (see Fig. 1), we show two typical user interactions with the system and ex-
plain how they are handled by ROOQO. The examples are taken from the experimental
study described in §4.

Domain experts edit the ontology using Rabbit sentences instead of directly edit-
ing OWL or the Manchester Syntax. Fig. 2 depicts how a domain expert enters sen-
tences in ROO using the Rabbit edifor. The user has entered two Rabbit sentences
defining the concept river. The first one (Every river transports
freshwater) is a valid Rabbit pattern but uses the concept freshwater which
is not defined in the ontology. The Rabbit Language Processor recognises that
freshwater is likely to be a domain concept and composes a corresponding error
message. The user has typed the second sentence (Every river flows into
one or more of a sea, a lake, or a river) while looking into the

Suggest Next Task

*ROO is built as part of the Confluence project. http://sourceforge.net/projects/confluence
> The default Protégé 4 GUI components are still available for the more advance users, but are
not used as a default in the ROO application.

Involving Domain Experts in Authoring OWL Ontologies 5

existing Rabbit patterns (shown by clicking on the Rabbit patterns tab). However,
the Rabbit pattern for non-exclusive OR is applied wrongly — instead of commas the
user should have used orﬁ, and the sentence uses a relationship flows into
which is not defined in the ontology. Corresponding error messages to help the user
are generated, as shown in Fig. 2. The user then corrects the errors by adding the
missing concept and relationship and correcting the Rabbit pattern. Every time the
user makes changes, the input is re-parsed and, if necessary, error messages are gen-
erated accordingly. When the input does not contain errors, the user confirms the sen-
tence. It is then translated into OWL by the Rabbit Language Processor, then
validated by the Kanga Methodology Manager’, and added to the ontology by the
ROO Model Manager.

Domain experts can also ask a “guide dog” in ROO to suggest tasks, which is a
“wizard”-like feature which monitors the state of the ontology and the user’s activities,
and suggests the most appropriate actions. Fig. 3 shows how the system handles these
requests. The user has already entered several concepts to the ontology. The user then
asks for a next task. The Kanga Methodology Model then derives a list of possible tasks
and sorts them according to the current ontology state and the user’s recent activity. In
Fig. 3, the user is prompted to enter Rabbit sentences for the concept freshwater
which was created with the previous concept definition of river (see Figure 2) but did
not yet give Rabbit definitions for it. Other task suggestions include reminding the user
to enter missing natural language descriptions or pointing at other previously entered
concepts which lack Rabbit definitions.

ROO Rabbit to OWL Ontology Authoring —(of x|

File Edt Reasoner Tools Refactor Tabs View Window Help

E & [@© ontongyizioemaoissow | @ | | E

| Scope and Purpose || Knowledge Sources | Concepts and Relations. |
=
@ |Bvery river transports freshwmter.

Exerx. xiver. [l ke 1 06 moxe.0f 2.0080.,.2.10k0...08. 3, KAVEE., ‘

«ROO Model
Manager»

Update

Ontology

«ROO User Interface»
Receive Rabbit Input

«Rabbit Language
Processor»
Parse

Bacteria

Catchment
Chemical Rabbit emors ()][Rabbit wamings @)][Rabbit Patterns|[Unsupported Rabbit Fattens
Ditch
Lake

CONCEPT Freshwater is not defined inthe ortology
Input ', could not be recognized as part of a valid sentence

[valid]

Man RELATICNSHPP flowslnto is not defined in the ontology
e Sentence 'Every river flows into 1 or more of a sea, a lake, or a river ' not recognized as
Rock =
o« i [o]
Sea
Sol
«Domain expert» N
fes et Every river is a kind of matural pathway.
ol List of Relations: flowsinto &
0 River is a concept.

«Rabbit Language
Processors»
Convert to OWL

«Kanga Methodology
Model»
Validate changes

'is made by’
Contains
Transports < e Dol

Fig. 2. State chart and screenshot showing how a Rabbit sentence is handled by ROO. The
parsed syntax elements are highlighted, and possible errors/suggestions are reported to the user.

® The correct Rabbit pattern is: Every river flows into 1 or more of a sea
or a lake or a river.

7 This includes checks whether the input is appropriate to the current stage of the ontology con-
struction; e.g. scope and purpose must be enterered before later stages can commence; Rabbit
definitions require existence of NL descriptions.

6 V. Dimitrova et al.

B ROO Rabbit to OWL Ontology Authoring =0
Fie Edt Reasoner Tools Refactor Tabs View Window Hefp

Ontology1210324180358 owl - E
[ignore suggestior] ﬂ > | [oridoay o | &]

© Erter rahbit sertences to define concept Freshwater
| Seops and Purpose | Knowledge Sources | ¢

Continue] [Finish]

«Domain expert» «Domain expert
Ask for suggestion Perform task

«Domain expert»
Handle Suggestion

sixlo] 5
[chdose task] Bacteria ——| ¢ Enter the nate
Catchment "¢ Erter the naturallanguage description of reiationship ishadeB
«ROO User Interfaces «ROO User Interfacen «ROO User Interfacen e
[Accept request) CGu\de user through task Show Next Task List e Show all 28 suggestions
\ Freshwater Lo

natural_language _description
“Freshwater is water containing no salt particles.

«Kanga Methodology Model»
| Calculate Next Task List

— Create Next
ire rules Task List

It exists in rivers, ice and underground springs
[Author: participant 16]"

Sort List
Based on Current
Application State

Fill rules
with current
Ontology data

(0]

s made by’
Contains

‘‘‘‘‘‘‘‘‘

Fig. 3. State chart and screenshot depicting how ROO handles the suggestion of next tasks

The development of ROO has been guided by regular usability tests with potential
users — domain experts in different domains. This has led to a fairly robust version
that has been evaluated following real scenarios at Ordnance Survey. This evaluation
is discussed in the rest of the paper.

4 Experimental Study

To assess the effectiveness of ROO, we conducted an experimental study following
the criteria for evaluating ontology tools in [15]. The study addressed three groups of
questions: (1) What is the interaction with the tool like? How usable is the tool? Can
domain experts without knowledge engineering skills create OWL ontologies with
ROO? (2) How well does ROO facilitate the ontology construction process? Do us-
ers develop ontology modelling skills as a result of the assistance the tool provides?
(3) What is the quality of the resultant ontologies produced with ROQO? Is the quality
influenced by assistance provided by the tool?

4.1 Experimental Design

The study followed a task-based, between-subjects experimental methodology to
compare ROO with a baseline system.

Baseline System. The study compares ROO with a similar tool that allows the user to
author in a CL. From the available CL tools for ontology authoring, ACEView for
Protégé [16] was chosen since the user interaction with it is the closest to the user
interaction with ROOQ: both tools extend Protégé as plug-ins, support text input in a
CL compatible with OWL-DL, provide error messages for sentence composition, and
produce an ontology in OWL?®. The main difference between ROO and ACEView is
that ROO offers assistance with the whole ontology authoring process (§3).

8 The other available CL ontology authoring tools are CLONE [11] and PENG [16]. They were
used during a pilot but discarded for the actual study. CLONE is more suitable for users with
some knowledge engineering skills, while the users in our study did not have such skills. The
interaction with PENG is pattern-based and is notably different from the ROO interface.

Involving Domain Experts in Authoring OWL Ontologies 7

Participants. The study involved 16 volunteers from the departments of Geography
(8 students) and Earth and Environment (8 students) at the University of Leeds. The
participants were chosen to closely resemble domain experts who may perform ontol-
ogy modelling tasks at Ordnance Survey (Hydrology) or the Environment Agency for
England and Wales (Flooding and Water Pollution). The main requirement for attend-
ing the study was to have knowledge and experience (confirmed with the modules
attended and practical work done) in Hydrology, for Geography students, and Flood-
ing and Water Pollution, for Environmental Studies students. In each domain, 4 par-
ticipants used ACEView and 4 used ROQ; this was assigned on a random basis. None
of the participants was familiar with ontologies or ontology construction tools. They
had not heard of RDF or OWL. None had previous background in encoding knowl-
edge and for most participants “structuring knowledge” meant writing reports/essays
in a structured way.

Scenarios. The study involved two ontology authoring scenarios.

Scenario 1 [Geography participants]: This scenario resembles ontology modelling
tasks performed by domain experts at Ordnance Survey to describe geographical fea-
tures whose spatial representations are included in Ordnance Survey’s OS Master-
Map®°. The participants were asked to describe several hydrology concepts: River,
River Stretch, River Bank, Ditch, Catch Drain, Balancing Pond, Ca-
nal and Reservoir. These concepts are included in a large Hydrology ontology'®
defined by Ordnance Survey. The Geography participants were familiar with OS
MasterMap®, which is used at the School of Geography at Leeds University.

Scenario 2 [Environmental Studies participants]: This scenario resembles ontology
modelling tasks performed by domain experts at one of Ordnance Survey’s customers
—the Environment Agency of England and Wales— who can use OS MasterMap® for
flooding and water pollution analysis. The participants were asked to describe:
River, Catchment, Flood Plain, Ditch, Water Pollution, Sediments,
Colloids, Land Use and Diffuse Pollution. These concepts were selected
from a list derived by an Ordnance Survey researcher interviewing an expert from the
Environment Agency as part of a project to scope a semantic data integration sce-
nario. Many of these concepts required references to hydrology features from OS
MasterMap® but the participants were unaware of this. None of the Environment
subjects had knowledge of OS MasterMap®. Ontologies for geography and environ-
ment were also produced by Ordnance Survey and were used as comparators with the
ontologies produced by the participants.

Procedure and Materials''. Depending on their background, the participants were
sent the corresponding list of concepts, and were asked to prepare brief textual de-
scriptions for these concepts by using specialised dictionaries or other sources. Each
session was conducted individually and lasted 2 hours. It included several steps.

Pre-study questionnaire [20 min] included a brief introduction to the study and
several questions to test the participants’ ontology modelling background.

° OS MasterMap® www.ordnancesurvey.co.uk/osmastermap/ is a nationally contiguous vector
map containing more than 450 million individual features down to street, address and indi-
vidual building level, spatial data to approximately 10cm accuracy.

10 www.ordnancesurvey.co.uk/ontology

' All materials are available from www.comp.leeds.ac.uk/confluence/study.html

8 V. Dimitrova et al.

Introduction to the scenario and training with the ontology authoring tool [10 min]
was given to each participant by an experimenter, describing the main parts of the
interface and entering of several definitions from a Building and Places'? ontology.
The examples used for the ACEView and ROO sessions were similar (the differences
came from the CL and the errors given by each tool). The training with ROO also
required entering the ontology’s scope and purpose and knowledge sources.

Interaction with the tool [60 min] The participants had to use the tool allocated to
them to describe the concepts following the descriptions they had prepared. Each ses-
sion was monitored by an experimenter who provided some general help when the
participants got stuck with the language. Help materials with printed examples of the
corresponding CL were provided. The interactions were logged and video recorded.
The experimenters kept notes of the user interaction.

Post-study questionnaire [20 min] included checking the participants’ ontology
modelling background (repeating questions from the pre-study questionnaire); a us-
ability questionnaire using a seven-point Likert scale; and open questions about bene-
fits, drawbacks, and future improvement of the tool used.

General impression and clarification [10 min] included a brief interview with each
participant about their general impression of the CL used, interaction with the tool,
and any additional aspects the participants wished to mention.

Data Collected. The following data was collected during the study: (a) Question-
naires — used for examining the usability of each tool and examining possible changes
in the participants’ understanding of ontology modelling; (b) Log data, video records
of the sessions, and experimenter’s notes — used for clarifying aspects of the interac-
tion with each tool; (c) Resultant OWL ontologies — the quality of these ontologies
was analysed following the O2 framework [12]. The data was analysed quantitatively
and qualitatively. The quantitative analysis used Mann-Whitney U test" for discrete
measurements and t-test for interval data.

4.2 Comparing the Interaction with ROO and ACEView

Interaction Patterns. Both tools have fairly simple interfaces and were easy to use.
The first quarter of the interaction was usually slower as the participants had to learn
to formulate sentences in the corresponding CL. During this time, the definition of the
first concept river (common for both scenarios) was completed. Both tools offer a
tab to show the CL errors, this was used extensively. Initially, most users did not real-
ise that the error messages refer to incorrect CL grammar that the computer could not
parse or translate into a logical form, rather than incorrect domain facts. From the
second quarter, the users established a routine to describe a concept, including:

1. Check the NL description for the currently entered concept and identify a state-
ment with knowledge to be encoded. The ACEView users had a printout of the de-
scriptions they had prepared, while the ROO users followed the NL descriptions
the tool prompted them to enter.

12
www.ordnancesurvey.co.uk/ontology.

13 Mann-Whitney U test is a powerful nonparametric test used as an alternative to the paramet-
ric t-test to compare two independent samples [27]. It is often used when the measurement is
weaker than interval scaling or the parametric assumptions are not met.

Involving Domain Experts in Authoring OWL Ontologies 9

2. Look for a CL pattern that matches the NL statement. The ACEView users used
only the printed list of CL examples provided, ROO users could, in addition, see
the available patterns within the tool, and they gradually moved to using this;

3. (Re)Formulate the NL statement in a CL pattern. This usually involved simplify-
ing the constructs or taking away unnecessary detail, e.g. simple patterns were
easily created, more complex patterns were normally not written correctly in the
first instance and required several iterations and checking the system feedback.

4. Check for error messages — if there are no error messages, continue with another
NL statement (i.e. go to step 1). When there are error messages, the users would
usually repeat steps 2-4. Some participants would be persist, reformulating the CL
statement until there were no errors (and it was translated to OWL), while others
would continue and leave the CL statement with errors (i.e. not encoded in OWL).
For both tools, the users were occupied mostly with steps 3 and 4 and would often

refer to step 2 for a quick check. Two of the eight ACEView users entered sentences

to describe all concepts from the given list (see scenarios), while none of the ROO
users managed to complete the descriptions; in most cases the last two concepts were
not defined. Table 1 summarises the main interaction problems.

Usability. Table 2 summarises the findings from the usability questionnaire. For both
tools, the users were positive. ROO was found to be significantly less frustrating than
ACEView, which may be due to the much more intuitive interface, much less confus-
ing error messages, and the help offered from the “guide dog”. The messages in ROO
were more helpful, the tool was less complex than ACEView, and users would be
more willing to use ROO again (note the very low significance).

Ontology Modelling Skills. The answers to six ontology modelling questions (cover-
ing the main steps and building blocks in conceptual models, definition of ontology,
concepts, and relations) in the pre- and post-study questionnaires were compared by

Table 1. Summary of the main interaction problems identified in the study

Problem Tool Explanation

Error ACEView ‘When the CL pattern entered was not recognised, the users would not always get informative
messages ROO error messages. In such cases, the users had to guess what may be misleading, e.g. ACEView:
lack detail. The sentence is not correct ACE syntax.

ROO: Sentence is not recognised as correct Rabbit sentence.

Error ACEView When the user entered sentences which could not be recognised, they sometimes received error
messages ROO messages that were misleading. ACEView messages included ??? to indicate unrecognised
confusing. parts in the sentence or referred to grammatical constructs which some users found hard to

follow. ROO gave at times misleading suggestions when the sentence was unrecognised.
Dealing with | ACEView Recognising a concept which includes a compound noun phrase (e.g. adjective-noun) can be a

adjectives ROO challenging problem. ACEView users often received the message “adjectives are not
and supported”, in which case they had to use hyphenation (see above problem).

compound ROO parses for compound noun phrases and in most cases could make helpful suggestions
noun about what the concept might be, e.g. natural waterway, man-made feature.
phrases However, when the compound nouns were not recognised and this led to confusing error

messages, €.g. natural body of water was not recognised as a possible concept.
Dealing with | ACEView The parsers in both tools could not recognise some specialised vocabulary which did not allow
a specialised | ROO entering certain concepts, such as: ACEView: sediment, irritation; ROO:
vocabulary watershed. ACEView deals with this by pre-entering classes. However, it would be hard to
predict in advance what phrases a user may enter. A more flexible way would be to allow the
user to enter a phrase which should be added to the vocabulary used by the NL parser.

Next task | ROO On several occasions, users ignored the task suggestions and commented that not all of them
suggestion were useful. E.g. ROO suggested that the participant enter definitions of secondary concepts,
not always such as man or bacteria The Kanga methodology discerns between core concepts and
useful secondary concepts. Only core concepts need to be formalised. However, the current ROO tool

does not discriminate between core and secondary concepts yet.

10 V. Dimitrova et al.

Table 2. Summary of the comparison of the usability of both tools (post-study questionnaire)

U (Mann-
Question ROO ACEView Whitney, P Significance
(1-Strongly disagree; 4-Neutral; 7-Strongly agree) median median 1-tail)
The error messages helped me write CL sentences 5 4.5 16.5 p<0.1 LOW:
The error messages were confusing 2 4.5 11.5 p<0.025 YES
The guide dog was helpful 5 — — — —
The guide dog suggestions were not easy to understand 2 — — — —
| did not follow the suggestions from guide dog 4 — — — —
The interaction was demanding 3 4 39 p>0.1 NO
| had no idea what | was doing 2 1.5 16 p>0.1 NO
It took me too long to compose what | wanted 4 3 21 p>0.1 NO
The interaction was intuitive 5 35 115 p<0.025 YES
The feedback was prompt and timely 5 4.5 24 p>0.1 NO
It was clear to me what to do in this tool 5 4.5 24 p>0.1 NO
The tool was frustrating 3 5 5.5 p<0.01 YES (HIGH)
The tool was unnecessary complex 2.5 3.5 18 p<0.1 LOW
I'd like to use the tool again 5 4 18.5 p=0.1 LOW

to examine whether the users’ ontology modelling skills had changed as a result of the
interaction with the tool. Two evaluators with a sound ontology background worked
independently and marked the users’ answers. The following scheme was applied to
each question: -1 (the understanding has worsened, e.g. because the user was con-
fused); 0 (no change to the user’s understanding on the questions), +1 (correct aspects
are added but gaps exist), +2 (the understanding is improved, and now is correct and
complete). The marker compared their results and the discrepancies were clarified in a
discussion. The maximum score, if a user had not had any ontology modelling knowl-
edge and has become an expert, would have been 12, while the worst score meaning a
user was an expert and became totally confused would have been -6.

The ROO users scored significantly higher than the ACE users - ACEView score
mean 0.38, STDEV 2.97; ROO score mean 5, STDEV 2.78; U (Mann-Whitney)=_8.5,
p<0.01. This shows that the users’ understanding in ontology modelling improves
significantly more when using ROO than when using ACEView.

4.3 Quality of the Resultant Ontologies

The resultant ontologies were analysed following the ontology evaluation framework
in [12] considering structural, functional, and usability ontology measures.

Ontology Structural Measures. Since the size of the ontologies is limited, we have
used fairly simple structural metrics based on [29], calculated by Protégé 4'*.
There are no sig-

nificant differences Table 3. Summary of ontology structural measures

in the structural Averags
ot Average Subclass
characteristics of the Average Properies Axiom per
. Average Object Relative to Average Class
OntOIOgICS Createdv Class Property number of Annotations (Inheritance
: : Count Count Classes per Entity Richness)
Wlth exceptlon to ROO 21.875 8.250 0.367 2.625 0.634
annotations per en- ACE 28.125 11.875 0.420 0.582 0.877
. . p (t-test) 0.263 0.000 0.095
tity, as shown in U (Mann-
Whit 19.5 215
Table 3. o (M
Whitney) 0.104 0.147

!4 We also attempted deeper graph-based structural metrics with the Protégé 3 plugin OntoCAT
[5] but it could not properly analyse the produced ontologies due to version compatibility.

Involving Domain Experts in Authoring OWL Ontologies 11

The results show that ontologies built with ROO have a significantly better read-
ability than ontologies built with ACEView. Both systems store the entered sentences
as annotations in the ontology. Since both Rabbit and ACE are quite readable for
humans, these annotations can be used to understand the meaning of the OWL enti-
ties. The main reason why ROO ontologies are more readable is that ROO encour-
ages users to provide additionally natural language descriptions for both concepts and
relationships. When Rabbit sentences are translated and new classes and properties
are added to the ontology, an appropriate rdf : comment is added containing the
Rabbit sentence, with an rdf : label containing the Rabbit concept name. In con-
trast, ACEView does not add annotations when classes or properties are added.

We measured inheritance richness based on OntoQA[29]. ACEView ontologies
had higher inheritance richness (Table 3), i.e. the classes built with ACEView had
more connections to other classes. However, the functional measures (see Table 4
below) indicate that ACEView ontologies were more tangled than ROO ontologies.
Domain experts seemed slightly more productive using ACEView than using ROO
but the Mann-Whitney U-test does not provide conclusive significance.

Ontology Functional Measures. A domain expert who is also a knowledge engi-
neer"” at Ordnance Survey produced two benchmark ontologies to quantify the fit-
ness-for-purpose of the participants’ ontologies. A scoring system was devised:

+1 point for each axiom produced by the participant ontology that exactly
matched'® an axiom from the benchmark ontology;

+1 point for each additional valid axiom, i.e. axioms that were considered to be
valid even though an equivalent did not exist in the benchmark;

-1 point deducted for each axiom in the benchmark but absent the user’s ontology;

-1 point deducted for any axiom containing a modelling error.

The participants did not define axioms for all the concepts they were given. Where
this was the case, we did not count any metrics for that concept for that participant.
We only scored against axioms belonging to the concepts in the concept list given to
the participants. The total score for each ontology was therefore the sum of the points
added or deducted.

Table 4. Summary of the scores from the Subjectively, the ACEView ontologies

functional analysis of the resultant ontologies appeared to be more complete, whereas
Scenario ROO ACEView U the ROO ontologies appeared to be
(mean) (mean) .
Geomany 58 3 50D better . structured and with fewer
Environment 3.75 -5 0 (p<0.025) modelllng CITOrS.
Combined 2.5 -4.25 9 (p<0.1)

The data for each set of ontologies was analysed statistically using the Mann Whit-
ney U test (Table 4). At a 95% confidence level this indicates that there is no signifi-
cant difference between the sets of data collected for the geography ontologies but
that ROO out-performs ACEView with respect to the environmental ontologies and
overall (geography and environment combined). The weakest participant by far was a

15 We were lucky that such an expert existed, making it possible to examine in depth the func-
tional dimensions of the ontology.
'S Some interpretation was required owing to variances in terminology.

12 V. Dimitrova et al.

ROO geographer who despite only recording axioms for three concepts achieved a
negative overall score, but this alone would not have accounted for the overall differ-
ences even given the small sample sizes.

ACEView users tended to describe more concepts and add more axioms (Table 4).
This applied to both the “in scope” concepts and also those out of scope. Some of the
latter group were secondary concepts necessary to define the core concepts — for ex-
ample water body used to super class river and reservoir. But others were
irrelevant clutter, such as Scotland, and it was not clear why they were added.

ACEView users did better than ROO in getting exact axiom matches with the
benchmark ontologies (with a mean that was 1.5 matches higher per person). They
also had a higher mean for providing additional axioms, with an average of three
more per person. However, ACEView users did very much worse when it came to the
number of errors they made, that is the number of axioms that were deemed to be in-
correct, averaging 8 errors per person more that ROO users. Even taking into account
that ACEView users enter more axioms proportionately they enter 0.4 errors per
axiom, compared to 0.13 errors for ROO users. Erroneous axioms were not included
in the other axiom counts. If included, it would show that ACEView users are even
more prolific — it seems to be a case of quantity over quality. Table 5 summarises the
modelling problems that occurred.

Ontology Usability. None of the ontologies as produced would have been usable
without modification. This is unsurprising given the fact that the users were essen-
tially untrained in the language and knowledge modelling techniques. No user pro-
duced an ontology that provided a complete description of the concepts, but again
this is unsurprising given the experience levels and time available. In simple terms
the ROO ontologies were less complete, containing fewer concepts and fewer

Table 5. Types of modelling problems found with the functional analysis of ontologies

Problem Tool Explanation
Multiple ACEView This was a very common error in ACE ontologies. In the worst case Drainage had five
tangled ROO separate immediate simple super classes: Artificial Object, Depression,

inheritance | (muchless | Drainage, Long Trenchand Narrow Trench. An error was scored for each extra
frequently) | entanglement so in the case above a score of 4 would have been recorded. The axioms would
have been included in the overall total of axioms. Although also occurring in ROO
ontologies, the rate and degree of multiple inheritance was much lower.

Definition ACEView There were a number of occasions where a class was recorded as an instance.

of an ROO ACEView example: in one ontology Flood-Plain is declared to be an individual of class
instance sediment -deposition. Inexamining the ACE log file the first mention of £1ood-
instead of plain is the sentence: Flood-plain borders a river.

a class There is no use of every in the sentence so ACE assumes Flood-Plain is an individual,

and so records the assertion Flood-plain is an individual of the anonymous class
“borders some River”. The next correct sentence: Flood-plain is a
sediment-deposition adds Flood-plain as an individual of the class
sediment-deposition.

ROO example: user entered Flood Plain is a Land Area rather than Flood
Plain is a kind of Land Area.

Generation | ACEView ACEView also appears to generate “random” individuals. For example the sentence:

of Scotland contains a farm and contains a forest and contains
‘random’ a reservoir.
individuals Generates three individuals. It is probable that what the user meant was that Scotland

(also an individual) contains some farms, forests and reservoirs. What is even less clear is
why the user felt it necessary to add this out of scope information at all.

Repeated ACEView | Inanumber of cases ACEView users tended to enter axioms that were similar to axioms
Knowledge | ROO_ already entered. An example is: Every flood-plain experiences flooding
(much less | and Every flood-plain experiences periodic-flooding. Such
frequently) | repetitiveness also occurred in the ROO ontologies, but much less frequently.

Involving Domain Experts in Authoring OWL Ontologies 13

axioms. However, the greater number of modelling errors in the ACEView ontolo-
gies, combined with the amount of unnecessary clutter in terms of out-of-scope
concepts and axioms would indicate that it would take longer to get them to a us-
able state. ROO ontologies were certainly better annotated and this helped signifi-
cantly in terms of evaluating the usability of ontologies for a certain purpose.

5 Discussion and Conclusions

To the best of our knowledge, the study presented here is the first attempt to evaluate
how domain experts without knowledge engineering skills can use CL-based tools to
complete ontology modelling tasks close to real scenarios (existing studies have either
used people with knowledge engineering skills and simple tasks [11] or looked into
recognising CL constructs [14]). The results enable us to address key questions con-
cerning the authoring of ontologies where a domain expert takes a central role: Can
we use CL to involve domain experts in ontology construction? To what degree can a
tool support help the authoring process and substitute for a knowledge engineer?
What further support is needed?

Involvement of Domain Experts. Accepting that the users who participated in our
study had minimal training in the languages and the tools, it is fair to conclude from
the resultant ontologies that domain experts alone, even with tool assistance, would be
unable to author anything more than simple ontologies without some formal training.
Nevertheless, almost a quarter of the participants entered axioms that matched
roughly 50% of the axioms in the benchmark ontologies. This would indicate that
with even a minimal amount of training these domain experts could become quite
competent as authors. It is always likely that for complex ontologies knowledge engi-
neering skills will be required. However, if the domain expert is able to author most
of the ontology, they will be more easily able to engage with the knowledge engineer
who can then express the more difficult aspects. Furthermore, the study indicated that
if methodical, intelligent support for ontology authoring is embedded in the authoring
tool, domain experts can gain an understanding of the ontology modelling process,
that can gradually lead to the development of knowledge engineering skills.

The study confirmed that domain experts are able to start authoring relatively
quickly and without the need to learn obscure terminology and esoteric languages
such as OWL. In fact, it is unlikely that the study would have been possible if OWL
had been used rather than Rabbit (or ACE) given the need to provide training in
OWL. That no real training was provided to participants is, at the very least, indica-
tive of the benefits to domain experts in using intuitive CL interfaces. We are confi-
dent that a central involvement by domain experts in the authoring process is not
possible if the only way of expressing the ontology is in a logic-based language ex-
pressed using esoteric terms and symbols, without a lengthy process of turning the
domain expert into a fully fledged knowledge engineer, something that few domain
experts have the time or inclination to do.

Existing Tool Support. The various processes involved in authoring an ontology
include: (a) identification of concepts and relationships (classes and properties); (b)
development of an overall structure for the ontology; (c) capturing of axioms for each

14 V. Dimitrova et al.

concept; (d) development of patterns to express certain model constructs; (e) optimi-
sation and rationalisation; (f) testing and validation; (g) documentation. This list is not
exhaustive, nor does it attempt to imply a priority of one process over another. ROO
and ACEView currently provide degrees of support for (a), (c), (d) and (g). The study
gives strong evidence that offering intuitive error messages, making users aware of
the knowledge constructs they are creating, and offering methodical guidance can
have a positive effect on the usability and efficacy of ontology construction tools. It
also indicates that this additional functionality tailored to domain experts (as in ROO)
can have impact on the quality of the resultant ontologies - domain experts make
fewer errors, detect unwanted concepts and relationships, avoid repetition, and docu-
ment the ontology more consistently and in more detail.

Required Tool Support. The interaction with both tools suggests that additional support
should be provided. This may have implications for ontology authoring in general, in-
cluding the newly emerging collaborative ontology editing environments [21] where
support is even more critical. Patterns of modelling errors can be recognised and pointed
out with the error message or the task guidance (the guide dog in ROO). For instance,
definition of an instance instead of a class can be detected based on the CL pattern (e.g.
is avsis a kind of in Rabbit), as the error can turn the OWL ontology from
OWL-DL to OWL Full; likely repetition or redundancy can be recognised by using
synonyms (e.g. is part of, consists of, contains, comprises) and indi-
cated in a ‘warning’ message; both multiple tangled inheritance and isolated classes can
be detected with structural analysis and warnings generated or advice given. The study
also indicated that flexible CL parsing should be provided, such as recognising similarity
between NL and CL sentences (e.g. no need to ask the user to specify a determiner, as in
ACEView, as this is not normally needed in a correct NL sentence; missing ‘Every’ can
be spotted easily and pointed out in a meaningful error message); recognising compound
noun phrases and the underlying structure (e.g. the parsers can recognise that natural
body of water may require two concepts linked with subsumption, so the user may
be asked whether natural body of water is a kind of body of water); or
enabling the users to add missing specialised terminology (e.g. sediment) that can then
be considered by the parser in future sentences.

Although there is evidence that the guidance offered in ROO is beneficial, it has to
be improved further. For instance, the suggestions should take into account the cur-
rent task better to avoid distracting and confusing the user (e.g. a task context could
be retained in ROO and only activities/concepts relevant to that context would be
suggested). The ontology status should be better monitored more closely and potential
limitations pointed out (e.g. some of the structural metrics can indicate unpopulated
parts of the ontology). Lastly, more proactive help should be offered (instead of wait-
ing for the user to click on the guide dog, certain suggestions could be brought to the
user’s attention automatically). The study confirmed that systematic support based on
an ontology methodology is beneficial. The current implementation of ROO can be
considered as a proof of concept that a methodology can be embedded in the planning
process. An interesting research question would be to define ontology construction
methodologies explicitly, e.g. by using an ontology and rules. For instance, ROO
could be easily adapted to work with methodologies which Kanga is similar to, e.g.
Uschold and King’s method [30] or METHONTOLOGY [13]. It would then be

Involving Domain Experts in Authoring OWL Ontologies 15

possible to choose the most appropriate methodology for the current ontology author-
ing task, or to compare the effect of different methodologies.

At the time of writing ROO implements only the core Rabbit constructs. We in-
tend to complete all Rabbit constructs and implement some of the additional support
outlined above. This will give us a much more robust and usable tool, that can then be
the basis for a larger user study in real settings, facilitating further examination of the
extent to which domain experts can be involved in ontology authoring.

Acknowledgements. The authors would like to thank Kaarel Kaljurand, for kindly
providing us with the ACEView tool. Thanks go to Paula Engelbrecht for sharing her
material on the Environment Agency and Ilaria Corda for helping with the initial de-
sign of ROO. Special thanks go to the participants in the experimental study.

References

1. Alani, H., Dupplaw, D., Sheridan, J., O’Hara, K., Darlington, J., Shadbolt, N., Tullo, C.:
Unlocking the Potential of Public Sector Information with Semantic Web Technology. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-1., Nixon, L., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825. Springer, Heidelberg (2007)

2. Angele, J., Moench, E., Oppermann, H., Staab, S., Wenke, D.: Ontology-Based Query and
Answering in Chemistry: OntoNova @ Project Halo. In: Fensel, D., Sycara, K.P.,
Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870. Springer, Heidelberg (2003)

3. Cimiano, P.: ORAKEL: A natural language interface to an F-logic knowledge base. In:
Proceedings of Natural Language Processing and Information Systems, pp. 401-406
(2004)

4. Cregan, A., Meyer, T.: Sydney OWL Syntax - towards a Controlled Natural Language
Syntax for OWL 1.1. In: Proceedings of OWLED 2007 (2007)

5. Cross, V., Pal, V.. An ontology analysis tool. International Journal of General
Systems 37(1), 17-44 (2008)

6. Denaux, R., Holt, L., Dimitrova, V., Dolbear, C., Cohn, A.G.: Supporting the construction
of conceptual ontologies with the ROO tool. In: OWLED 2008 (2008)

7. Dimitrov, D.A., Heflin, J., Qasem, A., Wang, N.: Information Integration Via an End-to-
End Distributed Semantic Web System. In: Cruz, 1., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 764-777. Springer, Heidelberg (2006)

8. Dolbear, C., Hart, G., Goodwin, J., Zhou, S., Kovacs, K.: The Rabbit language:
description, syntax and conversion to OWL. Ordnance Survey Research Labs Techn. Rep.
IRI-0004 (2007)

9. Dolbear, C., Hart, G.: Combining spatial and semantic queries into spatial databases. In:
Cruz, L., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

10. Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English meets the
challenges of knowledge representation, reasoning, interoperability and user interfaces. In:
Proceedings of FLAIRS 2006 (2006)

11. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.: CLOnE:
Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S., Noy, N,
Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825.
Springer, Heidelberg (2007)

16

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

V. Dimitrova et al.

Gangemi, Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and
validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011. Springer,
Heidelberg (2006)

Gomez-Perez, A., Fernandez-Lopez, M., Juristo, N.: Methontology: from ontological art
toward ontological engineering. In: Proceedings of AAAI 1997 Spring Symposium Series
on Ontological Engineering, pp. 33—40 (1997)

Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a Control Natural Language for
Authoring Ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, Springer, Heidelberg (2008)

Hartman, J., Spyns, P., Giboin, A., Maynard, D., Cuel, R., Sudrez-Figueroa, M., Sure, Y.:
Methods for ontology evaluation, Knowledge Web Deliverable, D1.2.3 (2004)

Kaljuran, K.: Attempto Controlled English as a Semantic Web Language. PhD thesis,
Faculty of Mathematics and Computer Science, University of Tartu (2007)

. Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and Attempto

Controlled English. In: Workshop on Principles and Practice of Semantic Web Reasoning
(2006)

Kaufmann, E., Bernstein, A., Fischer, L.: NLP-Reduce: A “naive” but domain-independent
natural language interface for querying ontologies. In: Franconi, E., Kifer, M., May, W.
(eds.) ESWC 2007. LNCS, vol. 4519. Springer, Heidelberg (2007)

Klischewski, R.: Ontologies for e-document management in public administration.
Business Process Management Journal 12, 34—47 (2006)

Kovacs, K., Dolbear, C., Hart, G., Goodwin, J., Mizen, H.: A Methodology for Building
Conceptual Domain Ontologies. Ordnance Survey Research Labs Techn. Report IRI-0002
(2006)

Kuhn, T.: AceWiki: A Natural and Expressive Semantic Wiki. In: Proceedings of
Workshop on Semantic Web User Interaction, held at CHI 2008 (2008)

Lopez, V., Sabou, M., Motta, E.: PowerMap: Mapping the Semantic Web on the Fly. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011. Springer, Heidelberg (2006)
Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A comparison of three
controlled natural languages for OWL 1.1. In: Proc. of OWLED 2008 workshop (2008)
Schwitter, R.: A. Ljungberg and D Hood, ECOLE - A Look-ahead Editor for a Controlled
Language. In: Proc. of EAMT-CLAW 2003, pp. 141-150 (2003)

Schwitter, R.: English as a formal specification language. In: Hameurlain, A., Cicchetti,
R., Traunmiiller, R. (eds.) DEXA 2002. LNCS, vol. 2453. Springer, Heidelberg (2002)
Schwitter, R.: Representing Knowledge in Controlled Natural Language: A Case Study.
In: Negoita, M.G.R., Howlett, J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213,
pp- 711-717. Springer, Heidelberg (2004)

Siegel, S., Castellan, J.N.: Nonparametric Statistics for the Behavioral Scences, 2nd edn.
McGraw-Hill, New York (1988)

Tablan, V., Damljanovic, D., Bontcheva, K.: A natural language query interface to
structured information. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021. Springer, Heidelberg (2008)

Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: Ontoqa:Metric-based
ontology quality analysis. In: Proc. of W. on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources (2006)

Uschold, U., King, M.: Towards and methodology for building ontologies. In: Workshop
on Basic Ontological Issues in Knowledge Sharing, held at IICAI 1995 (1995)

Wang, C., Xiong, M., Zhou, Q., Yu, Y.: PANTO: A Portable Natural Language Interface
to Ontologies. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519.
Springer, Heidelberg (2007)

Supporting Collaborative Ontology Development in
Protégé

Tania Tudorache, Natalya F. Noy, Samson Tu, and Mark A. Musen

Stanford University, Stanford, CA 94305, US
{tudorache, noy, tu, musen}@stanford.edu

Abstract. Ontologies are becoming so large in their coverage that no single
person or a small group of people can develop them effectively and ontology
development becomes a community-based enterprise. In this paper, we discuss
requirements for supporting collaborative ontology development and present Col-
laborative Protégé—a tool that supports many of these requirements, such as dis-
cussions integrated with ontology-editing process, chats, and annotations of
changes and ontology components. We have evaluated Collaborative Protégé in
the context of ontology development in an ongoing large-scale biomedical project
that actively uses ontologies at the VA Palo Alto Healthcare System. Users have
found the new tool effective as an environment for carrying out discussions and
for recording references for the information sources and design rationale.

1 Ontology Development Becomes Collaborative

Recent developments are dramatically changing the way that scientists are building
ontologies. First, as ontologies are becoming commonplace within many scientific do-
mains, such as biomedicine, they are being developed collaboratively by increasingly
large groups of scientists. Second, ontologies are becoming so large in their coverage
(e.g., NCI Thesaurus with 80K concepts) that no one user or small group of people can
develop them effectively. Hence, organizations such as the NCI Center for Bioinfor-
matics “outsource” some of their ontology development to the scientific community at
large. Third, in the last one or two years, many users have become quite familiar and
comfortable with the concept of user-contributed content, both in their personal and
professional lives (cf. Web 2.0). Thus, domain experts need tools that would support
collaborative ontology development and would include collaboration as an integral part
of the ontology development itself.

Researchers are only now beginning to develop such tools. Last year, tool devel-
opers were invited to contribute their tools for collaborative construction of structured
knowledge (which included not only ontologies, but also any structured data) to the
CKC Challenge, which brought together developers and users in order to examine the
state-of-the-art and to understand the requirements for new tools [IE]. In general, the
participants in the CKC Challenge agreed on several key points. First, the notion of
collaborative development of ontologies and most of the tool support was in its in-
fancy. Second, the spectrum of tools even in the relatively small set of the challenge
participants (from tools to organize tags in a hierarchy to full-fledged ontology edi-
tors) demonstrated that no single tool is likely to fill the niche completely. Third, the

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 17 2008.
(© Springer-Verlag Berlin Heidelberg 2008

18 T. Tudorache et al.

requirements for such tools to support collaborative development in any specific set-
ting were still poorly understood. The challenge participants started identifying these
requirements. Starting with the initial set of requirements identified as the result of the
CKC workshop, we continued the requirements-gathering phase in the context of ex-
tending the Protégé ontology editor to support collaborative ontology development. To
gather specific requirements, we conducted interviews with representatives of several
groups that currently use Protégé for ontology development and that were trying to
adopt a more formal process for development. These projects included the development
of the NCI Thesaurus [[17], the ontologies for the ATHENA-DSS project at the VA Palo
Alto Healthcare System (7], the Ontology of Biomedical Investigations (OBI) 2], the
RadLex ontology for annotating radiological images (141, and many others. As the re-
sult of this process, we collected a set of requirements for an ontology editor supporting
collaboration. Note that we focused on the projects that need a full-fledged ontology
editor and where ontologies are fairly rich in structure and large in size. For exam-
ple, the NCI Thesaurus is an OWL DL ontology with more than 80K classes, several
thousand of which are defined classes. Both RadLex and ATHENA-DSS ontologies are
frame-based ontologies that use different types of constraints on properties extensively.
We then developed Collaborative Protégé by extending the Protégé tool with a set of
features to support these requirements. We have performed the formative evaluation of
Collaborative Protégé in several different projects in order to evaluate the usability of
the tool and to understand what users like and do not like about it, how they use it, and
what other features they need to support their work.
More specifically, this paper makes the following contributions:

— We identify a set of requirements for developing expressive ontologies and know-
ledge bases collaboratively (Section[2)).

— We present Collaborative Protégé—an ontology editor that supports collaboration
through integration of features such as discussions, chats, and annotations in the
ontology editor (Sections][5 and [6).

— We perform the formative evaluation of Collaborative Protégé in the context of rep-
resenting formally clinical practice guidelines in the ATHENA-DSS project (Sec-
tions[7] [8] and [9).

2 Requirements for Support of Collaborative Ontology
Development

We have identified our requirements for tool support for collaborative ontology devel-
opment through interviews with many institutional Protégé users. The requirements that
we identified significantly extend the set of requirements from the CKC workshop, and
focus on the requirements of ontology developers for domains such as biomedicine.
These developers are usually domain experts rather than knowledge engineers.

In most of these projects, users have already used Protégé in a client—server mode
that enabled distributed users to edit the ontology simultaneously, immediately seeing
the changes that others make. Thus, we focused on the features that would explicitly
support collaboration. Furthermore, by the nature of projects already having chosen

Supporting Collaborative Ontology Development in Protégé 19

Protégé for their ontology development, most of them had to work with expressive on-
tologies and knowledge bases. In some cases, users worked collaboratively to extend
the ontologies themselves (e.g., the NCI Thesaurus or OBI), and in others they addi-
tionally used an expressive ontology to create a knowledge base of classes and instances
(e.g., ATHENA-DSS). The overarching theme of these interviews was the disconnect
between the produced ontology on the one hand and all the thought and discussion that
went into producing this artifact on the other hand. The former was captured in Protégé,
but the latter was captured in myriads of email messages, forum posts, phone conver-
sations, and MS Access databases. When someone browsed the ontology, it was often
impossible to understand the rationale that went into the design decisions, to find which
references were relevant, to find the external resources that informed the modeling deci-
sions. Conversely, when developers read a mailing list post discussing a modeling issue,
they do not see the context for that post.

The specific requirements for supporting collaborative ontology development that
our users identified included the following:

Integration of discussions and annotations in ontology development. Almost by defini-
tion, an ontology is an artifact that requires its authors to reach consensus. At the same
time, our experience demonstrates that developing an ontology is not a straightforward
task and the developers can disagree on the best way to model concepts in the ontology
or, in fact, on which concepts to model. Thus, tools that support discussion, such as
forums and chats, are essential. However, these discussions happen in email messages
and similar venues and are completely separated from the resulting artifact. For exam-
ple, one of our collaborators (the OBI developers) reported recently that they found
themselves in a heated discussion on the definition of a specific term (namely, analyte),
something they thought they have resolved several months before. However, that dis-
cussion was not captured in the class definition and was not available when the question
arose again. In fact, linking interactions among users and their comments and annota-
tions directly to the artifacts they are producing, carries several advantages. First, when
browsing the ontology later, developers and users can understand better why certain de-
sign decisions were made, what alternatives were considered, which group advocated a
certain position, and so on. Second, when carrying out the discussion itself, if it is inte-
grated in the development tool, the participants can immediately see the context for the
components being discussed, they can examine the corresponding definitions and rela-
tions. Thus, the requirement for integrating discussion tools into ontology development
environment is two-fold: Make the discussions accessible from the ontology compo-
nents that are being discussed and make the ontology components accessible when one
examines or writes a discussion message.

Support for various levels of expressiveness. The projects that use Protégé for collab-
orative development have rather expressive ontologies. For instance, one often comes
across defined classes, complex restrictions, with intersections, in class definitions for
the NCI Thesaurus. Thus, in the settings of these biomedical projects that heavily rely
on ontologies, the collaborative version of the tools must ultimately have the same ex-
pressive power as a stand-alone ontology editor. It must support editing both ontology
classes and instances.

20 T. Tudorache et al.

User management and provenance of information. With multiple authors contributing
to the ontology and the corresponding discussion, it is critical for users to understand
where information is coming from. Thus, users must be able to see who makes specific
changes and when, who creates a new proposal for change, who votes on it, and so
on. This information must also be searchable. One must be able to find all changes or
comments made by a specific user, or all recent changes and comments.

Scalability, reliability, and robustness. The traditional requirements of using tools in
production systems include scalability (both in the size of ontologies and in the number
of users), reliability (domain experts cannot afford to loose their data), and robustness
(ontology-development tools should be no less robust than other tools that domain ex-
perts use). While several prototypes of collaborative tools have appeared recently, our
experience shows that domain experts are usually reluctant to try a new tool until they
are convinced the tools is ready to be used in production environment. Ontology devel-
opment is not their primary task and they need tools that would help them perform this
task quickly and reliably.

Access control. We often hear from our users who develop ontologies collaboratively
that one of the features that all ontology-development tools largely lack today is access
control. Today, for the most part, any user with writing privileges can edit anything in an
ontology. However, users need to have more fine-grained control, particularly in the de-
velopment of large ontologies. For example, users with expertise in an area represented
by some part of an ontology should be able to edit that part, but may be able only to
browse other parts or link to them. In fact, many ontology-development projects today
maintain separation between what different users can do: For instance, some users can
make proposals for changes but not make the changes themselves; others can comment
on these proposal, but not create new ones; another group of users can affect the changes
in the ontology based on the discussion; yet others can perform quality control by re-
viewing and approving the changes. We need to extend access-control policies with a
more detailed model of user roles and privileges [EI]. Because in ontologies concept de-
finitions are often intertwined and a change in one part can affect definitions in another
part, making such separation is far from trivial.

Workflow support. Many collaborative development projects have specific workflows
associated with making changes. For example, there is a formal workflow for devel-
opment of ontologies for the Food and Agriculture Organization (FAO) of the United
Nations in the NeOn project [9]. The DILIGENT methodology for collaborative devel-
opment (191, which focuses on formalizing the argumentation process, has been used
in several European projects. A workflow specification may include different tasks that
editors are charged with; the process for proposing a change and reaching consensus;
roles that different users play, and so on. We are only beginning to understand different
workflow models that collaborative ontology development requires [5]. Flexible support
for these workflows must be an integral part of tools for collaborative development.

Synchronous and asynchronous access to shared ontologies. Depending on the size
of the group and the complexity of the ontology, users might prefer synchronous or
asynchronous editing [16]. In some of the projects we studied, users wanted to have

Supporting Collaborative Ontology Development in Protégé 21

their changes seen by everyone as soon as they make them, without the additional step of
“checking in” their changes. In other cases, users preferred to have their own “sandbox”
to test out the changes they are proposing before sharing them with everyone.

The core Protégé system supports some of the requirements listed here. Specifically,
Protégé provides support for various levels of expressiveness, user management and
provenance information, access control, and synchronous access to ontologies. It also
addresses the requirement for scalability, reliability, and robustness. We describe work-
flow support elsewhere [IE]. In this paper, we focus on the support for integration of
discussion and annotations with ontology-development environment.

3 Related Work

A number of ontology editors support some aspects of collaborative development. For
instance, OntoWiki [1] is a web-based ontology and instance editor that provides such
capabilities as history of changes and ratings of ontology components. OntoWiki pro-
vides different views on instance data (e.g., a map view for geographical data or a
calendar view for data containing dates). OntoWiki focuses on instance acquisition
and provides only rudimentary capabilities for ontology editing. The Hozo ontology
editor [@] enables asynchronous development of ontologies that are subdivided into
multiple inter-connected modules. A developer checks out and locks a specific module,
edits it locally, and then checks it back in. If the ontology is not modularized, however,
a developer must lock the whole ontology preventing others from editing it while he
makes his change—an approach that may not be practical in many circumstances.

Several wiki-based environments support editing ontologies and instance data. The
adaptation of the wiki environments that are particularly suited for ontology editing usu-
ally support a specific editing workflow. For example, a LexWiki platform developed
at the Mayo Clinic, which is based on Semantic MediaWiki, currently is at the core of
community-based development of BiomedGT[] BiomedGT is a terminology from the
NCI Center for Bioinformatics (the same group that develops the NCI Thesaurus). The
goal of BiomedGT is to enable the wider biomedical research community to participate
directly and collaboratively in extending and refining the terminology. LexWiki en-
ables users to browse an ontology, to make comments or to propose changes to (usually
text-based) definitions. The BiomedGT curators with the privileges to make changes
then open this annotated ontology in Protégé and perform the actual edits there. Wikis
provide a natural forum for discussions, and the provenance information for suggested
changes is easy to archive. Wikis, however, are not intended for ontology development
and users cannot easily edit class definitions using this kind of framework. For example,
in BiomedGT, curators must switch to Protégé to make the actual changes.

The coefficientMakna and Cicero tools (also based on wikis) implement the DILI-
GENT methodology for collaborative development [@,]. The DILIGENT workflow
focuses on the process of argumentation. The users discuss issues, which are usually
specified at the ontology level (e.g., how should a particular classification be structured).
The users present their arguments, suggest alternatives, agree and disagree with one an-
other, and vote on the resolution. The editing environment explicitly supports these steps.

'mttp://biomedgt.org

http://biomedgt.org

22 T. Tudorache et al.

Tools such as BiomedGT, Cicero, and coefficientMakna are designed to support spe-
cific workflows and could potentially work very well in the projects that use that specific
workflow. The wiki-based tools have a simple interface that is best suited for making
simple changes to the ontology. Wikis provide a natural forum for discussions, and the
provenance information for suggested changes is easy to archive. However, these tools
inherently cannot address the requirement of supporting ontology editing that conforms
to a different workflow than the one for which they were designed. In the development
of Collaborative Protégé, one of our goals is to make as few assumptions as possible
about the editorial workflow that users will have and to develop mechanisms to make
the tools customizable for different workﬂows Furthermore, these implementations do
not provide structured access-control mechanisms.

4 Architecture of Collaborative Protégé

Our laboratory has developed Protégé—a widely used open-source ontology and know-
ledge base editor [B,]. At the time of this writing, Protégé has more than 100,000
registered users. Users can build ontologies in Protégé using different representation
formalism ranging from Frames, to RDF(S) and OWL, and store them in file or database
backends. Protégé is both robust and scalable and is being used in production environ-
ment by many government and industrial groups. The ontology and knowledge base
API and the plugin architecture — one of the most successful features of Protégé, allow
other developers to implement their own custom extensions that can be used either in
the Protégé user interface or as part of other applications.

Protégé can be run as a standalone application, or in a client—server setting. In the
client—server mode, ontologies are stored on a central Protégé server. Users access the
ontologies on the server to browse and edit them through desktop or web Protégé clients.
The client—server mode uses the Remote Method Invocation (RMI) mechanism of Java.

We have developed Collaborative Protégé as an extension to the client—server Protégé.
Collaborative Protégé enables users who develop an ontology collaboratively to hold
discussions, chat, annotate ontology components and changes—all as an integral part
of the ontology-development process. The key feature of Collaborative Protégé is the
ability to create annotations. In this context, annotations are typed comments (e.g. ex-
ample, proposal, question, etc.) attached to ontology components, or to the descriptions
of ontology changes, or to other annotations. We define the structure of the annotations
in the Changes and Annotations ontology (ChAQ), which we describe in Section[3

Figure [l gives an overview of the main components of Collaborative Protégé. The
Protégé server has an ontology repository that contains all the ontologies that Protégé
clients can edit in the collaborative mode. The repository has ChAO knowledge bases
(instances of the ChAO classes) for each of the domain ontologies in the repository.
These instances represent the changes and the annotations for the corresponding ontol-
ogy. Several related domain ontologies can share the same ChAO knowledge base. For
example, in Figure [Tl the ATHENA-DSS and the Guideline ontologies share the same
ChAO knowledge base, while the NCI Thesaurus has its own ChAO knowledge base.

% We are currently working on adding customizable workflow support for Collaborative Protégé,
but this work is outside of the scope of this paper.

Supporting Collaborative Ontology Development in Protégé 23

Protege client Protege client Other application

Ontology repository

Changes and Annotations
SOAP
ﬂRM’ ﬂR"’" ﬂ Ontology (ChAO)

Protege Server

NCI Athena &
‘ Changes API ‘ ‘ Annotations API ‘ E| Thesaurus. Guidelines
ChAO KB

’ Ontology Component API ‘

Guidelines
‘ Ontology API ‘

Fig. 1. The client-server architecture of Collaborative Protégé. The users work in Protégé
clients or in other Protégé-based applications. All the changes made by a user in a client are sent
to the server, and are immediately propagated to all other clients. The server has an ontology
repository and several APIs to support the collaborative functionalities. Each domain ontology
in the server repository has a Changes and Annotations knowledge base (ChAO KB) associated
with it. This knowledge base contains instances of the ChAO ontology that describe the changes
and annotations for the specific domain ontology.

When a user edits the domain ontology in the Protégé client, each change that the
user performs, is sent to the server. The server then performs several actions: (a) up-
dates the central (server-side) ontology; (b) pushes the change to the other clients so
that other Protégé users can see them immediately; and (c) creates one or several ChAO
instances that represent the change]. The server also pushes the changes in the
ChAO knowledge bases to the Protégé clients. When users create an annotation in the
Protégé client, the Protégé server adds the corresponding instances to the ChAO know-
ledge base.

The server also provides several layered Java APIs for accessing the collaborative
features. The Changes API provides methods for getting the structured log of ontology
changes, to get detailed information about a change (like author and date of the change),
and transactions — changes that are composed of several atomic changes, which are
executed together as one single change. The Annotations API provides methods for
adding annotations to ontology components and changes, for accessing the meta-data
of an annotation (e.g. provenance information), to get the discussion threads, and so
on. The Ontology Components API has common methods for both the Changes and
the Annotations API and supports the access to the ontology components (e.g. classes,
properties, individuals) stored as instances in the ChAO knowledge bases. The Ontol-
ogy API has methods for accessing and changing the content of the ontologies and
knowledge bases. It also provides support for transactions, caching, for multiple back-
ends and support for the client-server architecture. The layered APIs can be used by
other applications to access all domain ontologies as well as the collaborative informa-
tion from the ChAO knowledge bases stored on the server side.

24 T. Tudorache et al.

M is about Changes

is about applles to approve

create
[Ontology components/aX|oms }df proposal Workflows

for

pnw/lge

Fig. 2. Representation modules for collaborative ontology development. The Ontology com-
ponents module represents the ontology elements. The Changes module captures declarative rep-
resentations of changes to these elements. The Annotations module represents different types of
annotations users can make about ontology elements and changes. The Workflows module repre-
sents activities and tasks in collaborative ontology development. The arrows in the diagram are
labeled with sample relationships that may exist between classes in one ontology and another.

5 Ontologies for Supporting the Collaborative Development

Collaborative Protégé uses a set of ontology modules to drive the collaborative devel-
opment process (Figure[2)) .

The Roles module describes the users, roles, operations and policies that apply to a
certain ontology. The Protégé server uses the Roles module for checking the users cre-
dentials at login time, and for determining whether a user is allowed to perform a certain
operation based on the policies attached to an ontology instance. A user is represented
as an instance of the User class and can play several roles (instances of Group class).
For example, a user Ricardo can play the role of software developer and of editor. New
roles can be easily added by creating new instances of Role, if a certain project requires
them. To each ontology instance we associate a set of policies that define what opera-
tions are allowed for a role. For example, the NCI Thesaurus would be a represented
as an instance of the Project class and would have associated to it a set of policy
instances. One of the policies would allow editors to change the ontology. Because Ri-
cardo is an editor, he will be allowed to write to the ontology, while for non-editor users
the write access will be denied.

The Workflows module provides a formal language for describing workflows for col-
laborative ontology development. The Work £ 1 ow class represents the workflow object.
Each instance of this class describes a workflow (e.g., an approval workflow or a vot-
ing workflow). Each workflow is associated with a set of initialization parameters, a
workflow target, a partially ordered set of activities or states. For example, a workflow
for a change proposal can be attached to a particular class in an ontology and would
guide the flow of operations in the collaborative platform (e.g. first, start a proposal,
then users votes, then count votes, then take a decision, etc.). We envision that future
versions of Collaborative Protégé will provide flexible workflow support that would al-
low us just by changing a workflow description in the Workflow module to regenerate
the collaborative platform to use the new workflow description.

The Ontology Components module provides a meta-language for describing represen-
tational entities in different ontology languages. For example, it contains classes such

Supporting Collaborative Ontology Development in Protégé 25

as Class, Property, and Instance. An instance of a Class represents a reified
object for a real class in an ontology (e.g. in the ATHENA-DSS ontology, we would
have an instance of Class, called Guideline). The Ontology Components module
provides classes for representing entities in OWL, RDF(S) and Frames. Collaborative
Protégé uses this ontology, when users add comments to ontology components and
also for change tracking. For example, if the user adds a comment to the Guideline
class, the annotation instance will be attached to the corresponding Class instance
(Guideline) in the Ontology Components module. This instance also references all
the changes made to that class, and all other comments and annotations that users have
attached to the class. For future versions, we are considering integrating the Ontology
Metadata Vocabulary (OMV) [12] for the representation of OWL language constructs.

The Annotations module represents the different types of annotations that users make.
The annotation types are extensions of the Annotea [8] annotations and contain concepts
such as Comment, Question, Advice, Example, and so on. Each comment or annotation
is linked to one or several ontology elements, or changes, which are represented in the
ontologies describing Ontology components and Ontology changes]. If
users need a new annotation type, they can simply extend this ontology by creating a
new subclass of the Annotation class. In fact, users in our evaluation (Section [7)
found this feature critical.

The Changes module contains classes representing different types of changes that can
occur in an ontology. For example, an instance of the class Class Created will
represent a class creation event that references the Class instance from the Ontology
Components module corresponding to the new class in the domain ontology. One of
the challenges that we are facing is that each ontology language has its own types of
changes. For example, in a Frames ontology, changing the domain of a slot will be
recorded as a domain change event, while in OWL, the real change would actually be a
remove and add domain axiom for a certain property. We plan to address this issue by
defining a common layer for changes such as creating a class or adding a subclass and
then creating subontologies for changes that are unique to each of the languages.

These service ontologies reference the components in the domain ontology. However,
note that the domain ontology does not have references to the annotations, changes, and
so on. Thus, the developers have the choice of whether or not to make their annotations
public when they publish the ontology itself.

6 User Interface

The user interface of Collaborative Protégé (Figure[3)) is implemented as a graphical ex-
tension of Protégé. Panel A in Figure[8lshows the class tree, Panel B shows the selected
class information (in this case Gene Product)—just like in the original Protégé user
interface, while panel C displays the collaborative tabs. Each of the collaborative tabs
supports one of the several collaboration features. For example, in the Annotations tab,
the user can add comments to ontology components; in the Changes tab, the user may
see the change history of the selected class and comment on a change; in the Search tab,

26 T. Tudorache et al.

File Edit Froject OWL Reasoning Code Tools Window Change Collaboration Help

DEH +B6 wmg ¥ BEE 9> <épm:égé
Metadata (Thesaurus.ow; OWLClasses W Properties Individuals = Forms Changes ChangesKBViewTab N Collaboration
P 0 g N
2
SUHCEASSTEARLORERL L] <2 Discussion Threads I/H Search r @ Chat |
For Project: @ Thesaurus [] (instance of owl:Class) [] Inferred View
A 3 ©F Anntations I ©F changes \
3 H ’
Asserted Hierarchy W g ERY] [J Annotati
Fier oy author e =
ST I = EEE| Ve [ans |
b s iass s comment Discussion Threads [Gommem SJom A
» @ Abnormal_Cell_Kind B <ode c26548 » <@ Discussion of the Collaboration Tab =
» @ Activity_Kind ICI DEFINITION | <def-source> NCI</def-source> <def-definition>A B <2 CD47 seems to have a mistake among its asserted biochemical functi
» © &natomy_Kind protein or RNA whose structure is represented in and ¥« Thisterm is clearly mis-assigned to the cell adhesion molecules. Swis:
» @ siological_Process_Kind determined by genomic sequences.</def-defiition> b <D What term does this go with?
» @ Chemicals_and_Drugs_Kind 3 DesignNote | In NCI Thesaurus: includes Froteins, Functional RNAs, b <D Integrin alpha S is listed intwn instances among the Cell Adhesion Mol
R Protein Comploves, and Risoprotein C ompleves i ane s i
i< i o1 FULLSYN <term-name>Gene S :
» @ Diagnostic_and_Prognostic_Factars_Kin B o ¥ | <5 GO biolagical Pracessi've been examining the depths of the GO he
» @ Eo_anatomy_Kind ><term-source>NCI<fterm-source> <2 UPDATEOUr next meeting is scheduled for Thursday March 13
» @ EO_Findings_and_Disorders_Kind = FULL_SYN <term-name>Genome Encoded o s | D
» @ Equipment_Kind Etity </term-name> <term-group>SY</term-group>
<term-source>NCI< jterm-source> M ®

» @ Findings_and_Disarders Kind

e etk I NCI_META_CUI CLoS5337
v @ Gene_Product_Kind 3 Freferred_Na.. | Gene Product Details
v () Gene_Product «2) rdfs:label Cene Product CO Biological Process B
» ® Fonctional_RNA (St camince s I've been examining the depths of the GO heirarchy for a way to represent

the proteins in the Cane Product branch by Biological Process and it s very
© hnRria = Synonym Gene Product deep. Gne thing | have noticed s the outdated GO_Slim seems 1o give
@ Messenger_RNA G000 coverage, but even that needs a little trimming, There are some

» @ Frotein 3 Synonym S G T surprises that | didn't anticipate as well (.e. Protealysis Is not in the
g e — 7 Catabolic Process branch). | have put together a heirarchy based on this
» @ Protein_or_Ribaprotein_Complex
» O Molecular_abnormality_Kind Author
¥ @ NClLKind @ e
» @ Conceptual Entities
| D | createa P * & & yodified LR
& 5 ©®0 # 02/26/2008 09:46:35 EST

Fig. 3. The Protégé user interface, with the Collaborative Protégé plug-in. This screen cap-
ture shows the OWL Classes tab, in which the user edits and browses the classes that describe
a domain ontology — here the NCI Thesaurus. Panel A shows the class tree; panel B displays
the form for entering and viewing the description of the selected class Gene Product, as a
collection of attributes; and panel C shows the discussion among users about this class.

the user can search all annotations on different criteria; in the Chat tab, the user may
discuss with other online users, and so on.

The Annotations tab is the default tab that users see when logging into Collab-
orative Protégé. The Annotations tab shows the annotations that are attached to the
selected class in the tree (it also works for properties and individuals). The small call-
out icon shown in the class tree (Figure) next to the class name, indicates that the
class has annotations. The lower part of the Annotations Tab shows the details of the
selected annotation (e.g. the author, creation date, annotated entity, etc.). The annota-
tions shown in the user interface are instances of the Annotation class. The user can
create annotations of specific type (for example, Comment, Question, Example,
Proposal, etc.). These types are defined in the Annotations ontology as subclasses of
the Annotation class. Users can also reply to existing comments or notes—creating
discussion threads related to a specific entity (Figure [3). The user may filter the dis-
played annotations by using one of the filtering criteria available at the top of the An-
notations Tab. For example, she can filter by author, date, type and body of annotation.

Because the user interface takes the annotation types from the Annotations ontol-
ogy—they are subclasses of the Annotation class—users can create their own types
of annotation. To create a new annotation type, the user can edit the Annotations on-
tology itself, add the new type as the subclass of the Annotation class, define any
additional properties that this custom-tailored annotation type should have, and the new
annotation type will be available for use in Collaborative Protégé. In fact, in our evalu-
ation (Section[7) users have defined their custom annotation type.

Supporting Collaborative Ontology Development in Protégé 27

<3 Discussion Threass | 08 Search | @ char |

™" Annotations r ™ Changes ’/ All (Ann. & Chg) ‘
. 5
Fitter By author. ~| [Go]
- - <) Discussion Threads ’/58 Search ’/ ¥ chat ‘
Comment los A

©° Annotations r 0F Changes ’/ All (Ann. & Chg)
<3 | agree but come of the children are cytokines ie. IL-3, 5 we will have to be careru| |

B <3 Discussion of the Collaboration Tab T
¥ <2 CD47 sexms 10 have a mistake amang its asserted biochemical functions, which sugg
¥ <9 Yesthat should be removed it was probably supposed to be Immunoprotein Tania Tudorache (05:12): Hi, Cuest
<2 John, will you fix this? (Note, this would be a good candidate for a workflow su; Guest (05 147 Hi
¥ < This term is clearly mis-assigned 1o the cell adhesion molecules. wissProt indicaes 1 Guest (05 15 | have a question
¥ <3 Whatterm does this go with? Tania Tudorache (05:15): yes
<3 Thst's for Chondroitin Sulfate Proteaglycan 6. Guest (05:15) How do | add an internal link?
b < Inmegrinalpha § is listed in two instances among the Cell Adhesion Molecules. The con Tania Tudorache (05:16]: it's pretry easy, the symax s the &t sign anct then the names
¥ <5 Gene Products Discussion Thread : of the entity in simple quotes
¥ |5 CO Biological Processi've been examining the depths of the GO heirarchy for 2 wa Tania Tudorache (05:17) like: @Cene’ - now you can click on this and the Gene class
<2 UPDATEOur next meeting is scheduled for Thursday March 13 at 10:30 am. editor will pop u p
<2 1Mty 16 100k at the GO slim before our ext meeting - shert =] Guest (05:17): Cooll
A 1 | Tania Tudorache (05:17): This is also documented on the web:
mtp:j/proteqe stanford edufdoc/callsb-pratege
H i) Guest (05 183 Thanks |
av
Fl mEE®E
GO Biological Process =
I've been examining the depths of the GO heirarchy for away to represent the proteins in
the Cene Product branch by biological Process and it is very deep. One thing | have noticed SthegusSrsftuesy

s the putdated GO_SIim seems to give good coverage, but even that nesds a little trimming av
There are some surprises that | didn't anticipate as well (e Protealysis is not in the
Catabolic Process branch). | have put together a heirarchy based on this analysis and we
£an go over it at our next meeting, {If anyone gets a chance o look at CO_Slim, I'd

elhd03

RN A A

02/26/2008 09:46:35 EST -

Fig.4. Two of the collaborative tabs. The left screenshot shows the Discussions Thread tab
where users can add comments on the ontology. The right screenshot is the Chat Tab, which
allows users to chat and exchange internal and external links.

The Discussion Thread tab has a similar user interface and features as the Anno-
tation tab (Figure). However, the annotations from the Discussion Thread tab are not
attached to a particular ontology component, as the other annotations, but refer to the
ontology itself. For example, users may discuss modeling patterns, or naming conven-
tions that are broader in scope and that should apply to the whole ontology, rather than
to individual ontology components.

The Changes Tab shows a chronological list of all the changes for the selected
ontology component. For each change, the tab shows the change details (e.g. author,
date, sub-changes, etc.). Users may also comment and have discussion threads related
to a certain change as also shown in our example.

Users may also search all annotations based on different criteria in the Search Tab.
For example, a user can search for all annotations of type Comment that have been
made by an author el dh between 05/14/2007 and 05/14/2008. The search result
will show all the annotations that satisfy the criteria and will provide direct access to
the annotated ontology elements or changes.

One of the popular features of Collaborative Protégé is the Chat Tab (Figure @).
Users connected to the Protégé server can exchange live messages. The chat panel sup-
ports HTML formatting of the message, such as bold, italics, highlight. One feature
that sets the Collaborative Protégé chat functionality apart from other chat clients is the
support for sending internal and external links. An internal link points to an ontology
component. In the example in Figure [l one of the users sends an internal link to the
Gene class. The other user who is receiving the message can click on the internal link

28 T. Tudorache et al.

and see the definition for the class mentioned in the chat. Thus, users can see the full
context of the discussion in the chat.

7 Evaluation

We have performed the formative evaluation of Collaborative Protégé in the context
of the ATHENA-DSS project. ATHENA (Assessment and Treatment for Healthcare:
EvideNcebased Automation) [Eh is a clinical decision-support system that generates
guideline-based recommendations for the management of patients suffering from some
clinical conditions. The system, developed as a collaboration between VA Palo Alto
Healthcare System and Stanford University since 1998, is integrated with the VA’s
Computerized Patient Record System for a clinical demonstration, evaluation, and use.
Initially developed for the management of hypertension, developers are extending it to
include the management of chronic pain and diabetes, and the screening of chronic kid-
ney disease. The end-users of the system are clinicians who are making decisions on
the management of care for patients.

ATHENA-DSS developers use Protégé to build and maintain their knowledge base.
The team of clinicians and knowledge engineers start with the narrative of a clinical
guideline and distill this narrative into a set of related Protégé classes and instances that
represent the guideline formally. Currently, the developers use an MS Access database
to save the recommendation text and the associated annotations that they create. Thus,
the information is spread across different tools and it is not linked. As the developers
formalize medical concepts, such as diseases and drugs, and instantiate guideline rec-
ommendations as parts of flow-chart-like clinical algorithms, they have to work closely
with one another, making sure that they do not overwrite one another’s work. As the
knowledge bases evolve, the developers have to ensure that the recommendations and
annotations in the MS Access databases and Protégé knowledge bases are in synch.

As Collaborative Protégé became available, the team of one clinician and two know-
ledge engineers evaluated it over the period of one month. The three users actively used
the tool during the evaluation period. They had access to the web pages that briefly de-
scribe the tool but they did not have any training on how to use Collaborative Protégé.
They were experienced users of the regular Protégé tool.

After the evaluation period, we conducted extensive interviews with the users to
gauge their level of satisfaction with the tool, to understand how they used the it, to
learn which features they liked and did not like, and to get new feature requests from
them. In addition, we examined the annotations and the changes that the developers
produced during the evaluation period to determine how they used the annotation and
discussion feature, what was the nature of their posts, and how much of their time spent
with the system was spent on collaboration activities compared to modeling activities.

8 Results

During the evaluation period, the developers entered 22 comments. All comments were
comments on instances. There were three short discussion threads. We observed two

3 http://protege.stanford.edu/doc/collab-protege/

http://protege.stanford.edu/doc/collab-protege/

Supporting Collaborative Ontology Development in Protégé 29

main uses for the comments in this project. First, the developers used the discussion
feature to ask each other questions. For instance, the clinicians described some model-
ing problems and asked the knowledge engineers for the best ways to model the situa-
tion. Conversely, the knowledge engineers asked about some clinical concepts that they
needed to represent.

Each clinical guideline has a narrative description and a set of qualitative parameters.
The ATHENA-DSS developers represent each guideline as classes and instances in the
ATHENA-DSS knowledge base. The developers found that annotations provided a good
way to record the narrative and the parameters of the original guideline and to link them
to the ontology components that represent the guideline. In a sense, the information
about the original guideline provided the background information for ontology compo-
nents, and annotations were a natural way to represent this link. The ATHENA-DSS
developers currently store the information on the original guidelines in an MS Access
database and they wanted this information to be accessible during ontology browsing.
Because the reference guideline contains not only text, but a number of additional fields,
we used the flexible design of Collaborative Protégé to produce a custom-tailored an-
notation type for ATHENA-DSS. We created a subclass of the Annotatation class,
a GuidelineComment class. This subclass contained the fields specific to that type
of annotation, such as quality of evidence and recommendation code. Because the Col-
laborative Protégé implementation simply displays the subclasses of the Annotation
class as its available annotation types, we did not need to change any code to display
the custom-tailored annotation. The ATHENA-DSS developers found this flexibility to
be a particularly useful feature. They reported that they are now considering porting all
the annotations from the MS Access databases to Collaborative Protégé as annotations.
They cited several advantages of this approach in our interviews: First, they will be able
to stay within one environment and not have to maintain the synchronization between
the two sources. Second, they can see the reference source immediately as they browse
the instances and can understand why the guideline was modeled the way it was. After
we provided them with the new annotation type, about 25% of their comments were of
this type.

In general, the members of the ATHENA-DSS team found Collaborative Protégé
“very useful.” They appreciated that the knowledge engineers could see the questions
from the clinician in context of where the question was asked (rather than in an email,
detached from the ontology). As one of the participants told us “It’s just there, at the
point where the problem is.”

The ATHENA-DSS developers did not use the chat feature, mainly because they
were never on-line at the same time. Another group that is currently evaluating Col-
laborative Protégé (the editors of the the NCI Thesaurus) found the chat to be one of
the more useful features. The main difference between the two groups is that the sec-
ond group is much larger and ontology development is their primary task. Thus, most
editors are on-line editing the ontology during their workday.

In our interviews, the ATHENA-DSS developers indicated other potential uses that
they see for the annotation features. These uses included recording detailed design ra-
tionale, having one developer explain to the others how he is approaching a specific

30 T. Tudorache et al.

modeling problem in the context of the ontology, and having developers educate new
users on the structure and intricacies of the ontology.

9 Discussion and Future Work

The analysis of the results, even from this fairly small evaluation period, points to sev-
eral issues. First, users found Collaborative Protégé useful and did not require any spe-
cial training to use it. We know that they did not find or use all the features that were
available, and we expect that they would use the collaboration features even more ex-
tensively after a short training session (or with better documentation).

Second, the innovative use of Collaborative Protégé features points to the versatility
of the tool. In fact, some of these use prompted us to consider new features. For exam-
ple, we might link the tool to an issue-tracker system, to enable users to see which task
assignments have been made as part of the discussion, and to track their progress.

Third, the flexibility of the tool and the ease of extending it with new annotation
types proved crucial in the ATHENA-DSS project. We envision that other users will
create their own annotation types, with properties that are relevant in their settings.

One of the surprising findings for us (which we also observed in other settings) was
that users do not add annotations to changes, but annotate only ontology components (in
this case, instances). Even the rationale for changes themselves is recorded at the level
of the ontology component, not the change or a group of changes. This observation
suggests that users think in terms of ontology components rather than changes, even as
they are closely involved in ontology editing.

In Collaborative Protégé, facilities for reaching consensus, recording design ratio-
nale, and noting outstanding issues are an integral part of the process of ontology brows-
ing and editing. As users examine, say, a class in the ontology, they can immediately
see all the discussion and questions pertaining to this class, whether there was any con-
tention in its definition, alternatives that the authors considered. An editor, when coming
upon a class that, he feels, must be changed, can post a request immediately, in the con-
text of this class. This dual advantage of context-sensitivity and archival character of
annotations adds the greatest value to Collaborative Protégé compared to discussion
lists and issue trackers that are not integrated with an ontology environment.

Our infrastructure and the use of ontologies to represent many of the components that
drive our software, enables other developers to reuse these components easily. Specifi-
cally, while Collaborative Protégé uses all the service ontologies described in Section[3}
the service ontologies themselves are not specific to Protégé. We expect that other de-
velopers will reuse the ontologies in their tools, thus providing interoperability between
the tools. For instance, different tools can implement their own mechanism for support-
ing or displaying discussions. If they use the same annotation ontology, then annotations
created in one of the tools can be visible in the other tool.

There are many outstanding issues, however, that we must address in order to support
truly collaborative ontology development.

In our original model, each annotation annotates a single object: a single class in
the ontology, a single instances, a single other annotation. However, in the ATHENA-
DSS use case a single guideline description could refer to different concepts such as
hypertension and diabetes. Thus, there must be a way of associating an annotation to

Supporting Collaborative Ontology Development in Protégé 31

several different objects. We do not currently have such support in the user interface.
However, because annotations are simply instances, the annotates property can have
more than one value and thus reference more than one object.

While we have a set of annotation types for proposals and voting, we do not have
any workflow support for it. Our users (in ATHENA-DSS, and other projects) indicated
that the proposals feature would be much more useful with such workflow support.
For instance, when someone initiates a new round of voting, a workflow engine might
inform other users that they are expected to vote, can tally the votes or wait for a certain
period of time to elapse, and can produce the voting result.

Currently, Collaborative Protégé has only simple support for different user roles. In
the future, we plan to adopt a policy mechanism that would enable us to describe privi-
leges of users with different roles at different levels of granularity. For example, not all
users in a project may have the privileges to create change proposals or to comment on
the propsals. Some users may be able to edit only a part of the ontology. We plan to an-
alyze the different scenarios and workflows that the biomedical ontology-development
projects employ and add flexible support for roles and policies in future versions.

Finally, as we studied the different workflows that the projects described in the intro-
duction to this paper used, one thing became clear: Developers of biomedical ontolo-
gies need tools that are flexible enough to work with different workflows. For instance,
a group of users working together on developing an ontology in the context of a specific
project will have different requirements compared to an open community developing a
lightweight taxonomy that anyone can edit. In some cases, tools should support spe-
cific protocols for making changes, where some users can propose changes, others can
discuss and vote on them, and only users with special status can actually perform the
changes. At the other end of the spectrum are settings where anyone can make any
changes immediately. Thus, tools need to support different mechanisms for building
consensus, depending on whether the environment is more open or more controlled.

We are currently evaluating Collaborative Protégé in several other settings: the de-
velopment of the NCI Thesaurus, the development of the Software Resource Ontology
to be used by the NIH Roadmap’s NCBCs, the development of the 11th revision of the
International Classification of Diseases (ICD-11) at the World Health Organization, and
other projects. These projects are all active ongoing projects and have different scope,
workflow, the number of contributors, and so on. We expect to these evaluation to pro-
duce additional requirements for the tools and also to demonstrate innovative uses of
the capabilities that we described here.

Acknowledgments

This work was supported in part by a contract from the U.S. National Cancer Institute.
Protégé is a national resource supported by grant LM007885 from the United States
National Library of Medicine. Initial development of ATHENA-DSS for diabetes mel-
litus is supported by the Palo Alto Institute for Research and Education at VA Palo
Alto Health Care System. Views expressed are those of the authors and not necessarily
those of the Department of Veterans Affairs. We are indebted to Susana Martins, Martha
Michel, and Mary Goldstein of the VA Palo Alto Healthcare System for their help with
the evaluation and for their insightful feedback on the tool.

32

T. Tudorache et al.

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

19.

Auer, S., Dietzold, S., Riechert, T.: OntoWiki—a tool for social, semantic collaboration. In:
Cruz, L., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

OBI Consortium, http://obi.sourceforge.net/

Dellschaft, K., Engelbrecht, H., Barreto, J.M., Rutenbeck, S., Staab, S.: Cicero: Tracking
design rationale in collaborative ontology engineering (2008)

Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., Thuraisingham, B.:
Rowlbac: Role based access control in owl. In: ACM Symposium on Access Control Models
and Technologies (SACMAT 2008), Colorado, US (2008)

Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-
model for collaborative ontology design. In: Workshop on Social and Collaborative Con-
struction of Structured Knowledge at WWW 2007, Banff, Canada (2007)

Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy,
N.E,, Tu, S.W.: The evolution of Protégé: An environment for knowledge-based systems
development. International Journal of Human-Computer Interaction 58(1) (2003)
Goldstein, M.K., et al.: Translating research into practice: organizational issues in imple-
menting automated decision support for hypertension in three medical centers. Journal of
the American Medical Informatics Association 11(5), 368-376 (2004)

Kahan, J., Koivunen, M.-R.: Annotea: an open RDF infrastructure for shared web annota-
tions. In: The 10th International World Wide Web Conference, pp. 623-632 (2001)

Muiioz Garcia, O., Gémez-Pérez, A., Iglesias-Sucasas, M., Kim, S.: A Workflow for the
Networked Ontologies Lifecycle: A Case Study in FAO of the UN. In: Borrajo, D., Castillo,
L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 200-209. Springer,
Heidelberg (2007)

Noy, N.F., Chugh, A., Alani, H.: The CKC Challenge: Exploring tools for collaborative
knowledge construction. IEEE Intelligent Systems 23(1), 64—68 (2008)

Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in collab-
orative environments. In: Cruz, 1., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg
(2006)

Palma, R., Hartmann, J., Haase, P.. OMV: Ontology Metadata Vocabulary for the Semantic
‘Web. Technical report (2008), http://ontoware.org/projects/omv/

Protégé, http://protege.stanford.edu/

Rubin, D.L., Noy, N.F., Musen, M.A.: Protégé: A tool for managing and using terminology
in radiology applications. Journal of Digital Imaging (2007)

Sebastian, A., Noy, N.F.,, Tudorache, T., Musen, M.A.: A generic ontology for collaborative
ontology-development workflows. In: The 16th International Conference on Knowledge En-
gineering and Knowledge Management (EKAW 2008), Catania, Italy. Springer, Heidelberg
(2008)

Seidenberg, J., Rector, A.: The state of multi-user ontology engineering. In: The 2nd Inter-
national Workshop on Modular Ontologies at KCAP 2007, Whistler, BC, Canada (2007)
Sioutos, N., de Coronado, S., Haber, M., Hartel, F., Shaiu, W., Wright, L.: NCI Thesaurus:
A semantic model integrating cancer-related clinical and molecular information. Journal of
Biomedical Informatics 40(1), 30-43 (2007)

. Sunagawa, E., Kozaki, K., Kitamura, Y., Mizoguchi, R.: An environment for distributed on-

tology development based on dependency management. In: Fensel, D., Sycara, K.P., My-
lopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870. Springer, Heidelberg (2003)

Tempich, C., Simperl, E., Luczak, M., Studer, R., Pinto, H.S.: Argumentation-based ontology
engineering. IEEE Intelligent Systems 22(6), 52-59 (2007)

http://obi.sourceforge.net/
http://ontoware.org/projects/omv/
http://protege.stanford.edu/

Identifying Potentially Important Concepts and
Relations in an Ontology™

Gang Wul?, Juanzi Li', Ling Feng!, and Kehong Wang!

! Department of Computer Science, Tsinghua University, Beijing 100084, P.R. China
2 Department of Computer Science, Southeastern University,
Nanjing 210000, P.R. China
wug@keg.cs.tsinghua.edu.cn, 1ljz@keg.cs.tsinghua.edu.cn,
fengling@tsinghua.edu.cn, wkh@keg.cs.tsinghua.edu.cn

Abstract. More and more ontologies have been published and used
widely on the web. In order to make good use of an ontology, espe-
cially a new and complex ontology, we need methods to help under-
stand it first. Identifying potentially important concepts and relations
in an ontology is an intuitive but challenging method. In this paper, we
first define four features for potentially important concepts and relation
from the ontological structural point of view. Then a simple yet effective
Concept-And-Relation-Ranking (CARRank) algorithm is proposed to si-
multaneously rank the importance of concepts and relations. Different
from the traditional ranking methods, the importance of concepts and
the weights of relations reinforce one another in CARRank in an iterative
manner. Such an iterative process is proved to be convergent both in
principle and by experiments. Our experimental results show that CAR-
Rank has a similar convergent speed as the PageRank-like algorithms,
but a more reasonable ranking result.

1 Introduction

Ontology provides Artificial Intelligence and Web communities the remarkable
capability of specifying shared conceptualization explicitly and formally. A diver-
sity of ontologies have been widely used as the bases of semantic representation
in many applications such as knowledge bases, multi-agents and the Semantic
Web. As the amount, scale, and complexity of ontologies are increasing rapidly,
it requires more efforts for ontologists and domain experts to understand them.
Hence, Ontology Understanding, the process of getting familiar with an ontology
[4], has to seek helps from computer intelligence.

The state-of-the-art ontology engineering projects, like IsaViz, Ontoviz, and
Jambalaya, use information visualization techniques to represent ontologies. They
have the ability to help humans understand and navigate in complex information
spaces [9]. However, for a complex ontology, graphically presenting all concepts

* This work is supported by the National Natural Science Foundation of China under
Grant No0.90604025 and the Major State Basic Research Development Program of
China (973 Program) under Grant No.2003CB317007 and No.2007CB310803.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 33 2008.
© Springer-Verlag Berlin Heidelberg 2008

34 G. Wu et al.

and relations indistinctively makes above tools generate unreadable visualization
results. Users who are unfamiliar with the ontology will probably get lost in such
a masze.

To resolve the problem, some researchers have proposed approaches by draw-
ing users’ attention to those potentially important (or alternatively interesting)
concepts within one ontology. They calculate the importance of concepts either
by tracking the user’s browsing activities [7], or according to the concept hierar-
chy [20]. These solutions are straightforward. While more detailed information
about ontology structure, like the correlation between concepts and relations, is
not explored. In some other studies, traditional link analysis ranking algorithms
on Web pages and objects are employed to rank the importance of concepts [3],
and even the importance of relations [8| [I7]. These solutions need the help of
additional statistic information or time-consuming machine learning schemes.

In this paper, we propose a simple yet effective algorithm, named Concept
And Relation Ranking (CARRank), for identifying potentially important con-
cepts and relations in an ontology. By efficiently ranking the importance of con-
cepts and relations simultaneously, CARRank can find out which concepts and
relations might be the ones the ontology creator would like to suggest to users
for further consideration. In this way, CARRank can promote the usability for
ontology understanding. Users can even outline an interested sub-scope of an
ontology, of which important parts are taken out. Although CARRank is rather
an automatic ranking algorithm than a specific visualization approach, it can be
easily integrated into the existing ontology visualization tools to provide a novel
perspective. Main contributions of this paper include:

1) To make good use of ontology structural information, we give a graph repre-
sentation of ontology which makes it easy for applying link analysis ranking algo-
rithms while preserves the semantics expressed by RDF-based ontology languages.

2) To determine the potentially important concepts and relations in an on-
tology, we introduce an importance ranking model. The model tries to imitate
the creation process of an ontology from the ontological structural point of view
by defining four representative features.

3) To calculate the importance of concepts and relations, we propose an effi-
cient algorithm according to the model, named CARRank. The difference between
CARRank and existing PageRank-like algorithms is two-fold. Firstly, with this
algorithm, the importance of vertices (i.e. concepts) and the weights of edges (i.e.
relations) reinforce one another in an iterative process. Such a dynamic compu-
tation on edges weights as well as vertices importance has never been studied
previously. Secondly, the directions of walk for the algorithms are opposed, which
makes CARRank more suitable for supporting ontology understanding. CARRank
is proved to be convergent, and thus is universal for simultaneously ranking ver-
tices importance and edges weights in arbitrary directed labeled graph.

4) Experiments are conducted to demonstrate the effectiveness and efficiency
of the approach to support understanding of ontologies.

The remainder of the paper is organized as follows. We review the closely
related work in Section] and present our CARRank model in Section Bl We

Identifying Potentially Important Concepts and Relations in an Ontology 35

then bring forward the CARRank algorithm in Section @l Experimental results
are shown in Section Bl The final section is about the conclusion and discussion.

2 Related Work

Cognitive Support for Ontology Understanding. The DIaMOND project
[7] and the holistic “imaging” ontology [20] are two most related studies. DIa-
MOND [7] is a plug-in for Protég@ to help users find concepts of interest within
an ontology. By tracking user’s navigation activities on an ontology, it continu-
ously calculates the degree of interest for each concept. The navigation overhead
can thus be reduced by drawing user’s attention to the highlighted concepts
of high interest degrees. The degree calculation of this method is user-specific.
In [20], authors exploited degrees of interest of concepts as a filter for labeling
important concepts in a large scale ontology. Its degree calculation is holisti-
cally based on concept hierarchy without considering non-subsumption relations
between concepts. Our work differs from these approaches. First, we think that
the importance measurement of a concept should take into account the contribu-
tions from all the other concepts in the ontology through relations including both
subsumption and non-subsumption ones. Second, relations between concepts are
also helpful for ontology understanding.

Ontology Ranking in the Semantic Web. OntoSelect [6], OntoKhoj [18],
and AKTiveRank [I] are three approaches that were developed to select (or
rank) one or more ontologies that satisfy certain criteria [19], with an ontol-
ogy document as the ranking granularity. The first two approaches relied on
the popularity, which assumed that ontologies referenced by many ontologies are
more popular, while the third one considered several structural evaluation met-
rics, including Density (DEM), Betweenness (BEM), Semantic Similarity (SSM),
and Class Match measure (CMM). Although AKTiveRank does not intend to
rank the importance of concepts or relations in an ontology, the above complex
networks analysis metrics it employs are useful for reference in this work. Ac-
cording to the pre-existing statistic information on instances, Swoogle [§] could
enable both document level and term level ranking, including the class-property
relationship ranking.

Compared with this line of research, our study aims to finding out potentially
important information in a given ontology, so the granularity of output is concept
and relation, rather than a whole ontology. Besides, the method can evaluate the
importance of general relations of concepts, as well as concepts themselves. Fur-
thermore, no prior knowledge or user interaction is required, which may be more
applicable in dealing with new ontologies. Table [T lists some of the differences.

Ranking Algorithms. In ranking Web pages, hyperlink is the only relation to
be considered. PageRank [B] pointed out that a good authority page is the one
pointed to by many good authorities. The evaluation is performed in a random
surfer manner over all pages on the Web graph. Unlike PageRank, HITS [13]

! http://protege.stanford.edu/

36 G. Wu et al.

Table 1. Related Work in the Semantic Web

Concept Rank Relation Rank Ranking Methods

CARRank v v CARRank

DIaMOND v - Tracking users’ navigation
20 v - Concept hierarchy
OntoSelect - - PageRank-like

OntoKhoj - - PageRank-like
AKTiveRank - - CMM+DEM+SSM+BEM
Swoogle v v PageRank-like

exploited a mutual reinforcing relationship between hub pages and authority
pages within a subgraph of the Web. By extension of PageRank and HITS,
Reverse PageRank [I0] was investigated as a reasonable approach to browse the
Web, which reverses the direction of all hyperlinks before applying PageRank.
In this study, we browse an ontology in a similar manner to Reverse PageRank.

Apart from the hyperlink relation, there exist more edge types in an ontol-
ogy, such as property-of, subclass-superclass, etc. The edge type is an important
factor in determining the importance of vertices. This was addressed recently
in a series of object-level link analysis ranking algorithms. In the field of data-
base, ObjectRank [3] applied link analysis methods to rank the importance of
database objects and tuples. Different weights are set according to link types
either manually or by statistic information. PopRank [I7] is a machine learning
approach to automatically assign the weights and rank the importance of Web
objects. These weight assignment approaches are not applicable for ontology un-
derstanding where absence of priori knowledge is fairly common. We attempt to
resolve it by evaluating the weights simultaneously in the ranking process accord-
ing to only the mutually reinforcing relationship between concepts and relations.

3 CARRank Model

3.1 Ontology Graph

Before any link analysis could be performed, an ontology should be represented
as a graph. As an ontology defines the concepts and the relations between them
in certain domain [I6, [IT], it is suggested to model a concept as a vertex and a
relation as a directed edge linking two concepts. We call such constructed graph
the ontology graph.

Definition 1. Given an ontology O, the ontology graph G = (V,&,ly,le) of
O is a directed labeled graph. V is a set of nodes representing all concepts in O.
& is a set of directed edges representing all relations in O. ly and lg are labeling
functions on V and £ respectively.

Definition[Ilis a representation of an ontology at the syntactic level. Its semantic
capabilities will be presented in section [3.41

The ontology graph illustrated in Figure [Il is our running example. It de-
scribes concepts and relations in an open software project domain, especially
the relationships between developers and projects.

Identifying Potentially Important Concepts and Relations in an Ontology 37

Foundry_member,

rdfs:sub§lassOf

Project_admin

Fig. 1. The running example

3.2 Mapping RDF-Based Ontology to Ontology Graph

In practice, the most important ontology languages in the Semantic Web are
RDF Schema (RDFS) and OWL. In these languages, an ontology is expressed
as a set of triples. A triple (s,p,0) € (UUB) x U x (UU BU L) is called an
RDF triple where U, B, and L are infinite sets of URI references, blank nodes,
and literals respectively. Here, s is called the subject, p the predicate, and o the
object of the triple. A set of such RDF triples is defined as an RDF graph [21],
and represented as a directed labeled graph as shown in Definition 2l We will
use the RDF graph to refer to both a set of RDF triples and its directed labeled
graph representation throughout the rest of this paper.

Definition 2. Let T be a set of RDF triples. The directed labeled graph
representation of T is G = (V, E,ly,lg), where

V = {v.|z € subject(T") U object(T')}

E ={espol(s,p,0) €T}
Iy (o) {(m,dz) if x is literal (dy is datatype identifier)
v Uz) =

T else
from(es,p,o) = Vs, to(€s,p,0) = Vo, and lg(€sp,o) =p

V' is the set of vertices in G. E is the set of directed edges. ly and lg are
labeling functions on V' and E. subject(T) and object(T) are used to achieve all
the subjects and the objects in T. Function from() and to() return the starting
and ending vertex of an edge.

However, for the same ontology, an RDF graph and an ontology graph are
unequal. Suppose an ontology consists of a relation “manage” linking from
“Project Admin” to “Project”. The ontology graph is shown in Figure[2l To ex-
press the same semantics, an RDF graph needs two triples (manage, rdfs:domain,
Project Admin) and (manage, rdfs:range, Project) as shown in Figure 3

The difference lies in that, for an ontology, a relation does not exist as a di-
rected edge but a vertex in an RDF graph. A relation is associated with a concept

38 G. Wu et al.

manage - ~Jdfs:domain, rdfs:range

Fig. 2. An ontology graph representation Fig.3. An RDF graph representation

by the semantics of rdfs:domain or rdfs:range (the concept is named domain or
range accordingly). Such indirect relationships will hinder the importance prop-
agation during the ranking, because there is no path between the domain and
the range. Hence, we propose a map function w to map an RDF graph to an
ontology graph in Definition

Definition 3. Let G = (V, E,ly,lg) be the RDF graph of an ontology O. We
define a map w: G — G as follows: w(G) = (V,E,ly,le) where,

V=V, ly=lv,
E ={espoles,po € ENlp(esp,o) # rdfs:domain A lg(es,p,0) # rdfs:range}
UEprUEpU Eg,
Epr = {€s,p,0|3ep,rdfs:domain,s € E N 3ep, rdfsrange,0 € EY},
Ep = {€s,p,keg:Sink|Fep, rdfs:domain,s € EN Aep rdfs:range,0 € £},
Er = {€keg:Source,p,0|F€p, rdfs:range,0 € EN Bep. rdfs:domain,s € E},

Ves,po € E, from(esp,o) = vs, to(€s,po) = Vo,and le(€spo) =P

Here, keg:Source and keg:Sink are defined to be the virtual domain and range of
those relations having no domain or range defined explicitly.

Each edge in the output ontology graph is an RDF triple. Therefore the same
relation can be distinguished between different domain concepts and range con-
cepts. The map removes those edges taking rdfs:domain or rdfs:range as their
labels, while adds new labeled edges to directly link the domains to the ranges
according to the rules in Definition Bl In this way, w(G) presents an ontology
graph that preserves the semantics of G and makes it easy for ranking. Thus,
the RDF graph in Figure Bl can be mapped to the ontology graph in Figure[2 In
fact, our running example shown in Figure [Tl is mapped from a real ontologyﬁ.

3.3 Model Description

The creation of an ontology is a composition process where the creator operates
with a set of concepts and relations. Hence, the ontology could be considered
as the image of the creator’s own understanding of the knowledge, just like
a literary work to its author. This phenomenon of human consciousness can
be best explained with William James’ famous stream of consciousness theory
[12]. He observed that human consciousness has a composite structure including
substantive parts (thought or idea) and transitive parts (fringe or penumbra), and
keeps moving from thought to thought. Transitive parts play an important role
in controlling the orderly advance of consciousness from one thought to another.

% http://keg.cs.tsinghua.edu.cn/project /software.owl

Identifying Potentially Important Concepts and Relations in an Ontology 39

By analogizing concepts and relations to substantive parts and transitive parts,
the creation of an ontology could be described as drifting on the stream of the
creator’s consciousness of the domain knowledge from one concept to another
via a particular relation. The initially created concept has a certain possibility of
being one of the creator’s emphasis (suggestions to users). For the concepts to be
suggested, the creator would always like to create more relations to describe its
relationships with other concepts. Consequently, ontology users will implicitly
follow the creator’s stream of consciousness for understanding the ontology.

We characterize four features for potentially important concepts and relations
which drive the drift on the stream of consciousness. It turns out to be our model
for Concepts And Relations Ranking (the CARRank model):

1. A concept is more important if there are more relations starting from the
concept.

2. A concept is more important if there is a relation starting from the concept
to a more important concept.

3. A concept is more important if it has a higher relation weight to any other
concept.

4. A relation weight is higher if it starts from a more important concept.

There are three meanings here. First, it explains what is iémportant (or al-
ternatively interesting). In this paper, term importance is used as a metric for
measuring the extent that the ontology creator suggests a concept or relation
to users. Second, a concept is regarded as a source that owns a set of relations
related to other concepts. We refer to this character as the hub like that in HITS
[13]. Finally, concepts and relations exhibit a mutually reinforcing relationship.

In our running example, concepts “Project”, “Project admin” and “Devel-
oper” are more attractive because they either have abundant relations to other
concepts (e.g. “Project”), or locate deeply in the subsumption hierarchy (e.g.
“Project admin”), or have a relation to other attractive concept (e.g. “Devel-
oper”). Accordingly, relation “manage” between “Project” and “Project admin”
becomes more meaningful. These observations coincide with the creator’s com-
ment that declares to emphasize the relationship between developers and projects.
Our inquiry to the creator about the design process is answered as follows: First
defined the concept “Project” with some decorative literals such as “Version” and
“Usage statistic”. Next, provided another concept “Developer” to complement
the description of “Project” through a relation “developed by” from “Project”
to “Developer”. Then, a hierarchy was built about “Developer” from “Person”
to “Project admin”. The process continued until all information was included.

3.4 Semantic Abilities

By using w mapping, any RDF-based ontology, like RDF Schema, DAML+OIL,
and OWL (including three increasingly-expressive sublanguages: OWL Lite,
OWL DL, and OWL Full), can be ranked with the CARRank model. In the
section of experiments, we will further analyze the ranking results of CARRank
for the same ontology in three languages with different expressive powers.

40 G. Wu et al.

Furthermore, CARRank even has the ability to support axioms expressed
as rules, e.g. SWRL [22] rules, because there exists RDF-compatible model-
theoretic semantics [I5] of SWRL by which we can interpret SWRL rules in the
framework of RDF graphs. In a broad sense, any inference scheme for ontology
is supported by CARRank, if it is resolvable on the level of RDF graphs.

Moreover, since a relation is represented as a vertex in an RDF graph, and
then kept in the ontology graph after w mapping, the hierarchies and proper-
ties of relations will also impact the global importance of these relations. That
means if there is a deeper hierarchy or more properties for a specific relation,
the importance of that relation is higher. Here, whereas we only concern about
the comparison locally among relations starting from the same concepts rather
than globally among all relations, because the importance may be quite different
when associated with different concepts.

Finally, since ontology understanding is affected by many factors, here the
importance only means some potential to be important in our context.

4 CARRank Algorithm

Definition 4. Suppose an ontology graph G has |V| =n > 1 concepts vy, ..., v, €
V. The adjacency matrix representation ofG, A = (a;;), is a n X n matric
where 1 < 14,5,k <n and

(1)

o 1 ifJeir; €8,

Z’] 0 otherwise.
Let w(v;,vj) be a relation weight function, and w; j = w(v;,vj) be the weight of
all relations from v; to vj. The relation weight matrixz representation of G,
W = (w;), is a n x n matriz where 1 < 4,5,k <n, and

(2)

0< Wy, j <1 Zf Elei,k,j S 57
wi ;=0 otherwise.

Definition 5. For any concept v; € V, the forward concepts of v; are defined
as F,, = {vjlv; € VAeik,; € £}, and the backward concepts of v; are defined
as By, ={vjlv; € VAJeji,; € E}.

Definition 6. Suppose an ontology graph G has |V| =n > 1 concepts vy, ..., .
Let r(v;) be an importance function on V, and r; = r(v;) be the importance value
of vi where 0 <r; <1, > r; =1, and W = (w; ;) be the relation weight matriz.
We call R = (71, ...,7) the ontology graph G’s concept importance vector ,
and L; = (rw; 1, -+, rawin) the concept v;’s relation importance vector .

It is possible that there exists more than one relation from concept v; to concept
vj. Therefore, 7jw; ; is the total importance value of all the relations from concept
v; to concept v;. Suppose there are m > 0 such relations, e; i, j, ..., € k,,j- We
define the importance of individual relation e; x, ; to be "7 for any 1 <1 < m.

Identifying Potentially Important Concepts and Relations in an Ontology 41

Since a concept, like a hub according to the first two features of our model,
sinks the importance of other concepts, the computation for the importance is
totally the reverse of the process in PageRank. In fact, CARRank traces the
stream of consciousness reversely similar to the idea of Reverse PageRank [10].
The difference is that it updates the weight of relations during the iteration
according to the last two features of the model. Given an ontology graph G =
WV, E, 1y, lg), after k (k= 0,1,2,...) iterations, the importance of a concept s € V
and the weight of relation(s) from s to another concept ¢ € V are written as
rk+1(8) and wiy1(s,t) respectively. They are recursively evaluated in Equations

Bl and @

Wirt1(s,t) =
pra(s,1) S i)
t; €8y
rhp1(s) = Lme g >kt wera (s, t) (4)

|V| t;€F

Like PageRank-like algorithms, we use a damping factor 0 < o« < 1 as the
probability at which CARRank will get bored of reversely tracing the stream of
consciousness and begin looking for another concept on the ontology graph.

Equations Bl and @ reflect the features of our potentially important concepts
and relations model. Equation Bl formalizes the last feature, which computes the
weight of relation(s) starting from concept s to concept ¢ at the (k+1)th iteration.
The weight is in proportional to the importance of s and in the inverse ratio of the
sum of all importance of t’s backward concepts at the kth iteration. Therefore, an
important concept will increase the weight of those relations starting from itself.
Equation H] formalizes the first three features, which compute the importance
of concept s at the (k + 1)th iteration. The importance consists of two parts.
One is contributed by all the importance of s’s forward concepts and the weight
of relations from s to the forward concepts with probability «. The other is
contributed by some independent jump probabilities (here is I\l)l) when CARRank
leaves the current stream of consciousness with probability 1 — a.

For any initial distribution of concept importance vector Rg = (19,79, ...,70),
we have proved] that the iterative sequence {Ri | k=0,1,2,...} will converge
to R* which is the solution of this non-linear equations, i.e. the final result
of concept importance vector. Correspondingly, W* is the final result of the
relation weight matrix. In numerical analysis, it is reasonable to take Ry as
the approximation of R* and stop the iterative process, if the difference between
two successive iterations | Rix11 — Ry || is small enough. Thus ranking the
importance of the concepts is performed by sorting the entries in R*. With a
slight effort, ranking the importance of the relations related to certain concept
is performed by sorting the entries in the relation importance vector which is
computed with W* and R*.

3 For the details of the proof, see our technical report [24]. The proof indicates that
CARRank is a flexible algorithm for evaluating the importance of vertices and edges
simultaneously in any kind of directed graph.

42 G. Wu et al.

Let A be the adjacency matrix representation of an ontology graplﬂ and S be
the initial concept importance vector. In terms of Equation B] and the above
descriptions, we present the CARRank algorithm as follows.

CARRANK(A, S)
1 Ro«— S, Wy+—0,k+—0
2 repeat
Y — ARy
for i —1,2,...,n
do for j «— 1,2,...,n
doif of ; #£0

.

o7
&

Rit1 «— Wi iRy
d— [[Ril1 — IRkl
Rit1 < Rit1 +dE
11 (S «— ‘le+1 — Rk”l
12 k—k+1
13 until § < e
14 return (Wy,Ry)

3
4
5
6
7 then wk+1 "
8
9
10

The algorithm consists of two parts, the update of the relation weight matrix
(line 3 to 7) and the update of the concept importance vector (line 8 to 10). o] is
the sum of ranks of concepts which are ¢’s backward concepts at step k. Damping
factor « in Equation[lis represented in vector as E where ||E||; = a. Ignoring the
differences in concepts, E is usually a uniform distribution. Threshold 0 < € < 1
controls the termination of the iteration. The algorithm returns Ry and Wy, as

the limits of the concept importance vector and the relation weight matrix.

5 Experiments

We study the feasibility of CARRank from three aspects: ranking qualities, se-
mantic abilities, and efficiencies.

5.1 Experimental Settings

Evaluation Metrics. The metric for measuring the efficiency of ranking algo-
rithms is the number of iterations k that minimizes the difference between two
successive iterations || Rg+1 — Ry || to a given threshold €. A smaller & indicates
a faster convergence.

In order to measure the quality of concepts ranking results, we employ a

variant first 20 precision metric [I4]. The improved first 20 precision, PQ20 =
s X 20 a0 XA TH~20 300 - agsions different weights for the first 3, the next 7,
and the last 10 results to increase the value for ranking effectiveness.

Similarly, we define PR = E”Tg“” 5
1~20]

ranking results, where Cf..o is the relevant concepts in the first 20 most im-
portant concepts, and m, is the count of relevant relations in the first 5 most
important relations starting from concept c.

to measure the quality of relation

4 A is obtained by parsing an ontology file into an RDF graph, and mapping it to an
ontology graph, and finally constructed according to Definition [l

Identifying Potentially Important Concepts and Relations in an Ontology 43

A higher value of];_@\/2/0 or PR means a better quality of ranking the impor-
tance of concepts or relations.

Ranking Methods. Most of the related work in Section [are not specific for
ontology understanding as shown in Table[ll Appropriate modifications are made
in order to make them comparable. 1) We choose the standard PageRank(PR)
algorithm [5] on behalf of those PageRank-like algorithms. 2) We extract the
importance based labeling method from [20] which represents the methods that
only consider concept hierarchy(CH). 3) AKTiveRank [I] algorithm is modi-
fied by only considering the aggregation of density and betweenness measures
(DEM+BEM) for each concept as the importance. CMM and SSM are irrele-
vant to the task of ontology understanding.

Experimental Environments. The experiments were carried out on a Win-
dows 2003 Server with two Dual-Core Intel Xeon processors (2.8 GHz) and 3GB
memory. For some ranking methods, let damping factor o« = 0.85, and threshold
e =1x107% by default.

5.2 Ranking Qualities

To evaluate our proposed approach, we tried to collect representative ontologies
and their accurate answers (a list of ranked concepts and relations) as pos-
sible as we could. In this experiment, four representative ontologies from the
SchemaWeHd dataset are selected as shown in Table @l “OWL” is a well-known
meta ontology. “Software Project” is a full version of our running example which
has a small number of concepts and relations, while, “Copyright Ontology” and
“Travel Ontology” are more complex.

Table 2. Four ontologies

Concept# Property# URL
OWL 17 24 http://www.w3.0rg/2002/07 /owl.rdf
Software Project 14 84 http://keg.cs.tsinghua.edu.cn/persons/tj/ontology /software.owl
Copyright Ontology 98 46 http://rhizomik.net/ontologies/2006/01/copyrightonto.owl
Travel Ontology 84 211 http://learn.tsinghua.edu.cn:8080,/2003214945 /travelontology.owl

We take the ontology creators’ feedback to the ranking task as the reference
answers. We sent emails to the four contact creators, and got three ranks (for
Software Project, Copyright Ontology, and Travel Ontology) and one suggestion
(the creator of OWL recommended [23] as his answer) back in their replies. In
our inquiry email, the following ranking instruction is described:

For each ontology file, list top 20 (or as many as you like) important
concepts (with URI) of your ontology in your mind. And for each top
concept, please give top 5 (or as many as you like) important relations
(with URI) for that concept.

® http://www.schemaweb.info/

44 G. Wu et al.

Table 3. The importance of concepts — Software ontology

Rank Reference Answer PageRank DEM+BEM CARRank User Study

1 Project Message Project Project Project

2 Member has usage statistics Usage statistics Usage statistics Category

3 Developer statistics bugs Developer Statistic record Message

4 Category statistic record support Statistic record Developer Discussion

5 Public forum Member Member Category Help

6 LastestNew Project Message Release package Person

7 Message Developer Public forums Member Member

8 Version Category Person Message Developer

9 homepage super category Category Help Project admin
10 Usage statistics page views Project admin Public forums Public forums

Table 4. The importance of relations — Software ontology

Top 5 Ranking results

Concepts Reference Answer CARRank User Study
1 title has usage statistics project homepage
2 summary developed by title

Project 3 activity ranking belong to category activity ranking
4 project homepage translations has public forum
5 project of statistic intended audience has usage statisitics
1 login name post message person name
2 publicly displayed name site member since

Member 3 email address login name
4 user id email address
5 site member since publicly displayed name
1 skills member of project person name
2 project role project role

Developer 3 skills
4 user id
5
1 hasProject hasProject super category
2 category name sub category sub category

Category 3 super category super category category name
4 sub category category name hasProject
5
1 hasMessage hasMessage hasMessage
2 belong to project

Public Forum 3 project of forum

4
5

With these reference answers, we compare CARRank with the four other rank-
ing methods mentioned above and a user study. The user study was conducted
on 5 volunteers whose research interests include the Semantic Web. We provided
each volunteer the four ontologies that they never knew about before, in their
original file formats, e.g. RDF or OWL. And then, for each ontology, volunteers
were required to independently give the top 20 important concepts and the top
5 important relations for each top concept as their own ranking results. In this
way, given one of the four ontologies, for each volunteer, we can computed a

1;_@2/0 value and a PR values according to his/her ranking results. The arith-

metic means on five PQ@Q20 values and five PR values are used to represent the
corresponding metrics of the user study.

Table Bl and @l present the comparisons on concepts and relations ranking for
a full version of our running example. Here, we choose OE_G\gf the five ranking
results collected in the user study which has the highest P@Q20 value.

Items listed in italic bold font are relevant ranking results. In Table[3] there are
5 relevant items in the first 10 ranking results for PageRank, 7 for DEM+BEM,
7 for CARRank, and 6 for the user study. Obviously, CARRank and DEM+BEM

Identifying Potentially Important Concepts and Relations in an Ontology 45

both have better ranking qualities than the user study. It means that they can
somewhat support the ontology understanding. It also shows that PageRank
is not a proper method in ranking the importance of concepts with less rele-
vant results than the user study. Both CARRank and DEM+BEM rank concept
“Project” the first place. The major difference of their results is that DEM+BEM
considers “Person” and “Project admin”, while CARRank considers “Help” and
“Release package”. However, “Person” is relatively not important in this on-
tology because it is a base class of “Developer” and “Member” in the class
hierarchy and rarely instantiated. PageRank fails in ranking “Project” the first
place, which greatly lower its ranking qualities.

As the other four ranking methods do not directly support to rank the im-
portance of relations, Table [only gives the comparisons of CARRank and the
user study. It lists the first 5 relations (if available) starting from each concept of
the first 5 concepts in the reference answersd. Apparently, CARRank can better
reflect the importance of relations except for the concept “Project”, since its
ranking results are closer to the reference answers most of the time. For concept
“Project”, several owl:DatatypeProperty type relations, e.g. “title”, “summary”,
“activity ranking”, and “project homepage”, are given in the reference answers.
Such relations usually link to those simple data type values which have no out-
going edges hence very low importance as concepts. Therefore, according to
Equation [B owl:DatatypeProperty type relations are assigned low importance.
We believe that it is beyond the scope of link analysis ranki/n_g\/algorithms.

We further examine the quality of ranking results with P@Q20 and PR. The
comparisons are illustrated in Figure] and Table Bl CARRank has some affir-
mative ability for helping ontology understanding, because it obtained a better
result than the user study did. Though the precision of CARRank for “Software”
is only about 4 percentage higher than that of users’ decision, the degree of the
support will be amplified along with the increase of the ontology’s scale and com-
plexity as shown in Figure @l We find users can hardly decide the top important

7 CH

S DEMBEM

E= CARRank
USER

Table 5. The Comparison of
Ranking Relations

CARRank User
copyright 0.06 0
software 0.586 0.562

N =
software copyright
Different Ontologies

Fig. 4. The Comparison of Ranking Concepts

5 In fact, every concept listed in Table] has more than five relations except “Pub-
lic Forum”. However, the creator could not provide us more relations than the ref-
erence answers.

46 G. Wu et al.

concepts for “Copyright Ontology” for its complexity. Obviously, CARRank is
helpful in this case. Another interesting observation is that our algorithm is also
effective to those meta ontologies like “OWL”.

5.3 Comparison of Semantic Abilities

To exhibit the semantic abilities of CARRank, we generate three variations of
FOAF ontologyﬂ, i.,e. OWL-Full, OWL-DL, and OWL-Lite, with a tool named
foaf cleaner [2]. Then, CARRank is applied on the three versions of FOAF and
the original FOAF. Results are shown in Table [l

Original OWL-Full OWL-DL OWL-Lite Table 6. Top 10 Concepts for

Person 1 1 1 1

Document 2 2 2 2 CYC

Organization 3 3 3 5

Project 4 4 4 4 Rank Concepts
Agent 5 5 5 3 1 RNAPolymerase
OnlineEcommerceAccount 6 6 6 7 2 ExtensionOf-C-Regular
OnlineChatAccount 7 7 7 8 3 ClosedUnderGeneralizations-Classical
OnlineGamingAccount 8 8 8 9 4 NetworkPortNumber
OnlineAccount 9 9 9 10 5 SimpleWord
PersonalProfileDocument 10 10 10 11 6 GLFGraph

Tmage 11 11 11 6 7 BrigadeOrRegimentSized
Group 12 12 12 12 8 BrigadeOrRegimentSized
Pearson Correlation Coefficients 1.0 1.0 0.867 9 ExtensionOf-K-Normal

10 GLFAnalysisDiagramGraph

Fig. 5. Top 10 Concepts for FOAF

There are totally 12 concepts involved. The values in the first two columns
are the concepts and their ranks produced by applying CARRank on the original
FOAF ontology. The values in the last three columns are the ranks for the three
versions. We use the Pearson Correlation Coefficient to measure the similarity of
ranking results between one OWL version and the original version. The ranking
results for the OWL-Full and OWL-DL are the same as that for the original
one, though owl:imports of the OWL and RDF'S ontologies are removed from the
original, and owl:InverseFunctionalProperty on owl:DatatypeProperty is removed
from OWL-Full. The only affection happens to the ranking results of OWL-Lite
when owl:disjointWith is removed from OWL-DL. However, the similarity is still
over 85%. This indicates that CARRank can capture most of the semantics even
when the language expressive power changes.

Another challenge for semantic abilities of CARRank is to rank large scale
ontologies, e.g. cydd (23.7MB). Large scale ontologies are always developed
collaboratively by many creators for a long time. Because of the limitations of
individual creator and the limitation of the time, a global design intention may
be unstable or even inconsistent. The interesting ranking results of CYC are
listed in Table [0l There are 30432 classes and properties defined with 254371
RDF triples. It seems that CARRank ranks higher some abstract concepts for

" http://xmlns.com/foaf/spec/
8 http://www.cyc.com,/2004/06/04/cyc

Identifying Potentially Important Concepts and Relations in an Ontology 47

their complicated class hierarchy constructed with rdfs:subClassOf. Although it
is hard to determine the quality of ranking results for such large scale ontology,
we still suggest to use CARRank to periodically rank the concepts during its
composition in order to discover early the deviation of design intention.

5.4 Efficiencies

Convergence Comparison. Figure[presents the comparisons among PageR-
ank, Reverse PageRank, and CARRank. Rankings are performed on “Relation-
ship”ﬁ ontology which has 169 vertices and 252 directed labeled edges in its
ontology graph. Obviously, CARRank and Reverse PageRank have conformable
convergent speed because both consider the hub score instead of authority score.
The only difference is that the additional time spent on updating the relation
weight matrix makes CARRank a little slower than Reverse PageRank.

On the other hand, the convergent speed of both CARRank and Reverse
PageRank are quite different from that of PageRank. The reason is that PageR-
ank considers authority score instead of hub score. Therefore, the convergent
speed may be various with respect to the topological structure of the ontol-
ogy graph. In Figure [6] the convergent speed of PageRank is much faster. How-
ever, take «UNSPSCH ontology on SchemaWeb for another example. There are
19600 vertices and 29386 directed labeled edges. As shown in Figure[d, CARRank
and Reverse PageRank express the same convergent speed and converge to the
threshold early than PageRank. In any case, the convergent speed is acceptable
for CARRank.

1 0.01
@
g 0.1 I CARRank 5 1e3] o I CARRank
T 001 o PageRank B o PageRank
o — ReversePageRank 2 g4l o — ReversePageRank
= 1E3
g F g + o g
< 1E-4 T 1ES + o
g 8 + o
Q 1ES 2 1E64 + + o
@ 5]
8 16 = + o
b= M © 1E7 +
2 s o
g™ M 2 1E-8 + e
8 1E8 M -g + o
c
2 > ie9 . . , ; r)
1E-9 T T T T T T T T J
0 10 20 30 40 5 60 70 8 90 2 4 6 8 10 12
Iterations Iterations

Fig. 6. Convergence (“Relationship”) Fig. 7. Convergence (“UNSPSC”)

6 Conclusion and Discussion

CARRank is a simple yet effective algorithm for identifying potentially impor-
tant concepts and relations in an ontology. The experimental results show the
feasibility of CARRank from the ranking qualities and the semantic abilities.

9 http://purl.org/vocab /relationship/
9 http:/ /www.ksl.stanford.edu/projects/DAML/UNSPSC.daml

48 G. Wu et al.

Although ontology understanding means much more than our proposed solu-
tion. we expect CARRank to be a preliminary step towards identifying potentially
important concepts and relations user-independently. In addition, we also agree
that being user-independent may not meet all the needs of application. Fortu-
nately, CARRank can be personalize by letting user provide a sub-graph of the
ontology which mainly contains the concepts and relations concerned about. It
would be interesting to explore the ranking based on users’ tasks and needs in
the future work.

Acknowledgments

We would like to thank all the ontology creators who contributed their ranking
results, and all the reviewers for their constructive comments and suggestions.

References

[1] Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with aktiverank. In:
Cruz, 1., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

[2] Alford, R.: Using FOAF and OWL (July 2005),
http://www.mindswap.org/2005/foaf cleaner/

[3] Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based key-
word search in databases. In: VLDB, pp. 564-575 (2004)

[4] Bontas, E.P., Mochol, M.: Towards a cost estimation model for ontology engineer-
ing. In: Berliner XML Tage, pp. 153-160 (2005)

[5] Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1-7), 107-117 (1998)

[6] Buitelaar, P., Eigner, T., Declerck, T.: Ontoselect: A dynamic ontology library
with support for ontology selection. In: The Demo Session at the ISWC (2004)

[7] d’Entremont, T., Storey, M.-A.: Using a degree-of-interest model for adaptive
visualizations in protégé. In: 9th International Protégé Conference (2006)

[8] Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking
Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156-170. Springer, Heidelberg (2005)

[9] Ernst, N.A., Storey, M.-A., Allen, P.: Cognitive support for ontology modeling.
Int. J. Hum.-Comput. Stud. 62(5), 553-577 (2005)

[10] Fogaras, D.: Where to start browsing the web? In: Béhme, T., Heyer, G., Unger,
H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 65-79. Springer, Heidelberg (2003)

[11] Gruber, T.R.: What is an ontology (December 2001)

[12] James, W.: The principles of psychology. Harvard (1890)

[13] Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604-632 (1999)

[14] Leighton, H.V., Srivastava, J.: First 20 precision among world wide web search
services (search engines). Journal of the American Society for Information Sci-
ence 50(10), 870-881 (1999)

[15] Mei, J., Boley, H.: Interpreting swrl rules in rdf graphs. Electr. Notes Theor.
Comput. Sci. 151(2), 53-69 (2006)

http://www.mindswap.org/2005/foaf_cleaner/

Identifying Potentially Important Concepts and Relations in an Ontology 49

[16] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T., Swartout,
W.R.: Enabling technology for knowledge sharing. AT Mag. 12(3), 36-56 (1991)

[17] Nie, Z., Zhang, Y., Wen, J.-R., Ma, W.-Y.: Object-level ranking: bringing order
to web objects. In: WWW, pp. 567-574 (2005)

[18] Patel, C., Supekar, K., Lee, Y., Park, E.K.: Ontokhoj: a semantic web portal for
ontology searching, ranking and classification. In: WIDM, pp. 58-61 (2003)

[19] Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web:
How to cover the queens birthday dinner? In: Managing Knowledge in a World of
Networks. LNCS, pp. 96-111. Springer, Heidelberg (2006)

[20] Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., Yu, Y.: Towards imaging large-
scale ontologies for quick understanding and analysis. In: Gil, Y., Motta, E., Ben-
jamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729. Springer, Heidel-
berg (2005)

[21] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax
(2004), http://www.w3.org/TR/rdf-concepts/

[22] W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML
(2004), http://www.w3.org/Submission/SWRL/

[23] Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In:
Cruz, 1., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

[24] Wu, G.: Understanding an ontology by ranking its concepts and relations. Tech-
nical report, Tsinghua University (January 2008),
http://166.111.68.66/persons/gangwu/publications/kegtr-carrank.pdf

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/Submission/SWRL/
http://166.111.68.66/persons/gangwu/publications/kegtr-carrank.pdf

RoundTrip Ontology Authoring

Brian Davis', Ahmad Ali Igbal'3, Adam Funk?, Valentin Tablan?,
Kalina Bontcheva?, Hamish Cunningham?, and Siegfried Handschuh?

! Digital Enterprise Research Institute, Galway, Ireland
2 University of Sheffield, UK
3 University of New South Wales, Australia

Abstract. Controlled Language (CL) for Ontology Editing tools offer
an attractive alternative for naive users wishing to create ontologies, but
they are still required to spend time learning the correct syntactic struc-
tures and vocabulary in order to use the Controlled Language properly.
This paper extends previous work (CLOnE) which uses standard NLP
tools to process the language and manipulate an ontology. Here we also
generate text in the CL from an existing ontology using template-based
(or shallow) Natural Language Generation (NLG). The text generator
and the CLOnE authoring process combine to form a RoundTrip On-
tology Authoring environment: one can start with an existing imported
ontology or one originally produced using CLOnE, (re)produce the Con-
trolled Language, modify or edit the text as required and then turn
the text back into the ontology in the CLOnE environment. Building
on previous methodology we undertook an evaluation, comparing the
RoundTrip Ontology Authoring process with a well-known ontology ed-
itor; where previous work required a CL reference manual with several
examples in order to use the controlled language, the use of NLG reduces
this learning curve for users and improves on existing results for basic
ontology editing tasks.

1 Introduction

Formal data representation can be a significant deterrent for non-expert users
or small organisations seeking to create ontologies and subsequently benefit
from adopting semantic technologies. Existing ontology authoring tools such
as Protég@ attempt to resolve this, but they often require specialist skills in
ontology engineering on the part of the user. This is even more exasperating
for domain specialists, such as clinicians, business analysts, legal experts, etc.
Such professionals cannot be expected to train themselves to comprehend Se-
mantic Web formalisms and the process of knowledge gathering; involving both
a domain expert and an ontology engineer can be time-consuming and costly.
Controlled languages for knowledge creation and management offer an attractive
alternative for naive users wishing to develop small to medium sized ontologies
or a first draft ontology which can subsequently post-edited by the Ontology

!http://protege.stanford.edu

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 50 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://protege.stanford.edu

RoundTrip Ontology Authoring 51

Engineer. In previous work[I], we presented CLOnE - Controlled Language for
Ontology Editing which allows naive users to design, create, and manage in-
formation spaces without knowledge of complicated standards (such as XML,
RDF and OWL) or ontology engineering tools. CLOnE’s components are based
on GATE’s existing tools for IE (Information Extraction) and NLP (Natural
Language Processing) [2].

The CLOnE system was evaluated using a repeated-measures, task-based
methodology in comparison with a standard ontology editor — Protégé. CLOnE
performed favourably with test users in comparison to Protégé. Despite the ben-
efits of applying Controlled Language Technology to Ontology Engineering, a
frequent criticism against its adoption, is the learning curve associated with fol-
lowing the correct syntactic structures and/or terminology in order to use the
Controlled Language properly. Adhering to a controlled language can be, for
some naive users, time consuming and annoying. These difficulties are related to
the habitability problem, whereby users do not really know what commands they
can or cannot specify to the NLI (Natural Language Interface) [3]. Where the
CLOnE system uses natural language analysis to unambiguously parse CLOnE
in order to create and populate an ontology, the reverse of this process, NLG
(Natural Language Generation), involves the generation of the CLOnE language
from an existing ontology. The text generator and CLOnE authoring processes
combine to form a RoundTrip Ontology Authoring(ROA) environment: a user
can start with an existing imported ontology or one originally produced using
CLOnE, (re)produce the Controlled Language using the text generator, mod-
ify or edit the text as required and subsequently parse the text back into the
ontology using the CLOnE environment. The process can be repeated as nec-
essary until the required result is obtained. Building on previous methodology
[1], we undertook a repeated-measures, task-based evaluation, comparing the
RoundTrip Ontology Authoring process with Protégé. Where previous work re-
quired a reference guide in order to use the controlled language, the substitution
of NLG can reduce the learning curve for users, while simultaneously improving
upon existing results for basic Ontology editing tasks. The remainder of this
paper is organized as follows: Section Pl discusses the design and implementation
of the ROA pipeline focusing on the NLG component - the ROA text generator,
Section [3] presents our evaluation and discusses our quantitative findings. Sec-
tion M] discusses related work. Finally, Section [l and Section [f offer conclusions
and future work.

2 Design and Implementation

In this section, we describe the overall architecture of the Round Trip Ontology
Authoring (ROA) pipeline which is implemented in GATE [2]. We discuss briefly
extensions to existing CLOnE components of ROA, but focus the attention of
this section towards describing the CLOnE text generator, the algorithm used
and the XML configuration file containing templates needed to configure the
controlled language output of the generator.

52 B. Davis et al.

2.1 RoundTrip Ontology Authoring (ROA) and CLOnE

ROA builds on and extends the existing advantages of the CLOnE software and
input language, which are described below:

1. ROA requires only one interpreter or runtime environment, the Java 1.6
JRE.

2. ROA like CLOnE uses a sub-language of English.

3. As far as possible, CLOnE is grammatically lax; in particular it does not mat-
ter whether the input is singular or plural (or even in grammatical agreement).

4. ROA can be compact; the user can create any number of classes or instances
in one sentence.

5. ROA is more flexible and easier to learn by using simple examples of how
to edit the controlled language generated by the text generator in order to
modify the Ontology. It reduces the need to learn the Controlled Language
by following examples, style guides or CLOnE syntactic rules. Instead, a
user can create or modify various classes and instances in one (generated)
sentence or (using simple copy and paste) create new properties between
new or existing classes and instances.

6. The CLOnE grammar within ROA has been extended to handle simple verbs
and phrasal verbs.

7. Like CLOnE any valid sentence of ROA can be unambiguously parsed.

8. The advantage of the GATE Ontology API allows users to import existing
Ontologies for generation, subsequent editing in ROA and export the result
to different Ontology formats.

9. SimpleNLCﬂ has been added into the ROA text generator to lexicalize unseen
properties.

Procedurally, CLOnE’s analysis consists of the ROA pipeline of processing
resources (PRs) shown in Figure [(left dotted box). This pipeline starts with
a series of fairly standard GATE NLP tools which add linguistic annotations
and annotation features to the document. These are followed by three PRs de-
veloped particularly for CLOnE: the gazetteer of keywords and phrases fixed in
the controlled language and two J APH] transducers which identify quoted and
unquoted chunks. Names enclosed in pairs of single or double quotation marks
can include reserved words, punctuation, prepositions and determiners, which
are excluded from unquoted chunks in order to keep the syntax unambiguous.
The last stage of analysis, the CLOnE JAPE transducer, refers to the existing
ontology in several ways in order to interpret the input sentences. Table [below
provides an excerpt of the grammar rules of the CLOnE language. We refer the
reader to [T4] for additional rules and examples.

2 http://www.csd.abdn.ac.uk/~ereiter/simplenlg/

3 GATE provides the JAPE (Java Annotation Pattern Engine) language for match-
ing regular expressions over annotations, adding additional annotations to matched
spans, and manipulating the match patterns with Java code.

http://www.csd.abdn.ac.uk/~ereiter/simplenlg/

RoundTrip Ontology Authoring 53

T —y — — .
[¥ l i

| CLOnE Tokenizer I

| input Quote | Chunker | || | Generator | Configuration
| Finder Il

|

| | POS Tagger

[<>

|| Sentence Keyphrase CLOnE Ontology Ooll:;l]);" .
| splitter gazetteer engine ntology
o

CLOnE I Text Generator

Fig. 1. The ROA RoundTrip Ontology Authoring pipeline

Table 1. Excerpt of CLOnE grammar with examples

Sentence Pattern Example Usage

Forget everything. Forget everything. Clear the whole ontology
corpus to start with the
new ontology.

(Forget that) There is/are There are researchers, Create or delete (new)

<CLASSES>. universities and classes.
conferences.

(Forget that) <IN- Ahmad Ali Igbal and Create (or delete) in-

STANCES> is a/are Brian Davis are ’Ph.D. stances of the class.

<CLASS>. Scholar’.

(Forget that) <SuB- ’Ph.D. Scholar’ is a Make subclass(es) of an

CLASSES> is/are a type of Student. existing super-class. "'For-

type/types of <SUPER- get that’ only unlinks the

CLASS>. the subclass-superclass
relationship.

(Forget that) <CLASSES/ Professor supervises Create the property of the

INSTANCES > <VERB student. form Domain verb Range

PROPERTY> <CLASSES/ either between two classes

INSTANCES>. or instances.

2.2 Text Generation of CLOnE

The text generation component in Figure [l (right dotted box) displayed in the
ROA pipeline is essentially an Ontology Verbalizer. Unlike some NLG systems,
the communicative goal of the text generator is not to construct tailored reports
for specific content within the knowledge base or to respond to user specific
queries. Hence no specific content selection subtask or ”choice” is performed
since our goal is to describe and present the Ontology in textual form as un-
ambiguous subset of English - the CLOnE language for reading, editing and
amendment. We select the following content from the Ontology: top level classes,
subclasses, instances, class properties, their respective domain and ranges and
instance properties. The text generator is configured using an XML file, whereby
text templates are instantiated and filled by the values from the Ontology. This

54 B. Davis et al.

<!-- Template for all the other top classes -->
<templates
<in
<rriple id="rl™>
<property ns="rdf" name="type"/>
<object ns="owl™ name="Class"/>
<foriples

<!-- Template for defining class properties --3
<tewplater
<inz
<triple id="tl">
LProperty ns="rdf" name="rtype” >
<object na="rdf" name="Property’/>
</tripler

<triple id="tl.subject’>
<subject ref="tl.subject” />
<property ns="rdfs" name="sublClass0f"/>
<object name="Entity” />

<triple id="tZ"»
«<subject ref="tl.subject” />
<property ns="rdfs" name="domain”/>

<ftriplex </triplex
<fin
<ot <rriple id="t3">
<sinqular> <subject ref="tl.subject” />

<phrase>There are <property ns="rdfs" name="range"/>
«ref ref="tl.subject” mmher="plural™;>. <ftriplex
</fphraser </inx
</fzinmular> <out»
<plural> <sgingulars>
<phrase>There are <phrase>
«ref ref="tl.subject” mmher="plural™;>. <ref ref="tZ.object” mumber="sinqulac” />
</phraze> «ref ref="tl.subject” numher="sinqular” />
</plural> <ref ref="t3.object” mmber="singmilar” >,
<Jfouts </phrasze>
<ignorelf» </sinqalars>
<fignorelf> <pluralx
</template> «phrasex

<ref ref="tZ.object” mmber="singularc”/>

<ref ref="tl.subject” number="sincular”/>
<ref ref="t3.object” mmber="plural”/>.
</phrasex
<fplural>
<douts
<ftemplates>

Fig. 2. Example of a generation template

file is decoupled from the text generator PR. Examples of two templates used to
generate top level classes and class properties are displayed in Figure2l The text
generator (See Generator in Figure[l]) is realised as a GATE PR and consists
of three stages:

Stage 1 within the text generator converts the input ontology into an in-
ternal GATE ontological resource and flattens it into RDF style triples. This
is executed in a breadth-first manner—so lists are created where super-classes
always precede their corresponding subclasses—in the following order: top-level
classes, subclasses, instances, class properties, and instance properties.

Stage 2 matches generation templates from the configuration file (See Fig-
ure [2) with the triples list derived from the Ontology in Stage 1. A generation
template has three components: (1) an in element containing a list of triple
specifications, (2) an out element containing phrases that are generated when a
successful match has occurred and (3) an optional ignoreilf element for addi-
tional triple specifications that cause a match specified in the in element to be
ignored if the conditions are satisfied. The triple specifications contained within
the in portion of the template can have subject, property and object XML el-
ements. The triple specifications act as restrictions or conditions, such that an
input triple generated from the Ontology must match this template. If more than
one triple is included in the in element they are considered as a conjunction of
restrictions, hence the template will only match if one or more actual triples for
all triple specifications within the in element are found. One triple can refer-
ence another, i.e., a specification can constrain a second triple to have the same
object as the subject of the first triple. Only backward referencing is permitted

RoundTrip Ontology Authoring 55

since the triples are matched in a top down fashion according to their textual
ordering. An example of referencing can be seen in line 188 of the out element
of the template shown in Figure 2] for generating class properties.

In Stage 3 the out section of the template describes how text is generated
from a successful match. It contains phrase templates that have text elements
and references to values matched within the in elements. Phrases are divided into
singular and plural forms. Plural variants are executed when several triples are
grouped together to generate a single sentence (Sentence Aggregation) based
on a list of Ontology objects (i.e., There are Conferences, Students and
Universities). Text elements within a template are simply copied into the
output while reference values are replaced with actual values based on matching
triple specifications. We also added a small degree of lexicalization into the Text
Generator PR, whereby, for example, an unseen property, which is treated as a
verb is inflected correctly for surface realisation i.e. study and studies. This
involves a small amount of dictionary look-up using the SimpleNLG Library
to obtain the third person singular inflection studies from study to produce
Brian Davis studies at NUIG. The out elements of the generation template
also provide several phrase templates for the singular and plural sections. These
are applied in rotation to prevent tedious and repetitious output.

Stage 2 also groups matches together into sets that can be expressed together
in a plural form. For this to proceed, the required condition is that the differ-
ence between matches, occurs in only one of the references used in the phrase
templates, i.e., if singular variants would only differ by one value. A specialized
generation template with no in restrictions is also included in the configuration
file. This allows for the production of text where there are no specific input triple
dependencies.

3 Evaluation

3.1 Methodology

Our methodology is deliberately based on the criteria previously used to evaluate
CLOnE [14], so that we can fairly compare the earlier results using the CLOnE
software with the newer RoundTrip Ontology Authoring(ROA) process. The
methodology involves a repeated-measures, task-based evaluation: each subject
carries out a similar list of tasks on both tools being compared. Unlike our
previous experiment, the CLOnE reference guide list and examples are withheld
from the test users, so that we can measure the benefits of substituting the
text generator for the reference guide and determine its impact on the learning
process and usability of CLOnE. Furthermore, we used a larger sample size and
more controls for bias. All evaluation material and data are available online
for inspection, including the CLOnE evaluation results for comparisorE. The
evaluation contained the following:

4Thttp://smile.deri.ie/evaluation/2008/R0A

http://smile.deri.ie/evaluation/2008/ROA

56

B. Davis et al.

A pre-test questionnaire asking each subject to test their degree of knowl-
edge with respect to ontologies, the Semantic Web, Protégé and Controlled
Languages. It was scored by assigning each answer a value from 0 to 2 and
scaling the total to obtain a score of 0-100.
A short document introducing Ontologies, the same ‘quick start’ Protégé
instructions as used in [4] (partly inspired by Protégé’s Ontology 101 doc-
umentation [5]), and an example of editing CLOnE text derived from the
text generator. The CLOnE reference guide and detailed grammar examples
used in for the previous experiment [4] were withheld. Subjects were allowed
to refer to an example of how to edit generated Controlled Language but did
not have access to CLOnE reference guide.
A post-test questionnaire for each tool, based on the System Usability Scale
(SUS), which also produces a score of 0-100 to compare with previous
results [6].
A comparative questionnaire similar to the one used in [4] was applied to
measure each user’s preference for one of the two tools. It is scored similarly
to SUS so that 0 would indicate a total preference for Protégé, 100 would
indicate a total preference for ROA, and 50 would result from marking all
the questions neutral. Subjects were also given the opportunity to make
comments and suggestions.
Two equivalent lists of ontology-editing tasks, each consisting of the following
subtasks:

e creating two subclasses of existing classes,

e creating two instances of different classes, and

e cither (A) creating a property between two classes and defining a prop-

erty between two instances, or (B) extending properties between two
pairs of instances.

For both task lists, an initial ontology was created using CLOnE. The same
ontology was loaded into Protégé for both tasks and the text generator was
executed to provide a textual representation of the ontology for editing pur-
poses(see Figure B]), again for both tasks.

For example, Task List A is as follows.

Create a subclass Institute of University.

Create a subclass Workshop of Conference.

Create an instance International Semantic Web Conference of class Confer-
ence.

Create an instance DERI of class Institute.

Create a property that Senior Researchers supervise Student.

Define a property that Siegfried Handschuh supervises Brian Davis.

3.2 Sample Quality

We recruited 20 volunteers from the Digital Enterprise Research Institute, Gal-

wayl]

. The sample size (n = 20) satisfies the requirements for reliable SUS

®http://www.deri.ie

http://www.deri.ie

RoundTrip Ontology Authoring 57

hMessages @ CL Document ‘ ,ﬁﬁ% CLIE E"}fx Text Generatar Generated Ontalogy

[Annotation Sets Annotations Co-reference Editor |TE}{t|

There are Conferences, Researchers and Universities. Staff and Student are types of Researchear.
'Ph.D. Schalar is a fype of Student. Professor and "Senior Researcher' are types of Staff.

‘Shmad Ali lgbal and 'Brian Davis' are 'Ph.D. Scholar. 'Hamish Cunningham' is a Professar.

IThis is the textual representation of an ontology.
'kalina Bontchewa' and 'Siegfried Handschuh' are "Senior Researchers'

Researcher attends Conference. Professar supervises Student.

Fig. 3. Text Generated by ROA

evaluations [7]. We recruited subjects with an industrial background (I) and
participants with a research background (R). See (in Table Bl for details. In
addition we attempted to control bias by selecting volunteers who were either:

— Research Assistants/Programmers/Post-Doctoral Researchers with an in-
dustrial background either returning (or new) to Academic Research respec-
tively(T),

— Postgraduate Students who were new to the Semantic Web and unfamiliar
with Ontology Engineering(R),

— Researchers from the E-learning and Sensor Networks lab but not from the
Semantic Web Cluster(R),

— Researchers with no background in Natural Language Processing or Ontol-
ogy Engineering(R) or

— Industrial Collaborators (I).

In all cases, we tried to ensure that participants had limited or no knowledge
of GATE or Protégé. First, subjects were asked to complete the pre-test ques-
tionnaire, then they were permitted time to read the Protégé manual and Text
Generator examples, and lastly they were asked to carry out each of the two task
lists with one of the two tools. (Half the users carried out task list A with ROA
and then task list B with Protégé; the others carried out A with Protégé and
then B with ROA.) Each user’s time for each task list was recorded. After each
task list the user completed the SUS questionnaire for the specific tool used,
and finally the comparative questionnaire. Comments and feedback were also
recorded on the questionnaire forms.

3.3 Quantitative Findings

Table 2] summarizes the main measures obtained from our evaluation. We used
sPs9 to generate all our statistical results. In particular the mean ROA SUS

5 SPSS 2.0, http://www.spss.com

http://www.spss.com

58 B. Davis et al.

Table 2. Summary of the questionnaire scores

Measure min mean median max
Pre-test scores 17 42 42 75
ROA SUS rating 48 74 70 100
Protégé SUS rating 10 41 41 85
R/P Preference 40 72 79 95

Table 3. Confidence intervals (95%) for the SUS scores
Tool Confidence intervals
Task list A Task list B Combined

Protégé 28-55 29-51 32-49
ROA 63-77 69-84 68-79

Table 4. Correlation coefficients

Measure Measure Pearson’s Spearman’s Correlation
Pre-test ROA time -0.41 -0.21 weak —
Pre-test Protégé time -0.28 -0.35 none
Pre-test ROA SUS -0.02 -0.00 none
Pre-test Protégé SUS -0.32 -0.29 weak —
ROA time Protégé time 0.53 0.58 +
ROA time ROA SUS -0.65 -0.52 —
Protégé time Protégé SUS 0.53 0.56 +
ROA time Protégé SUS -0.14 -0.10 none
Protégé time ROA SUS -0.02 -0.09 none
ROA SUS Protégé SUS 0.04 -0.01 none
ROA SUS R/P Preference 0.58 0.56 +
Protégé SUS R/P Preference -0.01 0.10 none

score is above the baseline of 65-70% while the mean SUS score for Protégé is well
below the baseline [§]. In the ROA /Protégé Preference (R/P Preference) scores,
based on the comparative questionnaires, we note that the scores also favour on
average ROA over Protégé. Confidence intervals are displayed in Table RG]

We also generated Pearson’s and Spearman’s correlations coefficients [9I10].
Table @ displays the coefficients. In particular, we note the following results.

— The pre-test score has a weak negative correlations the with ROA task time.

— There are no correlations with pre-test score and the ROA SUS score.

— The pre-test score has a weak negative correlation with the Protégé SUS
score.

— There are no correlations with pre-test score and the Protégé time.

7 A data sample’s 95% confidence interval is a range 95% likely to contain the mean
of the whole population that the sample represents [9].

RoundTrip Ontology Authoring 59

— In previous results in comparing CLOnE and Protégé, the task times for
both tools were more positively correlated with each other while in the case
of ROA and Protégé, there correlation has being weakened by a significant
32% of its original value (of 78%) reported for CLOnE [I], indicating that
the users tended not spend the equivalent time completing both ROA and
Protégé tasks.

— There is a moderate correlation with Protégé task time and Protégé SUS
scores.

— There is a strong negative correlation of -0.65 between the ROA task time
and the ROA SUS scores. Our previous work reported no correlation be-
tween the CLOnE task time and CLOnE SUS time. A strong negative or
inverse correlation implies that users who spent less time completing a task
using ROA tended to produce high usability scores - favouring ROA. More
importantly, we noted that the associated probability reported by SPSS, was
less then the typical 5% cut-off point used in social sciences. This implies
there is a 5% chance that the true population coefficient is very unlikely to
be 0 (no relationship). Conversely, one can infer statistically that for 19 out
of 20 (95%)users, with little or no experience in either NLP or Protégé who
favour RoundTrip Ontology Authoring over Protégé also tend to spend less
time completing Ontology editing tasks.

— The R/P Preference score correlates moderately with the ROA SUS score,
similar to previous results, but no longer retains a significant inverse correla-
tion with the Protégé SUS score. The reader should note the R/P Preference
scores favour ROA over Protégé.

We also varied the tool order evenly among our sample. As noted previously
in [I], once again the SUS scores have differed slightly according to tool order
(as indicated in Table B]). Previous SUS scores for Protégé tended to be slightly
lower for B than for A, which we believe may have resulted from the subjects’
decrease in interest as the evaluation progressed. While in previous results there
was a decrease in SUS scores for CLOnE (yet still well above the SUS baseline),
in the case of ROA however, the SUS scores increased for task B (see Table [3),
implying that if waning interest was a factor in the decrease in SUS scores
for CLOnE, it does not appear to be the case for ROA. What is of additional
interest is that group I, subjects with industrial background scored on average
10% higher for both ROA SUS and ROA /Protégé, which implies that Industrial
collaborators or professionals with an Industrial background favoured a natural
language interface over a standard Ontology Editor even more than Researchers.

3.4 User Feedback
The test users also provided several suggestions/comments about ROA.

— “RoundTrip Ontology Authoring becomes much easier, once the rules are
learnt”. (This is very interesting considering that no syntax rules, extended
examples or restricted vocabulary list were provided).

60

4

B. Davis et al.

Use of inverted commas should be used only once and afterwards, if same
the class /instance is reused, the system should automatically recognise it
as the previous word.

Many users suggested displaying the ontology pane on the right hand side
of the text pane, where test users edit the text instead of moving between
two separate panes.

Some users suggested dynamic ontology generation, once a user finishes typ-
ing a sentence, the changes should be displayed automatically in the ontology
pane.

Similar suggestions to the previous evaluation were provided for user auto-
completion, syntax highlighting, options about available classes, instances
or property names and keywords should be displayed, a similar concept to
modern Word Processor or programming IDEs such as eclipse.

Some test users with an industrial background demonstrated concern regard-
ing scalability and ROA using with a larger business related ontology and
suggest capabilities for verbalizing a portion of the ontology tree within the
Ontology viewer, using text generation for subsequent editing.

Some test users appreciated the singular /plural forms and sentence handling
of ROA (e.g., study, studies).

Table 5. Groups of subjects by source and tool order

Source Tool order Total
PR RP

R Researcher 5 7 12

I Industry 5 3 8

Total 10 10 20

Table 6. Comparison of the two sources of subjects

Measure Group min mean median max
Pre-test R 17 38 38 58

1 17 47 50 75
ROA SUS R 48 69 70 82

1 65 80 80 100
Protégé SUS R 10 30 28 52
1 12 48 49 85
R 40 68 72 88
1

65 78 78 95

R/P Preference

Related Work

“Controlled Natural Languages (CL)s are subsets of natural language whose
grammars and dictionaries have been restricted in order to reduce or eliminate
both ambiguity and complexity” [I1]. CLs were later developed specifically for

RoundTrip Ontology Authoring 61

computational treatment and have subsequently evolved into many variations
and flavours such as Smart’s Plain English Program (PEP), White’s Interna-
tional Language for Serving and Maintenance (ILSAM) [12] and Simplified Eng-
lish§ They have also found favour in large multi-national corporations, usually
within the context of machine translation and machine-aided translation of user
documentation [TTIT2].

The application of CLs for ontology authoring and instance population is an
active research area. Attempto Controlled Englisiﬂ (ACE) [13], is a popular CL
for ontology authoring. It is a subset of standard English designed for knowledge
representation and technical specifications, and is constrained to be unambigu-
ously machine-readable into DRS - Discourse Representation Structure. ACE
OWL, a sublanguage of ACE, proposes a means of writing formal, simultaneously
human- and machine-readable summaries of scientific papers [I4/15]. Similar to
RoundTrip Ontology Authoring, ACE OWL also aims to provide reversibility
(translating OWL DL into ACE). The application NLG, for the purposes editing
existing ACE text, is mentioned in [I6]. The paper discusses the implementa-
tion of the shallow NLG system - an OWL Verbalizer, focusing primarily on
the OWL to ACE rewrite rules, however no evaluation or quantitative data are
provided in attempt to measure the impact of NLG in the authoring process.
Furthermore OWL’s allValuesFrom must be translated into a construction which
can be rather difficult for humans to read. A partial implementation is however
available for public testin@.

Another well-known implementation which employs the use of NLG to aid the
knowledge creation process is WYSIWYM (What you see is what you meant).
It involves direct knowledge editing with natural language directed feedback. A
domain expert can edit a knowledge based reliably by interacting with natural
language menu choices and the subsequently generated feedback, which can then
be extended or re-edited using the menu options. The work is conceptually simi-
lar to RoundTrip Ontology Authoring, however the natural language generation
occurs as a feedback to guide the user during the editing process as opposed
to providing an initial summary in Controlled Language for editing. A usability
evaluation is provided in [I7], in the context of knowledge creation, partly based
on IBM heuristic evaluation, but no specific quantitative data that we are
aware of, is presented. However, evaluation results are available for the MILE
(Maritime Information and Legal Explanation) application, which used WYSI-
WYM, but in the context of query formulation for the CLIMHJ project, of
which the outcome was favourable [I7].

Similar to WYSIWYM is GINO (Guided Input Natural Language Ontol-
ogy Editor) provides a guided, controlled NLI (natural language interface) for

8 http://www.simplifiedenglish-aecma.org/Simplified English.htm
9http://www.ifi.unizh.ch/attempto/
0 http://attempto.ifi.uzh.ch/site/tools/
" http://www-03.ibm.com/able/resources/uebeforeyoubegin.html
12 CLIME, Cooperative Legal Information Management and Explanation, Esprit
Project EP25414.

http://www.simplifiedenglish-aecma.org/Simplified_English.htm
http://www.ifi.unizh.ch/attempto/
http://attempto.ifi.uzh.ch/site/tools/
http://www-03.ibm.com/able/resources/uebeforeyoubegin.html

62 B. Davis et al.

domain-independent ontology editing for the Semantic Web. GINO incremen-
tally parses the input not only to warn the user as soon as possible about errors
but also to offer the user (through the GUI) suggested completions of words
and sentences—similarly to the“code assist” feature of Eclips and other de-
velopment environments. GINO translates the completed sentence into triples
(for altering the ontology) or SPARQ queries and passes them to the Jena
Semantic Web framework. Although the guided interface facilitates input, the
sentences are quite verbose and do not allow for aggregation. A full textual
description of the Ontology is not realized as is the case of the CLOnE text gen-
erator [I8]. Furthermore, similar, to our evaluation, a small usability evaluation
was conducted using SUS [6], however the sample set of six was too small to infer
any statistically significant results [7]. In addition, GINO was not compared to
any existing Ontology editor during the evaluation. Finally, [19] presents an On-
tology based Controlled Natural Language Editor, similar to GINO, which uses
a CFG (Context-free grammar) with lexical dependencies - CFG-DL to gener-
ate RDF triples. To our knowledge the system ports only to RDF and does not
cater for other Ontology languages. Furthermore no quantitative user evaluation
is provided.

Other related work involves the application of Controlled Languages for On-
tology or knowledge base querying, which represent a different task than that of
knowledge creation and editing but are worth mentioning for completeness sake.
Most notably AquaLo is an ontology-driven, portable Question-Answering
(QA) system designed to provide a natural language query interface to se-
mantic mark-up stored in a knowledge base. PowerAqua [20] extends Aqua-
Log, allowing for an open domain question-answering for the semantic web.
The system dynamically locates and combines information from multiple
domains.

5 Conclusion and Discussion

The main research goal of this paper is to assess the effect of introducing Natural
Language Generation (NLG) into the CLOnE Ontology authoring process to fa-
cilitate RoundTrip Ontology Authoring. The underlying basis of our research
problem is the habitability problem (See Section [Il): How can we reduce the
learning curve associated with Controlled Languages? And how can we ensure
their uptake as a Natural Language Interface (NLI)? Our contribution is em-
pirical evidence to support the advantages of combining of NLG with ontology
authoring, a process known as RoundTrip Ontology Authoring (ROA).

The reader should note, that we compared Protégé with ROA, because
Protégé is the standard tool for ontology authoring. Previous work [I] com-
pared CLOnE with Protégé. Hence, in order to compare ROA with CLOnE; it

13 mttp://www.eclipse.org/
4 http://www.w3.org/TR/rdf-sparql-query/
15 http://kmi.open.ac.uk/technologies/aqualog/

http://www.eclipse.org/
http://www.w3.org/TR/rdf-sparql-query/
http://kmi.open.ac.uk/technologies/aqualog/

RoundTrip Ontology Authoring 63

was necessary to repeat the experiment and use Protégé as the baseline. We
make no claims that Protégé should be replaced with ROA, the point is that
ROA can allow for the creation of a quick easy first draft of a complex Ontol-
ogy by domain experts or the creation of small to medium sized Ontologies by
novice users. Domain experts are not Ontology Engineers. Furthermore, a large
percentage of an initial Ontology would naturally consists of taxonomic relations
and simple properties/relations.

Our user evaluation consistently indicated that our subjects found ROA (and
continue to find CLOnE) significantly more usable and preferable than Protégé
for simple Ontology editing tasks. In addition our evaluation differs, in that we
implemented more tighter restrictions during our selection process, to ensure
that users had no background in NLP or Ontology engineering. Furthermore,
40% of our subjects with an industrial background, tended to score ROA 10%
higher then Researchers indicating that a NLI to a Ontology Editor might be a
preferred option for Ontology development within industry.

In detail, this evaluation differs from previous work [I] by two important
factors: (1) we ezcluded the CLONE reference manual from the training material
provided in the previous evaluation; and (2) we introduced a Text Generator,
verbalizing CLOnE text from a given populated Ontology and asked users to edit
the Ontology, using the generated CLOnE text based on an example provided.
We observed two new significant improvements in our results: (1) the previous
evaluation indicated a strong correlation between CLOnE task times and Protégé
task times, this correlation has significantly weaken by 32% between ROA and
Protégé task times. Hence, where users previously required the equivalent time
to implement tasks both in CLOnE and Protégé, this is no longer the case with
ROA (the difference being the text generator); and (2) our previous evaluation
indicated no correlation between either CLOnE/Protégé task times and their
respective SUS scores. However, with ROA, we can now infer that 95% of the
total population of naive users, who favour RoundTrip Ontology Authoring over
Protégé, would also tend to spend less time completing Ontology editing tasks.
We suspect that this is due to the reduced learning curve caused by the text
generator. Furthermore, ROA tended to retain user interest, which CLOnE did
not. We suspect that the absence of the need to refer to the CL reference guide
was a factor in this. While Protégé is intended for more sophisticated knowledge
engineering work, this is not the case for ROA. Scalability, both in performance
and usage, was also an issue raised by our test subjects. From a performance
perspective, when loading large Ontologies, we do not forsee any major issues
as ROA is currently being ported to the newest release of GATE which contains
a completely new Ontology API that utilises the power of OWLIM - OWL
in Memory, a high performance semantic repository developed at Ontotext9.
Finally, from a user perspective, authoring memory frequently used in translation
memory systems or text generation of selective portions of the Ontology (using
a Visual Resource) could significantly aid the navigation and authoring of large
Ontologies.

16 http://www.ontotext.com/owlim/

http://www.ontotext.com/owlim/

64 B. Davis et al.

6 Continuing and Future Work

Several interesting and useful suggestions for improvements to ROA were made,
many of which were already under development within the Nepomu (The
Social Semantic Desktop) project. ROA has been ported to a Nepomuk-KDE
application, Semn™ for Semantic Notetaking and will be also be targeted to-
wards the task of semi-automatic semantic annotation. Furthermore, the ROA
text generator was recently used in KnowledgeWet@ for the verbalization of sug-
gestions for semi-automatic ontology integration. Finally, ROA is being applied
within the EPSRC-funded Easy project to create a controlled natural language
interface for editing IT authorization policies (access to network resources such
as directories and printers) stored as Ontologies.

Acknowledgements

This research has been partially supported by the following grants: Knowl-
edgeWeb (EU Network of Excellence IST-2004-507482), TAO (EU FP6 project
IST-2004-026460), SEKT (EU FP6 project IST-IP-2003-506826, Lion (Science
Foundation Ireland project SF1/02/CE1/1131) and NEPOMUK (EU project
FP6-027705).

References

1. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
Clone: Controlled language for ontology editing. In: ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 142-155. Springer, Heidelberg (2007)

2. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL 2002) (2002)

3. Thompson, C.W., Pazandak, P., Tennant, H.R.: Talk to your semantic web. IEEE
Internet Computing 9(6), 75-78 (2005)

4. Funk, A., Davis, B., Tablan, V., Bontcheva, K., Cunningham, H.: Controlled lan-
guage IE components version 2. Deliverable D2.2.2, SEKT (2006)

5. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology. Technical Report KSL-01-05, Stanford Knowledge Systems Labora-
tory (March 2001)

6. Brooke, J.: SUS: a “quick and dirty” usability scale. In: Jordan, P., Thomas, B.,
Weerdmeester, B., McClelland, A. (eds.) Usability Evaluation in Industry, Taylor
and Francis, London (1996)

7. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website
usability. In: Usability Professionals’ Association Conference, Minneapolis, Min-
nesota (June 2004)

1" http://nepomuk.semanticdesktop.org/xwiki/

'8 http://nepomuk-kde.semanticdesktop.org/xwiki/bin/view/Main/WebHome
9 http://smile.deri.ie/projects/semn/

20 http://knowledgeweb.semanticweb.org/

http://nepomuk.semanticdesktop.org/xwiki/
http://nepomuk-kde.semanticdesktop.org/xwiki/bin/view/Main/WebHome
http://smile.deri.ie/projects/semn/
http://knowledgeweb.semanticweb.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

RoundTrip Ontology Authoring 65

. Bailey, B.: Getting the complete picture with usability testing. Usability updates

newsletter, U.S. Department of Health and Human Services (March 2006)

. Phillips, J.L.: How to Think about Statistics. W.H. Freeman and Company, New

York (1996)

Connolly, T.G., Sluckin, W.: An Introduction to Statistics for the Social Sciences,
3rd edn. Macmillan, Basingstoke (1971)

Schwitter, R.: Controlled natural languages. Technical report, Centre for Language
Technology, Macquarie University (June 2007)

Adriaens, G., Schreurs, D.: From COGRAM to ALCOGRAM: Toward a controlled
English grammar checker. In: Conference on Computational Linguistics (COLING
1992), Nantes, France, pp. 595-601 (1992)

Fuchs, N., Schwitter, R.: Attempto Controlled English (ACE). In: CLAW 1996.
Proceedings of the First International Workshop on Controlled Language Applica-
tions, Leuven, Belgium (1996)

Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and At-
tempto Controlled English. In: Fourth Workshop on Principles and Practice of
Semantic Web Reasoning, Budva, Montenegro (June 2006)

Kuhn, T.: Attempto Controlled English as ontology language. In: Bry, F., Schwer-
tel, U. (eds.) REWERSE Annual Meeting 2006 (March 2006)

Kaljurand, K., Fuchs, N.: Verbalizing OWL in Attempto Controlled English. In:
Proceedings of OWL: Experiences and Directions, OWLED 2007 (2007)

Piwek, P.: Requirements definition, validation, verification and evaluation of
the clime interface and language processing technology. Technical report, ITRI-
University of Brighton (2002)

Bernstein, A., Kaufmann, E.: GINO—a guided input natural language ontology
editor. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg
(2006)

Namgoong, H., Kim, H.: Ontology-based controlled natural language editor using
cfg with lexical dependency. In: Aberer, K., Choi, K.-S., Noy, N.; Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
353-366. Springer, Heidelberg (2007)

Lopez, V., Motta, E., Uren, V.: Poweraqua: Fishing the semantic web. In: Sure,
Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 393-410. Springer,
Heidelberg (2006)

nSPARQL: A Navigational Language for RDF

Jorge Pérez!, Marcelo Arenas!, and Claudio Gutierrez?

! Pontificia Universidad Catélica de Chile
2 Universidad de Chile

Abstract. Navigational features have been largely recognized as fundamental
for graph database query languages. This fact has motivated several authors to
propose RDF query languages with navigational capabilities. In particular, we
have argued in a previous paper that nested regular expressions are appropri-
ate to navigate RDF data, and we have proposed the nSPARQL query language
for RDF, that uses nested regular expressions as building blocks. In this paper,
we study some of the fundamental properties of nSPARQL concerning expres-
siveness and complexity of evaluation. Regarding expressiveness, we show that
nSPARQL is expressive enough to answer queries considering the semantics of
the RDFS vocabulary by directly traversing the input graph. We also show that
nesting is necessary to obtain this last result, and we study the expressiveness of
the combination of nested regular expressions and SPARQL operators. Regard-
ing complexity of evaluation, we prove that the evaluation of a nested regular
expression E over an RDF graph G can be computed in time O(|G]| - |E).

1 Introduction

The Resource Description Framework (RDF) is the W3C recommendation data
model for the representation of information about resources on the Web. The RDF spec-
ification includes a set of reserved keywords with its own semantics, the RDFS vocab-
ulary. This vocabulary is designed to describe special relationships between resources
like typing and inheritance of classes and properties [8]. As with any data structure de-
signed to model information, a natural question that arises is what the desiderata are for
an RDF query language. Among the multiple design issues to be considered, it has been
largely recognized that navigational capabilities are of fundamental importance for data
models with explicit tree or graph structure (like XML and RDF).

Recently, the W3C Working Group issued the specification of a query language
for RDF, called SPARQL [20]], which is a W3C recommendation since January 2008.
SPARQL is designed much in the spirit of classical relational languages such as SQL.
It has been noted that, although RDF is a directed labeled graph data format, SPARQL
only provides limited navigational functionalities. This is more notorious when one
considers the RDFS vocabulary (which current SPARQL specification does not cover),
where testing conditions like being a subclass of or a subproperty of naturally requires
navigating the RDF data. A good illustration of this is shown by the following query,
which cannot be expressed in SPARQL without some navigational capabilities. Con-
sider the RDF graph shown in Fig.[Il This graph stores information about cities, trans-
portation services between cities, and further relationships among those transportation

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 66 2008.
(© Springer-Verlag Berlin Heidelberg 2008

nSPARQL: A Navigational Language for RDF 67

scC

coastal city

Seafrance NEXpl‘e§§

Fig. 1. An RDF graph storing information about transportation services between cities

services (in the form of RDFS annotations). For instance, in the graph we have that a
“Seafrance” service is a subproperty of a “ferry” service, which in turn is a subproperty
of a general “transport” service. Assume that we want to test whether a pair of cities
A and B are connected by a sequence of transportation services, but without knowing
in advance what services provide those connections. We can answer such a query by
testing whether there is a path connecting A and B in the graph, such that every edge
in that path is connected with “transport” by following a sequence of subproperty re-
lationships. For instance, for “Paris” and “Calais” the condition holds, since “Paris” is
connected with “Calais” by an edge with label “TGV”, and “TGV” is a subproperty
of “train”, which in turn is a subproperty of “transport”. Notice that the condition also
holds for “Paris” and “Dover”.

Driven by these considerations, we introduced in [[7]] the language nSPARQL, that in-
corporates navigational capabilities to a fragment of SPARQL. The main goal of [[7]] was
not to formally study nSPARQL, but instead to provide evidence that the navigational
capabilities of nSPARQL can be used to pose many interesting and natural queries over
RDF data. Our goal in this paper is to formally study some fundamental properties of
nSPARQL. The first of these fundamental questions is whether the navigational capa-
bilities of nSPARQL can be implemented efficiently. In this paper, we show that this is
indeed the case. More precisely, the building blocks of nSPARQL patterns are nested
regular expressions, which specify how to navigate RDF data. Thus, we show in this
paper that nested regular expressions can be evaluated efficiently; if the appropriate data
structure is used to store RDF graphs, the evaluation of a nested regular expression F
over an RDF graph G can be computed in time O(|G| - | E|).

The second fundamental question about nSPARQL is how expressive is the language.
In this paper, we first show that nSPARQL is expressive enough to capture the deductive
rules of RDFS. Evaluating queries which involve the RDFS vocabulary is challenging,
and there is not yet consensus in the Semantic Web community on how to define a query

68 J. Pérez, M. Arenas, and C. Gutierrez

language for RDFS. In this respect, we show that the RDFS evaluation of an important
fragment of SPARQL can be obtained by posing nSPARQL queries that directly tra-
verse the input RDF data. It should be noticed that nested regular expressions are used
in nSPARQL to encode the inference rules of RDFS. Thus, a second natural question
about nSPARQL is whether these expressions are necessary to obtain this result. In this
paper, we show that nesting is indeed necessary to deal with the semantics of RDFS.
More precisely, we show that regular expressions alone are not enough to obtain the
RDFS evaluation of some queries by simply navigating RDF data.

Finally, we also consider the question of whether the SPARQL operators add ex-
pressive power to nSPARQL. Given that nested regular expressions are a powerful
navigational tool, one may wonder whether the SPARQL operators can be somehow
represented by using these expressions. Or even if this is not the case, one may wonder
whether there exist natural queries that can be expressed in nSPARQL, which cannot
be expressed by using only nested regular expressions. In our last result, we show that
this is the case. More precisely, we prove that there are simple and natural queries that
can be expressed in nSPARQL and cannot be expressed by using only nested regular
expressions.

Organization of the paper. In Section 2] we introduce some basic notions about RDF
and RDFS. In Section Bl we define the notion of nested regular expression, and prove
that these expressions can be evaluated efficiently. In Section[d] we define the language
nSPARQL, and study the expressiveness of this language. Concluding remarks and re-
lated work are given in Section[3l

2 Preliminaries

RDF is a graph data format for the representation of information in the Web. An RDF
statement is a subject-predicate-object structure, called RDF triple, intended to describe
resources and properties of those resources. For the sake of simplicity, we assume that
RDF data is composed only by elements from an infinite set U/ of IRI{}. More formally,
an RDF triple is a tuple (s,p,0) € U x U x U, where s is the subject, p the predicate
and o the object. An RDF graph is a finite set of RDF triples. Moreover, we denote by
voc(@) the elements from U that are mentioned in G.

Figure [Tl shows an RDF graph that stores information about transportation services
between cities. In this figure, a triple (s, p, 0) is depicted as an edge s L, o, that is,
s and o are represented as nodes and p is represented as an edge label. For example,
(Paris, TGV, Calais) is a triple in the graph that states that TGV provides a transporta-
tion service from Paris to Calais. Notice that an RDF graph is not a standard labeled
graph as its set of edge labels may have a nonempty intersection with its set of nodes.
For instance, in the RDF graph in Fig.[ll TGV is simultaneously acting as a node and
as an edge label.

The RDF specification includes a set of reserved words (reserved elements from
U) with predefined semantics, the RDFS vocabulary (RDF Schema [8]]). This set of

! In this paper, we do not consider anonymous resources called blank nodes in the RDF data
model, that is, our study focuses on ground RDF graphs. We neither make a special distinction
between IRIs and Literals.

nSPARQL: A Navigational Language for RDF 69

Table 1. RDFS inference rules

1. Subproperty: 2. Subclass: 3. Typing:
(A,sp,B) (B,sp,C) (A,sc,B) (B,sc,C) (A,dom,B) (X,A,Y)
((1) P(_A,sp,C) ’ ((1) (A,sc,C) ((1) (X ,type,B)
(A;sp,B) (X,A,Y) (A,sc,B) (X type, A) (A,range,B) (X,A,)
(b) (X,B,Y) (b) (X ,type,B) (b) (Y,type,B)

reserved words is designed to deal with inheritance of classes and properties, as well
as typing, among other features [8]]. In this paper, we consider the subset of the RDFS
vocabulary composed by rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, rdfs:domain
and rdf:type, which are denoted by sc, sp, range, dom and type, respectively. This
fragment of RDFS was considered in [17]. In that paper, the authors provide a formal
semantics for it, and also show that this fragment is well-behaved as the remaining
RDFS vocabulary does not interfere with the semantics of this fragment. The semantics
proposed in was shown to be equivalent to the full RDFS semantics when one
focuses on the mentioned fragment.

We use the system of rules in Tab.[Il This system was proved in to be sound and
complete for the inference problem for RDFS in the presence of sc, sp, range, dom and
type, under some mild assumptions (see [I7] for further details). In every rule, letters
A, B, C, X, and), stand for variables to be replaced by actual terms. More formally,
an instantiation of a rule is a replacement of the variables occurring in the triples of the
rule by elements of U. An application of a rule to a graph G is defined as follows. Given
arule 7, if there is an instantiation g, of 7 such that R C G, then the graph G’ = GUR/
is the result of an application of r to GG. We say that a triple ¢ is deduced from G, if there
exists a graph G’ such that t € G’ and G’ is obtained from G by successively applying
the rules in Tab.[Il

Example 1. Let G be the RDF graph in Fig.[Il This graph contains RDFS annotations
for transportation services. For instance, (Seafrance, sp, ferry) states that Seafrance
is a subproperty of ferry. Thus, we know that there is a ferry going from Calais to
Dover since (Calais, Seafrance, Dover) is in G. This conclusion can be obtained by a
single application of rule (D) to triples (Calais, Seafrance, Dover) and (Seafrance, sp,
ferry), from which we deduce triple (Calais, ferry, Dover). Moreover, by applying the
rule (3B to this last triple and (ferry, range, coastal city), we deduce triple (Dover,
type, coastal city) and, thus, we conclude that Dover is a coastal city. O

3 Nested Regular Expressions for RDF Data

Navigating graphs is done usually by using an operator next, which allows one to move
from one node to an adjacent one in a graph. In our setting, we have RDF “graphs”,
which are sets of triples, not classical graphs. In particular, instead of classical edges
(pair of nodes), we have directed triples of nodes (hyperedges). Hence, a language for
navigating RDF graphs should be able to deal with this type of objects. In [7], we

70 J. Pérez, M. Arenas, and C. Gutierrez

edge node edge™ node™
2 oL
- I ~.__)
" next nextt

Fig. 2. Forward and backward axes for an RDF triple (a, p, b)

introduce the notion of nested regular expression to navigate through an RDF graph.
This notion takes into account the special features of the RDF data model. In particular,
nested regular expressions use three different navigation axes to move through an RDF
triple. These axes are shown in Fig. [2l (together with their inverses).

A navigation axis allows one to move one step forward (or backward) in an RDF
graph. Thus, a sequence of these axes defines a path in an RDF graph, and one can use
classical regular expressions over these axes to define a set of paths that can be used
in a query. An additional axis self is used not to actually navigate, but instead to test
the label of a specific node in a path. The language also allows nested expressions that
can be used to test for the existence of certain paths starting at any axis. The following
grammar defines the syntax of nested regular expressions:

erp = axis | axisia (a € U) | axis::[exp] | exp/exp | explexp | exp™ (1)

where axis € {self, next, next’, edge, edge?, node, node™}.

Before introducing the formal semantics of nested regular expressions, we give some
intuition about how these expressions are evaluated in an RDF graph. The most natural
navigation axis is next::a, with @ an arbitrary element from U. Given an RDF graph G,
the expression next::a is interpreted as the a-neighbor relation in G, that is, the pairs
of nodes (x,y) such that (x,a,y) € G. Given that in the RDF data model a node can
also be the label of an edge, the language allows us to navigate from a node to one of
its leaving edges by using the edge axis. More formally, the interpretation of edge::a
is the pairs of nodes (z,y) such that (z,y,a) € G. The nesting construction [exp] is
used to check for the existence of a path defined by expression exp. For instance, when
evaluating nested expression next::[ezp] in a graph G, we retrieve the pairs of nodes
(z,y) such that there exists z with (z, z,y) € G, and such that there is a path in G that
follows expression ezp starting in z.

The evaluation of a nested regular expression exp in a graph G is formally defined
as a binary relation [exp] ¢, denoting the pairs of nodes (z,y) such that y is reachable
from x in G by following a path that conforms to exp. The formal semantics of the
language is shown in Tab.[2] In this table, G is an RDF graph, a € U, voc(G) is the
set of all the elements from U that are mentioned in G, and exp, exp,, exp, are nested
regular expressions.

As is customary for regular expressions, given a nested regular expression exp, we
use ezp™ as a shortcut for exp* /exp. The following is a simple example of the evalua-
tion of a nested regular expression. We present more involved examples when introduc-
ing the nSPARQL language.

nSPARQL: A Navigational Language for RDF 71

Table 2. Formal semantics of nested regular expressions

[self]q = {(z,z) | x € voc(G)}
[self:a]e = {(a,a)}
[next] e = {(z,y) | there exists z s.t. (z,z,y) € G}
[next:a]a = {(z,vy) | (z,a,y) € G}
[edge]c = {(z,y) | there exists z s.t. (z,y,2) € G}
ledgeralc = {(.9) | (&,3,a) € G}
[node] e = {(z,y) | there exists z s.t. (z,z,y) € G}
[node::a]c = {(z,vy) | (a,z,y) € G}
[axis']e = {(z,vy) | (y,z) € [axis]c} withaxis € {next,node,edge}
[axis™:a]e = {(z,y) | (y,z) € [axis:a]e} with axis € {next,node, edge}

lexp,/expy]a = {(x,y) | there exists z s.t. (z, z) € [ezp,]c and (2,y) € [ezp,]a}
[ezp,|ezps]e = [expi]c U [ezpy]a
[exp*]c = [self]c U [ezp]c U [exp/exp]c U [exp/exp/explc U - - -
[self::[ezp]]a = {(x,x) | € voc(G) and there exists z s.t. (x, z) € [ezp]a}

]
[next::[ezp]]a = {(x,y) | there exist z, w s.t. (z, z,y) € G and (z,w) € [ezp]c}
[edge::[ezp]]c = {(m,y) | there exist z, w s.t. (z,y, 2) € G and (z,w) € [ezp]c}
[node::[ezp]]c = {(x,y) | there exist z,w s.t. (z,z,y) € G and (z,w) € [ezp]c}
[axis™::[ezp]la = {(z,v) | (y,z) € [[axm lezp]]lc} withaxis € {next,node, edge}

Example 2. Let G be the graph in Fig. [[l and consider expression exp, =
next::[next::sp/self:train]. The nested expression [next:sp/self:train] per-
forms an existential test; it defines the set of nodes z in G such that there exists a
path from z that follows an edge labeled sp and reaches a node labeled train. There
is a single such node in G, namely TGV. Restricted to graph G, expression ezp;
is equivalent to next::TGV and, thus, it defines the pairs of nodes that are con-
nected by an edge labeled TGV. Hence, the evaluation of exp, in G is [ezp,]¢ =
{(Paris, Calais), (Paris, Dijon)}. |

In the following section, we introduce the language nSPARQL that combines the oper-
ators of SPARQL with the navigational capabilities of nested regular expressions. But
before introducing this language, we show that nested regular expressions can be eval-
uated efficiently, which is an essential requirement if one wants to use nNSPARQL for
web-scale applications.

3.1 Complexity of Evaluating Nested Regular Expressions

In this section, we study the complexity of evaluating nested regular expressions over
RDF graphs. We present an algorithm for this problem that works in time proportional
to the size of the input graph times the size of the expression being evaluated. As is cus-
tomary when studying the complexity of the evaluation problem for a query language
(cf. [21])), we consider its associated decision problem. For nested regular expressions,
this problem is defined as:

PROBLEM : Evaluation problem for nested regular expressions.
INPUT : An RDF graph G, a nested regular expression exp, and a pair (a, b).
QUESTION : Is (a, b) € [ezp]a?

72 J. Pérez, M. Arenas, and C. Gutierrez

We assume that an RDF graph G is stored as an adjacency list that makes explicit the
navigation axes (and their inverses). Thus, every u € voc(G) is associated with a list
of pairs «(u), where every pair contains a navigation axis and the destination node. For
instance, if (s, p, 0) is a triple in G, then (next::p, 0) € a(s) and (edge™::0, s) € a(p).
Moreover, we assume that (self::u,u) € a(u) for every u € voc(G). Notice that if
the number of triples in G is N, then the adjacency list representation uses space O (V).
Thus, when measuring the size of G, we use |G| to denote the size of its adjacency list
representation. We further assume that given an element v € voc(G), we can access
its associated list a(u) in time O(1). This is a standard assumption for graph data-
structures in a RAM model.

In this section, we assume some familiarity with automata theory. Recall that given a
regular expression r, one can construct in linear time a nondeterministic finite automa-
ton with e-transitions 4, that accepts the language generated by 7.

A key idea in the algorithm introduced in this section is to associate to each nested
regular expression a nondeterministic finite automaton with e-transitions (e-NFA).
Given a nested regular expression exp, we recursively define the set of depth-0 terms of
exp, denoted by Dy (ezp), as follows:

Dy(exp) = {exp} if exp is either axis, or axis::a, or axis::[ezp’],
Do(exp,/expy) = Do(exp,|exps) = Do(expy) UDo(eapy),
Do(exp*) = Dg(exp),

where axis € {self, next, next, edge, edge™, node, node}. For instance, for the
nested expression:

exp = next:a/(next::[next:a/self::b])*/(next::[node::b| | next::a)™,

we have Dg(ezp) = {next:a, next:[next:a/self:b|, next:[node::b]}. Notice
that a nested regular expression exp can be viewed as a classical regular expression over
alphabet Dy (exp). We denote by A, the e-NFA that accepts the language generated
by the regular expression exp over alphabet Dg(exp).

The algorithm for the evaluation of nested regular expressions is similar to the al-
gorithms for the evaluation of some temporal logics [11]] and propositional dynamic
logic [1]]. Given an RDF graph G and a nested regular expression exp, it proceeds by
recursively labeling every node u of G with a set label(u) of nested expressions. Ini-
tially, label(u) is the empty set. Then at the end of the execution of the algorithm, it
holds that exp € label(u) if and only if there exists z such that (u, z) € [exp]q. In the
algorithm, we use the product automaton G x A, which is constructed as follows.
Let be the set of states of Acp, and ¢ : Q x (Do(exp) U {e}) — 2% the transition
function of A, The set of states of G x A,z is voc(G) x @, and its transition func-
tion &' : (voc(G) x Q) x (Do(exp) U {e}) — 2v°¢(G)*Q is defined as follows. For
every (u,p) € voc(G) x @ and s € Dg(exp), we have that (v, ¢) € 6'((u,p), s) if and
only if ¢ € 6(p, s) and one of the following cases hold:

— s = axis and there exists a such that (axis::a,v) € a(u),
- s = axis::a and (axis::a,v) € a(u),
- s = axis::[exp| and there exists b such that (axis::b, v) € a(u) and exp € label(d),

nSPARQL: A Navigational Language for RDF 73

where axis € {self, next, next, edge, edge™, node, node*}. Additionally, if ¢ €
6(p,) we have that (u,q) € ¢'((u, p),e) for every u € voc(G). Thatis, G X Ay is
the standard product automaton if G is viewed as an NFA over alphabet Dg(exp). It is
straightforward to prove that G x A, can be constructed in time O(|G| - |Aezp])-

Now we have all the necessary ingredients to present the algorithm for the evaluation
problem for nested regular expressions. This algorithm is split in two procedures: LA-
BEL labels GG according to nested expression exp as explained above, and EVAL returns
YES if (a,b) € [exp] e and NO otherwise.

LABEL(G, ezp):
1. for each axis::[ezp’] € Do(ezp) do

2 call LABEL(G, exp’)

3. construct A.,p, and assume that gy is its initial state and F' is its set of final states
4. construct G X Acap

5. for each state (u, qo) that reaches a state (v, qy) in G X Aegp, with g5 € F do

6 label(u) := label(u) U {exp}

EVAL(G, exp, (a,b)):
1. for each u € voc(G) do

2. label(u) := 0

3. call LABEL(G, exp)

4. construct Az, and assume that qo is its initial state and F’ is its set of final states
5. construct G X Acgp

6. if a state (b, ¢y), with gy € F, is reachable from (a, qo) in G X Acap

7 then return YES

8 else return No

It is not difficult to see that these procedures work in time O(|G|-|exp|). Just observe
that step 5 of procedure LABEL and step 6 of procedure EVAL, can be done in time
linear in the size of G x Ay, by traversing G' X A,z in a depth first search manner.

Theorem 1. Procedure EVAL solves the evaluation problem for nested regular expres-
sions in time O(|G| - |exp)|).

4 The Navigational Language nSPARQL

In this section, we introduce the language nSPARQL, and we formally study its expres-
siveness. nSPARQL is essentially obtained by using triple patterns with nested regular
expressions in the predicate position, plus SPARQL operators AND, OPT, UNION,
and FILTER. Before formally introducing nSPARQL, we recall the necessary defini-
tions about SPARQL.

SPARQL is the standard language for querying RDF data. We use here the
algebraic formalization introduced in [[19]. Assume the existence of an infinite set V' of
variables disjoint from U. A SPARQL graph pattern is defined as follows:

— A tuple from (U U V)x (U UV)x(U U V) is a graph pattern (a triple pattern).
- If P, and P, are graph patterns, then (P, AND P), (P, OPT P»), and
(P; UNION P,) are graph patterns.

74 J. Pérez, M. Arenas, and C. Gutierrez

— If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

A SPARQL built-in condition is a Boolean combination of terms constructed by using
equality (=) among elements in U U V/, and the unary predicate bound over variables.

To define the semantics of SPARQL graph patterns, we need to introduce some ter-
minology. A mapping (from V to U is a partial function px : V' — U. For a triple
pattern ¢, we denote by 1(t) the triple obtained by replacing the variables in ¢ according
to . The domain of 1, denoted by dom(u), is the subset of V' where p is defined. Two
mappings pq and po are compatible if for every x € dom(uq) Ndom(us), it is the case
that 1 (z) = pe(x), i.e. when g U po is also a mapping. Let (27 and (2, be sets of
mappings. We define the join, the union, the difference, and the left-outer join between
(27 and (2, as:

O) 29 ={p1 Ups | 1 € 4, ua € (25 are compatible mappings},
DU =Ap|lpe 2iorpe s},
D N2y ={pe | forall y' € 2, pand y are not compatible},
134025 = (24 % 22) U (21~ 22).

The evaluation of a graph pattern over an RDF graph G, denoted by [- ¢, is defined
recursively as follows:

- [tle = {u| dom(u) = var(t) and u(t) € G}, where var(t) is the set of variables
occurring in ¢.

- [(Pl AND PQ)]]G = [Pl]]g X [[Pgﬂg, [(Pl UNION PQ)]]G = [[Pl]]G U [PQ]]G, and
[(Pl OoPT PQ)]]G = [Pl]](; X [Pgﬂg.

The semantics of FILTER expressions goes as follows. Given a mapping p and a built-
in condition R, we say that u satisfies R, denoted by u |= R, if (we omit the usual rules
for Boolean operators):

- Risbound(?X) and 7X € dom(p);
- Ris?X =¢,wherec € U, ?X € dom(u) and u(?X) = ¢;
- Ris?7X =?Y,7X € dom(u), ?Y € dom(p) and pu(?X) = p(?Y).

Then [(P FILTER R)]¢ = {¢ € [P]e | # = R}.

It was shown in [19], among other algebraic properties, that AND and UNION are
associative and commutative, thus permitting us to avoid parenthesis when writing se-
quences of either AND operators or UNION operators.

Now we formally define the language nested SPARQL (or just nSPARQL), by con-
sidering triples with nested regular expressions in the predicate position. A nested-
regular-expression triple (or just nre-triple) is a tuple ¢ of the form (x, exp, y), where
x,y € UUV and exp is a nested regular expression. nSPARQL patterns are recursively
defined from nre-triples:

— An nre-triple is an nSPARQL pattern.

- If P, and P, are nSPARQL patterns and R is a built-in condition, then
(P1 AND P), (P OPT P), (P4 UNION P,), and (P, FILTER R) are
nSPARQL patterns.

nSPARQL: A Navigational Language for RDF 75

To define the semantics of nSPARQL, we just need to define the semantics of nre-triples.
The evaluation of an nre-triple t = (?X, exp, ?Y") over an RDF graph G is defined as
the following set of mappings:

[tle = { | dom(u) = {?X, 7Y} and (u(?X), p(?Y) € [eaplc}.

Similarly, the evaluation of an nre-triple t = (?X, exp, a) over an RDF graph G, where
a € U, is defined as {p | dom(p) = {?X} and (1(?X),a) € [exp]c}, and likewise
for (a, exp,?X) and (a, exp,b) withb € U.

Notice that every SPARQL triple (?.X,p,?Y) with p € U is equivalent to (has
the same evaluation of) nSPARQL triple (?.X,next::p,?Y"). Also notice that, since
variables are not allowed in nested regular expressions, the occurrence of variables in
the predicate position of triple patterns is forbidden in nSPARQL. Nevertheless, every
SPARQL triple of the form (?X, ?Y, a), with a € U, is equivalent to nSPARQL pattern
(?X,edge::a, 7Y). Similarly, the triple (a, 7X, ?Y") is equivalent to (? X, node::a, 7Y).
Thus, what we are loosing in nSPARQL is only the possibility of using variables in the
three positions of a triple pattern.

As pointed out in the introduction, it has been largely recognized that navigational
capabilities are fundamental for graph databases query languages. However, although
RDF is a directed labeled graph data format, SPARQL only provides limited naviga-
tional functionalities. In [7]], we introduced nSPARQL as a way to overcome this limi-
tation. The main goal of [[7] was not to formally study nSPARQL, but instead to provide
evidence that the navigational capabilities of nSPARQL can be used to pose many in-
teresting and natural queries over RDF data. Our goal in this paper is to formally justify
nSPARQL. In particular, we have already shown that nested regular expressions can be
evaluated efficiently, which is an essential requirement if one wants to use nSPARQL for
web-scale applications. In this section, we study some fundamental properties related to
the expressiveness of nSPARQL. But before doing that, we provide some additional ex-
amples of queries that are likely to occur in the Semantic Web, but cannot be expressed
in SPARQL without using nested regular expressions.

Example 3. Let G be the RDF graph of Fig.[[land P; the following pattern:

Py = (?X, (next: TGV | next::Seafrance)t, Dover) AND (?.X, next::country, 7Y)

Pattern P, retrieves cities, and the country where they are located, such that there is a
way to travel from those cities to Dover using either TGV or Seafrance in every direct
trip. The evaluation of P, over G is {{?X — Paris,?Y — France}}. Notice that
although there is a direct way to travel from Calais to Dover using Seafrance, Calais
does not appear in the result since there is no information in GG about the country where
Calais is located. We can relax this last restriction by using the OPT operator:

Py = (?X, (next::TGV | next::Seafrance)t, Dover) OPT (? X, next::country, ?Y")

Then we have that [P]¢ = {{?X — Paris, 7Y — France}, {?X — Calais}}.]

Example 4. Assume that we want to obtain the pairs of cities (?X, 7Y") such that there
is a way to travel from 7X to 7Y by using either Seafrance or NExpress, with an in-
termediate stop in a city that has a direct NExpress trip to London. Consider nested
expression:

76 J. Pérez, M. Arenas, and C. Gutierrez

erp; = (next::Seafrance | next::NExpress) ™ /
self:[next::NExpress/self::London]/(next::Seafrance | next::NExpress)™
Then pattern P = (?X, exp,,?Y) answers our initial query. Notice that expression
self::[next::NExpress/self::London] is used to perform the intermediate existential
test of having a direct NExpress trip to London. O

Example 5. Let G be the graph in Fig.[[land P; the following pattern:
P, = (?7X, next::[(next::sp)”/self::transport], ?Y). (2)

Pattern P; defines the pairs of cities (?.X, 7Y") such that, there exists a triple (X, p, 7Y)
in the graph and a path from p to transport where every edge has label sp. Thus, nested
expression [(next::sp)*/self::transport] is used to emulate the process of inference
in RDFS; it retrieves all the nodes that are sub-properties of transport (rule (Ia) in
Tab.[)). Therefore, pattern P retrieves the pairs of cities that are connected by a direct
transportation service, which could be a train, ferry, bus, etc. In general, if we want to
obtain the pairs of cities such that there is a way to travel from one city to another, we
can use the following nSPARQL pattern:

Py = (7X, (next::[(next:sp)*/self:transport])™, ?Y). 3)

In this section, we formally prove that @) and (@) cannot be expressed without using
nested expressions of the form axis::[exp]. O

4.1 On RDFS and nSPARQL

We claimed in [[7]] that the language of nested regular expressions is powerful enough to
deal with the predefined semantics of RDFS. In this section, we formally prove this fact.
More precisely, we show that if one wants to answer a SPARQL query P according to
the semantics of RDFS, then one can rewrite P into an nSPARQL query () such that)
retrieves the answer to P by directly traversing the input graph. We also show that the
nesting operation is crucial for this result.

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query treats
RDEFS vocabulary without considering its predefined semantics. We are interested in
defining the semantics of SPARQL over RDFES, that is, taking into account not only
the explicit RDF triples of a graph G, but also the triples that can be derived from G
according to the semantics of RDFS. Let the closure of an RDF graph G, denoted by
cl(G), be the graph obtained from G by successively applying the rules in Tab. [until
the graph does not change. The most direct way of defining a semantics for the RDFS
evaluation of SPARQL patterns is by considering not the original graph but its closure.
The theoretical formalization of such an approach was studied in [12]. The following
definition formalizes this notion.

Definition 1. Given a SPARQL graph pattern P, the RDFS evaluation of P over G,
denoted by [P]E", is defined as the set of mappings [P]ei(c). that is, as the evaluation
of P over the closure of G.

nSPARQL: A Navigational Language for RDF 77

Regular expressions alone are not enough. Regular expressions are the most common
way of giving navigational capabilities to query languages over graph databases [3], and
recently to query languages over RDF graphs [3I16/6]]. Our language not only allows
regular expressions over navigational axes but also nesting of those regular expressions.
In our setting, regular expressions are obtained by forbidding the nesting operator and,
thus, they are generated by the following grammar:

erp = axis | axis:ia (a € U) | exp/exp | explexp | exp™ 4)

where axis € {self, next, next?, edge, edge™, node, node'i}. Let regular SPARQL
(or just r'SPARQL) be the language obtained from nSPARQL by restricting nre-triples to
contain in the predicate position only regular expressions (generated by grammar (4)).
Notice that rSPARQL is a fragment of nSPARQL and, thus, the semantics for ISPARQL
is inherited from nSPARQL.

Our next result shows that regular expressions are not enough to obtain the RDFS
evaluation of some simple SPARQL patterns by directly traversing RDF graphs. In
fact, the following theorem shows that there is a SPARQL triple pattern whose RDFS
evaluation cannot be obtained by any rSPARQL pattern.

Theorem 2. Let p € U ~ {sp,sc,type,dom, range} and consider triple pattern
(?X,p,?Y). There is no rfSPARQL pattern Q such that [(?X,p,?Y)]2% = [Q]¢ for
every RDF graph G.

nSPARQL and RDFS evaluation. In this section, we show that if a SPARQL pattern
P is constructed by using triple patterns having at least one position with a non-variable
element, then the RDFS evaluation of P can be obtained by directly traversing the input
graph with an nSPARQL pattern. More precisely, consider the following translation
function from elements in U to nested regular expressions:

trans(sc) = (next:sc)t

trans(sp) = (nextusp)™

trans(dom) = next::dom

trans(range) = next::range

trans(type) = (next:type/(next:sc)* |

edge/(next::sp)*/next::dom/(next:sc)* |
node/(next::sp)* /next::range/(next::sc)*)
trans(p) = next::[(next::sp)*/self:p] forp ¢ {sc,sp,range,dom, type}.

Notice that we have implicitly used this translation function in Example[3l

Lemma 1. Let (x,a,y) be a SPARQL triple pattern with x,y € U UV and a € U,
then [(z,a,y)|S" = [(x, trans(a),y)]c for every RDF graph G.

That is, given an RDF graph GG and a triple pattern ¢ not containing a variable in the
predicate position, it is possible to obtain the RDFS evaluation of ¢ over G by navigating
G through a nested regular expression.

78 J. Pérez, M. Arenas, and C. Gutierrez

Suppose now that we have a SPARQL triple pattern ¢ with a variable in the predicate
position, but such that the subject and object of ¢ are not both variables. We show how to
construct an nSPARQL pattern P; such that [t]9* = [P,] . Assume thatt = (z,?Y, a)
withz e UUV,?Y € V,and a € U, that is, t does not contain a variable in the object
position. Consider for every p € {sc, sp,dom, range, type}, the pattern P, ,, defined
as ((z, trans(p),a) AND (7Y, self:p, ?Y)). Then define then pattern P; as follows:

P, = ((z,edge::a/(next:sp)*, 7Y) UNION P, 5. UNION P, 5, UNION
Pigon UNION P, yange UNION P 100).

We can similarly define pattern P; for a triple pattern ¢ = (a, 7Y, z), where a € U,
?Y € Vandx € U U V. Thus, we have the following result.

Lemma 2. Let t = (x,?Y, 2) be a triple pattern such that 7Y € V, and x ¢ V or
z & V. Then [t]¥% = [P] for every RDF graph G.

Let 7 be the set of triple patterns of the form (x,y,z) such that x ¢ V ory ¢ V or
z ¢ V. We have translated every triple pattern ¢ € 7 into an nSPARQL pattern P; such
that [t]9* = [P]¢. Moreover, for every triple pattern ¢, its translation is of size linear
in the size of t. Given that the semantics of SPARQL is defined from the evaluation of
triple patterns, we can state the following result.

Theorem 3. Let P be a SPARQL pattern constructed from triple patterns in T. Then
there exists an nSPARQL pattern Q such that [P]S% = [Q] ¢ for every RDF graph G.
Moreover, the size of Q) is linear in the size of P.

The following example shows that one can combine the translation function presented
in this section with nested regular expression patterns to obtain more expressive queries
that take into account the RDFS semantics.

Example 6. Let G be the RDF graph shown in Fig.[Tl Assume that one wants to retrieve
the pairs of cities such that there is a way of traveling (by using any transportation
service) between those cities, and such that every stop in the trip is a coastal city. The
following nSPARQL pattern answers this query:

P = (?X, (trans(transport) /self::[trans(type)/self::coastal city])*,?Y). O

Notice that Theorems [2] and [l imply that nSPARQL is strictly more expressive than
rSPARQL. We state this result in the following corollary.

Corollary 1. There exists an nSPARQL pattern that is not equivalent to any -SPARQL
pattern.

4.2 On the Expressiveness of the SPARQL Operators in nSPARQL

Clearly, nested regular expressions add expressive power to SPARQL. The opposite
question is whether using SPARQL operators in nSPARQL patterns add expressive
power to the language. Next we show that this is indeed the case. In particular, we
show that there are simple and natural queries that can be expressed by using nSPARQL
features and that cannot be simulated by using only nested regular expressions. Let us
present the intuition of this result with an example.

nSPARQL: A Navigational Language for RDF 79

Example 7. Let G be the RDF graph shown in Fig.[Tl Assume that one wants to retrieve
from G the cities 7 X such that there exists exactly one city that can be reached from
?X by using a direct Seafrance service. The following nSPARQL pattern answers this
query:

[(7X, next::Seafrance /next ™, 7X)
OPT (((?X,next::Seafrance, ?7Y’) AND (?X, next::Seafrance, ?7))
FILTER —?Y =?Z) | FILTER —bound(?Y)

The first nre-triple (?X, next::Seafrance/next™, ?X) retrieves the cities ?.X that are
connected with some other city by a Seafrance service. The optional part obtains ad-
ditional information for those cities 7.X that are connected with at least two different
cities by a Seafrance service. Finally, the pattern filters out those cities for which no
optional information was added (by using —bound(?Y")). That is, only the cities ?X
that are connected with exactly one city by a Seafrance service remains in the evalua-
tion. If we evaluate the above pattern over G, we obtain a single mapping 4 such that
dom(p) = {?X} and u(?X) = Calais. |

The nSPARQL pattern in the above example is essentially counting (up to a fixed thresh-
old) the cities that are connected with 7 X by a Seafrance service. In the next result, we
show that some counting capabilities cannot be obtained by using nSPARQL patterns
without considering the OPT operator, even if we combine nested regular expressions
by using the operators AND, UNION and FILTER. The query used in the proof is
similar to that of Example[7l It retrieves the nodes ?X for which there exists at least
two different nodes connected with 7.X.

Theorem 4. There is an nSPARQL pattern that is not equivalent to any nSPARQL
pattern that uses only AND, UNION, and FILTER operators.

5 Related Work and Concluding Remarks

Related work. The language of nested regular expressions has been motivated by some
features of query languages for graphs and trees, namely, XPath [10]], temporal log-
ics and propositional dynamic logic [1]]. In fact, nested regular expressions are con-
structed by borrowing the notions of branching and navigation axes from XPath [10],
and adding them to regular expressions over RDF graphs. The algorithm that we present
in Section 3.J]is motivated by standard algorithms for some temporal logics [11] and
propositional dynamic logic [1I].

Regarding languages with navigational capabilities for querying RDF graphs, several
proposals can be found in the literature [18/3IT6l6/412]. Nevertheless, none of these lan-
guages is motivated by the necessity to evaluate queries over RDFS, and none of them
is comparable in expressiveness and complexity of evaluation with the language that we
study in this paper. Probably the first language for RDF with navigational capabilities
was Versa [18]], whose motivation was to use XPath over the XML serialization of RDF

80 J. Pérez, M. Arenas, and C. Gutierrez

graphs. Kochut et al. [16] propose SPARQLeR, an extension of SPARQL that works
with path variables that represent paths between nodes in a graph. This language also
allows to check whether a path conforms to a regular expression. Anyanwu et al. [6] pro-
pose a language called SPARQ?2L. The authors further investigate the implementation of
a query evaluation mechanism for SPARQ2L with emphasis in some secondary mem-
ory issues. The language PSPARQL was proposed by Alkhateeb et al. in [3]. PSPARQL
extends SPARQL by allowing regular expressions in triple patterns. The same authors
propose a further extension of PSPARQL called CPSPARQL [4] that allows constraints
over regular expressions. CPSPARQL also allows variables inside regular expressions,
thus permitting to retrieve data along the traversed paths. In [3/4], the authors study
some theoretical aspects of (C)PSPARQL.

Alkhateeb has recently shown [2] that PSPARQL, that is, the full SPARQL language
extended with regular expressions, can be used to encode RDFS inference. Although
PSPARQL and the language rSPARQL that we present in Section 1] are similar,
when defining rfSPARQL we use a fragment of SPARQL, namely, the graph pattern
matching facility without solution modifiers like projection. Alkhateeb’s encoding [2]
needs the projection operator, and in particular, extra variables (not needed in the out-
put solution) appearing in the predicate position of triple patterns. This feature is not
allowed in the fragment that we use to construct languages rSPARQL and nSPARQL.
Although PSPARQL could be used to answer some RDFS queries, the additional abili-
ties needed in PSPARQL come with an associated complexity impact in the evaluation
problem for the conjunctive fragment, namely, NP-completeness [2]]. By using the re-
sults in [19] and the complexity of the evaluation problem for nested regular expres-
sions, it is easy to show that the complexity of the evaluation problem for the conjunc-
tive fragment of nSPARQL is polynomial.

Evaluating queries which involve RDFS vocabulary is challenging, and there is not
yet consensus in the Semantic Web community on how to define a query language for
RDFS. Nevertheless, there have been several proposals and implementations of query
languages for RDF data with RDFS vocabulary, e.g. [139I1312]. It would be interest-
ing to compare these approaches with the process of answering a SPARQL query under
the RDFS semantics by first compiling it into an nSPARQL query.

Concluding Remarks. In this paper, we have started the formal study of nested regular
expressions and the language nSPARQL, that we proposed in [[7]]. We have shown that
nested regular expressions admit a very efficient evaluation method, that justifies its
use in practice. We further showed that the language nSPARQL is expressive enough
to be used for querying and navigating RDF data. In particular, we proved that besides
capturing the semantics of RDFS, nSPARQL provides some other interesting features
that allows users to pose natural and interesting queries.

Acknowledgments. We are grateful to the anonymous referees for their helpful com-
ments. The authors were supported by: Arenas - Fondecyt grant 1070732; Gutierrez
- Fondecyt grant 1070348; Pérez - Conicyt Ph.D. Scholarship; Arenas, Gutierrez and
Pérez - grant P04-067-F from the Millennium Nucleus Center for Web Research.

nSPARQL: A Navigational Language for RDF 81

References

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Alechina, N., Immerman, N.: Reachability Logic: An Efficient Fragment of Transitive Clo-
sure Logic. Logic Journal of the IGPL 8(3), 325-338 (2000)

Alkhateeb, F.: Querying RDF(S) with Regular Expressions. PhD Thesis, Université Joseph
Fourier, Grenoble (FR) (2008)

Alkhateeb, F., Baget, J., Euzenat, J.: RDF with regular expressions. Research Report 6191,
INRIA (2007)

Alkhateeb, F., Baget, J., Euzenat, J.: Constrained regular expressions in SPARQL. In: SWWS
2008, pp. 91-99 (2008)

Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1-39
(2008)

Anyanwu, K., Maduko, A., Sheth, A.: SPARQ2L: Towards Support for Subgraph Extraction
Queries in RDF Databases. In: WWW 2007, pp. 797-806 (2007)

Arenas, M., Gutierrez, C., Pérez, J.: An Extension of SPARQL for RDFS. In: SWDB-ODBIS
2007, pp. 1-20 (2007)

Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation (February 2004), http: //www.w3 .org/TR/rdf-schema/
Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing
and querying RDF and RDF schema. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

Clark, J., DeRose, S.: XML Path Language (XPath). W3C Recommendation (November
1999), http://www.w3 .org/TR/xpath

Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (2000)
Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of Semantic Web Databases. In:
PODS 2004, pp. 95-106 (2004)

Harris, S., Gibbins, N.: 3store: Efficient bulk RDF storage. In: PSSS 2003, pp. 1-15 (2003)
Hayes, P.: RDF Semantics. W3C Recommendation (February 2004),
http://www.w3.0rg/TR/rdf-mt/

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: a
declarative query language for RDE. In: WWW 2002, pp. 592-603 (2002)

Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for Semantic Association Discovery.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 145-159.
Springer, Heidelberg (2007)

Muiioz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: Franconi, E.,
Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53-67. Springer, Heidelberg
(2007)

Olson, M., Ogbuji, U.: The Versa Specification,
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, L.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 30—43. Springer, Heidelberg (2006)

Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommen-
dation (January 2008), http://www.w3.org/TR/rdf-sparqgl-query/

Vardi, M.Y.: The Complexity of Relational Query Languages (Extended Abstract). In: STOC
1982, pp. 137-146 (1982)

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/rdf-mt/
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml
http://www.w3.org/TR/rdf-sparql-query/

An Experimental Comparison of RDF Data
Management Approaches in a SPARQL
Benchmark Scenario

Michael Schmidt!*, Thomas Hornung', Norbert Kiichlin!, Georg Lausen',
and Christoph Pinkel?

! Freiburg University, Georges-Kohler-Allee 51, 79106 Freiburg, Germany
{mschmidt ,hornungt,kuechlin, lausen}@informatik .uni-freiburg.de
2 MTC Infomedia OHG, Kaiserstr. 26, 66121 Saarbriicken, Germany
c.pinkel@mtc-infomedia.de

Abstract. Efficient RDF data management is one of the cornerstones
in realizing the Semantic Web vision. In the past, different RDF storage
strategies have been proposed, ranging from simple triple stores to more
advanced techniques like clustering or vertical partitioning on the predi-
cates. We present an experimental comparison of existing storage strate-
gies on top of the SP?Bench SPARQL performance benchmark suite and
put the results into context by comparing them to a purely relational
model of the benchmark scenario. We observe that (1) in terms of perfor-
mance and scalability, a simple triple store built on top of a column-store
DBMS is competitive to the vertically partitioned approach when choos-
ing a physical (predicate, subject, object) sort order, (2) in our scenario
with real-world queries, none of the approaches scales to documents con-
taining tens of millions of RDF triples, and (3) none of the approaches
can compete with a purely relational model. We conclude that future
research is necessary to further bring forward RDF data management.

1 Introduction

The Resource Description Framework [I] (RDF) is a standard format for en-
coding machine-readable information in the Semantic Web. RDF databases are
collections of so-called “triples of knowledge”, where each triple is of the form
(subject,predicate,object) and models the binary relation predicate between the
subject and the object. For instance, the triple (Journall,issued,“1940") might
be used to encode that the entity Journall has been issued in year 1940. By
interpreting each triple as a graph edge from a subject to an object node with
label predicate, RDF databases can be seen as labeled directed graphs.

To facilitate RDF data access, the W3C has standardized the SPARQL [2]
query language, which bases upon a powerful graph pattern matching facility. Its
very basic construct are simple triple graph patterns, which, during query evalu-
ation, are matched against components in the RDF graph. In addition, different
SPARQL operators can be used to compose more advanced graph patterns.

* The work of this author was funded by DFG, grant GRK 806/2.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 82 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Experimental Comparison of RDF Data Management Approaches 83

An efficient RDF storage scheme should support fast evaluation of such graph
patterns and scale to RDF databases comprising millions (or even billions) of
triples, as they are commonly encountered in today’s RDF application scenar-
ios (e.g., [3H4]). The straightforward relational implementation, namely a single
Triples relation with three columns subject, predicate, and object that holds all
RDF triples, seems not very promising: The basic problem with this approach is
that the evaluation of composed graph patterns typically requires a large amount
of expensive self-joins on this (possibly large) table. For instance, the query “Re-
turn the year of publication of Journall (1940)" might be expressed in SQL as
follows (for readability, we use shortened versions of the RDF URISs).

SELECT T3.object AS yr
FROM Triples T1 JOIN Triples T2 ON T1.subject=T2.subject

JOIN Triples T3 ON T1.subject=T3.subject (1)
WHERE T1.predicate=’type’ AND Tl.object=’Journal’ AND T2.predicate=’title’

AND T2.object=’Journal 1 (1940)’ AND T3.predicate=’issued’

The Triples table access T1 and the associated WHERE-conditions extract
all Journal entities, T2 fixes the title, and T3 extracts the year of publication. We
observe that even this rather simple query requires two subject-subject self-joins
over the Triples table. Practical queries may involve much more self-joins.

To overcome this deficiency, other physical organization techniques for RDF
have been proposed [BIGITIRIOITOIT]. One notable idea is to cluster RDF data,
i.e. to group entities that are similar in structure [9II0] and store them in flat-
tened tables that contain all the shared properties. While this may significantly
reduce the amount of joins in queries, it works out only for well-structured data.
However, one strength of RDF is that it offers excellent support for scenarios
with poorly structured information, where clustering is not a feasible solution.

A conceptually simpler idea is to set up one table for each unique predicate in
the data [5IIT], which can be seen as full vertical partitioning on the predicates.
Each such predicate table consists of two columns (subject, object) and contains
all subject-object pairs linked through the respective predicate. Data is then
distributed across several smaller tables and, when the predicate is fixed, joins
do not involve the whole set of triples. By physically sorting data on the subject
column, subject-subject joins between two tables, a very frequent operation, can
be realized in linear time (w.r.t. the size of the tables) by merging their subject
columns [IT]. In such a scenario, the query from above might be formulated as,

SELECT DI.object AS yr

FROM type TY JOIN title TI ON TY.subject=DT.subject (2)
JOIN issued IS ON TY.subject=IS.subject

WHERE TY.object=’bench:Journal’ AND TI.object=’Journal 1 (1940)’

where type, title, and issued denote the corresponding predicates tables.
Predicate selection now is implicit by the choice of the predicate table (i.e.,
no longer encoded in the WHERE-clause) and, given that the subject-column is
sorted, both joins might be efficiently implemented as linear merge joins.

In the experiments in [TI] on top of the Barton library data [12], vertical
partitioning turns out to be clearly favorable to the triple table scheme and

84 M. Schmidt et al.

always competitive to clustering. Although the scenario is a reasonable choice
that illustrates many advantages of vertical partitioning, several issues remain
open. One point is that, in the partitioned scenario, efficient subject-subject merge
joins on the predicate tables (which are possible whenever predicates are fixed)
are a key to performance. However, when physically sorting table Triples by
(predicate, subject, object), linear merge joins might also apply in a triple store.

A study of the Barton benchmark shows that one query (out of seven) requires
no join on the triple (resp., predicate) table(s), and each two involve (a) a single
subject-subject join, (b) two subject-subject joins, and (c) one subject-subject plus
one subject-object join. Thus, none involves more than two joins. The simplicity
of these join patterns to a certain degree contrasts with the Introduction of [IT],
where the authors state that “almost all interesting queries involve many self-
joins” and motivate vertical partitioning using a five-way self-join query. We
agree that real-world queries often involve complex join-patterns and see an
urgent need for reevaluating the vertical approach in a more challenging scenario.

To this end, we present an experimental comparison of the triple and vertically
partitioned scheme on top of the the SP?Bench SPARQL benchmark [13]. The
SP?Bench queries implement meaningful requests in the DBLP scenario [14] and
have been designed to test challenging situations that may arise in the context
of SPARQL and Semantic Web data. In contrast to the Barton queries, they
contain no aggregation, due to missing SPARQL language support. But except
for this construct, they cover a much wider range of operator constellations, RDF
data access paths, join patterns, and advanced features (e.g., OPTIONAL clauses,
solution modifiers). The queries for the vertical and the triple store are obtained
from a methodical SPARQL-to-SQL translation and reflect these characteristics.

To put our analysis into context, we consider two more scenarios. First, we
test the Sesame SPARQL engine [15] as a representative SPARQL processor that
relies on a native RDF store. Second, we translate the SP?Bench scenario into
a purely relational scheme, thus comparing the current state-of-the-art in RDF
data management against established relational database technologies.

Contributions. Among others, our experiments show that (1) when triple ta-
bles are physically sorted by (predicate, subject, object), efficient merge joins can
be exploited (just like in the vertical scheme) and the triple table approach be-
comes more competitive, (2) for the challenging SP?Bench queries neither the
vertical nor the triple scheme shows a good overall performance, and (3) while
both schemes typically outperform the Sesame SPARQL engine, the purely re-
lational encoding is almost always at least one order of magnitude faster. We
conclude that there is an urgent need for future research in this area.

Related Work. An experimental comparison of the triple table and a vertically
partitioned scheme has been provided in [5]. Among others, the authors note the
additional costs of predicate table unions in the vertical scenario, which will be
discussed later in this paper. Nevertheless, the setting in [5] differs in several
aspects, e.g. in the vertically partitioned scheme the RDF schema layer was

An Experimental Comparison of RDF Data Management Approaches 85

stored in separate tables and physical sorting on the subject-column (to allow
for subject-subject merge joins), a central topic in our analysis, was not tested.

We point the interested reader to the experimental comparison of the triple
and vertical storage scheme in [16]. This work has been developed independently
from us. It presents a reevaluation of the experiments from [I1] and, in this line,
identifies situations where vertical partitioning is an insufficient solution. Several
findings there are similar to our results. While the latter experiments are carried
out in the Barton scenario (like the original experiments in [I1]), we go one step
further, i.e. perform tests in a different scenario and put the results into context
by comparing them to a purely relational scheme, as well as a SPARQL engine.

The Berlin SPARQL Benchmark [I7] is settled in an e-commerce scenario and
strictly use-case driven. In contrast, the language-specific SP?Bench suite used
in this work covers a broader range of SPARQL/RDF constructs and, for this
reason, is preferable for testing the generality of RDF storage schemes.

Structure. In the next section we summarize important characteristics of the
SP?Bench SPARQL performance benchmark [13], to facilitate the interpretation
of the benchmark results. In Section [3] we then sketch the tested storage schemes
and the methodical query translation into these scenarios. Finally, Section [
contains the in-depth discussion of our experiments and a conclusion. In the
remainder, we assume the reader to be familiar with RDF [I] and SPARQL [2].

2 The SP?Bench Scenario

SP2Bench [13] is settled in the DBLP [I4] bibliographic scenario. Central to the
benchmark is a data generator for creating DBLP-like RDF documents, which
mirror characteristics and relations found in the original DBLP data. It relies
on natural function families to capture social-world aspects encountered in the
DBLP data, e.g. the citation system is modeled by powerlaw distributions, while
limited growth functions approximate the number of publications per year. Sup-
plementary, the SP?Bench suite provides a set of meaningful SPARQL queries,
covering a variety of SPARQL operator constellations and data access patterns.

According to DBLP, the SP?Bench generator creates nine distinct types of
bibliographic entities, namely ARTICLE, JOURNAL, INPROCEEDINGS, PROCEED-
INGS, BOOK, INCOLLECTION, PHDTHESIS, MASTERSTHESIS, and WWW doc-
uments, where each document is represented by a unique URI. In addition, there
are persons that act as authors or editors. They are modeled by blank nodes.

Each document (resp., person) is described by a set of properties, such as
dc:title, de:creator (i.e., the author), or swre:isbn. Outgoing citations are expressed
through predicate dcterms:references, which points to a blank node of type rdf: Bag
(a standard RDF container class) that links to the set of all document URISs refer-
enced by the respective document. Attribute dcterms:partOflinks inproceedings
to the proceedings they appeared in; similarly, swrc:journal connects articles to
journals. Several properties (e.g., dc:creator) are multi-valued.

The first part of Table [lists the number of document class instances of type
INPROCEEDINGS, PROCEEDINGS, ARTICLE, JOURNAL, INCOLLECTION, and the

86 M. Schmidt et al.

Table 1. Key characteristics of documents generated by the SP?Bench generator

#triples #Inpr. #Proc. #Art. #Journ. #Inc. #Oth. #auth./#dist. #prop. file size year

10k 169 6 916 25 18 0 1.5k/0.9k 23+34 1.0MB 1955
50k 1.4k 37 4.0k 104 56 0 6.8k/4.1k 23434 5.1MB 1967
250k 9.2k 213 17.1k 439 173 39 34.5k/20.0k 23443 26MB 1979
1M 43.5k 903 56.9k 1.4k 442 551 151.0k/82.1k 23444 106MB 1989
5M 255.2k 4.7k 207.8k 4.6k 1.4k 1.4k 898.0k/429.6k 23452 533MB 2001
25M 1.5M 24.4k 642.8k 11.7k 4.5k 2.4k 5.4M/2.1M 25452 2.7GB 2015

remaining types #Oth. (Book, Www, PHD- and MASTERSTHESIS) for gener-
ated documents up to 25M RDF triples. ARTICLE and INPROCEEDINGS docu-
ments clearly dominate. The total number of authors (i.e., triples with predicate
dc:creator) increases slightly super-linear to the total number of documents. This
reflects the increasing average number of authors per paper in DBLP over time.
The table also lists the number #prop. of distinct properties. This value = +y
splits into = “standard” attribute properties and y bag membership properties
rdf: 1, ..., rdf: y, where y depends on the maximum-sized reference list in the
data. We observe that larger documents contain larger reference lists, and hence
more distinct properties. As discussed later, this might complicate data process-
ing in the vertically partitioned scenario. Finally, we list the physical size of the
RDF file (in NTriples format) and the year up to which data was generated.
To support queries that access an author with fixed characteristics, the docu-
ments contain a special author, named after the mathematician Paul Erdés, who
gets assigned 10 publications and 2 editor activities in-between 1940-1996. As
an example, Q8 (Appendix [Al) extracts all persons with Erdss Number 1 or 2T

3 The Benchmark Scenarios

We now describe the four benchmark scenarios in detail. The first system under
consideration is (1) the Sesame [I5] SPARQL engine. Sesame constitutes a query
engine that, like the other three scenarios, relies on a physical DB backend. It
is among the fastest SPARQL engines that have been tested in the context of
the SP?Bench benchmark (cf. [I3]) and has been chosen as a representative for
the class of SPARQL engines. The remaining scenarios are (2) the triple ta-
ble approach, (3) the vertically partitioned approach as described in [I1]], and
(4) a purely relational DBLP model. They are all implemented on top of a rela-
tional DBMS. Accordingly, a translation of the SP2 Bench SPARQL queries into
SQL is required. We will sketch the detailed settings and our methodical query
translation approaches for scenarios (2)-(4) in the remainder of this section. The
resulting SQL queries are available onlineE; still, to be self-contained we will
summarize their key characteristics when discussing the results in Section Hl
According to [II], to reach best performance all relational schemes should
be implemented on top of a column-store DBMS, which stores data physically

! See http://www.oakland.edu/enp/.
% http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B /translations.html

An Experimental Comparison of RDF Data Management Approaches 87

by column rather than row (see [II] for the advantages of column-oriented sys-
tems in the RDF scenario). The C-Store research prototype [I8] used in [I1]
misses several SQL features that are essential for the SP?Bench queries (e.g. left
joins), so we fall back on the MonetDB [19] column-store, a complete, industrial-
strength relational DBMS. We note that MonetDB differs from C-Store in sev-
eral aspects. First, data processing in MonetDB is memory-based while it is
disk-based in C-Store. Moreover, C-Store exhibits a carefully optimized merge-
join implementation (on top of run-length encoded data) and makes heavy use
of this operation. Although we observe that MonetDB uses merge joins less
frequently (cf. Section @), the system is known for its performance and has re-
cently been shown to be competitive to C-Store in the Barton Library RDF
scenario [16].

3.1 The Triple Table Storage Scheme

In the triple table scheme a single table Triples(subject, predicate,object) holds
all RDF triples. Methodical translations of SPARQL into this scheme have been
proposed in [2002T)22]. The idea is to evaluate triple patterns separately against
table Triples, then combining them according to the SPARQL operators in the
query. Typically, SPARQL operator AND is expressed by a relational join, UNION
by a SQL union, FILTER clauses result in WHERE-conditions, and OPTIONAL is
modeled by a left outer join. For instance, SPARQL query Q1 (Appendix [A]
translates into query () from the Introduction (prefixes and data types are
omitted). Observe that Q1 connects three patterns through two AND operators
(denoted as “.”), resulting in two SQL joins. The patterns are connected through
variable Zjournal in subject position, so both are subject-subject joins. We em-
phasize that, although queries were translated manually, the scheme is very close
to the approaches used by SPARQL engines that build on the relational model.

Dictionary Encoding. URIs and Literals tend to be long strings; they might
blow up relational tables and make joins expensive. Therefore, we store inte-
ger keys instead of the string value, while keeping the key-value mapping in
a Dictionary(ID,val) table (cf. [IH23J24ITT]). Note that dictionary encoding
implies additional joins with the Dictionary table in the translated queries.

Implementation. We sort data physically by (predicate, subject, object) rather
than (subject, predicate, object). While this contrasts with the experiments in [I1],
we will show that this sort order makes the triple approach more competitive,
because fast linear merge joins across property tables in the vertical scenario can
now be realized by corresponding merge joins in the triple scenario.

We note that indexing in MonetDB differs from conventional DBMS; it in-
terprets INDEX statements as advices, feeling free to ignore them and create its
own indicesH Though, we issue a secondary BTree index for all remaining per-
mutations of the subject, predicate, and object columns. The Dictionary table
is physically sorted by ID and we request a secondary index on column wval.

3 See http://monetdb.cwi.nl/projects/monetdb/SQL/Documentation /Indexes.html.

88 M. Schmidt et al.

3.2 The Vertically Partitioned Storage Scheme

The vertically partitioned relational store maintains one two-column table with
schema (subject, object) for each unique predicate in the data. The query trans-
lation for the vertical scenario is similar to the triple table translation. The
translation of SPARQL query @1 into this scenario is exemplarily shown in the
Introduction, query (2). Here, data is extracted from the predicate tables, so
predicate value restrictions in the WHERE-clause are no longer necessary.

One major problem in the vertical scheme arises when predicates in queries
are not fixed (i.e., when SPARQL variables occur in predicate position). Then,
information cannot be extracted from a single predicate table, but queries must
compute the union over all these tables. As discussed in Section [(Table [II),
in our scenario the number of distinct properties (and hence, predicate tables)
increases with document size. Consequently, such queries require more unions
on large documents. This illustrates a basic drawback of the vertical approach:
Query translation depends on the structure of the data and, what is even more
urgent, queries may require a large number of unions over the predicate tables.

Implementation. We sort the predicate tables physically on (subject, object)
and issue an additional secondary BTree index on columns (object, subject).
Dictionary encoding is implemented analogously to the triple scheme.

3.3 The Purely Relational Scheme

We started from scratch and developed an Entity Relationship Model (ERM) of
DBLP. Using ERM translation techniques, we end up with the following tables,
where primary keys are underlined and foreign keys are marked by prefix “fk 7.

— Document (ID,address,booktitle,isbn,. . .,stringid, title,volume)

— Document_homepage(fk document,homepage)

— Document_seeAlso(fk document,secAlso)

— Venue(ID,fk document,fk venue type)

— Publication(ID,chapter,fk document,fk publication type,fk venue,pages)
— Publication_cdrom(fk publication,cdrom)

— Abstract(fk publication,txt)

— PublicationType(I/D,name) and VenueType(/D,name)

— Person(ID,name,stringid)

— Author(fk person,fk publication) and Editor(fk document,fk person)
— Reference(fk from,fk to)

The scheme distinguishes between venues (i.e., JOURNAL and PROCEEDINGS)
and publications (such as ARTICLE, INPROCEEDINGS, or BOOK). The dictionary
tables PublicationType and VenueType contain integer IDs for the respective
venue and publication classes. Table Document constitutes a base table for both
document types, containing properties that are common to both venues and
publications. Supplementary, Venue and Publication store the properties that
are specific for the respective type. For instance, if a new BOOK document is
inserted, its base properties are stored in table Document, while publication-type

An Experimental Comparison of RDF Data Management Approaches 89

specific properties (e.g., chapter) are stored in table Publication. The entries
are linked through foreign key Publication.fk document; the type (in this case
Book) is fixed by linking Publication.fk publication type to the BooK ID in
PublicationType. Properties foaf:homepage, rdf:seeAlso, and bench:cdrom are
multi-valued in the SP?Bench scenario, so they are stored in the separate tables
Document_homepage, Document_seeAlso, and Publication_cdrom. We use a
distinguished Abstract table for the larger-than-average abstract strings.

Finally, there is one table Person that stores person information, two tables
Author and Editor that store the author and editor activity of persons, and a
table Reference that contains all references between documents.

Implementation. The scheme was implemented in MonetDB exactly as described
above, using the specified PRIMARY and FOREIGN KEY constraints, without addi-
tional indices. In the sense of a relational schema we omit prefix definitions (such
as “rdf:”, “dc:”). The data was translated using a conversion script.

4 Experimental Results

Setting. The experiments were carried out on a Desktop PC running ubuntu
v7.10 gutsy Linux, with Intel Core2 Duo E6400 2.13GHz CPU and 3GB DDR2
667 MHz nonECC physical memory. We used a 250GB Hitachi P7TK500 SATA-IT
hard drive with 8MB Cache. The relational schemes were executed with Mon-
etDB mserver v5.5.0, using the (more efficient) algebra frontend (flag “-G”).

As discussed in Section B we tested (1) the Sesame v2.0 engine SP (coupled
with its native storage layer, providing all possible combinations of indices) and
three MonetDB scenarios, namely (2) the triple store TR, (3) the vertically
partitioned store VP, and (4) the purely relational scheme RS. We report on
user (usr), system (sys), and elapsed time (total). While usr and sys were
extracted from the /proc file system, elapsed time was measured through a timer.
MonetDB follows a client-server architecture and we provide the sum of the usr
and sys times of the client and server processes. Note that the experiments were
run on a DuoCore CPU, where the linux kernel sums up usr and sys of the
individual processor units, so usr+sys might be greater than total.

For all scenarios we carried out three runs over all queries on documents of
10k, 50k, 250k, 1M, 5M, and 25M triples, setting a 30 minutes timeout and
2G B memory limit (using ulimit) per query. As our primary interest is the basic
performance of the approaches (rather than caching or learning strategies), we
performed cold runs, i.e. destroyed the database in-between each two consecutive
runs and always restarted it before evaluating a query. We provide average times
and omit the deviation from the average (which was always negligible).

Discussion of the Benchmark Results. All results were verified by compar-
ing the outcome of the engines among each other (where possible). Table P sum-
marizes the query result sizes and the physical DB sizes for each scenario on all
documents. The VP scheme requires less disk space than TR for large documents,
since predicates are not explicitly stored for each triple. For Sesame, indices

4
5
13

6
8

20
58 42

3
5
18
63

3
14

SP TR VP RS
69

Phys. DB size (MB)
10 1376 404 271 195
10 6928 2395 1168 913

10
10 277

10
10

4 166
4 452
4 572
4 656

2264 4 307

0 184
62 332

Q6 QT Q8% QY Q10 Q11

229
1.8k

6.9k 12.1k
35.2k 62.8k 292 400

0 18.4M 210.7k 417.6k 1.2k 493 4 656

155

1.1k
n/a 696.7k 1.9M 5.1k 493

Q4 Q5a/b

0 23.2k
0 104.7k
0 542.8k
0 2.6M

9
25
0

846
3.6k
6.2k 15.9k 127

1 32.8k

Number of query results for individual queries

Q3a Q3b Q3c

52.7k 379

147
965

Q2

1.9M 594.9k 4.1k

M. Schmidt et al.
1 248.7k 192.4k 1.3k

1
1
1
1

90
Table 2. Query result sizes on documents up to 25M triples and physical DB size
Q1

10k
50k
250k
1M
5M
25M

7?72

]

Z .

—

no

25M triples

the y-axes are

(

5M, and S6

1M, S5
so least space is required.

b

10k, S2=50k, S3=250k, Sd=

We observe that both the TR and VP scenario scale well for documents up to

The query execution times are shown in Figures [l 2 and [
always in log scale). Please note that the individual plots scale differently.
5M triples, but total time explodes for 25M triples. The gap between total and
usr+sys for 25M indicates that much time is spent in waiting for data being read

Q1. Return the year of publication of “Journal 1 (1940)”.

Fig. 1. Results on S1
This simple query returns exactly one result on all documents. The TR and VP

translations are shown in the Introduction. The RS query joins tables Venue,
Document, and VenueType on the connecting foreign keys and then filters for

VenueType.name=“Journal” and Document.title=“Journal 1 (1940)”.
from or written to disk, which is caused by query execution plans (QEPs) that

occupy more than half of the required space. In RS there is no redundancy,

dictionary encoding, and no prefixes are stored

91

An Experimental Comparison of RDF Data Management Approaches

25M triples

and S6=

)

5M

10k, S2=50k, S3=250k, S4=1M, S5=

Fig. 2. Results on S1

25M triples

5M, and S6

50k, S3=250k, S4=1M, S5=

Fig. 3. Results on S1=10k, S2

instead of efficient subject-subject merge joins. We

claim that using merge joins would be more efficient here. Due to this deficiency,

both Sesame and the RS scenario outperform the TR and VP schemes.

b

involve expensive fetch joins

92 M. Schmidt et al.

Q2. Extract all inproceedings with properties dc:creator, bench:booktitle,
de:title, swre:pages, dcterms:partOf, rdfs:seeAlso, foaf:homepage, dcterms:issued, and
optionally bench:abstract, including these properties.

2 implements a star-join-like graph pattern. Result size grows with document
size (cf. Table 2)) and the solution modifier ORDER BY forces result ordering.
The nine outer SPARQL triple patterns translate into nine predicate (triple)
table accesses in the VP (TR) scenario, connected through eight subject-subject
joins, due to variable Zinproc. The OPTIONAL clause causes an additional left
outer join. The RS query gathers all relevant information from tables Document,
Publication, PublicationType, Author, Person, Document_seeAlso, Venue,
and Document_homepage, and also contains a left outer join with table Abstract.

Like for @1, the subject-subject joins should be realized by merge joins in
the TR and VP scenario, but MonetDB chooses QEPs that mostly use fetch
joins, involving merge joins only in few cases. These fetch joins consume the
major part of execution time. Lastly, none of both schemes succeeds for the
25M triples document. Sesame is about one order of magnitudes slower. The RS
scheme requires less joins and is significantly faster than the other approaches.

Q3abc. Select all articles with property (a) swrc:pages, (b) swrc:month, or
(¢) swrc:isbn.

We restrict on a discussion of Q3b, as the results for Q3a and Q3¢ are similar. As
explained in [T3], the FILTER in Q3b selects about 0.65% of all articles. The TR
translation contains a subject-subject join on table Triples and a WHERE value-
restrictions for predicate swrc:month. Although variable ?property occurs in pred-
icate position, we chose a VP translation that does not compute the union of
all predicate tables, but operates directly on the table for predicate swrc:month,
which is implicitly fixed by the FILTER. The RS translation is straightforward.
The VP approach is a little faster than TR, because it operates on top of the
swrc:month predicate table, instead of the full triples table. The query contains
only one subject-subject join, and we observe that the VP and TR approaches
explode for the 25M document, again due to expensive fetch joins (cf. Q1, Q2).
Sesame is competitive and scales even better, while RS shows best performance.

Q4. Select all distinct pairs of article author names for authors that have
published in the same journal.

Q4 contains a long graph chain, i.e. variables ?namel and ?name2 are linked
through the articles that different authors have published in the same journal.
When translated into TR and VP, the chain is mapped to a series of subject-
subject, subject-object, and object-object joins. The RS query gathers all articles
and their authors from the relevant tables twice and joins them on Venue.ID.

As apparent from Table 2 the query computes very large results. Due to the
subject-object and object-object joins, the TR and VP scenarios have to compute
many expensive (non-merge) joins, which makes the approaches scale poorly.
Sesame is one order of magnitude slower. In contrast, RS involves simpler joins
(e.g., efficient joins on foreign keys) and shows the best performance.

An Experimental Comparison of RDF Data Management Approaches 93

Qb5ab. Return the names of all persons that occur as author of at least one
inproceeding and at least one article.

®5a joins authors implicitly on author names (through the FILTER condition),
while @Q5b explicitly joins on variable ?person. Although in general not equiv-
alent, the one-to-one mapping between authors and their names in SP?Bench
implies equivalence of @5a and @5b. All translations share these join character-
istics, i.e. all translations of @5a model the join by an equality condition in the
SQL WHERE-clause, whereas translations of ?5b contain an explicit SQL JOIN.

Sesame scales bad for @5a, probably due to the implicit join (it performs
much better for @5b). In the SQL scenarios there are no big differences between
implicit and explicit joins; such situations are resolved by relational optimizers.

Q6. Return, for each year, the set of all publications authored by persons
that have not published in years before.

@6 implements closed world negation (CWN), expressed through a combination
of operators OPTIONAL, FILTER, and BOUND. The block outside the OPTIONAL
computes all publications and the inner one constitutes earlier publications from
authors that appear outside. The outer FILTER then retains all publications
for which ?Zauthor2 is unbound, i.e. those from newcomers. In the TR and VP
translation, a left outer join is used to connect the outer to the inner part. The
RS query extracts, for each year, all publications and their authors, and uses a
SQL NOT EXISTS clause to filter away authors without prior publications.
One problem in the TR and VP queries is the left join on top of a less-than
comparison, which complicates the search for an efficient QEP. In addition, both
queries contain each two subject-object joins on the left and on the right side of
the left outer join. Ultimately, both scale poorly. Also Sesame scales very bad.
In contrast, the purely relational encoding is elegant and much more efficient.

Q7. Return the titles of all papers that have been cited at least once, but
not by any paper that has not been cited itself.

This query implements a double-CWN scenario. Due to the nested OPTIONAL
clauses, the TR and VP translations involve two nested left outer joins with join-
intensive subexpressions. The VP translation is complicated by three unions of
all predicate tables, caused by the SPARQL variables ?member2, ?members3,
and ?memberj in predicate position. When encoding them at the bottom of
the evaluator tree, the whole query builds upon these unions and the benefit of
sorted and indexed predicate tables gets lost. We tested different versions of the
query and decided for the most performant (out of the tested variants), where
we pulled off the outermost union, thus computing the union of subexpressions
rather than individual tables. The RS query uses two nested SQL NoT IN-clauses
to express double negation. We could have used nested NoT ExisTs-clauses
instead (cf. Q6), but decided to vary, to test the impact of both operators.

Due to the unbound predicates, the VP approach has severe problems in
evaluating this query and behaves worse than the TR scheme. This illustrates
the disadvantages of the vertical approach in scenarios where unbound predicates

94 M. Schmidt et al.

occur. Sesame also behaves very bad, while the nested NOT IN-clause in RS, a
common construct in relational queries, constitutes the only practical solution.

Q8. Compute authors that have published with Paul Erdoes or with an
author that has published with Paul Erdoes.

)8 contains a SPARQL UNION operator, so all translations contain a SQL union.
The TR and VP versions of this query are straightforward. The RS translation
separately retrieves persons that have published with Paul Erdoes and persons
that have published with one of its coauthors (each from the Author and the
Person table), and afterwards computes the union of both person sets.

Again, the TR scenario turns out to be competitive to VP, but both schemes
fail to find an efficient QEP for large documents, due to the subject-object and
object-object joins and the additional non-equality WHERE-condition over the
subject and object columns. The Sesame engine scales surprisingly well for this
query, but is still one order of magnitude slower than the relational scheme.

Q9. Return incoming and outgoing properties of persons.

Both parts of the union in @9 contain a fully unbound triple pattern, which
selects all RDF database triples. The TR translation is straightforward. Con-
cerning the unbound ?predicate variable, we again pulled off the union of the
predicate tables in the VP scenario, thus computing the same query separately
for each predicate table and building the union of the results afterwards. As
discussed in Q7, this was more efficient than the union at the bottom of the
operator tree. The result size is always 4 (the first part constitutes properties
de:creator and swre:editor, and the second one rdf:type and foaf-name). A mean-
ingful RS translation of this query, which accesses schema information, is not
possible: In RS, the properties are encoded as (fixed) table attributes names[]

Although a little bit slower than the TR approach for small documents, VP
succeeds in evaluating the 25M triple document. Though, both approaches seem
to have problems with the unbound triple pattern and scale poorly. Sesame’s
native store offers better support, but is still far from being performant.

Q10. Return all subjects that stand in any direct relation with Paul Erdoes.
In our scenario the query can be reformulated as “Return publications and
venues in which Paul Erdoes is involved as author or editor, respectively”.

@10 implements an object bound-only RDF access path. The TR and RS trans-
lations are standard. Due to the unbound variable #predicate, the VP query
involves a union of the predicate tables. As for 9, the implementation of this
union on top of the operator tree turned out to be the most performant solution.

Recalling that “Paul Erdoes” is active between 1940 and 1996, the result size
has an upper bound (cf. Table 2 for the 5M and 25M documents). VP and
TR show very similar behavior. As illustrated by the results of Sesame, this
query can be realized in constant time (with an appropriate index). The index

4 A lookup query for fixed values in the DBMS system catalog is not very interesting.

An Experimental Comparison of RDF Data Management Approaches 95

selection strategy of MonetDB in TR and VP is clearly suboptimal. RS scales
much better, but (in contrast to Sesame) still depends on the document size.

Q11. Return (up to) 10 electronic edition URLs starting from the 51°
publication, in lexicographical order.

@11 focuses on the combination of solution modifiers ORDER By, LimIT, and
OFFSET, which arguably remains the key challenge in all three translations.
The VP query operates solely on the predicate table for rdfs:seeAlso and,
consequently, is a little faster than TR. Sesame scales superlinearly and is slower
than both. Once more, RS dominates in terms of performance and scalability.

Conclusion. Our results bring many interesting findings. First, the MonetDB
optimizer often produced suboptimal QEPs in the VP and TR scenario (e.g.,
for Q1, @2, and Q3D not all subject-subject join patterns were realized by merge
joins). This shows that relational optimizers may have problems to cope with
the specific challenges that arise in the context of RDF. Developers should be
aware of this when implementing RDF schemes on top of relational systems.
Using the SP?Bench queries we have identified limitations of the vertical ap-
proach. We observe performance bottlenecks in complex scenarios with unbound
predicates (e.g., Q7), for challenging operator constellations (e.g., CWN-queries
@6, Q7), and identified queries with many non-subject-subject joins as a serious
weakness of the VP scheme. While the latter weakness has been noted before
in [IT], our experiments reveal the whole extent of this problem. The material-
ization of path expressions might improve the performance of such queries [I1],
but comes with additional costs (e.g., disk space), and is not a general solution.
Another finding is that a triple store with physical (predicate,subject,object)
sort order is more competitive to the vertical scheme, and might even outperform
it for queries (e.g., @7) with unbound predicates (cf. [16]). This relativizes the
results from [I1], where the triple store was implemented with (subject, predicate,
object) sort order and only tested in combination with a row-store DBMS.
Finally, none of the tested RDF schemes was competitive to a comparable
purely relational encoding. Although relational schemata are domain-specific
and, in this regard, optimized for the underlying scenario, we observed a gap of
at least one order of magnitude for almost all queries already on small documents,
typically increasing with document size. We therefore are convinced that there is
still room for optimization in RDF storage schemes, to reduce the gap between
RDF and relational data processing and bring forward the Semantic Web vision.

Acknowledgment. The authors thank the MonetDB team for its support in
setting up MonetDB and interesting discussions on RDF storage technologies.

References

1. W3C: Resource Description Framework (RDF), http://www.w3.org/RDF/
2. W3C: SPARQL Query Language, http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

96

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

M. Schmidt et al.

. Bizer, C., Cyganiak, R.: D2R Server — Publishing the DBLP Bibliography Database

(2007), http://www4.wiwiss.fu-berlin.de/dblp/

. Tauberer, J.: U.S. Census RDF Data, http://www.rdfabout.com/demo/census/
. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing Vo-

luminous RDF Descriptions: The case of Web Portal Catalogs. In: WebDB (2001)

. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: Horrocks, 1., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

. Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a Graph. In: Web Congress,

pp. 27-36 (2003)

. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking RDF Repre-

sentations of RDF/S Stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 685-701. Springer, Heidelberg (2005)

. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF

Querying Scheme. In: VLDB, pp. 1216-1227 (2005)

Wilkinson, K.: Jena Property Table Implementation. In: International Workshop
on Scalable Semantic Web Knowledge Base, pp. 35-46 (2006)

Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: VLDB, pp. 411-422 (2007)
Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Using the Barton libraries
dataset as an RDF benchmark. Technical report, MIT-CSAIL-TR-2007-036, MIT
(2007)

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP?Bench: A SPARQL Perfor-
mance Benchmark. Technical report, arXiv:0806.4627v1 cs.DB (2008)

Ley, M.: DBLP Database, http://www.informatik.uni-trier.de/~1ley/db/
openRDF.org: Home of Sesame, http://www.openrdf.org/documentation. jsp
Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store
Support for RDF Data Management: not all swans are white. In: VLDB (2008)
Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark,
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
Stonebraker, M., et al.: C-store: a Column-oriented DBMS. In: VLDB, pp. 553-564
(2005)

CWI Amsterdam: MonetDB, http://monetdb.cwi.nl/

Chebotko, A., Lu, S., Yamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL-to-
SQL Query Translation for Optional Graph Patterns. Technical report, TR-DB-
052006-CLJF (2006)

Cyganiac, R.: A Relational Algebra for SPARQL. Technical report, HP Bristol
Harris, S.: SPARQL Query Processing with Conventional Relational Database Sys-
tems. In: SSWS (2005)

SourceForge: Jena2, http://jena.sourceforge.net/DB/index.html

Harris, S., Gibbins, N.: 3store: Efficient Bulk RDF Storage. In: PSSS (2003)

http://www4.wiwiss.fu-berlin.de/dblp/
http://www.rdfabout.com/demo/census/
http://www.informatik.uni-trier.de/~ley/db/
http://www.openrdf.org/documentation.jsp
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
http://monetdb.cwi.nl/
http://jena.sourceforge.net/DB/index.html

An Experimental Comparison of RDF Data Management Approaches

A SP2Bench SPARQL Benchmark Queries

97

SELECT ?yr
WHERE {
7journal rdf:type bench:Journal.

?journal dc:title "Journal 1 (1940)"""xsd:string.

7journal dcterms:issued 7yr }

SELECT ?inproc ?author ?booktitle ?title
7proc ?ee 7page ?url ?yr 7abstract

WHERE {

7inproc rdf:type bench:Inproceedings.

?inproc dc:creator ?author.

7inproc bench:booktitle ?booktitle.

?7inproc dc:title ?title.

7inproc dcterms:part0f ?proc.

7inproc rdfs:seeAlso 7ee.

?7inproc swrc:pages ?page.

7inproc foaf:homepage 7url.

?inproc dcterms:issued ?yr

OPTIONAL { ?inproc bench:abstract ?abstract }
} ORDER BY ?yr

SELECT DISTINCT 7title
WHERE {
7class rdfs:subClassOf foaf:Document.
?doc rdf:type 7class.
7doc dc:title 7title.
7bag2 ?member2 ?doc.
7doc2 dcterms:references ?bag2
OPTIONAL {
?class3 rdfs:subClass0f foaf:Document.
?7doc3 rdf:type ?class3.
?doc3 dcterms:references 7bag3.
7bag3 ?member3 ?doc
OPTIONAL {
?classd rdfs:subClass0f foaf:Document.
?7doc4 rdf:type ?classd.
?doc4d dcterms:references 7bagd.
7bagd 7memberd ?7doc3
FILTER (!bound(?doc4))
} FILTER (!bound(?doc3))

=

(a) SELECT ?article
WHERE {

7article rdf:type bench:Article.

7article ?property ?value

FILTER (?property=swrc:pages) }
(b) Q3a, but "swrc:month" instead of "swrc:pages"
(c) Q3a, but "swrc:isbn" instead of "swrc:pages"

SELECT DISTINCT ?namel ?name2
WHERE {
7articlel rdf:type bench:Article.

7articlel swrc:journal ?journal.
7article2 swrc:journal 7journal
FILTER (7namel<7name2) }

(a) SELECT DISTINCT ?person ?name
WHERE {
7article rdf:type bench:Article.
?article dc:creator ?person.
7inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person2.
?person foaf :name 7name.
?person2 foaf :name ?name2

b
(b) SELECT DISTINCT ?7person ?name

WHERE {
7article rdf:type bench:Article.
7article dc:creator ?person.
?inproc rdf:type bench:Inproceedings.
7inproc dc:creator ?person.
?person foaf :name ?name

SELECT DISTINCT ?name

?7erdoes rdf:type foaf:Person.
7erdoes foaf :name "Paul Erdoes

?doc dc:creator Zerdoes.
?doc dc:creator 7author.
?doc2 dc:creator ?author.
?doc2 dc:creator 7author2.
7author2 foaf:name 7name
FILTER (?7author!=7erdoes &&
?doc2!=7doc &&
7author2!=7erdoes &&
7author2!=7author)

-

UNION {

?doc dc:creator 7erdoes.
?doc dc:creator 7author.
7author foaf:name 7name
FILTER (7author!=7erdoes)

SELECT DISTINCT ?predicate
WHERE {

?person rdf:type foaf:Person.
?subject ?predicate ?person
} UNION {
?person rdf:type foaf:Person.
7person ?predicate Zobject

SELECT ?subj ?pred
WHERE {
7subj ?pred person:Paul_Erdoes

SELECT ?yr 7name ?doc
WHERE {
7class rdfs:subClassOf foaf:Document.
?doc rdf:type ?7class.
?doc dcterms:issued 7yr.
?doc dc:creator ?author.
7author foaf:name 7name
OPTIONAL {
?class2 rdfs:subClassOf foaf:Document.
?7doc2 rdf :type 7class2.
?doc2 dcterms:issued ?yr2.
?doc2 dc:creator ?author2
FILTER (?author=7author2 && ?yr2<?yr)
} FILTER (!bound(?author2))

SELECT 7ee
WHERE {
?7publication rdfs:seeAlso Zee
} ORDER BY ?ee
LIMIT 10
OFFSET 50

Anytime Query Answering in RDF
through Evolutionary Algorithms

Eyal Oren, Christophe Guéret, and Stefan Schlobach

Vrije Universiteit Amsterdam, de Boelelaan 1081a, Amsterdam, The Netherlands

Abstract. We present a technique for answering queries over RDF data
through an evolutionary search algorithm, using fingerprinting and Bloom
filters for rapid approximate evaluation of generated solutions. Our evolu-
tionary approach has several advantages compared to traditional database-
style query answering. First, the result quality increases monotonically and
converges with each evolution, offering “anytime” behaviour with arbitrary
trade-off between computation time and query results; in addition, the level
of approximation can be tuned by varying the size of the Bloom filters. Sec-
ondly, through Bloom filter compression we can fit large graphs in main
memory, reducing the need for disk I/O during query evaluation. Finally,
since the individuals evolve independently, parallel execution is straight-
forward. We present our prototype that evaluates basic SPARQL queries
over arbitrary RDF graphs and show initial results over large datasets.

1 Introduction

Almost ten years after its birth as a W3C recommendation, RDF is now used to
represent data in an uncountable variety of applications. Together with other (al-
most) standards, such as RDF schema, OWL, or SPARQL, we now have widely
accepted formalisms for the Semantic Web. For all their success there remains a
strange discrepancy between the type of representation and retrieval mechanisms
and the type of knowledge and data that they are meant to represent. Looking,
for example, at SPARQL as a query-language for RDF we have a database-style
query language which returns perfect answers on finite repositories. However,
the Semantic Web is intrinsically imperfect, too large to represent entirely, with
errors, incompleteness, misrepresentations, omissions, ambiguity and so forth.

In this paper we introduce a novel method to query RDF datasets with
SPARQL, which is scalable, but which might produce imperfect, approximate
answers; first, as a method to deal with ever larger datasets such as the bil-
lion triples made available for the Semantic Web challengeﬂ, and secondly, as a
method to retrieve an almost correct approrimate answer quickly. Given the im-
precise nature and the size of the Semantic Web, we believe that approximation
will be useful in many applications and even essential for others.

!http://challenge.semanticweb.org

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 98 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://challenge.semanticweb.org

Anytime Query Answering in RDF through Evolutionary Algorithms 99

1.1 Method

Our method is based on the application of evolutionary techniques in search-
ing for an assignment that validates entailment between a graph representing a
query and a data graph. More concretely, we encode a query as a set of triple-
constraints with variables where a perfect solution is, as usually, an assignment
which maps nodes from the domain of the graph to each variable in such a way
that the instantiated constraints are all in the data graph.

To find such an assignment we do not apply exhaustive search on a pre-
computed index as is commonly done, but instead evolve the solutions through
standard evolutionary methods of mutation and crossover, guided by the num-
ber of satisfied constraints as our fitness function. To efficiently calculate this
fitness function we represent the original graph data using Bloom filters ML an
efficient and space-reduced data representation for set membership. With each
evolutionary step, we converge closer to a solution to our query.

This method is approximate in two ways: Bloom filters are unsound and may
lead to false positives. However, the confidence level of the filter can be tuned
by increasing the size of the filter (space-correctness trade-off). Secondly, and
more importantly, our evolution process might not reach 100% correctness, i.e.
solutions may still contain unsatisfied constraints; again, the approximation level
may be tuned by longer evolution cycles (time-correctness trade-off). For both
sources of approximation we provide a formal model to estimate the probability
of correctness of our answer.

The advantage of our method is that its behaviour is intrinsically any-time:
our evolutionary algorithm, for which we will demonstrate convergence, can be
stopped at any time and produce a meaningful result.

1.2 Research Questions

When presenting a new, approximate, method for querying potentially huge
Semantic Web data, two types of questions arise: can we compute useful answers
in an any-time manner? And secondly, how scalable is our approach when it
comes to runtime and representation size? In the following, we will address these
questions:

1. As the main requirement for any-time algorithms: does our evolutionary
strategy evolve monotonically, i.e. can we expect the next result in an iter-
ation to be at least as good as the previous one.

2. How does query time relate to the prospected quality of the answers, and
how does query-time compares to traditional approaches?

1.3 What to Expect from This Paper?

This paper introduces a new method for querying RDF repositories for approxi-
mate answers, using Bloom filters for fast approximate access to the triple graph
and evolutionary methods for searching an (almost) optimal solution. We have
implemented this idea and evaluated it on a number of real-life data-sets.

100 E. Oren, C. Guéret, and S. Schlobach

However, our implementation itself is only preliminary and unoptimised, us-
ing a fairly standard evolution strategy and a relatively simple fitness function.
Therefore, this paper should be read mostly as a proof of concept, where even
a rather naive implementation indicates that of our idea can have significant
impact as a new querying paradigm for the Semantic Web.

The paper is structured as follows: in Section 2 we give the necessary back-
ground to make the paper self-contained. Section [introduces our instance of
the RDF querying problem formally, before we give details of our evolutionary
querying method in Section @l Section [l presents our prototype implementation
and [presents our initial experimental results.

2 Background

Before outlining our approach, we briefly present an overview of evolutionary
algorithms. We also discuss existing approaches for querying of RDF data, mostly
based on database techniques, and related work in approximate query answering.

2.1 Evolutionary Algorithms

The evolutionary computing paradigm ﬂa] consists of a number of algorithms
such as genetic algorithms, evolutionary programming, and others, that are all
based on natural selection and genetic inheritance; these algorithms can be used
for optimisation problems or for modelling and simulating complex systems.

In this paper we use an evolutionary algorithm, based on the general idea of
a population of individuals that evolve in some environment. Each individual is
a candidate solution to the problem at hand. The environment is the solution
space in which the individual competes with its siblings, based on survival of the
fittest. Starting with an initial population, individuals recombine and mutate to
produce an offspring. During each iteration of the algorithm, the current individ-
uals are evaluated against a fitness function, the worst performing are removed
and replaced by new individuals. Finally, when a stop criterion is satisfied (eg.
minimal fitness or maximum number of generations), the best individuals are
presented as final solutions. Many variations on this basic evolutionary schema
are possible; our particular strategy will be presented in Section Ml

2.2 RDF Query Answering

Existing RDF stores such as Sesame [B] or YARS m] mostly employ standard
database techniques for query answering. Some stores represent triples directly
in relational tables, possibly with some optimised partitioning or storage scheme
@, ,] Others re-implement these well-known database techniques on their
own representation @] Generally speaking, all systems construct partial in-
dices for simple triple patterns such as (7s,p,0) and (s,p,?0) during loading
time. During query execution single patterns can be answered with direct index
lookups, while joins require some nested loops [@]7 assigning one value at a time

Anytime Query Answering in RDF through Evolutionary Algorithms 101

for each variable and backtracking when encountering wrong paths. With such
loop joins, and in the absence of special path indices, additional query clauses
lead to exponential runtime. In contrast, in our approach, additional clauses
make the problem easier instead of harder, since individuals can be more easily
distinguished and have more variation between their fitness values.

2.3 Approximate Query Answering

Generally speaking, when querying a dataset, three kinds of approximations can
be made: one can approximate the query, one can approximate the dataset, and
one can approximate the reasoning strategy (e.g. returning partial matches).

As an example of the first strategy, Stuckenschmidt and van Harmelen [17]
present an approximation technique that first relaxes all query constraints and
then stepwise restores them, leading to monotonically improving query results;
each approximate query returns a (ever smaller) superset of the original query
results and is complete with increasing correctness. The last strategy, approxi-
mating the reasoning process, has been investigated for RDF by Kiefer et al.]
They introduce a similarity join extension to SPARQL; during query answering,
potential assignments to join-variables are compared using user-specified simi-
larity functions. The second strategy, approximating the dataset, e.g., through
random sampling, is often applied when dealing with very large datasets.

In comparison, our method can be seen as an approximation of the dataset,
but not only by random sampling. We have two sources of approximate answers:
first, the evolution can be stopped at any point without all constraints necessarily
satisfied. Found results are then incorrect to some degree (since some constraints
are not satisfied) and may also be incomplete (since some possibilities would not
have been explored).

3 Problem Description

In this section we give the necessary, and standard, formal definitions for the
problem we address (see also [@, @]) We also introduce the motivating example
used in the following section

Given three infinite sets I, B and L called respectively URI references, blank
nodes and literals, an RDF triple (s, p,0) is an element of (IUB)x I x (IUBUL).
Here, s is called the subject, p the predicate, and o the object of the triple. An
RDEF graph (or graph or dataset) is then a set of RDF triples. In this paper we
only consider basic SPARQL queries using so called graph patterns, which are
subsets of (/UL UV) x (IUV)x (IULUYV), where V is a set of variables
(disjoint from U U T U B)d Whenever, in the remainder of the paper, we discuss
SPARQL queries, we will refer to the sublanguage language of graph patterns.

2 An extension to complex query expressions with the usual algebraic operators such
as UNION, FILTER, OPTIONAL etc. is conceptually straightforward, and will be
considered in more detail in future research.

102 E. Oren, C. Guéret, and S. Schlobach

We define the semantics of a query through a mapping p which is a partial
function p : V' — U U T U B. For a triple pattern ¢, u(t) is the triple obtained
when the variables in t are replaced according to p.

The set of solutions to a query G over a data-set D is now defined as follows:
let D be an RDF data-set over U U T U B, and G = a graph pattern. Then we
say that a mapping p is a solution for G in D if, and only if, p € ,co{p |
dom(p) = var(t) and p(t) € D}, where var(t) is the set of variables occurring
in t.

In the following we will call the graph pattern our query, and a solution for
G in D an assignment. Furthermore, we will refer to a triple pattern within our
query as a constraint.

3.1 Approximation through Constraint Violation

Based on our definition of query answering, we can now define our notion of
“approximation”. An approximate solution is a variable assignment for which not
all constraints are satisfied, ie. for which not all constraints, after substitution,
appear in the original set of triples. To quantify the level of approximation,
we therefore count the number of unsatisfied query clauses: the more clauses
satisfied, the better the approximation.

Formally, we say that a mapping u is an approzimate solution for G in D if|
and only if, u € {u | dom(u) = var(t) and p(t) € D} for some t € G. To refine
the notion of approximation, we have to take the number of satisfied query triple
patterns into account, as a solution is of course better the more triple patters
are satisfied. More concretely, we define the trust in our approximations based
on an ordering using the number of violations of constraints ¢ in G.

3.2 Approximation through Unsound Look-Up

On top of the notion of approximation by ignoring some triple patterns in the
query graph, we also introduce approximation by using an unsound method for
checking whether a mapping p is indeed a solution to a query G for a graph
D. The reason for this is that Bloom filters are fast but unsound lookup mech-
anisms. As shown in Equation [Il the probability of false positives (because of
hash collisions) depends on the number k of hash functions used, the bitsize
m of the Bloom filter, and the number n of elements inserted into the filter.
During loading time, if a particular confidence level is required, we can tune the
size of the Bloom filter; alternatively, with a given filter and domain size, we can
estimate the confidence of false positives in the answers using the same equation.

confidence =1- Peollision = 1- (]- - e—li,?)k (1)

3.3 Motivating Example

A short snippet of RDF, taken from the SwetoDblp dataset E] of CS publica-
tions, is shown in Listing [Tl It states that the “Principles of Database Systems”

Anytime Query Answering in RDF through Evolutionary Algorithms 103

book was written by some unnamed blank node, whose first element is Jeff Ull-
man, with a homepage at Stanford. All authors in the SwetoDblp dataset are
RDF sequences (ordered lists), although in this particular case that sequence
has only one member. We will reuse this example and this dataset throughout
the rest of the paper.

An example SPARQL query that could be executed over the SwetoDblp
dataset is shown in Listing[[.2] with namespace declarations removed for brevity.
The query selects the titles of all books in the dataset. A more extensive query
is shown in Listing [[L3] which selects the first author of each publication in a
conference proceedings, limiting the number of results. Here the “[]” brackets
indicate traversal of blank nodes, the “;” indicates repetition of the previous
subject, and “rdf: 1”7 is a RDF predicate for the first position in a list.

Listing 1.1. RDF snippet from SwetoDBLP dataset

r<U11man88> rdf:type opus:Book .
<Ullman88> rdfs:label "Principles of Database and Knowledge-Base Systems" .
<Ul1lman88> opus:author _:bl .
_:bl rdf:_1 dblp:ullman .

dblp:ullman foaf:homepage <http://www-db.stanford.edu/ ullman/> .
" J

Listing 1.2. SPARQL query for book title

-
SELECT ?title WHERE {

?publication rdf:type opus:Book .

?publication rdfs:label ?7title .

+
« J

Listing 1.3. SPARQL query for publication title and first author

KSELECT 7author ?7title WHERE {
[rdf:type opus:Article_in_Proceedings ;
rdfs:label 7title ;
opus:author [rdf:_1 [foaf:name ?7author 1]

1.
} LIMIT 1
N

4 Method

In this section, we present the details of our evolutionary technique. We explain
how we represent the RDF input data and the SPARQL query as an evolutionary
problem, we present a fitness function for our candidate solutions, and we explain
the overall evolution strategy. The advantage of an evolutionary algorithm is
that each generated individual contains a complete assignment for all variables,
and we verify each complete assignment as a whole. Since our tasks is verifying
solutions instead of generating them, Bloom filters are very useful, since they do
not allow lookups but only membership testing.

In the rest of the section, we explain our technique using the SPARQL query
shown earlier in Listing [[L2] which selects all publications and their titles in the
SwetoDblp dataset.

104 E. Oren, C. Guéret, and S. Schlobach

Table 1. Translation of SPARQL query into constraints

Constraint Filter name
O 7publication rdf:type opus:Book spo
® 7publication rdf:type sp
© rdf:type opus:Book po
O 7publication opus:Book S0
O 7publication rdfs:label 7title spo
O 7publication rdfs:label sp
@ rdfs:label 7title po
© 7publication 7title so

4.1 Encoding

To setup our evolutionary algorithm, we need to choose a representation for the
query (constraints) and for the individuals (solutions).

Constraints. The graph patterns of our SPARQL query is translated into con-
straints that will be verified against the populated Bloom filters. We use four
Bloom filters (spo, sp, so, po) to check both complete and partial triple assign-
ments (to have more fine-grained fitness levels in the individuals).

An example translation is shown in Table [Il listing the constraints for the
query shown earlier in Listing Constraints 1-4 are generated from the first
WHERE clause (?publication rdf:type opus:Book), the next ones correspond
to the second clause (?publication rdfs:label ?7title). Constraints using
only ground terms, like the third one in our example, are discarded. The user is
warned if the constraint was unsatisfied. Otherwise, this operation is silent.

Splitting the triples into more fine-grained (e.g. binary) constraints allows us
to define a fitness function with better predictive power.

Individuals. Fach individual is a fully instantiated solution to our problem, ie. an
assignment for all variables. Therefore, the encoding template for the individuals
is the set of terms (both ground term and free variables) defined by the query,
as shown in Figure[Il Each individual consists of a set of variable assignments,
assigning one domain element to each query term. Each variable assignment can
be seen as a gene, and together they form the individual’s chromosome.

?publication groundl ground2 ground3 7title
Fig. 1. Encoding template for individuals

The domain of candidates depends on the usage of the variable. In total,
we have seven domains of candidate assignments: s, p, o, sp, so, po, spo. During
graph parsing we populate the three domains s, p and o with nodes occurring at
subject, predicate and object position. Then, for each variable, its domain will
be set to the intersection of its position in the query clauses. Ground terms in
the query are bound to a special domain, containing their only (already known)
value, as shown in Table

Anytime Query Answering in RDF through Evolutionary Algorithms 105

Table 2. Variables and corresponding domain snippets

variable domain

?publication s: <Ullman88>, :bl, dblp:ullman

groundil rdf :type

ground2 opus:Book

ground3 rdfs:label

?title o: <http:/...>, :bl, dblp:ullman, "Principles...", opus:Book

Moreover, we use a dictionary encoding for all nodes in the dataset. Only
these dictionary keys (integers) are used during computation, requiring very
little memory space. However, for the sake of readibility, nodes values will be
used instead of their keys in all the following examples.

4.2 Fitness Evaluation

Next, we establish a metric for the quality of individuals: a fitness function. This
function should be designed in such a way that individuals closer to the optimal
solution can be identified by the system. For our application, an optimal solution
consist of a valid variable assignment.

A candidate solution is optimal if it satisfies all constraints. The quality of our
individual is therefore related to the number of constraint that they do violate.
To illustrate the fitness, we consider the candidate solution shown in Table
To evaluate the fitness of this individual, the query instantiated with the variable
assignment corresponding to the individual is checked against all relevant corre-
sponding Bloom filters. For each (possibly binary) constraint that is not present in
a filter, the involved variables are penalised by one point, as shown in Table
Table shows the complete fitness evaluation for this individual; the individ-
ual violated the two constraints in several manners, leading to a total fitness of 8
(lower is better). In addition to this overall fitness, we will also use the individual
score per variable later to determine how to control mutation.

4.3 Evolution Process

The evolution process consists of four operators: parent selection, recombination
(crossover), mutation and survivor selection. We now describe our implemented
choice for each of these operators.
Parent selection. Evolution loops create new individuals and destroy previous
ones. The parent selection operator is aimed at selecting from the current popu-
lation the individuals that will be allowed to mate and create offspring. Selection
is commonly aimed at the best individuals. The underlying assumption of this
selection pressure is that mating two good individuals will lead to better results
than combining two bad individuals.

Several parent selection schemes can be used. We employ a tournament-based
selection, in which two individuals are randomly picked from the population, the
best one is kept as the first parent. This process is repeated to get more parents.

106 E. Oren, C. Guéret, and S. Schlobach

Table 3. Evaluation of a candidate solution

(a) Candidate solution

dblp:ullman rdf:type opus:Book rdfs:label "Principles..."

(b) Evaluating the individual

Constraint Filter Test result
O dblp:ullman rdf:type opus:Book spo false
® dblp:ullman rdf:type sp false
® dblp:ullman opus:Book so false
O dblp:ullman rdfs:label "Principles...” spo false
@ dblp:ullman rdfs:label sp false
@ rdfs:label "Principles...” po true
O dblp:ullman "Principles..." so false

(¢) Summing constraint violations

variables ?publication 7title
violation 0 8 0 © 06O © 06

Table 4. One-point crossover operator process
(a) Selection of random pivot gene

dblp:ullman rdf:type opus:Book rdfs:label "Principles..."

<Ullman88> rdf:type opus:Book rdfs:label :bl

(b) Creation of two children

dblp:ullman rdf:type opus:Book rdfs:label :bl

<Ullman88> rdf:type opus:Book rdfs:label "Principles..."

Recombination. Recombination acts as exploration during the search process.
This operator is aimed at creating new individuals in unexplored regions of
the search space. Its operation takes two parents and combines them into two
children. After various experiments, we opted for a classical one-point crossover
operator, in which one pivot gene is randomly selected and the parts around it
are swapped between the parents, demonstrated in Table [4]

Mutation. As compared with the recombination operator whose objective is to
do “big jumps” in the search space, the mutation operator is meant to explore the
neighbourhood of an individual. A slight modification is applied to one or more
genes. This perturbation is commonly referred to as an exploitation scheme.

Anytime Query Answering in RDF through Evolutionary Algorithms 107

Table 5. Mutation operator process

(a) The gene responsible for the highest number of errors is selected

dblp:ullman rdf:type opus:Book rdfs:label "Principles..."

6 0 0 0 2

(b) and a new value is randomly assigned

<Ullman88> rdf:type opus:Book rdfs:label "Principles..."

In a standard genetic algorithm, mutation is a blind operator. The gene to
modify is randomly selected and the mutation is applied. After some experi-
mentation, we instead designed a mutation operator which is biased towards
mutating badly performing genes, based on the score per variables computed
during fitness evaluation. In case of a tie between two or more genes, a random
selection is performed among them, as shown in Table

Such a mutation operator improves the convergence speed of the population by
identifying the most problematic variables. However, such a greedy strategy may
lead to local optimums, without reaching proper global optimums. To reduce the
risk of premature convergence, we therefore also apply a blind random mutation,
after our optimised local search. This mutation is applied randomly, with low
probability, to one gene, randomly assigning a new value to it.

Survivor Selection. At this point of the evolution, we have both a parent
population and an offspring population (created by the parents). During the
survivor selection phase we select the individuals to keep for the next evolution
round. After experimenting with several possible strategies, we chose a genera-
tional selection: at the end of each evolutionary cycle, the parent population is
discarded and replaced by its offspring.

5 Prototype Implementation

We implemented our technique into an initial prototype in C++, using the Open
Beagle framework [7] for the evolutionary computing and Redland [3] for the
RDF graph parsing and SPARQL query parsing. As is commonly done, we split
the problem into a parsing and a querying phase, each with their own executable.
The prototype is open-source and available from http://eardf.few.vu.nll
During parsing, we fill the Bloom filters with the triples found in the RDF
input graph and collect the candidate assignments for each triple position. To
reduce the memory requirements in the Bloom filter and to increase the speed of
the fitness calculation, we construct a dictionary of all nodes in the input graph.
The dictionary maps each distinct node (URI, blank node and literal) to some

http://eardf.few.vu.nl

108 E. Oren, C. Guéret, and S. Schlobach

index number; internally, only these indices are used (the chromosomes are sim-
ply a list of index numbers); when outputting the final results we transform the
solution indices back into the original node. To reduce the size of the dictionary,
we compress all nodes using the zlib libraryﬁ.

We use Redland to parse the RDF into streams of triples. For each node in
each triple, we retrieve or construct its corresponding dictionary index. We then
insert the triple into the relevant Bloom filters, substituting all nodes by their
index number, and collect the candidates for each domain (s, p, o, sp, so, po,
and spo). After parsing, we serialise the dictionary, domains, and Bloom filters.

When querying a parsed RDF graph, we load the previously generated Bloom
filters, domains, and dictionary. We then parse the SPARQL query (also using
Redland) and transform all WHERE clauses into constraints on the evolutionary
problem. We also transform all ground terms in the query into variables and
problem constraints, but with domains that contain only a single element (the
ground term), so the individuals have no choice in the assignment of that vari-
able. We then start the evolutionary process; when it finishes, we rewrite the
found solution to the SPARQL result format using the dictionary.

6 Evaluation

We evaluate our technique on several datasets, with several different queries.
Since our implementation is very basic without any optimisations, the absolute
loading and runtime numbers are not that meaningful. Instead we focus on the
curve of the graph, and especially on the first question: do we evolve monotoni-
cally towards a better solution.

6.1 Experimental Setup

We used three publicly available datasets: LUBM, an automatically generated
dataset targeted towards OWL reasoning MQ], FOAF, a publicly available col-
lection of FOAF profiles, and DBLP, an extract from the SwetoDblp collection
mentioned earlier. From the SwetoDblp dataset we extracted two subsets, one
containing 5000 triples and one containing 500.000 triples. All these datasets are
available at http://eardf.few.vu.nl

On each dataset, we evaluated one query. For the DBLP datasets, we used one
of the benchmark queries proposed by shown in Listing [l For the FOAF
dataset, we query for the name, work homepage, and publications of all people,
as shown in Listing For LUBM, we used the standard LUBM query #2,
shown in Listing [[L5l This query relies on OWL semantics and is not satisfiable
under simple RDF entailment; still, we will see that our technique manages to
converge towards an approximate answer.

All experiments were run using 100-200 individuals, over 500 generations,
and each experiment was repeated 100 times. We measured data loading time,
query execution time, and average and best fitness of the population in each

3http://zlib.net

http://eardf.few.vu.nl
http://zlib.net

Anytime Query Answering in RDF through Evolutionary Algorithms 109

Listing 1.4. Query on DBLP dataset

SELECT ?7author 7artl ?art2 7proctitle ?year
WHERE {

7al rdf:type opus:Article_in_Proceedings;
opus:author [rdf:_1 ?au] ;
opus:isIncludedIn ?proc ;
rdfs:label 7artl.

?7a2 rdf:type opus:Article_in_Proceedings;
opus:author [rdf:_1 ?au] ;
opus:isIncludedIn ?proc ;
rdfs:label 7art2.

?au foaf:name ?7author .

?proc rdfs:label ?proctitle

opus:year ?year .
} LIMIT 1
\

Listing 1.5. Query on LUBM dataset

/—SELECT ?student, ?univ, ?dept
WHERE {

?student rdf:type ub:GraduateStudent .
7univ rdf:type ub:University .
?dept rdf:type ub:Department .
?student ub:member0f 7dept .
?dept ub:subOrganization0f ?7univ .
?student ub:undergraduateDegreeFrom 7univ

generation. The experiments were performed on a 64-bit 2GHz Intel Core2 Duo
machine with 2Gb of RAM, running Linux kernel 2.6.24.

6.2 Evaluation Results

Figure2demonstrates that on all datasets, for all queries, our technique converges
towards a complete solution. For each dataset, we show the best fitness in each
generation, averaged over the 100 different runs. One should note, that even if
we do not reach perfect fitness in the allocated evolution time, the solution are
typically very close to perfection. Since we have several Bloom filters and since
queries contain many clauses with several variables, a difference in fitness between
0 and n points is often caused by only one or two wrong assignments. Establishing
a direct relation between the usefulness of a candidate solution and its fitness value
is a tricky task. In absence of a gold standard with “most useful” ranked answers,
fitness values are meaningfull essentially when compared pair-wise.

Table [shows the average query times for these queries. These times include
de-serialising the Bloom filters, the domains and the dictionary, and the evolu-

Listing 1.6. Query on FOAF dataset

-
WHERE {
?person foaf:name ?name .
?person foaf:workplaceHomepage 7work .
?person foaf:publications 7pubs .

110 E. Oren, C. Guéret, and S. Schlobach
100 T T T T T T T T T 100 T T T T T T T T T
9 k 1
’ 90 | i
g 80 E
© ©
> >
o 70 | 4o 80 F B
(%] (%]
(0] (0]
= =
£ 60 E
. 70F T B
50r- T -
40 1 1 1 1 1 1 1 1 1 60 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100120 140 160 180 200 0 20 40 60 80 100120 140 160 180 200
n-th generation n-th generation
(a) DBLP5k (b) DBLP500k
30 T T T T T T T T T 20 T T T T T T T T T
g 201 18 15 E
© © K
> >
(2} (2}
(%] (%]
(0] (0]
= =
£ 10 4 10} e

0
0 20 40 60 80 100 120 140 160 180 200

n-th generation

(c) LUBM

5
0 50 100 150 200 250 300 350 400 450 500

n-th generation

(d) FOAF

Fig. 2. Evolution of best fitness in the population for different datasets

Table 6. Average query execution time

dataset nr. triples nr. variables runtime
LUBM 8502 3 3.60s
FOAF 21163 4 2.31s
DBLP5k 5000 9 6.76s
DBLP500k 500000 9 38.74s

tion of 100 individuals for 500 generations. In absolute terms, these times are still
one order of magnitude slower than existing systems (we have compared with
Sesame2) but we have much room for optimisation, both in the implemented
code and in the evolution strategy. One interesting option is to use the parallel
(distributed) execution extension of the Beagle framework, which allows sets of
individuals to evolve separately on distributed machines, especially since mem-
ory usage during our evolution is minimal. Note that, due to our unoptimised
implementation, most of the querying time is actually spent to de-serialise the
previously parsed information; the actual evolution is almost constant with the
size of the dataset. This remarks also applies to memory usage. As we expected,

Anytime Query Answering in RDF through Evolutionary Algorithms 111

100 T T T T T T T
Q0 + "‘,. -
80 S
70 | .
60 [-
50 _
40 - .
30 .
20 7 s
10 F o :
0 y l l l l l l l

0 2 4 6 8 10 12 14 16
data size (million triples)

loading time (min)

Fig. 3. Data loading time for different data sizes

each of the Bloom filters only requires very little memory to reach an acceptable
confidence rate and the size of the individuals during evolution remains small,
as it only depends on the number of variables in the query.

Figure [l shows how loading times relate to the size of the datasets. In ab-
solute terms our loading times are in the same order of magnitude as Sesame2,
presumably because we, on the one hand, do not construct any indices but only
construct the dictionary and populate our Bloom filters, while our implementa-
tion on the other hand is still unoptimised. In general, the loading times seems
to grow linearly with the number of triples in the dataset H, presumably because
most time is spent in computing the hashes before Bloom filter insertion, which
needs to be repeated for each triple in the graph.

7 Conclusion

We have introduced a novel method for querying RDF datasets. In contrast to
traditional database-oriented techniques, our method is not focused on finding
perfect solutions but rather on finding good enough solutions. Given the imprecise
nature and the size of the Semantic Web, we believe that such approximations
are useful in many applications.

We generate different solutions using an evolutionary algorithm; to enable
fast computation of the fitness of solutions, we verify assignments using Bloom
filters containing a compressed representation of the data graph. Our evolu-
tionary approach features anytime and approximate answering, and we have
demonstrated that even with a rather straightforward evolutionary strategy our
solutions improve monotonically with each generation. This answers our first
research question positively.

The prototype used for this paper and the results for small datasets should be
seen as a proof of concept. Our first experiments confirm our intuition, showing

4 Qur current prototype was able to load, but not able to proceed, a 15M triples
dataset.

112 E. Oren, C. Guéret, and S. Schlobach

that it is indeed possible to construct query solutions “from scratch” for RDF
datasets, guided by the estimated quality of variable assignments.

The answer to the second research question is less easily given, as the compar-
ison is intrinsically unfair as, on the one hand, our method is still unoptimised
and, on the other hand, produces approximate results. However, initial experi-
ments indicate that the acual costs in runtime for the evolution part is constant,
and that the low memory requirement will indeed reduce the number of I/O
operations.

Using our rather unoptimised implementation as a baseline, we are currently
improving the evolutionary operators to increase convergence speed and effi-
ciency (i.e. converging to useful results). We are also improving the code for
loading data, and repeat run our experiments on bigger datasets and more com-
plex queries. An insight in this ongoing work can be found in a follow-up paper
focused on scalability B}, featuring a new and improved implementation with
promising performance and scalability results.

References

[1] Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web
data management using vertical partitioning. In: Proceedings of the International
Conference on Very Large Data Bases (VLDB), pp. 411-422 (2007)

[2] Aleman-Meza, B., Hakimpour, F., Arpinar, I., Sheth, A.: SwetoDblp ontology of
computer science publications. Journal of Web Semantics 5(3), 151-155 (2007)

[3] Beckett, D.: The design and implementation of the Redland RDF application
framework. Computer Networks 39(5), 577-588 (2002)

[4] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422-426 (1970)

[5] Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF Schema. In: Horrocks, 1., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, pp. 54-68. Springer, Heidelberg (2002)

[6] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Berlin (2003)

[7] Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
Principles and case-study. International Journal on Artificial Intelligence Tools 15,
173-194 (2006)

[8] Guéret, C., Oren, E., Schlobach, S., Schut, M.: An evolutionary perspective on ap-
proximate RDF query answering. In: Proceedings of the International Conference
on Scalable Uncertainty Management (2008)

[9] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3, 158-182 (2005)

[10] Harth, A., Decker, S.: Optimized index structures for querying RDF from the web.
In: Proceedings of the Latin-American Web Congress (LA-Web), pp. 71-80 (2005)

[11] Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: A virtual
triple approach for similarity-based semantic web tasks. In: Aberer, K., Choi, K.-
S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 295-309. Springer, Heidelberg (2007)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Anytime Query Answering in RDF through Evolutionary Algorithms 113

Munoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519. Springer, Hei-
delberg (2007)

Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, 1., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)
Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., et al.: Access path
selection in a relational database management system. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (1979)

Shvila, M., Jelinek, I.: Benchmarking RDF production tools. In: Wagner, R., Rev-
ell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 700-709. Springer,
Heidelberg (2007)

Sintek, M., Kiesel, M.: RDFBroker: A signature-based high-performance RDF
store. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 363
377. Springer, Heidelberg (2006)

Stuckenschmidt, H., van Harmelen, F.: Approximating terminological queries. In:
Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS
(LNAI), vol. 2522, pp. 329-343. Springer, Heidelberg (2002)

Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In: Proceedings of the International Workshop on Semantic
Web and Databases (SWDB) (2003)

The Expressive Power of SPARQL

Renzo Angles and Claudio Gutierrez

Department of Computer Science, Universidad de Chile
{rangles,cgutierr}@dcc.uchile.cl

Abstract. This paper studies the expressive power of SPARQL. The
main result is that SPARQL and non-recursive safe Datalog with nega-
tion have equivalent expressive power, and hence, by classical results,
SPARQL is equivalent from an expressiveness point of view to Rela-
tional Algebra. We present explicit generic rules of the transformations
in both directions. Among other findings of the paper are the proof that
negation can be simulated in SPARQL, that non-safe filters are super-
fluous, and that current SPARQL W3C semantics can be simplified to a
standard compositional one.

1 Introduction

Determining the expressive power of a query language is crucial for understand-
ing its capabilities and complexity, that is, what queries a user is able to pose,
and how complex the evaluation of queries is, issues that are central considera-
tions to take into account when designing a query language.

SPARQL, the query language for RDF, has recently become a W3C rec-
ommendation [9]. In the RDF Data Access Working Group (WG) were it was
designed, expressiveness concerns generated ample debate. Many of them re-
mained open due to lack of understanding of the theoretical expressive power of
the language.

This paper studies in depth the expressive power of SPARQL. A first issue
addressed is the incorporation of negation. The W3C specification of SPARQL
provides explicit operators for join and union of graph patterns, even for speci-
fying optional graph patterns, but it does not define explicitly the difference of
graph patterns. Although intuitively it can be emulated via a combination of
optional patterns and filter conditions (like negation as failure in logic program-
ming), we show that there are several non-trivial issues to be addressed if one
likes to define the difference of patterns inside the language.

A second expressiveness issue refers to graph patterns with non-safe filter, i.e.,
graph patterns (P FILTER C) for which there are variables in C' not present in
P. Tt turns out that these type of patterns, which have non-desirable properties,
can be simulated by safe ones (i.e., patterns where every variable occurring in
C' also occurs in P). This simple result has important consequences for defining
a clean semantics, in particular a compositional and context-free one.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 114 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Expressive Power of SPARQL 115

A third topic of concern was the presence of non desirable features in the W3C
semantics like its operational character. We show that the W3C specification of
the semantics of SPARQL is equivalent to a well behaved and studied composi-
tional semantics for SPARQL, which we will denote in this paper SPARQL,, [6].

Using the above results, we are able to determine the expressive power of
SPARQL. We prove that SPARQL_ and non-recursive safe Datalog with nega-
tion (nr-Datalog™) are equivalent in their expressive power. For this, first we
show that SPARQL, is contained in nr-Datalog ' by defining transformations
(for databases, queries, and solutions) from SPARQL, to nr-Datalog ', and we
prove that the result of evaluating a SPARQL_ query is equivalent, via the trans-
formations, to the result of evaluating (in nr-Datalog ') the transformed query.
Second, we show that nr-Datalog ™ is contained in SPARQL_ using a similar
approach. It is important to remark that the transformations used are explicit
and simple, and in all steps bag semantics is considered.

Finally, and by far, the most important result of the paper is the proof that
SPARQL has the same expressive power of Relational Algebra under bag seman-
tics (which is the one of SPARQL). This follows from the well known fact that
Relational Algebra has the same expressive power as nr-Datalog™ [1].

The paper is organized as follows. In Section 2 we present preliminary mate-
rial. Section 3 presents the study of negation. Section 4 studies non-safe filter
patterns. Section 5 proves that the W3C specification of SPARQL and SPARQL,,
are equivalent. Section 6 proves that SPARQL_ and nr-Datalog™ have the same
expressive power. Section 7 presents the conclusions.

Related Work. The W3C recommendation SPARQL is from January 2008. Hence,
it is no surprise that little work has been done in the formal study of its expressive
power. Several conjectures were raised during the WG sessions . Furche et al. [3]
surveyed expressive features of query languages for RDF (including old versions
of SPARQL) in order to compare them systematically. But there is no particular
analysis of the expressive power of SPARQL.

Cyganiak [2] presented a translation of SPARQL into Relational Algebra con-
sidering only a core fragment of SPARQL. His work is extremely useful to imple-
ment and optimize SPARQL in SQL engines. At the level of analysis of expressive
issues it presented a list of problems that should be solved (many of which still
persist), like the filter scope problem and the nested optional problem.

Polleres [§] proved the inclusion of the fragment of SPARQL patterns with
safe filters into Datalog by giving a precise and correct set of rules. Schenk [10]
proposed a formal semantics for SPARQL based on Datalog, but concentrated
on complexity more than expressiveness issues. Both works do not consider bag
semantics of SPARQL in their translations.

The work of Perez et al. [6] and the technical report [7], that gave the formal
basis for SPARQL, compositional semantics, addressed several expressiveness
issues, but no systematic study of the expressive power of SPARQL was done.

! See http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/} espe-
cially the years 2006 and 2007.

http://lists.w3.org/Archives/Public/public-rdf-dawg-comments/

116 R. Angles and C. Gutierrez

2 Preliminaries

2.1 RDF and Datasets

Assume there are pairwise disjoint infinite sets I, B, L (IRIs, Blank nodes, and
RDF literals respectively). We denote by T' the union I U BU L (RDF terms).
A tuple (vy,v9,v3) € (I UB) x I x T is called an RDF triple, where v; is the
subject, vo the predicate, and vs the object. An RDF Graph [] (just graph from
now on) is a set of RDF triples. Given a graph G, term(G) denotes the set of
elements of T occurring in G and blank(G) denotes the set of blank nodes in G.
The wunion of graphs, G1 UGa, is the set theoretical union of their sets of triples.
An RDF dataset D is a set {Go, (u1,G1), ..., (un,Gy)} where each G; is a
graph and each u; is an IRI. G is called the default graph of D and it is denoted
dg(D). Each pair (u;, G;) is called a named graph; define name(G;)p = u; and
er(u;)p = G;. We denote by term(D) the set of terms occurring in the graphs of
D. The set of IRIs {uq, ..., uy,} is denoted names(D). Every dataset satisfies that:
(i) it always contains one default graph (which could be empty); (ii) there may
be no named graphs; (iii) each u; is distinct; and (iv) blank(G;) Nblank(G;) =0
for ¢ # j. Finally, the active graph of D is the graph G; used for querying D.

2.2 SPARQL

A SPARQL query is syntactically represented by a block consisting of a query
form (SELECT, CONSTRUCT or DESCRIBE), zero o more dataset clauses
(FROM and FROM NAMED), a WHERE clause, and possibly solution modi-
fiers (e.g. DISTINCT). The WHERE clause provides a graph pattern to match
against the RDF dataset constructed from the dataset clauses.

There are two formalizations of SPARQL which will be used throughout
this study: SPARQL,,, the W3C recommendation language SPARQL [J] and
SPARQL,,, the formalization of SPARQL given in [6]. We will need some general
definitions before describe briefly both languages.

Assume the existence of an infinite set V of variables disjoint from 7. We
denote by var(«) the set of variables occurring in the structure «. A tuple from
(JULUV)x (IULUV) x (IUV) is called a triple pattern. A basic graph pattern
is a finite set of triple patterns.

A filter constraint is defined recursively as follows: (i) if ?7X,?Y € V and
w € ITUL then 7X = u, 7X = 7Y, bound(?X), isIRI(?X), isLiteral(?X), and
isBlank(?X) are atomic filter constraints?; (ii) if Cy and Cs are filter constraints
then (=C1), (C1 A Cy), and (Cy Vv Cy) are complex filter constraints.

A mapping p is a partial function g : V' — T. The domain of u, dom(u), is
the subset of V' where p is defined. The empty mapping po is a mapping such
that dom(jup) = 0. Two mappings p1, 2 are compatible, denoted 1 ~ pio, when
for all 7X € dom(p1) N dom(pe) it satisfies that pi(?X) = pa(?X), ie., when
w1 U pe is also a mapping. The expression prx—_., denote a mapping such that
dom(p) = {?X} and p(?X) = v.

2 For a complete list of atomic filter constraints see [9].

The Expressive Power of SPARQL 117

The evaluation of a filter constraint C' against a mapping p, denoted u(C), is
defined in a three value logic with values {true, false, error} as follows:

— If C is an atomic filter constraint, excluding bound(-), and var(C) ¢ dom(u),
then u(C) = error;else if C'is 7X = wand pu(?X) = u,orif C'is 7X = 7Y and
p(?X) = p(?Y), or if C is isIRI(?X) and pu(?X) € I, if C is isLiteral(?X)
and p(?X) € L, if C is isBlank(?X) and u(?X) € B, then pu(C) = true;
otherwise p(C) = false.

— If C is bound(?X) then pu(C) = true if ?X € dom(u) else u(C) = falseB

— If C is (=Cy) then p(C) = true when p(Chi) = false; u(C) = false when
w(C1) = true; and p(C) = error when u(Cq) = error.

— If C'is (Cy v Cy) then pu(C) = true if either u(Cy) = true or u(Csy) = true;
w(C) = false if u(Ch) = false and p(Cs) = false; otherwise u(C) = error.
—If Cis (Cy A Cy) then pu(C) = true if u(C1) = true and p(Cs) = true;

w(C) = falseif either p(Ch) = false or (Cs) = false; otherwise p(C) = error.

A mapping p satisfies a filter constraint C', denoted p | C, iff u(C) = true.
Consider the following operations between two sets of mappings (21, {25:
21 X (2o :{ﬂl U g ‘ JURS (21,/1,2 € (2 andul N/JQ}
QU ={p|pe 2 orpe }
D\ 22 ={p1 € 21| for all us € £25, 11 and po are not compatible }
D \c 22 = {p1 € 21| for all us € (25, py and po are not compatible } U
{p1 € 21 | for all us € 29 such that py ~ po, (p1 Upe) ¥ C}
X () = (Ql X 92) U (91 \ 92)
NX el = {/J | JIRS (Ql X 92) and p ': C}U(Q1 \C QQ)
Syntax and Semantics of SPARQL,.
A SPARQL, graph pattern P is defined recursively by the following grammar:

P t | Il(ll GP II)II
GP ::= P "AND" P | P "UNION" P | P "OPT" P | P "FILTER" C |
n "GRAPH" P

where t denotes a triple pattern, C denotes a filter constraint, andn € TU V.
The evaluation of a SPARQL,, graph pattern P over an RDF dataset D having
active graph G, denoted [P]Z, is defined recursively as follows:
— if P is a triple pattern t, [P]Z = {u | dom(u) = var(t) and u(t) € G}
where p(t) is the triple obtained by replacing the variables in ¢ according to

mapping (.
— if P is a complex graph pattern then [P]Z is defined as given in Table [l

Syntax and Semantics of SPARQL,,.
A SPARQL,, graph pattern GroupGP is defined by the following grammarﬂ:

"{" TB? ((GPNotTriples | Filter) "."? TB?7)x* "}"
OptionalGP | GroupOrUnionGP | GraphGP

GroupGP
GPNotTriples

3 Functions invoked with an argument of the wrong type are evaluated to error-
4http://www.w3.org/TR/rdf-sparql-query/#grammar. We use GP and TB to abbre-
viate GraphPattern and TriplesBlock respectively

http://www.w3.org/TR/rdf-sparql-query/#grammar

118 R. Angles and C. Gutierrez

Table 1. Semantics of SPARQL_, graph patterns. P, P> are SPARQL, graph patterns,
C'is a filter constraint, u € [and ?7X € V.

Graph pattern P Evaluation [P]2

(P1 AND P,) [P]E = [P]@

(P OPT P2) [Pl [P2]e

(PLUNION P) [PJEU[P]E

(P FILTERC) {p|p € [P]8 and p = C}
(uGRAPH P1) [P

(?X GRAPHP1) U, cnames(n) ([Prlgiw) ® {H2x—0})

OptionalGP ::= "OPTIONAL" GroupGP
GraphGP ::= "GRAPH" VarOrIRIref GroupGP
GroupOrUnionGP ::= GroupGP ("UNION" GroupGP)=*
Filter ::= "FILTER" Constraint

where TB denotes a basic graph pattern (a set of triple patterns), VarOrIRIref
denotes a term in the set UV and Constraint denotes a filter constraint. Note
that the operator {A . B} represents the AND but it has not fixed arity.

The evaluation of a SPARQL,, graph pattern GroupGP is defined by a series
of steps, starting by transforming GroupGP, via a function T, into an intermediate
algebra expression E (with operators BGP, Join, Union, LeftJoin, Graph and
Filter), and finally evaluating £ on an RDF dataset D.

The transformation 7'(GroupGP) is given by Algorithm [II The evaluation of
E over an RDF dataset D having active graph G, which we will denote (E)Z
(originally denoted eval(D(G), E) in [9]), is defined recursively as follows:

— if E is BGP(TB), (E)E = {u | dom(u) = var(E) and u(E) C G} where
w(E) is the set of triples obtained by replacing the variables in the triple
patterns of TB according to mapping .

— if E is a complex expression then (P)Z is defined as given in Table 21
Note 1. In the definition of graph patterns, we avoided blank nodes, because this
restriction does not diminish the generality of our study. In fact, each SPARQL
query @ can be simulated by a SPARQL query @’ without blank nodes in its
pattern. It follows from the definitions of RDF instance mapping, solution map-
ping, and the order of evaluation of solution modifiers (see [9]), that if Q is a
query with graph pattern P, and Q' is the same query where each blank node
b in P has been replaced by a fresh variable ?X, then @ and Q’ give the same
results. (Note that, if @ has the query form SELECT or DESCRIBE, the “x” pa-
rameter is —according to the specification of SPARQL- an abbreviation for all
variables occurring in the pattern. In this case the query @’ should explicit in
the SELECT clause all variables of the original pattern P.)

Note 2. SPARQL,, follows a compositional semantics, whereas SPARQL,,, fol-
lows a mixture of compositional and operational semantics where the meaning
of certain patterns depends on their context, e.g., lines 7 and 8 in algorithm [I

The Expressive Power of SPARQL 119

Algorithm 1. Transformation of SPARQL,,, patterns into algebra expressions.

1: // Input: a SPARQL,, graph pattern GroupGP

2: // Output: an algebra expression F = T'(GroupGP)

3: E «— empty pattern; F'S < ()

4: for each syntactic form f in GroupGP do

5 if f is TB then E «— Join(E, BGP(TB))

6: if f is OPTIONAL GroupGP; then

7 if T'(GroupGP,) is Filter(F, E’) then E «— LeftJoin(E, E', F)
8: else £ — LeftJoin(E, T'(GroupGP,), true)

9: if f is GroupGP; UNION --- UNION GroupGP, then

10: if n > 1 then

11: E’ « Union(- - - (Union(7'(GroupGP,), T'(GroupGP,)) - - -), T'(GroupGP,))
12: else E' — T'(GroupGP,)

13: E « Join(E,E")

14: end if

15 if f is GRAPH VarOrIRIref GroupGP, then

16: E «— join(E, Graph(VarOrIRIref, T (GroupGP,)))

17: if f is FILTER constraint then F'S « (F'S A constraint)
18: end for

19: if F'S # () then E « Filter(FS, E)

20: return F

Table 2. Semantics of SPARQL,, graph patterns. A pattern GroupGP is transformed
into an algebra expression E using algorithm[Il Then F is evaluated as the table shows.
Fh and FEs are algebra expressions, C is a filter constraint, v € I and 7.X € V.

Algebra Expression E Evaluation (E)&

Join(Ex, E») E)& % (E2)&

(
LeftJoin(E1, B2, C) (E1)B3 o (E2)B

Union(E1, E») (B U (ENE

Filter(C, E1) {p|pe(B)g and p=C}
Graph(u, E) <<E1>>gDr(u)D

Graph(2X, E) Us ¢ samestiy (B Z 0y % {pizx—})

Note 3. In this paper we will follow the simpler syntax of SPARQL, bet-
ter suited to do formal analysis and processing than the syntax presented by
SPARQL,,,. There is an easy and intuitive way of translating back and forth
between both syntax formalisms, which we will not detail here.

2.3 Datalog

We will briefly review notions of Datalog (For further details and proofs see [115]).
A term is either a variable or a constant. An atom is either a predicate formula
p(x1,...,x,) where p is a predicate name and each xz; is a term, or an equality

120 R. Angles and C. Gutierrez

formula t1 = ty where t1 and to are terms. A literal is either an atom (a positive
literal L) or the negation of an atom (a negative literal —L).

A Datalog rule is an expression H <+ B where H is a positive literal called
the head [of the rule and B is a set of literals called the body. A rule is ground
if it does not have any variables. A ground rule with empty body is called a fact.

A Datalog program II is a finite set of Datalog rules. The set of facts occur-
ring in IT, denoted facts(IT), is called the initial database of II. A predicate is
extensional in IT if it occurs only in facts(IT), otherwise it is called intensional.

A Datalog program is non-recursive and safe if it does not contain any pred-
icate that is recursive in the program and it can only generate a finite number
of answers. In what follows, we only consider non-recursive and safe programs.

A substitution 0 is a set of assignments {x1/t1,...,2,/t,} where each z; is a
variable and each ¢; is a term. Given a rule r, we denote by 6(r) the rule resulting
of substituting the variable x; for the term ¢; in each literal of r.

The meaning of a Datalog program IT, denoted facts™(IT), is the database
resulting from adding to the initial database of II as many new facts of the
form 6(L) as possible, where 6 is a substitution that makes a rule r in II true
and L is the head of r. Then the rules are applied repeatedly and new facts
are added to the database until this iteration stabilizes, i.e., until a fizpoint is
reached.

A Datalog query @ is a pair (II, L) where II is a Datalog program and L is
a positive (goal) literal. The answer to @ over database D = facts(II), denoted
ansq(Q, D) is defined as the set of substitutions {6 | (L) € facts™(II)}.

2.4 Comparing Expressive Power of Languages

By the ezpressive power of a query language, we understand the set of all queries
expressible in that language [II5]. In order to determine the expressive power of
a query language L, usually one chooses a well-studied query language L’ and
compares L and L’ in their expressive power. Two query languages have the
same expressive power if they express exactly the same set of queries.

A given query language is defined as a quadruple (Q, D, S, eval), where Q is a
set of queries, D is a set of databases, S is a set of solutions, and eval : 9xD — S
is the evaluation function. The evaluation of a query @) € Q on a database D € D
is denoted eval(Q, D). Two queries Q1, Q2 € Q are equivalent, denoted Q1 = Qo,
if eval(Q1, D) = eval(Q2, D) for every D € D.

Let L1 = (Ql,Dl,Sl,evah) and L2 = (QQ,DQ,SQ,QV&]Q) be two query lan-
guages. We say that L is contained in Lo if and only if there are bijective
data transformations 7p : D1 — Dy and 75 : & — So, and query transfor-
mation 7g : Q1 — Qo, such that for all Q € Q; and D € D, it satisfies that
Ts(evali (Q, D)) = evala(7g(Q), Tp(D)). We say that Ly and Lo are equivalent
if and only if L is contained in Lo and Lo is contained in L;. (Note that if L
and Lo are subsets of a language L, then 7p, 7g and 7¢ are the identity.)

5 We may assume that all heads of rules have only variables by adding the correspond-
ing equality formula to its body.

The Expressive Power of SPARQL 121
3 Expressing Difference of Patterns in SPARQL,,

The SPARQL,,, specification indicates that it is possible to test if a graph
pattern does not match a dataset, via a combination of optional patterns and
filter conditions (like negation as failure in logic programming)([9] Sec. 11.4.1).
In this section we analyze in depth the scope and limitations of this approach.

We will introduce a syntax for the “difference” of two graph patterns P; and
Py, denoted (Py MINUS P,), with the intended informal meaning: “the set of
mappings that match P; and does not match P»”. Formally:

Definition 1. Let Py, P> be graph patterns and D be a dataset with active graph
G. Then ((PLMINUS Py))& = (P)g \ (P2)é-

A naive implementation of the MINUS operator in terms of the other operators
would be the graph pattern ((P; OPT P,) FILTER C') where C'is the filter con-
straint

(=bound(?X)) for some variable ?X € var(P,) \ var(P;). This means that for
each mapping p € ((Py OPT P2))Z at least one variable ?X occurring in Pz,
but not occurring in Py, does not match (i.e., 7X is unbounded). There are two
problems with this solution:

— Variable ?X cannot be an arbitrary variable. For example, P» could be in
turn an optional pattern (P3 OPT Py) where only variables in Ps are relevant.
— If var(P2) \ var(Py) = () there is no variable ?.X to check unboundedness.

The above two problems motivate the introduction of the notions of non-optional
variables and copy patterns.

The set of non-optional variables of a graph pattern P, denoted nov(P), is a
subset of the variables of P defined recursively as follows: nov(P) = var(P) when
P is a basic graph pattern; if P is either (P AND P,) or (P; UNION P,) then
nov(P) = nov(Py)Unov(P,); if P is (P, OPT P,) then nov(P) = nov(P); if P is
(n GRAPH Py) then either nov(P) = nov(P;) when n € I or nov(P) = nov(P;)U
{n} when n € V; and nov(P; FILTER C) = nov(P;). Intuitively nov(P) contains
the variables that necessarily must be bounded in any mapping of P.

Let ¢ : V — V be a variable-renaming function. Given a graph pattern P, a
copy pattern ¢(P) is an isomorphic copy of P whose variables have been renamed
according to ¢ and satisfying that var(P) Nvar(¢(P)) = 0.

Theorem 1. Let Py and P> be graph patterns. Then:

where:

— O is the filter constraint (?X1 =7X{A--- AN?X,, =7X) where 7X; € var(P,)
and X! = ¢(?X;) for 1 <i<n.
— Cy s the filter constraint (—bound(?X")) for some ?7X’" € nov(¢(Py)).

122 R. Angles and C. Gutierrez

Note 4 (Why the copy pattern ¢(P) is necessary?).

Consider the naive implementation of difference of patterns, that is the graph
pattern ((Py OPT P,) FILTER C) where C is the filter constraint (—bound(?X))
for some ?X € var(P,)\ var(P;). Note that such implementation would fail when
var(Py) \ var(Py) = (), because there exist no variables to check unboundedness.

To solve this problem, P, is replaced by ((P; AND ¢(F»)) FILTER C) where
@(P2) is a copy of P> whose variables have been renamed and whose relations
of equality with the original ones are in condition C;. Then we can use some
variable from ¢(P») to check if the graph pattern P, does not match. The copy
pattern ensure that there will exist a variable to check unboundedness.

Note 5 (Why non-optional variables?). Consider the graph pattern
P = ((?"X,name, ?N) MINUS((?X, knows, 7Y") OPT(?Y, mail, 77))).
The naive implementation of P would be the graph pattern
P’ = ((P, OPT P,) FILTER(—bound(?%))),

where P, = (?X name, ’N), P, = ((?X knows, ?Y) OPT(?Y,mail, ?Z)) and ?Z
is the variable selected to check unboundedness. (Note that variable 7Y could
also have been selected because 7Y € var(P;) \ var(Py).)

Note that the evaluation of graph pattern P’ differs from that of pattern P. To
see the problem recall the informal semantics: a mapping i matches the pattern
P if and only if 4 matches P; and p does not match P,. This latter condition
means: it is false that every variable in P, (but not in P;) is bounded. But to say
“every variable” is not correct in this context, because P, contains the optional
pattern (?Y,mail, 77), and its variables could be unbounded for some valid solu-
tions of P». The problem is produced by the expression (- bound(?7)), because
the bounding state of variable 7Z introduces noise when testing if pattern P,
gets matched.

Now, if we ensure the selection of a “non-optional variable” to check unbound-
edness when transforming P, we have that 7Y is the unique non-optional variable
occurring in P, but not occurring in P, i.e., variable 7Y works exactly as the
test to check if a mapping matching P, matches P, as well. Hence, instead of
P’, the graph pattern

P" = ((P1 OPT P;) FILTER(- bound(?Y)))

is the one that expresses faithfully the graph pattern (P MINUS P%), and in
fact, the evaluation of P” gives exactly the same set of mappings as P.

4 Avoiding Unsafe Patterns in SPARQL,,.

One influential point in the evaluation of patterns in SPARQL,,, is the behavior
of filters. What is the scope of a filter? What is the meaning of a filter having
variables that do not occur in the graph pattern to be filtered?

The Expressive Power of SPARQL 123

It was proposed in [6] that for reasons of simplicity for the user and cleanness
of the semantics, the scope of filters should be the expression which they filter,
and free variables should be disallowed in the filter condition. Formally, a graph
pattern of the form (P FILTER C) is said to be safe if var(C) C var(P). In [6]
only safe filter patterns were allowed in the syntax, and hence the scope of the
filter C is the pattern P which defines the filter condition. This approach is
further supported by the fact that non-safe filters are rare in practice.

The WG decided to follow a different approach, and defined the scope of a
filter condition C' to be a case-by-case and context-dependent feature:

1. The scope of a filter is defined as follows: a filter “is a restriction on solutions
over the whole group in which the filter appears”.

2. There is one exception, though, when filters combine with optionals. If a filter
expression C' belongs to the group graph pattern of an optional, the scope
of C is local to the group where the optional belongs to. This is reflected in
lines 7 and 8 of Algorithm [I

The complexities that this approach brings were recognized in the discussion
of the WG, and can be witnessed by the reader by following the evaluation of
patterns in SPARQL,,,,.

Let SPARQLSS be the subset of queries of SPARQL,,, having only filter-
safe patterns. In what follows, we will show that, in SPARQL,,,, non-safe filters
are superfluous, and hence its non-standard and case-by-case semantics can be
avoided. In fact, we will prove that non-safe filters do not add expressive power
to the language, or in other words, that SPARQL,,., and SPARQLS:: have the
same expressive power, that is, for each pattern P there is a filter-safe pattern
P’ which computes exactly the same mappings as P.

The transformation safe(P) is given by Algorithm I This algorithm works
as the identity for most patterns. The key part is the treatment of patterns
which combine filters and optionals. Line 9 is exactly the codification of the
WG evaluation of filters inside optionals. For non-safe filters (see lines 15-20), it
replaces each atomic filter condition C’, where a free variable occurs, by either an
expression false when C” is bound(+); or an expression bound(a) otherwise. (note
that bound(a) is evaluated to a logical value of error because a is a constant.)

Note 6 (On Algorithm [3). The expression in line 9 must be refined for bag
semantics to the expression:

P’ — (((safe((P1 AND P;) FILTER C') UNION (safe(P;) MINUS safe(Ps)))
UNION (safe(P;) MINUS(safe(P;) MINUS safe(Ps))))
MINUS safe((P; AND Ps) FILTER C'))

Lemma 1. For every pattern P, the pattern safe(P) defined by Algorithm [2 is
filter-safe and it holds (P)) = ((safe(P))).

Thus we proved:

Theorem 2. SPARQL,,, and SPARQL}Y have the same expressive power.

124 R. Angles and C. Gutierrez

Algorithm 2. Transformation of a general graph pattern into a safe pattern.

: // Input: a SPARQL,. graph pattern P

: // Output: a safe graph pattern P’ « safe(P)
P 0
if Pis
if Pis

Py AND P,) then P’ « (safe(P1) AND safe(P%))
Py UNION P,) then P’ « (safe(P;) UNION safe(F%))
if Pis (n GRAPH P;) then P’ < (n GRAPH safe(P1))
if P is (P OPT P,) then
if P, is (Ps FILTER C) then

P’ «— (safe(Pr) OPT(safe((P1 AND P3) FILTER C)))
10: else P’ « (safe(Pr) OPT safe(P2))
11: end if
12: if P is (P, FILTER C) then
13: if var(C) C var(safe(P1)) then P’ «— (safe(P1) FILTERC)
14: else

P> Tk W
—~ e~~~

©

15: for all 7X € var(C') and ?X ¢ var(safe(Py)) do

16: for all atomic filter constraint C’ in C

17: if C"is (7X =) or (?X =?Y) or isIRI(?X) or isBlank(?X) or isLiteral(?X)
18: Replace in C the constraint C’ by bound(a) //where a is a constant
19: else if C’ is bound(?X) then

20: Replace in C the constraint C’ by false

21: end for

22: end for

23: P« (safe(P,) FILTER C)

24: end if

25: end if

26: return P’

5 Expressive Power of SPARQL
SPARQL,_

we 1s Equivalent to

As we have been showing, the semantics that the WG gave to SPARQL departed
in some aspects from a compositional semantics. We also indicated that there
is an alternative formalization, with a standard compositional semantics, which
was called SPARQL,, [d].

The good news is that, albeit apparent differences, these languages are equiv-
alent in expressive power, that is, they compute the same class of queries.

Theorem 3. SPARQL;”: is equivalent to SPARQL, under bag semantics.

The proof of this theorem is an induction on the structure of patterns. The only
non-evident case is the particular evaluation of filters inside optionals where
the semantics of SPARQLY: and SPARQL,, differ. Specifically, given a graph

pattern P = (P, OPT(P, FILTER C)), we have that SPARQLy; evaluates the
algebra expression LeftJoin(P;, Py, C), whereas SPARQL,, evaluates P to the
expression [P1]3x [P2 FILTER C], which is the same as the SPARQL,,, algebra

expression LeftJoin(Py, Filter(C, Py), true).

The Expressive Power of SPARQL 125

6 Expressive Power of SPARQL_

In this section we study the expressive power of SPARQL_, by comparing it
against non recursive safe Datalog with negation (just Datalog from now on).

Note that because SPARQL. and Datalog programs have different type of
input and output formats, we have to normalize them to be able to do the
comparison. Following definitions in section 24 let Ly = (Qs, Ds, S5, ansg) be
the SPARQL,, language, and Lg = (Qg, Dy, S4, ansg) be the Datalog language.

In this comparison we restrict the notion of SPARQL, Query to a pair (P, D)
where P is a graph pattern and D is an RDF dataset.

6.1 From SPARQL_ to Datalog

To prove that L, is contained in Lg4, we define transformations 7o : Qs — Qy,
Tp : Dy — Dy, and Tg : Ss — Sg. That is, 7 transforms a SPARQL,, query into
a Datalog query, 7p transforms an RDF dataset into a set of Datalog facts, and
7s transforms a set of SPARQL_ mappings into a set of Datalog substitutions.

RDF datasets as Datalog facts. Given a dataset D, the transformation 7p(D)
works as follows: each term ¢ in D is encoded by a fact iri(t), blank(t) or literal(t)
when t is an IRI, a blank node or a literal respectively; the set of terms in D
is defined by the set of rules term(X) «— iri(X), term(X) «— blank(X), and
term(X) « literal(X); the fact Null(null) encodes the null value B: each triple
(v1,v2,v3) in the default graph of D is encoded by a fact triple(go,v1,va, v3);
each named graph (u, G) in D is encoded by a fact graph(u) and each triple in
G is encoded by a fact triple(u, vy, va,v3).

SPARQL, mappings as Datalog substitutions. Given a graph pattern P, a dataset
D with default graph G, and the set of mappings {2 = [P]Z. The transformation
Ts(§2) returns a set of substitutions defined as follows: for each mapping u € 2
there exists a substitution 6 € Tg({2) satisfying that, for each z € var(P) there
exists x/t € 0 such that t = u(z) when u(x) is bounded and ¢ = null otherwise.

Graph patterns as Datalog rules. Let P be a graph pattern to be evaluated
against an RDF graph identified by g which occurs in dataset D. We denote by
6(P,g)p the function which transforms P into a set of Datalog rules. Table
shows the transformation rules defined by the function §(P, g)p. The notion of
compatible mappings is implemented by the rules:
comp(X, X, X) — term(X), comp(X,null, X)) — term(X),
comp(null, X, X) « term(X) and comp(X, X, X) «— Null(X).
Let 7X,?7Y € V and u € I U L. An atomic filter condition C' is encoded by
a literal L as follows: if C' is either (?X = u) or (?X=7Y) then L is C; if C is
(isIRI(?X)) then L is iri(?X); if C' is (isLiteral(?X)) then L is literal(?X); if C
is (isBlank(?X)) then L is blank(?X); if C'is (bound(?X)) then L is ~Null(?X).
The transformation follows essentially the intuitive transformation presented
by Polleres [§] with the improvement of the necessary code to support faithful

5 We use the term null to represent an unbounded value.

126 R. Angles and C. Gutierrez

Table 3. Transforming SPARQL graph patterns into Datalog Rules. D is a dataset
having active graph identified by g. var(P) denotes the tuple of variables obtained from
a lexicographical ordering of the variables in the graph pattern P. Each p; is a predicate
identifying the graph pattern P;. If L is a literal, then v;(L) denotes a copy of L with
its variables renamed according to a variable renaming function v; : V. — V. cond is
a literal encoding the filter condition C. Each Py; is a copy of P; and u; € names(D).
P3 = (Pl AND Pz), P4 = (P1 FILTERCl) and P5 = (Pl FILTER Cz)

Pattern P 6(P,g)p

(21, w2, x3) p(var(P)) « triple(g, x1, x2,x3)
(PLAND P,) p(var(P)) « vi(pi(var(P1))) A va(p2(var(F2)))
/\zEvar(Pl)ﬁvar(P2) comp(m (l’), V2 (.’L’), x)’
6(Pr,9)p , 6(P2,9)p
dom(v1) = dom(vz) = var(Py) Nvar(P), range(v1) Nrange(vz) = 0.
(PLUNION) - p(var(P)) « pi(var(P1)) A, cvar(py) nwgvar(py) Null(2),
p(var(P)) < p2(var(P2)) A, cvar(py) nxgvar(py) Null(T),
6(Pr,9)p , 6(P2,9)p
(Pr OPT P) p(var(P)) < p1(var(P1)) A —p’(var(Py)) N cvar(Py) nwgvar(py) Null(z),
p(var(P)) — p(var(P),
ph(var(P1)) < pa(var(Ps)),
6(P1,9)p , 6(P2,9)p , 6(Ps,9)p
(u GRAPH P1) p(var(P)) « p1(var(F1)),
anduel 6(Pi,u)p
(?X GRAPH P1) p(var(P)) < p11(var(Pi1)) A graph(?X) A 7X = ua,
and ?7X € V §(Pi1,u1)p,

p(var(P)) < pin(var(Pin)) A graph(?X) N X = up,
6(Pinytun)D

(P FILTERC) p(var(P)) < p1(var(P1)) A cond

C is atomic 6(Pi,9)p

(PLFILTERC) p(var(P)) « pi(var(P1)) A —pa(var(Pr)),

Cis (=(C1)) 6(Pr,9)p , 6(Pa,g)p

(P FILTERC) p(var(P)) < p1(var(P1)) A —p (var(P1)),

Cis (C1 ANC2) p'(var(Pr)) « pi(var(Py)) A —p” (var(Py)),
p" (var(P1)) < pa(var(Pr)) A ps(var(P1)),
6(Pa,9)p 5 6(P5,9)p

(PLFILTERC) p(var(P)) « p1(var(P1)) A —p'(var(P1)),

Cis (C1 vV C2) p'(var(Pr)) < pi(var(Pr)) A —p” (var(Pr))

p (var(Pr)) < pa(var(Pr)),
p' (var(P1)) < ps(var(P1)),
5(P479)D) 5(P5,Q)D

The Expressive Power of SPARQL 127

translation of bag semantics. Specifically, we changed the transformations for
complex filter expressions by simulating them with double negation.

SPARQL, queries as Datalog queries. Given a graph pattern P, a dataset D
with default graph G, and the SPARQL. query @@ = (P,D). The function
70(Q) returns the Datalog query (II, p(var(P))) where IT is the Datalog pro-
gram 7p(D) U (P, go)p, go identifies the default graph G, and p is the goal
literal related to P.

The following theorem states that the above transformations work well.

Theorem 4. SPARQL, is contained in non-recursive safe Datalog with negation.

6.2 From Datalog to SPARQL_

To prove that Ly is contained in Lg, we define transformations Té 1 Qq — Qs,
T, :Dqg — Dy, and T4 : Sqg — S,. That is, Té transforms a Datalog query into an
SPARQL,, query, 7/, transforms a set of Datalog facts into an RDF dataset, and
7¢ transforms a set of Datalog substitutions into a set of SPARQL, mappings.

Datalog facts as an RDF Dataset. Given a Datalog fact f = p(cq, ..., ¢,), consider
that desc(f) = { (:b,predicate,p), (:b,rdf: 1,¢1),...,(:b,rdf: n,c,,) }, where :b
is a fresh blank node. Given a set of Datalog facts F', we have that 7/, (F) returns
an RDF dataset with default graph {desc(f) | f € F'}, where blank(desc(f;)) N
blank(desc(f;)) = 0 for each f;, f; € F with i # j.

Datalog substitutions as SPARQL, mappings. Given a set of substitutions O,
the transformation 74(©) returns a set of mappings defined as follows: for each
substitution 6 € © there exists a mapping p € T4(O) satisfying that, if =/t € 6
then z € dom(u) and u(x) = t.

Datalog rules as SPARQL,, graph patterns. Let II be a Datalog program, and L
be a literal p(z1, ..., x,) where p is a predicate in IT and each z; is a variable. We
define the function gp(L);; which returns a graph pattern encoding the program
(II, L), that is, the fragment of the program IT used for evaluating literal L.

The translation works intuitively as follows:

(a) If predicate p is extensional, then gp(L); returns the graph pattern
((?7Y, predicate, p) AND(?Y,rdf: 1,29) AND .- AND(?Y,rdf n,z,)),
where 7Y is a fresh variable.
(b) If predicate p is intensional, then for each rule in IT of the form
L—pi A ApsA=qg A= A=ge ANLSTA - ANLES,
where Li? are literals of the form ¢; = t5 or —(t; = t3), we have have that
gp(L) g returns a graph pattern with the structure

(((-+((gp(p1) ;1 AND - - - AND gp(ps) 11)
MINUS gp(g1)) - - -) MINUS gp(q))
FILTER(LSY A --- A LET)). (2)

The formal definition of gp(L)r is Algorithm [3

128 R. Angles and C. Gutierrez

Algorithm 3. Transformation of Datalog rules into SPARQL,, graph patterns

1: //Input: a literal L = p(z1,...,x,) and a Datalog program IT

2: //Output: a SPARQL, graph pattern P = gp(L)

3 P10

4: if predicate p is extensional in II then

5 Let 7Y be a fresh variable

6 P — ((?Y, predicate, p) AND(?Y, rdf: 1,21) AND--- AND(?Y,rdf n, z,))
7: else if predicate p is intensional in I1 then

8 for each rule r € IT with head p(z},...,x}) do

9: P 0

10: C 10

11: Let 7" = v(r) where v is a substitution such that v(z}) = z;
12: for each positive literal q(y1,...,ym) in the body of ' do
13: if P =0 then P’ «— gp(q)nr

14: else P’ — (P’ ANDgp(q))

15: end for

16: for each negative literal =q(y1,...,ym) in the body of v do
17: P’ — (P’ MINUS gp(q))

18: end for

19: for each equality formula ¢; = t2 in r’ do

20: if C =0 then C « (t1 = t2)

21: else C' «— C A (t1 = t2)

22: end for

23: for each negative literal —(t; = t2) in 7’ do

24: lf C = (Z) then C «— —\(tl = tz)

25: else C «— C N\ =(t1 =t2)

26: end for

27: if C' # 0 then P' — (P’ FILTERC)

28: if P =0 then P «— P’

20: else P — (P UNION P')

30: end for

31: end if

32: return P

Datalog queries as SPARQL, queries. Given a Datalog program II, a literal
L = p(z1,...,2,), and the Datalog query @ = (II,L). The function 7/(Q)
returns the SPARQL,, query (P, D) where P is the graph pattern gp(L); and
D is an RDF dataset with default graph 7/ (facts(II)).

The following theorem states that the above transformations work well.

Theorem 5. nr-Datalog™ is contained in SPARQL,..

7 Conclusions

We have studied the expressive power of SPARQL. Among the most important
findings are the definition of negation, the proof that non-safe filter patterns are
superfluous, the proof of the equivalence between SPARQL,, ., and SPARQL...

The Expressive Power of SPARQL 129

From these results we can state the most relevant result of the paper:

Theorem 6 (main). SPARQL,,, has the same expressive power as Relational
Algebra under bag semantics.

This result follows from the well known fact (for example, see [I] and [5]) that
relational algebra and non-recursive safe Datalog with negation have the same
expressive power, and from theorems 2], [@] and

Relational Algebra is probably one of the most studied query languages, and
has become a favorite by theoreticians because of a proper balance between
expressiveness and complexity. The result that SPARQL is equivalent in its ex-
pressive power to Relational Algebra, has important implications which are not
discussed in this paper. Some examples are the translation of some results from
Relational Algebra into SPARQL, and the settlement of several open questions
about expressiveness of SPARQL, e.g., the expressive power added by the op-
erator bound in combination with optional patterns. Future work includes the
development of the manifold consequences implied by the Main Theorem.

Acknowledgments. R. Angles was supported by Mecesup project No.
UCHO0109. R. Angles and C. Gutierrez were supported by FONDECYT project
No. 1070348. The authors wish to thank the reviewers for their comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Cyganiak, R.: A relational algebra for sparql. Technical Report HPL-2005-170, HP
Labs (2005)

3. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In: Barahona, P., Bry, F.,
Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126,
pp. 1-52. Springer, Heidelberg (2006)

4. Klyne, G., Carroll, J.: Resource Description Framework (RDF) Concepts and Ab-
stract Syntax (February 2004),
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

5. Levene, M., Loizou, G.: A Guided Tour of Relational Databases and Beyond.
Springer, Heidelberg (1999)

6. Pérez,J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30-43. Springer, Heidelberg (2006)

7. Pérez, J., Arenas, M., Gutierrez, C.: Semantics of SPARQL. Technical Report
TR/DCC-2006-17, Department of Computer Science, Universidad de Chile (2006)

8. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th In-
ternational World Wide Web Conference (WWW), pp. 787-796. ACM, New York
(2007)

9. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (January
2008), http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

10. Schenk, S.: A sparql semantics based on datalog. In: Hertzberg, J., Beetz, M., En-
glert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 160-174. Springer, Heidelberg
(2007)

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

Integrating Object-Oriented and Ontological
Representations: A Case Study in Java and OWL

Colin Puleston, Bijan Parsia, James Cunningham, and Alan Rector

School of Computer Science, University of Manchester, United Kingdom

Abstract. The Web Ontology Language (OWL) provides a modelling paradigm
that is especially well suited for developing models of large, structurally com-
plex domains such as those found in Health Care and the Life Sciences. OWL's
declarative nature combined with powerful reasoning tools has effectively sup-
ported the development of very large and complex anatomy, disease, and clini-
cal ontologies. OWL, however, is not a programming language, so using these
models in applications necessitates both a technical means of integrating OWL
models with programs and considerable methodological sophistication in know-
ing how to integrate them. In this paper, we present an analytical framework for
evaluating various OWL-Java combination approaches. We have developed a
software framework for what we call hybrid modelling, that is, building models
in which part of the model exists and is developed directly in Java and part of
the model exists and is developed directly in OWL. We analyse the advantages
and disadvantages of hybrid modelling both in comparison to other approaches
and by means of a case study of a large medical records system.

1 Introduction

A popular trend in software development is model driven engineering (MDE). In
MDE, the primary artefact is not a program per se, but a model (which a program
may instantiate). These models are typically expressed in a UML variant. Of course,
programming languages, especially object oriented ones such as Java, themselves
have modelling features and are often used to express (executable) models. The Web
Ontology Language (OWL) [11] provides a modelling paradigm that is especially
well suited for developing models of large, structurally complex domains such as
those found in Health Care and the Life Sciences. OWL's declarative nature combined
with powerful reasoning tools has effectively supported the development of very large
and complex anatomy, disease, and clinical ontologies.

OWL, however, is not a programming language, so using OWL models in applica-
tions necessitates both a technical means of integrating OWL models with programs
and considerable methodological sophistication in knowing how to integrate them. In
this paper, we present an analytical framework for and evaluation of various OWL-
Java combination approaches. We outline three distinct approaches to using ontolo-
gies to drive software architectures. The direct approach centres round the use of the
ontological entities as femplates for program classes. In this approach, the OWL
based model is converted, statically, into a corresponding approximation in Java. The
indirect approach represents the opposite extreme. In this case, the Java classes do not

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 130 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Object-Oriented and Ontological Representations 131

model the domain concepts directly, but merely access an external model encoded in
OWL. The third approach, presented in full in this paper, is a hybrid of the two. Here,
the Java classes directly model a limited number of high level entities which are re-
fined, dynamically, by aspects of the OWL ontology. The model is partly expressed
by program classes and partly expressed by OWL classes but the two halves are inte-
grated in a transparent way. The result is a model that can exploit the strengths of
each side to compensate for weaknesses of the other, or to accommodate different
skill sets and preferences of the modellers.

We developed the notion of a hybrid model, the supporting software, and the asso-
ciated methodology in the course of the Clinical E-Science Framework (CLEF) pro-
ject [11, 22, 33]. Part of the aims of CLEF were, broadly, to develop an architecture
for representing series of Electronic Patient Records as coherent entities that capture
a given patient’s medical history in a unified form. We use the CLEF software [12] as
the basis of a detailed case study of hybrid modelling.

Some key characteristics required of such a system drive us to hybrid modelling.
First medical applications typically require a large knowledge base about medicine,
e.g., disease, anatomy, treatment, efc. Given the specialised knowledge involved, the
development and maintenance of this ontology needs to be performed by knowledge
engineers with the requisite background and skills in medicine but who are not skilled
software developers. The representation of this knowledge, and its use within the
system, needs to be dynamic, in the sense that it can be modified or supplemented
without any modifications being made to the software architecture that draws on it.
Thus a good portion of the application’s information is naturally modelled using logic
based ontology languages (like OWL) common in the health informatics community.

However, capturing the types of complex temporally varying relationships that
constitute a patient history, and, critically, doing this in a way that supports typical
entry and searching patterns of the user base, is not a task for which OWL is particu-
larly well suited. For this, complex data structures and procedures are needed within
the model architecture. These requirements naturally suggested a combination of
OWL, for its knowledge representation and reasoning functionalities, and an object
oriented language, such as Java, for the procedural portions of the application.

In this paper, we examine and compare the three sorts of model especially for their
distinct effects on software development. We show via a case study how a specific
type of hybrid approach is well suited to a certain class of complex, information rich,
dynamic applications.

2 Software Models

We now introduce our notion of what a software model is, and present a general
framework to categorise the different varieties of software model.

Models: We use the term model specifically to mean a class based schema of some
type that can be accessed via an API represented in some standard Object-Oriented
Programming Language (OOPL), such as Java or C++. The core of such a model is a
hierarchically structured set of classes (not necessarily corresponding directly to spe-
cific classes in the host OOPL — see below), for each class an associated set of fields,

132 C. Puleston et al.

locus

@ =%l

stage \ subStage

Fig. 1. Fragment of a simple software model - shows basic model entities (classes], fields
—, sub-class relationships ==#>) whilst making no assumptions regarding mode of repre-
sentation

Occult

and for each field a type-constraint defining the set of valid values. Figure 1 shows a
fragment of such a model, concerned with the representation of patient problems, and
specifically focusing on cancer and cancer-staging. Particular model formats may
extend this structure in various ways, such as by providing cardinality constraints on
fields, or providing data-type fields. Critically, the sorts of models we discuss are rep-
resentations of a domain of interest, not (primarily) of the program itself. That is, the
primary task is to represent the domain, not to structure the program.

Direct and Indirect Models (and Backing Models): One means of categorising such
models is by the type of interface offered to the client code. There are two broad pos-
sibilities. A direct model is one in which the object model of the host programming
language embodies the model directly, so that each OOPL class or field is a model
entity. An indirect model is one in which the API presents the objects of a backing-
model (BM) indirectly. Thus, instead of having a Java class called ‘Cancer’, an indi-
rect model would use a generic Java class, say, ModelClass, a specific instance of
which would then be used to represent a BM concept called ‘Cancer’.

Figure 2 shows an instantiation of a fragment of an indirect model. A generic Mod-
ellnstance object represents an instance of a particular BM class, with the relevant
class being specified via a ModelClass object (the current value of the instanceType
field). Associated with the Modellnstance object are a set of model-fields that have
been dynamically created, based on information derived from the relevant BM class.
Each such dynamically-derived field will actually be represented via an object of an
appropriate type (say, ModellnstanceField), with the current set of such objects pro-
viding the values for a single multi-valued OOPL field. We refer to such BM-derived,
indirectly-represented model fields as indirect fields. We refer to model fields that are
directly represented in the host OOPL as direct fields (such fields are found in both
direct and hybrid models, but not in fully-indirect models).

An obvious difference between direct and indirect approaches is in their effect on
the application development process. A direct model is tailor-made for a programmer
writing domain-aware code, whereas an indirect model is more suitable for driving
domain-neutral software. The converse usages are possible but more problematic. To
drive generic software from a direct model requires the use of a reflection facility (as
provided by the OOPL) in combination with appropriate coding conventions. Writing

Integrating Object-Oriented and Ontological Representations 133

instanceType
Modellnstance

Iocus stage

Fig. 2. Instantiation of a fragment of an indirect model — software entities represented both
directly (object of named type C—1, object field —) and indirectly (reference to named
model-class <, model-derived field = = »)

domain-aware software to operate over an indirect model is awkward and unnatural
for the programmer, and hence inefficient (see section 3 for further discussion).

There are other issues that arise from the contrasting approaches, with pros and
cons on either side. With indirect models the BM will generally be represented in a
standard format for which sophisticated tools are available. For instance with OWL,
several editors are available, such as Protégé 4 [13] and Swoop [14], and a range of
reasoners [66] and other services. This is important when the model must incorporate
a large amount of domain knowledge, and particularly, as is often the case, when the
encoding is to be performed by a domain expert. On the other hand, direct representa-
tions provide a more natural means of implementing processing beyond the modelling
formalism, to either contribute to the dynamic aspects of the model itself, or to oper-
ate over its individual instantiations.

An additional advantage of indirect models is in the possibility of BM encapsula-
tion, which in addition to facilitating the seamless mixing and matching of disparate
BM formats, also enables the filtering of BM constructs not relevant to the applica-
tion. For example model classes may be generated only for certain types of concept
(excluding for instance compositional concepts that play a role in reasoning but are
not relevant to the application) and model fields generated only for certain properties
(possibly identified via appropriate super-properties).

Dynamic Models: A dynamic model is one in which the details of the model can vary
depending on the current state of the specific instantiation. The variability can be in
the composition of the field-sets associated with specific instances, in the constraints
on specific fields, or even in the types of specific instances. In general, the more dy-
namic the model, the more natural it is to use an indirect representation.

Figure 3 depicts the dynamic interaction involved in representing cancer staging,
where the set of potential stages is dependent on the type of the cancer, and the set of
potential sub-stages (if any), on a combination of type and stage. The modification of
field constraints manifests itself in the re-setting of the default fillers. It is desirable
that such automated updating be fully dynamic, with any assertions, retractions or
replacements producing appropriate responses. For example, if the type of the disease
is now specialised to Leukemia, the locus should update to Blood and the default stage
value to Leukemia+stage, and the sub-stage field should disappear.

There are two basic ways of achieving dynamics in a model. Firstly, one can re-
quire the client code, after setting specific field values, to explicitly make any result-
ing updates to other parts of the instantiation, in line with a set of stipulations
provided as part of the model. Alternatively one can create an update mechanism that

C. Puleston et al.

1) Default configuration

Problem

instanceType

2) Type set to ‘Cancer’

<>

instanceType

| Modellnstance

Modellnstance

T
! locus

' locus stage

éé

3) Locus set to ‘Breast’

instanceType

4) Stage set to ‘I’

instanceType

| Modellnstance | Modellnstance

! locus ! stage Iocus stage ubStage

e

Fig. 3. Creation of an instantiation of a dynamic indirect model - basic key as for figure 2 -
updates represented via shading (newly asserted field-value @, area of automatic response by
model) - includes automatically-generated class names: BC+s = BreastCancer+stage = (I
or Il or I or IV), BCII+ss =BreastCancerStagell+subStage = (A or B)

reacts appropriately to changes in model instantiations. The first alternative is the
more flexible, imposing no restrictions on how the model is used. Hence, in addition
to basic data-creation, the model could also be used to drive query-formulation, pos-
sibly with a variety of query schemas of varying expressivity. However, this flexibil-
ity comes at the price of additional complexity on the client side. Furthermore, the
manner in which the updates are stipulated will be dependent on the BM format, rul-
ing-out the possibility of BM encapsulation. The second alternative simplifies things
on the client side, but does not necessarily provide the same flexibility. However, a
suitable architecture can achieve the best of both worlds. For example, our framework
provides an automatic update mechanism as part of an instantiation building facility.
An associated model-realisation plug-in facility comes with alternative back-ends for
data-creation and query-formulation. Additional back-ends (for e.g. alternative types
of query-formulation) could be plugged-in if required.

Ontology-Backed Models: The types of dynamic model in which we are specifi-
cally interested are indirect models in which the BM is provided by an OWL ontol-
ogy plus a suitable reasoner. In order for such a logic-based system to be used as
the basis for a dynamic software model, some form of sanctioning scheme [88]
must be used. Sanctioning provides a bridge between the constraint-based world of
the ontology, and the field-based world of the software model. Specifically, a sanc-
tioning scheme provides some means of associating a relevant set of fields with
each OWL class. Exactly how this is achieved is not important here. Possible ap-
proaches include the use of heuristics to derive the field-sets directly from class

Integrating Object-Oriented and Ontological Representations 135

Breast
type Iocus
timePoint

ProblemGllmpse

tage ubStage

Fig. 4. Instantiation of a simple fragment of a hybrid model - software entities represented both
directly (object of named type C—1, object field —) and indirectly (reference to named
ontology-concept <, ontology-derived field = = »)

restrictions, or the explicit specification of the field-sets via some form of internal
or external meta-data.

Hybrid Models: We define hybrid models as software models that integrate both
direct and indirect sections into a coherent whole. The intention is to benefit from the
strengths of the respective approaches whilst mitigating their weaknesses. The hybrid
models in which we are specifically interested are exemplified by the Patient Chroni-
cle Model (PCM), described in detail in section 4. Such models are divided into a di-
rect core section, in which a relatively small number of core entities provide the main
structure of the domain, and an indirect peripheral section, in which a far larger num-
ber of entities provide the detailed domain knowledge. The BM for the indirect sec-
tion of the current version of the PCM is provided by an OWL ontology, though this
is not a defining feature of such hybrid models.

To illustrate the basics of such models we look at an example from the PCM. Fig-
ure 4 shows the representation of a single disconnected “glimpse” of a patient’s can-
cer at a specific point-in-time. It can be seen that this is a very similar set-up to that
shown in Figure 2. Differences to note are: (1) the main entity is a domain-specific
ProblemGlimpse object rather than a domain-neutral Modellnstance, (2) locus is a
direct field on the ProblemGlimpse class (although stage and subStage are still dy-
namically-derived indirect fields), and (3) an additional timePoint field has been
added (although the representation of time is a central feature of the PCM, and pro-
vides additional motivation for the use of a hybrid model, for the purposes of the cur-
rent discussion we can consider timePoint as just another field). An additional
difference (not depicted) is that the fillers for the concept-valued direct fields (type
and locus) are actually of domain-specific types, designed to provide a type-safe
means of representing references to concepts from the relevant section of the ontol-
ogy. Hence, the type field has value-type ProblemType, a class that represents refer-
ences to concepts from the Problem section of the ontology. (Note that in the PCM the
mappings between the concept-referencing classes and the relevant root-concepts in
the ontology are provided via a configuration file and are not hard-coded in any way.)

Figure 5 shows how collections of domain objects, such as ProblemGlimpse, can
be aggregated together to form larger networks. The core structure of such a network
is provided by the domain objects and their interconnections, or in other words, is the

136 C. Puleston et al.

@ Breast
type Tcycles type Iocus
timePeriod mdlcatlon timePoint

ClinicalRegime ProblemGlimpse |—_>

clomponents inferenceSource vstage ;subStage

A 4
SnapClinicalProcedure

type target goals
Breast

Fig. 5. Instantiation of a larger fragment of a hybrid model - key as for figure 4

tlmePomt indication

instantiation of a direct model. It is only on the periphery of the model that the indi-
rect elements intrude. On the other hand, the domain objects comprise only a small
fraction of the model-entities — the vast majority residing within the ontology. For
instance, the set-up in Figure 4 involves only three domain-specific classes, Problem-
Glimpse, ProblemType and Locus (not to be confused with the Locus concept that
provides the root of the hierarchy to which it maps), whilst the number of ontological
concepts that can act as fillers for the type and locus fields, may number well into the
thousands.

From the point-of-view of a programmer implementing a domain-aware applica-
tion based on such a hybrid model, the direct nature of the core structure is a distinct
advantage (as noted above in connection with fully direct models, and further dis-
cussed in section 3). However, the need for indirect model access has not been en-
tirely eradicated. Providing fully direct access to the type of dynamic model with
which we are dealing is simply not a practicable proposition. What the hybrid ap-
proach does do, however, is to greatly mitigate the problem by pushing the indirect
representation to the edges of the model (in the case of the PCM, further mitigation is
achieved by the provision of a dynamic model browser, which allows the programmer
to explore the dynamic interaction in those areas of the model where it does need to
be handled).

To provide a rough comparison of PCM-style hybrid models with both direct and
ontology-backed indirect models, we have identified a number of potentially desirable
features that the models may provide — see table 1. Although this set was derived di-
rectly from the requirements for the PCM, we feel that it is fairly comprehensive,
though not necessarily exhaustive. Features include types of dynamic modification, as
classified by modification-type (field-constraint or model-shape - i.e. the addition and
removal of fields), and means of specification (onfological or extra-ontological). Also
covered are type of API (domain-neutral, domain-specific), potential for attachment
of processing mechanisms to operate over individual instantiations, knowledge main-
tenance by domain-experts, knowledge encapsulation, and potential for use in query-
formulation. (Note: section 4 provides further discussion of some of the listed
features.)

Integrating Object-Oriented and Ontological Representations 137

Table 1. Comparison of features offered by different types of software model

Feature Direct Ontology- | Hybrid
Backed (PCM-
Indirect style)

Dynamic modification NO YES YES
(model-shape / ontological)
Dynamic modification NO NO YES
(model-shape / extra-ontological)
Dynamic modification NO YES YES
(field-constraints / ontological)
Dynamic modification YES NO YES
(field-constraints / extra-ontological)
Domain-neutral API YES™ YES YES
Domain-specific API YES NO YES™'
Model-instantiation processing YES NO YES™'
Knowledge maintenance by domain experts NO YES YES™
Knowledge encapsulation NO YES YES™?
Query formulation YES™ YES™ YES

di1 = Given appropriate reflection based architecture

ob1 = Given appropriate architecture

hy1 = For core structure - not for detailed knowledge

hy2 = For detailed knowledge - not for core structure

Whilst both the fully-direct and fully-indirect approaches offer a subset of the
listed features, PCM-style hybrids can, subject to certain trade-offs (see above discus-
sion), be said to offer all of them. Obviously, when developing a software model one
should select the approach that most closely meets the requirements of the particular
domain, and where this implies a choice of options, one should probably go with the
simplest. Hence, given the complexity overhead of the hybrid option, it should only
be used if neither of the other options fits the bill. However, we feel that it is likely
that for a large class of application areas this will indeed be the case.

3 Methodological Considerations

With a basic taxonomy of models in hand, we now turn to how various properties of
the different sorts of model affect software development methodology via cognitive
walkthroughs [10]. We consider how each sort of model handles the sequence of
events shown in Figure 3, i.e. we (1) instantiate an instance of ‘Cancer’, (2) set the
locus of the cancer to ‘Breast’, (3) set the stage of the breast cancer to ‘II’, and (4) set
the sub-stage of the stage II breast cancer to some value. A key point about this se-
quence is that each setting of a field alters what other fields are available and the con-
straints upon those fields (and, thus, perhaps, the behaviour of the object in the
application). Furthermore, the sequence of inputs and the particular values set (and
thus the shape of the object) vary enormously. As described above, there are many
different types of cancer, each with a different set of potential stages, and each com-
bination of cancer and stage having a different set of sub-stages (or possibly none).

138 C. Puleston et al.

The “final” shape of the object (that is, when all its fields are set) is defined by a
combination of (1) the model class of which the object is an instance, and (2) addi-
tional information provided by the model, specifying dynamic modifications specific
to the evolving object. It is not always the case that there is a named model class that
corresponds directly to the fully determined object (that is, the system can require
runtime inference).

We take this sequence as an exemplar of how applications interact with entities in a
model. It is easy to see that interactive applications (such as an electronic hospital
chart) will need to modify entities in its model in this way. In all these cases, we pre-
sume that a sizable portion of the model will be expressed by a domain expert (who is
probably not a programmer) in a suitable modelling language, such as OWL (e.g., the
specifics of cancer). Given this scenario, we can examine what costs and benefits
model type offers. In order to keep things concrete, we confine the rest of the discus-
sion to models expressed in OWL, Java, or a combination of the two, although the
issues involved are potentially applicable to a range of modelling formalisms, and
most general purpose OOPLs.

Consider direct models (e.g. as generated by an OWL2Java mapper [99]). One ad-
vantage of direct models is that the model is entirely captured in Java and the applica-
tion programmer need never consider the ontology except as the input to the
OWL2Java processor. Thus, the programmer can consider OWL to just be a funny
kind of UML (and they may even view it as UML diagrams) and get on with the busi-
ness of using the Java classes. If the ontology is small and unlikely to change, this is
feasible. However, in typical medical applications, neither of these facts are the case.
A recent version of the NCI Thesaurus contains 65,228 classes (up from 27,652 in
2003) and is updated monthly'. With a direct model, not only do we get a prolifera-
tion of Java classes that obscure the actual structure of the ontology, but the natural
path to keeping the application in synch with the model is to regenerate and recom-
pile’. Aside from the tedium of this procedure, it makes it practically impossible to
modify the generated classes to introduce special behaviours, thereby eliminating a
major benefit of the direct approach.

Furthermore, this sort of model is very difficult to work with given the sequence of
operations in our example. In essence, to get the behaviour we want we need to de-
termine in advance which specific class we are going to instantiate in step one (i.e.,
not just cancer, but breast cancer; and not just breast cancer, but stage II breast can-
cer; etc.). If we later want to change from stage II to stage I, or to correct the locus,
we must discard our instance and create an instance of the relevant new sort.

Finally, since we do not have a reasoner available, we cannot query for aspects of
the ontology that were not explicitly reflected into Java. Workarounds include trying to
capture aspects of the semantics of OWL class expressions in Java (see [99]) or modi-
fying the ontology to ensure that specific needed entailments get names, and are thus,
reflected out to the application. In the first case, since the mapping is, at best, very par-
tial and approximate, we still miss many possible entailments but now also get spuri-
ous ones. In the second case, we contaminate our model with various application

! http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
% The Thesaurus is used in e.g.: http://cancerimages.nci.nih.gov/calMAGE/index jsp

Integrating Object-Oriented and Ontological Representations 139

specific classes and still cannot cover every case. Either way we would have great dif-
ficulty in replicating the type of behaviour illustrated by figure 3.

Of course all of this discussion concerning direct models assumes that the pro-
grammer is developing a domain-aware application. If alternatively the application is
to operate in a domain-neutral fashion, the advantages described do not apply, whilst
the difficulties in modelling dynamic behaviour are multiplied by the need to access
that behaviour via some kind of reflection based mechanism.

In contrast, using an indirect model backed by an OWL ontology avoids many of
these problems: The ontology is a separately modifiable component of the applica-
tion. We have the full power of an OWL reasoner available and can even update the
model in response to application events. Furthermore, the program does not have to
incorporate thousands of classes, but only the small number of classes that provide the
indirect model. As the API is domain independent, programmers can become expert
in using that API and amortise the effort of learning it over many programs. Such
APIs, as with SQL, provide a well defined interface for interacting with the ontology
based model, so it is easy to analyse exactly where and how the application works
with the model.

This flexibility can be accessed very nicely by a programmer developing a domain-
neutral application, but for those developing domain-aware applications it comes at a
considerable price. The indirect nature of the API becomes reflected in an unnatural
indirect coding process, whereby the programmer must operate with API documenta-
tion in one hand, and some representation of the ontology in the other, to create code
without type-safety or any other kind of API imposed constraints. Moreover, if parts
of the behaviour required in the domain cannot be expressed in OWL (e.g., certain
types of temporal relations, complex calculations, optimisations, etc.), the program-
mers must handle those aspects entirely on the Java side.

Of course, programmers could set up their own framework for mapping ontology
classes into their Java based model on a case by case basis, but this is precisely build-
ing an ad hoc hybrid model where the details of the hybridization have to be managed
explicitly.

With hybrid models we effectively split the difference. Consider the prototype sce-
nario: the Java programmers developing the model can start with a high level model
of the ontological aspects of the domain (say, a Problem class) as well as of other do-
main entities which do not appear in the ontology (e.g., a ProblemGlimpse). When the
application is working with this abstract model the programmers can hook up a hand-
ful of key entities to corresponding entities in the ontology, in order to exploit the
modelling done by the ontologist. Both the ontology and the program can dynamically
modify the shape and constraints of their respective model elements without interfer-
ing with each other. Furthermore, programmers can naturally move the boundary be-
tween the part of the model which is in Java and the part which is OWL (or some
other modelling formalism) as is appropriate. The fluidity of the boundary encourages
programmers to use the formalism that is best for the job given their tastes, experi-
ence, and skills. Instead of having to jump directly into OWL (for example) they can
defer that exploration until it is truly necessary. That is, modelling considerations,
rather than limitations of their integration technique, drive shifts in the boundary. Ob-
viously, hybrid models require some restrictions in the modelling on both sides.

140 C. Puleston et al.

All three approaches have sweet spots, though we believe that hybrid models are
more generically useful. We suspect many domain applications will be better served
by a hybrid model.

4 Case Study

We now look in detail at the Patient Chronicle Model (PCM), as introduced in
section 2, and at the generic framework with which it was built. The PCM provides
the central component of an architecture designed for the representation of large bod-
ies of patient record data in a richly-structured chronicle format, and their subsequent
exploitation as a research resource over which interesting clinical queries can be for-
mulated and executed. The framework comprises a fully generic Core Model-Builder
and a temporally-focused but domain-neutral Chronicle Model-Builder’, specifically
for building chronicle-style models, such as the PCM. Although the framework was
initially created with the PCM in mind, it is a generic entity that should have much
wider applicability. Hence, our discussion here is concerned with the general class of
hybrid model that the framework enables us to build, using the PCM for purposes of
illustration. We concentrate on the external behaviour of the models. See [11] for a
fuller description of their internal architecture. All of the software described here,
including the PCM, the framework and the GUI-based tools, is available on the web
(see [12)]).

4.1 Design of Hybrid-Model Framework

An analysis of the requirements for the PCM resulted in the identification of the fol-
lowing set of elements to be incorporated into the design of the framework:

Ontological representation: An obvious requirement for a model representing medi-
cal data is that it in some way incorporates a large structured medical terminology.
The fact that this terminology was required to support the type of representations and
dynamic interactions illustrated in Figure 3 strongly implied some form of ontology
with associated reasoning mechanisms. Furthermore, due to the size of the terminol-
ogy, and the specialist knowledge that it was to embody, it was also necessary that the
format facilitate maintenance by domain experts rather than software developers.

Temporal representation: Patient record data tends to come as a set of snapshots,
representing such things as the current state of a patient’s illness or the results of an x-
ray procedure, at a particular point-in-time. However, to ask meaningful questions
concerning a patient’s history, we often need to aggregate together individual items of
snapshot data into coherent entities representing, for instance, the entire history of a
patient’s condition. This implied a SNAP/SPAN representation [44] of some type,
wherein the representation of temporal events is split between point-like SNAP events
and temporally-protracted SPAN events. An associated requirement, to facilitate ef-
fective querying, was for the representation of temporal summarisations, or temporal
abstractions [55] as they are known in the field of medical informatics. For instance,

3 These components of the framework each comprise a set of classes and support utilities.

Integrating Object-Oriented and Ontological Representations 141

a set of measurements of the size of a tumour at various points-in-time can, with suit-
able interpolations, give rise to abstractions over selected time-periods, such as mini-
mum-size, maximum-size, size-at-start-of-period, etc.

Temporal processing: Associated with the requirement for temporal abstraction
structures, was a requirement for procedures to perform the relevant calculations.
Also required was a temporal-slicing facility, for slicing SPAN objects up into sec-
tions representing arbitrary sub-periods. Such a facility is required for answering que-
ries involving temporal-abstractions over dynamically-defined time-periods.

Ontological/temporal interaction: An additional requirement was for the orchestra-
tion of the higher-level interaction between the ontological representation, the
SNAP/SPAN representation and the temporal abstraction structures (see below for
details of such interaction).

Domain-specific API: The patient chronicle data is created programmatically by two
data-creation applications, a heuristic-based Chronicliser that generates the richly-
formatted patient chronicles from ‘raw’ patient record data, and a Patient Chronicle
Simulator that generates realistic patient histories as an aid to system development.
Both of these applications operate in a highly domain-aware manner and hence re-
quire a suitable domain-specific API.

Domain-neutral API: The model was also required to drive domain-neutral software,
including an RDF-based repository system, with an associated query-engine (combin-
ing basic RDF querying with query expansion and dynamic temporal abstraction), and
a set of GUIs for model-browsing, record-browsing and query-formulation. Hence,
there was a strong requirement for a domain-neutral API (the alternative would be to
let each application implement its own reflection-based interpretation of the model —
obviously not a sensible option).

Query-formulation capability: The model was required to drive query formulation
by domain-neutral applications, which, due to the dynamic nature of the model, im-
plied a requirement for a flexible instantiation-builder with a model-realisation plug-
in facility, to allow the incorporation of query-specific constructs into the instantiation
(see discussion of dynamic models in section 2).

Fully-dynamic interaction: Since some of the model-driven software, such as the
query-formulation system, needed to be highly interactive, it was required that instan-
tiation-building be fully-dynamic in that the system respond appropriately to any as-
sertions, retractions or replacements (see discussion of dynamic models in section 2).

Our hybrid model architecture, which was designed to incorporate this (partially
conflicting) set of elements, is composed of (1) a central Java component incorporat-
ing both direct and indirect sections of the model, and (2) a set of one or more knowl-
edge sources that collectively comprise the backing model (BM) for the indirect
section. All BM access is via a clean API, which entirely encapsulates the underlying
formalisms and associated reasoning mechanisms, allowing a range of formalisms to
be mixed and matched. However, since the BM for the PCM currently consists of a
single OWL ontology in combination with a FaCT++ reasoner [77] and suitable sanc-
tioning mechanisms, we refer simply to the “ontology” throughout the following
discussion.

142 C. Puleston et al.

4.2 Nature of Hybrid Models

We now look in more detail at the nature of the PCM-style models that can be built
using our framework, building on the brief introduction provided in section 2. Spe-
cifically we look at (1) the type of complex dynamic interactions that the models can
embody and the way in which they can exhibit behaviours not easily specifiable
within a standard ontological representation, (2) the various distinct roles that proce-
dural processing plays within the models, and (3) the ‘network’ representation, which
enables both the models themselves and their individual instantiations to be accessed
in a domain-neutral fashion.

Complex Dynamic Interaction: In section 2 we described how the ProblemGlimpse
class can be used to represent a single disconnected ‘glimpse’ of a patient’s cancer at
a specific point-in-time (what we refer to as a GLIMPSE view). However, in practice
ProblemGlimpse is used in only to represent transient conditions such as pain or head-
aches. For major conditions such as cancer, where we wish to track the progress of the
condition through time, the more complex SNAP/SPAN-based representational pat-
tern depicted in figure 6 is used. In this pattern, a series of ProblemSnapshot objects
of the condition at specific points-in-time (the SNAPs) are aggregated together by a
ProblemHistory object (the SPAN).

The first thing to note in this pattern is that the temporally-invariant type and locus
fields are attached to the SPAN object, whereas copies of the temporally-variant stage
and subStage fields are attached to each of the SNAP objects. This means that
whereas the simpler GLIMPSE pattern could be mapped in a one-to-one fashion to a
single ontological instance, the SNAP/SPAN version requires a collection of such
instances, with each being mapped to a combination of the temporally-invariant fields
on the SPAN object and the temporally-variant fields on a specific SNAP object.

W@ O ®
Amax Amin Amax Awmin

Descriptor Descriptor
@ History History

type locus f stage f subStage

ProblemHistory timePeriod

v v v

Problem Problem Problem
Snapshot Snapshot Snapshot
: stage ! subStage : stage : subStage : stage | subStage

OO OO O®

Fig. 6. Instantiation of a more complex fragment of a hybrid model (with problem description
distributed between SPAN and SNAP entities) - basic key as for figures 4 and 5 - also show are
fields derived from Temporal Abstraction System (- — =>).(NOTE: the timePoint fields for the
SNAP entities have been omitted.)

Integrating Object-Oriented and Ontological Representations 143

An additional element not present in the GLIMPSE version is the representation of
temporal abstractions. For each current problem-descriptor (stage, subStage, etc.),
there will be an abstraction field associated with the SPAN object, which provides an
abstraction-set for that descriptor (via a DescriptorHistory object). Hence, the abstrac-
tion-sets for stage and subStage, both of which are defined (via extra-ontological
meta-data) as ordinals, include attributes such as max and min. These abstraction-sets,
as well as the methods for calculating the abstraction values, are ultimately provided
by a Temporal Abstraction System, to which the PCM interfaces. This all adds addi-
tional complexity, involving (1) yet another ontological-instance, this one being
mapped to a combination of the temporally-invariant fields on the SPAN object, and
the set of abstraction fields, and (2) dynamic generation of the individual abstraction-
sets, via interaction with the Temporal Abstraction System.

An important aspect of PCM-style hybrid models is the orchestration of interaction
by the major domain classes within a representational pattern. For instance, locus has
been specifically plucked out from the set of problem-descriptors to become a direct
field on ProblemGlimpse (one reason being that it is an entity that the programmer
will often wish to explicitly reference). However, even though the locus is explicitly
represented in the direct model, it is still represented in the ontology (along with the
more run-of-the-mill fields, such as stage and subStage, not represented in the direct
model). Furthermore, we have seen that the locus value plays a part in the ontological
reasoning behind the dynamic interaction illustrated in figure 3. Therefore classes
such as ProblemGlimpse have to orchestrate the dynamic updating in a manner that
maintains consistency between the model and the ontology.

With ProblemGlimpse, where there is a one-to-one correspondence between the en-
tities in the direct model and those in the ontology, such orchestration adds nothing to
the underlying ontological reasoning. It is merely the performance of a chore made
necessary by the hybrid nature of the model. However, in the case of ProblemHistory
where the corresponding interaction involves both multiple ontological-instances and
the Temporal Abstraction System, its orchestration adds additional levels of complex-
ity over and above that provided directly by the ontological reasoning.

Procedural Processing: Procedural processing plays three distinct roles within PCM-
style hybrid models: model-shape modification, field-constraint modification and
model-instantiation processing. Of these, the first two can be considered as providing
an intrinsic part of the model, whereas the third acts on individual instantiations, but
does not contribute to the model itself.

In the current PCM, the model-shape modification is always handled by fully ge-
neric mechanisms, although this is not something that is intrinsic to the task, and we
could envisage a situation where shape modification of a more domain-specific nature
was required. On the other hand, field-constraint modification and model-instantiation
processing, as exemplified respectively by temporal abstraction and temporal slicing,
are each, at different points in the PCM, handled by both generic and domain-specific
mechanisms. The generic case can be seen from the ProblemHistory-centred pattern
described above, where both the abstraction and slicing come as part of a configurable
generic pattern. An example of the domain-specific case is provided by the Dos-
agePattern class, used in representing sequences of drug administrations. This is an
abstract base-class that provides both its own temporal abstraction fields (totallntake,

144 C. Puleston et al.

averageDailyIntake, efc.), and its own temporal slicing facility. The actual processing
is farmed out to appropriate sub-classes (RegularDosagePattern, CyclicDosagePat-
tern, etc.), each of which provides a distinct way of either summarising, or directly
representing the individual administrations. It should be apparent that the flexibility
offered by the object-oriented core of the hybrid models is very useful here, whereas
associating any sort of procedural processing with a fully indirect model is less
straightforward, and the greater the required flexibility, the less appealing such an
option becomes.

Fully-Indirect Representation: In order to provide the required domain-neutral API
the framework embodies a mechanism for automatically translating the source ver-
sion of the hybrid representation into a fully-indirect network version (and back
again). The translation process depends on the Java reflection facility and the confor-
mance of the source version of the model to certain coding conventions (the necessary
ingredients for obtaining generic access to the direct sections of the model - as dis-
cussed above).

The basic translation operation takes a source domain class, such as ProblemHis-
tory, and uses it to generate a set of generic network objects, consisting of a Model-
Node plus a set of ModelFields. The generated objects will collectively represent an
instance of the class. A wider process takes a model instantiation and converts it into
an entire network. An additional mechanism is provided to enable the specification of
the dynamic behaviour required from the network. This specification is handled by
the individual domain classes, each of which, upon being loaded at run-time, can reg-
ister a set of factory objects, which as the relevant sections of network are generated,
are used to create sets of listener objects that will implement the required interaction.

The network representation can be used in two distinct ways. Firstly, to provide a
static representation of an existing model-instantiation, which can be used in the stor-
age, retrieval and browsing of records. Secondly, with appropriate extensions to rep-
resent the required query-specific constructs, as a dynamic query-formulation system.
In this case the network representation is acting as an instantiation-builder with a
model-realisation plug-in facility, in the manner described above. (The network repre-
sentation could in principle also be used as an instantiation-builder for dynamic re-
cord-creation, but since this has not been a requirement of the PCM, our framework
does not currently provide this facility).

5 Conclusions

OWL ontologies offer a number of modelling advantages that have been fruitfully
exploited by domain experts working in Health Care and the Life Sciences and other
areas. However, to reap the benefit of those advantages requires that the resulting ar-
tefacts (i.e., the models expressed as ontologies) are effectively exploited by pro-
grammers building applications. In this paper, we have presented three mechanisms
for integrating OWL ontologies with programs written in a statically typed OOPL
(specifically Java), including a new approach based on hybrid-models. Hybrid-models
allow for a smooth integration between Java based modelling and OWL based model-
ling wherein each modelling paradigm's strengths can be mobilised as needed to pro-
duce a model that, on the one hand, is a reasonable representation of the subject

Integrating Object-Oriented and Ontological Representations 145

domain and, on the other, is a natural part of a program. We have shown that for a
significant class of application this approach is especially effective.

Future work includes refining our hybrid-model supporting framework to better

enable model refactoring and refinement. Right now, model development tools are
entirely Java oriented or entirely OWL oriented, and thus do not allow for a unified
view of the whole hybrid model. While one strong advantage of hybrid-models is that
they allow different members of the development team to use the type of modelling
technique that is most appropriate for the task or their own skill set, we believe that a
holistic view of hybrid models has its own advantages.

References

10.

11.
12.
13.
14.

. Puleston, C., Cunningham, J., Rector, A.: A Generic Software Framework for Building

Hybrid Ontology-Backed Models for Driving Applications. In: OWL Experiences and Di-
rections Workshop (2008)

Rogers, J., Puleston, C., Rector, A.: The CLEF Chronicle: Patient Histories Derived from
Electronic Health Records. In: IEEE Workshop on Electronic Chronicles, eChronicle 2006
(2006)

. Taweel, A., Rector, A.L., Rogers, J., Ingram, D., Kalra, D., Gaizauskas, R., Hepple, M.,

Milan, J., Power, R., Scott, D., Singleton, P.: CLEF — Joining up Healthcare with Clinical
and Post-Genomic Research. Current Perspectives in Healthcare Computing, 203-211
(2004)

Grenon, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial
Cognition and Computation 4(1), 69-104 (2004)

Shahar, Y., Combi, C.: Temporal Reasoning and Temporal Data Maintenance: Issues and
Challenges. Computers in Biology and Medicine 27(5), 353-368 (1997)

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Descrip-
tion Logic Handbook. Cambridge University Press, Cambridge (2003)

Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:
Furbach, U., Shankar, N. (eds.) IICAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidel-
berg (2006)

Bechhofer, A., Goble, C.: Using Description Logics to Drive Query Interfaces. In: DL
1997, International Workshop on Description Logics (1997)

Kalyanpur, A., Pastor, D., Battle, S., Padget, J.: Automatic Mapping of OWL Ontologies
into Java. In: Software Engineering and Knowledge Engineering (SEKE), Banff, Canada,
pp. 98-103 (2004)

Wharton, C.W., Reiman, J., Lewis, C., Polson, P.: The Cognitive Walkthrough Method: A
Practitioner’s Guide. In: Nielson, J.K., Mack, R.L. (eds.) Usability Inspection Methods.
Wiley, New York (1994)

W3C: Web Ontology Language (OWL), http://www.w3.0rg/2004/OWL/

CLEF Chronicle Software: http://intranet.cs.man.ac.uk/bhig/clef_misc/chronicle/

Protégé 4 download page: http://www.co-ode.org/downloads/protege-x/

Swoop download page: http://code.google.com/p/swoop/

Extracting Semantic Constraint from
Description Text for Semantic Web Service
Discovery™*

Dengping Wei', Ting Wang!, Ji Wang?, and Yaodong Chen'

! Department of Computer Science and Technology, School of Computer, National
University of Defense Technology, Changsha,Hunan, 410073, P.R. China
{dpwei,tingwang,yaodongchen}@nudt.edu.cn
2 National Laboratory for Parallel and Distributed Processing, Changsha,Hunan,
410073, P.R. China

jiwang@mail.edu.cn

Abstract. Various semantic web service discovery techniques have been
proposed, many of which perform the profile based service signature
(I/O) matching. However, the service I/O concepts are not sufficient
to discover web services accurately. This paper presents a new method
to enhance the semantic description of semantic web service by using
the semantic constraints of service I/O concepts in specific context. The
semantic constraints described in a constraint graph are extracted auto-
matically from the parsing results of the service description text by a set
of heuristic rules. The corresponding semantic web service matchmaker
performs not only the profile’s semantic matching but also the matching
of their semantic constraints with the help of a constraint graph based
matchmaking algorithm. The experiment results are encouraging when
applying the semantic constraint to discover semantic web services on
the service retrieval test collection OWLS-TC v2.

1 Introduction

Semantic web services (SWS) have attracted a significant amount of attention
in recent years. The aggregation, including description and discovery of services
plays an important role in various internet-based virtual computing environ-
ments [I]. SWS discovery is the process of locating existing web services based
on the description of their functional and non-functional semantics [2]. Most
SWS matchmakers perform the matching of service profile rather than service
process model. SWS profile describes the services capabilities in terms of several
elements, including its inputs(I), outputs(O), preconditions/assumptions(P) and
effects/postconditions(E) [3].

* This research is supported by the National Grand Fundamental Research Program
of China under Grant No. 2005CB321802, the Program for New Century Excellent
Talents in University (NCET-06-0926), and the National Natural Science Foundation
of China (60403050, 90612009).

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 146 2008.
© Springer-Verlag Berlin Heidelberg 2008

Extracting Semantic Constraint from Description Text for SWS Discovery 147

Various SWS description languages such as OWL-S [3], WSMO [4], WSDL-
S [5], SAWSDL [6], provide different frameworks to describe SWS. There are
also various SWS matchmakers based on the respective profile elements: some
perform logic based semantic IOPE matching [7] [8], and some others perform
logic based semantic service signature (Input/Output) matching [9LT0,TTLT2L13]
(T4 T516).

A common characteristic of most current SWS matchmakers is that the se-
mantic matching between a pair of SWS concepts annotated to the input and
output parameters almost depends on the subsumption relations in the domain
taxonomy. Most current SWS matchmakers treat the SWS signature as a set
of concepts which are however not sufficient to discover SWS effectively when
using logic based reasoning. Two services with similar real world semantics may
fail to match, and even two services with the same input and output concepts
may have essential differences in semantics which cannot be detected by logic
based reasoning.

In order to overcome this problem, many recent researches have explored
various information to complement service I/O concepts for SWS matchmaking.
The ranked matching algorithm [9] explores the service category and service
quality together with its I/O concepts to compute the combined degree of match
between the request and the advertisement. Klusch et al. [7] [T0] have proposed
a hybrid method for SWS discovery which utilizes both the logic based reasoning
and the content (unfolded concept expressions) based Information Retrieval(IR)
techniques to remedy this limitation. Kiefer et al. [I7] have proposed a new
approach to perform SWS matchmaking based on iSPARQL strategies which
combines structured and imprecise querying together on a diverse set of syntactic
description information (service name, service description text, etc.). The work
in [I8] describes the relationships between inputs and outputs explicitly and uses
OWL ontologies to fix the meaning of the terms used in a service description.

Most SWS discovery approaches consider each SWS signature as a bag of con-
cepts and ignore the relationships between the concepts in the SWS profile. The
relationships between the service I/O concepts, called semantic constraints in
this paper, can be helpful for expressing the semantics of services and improv-
ing the existing SWS discovery methods in practice if they can be generated
automatically. Motivated by this idea, we add some restriction relationships to
the interface concepts to enhance the semantic description of services. These re-
striction relationships which may not be defined in the domain ontology can be
extracted from the service description text automatically. A novel SWS discovery
mechanism has been proposed to perform the matching on both the service I/O
concepts and their semantic constraints which are represented by a constraint
graph.

The rest of this paper is organized as follows. Section 2 gives the definition of se-
mantic constraint for SWS and the constraint graph. Section 3 describes the seman-
tic constraint extracting method. A Constraint Graph-based Matching (CGM)
algorithm is proposed in section 4. Section 5 evaluates the proposed approach on

148 D. Wei et al.

the OWL-S service retrieval test collection TC v?El. Section 6 discusses the related
work. The conclusion and future research are given in section 7 finally.

2 Semantic Constraint for Semantic Web Service
Discovery

2.1 Motivation

Many SWS matchmakers like OWLM [19], OWLS-MX [10], OWLS-UDDIE, Lu-
min% perform logic based semantic matchmaking on service I/O concepts. As
discussed in section 1, representing SWS by the service I/O concepts is not suf-
ficient enough for service discovery. Some important facts can be observed from
the existing SWS collections.

(1)The domain of concept is not specified. The service I/O concepts usually
describe abstract things like “price”, “distance”. Normally their meanings are
heavily related to the context, that is, it is difficult to get its exact semantics
unless they are set in a certain context, such as “the price of a book”, “the price
of a flight ticket”, “the distance between two cities”, “the distance between two
stars”. So if a service is only annotated with the concept Price as its output, it
is still not clarified whose price is returned by this service.

(2) The property of concept is not specified. Every concept defined in
domain ontology may have several properties to restrict its semantics. All the
individuals of each concept can be divided into several categories according to
different property restrictions and values. For example, the concept Bag has a
property hasColor, so the individuals of Bag can be classified into different
sets according to their values of the property hasColor, such as the red bags,
the blue bags, the green bags and so on. Therefore, in specific context, the
semantics of I/O concepts can be better clarified if they are associated with their
property values. Meanwhile, the concepts with different property restrictions
may correspond to various individuals in respective context. For example, service
A returns a kind of food information with the maximum price, while service B
returns the food information with brand “Coca Cola”. We cannot assert that
these two kinds of food information are similar. Also the functions of the two
services cannot to be asserted to be similar.

(3) The relationship between concepts is not specified. Two web services
annotated with the same input and output concepts may have essentially differ-
ent semantics which cannot be detected by logic based reasoning. The difference
may be caused by the diverse relationships between the input and output con-
cepts. For example, both service A and service B have been annotated with
concept GroceryStore for their input parameters and concept Food for their

! http://www-ags.dfki.uni-sb.de/~klusch /owls-mx/
2 http://www.daml.ri.cmu.edu/matchmaker/
3 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina,/

Extracting Semantic Constraint from Description Text for SWS Discovery 149

output parameters. But service A returns the food information contained in a
certain grocery store while service B returns the food information sold by a
certain grocery store. These two web services have the same interfaces and the
same annotated concepts which the interface refers to, but their functions are
totally different.

2.2 Constraint Types Definition

According to the above facts, the semantics of SWS will be better clarified if the
constraint relationships of the concepts have been annotated. Each concept used
to annotate web service can take some kinds of constraints. A concept and one of its
constraints can be represented by a statement (SC, CT, OC) using RDHY terms:

— SC (Subject Concept), is the subject of the statement and usually corre-
sponds to the service I/O concepts. It specifies the thing the statement is
about.

— OC (Object Concept), is the object of statement. It can be described as
another concept or a literal.

— CT (Constraint Type), is the predicate of the statement which identifies the
property or characteristic of the subject concept that the statement specifies.
There are many constraint relationships between two entities in the real world,
which are also true in web service domain. We choose three important abstract
constraint types, considering that not all the realistic constraints can be ex-
tracted accurately and automatically from description text.

e isPropertyObjectOf Constraint: triple (A, isPropertyObjectOf, B) means
that concept A is a property object of concept B. It specifies the domain
which concept A belongs to, that is, the individuals of concept A in
specific service are the property values of individuals of concept B. For
example, if a service has been annotated with an output concept Price
and the price has a constraint triple (Price, isPropertyObjectO f, Car),
it means that this service returns the price of a certain car.

e hasPropertyObject Constraint: this constraint relation is the inverse of
isPropertyObjectOf. Triple (A, hasPropertyObject, B) means that concept
A is the one which has an inherent property object concept B. For ex-
ample, if a service has been annotated with an output concept Car that
has a constraint triple (Car, hasPropertyObject, Price), it means that
this service returns the information of a car associated with a value of
price.

e Operation Constraint: triple (A, Operation, B) means that the two con-
cepts entities have a certain association between them. The word “Op-
eration” is an abstract word representing all kinds of properties. For
example, if a service has been annotated with an output concept Book
and the concept Book in this web service has an “Operation” constraint
triple (Book, “published by”, “Springer”), it means that this service re-
turns the books that are published by Springer.

* http:/ /www.w3.org/TR/rdf-primer/

150 D. Wei et al.

2.3 Constraint Graph Definition

After adding constraints defined above to service I/O concepts, the service se-
mantics has been enriched and SWS is described by both service I/O concepts
and their constraints. In this paper, a concept together with its constraints is
described in a constraint graph. Let C be a set of concepts, a directed constraint
graph can be described as ConstraintGraph(C) = {(SC,CT,0C)|SC € C'}.

The snippet of a food querying service profile is described in Fig.1(a). This
service returns the food information in a certain store together with their quan-
tity, annotated with one input concept Store and two output concepts Food
and Quantity. After adding isPropertyObjectOf constraints to concepts Food
and Quantity, the connected constraint graph which is depicted in Fig.1(b)
indicates the relationships between Food and Store, Quantity and Food. The
description of service’s semantics in Fig.1(b) is clearer than the set of three
concepts described in Fig.1(a).

Store

<profile:Profile >
<profile:hasInput rdfiresource="#_GROCERYSTORE"/>
<profile:hasOutput rdf:resource="# FOOD"/> I::> isPropertyObjectOf
<profile:hasOutput rdf:iresource="# QUANTITY"/>

isPropertyObjectOf .
</profile:Profile> ., [sPropertyObj N

.
[} _————{
~a?

Food Ql;e;n‘tity
(a) (b)

Fig. 1. (a) The snippet of a food service profile; (b) The constraint graph representation
of the service (the dashed circle denotes output concept and the solid circle denotes
input concept)

3 Extracting Semantic Constraint

The description texts in web services are important knowledge sources for service
discovery. The constraints of a certain concept can be extracted from the descrip-
tion texts according to the definition of concept in domain ontology, especially
the definition of property whose subject is the concept. However, in practice,
few domain ontologies are comprehensive enough to provide plenty constraints
information, as every concept in the domain ontology has only limited kinds
of properties. In this section, an extraction method based on the parse trees of
description text is proposed to obtain the semantic constraints of service 1/O
concepts.

3.1 Overview

The semantic constraints for input/output concepts of a web service can be ex-
tracted from the description text of this web service. Each concept corresponds
to a sequence of words (called key-word) in the description text, and the syn-
tactic relations between the key-word and other words may be the semantic

Extracting Semantic Constraint from Description Text for SWS Discovery 151

| Description text | | The service returns the price of the book published by Springer.

- T

DT NNVBZ NP(price)
The servicereturns ~
NP(price) PP

O
DT NNIN NP(book)
Syntactic Tree the price of NF(hook) VP

Nt
the book published/ ~
IN NN

Constraint Graph
by Springer.

<SC,.CT,.0C,> ﬂ
<SC,.CT,.0C,>

<Price, isPropertyObjectOf , Book>
~~~~~~~~ <Book, “published by”, “Springer”>

<sC,.CT,,0C,>

(a) semantic constraint extracting framework (b) example

Fig. 2. Semantic constraint extraction

constraints of the corresponding concept. The syntactic structures of the service
description text give rich information about the constraint types for service I/O
concepts. Thus, the semantic constraints of I/O concepts could be derived from
the syntactic tree. Unlike the ontology-based information extraction or relation
extraction, we detect the semantic constraints for the service I/O concepts rather
than their instances. In ontology-based information extraction, the relation ex-
traction focuses on the relationship between two specified entities.

The semantic constraint extraction which is based on the parsing tree of the
sentence consists of preprocessing, syntactic parsing and heuristic-based extract-
ing (shown in Fig.2(a)). During preprocessing, some pre-selected key-words rep-
resenting the service I/O concepts are tagged in the description text. And then,
the text is parsed syntactically to identify the constituents modifying the key-
words. Finally, several heuristics rules are used to extract constraint triples about
the key-words from the syntactic constituents.

3.2 Preprocessing

The aim of preprocessing is to detect the key-words and process the text in order
to improve the precision of syntactic parsing in the next step. Some more details
are as follows.

— Key-words detection. The concepts in service I/O are annotated to a
sequence of words in the description text, that is, each concept is instantiated
by a word sequence through scanning all these fragments in text.

— Name Entity Recognition. ANNIE Gazetteer in GATE [20] is used to
recognize the name entities in the text which are useful for the matching.



152 D. Wei et al.

For example, the word “Japan” is annotated as a country, so it can match
the concept Country in a geographical ontology.

— Tokenization. Corresponding to each service I/O concept, a key-word may
include several tokens. A key-word should be a terminal node in the parsing
tree in order to extract its constraints correctly. Therefore, each key-word is
considered as one token.

— Part Of Speech tagging for special words. Several rules are designed to
assign Part Of Speech (POS) tags to some important ambiguous words which
can help improving the precision of parsing. Based on the observation that
concepts in domain ontologies are usually nouns, we specify each key-word
to noun and some important words to verb, e.g., “return”, “provide”.

3.3 Extracting Semantic Constraint

We firstly obtain the syntactic trees by parsing the sentences which contain the
key-words in the description text. The semantic constraints of the key-words are
identified according to syntactic relationships in parsing trees such as modification
and represented in triples each of which includes a key-word, a constraint type and
a constraint constituent. The extraction includes three phases as follows.

Candidate Constituent Detection. From the observation, the constraints of
a key-word are probably contained in the phrase whose head word is the key-
word. All such phrases can be detected by propagating the key-word from the
bottom to the top of the syntactic tree. The propagation path is expressed as a
sequence of interior nodes labeled by nonterminal categories in the parsing tree,
e.g. a node sequence “NP NP” in Fig.2(b) is the propagation path of key-word
“price”.

The constituents contained in each phrase which is in the propagation path
are called candidate constituents which may contain modification information of
the key-word. For example, Fig.2(b) describes the parsing tree of the sentence
“The service returns the price of the book published by Springer.”, in which the
key-word is “price”. The propagation path of the key-word “price” is “NP NP”.
The candidate constituents contained in the propagation path are “DET” and
“PP”.

Constraint Constituents Filtering. In candidate constituents, some function
words, such as “DET” in Fig.2(b), are not valuable modifiers for the key-word.
Only the constituents that contain useful modifiers of the key-word are consid-
ered as constraint constituents. Thus, the constraint constituent of the key-word
“price” is the constituent tagged with “PP”.

Various constraint types defined in section 2 often have different syntactic
characteristics and are expressed in diverse constituents, so respective rules are
designed to filter the useful constraint constituents from all the candidate con-
stituents. The second column in Table 1 presents the rules that can filter the use-
ful constituents from the candidate constituents for the constraint types shown in
the first column. As the hasPropertyObject constraint relationship is the inverse



Extracting Semantic Constraint from Description Text for SWS Discovery 153

Table 1. The semantic constraint extraction rules

Constraint Type Candidate Constituents Filtering Rules Modifiers Extraction Rules
Rule 2: Extract the noun
string from the adjective if
it’s suffix is “’s”.

Rule 3: Extract the key
phrase from the PP phrase
whose head word is “of”.

Rule 4: Identify the ref-

Rule 1: The candidate constituents
isProperty tagged with “JJ”, “PP”, and
ObjectOf “Pronoun” are indicator of

constituents in which
isPropertyObjectOf constraint

locates.
erence word in possessive
pronoun phrase.
Rule 6: Extract the verb,
Operation Rule 5: The candidate constituents preposition, noun from the
tagged with “VP” and “SBAR” VP phrase.
are indicator of constituents in Rule 7: Extract the verb,
which Operation constraint preposition, noun from the
locates. SBAR phrase.

of isPropertyObjectOf constraint, we can get the hasPropertyObject constraints
from the isPropertyObjectOf ones.

By analyzing the structure of the parsing tree, the isPropertyObjectOf con-
straint of the key-word can be extracted from either its sibling nodes or its par-
ent’s sibling nodes which are tagged with “JJ”, “PP” or “Pronoun”. The Oper-
ation constraint often locates in the constituents tagged with “VP” or “SBAR”.
Rule 1 and Rule 5 are designed to extract the candidate constituents for isProp-
ertyObjectOf constraint and Operation constraint respectively. As depicted in
Fig.2(b), the isPropertyObjectOf constraint of “price” locates in the constituent
tagged with “PP”.

Extracting Modifier. After the above two steps, the modifiers now can be
extracted from the constraint constituents identified by the Rule 1 and Rule
5 in Table 1. Not all the constraint constituents provide useful constraints for
the key-word. Some rules listed in the third column in Table 1 are also used to
extract the modifiers of the key-word for specific type.

Rules 2-4 for isPropertyObjectOf constraint are motivated by the observa-
tion that the isPropertyObjectOf modifiers to nouns are usually locates in a
PP phrase, an adjective or a possessive pronoun. Rule 2 states that only the
adjectives like “book’s” are the constraint constituents of the key-word. Tak-
ing the noun phrase “book’s price” for example, the constraint constituent of
the key-word “price” is the adjective “book’s”. Only the word “book” which
can be extracted from the adjective is the isPropertyObjectOf modifier of the
key-word “price”. Rule 3 indicates that the isPropertyObjectOf modifier often
locates in the PP phrase whose head word is “of”. Rule 4 is supported by the
observation that nouns are usually modified by a possessive pronoun like “its”.
The noun that refers to the pronoun is identified as the isPropertyObjectOf
modifier.



154 D. Wei et al.

Rules 6-7 for Operation constraint are supported by the observation that
the candidate constituents tagged with “VP” and “SBAR” are good indicator
of constituents where Operation constraint locates. The verbs in verb phrase
and SBAR clause usually describe the relationship between two entities and the
following preposition is a good indicator of the voice of the sub-sentence in which
the VP phrase locates. If the verb is a transitive verb and the following word is a
noun, then the Operation constraint is composed by the verb and the noun which
is the object of the verb. A preposition “by” indicates that the noun following
it would be extracted as the subject of the operation which the verb represents.

Finally, the constraint triples can be represented by the key-words and the
extracted modifiers. In Fig.2(b), the modifier of “price” is “book” and the con-
straint triple is (Price, isPropertyObjectO f, Book). For the snippet of sentence
“the book published by Springer”, the constraint triple ( Book, “published by”,
“Springer”) indicates that the subject of the verb “publish” is “Springer” and
it’s object is the noun “book”.

In this paper, we only consider these three constraint relations of the concept
at a coarse granularity level. The extraction rules are very specific in order to
achieve the high precision of extracting. If there need to extract more informa-
tion, more rules should be added accordingly.

4 Matching Algorithm

According to the definition of constraint graph introduced in section 2, we have
designed a three levels’” matching algorithm to measure the match between two
constraint graphs.

4.1 Constraint Graph Matching(CGM)

The degree of matching between the ConstraintGraph(C,.) of the request and
the ConstraintGraph(Cy) of a service is computed by the following formula:

P
ConstraintGraphMatch(Cy, Cs) = Z Héz})X(TripleMatch(RTi, ST;))/ P
=1 /<

where P is the number of triples contained in the constraint graph Constraint-
Graph(C,.), P’ is the number of the triples contained in the constraint graph
ConstraintGraph(Cs) and the function T'riple M atch(RT;, ST;) is used to esti-
mate the match between two triples RT; € ConstraintGraph(C,) and ST; €
ConstraintGraph(Cs).

4.2 Triples Matching

If there is a triple T} in the constraint graph of the request and a triple T in the
constraint graph of web service, the matching between two triples is computed
as following;:



Extracting Semantic Constraint from Description Text for SWS Discovery 155

— Stepl: compute the degree of match between two subjects.

— Step2: compute the degree of match between two objects if the constraint
types of the two triples are similar and their subjects are matched.

— Step3: compute the weighted sum of match value obtained from the above
operations as the match value if all the elements in the triple are matched.

This matching algorithm states that the subsumption relation between two
subjects only means that the triples are possibly matching. Only when all the
three elements in each triple are relative, can we say that the two triples are
matched and the degree of match can be measured.

4.3 Concept Matching

The matching between two concepts is based on the subsumption relationship
reasoning on the taxonomies of domain ontologies. The logic based semantic
matchmaker we use here is much more relaxed compared to the algorithm de-
seribed in [7]. Five different levels for the degree of semantic matching are defined,
that is, Exact, Plug-in, Subsumed-by, Intersect, and Fail. Let ¢ be a concept,
then Parents(c) returns the set of the generic concepts that are the parents of
concept ¢ and Children(c) returns the set of the specific concepts that are the
children of concept c. The details of the logic based semantic matching are as
follows.

— Exact match: concept r of the request exactly matches the concept s of
service if and only if 7 = s. The concept r of the request perfectly matches
the concept s with respect to logic based equivalence of their formal semantic.

— Plug-in match: concept s of service plug-in matches the concept r of request
if and only if r € Parents(s) V s € Children(r).

— Subsumed-by match: concept r of the request subsumed-by matches the
concept s of service if and only if s € Parents(r) V r € Children(s).

— Intersect match: concept r of request intersect matches the concept s of
service if and only if

|| Parents(r) A Parents(s)||

>0.5
max (|| Parents(r)||, || Parents(s)||)

— Fails: concept r of the request does not match any concept of service ac-
cording to any of the above match levels.

The definitions of the plug-in match and the subsumed-by match seem redu-
plicate. A is the parent of B logically equals that B is the children of A, but it is
not always true in ontology reasoning. In ontology library, there exist some kinds
of reference relationships between two ontologies, such as “import” relation. If
two concepts come from different ontologies and there is no reference relation-
ship between these ontologies, then the two concepts match fails. Let ontology
onty be imported into another ontology onts, that the concept B in onts is the



156 D. Wei et al.

child of concept A in ont; cannot infer that concept A is the parent of concept
B, because the two concepts belong to different ontologies and the reasoning is
based on different knowledge bases.

When the constraint graph based matchmaker coordinate with other match-
maker, the logic based semantic matchmaker used in it can be adapted accord-
ingly. The semantic similarity between two literals is also measured by the dis-
tance in the lexical hierarchy which defined in WordNet dictionary. The degree
of match is 1 if the two literals belong to the same synonym set.

5 Experiment Results and Analysis

The proposed method has been evaluated on the service retrieval test collection
OWL-S TC v2, which consists of 576 web services from 7 domains, 28 queries
(each query represents one request) with their relevance sets. Each web ser-
vice in this dataset has only one operation. In this experiment, 27 queries are
evaluated, except the one without output parameter. Two sets of web services
using in this experiment have been transferred from OWL-S TC v2 by anno-
tating output concepts with constraints: Datasetl and Dataset2. In Datasetl,
the semantic constraints of the output concepts in request and web service are
manually annotated by two people and mainly described by service I/O con-
cepts; while the semantic constraints of concepts in Dataset2 are automatically
extracted using the method represented in section 3. The constraint graph based
SWS matchmaker (described in section 4) called CGM is implemented in JAVA
using Jendl.

In the experiments, we measured the constraint graph based service retrieval
performance. The Macro Averaged Recall Precision curves are shown in Fig. 3.
OWLS-MO is a pure logic based matchmaker on the service I/O concepts [10].
OWLS- M4 is reported to be the best-performing matchmaker variant of the
OWLS-MX matchmaker [I0] which uses Jensen-Shannon information divergence
to compare the request and service based on the unfolded concept expressions.
We also use the nearest-neighbor as the minimum degree of match and a value of
0.7 as syntactic similarity threshold for OWLS-M4. These values were suggested
by the authors of OWLS-MX to obtain better results for OWLS-TC v2. InOut-
Constraint matchmaker and AutoConstraint matchmaker use CGM to compare
two services based on their semantic constraint graph, which have been evalu-
ated on Dataset]l and Dataset2 respectively. MO+InOutConstraint matchmaker
uses CGM to filter the results of OWLS-MO on Datasetl. M0+AutoConstraint
matchmaker uses CGM to filter the results of OWLS-M0O on Dataset2.
M4+InOutConstraint matchmaker uses CGM to filter the results of OWLS-M4
on Datasetl. M4+AutoConstraint matchmaker uses CGM to filter the results
of OWLS-M4 on Dataset2. For running OWLS-MX variants, we use OWLS-
iMatheid. All these datasets and matchmakers are available for downloadd. From

® http://jena.sourceforge.net /
5 http://www.ifi.uzh.ch/ddis/research/semweb /imatcher/
" http://nlp.nudt.edu.cn/~dpwei/



Extracting Semantic Constraint from Description Text for SWS Discovery 157

Macro Average Recall and Precision Curve Macro Average Recall and Precision Curve
T x
00 QIR R x B ARy
- T KRR g BT

07F pammama Poggg ] 07 F s g iigg g B g E T
c p s ( BB-g c o OBy oo **55 =
:g 06 N B :g 06 w000 g o K
5] - 5] -
S 05 o R S 05 o R
o a .

04 | . u i 04 | M4+InOutConstraint —— u B

: M4-+InOutConstraint —+— N : M4-+AutoConstraint ---x--- A
03 F  MO+InOutConstraint ---x--- w 4 03 F MO+AutoConstraint ------ w 4
InOutConstraint ---%--- \ OWLS-M4 & \
02 |- OWLS-M4 -8 w A 0.2 | OWLS-MO —-=-— w
OWLS-MO —-—=--— = AutoConstraint ---o-- =
0.1 I | I I 0.1 L n I I
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall
(a) (b)

Fig. 3. Macro Average Recall-Precision Curves. (a). The performance on Datasetl;
(b). The performance on Dataset2.

the preliminary experimental results depicted in Fig.3, the following facts can
be observed.

(1) Both InOutConstraint and OWLS-M4 outperform OWLS-MO0 as shown in
Fig.3(a). This fact indicates that pure service I/O concepts based matchmaker is
not effective to discovery web services. OWLS-MO often returns some irrelevant
services rather than relevant services according to the logic-based semantic filter
criteria. While OWLS-M4 can use the syntactical similarity filter (matching
of the unfolded concept expressions) to find relevant services that OWLS-MO
would fail to retrieve. InOutConstraint can perform the semantic matching more
accurately by enriching the description of SWS. The logic based matchmaker for
two concepts which differs from that of OWLS-MX variants uses more relaxed
notions for matching in order to retrieve more services, and the constraints of
I/O concepts can help filter the irrelevant ones. It also indicates that we should
use more relaxed semantic based matchmaker when using the constraint graph
based matchmaker.

(2) Fig.3(a) also shows that both MO+InOutConstraint and M4+InOutConst-
raint outperform their corresponding OWLS-MX variants in OWLS-TC v2. In-
OutConstraint can filter the irrelative services which are returned by OWLS-MX
variants because of the constraints matching. In OWLS-TC v2, there are about
10% web services that have no input parameter and also some web services
with matching I/O concepts but different functionalities, which increases the
probability of returning irrelevant services by OWLS-MX variants. For example,
the “ food Exportservice.owls” service only has an output concept Food and re-
turns the exported food information. The query “grocerystore food service.owls”
which requires services that return the food owned by a certain grocery store has
an input parameter GroceryStore and an output parameter Food. The query
and the service implement different functions but OWLS-MX variants judge that
the service matches the query because of the same output concept.

(3) InOutConstraint outperforms both the composed matchmaker M4+ In-
OutConstraint and OWLS-M4 as illustrated in Fig.3(a). The relaxed logic based
semantic matchmaker defined in section 4.3 can retrieve more web services to



158 D. Wei et al.

improve the recall, while the constraints which make the matching of concepts
more accurately are benefit for filtering the irrelative services, because the con-
straints that InOutConstraint use are annotated by people carefully.

(4) MO+AutoConstraint outperforms OWLS-M0 and M4+ AutoConstraint
also outperforms OWLS-M4 as shown in Fig.3(b). This fact illustrates that the
semantic constraint extracting method for service I/O concepts is effective to
filter the irrelative services that OWLS-MX variants return, although the im-
proved performance is lower than that in Dataset1l. With the improvement of the
extracting performance, the curve of MO+ AutoConstraint would approach the
curve of M0+InOutConstraint. AutoConstraint depicted in Fig.3(b) has lower
performance than M4+ AutoConstraint, even OWLS-M4, which suggests that
the constraints extracted from the description text automatically are not good
enough to filter all the irrelative services that the relaxed logic based semantic
matchmaker returns.

From the above experiments, we can see that the semantic constraints of ser-
vice input/output concepts enrich the description of services capabilities and
alleviate the unclear problem of semantic web services that described by only
I/O concepts. Semantic constraint of service I/O concepts can distinguish the
similar web services to improve the precision of discovery task. The semantic
constraint based matchmaker could combine to other SWS matchmakers to im-
prove their performance. The matchmaker CGM explores the constraints infor-
mation to filter the irrelevant services which probably match the request by pure
logical reasoning, while the hybrid matchmaker emphasizes particularly on re-
trieve those services that fail to retrieve according to pure logic based matching.
So they can work with each other without conflict. However, the performance
of our matchmaker depends on the performance of constraints extraction. The
best performance displayed in Fig.3(a) is InOutConstraint which indicates that
semantic constraints of service I/O concepts are excellent in SWS discovery task
if supported by a good constraints extracting result.

6 Related Work

Semantic web service discovery is a hot topic in the fields of both semantic web
and web service. An abundance of different approaches for service matchmaking
focuses on different aspects of service description including functional and non-
functional ones. The work presented in this paper concerns only the function
based matchmaking. The functional properties of SWS mainly include service
inputs, service outputs, preconditions and effects [3]. Several studies concentrate
on describing web service with richer semantics for discovery [7] [18], in which the
matching has high complexity. Hull et al. [I8] describe the relationships between
inputs and outputs explicitly and use OWL ontologies to fix the meaning of
the terms used in a service description. The description capability depends on
the domain ontologies, and the service descriptions are mainly established by
domain experts. The work presented in [21I] [22] focus on annotating services
I/O parameters with ontology concepts (semi-) automatically, while our work is
to add the semantic constraints to these concepts.



Extracting Semantic Constraint from Description Text for SWS Discovery 159

The majority of the research work in the literature [9,[I0,[12] focus on the
matchmaking of service I/0, i.e. the data semantics of a web service. Different
methods extend service I/O matching from different aspects of web service.

Paolucii et al. [I2] consider the service profile and its inputs and outputs
for determining the match between the request and advertisement. In [J], the
ranked matching algorithm is based on service description, including service
inputs, service outputs, service quality and service category. The matching of
service inputs and outputs depends on the subsumption relations in domain
ontology. The proposed method in this paper extends the matching of service
I/O concepts by not only the taxonomy hierarchy in domain ontology but also
the semantic constraints of each concept extracted from specific service context.

OWLS-MX [I0] uses a hybrid SWS matching that complements logic based
reasoning with approximate matching based on syntactic similarity computa-
tions. The matchmaker in this paper is similar to OWLS-MX but differs from it
in several aspects. Firstly, they explore different information for matchmaking
except service I/O concepts. The information of web service used in OWLS-MX
is the unfolded concept expressions and the corresponding matching depends on
the structures of the domain ontologies. In our method, the constraint informa-
tion is extracted from the description text of web service and the matchmaker is
less dependent on the domain ontologies. Secondly, they have different ways to
improve the recall and precision. The reason that the hybrid variants in OWLS-
MX outperforms the OWLS-MO is that the matching of unfolded concept ex-
pressions can return those syntactically similar but logically disjoint services as
the answer set. The reason that our method outperforms the OWLS-MO is that
it can remove those false web services that match the request on service 1/0
concepts by their constraints matching. Finally, our method mainly focuses on
semantic constraint of service I/O concepts, it is expected to be easily utilized
in other kinds of SWS matchmakers.

7 Conclusions and Future Work

Web service discovery is a significant challenge. Because of the low precision of
current key word based discovery mechanism, most work has focused on logic
based discovery of semantic web service recently. The majority of the work per-
forms profile based service signature (I/O) matching. However, the service I/O is
not sufficient to describe the function of web service clearly. This paper mainly
works on enhancing the semantics of web service through introducing seman-
tic constraints to service I/O concepts. Constraint graph is designed to describe
the semantic constraints of the service I/O concepts. The semantic constraints of
concepts can be extracted automatically from the parsing trees of the description
text. Meanwhile, a matching algorithm for the constraint graph is proposed. The
semantic similarity between the request and service is measured by the degree
of matching between their corresponding constraint graphs.

Preliminary results of our comparative experiments show that building con-
straint graph based SWS matchmakers is more sufficient than purely service



160 D. Wei et al.

I/0O based matchmaker. Semantic constraints of service I/O concepts can im-
prove the precision of semantic matching and easily be plugged into any other
SWS matchmakers as long as they have the same logic based semantic filters.

The performance of our method depends on the performance of constraints
extraction, finding more efficient extraction method to get better results of ex-
traction is the work in the future. We are planning to extract more constraint
relationships for the concepts that appear in the web service description, then
web service can be represented by a more complicated graph and the matching
algorithm will be more sophisticate.

References

1. Lu, X., Wang, H., Wang, J.: Internet-based virtual computing environment(ivce):
Concepts and architecture. Science in China Series F: Information Sciences 49(6),
681-701 (2006)

2. Klusch, M.: Semantic services coordination. In: Schumacher, M., Helin, H., Schuldt,
H. (eds.) CASCOM - Intelligent Service Coordination in the Semantic Web, ch. 4.
Springer, Heidelberg (2008)

3. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Terry, P., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services (2004),
http://www.w3.org/Submission/0WL-S/

4. de Bruijn, J., Bussler, C., John, D., Fensel, D., Hepp, M., Kifer, M., Kénig-Ries, B.,
Kopecky, J., Lara, R., Oren, E., Polleres, A., Scicluna, J., Stollberg, M.: D2v1.3.
web service modeling ontology (wsmo) (2006),
http://www.wsmo.org/TR/d2/v1.3/

5. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A,
Verma, K.: Web service semantics - WSDL-S (2005),
http://www.w3.org/Submission/WSDL-S/

6. Farrell, J., Lausen, H.: Semantic annotations for WSDL and XML schema (2007),
http://www.w3.org/TR/sawsdl/

7. Kaufer, F., Klusch, M.: Wsmo-mzx:a logic programming based hybrid service match-
maker. In: 4th European Conference on Web Service, Zurich, Switzerland, pp. 161—
170. IEEE CS Press, Los Alamitos (2006)

8. Stollberg, M., Keller, U., Lausen, H., Heymans, S.: Two-phase web service discovery
based on rich functional descriptions. In: Franconi, E., Kifer, M., May, W. (eds.)
ESWC 2007. LNCS, vol. 4519, pp. 99-113. Springer, Heidelberg (2007)

9. Jaeger, M.C., Rojec-Goldmann, G., Liebetruth, C., Miihl, G., Geihs, K.: Ranked
matching for service descriptions using owl-s. In: KiVS 2005, Informatik Aktuell,
pp. 42-113 (2005)

10. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: 5th International Joint Conference on Autonomous Agents and Multi-
Agent Systems(AAMAS), Hakodate, Japan, pp. 915-922. ACM, New York (2006)

11. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:
Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publication
and discovery of web services. Information Technology and Management 6, 17-39
(2005)


http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/TR/d2/v1.3/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/TR/sawsdl/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Extracting Semantic Constraint from Description Text for SWS Discovery 161

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of
web services capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333-347. Springer, Heidelberg (2002)

Constantinescu, ., Faltings, B.: Efficient matchmaking and directory services. In:
IEEE/WIC International Conference on Web Intelligence, Washington, DC, USA.
IEEE Computer Society, Los Alamitos (2003)

Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the owl-
s ide. In: 39th Hawaii International Conference on System Sciences, Washington,
DC, USA, vol. 6. IEEE Computer Society, Los Alamitos (2005)

Klusch, M., Fries, B., Khalid, M., Sycara, K.: Owls-mx:hybrid semantic web service
retrieval. In: 1st International AAAI Fall Symposium on Agents and the Semantic
Web, Arlington VA, USA (2005)

Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for owl-s based
semantic search in uddi. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS,
vol. 3387, pp. 96-110. Springer, Heidelberg (2005)

Kiefer, C., Abraham, B.: The creation and evaluation of isparql strategies for
matchmaking. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 463-477. Springer, Heidelberg (2008)
Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., Stevens, R.: Deciding
semantic matching of stateless services. In: 21st National Conference on Artificial
Intelligence (AAAT 2006), pp. 1319-1324 (2006)

Jaeger, M.C., Tang, S.: Ranked matching for service descriptions using daml-s. In:
CAiSE Workshops, Riga, Latvia, pp. 217-228 (2004)

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: Gate: A framework and
graphical development environment for robust nlp tools and applications. In: 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL 2002)
(2002)

Hef, A., Kushmerick, N.: Assam:a tool for semi-automatically annotating semantic
web services. In: 3rd International Semantic Web Conference, pp. 320-334 (2004)
Oldham, N., Thomas, C., Sheth, A., Verma, K.: Meteor-s web service annotation
framework with machine learning classification. In: Cardoso, J., Sheth, A.P. (eds.)
SWSWPC 2004. LNCS, vol. 3387, pp. 137-146. Springer, Heidelberg (2005)



Enhancing Semantic Web Services with Inheritance

Simon Ferndriger!, Abraham Bernstein®, Jin Song Dong?,
Yuzhang Feng?, Yuan-Fang Li®> ", and Jane Hunter?

! Department of Informatics
University of Zurich
Zurich, Switzerland
ferndriger@gmail.com,bernstein@ifi.uzh.ch
2 School of Computing
National University of Singapore, Singapore
{dongjs, fengyz}@comp.nus.edu.sg
% School of ITEE
University of Queensland
Brisbane, Australia
{liyf, jane}@itee.uqg.edu.au

Abstract. Currently proposed Semantic Web Services technologies allow the
creation of ontology-based semantic annotations of Web services so that soft-
ware agents are able to discover, invoke, compose and monitor these services
with a high degree of automation. The OWL Services (OWL-S) ontology is an
upper ontology in OWL language, providing essential vocabularies to semanti-
cally describe Web services. Currently OWL-S services can only be developed
independently; if one service is unavailable then finding a suitable alternative
would require an expensive and difficult global search/match. It is desirable to
have a new OWL-S construct that can systematically support substitution tracing
as well as incremental development and reuse of services. Introducing inheritance
relationship (IR) into OWL-S is a natural solution. However, OWL-S, as well as
most of the other currently discussed formalisms for Semantic Web Services such
as WSMO or SAWSDL, has yet to define a concrete and self-contained mecha-
nism of establishing inheritance relationships among services, which we believe
is very important for the automated annotation and discovery of Web services
as well as human organization of services into a taxonomy-like structure. In this
paper, we extend OWL-S with the ability to define and maintain inheritance rela-
tionships between services. Through the definition of an additional “inheritance
profile”, inheritance relationships can be stated and reasoned about. Two types of
IRs are allowed to grant service developers the choice to respect the “contract”
between services or not. The proposed inheritance framework has also been im-
plemented and the prototype will be briefly evaluated as well.

1 Introduction

Current Web Services technology such as WSDL, UDDI, and SOAP provide the means
to describe the “syntax” of the code running in a distributed fashion over the Internet.

i Corresponding author.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 162 2008.
(© Springer-Verlag Berlin Heidelberg 2008



Enhancing Semantic Web Services with Inheritance 163

They lack, however, the capabilities to describe the semantics of these code fragments,
which is one of the major prerequisites for service recognition, service configuration
and composition (i.e., realizing complex workflows and business logics with Web ser-
vices), service comparison as well as automated negotiation.

To that end a number of languages such as OWL-, SAWSDLE, WSM(ﬂ, and
SWSHY have been proposed. Each of these languages allows connecting Web services
with an ontology-based semantic description of what the service actually does. The
OWL Services (OWL-S) ontology is an OWL ontology defining a set of essentia vo-
cabularies to describe the “semantics” of Web services, defining its capabilities, re-
quirements, internal structure and details about the interactions with the service. Other
efforts provide similar vocabularies with different focus and coverage.

Based on the de-facto ontology language, OWL DL, OWL-S seems to be a promis-
ing candidate as an open standard. Currently OWL-S services can only be developed
independently. Moreover, if one service is unavailable then finding a suitable alternative
would require an expensive and difficult global search/match. It is desirable to have a
new OWL-S construct that can support the systematic substitution tracing as well as the
incremental development and reuse of services. Hence, in order for OWL-S to enjoy
wider adoption, a more systematic, automated and effective mechanism of annotation
and discovery of services is required.

The owl : imports construct of OWL can be seen as a rudimentary form of estab-
lishing links between OWL-S services to support easy service annotation. However, it
does not provide the necessary flexibility since once a particular construct from a ser-
vice ontology, say, a composite process in a service model, is imported, it can only be
augmented by adding more triples describing it. Basically, the importing service cannot
revoke any RDF statement already made in the imported ontology. Hence, only reusing
constructs at very detailed level is possible for the importing approach, which we deem
is neither desirable nor practical. An approach more flexible and powerful is needed.

Inspired by the object-oriented programming paradigm, we propose to extend OWL-
S with service inheritance, which we believe improves the level of automation and effec-
tiveness for carrying out the above tasks. So far, however, only the SWSF framework
briefly discusses establishing connections between different Web services in order to
reuse similar underlying elements and add additional relationship information. Further-
more, none of these standards defines a concrete and self-contained way of sharing
specific elements among Web Services or a way of interpreting the relationship among
these services.

1.1 Motivation

We believe adding inheritance relationships between services can help to automate and
ease a number of tasks. In this subsection, we present some scenarios in which inheri-
tance of services facilitates the completion of tasks.

'mttp://www.daml.org/services/owl-s/

2 http://www.w3.0org/TR/sawsdl/

3 http://www.wsmo.org/wsml/wrl/wrl.html
‘Mttp://www.daml.org/services/swst/


http://www.daml.org/services/owl-s/
http://www.w3.org/TR/sawsdl/
http://www.wsmo.org/wsml/wrl/wrl.html
http://www.daml.org/services/swsf/

164 S. Ferndriger et al.

Semantic Service Annotation. The number of Semantic Web services (SWS) needs to
reach a critical mass in order for SWS to gain wider acceptance and adoption. Hence,
the creation of semantic annotation of Web services is an important first task. Currently,
with tool support, annotation of services are still mostly created from scratch. Inheri-
tance mechanism can greatly speed up the annotation of Web services by selectively
reusing components from existing services.

Service Discovery. Automated Web service discovery is stated as a motivating task
for OWL-S. Service discovery, however, depends heavily on (potentially large) service
registries because there is yet no other way to discover those services otherwise.

An alternative to discovering relevant services without the need of a registry is to
make use of inheritance relationships between services in order to find service substi-
tutes more efficiently. Analogous to object-oriented concepts, when certain constraints
are satisfied, a sub service may be used to substitute its super service for automated,
dynamic service discovery and composition.

It may seem that existing language constructs such as rdfs:subClassOf can
handle inheritance, by subclassing existing service annotations. However, as RDF
Schema and OWL are based on monotonic logic, subclassing only represents a re-
stricted form of inheritance.

Inspired by the MIT Process Handbook [1I2]] we believe that service ontologies are
central to the organization of business knowledge. As shown by Malone and colleagues,
process repositories that build on the inheritance of process properties can be effectively
used to (1) invent new business processes, (2) systematically explore the design space
of possible service alternatives through recombination [3], (3) design robust services
through the advanced usage of exceptions, (4) support knowledge management about
services by improving their management process, ability to handle conflicts, support
for communicative genres, (5) as well as improve software design and generation by
increasing the coordination alternatives between pieces of code and achieve the flexible
execution of workflows [4]].

Based on the above motivating tasks, we propose to extend OWL-S with Inheritance
Relationships (IRs) between services for more automated annotation and discovery. We
draw inspirations from the Semantic Web Services Framework (SWSF) and expand the
brief discussion in SWSF on inheriting and overriding processes among services.

In this paper, we present an inheritance framework for OWL-S ontology. Two versions
of Inheritance Relationships are supported: normal and strict inheritance for OWL-S in
the form of additional, independent service profiles. The normal inheritance does not
impose additional restrictions on the inheritance relationship in order to allow for more
flexible reuse of existing service components. As normal inheritance inevitably allows
the alteration of existing services, a form of default inheritance advocated by SWSL [3]
is employed. The strict inheritance, by imposing certain restrictions on IOPEs of the
inherited process, dictate that the “contracts” of processes of a super service must be
maintained by the inheriting service. This guarantees a proper refinement relationship
between the super service and the sub service. Hence, a strictly inheriting sub service
can substitute its super service whenever the super service is invoked, whereas this sub-
stitutability is not guaranteed with normal inheritance. Moreover, it enables a sub service
to be more easily discovered.



Enhancing Semantic Web Services with Inheritance 165

The rest of the paper is organized as follows. Section 2 briefly presents background
knowledge about OWL-S and SWSF. Section 3] discusses the two forms of inheritance
relationships in detail. In Section [l we extend the well-known CongoBuy example
from OWL-S specification to illustrate the benefits of IRs. Finally, Section 3l concludes
the paper and discusses future work directions.

2 Background Knowledge

In this section, we introduce the background knowledge necessary for the discussion of
the following sections.

2.1 OWL-S

The OWL-S ontology has been developed to enrich Web Services with semantics. The
semantic markup of OWL-S enables the automated discovery, invocation, composition,
interoperation and monitoring of Web services. This automation is achieved by provid-
ing a standard ontology (OWL-S) for declaring and describing Web Services.

Being an OWL ontology, OWL-S defines a set of essential vocabularies to describe
the three components of a service: profile, model and grounding. A service can have sev-
eral profiles and one service model. The service model, in turn, may have one or more
service groundings. In summary, a service profile describes what the service does; the
service model describes how the service works and the grounding provides a concrete
specification of how the service can be accessed.

The ServiceProfile class provides a bridge between service requesters and
service providers. The instances are mainly meant to advertise an existing service by
describing it in a general way that can be understood both by humans and computer
agents. It is also possible to use a service profile to advertise a needed service request.

OWL-S provides a subclass of ServiceProfile, Profile. This default class
should include provider information, a functional description and host properties of the
described service. It is possible to define other profile classes that specify the service
characteristics more precisely.

The ServiceModel class uses the subclass Process to provide a process view
on the service. This view can be thought of as a specification of the ways a client may
interact with a service. The service model defines the inputs, outputs, preconditions and
effects (IOPEs) and the control flow of composite processes.

One useful language constructin the service model is the definition of Expression,
which is used to express preconditions and effects in the logic language of choice by the
service developer. Basically, an expression is characterized by an expression language,
such as SWRL [6]], KIF [7], etc., and an expression body, containing the logic expression
in that language.

The ServiceGrounding class provides a concrete specification of how the ser-
vice can be accessed. Of main interest here are subjects like protocol, message formats,
serialization, transport and addressing. The grounding can be thought of the concrete
part of the Semantic Web service description, compared to the service profile and ser-
vice model which both describe the service on an abstract level.



166 S. Ferndriger et al.

2.2 SWSF

The Semantic Web Services Framework (SWSF) [8] includes two major components,
The Semantic Web Services Language (SWSL) [3] and the Semantic Web Services
Ontology (SWSO) [9]. SWSL is a generic language, used in the SWSF framework to
formally specify Web service concepts and descriptions. It includes two sublanguages:
SWSL-FOL (based on first-order logic) and SWSL-Rules (based on logic program-
ming). SWSO serves essentially the same purposes as OWL-S: providing semantic
specifications of Web services; namely (similarly to OWL-S) a comparable service pro-
file, model and grounding.
However, SWSO also has a number of significant differences from OWL-S.

— Higher expressivity: the SWSF service ontology (called FLOWS) is expressed in
first-order logic. OWL-S, in contrast, is expressed in OWL-DL, a variant of de-
scription logic language SHOZN (D) [10].

— Enhanced process model: SWSF claims to provide an enhanced process model as
compared to OWL-S. It is based on the Process Specification Language [11]], hence,
it provides Web Services specific process concepts that include not only inputs and
outputs, but also messages and channels.

— Non-monotonic language: In addition to the service language, SWSO makes use
of SWSL-Rules, a non-monotonic language based on the logic-programming par-
adigm which is meant to support the use of the service ontology in reasoning and
execution environments.

— Interoperability: an important final distinction between OWL-S and FLOWS is with
respect to the role they play. Whereas both endeavor to provide an ontology for Web
services, FLOWS had the additional objective of acting as a focal point for inter-
operability, enabling other business process modeling languages to be expressed or
related to FLOWS.

Molecules are a language construct in the Frames layer of the SWSL-Rules lan-
guage. We will use molecules to present some of the inheritance-related concepts in
later sections. Here, we give a brief overview of molecules. A molecules can be viewed
as an atomic term: a constant, a variable or an function application. Of the seven forms
of molecules, we present the two forms that will be used in this work: value molecules
and boolean molecules. In this paper, the molecules will be presented in teletext
font.

Value molecules are of the form t [m -> v] where t, m and v are all terms where
t denotes an object, m denotes a function invocation in the scope of t and v denotes a
value returned by the invocation. The molecule t [m *-> v] denotes that this method
is inheritable.

Boolean molecules are of the form t [m] where t and m are both terms. A Boolean
molecules can be interpreted as t [m -> truel, meaning that the property m of ob-
ject t is true.

Complex molecules can be formed from other molecules by grouping and nesting.
For example, the molecules t [m -> v] and t[p], which describe the same ob-
ject t, can be grouped together to form the complex molecule t [m -> v and p].
Similarly, t [m -> v] or t[p] canbe groupedto formt[m -> v or p].



Enhancing Semantic Web Services with Inheritance 167

2.3 Related Works

The concept of inheritance is not new. It has been an active research area in program-
ming languages and software engineering for over decades. In particular, the works on
behavioral subtyping of object-oriented languages and object-oriented specifi-
cation languages are particularly related.

OWL-S defines an process hierarchy ontologyﬁ that describe a profile-based ap-
proach of creating service hierarchies. However, this approach, as the authors put it,
“provides a useful means of constructing a ’yellow pages’ style of service categoriza-
tion”. It does not support the extension/modification of services at the level of granular-
ity presented in this paper.

3 IR Framework for OWL-S

Although inheritance has been widely used in computer science as a tool to encapsulate
and manage program complexity and to improve code reuse and reliability, it has not
been widely applied to the Web Services domain.

In this section, we present in detail our proposed inheritance relationships (IRs)
framework for OWL-S services. The language constructs used to extend/modify in-
herited entities and conditions that must be satisfied by these constructs are presented.

We start this section with a discussion on the distinction between different types of
inheritance relationships: normal vs strict inheritance and single vs multiple inheritance.

3.1 The Perspectives of Inheritance

Normal IR, closely related to default inheritance [14/13]], allows for flexible alteration
of inherited service components. It primarily facilitates the easy annotation of Web
services.

In complete inheritance, information that is used by more than one element has to
be stored in a more general element. This means that no redundant information is al-
lowed and information has to be inherited down the inheritance chain: the generalization
must be complete. Therefore, inherited information can neither be altered nor arbitrarily
extended.

On the contrary, default inheritance is defined such that elements get inherited by de-
fault which can be modified and extended afterwards. Hence, new features/functionalities
are allowed to be added in default inheritance. In the Web environment, it is often the case
that an inheriting service intends to extend the functionality of the inherited service. Com-
pared to the OWL imports approach, default inheritance allows for the possibility of
freely modifying an inherited entity. Furthermore, default inheritance has been shown
to be easier to understand by non-specialists [16] making it more suitable for the wide
variety of users on the Semantic Web. For those reasons, default inheritance is adopted
for this approach.

Strict IR aims at enabling more automated and accurate service discovery by following
the inheritance chain between services. Seen as a form of normal IR, strict IR imposes

3 http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.owl


http://www.daml.org/services/owl-s/1.1/ProfileHierarchy.owl

168 S. Ferndriger et al.

certain restrictions such that a strictly inheriting service can automatically be used as a
faithful substitute for the inherited service.

The faithful substitute is achieved by following the principle of operational refine-
ment on the IOPEs of the inherited processes. Briefly, let the IOPEs of an OWL-S
service process SPy, and its ancestor process SPy, be I,0,P,E and I',O’, P’ E', re-
spectively. In order to establish a strict IR between Sy, and Sy, the following conditions
must hold.

P =P E=F

e.g., the preconditions P of the inheriting service SPg, must be weaker than that of the
inherited service, and vice ve