
On Parallel Stochastic Simulation of Diffusive
Systems

Lorenzo Dematté1,2 and Tommaso Mazza1

1 The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

Piazza Manci, 17, 38100, Povo (TN), Italy
{dematte,mazza}@cosbi.eu

2 Department of Information Engineering and Computer Science (DISI),
University of Trento

Abstract. The parallel simulation of biochemical reactions is a very in-
teresting problem: biochemical systems are inherently parallel, yet the
majority of the algorithms to simulate them, including the well-known
and widespread Gillespie SSA, are strictly sequential. Here we investi-
gate, in a general way, how to characterize the simulation of biochemical
systems in terms of Discrete Event Simulation. We dissect their inher-
ent parallelism in order both to exploit the work done in this area and
to speed-up their simulation. We study the peculiar characteristics of
discrete biological simulations in order to select the parallelization tech-
nique which provides the greater benefits, as well as to touch its limits.
We then focus on reaction-diffusion systems: we design and implement
an efficient parallel algorithm for simulating such systems that include
both reactions between entities and movements throughout the space.

Keywords: Parallel and distributed simulation, reaction-diffusion
systems, Gillespie SSA.

1 Introduction

In computational biology, the interest on multi-processor computing is growing
over the years, even if ubiquitous and parallel computing require deep knowledge
both on the bio-reality and on the tools in charge of handling and interpreting
it. Indeed, the correct parallel computation of whatever problem must take into
account four milestones: (i) the best computational splitting policy; (ii) how to
handle synchronization among the computational workers, (iii) the more suitable
hardware architecture and software packages to use and (iv) the nature of the
inherent parallelism.

There are problems naturally parallelizable and others purely serial. According
to the case, the additional computing power afforded by new machines can be
used to advantage of one or of the other. To enhance the efficiency of Monte Carlo
simulations, Single Replication in Parallel (SRIP) and Multiple Replications in
Parallel (MRIP) computational paradigms have been widely contemplated in
the past and deemed to be appropriate.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 191–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 L. Dematté and T. Mazza

Single Replication in Parallel. The SRIP approach is based on the decom-
position of a stochastic trajectory into logical processes, running on different
processors and communicating by means of message passing protocols [1].
For naturally divisible problems, it shows elevated performances in speed-up
and scale-up benchmarks. Significant drawbacks originate from the necessity
for warranty of synchronism.

Multiple Replications in Parallel. The MRIP method speeds up simulation
by launching independent replications on multiple computers and using dif-
ferent random seeds in such a way the processes result approximatively un-
correlated [2]. In contrast to SRIP, MRIP can be easily applicable to any
system, independent of the inherent system parallelism. However, the fact
that a single replication cannot be executed on a unique processor and that
outputs (or pieces of them) almost deterministic are identical when repli-
cated, make the use of MRIP approaches sometimes inappropriate [3]. The
MRIP and SRIP approaches are not exclusive, i.e., it is possible to use MRIP
and SRIP in the same simulation program.

In biology, whereas the MRIP policy, well understood and investigated for
a long time [2], [4], [5], [3], [6], [7], [8], [9], [10], [11], finds straightforward
application to real case-studies [12], [13], the SRIP policy has a rather vague
characterization. SRIP methods can be further divided into two opposite sub-
categories which include: (a) methods that exploit data-parallelism (or loop-level
parallelism), namely that exemplify simulation of interacting particles on a fi-
nite grid in which individual processors are in charge of simulating the state
of each site [14]; (b) methods that exploit task-parallelism (or functional par-
allelism), namely that divide the computation of a realization into a set of
sub-computations among cooperative processors by computational dependency
criteria [1], [15]. To date, the research in distributed-parallel processing has suc-
cessfully solved many related problems; however, it has not led yet to a portable
and efficient tool for distributing stochastic simulation in the field of computa-
tional biology. We aim to move the attention of the reader toward our target by
going through the theoretical bases and strategic decisions which configure our
insight.

In particular, the next section will introduce the Gillespie Stochastic Sim-
ulation Algorithm (SSA), the most known and the de-facto standard for the
simulation of biochemical systems at microscopic and mesoscopic level and a
possible extension for simulating bigger systems where spatiality and diffusion
are important variables. Next, we will briefly introduce the category of computer-
simulation systems known as DES and the work done on these systems in the
light of parallel and distributed computing. We will show how the SSA can be
reformulated in term of a DES system, and we will show the characteristics the
algorithm assumes when it runs in a parallel environment. Section 4 will present
how these concepts were used in the designing and implementation of a reaction-
diffusion simulator that runs on HPC clusters, and Sections 5 and 6 will close
the paper with an example and considerations about future work.

On Parallel Stochastic Simulation of Diffusive Systems 193

2 The Gillespie SSA

The stochastic approach to chemical kinetics was first employed by Delbruck in
the ’40s. The basic assumptions of this approach are that a chemical reaction
occurs when two (or more) molecules of the right type collide in an appropriate
way, and that such collisions are random in a system of molecules in thermal equi-
librium. Whenever two molecules come into a certain proximity, they can react
with some probability: collisions are frequent, but those with the proper orienta-
tion and energy, that is the collisions that allow molecules to react together, are
infrequent. In [16] and [17], Gillespie introduced the additional assumption that
the system is in thermal equilibrium. This assumption means that the considered
system is a well-stirred mixture of molecules, where the number of non-reactive
collisions is much higher than the number of chemical reactions. It makes pos-
sible to state that the molecules are randomly and uniformly distributed at all
times. The derived stochastic method becomes computationally lighter than the
classical methods in charge of predicting collisions by estimating the collision
volume of each particle.

The so called Stochastic Simulation Algorithm (SSA) models a general bi-
ological system as a set of pairs (entity type, quantity) and a set of possible
interactions between the entities. In the case of biochemical models, entities are
molecules and interactions are coupled chemical reactions. Therefore, we can
reduce the necessary parameters for describing a system to:

– the entities, usually referred to as species, present in the system S1, ..., SN ;
– the number and type of interactions, called reaction channels, through which

the molecules interact R1, ..., RM ;
– the state vector X(t) of the system at time t, where Xi(t) is the number of

molecules of species Si present at time t.

The state vector X(t) is a vector of random variables, that does not take account
of the position and velocity of the single molecules. For each reaction channel
Rj , a function aj , called propensity function for Rj , is defined as:

aμ = hμcμ, for μ = 1, . . . , M (1)

such that hμ is the number of distinct reactant combinations for reaction Rμ

and cμ is a constant depending on physical properties of the reactants. The cμ

constant is usually called base rate, or simply rate of an action, while the value
of the function aμ is called the actual rate.

Gillespie derived a physical correct Chemical Master Equation (CME) from
the above representation of biochemical interactions. Intuitively, this equation
shows the stochastic evolution of the system over time, which is indeed a Markov
process. Gillespie also presented in [17] an exact procedure, called exact stochas-
tic simulation, to numerically simulate the stochastic time evolution of a bio-
chemical system, thus generating one single trajectory. The procedure is based on
the reaction probability density function P (τ, μ), which specifies the probability
that the next reaction is an Rμ reaction and that it occurs at time τ :

194 L. Dematté and T. Mazza

P (τ, μ) =
{

aμ exp(−a0τ) if 0 ≤ τ < ∞ and μ = 1, . . . , M
0 otherwise

where aμ is the propensity function and a0 is the sum of aμ, μ = 1, . . . , M .
The reaction probability density function is used in a stochastic framework

to compute the probability of an action to occur. The way of computing the
combinations hμ and, consequently the actual rate aμ, varies with the different
kind of reactions. In the case of first-order reactions, hμ is equal to the number
of entities (the cardinality) of the one reactant, while in the case of second-order
reactions, hμ corresponds to the number of all possible interactions that can take
place among the reactants.

2.1 Simulation of Reactive-Diffusive Systems

When studying a single localized pathway, the macroscopic description of its
kinetics usually suffices. On the other end, many biological processes are not
local and, often, they take place in an inhomogeneous medium, the cytosol, where
spatially localized fluctuations of inorganic catalysts and intracellular diffusion
can play an important role. When dealing with such processes, it is mandatory
to explicitly consider the cell geometry and, in general, spatial conformations
and diffusion processes.

Several algorithms for the simulation of reactive-diffusive systems exist; each
of them uses a different abstraction that gives a different level of detail which
influences both the accuracy of the simulation and its execution speed. Chemical
and biochemical reactions can be simulated in a very precise and detailed way
using molecular dynamics [18], a form of computer simulation where atoms are
allowed to interact under known physics laws. In these simulations, details about
the chemical reactions, like formation and bonds breaking between single atoms,
are explicitly simulated as well as the position and energy of every atom in the
system. These methods have been applied to a wide range of problems of chemical
and biological interest, such as chemical reactions in solution and enzymes and
solvent effects on electronic excited states.

Other methods, like the one used by Bray et al. in Smoldyn [19], operate
at a coarser level of detail, where molecules have an identity and an exact po-
sition in a continuous space, but no volume, shape or inertia. Moreover, every
molecule of interest is represented as an individual point, while those that are not
of interest (water, non-reactive molecules, etc.) are not represented. Molecules
move at rates specified by a diffusion coefficient and diffuse in random direc-
tions and distances calculated by means of the Fick’s second law. Bimolecular
reactions take account of the spatial relations; a bimolecular reaction occurs
if two reactants approach each other within a binding radius, a radius that is
different (typically smaller) than the physical radius of the molecules, and that
depends on the diffusion coefficients and on the reaction rate constant. Simulated
space is continuous; on the other hand, simulated time is discrete as reactions,
computation of movements and update of the position are done at fixed time
steps.

On Parallel Stochastic Simulation of Diffusive Systems 195

2.2 Reaction-Diffusion with the Gillespie Method

The Gillespie algorithm, introduced in Sec. 2, allows to simulate chemical re-
actions in an efficient way. Every collision that leads to a reaction is explicitly
simulated, but collisions that do not lead to a reaction are not. The stochastic
behaviour of the chemical system is preserved, as molecules are still represented
as discrete quantities, but information on a single molecule, and with it any
positional information, are lost. Moreover, the assumptions made by Gillespie
explicitly rule out diffusion from the system: since the solution is in thermal equi-
librium, it is assumed that diffusion is instantaneous so that each molecule has
the same probability of reacting with every other molecule in the system. The
algorithm works well locally, but cannot be used to represent complex pathways
that span over a considerable extension of reactions taking place in an inhomo-
geneous medium.

Fig. 1. The extension to the Gillespie SSA proposed by Bernstein. On the left, a
discretization of the space into four cells. On the right, the species and the reactions
added to the system in order to deal with diffusion.

A proposed extension is the discretization of the space by subdivision into
logical sub-volumes, often referred to as cells. The dimension of a cell is chosen
to be small enough for the sub-space to be homogeneous and for the enclosed
entities to have almost instantaneous diffusion, so that the assumptions made
by the Gillespie algorithm are valid inside a single cell; furthermore, spatial
information is added to the system by duplicating every species S. New species
with the same characteristics of S and with an index identifying its position
on the grid are added to the system (S1, S2, ..., Sn); diffusion is represented by
first-order reactions among species. This method, proposed by Bernstein [20], is
depicted in Fig. 1.

The advantage of this approach is that the algorithm in charge of simulating
the reaction-diffusion system does not change; it is possible to add more species
to model the molecules in different compartments and add reactions to “dif-
fuse” between adjacent compartments, and then to use the existing tools and
algorithms to simulate the modified system.

An efficient implementation for simulating reactive-diffusive systems by using
spatial structures is used in the next subvolume method (Elf et al. [21]). The

196 L. Dematté and T. Mazza

underlying theory is the same utilized by Bernstein, as both are based on the
exact realizations of the Markov process described by the Reaction Diffusion
Master Equation. The algorithm uses three data structures: (i) a connectivity
matrix, (ii) an event queue and (iii) a configuration matrix, used to naturally
partition reactions into sub-volumes. Instead of mapping movements of entities
using different species, the direct method [17] is used on each sub-volume to
compute the time for the next event, i.e. a chemical reaction or a diffusion
event. Then, the next reaction method [22] is used to identify the sub-volume
where the first event will occur. The event is simulated, then the reaction and
diffusion times in the volume (or volumes, in case of diffusion) are updated using
the direct method again.

3 Discrete Event Simulation (DES)

In DES, the life of a system is modelled as a sequence of timed events. With
this approach, a system is set up by a collection of processes P = {p1, p2, . . .}
and of activities or events E = {e1, e2, . . .}. A process is fully characterized by
a finite set of states S = {s, s′, . . .}. At any given time, each process has exactly
one active state. Each state s has a set of actions As = {αs, α

′
s, . . .} that can be

performed when the process is in that state; the aim of an action is to change
the current active state. Activities or events are sets of actions that are executed
together to transform the state of the system. Here, we refer to the state of a
system z as the collection of all the active states of the processes in the sys-
tem. A run is thus meant as a sequence of interleaved system states and events:
r : z0|e0 → z1|e1 → z2|e2 . . . z(u−1)|e(u−1) → zu. As opposed to continuous sim-
ulation, in discrete event simulation, state changes of the simulated system are
assumed to happen at discrete points of the virtual time and are thus controlled
by uncontinuous functions, resulting in a succession of events.

DES can be used to simulate stochastic processes. In a stochastic process, each
state is partially but not fully determined by the previous one. Typically, a stochas-
tic process can have one or more deterministic arguments1 and their values range
over an index collection of non-deterministic random variables Xi with certain
probability distributions. Such functions are equally known as realisations or sim-
ple paths. The view of a stochastic process as an indexed collection of random vari-
ables is the most common one. The events to be executed are bound to the set of
random variables Xi, that determine which event will be executed and when. A
simulation executes events in nondecreasing time-stamp order so that the virtual
time (the time-stamp of the last executed event) never decreases.

Indeed, the occurrence of an event typically causes four actions: (a) progres-
sion of the virtual time to the timestamp of the simulated event; (b) changes of
the state of the simulated system; (c) scheduling of new events and (d) deschedul-
ing of other events. Thus the basic data structure of a DES program consists
of: (i) a virtual simulation clock; (ii) a timestamp ordered list of pending events
and (iii) the state variables.
1 We consider the time as always present among the arguments.

On Parallel Stochastic Simulation of Diffusive Systems 197

3.1 Parallel and Distributed Discrete Event Simulation (PDES and
DDES)

In this summary, we deal with parallelism at model function level. In particular,
we focus on methods which make intensive use of multiprocessors architectures for
DES and which can be classified in between the following two classes: parallel dis-
crete event simulation (PDES) and distributed discrete event simulation (DDES).

In PDES and DDES, a simulation model is partitioned into regions or do-
mains2. Each region is simulated by a so-called logical process (LP). Each LP
consists of [23]: (i) a spatial region Ri of the simulated system; (ii) a simulation
engine SEi executing the events belonging to the region Ri and (iii) a commu-
nication interface, enabling LPs to send messages to and receive messages from
other LPs.

LPs are mapped onto distinct processors with (as an assumption) no common
memory. Thus, every LP can only access a subset of the state variables Si ⊂ S,
disjoint to the state variables assigned to the other LPs. The simulation engine
SEi of each LP processes two kinds of events: internal events which have no
direct causal impact on the state variables held in the other LPs and external
events that can change the state variables in one or more other LPs. If an external
event is processed, the LP holding the state variables that are to be changed is
informed through a message sent by the LP. The message routing between the
LPs is done by a communication system, connecting the LPs. Incoming messages
are stored in input queues, one for each sending process.

Due to different virtual time progression within the various LPs, the causality
principle is hard to be guaranteed and special considerations have to be made to
obtain the same simulation results from DDES as from sequential DES. The two
most commonly used synchronization protocols in DDES are: (i) The conser-
vative (or Chandy-Misra) synchronization protocol developed by Chandy and
Misra [24], [25] and (ii) the optimistic (or time warping) simulation protocol
based on the virtual time paradigm proposed by Jefferson [26].

3.2 Conservative vs. Optimistic

The basic idea of the conservative protocol is to absolutely avoid the occurrence
of causality violations. It is granted by strictly freezing the computation of an
event e with virtual time (VT) te until when no messages with VT lower than
te will be received. Under the assumption of FIFO message transport, this is
achieved by only simulating an event if its VT is lower than the minimum of the
timestamps of all events in all input queues.

An obvious problem arising in conservative simulation is the possibility of
deadlocks [27]. Some deadlock resolution schemes have been developed during
the last years. Among them, the more interesting are: [24] which avoids deadlock
by the use of NULL-messages and [25] which detects and recovers deadlock, in
advance. Some optimization protocols are discussed in [28], [29] (Null-messages

2 For the purposes of this paper, only spatial decomposition is considered; however, the
concepts illustrated here are also suitable for decompositions into general domains.

198 L. Dematté and T. Mazza

approach), in [30] (NULL-messages on request), in [31], [32] (lookahead compu-
tation), and in [33], [34] (local deadlock detection).

In contrast to the conservative protocol, there is no blocking mechanism in
the optimistic one. An event is simulated even if it is not safe to process. Thus,
causality errors are allowed to occur, but are later detected and solved. To guar-
antee causality, a mechanism called time warp or rollback has been designed.
Time warp is optimistic in the sense that each processor P0 executes events in
timestamp order under the optimistic assumption that causality is not being
violated. At any point, however, P0 may receive a straggler event E, that should
have been executed before the last several events already executed by P0. In
this case, it rolls back to a check pointed system state that corresponds to a
time-stamp which is a global minimum among all VT (global virtual time) and
less than the straggler’s time-stamp. Processor P0 resumes its execution from
this point, and P0 processes E, in the right time-stamp order.

A successful optimistic DDES minimizes the runtime costs of (i) state-saving
system state, (ii) rollback, (iii) global virtual time (gvt) computation, and (iv)
interprocessor communication.

3.3 Characterization of the Gillespie SSA as a PDES Algorithm

From a computational point of view, a biochemical system designed to be simu-
lated with SSA can be seen as a collection of interacting processes, where each
process can be in a different state among a set of discrete states. In this view,
biochemical species are treated as processes that are able to perform a set of
actions, changing their state in response to an external or internal action; reac-
tions can be codified as events that are composed of a number of complementary
actions, so that the execution of a reaction results in a simulation event that ex-
ecutes two (in the case of mono-molecular reactions) or more (in the case of
bi-molecular reactions) actions in two or more processes (see Fig. 2).

Fig. 2. A set of species and a set of reaction (left) represented as a set of processes and
events (right). Each event is composed by two or more actions that modify the state
of each process, typically decreasing or increasing the counter for the cardinality of the
corresponding species.

So, a biochemical system S = (P, E) can be seen as a set of processes P =
{p1, ..., pn}, each holding a set of states and a set of actions that can be performed
to modify its state, and a set of events E = {e1, ..., em}, each composed by a set of

On Parallel Stochastic Simulation of Diffusive Systems 199

actions; typically, for every process p there will be two actions (a+, a−) in charge
of decreasing and increasing the counter for the cardinality of the corresponding
species. However, it is possible and sometimes useful to add additional state
variables and corresponding actions.

It is easy to see that, following this computational view, the simulation of a
biochemical system with the Gillespie algorithm becomes a DES, where event
times are generated by sampling an exponential distribution. The fact that times
are generated by an exponential distribution leads to some insights in how this
particular DES can be parallelised. In particular, we will show that it is almost
never convenient to parallelize biochemical systems by using a conservative ap-
proach. In support of our analysis, we shall consider a dependency graph between
events, defined as the graph of reactions introduced by Gibson and Bruck [22].

Definition 1. Let Reactants(e) and Products(e) be the sets of reactants and
products, respectively, involved in the event e.

Here, for reactants we indicate the processes whose actions decrease the cardinal-
ity of their state variable, identified with the name of the process and a ‘-’ suffix.
For example, the event e1 in Fig. 3 is composed by the actions {a−, b−, c+};
the actions a− and b− modify the state of A and B, so Reactants(e1) = {A, B}.
Products are defined in a similar way as the processes whose actions increase the
cardinality of their state variable.

Definition 2. Let DependsOn(e) be the set of processes whose state change
affects the execution time of the event e, and Affects(e) the set of processes
whose state changes when an event is executed.

Following the description of the SSA given in Sec. 2, Reactants(e) = DependsOn
(e). Typically, Affects(e) = Reactants(e) ∪ Products(e), or better, the set
of processes on which the actions in e act. Sometimes, when two actions are
complementary (i.e. one cancels the effects of the other), the set can be a little
smaller. This is the case of the event e3 in Fig. 3, where e− cancels e+ and
Affects(e3) can be reduced to {D, F}.

Definition 3 (Dependency graph). The dependency graph of a biochemical
system S is a directed graph G(V, E) in which the set of nodes V corresponds
to the set of events and there is a directed edge between each pair of nodes
(V (e1), V (e2)) if and only if Affects(e1) ∩ DependsOn(e2) �= ∅

The dependency graph can be used to show that the dependencies within reac-
tions, united with the times sampled from an exponential distribution, in many
cases lead to the need for sequential execution.

Definition 4. Considering a system S, its dependency graph can be partitioned
into a set of strongly connected components. We call the set of processes and
events belonging to a strongly connected component of cardinality greater than
one a subsystem (see Fig. 4).

200 L. Dematté and T. Mazza

Fig. 3. The dependency graph (right) for a simple biochemical system (left)

Fig. 4. A biochemical system partitioned into subsystems

Fig. 5. Due to the exponential distribution used to generate execution times, the exe-
cution of an event can lead to the re-computation of the times of all the events in the
same subsystem during the successive simulation steps

Proposition 1. The execution of an event may lead to the need to recompute
the next execution time for all the events in a subsystem.

Whenever an event is executed, the next execution time of the events depending
on it, i.e. its neighbours in the dependency graph, must be updated. Since times
are exponentially distributed, there is no lower bound that guarantees us that
the times we are going to recompute will be higher than a certain threshold.

The events with the new, lower, timestamps will in turn lead to the need for
recomputing the time of other events, with the possibility of generating lower
timestamps for the events they affect. By definition, in a strongly connected

On Parallel Stochastic Simulation of Diffusive Systems 201

Fig. 6. Due to the diffusion events, a reaction-diffusion system has only one single
subsystem

component there exists a path between any two vertexes, so it is possible that
the generation of new times ripples and affects all the events in the subsystem
(see Fig. 5). From this proposition, we can immediately derive two corollaries:

Corollary 1. In a subsystem, the absence of causality errors is guaranteed when-
ever actions are executed in increasing time stamp order (zero lookahead).

Corollary 2. Since the absence of causality errors is guaranteed only if actions
are executed one after the other, a pure conservative approach to PDES -which
allows actions to be executed only when they cannot incur in causality errors- has
a lookahead of zero, leading to a serialized execution where no speedup is possible.

In [35], the authors considered several techniques for obtaining the lookahead
necessary for concurrent execution of events under the conservative approach,
such as artificially inserting lookahead into the computation and relaxing or-
dering constraint. We examined these approaches as well, and we came to the
conclusion that using these techniques would lead to unacceptable compromises
concerning the accuracy of the simulation.

An alternative approach for having some lookahead even in presence of expo-
nential distributed random numbers is pre-sampling. Pre-sampling is a technique
proposed by Nicol [36] for computing lookaheads in queueing network simula-
tions with exponential distributed service time, and then used also for federated
military simulations by Loper and Fujimoto [37]. At a glance, this technique
seems to be applicable even in our domain. It carries a number of problems
that makes it infeasible for our simulations. As noted by Nicol and Fujimoto,
the service time variation has a strong effect on speedup. Under high variation,
very small lookahead values are possible, meaning that lookahead is computed
more often, thereby incurring in increased overhead. Furthermore, they also no-
tice that rich interconnections between simulated entities, such as those used
for simulating a continuous spatial environment, cause increased uncertainty in
future behavior, resulting again in small lookaheads, with poor performances
especially when using exponential distributed times.

202 L. Dematté and T. Mazza

Fujimoto conclusions that this technique requires (i) fixed sized time intervals,
(ii) the same distribution for all messages, (iii) precise timestamps with few
random number samples and (iv) knowledge concerning the number of messages
produced in the near future [37] convinced us to discard it, as reaction-diffusion
biochemical simulations do not meet any of these requirements.

Indeed, it is possible to make two crucial observations about reactive-diffusive
simulations: (a) in a reaction-diffusion systems where species are free to diffuse
in every direction, the dependency graph for diffusive events is fully connected;
thus, the whole system is made of a single big subsystem (see Fig. 6) and (b)
many biological systems show a little number of big subsystems; compounds,
molecules and enzymes in a cell are reused over and over, forming big intercon-
nected networks with loops. Indeed, regulation and transcription processes are
often based on feedback loops, that shows up as connected components (subsys-
tems) of dependency graphs.

In conclusion, the SSA can be characterized as a DES. Of the two main ap-
proaches to parallelize DES, the optimistic one is the most promising: as the
two corollaries show, a pure conservative approach, united with exponentially
distributed times and the particular dependency structure of biochemical sys-
tems, is very likely to perform poorly.

4 An Optimistic Reaction-Diffusion Simulator

As a proof of concept, we designed and developed a parallel stochastic reaction-
diffusion simulator. While designing the simulator, we kept three goals in mind:
(a) correctness : the simulator must respect the assumptions underlying the Gille-
spie method and its extension; (b) scalableness : the addition of further processing
power must result in an increased execution speed-up; (c) fastness : the speed
measured after running on a single processor must be comparable with that
would be achieved if the simulator was strictly sequential.

4.1 Distributed Simulator Design

The first goal can be met by implementing the extension of the Gillespie method
with diffusion events we introduced in Sec. 2.1, and the second and third goals
can be fulfilled by using an approach based on PDES with an optimistic schedul-
ing policy, as discussed in Sec. 3.

Notice that these two objectives must be considered together, as they heav-
ily influence each other. Some methods, like the one presented in [38], chose to
ignore correctness, violating the assumptions made by Gillespie and the proper-
ties stated by Bernstein with the aim to obtain fast parallel execution through
volume subdivision. The algorithm, as the authors themselves say, can be useful
in some cases, but it is not correct in a general sense. Indeed, when the spatial
localization of molecules becomes important for the purposes of the experiment,
the algorithm produces incorrect results.

For an effective implementation of the simulation algorithm as a PDES, spa-
tial structures and partition of reactions into sub-volumes must be provided.

On Parallel Stochastic Simulation of Diffusive Systems 203

Moreover, state information should be maintained in a decentralized way, avoid-
ing to keep global shared state informations, whenever it is possible. Partial local
state can be processed and updated concurrently by different processors. The
Next Subvolume Method (NSM) and algorithms derived from it employ spatial
partitioning into sub-volumes, but they maintain information of execution times
in global data structures; therefore they are not immediately adaptable to a
parallel environment (even if a distributed version of the algorithm was recently
proposed by Jeschke et. al. [35]).

We take a slightly different approach with respect to the NSM; we also divide
reactions into sub-volumes (cells), but we consider each cell on the two or three-
dimensional grid as an almost autonomous entity. We assume that every cell
knows and stores its local information: concentrations of species, diffusion and
reaction rates, next reaction time, as well as references to its neighbours. In each
cell there are some dependency relations, both between species inside the same
cell and between those in neighbour cells that can diffuse into it (see Fig. 7a).
We have noticed that each cell on the grid can evolve (i.e. execute simulation
events) independently from the other cells if the executed events do not violate
the restrictions imposed by the dependencies. Following the optimistic approach,
we let each cell evolve independently, up to a diffusion event occurs. When a
neighbour notifies to the current cell a diffusion event with a clock Tdiff smaller
than the current clock Tact, reactions with times between Tdiff and Tact are
marked as straggler. So, we rollback every action executed within Tdiff and
Tact, recompute propensities and reaction times and restart the simulation of
the events in that cell from time Tdiff .

In our initial implementation, each cell was mapped onto a logical process
(LP). The assignment of logical processes to physical processes may be done
either dynamically, possibly by using a load balancing algorithm, or statically,
by exploiting spatial locality to reduce communication overhead.

(a) (b)

Fig. 7. Each cell is modelled as a process in a PDES (a). Cells are grouped into systems
in order to reduce communication overhead (b).

204 L. Dematté and T. Mazza

4.2 Performance Considerations

The third goal, fastness, is not easy to achieve because a lot of practical, real
world considerations have to be taken into account. The SSA was designed to run
efficiently on hardware of the late ’70; and it is indeed very efficient. An efficient
implementation of the Gillespie algorithm can process and simulate roughly 105

reaction events per second; that is, a simulation loop takes approximately 10000-
30000 CPU cycles to execute. Since a simulation loop is so fast, it is really
difficult to speed it up by means of a parallel architecture. Execution of diffusion
or reaction events on different processors requires synchronization in order to
exchange messages. In the best of the hypotheses, processes can run on a single
multi-core machine, where communication is done using shared memory and
mutexes. According to the literature and to our own tests, even in this case
the mere cost of context switching and proceeding the execution on a different
thread (roughly 5000 CPU cycles) can easily result comparable to the loop time
(see Fig. 8).

Fig. 8. The execution time of a parallel simulation (running on 2 processors) using
various techniques of synchronization and inter-thread communication, compared to
a serial simulation (Base). Notice that the overhead for running on multiple threads
actually increases the execution times in all but the last case, where we used a pool of
threads and hand-written assembly code for synchronization.

On a shared memory architecture, the problem is even worse. Even if current
HPC architectures can rely upon very low-latency connections and upon very
efficient message passing implementations (like the MPI interface we used), com-
munication overheads can vanish any performance gain. For this reason, we chose
a coarser granularity, in order to reduce the overhead to the minimum. For this
reason, we designed our parallel simulator in a hierarchical way (Fig. 7b): cells
are grouped into Cell Systems, that hold the partial state for a set of spatially
contiguous cells. Cell Systems are then grouped and driven by a Root System
that holds some topological information on the Cell Systems and that caches
some essential information on the system global state. Every System has a spe-
cialized communicator. The Root System has a communicator based on MPI to
let the Cell Systems it manages to communicate with each other across proces-
sor and machine boundaries. The Cell Systems have a single threaded, shared
memory communicator in charge of maximizing the performance and reduce the

On Parallel Stochastic Simulation of Diffusive Systems 205

overhead on a single processor or core. A further layer can be added with the
aim to manage groups of Cell Systems which execute on different CPUs or cores
on the same computation node, i.e. on a machine that shares the same memory
and that does not need for network communication or message passing in case
of inter-groups interactions.

CellSystem ():
while true do

NextAction := FastestCell().FastestAction;
StateChange := Action.Execute();
History.Add(StateChange);
UpdateClock(StateChange);
if Action.IsDiffusion()

if Action.TargetCell /∈ CellSystem.Cells
RootComm.Notify(StateChange);

else
Action.TargetCell.Notify(StateChange);

if RootComm.HasNotification
Event := RootComm.HasNotification;
switch Event.Type

case Rollback :
DoRollback(Event.Time);

case Diffusion :
Event.TargetCell.Notify(

Event.DiffusionAction);

RootSystem ():
while true do

Timer := StartTimer();
Event := WaitForEvents(Timer, RootComm);
switch Event.WakeReason

case TimerTick :
SendCheckpointCommand(GlobalT ime);
SystemState := RecvCheckpointData();
DoCheckpoint(SystemState);

case Communication :
switch Comm.Type

case Error :
BroadcastRollback(Comm.Time);

case Diffusion :
TrgtSystem :=

LookupSystem(Comm.SourceCell);
TrgtSystem.ForwardDiffusion(Comm);

CurrentGlobalT ime := Event.UpdateTime();

Fig. 9. Pseudo-code for CellSystem and RootSystem

Cells and Cell Systems communicate through a consistent interface, that is
transparent, and that allows cells to communicate any diffusion information with-
out taking care of the hierarchy. To communicate a diffusion from the cell C1 to
the cell C2, C1 sends a message to its Cell System; if C2 is on the same physical
processor (i.e. it belongs to the same Cell System), the information is directly
propagated. If instead the Cell System realizes that C2 does not belong to the
set of cells it manages, it forwards the information up to the next System, until
it reaches a System that knows C2 or until it reaches the Root System. In the
second case, the information is propagated using inter-thread communication or
MPI messages (see the pseudo-code in Fig. 9).

The Root System is also responsible for checkpointing the system state, com-
puting the global virtual time and propagate rollbacks, if necessary. In order to
minimize the interprocessor communication, each Cell System has an incremen-
tal state history held in its own memory, as a queue of performed events. During
the checkpoint phase, the Root System receives the partial state histories from
the Cell Systems, computes the GVT, and commit all the events up to it. The
commit is done by saving the system state to disk in an incremental way or, in
alternative, by reconstructing the complete state on the fly. Each Cell System
can then flush its own history up to the new GVT.

When a Cell System receives a straggler event, first it examines its queue
and then it marks all the events with time-stamps greater than the straggler’s
one, performing a very quick rollback. If these events involve other Cell Systems,
it informs the Root System, that take care of forwarding any rollbacks to the

206 L. Dematté and T. Mazza

other Cell System(s). These examine their partial state and, if necessary, per-
form rollback on their state history. At this point, the Root System informs the
Cell Systems to resume their computations. Since cells are grouped into Cell
Systems -which are called LPs in PDES terminology- secondary rollbacks, and
thus propagation of rollbacks, are very infrequent.

Care is taken that the two operations of checkpointing and rollback do not
interfere with each other by means of a barrier.

5 Example

The simulator we developed accepts an input file that specifies reactions, reaction
rates and diffusion coefficients, as well as the initial location of the chemicals. We
also developed a visualizer, that is able to read the execution traces produced
by the simulator and display them as a 3D rendering of the simulated volume.

We tested our simulator with some models (enzymatic reactions, oscilla-
tory networks, chemotaxis pathway) under realistic conditions: most or all the
molecules not attached to membranes have been let to move and, mostly im-
portant, the diffusion coefficients have been set always higher or at least com-
parable to the reaction rates. Such conditions obviously increase the number of
messages sent, making harder for our simulator to appropriately scale. However,
it is fundamental to provide a realistic model that respects the assumptions we
made [20].

var predator : rate 100;
var prey : rate 100;

predator + prey -> predator + predator [55];
prey -> prey + prey [15];
predator -> nil [10];

Fig. 10. The input file for the 3D Lotka-Volterra model

As an example, we introduce a spatial version of the Lotka-Volterra predator-
prey model. This model was chosen because it is simple but realistic; many other
algorithms proposed in the same fields use completely artificial scenarios, with
diffusion and reaction rates that are unrealistic (especially the ratio between
them). Furthermore, a more complex model would not have contributed to the
discussion.

This model allowed us to use rates taken from literature. With these using
these rates, the model exhibits a different and interesting behaviour when ran in
an environment that includes spatial information [39]. The results we obtained
(see Fig. 11) are consistent with what we expected and with what is found in
the literature [39].

This model allowed us to perform some initial performances estimations, listed
in Table 1. We measured the execution time of the serial version of the algorithm,
where all the inter-process communications were removed and substituted with
direct manipulation of data structures in shared memory, and of the optimistic

On Parallel Stochastic Simulation of Diffusive Systems 207

(a) (b)

Fig. 11. A time-step of the Lotka-Volterra simulations (a) and the variation in cardi-
nality of each species over time (b)

Table 1. Times in second for the execution of 5 · 104 simulation steps, 400 entities,
(min/max/avg of five runs), and speedup for the parallel algorithm (∗: on a 3D grid)

N cells Serial 2 Cores 5 Cores 12 Cores
256 1.5 14.8 0.1x - - - -

10000 13.1 10.7 1.22x - - - -
16384 17.4 (12.3/15.4/13.5) 1.29x (9.1/10.1/9.4) 1.86x - -
26896 64.1 (34.7/42.8/38.7) 1.66x (14.2/17.2/15.1) 4.25x (7.0/9.4/8.0) 8.06x

32768∗ 75.8 (42.7/47.3/45.3) 1.67x (18.4/20.7/19.2) 3.95x (16.7/17.1/16.9) 4.49x

parallel algorithm. The hardware used for the simulation consists of PCs with
AMD Opteron 64-bit CPUs at 2.4GHz, 4GB of Ram, interconnected with a
10Gbps Infiniband connection. We can observe that the overhead is significant
when dealing with a small 16x16 2D grid, for a total of 256 node; the overhead
starts to be less heavy starting with a 100x100 2D grid. As the grid becomes
larger and larger, given a fixed number of subsystems, the diffusion events be-
tween different subsystems becomes less frequent. Note that a number of cells in
the tens or hundreds of thousands is not unrealistic; for example, data for the
last row of Table 1 were obtained for a 32x32x32 3D grid.

These preliminary figures are far from being complete performance measures,
but they give an indication of the feasability of our approach. Since we do not
have implemented or investigated work subdivision or load balancing techniques
at this stage, we expect our method to perform well when each subsystem have
to deal with the same amount of work, e.g. when there are not too big differences
in the total concentration of elements (or crowding), with the same order of mag-
nitude of activity. Note that concentration and activity of different compounds
can vary significantly without any problems. Furthermore, using Cell Systems
as computational units, we expect that our method performs well even in the
hard but very common case of diffusion rates higher than reaction rates, as seen
in the previous example.

208 L. Dematté and T. Mazza

6 Conclusion and Future Work

One of the obstacles on the way of computational systems biology is the scala-
bility of the current approaches, i.e. their ability to deal with bigger and more
complex models. With the aim to understand higher level behaviours, these
complex models need for both powerful modelling tools and efficient simulation
engines to analyse them.

In this paper we tackled the problem of designing a parallel simulator for bio-
chemical systems, based on the theory developed by Gillespie, from both a theoret-
ical and a practical point of view. The design of parallel and distributed algorithms
requires indeed both a strong theoretical background, in order to guarantee that
the designed algorithm is equivalent to the serial one, and a good deal of practical
tricks and experience in order to make it really scalable and efficient.

Here we presented some first steps in this direction; although the results we
obtained so far are promising, a lot of work needs to be done. In particular,
Jeschke et. al. [35] conducted a parallel research on the same topic, focusing on
the analysis of communication costs and on sizing of the window for optimistic
execution in a distributed grid environment. It will be interesting to incorporate
their studies and analysis of the window size to our framework, to see which
are the differences between their grid-based and our HPC based approaches.
Other problems we need to face are the analysis of the obtained data, whose
dimension grows at an impressive rate when dealing with spatial simulations,
load-balancing techniques for workload subdivision and analysis of the rollback
mechanisms on different biochemical systems. Finally, we would like to perform
an in-depth study of the performances, with different checkpoint frequencies,
different number of nodes, different policy of cell allocation between nodes and
different state saving strategies.

References

1. Fujimoto, R.M.: Parallel discrete event simulation. Comm. ACM 33(10), 30–53
(1990)

2. Ewing, G.C., McNickle, D., Pawlikowski, L.: Multiple replications in parallel: Dis-
tributed generation of data for speeding up quantitative stochastic simulation. In:
Proceedings of the 15th Congress of Int. Association for Matemathics and Com-
puter in Simulation, pp. 397–402 (1997)

3. Glynn, P.W., Heidelberger, P.: Analysis of initial transient deletion for parallel
steady-state simulations. SIAM J. Scientific Stat. Computing 13(4), 904–922 (1992)

4. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics.
Oxford University Press, Oxford (2000)

5. Glynn, P.W., Heidelberger, P.: Analysis of parallel replicated simulations under a
completion time constraint. ACM TOMACS 1(1), 3–23 (1991)

6. Glynn, P.W., Heidelberger, P.: Experiments with initial transient deletion for paral-
lel, replicated steady-state simulations. Management Science 38(3), 400–418 (1992)

7. Lin, Y.B.: Parallel independent replicated simulation on a network of workstations.
ACM SIGSIM Simulation Digest 24(1), 73–80 (1994)

On Parallel Stochastic Simulation of Diffusive Systems 209

8. Yau, V.: Automating parallel simulation using parallel time streams. ACM
TOMACS 9(2), 171–201 (1999)

9. Hybinette, M., Fujimoto, R.M.: Cloning parallel simulations. ACM
TOMACS 11(4), 378–407 (2001)

10. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L.: Concurrent replication of
parallel and distributed simulation. In: Proceedings of the 19th ACM/IEEE/SCS
PADS Workshop, pp. 430–436 (2005)

11. Streltsov, S., Vakili, P.: Parallel replicated simulation of markov chains: implemen-
tation and variance reduction. In: Proceedings of the 25th conference on Winter
simulation, pp. 430–436 (1993)

12. Tian, T., Burrage, K.: Parallel implementation of stochastic simulation for large-
scale cellular processes. In: Proceedings of of Eighth International Conference on
High-Performance Computing in Asia-Pacific Region, pp. 621–626 (2005)

13. Burrage, K., Burrage, P.M., Hamilton, N., Tian, T.: Computer-intensive simula-
tions for cellular models. In: Parallel Computing in Bioinformatics and Computa-
tional Biology, pp. 79–119 (2006)

14. Schwehm, M.: Parallel stochastic simulation of whole-cell models. In: Proceedings
of ICSB, pp. 333–341 (2001)

15. Mazza, T., Guido, R.: Guidelines for parallel simulation of biological reactive sys-
tems. In: Proceedings of NETTAB 2008, Bioinformatics Methods for Biomedical
Complex System Applications, pp. 83–85 (2008)

16. Gillespie, D.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Phys. Chem. 22, 403–434 (1976)

17. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81(25), 2340–2361 (1977)

18. McCammon, J.A., Harvey, S.C.: Dynamics of Proteins and Nucleic Acids. Cam-
bridge University Press, Cambridge

19. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial
resolution and single molecule detail. Phys. Biol. (1), 137–151 (2004)

20. Bernstein, D.: Exact stochastic simulation of coupled chemical reactions. PHYSI-
CAL REVIEW E 71 (April 2005)

21. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems
into spatial domains of opposite phases. Syst. Biol. 1(2) (December 2004)

22. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

23. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems.
McGraw-Hill, New York (1996)

24. Chandy, K.M., Misra, J.: Distributed simulation: A case study in design and veri-
fication of distributed programs. Comm. ACM 24(11), 198–206 (1981)

25. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. IEEE Trans. on Software Engineering SE-5(5), 440–452
(1979)

26. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Computer Systems 7(3), 404–425 (1985)

27. Holt, R.C.: Some deadlock properties of computer systems. ACM Computing Sur-
veys 4(3), 179–196 (1972)

28. Cai, W., Turner, S.J.: An algorithm for distributed discrete-event simulation - the
’carrier null message’ approach. In: Proceedings of the SCS Multiconference on
Distributed Simulation, vol. 22, pp. 3–8 (1990)

29. Wood, K.R., Turner, S.J.: A generalized carrier-null method for conservative par-
allel simulation. In: Proceedings of the 8th PADS Workshop, pp. 50–57 (1994)

210 L. Dematté and T. Mazza

30. Bain, W.L., Scott, D.S.: An algorithm for time synchronization in distributed dis-
cret event simulation. In: Proceedings of the SCS Multiconference on Distributed
Simulation, vol. 19, pp. 30–33 (1988)

31. Groselj, B., Tropper, C.: The time-of-next-event algorithm. In: Proceedings of the
SCS Multiconference on Distributed Simulation, vol. 19, pp. 25–29 (1988)

32. Cota, B.A., Sargent, R.G.: A framework for automatic lookahead computation in
conservative distributed simulations. In: Proceedings of the SCS Multiconference
on Distributed Simulation, vol. 22, pp. 56–59 (1990)

33. Prakash, A., Ramamoorthy, C.V.: Hierarchical distributed simulations. In: Pro-
ceedings of the 8th International Conference on Distributed Computing Systems,
pp. 341–348 (1988)

34. Rukoz, M.: Hierarchical deadlock detection for nested transactions. Distributed
Computing 4, 123–129 (1991)

35. Jeschke, M., Ewald, R., Park, A., Fujimoto, R., Uhrmacher, A.: Parallel and dis-
tributed spatial simulation of chemical reactions. In: Proceedings of the 22nd
ACM/IEEE/SCS PADS Workshop (2008)

36. Nicol, D.M.: Parallel discrete-event simulation of fcfs stochastic queueing networks.
SIGPLAN Not. 23(9), 124–137 (1988)

37. Loper, M.L., Fujimoto, R.M.: Pre-sampling as an approach for exploiting temporal
uncertainty. In: PADS 2000, pp. 157–164 (2000)

38. Ridwan, A., Krishnan, A., Dhar, P.: A parallel implementation of gillespie’s direct
method. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2004. LNCS, vol. 3037, pp. 284–291. Springer, Heidelberg (2004)

39. Schinazi, R.B.: Predator-prey and host-parasite spatial stochastic models. The An-
nals of Applied Probability 7(1), 1–9 (1997)

	On Parallel Stochastic Simulation of Diffusive Systems
	Introduction
	The Gillespie SSA
	Simulation of Reactive-Diffusive Systems
	Reaction-Diffusion with the Gillespie Method

	Discrete Event Simulation (DES)
	Parallel and Distributed Discrete Event Simulation (PDES and DDES)
	Conservative vs. Optimistic
	Characterization of the Gillespie SSA as a PDES Algorithm

	An Optimistic Reaction-Diffusion Simulator
	Distributed Simulator Design
	Performance Considerations

	Example
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

