

Lecture Notes in Bioinformatics 5307
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Monika Heiner Adelinde M. Uhrmacher (Eds.)

Computational Methods
in Systems Biology

6th International Conference, CMSB 2008
Rostock, Germany, October 12-15, 2008
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Monika Heiner
Institute of Computer Science
Brandenburg University of Technology
Cottbus, Germany
E-mail: monika.heiner@informatik.tu-cottbus.de

Adelinde M. Uhrmacher
Institute of Computer Science
University of Rostock
Rostock, Germany
E-mail: adelinde.uhrmacher@uni-rostock.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.6, D.2.4, J.3, H.2.8, F.1.1

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-88561-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88561-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12537532 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 6th Conference on Computational
Methods in Systems Biology (CMSB) held in October 2008 in Rostock/
Warnemünde.

The CMSB conference series was established in 2003 to promote the con-
vergence of (1) modelers, physicists, mathematicians, and theoretical computer
scientists from fields such as language design, concurrency theory, software veri-
fication, and (2) molecular biologists, physicians, neuroscientists joined by their
interest in a systems-level understanding of cellular physiology and pathology.
Since this time, the conference has taken place annually. The conference has been
held in Italy, France, and the UK, and we were glad to host CMSB in Germany
for the first time.

The summaries of the invited talks by Hidde de Jong, Jane Hillston, Koichi
Takahashi, Nicolas Le Novere, and Dieter Oesterhelt are included at the be-
ginning of the proceedings. The 21 regular papers cover theoretical or applied
contributions that are motivated by a biological question focusing on modeling
approaches, including process algebra, simulation approaches, analysis methods,
in particular model checking and flux analysis, and case studies. They were se-
lected out of more than 60 submissions by a careful reviewing process. Each
paper received at least three reviews from members of the Program Committee
consisting of 27 renowned scientists from seven countries. We would like to thank
all members of the Program Committee and the referees for the thorough and
insightful reviews and the constructive discussions. Due to the number of high-
quality submissions, the decision on which papers to accept or reject was not
easy. Therefore, we integrated a rebuttal phase for the first time. The authors
also contributed to the reviewing process by swift and detailed responses to the
reviewers’ comments. For this and their submission of interesting and cutting-
edge research papers to CMSB 2008, we would like to thank the authors. Also
for the first time, five tutorials representing different modeling, simulation, and
analysis tools for, and approaches toward, computational biology were part of
the conference attesting to the achieved maturity of research.

We used the conference management system EasyChair, which proved in-
valuable in handling the electronic submission of papers, the entire reviewing
process, including discussions and rebuttal phase, and finally, the generation of
the proceedings. CMSB 2008 received financial support from the DFG (Ger-
man Research Foundation) and Microsoft Research, Cambridge. The financial
support from Microsoft Research was used to waive the fee for PhD students.
For their support in the local organization and administration we would like to
thank our local team: Anja Hampel, Jan Himmelspach, Sigrun Hoffmann, and
Matthias Jeschke.

VI Preface

The conference venue was the Neptun hotel, located directly at the Baltic
sea. Constructed in the beginning of the 1970s and conceived as a hallmark of
the GDR, it shed its history and emerged as a modern conference center after
the German reunification.

We wish all readers of this volume an enjoyable journey through the chal-
lenging field of computational methods in systems biology.

August 2008 Monika Heiner
Adelinde Uhrmacher

Organization

The organizers and Co-chairs of the CMSB 2008 conference were Monika Heiner
of the Brandenburg University of Technology at Cottbus and Adelinde Uhrma-
cher of the University of Rostock.

Steering Committee

Finn Drabløs Norwegian University of Science and
Technology, Trondheim (Norway)

Monika Heiner TU Cottbus (Germany)
Patrick Lincoln Stanford Research International (USA)
Satoru Miyano University of Tokyo (Japan)
Gordon Plotkin University of Edinburgh (UK)
Corrado Priami The Microsoft Research – University of Trento

Centre for Computational and Systems
Biology (Italy)

Magali Roux-Rouquié CNRS-UPMC (France)
Vincent Schachter Genoscope, Evry (France)
Adelinde Uhrmacher University of Rostock (Germany)

Program Committee

Alexander Bockmayr Freie Universität Berlin (Germany)
Kevin Burrage University Queensland (Australia)
Muffy Calder University of Glasgow (UK)
Luca Cardelli Microsoft Research Cambridge (UK)
Claudine Chaouiya Ecole Superieure d’Ingenieurs de Luminy,

Marseille (France)
Attila Csikasz-Nagy Microsoft Resarch – University of Trento

Centre for Computational and Systems
Biology (Italy)

Finn Drabløs Norwegian University of Science and
Technology, Trondheim (Norway)

François Fages INRIA, Rocquencourt (France)
Jasmin Fisher Microsoft Research Cambridge (UK)
David Gilbert University of Glasgow (UK)
Stephen Gilmore University of Edinburgh (UK)
Monika Heiner TU Cottbus (Germany)
Des Higham University of Strathclyde (UK)
Hidde de Jong INRIA, Rhône Alpes (France)
Walter Kolch Beatson Institute for Cancer Research (UK)

VIII Organization

Ursula Kummer University of Heidelberg (Germany)
Wolfgang Marwan Max Planck Institute Magdeburg (Germany)
Ion Moraru University of Connecticut Health Center

(USA)
Joachim Niehren INRIA Futurs, Lille (France)
Nicolas Le Novère European Bioinformatics Institute (UK)
Dave Parker Oxford University (UK)
Gordon Plotkin University of Edinburgh (UK)
Corrado Priami Microsoft Resarch - University of Trento

Centre for Computational and Systems
Biology (Italy)

Koichi Takahashi The Molecular Sciences Institute (USA)
Carolyn Talcott Stanford Research Institute (USA)
Adelinde Uhrmacher University of Rostock (Germany)
Olaf Wolkenhauer University of Rostock (Germany)

External Reviewers

Paolo Ballarini
Grégory Batt
Arne Bittig
Matteo Cavaliere
Federica Ciocchetta
Lorenzo Demattè
Emek Demir
Robin Donaldson
Claudio Eccher
Paul Francois
Richard Fujimoto
Vashti Galpin
David Gilbert
Maria Luisa Guerriero
Stefan Haar
Jane Hillston

Jan Himmelspach
Matthias Jeschke
Mathias John
Sriram Krishnamachari
Hillel Kugler
Celine Kuttler
Cedric Lhoussaine
Hong Li
Jeremie Mary
Carsten Maus
Ivan Mura
Gethin Norman
Alida Palmisano
Michael Pedersen
Andrew Phillips
Nir Piterman

Davide Prandi
Nathan Price
Elisabeth Remy
Ronny Richter
Aurélien Rizk
Christian Rohr
Alessandro Romanel
Peter Saffrey
Martin Schwarick
Heike Siebert
Sylvain Soliman
Marc Thiriet
Ashish Tiwari
Cristian Versari
Andrei Zinovyev

Table of Contents

Qualitative Modeling and Simulation of Bacterial Regulatory
Networks . 1

Hidde de Jong

Integrated Analysis from Abstract Stochastic Process Algebra
Models . 2

Jane Hillston, Federica Ciocchetta, Adam Duguid, and
Stephen Gilmore

An Exact Brownian Dynamics Method for Cell Simulation 5
Koichi Takahashi

Multiscale Modelling of Neuronal Signalling . 7
Nicolas Le Novère

Systems Biology of Halophilic Archaea . 8
Dieter Oesterhelt

A Partial Granger Causality Approach to Explore Causal Networks
Derived from Multi-parameter Data . 9

Ritesh Krishna and Shuixia Guo

Functional Evolution of Ribozyme-Catalyzed Metabolisms in a
Graph-Based Toy-Universe . 28

Alexander Ullrich and Christoph Flamm

Component-Based Modelling of RNA Structure Folding 44
Carsten Maus

A Language for Biochemical Systems . 63
Michael Pedersen and Gordon Plotkin

The Attributed Pi Calculus . 83
Mathias John, Cédric Lhoussaine, Joachim Niehren, and
Adelinde M. Uhrmacher

The Continuous π-Calculus: A Process Algebra for Biochemical
Modelling . 103

Marek Kwiatkowski and Ian Stark

Automatic Complexity Analysis and Model Reduction of Nonlinear
Biochemical Systems . 123

Dirk Lebiedz, Dominik Skanda, and Marc Fein

Formal Analysis of Abnormal Excitation in Cardiac Tissue 141
Pei Ye, Radu Grosu, Scott A. Smolka, and Emilia Entcheva

X Table of Contents

The Distribution of Mutational Effects on Fitness in a Simple Circadian
Clock . 156

Laurence Loewe and Jane Hillston

SED-ML – An XML Format for the Implementation of the MIASE
Guidelines . 176

Dagmar Köhn and Nicolas Le Novère

On Parallel Stochastic Simulation of Diffusive Systems 191
Lorenzo Dematté and Tommaso Mazza

Large-Scale Design Space Exploration of SSA . 211
Matthias Jeschke and Roland Ewald

Statistical Model Checking in BioLab: Applications to the Automated
Analysis of T-Cell Receptor Signaling Pathway . 231

Edmund M. Clarke, James R. Faeder, Christopher J. Langmead,
Leonard A. Harris, Sumit Kumar Jha, and Axel Legay

On a Continuous Degree of Satisfaction of Temporal Logic Formulae
with Applications to Systems Biology . 251

Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman

A Model Checking Approach to the Parameter Estimation of
Biochemical Pathways . 269

Robin Donaldson and David Gilbert

Compositional Definitions of Minimal Flows in Petri Nets 288
Michael Pedersen

On Inner and Outer Descriptions of the Steady-State Flux Cone of a
Metabolic Network . 308

Abdelhalim Larhlimi and Alexander Bockmayr

A Combinatorial Approach to Reconstruct Petri Nets from
Experimental Data . 328

Markus Durzinsky, Annegret Wagler, and Robert Weismantel

Analyzing a Discrete Model of Aplysia Central Pattern Generator 347
Ashish Tiwari and Carolyn Talcott

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis . . . 367
D. Bošnački, H.M.M. ten Eikelder, M.N. Steijaert, and E.P. de Vink

A Stochastic Single Cell Based Model of BrdU Measured Hematopoietic
Stem Cell Kinetics . 387

Richard C. van der Wath and Pietro Lio’

Erratum: Analyzing a Discrete Model of Aplysia Central Pattern
Generator .

Ashish Tiwari and Carolyn Talcott

Author Index . 403

E1

Qualitative Modeling and Simulation of

Bacterial Regulatory Networks

Hidde de Jong

INRIA Grenoble-Rhône-Alpes
655 Avenue de l’Europe, Montbonnot, 38334 Saint-Ismier Cedex, France

Hidde.de-Jong@inria.fr

The adaptation of microorganisms to their environment is controlled at the
molecular level by large and complex networks of biochemical reactions involving
genes, RNAs, proteins, metabolites, and small signalling molecules. In theory, it
is possible to write down mathematical models of these networks, and study these
by means of classical analysis and simulation tools. In practice, this is not easy
to achieve though, as quantitative data on kinetic parameters are usually absent
for most systems of biological interest. Moreover, the models consist of a large
number of variables, are strongly nonlinear and include different time-scales,
which make them difficult to handle both mathematically and computationally.

We have developed methods for the reduction and approximation of kinetic
models of bacterial regulatory networks to simplified, so-called piecewise-linear
differential equation models. The qualitative dynamics of the piecewise-linear
models can be studied using discrete abstractions from hybrid systems theory.
This enables the application of model-checking tools to the formal verification
of dynamic properties of the regulatory networks. The above approach has been
implemented in the publicly-available computer tool Genetic Network Analyzer
(GNA) and has been used to analyze a variety of bacterial regulatory networks.

I will illustrate the application of GNA by means of the network of global
transcription regulators controlling the adaptation of the bacterium Escherichia
coli to environmental stress conditions. Even though E. coli is one of the best
studied model organisms, it is currently little understood how a stress signal is
sensed and propagated through the network of global regulators, and leads the
cell to respond in an adequate way. Qualitative modeling and simulation of the
network of global regulators has allowed us to identify essential features of the
transition between exponential and stationary phase of the bacteria and to make
new predictions on the dynamic behavior following a carbon upshift.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrated Analysis from Abstract Stochastic Process
Algebra Models

Jane Hillston, Federica Ciocchetta, Adam Duguid, and Stephen Gilmore

Laboratory for Foundations of Computer Science,
The University of Edinburgh, Scotland

Extended Abstract

Bio-PEPA is a novel stochastic process algebra which has been recently developed for
modelling biochemical pathways [5,6]. In Bio-PEPA a reagent-centric style of mod-
elling is adopted, and a variety of analysis techniques can be applied to a single model
expression. Such an approach facilitates easy validation of analysis results when the
analyses address the same issues [3] and enhanced insight when the analyses are com-
plementary [4]. Currently supported analysis techniques include stochastic simulation
at the molecular level, ordinary di�erential equations, probabilistic model checking and
numerical analysis of a continuous time Markov chain.

Process algebras are a well-established modelling approach for representing con-
current systems facilitating both qualitative and quantitative analysis. Within the last
decade they have also been proposed as the basis for several modelling techniques ap-
plied to biological problems, particularly intracellular signalling pathways, e.g.
[13,12,10,7,2,1].

A process algebra model captures the behaviour of a system as the actions and
interactions between a number of entities, usually termed processes or components.
In stochastic process algebras, such as PEPA [9] or the stochastic �-calculus [11], a
random variable representing average duration is associated with each action. In the
stochastic �-calculus, interactions are strictly binary whereas in PEPA and Bio-PEPA
the more general, multiway synchronisation is supported.

The original motivation for the use of process algebras for modelling intracellular
pathways was the recognition of the clear mapping that can be made between molecules,
within a biochemical pathway, and processes, within concurrent systems [14]. The map-
ping is then elaborated with reactions between molecules represented by communica-
tion between processes, etc.

This mapping has been extremely influential with much subsequent work on process
algebras for systems biology following its lead. It takes an inherently individuals-based
view of a pathway or cell, and su�ers the problem of individuals-based modelling,
namely state-space explosion. When each individual within a system is represented ex-
plicitly and all transitions within or between individuals are captured as discrete events,
the number of states becomes prohibitively high. This problem prohibits the use of tech-
niques which rely on access to the state space in its entirety, such as model checking
or numerical solution of a Markov chain. Essentially analysis is restricted to stochastic
simulation where the state space is explored iteratively.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 2–4, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

Integrated Analysis from Abstract Stochastic Process Algebra Models 3

ODEs
population view

CTMC with
M levels

abstract view

Stochastic
Simulation

individual view

Abstract
Bio-PEPA

model
��������������

�������������

Fig. 1. Alternative modelling approaches: a single Bio-PEPA description of a system may be used
to derive alternative mathematical representations o�ering di�erent analysis possibilities

In contrast, biologists often take a population-based view of cellular systems, repre-
senting them as systems of ordinary di�erential equations (ODEs). These mathematical
models are continuous or fluid approximations of the discrete state, individuals-based
models of the system. In many circumstances the approximation is extremely good. In
the biological context, where the exact number of molecules is often diÆcult to obtain
but is known to be extremely large, this more abstract view is both intellectually and
computationally appealing. The continuous state space models, in the form of systems
of ODEs, are much more eÆciently solved than their discrete state space counterparts.

In Bio-PEPA we wanted to be able to use a single model description to access both
an individuals-based and a population-based view of a system. Thus we adopt an ab-
stract style of modelling which we term, reagent-centric. We use the term reagent to
mean an entity which engages in a reaction. In the basic case this will be a biochemical
species such as a protein, receptor molecule or an enzyme. However it may be more
abstract, capturing the behaviour of a group of entities or a whole subsidiary pathway.
In this style of modelling the focus of the process algebra model is no longer the in-
dividual molecules, but rather the species or similar entities. This subtle change gives
us much more flexibility in how a model may be interpreted, facilitating mappings into
a number of di�erent mathematical representations, as illustrated in Figure 1. Viewing
the reagents as species, it is straightforward to use the BioPEPA description to derive
the stoichiometry matrix, and the corresponding ODE model. Conversely, knowing the
forms of interations which can be engaged in by the reagent, allows an individuals-
based or molecular model to be derived, suitable for solution by Gillespie’s stochastic
simulation algorithm [8].

Moreover using the reagents-as-processes abstraction, together with other features
of the BioPEPA language, make it straightforward to capture several characteristics
of biochemical reactions which can be problematic for other process algebras. These
include reactions with stoichiometry greater than one, with more than two reactants,
and with general kinetic laws.

4 J. Hillston et al.

We have also been keen to investigate the extent to which “classical” process algebra
analyses can be used to provide insight into system biology models. In the context of
stochastic process algebras such analyses include numerical analysis of the underlying
continuous time Markov chain (CTMC) and probabilistic model checking. Whilst the
stochastic simulation described above is based on a CTMC, the size of the state space
in most examples will prohibit any state-based analysis. Thus we have also developed a
third mapping from BioPEPA models to an smaller CTMC, which we term the CTMC
with levels. In such models the concentration of each reagent is split into discrete steps,
leading to a more compact state space, more readily amenable to state-based analyses.

References

1. Bortolussi, L., Policriti, A.: Modeling Biological Systems in Stochastic Concurrent Con-
straint Programming. Constraints 13(1-2), 55–90 (2006)

2. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK sig-
nalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir,
A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII.
LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

3. Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational modelling of sig-
nalling pathways using both continuous and discrete-space methods. In: Priami, C. (ed.)
CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer, Heidelberg (2006)

4. Ciocchetta, F., Gilmore, S., Guerriero, M.-L., Hillston, J.: Stochastic Simulation and Prob-
abilistic Model-Checking for the Analysis of Biochemical Systems (2008) (submitted for
publication)

5. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for bio-
chemical networks. In: Proc. of FBTC 2007. Electronic Notes in Theoretical Computer Sci-
ence, vol. 194(3), pp. 103–117 (2008)

6. Ciocchetta, F., Hillston, J.: Process algebras for Systems Biology. In: Bernardo, M., Degano,
P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 265–312. Springer, Heidelberg
(2008)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Ruled-based modelling of cellular
signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
17–41. Springer, Heidelberg (2007)

8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physi-
cal Chemistry 81, 2340–2361 (1977)

9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

10. Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V., Schachter, V.
(eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

11. Priami, C.: Stochastic �-calculus. The Computer Journal 38(6), 578–589 (1995)
12. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name-passing

calculus to representation and simulation of molecular processes. Information Processing
Letters 80, 25–31 (2001)

13. Regev, A.: Representation and simulation of molecular pathways in the stochastic �-calculus.
In: Proceedings of the 2nd workshop on Computation of Biochemical Pathways and Genetic
Networks (2001)

14. Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)

An Exact Brownian Dynamics Method

for Cell Simulation

Koichi Takahashi

The Molecular Sciences Institute, Berkeley, USA
Computational Systems Biology Research Group, RIKEN, Yokohama, Japan

Institute for Advanced Biosciences, Keio University, Fujisawa, Japan
ktakahashi@riken.jp

1 Introduction

As we obtain better abilities to observe cellular biochemistry at the single cell /
molecular levels, such as through fluorescent correlation spectroscopy and single
particle tracking, evidences are accumulating that the cells may be taking ad-
vantage of intracellular spatial features to realize and optimize their functions.
Computer simulation is a useful means to bridge the gap between the micro-
scopic, physico-chemical picture of how macro-molecules diffuse and react, and
the scales of time and space where biochemistry and physiology take place.

One important aspect of intracellular space is the extremely high density of
macromolecules (50-400 mg/ml, compare to 1-10 mg/ml typical in vitro condi-
tions), called intracellular macromolecular crowding[1], which results in different
equilibrium points, altered reaction rates, slow and anomalous diffusion of macro-
molecules, and thus modified overall behaviors and dynamical characteristics of
biochemical systems.

2 Computational Method

To address the pressing computational need to precisely model cellular bio-
chemistry with microscopic details, we have been developing a high-performance
Brownian Dynamics (BD) method. The new computational method I will present
in this talk is called eGFRD (enhanced Greens Function Reaction Dynamics)[2],
developed in collaboration with ten Wolde at AMOLF, Amsterdam and Tanase-
Nicola in University of Michigan. eGFRD even further accelerates a previously
proposed high-performance method called GFRD[3] by making the computation
from synchronous- to asynchronous-discrete-event through introduction of the
concept called first-passage processes[4]. The multi-body reaction-diffusion sys-
tem that constitutes the biochemical network is decomposed into a set of one-
and two-body problems, each of which are analytically solvable through Smolu-
chowski equation. Evolutions of the two-body problems are given by numerically
evaluating the fundamental solutions to the diffusion-reaction equation called
Green’s functions. This new method is exact (based directly on analytical solu-
tions of the diffusion-reaction equation), high-performance (orders of magnitude

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 5–6, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

6 K. Takahashi

faster than conventional BD methods), extendable (different types of diffusion
and boundary conditions can be efficiently implemented) and thus opens a pos-
sibility to applications of exact particle methods to cellular-level problems which
has previously been unrealistic due to high computational costs.

3 Results

I will present some of interesting results from the numerical experiments that
were made possible by the advent of the very high performance particle sim-
ulation methods such as eGFRD. It will include effects of space on signaling
systems that involve multisite covalent modifications such as MAPK pathways,
and effects of molecular crowding on biochemical reactions in gene expression
and signaling systems.

4 Other Topics

I will also briefly talk about the E-Cell Project that aims to develop cell simu-
lation technology, some other aspects of simulation methods we are developing
such as lattice- and rule-based ones, our software platform E-Cell System[5], and
the critical relationship between the new simulation methods and measurement
technologies such as laser spectroscopy.

Acknowledgements

The eGFRD project is being carried out in collaboration with Pieter Rein ten
Wolde at AMOLF, The Netherlands, and Sorin Tanase-Nicola in University of
Michigan, USA. Takahashi conducted this project as a Human Frontier Science
Program Cross-Disciplinary Fellow at the Molecular Sciences Institute. The E-
Cell project is partly supported by JST/CREST, Yamagata prefecture and the
ministry of science (MEXT) of Japan.

References

1. Takahashi, K., Arjunan, S., Tomita, M.: Space in systems biology of signaling path-
ways – intracellular molecular crowding in silico. FEBS Letters 579, 8 (2005)

2. Takahashi, K., Tanase-Nicola, S., ten Wolde, P.R.: Exact Green’s Function Reaction
Dynamics with Analytical First-Passage Time (2008) (in preparation)

3. van Zon, J.S., ten Wolde, P.R.: Simulating biochemical networks at the particle level
and in time and space: Green’s function reaction dynamics. Phys. Rev. Lett. 94(12),
128103 (2005)

4. Opplestrup, T., Bulatov, V.V., Gilmer, G.H., Kalos, M.H., Sadigh, B.: First-Passage
Monte Carlo Algorithm: Diffusion without All the Hops. Phys. Rev. Lett. 8, 97(23),
230602 (2006)

5. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: Multi-algorithm, multi-timescale
method for cell simulation. Bioinformatics 20, 4 (2004)

Multiscale Modelling of Neuronal Signalling

Nicolas Le Novère

Computational Neurobiology, EMBL-EBI,
Wellcome Trust Genome Campus,

Hinxton, Cambridge, United-Kingdom
lenov@ebi.ac.uk

Abstract. Transduction and transmission of an input signal by a neu-
ronal dendrite involves generation, integration and propagation of at
least four kinds of information: Chemical concentration such as calcium
ions, chemical modification such as phosphorylation cascades, conforma-
tional information such as allosteric modulations, and electrical signals
such as membrane depolarisation. One cannot claim to understand neu-
ronal function when focussing on a single aspect. However, developing
models of the four requires using different formalisms. Furthermore run-
ning simulations implies widely different requirements in terms of com-
pute power, storage or results and duration. I will present a few results
we obtained about the synaptic function and plasticity in the striatal
medium-spiny neuron, using models of signalling networks, allosteric reg-
ulations, single particle diffusion and multi-compartment electrical mod-
els. I will then discuss how we can sometimes encapsulate the results
obtained at a certain level of resolution in order to increase the realism
of more abstract models. I will end by outlining how one could envision
to build a model striatal neuron that embodies chemical, biochemical
and electrical signalling.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, p. 7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Systems Biology of Halophilic Archaea

Dieter Oesterhelt

Max Planck Institute of Biochemistry,
Department of Membrane Biochemistry,

Martinsried, Germany
oesterhe@biochem.mpg.de

Abstract. Systems biology is spread over all branches of life science
and attracts biologists, mathematicians, physicists, computer scientists,
and engineers equally. Full of promises and visions it often signalizes
that the in silico eucaryotic cell is close to realization and experimental
work will be needed in the future only for confirmation. At this point
science becomes fiction and destroys the great potential of interdisci-
plinary research aiming for added value in describing a living system or
its composing modules by theoretical/simulation approaches on the ba-
sis of experimental facts. As a reliable working definition of molecular
systems biology the following is useful: Modelling of cells or a modules
of cells with an incomplete data set. The model (ensemble of models)
must have predictive value to induce experiments which lead to falsifi-
cation (verification) of subsets of models until, on the basis of available
data, optimally only one model is left. The approach can be either “bot-
tom up” or “top down”. We use halophilic archaea, especially the model
organism Halobacterium salinarum for systems biological experiments.
These procaryotes living in concentrated brines offer biochemical features
which make them very suitable for systematic analysis. A first module
is signal transduction where photon absorption via two photoreceptors
causes three different reactions of the target, which is the flagellar mo-
tor. The system guarantees a balanced response of the cell to light for
active search of the optimal conditions for photosynthesis. Experimen-
tally, quantitative data can be collected, which link the size of stimulus
to the reaction time of the flagellar motor. Further, genome wide data
on members of the network, their molecular properties and protein pro-
tein interactions were made available. Altogether a model was developed,
which allows to simulate all experimental results reported so far. Bioen-
ergetics are a second module, which is ready for modelling with a bottom
up approach and the central metabolism of the cell presents an example
of top down modelling with about 800 reactions in the cell. Experimental
data on the course of sixteen amino acids added to the growth medium
as carbon source and on the rate growth were collected and a model
created which is able to quantitatively predict growth curve and carbon
source usage. The lecture will give account on the details of the experi-
mental methods used, describe the modelling approaches and summarize
the results, we so far obtained.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, p. 8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Partial Granger Causality Approach to

Explore Causal Networks Derived From
Multi-parameter Data

Ritesh Krishna1 and Shuixia Guo2

1 Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
2 Department of Mathematics, Hunan Normal University, Changsha 410081,

P.R. China

Abstract. Background: Inference and understanding of gene networks
from experimental data is an important but complex problem in molecu-
lar biology. Mapping of gene pathways typically involves inferences aris-
ing from various studies performed on individual pathway components.
Although pathways are often conceptualized as distinct entities, it is
often understood that inter-pathway cross-talk and other properties of
networks reflect underlying complexities that cannot by explained by
consideration of individual pathways in isolation. In order to consider
interaction between individual paths, a global multivariate approach is
required. In this paper, we propose an extended form of Granger causal-
ity can be used to infer interactions between sets of time series data.

Results: We successfully tested our method on several artificial datasets,
each one depicting various possibilities of connections among the partic-
ipating entities. We also demonstrate the ability of our method to deal
with latent and exogenous variables present in the system. We then ap-
plied this method to a highly replicated gene expression microarray time
series data to infer causal influences between gene expression events in-
volved in activation of human T-cells. The application of our method
to the T-cell dataset revealed a set of strong causal links between the
participating genes, with many links already experimentally verified and
reported in the biological literature.

Conclusions: We have proposed a novel form of Granger causality to
reverse-engineer a causal network structure from a time series dataset
involving multiple entities. We have extensively and successfully tested
our method on synthesized as well as real time series microarray data.

1 Background

Recent advances in experimental and computational techniques have revolu-
tionized the field of molecular biology. On the one hand experimental techniques
allow us to perform experiments to produce massive amount of observation data,
while on the other hand computational techniques are playing an increasing role
in understanding this data and building hypothesis for understanding of the

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 9–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

10 R. Krishna and S. Guo

underlying biological system. Reconstructing gene-regulatory networks is one of
the key problems of functional genomics [27,17]. A gene network can be visu-
alized as a graph in which each node represents a gene and the interactions
between them is represented by the edges in the graph. The edges can represent
direct or indirect interactions between the genes. Large scale monitoring of gene
expression is considered to be one of the most promising techniques for recon-
structing gene networks [5]. Techniques like microarrays [25] generate abundant
amount of data which could be used for reconstructing gene networks. A va-
riety of approaches have been proposed to describe gene-regulatory networks,
such as boolean networks [15], difference equations [27], differential equations
[31] and Bayesian networks [9,23] etc. While boolean networks, difference and
differential equations are based on prior biological understanding of the molec-
ular mechanism, Bayesian networks on the other hand have been used to infer
network structures directly from the data itself. The acyclicity constraint of
the Bayesian networks are addressed by Dynamic Bayesian networks [8,16] but
the computational and theoretical problems arise in case of incomplete dataset
which is a common problem in gene expression measurements. Relevance net-
works and Gaussian graphical models [28] are other commonly used methods
to infer network structures from time-series data, both being simple but inca-
pable of producing directed network structures. With each approach having its
advantages and disadvantages, the field of inference of network structure from
gene-expression data is still open to new techniques.

The present study is about an extension and application of a multivariate
data-driven statistical technique known as Granger causality, to infer the inter-
action patterns among multiple time series representing a set of stochastic pro-
cesses. The proposed technique relies on the statistical interdependence among
multiple simultaneous time series. The interdependence could be causal in na-
ture and therefore symmetric measures such as ordinary coherence may not be
suitable for measuring it. Wiener [29] proposed a new way to measure causal
influence of one time series on another by conceiving the notion that the pre-
diction of one time series could be improved by incorporating the knowledge of
the second one. Granger [12] formalized this concept in the context of the lin-
ear autoregression model of causal influences. Granger causality was extended
by Geweke [11] who proposed a measure of interdependence between two sets
of time series. We have seen a recent interest in biological community regard-
ing application of Granger causality [19,20] for temporal Microarry data. But
we realize that a straight forward application of Granger causality for biolog-
ical data may not be suitable when chances of latent and exogenous variables
present in the system are high. In this paper, we introduce a definition of par-
tial Granger causality. Partial Granger causality computes the interdependence
between two time series by eliminating the effect of all other variables in the
system. To our knowledge, the concept of partial Granger causality is new and
so is its application to a time course microarray gene-expression data. In this
paper, partial Granger causality is extensively tested for various toy models rep-
resenting different scenarios of interdependence between sets of time series. We

A Partial Granger Causality Approach to Explore Causal Networks 11

then applied our approach to a highly replicated microarray time series data for
T-cell activation to infer the gene network. The matlab code for implementation
the partial Granger causality can be downloaded from the first author’s website-
http://www.dcs.warwick.ac.uk/∼ritesh/pgc/index.html

2 Methods

2.1 Causal Model

First, we present Geweke’s method for two univariate time series and later we
introduce the concept of partial causality. Geweke’s method can be explained
in the following way [11]. Consider two stochastic processes Xt and Yt. Each
process admits an autoregressive representation

Xt =
∞∑

i=1

a1iXt−i + ε1t (1)

Yt =
∞∑

i=1

b1iYt−i + ε2t (2)

where ε1t and ε2t are the prediction error. According to the Granger causality
theory, if the prediction of one process is improved by incorporating its own past
information as well as the past information of the other process, then the second
process is said to cause the first process. In other words, if the variance of predic-
tion error for the first process is reduced by the inclusion of past measurements
of the second process then a causal relation from the second process to the first
process exists. A joint autoregressive representation having information of past
measurements of both processes Xt and Yt can be written as

Xt =
∞∑

i=1

a2iXt−i +
∞∑

i=1

c2iYt−i + ε3t (3)

Yt =
∞∑

i=1

b2iYt−i +
∞∑

i=1

d2iXt−i + ε4t (4)

Equation 3 represents the prediction of the current value of Xt based on its own
past value as well as the past values of Yt. variance(ε3t) measures the strength
of prediction error. According to the definition of causality [12], if var(ε3t) <
var(ε1t), then Yt influences Xt.

There are three types of linear interdependence or feedback which exist for a
pair of time-series. First is the causal influence form Yt to Xt, where var(ε3t) <
var(ε1t) and the influence can be expressed as

FY →X = ln(|var(ε1t)|/|var(ε3t)|) (5)

If FY →X > 0, then Y → X exists.

12 R. Krishna and S. Guo

Second is the causal influence from Xt to Yt defined by

FX→Y = ln(|var(ε2t)|/|var(ε4t)|) (6)

and the third type is instantaneous causality due to factors possibly exogenous
to the (X, Y) system when γ = cov(ε3t, ε4t) �= 0. The instantaneous causality
can be expressed as

FX.Y = ln(|var(ε3t)|.|var(ε4t)|/|L|) (7)

where

L =
[
var(ε3t) γ

γ var(ε4t)

]
When γ = 0, FX.Y = 0, no instantaneous causality exists. But when γ2 > 0,
then FX.Y > 0 and instantaneous causality exists.

The above definitions imply that the total interdependence between two time
series Xt and Yt can be defined as

FX,Y = FX→Y + FY →X + FX.Y (8)

2.2 Partial Causal Influence

For a network having multiple entities, various possibilities for connection among
entities arise. An entity can be connected to other entities in a direct or an
indirect way. This issue is of concern for network inference in order to filter
out redundant channels. The benefit of multivariate model fitting is that it uses
information from all the participating entities in the system, making it possible
to verify whether two entities share direct causal influence while the effect of
other entities are taken into account. Also, the pairwise analysis of two time
series is not sufficient to reveal if the causal relationship between a pair is direct
or not. The partial Granger causality between a pair can be used to analyse
the strength of direct interaction between a pair of entities after eliminating the
effect of other variables present in the system. By other variables, we not only
mean the other observed variables in the system but also the exogenous and
latent variables. Exogenous variables represent the common experimental drives
present in any experimental setup, whereas, the latent variables account for the
unobserved or hidden data which couldn’t be captured during the experiment.
The instantaneous causality proposed by Granger and Geweke represents the
influence of exogenous and hidden variables on the interdependence between a
pair of entities in a system. The above measurements for directed causalities
depended on the effect of all the observed variables present in the system. In
the proposed definition of partial causality, we compute the linear dependence
between two entities by eliminating the effect of all other variables. As a result
of this elimination, it is possible to compute the strength of direct interaction
between two entities in a system. Partial Granger causality can be explained in

A Partial Granger Causality Approach to Explore Causal Networks 13

the following way. Consider two processes Xt and Zt. The joint autoregressive
representation for Xt and Zt can be written as

Xt =
∞∑

i=1

a1iXt−i +
∞∑

i=1

c1iZt−i + ε1t (9)

Zt =
∞∑

i=1

b1iZt−i +
∞∑

i=1

d1iXt−i + ε2t (10)

The noise covariance matrix for the system can be represented as

S =
[

var(ε1t) cov(ε1t, ε2t)
cov(ε1t, ε2t) var(ε2t)

]
where var and cov represent variance and co-variance respectively. Extending this
concept further, the vector autoregressive representation for a system involving
three processes Xt,Yt and Zt can be written in the following way.

Xt =
∞∑

i=1

a2iXt−i +
∞∑

i=1

b2iYt−i +
∞∑

i=1

c2iZt−i + ε3t (11)

Yt =
∞∑

i=1

d2iXt−i +
∞∑

i=1

e2iYt−i +
∞∑

i=1

f2iZt−i + ε4t (12)

Zt =
∞∑

i=1

g2iXt−i +
∞∑

i=1

h2iYt−i +
∞∑

i=1

k2iZt−i + ε5t (13)

The noise covariance matrix for the above system can be represented as

Σ =

⎡⎣ var(ε3t) cov(ε3t, ε4t) cov(ε3t, ε5t)
cov(ε3t, ε4t) var(ε4t) cov(ε4t, ε5t)
cov(ε3t, ε5t) cov(ε4t, ε5t) var(ε5t)

⎤⎦
The partial Granger causality between Xt and Yt by eliminating all the effect

of Zt, can be calculated by portioning the noise covariance matrices S and Σ in
the following way -

S =
[

var(ε1t) | cov(ε1t, ε2t)
cov(ε1t, ε2t) | var(ε2t)

]
=
[
S11 | S12

S21 | S22

]
Σ =

[
var(ε3t) | cov(ε3t, ε5t)

cov(ε3t, ε5t) | var(ε5t)

]
=
[

ΣXY | ΣXY Z

ΣZXY | ΣZZ

]
The measure for partial causality from Yt to Xt by eliminating the effect of Zt

can be expressed as

FY →X|Z = ln
(

S11 − S12S
−1
22 S21

ΣXY −ΣXY ZΣ−1
ZZΣZXY

)
(14)

Based on the above formulation, we demonstrate in the following sections that
partial causality is a good tool for inferring a network structure from a given set
of time series data.

14 R. Krishna and S. Guo

2.3 Prerequisites for Causal Models

Stationary time series: Measurement of linear dependence between multiple time
series assumes the time series to be stationary. We assume our time-series t obe
weakly stationary.

Linear independence among entities: Before fitting an autoregressive model on a
set of processes, it is important to check that the processes are linearly indepen-
dent. The check ensures that the fluctuation in the estimate of one parameter will
not be compensated by the fluctuations in the estimate of other parameters. To
check for linear independence among p variables, a sample variance-covariance
matrix S can be calculated, which contains p variances and 1

2p(p−1) potentially
different covariances. The determinant of S provides a generalized sample vari-
ance, and is equal to zero in case of linear dependence between the variables. In
the case of linear dependence among variables, some of the variables should be
removed from the sample. See [14] for details.

Selection of lag order: In order to find the causal relationship between variables,
the equations (1-4) can be estimated using ordinary least squares which depends
on a lag value, p. The model order p can be determined by minimizing the Akaike
Information Criterion (AIC, [2]) defined as

AIC(p) = 2log(|σ|) +
2m2p

n
(15)

where σ is the estimated noise covariance, m is the dimension of the stochastic
process and n is the length of data window used to estimate the model.

2.4 Bootstrap Analysis

In order to have a confidence interval for every edge present in the network, it
is important to estimate the distribution of the partial causality values between
different pairs of entities in a network. The confidence interval can be used as a
statistical measure to separate relevant edges from the pool of all possible edges
in the network. The distribution of the partial causality values in a network is
determined by the bootstrap method. Consider Y = {E1, E2, . . . , EN} to be a
set of variables, where each of Ei is a time series of length l. The partial causality
value between any two variables can be denoted as fi which can be computed ac-
cording to Equation 14. The set of all possible partial causality values between all
possible p pairs of variables in Y can be denoted as F = {f1, f2, . . . , fp}.Following
procedure can be applied to compute a bootstrap confidence interval for F using
the 3σ method.

– Multiple samples of data for the system Y can be generated to create a
bootstrap sample B = {Y ∗

1 , Y ∗
2 , . . . , Y ∗

L}.
– For each Y ∗

i in B, compute partial causality values F ∗
i . This will give a

bootstrap estimates F ∗
1 , F ∗

2 , . . . , F ∗
Lfor the partial causality values obtained

from the bootstrap sample B.

A Partial Granger Causality Approach to Explore Causal Networks 15

– A standard deviation σ∗
i for each fi in F can be computed by the distribution

of corresponding f∗
i values in F ∗

1 , F ∗
2 , . . . , F ∗

L.
– For 99.7% confidence level, obtain lower bound(lb) and upper bound(ub) for

a fi.
(lb, ub) = {fi − 3× σ∗

i , fi + 3× σ∗
i }

– Test the null hypothesis that the fi values is significant by rejecting the null
hypothesis if the confidence interval does not contain the value 0. So, the
edges having their fi values in F are accepted to appear in the network
whose lb >0. Rest of the edges are supposed to be absent.

3 Results and Discussion

Illustrative Examples. We demonstrate the concept of partial Granger causal-
ity for network inference with the following toy models. These toy models are
inspired by Baccala et al. [3].A Matlab routine was developed to compute partial
causality for a given multivariate system and was tested on the following sys-
tems. The Matlab code can be found at the website mentioned in the Background
section of this paper.

There are 5 entities in each of the given examples. A complete graph of 5
nodes has 10 × 2 = 20 possible directed edges (see Table 1 for edge enumera-
tion). We computed partial causality for all the pairs (X,Y) forming an edge in
the complete graph for both the directions (X → Y and Y → X), eliminating
the effect of all other entities in the network. The magnitude of partial Granger
causality for a directed edge represents the weight associated with that edge.

Example 1. Suppose that 5 simultaneously generated time-series are represented
by the equations:

x1(n) = 0.95
√

2x1(n − 1) − 0.9025x1(n − 2) + w1(n)

x2(n) = 0.5x1(n − 2) + w2(n)

x3(n) = −0.4x1(n − 3) + w3(n)

x4(n) = −0.5x1(n − 2) + 0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w4(n)

x5(n) = −0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w5(n)

where wi(n) are zero-mean uncorrelated white processes with identical variance.
One can see that x1(n) is a direct source to x2(n),x3(n), and x4(n). x4(n) and
x5(n) share a feedback loop and there is no direct connection from x1(n) to x5(n).
The final network structure obtained after computing the partial causality and
the confidence intervals on each edge can be seen in Figure 1(a). The figure
represents the equations correctly and similar network structures were obtained
when tested against multiple datasets representing the above mentioned system.
Figure 2(a) presents the selected edges for 20 sample datasets for the systems
representing Example 1. Figure 2 also presents the results for the Examples 2
discussed below.

16 R. Krishna and S. Guo

Example 2. The system in Example 1 is modified where x1(n) connects to x3(n)
directly and also via a distinct pathway through x2(n). x3(n) directly connects
to x4(n).

x1(n) = 0.95
√

2x1(n − 1) − 0.9025x1(n − 2) + w1(n)

x2(n) = −0.5x1(n − 2) + w2(n)

x3(n) = 0.5x1(n − 3) − 0.4x2(n − 2) + w3(n)

x4(n) = −0.5x3(n − 1) + 0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w4(n)

x5(n) = −0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) + w5(n)

The network structure found after computing partial causality for Example 2 is
shown in Figure 1(b).

Example 3. We modify the system in Example 1 by adding a common exogenous
input to each of the time series.

x1(n) = 0.95
√

2x1(n − 1) − 0.9025x1(n − 2) +
√

a1w1(n) +
√

1 − a1w6(n)

x2(n) = 0.5x1(n − 2) +
√

a2w2(n) +
√

1 − a2w6(n)

x3(n) = −0.4x1(n − 3) +
√

a3w3(n) +
√

1 − a3w6(n)

x4(n) = −0.5x1(n − 2) + 0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) +
√

a4w4(n) +
√

1 − a4w6(n)

x5(n) = −0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) +
√

a5w5(n) +
√

1 − a5w6(n)

Again wi(n), i = 1, 2, . . . , 6 are zero-mean uncorrelated white processes with
identical variance. ai, i = 1, 2, . . . , 5 are parameters, w6 is the common exogenous
input to the system. When ai = 1, i = 1, 2, . . . , 5, the common exogenous input is
absent. The smaller the ai, the greater is the influence of the common exogenous
input on the system. In the first case, we fixed the ai = 0.01 for all time series in
the system and in the second case, we chose ai ∼ U [0, 1] to be random variables
with Uniform distribution in [0, 1]. In the second case, the exogenous inputs were
different for different entities in the system. For both the cases, the method was
able to detect the correct network structure as shown in Figure 1(a).

Example 4. Dealing with latent variables in another key issue in network inference
from a given data set. To test our method in presence of latent variables in the
system, we further modified the system in example 3 by adding latent variables
to each of the time series.

x1(n) = 0.95
√

2x1(n − 1) − 0.9025x1(n − 2) +
√

a1/2w1(n) +
√

(1 − a1)/2w6(n) + 2w7(n − 1)

+2w7(n − 2)

x2(n) = 0.5x1(n − 2) +
√

a2/2w2(n) +
√

(1 − a2)/2w6(n) + 2w7(n − 1) + 2w7(n − 2)

x3(n) = −0.4x1(n − 3) +
√

a3/2w3(n) +
√

(1 − a3)/2w6(n) + 2w7(n − 1) + 2w7(n − 2)

x4(n) = −0.5x1(n − 2) + 0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) +
√

a4/2w4(n) +
√

(1 − a4)/2w6(n)

+2w7(n − 1) + 2w7(n − 2)

x5(n) = −0.25
√

2x4(n − 1) + 0.25
√

2x5(n − 1) +
√

a5/2w5(n) +
√

(1 − a5)/2w6(n) + 2w7(n − 1)

+2w7(n − 2)

A Partial Granger Causality Approach to Explore Causal Networks 17

(a) Example 1

(b) Example 2

Fig. 1. The figure represents the network structures obtained for toy examples dis-
cussed in the result section

(a) (b)

Fig. 2. The x-axis represents the edges which were expressed for the corresponding
dataset on the y-axis. (a) The network in example 1 has edge number 10,11,12,13
and 20 expressed for most of the datasets. See Table 1 for relationship between edge
numbers and the edges. (b) Example 2 has edges 10,11,12,15,18 and 20 expressed for
most of the datasets.

wi(n), i = 1, 2, . . . , 7 are zero-mean uncorrelated white processes with identical
variance. ai, i = 1, 2, . . . , 5 are parameters, w6 is the exogenous input to the
system and w7 is the latent variable. The system was tested for ai ∼ U [0, 1] and
the inferred network structure remained same as shown in Figure 1(a).

We used the bootstrap method to determine the significant edges forming
the network. 2000 datasets were generated for each example and the final result
was analysed for each dataset to check for consistency of the network structure
obtained. Table 2 in the supplementary material presents the confidence interval

18 R. Krishna and S. Guo

Table 1. Enumerating all the directed edges in the toy example

Edge Number 1 2 3 4 5 6 7 8 9 10
Edge (1 ← 2) (1 ← 3) (1 ← 4) (1 ← 5) (2 ← 3) (2 ← 4) (2 ← 5) (3 ← 4) (3 ← 5) (4 ← 5)

Edge Number 11 12 13 14 15 16 17 18 19 20
Edge (1 → 2) (1 → 3) (1 → 4) (1 → 5) (2 → 3) (2 → 4) (2 → 5) (3 → 4) (3 → 5) (4 → 5)

limits and the mean of causality values obtained from the bootstrap sample for
toy examples 1 and 2.

Further analysis revealed that only those edges were selected by the boot-
strap criteria which had significantly higher partial causality values associated
with them. The edges with relatively smaller values were left out after the boot-
strap confidence interval test. Figure 2 displays the selected edges for 20 sample
datasets for Examples 1 and 2. As it can be seen in the figure, the majority
of those datasets generated the expected network structures. The filled bright
squares in the figure denote the edges which passed the bootstrap confidence
interval criteria. These are also the edges having a considerably higher partial
causality values than other edges in the network. Table 2 in the supplementary
material provides the mean of the edges for toy models 1 and 2 during the boot-
strap process. This phenomena was observed for all the toy models indicating
that the edges with higher magnitude have a more significant role in detection of
network structure. This is an important observation considering that bootstrap
is a computationally expensive and time-consuming process. The VAR (Vector
Auto Regressive) modeling of a process with q entities requires O(q2) parame-
ters and is suitable for modeling small networks but time consuming for bigger
networks. Performing bootstrapping on a bigger network using this technique
will require considerable time and computational resources.

The toy models demonstrate the usefulness of partial causality for inference
of network structure from synthesized datasets. This helped us verify that the
network structures obtained are true to the data. Figure 2 presents a visual ma-
trix where each row on the y-axis represents a dataset and the x-axis represents
the edges which are expressed after applying our model for the corresponding
dataset. We can see that similar edges are expressed for most of the datasets.
There are few extra edges for some of the datasets which can be explained by
the property of data, some signals in a particular dataset can be more domi-
nant due to the introduced noise. The final verification about the selection of
edges with higher causality value can be performed by looking at the Table 2.
The positive lower bound for the relevant edges supports the hypothesis in the
bootstrap section.

3.1 Application on T-Cell Data

The methodology was applied to a publicly available microarray gene expression
data obtained from a well-established model of T-cell activation by Rangel et
al.[24]. The data was collected from 2 experiments characterizing the response
of a human T-cell line (Jurkat) to PMA and ionomycin treatment. The dataset

A Partial Granger Causality Approach to Explore Causal Networks 19

comprises of recorded expression levels of 58 genes observed after 0, 2, 4, 6, 8,
18, 24, 32, 48 and 72 hours. The dataset can be downloaded from the website
http://public.kgi.edu/∼wild/LDS/index.htm mentioned in the publication by
Rangel et al.

Fitting the VAR model on the data: The VAR model was fitted on the trans-
formed dataset with the lag selection performed according to the AIC criteria
mentioned in Equation 15. A lag value between 2 to 6 was chosen which mini-
mized the AIC value for the system. Figure 3 represents the Q-Q plot for four
genes. The plots were obtained after fitting the VAR model on the whole dataset.
The linearity of the plots indicate that the actual time series values for a gene
were in accordance with the predicted series. Plots in Figure 4 represent the his-
tograms and cross-correlation measures for the standard innovations obtained for
those four genes. The innovations exhibit Normal distribution. A similar pattern
was observed for other genes as well after fitting the VAR model. The coeffi-
cient of determination for all 58 equations, each one representing a gene, is also
presented in Figure 5. After the model fitting was done, a variance-covariance
matrix for the residuals was obtained for the whole system. Partial Granger
causality values were computed for each pair of genes in the dataset according
to Equation 14. The distribution of calculated partial causality values can be
found in the Figure 5.

Detection of the network structure: The total number of possible edges in a

system of 58 entities is
(58

2

)
× 2 = 3306. Performing a bootstrap on such a

big system is extremely time-consuming and computationally demanding due to
the complexity of VAR models. We then relied on the observation that we made
while studying the toy models, which revealed only the edges with higher partial
Granger causality values compared to the rest of the edges. This was confirmed
by the confidence interval tests performed on those models. Figure 2 and Table 2
support this theory for toy models. A threshold to select the most dominant edges
was chosen from the tail of the empirical distribution of partial causality values
for the T-cell data. Though the choice of threshold is user dependent and can
vary from case to case, we use the value of 0.5743 which corresponds to the 97.5
percentile as the threshold to detect the relevant edges. A total of 83 edges were
found to have partial causality value higher than the threshold. The obtained
network can be seen in Figure 6.

Analysis of the inferred network structure: The threshold criteria for inference of
network structure resulted in the elimination of 11 genes from the final network
obtained. The elimination of nodes doesn’t imply that they don’t play an active
role in the T-cell system, but only indicates that the interaction caused by them
in our inferred causal network is weaker than the interactions caused by the
entities present in the network. A complete list of the genes shown in Figure 6
along with the missing ones can be found in the Table 3 in the supplimentary
material of this paper. Some key genes are listed in the caption of Figure 6.

20 R. Krishna and S. Guo

(a) (b)

(c) (d)

Fig. 3. Q-Q plots of actual data versus predicted data after fitting the autoregressive
model

Fig. 4. Histogram and cross-correlation plot for innovations after fitting the autore-
gressive model

From a purely computational point of view, the network has two remarkable
properties which are commonly found in most of the biological networks. The
first property is the sparseness of connections in the network, and the second is
the existence of hub-and-spoke structure in the network. There are several edges

A Partial Granger Causality Approach to Explore Causal Networks 21

(a) (b)

Fig. 5. (a) Plot of coefficient of determination after fitting the VAR model on tcell
data.(b) Histogram plot for the partial causality between all pairs of genes in the
dataset.

Fig. 6. The full names and complete list of all the genes is provided in the Table 3.
Key genes discussed in the discussion are CD69 (gene 7),LAT (gene 57), FYB (gene
45),integrin-αM (gene 15),IL-2Rγ (gene 46),NF-κB (gene 56) and IL-16 (gene 23).

22 R. Krishna and S. Guo

emanating from nodes 32 (superoxide dismutase 1), 57 (LAT) and 58 (v-akt
murine thymoma viral oncogene homolog 1), and several edges terminating at
nodes 7 (CD69), 11 (jun D proto-oncogene) and 24 (adenomatosis polyposis coli).
Barabasi argues that such structures are natural for the biological systems and
knocking out a hub can break down the network [4]. Among the links found in the
network, we obtained a few gene-gene interactions that have been documented
earlier. Zhang et al.[32] showed that LAT is required for up-regulation of CD69
in T-cells, whereas the role of IL-2Rγ for regulation of CD69 was discussed
by Cheng et al.[6]. Pasquet et al. reported the activation of integrin-αM by
LAT [21]. Influence of FYB on CD69 has been reported by Cambiaggi et al.
[7]. A significant correlation between NF-κB activation and level of IL-16 was
discovered by Takeno et al.[26] and also reported by Hidi et al. [13].

4 Conclusions

Advances in experimental techniques in molecular biology have enabled re-
searchers to perform high-throughput experiments, enabling them to simultane-
ously monitor activities of numerous biological entities at different time points.
Quantitative analysis of experimental data helps researchers to build hypothesis
about the system and design new experiments. In this paper, we propose the use
of partial Granger causality to quantitatively infer the underlying causal network
structure based on microarray data. The application of this technique was first
studied for various toy models and then later applied to the T-cell microarray
data for deduction of causal network structure. The multivariate nature of this
technique makes it useful for the systems having large number of entities engaged
in cross-communication with each other. The technique is simple in nature and
can be easily applied to small as well as bigger systems.

Before concluding this section, we would like to summarize the main advan-
tages of using this technique and compare this technique with other commonly
used approaches for inferring network structure from biological data. The main
benefits of using our technique are the following:

– Non-availability of prior knowledge about the system is not a limitation and
doesn’t restrict us from studying large systems.

– Our model is inherently able to capture feedback cycles in a system which
is a common feature for biological systems.

– The computation in its simplest case is very straightforward and as a result
the outcome is very reliable and robust.

– In this paper we only deal with linear causality cases, but we can readily
extend the concept to non-linear cases.

– When we deal with time sequence data, we are able to assess the causality
relationship in the frequency domain. Such information is usually crucial
when we deal with a dynamical system.

Among the commonly used methods for inference of network structure from
timeseries data, relevance networks, Gaussian graphical models and Bayesian

A Partial Granger Causality Approach to Explore Causal Networks 23

networks are the prominent and widely used ones. In the following text we
present a brief overview of these methods and the problems associated with
them.

Relevance networks (RN): Relevance networks are based on pairwise association
score which is a correlation based method. The principle disadvantage of this
method is, that inference of an interaction between two nodes is not performed
in the context of the whole system. Correlation based methods are incapable of
distinguishing between direct and indirect interactions and are unable to capture
feedback loops.

Gaussian graphical models (GGM): GGMs - also known as undirected proba-
bilistic graphical models are inferred by calculating partial correlation between
two nodes conditional on all the other nodes in the network. Though the direct
interaction between two nodes is computed in the context of the whole network,
the method still suffers from some of the problems of relevance networks, namely
lack of direction and feedback cycles in the inferred network.

Bayesian networks (BN): BNs are widely used directed graphical models for
representing probabilistic relationship between multiple interacting entities. Al-
though Bayesian Networks underlie a powerful technique for inferring multivari-
ate joint probability distributions for a large amount of data, they have their
own limitations. First, Bayesian networks themselves are not causal networks.
Causal networks can be derived from Bayesian networks by means of inter-
ventions achieved by fixing the values of a variable to a constant value, and
assuming that values of none other variables are affected by the interventions
applied. Second, the technique is computationally expensive and requires a huge
amount of memory and time for computation. Third, it selects from a large num-
ber of possible structures (super-exponential in number) requiring one to apply
some heuristic search algorithm to decide on a single structure from the pool
of structures. Heuristic algorithms suffer from their own problems such as high
chances of getting struck in local minimal and time needed for computation.
Heuristic algorithms also imply a bias towards putting more weight on expected
structures. Another important limitation of static Bayesian Networks is their
inability to capture cycles in a network. They can only capture acyclic struc-
tures. Feedback loops are a common feature of biological pathways, so static
Bayesian Networks may not be a suitable tool for modeling them. The acyclicity
constraints associated with the static Bayesian networks are relaxed in Dynamic
Bayesian networks and the models are able to capture feedback loops in a sys-
tem. In the fully observable case, learning the network structure should not be
overly complicated. But computational and theoretical problems arise in case of
incomplete data, which is generally a case with gene expression measurements.
DBNs generally use expectation-maximization (EM) and recently more efficient
structure EM (SEM) algorithm for learning network structures from a given
dataset having hidden variables (unknown control/regulatory factors). However,
as the EM is an optimization routine, computational costs increase and there is
no guarantee to attain the global maxima. The inferred network structure is also

24 R. Krishna and S. Guo

dependent on the choice of prior and the scoring function used for evaluating
networks.

We propose that our framework can be used as an alternative technique for
network elucidation. It is statistically simpler and easier to implement. It also
addresses the limitations associated with the above mentioned popular methods.
Our approach contains a number of implicit assumptions that must be mentioned
here. First, the method assumes multivariate normality and weak stationarity
of the time series under consideration. This is not much of a problem because of
the calibration and normalization procedures used during the preprocessing of
experimental data. The second assumption is the linear relationship among the
entities under consideration. Although Granger causality itself is not restricted
due to the non-linear relationship between the entities, the method proposed in
this paper is based on the linear regression method which can be extended to
its non-linear form. Few examples of non-linear extensions of Granger causality
can be found in the publications by Ancona et al. [1] and Marinazzo et al. [18].
Last, and most importantly, the proposed causality model can be most useful
when experimental conditions are chosen in such a way that they activate the
measured network strongly and there is minimum error in data recording.

Acknowledgements

We are thankful to Prof. JF Feng and Dr. S Kalvala for useful discussions. RK
is supported by the Department of Computer Science, University of Warwick.

References

1. Ancona, N., Marinazzo, D., Stramaglia, S.: Radial basis function approach to non-
linear Granger causality of time series. Physical Review E 70, 056221 (2004)

2. Akaike, H.: Fitting autoregressive models for regression. Annals of the Institute of
Statistical Mathematics 21, 243–247 (1969)

3. Baccala, L., Sameshima, K.: Partial directed coherence: a new concept in neural
structure determination. Biological Cybernetics 84, 463–474 (2001)

4. Barabási, A.: Linked: The New Science of Networks. Perseus Books Group,
0738206679 (2002)

5. Berkum, N.: DNA microarrays: raising the profile. Current Opinion in Biotechnol-
ogy 12(1), 48–52 (2001)

6. Cheng, L., Ohlen, C., Nelson, B., Greenberg, P.: Enhanced signaling through the
IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferen-
tial proliferation and expansion of responding CD8+ T cells rather than promotion
of cell death. PNAS 99(5), 3001–3006 (2002)

7. Cambiaggi, C., Scupoli, M., Cestari, T., Gerosa, F., Carra, G., Tridente, G., Ac-
colla, R.: Constitutive expression of CD69 in interspecies T-cell hybrids and locus
assignment to human chromosome 12. Immunogenetics 36, 117–120 (1992)

8. Dojer, N., Gambin, A., Mizera, A., Wilczynski, B., Tiuryn, J.: Applying dynamic
Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7, 249
(2006)

A Partial Granger Causality Approach to Explore Causal Networks 25

9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to
Analyze Expression Data. J. Computational Biology 7, 601–620 (2000)

10. Geier, F., Timmer, J., Fleck, C.: Reconstructing gene-regulatory networks from
time series knock-out data and prior knowledge. BMC Systems Biology 1, 11 (2007)

11. Geweke, J.: Measurement of Linear Dependence and Feedback Between Multiple
Time Series. Journal of the American Statistical Association 77, 304–313 (1982)

12. Granger, C.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37, 424–438 (1969)

13. Hidi, R., Riches, V., Al-Ali, M., Cruikshank, W.W., Center, D.M., Holgate, S.T.,
Djukanovic, R.: Role of B7-CD28/CTLA-4 costimulation and NF-kappa B in
allergen-induced T cell chemotaxis by IL-16 and RANTES. J. Immunol. 164(1),
412–418 (2000)

14. Johnson, R., Wichern, D.: Applied multivariate statistical analysis. Prentice-Hall,
Englewood Cliffs (1988)

15. Kauffman, S.A.: The Origins of Order. Oxford University Press, Oxford (1993)
16. Kim, S., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray

data using dynamic Bayesian networks. Bioinformatics 4(3), 228–235 (2003)
17. Kitano, H.: Computational System Biology. Nature 420, 206–210 (2002)
18. Marinazzo, D., Pellicoro, M., Stramaglia, S.: Nonlinear parametric model for

Granger causality of time series. Physical Review E 73, 066216 (2006)
19. Mukhopadhyay, N., Chatterjee, S.: Causality and pathway search in microarray

time series experiment. Bioinformatics 23, 442–449 (2007)
20. Nagarajan, R., Upreti, M.: Comment on causality and pathway search in microar-

ray time series experiment. Bioinformatics 24(7), 1029–1032 (2008)
21. Pasque, J.M., Gross, B., Quek, L., Asazuma, N., Zhang, W., Sommers, C.L.,

Schweighoffer, E., Tybulewicz, V., Judd, B., Lee, J.R., Koretzky, G., Love, P.E.,
Samelson, L.E., Watson, S.P.: LAT is required for tyrosine phosphorylation of phos-
pholipase cgamma2 and platelet activation by the collagen receptor GPVI. Mol.
Cell Biol. 19, 8326–8334 (1999)

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1998)

23. Pe’er, D., Regev, A., Elidan, E., Friedman, N.: Inferring Subnetworks from Pre-
turbed Expression Profiles. Bioinformatics 17, S215–S224 (2001)

24. Rangel, C., Angus, J., Ghahramani, Z., Lioumi, M., Sotheran, E., Gaiba, A., Wild,
D., Falciani, F.: Modeling T-cell activation using gene expression profiling and
state-space models. Bioinformatics 20(9), 1361–1372 (2004)

25. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 270(5235),
467–470 (1995)

26. Takeno, S., Hirakawa, K., Ueda, T., Furukido, K., Osada, R., Yajin, K.: Nuclear
factor-kappa B activation in the nasal polypepithelium: relationship to local cy-
tokine gene expression. Laryngoscope 112(1), 53–58 (2002)

27. Van Someren, E.P., Wessels, L.F., Backer, E., Reinders, M.J.: Genetic network
modeling. Pharmacogenomics 4, 507–525 (2002)

28. Werhli, A., Grzegorczyk, M., Husmeier, D.: Comparative evaluation of reverse en-
gineering gene regulatory networks with relevance networks, graphical gaussian
models and bayesian networks. Bioinformatics 22(20), 2523–2531 (2006)

26 R. Krishna and S. Guo

29. Wiener, N.: The theory of prediction. In: Beckenbach, E.F. (ed.) Modern Mather-
matics for Engineers, ch. 8. McGraw-Hill, New York (1956)

30. Yang, Y., Dudoit, S., Luu, P., Lin, D., Peng, V., Ngai, J., Speed, T.: Normaliza-
tion for cDNA microarray data: a robust composite method addressing single and
multiple slide systematic variation. Nucleic Acids Research 30(4), 15 (2002)

31. Yeung, M., Tegnérdagger, J., Collins, J.: Reverse engineering gene networks using
singular value decomposition and robust regression. PNAS 99(9), 6163–6168 (2002)

32. Zhang, W., Irvin, B., Trible, R., Abraham, R., Samelson, L.: Functional analysis of
LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line.
International Immunology 11(6), 943–950 (1999)

Supplementary Material

Table 2. Confidence interval bounds for Examples 1 and 2. The edge numbers corre-
spond to the edges enumerated in Table 1.

Example 1 Example 2

Edge number Mean - 3σ Mean + 3σ Mean Mean - 3σ Mean + 3σ Mean

1 -4.03e-003 8.03e-003 2.00e-003 -4.48e-003 1.05e-002 3.02e-003
2 -3.94e-003 7.92e-003 1.99e-003 -4.48e-003 1.05e-002 3.03e-003
3 -4.16e-003 8.36e-003 2.10e-003 -4.37e-003 1.04e-002 3.03e-003
4 -3.94e-003 8.00e-003 2.03e-003 -4.44e-003 1.08e-002 3.18e-003
5 -4.25e-003 8.47e-003 2.11e-003 -4.31e-003 1.03e-002 3.04e-003
6 -4.17e-003 8.29e-003 2.05e-003 -4.64e-003 1.08e-002 3.08e-003
7 -4.00e-003 7.87e-003 1.93e-003 -4.64e-003 1.06e-002 2.97e-003
8 -6.85e-003 3.70e-002 1.51e-002 -4.39e-003 1.04e-002 3.03e-003
9 -4.84e-003 9.84e-003 2.49e-003 -4.60e-003 1.08e-002 3.12e-003
10 6.95e-002 2.04e-001 1.36e-001 6.76e-002 2.01e-001 1.34e-001
11 2.50e-001 4.50e-001 3.50e-001 4.02e-001 6.25e-001 5.13e-001
12 2.35e-002 1.24e-001 7.41e-002 1.95e-001 3.74e-001 2.84e-001
13 2.51e-001 4.50e-001 3.51e-001 -4.34e-003 1.03e-002 3.00e-003
14 -4.02e-003 8.00e-003 1.99e-003 -4.39e-003 1.05e-002 3.08e-003
15 -6.26e-003 4.19e-002 1.78e-002 9.49e-002 2.47e-001 1.71e-001
16 -3.95e-003 7.97e-003 2.00e-003 -4.53e-003 1.07e-002 3.08e-003
17 -3.96e-003 7.96e-003 1.99e-003 -4.71e-003 1.10e-002 3.15e-003
18 -4.00e-003 8.02e-003 2.00e-003 1.64e-001 3.46e-001 2.55e-001
19 -3.95e-003 8.02e-003 2.03e-003 -4.44e-003 1.05e-002 3.06e-003
20 8.72e-002 2.37e-001 1.62e-001 6.88e-002 2.01e-001 1.35e-001

A Partial Granger Causality Approach to Explore Causal Networks 27

Table 3. List of genes in T-cell data

Gene number Gene name

1 retinoblastoma 1 (including osteosarcoma)
2 cyclin G1
3 TNF receptor-associated factor 5
4 clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, apolipoprotein J)
5 mitogen-activated protein kinase 9
6 CD27-binding (Siva) protein
7 CD69 antigen (p60, early T-cell activation antigen)
8 zinc finger protein, subfamily 1A, 1 (Ikaros)
9 interleukin 4 receptor
10 mitogen-activated protein kinase kinase 4
11 jun D proto-oncogene
12 lymphocyte-specific protein tyrosine kinase
13 small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-je)
14 ribosomal protein S6 kinase, 70kD, polypeptide 1
15 integrin, alpha M (complement component receptor 3, alpha; also known as CD11b (p170)
16 catenin (cadherin-associated protein), beta 1 (88kD)
17 survival of motor neuron 1, telomeric
18 caspase 8, apoptosis-related cysteine protease
19 E2F transcription factor 4, p107/p130-binding
20 proliferating cell nuclear antigen
21 cyclin C
22 phosphodiesterase 4B, cAMP-specific (dunce (Drosophila)-homolog phosphodiesterase E4)
23 interleukin 16 (lymphocyte chemoattractant factor)
24 adenomatosis polyposis coli
25 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein
26 Src-like-adapter
27 cyclin-dependent kinase 4
28 early growth response 1
29 transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)
30 myeloid cell leukemia sequence 1 (BCL2-related)
31 cell division cycle 2, G1 to S and G2 to M
32 superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
33 cyclin A2
34 quinone oxidoreductase homolog
35 interleukin-1 receptor-associated kinase 1
36 SKI-INTERACTING PROTEIN
37 myeloid differentiation primary response gene (88)
38 caspase 4, apoptosis-related cysteine protease
39 transcription factor 8 (represses interleukin 2 expression)
40 apoptosis inhibitor 2
41 GATA-binding protein 3
42 retinoblastoma-like 2 (p130)
43 chemokine (C-X3-C) receptor 1
44 interferon (alpha, beta and omega) receptor 1
45 FYN-binding protein (FYB-120/130)
46 interleukin 2 receptor, gamma (severe combined immunodeficiency)
47 colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage)
48 myeloperoxidase
49 apoptosis inhibitor 1
50 cytochrome P450, subfamily XIX (aromatization of androgens)
51 CBF1 interacting corepressor
52 caspase 7, apoptosis-related cysteine protease
53 mitogen-activated protein kinase 8
54 jun B proto-oncogene
55 interleukin 3 receptor, alpha (low affinity)
56 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
57 linker for activation of T cells
58 v-akt murine thymoma viral oncogene homolog 1

Functional Evolution of Ribozyme-Catalyzed

Metabolisms in a Graph-Based Toy-Universe

Alexander Ullrich and Christoph Flamm

University of Vienna, Institute for Theoretical Chemistry,
Waehringerstrasse 17, A-1090 Vienna, Austria

Abstract. The origin and evolution of metabolism is an interesting field
of research with many unsolved questions. Simulation approaches, even
though mostly very abstract and specific, have proven to be helpful in
explaining properties and behavior observed in real world metabolic re-
action networks, such as the occurrence of hub-metabolites. We propose
here a more complex and intuitive graph-based model combined with an
artificial chemistry. Instead of differential equations, enzymes are repre-
sented as graph rewriting rules and reaction rates are derived from energy
calculations of the involved metabolite graphs. The generated networks
were shown to possess the typical properties and further studied using
our metabolic pathway analysis tool implemented for the observation of
system properties such as robustness and modularity. The analysis of
our simulations also leads to hypotheses about the evolution of catalytic
molecules and its effect on the emergence of the properties mentioned
above.

Keywords: metabolism, evolution, simulation, enzymes, robustness.

1 Introduction

Life, in the most basic sense, constitutes of interactions between chemical com-
pounds building complex networks which in turn can be regulated and interacted
with. Living organisms adopt to the environment by means of gradual change of
their internal networks and regulations. Throughout the evolutionary process,
biological systems developed certain desirable properties, such as robustness and
flexibility. Despite the profound knowledge of these properties and the processes
within biochemical networks, the causes for the emergence of system properties
are less well understood in most cases.

Metabolic networks are the best studied biochemical networks. We can re-
construct entire metabolisms because we have complete annotated genomes of
model organisms at our disposal. Looking at pathways in these networks can
in turn be interesting for functional genomics, e.g. gene expression data derived
from DNA arrays may be better understood in terms of metabolic components,
pathways or sub-networks. Insights about the metabolism of an organism can of
course be useful for further biotechnological applications [1], e.g. the determi-
nation of pharmaceutical targets, metabolic engineering, changing direction and

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 28–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Functional Evolution of Ribozyme-Catalyzed Metabolisms 29

yield of pathways. Before we can make use of all these applications, it is essential
to gain an understanding of the network properties. It is often not enough to look
at textbook-like metabolisms, since they do not resemble the actual behavior of
these networks. Therefore, we need means to analyze the network’s topology,
structure, principle, plasticity and modules. Such means exist, e.g. metabolic
flux analysis [2][3], and thus we are able to make important observations about
the networks and systems of interest, such as the abundance of diversity among
enzymes, hub-metabolites and small world networks. But it also has to be noted
that there are still some limitations to the analysis and it remains unknown how
these and other possible properties emerged and further evolved. The case is
especially difficult if we regard properties that cannot be sufficiently explained
by looking at a static network image [4], such as robustness or evolvability.

It can be assumed and it is believed by most biologists that all organisms which
we can see today are evolved from one common ancestor [5]. This ancestor would
be a single cell having properties similar to those observed in cells of modern
organisms. Since we do not believe this cell to have been spontaneously and
magically appeared on the earth’s surface, it is fair to suggest that this cell in
turn gradually evolved from simpler cells. Many theories on the origin of life and
scenarios for the early evolution exist, but actually we cannot say anything with
certainty until the point of the common ancestor, thus all the available modern
molecular techniques will fail to provide a complete account of the emergence of
some of the properties we are interested in.

Models for the simulation of the emergence of network properties exist and
have provided explanations for some of the properties. For example, [6] showed
that gene-duplication can account for the property of a network to be scale free.
So far these models of biological systems use either differential equations [7], i.e.
enzymes are not modeled as actual chemical entities but only as rates, or very
abstract artificial chemistries. A more complex simulation integrating more func-
tional constraints of the metabolism should provide further insights about the
metabolism itself, properties of complex networks in general and also their emer-
gence, so that these properties may be reproducible in other applications. For
instance, artificial networks are desired to be robust and maybe even evolvable
as well.

2 Model

In this section we will discuss the basic framework of the simulation -the model-,
the basic ideas behind it and explain the individual components. All structures
in the simulation are modeled as graphs and processes are performed through
applications on the structure of graphs or the analysis of those. The choice to use
graphs as the presentation for the structures in our chemical environment can
be justified, firstly, by the fact that in chemistry molecules are for many years
represented in graph form. Also it is the most intuitive way to regard chemical
substances. Besides, networks are best understood by looking at its graph rep-
resentation. And considering modern reaction classification systems[8,9,10,11],

30 A. Ullrich and C. Flamm

even for reactions and thus enzymes graphs can be used as appropriate models.
Furthermore, it is hoped and believed that using graphs for all parts of the model
results in a more realistic behavior of the entire system. Also there exist versatile
applications which can be performed on graphs to analyze and transform them,
such as metabolic pathway analysis or graph-rewrite systems.

The graph-based model is supported by an artificial chemistry, ToyChem[12],
completing the universe in which individuals and their metabolisms can evolve.
The artificial chemistry uses a graph representation of the molecule for the en-
ergy calculation. ToyChem provides the look-and-feel of a real chemistry[12] and
integrates a realistically chemical behavior into our simulation, which is sufficient
for our purposes and more sophisticated than has so far been at the disposal of
a comparable simulation approach[13].

2.1 Genome

Every individual in the simulation population contains a genome of a fixed length
and a common TATA-box sequence. Furthermore, all genes have the same length.
The genome is an RNA-sequence and the single genes represent RNA-enzymes
and bear the function of a particular chemical reaction from the set of reactions
defined as current chemistry, as will be explained in one of the next paragraphs.
In each generation, new individuals are generated from the set of optimal (with
respect to metabolic yield) individuals. Those new individuals contain a copy
of the parent genome to which a point mutation was applied. The mutation
can occur everywhere in the genome. There can be silent mutations, i.e. the
mutation takes place in a non-coding region, or neutral mutations which change
a nucleotide within a gene but not the function of the corresponding RNA-
enzyme, i.e. it still performs the same chemical reaction. Accordingly, there can
also be missense mutations which change the structure of the RNA-enzyme in
such a way that it inhabits a different function than before, and there can be
mutations which either destroy a TATA-box (nonsense mutation) or build a
new TATA-box and, therefore, eliminate or add a new gene to the genome,
respectively.

The genome is realized by a string containing the nucleotide sequence and a
list of all genes which have to be transcribed to RNA-enzymes. The sequence is
treated as circular. Consequently, there are as many genes as there are TATA-
boxes and some of the genes may reach over the ends or overlap. Every gene
is assigned an ID. The IDs for the currently expressed genes and that of the
parental genes are stored and all the genes, currently expressed or not, are listed
in the genome. With this information we are able to retrace the history of every
single gene and determine whether it had a single or multiple origin and if it
may have disappeared for some generations before reappearing. Furthermore,
the entire history of mutations is kept in the genome and we can determine the
exact time of change and analyze the means of these changes. This also allows
us to compare sequential and structural changes with external events, such as
changes in the environment or selection for certain properties.

Functional Evolution of Ribozyme-Catalyzed Metabolisms 31

2.2 Metabolites

Besides the genome, individuals also include a metabolite-pool. In the first
generation this pool consists only of the metabolites of the environment. The
user defines the content of this environment by providing an input-file with
the SMILES[14] notations of the molecules that are to be included, otherwise
a predefined set of molecules is used. In each generation the newly produced
metabolites are added to the metabolite-pool. To avoid redundancy, every new
metabolite graph has to be checked for isomorphism against the entire pool.
Since the size of the metabolite-pool can increase quickly, graph-isomorphism
checking could slow down the entire simulation, therefore, we keep the graphs in
a hashmap with their unique SMILES notation[15] as key, reducing the problem
to a string comparison. At the end of a simulation the metabolite-pool is printed
to a file, using again SMILES since it is a concise and easily interpretable way
of presenting chemical molecules.

The vertices of the metabolite graph are the atoms of the respective chem-
ical molecule and edges exist between vertices whose atoms are connected, to
represent the chemical bonds of the molecule. The labels for the vertices are
the atom types: hydrogen, oxygen, nitrogen or carbon (H, O, N, C). For edges
the labels are the chemical bond type: single bond, double bond or triple bond
(−, =, #).

2.3 Enzymes

We now turn to the most important part of the metabolism and therefore also our
model. Enzymes determine the metabolic fate of a cell and almost all processes
with considerable contribution to the development of a cell need enzymes. So
far, simulations modeled only the reaction rates, with differential equations, but
the representation of the reaction itself was rather abstract and static. We use a
more flexible and realistic approach. Flexible because the set of enzymes can be
adjusted by the user initially. For different purposes one might want to choose
different sets of chemical reactions, e.g. sometimes only reactions working on
carbon-skeletons are of interest or in another experiment only reactions involving
a small number of atoms is to be observed. Realistic because many different kinds
of chemical reactions are available (around 15.000 in the current simulation), but
only those that are chemically valid. Due to the sheer endless number of possible
chemical reactions, the set of reactions which can be chosen in the simulation is
restricted here to those containing hydrogen, oxygen, carbon or nitrogen atoms.
We believe that these atoms suffice to build up the most important molecules
necessary for a primitive metabolism as one would expect in the early evolution
of metabolism and that the simulation still resembles a realistic account for the
processes at such a phase or comparable situations and does not sustain a loss of
expressiveness regarding robustness and other network properties. Furthermore,
we consider only the class of pericyclic reactions, which is the most important one
of the three organic reaction mechanisms[16] (the other two are ioinic and radical
reactions). These reactions always have a cyclic transition structure. Pericyclic

32 A. Ullrich and C. Flamm

reactions are used here because they are very clean, i.e. there are no unknown by-
products, and they can be analyzed with frontier molecular orbital theory which
is of use for the calculation of the reaction rates by the artificial chemistry.
We further limit the set of reactions to those involving three to six atoms and
not more than two metabolites. If we say that a certain number of atoms is
involved in a reaction, then this does not mean that the metabolite which is to
be worked on contains only this particular number of atoms, but rather that
only the connections within a set of atoms of this particular size is changed
by the reaction. Most of the already known chemical reactions lie in this range
and it can be assumed that, accordingly, reactions crucial to simple metabolisms
or the most basic pathways and networks underlying all metabolisms can be
found there. Reactions involving more atoms or metabolites, account only for few
interesting reactions and would simply add to the complexity of the computation.

The atoms and bonds of the reaction center of the chemical reaction, corre-
sponding to the enzyme, constitute the vertices and edges of the enzyme graph.
Each vertex in an enzyme graph is connected to two other vertices in such a way
that the atoms build a cycle. The vertex label is equal to that of the metabo-
lite graph, but the edge-labeling differs somewhat. In the enzyme graph, every
edge has two labels for bond-types: one for the substrate molecule and the other
for the product molecule. Also the bond-types for enzymes are extended by the
empty symbol, indicating that two atoms are not connected. Below, the Diels-
Alder reaction is shown in the GML1[17] format which is used as the input
format.

ID 414141404140
rule [
context [
node [id 0 label "C"]
node [id 1 label "C"]
node [id 2 label "C"]
node [id 3 label "C"]
node [id 4 label "C"]
node [id 5 label "C"]

]
left [
edge [source 0 target 1 label "="]
edge [source 1 target 2 label "-"]
edge [source 2 target 3 label "="]
edge [source 4 target 5 label "="]

]
right [
edge [source 0 target 1 label "-"]
edge [source 1 target 2 label "="]
edge [source 2 target 3 label "-"]
edge [source 3 target 4 label "-"]

1 www.infosun.fim.uni-passau.de/Graphlet/GML/

Functional Evolution of Ribozyme-Catalyzed Metabolisms 33

edge [source 4 target 5 label "-"]
edge [source 5 target 0 label "-"]

]
]

The function of the enzyme is performed through a graph-rewriting mechanism.
The graph that is transformed is that of a metabolite. The graph-rewrite rules
are pairs of graphs that are gained from the enzyme graph. As explained above,
an edge in the enzyme graph has two labels, one is for the substrate graph (the
left side of the rule) and the other is for the product graph (the right side of the
rule). First, we search for subgraphs in the metabolite that match the substrate
graph and then replace it with the product graph. Note, that the atoms and
the number of connections stays the same but the connections are reordered.
Following, the energy of the substrate and the product are calculated as well as
the reaction rate. The enzymatic reaction is only applied if the product molecule
is energetically more favorable. Besides the energy calculation, metabolite graphs
can be measured and assessed in terms of topological graph indices[18]. So far
we use these indices (e.g. Connectivity Index[19], Platt Number[20] and Balaban
Index[21]) to produce networks differing in the set of selected enzymes although
starting in the same environment and with the same chemistry. We can use
this to check whether the common network properties depend on lower level
properties and also analyze if the selected enzymes spezialise directed or rather
randomly. Furthermore, the additional use of topological indices could allow us
to select for metabolites and enzymes with certain characteristics, such as very
stable or very reactive metabolites and enzymes building long chains of the same
molecule.

2.4 Mapping

As mentioned before, the genes encoding the enzymes are RNA-sequences and
the enzymes, consequently, are modeled to act as ribozymes. To ensure a re-
alistic behavior and evolution of our enzymes, we developed a novel genotype-
phenotype mapping for the transition from the gene (genotype) to the catalytic
function of the enzyme (phenotype). We use the RNA sequence-to-structure map
as the basis for the mapping and consider two observations from the study of
evolution and enzymes.
Firstly, it is known that neutral mutations, leading to a redundant genotype-
phenotype mapping, have a considerable influence on the evolution in molecular
systems. The folding of RNA-sequences to secondary structures with its many-
to-one property represents such a mapping entailing considerable redundancy.
Various extensive studies concerning RNA-folding in the context of neutral the-
ory yielded to insights about properties of the structure space and the mapping
itself. Thus, we will get a better understanding of some of these properties and
especially of the evolution of RNA-molecules as well as their effect on the evo-
lution of the entire molecular system.

The second observation we use is that enzymes typically have an active site
where only few amino acids or bases determine its catalytic function and the

34 A. Ullrich and C. Flamm

remaining structure has mostly stabilization purposes. Accordingly, we extract
structural and sequence information only from a restricted part of the fold. We
decided to focus on the longest loop of the folded RNA since most RNA-aptamers
are known to contain a loop region as their catalytic center. The idea for mapping
the extracted information directly to a specific chemical reaction was inspired by
the fact that many enzymes catalyze a reaction by stabilizing its transition state
and the work on reaction classification systems, in particular Fujita’s imaginary
transition structures (ITS) approach [10,22,23].

The mapping from the structure and sequence information to the pericyclic
reaction that resembles the function of the enzyme is generated as following.
The length of the longest loop in the secondary structure of the RNA-enzyme
determines the number of atoms that are involved in the chemical reaction to
which the gene will be mapped. A statistical analysis was performed to ensure
that the different reaction types occur in appropriate proportions. Further, the
loop is divided in as many parts as the number of atoms involved in the re-
action. The mapping to the atom types of the reaction is derived simply from
the sequence information in the different parts of the loop, each corresponding
to one atom. The exact mapping from sequence information to atom type here
is not important since not biologically meaningful. It suffices to notice that all
atom types are chosen with the same rate. The bond type of the reaction logo
is derived from the structural information of the different parts of the loop, in
particular, the stems contained in these parts. The number of stems in a loop
region, the length of these stems, and the sequence of the first two stem pairs
accounts for the decision to which bond type will be mapped. Again the exact
procedure of the mapping will not be discussed because it is a rather technical
detail. An example for the mapping is explained in figures 1,2 and table 1 for
better understanding.

Finally, we performed several statistical tests commonly used in neutral the-
ory. We compared it with results of approaches using cellular automatons, ran-
dom boolean networks and other RNA-fold-based mappings. It exceeds all
non-RNA mappings in extent and connectivity of the underlying neutral net-
work. Further, it has a significantly higher evolvability and innovation rate than
the rest. Especially interesting is the highly innovative starting phase in RNA-
based mappings. This shows that the use of such a genotype-phenotype mapping
contributes greatly to a more realistic modeling of evolution.

2.5 Artificial Chemistry

We will use ToyChem, an artificial chemistry with the look-and-feel of a real
chemistry, for the calculation of the energy of metabolites and reaction rates. In
ToyChem molecules are represented in another type of graph -the orbital graph-.
From the orbital graph of a molecule all the necessary properties needed for the
energy calculation can be derived. The ToyChem package also provides func-
tionality for the computation of solvation energies [24] and reactions rates[25].

Energy Calculation. The most accurate way to calculate arbitrary properties
or reaction rates for molecules is to derive a wave-function from the 3D-space

Functional Evolution of Ribozyme-Catalyzed Metabolisms 35

Fig. 1. Example: Reaction mapping. Left: The folded RNA. Right: Longest loop of the
folded RNA and the relevant sequence and structure information (marked red).

Table 1. Example: Information derived from the longest Loop of the folded RNA-
sequence. The mapped reaction contains four carbon atoms, one oxygen and one nitro-
gen and is unimolecular. The substrate contains one triple bond, one double bond and
three single bonds, whereas the product molecule contains three double bonds and two
single bonds, both are not closed.

Section Loop C-G pair Neighbor > 5 bp Bond Valence Seq. (loop) Sequence
1 (red) yes 0 yes (+1) 1 ”−” 3 4 4 = C
2 (blue) yes 1 yes (+1) 2 ”=” 4 1 4 = C
3 (gray) no - no 0 ” ” 3 4 4 = C
4 (yellow) yes 0 no 0 ” ” 1 4 4 = C
5 (pink) no - yes (+1) 1 ”−” 2 2 2 = O
6 (green) yes 1 no 1 ”−” 3 3 3 = N

embedding of the molecular structures with a subsequent application of quan-
tum mechanical methods. This approach is however rather demanding in terms
of computational resources. We therefore resign to a computationally tractable
approach called ToyChem [12]. This method constructs an analog of the wave-
function from the adjacency relations of a graph followed by a simplified quan-
tum mechanical treatment called extended Hückel Theory (EHT)[26]. In the
EHT the Hamilton matrix is parametrized in terms of the atomic ionization
potentials and the overlap integrals between any two orbitals. The overlaps be-
tween orbitals are gained unambiguously from the molecular graph by applying
the valence shell electron pair repulsion theory (VSEPR) [27]. The resulting
information can conveniently be stored in the orbital graph who’s vertices rep-
resent atom orbitals (labeled by atom type and hybridization state of the atom)
and the edges denote overlaps of interacting orbitals. Within the ToyChem

36 A. Ullrich and C. Flamm

Fig. 2. Example: Extracted information maps to this particular pericyclic reaction,
represented by its reaction logo. This is an example of a sigmatrophic rearrangement.
The coloring indicates which information was used for the respective part of the reaction
logo, the colors correspond to the labeling in the table above.

framework the atomic ionisation potentials and the overlap integrals are tab-
ulated as functions of the atomic type and the type of the hybrid orbitals for a
subset of atom which frequently occure in organic molecules. This information
allows a fast construction of the Schrödinger equation from the orbital graph.
Solving of the Schrödinger equation yields the eigenvectors and eigenvalues from
which any physical properties of a ToyChem molecule can be calculated.

Oribtal Graph. In the orbital graph of a molecule, nodes are the atom orbitals
and edges indicate overlapping orbitals. From the four atom orbitals 2px, 2py,
2pz and 2s, three hybrid orbitals with different geometry can be formed. The hy-
brid orbitals sp (linear geometry), sp2 (trigonal geometry) and sp3 (tetrahedral
geometry) combined with the respective atom type constitute the node labels
of the orbital graph. The edge labels depend on the orientation of the two in-
teracting orbitals relative to each other. In ToyChem, three types are regarded.
Therefore, there are three different edge labels, direct σ-overlap, semi-direct σ-
overlap and π-overlap.

2.6 Metabolic Reaction Network

The central subject of the simulation is the metabolism, thus, we need a represen-
tation that we can easily observe and also use for analysis tools. In particular, the
metabolic flux analysis but also other forms of network, graph or even grammar

Functional Evolution of Ribozyme-Catalyzed Metabolisms 37

Fig. 3. Orbital graph of propenamide. Direct, semi-direct σ-overlaps, and π-overlaps
are represented by solid black, dashed, and solid gray lines.

analysis as well. The most intuitive solution seems to be to use a network graph.
In case of a metabolic network this could be a bidirectional and bipartite labeled
graph. Bipartite because enzymes are only connected to metabolites and not to
other enzymes and, vice versa, metabolites are only connected to enzymes. Bidi-
rectional because one metabolite may at one time be the product of an enzyme
and another time be the substrate of the same enzyme, therefore, the direction
of a connection is important. The nodes are labeled with IDs for metabolites
and enzymes. The edge labels contain information about the specific reactions
in which an enzyme-metabolite pair was involved. This is necessary because we
can identify the exact parts of a reaction which can be up to four metabolites
and one enzyme. Further, a metabolite can be the substrate or product of an
enzyme in more than one reaction. From this graph the stoichiometry matrix can
easily be derived and it has the advantage that no information is lost and can
be extracted in a straight forward way for almost all objectives. For example,
the single reactions can be listed with substrates and products. Consequently, it
is possible to analyze from which different sources a metabolite can be gained.
Looking at the enzyme graph may even enable us to specify the exact regions
which were joint, split or changed. The interpretability and expressiveness of this
network graph, therefore, allows for a very detailed manually analysis as well as
the typical computational approaches.

3 Results

We performed several simulation runs and analyzed their results to gain infor-
mation about the properties of the evolved metabolic networks. Discussed will

38 A. Ullrich and C. Flamm

be ten simulations, differing in the topological index that is used as selection cri-
teria for reactions and metabolites. We use five different indices and for each of
them, two simulations were performed, where one is aiming to reduce the respec-
tive index and the other tries to maximize it. We believe the addition of these
indices makes it easier to observe different behaviors among the networks. All
simulations are initialized with a population of six individuals. The genome for
the individuals is chosen randomly, but for all simulations the random number
generator (RNG [28]) used for building a random genome and generate random
mutations is set with the same seed number. The set of metabolites constituting
the environment is the same in all simulations as well. Thus, the simulations
start with equal preconditions. Furthermore, in every generation, half the pop-
ulation is selected and from each of the selected individuals a new individual is
produced and a mutation in its genome is performed.

Metabolic networks are small world networks. Therefore, the metabolite con-
nectivity distribution follows the power law. In other words, in a realistic
metabolic network, a few highly connected metabolites, called hubs, should be
observed, whereas the majority of metabolites is involved in only one or two
reactions. In order to prove whether this property can be found in the networks
produced by the simulation tool, the distribution of the metabolite connectivity
was derived. Since the different simulations do not result in networks of equal
size and it is known that in small networks, around 50 metabolites, the con-
nectivity distribution does not follow exactly the power law and contains fewer
hubs than could expected in a scale free network, we consequently group the
networks into sets of networks with similar size. The values of the connectivity
distribution are listed in table 2 and illustrated in figure 4.

In all networks, the majority of metabolites is involved in one or two reactions,
but only larger networks (m > 150) contain enough highly connected metabolites
to satisfy the small world property. A similar observation as in [7] can be made.
In small networks, the number of hubs in the range between eight and twelve is
higher than for scale-free networks, but too few hubs of higher connectivity exist.
Most real world metabolic networks contain more than fifty metabolites, thus
are large networks. The conclusion about the small-world property of metabolic
networks, therefore, was drawn with the assumption that the network of inves-
tigation is large (m ≥ 100). The connectivity distribution of smaller real world
metabolic networks, actually, exhibit the same deviations from the power law as
the networks gained from the example simulations. Accordingly, we can not state
that all produced networks are scale-free, but we can assume them to resemble
realistic metabolic networks.

For further analysis, one of the simulations is studied in more detail. We will
discuss exemplarily the simulation that uses the minimal Balaban index [21] as
selection criteria. In figure 5, 6 and 7 network graphs for generation one, two
and 87 are depicted. Enzymes are drawn in light blue circles and metabolites in
light gray boxes. The enzyme and metabolite indices are defined in the protocol.

From the network graph in figure 7 it can be derived, that some enzymes
catalyze many reactions (e2, e12, e44, e45) and others participate in very few

Functional Evolution of Ribozyme-Catalyzed Metabolisms 39

Table 2. Connectivity of metabolites in networks of different sizes. Frequency in %.

Connectivity
|Metabolites| 1 2 3 4 5 6 7 8 - 12 >12

avg(m)=47.5 43.91 12.61 13.03 8.61 8.82 4.83 2.31 4.41 1.47

avg(m)=104.5 50.89 17.1 6.02 5.2 5.61 5.2 3.28 5.06 1.64

avg(m)=156.5 56.21 16.36 5.85 3.56 2.92 3.29 2.1 4.02 5.67

avg(m)=249.5 58.59 12.89 8.13 6.01 2.69 2 1.37 3.67 4.64

avg(m)=570 62.8 12.1 9.12 5.49 2.89 1.2 1.46 2.34 2.63

Fig. 4. Connectivity of metabolites in networks of different sizes. Frequency in %.
Connectivity of 1, 2, 3, 4, 5, 6, 7, 8-12, >12, >30 for all 5 network classes.

Table 3. Specificity of enzymes in the example network

Enzyme e37 e45 e12 e44 e18 e27 e6 e82 e4 e62 e124 e130 e2

Generation 1 1 1 2 3 3 7 10 14 42 44 51 53

Connectivity 4 5 12 9 4 2 2 2 2 2 3 1 6

reactions. In the different theories about the evolution of enzymes, it was stated
that enzymes of low specificity evolve to highly specific enzymes. This is ex-
pected for the simulations as well. To study the evolution of enzymes within the
simulation run, we looked at the generation in which the respective enzyme par-
ticipated for the first time. This information is listed in table 3 for all enzymes
in the example network in generation 87. A tendency for early enzymes to be
less specific can be observed, in fact, three of the four enzymes with relatively
low specificity are from generation one or two. With the exception of e2, all
enzymes in later generations are more specific. The same observation is made
for the other simulations.

The observation stated above is explained with the following scenario. In the
beginning, every reaction producing valid metabolites is beneficial for the yield
of the network. Since more metabolites are generated, more of the already exist-
ing enzymes find reactants. At some point, metabolites will protrude from the

40 A. Ullrich and C. Flamm

Fig. 5. Example: Network graph from simulation Balaban in generation 1. Light blue
circle = enzyme, light gray box = metabolite.

Fig. 6. Example: Network graph from simulation Balaban in generation 2. Light blue
circle = enzyme, light gray box = metabolite.

metabolite pool, that is, some metabolites become more beneficial than others.
This in turn means that not all of the enzymes increase the network yield. If an
enzyme with low specificity overlaps in functionality with another enzyme which
is specialized on the few common reactions, then the impact of the former en-
zyme on these reactions is very low. Since the rate of a reaction depends on how
many reactions the involved enzyme performs, the remaining reactions of the
lowly specific enzyme are performed on a relatively low rate. A highly specific
enzyme which can catalyze the remaining non-overlapping reactions, can do so
at much higher rate. Overall, it can be stated that enzymes which have a unique
function have an advantage in natural selection. In later generations, most ben-
eficial reactions are already realized by existing enzymes and only few are left.
It follows that only specific enzymes can find their niche. However, sometimes
lowly specific enzymes enter the network at later stages because they express a
completely new functionality, e.g. different atoms, bond type or reaction type.
This scenario does not comply exactly with retrograde evolution[29], since it

Functional Evolution of Ribozyme-Catalyzed Metabolisms 41

Fig. 7. Example: Network graph from simulation Balaban in generation 87. Light blue
circle = enzyme, light gray box = metabolite.

42 A. Ullrich and C. Flamm

does not need a metabolite depletion, but it integrates to a certain extent the
idea of patchwork evolution[30] and the theory of [5].

4 Conclusions and Outlook

The presented simulation model can be a tool in the study of the evolution of
metabolism and enzymes, as well as research on properties of complex networks.
The underlying graph concept in combination with a sophisticated artificial
chemistry and redundant genotype-phenotype map ensures a realistic behav-
ior of the evolution. The resulting metabolic networks exhibit the characteristic
properties of real world metabolisms. Various options, from the constitution of
the environment and chemistry to selection properties, such as the number of
descendants or the use of topological indices as additional criteria, can be ad-
justed. An extensive amount of information about the simulation can be gained
from its protocol. The data about metabolic networks and their evolution over
generations, is expressive and meaningful, so that it can be used to formulate
new hypotheses or test existing theories.

For the future we are working on the integration of regulatory elements to the
model which would add to the complexity of the simulated individuals, leading to
a more realistic characteristic of the metabolism properties. It is also planned to
interconnect the individuals of a population. Individuals would have to compete
for metabolites or could cooperate and build higher-level systems. This would
require a change in the modeling of the metabolite pool, so far we do not consider
a depletion or shortage of metabolites. Besides the changes of the model, a lot of
the future work will consist of developing ways to analyze the simulations and
study the network properties in more detail. The focus will be on the emergence
of robustness and flexibility.

Acknowledgements

We gratefully acknowledge financial support by the Vienna Science and Tech-
nology Fund (WWTF) project number MA05.

References

1. Liao, J.: Pathway analysis, engineering, and physiological considerations for redi-
recting central metabolism. Biotechnol. Bioeng. 52, 129–140 (1996)

2. Schuster, S.: Detection of elementary flux modes in biochemical networks: a promis-
ing tool for pathway analysis and metabolic engineering. Trends Biotechnol. 17,
53–60 (1999)

3. Pfeiffer, T., Sanchez-Valdenabro, I., Nuno, J., Montero, F., Schuster, S.: Metatool:
for studying metabolic networks. Bioinformatics 15.3, 251–257 (1999)

4. Papin, J., Price, N., Wiback, S., Fell, D., Palsson, B.O.: Metabolic pathways in the
post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)

5. Kacser, H., Beeby, R.: Evolution of catalytic proteins. J. Mol. Evol. 20, 38–51
(1984)

6. Diaz-Mejia, J.J., Perez-Rueda, E., Segovia, L.: A network perspective on the evo-
lution of metabolism by gene duplication. Genome. Biol. 8(2) (2007)

Functional Evolution of Ribozyme-Catalyzed Metabolisms 43

7. Pfeiffer, T., Soyer, O.S., Bonhoeffer, S.: The evolution of connectivity in metabolic
networks. PLoS Biology 3/7, 228 (2005)

8. Arens, J.: Rec. Trav. Chim. Pays-Bas. 98, 155–161 (1979)
9. DeTar, F.: Modern approaches to chemical reaction searching. Comput. Chem. 11,

227 (1986)
10. Fujita, S.: Description of organic reactions based on imaginary transition structures.

1. introduction of new concepts. J. Chem. Inf. Comput. Sci. 26(4), 205–212 (1986)
11. Hendrickson, J.: Comprehensive system for classification and nomenclature of or-

ganic reactions. J. Chem. Inf. Comput. Sci. 37(5), 852–860 (1997)
12. Benkö, G., Flamm, C.: A graph-based toy model of chemistry. J. Chem. Inf. Com-

put. Sci. 43(4), 1085–1095 (2003)
13. Benkö, G.: A toy model of chemical reaction networks. Master’s thesis, Universität

Wien (2002)
14. Weininger, D.: Smiles, a chemical language and information system. 1. introduction

to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)
15. Weininger, D.: Smiles. 2. algorithm for generation of unique smiles notation. J.

Chem. Inf. Comput. Sci. 29(2), 97–101 (1989)
16. Houk, K.N., Gonzalez, J.: Pericyclic reaction transition states: Passions and punc-

tilios, 1935-1995. Accounts of Chemical Research 28, 81–90 (1995)
17. Himsolt, M.: GML: A portable Graph File Format (Universität Passau)
18. Trinajstic, N.: Chemical Graph Theory (New Directions in Civil Engineering), 2nd

edn. CRC, Boca Raton (1992)
19. Randic, M.: Characterization of molecular branching. J. Am. Chem. Soc. 97(23),

6609–6615 (1975)
20. Platt, J.: Influence of neighbor bonds on additive bond properties in paraffins. J.

Chem. Phys. 15, 419–420 (1947)
21. Balaban, A.: Highly discriminating distance-based topological index. Chem. Phys.

Lett. 89, 399–404 (1982)
22. Fujita, S.: Description of organic reactions based on imaginary transition struc-

tures. 2. classification of one-string reactions having an even-membered cyclic re-
action graph. J. Chem. Inf. Comput. Sci. 26(4), 212–223 (1986)

23. Fujita, S.: Description of organic reactions based on imaginary transition struc-
tures. 3. classification of one-string reactns having an odd-membered cyclic reaction
graph. J. Chem. Inf. Comput. Sci. 26(4), 224–230 (1986)

24. Benkö, G., Flamm, C.: Multi-phase artificial chemistry. In: The Logic of Artificial
Life: Abstracting and Synthesizing the Principles of Living Systems (2004)

25. Benkö, G., Flamm, C.: Explicit collision simulation of chemical reactions in a
graph based artificial chemistry. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J.,
Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 725–
733. Springer, Heidelberg (2005)

26. Hoffmann, R.: An Extended Hückel Theory. I. Hydrocarbons. J. Chem. Phys. 39(6),
1397–1412 (1963)

27. Gillespie, R.J., Nyholm, R.S.: Inorganic Stereochemistry. Quart. Rev. Chem.
Soc. 11, 339–380 (1957)

28. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model Comput.
Simul. 8(1), 3–30 (1998)

29. Horowitz, N.: On the evolution of biochemical syntheses. Proc. Nat. Acad. Sci. 31,
153–157 (1945)

30. Jensen, R.: Enzyme recruitment in evolution of new functions. Ann. Rev. Micro-
biol. 30, 409–425 (1976)

Component-Based Modelling of RNA Structure

Folding

Carsten Maus

University of Rostock
Institute of Computer Science, Modelling and Simulation Group

Albert-Einstein-Str. 21, 18059 Rostock, Germany
carsten.maus@uni-rostock.de

http://www.informatik.uni-rostock.de/%7Ecm234

Abstract. RNA structure is fundamentally important for many biologi-
cal processes. In the past decades, diverse structure prediction algorithms
and tools were developed but due to missing descriptions in clearly de-
fined modelling formalisms it’s difficult or even impossible to integrate
them into larger system models. We present an RNA secondary struc-
ture folding model described in ml-Devs, a variant of the Devs for-
malism, which enables the hierarchical combination with other model
components like RNA binding proteins. An example of transcriptional
attenuation will be given where model components of RNA polymerase,
the folding RNA molecule, and the translating ribosome play together
in a composed dynamic model.

Keywords: RNA folding, secondary structure, DEVS, model compo-
nents, multi-level.

1 Introduction

Single stranded ribonucleic acids (RNA) are able to fold into complex three-
dimensional structures like polypeptide chains of proteins do. The structure of
RNA molecules is fundamentally important for their function, e.g. the well stud-
ied structures of tRNA and the different rRNA variants. But also other tran-
scripts of the DNA, i.e. mostly mRNAs, perform structure formation which has
been shown to be essential for many regulatory processes like transcription ter-
mination and translation initiation [1,2,3]. The shape of a folded RNA molecule
can also define binding domains for proteins or small target molecules which
can be found for example within riboswitches [4]. The enormous relevance for
many biological key processes led to raised research efforts in identifying various
RNA structures over the past decades. Unfortunately the experimental structure
identification with NMR and X-ray techniques is difficult, expensive, and highly
time-consuming. Therefore, many in silico methods for RNA structure prediction
were developed which cover different requirements. Diverse comparative meth-
ods exist using alignments of similar RNA sequences to predict structures [5,6],
but also many single sequence prediction algorithms work very well. Some of

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 44–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Component-Based Modelling of RNA Structure Folding 45

them predict the most stable RNA structure in a thermodynamical equilibrium,
e.g. [7,8,9], whereas some other simulate the kinetic folding pathway over time
[10,11,12,13]. The latter is also in the focus of the presented modelling approach
here. Results of RNA structure predictions as well as kinetic folding simulations
have reached a high level of accuracy and thus in silico folding became a widely
used and well established technique in the RNA community. However, none of
the existing tools and programs provides a flexible integration into larger sys-
tem models which is also due to the fact that they are written in proprietary
formalisms and do not distinguish between model description and simulation
engine. To illuminate the importance of the folding processes and the possibility
to integrate them into larger models, lets take a look at a concrete example of
gene regulation.

2 Motivation – Modelling of Transcription Attenuation

The tryptophan (Trp) operon within bacterial genomes represents one of the
best understood cases of gene regulation and has been subject to various mod-
elling approaches [14,15]. Tryptophan is an amino acid, a building block for the
production of proteins. The Trp operon includes five consecutive genes, coding
for five proteins. The joint action of the proteins permits the synthesis of Trp
through a cascade of enzymatic reactions. This ability is vital since the bacterium
may be unable to feed on Trp from the environment. As long as Trp is obtained
from the surrounding medium, its costly synthesis is impaired by a threefold
control mechanism: repression of transcription initiation, transcriptional attenu-
ation, and inactivation of the cascade of enzymatic reactions actually producing
Trp. Each of these are triggered by Trp availability. Transcriptional attenuation
follows if transcription starts although Trp was available. This has a small but
non-negligible chance. As soon as RNA polymerase (RNAP) has transcribed
the operon’s leader region into an mRNA molecule, a ribosome can access this.
The ribosome starts translating the mRNA content into a growing sequence of
amino acids. The speed of the ribosome depends on Trp availability. The ribo-
some advances quickly as long as Trp is abundant, which prevents RNAP from
proceeding into the operon’s coding region. The attenuation is caused by the
formation of a certain constellation of RNA hairpin loops in presence of a Trp
molecule at a distinct segment of the mRNA molecule (figure 1). Attenuation
depends on the synchronised advance of both RNAP and ribosome, and their
relative positioning with respect to mRNA.

In [15] a model of the tryptophan operon was developed, in which repres-
sors, the operon region, and the mRNA were modelled individually. However,
the latter in not much detail. Only the repression of transcription initiation was
included in the model. Consequently, the simulation result showed stochastic
bursts in the Trp level, caused by the repressor falling off, which started the tran-
scription. Integrating a transcriptional attenuation model would have prevented
this non-realistic increase in Trp concentration, and mimicked the threefold reg-
ulation of the Trp more realistically. However, the question is how to model the

46 C. Maus

1

2 3 4

Ribosome
RNAP

Transcription continues

1
2

3 4

Ribosome

RNAP

Termination hairpin

Low tryptophan level High tryptophan level

Fig. 1. Attenuation in the Trp leader sequence. With low Trp concentration the ribo-
some stalls at Trp codons in leader domain 1 and transcription can continue. At high
Trp level, the leader domain 1 can be completely translated and thus the ribosome
prevents base pairing of domain 2. Leader domains 3 and 4 can form an intrinsic tran-
scription termination structure which causes disruption of the mRNA-RNAP complex.

attenuation. As this regulating process depends largely on structure formation,
modelling of RNA folding would be a big step in the right direction for reflecting
attenuation dynamics. Additionally, modelling interactions between mRNA and
RNAP as well as mRNA and the ribosome are needed because both influence the
kinetic folding process and RNA termination structures break up gene transcrip-
tion. The focus of this paper is the RNA folding process, but at the end we will
also give a detailed outlook how the composed model of tryptophan attenuation
looks like and how the individual model components act together.

3 Principles of RNA Folding

3.1 Thermodynamics

The reason for RNA folding is the molecules’ general tendency to reach the most
favourable thermodynamical state. Complementary bases of RNA nucleotides
can form base pairs by building hydrogen bonds similar to DNA double he-
lices. Adenine (A) and Uracil (U) are complementary bases as well as Cytosine
(C) and Guanine (G). In addition, the wobble base pair G-U is also frequently
found in RNA structure folding. Each additional hydrogen bond of base pairs
affords a small energy contribution to the overall thermodynamic stability, but
there is another chemical interaction which is even more important for the RNA
structure than just the number and type of base pairs. It’s called base stacking
and describes the interactions between the aromatic rings of adjacent bases by
Van-der-Waals bonds. Base pair stacking is the cause why an uninterrupted long
helix is thermodynamically more favourable than a structure of multiple single
base pairs or short helices interrupted by loop regions, even if the number and
type of base pairs are equal. Since the 1970s, significant progress has been done
on identifying thermodynamic parameters of different base pair neighbourhoods

Component-Based Modelling of RNA Structure Folding 47

and structural elements like hairpin loops, e.g. [16,17]. This was a precondition
to develop RNA structure prediction algorithms based on energy minimisation,
i.e. finding the thermodynamical most stable structure.

3.2 Primary, Secondary, and Tertiary Structure

RNA structures are hierarchically organised (see figure 2). The most simple hier-
archy level is the primary structure which is nothing else than the linear sequence
of nucleotides. Two nucleotides are linked over the 3’ and 5’ carbon atoms of
their ribose sugar parts resulting in a definite strand direction. The secondary
structure consists of helices formed by base pairs and intersecting loop regions.
Such structural elements are formed rapidly within the first milliseconds of the
folding process [18]. Interacting secondary structure elements finally build the
overall three-dimensional shape of RNA molecules. Although they are formed by
simple base pairs like secondary structures, helices inside loop regions are often
seen as tertiary structures. Such pseudoknots and higher order tertiary inter-
actions are, due to their complexity and analog to many other RNA structure
prediction methods, not covered by our model. However, it should not retain
unstated here that there are some existing tools which can predict pseudoknots
quite well, e.g. [10].

381

CA
U
A

G
C
C
U
C
U
C
A
A
U

U
G
G G

A C G G G
A

G
U
A
C
C
U
G
A
A
A

U
A
UG 1 38

G
A

G U
A

C

C

G
G
G C

C
U
G

CA
A

U U
G

U
C
U

C

G
G
G

A

A

G

C
C
U

A C G
A
A

A

U

C
A
U
A

U
A
U
G

1 38

G
A

G U
A

C

C

G
G
G C

C
U
G

CA
A

U U
G

U
C
U

C

G
G
G

A

A

G

C
C
U

A C G
A
A

A

U

C
A
U
A

U
A
U
G

Primary structure Secondary structure Tertiary structure

Fig. 2. Different hierarchical levels of RNA folding

4 Modelling Formalism

As alreadymentioned, typicallykinetic RNA folding simulations, as e.g. [10,11,12],
are aimed at efficiently and accurately simulating the molecules structure forma-
tion in isolation rather than supporting a reuse of RNA folding models and a hier-
archical construction of models. For approaching such model composition, we use
the modelling formalism ml-Devs [19], a variant of the Devs formalism [20]. As
Devs does, it supports a modular-hierarchicalmodelling and allows to define com-
position hierarchies. ml-Devs extends Devs by supporting variable structures,
dynamic ports, and multi-level modelling. The latter is based on two ideas. The
first is to equip the coupled model with a state and a behaviour of its own, such that

48 C. Maus

macro behaviour

micro
A

micro
B

∨
∨

∨

∨ ∧

∧
∧

∧

<

<
<

<

>

>
>

>

<

∧

∧

∧

∨

∨

> > > >
macro behaviour

micro
A

micro
B

∨

∨
>

>
> >

<

value

∨

> >

Fig. 3. Comparison of multi-level modelling with Devs and ml-Devs. (left) With Devs

the macro level is modelled at the same hierarchical level as the micro level models.
(right) With ml-Devs the macro dynamics are part of the coupled model. Functions
for downward and upward causation reduce the number of explicit couplings needed.

the macro level does not appear as a separate unit (an executive) of the coupled
model. Please recall that in traditional Devs coupled models do not have an own
state nor a behaviour. Secondly, we have to explicitly define how the macro level af-
fects the micro level and vice versa. Both tasks are closely interrelated. We assume
that models are still triggered by the flow of time and the arrival of events. Obvi-
ously, onemeans to propagate information from macro to micro level is to exchange
events between models. However, this burdens typically modelling and simulation
unnecessarily, e.g. in case the dynamics of a micromodel has to take the global state
into consideration. Therefore, we adopt the idea of value couplings. Information at
macro level is mapped to specific port names at micro level. Each micro model may
access information about macro variables by defining input ports with correspond-
ing names. Thus, downward causation (from macro to micro) is supported. In the
opposite direction, the macro level needs access to crucial information at the mi-
cro level. For this purpose, we equip micro models with the ability to change their
ports and to thereby signalise crucial state changes to the outside world. Upward
causation is supported, as the macro model has an overview of the number of mi-
cro models being in a particular state and to take this into account when updating
the state at macro level. Therefore, a form of invariant is defined whose violation
initiates a transition at macro level. In the downward direction, the macro level
can directly activate its components by sending them events – thereby, it becomes
possible to synchronously let several micro models interact which is of particular
interest when modelling chemical reactions. These multi-level extensions facilitate
modelling, figure 3 depicts the basic idea, see also [21].

5 The RNA Folding Model

The central unit in composed models using RNA structure information is an
RNA folding model. Therefore, we first developed a model component which
describes the folding kinetics of single stranded RNA molecules. It consists of

Component-Based Modelling of RNA Structure Folding 49

a coupled ml-Devs model representing the whole RNA molecule and several
atomic models.

5.1 Nucleotides

Each nucleotide (nt) of the RNA strand is represented by an instance of the
atomic model Nucleotide which is either of the type A, C, G, or U meaning
its base. They are connected via ports in the same order as the input sequence
(primary structure) and have knowledge about their direct neighbours. For ex-
ample, the nt at sequence position 8 is connected with the nt number 7 on its
5’ side and on the 3’ location it is connected with the nt at position 9 (see
figure 4). State variables hold rudimentary information about the neighbours,
to be exact their base type and current binding partners. “Binding partner”
means a secondary structure defining base pair and the term is used only in this
context here and does not mean the primary backbone connections. If a partner
of a nucleotide changes, an output message will be generated and the receiving
(neighboured) nucleotides will update their state variables. Holding information
about other atomic model states is normally not the case in Devs models as
they are typically seen as black boxes. However, here it is quite useful because
of some dependencies concerning base pair stability.

<

>
C7

$neighbour5

$partnerOf5

$neighbour3

$partnerOf3

<

>

<

>
C8

$neighbour5

$partnerOf5

$neighbour3

$partnerOf3

<

>

<

>
A9

$neighbour5

$partnerOf5

$neighbour3

$partnerOf3

<

>

<

>

<

>

← 5’ 3’ →

Fig. 4. Adjacent nucleotides are connected via input and output ports. A set of vari-
ables stores basic information about their neighbourhood.

Base pairs are modelled by wide range connections of nucleotides via addi-
tional interfaces. Whereas the RNA backbone bonds of adjacent nucleotides are
fixed after model initialisation, the connections between base pairing nucleotides
are dynamically added and removed during simulation (figure 5). Therefore, two
different major states (phases) of nucleotides exist: they can be either unpaired
or paired.

As already stated in section 3.1, base pair stability depends on the involved
bases and their neighbourhood, especially stacking energies of adjacent base pairs
provide crucial contributions for structure stabilisation. In our kinetic folding
model, base pair stability is reflected by binding duration, i.e. the time advance
function of the paired phase. Thus, pairing time depends on thermodynamic
parameters for nucleic acids base stacking which were taken from [17] and are
also be used by mfold version 2.3 [7]. This thermodynamic data set not only
provides the free energy (Gibbs energy) for a given temperature of 37◦C, but also

50 C. Maus

<

>
C

<

>

<

>
C

<

>

<

>
A

<

>

<

>
C

<

>

<

>

<

>
G

<

>

<

>
G

<

>

<

>
A

<

>

<

>
U

<

>

<

>

∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨

∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨

C C
A

C

U
A

GG

← 5’

← 3’

5’

3’

Fig. 5. Small hairpin loop structure. (top) Conventional RNA secondary structure
representation. (bottom) The same structure represented by atomic Devs models. Base
pairing is modelled by dynamically coupled nucleotides (grey interfaces) with a distance
of at least 5 sequence positions reflecting the minimal hairpin loop size.

the enthalpy change ∆H of various stacking situations. The enthalpy together
with the free energy and the absolute temperature allows us to calculate the
entropy change ∆S which allows us further to calculate the activation energy
∆Ea for base pair dissociation at any temperature T between 0 and 100◦C:

∆Ea = −(∆H − T∆S) .

∆Ea is directly used as one parameter for base pair opening time, i.e. the du-
ration of a paired phase is directly dependent on the activation energy for base
pair disruption. To allow RNA structures to escape from local energy minima
and refold to more stable structures, the base pair dissociation time will be ran-
domised, which leads to very short bonding times in some cases although the
activation energy needed for opening the base pair is quite large.

For base pair closing an arbitrary short random time is assigned with the
unpaired phase of nucleotides assuming that RNA base pair formation is a very
fast and random process. After unpaired time has expired, the nucleotide model
tries to build a base pair with another nucleotide randomly chosen from within
a set of possible pairing partner positions. This set is determined by sterically
available RNA strand regions and thus an abstraction of spatial constraints. For
example, a hairpin loop smaller than 4 nucleotides is sterically impossible, but
also many other nucleotide positions with larger distance can be excluded for
secondary structure folding (see figure 6).

Component-Based Modelling of RNA Structure Folding 51

Fig. 6. Possible partners for secondary structure base pairing. The arrow-marked nu-
cleotide is only able to pair with 5 positions within its own loop region (connected via
dashed lines). All other nucleotides are excluded from base pairing with the marked
position.

An unpaired nucleotide is not able to choose another nt for base pairing by its
own. It has no global information about the RNA shape which is strongly needed
here. Therefore, an implicit request by adding a new input port will be made to
the coupled model that holds such macro knowledge and can therefore choose a
valid position with which the requesting nt will try to pair next. For choosing
this position at macro level two different model variants exist. The first and
more simple one picks a position totally random from within the set of possible
partners, whereas the second variant takes the entropy change into account when
a pairing partner will be selected. The latter method prefers helix elongation in
contrast to introducing new interior loops by single base pair formations and
small loops will be more favourable than large ones [12]. Correct RNA folding
with the first method is dependent on the base pair stabilities and the random
folding nuclei which are the first appearing base pairs of helical regions. This last
point is less important for RNA folding with model variant 2 because the chosen
binding partners are more deterministic due to loop entropy consideration. A
comparison of both approaches with respect to simulation results is given in
section 6. Once a nucleotide received an input message by the macro model
containing the number of a potential pairing partner, it tries to form a base
pair with this nt by adding a coupling and sending a request. For a successful
pairing, the partners must be of complementary base type and they must be
able to pair in principle, e.g. bases can be modified so that they can not bind
to others. Figure 7 illustrates the whole state flow for base pair formation and
disruption of the nucleotide model component.

5.2 Macro Level Model

The role of the macro model and its interactions with the micro level (nu-
cleotides) shows the schematic organisation of the whole RNA folding model in
figure 8. Already mentioned in the previous section, high level information about
the whole RNA molecule is needed to take sterical restrictions for base pairing
into account. Therefore, the coupled model holds the overall RNA secondary
structure which will be updated every time the state of a nucleotide changes

52 C. Maus

unpaired
wait for
partner
position

try pairing

wait for
partner
response

try
pairing
response

paired

?partner(‘request’)

pairing impossible
/ !partner(‘reject’)

after randomTime(u)
/ addPort(position)

?position(∅)
/ remPort(position)

?position(pos)
/ addCoupl(partner(pos))
/ remPort(position)

after zeroTime
/ !partner(‘request’)

?partner(‘reject’)
/ remCoupl(partner)

?partner(‘accept’)

pairing possible
/ !partner(‘accept’)after randomTime(p)

/ !partner(‘unbind’)
or
?partner(‘unbind’)
/ remCoupl(partner)

Fig. 7. Nucleotide state flow in a Statechart-like representation. Main states are de-
picted by grey diamonds. States of a nucleotide which takes up the active part of a
base pair are shown as rounded rectangles and a state exclusively passed through by a
reacting nucleotide is drawn as a circle. Sending and receiving events over ports have
prefixed exclamation marks and question marks respectively.

sequence

add/connect nt choose partner

structure

update structure

recognize port changes

observe pattern

add/rem./send port

pattern

8

7 6 5 4 3 2 1

m
a
cr

o
le

v
el

m
ic

ro
le

v
el

m
o
d
el

s

Fig. 8. Schematic overview of the whole RNA folding model. Model components are
shaded in light grey and explicit couplings between them are drawn by solid double
lines. Dashed lines indicate model-internal information flow and function calls.

Component-Based Modelling of RNA Structure Folding 53

from unpaired to paired and vice versa. This will be triggered by nucleotide port
adding and removal recognised by the macro level. The same functionality is
used to signalise the macro level the wish to try pairing with another nucleotide.
The macro model detects a port adding, calculates the sterically possible partner
set, chooses a position from within the set, and after all sends this position to the
just now added nucleotide input port (figure 8, nt 5). The coupled macro model
is further responsible for sequence initialisation on the micro level by adding
and connecting nucleotide models, i.e. it generates the primary RNA structure.
Another task of the macro model is to observe the current folding structure for
special structural patterns. This could be for example a specific binding domain
for a protein or small ligand. Also transcription termination or pausing struc-
tures can be of interest for observation. If observed structures are present during
folding simulation, the macro level model can signalise this information and thus
trigger dynamics to other components by adding new ports to itself (representing
docking sites) or send messages over existing ports. A composed example model
which uses this capability can be found in section 7.

6 Evaluation of the Folding Model

For evaluating the model’s validity we simulated the folding of different RNA
molecules with known structure and analysed the results. Three different types
of experiments were done:

Native Structure– Correlates the majority of formed structures with the na-
tive structure after sufficient long simulation time?

Structure Distribution– Is the equilibrium ratio between minimum free en-
ergy (mfe) and suboptimal structures as expected?

Structure Refolding– Are molecules able to refold from suboptimal to more
stable structural conformations?

Unfortunately, only few time-resolved folding pathways are experimentally de-
rived and most of them treat pseudoknots [22] and higher order tertiary structure
elements [22,23,24] which can not be handled by our folding model and are there-
fore out of the question for a simulation study. Hence, some comparisons with
other in silico tools were also made, although we know that one has to be careful
with comparing different models for validating a model as it is often unclear how
valid the other models are. Because the folding model is highly stochastic, every
simulation experiment was executed multiple times. Typically 100 replications
were made.

6.1 Native Structure

Structural analysis of the cis-acting replication element from Hepatitis C virus
revealed a stem hairpin loop conformation where the helix is interrupted by an in-
ternal or bulge loop region [25]. Figure 9 shows simulation results of its structure

54 C. Maus

1

46

AUA

U
A
U

C
A C A

G
C
C
U

G
A
G
A
C

A

U
G
U
C
U

C

G

G

C G U

G
C

C

CGA

C

A G C G G G G

CCCCGCU

Fig. 9. Folding simulation of the Hepatitis C virus cis-acting replication element. Pa-
rameters: time 1000 ms, temperature 310.15 K, 100 replications. (left) Observed sec-
ondary structure [25]. (middle) Base pair probability matrix. Simulation with base pair
formation model 1. (right) Base pair formation model 2. Peak heights indicate base
pair lifetime during simulation and the native helices are shaded.

formation. The three-dimensional base pair lifetime plots indicate correct folding
of both helical regions and only few misfolded base pairs. Only small differences
can be seen between simulations with the two base pair formation variants de-
scribed in section 5.1. Without taking entropy into account for pairing, a bit
more noise of misfolded base pairs can be observed which is not surprising due
to the absolutely random partner choice.

Another well known RNA structure is the cloverleaf secondary structure of
tRNAs [26,27] consisting of four helical stems: the amino acid arm, D arm,
anticodon arm, and the T arm. Some base modifications and unusual nucleotides
exist in tRNA which stabilise its structure formation, e.g. dihydrouridine and
pseudouridine. Such special conditions are not considered by our folding model
as well as tertiary interactions leading to the final L-shaped form. However,
folding simulations result in significant cloverleaf secondary structure formation
(figure 10). Although there is much misfolded noise, the four distinct helix peaks
are the most stable structural elements introduced during simulation, especially
the amino acid arm. No fundamental difference can be seen between base pair
formation model 1 and 2.

A third native structure validation experiment treats the Corona virus s2m
motif which is a relatively long hairpin structure with some intersecting internal
and bulge loops [28,29]. Simulation of the SARS virus s2m RNA folding indicates
only for one of the native helix regions a conspicuous occurrence (figure 11).
The other helices closer to the hairpin loop show no significant stabilisation.
Competing misfolded structural elements can be observed equally frequent or
even more often. Base pair formation model 2 provides a slightly better result
than the first one, but it is unsatisfying too. A reason for the result can be the
multiple internal and bulge loops, which destabilise the stem and thus allow
locally more stable structure elements to form.

6.2 Structure Distribution

In [30] a quantitative analysis of different RNA secondary structures by com-
parative imino proton NMR spectroscopy is described. The results indicate that

Component-Based Modelling of RNA Structure Folding 55

1

76

G
A
GG

G
U

U A
C

G

A−Loop

D−Loop

T−Loop

CGAG

C U C G

U
A
G

AA

G
U

C A

G

G
U
C
UA

G
A
C
C

C
U

U A G

C
U

UG

G
A
C
A

C G

U
G
U

C

A

G C
C
U
G

G
AGC

G

C

G

A

U U

C
G
C
U
U
A
A

U
U
A
G
G
C
G

A C C
A
C

Amino Acid Arm

T-Arm A-Arm

D-Arm

Fig. 10. Simulation of the yeast tRNAPhe folding. Parameters: time 1000 ms, temper-
ature 310.15 K, base pair formation model 2, 100 replications. (left) Native cloverleaf
secondary structure. (right) Base pair probability matrix. Peak heights indicate base
pair lifetime during simulation and the native helices are shaded.

411

GGA
G

U A
C

C
G

C
G

G

C

G A U
C

C
G

C
G

C
A
C

G
A
G
G

G

C
C G

G
U

U
C
G
A

G G

U
A
C
A
G

U
U
C
A
U

G
U
G
A
A

Fig. 11. Folding simulation of the SARS virus s2m motif. Parameters: time 1000 ms,
temperature 310.15 K, 100 replications. (left) Known secondary structure [29]. (mid-
dle) Base pair probability matrix. Simulation with base pair formation model 1.
(right) Base pair formation model 2. Peak heights indicate base pair lifetime during
simulation and the native helices are shaded.

a small 34-nt RNA has two equally stable structures in thermodynamic equi-
librium, one with 2 short helices and the other with a single hairpin. Fold-
ing simulations of the same RNA strand show an equal ratio of the probed
structures as well (figure 12). However, both are representing just 20% of all
present structures which was not detected in the NMR experiments. Many base
pairs were introduced during simulation which are competing with base pairs
of the two stable structures and thus reduce their appearance. This can be eas-
ily seen in the 3D matrix of figure 12 where some additional peaks show high
misfolded base pair lifetimes. Simulating the RNA folding with Kinfold [12]

56 C. Maus

134 G
U U

C

GC

A
C
A
G G CC

U
GUU

G

UUG

CCG
AAC

C

G G U U C GCUG
C

G
G

� equal ratio

34 1

C
C
U G

U
G

UU
GC A G G U

U C G C

GCGAACCUG

A
C

G

C

GGG

U
U
C

G
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

Simulation time [ms]

S
tr

u
c
tu

re
p
ro

b
a
b
il
it
y

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Simulation time [ms]

S
tr

u
c
tu

re
p
ro

b
a
b
il
it
y

Fig. 12. Folding simulation of a designed small bistable RNA [30]. Parameters: tem-
perature 298.15 K, base pair formation model 2, 100 replications. Grey curves describe
mean structure occurrence from 100 Kinfold simulation runs with 298.15 K.

results in a five times higher amount of the 2-helix conformation than the single
hairpin, but their total sum is about 60% of all molecules and thus less misfolded
structures can be observed.

6.3 Structure Refolding

Real-time NMR spectroscopy was used by Wenter et al. to determine refold-
ing rates of a short 20-nt RNA molecule [31]. The formation of its most stable
helix was temporarily inhibited by a modified guanosine at position 6. After
photolytic removal of this modification a structure refolding was observed. To
map such forced structure formation to relatively unstable folds at the begin-
ning of an experiment, most RNA folding tools have the capability to initialise
simulations with specified structures. We used, much closer to the original wet-
lab experiment, a different strategy, i.e. at first G6 was not capable to bind any
other base. The time course after removing this prohibition during simulation is
shown in figure 13. Wenter et al. detected structure refolding by measuring the
imino proton signal intensity of U11 and U17, which show high signal intensity
if they are paired with other bases. Accordingly we observed the state of both
uracils over simulation time as well. After removal of G6 unpaired locking, a
logarithmic decrease of structures with paired U11 and uniform increase of folds

Component-Based Modelling of RNA Structure Folding 57

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
0 50 100 150 200 250

Simulation time [s]

Measurement time [s]

S
tr

u
ct

u
re

p
ro

b
a
b
il
it
y

S
ig

n
a
l
in

ten
sity

U17 (simulation and wetlab)

U11 (simulation and wetlab)

U11 (Kinfold)

U17 (Kinfold)

120 C
G A

AG

G

G
A
C
C GG

C

U

C
C

G
CC

U
C

C

U

⇀↽
20

1

G

C

C

G C

U

GG
A
A
GGC

C
U
C
C

U

G

A
C

CG

Fig. 13. Refolding of an deliberately misfolded small RNA molecule [31]. Wetlab mea-
surements are drawn by a X. Simulation parameters: time 10 seconds, temperature
288.15 K, base pair formation model 1, 100 replications. Simulations with Kinfold were
made with the same temperature and replication number but over a time period of 250
seconds.

with paired U17 can be observed reaching a complete shift of the conformational
equilibrium after 4 seconds. A very similar refolding progression was experimen-
tally measured (single spots in figure 13), but with a strong deviating time scale
of factor 25. This could be a remaining model parameter inaccuracy or due to
special experimental conditions which are not covered by our model, e.g. unusual
salt concentrations. However, our model allows a quite realistic refolding from a
suboptimal to a more stable RNA structure. Identical in silico experiments with
Kinfold [12] by contrast, do not show any significant refolding (figure 13, non-
changing curves). The same counts for SeqFold [11]. With both approaches
the energy barrier seems to be too high to escape from the misfolded suboptimal
structure.

6.4 Assessment of Experiments

Local optima can more easily be overcome in comparison to other traditional
pure macro methods (see figure 13). We assume that even “stable” base pairs

58 C. Maus

RNAP mRNA Ribosome> >

< <

> >

add nt

codon req.

next codon

Fig. 14. Connecting a folding mRNA model with RNA polymerase and ribosome to
reflect transcription attenuation

might be subject to changes, and let the nucleotides “searching” for a stable
structure at micro level. This proved beneficial and emphasised the role of the
micro level. However, the simulation revealed the importance of macro con-
straints for the folding process, and the implications of a lack of those. Macro
constraints that have been considered are for example the relative positioning
of the nucleotides, particularly within spatial structures like hairpin or inter-
nal loops. The interplay between macro and micro level allowed us to repro-
duce many of the expected structure elements, e.g. figures 9 and 10, although
macro constraints have been significantly relaxed. These simplifications lead to
“wrongly” formed structures and maybe could have been prevented by integrat-
ing terminal base stacking for pairing stability as well as less abstract base pair
closing rules as macro constraints. A comparison of the two implemented base
pair formation methods indicate only few differences. Without taking entropy
into account the noise of unstable single base pairs and short helices increases,
but not dramatically. The same stable structures are formed based on both rules.

7 Composed Attenuation Model

Having a working folding model we are now able to combine it with other model
components that are influenced by or are influencing the RNA structure forma-
tion and come back to the motivation, the attenuation of tryptophan synthesis.
At least two further models are needed to reflect transcription attenuation: the
RNA polymerase and the ribosome (figure 14).

7.1 RNA Polymerase

RNA molecules are products of the transcription process which is the fundamen-
tal step in gene expression. Once the RNA polymerase enzyme complex (RNAP)
has successfully bound to DNA (transcription initiation), it transcribes the tem-
plate sequence into an RNA strand by sequentially adding nucleotides to the 3’
end and thus elongates the molecule. To reflect this synthesising process, in the
RNA model, new nucleotide models and their backbone connections are added
dynamically during simulation. This process is triggered by the RNAP model

Component-Based Modelling of RNA Structure Folding 59

component which interacts with RNA. This dynamic RNA elongation allows
the simulation of sequential folding, where early synthesised parts of the RNA
molecule can already fold whereas other parts still have to be added. Please note
that this is not a unique feature of the model presented here, as kinetic folding
tools typically realise sequential folding by just adding a new nt after a certain
time delay. However, a component design allows to combine the RNAP with fur-
ther models (e.g. the DNA template), or to model it in more detail (e.g. diverse
RNAP subunits), and to exchange model components on demand. The pattern
observation function of the RNA folding model, which is realised at macro level,
allows us to look for an intrinsic transcription termination structure [2] during
simulation. If such structure is formed, the folding model removes its elongation
input port meaning the release of the RNA from the polymerase enzyme. At
this time point the elongation stops, but structure folding and interactions with
other components proceed.

7.2 Ribosome

The ribosome enzyme complex translates RNA sequences into protein determin-
ing amino acid sequences (peptides). Translation starts at the ribosome binding
site of mRNA molecules which is reflected by a pair of input and output ports
of the RNA models. The translation begins after connecting it with a ribo-
some model. The current ribosome position with respect to the RNA sequence
is known by the RNA model. A triplet of three RNA bases (codon) encodes
for one amino acid. The ribosome requests for the next codon 3’ of its current
RNA location when peptide chain elongation has proceeded. This is the case
when the correct amino acid of the last codon entered the enzyme. The speed
of the translation process depends strongly on the availability of needed amino
acids. If an amino acid type is not sufficiently available, the ribosome stalls at
the corresponding codon and thus pauses translation. A ribosome is quite big
and thus 35-36 nucleotides are covered by its shape [32]. Therefore, a region
upstream and downstream of the ribosome location is not able to form base
pairs. As the RNA model knows the ribosome location, this is handled by the
RNA macro level model which sends corresponding events to its nucleotide micro
model components. The same counts for the helicase activity of the ribosome
[32]. For sequence translation, the macro level model will disrupt a base paired
structure element when it is reached by the enzyme.

Whether those additional models are realised as atomic models, or coupled
models depends on the objective of the simulation study. Referring to the operon
model presented in [15], the RNAP, the mRNA, and the ribosome would re-
place the simplistic mRNA model, to integrate the attenuation process into the
model.

8 Conclusion

We presented a component-based model of RNA folding processes. Unlike tra-
ditional approaches which focus on the results of the folding process, e.g. stable

60 C. Maus

structures in thermodynamical equilibrium, our objective has been different. The
idea was to develop an approach that allows to integrate the folding processes
into larger models and to take the dynamics into account, that has shown to
be crucial in many regulation processes. Therefore, the formalism ml-Devs was
used. At macro level, certain constraints referring to space and individual loca-
tions were introduced, whereas at micro level, the nucleotides were responsible
for a successful base pairing and for the stability of the structure. A model com-
ponent for the nucleotides and one model component for the entire RNA molecule
have been defined. The simulation results have been compared to wetlab experi-
ments. Therefore, the model components can be parametrised for different RNA
sequences (base types) as well as environmental conditions (e.g temperature).
The evaluation revealed an overall acceptable performance, and in addition, in-
sights into the role of micro level dynamics and macro level constraints. The
integration of the RNA folding model into a model of transcription attenuation
has been sketched. Next steps will be to realise this integration and to execute
simulation experiments to analyse the impact of this more detailed regulation
model on the synthesis of tryptophan.

Acknowledgments. Many thanks to Adelinde M. Uhrmacher for her helpful
comments and advice on this work. I will also thank Roland Ewald and Jan
Himmelspach for their instructions for using James II. The research has been
funded by the German Research Foundation (DFG).

References

1. Kaberdin, V.R., Blasi, U.: Translation initiation and the fate of bacterial mRNAs.
FEMS Microbiol. Rev. 30(6), 967–979 (2006)

2. Gusarov, I., Nudler, E.: The Mechanism of Intrinsic Transcription Termination.
Mol. Cell 3(4), 495–504 (1999)

3. Yanofsky, C.: Transcription attenuation: once viewed as a novel regulatory strategy.
J. Bacteriol. 182(1), 1–8 (2000)

4. Nahvi, A., Sudarsan, N., Ebert, M.S., Zou, X., Brown, K.L., Breaker, R.R.: Genetic
Control by a Metabolite Binding mRNA. Chem. Biol. 9(9), 1043–1049 (2002)

5. Torarinsson, E., Havgaard, J.H., Gorodkin, J.: Multiple structural alignment and
clustering of RNA sequences. Bioinformatics 23(8), 926–932 (2007)

6. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary Structure Prediction for
Aligned RNA Sequences. J. Mol. Biol. 319(5), 1059–1066 (2002)

7. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 31(13), 3406–3415 (2003)

8. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schus-
ter, P.: Fast folding and comparison of RNA secondary structures. Monatsh.
Chem./Chemical Monthly 125(2), 167–188 (1994)

9. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure pre-
diction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

10. Xayaphoummine, A., Bucher, T., Thalmann, F., Isambert, H.: Prediction and
Statistics of Pseudoknots in RNA Structures Using Exactly Clustered Stochastic
Simulations. Proc. Natl. Acad. Sci. U.S.A. 100(26), 15310–15315 (2003)

Component-Based Modelling of RNA Structure Folding 61

11. Schmitz, M., Steger, G.: Description of RNA Folding by “Simulated Annealing”.
J. Mol. Biol. 255(1), 254–266 (1996)

12. Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary
step resolution. RNA 6(3), 325–338 (2000)

13. Flamm, C., Hofacker, I.L.: Beyond energy minimization: approaches to the kinetic
folding of RNA. Monatsh. Chem./Chemical Monthly 139(4), 447–457 (2008)

14. Santillán, M., Mackey, M.C.: Dynamic regulation of the tryptophan operon: A
modeling study and comparison with experimental data. Proc. Natl. Acad. Sci.
U.S.A 98(4), 1364–1369 (2001)

15. Degenring, D., Lemcke, J., Röhl, M., Uhrmacher, A.M.: A Variable Structure Model
– the Tryptophan Operon. In: Proc. of the 3rd International Workshop on Com-
putational Methods in Systems Biology, Edinburgh, Scotland, April 3-5 (2005)

16. Serra, M.J., Lyttle, M.H., Axenson, T.J., Schadt, C.A., Turner, D.H.: RNA hairpin
loop stability depends on closing base pair. Nucleic Acids Res. 21(16), 3845–3849
(1993)

17. Walter, A.E., Turner, D.H., Kim, J., Lyttle, M.H., Müller, P., Mathews, D.H.,
Zuker, M.: Coaxial Stacking of Helixes Enhances Binding of Oligoribonucleotides
and Improves Predictions of RNA Folding. Proc. Natl. Acad. Sci. U.S.A. 91(20),
9218–9222 (1994)

18. Russell, R., Millett, I.S., Tate, M.W., Kwok, L.W., Nakatani, B., Gruner, S.M.,
Mochrie, S.G.J., Pande, V., Doniach, S., Herschlag, D., Pollack, L.: Rapid com-
paction during RNA folding. Proc. Natl. Acad. Sci. U.S.A. 99(7), 4266–4271 (2002)

19. Uhrmacher, A.M., Ewald, R., John, M., Maus, C., Jeschke, M., Biermann, S.:
Combining Micro and Macro-Modeling in DEVS for Computational Biology. In:
WSC 2007: Proceedings of the 39th conference on Winter simulation, pp. 871–880.
IEEE Press, Los Alamitos (2007)

20. Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. Aca-
demic Press, London (2000)

21. Uhrmacher, A.M., Himmelspach, J., Jeschke, M., John, M., Leye, S., Maus, C.,
Röhl, M., Ewald, R.: One Modelling Formalism & Simulator Is Not Enough! A
Perspective for Computational Biology Based on James II. In: Fisher, J. (ed.)
FMSB 2008. LNCS (LNBI), vol. 5054, pp. 123–138. Springer, Heidelberg (2008)

22. Bokinsky, G., Zhuang, X.: Single-molecule RNA folding. Acc. Chem. Res. 38(7),
566–573 (2005)

23. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M., Woodson, S.A.: RNA Fold-
ing at Millisecond Intervals by Synchrotron Hydroxyl Radical Footprinting. Sci-
ence 279(5358), 1940–1943 (1998)

24. Zhuang, X., Bartley, L.E., Babcock, H.P., Russell, R., Ha, T., Herschlag, D., Chu,
S.: A Single-Molecule Study of RNA Catalysis and Folding (2000)

25. You, S., Stump, D.D., Branch, A.D., Rice, C.M.: A cis-Acting Replication Element
in the Sequence Encoding the NS5B RNA-Dependent RNA Polymerase Is Required
for Hepatitis C Virus RNA Replication. J. Virol. 78(3), 1352–1366 (2004)

26. Rich, A., RajBhandary, U.L.: Transfer RNA: Molecular Structure, Sequence, and
Properties. Annu. Rev. Biochem. 45(1), 805–860 (1976)

27. Clark, B.F.C.: The crystal structure of tRNA. J. Biosci. 31(4), 453–457 (2006)
28. Jonassen, C.M., Jonassen, T.O., Grinde, B.: A common RNA motif in the 3’ end

of the genomes of astroviruses, avian infectious bronchitis virus and an equine
rhinovirus. J. Gen. Virol. 79(4), 715–718 (1998)

62 C. Maus

29. Robertson, M.P., Igel, H., Baertsch, R., Haussler, D., Ares, M.J., Scott, W.G.: The
structure of a rigorously conserved RNA element within the SARS virus genome.
PLoS Biol. 3(1), 86–94 (2005)

30. Höbartner, C., Micura, R.: Bistable Secondary Structures of Small RNAs and
Their Structural Probing by Comparative Imino Proton NMR Spectroscopy. J.
Mol. Biol. 325(3), 421–431 (2003)

31. Wenter, P., Fürtig, B., Hainard, A., Schwalbe, H., Pitsch, S.: Kinetics of Photoin-
duced RNA Refolding by Real-Time NMR Spectroscopy. Angew. Chem. Int. Ed.
Engl. 44(17), 2600–2603 (2005)

32. Takyar, S., Hickerson, R.P., Noller, H.F.: mRNA Helicase Activity of the Ribosome.
Cell 120(1), 49–58 (2005)

A Language for Biochemical Systems

Michael Pedersen and Gordon Plotkin

LFCS, School of Informatics, University of Edinburgh

Abstract. CBS is a Calculus of Biochemical Systems intended to al-
low the modelling of metabolic, signalling and regulatory networks in a
natural and modular manner. In this paper we extend CBS with fea-
tures directed towards practical, large-scale applications, thus yielding
LBS: a Language for Biochemical Systems. The two main extensions are
expressions for modifying large complexes in a step-wise manner and pa-
rameterised modules with a notion of subtyping; LBS also has nested dec-
larations of species and compartments. The extensions are demonstrated
with examples from the yeast pheromone pathway. A formal specifica-
tion of LBS is then given through an abstract syntax, static semantics
and a translation to a variant of coloured Petri nets. Translation to other
formalisms such as ordinary differential equations and continuous time
Markov chains is also possible.

Keywords: Large-scale, parametrised modules, subtyping, coloured
Petri nets.

1 Introduction

Recent years have seen a multitude of formal languages and systems applied to
biology, thus gaining insight into the biological systems under study through
analysis and simulation. Some of these languages have a history of applications
in computer science and engineering, e.g. the pi calculus [1], PEPA [2], Petri
nets [3] and P-systems [4], and some are designed from scratch, e.g. Kappa [5],
BioNetGen [6], BIOCHAM [7], Bioambients [8], Beta binders [9,10], Dynamical
Grammars [11] and the Continuous Pi Calculus [12].

The Calculus of Biochemical Systems (CBS) [13] is a new addition to the
latter category which allows metabolic, signalling and regulatory networks to be
modelled in a natural and modular manner. In essence, CBS describes reactions
between modified complexes, occurring concurrently inside a hierarchy of com-
partments but allowing cross-compartment interactions and transport. It has a
compositional semantics in terms of Petri nets, ordinary differential equations
(ODEs) and continuous time Markov chains (CTMCs). Petri nets allow a range
of established analysis techniques to be used in the biological setting [14], and
ODEs and CTMCs enable deterministic and stochastic simulations.

This paper proposes extensions of CBS in support of practical, large-scale ap-
plications, resulting in LBS: a Language for Biochemical Systems. The two main
extensions are pattern expressions and parameterised modules. Patterns repre-
sent complexes and pattern expressions provide a concise way of making small

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 63–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 M. Pedersen and G. Plotkin

changes to large complexes incrementally, a common scenario in signal transduc-
tion pathways. Parameterised modules allow general biological “gadgets”, such
as a MAPK cascade, to be modelled once and then reused in different contexts.
Modules may be parameterised on compartments, rates, patterns and species
types, the latter resulting in a notion of parametric type. A notion of subtyp-
ing of species types and patterns is also employed, allowing a module to specify
general reaction schemes and have a concrete context provided at the time of
module invocation. Modules may furthermore return pattern expressions, thus
providing a natural mechanism for connecting related modules.

Other improvements over CBS include species and compartment declarations
which involve scope and new name generation. While species modification sites
in CBS always have boolean type, LBS does not place any limitations of modifi-
cation site types, allowing, e.g., location (real number pairs) or DNA sequences
(strings) to be represented. LBS also allows general rate expressions to be associ-
ated with expressions, although mass-action kinetics may be assumed as in CBS.

The syntax and semantics of CBS are outlined informally in Section 2 through
some basic examples, including a MAPK cascade module drawn from the yeast
pheromone pathway. In Section 3 we introduce LBS by further examples from the
yeast pheromone pathway and demonstrate how the features of LBS can be used
to overcome specific limitations of CBS. We then turn to a formal presentation
of the language. An abstract syntax of LBS is given in Section 4. An overview
of the semantics of LBS, including a static semantics, the general approach to
translation, and a specific translation to Petri nets, is given in Section 5. Sec-
tion 6 discusses related work and future directions. Due to space constraints,
only selected parts of the semantics are given in this paper. A full presenta-
tion, together with the full LBS model of the yeast pheromone pathway, can be
found in [15].

A compiler from LBS to the Systems Biology Markup Language (SBML) [16]
has been implemented and supports the main features of the language presented
formally in this paper. We have validated the compiler on the yeast pheromone
pathway model by deriving ODEs from the target SBML using the Copasi
tool [17]. By manual inspection, the derived ODEs coincide, up to renaming
of species, with the ODEs published in [18], although there is some discrepancy
between the simulation results.

2 The Calculus of Biochemical Systems

Basic examples of CBS modules with no modifications or complexes are shown
in Program 1, with the last line informally indicating how the modules may be
used in some arbitrary context. Module M1 consists of two chemical reactions
taking place in parallel as indicated by the bar, |. The first is a condensation
reaction, and the second is a methane burning reaction. In M2 the second reaction
takes place inside a compartment c, and in M3 the species O2 is transported out of
compartment c to whatever compartment the module is later instantiated inside.
In contrast, a language such as BIOCHAM would represent the same model by

A Language for Biochemical Systems 65

Program 1. Example of three modules in CBS
module M1 { 2 H2 + O2 -> 2 H2O | CH4 + 2 O2 -> CO2 + 2 H2O };
module M2 { 2 H2 + O2 -> 2 H2O | c[CH4 + 2 O2 -> CO2 + 2 H2O] };
module M3 { c[O2] -> O2 };
... | M1 | ... | M2 | ... | M3 | ...

an unstructured list of five reactions and explicitly specifying the compartments
of each species.

Graphical representations of the two individual reactions in module M1 are
shown in Figure 1a; the reader familiar with Petri nets (see [19] for an overview)
can think of the pictures as such. When considering two reactions together,
in parallel, the standard chemical interpretation is that the reactions share and
compete for species which have syntactically identical names in the two reactions,
in this case O2 and H2O. A graphical Petri net representation of M1 based on this
interpretation is shown in Figure 1b. In the case of module M2, the species O2
and H2O are not considered identical between the two reactions because they are
located in different compartments. Consequently, none of the species are merged
in the parallel composition that constitutes M2, see Figures 1c and 1d.

This example illustrates how reactions, or more generally, modules, are com-
posed in CBS, and hints at how a compositional semantics in terms of Petri nets
can be defined. Similar ideas can be used to define compositional semantics in
terms of ODEs and CTMCs, assuming that reactions are equipped with rates;
see [13] for the full details.

Let us turn to a more realistic example featuring modifications and complexes,
drawn from a model of the yeast pheromone pathway that will serve as a case
study throughout the paper. Figure 2, adapted from [18], shows a graphical

H2

O2 H2O

2

2

O2

CH4

H2O

CO2

2 2

(a)

H2

O2 H2O

2

2

CH4 CO2

2 2

(b)

H2

O2 H2O

2

2

c.O2

c.CH4

c.H2O

c.CO2

2 2

(c)

H2

O2 H2O

2

2

c.O2

c.CH4

c.H2O

c.CO2

2 2

(d)

Fig. 1. Petri net representations of reactions and their parallel composition. Places
(circles) represent species, transitions (squares) represent reactions, and arc weights
represent stoichiometry.

66 M. Pedersen and G. Plotkin

Fig. 2. Selected and reorganised parts of the informal model from [18] of the yeast
pheromone pathway. Copyright c© 2008 John Wiley & Sons Limited. Reproduced with
permission.

representation of the model divided into several interacting modules. We do
not discuss the biological details of the model but rather consider the general
structure and how this can be represented formally, and we start by focusing on
the MAPKCascade module. The cascade relies on a scaffolding complex holding
Ste11 (the MAPK3), Ste7 (the MAPK2) and Fus3 (the MAPK) into place.
Ignoring degradation, this module can be written in CBS as shown in Program 2.

Program 2. A CBS module of the yeast MAPK cascade
module MAPKCascade {
Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg ->{k20}

Fus3{p=ff}-Ste7{p=ff}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg |
Fus3{p=ff}-Ste7{p=ff}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg ->{k22}

Fus3{p=ff}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg |
Fus3{p=ff}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg ->{k24}

Fus3{p=tt}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg
};
... | MAPKCascade | ...

The labels k20, k22 and k24 associated with reaction arrows represent the
mass-action rates given in [18]. Fus3, Ste7, Ste11, Ste5, Ste20 and Gbg are
the names of primitive species, i.e. non-complex species, and can exist in vari-
ous states of modification. In this case all primitive species except Ste20 and

A Language for Biochemical Systems 67

Gbg have a single modification site, p, which can be either phosphorylated or
unphosphorylated, indicated by assigning boolean values (tt/ff) to the sites. For
example, Fus3{p=ff} represents Fus3 in its unphosphorylated state. Complexes
are formed by composing modified primitive species using a hyphen, -.

Complexes such as the above will generally be referred to as patterns. As in
BIOCHAM, the term “pattern” reflects that modification sites in reactants can
be assigned variables rather than actual boolean values, hence “matching” mul-
tiple physical complexes and thereby ameliorating the combinatorial explosion
problem on the level of species modifications.

Two limitations of the CBS representation emerge from this example:

1. Redundancy. Many signalling pathways involve making small changes to
large complexes. Therefore, patterns are often identical except for small
changes in modification, but in CBS we are forced to write all patterns
out in full.

2. Reuse. The MAPK cascade is a typical example of a “biological gadget”
which is utilised in many different contexts but with different participat-
ing species [20]. The CBS MAPK module in our example “hard codes” the
species and rates involved and hence cannot be used in another context.

The next section shows how LBS offers solutions to these limitations.

3 The Language for Biochemical Systems

We give three examples of LBS programs and informally explain their syntax.
The first shows how species declarations and pattern expressions can be used
to improve the yeast MAPK cascade module. The second shows how a gen-
eral, reusable MAPK cascade module can be written by taking advantage of
parameters and subtyping. The third shows how modules can communicate by
linking an output pattern of a receptor activation module to an input pattern
of a G-protein cycle module.

3.1 The Yeast MAPKCascade

Program 3 shows how the model in Program 2 can be re-written in LBS. The first
difference is that all primitive species featuring in a program must be declared by
specifying their modification site names and types, if any. For example, Fus3 has
a single modification site named p of type bool, and Ste20 has no modification
sites. In general, arbitrarily many modification sites may be declared.

The second difference is that we assign the first pattern to a pattern identifier
called e. This identifier, and the ones that follow, correspond directly to the
names given to complexes in Figure 2. We can then simply refer to e in the
first reaction instead of writing out the full pattern. The product of the first
reaction uses the pattern expression e<Ste11{p=tt}> to represent “everything
in e, except that site p in Ste11 is phosphorylated,” and subsequently assigns
the resulting pattern to a new identifier f which, in turn, is then used as a

68 M. Pedersen and G. Plotkin

Program 3. Species declarations and pattern expressions in the yeast MAP-
KCascade module
module YeastMAPKCascade {

spec Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, Ste5{p:bool}, Ste20, Gbg;
pat e = Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg;

e ->{k20} e<Ste11{p=tt}> as f;
f ->{k22} f<Ste7{p=tt}> as g;
g ->{k24} g<Fus3{p=tt}> as h

};
... | YeastMAPKCascade; ...

reactant of the second reaction, and so on. When using such in-line pattern
declarations, reactions are separated by semi-colons (;) rather than the parallel
composition (|), indicating that the order in which reactions are written matters.

The module can be invoked in some parallel context as indicated informally
in the last line. Since, e.g., Fus3 is declared locally, inside the module, multiple
instances of the module would give rise to multiple, distinct instances of this
species. If we prefer species to be shared between multiple instances of a module,
they should either be declared globally or passed as parameters, as we see in the
next subsection.

3.2 A General MAPK Cascade Module

The model in the previous subsection still suffers from a lack of reusability. From a
more general perspective, a (scaffolded) MAPK cascade is a series of reactions op-
erating on some potentially very big complex but which contains specific species
serving the K3, K2 and K1 functions of the cascade. Each of these species must
have at least one phosphorylation site (i.e. of boolean type) which in the gen-
eral case could be be called ps. With this in mind, the K3, K2 and K1 become
species parameters of the MAPK module. The scaffold complex containing these
species becomes a pattern parameter which we will call mk4, indicating its role
as an upstream initiator of the cascade. Reaction rates become rate parameters.
Program 4 shows how the resulting module can be written in LBS. The species
parameters follow the structure of species declarations. But the pattern param-
eter is different: it provides a pattern identifier together with the type of the
pattern. A pattern type simply represents the names of primitive species in the
pattern: no more is needed to determine how the pattern may be used, because
the types of the primitive species are defined separately.

In the context of the yeast model, we can simply use the MAPK cascade
module by declaring the specific species of interest, defining the scaffold pattern,
and passing these together with the rates as arguments to the module. This is
shown in Program 5 which is semantically equivalent to Program 3, i.e. the two
translate to the same Petri net. A closer investigation of this program tells
us that the pattern e, which is passed as an actual parameter, has the type
Fus3-Ste7-Ste11-Ste5-Ste20-Gbg, namely the species contained in the pattern.

A Language for Biochemical Systems 69

Program 4. Defining a general, scaffolded MAPKCascade module
module MAPKCascade(spec K1{ps:bool}, K2{ps:bool}, K3{ps:bool};

pat mk4 : K1-K2-K3; rate r1, r2, r3){
mk4 ->{r1} mk4<K3{ps=tt}> as mk3;
mk3 ->{r2} mk3<K2{ps=tt}> as mk2;
mk2 ->{r3} mk2<K1{ps=tt}> as mk1

};

Program 5. Using the general MAPKCascade module
spec Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, Ste5{p:bool}, Ste20, Gbg;
pat e = Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg;

MAPKCascade(Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, e, k20, k22, k24);

The corresponding formal parameter has type K1-K2-K3, which is instantiated to
Fus3-Ste7-Ste11 through the species parameters. This works because the actual
parameter type contains at least the species required by the formal parameter
type. This is all the module needs to know, since these are the only species it is
going to manipulate. We say that the type of the actual parameter is a subtype
of the type of the formal parameter, and hence the module invocation is legal. A
similar idea applies at the level of species parameters, although in this example
the corresponding formal and actual species parameters have the same number
of modification sites. Note that the names of corresponding modification sites
need not be the same for actual and formal parameters. In this example, the
formal parameters use ps while the actual parameters use p.

3.3 Receptor Activation and G-Protein Cycle Modules

Our last example illustrates how modules can be linked together. If we look at the
general structure of the yeast pheromone picture in Figure 2, we notice that many
of the modules produce outputs which are passed on to subsequent modules: the
scaffold formation module produces a scaffold which is passed on to the MAPK
cascade module, and the receptor activation module produces a receptor-ligand
complex (consisting of Alpha and Ste2) which is used to activate the G-protein
cycle. The G-protein cycle in turn passes on a beta-gamma subunit.

In order to naturally represent these interconnections, LBS provides a mecha-
nism for modules to return patterns. Program 6 shows this mechanism involving
the receptor activation and G-protein cycle modules. The modules are named
as in Figure 2. They are commented and should be self-explanatory, except per-
haps for three points. Firstly, enzymatic reactions are represented using the tilde
operator (∼) with an enzyme (a pattern) on the left and a reaction on the right.
Secondly, reversible reactions are represented using a double-arrow (<->) fol-
lowed by rates for the forward and backward directions. Thirdly, the rate v46
in the G protein cycle module is defined explicitly because it does not follow

70 M. Pedersen and G. Plotkin

Program 6. Receptor activation and G-protein cycle modules
spec Fus3{p:bool};
module ReceptorAct(comp cyto, pat degrador, patout rl) {

spec Alpha, Ste2{p: bool};
(* pheromone and receptor degradation: *)
degrador ∼ Alpha ->{k1} | cyto[Ste2{p=ff}] ->{k5} |
(* Receptor-ligand binding and degradation: *)
Alpha + cyto[Ste2{p=ff}] <->{k2,k3} cyto[Alpha-Ste2{p=tt}] as rl;
cyto[rl] ->{k4}

};
module GProtCycle(pat act, patout gbg) {

spec Ga, Gbg, Sst2{p:bool};
pat Gbga = Gbg-Ga-GDP;
(* disassociation of G-protein complex: *)
act ∼ Gbga ->{k6} Gbg + Ga-GTP |
(* ... and the G-protein cycle: *)
Ga-GTP ->{k7} Ga-GDP |
Sst2{p=tt} ∼ Ga-GTP ->{k8} Ga-GDP |
rate v46 = k46 * (Fus3{p=tt}ˆ2 / (4ˆ2 + Fus3{p=tt}ˆ2));
Fus3{p=tt} ∼ Sst2{p=ff} <->[v46]{k47} Sst2{p=tt} |
Ga-GDP + Gbg ->{k9} Gbga |
pat gbg = Gbg; Nil

};
spec Bar1;
comp cytosol inside T vol 1.0;
ReceptorAct(cytosol, Bar1, pat link);
GProtCycle(link, pat link2);
(* rest of model ... *)

mass-action kinetics, and this is indicated by the use of square brackets around
the forward rate of the reaction.

Let us consider how the two modules interface to each other. The receptor
activation module takes parameters for the cytosol compartment and a pattern
which degrades the pheromone. The latter has empty type, indicating that the
module does not care about the contents of this pattern. The new feature is
the last parameter, rl (short for receptor-ligand complex). This is an output
pattern: it is defined in the body of the module and is made available when
the module is invoked. This happens towards the end of Program 6 by first
declaring the relevant species and the compartment cytosol with volume 1
inside the distinguished top level compartment T, which are then passed as actual
parameters to the module. Note that a species is a special, non-modified and non-
complex case of a pattern, and hence can be used as a pattern parameter. The
last actual parameter is the output parameter identifier, here called link. This
pattern identifier will be assigned the return pattern of the module (namely the
receptor-ligand complex) and is then passed as the “activating” parameter for
the G-protein cycle module. It follows that the ordering of module invocation
matters, which as above is indicated by a semicolon rather than the parallel

A Language for Biochemical Systems 71

composition. In this particular example, output patterns have the empty type,
but they could have arbitrary types and are subject to a subtyping mechanism
similar to that of input patterns.

4 The Abstract Syntax of LBS

Having given an informal introduction to the main features of LBS and its con-
crete syntax, we now present its abstract syntax. This is shown in Table 1; each
of the three main syntactic categories is explained further in the following sub-
sections.

Table 1. The core abstract syntax of LBS: Pattern expressions and their types (top),
programs (middle) and declarations (bottom)

PE ::=β | p | PE − PE′ | PE〈PE〉 | PE.s | PE\s

β ::={si �→ αi} α ::= {li �→ Ei} τ ::= {si �→ ni} σ ::= {li �→ ρi}

P ::={LPEi �→ ni} RE−→ {LPE′
j �→ n′

j} if Ebool

|0 | P1|P2 | c[P] | Decl; P | m(APars;pat p); P

LPE ::=PE | c[LPE] APars ::= s : σ; c; PE; RE

RE ::=k | LPE | c | r(APars) | log(RE) | RE aop RE

Decl ::=comp c : c′, v | spec s : σ | pat p = PE | rate r(FPars) = RE

|module m(FPars;patout p : τ){P}
FPars ::=spec s : l : ρ; comp c : c′;pat p : τ ; rate r

4.1 Notation

Tuples (x1, . . . , xk) are written x when the specific elements are unimportant. The
set of finite multisets over a set S is denoted by FMS(S), the total functions from
S to the natural numbers which take value 0 for all but finite many elements of S.
The power set of a set S is written 2S . Partial finite functions f are denoted by
finite indexed sets of pairs {xi �→ yi}i∈I where f(xi) = yi, and I is omitted if it is
understood from the context. When the ith element of a list or an indexed set is
referred to without explicit quantification in a premise or condition of a rule, the
index is understood to be universally quantified over the index set I. The domain
of definition of a function f is denoted by dom(f); the empty partial function is
denoted by ∅. We write f [g] for the update of f by a partial finite function g; for
the sake of readability, we often abbreviate e.g. f [{xi �→ yi}] by f [xi �→ yi].

4.2 Pattern Expressions

In the abstract syntax for pattern expressions, s ranges over a given set Namess

of species names, l ranges over a given set Namesmo of modification site names,

72 M. Pedersen and G. Plotkin

and p ranges over a given set Identp of pattern identifiers. The simplest possible
pattern expression, a pattern β, maps species names to lists of modifications, thus
allowing homomers be be represented.

Modifications in turn map modification site names to expressions E, which
range over the set Exp

∆=
⋃

ρ∈Typesmo
Expρ; here, Typesmo is a given set of

modification site types, ranged over by ρ, and Expρ is a given set of expressions
of type ρ. We assume that Typesmo contains the boolean type bool with values
{tt,ff}. Expressions may contain match variables from a given set X and we
assume a function FV ∆= Exp → 2X giving the variables of an expression.

Pattern composition,PE−PE′, intuitively results in a patternwhere the lists of
modifications from the first pattern have been appended to the corresponding lists
of modifications from the second pattern. This operation is therefore not generally
commutative, e.g. s{l=tt}-s{l=ff} is not the same as s{l=ff}-s{l=tt}. This
is not entirely satisfying and will be a topic of future work. We have already en-
countered the pattern update expression PE〈PE〉 in the MAPK cascade module
in Program 3. The expression PE.s restricts the pattern to the species s and
throws everything else away, while the expression PE\s keeps everything except
for s. So a dissociation reaction of s from PE can be written (in the concrete
syntax) as PE ->{r} PE\s + PE.s. If there are multiple instances of s in PE,
only the first in the list of modifications will be affected.

Finally, α and β represent the types of species and patterns, respectively; in
the grammar, n ranges over N>0. Henceforth we let Typesp and Typess be the
sets generated by these productions.

4.3 Programs

In the abstract syntax for programs, c ranges over a given set Namesc of com-
partment names, m ranges over a given set Identm of module identifiers, r
ranges over a given set Identr of rate identifiers, n ∈ N>0 and k ∈ R. The
first line in the grammar for programs is a reaction. Products and reactants are
represented as functions mapping located patterns to stoichiometry. A reaction
may furthermore be conditioned on a boolean expression. We encountered lo-
cated patterns in Programs 1 and 6: they are just patterns inside a hierarchy of
compartments. Rate expressions associated with reactions can employ the usual
arithmetic expressions composed from operators aop ∈ {+, -,*,/,̂ }. But they
can also include located patterns (which refer to either a population or a concen-
tration, depending on the semantics), compartments (which refer to a volume)
and rate function invocations.

In the second line, 0 represents the null process, and we have encountered
parallel composition and compartmentalised programs in the examples. Decla-
rations are defined separately in the next subsection. Module invocations are
followed sequentially by a program since a new scope will be created if patterns
are returned from modules as in Program 6.

Enzymatic reactions, reversible reactions, mass-action kinetics and inline pat-
tern declarations (using the as keyword) which we encountered in the exam-
ples are not represented in the abstract syntax. They can all be defined, in a

A Language for Biochemical Systems 73

straightforward manner, from existing constructs. Take for example the following
definitions of reactions from Programs 3 and 6:

– e ->{k10} e<Ste11{p=tt}> as f
∆=

pat f = e<Ste11{p=tt}>; e ->[k10 * e] f.
– Fus3{act=tt} ∼ Sst2{act=ff} <->[v46]{k47} Sst2{act=tt} ∆=

Fus3{act=tt} + Sst2{act=ff} ->[v46] Fus3{act=tt} + Sst2{act=tt}
| Sst2{act=tt} ->[k47 * Sst2{act=tt}] Sst2{act=ff}

4.4 Declarations

Compartment declarations specify the volume v ∈ R>0 and parent of the de-
clared compartment. Compartments which conceptually have no parent com-
partment should declare the “top level” compartment,
, as their parent, so we
assume that
 ∈ Namesc. Modules and rate functions may be parameterised
on species with their associated type, compartments with their declared parents,
patterns with their associated type, and finally on rate expressions. Henceforth
we let FormalPars be the set of formal parameter expressions, as generated
by the FPars production.

5 The Semantics of LBS

Having introduced the syntactic structure of LBS programs, we now turn to
their meaning.

5.1 Static Semantics

The static semantics tells us which of the LBS programs that are well-formed ac-
cording to the abstract syntax are also semantically meaningful. This is specified
formally by a type system of which the central parts are given in Appendix A,
and full details can be found in [15]. In this subsection we informally discuss the
main conditions for LBS programs to be well-typed.

The type system for pattern expressions checks that pattern identifiers and
species are declared and used according to their declared type. For pattern up-
dates, selections and removals, only species which are present in the target pat-
tern expression are allowed. If a pattern expression is well-typed, its type τ is
deduced in a compositional manner. Suptyping for patterns is given by multiset
inclusion, and subtyping for species is given by record subtyping as in standard
programming languages [21].

For reactions, the type system requires that any match variables which oc-
cur in the products also occur in the reactants. This is because variables in the
product patterns must be instantiated based on matches in the reactant pat-
terns during execution of the resulting model. It also requires that the reactant
and product located patterns agree on parent compartments; for example, the
reaction c1[s] -> c2[s] is not well-typed if the compartments c1 and c2 are
declared with different parent compartments. A similar consideration applies

74 M. Pedersen and G. Plotkin

for parallel composition. For a compartment program c[P] we require that all
top-level compartments occurring in P are declared with parent c. In order for
these conditions on compartments to be checked statically, i.e. at time of mod-
ule declaration rather than invocation, the type system must associate parent
compartments with programs in a bottom-up manner as detailed in Appendix A.

For module invocations, the type system first of all ensures that the num-
ber of formal and actual parameters match. It also ensures that the type of
actual species and pattern parameters are subtypes of the corresponding formal
parameter types, both for standard “input” parameters but also for output pat-
tern parameters. Finally, all formal output patterns identifiers must be defined
in the body of the module.

5.2 The General Translation Framework

A key advantage of formal modelling languages for biology is that they facil-
itate different kinds of analysis on the same model. This is also the case for
CBS which is endowed with compositional semantics in terms of Petri nets,
ODEs and CTMCs. The semantics of LBS is complicated by the addition of
high-level constructs such as pattern expressions, modules and declarations, but
this is ameliorated by the fact that the definition of its semantics is to some
extent independent of the specific choice of target semantical objects. The gen-
eral translation framework defines these independent parts of the translation,
and concrete translations then tie into this framework by defining the semantic
objects associated with the following:

1. Normal form reactions, where pattern expressions have been evaluated to
patterns, together with the types of species featuring in the reaction.

2. The 0 program.
3. The parallel composition of semantic objects.
4. Semantic objects inside compartments.

Here we only outline the central mechanisms involved; a complete account can
be found in [15].

The framework evaluates pattern expressions PE to patterns β according
to the intuitions set forth in Section 4.2 and by replacing pattern identifiers
with their defined patterns. Located pattern expressions are evaluated to pairs
of (immediate) parent compartments and the resulting patterns. Reactions are
then evaluated to normal form reactions of the form:

{(cin
i , βin

i) �→ nin
i }

RE−→ {(cout
j , βout

j) �→ nout
j } if Ebool

where pattern expressions and rate function invocations in RE have been evalu-
ated, and compartment identifiers have been replaced by their declared volumes.
A species type environment Γs : Namess ↪→fin Typess recording the type of
species in reactions is also maintained by the framework.

Modules are evaluated to semantic functions which, given the relevant actual
parameters at time of invocation, return the semantic objects of the module

A Language for Biochemical Systems 75

body together with the output patterns. The definition of these functions is
complicated by the need to handle species parameters and pattern subtyping:
the former requires renaming to be carried out, and the latter entails handling
type environments for species that are not necessarily within the scope of their
declaration.

As an example, using the general translation framework on the module in
Program 4 results in a function which, when invoked with the parameters given
in Program 5 , computes the (almost) normal form reactions in Program 2, uses
the first concrete semantics function to obtain concrete semantic objects for each
reaction, and finally applies the third concrete semantic function to obtain the
final result of the parallel compositions.

5.3 Translating LBS to Petri Nets

This subsection demonstrates the translation framework by giving the definitions
needed for a concrete translation to Petri nets. Translations to ODEs or CTMCs
are also possible, see [13] or [14] for the general approach.

Petri Nets. When modelling biological systems with Petri nets, the standard
approach is to represent species by places, reactions by transitions and stoichiom-
etry by arc multiplicities as in Figure 1. Complex species with modification sites
can be represented compactly using a variant of coloured Petri nets where places
are assigned colour types [22]. In our case, the colour types of places are given
by pairs (c, τ) of compartments and pattern types together with a global primi-
tive species type environment Γs. Then a pair (c, τ) uniquely identifies a located
species, so there is no need to distinguish places and colour types. Arcs are
equipped with multisets of patterns rather than plain stoichiometry, allowing a
transition to restrict the colour of tokens (e.g. modification of a species) that it
accepts or produces. Transitions are strings over the binary alphabet. This en-
ables us to ensure that the transitions from two parallel nets are disjoint simply
by prefixing 0 and 1 to all transitions in the respective nets.

In the following formal definition of bio-Petri nets, we shall need the sets of
patterns conforming to specific types (here a type system E : ρ on expressions
is assumed):

Patternsτ,Γs

∆= {β ∈ Patterns |
type(β) = τ ∧ ∀s ∈ dom(β).type(β(s)) = Γs(s)}

type({si �→ αi})
∆= {si �→ |αi|}

type({li �→ Ei}) ∆= {li �→ ρi} where Ei : ρi

We use a standard notation
∏

i∈I Xi for dependent sets.

Definition 1. A bio-Petri net P is a tuple (S, T, Fin, Fout, B, Γs) where

– S ⊂ Namesc ×Typesp is a finite set of places (located pattern types).
– T ⊂ {0, 1}∗ is a finite set of transitions (reactions).

76 M. Pedersen and G. Plotkin

– Fin :
∏

t,(c,τ)∈T×S FMS(Patternsτ,Γs) is the flow-in function (reactants).
– Fout :

∏
t,(c,τ)∈T×S FMS(Patternsτ,Γs) is the flow-out function (products).

– B : T → Expbool is the transition guard function.
– Γs :

⋃
{dom(τ) | (c, τ) ∈ S}→ Typess is the species type function.

We use the superscript notation SP to refer to the places S of Petri net P , and
similarly for the other Petri net elements. For a formal definition of behaviour
(qualitative semantics) of bio-Petri nets, please refer to [15].

The Concrete Translation of LBS to Bio-Petri Nets. Following [13], the
concrete translation to bio-Petri nets is given by the following four definitions.

1. Let P = {(cin
i , βin

i) �→ nin
i }

RE−→ {(cout
j , βout

j) �→ nout
j } if Ebool be an LBS

reaction in normal form and let Γs be a species type environment. Then
define P(P, Γs) as follows, where ε denotes the empty string:

– SP ∆= {(cin
i , type(βin

i))} ∪ {(cout
j , type(βout

j))}
– TP ∆= {ε}
– FP

io (ε, (c, τ)) ∆= {(βio
h �→ nio

h) | cio
h = c∧type(βio

h) = τ) for io ∈ {in, out}
– BP(ε) ∆= Ebool

– ΓP
s

∆= Γs

2. Define P(0) ∆= (∅, ∅, ∅, ∅, ∅, ∅)
3. Let P1 and P2 be Petri nets with ΓP1

s (s) = ΓP2
s (s) for all s ∈ dom(ΓP1

s) ∩
dom(ΓP2

s). Define parallel composition P = P1|P2 as follows, where b ∈
{0, 1}:
– SP ∆= SP1 ∪ SP2

– TP ∆= {0t | t ∈ TP1} ∪ {1t | t ∈ TP2}

– FP
io (bt, p) ∆=

⎧⎪⎨⎪⎩
FP1

io (t, p) if t ∈ TP1 ∧ p ∈ SP1

FP2
io (t, p) if t ∈ TP2 ∧ p ∈ SP2

∅ otherwise
for io ∈ {in, out}

– B(bt) ∆=

{
BP1(t) if t ∈ TP1

BP2(t) if t ∈ TP2

– ΓP
s

∆= ΓP1
s ∪ ΓP2

s

4. First define c[(c′, τ)] ∆=

{
(c, τ) if c′ =

(c′, τ) otherwise

Let P ′ be a Petri net. Then define the compartmentalisation P = c[P ′] as
follows:
– SP ∆= {c[p] | p ∈ SP′}
– TP ∆= TP′

– FP
io (t, c[p]) ∆= FP′

io (t, p) for io ∈ {in, out}
– BP(t) ∆= BP′

(t)
– ΓP

s
∆= ΓP′

s

A Language for Biochemical Systems 77

Observe that for programs where species have no modification sites and do not
form complexes, the above definitions collapse to the simple cases of composition
illustrated in Program 1 and Figure 1 for standard Petri nets.

6 Related Work and Future Directions

Compared to the other languages for biochemical modelling mentioned in the
introduction, CBS is unique in its combination of two features: it explicitly
models reactions rather than individual agents as in process calculi, and it does
so in a compositional manner. BIOCHAM, for example, also models reactions
explicitly using a very similar syntax to that of CBS, but it does not have a
modular structure.

Whether the explicit modelling of reactions is desirable or not depends on the
particular application. Systems which are characterised by high combinatorial
complexity arising from complex formations are difficult or even impossible to
model in CBS and LBS; an example is a model of scaffold formation which
considers all possible orders of subunit assembly, where one may prefer to use
Kappa or BioNetGen. But for systems in which this is not an issue, or where the
combinatorial complexity arises from modifications of simple species (which CBS
and LBS deal with in terms of match variables), the simplicity of a reaction-based
approach is attractive. It also corresponds well to graphical representations of
biological systems, as we have seen with the yeast pheromone pathway example.

To our knowledge, no other languages have abstractions corresponding to
the pattern expressions and nested declarations of species and compartments of
LBS. The notion of parameterised modules is however featured in the Human-
Readable Model Definition Language [23], a draft textual language intended as a
front-end to the Systems Biology Markup Language (SBML) [16]. The modules
in this language follow an object-oriented approach rather than our functional
approach, but there is no notion of subtyping or formal semantics.

Tools for visualising LBS programs and, conversely, for generating LBS pro-
grams from visual diagrams, are planned and will follow the notation of [24,25] or
the emerging Systems Biology Graphical Notation (SBGN). We also plan to use
LBS for modelling large scale systems such as the EGFR signalling pathway [26],
although problems with interpretation of the graphical diagrams are anticipated.
While some parts of the EGFR map are well characterised by modules, others
appear rather monolithic and this is likely to be a general problem with modular
approaches to modelling in systems biology. In the setting of synthetic biology,
however, systems are programmed rather than modelled, so it should be possible
to fully exploit modularity there.

With respect to language development, it is important to achieve a better
understanding of homomers, enabling a commutative pattern composition op-
eration. We also anticipate the addition of descriptive features for annotating
species with e.g. Gene Ontology (GO) or Enzyme Commission (EC) numbers.
One may also consider whether model analyses can exploit modularity, e.g.
for Petri net invariants. Results for a subset of CBS without complexes and

78 M. Pedersen and G. Plotkin

modifications, corresponding to plain place/transition nets, can be found in [27],
and extensions to LBS and coloured Petri nets would be of interest.

Acknowledgements

The authors would like to thank Vincent Danos and Stuart Moodie for use-
ful discussions, and Edda Klipp for supplying the diagram in Figure 2. This
work was supported by Microsoft Research through its European PhD Schol-
arship Programme and by a Royal Society-Wolfson Award. The second author
is grateful for the support from The Centre for Systems Biology at Edinburgh,
a Centre for Integrative Systems Biology funded by BBSRC and EPSRC, ref-
erence BB/D019621/1. Part of the research was carried out at the Microsoft
Silicon Valley Research Center.

References

1. Regev, A., et al.: Representation and simulation of biochemical processes using the
pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp. 459–470
(2001)

2. Calder, M., et al.: Modelling the influence of RKIP on the ERK signalling pathway
using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra,
B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII.
LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)

3. Reddy, V.N., et al.: Petri net representation in metabolic pathways. In: Proc. Int.
Conf. Intell. Syst. Mol. Biol., pp. 328–336 (1993)

4. Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput.
Sci. 287(1), 73–100 (2002)

5. Danos, V., et al.: Rule-based modelling of cellular signalling. In: Caires, L., Vascon-
celos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg
(2007)

6. Faeder, J.R., et al.: Graphical rule-based representation of signal-transduction net-
works. In: Liebrock, L.M. (ed.) Proc. 2005 ACM Symp. Appl. Computing, pp.
133–140. ACM Press, New York (2005)

7. Chabrier-Rivier, N., et al.: The biochemical abstract machine BIOCHAM. In:
Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191.
Springer, Heidelberg (2005)

8. Regev, A., et al.: BioAmbients: an abstraction for biological compartments. Theor.
Comput. Sci. 325(1), 141–167 (2004)

9. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

10. Guerriero, M.L., et al.: An automated translation from a narrative language for
biological modelling into process algebra. In: Calder, M., Gilmore, S. (eds.) CMSB
2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg (2007)

11. Mjolsness, E., Yosiphon, G.: Stochastic process semantics for dynamical grammars.
Ann. Math. Artif. Intell. 47(3-4), 329–395 (2006)

12. Kwiatkowski, M., Stark, I.: The continuous pi-calculus: a process algebra for bio-
chemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) Proc. CMSB. LNCS.
Springer, Heidelberg (2008)

A Language for Biochemical Systems 79

13. Plotkin, G.: A calculus of biochemical systems (in preparation)
14. Heiner, M., et al.: Petri nets for systems and synthetic biology. In: Bernardo, M.,

Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer,
Heidelberg (2008)

15. Pedersen, M., Plotkin, G.: A language for biochemical systems. Technical re-
port, University of Edinburgh (2008), http://www.inf.ed.ac.uk/publications/
report/1270.html

16. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

17. Hoops, S., et al.: COPASI – a COmplex PAthway SImulator. Bioinformatics 22(24),
3067–3074 (2006)

18. Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway.
Yeast 21(10), 831–850 (2004)

19. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

20. Garrington, T.P., Johnson, G.L.: Organization and regulation of mitogen-activated
protein kinase signaling pathways. Current Opinion in Cell Biology 11, 211–218
(1999)

21. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
22. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical

Use, vol. 1. Springer, Heidelberg (1992)
23. Bergmann, F., Sauro, H.: Human-readable model definition language (first draft,

revision 2). Technical report, Keck Graduate Institute (2006)
24. Kitano, H., et al.: Using process diagrams for the graphical representation of bio-

logical networks. Nat. Biotechnol. 23(8), 961–966 (2005)
25. Moodie, S.L., et al.: A graphical notation to describe the logical interactions of

biological pathways. Journal of Integrative Bioinformatics 3(2) (2006)
26. Oda, K., et al.: A comprehensive pathway map of epidermal growth factor receptor

signaling. Molecular Systems Biology (2005)
27. Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner,

M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS, vol. 5307, pp. 288–307. Springer,
Heidelberg (2008)

A The Type System for LBS

This section presents the central parts of the type system for LBS.

A.1 Type Environments

The type system relies on the following type environments corresponding to each
of the possible declarations in the abstract syntax.

– Γs : Namess ↪→fin Typess for species declarations.
– Γc : Namesc ↪→fin Namesc for compartment declarations.
– Γp : Identp ↪→fin Typesp for pattern declarations.
– Γr : Identr ↪→fin FormalPars for rate function declarations.
– Γm : Identm ↪→fin FormalPars × Types

∗
p × 2Namess for module

declarations.

http://www.inf.ed.ac.uk/publications/report/1270.html
http://www.inf.ed.ac.uk/publications/report/1270.html

80 M. Pedersen and G. Plotkin

The Γm environment stores the type of defined modules which includes a set of
compartments in which the module may be legally instantiated according to the
compartment hierarchy specified through compartment declarations. For a well-
typed module this set will either be a singleton compartment, indicating that
the module can only be instantiated in a particular compartment, or the entire
set of compartment names indicating that the module can be instantiated inside
any compartment. The type system also needs to check that output patterns are
used appropriately. For this purpose, two additional environments are required.

– Γ out
p : Identp ↪→fin Typesp. This stores the declared types of module

output patterns.
– Rp ∈ 2Identp . This records pattern identifiers which have an entry in the

Γ out
p environment and are defined inside a module.

The Rp environment is necessary to ensure that a module does in fact define the
pattern identifiers which it has declared as outputs.

The type systems to be given in the following use and modify the above type
environments. In general, type judgements for a given type system may have the
form Γs, Γc, Γp, Γr, Γm � . . . but for the sake of readability we may rather write,
e.g., Γ, Γp � . . . where Γ represents all environments to the left of the turnstile
except Γp.

A.2 Pattern Expressions

Subtyping is formalised by the first two rules in Table 2. The remaining rules
use the environments for primitive species and patterns, so judgements are of
the form Γs, Γp � PE : τ . The first rule furthermore relies on a type system
(not given here) for basic expressions with judgements of the form E : ρ. We

Table 2. The type system for patterns

STSpec
dom(σ′) ⊆ dom(σ) ∧ ∀l ∈ dom(σ′).σ(l) = σ′(l)

σ <: σ′

STPat
∀s ∈ Namess.τ (s) ≥ τ ′(s)

τ <: τ ′

TPat

Eij : ρij and ρij = Γs(s)(lij)

Γ, Γs
 {si �→ {li �→ Ei}} : {s �→ |{li �→ Ei}|}

TPatComp
Γ
 PE : τ and Γ
 PE′ : τ ′

Γ
 PE − PE′ : τ + τ ′

TPatUpd
Γ
 PE : τ and Γ
 PE′ : τ ′

Γ
 PE〈PE′〉 : τ
τ <: τ ′

TPatSel
Γ
 PE : τ

Γ
 PE.s : {s �→ 1} s ∈ dom(τ)

TPatRem
Γ
 PE : τ + {s �→ 1}

Γ
 PE\s : τ
TPatIden

Γ, Γp
 p : Γp(p)

A Language for Biochemical Systems 81

Table 3. The type system for programs

TReac

Γs, Γc, Γp
 LPEi : τi, γi and Γs, Γc, Γp, Γr
 RE and Γs, Γc, Γp
 LPE′
j : τ ′

j , γ
′
j

Γ, Γs, Γc, Γp, Γr
 {LPEi �→ ni} RE−→ {LPE′
j �→ n′

j} if Ebool : γ′′ � ∅

if 1) γ′′ �= ∅ and 2)
⋃

FV(LPE′
j) ⊆

⋃
FV(LPEi) and

3) FV(Ebool) ⊆
⋃

FV(LPE′
j) ∪

⋃
FV(LPEi) where γ′′ =

⋂
{γi} ∩

⋂
{γ′

j}

TPar

Γ
 P1 : γ � Rp and Γ
 P2 : γ′ � R′
p

Γ
 P1 | P2 : γ ∩ γ′ � Rp ∪ R′
p

γ ∩ γ′ �= ∅ and Rp ∩ R′
p = ∅

TNil

Γ
 0 : Namesc � ∅

TComp
Γ, Γc
 P : γ′ � Rp

Γ, Γc
 c[P] : {Γc(c)} � Rp
c ∈ γ′

TDec

Γ
 Decl � Γ ′, Rp and Γ ′
 P : γ � R′
p

Γ
 Decl; P : γ � Rp ∪ R′
p

Rp ∩ R′
p = ∅

TModInv

Γ, Γc, Γp, Γm, Γ out
p
 APars <: FPars and Γ, Γc, Γ

′
p, Γm, Γ out

p
 P : γ′′ � R′′
p

Γ, Γc, Γp, Γm, Γ out
p
 m(APars;pat po′); P : γ′ ∩ γ′′ � R′

p ∪ R′′
p

if 1) γ′ ∩ γ′′ �= ∅ and 2) R′
p ∩ R′′

p = ∅ and 3) |po| = |po′| and

4) if po′
i ∈ dom(Γ out

p) then τo′
i <: Γ out

p (po′
i) where

Γ ′
p

∆
= Γp[po′

i �→ τo′
i]

τo′
i

∆
= τo

i Θ where Θ
∆
= {si �→ s′

i}

γ′ ∆
= γΘ where Θ

∆
= {ci �→ c′

i, c
′′
i �→ Γc(ci)}

R′
p = {po′

i | po′
i ∈ dom(Γ out

p)}

(FPars, τo, γ)
∆
= Γm(m)

spec s : l : ρ; comp c : c′′;pat p : τ ; rate r
∆
= FPars

s′ : l′ : ρ′; c′; PE; RE
∆
= APars

TAFPar
Γs, Γp
 PEl : τ ′

l and Γs, Γc, Γp, Γr
 REm

Γs, Γc, Γp, Γr
 APars <: FPars

if 1) |x| = |x′| for x ∈ {s, li, c, p, r} and 2) s′
i ∈ dom(Γs), c

′
k ∈ dom(Γc) and

3) ρij = ρ′
ij , Γs(s

′
i) <: {l′ij �→ ρ′

ij} and 4) τ ′
i <: τ ′′

i where

τ ′′
i

∆
= τiΘ where Θ

∆
= {si �→ s′

i}

spec s : l : ρ; comp c : c′′;pat p : τ ; rate r
∆
= FPars

s′ : l′ : ρ′; c′; PE; RE
∆
= APars

use pattern types as multisets with the obvious extension to N and the standard
multiset operation +.

A.3 Programs

The type system for programs in Table 3 tells us if a program is well-typed and,
if so, gives the compartments where a program can legally reside according to

82 M. Pedersen and G. Plotkin

the compartment hierarchy specified in compartment declarations. Judgements
are of the form Γs, Γc, Γp, Γr, Γm, Γ out

p � P : γ � Rp where γ ∈ 2Namesc , and thus
rely on all available environments. Rules for rate expressions, located patterns
and declarations are omitted.

The conditions on compartment hierarchies are enforced in the TReac rule
by using standard set theoretic notation, and the condition on free match vari-
ables uses the obvious extension of FV to located pattern expressions. The TPar

rule imposes similar conditions on compartments, and also ensures that parallel
compartments do not define the same return pattern identifiers. The declara-
tion rule, TDec, relies on the declaration type system which is omitted. If the
declaration is a pattern flagged for return, the pattern identifier will be in Rp.

Module invocation is checked by the final rule, TModInv which relies on a
separate rule for checking that actual and formal parameters match. The first
two conditions are similar to the TPar rule, and the third checks that actual and
formal output parameters have matching length. The fourth condition requires
that any of the actual output patterns which are also declared as outputs at a
higher level are subtypes of the declared outputs at that higher level. The pro-
gram following module invocation is evaluated in a pattern environment updated
with entries for the actual output patterns. There is however one catch: pattern
types may contain the names of formal species parameters, and these must be
substituted for the corresponding actuals using a substitution Θ. Similar ideas
apply to the set of legal parent compartments.

The Attributed Pi Calculus

Mathias John1, Cédric Lhoussaine2,4,
Joachim Niehren3,4, and Adelinde M. Uhrmacher1

1 University of Rostock
Institute of Computer Science, Modeling and Simulation Group

2 University of Lille 1, LIFL, CNRS UMR8022
3 INRIA, Lille, Mostrare project

4 BioComputing project, LIFL, Lille

Abstract. The attributed pi calculus (π(L)) forms an extension of the
pi calculus with attributed processes and attribute dependent synchro-
nization. To ensure flexibility, the calculus is parametrized with the lan-
guage L which defines possible values of attributes. π(L) can express
polyadic synchronization as in pi@ and thus diverse compartment orga-
nizations. A non-deterministic and a stochastic semantics, where rates
may depend on attribute values, is introduced. The stochastic semantics
is based on continuous time Markov chains. A simulation algorithm is
developed which is firmly rooted in this stochastic semantics. Two ex-
amples underline the applicability of π(L) to systems biology: Euglena’s
movement in phototaxis, and cooperative protein binding in gene regu-
lation of bacteriophage lambda.

1 Introduction

A plethora of formal concurrent modeling languages has been proposed for
systems biology since the seminal work of Regev and Shapiro [2,1] on the
π-calculus. These languages subscribe to two main paradigms: In the object-
centered paradigm, interaction capacities are attached to concurrent actors, as
for instance in the π-calculus [7,6,5,4,3]. Rule-based languages focus on chemical
reactions and pathways being composed thereof [8,10,9]. Deterministic models
in terms of differential equations can be obtained by averaging over possible
behaviors of non-deterministic models in concurrent languages [11,12,8].

In the following, we introduce the attributed π-calculus, an extension of the
π-calculus by attributed processes and attribute dependent synchronization. At-
tribute values are useful in order to define diverse properties of biological pro-
cesses. Two examples on different levels of abstraction illustrate the basic idea:
First, a cell Cell(coord,vol) is attributed by coordinates coord ∈ R3 and a
volume vol ∈ R+. Second, protein Prot(comp) is attributed by the cellular
compartment comp ∈ {’nucleus’, . . .} in which it is located.

Whether two processes of the attributed π-calculus are allowed to interact
depends on constraints on their attribute values. Consider e.g. the binding action
of a protein Prot(x) of type x ∈ {’A’, ’B’} to an operator Op(y) able to bind

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 83–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 M. John et al.

’A’

Prot(’A’)

’B’

Prot(’B’)

Op(’A’)

=’A’

Fig. 1. Only the protein of type ’A’is permitted to bind to the operator of type ’A’,
but not the protein of type ’B’. Type equality is tested by the operator, once it sees
the type of the protein, by applying the test function λx.x=’A’.

proteins of type y ∈ {’A’, ’B’}, as for instance in the system in Fig. 1. For the
binding of a protein of type x to an operator of type y, equality of their types x=y
is required. In the attributed π-calculus this can be expressed by the following
definitions, which are valid for all possible values of the attributes x and y:

Prot (x) � b ind [x] ! () . 0
Op(y) � b ind [λx . x=y] ? () . OpBound (y)

This says, that before enabling a binding action, Prot(x) needs to provide its
type, which is the value of attribute x, as specified by bind[x]. The operator
receives the value of x and tests it for equality with its own type, the value of
attribute y, as specified by bind[λx.x=y]; the equality constraint is expressed
by the Boolean valued function λx.x=y. Consider for instance a system with two
actors Prot(’A’) and Op(’A’):

Prot (’A ’) | Op(’A ’) → OpBound (’A ’)

The interaction constraint for these two actors is composed by function ap-
plication (λx.x=’A’)’A’. It evaluates to the truth value of ’A’=’A’ which is
true. This enables the above binding action, by which the operator turns into
its bound state. The slightly more complex system Prot(’A’) | Prot(’B’) |
Op(’A’) where only the first protein is permitted to bind to the operator is
illustrated in Fig. 1. Assuming constraints that evaluate to positive real num-
bers, e.g. stochastic rates not only Booleans, also specific affinities of interaction
partners can be expressed.

Attribute values are defined in a language L. They subsume possible reac-
tion rates and constraints as in higher order logic. The language L forms a
parameter of the attributed π-calculus, which we call therefore π(L), similarly
to constraint logic programming CLP(L) [13] or concurrent constraint program-
ming cc(L) [14]. This avoids inventing completely independent calculi for the
many reasonable choices of attribute values and constraints. E.g. encoding the
π-calculus with polyadic synchronization [15] requires a constraint language L∧,=

with equality tests for channel names and conjunctions thereof.
The paper is structured as follows. We start with the syntax of π(L). There-

after, we present a non-deterministic and a stochastic semantics for π(L), inde-
pendently a concrete choice of attribute language. Two examples provide deeper
insight into the modeling with π(L). The first one describes the light depen-
dent movement of Euglena, a single celled organism living in inland water. The
second example regards cooperative binding, a phenomenon, which is often ob-
served in gene regulatory systems [17,16]. Compared to previous variants of the

The Attributed Pi Calculus 85

π-calculus, the ability to make reaction rates dependent on the attribute values
of interaction partners facilitates modeling for both examples.

Afterward, we present a stochastic simulator for π(L) independently of the at-
tribute language. In contrast to previous simulators for the stochastic π-calculus
[5,4,3], we show how to infer the simulator directly from the definition of the
stochastic semantics in terms of continuous time Markov chains.

We complete the paper with encoding π@ [15] in π(L∧,=) with respect to
the non-deterministic semantics1. The language π@ was proposed as a unifying
extension of the π-calculus, in which to express different compartment organiza-
tions as in BioAmbients [20] or Brane Calculi [21]. By encoding π@ in π(L∧,=),
this feature can be inherited, while supporting richer classes of constraints and
values.

2 Extending the π-Calculus

We present the attributed π-calculus π(L) which extends the π-calculus with
respect to some attribute language L. This sublanguage provides expressions for
describing values of process attributes. Values subsume constraints, for specifying
communication abilities, and stochastic rates.

Keeping the attribute language L parametric avoids us reinventing indepen-
dent calculi for the many useful choices in practice. We present two semantics for
π(L), a non-deterministic semantics and a stochastic semantics, such that the
latter refines the former (for error-free programs). Both semantics are defined
independently of the concrete choice of L. The stochastic semantics leads to a
stochastic simulator which also is independent of the concrete choice of L, see
Section 4. Fixing the attribute language is an orthogonal issue, which is easy in
practice, for instance by using the implementation language of the simulator.

2.1 Languages of Attribute Values

Let B = {0, 1} be the set of Booleans, N the set of natural numbers starting
from 1, and R+ the set of non-negative real numbers.

An attribute language is a functional programing language that provides ex-
pressions by which to compute values. Expressions are built from constants for
numbers, functions, relations, such as 0, +, and ≥, and channel names, such
as x and y. Whenever there exists any ambiguity in concrete syntax, we write
constants with quotes such as ’val’ in order to distinguish them from channel
names without quotes such as val.

Besides defining communication abilities, channel names behave like variables,
whose values are defined by the environment. The value of a channel name x can
be accessed by applying the function constant ’val’ to x. Constraints can be un-
derstood as expressions of type Boolean, as for instance (’val’ x)+(’val’ y) ≥ 0.

1 It remains unclear how to add reaction rates to π@ in a general manner as needed
for defining stochastic semantics. This has only be done for particular adaptations
of π@ [18,19].

86 M. John et al.

A constraint is successful in environments in which it evaluates to the successful
Boolean value 1. In the stochastic setting, successful values are relaxed to stochas-
tic rates in R+ ∪ {∞}.

More formally, we start from an infinite set Chans, whose elements are called
channel names and ranged over by x, y. An attribute language over Chans is a
triple L = (Consts, Succ,⇓). The first component is a finite set Consts, whose
elements are called constants and ranged over by c. The set Exprs of L is defined
as the set of all λ expressions with constants in Consts and variables in Chans.
The set Vals of L is defined as the set of all values, i.e. channel names, constants,
and λ abstractions.

e ∈ Exprs ::= x | c | λx.e | e1e2

v ∈ Vals ::= x | c | λx.e

The second component of L is a finite set Succ ⊆ Vals, whose elements are called
successful values and ranged over by r. In examples, Succ will cover the Boolean
1 only or all stochastic rates r ∈ R+ ∪ {∞}.

The third component of L is a big-step evaluator ⇓, a black box algorithm,
which evaluates expressions to values. Its behavior depends on environments
ρ : Chans → Vals mapping channel names to values (including stochastic rates).
Let Env be the set of all such environments. The big-step evaluator is a partial
function of type: ⇓ : Env×Exprs ⇀ Vals. Instead of ⇓(ρ, e) = v we write ρ � e ⇓ v
and call v the value of e wrt. ρ. If the special constant ’val’ belongs to Consts
then we assume that it satisfies for all channel names x ∈ Chans:

ρ � ’val’ x ⇓ ρ(x)

When considering stochastic semantics, we have to choose an attribute language
in which Succ is a subset of stochastic rates, i.e., Succ ⊆ R+ ∪ {∞}.

Values of ⇓(ρ, e) may be undefined for two possible reasons: program errors
or non-termination. Typical examples for program errors are type errors, e.g.
applying constants to real numbers instead of functions. Non-termination is no-
torious, when the big-step semantics is defined by a small-step evaluator, as
usual. We treat non-termination of expressions in processes as program errors.
In this case execution blocks, since it is running into an unproductive infinite
loop. The assumption of termination is essential for stochastic simulation, where
we have to evaluate all expressions in redexes (i.e. pairs of sender and receiver
on the same channel) before performing any communication step. One could try
to exclude non-termination statically by imposing a simple type system on the
level of processes. Instead, we prefer to treat attempts to access undefined values
⇓ (ρ, e) as program errors dynamically.

An example for an attribute language is L∧,=, which is used in Section 5 to
encode the π-calculus with polyadic synchronization and a non-deterministic
semantics. It provides constraints by which to test a conjunction of equalities
between channel names ∧n

i=1xi=yi. We use the following set of constants:
Consts = B ∪ {’and’, ’equal’, 0, 1} of which there is a single successful value
in Succ = {1}. The types of the function constants are ’and’ : B → B → B

The Attributed Pi Calculus 87

Processes P ::= A(ẽ) defined process
| P1 | P2 parallel composition
| (νx:v) P channel creation
| π1.P1 + . . . + πn.Pn summation of alternative choices
| 0 empty solution

Prefixes π ::= v[e]?ỹ receiver
| v[e]!ṽ sender

Definitions D ::= A(x̃) � P parametric process definition

Fig. 2. Syntax of π(L) where v, ṽ ∈ Vals, x, ỹ ∈ Chans, and e ∈ Exprs

fn(π1.P1 + . . . + πn.Pn) =
⋃

i∈{1,...,n} fn(πi.Pi) fn(0) = ∅
fn(v[e]?ỹ.P) = fn(v) ∪ fn(e) ∪ (fn(P) \ {ỹ}) fn(P1 | P2) = fn(P1) ∪ fn(P2)
fn(v[e]!ṽ.P) = fn(v) ∪ fn(ṽ) ∪ fn(e) ∪ fn(P) fn(A(ẽ)) = fn(e)

fn((νx:v) P) = (fn(P) ∪ fn(v)) \ {x} fn(A(x̃) � P) = fn(P) \ {x}

Fig. 3. Free channel names

and ’equal’ : Chans → Chans → B. Therefore, the evaluator is defined for all
x, y ∈ Chans and c1, c2 ∈ B and undefined for all other values:

ρ � ’equal’ x y ⇓
{

1 if x = y
0 otherwise ρ � ’and’ c1 c2 ⇓

{
1 if c1 = c2 = 1
0 otherwise

2.2 Syntax of π(L)

Let L be an attribute language over some infinite set of channel names x ∈
Chans. The vocabulary for building attributed processes in π(L) consists of an
infinite set of process names A ∈ Proc, each of which comes with a fixed arity in
N ∪ {0}, and the set of expressions e ∈ Exprs and values v ∈ Vals of L.

We use tuple notation in many places. We write ẽ for tuples of expressions, ṽ
for tuples of values, and x̃ for tuples of channel names. Substitutions [ṽ/x̃] apply
to tuples of the same length. The same holds for sequences of expressions and
values in tuple evaluation ρ � ẽ ⇓ ṽ.

The syntax of the attributed π-calculus π(L) is defined in Fig. 2. There are three
syntactic categories, (attributed) processes P , prefixes π, and definitions D. The
expressions of these categories are as usual, except that we permit λ expressions
e in places, where previously, only channel names x or rates r could be found.

A defined process is a term A(ẽ) where the arity of tuple ẽ is equal to the
arity of A.

Channel creation (νx:v) P creates a new channel name x and assigns a value
v to it. The scope of x ranges over v and P . The assignment of v to x is stored
in the current environment ρ, such that it can be accessed later on by using the

88 M. John et al.

function constant ’val’. This mechanism is useful in order to assign stochastic
rates to channels, as in the usual stochastic π-calculus. More generally, it makes
channel names behave like variables or memory blocks which refer to values.

Prefixes v[e1]!ṽ for receiving inputs and v[e1]?x̃ for sending outputs over chan-
nels are generalized in two aspects. First of all, we add expressions [e1] and [e2]
to senders resp. receivers, which impose constraints on attribute values to be
satisfied before communication. Second, we permit values in non-binding posi-
tions, where usually only channel names can be used. This way, arbitrary values
can be send and received over channels. Prefixes in which v is not a channel
name are considered to be erroneous. Such errors are difficult to exclude stati-
cally since channel names can be substituted by values dynamically. Even more
permissive would be to allow expressions ẽ instead of values ṽ. This does not
raise any problems as long as they are evaluated before communication. For sake
of simplicity, we stick to the slightly more restrictive setting.

The free channel names fn(P) are defined as usual in Fig. 3. They account for
free channel names in lambda expressions e denoted by fn(e), i.e., those occurring
out of the scope of all λ binders in e. Bound channel names bn(P) are defined
as before, except that λ-binders in expressions e ∈ Exprs are included too. The
structural congruence on processes ≡ remains the least congruence satisfying α
conversion, the axioms of commutative monoids w.r.t. (|,0), associativity and
commutativity of summation +, and the usual scoping rules of ν-binders:

(νx:v) (P1 | P2) ≡ (νx:v) P1 | P2 if x �∈ fn(P2)
(νx:v) (νy:u) P ≡ (νy:u) (νx:v) P if x �∈ fn(u) and y �∈ fn(v)

2.3 Non-deterministic Semantics

The non-deterministic operational semantics of the attributed π-calculus is given
in Fig. 4. It is defined in terms of a small step reduction relation between pro-
cesses w.r.t. to an environment ρ : Chans → Vals:

ρ � P → P ′

Rule (defnd) applies the definition of a process in a call-by-value manner once
all parameters have been evaluated. This will always succeed for error free pro-
grams, but may run into an infinite loop or raise an exception otherwise. The
communication rule (comnd) applies to two parallel sums, which contain match-
ing communication parts, i.e. a receiver x[e1]?ỹ.P1 and a sender on the same
channel x[e2]!ṽ.P2 such that the constraint e1e2 evaluates to some successful
value. Reduction cancels all other alternatives of the communicating sums. Fur-
thermore, it substitutes ỹ by ṽ in the continuation P1 of the receiver, and keeps
the continuation P2 of the sender. The structural rule (newnd) eliminates a
binder (νx:v) P and updates the value of x in the environment to v.

The usual π-calculus as used by BioSpi or Spim [4,3] (without stochastics) can
be encoded in π(L1) with the successful Boolean value as unique constant, i.e.,
Consts = Succ = {1}. The translation introduces dummy constraints that are

The Attributed Pi Calculus 89

Application of definitions

(defnd)
ρ
 ẽ ⇓ ṽ A(x̃) � P

ρ
 A(ẽ) → P [ṽ/x̃]

Communication

(comnd)
ρ
 e1e2 ⇓ r ∈ Succ

ρ
 x[e1]?ỹ.P1 + . . . | x[e2]!ṽ.P2 + . . . → P1[ṽ/ỹ] | P2

Structural rules

(parnd)
ρ
 P1 → P ′

1

ρ
 P1 | P2 → P ′
1 | P2

ρ ∪ {x : v}
 P → P ′
(newnd)

ρ
 (νx:v) P → (νx:v) P ′

(strucnd)
P ≡ P1 ρ
 P1 → P2 P2 ≡ P ′

ρ
 P → P ′

Fig. 4. Non-deterministic semantics of π(L)

Solutions S ::= A(ẽ) defined molecule
| S1 | S2 parallel composition
| (νx:v) S channel creation
| 0 empty solution

Molecules M ::= π1.S1 + . . . + πn.Sn sum of alternative choices
| (νx:v) M channel creation

Prefixes π ::= v[e]?ỹ receiver
| v[e]!ṽ sender

Definitions D ::= A(x̃) � M molecule definition

Fig. 5. Biochemical forms where v, ṽ ∈ Vals, x, ỹ ∈ Chans, and e ∈ Exprs

always true. In order to do so, let be an arbitrary channel. We rewrite all re-
ceivers x!ỹ.P to x[]!ỹ.P and all senders x?ỹ.P to x[λ .1]?ỹ.P . Channel declara-
tions (νx)P are translated to (νx:) P , i.e.; they introduce dummy values too.

2.4 Biochemical Forms

Every process of π(L) can be normalized into biochemical forms [4]. These forms
are well-suited for defining the stochastic semantics and implementing simulators.

The idea is to introduce parametric process definitions for all sums in pro-
cesses. What remains is a parallel composition of defined processes possibly with
some local channel names. A systematic transformation replaces all nested sums
by newly defined processes. The parameters of the new process definitions are
the free names of the nested sums, while the sums itself are moved into the new
process definitions.

90 M. John et al.

Biochemical forms as defined in Fig. 5 have four categories of terms. The
previous category of processes is split into two levels, solutions ranged over by
S and molecules ranged over by M . Solutions can be identified with multisets of
defined molecules A(ẽ) up to some local channels. Molecule definitions are sums
possibly in the scope of ν-binders. The alternatives of the sums are prefixed
solutions, so that no nested sums can be produced by communication.

2.5 Stochastic Semantics

The stochastic semantics of π(L) is given in Fig. 6. It defines Markov chains for
solutions of π(L). The states of such Markov chains are the congruence classes
of solutions with respect to structural congruence ≡. The stochastic rates, asso-
ciated to state transitions, are obtained by evaluating constraints to successful
values. Rather than saying “that” a constraint is successful, this expresses “how”
successful it is. We use product notation for parallel compositions, by writing∏n

i=1 Si instead of S1 | . . . | Sn. We use meta variables N to range over quan-
tifier prefixes (νỹ:v), write N(S) instead of (νỹ:v) (S), and N(M) instead of
(νỹ:v) (M). We are looking for a stochastic semantics expressing the Chemical
Law of Mass Action according to which the speed of a chemical reaction in a
solution is proportional to the number of possible interactions of its reactants
in the solution. This can be translated in π(L) as follows: given a source state
S, the semantics defines how many distinct interactions allow a transition to a
common (i.e. structurally equivalent) target state S′. For instance, suppose that
S = A | A | B, with definitions associated to A and B such that A | B → C
with rate r, then one expects S → A | C with rate 2r. Indeed, two distinct
interactions lead to A | C involving either the first or the second occurrence of
A. To this end, we use an intermediate reduction relation r−→

�
using labels
 ∈ N4

and rates r ∈ R+ ∪{∞}, from which we build a Markov chain r−→ by summation
over labels.

A label locates a potential redex in solutions. Pairs (i1, j1) ∈ N2 mark the
position of the j1’th alternative in the i1’th molecule of a solution. Labels
 =
(i1, j1, i2, j2) ∈ N4 fix a pair of alternatives in a solution S uniquely up to α-
renaming. Such a pair is a redex, if it is a receiver-sender-pair on the same channel
from different defined molecules. The set redexρ

� (S) defined by rule (redex)
contains all the α-variants of the redex at
, if there is any. The environment ρ
matters here, since all arguments of the defined molecules with numbers i1 and
i2 need to be evaluated. The redex contains the j1’th alternative of molecule i1
and the j2’th alternative of molecule i2 as selected by rule (choose). Only alpha
congruence ≡α is permitted here. Using full structural congruence instead would
spoil the meaning of labels, so that redexes could not be uniquely identified by
them. This would falsify summation in rule (sum) and counting in rule (count).

Going back to our previous example, and assuming that A and B are defined
with a single alternative consisting of complementary prefixes, we have A | A |
B

r−−−−−→
(1,1,3,1)

A | B and A | A | B r−−−−−→
(2,1,3,1)

A | B.

The Attributed Pi Calculus 91

Redexes (1 ≤ j ≤ m, i1, j1, i2, j2 ∈ N)

(choose)
ρ
 ẽ ⇓ ṽ A(x̃) � N(π1.S1 + . . . + πm.Sm)

chooseρ
j (A(ẽ)) = (N(πj .Sj))[ṽ/x̃]

(redex)

chooseρ
j1

(Ai1(ẽi1)) ≡α (νỹ1:v1) (x[e′
1]?ỹ.S1) = S′

1

chooseρ
j2

(Ai2(ẽi2)) ≡α (νỹ2:v2) (x[e′
2]!ṽ.S2) = S′

2 i1 �= i2

(S′
1, S

′
2) ∈ redexρ

(i1,j1,i2,j2)(
∏n

i=1 Ai(ẽi))

where x ∈ Chans, x �∈ {ỹ1} ∪ {ỹ2} and {ỹ1} ∩ {ỹ2} = ∅.

Labeled reduction (r ∈ R∞ and 	 = (i1, j1, i2, j2) ∈ N4)

(com)

(N1(x[e′
1]?ỹ.S1), N2(x[e′

2]!ṽ.S2))∈redexρ
� (
∏n

i=1 Ai(ẽi))

ρ
 e′
1e

′
2 ⇓ r ∈ Succ

ρ

∏n

i=1 Ai(ẽi)
r−→
�

∏n
i=1,i�=i1,i2

Ai(ẽi) | N1N2(S1[ṽ/ỹ] | S2)

(new)
ρ ◦ [v/x]
 S

r−→
�

S′

ρ
 (νx:v) S
r−→
�

(νx:v) S′
where x �∈ dom(ρ).

Markov chain (r, r′ ∈ R+)

(conv)
∀	∈N4∀(N1(x[e′

1]?ỹ.S1), N2(x[e′
2]!ṽ.S2))∈redexρ

� (S)∃v∈Vals : ρ
 e′
1e

′
2 ⇓v

ρ
 S ⇓

(sum)
ρ
 S ⇓ S ≡ S1

∑
{�|ρ�S1

r′−→
�

S2≡S′}
r′ = r �= 0 � ∃	.ρ
 S1

∞−→
�

ρ
 S
r−→ S′

(count)

n =
{	 | ρ
 S1
∞−→
�

S2 ≡ S′} �= 0

ρ
 S ⇓ S ≡ S1 m =
{	 | ρ
 S1
∞−→
�

S2}

ρ
 S
∞(n/m)−−−−−→ S′

Fig. 6. Stochastic operational semantics of π(L)

Rule (com) performs the interactions of the redex with label
 = (i1, j1, i2, j2),
under the condition that the constraint of the redex is successful. Rule (new)
states that reduction may occur under channel restriction with corresponding
environment updating. We assume that restricted channels do not occur in the
environment.

Markov chains are derived by summing up the rates of all labeled reductions
leading from S to S′ modulo structural congruence. Summation in rule (sum)
requires that all constraints in all redexes of S converge to some value, as defined
by rule (conv). It equally presupposes that no immediate reaction with rate ∞

92 M. John et al.

is enabled. Rule (count) does the same except that it assigns to each transi-
tion a probability. This probability represents the number of immediate located
transitions leading to a common state over the total number of outgoing imme-
diate transitions. Thanks to those probabilities, immediate transitions can be
eliminated in order to obtain a true Continuous Time Markov chain preserving
probability transitions and sojourn times (see [5] for details).

The usual stochastic π-calculus can be encoded in π(LR+∪{∞}) with Consts =
Succ = R+∪{∞}. The translation only needs to access the rate of the channel in
the environment. One way to do so is to rewrite sender x!ỹ.P to x[’val’x]!ỹ.P
and receiver x?ỹ.P to x[λr.r]?ỹ.P . Channel declarations with stochastic rates
(νx:r) P remain unchanged. Another encoding would be to rewrite output sender
x!ỹ.P to x[]!ỹ.P and input receiver x?ỹ.P to x[λ .’val’ x]?ỹ.P . The only dif-
ference is whether sender or receiver accesses the rate of the communicating
channel (which both of them know).

3 Modeling Techniques and Biological Examples

We present two examples for modeling biological systems with attribute depen-
dent rates, in order to illustrate the advantages of π(L) as a modeling language.
The first example introduces a simplistic, discrete spatial model of Euglena’s
phototaxis [22], while the second more complex example shows how to deal with
cooperative enhancement in gene regulation at the lambda switch [17].

3.1 Space

Spatial aspects of molecular systems gain increasing interest in systems biol-
ogy [23]. We illustrate the use of attribute dependent rates for spatial modeling
with a simple example, which is the modeling of Euglena’s light dependent mo-
tion (phototaxis). More complex compartment structures can be modeled in the
attributed π-calculus as well, as we will show by encoding π@ in Section 5.

Euglena is a single cell organism that lives in inland water and performs pho-
tosynthesis. Depending on the brightness, it swims up and down in order to
reach a zone with just the right amount of light, [24]: if the amount of light de-
creases it moves towards a lighter zone, and vice verca. This behavior is specified
in the attributed π-calculus model in Fig. 7. The model assumes a light source
positioned over water, of which it distinguishes five discrete zones of water, of
depths d ∈ {0, 1, 2, 3, 4}.

Euglenas at depth d are defined by processes Euglena(d). There are two chan-
nels up and down for upward respectively downward motions. The speed of up-
ward motions is d*(1-i) where i ∈ [0, 1] is the current light intensity, and the
speed of the downwards movement is (4-d)*i. For i = 0.5, Euglenas are ex-
pected to concentrate at depth level d =2. Note that Euglena(0) cannot climb
further, since the value of 0∗ (1−i) is 0 and thus not successful for all i. For the
same reason, Euglena(4) cannot descend. The interaction partners are processes
Light(i) modeling light sources of intensity i ∈ [0, 1]. In our example, we use two
light sources, with different intensities Light(0.5) and Light(0.6). Euglena(d)

The Attributed Pi Calculus 93

Process definitions

Euglena (d) � up [λ i . d∗(1− i)] ? () . Eug lena (d−1)
+ down [λ i .(4−d)∗ i] ? () . Eug lena (d+1)

L i gh t (i) � up [i] ! () . L i gh t (i)
+ down [i] ! () . L i gh t (i)

Example solution

Euglena (2) | . . . | Euglena (2) | L i gh t (0 . 5) | L i gh t (0 . 6)

Fig. 7. π(L) model of Euglena’s light-dependent motion: the rates for climbing and
falling depend on the organism’s current depth level and the light intensity

can adapt to different intensities of light. For this we use λi abstractions in its
definition.

The same system can be modeled in the stochastic π-calculus, since all pa-
rameters are finitely valued: d ∈ {0, . . . , 4} and i ∈ {0.5, 0.6}. The idea is to
duplicate channels for all possible reaction rates. In the above example, we need
channels upd,i with rates d*(i-1), and channels downd,i with rates (4-d)*i, for
all possible values of i and d that yield nonzero rates. This leads to independent
definitions of Euglenas for all possible depths, see Fig. 8.

Euglena0 () � down0,0.5 ? () . Eug lena1 () + down0,0.6 ? () . Eug lena1 ()
Eug lena1 () � up1,0.5 ? () . Eug lena0 () + up1,0.6 ? () . Eug lena0 ()

+ down1,0.5 ? () . Eug lena2 () + down1,0.6 ? () . Eug lena2 ()
. . .
Eug lena4 () � up4,0.5 ? () . Eug lena3 () + up4,0.6 ? () . Eug lena3 ()

Fig. 8. A model of Euglena’s in the stochastic π-calculus. Distinct definitions for
Euglenad are used for all depth levels d ∈ {0, 4}.

Whether arbitrary processes of π(L) are expressible in the stochastic π-
calculus is open, particularly for infinitely valued parameters. Even if it is pos-
sible, the size of the the stochastic π-calculus definitions may often become
prohibitively larger.

3.2 Cooperative Enhancement

Cooperative binding is a frequent and often decisive aspect in gene regulatory
networks, where proteins stabilize each other’s binding to neighboring DNA sites
by adhesive contacts. In quantitative terms, the decay rate of one DNA-protein
complex decreases by the existence of another. This is an instance of cooperative
enhancement of reaction rates by third partners. As shown in [16,17], cooperative
enhancement can be modeled in the stochastic π-calculus. It however requires
nontrivial encodings, that can be alleviated within π(L).

94 M. John et al.

OR1 OR2
or2Delay

repressor repressor

Fig. 9. The decay of the repressor-OR2 complex: in order to make the decay rate of
the repressor-OR2 complex dependent on OR1’s state, the two sites communicate on
or2Delay before OR2 unbinds

A well understood instance of cooperative binding occurs during transcription
initiation control at the λ switch. The λ switch is a segment of the DNA of
bacteriophage λ. It contains two binding sites OR1 and OR2, where repressor
and cro proteins can bind. An unstable binding of a repressor molecule to OR2

is stabilized by the simultaneous presence of another repressor at the neighboring
site OR1. As illustrated in Fig. 9, the two proteins actually touch each other.

A π(L) model of cooperative binding at OR2 is presented in Fig. 10. It con-
tains the parametric definition Prot(type), which emulates the behavior of the
proteins. The parameter type can be instantiated by either ’rep’ or ’cro’, for
modeling repressor or cro proteins respectively. Proteins can bind to both sites
OR1 and OR2. Free sites are defined by processes OR1() and OR2(), where proteins
can attach via channel bind. As this occurs the channel release is created, and
henceforth connects the protein to the site (complexation). Later communication
on release breaks the complex. The reaction rate of complexation is fixed to
0.098. For decomplexation the rate is determined by the sender, i.e. the binding
site, the receiving protein accepts it by applying the identity function λr.r.

Now consider the models for the protein bound DNA sites.
ORiBound(type,release) describes the unbinding from the occupied site
ORi, where type indicates the type of the bound protein. For i = 1 the rate of
the unbinding reaction merely depends on the protein type. Using the global
channel or1Delay it is specified as [’val’ or1Delay type]. Recall that ’val’
simply access the channel’s value from the environment.

For the second site (i = 2) decomplexation is influenced by cooperative bind-
ing. To model this, OR1 and OR2 are linked via the channel or2Delay, illustrated
in Fig. 9. Additionally, the release operation is decomposed into an interaction
on channel or2Delay, with a reaction rate defining the actual unbinding delay,
and an immediate communication on release. As stated in the definition of the
global channel or2Delay the unbinding delay depends not only on the type of
the bound protein, but also on the state of OR1, which can be either ’free’,
bound to ’rep’ or bound to ’cro’. The reaction rate is computed by applying
the function λ state1.’val’ or2Delay state1 type to the state of OR1.

The Attributed Pi Calculus 95

Values of global channel names

b ind : 0 .098
or1Delay : λ type .

i f type =’ rep ’ then 0.155 e l s e
i f type =’ cro ’ then 2 .45

or2Delay : λ s t a t e 1 . λ type2 .
i f s t a t e 1=’ rep ’ then

i f type2=’ rep ’ then 0.155 e l s e % big d e l a y (c o o p e r a t i v e)
i f type2=’cro ’ then 3 .99 % sma l l d e l a y

e l s e 2 .45 % ’ cro ’ or ’ f r e e ’

Process definitions

Prot (type) � (ν r e l e a s e :) b ind [] ! (type , r e l e a s e) .
r e l e a s e [λ r . r] ? () . Prot (type)

OR1 () �
b ind [λ . ’ va l ’ b ind] ? (type , r e l e a s e) .OR1Bound(type , r e l e a s e)

+ or2De lay [’ f r e e ’] ! () .OR1 ()
OR1Bound(type , r e l e a s e) �

r e l e a s e [’ va l ’ o r1De lay type] ! () .OR1 ()
+ or2De lay [type] ! () .OR1Bound(type , r e l e a s e)

OR2 () �
b ind [λ . ’ va l ’ b ind] ? (type , r e l e a s e) .OR2Bound(type , r e l e a s e)

OR2Bound(type , r e l e a s e) �
o r 2d e l a y [λ s t a t e 1 . ’ va l ’ o r2De lay s t a t e 1 type] ? () .

r e l e a s e [∞] ! () .OR2 ()

Example Solution

OR1 () | OR2 () |
∏28

i=1 Prot (’ rep ’) |
∏67

i=1 Prot (’ cro ’)

Fig. 10. π(L) model of cooperative binding between OR1 and OR2 at the λ switch

A previous model [17] in the the stochastic π-calculus calculus [2] requires to
keep OR2 constantly informed about state changes of OR1, which is implemented
by immediate communication steps. Keeping state information consistent in this
manner is error-prone, it may easily lead to deadlocks. A subsequent model [16]
in SPiCO [5], the the stochastic π-calculus calculus with concurrent objects,
requires significantly fewer updates. In π(L), reaction rates directly depend on
the attribute values of the interaction partners. State changes are propagated
without additional communication steps, preventing deadlocks.

Comments on the syntax. Biochemical forms are sometimes cumbersome
for modeling, such that we prefer using the full language, as introduced in
Section 2.2. In the definition of Prot(type) and OR2Bound(type,release), for
instance, we use sequences of communication prefixes like π1.π2.P , which are a
special case of nested sums and thus excluded by biochemical forms. The usual
unnesting algorithm, which replaces nested sums by newly defined processes,
provides the required transformation.

96 M. John et al.

We freely use if-then-else statements in λ-terms of the attribute language,
for instance in the values of channel names or1Delay and or2Delay. This is
syntactic sugar increasing the readability of the model, which can be directly re-
placed by λ calculus expressions2. In practice, however, further syntactic sugar
and extensions of the lambda calculus might be useful, in particular the addi-
tion of pattern matching case statements. These are advantageous for typeful
programming, in contrast to pure if-then-else expressions.

4 Stochastic Simulator

The development of the simulator, as presented in this section, closely follows
the introduced stochastic semantics in terms of continuous time Markov chains
(Section 2.5). This shows that a simulator for π(() L) can be obtained indepen-
dently of the choice of L, by extending of previous simulators for the stochastic
π-calculus or SPiCO [4,5,3]. Our presentation differs previous ones though. The
main advantage is to firmly root the simulator in the operational semantics. Al-
gorithmic aspects remain mostly unchanged, but become applicable in greater
generality.

The stochastic semantics for π(L) induces the naive stochastic simulator given
in Fig. 11. A simulator’s input comprises a solution S, an environment ρ, and
a time point t ∈ R. The next reduction step for S is chosen in a memory less
stochastic manner. The sojourn time ∆ ≥ 0 in S is inferred, and the simulator
proceeds with the resulting solution at time point t + ∆.

Central to this simulator is to determine the set of labeled reactions in S with
respect to the current environment ρ:

Reacts = {(
, r) | ρ � S
r−→
�

S′}

Labeled reactions with rate r = ∞ are executed with priority and without
time consumption. If no reaction with rate r = ∞ exists, we apply Gillespie’s
algorithm [25] to select a reaction (
, r) ∈ Reacts(S) with probability r/s where
s =

∑
(�,r′)∈Reacts(S) r′. The sojourn time in S is ∆ = −ln(1/U)/s for some

uniformly distributed random number 0 < U ≤ 1.
The set Reacts can be computed as follows. First, all expressions in defined

molecules A(ẽ) of S are evaluated, and then replaced by their definitions. Next,
all pairs of alternatives are enumerated and filtered for those that use the same
channel and satisfy the communication constraint. The constraint is tested by
applying the evaluation algorithm for the attribute language L in environment
ρ. It terminates by assumption for error-free processes, so that the computation
of Reacts terminates in that case too.

Most fortunately, the Markov chain itself does not need to be computed by
the simulation algorithm. This would be largely unfeasible, since the number
of possible outcomes of non-deterministic interactions may grow exponentially.
2 When assuming ρ
 ’true’ v1 v2 ⇓ v1 and ρ
 ’false’ v1 v2 ⇓ v2 we can replace

conditionals if e then e1 else e2 by applications e e1 e2.

The Attributed Pi Calculus 97

Simulate−naive (S, ρ, t)
// solution S, environment ρ : fn(S) → Vals, time point t ∈ R
case S
of 0 then skip // termination
of

∏n
i=1 Ai(ẽi) then // no ν binders in S

l e t Reacts = {(, r) | ∃S′. ρ
 S
r−→
�

S′, r ∈ Succ, 	 ∈ N4}

i f {(, r) ∈Reacts| r = ∞} = ∅
then

let ((, r), ∆) = G i l l e s p i e (Reacts) // (sum)
l e t S′ such that S

r−→
�

S′ // (com)

Simulate−naive (S′, ρ, t + ∆)
else

select (, ∞) in Reacts with equal p robab i l i t y //(count)
l e t S′ such that ρ
 S

∞−→
�

S′ // (com)

Simulate−naive (S′, ρ, t)
else // some ν binder in S

l e t S′, x, v such that S ≡ (νx:v) S′ with x �∈ dom(ρ)
l e t ρ′ = ρ ◦ [v/x]
Simulate−naive (S′, ρ′, t) // (new)

Fig. 11. Naive simulator interpreting the stochastic semantics

Furthermore, it would require to decide whether two solutions are structurally
congruent (rules sum and count), which is a graph isomorphism complete
problem [26].

In order to increase efficiency of the naive simulation algorithm, we apply an
idea hidden already in the implementations BioSpi. The objective is to avoid the
enumeration of all pairs of alternatives (and thus redexes), since there may be
quadratically many in the size of S. The strategy is to group all reactions, using
the same channel x and the same constraints e2e1, modulo evaluation of e1 and
e2, i.e. all reactions with x[v1]! . . . and x[v2]? . . . for some v1 and v2. We then
apply the Gillespie algorithm to such grouped reactions.

A label for a grouped reaction in a solution S is a triple L ∈ Chans(S) ×
Vals2(S). It represents the following set of reactions with respect to a solution
S of the form S =

∏n
i=1 Ai(ẽi) and an environment ρ:

Reacts(L) = {(
, r) ∈ Reacts | L = (x, v1, v2),
 = (i1, j1, i2, j2),
chooseρ

j1
(Ai1(ẽi1)) = x[v1]! . . . , chooseρ

j2
(Ai2(ẽi2)) = x[v2]? . . .}

The stochastic rate for a grouping label L is usually called propensity prop(L) ∈
R+�{∞(n) | n ∈ N}. It sums up all rates of the labeled reactions that it groups
together, or counts the number of labels of infinite rate reactions if there are
any:

prop(L) =
{
∞(n) if n = #{
 | (
,∞) ∈ Reacts(L)} ≥ 1∑

(�,r)∈Reacts(L) r otherwise

98 M. John et al.

With this we can define the set of grouped reactions in S with respect to ρ. They
will be used as input to Gillespie’s algorithm:

GReacts = {(L, prop(L)) | L ∈ Chans(S)×Vals(S)2}

In practice, the cardinality of Reacts(L) is often linear in the size of S. Fig. 12
gives a simulation algorithm based on grouped reactions with propensities. In
contrast to the naive simulator, it first selects a label of a grouped reaction by
Gillespie’s algorithm, and then a label of a reaction in the group with equal
distribution.

It remains to compute the propensities of all labels of grouped reactions in a
solution S. These can be derived from the values below where S =

∏n
i=1 Ai(ẽi):

out(x, v1) = #{(i, j) | chooseρ
j (Ai(ẽi)) = x[v1]! . . .}

in(x, v2) = #{(i, j) | chooseρ
j (Ai(ẽi)) = x[v2]? . . .}

mixin(x, v1, v2) = #{(i, j1, j2) | chooseρ
j1

(Ai(ẽi)) = x[v1]! . . . ,
chooseρ

j2
(Ai(ẽi)) = x[v2]? . . .}

Lemma 1. prop(x, v1, v2) = (out(x, v1) ∗ in(x, v2)−mixin(x, v1, v2)) ∗ r if the
solution does not contain infinite rates and ρ � v1v2 ⇓ r.

The computation of mixins can still produce an output of quadratic size and
thus need quadratic time. The square factor, however, is in the maximal number
of alternatives in sums defining molecules of S, which will be small in practice.
All other needed values can be computed in linear time in the size of S, when
ignoring the time for evaluating expressions, which is justified in many practical
cases.

The final step toward an efficient simulator consists in computing the propen-
sities prop(x, v1, v2) incrementally, so that they don’t have to be recomputed
from scratch in every reduction step. This can be based on Lemma 1, since the
values of out(x, v1), in(x, v2), mixin(x, v1, v2) can be updated incrementally,
when adding new solutions or canceling alternative choices by communication.

5 Polyadic Synchronization and Compartments

In this section, we encode a non-deterministic variant of π@ [15] in π(L∧,=),
where L∧,= is the attribute language providing conjunctions of equalities between
channel names, as defined in Section 2.1.

The calculus π@ is an extension of the π-calculus, able to express various
spatial aspects of compartment organization. There are two main ingredients
in π@, polyadic synchronization and different levels of priorities for different
types of reduction. Adding priorities to the π(L) is straightforward. They can be
defined by a total order on the successful values Succ of the attribute language.
The operational semantics has to be adapted such that reduction steps with
greater rates are executed first. This can be done by labeling possible reduction
steps with the rate values of their constraints. Indeed, the stochastic semantics of

The Attributed Pi Calculus 99

Simulate (S, ρ, t) //solution S, environment ρ : fn(S) → Vals, time point t ∈ R
case S
of 0 then skip // termination
of

∏n
i=1 Ai(ẽi) then // no ν binders in S

l e t GReacts = {(L, prop(L)) | L ∈ Chans(S) × Vals(S)2}
i f {(L, r) ∈GReacts| r = ∞(n)} = ∅
then

let ((L, r), ∆) = G i l l e s p i e (GReacts)
se lect (, r) in GReacts (L) equa l ly d i s t r i b u t e d

l e t S′ such that S
r−→
�

S′

Simulate (S′, ρ, t + ∆)
else

select (L, ∞(n)) in GReacts
with p robab i l i t y n/m where m =

∑
(L′,∞(n′)∈GReacts n′

se lect (, ∞) in Reacts (L) with equal p r obab i l i t y

l e t S′ such that ρ
 S
∞−→
�

S′

Simulate (S′, ρ, t)
else // some ν binder in S

l e t S′, x, v such that S ≡ (νx:v) S′ with x �∈ dom(ρ)
l e t ρ′ = ρ ◦ [v/x]
S imulate (S′, ρ′, t) // (new)

Fig. 12. Stochastic simulator for π(L) (to be implemented incrementally)

π(L) is already defined such that it gives highest priority to immediate reactions
(with rate ∞). For sake of simplicity, we ignore priorities and focus on how to
express polyadic synchronization in the following.

The syntax of π@ is given in Figure 13. It is similar to the syntax of the π-
calculus with two exceptions. Inputs have the form x̃?z̃.P and outputs the form
x̃!ỹ.P . A communication is possible for inputs and outputs that use the same
sequence of channels rather than a single channel only:

. . . + x̃?z̃.P | x̃!ỹ.Q + . . . → P [ỹ/z̃] | Q

The only values of π@ are channels. Local binders (νx)Q do not assign any values
to channels. Therefore, the semantics of π@ does not consider environments.

The encoding � � : π@ → π(L∧,=) is compositional; only, the encoding of
communication prefixes deserves special attention:

�(x1, . . . , xn)!z̃.P � = x1[λy2 . . . λyn.
’and’ . . . ’and’(’equal’x2y2) . . . (’equal’xnyn)]z̃.�P �

�(y1, . . . , yn)?z̃.P � = y1[λe.ey2 . . . yn]?z̃.�P �

Tuple equality in π@ is translated as a conjunction of name equalities in
the attribute language: an output with subject (x1, . . . , xn) is translated as an
output with subject x1 with a constraint that checks whether its first argument
(bound to y2) is equal to x2 and its second argument (bound to y3) is equal to

100 M. John et al.

Processes P ::= A(x̃) defined process
| P1 | P2 parallel composition
| (νx)P channel creation
| π1.P1 + . . . + πn.Pn summation of alternative choices
| 0 empty solution

Prefixes π ::= x̃?ỹ receiver
| x̃!ỹ sender

Definitions D ::= A(x̃) � P parametric process definition

Fig. 13. Syntax of π@ [15] where x, x̃, ỹ ∈ Chans

x3, etc. Dually, an input with subject (y1, . . . , yn) is translated as an input with
subject y1 with a constraint applying its argument to y2, . . . , yn. We also have
to translate the definitions of molecules in use

�A(x̃) � P � = A(x̃) � �P �

and consider reduction with respect to a set of such encoded definitions.

Theorem 1 (Operational correspondence)

(a) if S1 → S2 w.r.t. D, then �S1� → �S2� w.r.t. �D�
(b) if �S�→ S1 w.r.t �D�, then ∃S2 s.t. S1 ≡ �S2�, and S → S2 w.r.t D.

The proof is mostly straightforward. It might be worth noticing, however, that
all λ expressions terminate in linear time. This can be seen by inspecting the
occurring terms.

6 Conclusion and Outlook

We presented the attributed π-calculus π(L), which incorporates an attribute
language L fixing the values and constraints. Since L is introduced as a parame-
ter, a proliferation of domain specific calculi can be avoided. The central idea of
our approach is to control communication by constraints on attribute values of
processes. π(L) can encode π@ and thus, also BioAmbients, and BraneCalculi.
Furthermore, an encoding of a version of Beta-binders into π@ was proposed re-
cently [27]. Beyond discrete spatial structures, e.g. a cell’s compartments, spatial
attributes like volume and position can influence reaction rates. Thus, π(L) ap-
pears particularly promising for modeling spatial processes. We have illustrated
the usefulness of π(L) as a modeling language for systems biology by the exam-
ples of cooperative protein-DNA binding in gene regulation of bacteriophage λ,
and the phototaxis of the single celled organism Euglena. Currently, a model of
the Wnt-pathway with focus on membrane interactions and receptors is being
developed. If constitutes a further test case for the modeling formalism.

The Attributed Pi Calculus 101

We defined a non-deterministic and a stochastic semantics for π(L). The
stochastic semantics has been specified in terms of a continuous time Markov
chain (CTMC) and then transferred to a simulator, independently of the choice
of L. This simulator permits to reuse all algorithmic tricks of state-of-the-art
simulators for the stochastic π-calculus. An implementation of the simulator is
currently under way. Identifying parameter values for the Wnt-pathway model
and, in addition, performance studies along the lines of [28] will, both, challenge
and help assessing the simulator’s practical efficiency.

In the context of modeling, one shall explore the implication of π(L)’s central
idea, i.e. to map attribute values to interaction affinity, on discrete modeling
languages, e.g. rule-based ones. Another issue to be investigated is its potential
for large scale modeling. Therefore, object-oriented language concepts such as
inheritance, shall be lifted from SPiCO [5] to π(L). With respect to language
theory, another yet open question is whether one can encode π(L) into the π-
calculus.

Acknowledgements

We thank Céline Kuttler for suggesting our collaboration, and valuable com-
ments on this paper. Part of the research was financed by the DFG in the context
of the Research Training School “dIEM oSiRiS”. The BioComputing activity of
the LIFL in Lille is funded by the ANR Jeunes Chercheurs BioSpace.

References

1. Regev, A., Shapiro, E.: Cells as Computation. Nature 419, 343 (2002)
2. Regev, A.: Computational Systems Biology: A Calculus for Biomolecular Knowl-

edge. Tel Aviv University, PhD thesis (2003)
3. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic

Name-Passing Calculus to Representation and Simulation of Molecular Processes.
Information Processing Letters 80, 25–31 (2001)

4. Phillips, A., Cardelli, L.: Efficient, Correct Simulation of Biological Processes in
the Stochastic Pi Calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS
(LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)

5. Kuttler, C., Lhoussaine, C., Niehren, J.: A Stochastic Pi Calculus for Concurrent
Objects. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545,
pp. 232–246. Springer, Heidelberg (2007)

6. Dematté, L., Priami, C., Romanel, A.: Modelling and Simulation of Biological
Processes in BlenX. SIGMETRICS Performance Evaluation Review 35(4), 32–39
(2008)

7. Ciocchetta, F., Hillston, J.: Bio-PEPA: An Extension of the Process Algebra PEPA
for Biochemical Networks. ENTCS 194(3), 103–117 (2008)

8. Chabrier-Rivier, N., Fages, F., Soliman, S.: The Biochemical Abstract Machine
BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI),
vol. 3082, pp. 172–191. Springer, Heidelberg (2005)

9. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-Based Modeling of
Biochemical Networks. Complexity 10(4), 22–41 (2005)

102 M. John et al.

10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

11. Hillston, J.: Process Algebras for Quantitative Analysis. In: LICS 2005: Proceedings
of the 20th Annual IEEE Symposium on Logic in Computer Science, pp. 239–248.
IEEE Computer Society, Los Alamitos (2005)

12. Cardelli, L.: On Process Rate Semantics. TCS 391(3), 190–215 (2008)
13. Jaffar, J., Lassez, J.L.: Constraint Logic Programming. In: 14th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pp. 111–119.
ACM Press, New York (1987)

14. Saraswat, V.A., Rinard, M., Panangaden, P.: The Semantic Foundations of Con-
current Constraint Programming. In: 18th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 333–352. ACM Press, New York
(1991)

15. Versari, C.: A Core Calculus for a Comparative Analysis of Bio-inspired Calculi.
Programming Languages and Systems, pp. 411–425 (2007)

16. Kuttler, C.: Modeling Bacterial Gene Expression in a Stochastic Pi Calculus with
Concurrent Objects. PhD thesis, Université des Sciences et Technologies de Lille -
Lille 1 (2007)

17. Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating coopera-
tivity at the lambda switch. Transactions on Computational Systems Biology VII,
24–55 (2006)

18. Versari, C., Busi, N.: Stochastic Simulation of Biological Systems with Dynamical
Compartment Structure. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS
(LNBI), vol. 4695, pp. 80–95. Springer, Heidelberg (2007)

19. Versari, C., Busi, N.: Efficient Stochastic Simulation of Biological Systems with
Multiple Variable Volumes. ENTCS 194(3), 165–180 (2008)

20. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients:
An Abstraction for Biological Compartments. TCS 325(1), 141–167 (2004)

21. Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS
(LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

22. John, M., Ewald, R., Uhrmacher, A.M.: A Spatial Extension to the Pi Calculus.
ENTCS 194(3), 133–148 (2008)

23. Kholodenko, B.N.: Cell-Signalling Dynamics in Time and Space. Nature Reviews
Molecular Cell Biology 7(3), 165–176 (2006)

24. Grell, K.G.: Protozoologie. Springer, Heidelberg (1968)
25. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time

Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22(4),
403–434 (1976)

26. Khomenko, V., Meyer, R.: Checking Pi Calculus Structural Congruence is Graph
Isomorphism Complete. Technical Report CS-TR: 1100, School of Computing Sci-
ence, Newcastle University, 20 pages (2008)

27. Cappello, I., Quaglia, P.: A translation of beta-binders in a prioritized pi-calculus.
In: From Biology to Concurrency and back, Workshop FBTC (2008)

28. Ewald, R., Jeschke, M.: Large-Scale Design Space Exploration of SSA. In: Compu-
tational Methods in Systems Biology, International Conference CMSB 2008. LNCS.
Springer, Heidelberg (2008)

The Continuous π-Calculus: A Process Algebra

for Biochemical Modelling

Marek Kwiatkowski and Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland

{M.Kwiatkowski,Ian.Stark}@ed.ac.uk

Abstract. We introduce the continuous π-calculus, a process algebra
for modelling behaviour and variation in molecular systems. Key fea-
tures of the language are: its expressive succinctness; support for diverse
interaction between agents via a flexible network of molecular affinities;
and operational semantics for a continuous space of processes. This com-
positional semantics also gives a modular way to generate conventional
differential equations for system behaviour over time. We illustrate these
features with a model of an existing biological system, a simple oscillatory
pathway in cyanobacteria. We then discuss future research directions, in
particular routes to applying the calculus in the study of evolutionary
properties of biochemical pathways.

1 Introduction

This research aims to develop computational methods for studying the Dar-
winian evolution of biochemical pathways. We work in the framework introduced
by Regev et al. [1,2,3], who identified the π-calculus process algebra as a promis-
ing formalism for biological modelling. We modify it in a way that allows us to
mention quantitative parameters explicitly, and makes the interaction network
of the agents more flexible (see §1.1 below). To take advantage of this quan-
titative information, we develop a novel operational semantics through a com-
positional description of continuous system behaviour in terms of real vector
spaces (§2.2). We illustrate these concepts with an example of a concrete bio-
logical system, a simple oscillatory pathway in cyanobacteria (§7). Finally, we
discuss the possibilities of answering questions related to the evolution of path-
ways using process-algebraic techniques such as model checking and behavioural
equivalences (§4).

Reliable models and simulations of evolution on the molecular level would
have wide applications, from pure evolutionary theory to drug design. Our par-
ticular interest is in the ubiquitous phenomenon of mutational robustness, which
has recently received attention as a cross-level organisational principle of biolog-
ical systems [4,5]. Its understanding, especially on the level of gene regulation
and cellular signalling, is an important challenge; and, moreover, one where a
computational approach may give essential assistance in tackling the complexity
of the systems involved.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 103–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

104 M. Kwiatkowski and I. Stark

We motivate the use of process algebras in this context as follows: firstly,
they have already been successfully used to model biochemical networks (see
§1.2 below). Secondly, much of the genetic variation results in qualitative or
quantitative changes in the interaction network; process-algebraic descriptions
of networks enable us to express this variability easily, in syntactic terms. Finally,
to model evolution we need means to express fitness and related concepts such
as neutrality [6,5]; to this end we plan to use well-developed process-algebraic
techniques like model checking and behavioural equivalences (§4).

The main contribution of this paper is the continuous π-calculus (cπ), a pro-
cess algebra designed specifically to model biomolecular systems in an evolu-
tionary context, with an original semantics in terms of real vector spaces. It also
offers a fully modular and compositional method of generating a set of ordinary
differential equations (ODEs) governing a given system. Moreover, we give a
process-algebraic model of a biomolecular system of considerable interest — a
primitive bacterial circadian clock recently recreated in vitro [7].

In the remainder of this section we introduce cπ by means of small examples
(§1.1) and then very briefly recall related work in the fields of computational
and theoretical biology (§1.2). Section 2 is a formal presentation of the calculus,
while §3 contains the cπ model of the KaiC circadian clock [8], with graphs
showing its oscillatory behaviour. In the final section we present and discuss the
future directions of our research.

1.1 Key Features

The classic π-calculus is well-described in existing texts [9,10,11]. Here we focus
on the key distinguishing features of our continuous π, and follow with two small
examples to illustrate them.

1. Every cπ process is a parallel (‖) combination of species. Species are very
similar to classic π-processes. Every species in a given process is equipped
with a real number, to be thought of as the concentration of the substance
described by the species. Thus, every cπ process represents a complete molec-
ular system at a certain point in time.

2. As usual in the π-calculus, communication is through named channels. How-
ever, in contrast to most π derivatives, there are no co-names. Instead, any
name can in principle communicate with any other — potentially more than
one — and for any two names it is specified whether they can communicate
and at what rate. Biologically, names are intended to model distinctive re-
action sites, with the communication rate between two names corresponding
to the rate constant of the biochemical reaction between sites. The rele-
vant technical device to manage this information is an affinity network. One
consequence of this approach is that every new name must come with the
information about its communication potential. Also, whenever we consider
a particular process P , we assume some given affinity network on the free
names of P .

The reason for this approach is two-fold. First, it makes sense in an evo-
lutionary context to abandon the strict correspondence of sites and co-sites,

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 105

and hence the symmetry of names and co-names. Second, the affinity net-
works give a convenient collection of parameters for varying the model: in
particular, those important for questions of evolvability and robustness.

3. All cπ reactions have at most two substrates and are governed by the Law
of Mass Action (following, for example, the observations of [12, p.298]). It is
worth stressing, however, that more complex kinetic behaviour can emerge
as we build up larger processes from smaller ones. Nonetheless, the system
dynamics remains purely deterministic: for every process P we derive a term
dP
dt , denoting the speed and direction of the temporal evolution of P .

4. To model spontaneous monomolecular reactions, such as degradation, or con-
formation changes, we use silent actions labelled with real numbers denoting
reaction rate constants.

5. Molecular complexes are represented by parallel components within the
shared scope of one or more private names, following Regev [2]. As usual
for the π-calculus, communication between shared private names within the
complex gives rise to silent actions; and these in turn model spontaneous
actions like complex dissociation.

As a first simple example, consider two molecules, A and B, that can bind to
each other (at rate k1) and subsequently unbind (at rate k2). As noted above,
we model complexation as scope extrusion and decomplexation as interaction on
a shared private channel. This gives rise to the following cπ definition of species
A and B:

A
df= (ν u

k2— v)(a〈u〉.v.A) (1)

B
df= b(x).x.B (2)

with the global affinity network of Fig. 1.

a b

a
k1— b

k1

Fig. 1. A very simple
affinity network and its
textual rendering

Here the public names a and b represent protein
interaction sites, and a communication event between
these two names models binding of these sites. The

prefix (ν u
k2— v) declares a new affinity network con-

sisting of two private names, u and v, that can com-
municate with each other at the rate k2. Species A
and B can react by a communication event on the pub-
lic a

k1— b channel, with the private name u sent via a,
received on b, and then substituted for x in x.B. This
extends the scope of the network to encompass the re-
maining parts of A and B and so form complex C:

A | B
τ〈a,b〉−→ C

df= (ν u
k2— v)(v.A | u.B) (3)

If we mix species A and B together in concentrations c1 and c2, then we obtain a
cπ process (c1·A ‖ c2·B). The formal semantics of this process reflect mass-action
dynamics: the complex C is produced in proportion to the product of substrate

106 M. Kwiatkowski and I. Stark

b

a a′

k1 k2

(a) Affinity network

A
df
= a.A+

A+ df
= a′.A++ + τ@k3.A

K
df
= b.K

P = c1 · A ‖ c2 · K

(b) Species and process
definitions

Fig. 2. A simple cπ system with a non-trivial affinity network modelling discriminative
binding of the kinase K (via site b) to the molecules A and A+ (at sites a and a′,
respectively). The definition of the inactive A++ species is omitted.

concentrations, while the substrates themselves (A and B) deplete similarly. If
we compute the semantics (an appropriate d·

dt term) as described in §2.2, we see
that this is indeed the case:

d(c1 ·A ‖ c2 · B)
dt

= k1c1c2 · C − k1c1c2 ·A− k1c1c2 · B . (4)

Similarly, when we consider a solution of complexes in concentration c3 and
derive the semantics of the process (c3 ·C), we observe that the complex dissolves
to give back substrates A and B at the expected rate:

d(c3 · C)
dt

= −k2c3 · C + k2c3 ·A + k2c3 · B . (5)

As another example, consider a molecule A that can exists in three states:
unphosphorylated, phosphorylated and doubly phosphorylated; denoted A, A+

and A++ respectively. Furthermore, suppose that kinase K (the phosphorylating
agent) is more effective at the initial phosphorylation step A→ A+ than at the
subsequent one A+ → A++, having reaction rate constants k1 > k2. Finally,
assume that A+ (only) can spontaneously relax back to A at a rate k3. Figure 2
shows a cπ model for this system, and in particular a process P representing
an initial state where only A and K are present, at concentrations c1 and c2

respectively.
The affinity network in Fig. 2(a) indicates that site b can react with either site

a or site a′: this will capture the double action of the kinase. Figure 2(b) gives
the definitions of the species involved in the system. The first equation states
that species A can be transformed into A+ on interaction at the site a. The
second states that A+ can either interact on a′ and be transformed into A++ or
convert back to A at rate k3 without any external agent — here “+” models the
mutually exclusive choice of alternatives. In the third equation, kinase K can
interact at site b and then return to its initial state; recall that according to the
affinity network, this interaction might be with site a (on A) or a′ (on A+). The
final line defines the initial state of the system, with A and K present at the
specified concentrations.

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 107

This is a dynamic model, with P evolving in a continuous fashion. At any
time instant we can, using the methods of §2.2, formally derive the vector dP

dt
specifying the gradient of this temporal evolution. In particular, in the initial
state we have:

dP

dt
= k1c1c2 · A+ − k1c1c2 ·A . (6)

1.2 Related Work

The application of the π-calculus to biology is due to Regev and Shapiro [3], who
identified the fundamental correspondence between cellular processes and con-
current computations [13]. They proposed modelling molecules as π-processes,
and the use of parallel composition to express the fact that such molecules act
independently. In this framework, names denote molecular interaction sites and
communication models interaction. A further important abstraction was the use
of private names to model molecular complexes and compartments.

Further refinements of this framework addressed the introduction of quan-
titative information into the model and on modelling compartments more di-
rectly. This led, for example, to the development of the biochemical stochastic
π-calculus [1] and BioAmbients [14]. Other process algebras, such as PEPA [15]
have also been applied to model biological systems [16]. Although seen mainly
as simulation engines, these formalisms have also been used to perform static
analysis of the model [17].

Using process algebras as a high-level descriptive language, Calder et al. [18]
have shown how PEPA models can generate both discrete (stochastic) and con-
tinuous (ODE) behavioural specifications for the same system. Unlike raw ODEs
then, a process algebra model is not itself the behaviour, but can be used to
generate it. We believe that this abstraction step is important in modelling vari-
ation, to identify how emergent behaviour depends on changes in a process or
its parameters.

Meanwhile, the interest in mutational robustness has been growing amongst
biologists for the past 15 years. A recent monograph on the subject [5] identi-
fies the explosion of high-throughput techniques as an important factor for this
interest; the other is the importance of this concept in the context of systems
biology [19]. The methods applied to study this phenomenon range from pure
mathematics [20] to exhaustive computations [21].

2 The Continuous π-Calculus

In this section we set out a formal syntax and mathematical semantics for the
continuous π-calculus. Both syntax and semantics have two “layers”: of species
corresponding to individual molecules, and processes to populations of these. It
is important to keep in mind, however, that none of these terms should invoke
associations with their meaning in the context of evolutionary theory.

108 M. Kwiatkowski and I. Stark

2.1 Syntax

Definition 1. TakeN a fixed, countably infinite set of names, denoted by lower-
case letters a, b, x, y, . . . Vectors of names are denoted by �a, �x etc.; these may
be of zero length.

Definition 2. A prefix is a syntactic expression of the form a(�b; �y) (a commu-
nication prefix) or τ@k (spontaneous or silent prefix), where all elements of �y
are distinct, τ /∈ N is a fixed symbol and k ∈ R≥0. We use symbols like π, π′,
etc. to denote prefixes.

A communication prefix models the ability of one molecule to engage in an
interaction with another, at site a. Details of the interaction are modelled as
name-passing, where �b is the vector of names to be sent and �y is a vector of
placeholders for names to be received (and so binds subsequent occurrences of
the �y). This symmetry and synchrony of communication is mildly novel, and
introduced to reflect the fact that molecular interaction is a synchronous and
(usually) symmetric event. For readability we abbreviate when possible: a(�y) for
a(; �y), a〈�b〉 for a(�b;), and a for a(;).

The silent prefix τ@k models the case where a molecule may undergo spon-
taneous change, without any interaction with the external environment; or, at
least, no observed interaction at the level of abstraction being modelled (cf. the
dephosphorylation of species A+ in Fig. 2(b)). The rate of this transformation
is recorded directly in the prefix as k.

Definition 3. An affinity network is a pair 〈M, f〉, where M ⊆fin N is a carrier
set and f is a symmetric partial function f : M ×M ⇀ R≥0. We often blur the
distinction between a network and its carrier: for a network M we write x ∈M
to indicate that x lies in the carrier of M , and similarly for other set-theoretic
predicates. The expression M(a, b) denotes the value the network assigns to a
pair of names (a, b) if this is defined; we write M(a, b)↓ when this is the case.

From here on we assume a distinguished global affinity network Aff , which must
be a total relation on its carrier. We shall also use the notation X # Y , read X
fresh for Y , to state that X ∩Y = ∅ for name sets X and Y ; and then overload
this when X or Y are terms to refer to their free name sets.

Definition 4. The set of species is generated by the following grammar:

A, B :: = 0 | D(�a) | Σn
i=0πi.Ai | A | B | (νM)A (7)

where M # Aff . These are in turn the inactive species 0, invocation of a species
definition, guarded choice, parallel composition, and local name declaration. This
last is also restriction: names declared in the affinity network M are available in A,
but not elsewhere until explicitly passed out in a communication from A. Small
instances of guarded choice Σ are usually written with +; as in Fig. 2(b). For ev-
ery invocation D(�a) we assume a corresponding definition D(�y) df= A, such that

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 109

every free name of A appears in either �y or Aff . Furthermore, these definitions
must be productive in that any recursive cycle includes a prefix guard. We iden-
tify α-equivalent species: the binding operations are prefix π and restriction (νM).
Finally, there is a structural congruence ≡ on species, generated by the axioms in
Fig. 3. We use S to denote the set of species modulo≡, and write [A] for the equiv-
alence class of species A up to structural congruence.

Definition 5. The set of processes is generated by the following grammar:

P, Q :: = c · A | P ‖Q (8)

where A is a species, c ∈ R≥0 and all free names appear in Aff . Figure 3 gives
a structural congruence ≡ on processes.

In what follows we maintain a careful distinction between a species and its ≡-
equivalence class, and the same for processes, in order to precisely state the
correctness results for cπ semantics.

A | 0 ≡ A

A | B ≡ B | A

(A | B) | C ≡ A | (B | C)

Σn
i=0πi.Ai ≡ Σn

i=0πσi .Aσi perm. σ

(νM)(A | B) ≡ A | (νM)B M # A

(νM)A ≡ A M # A

(νM)(νN)A ≡ (νN)(νM)A M # N

P ‖ (c · 0) ≡ P

P ‖ Q ≡ Q ‖ P

P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R

(c · A) ‖ (d · A) ≡ (c + d) · A

c · A ≡ c · B A ≡ B

Fig. 3. Axioms generating structural congruence on species (l) and processes (r)

2.2 Semantics

The two-layered nature of syntax (a “layer” of species, then another of processes)
is reflected in the semantics: to obtain the semantics of a process, we first examine
the species involved. Formally, we do this by defining a multi-transition system
on species and then using this information to build the continuous semantics for
processes. Both levels maintain compositionality.

The transition system for species. A multi-transition system is a labelled
transition system that allows multiple transitions with the same source, target
and label. This extension is necessary to keep track of quantitative aspects of
behaviour in cπ, as done for example in PEPA [15].

We present the multi-transition system for species in an abstraction-concretion
style, following Milner [9] (or see [11] for a shorter explanation). In continuous π
the use of symmetric prefixes eliminates the distinction between abstractions
and concretions, and hence we use “concretion” to refer to both constructions.

110 M. Kwiatkowski and I. Stark

Definition 6. A concretion is a term generated by the following grammar:

F, G :: = (�b; �y)A | F | A | A | F | (νM)F (9)

where all elements of �y are distinct and binding. As with species, we identify
α-equivalent concretions. We build a structural congruence ≡ from the axioms
in Fig. 4, writing [F] for the ≡-equivalence class of F , and take C as the set of
concretions modulo structural congruence.

F | 0 ≡ F

F | A ≡ A | F

(F | A) | B ≡ F | (A | B)

(A | F) | B ≡ A | (F | B)

F | A ≡ F | B A ≡ B

(�b; �y)A ≡ (�b; �y)B A ≡ B

(νM)(A | F) ≡ A | (νM)F M # A

(νM)(F | A) ≡ F | (νM)A M # F

(νM)F ≡ F M # F

(νM)(νN)F ≡ (νN)(νM)F M # N

(�b; �y)(A | B) ≡ A | (�b; �y)B �y # A

Fig. 4. Axioms generating structural congruence for concretions

A concretion can be seen as a species that has committed to take part in a specific
binary interaction. When it encounters another compatible concretion that inter-
action may take place. We formalize this with a notion of “pseudo-application”.

Definition 7. The operation of pseudo-application is a binary partial function ◦
on concretions, defined by structural induction over its arguments. For the base
case, (�a; �x)A ◦ (�b; �y)B is defined if and only if |�a| = |�y| and |�b| = |�x|, in which
case the result is A{�b/�x} |B{�a/�y}. The inductive clauses are as follows:

(�a; �x)A ◦ (F | B) df= ((�a; �x)A ◦ F) | B (A | F) ◦ F ′ df= A | (F ◦ F ′)

(�a; �x)A ◦ (B | F) df= B | ((�a; �x)A ◦ F) (F | A) ◦ F ′ df= (F ◦ F ′) | A
(�a; �x)A ◦ (νM)F df= (νM)((�a; �x)A ◦ F) (νM)(F) ◦ F ′ df= (νM)(F ◦ F ′) .

For the two clauses in the bottom line we assume that M is fresh for the
other concretion involved. Observe that in the presence of α-equivalence this
condition can always be met, and hence the only reason for a pseudo-application
to be undefined is the arity mismatch of the concretions in the base case.

Where pseudo-application is defined we write F ◦G↓ and say that F and G are
compatible. It is possible to define a type system for sites to ensure compatibility,
but this complicates the calculus and we shall not do so here.

Proposition 8. The following hold for any compatible concretions F and G.

(i) Application F ◦G is a species.
(ii) Application G ◦ F is defined and G ◦ F ≡ F ◦G.
(iii) If F ′ ≡ F and G′ ≡ G then F ′ ◦G′ exists and is congruent to F ◦G.

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 111

Proof. Induction over the derivation of F ◦G shows (i) and (ii), while (iii) uses
induction over the derivations of F ′ ≡ F and G′ ≡ G. ��

Finally, Fig. 5 sets out the rules for generating the multi-transition system on
species, as a structural operational semantics [22]. For a species A, we write
Trans(A) for the associated transition multiset. These transitions are of three
kinds:

1. From a species to a concretion, labelled by a name. This represents a po-
tential for interaction; more precisely, a transition A

a−→ (�b; �y)B means that
the species A can interact with another by sending �b on the channel a and
then evolve to B, with �y replaced by data received.

2. From a species to another species, labelled by τ@k where k is a real number,
such as A

τ@1.5−→ B. This denotes the ability of species A to evolve into B
without other interaction, at a basal rate of k (here 1.5). Examples include
degradation, where B is 0, or complex dissociation, with B of the form
B′ |B′′.

3. From one species to another, labelled by a term τ〈a, b〉 with names a and b,

for example A
τ〈a,b〉−→ B. This also denotes a potential for evolution of A

into B, but now the basal rate of evolution is the affinity between a and b.
This affinity will be determined by either the global affinity network Aff
or some local network M to be introduced by restriction (νM). Thus local
interaction at private names becomes visible externally as a spontaneous
action, maintaining the compositionality of the semantics.

The following result states that the structural congruence of species is indeed a
behavioural equivalence.

Theorem 9. Let A ≡ B. There exists a bijection φ : Trans(A) → Trans(B)

such that if φ(A α−→ E) = B
α′
−→ E′ then α = α′ and E ≡ E′.

Proof (sketch). We proceed by induction on the derivation of A ≡ B: for every
transition in Trans(A) we exhibit a corresponding one in Trans(B) via a case
analysis of the transition derivation tree, and then show that this association is
a bijection. ��

The behaviour of processes. We give a compositional semantics to cπ
processes in terms of real vector spaces P and D, capturing respectively the
immediate actions dP

dt and the potential interactions ∂P of a process P . First,
however, we need several preliminary definitions. Recall that S and C are the
sets of species and concretions, respectively, modulo structural congruence.

Definition 10. A non-zero [A] ∈ S is prime if it is not a parallel composition
of non-trivial species, i.e. if A ≡ (B |C) implies either B ≡ 0 or C ≡ 0. We write
S# for the set of prime species, with S# � S.

112 M. Kwiatkowski and I. Stark

0 ≤ j ≤ n πj = aj(�bj ; �yj)

Σn
i=0πi.Ai

aj−→ (�bj ; �yj)Aj

Choice-1

0 ≤ j ≤ n πj = τ@k

Σn
i=0πi.Ai

τ@k−→ Aj

Choice-2

A
a−→ F B

b−→ G F ◦ G↓

A | B
τ〈a,b〉−→ F ◦ G

Com-1

A
τ〈a,b〉−→ B a, b ∈ M M(a, b)↓

(νM)A
τ@M(a,b)−→ (νM)B

Com-2

A
α−→ E

A | B
α−→ E | B

Par-Left

B
α−→ E

A | B
α−→ A | E

Par-Right

A
α−→ E α /∈ M

(νM)A
α−→ (νM)E

Res-1

A
τ〈a,b〉−→ E a, b /∈ M

(νM)A
τ〈a,b〉−→ (νM)E

Res-2

B
α−→ E D(�y)

df
= B

D(�b)
α−→ E{�b/�y}

Defn

Fig. 5. Transition rules for species. Here α ranges over all kinds of transition labels
and E ranges over both species and concretions.

Theorem 11. For any nonzero species A there exists a unique finite multiset
{|[A1], . . . , [An]|} ⊂ S# such that A ≡ A1 | · · · |An. Call this prime decomposition
of A.

Proof (sketch). We assign normal forms to species using a normalising and con-
fluent term rewriting system respecting ≡, and take the prime decomposition as
the multiset of |-components of the normal form. ��

The decomposition theorem allows us to represent any cπ process as a collection
of prime species weighted by real numbers.

Definition 12. The process space P is the (infinite dimensional) vector space
R(S#).

There is a natural mapping from species into process space, with the concen-
tration of participating prime species matching their multiplicity in the prime
decomposition.

Definition 13. Define 〈·〉 : S → P inductively over the structure of its argu-
ment:

〈A〉 df=

⎧⎪⎨⎪⎩
0 at every position if [A] = [0]
1 at [A], 0 elsewhere if [A] prime
〈B〉+ 〈C〉 if [A] = [B | C] for B, C �≡ 0.

(10)

It follows from Thm. 11 that 〈·〉 is well-defined and constant inside every equiv-
alence class of species.

In due course we shall use space P to capture immediate process behaviour. Al-
though this behaviour is what we are most interested in, it is impossible to define

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 113

it compositionally without further information on the possible ways a process
may interact with others. We therefore define a space of interaction potentials D
and an interaction tensor � : D×D→ P that combines two compatible potentials
into an immediate behaviour.

Definition 14. The interaction space D is the (infinite dimensional) vector
space RS×C×N of ternary real functions with pointwise addition and scalar
(real) multiplication. Note that it has a basis consisting of functions of the form
1[A],[F],a which take the value 1 for the indicated arguments and 0 for any other
set of inputs.

Definition 15. The interaction tensor � : D × D → P is the bilinear function
defined by the following action on basis values:

1[A],[F],a � 1[B],[G],b
df=

{
Aff (a, b)(〈F ◦G〉 − 〈A〉 − 〈B〉) if F ◦G↓

0 otherwise .
(11)

Each element ξ ∈ D associates with every triple ([A], [F], a) a real number. When
ξ describes the interaction capabilities of a process, this real number denotes the
sum of concentrations of all species present in the process which can make the
transition A

a−→ F , or structural equivalent. The interaction tensor � combines
two such interaction potentials into an actual process behaviour. Combination of
basis elements, which can be seen as the two transitions A

a−→ F and B
b−→ G,

gives a new species resulting from the interaction F ◦G, the substrate species A
and B are lost, and the whole expression is weighted by the interaction rate of
the a — b channel in Aff . Combination of more complex ξ, ξ′ ∈ D is computed
by bilinear extension of this, which ensures that all combinations of interaction
potentials in ξ and ξ′ are considered. Moreover, bilinearity means that the result
is scaled in proportion to the “amounts” of interaction potential, and so reflects
the Law of Mass Action.

With the above definitions at hand, we are now in a position to define the
formal semantics of cπ.

Definition 16. The complete behaviour of a process P is a pair (dP
dt , ∂P) ∈ P×D

of its immediate actions and potential interactions defined inductively on the
structure of P as follows:

∂(c · A)([B], [F], a) df= c · card{|C a→ G ∈ Trans(A) | C ∈ [B] ∧G ∈ [F] |} (12)

d(c · A)
dt

df= c ·Σ
B

τ@k−→C∈Trans(A)
k · (〈C〉 − 〈B〉)

+ c ·Σ
B

τ〈a,b〉−→ C∈Trans(A)
Aff (a, b) · (〈C〉 − 〈B〉)

+
1
2
(∂(c ·A) � ∂(c ·A))

(13)

∂(P ‖Q) df= ∂P + ∂Q (14)

114 M. Kwiatkowski and I. Stark

d(P ‖Q)
dt

df=
dP

dt
+

dQ

dt
+ ∂P � ∂Q . (15)

We explain briefly the intuitions behind these definitions. Because every process
can be identified with a point in P, we can view the immediate behaviour dP

dt as
a vector field over P, associating with each process the gradient of its temporal
evolution. The equations (13) and (15) reflect this interpretation. Thus in (13)
we take into account the effect of all τ -transitions of species A, weighted with
the interaction rates (given by the transition labels or the global affinity net-
work) and the initial concentration c, and then add the behaviour arising from
interactions between pairs of A molecules. In (15), the immediate behaviour
of a composition of two processes is the sum of immediate behaviours of the
components plus the behaviour that emerges from their interaction.

Computing the interaction potential ∂P for a process is more straightforward:
equation (12) lifts all the appropriate transitions from the multi-transition sys-
tem and multiplies them by the concentration c; while (14) reflects the fact
that the interaction potential of a composition of processes is simply the sum
of the interaction potentials of the components, with no cancellation or further
emergent interaction.

The following theorems demonstrate that structural congruence of processes is
a behavioural equivalence, and that further identification of | and ‖ only slightly
weakens this.

Theorem 17. Let P ≡ Q. Then ∂P = ∂Q in D and dP
dt = dQ

dt in P.

Proof. Straightforward induction on derivation of P ≡ Q. ��

Theorem 18. Let ≡+ be the smallest congruence on processes containing ≡
and satisfying the additional rule

c · (A | B) ≡+ (c ·A) ‖ (c · B) (16)

and let P ≡+ Q. Then dP
dt = dQ

dt and for any ξ ∈ D, ∂P � ξ = ∂Q � ξ.

Proof. By induction on derivation of P ≡+ Q. ��

In general we may have P ≡+ Q but ∂P �= ∂Q, because the transitions A
x−→ F

and A | B x−→ F | B give rise to different points of D via (12), despite being
essentially equivalent as interaction potentials. We discuss this further in §4.4,
with a possible remedy. Notice, though, that the property we do have of equality
under −� ξ for all ξ is a form of observational equivalence: there is no way from
within process space to observe any difference between ∂P and ∂Q.

3 Example

In this section we give a cπ model for a simple biomolecular system, the KaiC
circadian clock. Our reference for this system is the work of van Zon et al. [8].

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 115

3.1 The System

Introduction. Circadian clocks are molecular systems that exhibit oscillatory
behaviour synchronized with the 24-hour day cycle. They play an important role
in many organisms by helping to regulate their cellular behaviour according to
the circadian rhythm.

The system we model is a primitive circadian clock found in the cyanobac-
terium Synechococcus elongatus [23,24]. It consists of three kinds of protein:
KaiA, KaiB and KaiC. In particular, KaiC forms hexamers with 6 phosphory-
lation sites which are phosphorylated and dephosphorylated in a cyclic manner,
thus dictating the circadian rhythm.

The KaiC circadian clock has two features that make it of particular interest
to the biological community. The first is its simplicity — it requires only 3 kinds
of molecules to function. The other is that it does not rely on either intracellu-
lar compartments or gene regulation, which sets it apart from other circadian
clocks and (remarkably) makes it possible to reproduce its self-sustaining cycle
relatively easily in vitro [7].

The allosteric model. Although there are extensive experimental results on
the activity of the various components of the KaiC system, its precise mechanism
is not yet understood. In order to explain the observed behaviour, the authors
of [8] propose an elegant model based on two assumptions. The first assumption
is that every KaiC protein is allosteric, i.e. it can adopt two distinct 3D shapes
(conformations), denoted active and inactive. This gives every KaiC hexamer a
propensity to spontaneously undergo a phosphorylation-dephosphorylation cy-
cle, as shown in Fig. 6. The cycles of individual KaiC are then synchronized with
each other thanks to the other assumption: that the phosphorylating agent KaiA
binds more strongly to weakly phosphorylated KaiC molecules. This mechanism
is called differential affinity. The role of KaiB in this model is to stabilise the
inactive form of KaiC and to increase the competition for free KaiA molecules
between the differently phosphorylated active forms.

3.2 The cπ Model

Figure 7 displays our cπ model of the KaiC system proposed in [8]. It combines
species declarations, a global affinity network Aff and local affinity networks Mi.

Species. In the first few lines (18)–(23) we define the 14 distinct species of
KaiC: active and inactive forms, each in one of 7 phosphorylation states. Lines
(24)–(29) then define the complexes formed by inactive KaiC with KaiB and
KaiA, while (30) defines species KaiA and KaiB themselves. Finally, process (31)
describes an initial state of the model. Note that several intermediate species,
not explicitly defined here, naturally emerge from subsequent interactions. For
example, the A-C0 complex

(νM0)((u0.C0 + r0.C1) | act0.A) (17)

116 M. Kwiatkowski and I. Stark

C0 C1 · · · C6

C̃6
· · ·C̃1C̃0

Active forms

Inactive forms

kps kps kps

f6

k̃dpsk̃dpsk̃dps

b0

Fig. 6. The phosphorylation cycle of a single KaiC molecule. The two allosteric forms
have opposite (de-)phosphorylation tendencies: phosphorylation proceeds from left to
right, dephosphorylation from right to left. The potential to flip between the confor-
mations closes the cycle. Non-dominant reactions are indicated with dotted arrows.
Adapted from [8, Fig. 1(B)].

arising from an interaction between A and C0 on the a
kAf
0— a0 channel, com-

municating local names u0 and r0. This complex can then dissociate, triggered
by the interaction between local site act0 and either u0 or r0, corresponding
respectively to simple unbinding of C0 or catalysed phosphorylation to C1.

The definitions of the species are based entirely on their interaction capabil-
ities as postulated in [8]. For example, the active and unphosphorylated KaiC
molecule (species C0 in (18)) can either flip to the inactive state at rate f0 (the
τ@f0.C̃0 component), spontaneously phosphorylate at rate kps (the τ@kps.C1

component), or bind a KaiA molecule to form the complex of (17) above (the
a0〈act0〉.(u.C0 + r.C1) component).

We have one minor deviation from [8], concerning the binding of KaiB and
KaiA to inactivated KaiC in lines (24)–(29). Both of these bind in multiples to
KaiC: based on size measurements, van Zon et al. assume that each KaiC binds
two KaiB and then two KaiA. They model these with a 3-substrate reaction,
which cannot be expressed directly in cπ. Instead, we model the binding by
two consecutive binary interactions, where the rate of the second (kvf) is much
greater than that of the first (kBf

i or kAf
i).

This occurs, for example, in the KaiB-KaiC complex BC̃0 of (24). This can
either spontaneously dissociate, at rate kBb

0 , into an inactivated KaiC and two
KaiB, phosphorylate at rate k̃ps, or bind successively to the ã site on two KaiA
molecules to form a KaiA-KaiB-KaiC complex.

The model also shows other kinetics in action, for example in the binding of
KaiA to active KaiC modelled by scope extrusion shown above (17). When the
extrusion is reversible, as it is here, the cπ semantics of the combined reaction
generates a Michaelis-Menten kinetics. Other binding events are modelled as
simple communication, which gives rise to Mass Action kinetics.

Affinity networks. We model the differential affinity mechanism with fan-
like affinity networks, where a single site can interact with several others at
different rates (Fig. 7(c)). For the sake of symmetry and for the ease of po-
tential perturbation analysis of the model, we retain the fan shape even where

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 117

C0
df= (νM0)(τ@f0.C̃0 + τ@kps.C1 + a0〈act0〉.(u0.C0 + r0.C1)) (18)

Ci
df= (νMi)(τ@fi.C̃i + τ@kps.Ci+1

+ τ@kdps.Ci−1 + ai〈act i〉.(ui.Ci + ri.Ci+1))
(19)

C6
df= τ@f6.C̃6 + τ@kdps.C5 (20)

C̃0
df= τ@b0.C0 + τ@k̃ps.C̃1 + b0.b

′.BC̃0 (21)

C̃i
df= τ@bi.Ci + τ@k̃ps.C̃i+1 + τ@k̃dps.C̃i−1 + bi.b

′.BC̃i (22)

C̃6
df= τ@b6.C6 + τ@k̃dps.C̃5 + b6.b

′.BC̃6 (23)

BC̃0
df= τ@kBb

0 .(C̃0 | B | B) + τ@k̃ps.BC̃1 + ã0.ã
′.ABC̃0 (24)

BC̃i
df= τ@kBb

i .(C̃i | B | B) + τ@k̃ps.BC̃i+1

+ τ@k̃dps.BC̃i−1 + ãi.ã
′.ABC̃i

(25)

BC̃6
df= τ@kBb

6 .(C̃6 | B | B) + τ@k̃dps.BC̃5 + ã6.ã
′.ABC̃6 (26)

ABC̃0
df= τ@k̃Ab

0 .(BC̃0 |A |A) + τ@k̃ps.ABC̃1 (27)

ABC̃i
df= τ@k̃Ab

i .(BC̃i | A | A) + τ@k̃ps.ABC̃i+1 + τ@k̃dps.ABC̃i−1 (28)

ABC̃6
df= τ@k̃Ab

6 .(BC̃6 |A |A) + τ@k̃dps.ABC̃5 (29)

A
df= a(x).x.A + ã.0 B

df= b.0 (30)

P
df= cA ·A ‖ cB · B ‖ cC · C0 (31)

(a) Species and process definitions

act i

ui ri

kAb
i kpf

(b) Local affinity
networks Mi

a

a0 a6

· · ·

ã

ã0 ã6

· · ·

ã′ b

b0 b6

· · ·

b′

kAf
0 kAf

6 k̃Af
0

k̃Af
6

kvf

kBf
0

kBf
6

kvf

(c) The global affinity network Aff

Fig. 7. The cπ model of the KaiC circadian clock. Parameter i takes values 1 . . . 5 in
species definitions and 0 . . . 6 in the affinity networks.

118 M. Kwiatkowski and I. Stark

0 12 24 36 48 60 72
0

0.2

0.4

0.6

0.8

1

time(hour)

p

A

0 12 24 36 48 60 72
0

0.5

1

time(hour)

fr
ac

tio
n

K
ai

C
 b

ou
nd

 in
 c

om
pl

ex
es

BAC

BC
ABC

B

(a) Graphs from the model of
van Zon et al. [8, Fig.3]

 0

 0.2

 0.4

 0.6

 0.8

 1

p

time(hour)
 0 24 48 12 36 60 72

AC
BC
ABC

time(hour)

in
 c

om
pl

ex
es

fr
ac

tio
n

K
ai

C
 b

ou
nd 1

 0.5

 0
 12 24 36 48 60 72 0

(b) Graphs generated from the continu-
ous π-calculus system in Fig. 7

Fig. 8. Graphs comparing oscillatory behaviour of the models defined by van Zon et
al. [8] and the cπ terms of §3. The upper graphs show mean phosphorylation level of
KaiC over three circadian cycles. The lower ones show the relative amounts of the com-
plexes KaiA-KaiC (active); KaiB-KaiC (inactive); and KaiA-KaiB-KaiC (sequestering
KaiA and so inhibiting the phosphorylation of active KaiC).

[8] assumes no differential affinity. The differential affinity of the KaiA-KaiC
binding is modelled by differing interaction rates kAb

i in the collection of local
affinity networks Mi (Fig. 7(b)).

Results. There is a close correspondence between the dynamical behaviour of
the cπ model, as generated by the semantics of §2.2, and that of our reference
paper [8]. Moreover, we can extract from the species and network declarations
of Fig. 7 a set of ODEs that matches those reported in [25, p.14] (up to minor
differences due to our alternative modelling of multiple binding).

We have a prototype tool that takes textual descriptions of cπ systems and
applies the semantics of §2.2: exploring the transition state space of species,
and then combining these to compute the potential and immediate behaviour of
processes. The tool is written in Haskell [26,27], and generates ODEs in a format
suitable for numerical analysis by Octave [28,29].

Figure 8 shows the result of this tool applied to the cπ model of Figure 7.
We take values for the 65 or so system parameters from those proposed by van
Zon et al. in [25], with some corrections from [30]. Our tool generates a set of
50 ODEs covering all derived species, which are readily solved by Octave. For
comparison, we have replicated the graphs presented in [8] to show sustained
oscillations in the model: the original graphs are on the left, ours on the right.

4 Discussion

4.1 Alternative Behavioural Semantics

Process algebras offer a distinct level of abstraction compared to more wide-
spread dynamical models of biochemical systems such as ordinary differential

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 119

equations or Markov chains. A process algebraic description of a system may
be translated to more than one such formalism (see e.g. [31]) and so a modeller
may choose the most appropriate dynamic paradigm for a given situation. This
is true of cπ: aside from the “native” ODE semantics, it is relatively easy to
generate Markov chains (by introducing integer quantities of processes instead
of real-valued concentrations) and it may also be possible to map the cπ syntax
to other behavioural models (e.g. Petri Nets as in [32]). We see this flexibility as
a strength of process algebras like cπ.

4.2 Modelling Evolution

The target application of continuous π is the investigation of Darwinian evolution
on the molecular level. At present, we are able to identify two promising concrete
applications of cπ in this context. The first is direct simulation of evolution; the
other is analysis of evolutionary robustness.

Evolutionary trajectories. In order to simulate molecular evolution by nat-
ural selection, we must be able to express variability, populations and fitness in
our process-algebraic framework. While populations of individuals can be mod-
elled simply as collections of processes, the other two concepts use the process-
algebraic nature of the model in an essential way.

Variability: We propose addressing qualitative and quantitative variation of
pathway topology (connectivity) in two ways. The first is by considering
small variations in affinity networks, in order to model changes in the inter-
action capability of existing active sites. The other is by altering the structure
of the species and thus modelling evolution of new sites, domain duplication
and similar higher-level discrete events.

It is also possible to consider variation in the initial concentrations of
processes and interpret this – particularly in simpler models – as variation
in gene expression. It remains to be investigated whether it is biologically
sensible to include this type of variation in a model that is otherwise focused
on the evolution of network topologies.

Fitness: It is clear that any notion of fitness is problem-dependent and must
be defined externally by the modeller. We plan to use a form of quantitative
model checking to compute the fitness value. This requires a modeller to
formulate a fitness measure in an appropriate logic.

A recently published study [33] uses the process algebra of Beta-binders [34]
in a similar programme of simulating molecular evolution, which provides some
validation of this approach.

Robustness. A further intended application of the calculus is the study of
neutrality of biochemical pathways and related concepts such as robustness and
evolvability. Since by definition two pathways are neutral with respect to each
other if they have the same fitness, the question of determining neutrality can
be reduced to that of assessing fitness (see above). We plan to treat it sepa-
rately, however, as it may be possible to characterize or approximate neutrality

120 M. Kwiatkowski and I. Stark

without actually computing fitness. For example, we might deem two pathways
neutral if they satisfy the same subset of a well-chosen set Φ of sentences in an
appropriate logic. Even more desirable would be to characterize neutrality via a
suitable behavioural equivalence, requiring no input from the modeller at all. In
either case we expected the method to be applicable only to a restricted class of
pathways (actual biological entities), whose identification is a challenge in itself.

4.3 Hybrid Modelling

A dynamical system is hybrid if its dynamics have both discrete and continu-
ous characteristics. This is a common situation in models for cell biology: for
example, consider gene regulation by simple direct negative feedback. A pro-
tein is produced at a constant rate (continuous dynamics) until transcription
is switched off due to a protein molecule binding to the DNA (discrete event).
Continuous π as it is now cannot model this situation because we require every
molecular species to be present in some concentration, while the DNA is present
as a single copy only. In general, whenever it is impossible (or undesirable) to
abstract over gene expression (or at least transcription), we are faced with the
need to model a genuinely hybrid situation. In addition, even when the use of
a purely continuous approach is conceptually possible, a model may fail to pro-
duce characteristic behaviour that depends crucially on stochastic effects. See
e.g. [35] for a comparison of the continuous and stochastic approaches.

There are a variety of computational approaches to hybrid modelling, such
as hybrid I/O automata [36] and hybrid process algebras [37]. We plan to build
on this tradition and extend cπ with discrete features, in the form of species
present as single individuals. Interactions with these species will act as discrete
control events on top of the existing continuous semantics, giving truly hybrid
process behaviour. We take the lac operon molecular system [38] as a suitable
target to validate this approach. This is a regulatory network involving protein-
DNA interactions which modify the transcription process of several genes; what
is more, it is relatively well understood and well known among biologists.

4.4 Refinement of Semantics

At present the potential behaviour ∂P of a process includes a description of every
reaction in which it can engage. While this is necessary for compositionality,
we believe there is room for improvement in the encoding of this information.
Specifically, we need not record for every offered communication precisely what
is consumed and what produced; a “net result” is enough (cf. formulae (11)
and (13)). Consider for example the process

P = c · A, where A
df= a.(A | B) . (32)

In the semantics of §2.2 this communication potential is recorded as ∂P (A, (;)(A|
B), a) �= 0: in a single communication event over a one A is lost while another
is produced along with B. It would be enough just to record that this reaction

The Continuous π-Calculus: A Process Algebra for Biochemical Modelling 121

results in a production of a single new B. It remains to formalize this and extend
it to arbitrary concretions.

Finally, we conjecture that Rω is unnecessarily large to serve as P and that
for any process P , its immediate behaviour dP

dt is an element of an
p space for
some fixed p (the space of infinite real sequences with a finite p-norm). Moving
from Rω to
p would allow us to use the rich theory of Banach (and Hilbert, if
p = 2) spaces to study the properties of the calculus and to approach biological
questions about, for example, system trajectories.

References

1. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Inf. Proc. Lett. 80 (2001)

2. Regev, A.: Computational Systems Biology: A Calculus for Biochemical Knowl-
edge. PhD thesis, Tel Aviv University (2002)

3. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochem-
ical processes using the pi-calculus process algebra. In: Pacific Symposium on Bio-
computing (2001)

4. Kitano, H.: Biological robustness. Nature 5, 826–837 (2004)
5. Wagner, A.: Robustness and Evolvability in Living Systems. Princeton University

Press, Princeton (2005)
6. Schuster, P., Fontana, W., Stadler, P., Hofacker, I.: From sequences to shapes and

back: A case-study in RNA secondary structures. Proc. Royal Soc. Ser. B 255
(1994)

7. Tomita, J., Nakajima, M., Kondo, T., Iwasaki, H.: No transcription-translation
feedback in circadian rhythm of KaiC phosphorylation. Science 307(5707), 251–
254 (2005)

8. van Zon, J.S., Lubensky, D.K., Altena, P.R.H., ten Wolde, P.R.: An allosteric model
of circadian KaiC phosphorylation. PNAS 104(18), 7420–7425 (2007)

9. Milner, R.: The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-
180, LFCS, University of Edinburgh (1991)

10. Milner, R.: Communicating and Mobile Systems: The π Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

11. Parrow, J.: An introduction to the π-calculus. In: Handbook of Process Algebra,
pp. 479–543. Elsevier, Amsterdam (2001)

12. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306
(2000)

13. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computations. Nature 419
(2002)

14. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients:
An abstraction for biological compartments. Theor. Comput. Sci. 325 (2004)

15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

16. Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK
signalling pathway using the stochastic process algebra PEPA. In: Proc. BioConcur.
(2004)

17. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilis-
tic model checking of complex biological pathways. Theor. Comput. Sci. (2007)

122 M. Kwiatkowski and I. Stark

18. Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational mod-
elling of signalling pathways using both continuous and discrete-state methods.
In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer,
Heidelberg (2006)

19. Kitano, H.: Towards system-level understanding of biological systems. In: Founda-
tions of Systems Biology. MIT Press, Cambridge (2001)

20. Stadler, B.M.R., Stadler, P.F., Wagner, G., Fontana, W.: The topology of the pos-
sible: Formal spaces underlying patterns of evolutionary change. J. Theor. Biol. 213
(2001)

21. Soyer, O., Salathe, M., Bonhoeffer, S.: Signal transduction networks: Topology,
response, and biochemical reactions. J. Theor. Biol. 238 (2006)

22. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algeb.
Progr. 60–61, 17–139 (2004)

23. Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A.,
Golden, S.S., Johnson, C.H., Kondo, T.: Expression of a gene cluster kaiABC as a
circadian feedback process in cyanobacteria. Science 281(5382), 1519–1523 (1998)

24. Golden, S.S., Johnson, C.H., Kondo, T.: The cyanobacterial circadian system: A
clock apart. Current Opinion in Microbiology 1(6), 669–673 (1998)

25. van Zon, J.S., Lubensky, D.K., Altena, P.R.H., ten Wolde, P.R.: An al-
losteric model of circadian KaiC phosphorylation: Supporting information (2007),
http://www.pnas.org/cgi/content/full/0608665104/DC1

26. Haskell, http://www.haskell.org/
27. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, Cambridge (April 2003)
28. Octave, http://www.gnu.org/software/octave/
29. Eaton, J.W.: GNU Octave Manual. Network Theory (2002)
30. van Zon, J.S.: A detail of the KaiABC model. Personal communication (2008)
31. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process

algebra models of signalling pathways. In: Proc. CMSB (2005)
32. Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of

mobile systems using net unfoldings. In: Application and Theory of Petri Nets:
Proc. ATPN (to appear, 2008)

33. Demate, L., Priami, C., Romanel, A., Soyer, O.: A formal and integrated framework
to simulate evolution of biological pathways. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 106–120. Springer, Heidelberg (2007)

34. Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

35. Bortolussi, L., Policriti, A.: Connecting process algebras and differential equations
for systems biology. In: Process Algebra and Stochastically Timed Activities: Proc.
6th PASTA workshop (2006)

36. Segala, R., Vaandrager, F., Lynch, N.: Hybrid I/O automata. Inf. & Com-
put. 185(1) (2003)

37. Bergstra, J.A., Middleburg, C.A.: Process algebra for hybrid systems. Theor. Com-
put. Sci. 335 (2005)

38. Vilar, J.M.G., Guet, C.G., Leibler, S.: Modeling network dynamics: The lac operon,
a case study. J. Cell Biol. 161 (2003)

http://www.pnas.org/cgi/content/full/0608665104/DC1
http://www.haskell.org/
http://www.gnu.org/software/octave/

Automatic Complexity Analysis and Model

Reduction of Nonlinear Biochemical Systems

Dirk Lebiedz, Dominik Skanda, and Marc Fein

Universität Freiburg, Zentrum für Biosystemanalyse (ZBSA)
dirk.lebiedz@biologie.uni-freiburg.de

Abstract. Kinetic models for biochemical systems often comprise a
large amount of coupled differential equations with species concentra-
tions varying on different time scales. In this paper we present and apply
two novel methods aimed at automatic complexity and model reduction
by numerical algorithms. The first method combines dynamic sensitiv-
ity analysis with singular value decomposition. The aim is to determine
the minimal dimension of the kinetic model necessary to describe the
active dynamics of the system accurately enough within a user-defined
error tolerance for particular species concentrations and to determine
each species’ contribution to the active dynamics. The second method
treats the explicit numerical reduction of the model to a lower dimension
according to the results of the first method and allows any species com-
bination to be chosen as a parameterization of the reduced model which
may either be tabulated in the form of look-up tables or computed in
situ during numerical simulations. A reduced representation of a multiple
time scale system is particularly beneficial in the context of spatiotem-
poral simulations which require high computational efforts. Both the
complexity analysis and model reduction method operate in a fully au-
tomatic and numerically highly efficient way and have been implemented
in a software package. The methods are applied to a biochemical exam-
ple model describing the ERK signaling pathway. With this example, we
demonstrate the value of the methods for various applications in systems
biology.

1 Introduction

Modern experimental techniques offer various opportunities to reveal nature’s
secrets to a steadily increasing extend. Coming along with this development, one
gets a more and more detailed insight into biochemical reaction mechanisms thus
complicating kinetic models tremendously. Similar difficulties with large-scale
kinetic models have been encountered, for instance, in the field of combustion in
physical chemistry (see e.g. [31]).

In combustion chemistry and biochemical kinetics as well, a broad class of
problems can be stated as ordinary differential equations (ODE), in particular
as well-posed initial value problems (IVP)

ẋ(t) = f(x)
x(t0) = x0 .

(1)

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 123–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

124 D. Lebiedz, D. Skanda, and M. Fein

With a lot of interacting species being generally involved in these application
fields and these species being dynamically coupled on different time scales, the
resulting ODEs are highly nonlinear and stiff. For such problems, several meth-
ods have been proposed to reduce the model complexity and its dimension. Three
main ideas have been pursued in model reduction so far, namely lumping, sen-
sitivity analysis and time scale analysis. The interested reader may refer to [18]
for a detailed discussion of lumping techniques and [30, 25, 28] for sensitivity
analysis.

Some time scale analysis techniques, for example the Quasi Steady State Ap-
proximation (QSSA) [5, 6, 22], which is used to derive the common Michaelis-
Menten kinetic equations, are well-known in biology. However, classical QSSA
performed “by hand” is not suitable for the application to large systems. To
overcome this insufficiency, automatic methods such as Computational Singular
Perturbation (CSP) [11, 12] and Intrinsic Low Dimensional Manifold (ILDM)
[21, 19, 20] have been developed. The latter has found wide application in the
combustion chemistry field.

Most model reduction methods aim at determining a low dimensional manifold
which describes long-term dynamics and on which arbitrary system trajectories
in phase space condense before approaching their attractor, usually chemical
equilibrium. Therefore, this low dimensional manifold approximates the kinetics
of the underlying system at the slow time scales assuming fast time scales to be
enslaved by the slow ones.

Unfortunately, the widely used ILDM method which is based on eigenvalue
analysis of the Jacobian is not that efficient for large scale systems and subject to
severe numerical problems if the spectral gap between fast and slow time scales is
small. Therefore, different techniques have been suggested [10, 9] and we present
a novel and quite general approach based on ideas by Lebiedz et al. [13, 14, 26],
which computes an approximation of such a slow low dimensional manifold as a
solution of an optimization problem. This method aims at relaxing generalized
forces driving chemical reactions as much as possible under given constraints.
These constraints are determined by the dimension and the parameterization of
the reduced model. Both can be freely chosen.

In the context of model reduction, it is important to first determine the mini-
mal dimension necessary to still describe the system dynamics accurately within
a given tolerance. Moreover, it is beneficial to be able to parameterize a low-
dimensional approximation of the full model by any chosen species of the full
model according to the user’s needs. The species chosen for parameterization of
the lower-dimensional model are called reaction progress variables in the follow-
ing and it is reasonable to chose those species which significantly contribute to
the “active” system dynamics. On this background we present a new method
by Lebiedz et al. [14] to analyze the minimal dimension and the contribution
of each species to the system dynamics in order to choose this dimension for a
reduced model and determine the reaction progress variables needed for explicit
model reduction.

Automatic Complexity Analysis and Model Reduction 125

To demonstrate the value of a combination of both methods outlined above
for applications in systems biology, we apply them exemplarily to a model for the
ERK signaling pathway [7, 24] involving 11 biochemical species. We determine
the minimal dimension of this system as well as the contribution of each species
to the active dynamics of the whole system. After having obtained these results
we numerically compute a low dimensional manifold representing the reduced
dynamics of the system and compare the manifold with an initial trajectory.

In the following section, we will give a brief overview of the model. In section 3
the complexity analysis method by Lebiedz et al. [14] is presented and afterwards
we deal with the model reduction approach by Lebiedz et al. [13, 26]. Finally,
we present the numerical results for the example application and discuss them.

2 Model of the Regulatory Influence of RKIP on the
ERK Signaling Pathway

In this section, we review the basics of the Ras/Raf/MEK/ERK signaling path-
way regulated by RKIP. The ERK signaling pathway is an important subject
of research due to the fact that it controls processes like cell differentiation and
proliferation. We will briefly present a model of the regulatory influence of RKIP
to the ERK signaling pathway introduced in [7] and [24]. The graphical represen-
tation of the enzyme kinetic reactions shown in Fig. 1 describes the inhibition of
the activation of RAF by RKIP which leads to a “downregulation” of the ERK
signaling pathway.

Fig. 1. Graphical representation of the model of the regulatory influence of RKIP to
the ERK signaling pathway

126 D. Lebiedz, D. Skanda, and M. Fein

Table 1. Parameter values of the ERK signaling pathway

Parameter k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

Value 0.53 0.072 0.625 0.00245 0.0315 0.8 0.0075 0.071 0.92 0.00122 0.87

The concentrations of the different proteins are labeled with mi (i = 1, ..., 11).
The corresponding proteins and protein complexes are Raf-1*, RKIP, Raf-1*/
RKIP, Raf-1*/RKIP/ERK-PP, ERK-P, RKIP-P, MEK-PP, MEK-PP/ERK,
ERK-PP, RP and RKIP-P/RP as indicated in Fig. 1. The suffix -P (-PP) indi-
cates phosphorylated (double phosphorylated) proteins. The forward and back-
ward reactions are indicated by arrows and are labeled by the corresponding
rate constants ki (i = 1, ..., 11). The values of these rate constants determined
by Cho et al. [7] are shown in Table 2. These values are dimensionless because
we are only interested in the complexity reduction and analysis of the model
and do not intend to compare the ki’s with each other. The corresponding ODE
system by Cho et al. [7] is given by

dm1

dt
= −k1m1m2 + k2m3 + k5m4 − κm1m5m6

dm2

dt
= −k1m1m2 + k2m3 + k11m11 − κm2m10

dm3

dt
= k1m1m2 − k2m3 − k3m3m9 + k4m4

dm4

dt
= k3m3m9 − k4m4 − k5m4 + κm1m5m6

dm5

dt
= k5m4 − k6m5m7 + k7m8 − κm1m5m6

dm6

dt
= k5m4 − k9m6m10 + k10m11 − κm1m5m6

dm7

dt
= −k6m5m7 + k7m8 + k8m8 − κm7m9

dm8

dt
= k6m5m7 − k7m8 − k8m8 + κm7m9

dm9

dt
= −k3m3m9 + k4m4 + k8m8 − κm7m9

dm10

dt
= −k9m6m10 + k10m11 + k11m11 − κm2m10

dm11

dt
= −k9m6m10 − k10m11 − k11m11 + κm2m10 ,

(2)

where the bold terms are reverse reactions (with a very small backward rate
constant κ) which we have added:

Automatic Complexity Analysis and Model Reduction 127

m4
k5→ m5 + m6 + m1 m4

k5�
κ

m5 + m6 + m1

m8
k8→ m7 + m9 =⇒ m8

k8�
κ

m7 + m9

m11
k11→ m3 + m10 m11

k11�
κ

m3 + m10 .

Furthermore, we need the mass conservation equations

m1 + m3 + m4 = const
m2 + m3 + m4 + m6 + m11 = const

m9 + m4 + m5 + m8 = const
m7 + m8 = const

m10 + m11 = const

(3)

for later purposes.

3 Complexity Analysis: Dynamic Sensitivity Analysis
Allowing Orthogonal Decomposition of System
Dynamics

The first step for model reduction is the choice of the fixed species (reaction
progress variables parameterizing the reduced model). Their choice is in general
a priori free. To select a reasonable set of fixed species out of the set of all species
it is suitable to perform a complexity analysis in the first place followed by the
model reduction.

The goal of our complexity analysis is to determine a reduced dimension for a
given error tolerance and the contribution of each species to the active dynamics
of the system on a given time scale for a given trajectory in phase space. With
this information one can now designate the amount of fixed species or in other
words the dimensions of the slow attracting manifold and a suitable choice of
reaction progress variables.

In the following we present a novel complexity analysis algorithm by Lebiedz
et al. [14]. A similar analysis method has already successfully been applied to
large oscillatory chemical systems by Shaik et al. [27]. We use the new algorithm
to determine a suitable dimension of the low-dimensional manifold representing
the reduced model and a suggestion for the choice of suitable reaction progress
variables from the list of species.

The method splits a given trajectory into smaller intervals of equidistant
length. On these intervals sensitivity matrix computations are performed cor-
responding to the propagation of virtual initial value perturbation along the
trajectories. By a singular value decomposition of these sensitivity matrices, the
extent of contraction/expansion of the perturbation is represented in an orthog-
onal coordinate system. The aim of the complexity analysis is now to separate

128 D. Lebiedz, D. Skanda, and M. Fein

strongly contracting (fast) directions in phase space from other directions, as-
sume the relaxation of the fast direction via an algebraic equation and compare
the solution of the so reduced differential algebraic equation model to the full
original differential equation model on the given time interval. Details will be
provided in the next section.

Assume now that for the IVP (1) a solution exists

x(t) = x(t; t0, x0) , (4)

which is defined for all t ≥ t0 ≥ 0.
Moreover, let ∆x0 be an initial perturbation applied at t0. The deviation from

the solution of (4) at a later time point t can be formulated as

∆x(t) := x(t; t0, x0 + ∆x0)− x(t; t0, x0) . (5)

Therefore, linearization yields

∆x(t) =
x(t; t0, x0 + ∆x0)− x(t; t0, x0)

∆x0
·∆x0

≈ ∂x

∂x0
(t; t0, x0)︸ ︷︷ ︸

=:W (t,t0)

·∆x0 ,
(6)

where W (t, t0) ∈ IRn×n is the so called sensitivity or propagation matrix that
propagates the perturbation ∆x0, applied at t0, along the curve (t0, x0).

The global aspect lies in the fact that the complete time interval [0, tend] is
devided into n sections [0, T], . . . , [(n− 1)T, nT] each of which has length

T :=
tend

n
. (7)

Let us further assume that on each such section a solution x(T) = x(T ; 0, x0), . . . ,
x(nT) = x(nt; (n − 1)T, x((n − 1)T)) exists for the IVP (1). Due to (6) we
get the corresponding linearized perturbations ∆x(T) ≈ W (T, 0) · ∆x(0), . . . ,
∆x(nT) ≈ W (nT, (n− 1)T) ·∆x((n− 1)T).

The analysis of the aforementioned propagation matrices W (iT, (i−1)T), i =
1, . . . , n is the very core of the complexity analysis algorithm because the ma-
trices contain information about the extent of relaxation of perturbations of the
species variables on each subinterval and thus allow a separation into relaxing
and active dynamical modes.

The singular value decomposition offers the opportunity to analyze these ma-
trices and helps to identify strongly contracting modes being enslaved to the
remaining ones. It can be stated as follows:

For W ∈ IRn×n there exist orthogonal matrices U = [u1, . . . , un] ∈ IRn×n and
V = [v1, . . . , vn] ∈ IRn×n such that

W = UΣV T , (8)

where Σ = diag(σ1, . . . , σn) and σ1 ≥ . . . ≥ σn ≥ 0 are the singular values
of W .

Automatic Complexity Analysis and Model Reduction 129

Geometrically, (8) means that the column vectors of U correspond with the
axes of a n-dimensional ellipse, whose lengths are determined by the singular
values σ1, . . . , σn. The column vectors of V are mapped onto the axes of this
hyperellipse under the linear transformation W :

Wvi = σiui i = 1, . . . , n .

For the sake of better visualization, a sketch of a typical situation in IR2 is
depicted in Fig. 2. We advise the readers to consult e.g. [29] for getting a deeper

MSS
σ2u2

v2

v1

σ1u1

M

Fig. 2. Singular value decomposition of a 2 × 2 matrix M . The sphere S ∈ IRn is
mapped onto the hyperellipse MS .

understanding of the topic. The crucial advantage of the singular value approach
over the analysis of eigenvalues of Jacobian matrices used in [32] is twofold. First,
the Jacobian contains only local information in an infinitesimally small time
window and in particular if the system is highly nonlinear, this information is of
restricted value for the real evolution of the system dynamics in a finite range
around the actual system state. Second, since the Jacobian is a non-symmetric
matrix in general, a diagonalization by an orthogonal linear transformation is
impossible and thus the slow and fast subspaces are not orthogonal to each other.
This leads to severe difficulties when computing the contribution of each species
to each subspace.

The column vectors of U determine contracting (expanding) directions in
phase space and the most contracting direction is characterized by the shortest
axis σiui of the hyperellipse and quantified by the corresponding singular value.
The general ODE system (1) can be transformed to

UT ẋ = UT f , (9)

and the modes which are defined by uix(t), i = 1, . . . , n can be classified ac-
cording to their corresponding singular value σi: If σi < 1 then mode uix(t) is
relaxing (perturbations decay in that direction). Conversely, if σi > 1 then the
mode is non-relaxing and strongly responds to perturbations. However, if σi = 1
then a constant mode is encountered which maintains perturbations constant.

130 D. Lebiedz, D. Skanda, and M. Fein

In this sense, the matrix U can be partitioned into a “relaxing” and an “active”
submatrix Urel and Uact respectively

U = [Uact|Urel] = [u1, . . . , ur|ur+1, . . . , un] . (10)

Assuming now the contracting modes to be relaxed and enslaving them to the
active modes one can derive a differential algebraic equation (DAE) system

UT
actẋ = UT

actf

0 = UT
relf ,

(11)

with r differential and n−r algebraic equations. In order to determine the number
of relaxing modes on each subinterval and thus the dimension of the reduced
model, the number of contracting modes assumed to be relaxed is iteratively
increased until a user-defined error tolerance TOL is violated

|y∗
i (jT)− yi(jT)|
|yi(jT)| ≤ TOL , i = 1, . . . , r, j = 1, . . . n (12)

where yi(jT)∗ is the differential part of the DAE (11) and yi(jT) is the solution
of the transformed ODE system (9).

The reduced dimension r corresponds to the number of active modes and the
dynamic behavior of the system is eventually described in an error-controlled
way by a model of this reduced dimension. However, according to the linear
transformation, the active and relaxing modes correspond to linear combinations
of the state variables xi(t). Hence, in order to get insight into the contribution of
each species xi(t) to the system dynamics, we analyse the subspace spanned by
the column vectors of U as suggested in (10): The first r vectors span the active
subspace, the following n − r vectors span the subspace representing relaxing
processes. According to this, the position of the axes is crucial for determining
any contribution of species to the system dynamics separated into active and
relaxing ones. The position of the i-th axis with respect to the appropriate
subspace is expressed by pact

i :=
∑r

j=1 uj(i)uj and prel
i :=

∑r
j=r+1 uj(i)uj , i =

1, . . . , n respectively with uj(i) indicating the i-th component of vector uj.
These projection vectors can be associated with the contribution of each

species to the relaxing and active subspace. Hence a relative contribution of
each species to the particular subspace (given in %) can be calculated via the
formula

ract
i :=

‖pact
i ‖

‖pact
i ‖+ ‖prel

i ‖

rrel
i :=

‖prel
i ‖

‖pact
i ‖+ ‖prel

i ‖
,

(13)

for each i = 1, . . . , n.
For an application of the model reduction approach presented in the next

section, our complexity analysis algorithm is supposed to provide a suitable

Automatic Complexity Analysis and Model Reduction 131

dimension of the reduced model on a given time interval and to support the choice
of appropriate reaction progress variables parameterizing the reduced model. It
is reasonable (but not mandatory) to choose species with large contributions to
the active subspace here.

4 Model Reduction: Maximal Relaxation of Chemical
Forces under Constraints

In this section a novel model reduction method based on optimizing trajecto-
ries is applied to the mathematical model (2). In the following we will give an
overview of the methodical ideas first introduced by Lebiedz [13] and further
refined by Reinhardt et al. [26].

Unlike time scale analysis [23] or lumping techniques [18], the presented
method is based on optimizing trajectories in phase space with respect of the re-
laxation of “chemical forces” along the trajectories. The key idea of this method
is to fix the initial concentration of several suitable species and to determine
the initial concentrations of the remaining species, a procedure called species
reconstruction. They are determined such that the resulting trajectory starting
from the initial concentrations to the equilibrium is maximally relaxed in terms
of “chemical forces“ in a suitable sense. This trajectory is then used as a repre-
sentation of the reduced model for given values of the reaction progress variables
parameterizing the reduced model.

These numerical optimized trajectories represent a reduced model in terms of
slow attracting manifolds spanned by these trajectories and parameterized by
the species with fixed initial concentrations.

This key idea can be realized mathematically by an optimization problem
which can generally be formulated as

min
xk

∫ tend

0

Φ(x(t))dt (14a)

subject to

dxk

dt
= fk(x) k = 1, ..., n (14b)

xk(0) = x0
k k ∈ Ifixed (14c)

|xk(tend)− xeq
k | ≤ ε k ∈ Ifixed (14d)

and is subject to conservation relations among the species. xk are the concen-
trations of biochemical species, Ifixed is the index set that contains the indices
of variables with fixed initial values, the so called reaction progress variables.

The constraint (14b) includes the dynamics of the biochemical system, i.e.
the underlying ODE system (1) in the formulation of the optimization problem.
This ensures the consistency of the solution of the optimization problem with
the full model.

132 D. Lebiedz, D. Skanda, and M. Fein

The exact approach of the equilibrium value xeq
k in a numerical solution of

the kinetic equation system would take infinite time because it corresponds to
vanishing right-hand sides of the kinetic equations and therefore the dynamics
get infinitely slow when approaching the equilibrium point. For this reason the
approach to equilibrium is approximated by the mathematical formulation (14)
by assuming the system to be close to equilibrium, which means that the de-
viation of the final value xk(tend) from its equilibrium value xeq

k is assumed to
be less or equal to a quantity ε. This condition is formulated as the end point
constraint for xk(tend) in (14d). The corresponding end time tend, which is a
priori unknown, is kept free within the problem formulation and is determined
during numerical computations. Alternatively, the time tend can be fixed such
that the final state of the system is very close to the chemical equilibrium point,
making (14d) redundant.

Φ(x(t)) in (14a) is the objective functional which describes an optimization
criterion related to the degree of relaxation of “chemical forces”.

Reinhardt et al. [26] state that a suitable criterion Φ(x(t)) should describe
the extent of relaxation of “chemical forces” in the evolution of trajectories to
equilibrium. This means that the objective functional Φ(x(t)) should be mini-
mal along a trajectory that is as close to equilibrium as allowed by the initial
constraints (14d).

Lebiedz [13] considers a generalized concept for the “distance” of a chemical
system from its attractor in order to derive a thermodynamic criterion which is
related to maximal relaxation of “chemical forces” along phase space trajectories.
Reinhardt et al. consider a suitable extension that turned out to be particularly
successful when applied to a hydrogen combustion reaction mechanism in order
to compute a low-dimensional attracting manifold for model reduction [26].

Under isolated conditions, the attractor of a chemical system is the thermody-
namic equilibrium. In Lebiedz’ model reduction approach, a special trajectory,
called Minimal Entropy Production Trajectory (MEPT), which converges to-
wards equilibrium, is calculated such that the sum of affinities of the entropy
production rates of single reaction steps is minimized [13].

The entropy production rate is closely related to the concept of chemical affin-
ity which was first introduced by de Donder [8] as the driving force of chemical
reactions.

For an elementary reaction step j with the forward and backward reaction
rates Rj→ and Rj←, the concept of chemical affinity can be related to the
concept of entropy production by the following relation [13]:

diSj

dt
= R · (Rj→ −Rj←) ln

(
Rj→
Rj←

)
, (15)

where diSj/dt is the entropy production rate for reaction j and R is the gas
constant.

Entropy production rates are additive for several elementary reaction steps.
Therefore, the total entropy production rate (the sum of the entropy produc-
tion rates of all n elementary reaction steps) can be computed for an arbitrary

Automatic Complexity Analysis and Model Reduction 133

reaction system if kinetic data are available and a detailed elementary reaction
step mechanism is known.

In the context of the general optimization problem (14), using entropy pro-
duction as an optimization functional means:

Φ(x(t)) =
n∑

j=1

diSj

dt
. (16)

On the basis of the concept of curvature of trajectories in phase space, Rein-
hardt et al. [26] derive a more fundamentally rooted criterion for the objective
functional Φ(x(t)) which is subsequently combined with the entropy production.

This criterion is related to the geometric interpretation of “chemical forces”
from a physical point of view. Motivated by this picture the principle of “force
= curvature” is transferred to the field of chemical kinetrics and formulated as
a corresponding variational principle.

In (bio)chemical systems dissipative forces are active. Slow and fast dynamic
modes corresponding to different velocities and thus time scales of chemical
reactions result in an anisotropic force relaxation behavior in phase space.

For a chemical system whose dynamics is described by the ODE system

ẋ(t) = f(x) , (17)

curvature of the trajectories x(t) as geometrical objects in phase space is
considered.

The following relations hold:

ẍ(t) =
d2x

dt2
=

dẋ

dt
=

dẋ

dx
· dx

dt
= J(ẋ(t)) · ẋ(t) = J(f(x(t))) · f(x(t)) (18)

with J(f) being the Jacobian of the right-hand side of equation (17).
Based on (18), Reinhardt et al. define the curvature of x(t) as the vector norm

‖ẍ(t)‖ = ‖J(f(x(t))) · f(x(t))‖ . (19)

Transferring the fundamental geometric picture of force being equivalent to cur-
vature mentioned above, Reinhardt et al. relate the curvature of trajectories in
(17) to the forces driving the chemical system towards equilibrium by subsequent
relaxation of dynamical modes. In thermodynamic equilibrium those chemical
forces vanish.

As a criterion which characterizes maximal relaxation of chemical forces under
given constraints Reinhardt et al. use minimal total (“integrated“) curvature of
trajectories defined by the objective function

Φ(x(t)) := ‖J(f(x)) · f(x)‖ (20)

in the general optimization problem (14).
Alternatively, the objective function (20) can be interpreted as minimizing the

length of a trajectory in suitable Riemannian metrics which expresses distance
from equilibrium in a suitable sense.

134 D. Lebiedz, D. Skanda, and M. Fein

For any continuously differentiable curve γ(t) on a Riemannian manifold, the
length L of γ is defined as

L(γ) :=
∫

γ

√
gγ(t)(γ̇(t), γ̇(t))dt . (21)

with gγ(t) being a scalar product defined on the tangent space of the curve in
each point.

If the Riemannian metrics gγ(t) is chosen as

gγ(t)(f, f) := fT JT J︸︷︷︸
positive definite

f = ‖Jf‖2 , (22)

then the “length-minimizing” objective functional being equivalent to (20)
becomes

min
∫ tend

0

√
gγ(t)(ẋ(t), ẋ(t))dt . (23)

The solution trajectory of this problem can be interpreted as a geodesic, i.e. a
curve which minimizes the length of the path between two points in a possibly
curved manifold.

Hence the “distance from equilibrium in a chemical sense” can be formulated
here in an explicitmathematical formbased on concepts fromdifferential geometry.

To describe the distance of a chemical system from its thermodynamic equi-
librium in a very general way, the Riemannian metrics

ĝγ(t)(f, f) := fT JT · A · J︸ ︷︷ ︸
positive definite

f =: ‖Jf ‖2A (24)

can be considered, where A is a positive definite matrix.
As a possible choice for A, Reinhardt et al. [26] propose a diagonal matrix

with entries

akk =
n∑

j=1

νkj
diSj

dt
(k = 1, ..., m) (25)

which represents an anisotropic “kinetic weighting” of the phase space directions
by including the entropy production rate.

Here n is the number of reactions, νkj are the stoichiometric coefficients de-
scribing the degree to which the chemical species k participates in reaction j,
and diSj/dt is the entropy production rate of reaction j.
akk is the sum of the entropy production rates of all elementary reactions in
which species k takes part.

A is positive definite since according to the Second Law of Thermodynamics
diSj/dt > 0 holds for any spontaneous process, and therefore akk > 0 for all
k = 1, ..., n.

Thus the objective functional Φ(x(t)) can be restated as

Φ(x(t)) = ‖Jf‖2A . (26)

We use this criterion in the biochemical example application presented in this
paper and demonstrate its success for the purpose of model reduction.

Automatic Complexity Analysis and Model Reduction 135

5 Numerical Results

In the following, we apply a combination of the methods presented in the previous
sections to the example model system introduced in section 2. The benefit of
combining the two methods lies in the fact that a user, who is interested in
model reduction, can choose the dimension of the reduced model and the reaction
progress variables parameterizing the reduced model freely in accordance with
the problem-determined needs on the basis of the complexity analysis.

For the complexity analysis, we use an implementation of the method by
Lebiedz et al. [14] described in section 3. The code is written in C and uses
DAESOL [1] in order to compute the sensitivity matrices, an efficient and robust
integrator for stiff ODE and DAE systems based on a backward differentiation
formula (BDF) which additionally implements a numerically stable and accurate
differentiation scheme, the internal numerical differentiation (IND) [2].

The initial values for the trajectory in phase space, to which the complexity
analysis and subsequent model reduction is applied, are:

m1 = 67.95 m2 = 0.372 m3 = 0.091 m4 = 58.25
m5 = 0.088 m6 = 0.228 m7 = 66.33 m8 = 25.17
m9 = 176.41 m10 = 160.95 m11 = 2.244 .

(27)

They are identical to those chosen by Petrov et al. [24] who accomplish model
reduction via QSSA for the same model system. Numerical integration of system
(2) is performed over the interval [0, tend] with tend = 20 time units. After this
time the equilibrium point will be reached. We use equidistant time steps of
length T = 0.001 time units for the intervals to calculate the sensitivity matri-
ces. Therefore, the trajectory is split into 200, 000 pieces on which the reduced
dimensions as well as the contributions of the species to the currently active
dynamics are computed with an user-defined error tolerance TOL = 10−10. In
the following we present and discuss the numerical results.

In Fig. 3 the minimal dimension is plotted versus time. The system contains
11 species from which we have to substract the 5 mass conservation equations
(3) to obtain the dimension of the space in which the dynamics can take place.
That means that the reduced dimension must lie between 6 and 0, where 0
corresponds to the equilibrium state.

In Fig. 4, contributions of selected 4 out of 11 species (given in percent) are
depicted which have been calculated via formula (13). Among these species, we
illustrate three obviously active ones (m5, m8 and m11) and one non-active, i.e.
relaxing, (m6) respectively. The contribution of the inactive species m6 quickly
falls to a constant low level which indicates that this species is relatively unim-
portant for the active system dynamics. Therefore, if one is free in choice, this
species may not be appropriate for use as a reaction progress variable for model
reduction in contrast to the three others. The explicit computation of the low
dimensional manifold which represents the reduced dynamics is performed via
the algorithm described in section 4 which has been implemented within the soft-
ware package MUSCOD-II [15, 16, 17]. MUSCOD-II has been designed for solving

136 D. Lebiedz, D. Skanda, and M. Fein

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

time

m
in

im
al

 d
im

en
si

on

Fig. 3. Minimal dimension of system (2). The dimension decreases gradually when
approaching equilibrium.

0 5 10 15 20
0

50

100

time

co
nt

rib
ut

io
n

of
 m

5
[%

]

0 5 10 15 20
0

50

100

time

co
nt

rib
ut

io
n

of
 m

6
[%

] active subspace

relaxing subspace

0 5 10 15 20
0

50

100

time

co
nt

rib
ut

io
n

of
 m

8[
%

]

0 5 10 15 20
0

50

100

time

co
nt

rib
ut

io
n

of
 m

11
[%

]

Fig. 4. Contribution of the species m5, m6, m8 and m11 to the system dynamics

large scale nonlinear optimization problems and optimal control problems based
on a sophisticated multiple shooting approach suggested by Bock [4, 3]. The nu-
merical integrator used along with MUSCOD-II is DEASOL (see above). According
to the results obtained by calculating the minimal dimension, the appropriate
dimension should be chosen to be 4 because it retains this value for the longest

Automatic Complexity Analysis and Model Reduction 137

0.02
0.04

0.06
0.08

0.1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

m8m5

m
11

Equilibrium Point

Fig. 5. A 2-dimensional manifold spanned by the reaction progress species m5 and
m8. The initial trajectory is displayed as light shaded bold line moving towards the
equilibrium point.

time until reaching the vicinity of the equilibrium point (compare Fig. 3). Un-
fortunately, a 4-dimensional manifold cannot be visualized well. Instead we have
computed a 2-dimensional one, which also approximates the slow dynamics ap-
propriately (see Fig. 5), however with a lower accuracy in regions far from the
equilibrium point.

According to the complexity analysis results, we have chosen two species with
large contributions to the active dynamics as reaction progress variables (m5

and m8).
For the visualization of the manifold, optimized trajectories spanning this

manifold have been calculated by the algorithm described in section 4 with
initial values within the following ranges

m5 : 0.022− 0.088
m8 : 10.0− 55.0 .

These trajectories may be tabulated and used as a reduced model for further
numerical applications. As shown in Fig. 5, the initial trajectory firstly converges
towards the computed manifold and thereafter approaches the equilibrium point
on the manifold.

6 Conclusion

In this paper we have presented two new numerical methods for complexity
analysis as well as model reduction which have been applied to a biochemical
system of the influence of RKIP to the ERK signaling pathway. More precisely,

138 D. Lebiedz, D. Skanda, and M. Fein

we have determined the species which contribute mainly to the dynamics of that
system, namely

m5 =̂ ERK-P
m8 =̂ MEK-PP/ERK

m11 =̂ RKIP/RP .

Petrov et al. [24] state that RKIP possibly plays a minor role in inhibiting the
ERK signaling pathway near the quasi steady state of the system. They conclude
this from the fact that the equilibrium point does not depend on the initial
concentration of RKIP (where the QSSA assumptions are valid) but rather on
the Raf-1*/RKIP/ERK-PP complex.

According to the complexity analysis presented above, we can argue that
RKIP does not contribute much to the active dynamics of the system thus rein-
forcing the results by Petrov et al..

Moreover, we have shown that a trajectory of this system is mostly confined
to a 4-dimensional space. Based on this analysis we have also computed a low
dimensional manifold spanned by optimized trajectories representing a reduced
model. We have demonstrated that the initial trajectory quickly converges to the
manifold at first and then proceeds to the equilibrium point on the manifold.
Our approach is of general value for complexity analysis and model reduction of
biochemical systems.

Acknowledgment

We thank H.G. Bock who generously provided the software package MUSCOD-II.
Moreover, we are indebted to V. Reinhardt and J. Kammmerer for implemen-

tation and enhancement of the numerical methods used in this paper.
A special thank goes to the Deutsche Forschungsgemeinschaft (DFG), the Son-
derforschungsbereich 568 and the FRISYS program as part of the BMBF systems
biology initiative FORSYS for financial support.

References

[1] Bauer, I., Finocchi, F., Duschl, W.J., Gail, H.-P., Schlöder, J.P.: Simulation of
chemical reactions and dust destruction in protoplanetary accretion discs. Astron.
Astrophys. 317, 273–289 (1997)

[2] Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics.
In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds.) Modeling of Chemical Reaction
Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer,
Heidelberg (1981)

[3] Bock, H.G.: Randwertproblemmethoden zur Parameteridentifizierung in Sys-
temen nichlinearer Differentialgleichungen. Bonner Mathematische Schriften,
vol. 183. University of Bonn, Bonn (1987)

[4] Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of op-
timal control problems. In: Proc. 9th IFAC World Congress Budapest. Pergamon
Press, Oxford (1984)

Automatic Complexity Analysis and Model Reduction 139

[5] Bodenstein, M.: Eine Theorie der photochemischen Reaktionsgeschwindigkeiten.
Z. Phys. Chem. 85, 329–397 (1913)

[6] Chapman, D., Underhill, L.: The interaction of chlorine and hydrogen. The influ-
ence of mass. J. Chem. Soc. Trans. 103, 496–508 (1913)

[7] Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.:
Mathematical modeling of the influence of RKIP on the ERK signaling path-
way. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer,
Heidelberg (2003)

[8] de Donder, T., van Rysselberghe, P.: Thermodynamic Theory of Affinity: A Book
of Principles. Stanford University, Menlo Park (1936)

[9] Gorban, A., Karlin, I.: Invariant Manifolds for Physical and Chemical Kinetics.
Springer - Lecture Notes in Physics, vol. 660. Springer, Heidelberg (2005)

[10] Gorban, A., Karlin, I., Zinovyev, A.: Constructive methods of invariant manifolds
for kinetic problems. Phys. Rep. 396, 197–403 (2004)

[11] Hadjinicolaou, M., Goussis, D.A.: Asymptotic solutions of stiff PDEs with the
CSP method: the reaction diffusion equation. SIAM J. Sci. Comput. 20, 781–810
(1999)

[12] Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. J. Chem.
Kinet. 26, 461–486 (1994)

[13] Lebiedz, D.: Computing minimal entropy production trajectories: An approach to
model reduction in chemical kinetics. J. Chem. Phys. 120, 6890–6897 (2004)

[14] Lebiedz, D., Kammerer, J., Brandt-Pollmann, U.: Automatic network coupling
analysis for dynamical systems based on detailed kinetic models. Phys. Rev.
E 72(041911) (2005)

[15] Leineweber, D.B.: Efficient reduced SQP methods for the optimization of chemical
processes described by large sparse DAE models. Fortschritt-Berichte VDI Reihe
3, Verfahrenstechnik, vol. 613. VDI-Verlag GmbH, Düsseldorf (1999)

[16] Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple
shooting based reduced SQP strategy for large-scale dynamic process optimization
– part I: Theoretical aspects. Comput. Chem. Engng. 27, 157–166 (2003)

[17] Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: An efficient multiple
shooting based reduced SQP strategy for large-scale dynamic process optimization
– part II: Software aspects and applications. Comput. Chem. Engng. 27, 167–174
(2003)

[18] Li, G., Pope, S.B., Rabitz, H.: New approaches to determination of constrained
lumping schemes for a reaction system in the whole composition space. Chem.
Eng. Sci. 46, 95–111 (1991)

[19] Maas, U.: Coupling of chemical reaction with flow and molecular transport. Appl.
Math. 40, 249–266 (1995)

[20] Maas, U.: Efficient calculation of intrinsic low-dimensional manifolds for the sim-
plification of chemical kinetics. Springer – Computing and Visualization in Sci-
ence 1, 69–81 (1998)

[21] Maas, U., Pope, S.B.: Simplifying chemical kinetics: Intrinsic low-dimensional
manifolds in composition space. Combust. Flame 88, 239–264 (1992)

[22] Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49,
333–369 (1913)

[23] Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical systems. Chem. Rev. 98, 391–406 (1998)

[24] Petrov, V., Nikolova, E., Wolkenhauer, O.: Reduction of nonlinear dynamic sys-
tems with an application to signal transduction pathways. IET Syst. Biol. 1(1),
2–9 (2007)

140 D. Lebiedz, D. Skanda, and M. Fein

[25] Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Annu.
Rev. Phys. Chem. 34, 419–461 (1983)

[26] Reinhardt, V., Winckler, M., Lebiedz, D.: Approximation of slow attracting man-
ifolds by trajectory-based optimization approaches. J. Phys. Chem. A 112, 1712–
1718 (2008)

[27] Shaik, O.S., Kammerer, J., Górecki, J., Lebiedz, D.: Derivation of a quantita-
tive minimal model for the photosensitive Belousov-Zhabotinsky reaction from a
detailed elementary-step mechanism. J. Chem. Phys. 123(234103) (2005)

[28] Tomlin, A.S., Pilling, M.J., Turányi, T., Merkin, J.H., Brindley, J.: Mechanism
reduction for the oscillatory oxidation of hydrogen sensitivity and quasi-steady
state analyses. Combust. Flame 91, 107–130 (1992)

[29] Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
[30] Turányi, T.: Sensitivity analysis of complex kinetic systems. Tools and applica-

tions. J. Math. Chem. 5, 203–248 (1990)
[31] Warnatz, J., Maas, U., Dibble, R.W.: Combustion. Physical and Chemical Funda-

mentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd edn.
Springer, Heidelberg (2001)

[32] Zobeley, J., Lebiedz, D., Kammerer, J., Ishmurzin, A., Kummer, U.: A new time-
dependent complexity reduction method for biological systems. Trans. Comput.
Syst. Biol. 1, 90–110 (2005)

Formal Analysis of Abnormal Excitation in

Cardiac Tissue

Pei Ye1, Radu Grosu1, Scott A. Smolka1, and Emilia Entcheva2

1 Computer Science Department, Stony Brook University, NY 11794, USA
2 Biomedical Engineering Department, Stony Brook University, NY 11794, USA

Abstract. We present the Piecewise Linear Approximation Model of
Ion Channel contribution (PLAMIC) to cardiac excitation. We use the
PLAMIC model to conduct formal analysis of cardiac arrhythmic events,
namely Early Afterdepolarizations (EADs). The goal is to quantify (for
the first time) the contribution of the overall sodium (Na+), potassium
(K+) and calcium (Ca2+) currents to the occurrence of EADs during the
plateau phase of the cardiac action potential (AP). Our analysis yields
exact mathematical criteria for the separation of the parameter space for
normal and EAD-producing APs, which is validated by simulations with
classical AP models based on complex systems of nonlinear differential
equations. Our approach offers a simple formal technique for the pre-
diction of conditions leading to arrhythmias (EADs) from a limited set
of experimental measurements, and can be invaluable for devising new
anti-arrhythmic strategies.

1 Introduction

Excitable cells are those cells capable of generating and propagating electrical
signals without damping. They are essential biological building blocks, deter-
mining functionality in the brain, heart, skeletal and smooth muscles.

An action potential (AP) is a change in an excitable cell’s membrane poten-
tial caused by the flow of different ions across the cell membrane. The left panel
in Fig. 1 illustrates a normal AP waveform for a guinea-pig heart cell. By con-
vention, a normal AP follows a well defined cycle of “depolarization” (the rising
phase), followed by “repolarization” (the falling phase). Furthermore, in qualita-
tive terms, the “repolarization” phase can be divided in “early repolarization”,
“plateau” and “final repolarization”.

Under some pathological conditions leading to a prolonged repolarization
phase, the morphology of the AP can be altered by an abnormal secondary
depolarization, termed Early Afterdepolarization (EAD). By clinical defi-
nition [1,2], EADs occur before the completion of repolarization of an AP (as
illustrated in the right panel of Fig. 1).

Such cellular-level events can give rise to undesired new excitation waves and
can precipitate life-threatening heart activation sequences, e.g. tachyarrhyth-
mias, especially in patients with Long QT syndrome [3,4]. As critical arrhythmia
triggers, EADs have been of interest to cardiac researchers for several decades [5].

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 P. Ye et al.

repolarization

−80

2000

0

time (ms)

depolarization

membrane potential (mv)

plateau

final repolarization

early repolarization

Normal Action Potential Action Potential with EAD

0

−80

2000

membrane potential (mv)

EAD

time (ms)

Fig. 1. EAD in cardiac myocyte

Attempts have been made to uncover the ionic mechanisms underlying EADs,
so that their occurrence can be predicted as well as effectively treated. Various
studies have found that the reactivation of calcium (Ca2+) or sodium (Na+)
channels or abnormally reduced potassium (K+) current can lead to this phe-
nomenon [6,7,8]. Yet, a unified view of EAD mechanisms along with predictive
criteria are lacking.

In this paper, we present the Piecewise Linear Approximation Model of the Ion
Channel contribution (PLAMIC) as a basis for understanding and analyzing the
biochemical mechanisms underlying the formation of EADs during the cardiac
action potential. The derivation of the PLAMIC model can be understood as
follows. Let V Na+

, V Ca2+
and V K+

denote the integral contributions to the
AP due to the sodium, calcium and potassium channels, respectively; i.e. the
voltages the ionic currents flowing through these channels induce. Further, let
V NaK denote the combined sodium and potassium voltage.

A key observation is that during normal and abnormal APs, the behavior of
V Ca2+

and V NaK corresponds to triangular-like functions of opposite polarity
(see Fig. 3). As such, in the PLAMIC model, V Ca2+

and V NaK are approximated
in a piecewise-linear fashion using two very simple triangular functions, each of
which naturally comprises a rising phase and a falling phase. The PLAMIC model
also incorporates an AP-morphology-related (exponential) decay function, which
can be fitted across different cell types.

A main advantage of the PLAMIC model then is its highly constrained pa-
rameter space, essentially limited to the peak voltage values and their occurrence
in time of the two triangular functions. The model is therefore amenable to a
closed-form, voltage-monotonicity analysis on the AP cycle during repolariza-
tion. We in fact show that the absence of a monotonically decreasing AP V
(dV

dt < 0) during the plateau phase of repolarization is a necessary and sufficient
condition for EAD. We furthermore provide specific conditions on the parameter
space (involving the relative slopes of the two triangular functions, the relative
occurrence of their peaks, and their relative magnitudes) for EAD occurrence.

We also performed an experimental validation of the conditions derived from
the above-described formal analysis of the PLAMIC parameter space, assembling
a test set of normal and abnormal APs from the widely accepted Luo-Rudy model
ventricular cell model [9]. Our results demonstrate that the results of our formal
analysis can be used as a valid classifier for EAD prediction.

Formal Analysis of Abnormal Excitation in Cardiac Tissue 143

The organization of the rest of the paper is as follows: Section 2 provides
a formal definition of the PLAMIC model. Section 3 conducts a model-based
analysis of the conditions under which EADs occur. Section 4 uses computer
simulations with the Luo-Rudy model to validate our results. Section 5 offers
our concluding remarks and directions for future work.

2 The PLAMIC Model

Mathematical modeling of excitable cells has a long tradition, starting with the
first empirically-derived ionic model of the action potential in a giant squid
axon proposed by Hodgkin and Huxley in 1952 [10]. Subsequently, more ion
channels and complex biophysical processes have been included in these models,
although the general mathematical framework for representing the ion-channel
contribution has remained essentially the same.

The model we propose adopts an abstraction based on voltage, i.e., it deals
with the superposition of the voltages generated by the individual ion channels.
We study the occurrence of EADs as a disturbance in the subtle balance between
the underlying ion currents using their voltage surrogates.

The advantage of using superposition of the voltages, as opposed to the ionic
currents directly, is the integral (smoother) nature of the former in the RC-
circuit model that approximates the electrical behavior of the cell membrane.
This facilitates the curve-fitting process and allows for simpler mathematical ex-
pressions to be employed and further linearized in a piecewise fashion. The result
is the Piecewise Linear Approximation Model of the Ion-Channel contributions
(PLAMIC).

We illustrate the idea of the PLAMIC model starting from a modification
of traditional ionic models based on the Hodgkin-Huxley formalism. The main
equation used in these ionic models is presented in Eqn. 1.

CV̇ = −
∑

Ii(t) + Ist(t) (1)

where V̇ is the time derivative of the membrane potential V, C is the equivalent
capacitance of the cell membrane,

∑
Ii(t) is the sum of all the ion currents

flowing in or out of the cell membrane, and Ist(t) is the stimulation current.∑
Ii(t) may incorporate a number of individual currents for different cell

types. For example, in the Luo-Rudy model [9] (LRd), a widely accepted ven-
tricular cell model, currents can be grouped by ion species as in Eqn. 2.∑

Ii(t) = INa(t) + IK(t) + ICa(t) (2)

where INa, IK, and ICa are the sodium, potassium and calcium overall ion cur-
rents, respectively. The top row of Fig. 2 plots these three components of the
LRd model for a normal AP.

Using for each component current the corresponding voltage, Eqns. 1 and 2
can be equivalently rewritten into the following form (Eqn. 3):

144 P. Ye et al.

0 200 400 600
−400

−200

0

200

time (ms)

cu
rr

en
t

I
Na

0 200 400 600
−2

0

2

4

6

time (ms)

cu
rr

en
t

I
K

0 200 400 600
−10

−5

0

5

time (ms)

cu
rr

en
t

I
Ca

0 200 400 600
−200

0

200

400

time (ms)

vo
lta

ge

v
Na

0 200 400 600
−600

−400

−200

0

time (ms)

vo
lta

ge

v
K

0 200 400 600
−200

0

200

400

time (ms)

vo
lta

ge

v
Ca

Fig. 2. Individual ionic currents and their corresponding voltages in the LRd model

CV̇Na = −INa(t), CV̇K = −IK(t)
CV̇Ca = −ICa(t), CV̇st = Ist(t)

V = (VNa(t) + VK(t) + VCa(t)) + Vst(t)
(3)

where VNa, VK, VCa and Vst are the voltages obtained via integration from INa,
IK, ICa and Ist, respectively.

The motivation behind Eqn. 3 is to first calculate the voltages from the in-
dividual currents and then obtain the overall membrane potential via super-
position. Note the much smoother appearance of the voltage curves (bottom
row) compared to the “spikey” current curves (top row) in Fig. 2. Furthermore,
grouping the sodium and potassium voltages into one combined voltage yields
the opposing triangular-like (and thus inherently linearizable) voltage functions
depicted in Fig. 3.

The essentially triangular-shaped voltage functions suggests the use of two
linear segments (linked together in a triangular form) to approximate the com-
bination voltage due to the sodium and potassium currents (denoted as the NaK
voltage), and the individual voltage due to the calcium current alone (the Ca
voltage).

2.1 Definition of the PLAMIC Model

Two linear segments, forming a triangle (also known as a Lagrange hat function),
are used to represent each of the NaK and Ca voltages. Two of the triangle
vertices (beginning and end) are fixed on the time-axis and the triangle shape
varies by shift in the free (peak) vertex. The triangular function is shown in
Fig. 4 (A). It is essentially a two-piece linear function starting from point (0, 0)
and ending at (TS, 0), where TS is the total simulation time for the generation
of an AP.

Formal Analysis of Abnormal Excitation in Cardiac Tissue 145

0 100 200 300 400 500 600
−500

−400

−300

−200

−100

0

100

200

300

400

time (ms)

vo
lta

ge
 (

m
v)

AP
V

Na
+V

K

V
Ca

Fig. 3. AP, combined sodium and potassium voltage, and calcium voltage in LRd
model

By fixing the simulation time TS, each function is determined solely by the
switching (peak) point (tmax, vmax). The mathematical definition of the triangu-
lar function is given by Eqn. 4, where the superscript u ∈ {Ca, NaK} is used to
distinguish the voltage functions corresponding to the different current types.

fu(t) =

⎧⎪⎨⎪⎩
vu
max

tu
max

t, t ≤ tumax;

TS−t
TS−tu

max
vu
max, tumax < t ≤ TS.

(4)

The functions for vCa and vNaK are then defined simply as follows:

vCa(t) = fCa(t) (5)

vNaK(t) = fNaK(t) (6)

The overall action potential v is the superposition of the two (Eqn. 7).

v(t) = vCa(t)− vNaK(t) + g(t) (7)

where g(t) is a decay function related to the AP morphology. It is defined by
Vmax, the absolute difference between the resting potential and the maximum
voltage during upstroke, and by D (D < 0), an action-potential-duration pa-
rameter which can be adjusted across different cell types (Eqn. 8).

g(t) = Vmaxe
Dt (8)

The decay function qualitatively reflects the passive component of the cell-
membrane response: an RC circuit will exhibit exponential decay after the up-
stroke due to capacitor discharge. In the PLAMIC model, this passive decay is
used in conjunction with the superposed opposite potentials (NaK and Ca).

146 P. Ye et al.

0 Ts
0

time

vo
lta

ge

(t
max

,v
max

)

0 100 200 300 400 500 600
−400

−300

−200

−100

0

100

200

300

400

time (ms)

vo
lta

ge
 (

m
v)

V
−V

NaK
V

Ca

g
Segment A

Segment B

Segment C

(A) The triangular function (B) The PLAMIC model

Fig. 4.

Based on the relative magnitude of tCa
max and tNaK

max (i.e. which voltage reaches
its peak first), the AP equation for v (Eqn. 7) has two alternative formulations.
In each case, v is represented as a three-segment function, referred to in the
following equations as segments A, B and C, respectively.

First, let ac
1 = vCa

max
tCa
max

, ac
2 = −vCa

max
TS−tCa

max
, bc = vCa

max
TS−tCa

max
TS, ak

1 = vNaK
max

tNaK
max

, ak
2 = −vNaK

max
TS−tNaK

max
,

and bk = vNaK
max

TS−tNaK
max

TS.

Case I: tCa
max < tNaK

max

v(t) =

⎧⎨⎩
ac
1t− ak

1t + Vmaxe
Dt, t ≤ tCa

max, segment A;
(ac

2t + bc)− ak
1t + Vmaxe

Dt, tCa
max < t ≤ tNaK

max , segment B;
(ac

2t + bc)− (ak
2t + bk) + Vmaxe

Dt, t ≥ tNaK
max , segment C.

(9)
Case II: tCa

max ≥ tNaK
max

v(t) =

⎧⎨⎩
ac
1t− ak

1t + Vmaxe
Dt, t ≤ tNaK

max , segment A;
ac
1t− (ak

2t + bk) + Vmaxe
Dt, tNaK

max < t ≤ tCa
max, segment B;

(ac
2t + bc)− (ak

2t + bk) + Vmaxe
Dt, t ≥ tCa

max, segment C.
(10)

In Fig. 4 (B), one of the possible implementations of the PLAMIC model
(case I) is shown. The overall PLAMIC-abstracted AP is given as a solid line,
with its three segments annotated accordingly. We plot −vNaK instead of vNaK

to reveal the similarity to the LRd AP parameters shown in Fig. 3.

3 Formal Analysis of the PLAMIC Model

3.1 Monotonicity and EADs

EADs are secondary depolarization phenomena that arise during the repolar-
ization phase; i.e. they disrupt the normal voltage return to rest. Therefore, a

Formal Analysis of Abnormal Excitation in Cardiac Tissue 147

monotonicity analysis of the AP is an appropriate test for EADs. For example,
it is safe to claim that a monotonically decreasing AP v (dv

dt < 0) is a sufficient
condition for the absence of EADs. The opposite statement does not always hold,
i.e. it is not always the case that if AP v is not universal decreasing, there is
an EAD. For example, a “notch” in the early repolarization phase is common
in many cardiac cells and is not considered an EAD (Fig. 5 (A)). Furthermore,
in some cases, the membrane may transiently hyperpolarize; i.e. an undershoot
may occur, with the potential lower than the resting potential during final re-
polarization. This non-monotonic case is also not an EAD (Figure 5 (B)).

Notch

Undershoot

(A) Notch during early repolarization. (B) Undershoot during final repolarization.

Fig. 5. Non-monotonic APs that do not exhibit EADs

If, however, the monotonicity analysis is restricted to the “plateau” phase of the
repolarization process, any deviation from monotonic decay will effectively be an
EAD. In order to define the plateau phase in the PLAMIC model, let notch-delay
be the cell-type-specific initial time segment of the repolarization phase during
which a notch may occur. The PLAMIC plateau phase is then defined to consist
of the suffix of segment A beginning at notch-delay followed by segment B. For
most physiological choices of (tumax, v

u
max), u ∈ {Ca, NaK}, this definition of the

plateau phase coincides closely with its physiological counterpart.
Based on the above monotonicity discussion, the following definition will serve

as the theoretical basis of our formal analysis of EAD in the PLAMIC model.

Definition 1. The PLAMIC model contains an EAD if v̇ > 0 at some point
during the plateau phase.

In Section 3.2, we present a monotonicity analysis of the PLAMIC plateau phase
for both Cases I and II, and derive the exact conditions for EAD occurrence.
Physiological explanations for these conditions are discussed as well.

3.2 Monotonicity Analysis of the PLAMIC Model

Case I. Case I is the most physiologically feasible scenario in cardiac cells.
In simulation data of normal cardiac APs using the LRd model, tCa

max < tNaK
max

holds at all times. As the PLAMIC-based voltage is a piecewise-linear function,
monotonicity is analyzed on a per-segment basis.

148 P. Ye et al.

Segment A. The first derivative of v within this segment is given by the following
equation:

dv

dt
= ac

1 − ak
1 + VmaxDeDt (11)

Imposing the condition dv
dt > 0 yields:

t >
1
D

ln(
ak
1 − ac

1

VmaxD
) (12)

Further examination of Eqn. 12 shows that the existence of a positive real solu-
tion for t requires the following conditions to hold:⎧⎪⎨⎪⎩

ac
1 > ak

1 > 0
0 <

ak
1−ac

1
VmaxD < 1

t < tCa
max

which are summarized in Theorem 1 as the major result for case I.

Theorem 1. (ak
1 < ac

1 < (ak
1 − VmaxD)) ∧ (tCa

max > 1
D ln(ak

1−ac
1

VmaxD)) is a sufficient
condition for a case-I occurrence of EAD during the suffix of segment A beginning
at notch-delay.
In Fig. 6, we plot the different possibilities of the relative magnitudes of ak

1 and
ac
1. Table 1 summarizes the relationship between these values and the occurrence

of EAD.

Table 1. Summary of conditions for the existence of EAD in segment A

Condition EAD No EAD

ac
1 < ak

1 Fig. 6 (A)

ak
1 < ac

1 < ak
1 − VmaxD Fig. 6 (D) Fig. 6 (C)

ak
1 − VmaxD < ac

1 Fig. 6 (B)

An intuitive physiological explanation of the above result is that the existence
of EAD is closely related to the relative speeds of the voltage increase due to
different ion currents, represented by ac

1 and ak
1.

At the beginning of the plateau phase, the AP follows a decreasing trend,
which requires the calcium current to have an upper bound (ac

1 < ak
1 − VmaxD);

otherwise, the AP curve will be increasing through this segment. Furthermore,
for an EAD to form, the balance has to be in favor of the calcium-current con-
tribution (ak

1 < ac
1). The last condition ensures that the calcium current has

enough time to accumulate for the formation of an EAD (tCa
max > 1

D ln(ak
1−ac

1
VmaxD)).

Segment B. As in the analysis for segment A, we first determine the expression
for dv

dt :
dv

dt
= ac

2 − ak
1 + VmaxDeDt (13)

Since dv
dt < 0 throughout this segment (ac

2 < 0, −ak
1 < 0 and VmaxDeDt < 0),

no EAD is possible in segment B.

Formal Analysis of Abnormal Excitation in Cardiac Tissue 149

0 100 200 300 400 500 600
−20

0

20

40

60

80

100

120

140

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

500

time (ms)

vo
lta

ge
 (

m
v)

v
Ca

+g

v
Nak

AP
g

0

50

100

150

200

250

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

600

time (ms)

vo
lta

ge
 (

m
v)

AP
g
v

Ca
+g

v
NaK

(A) ac
1 < ak

1, no EAD (B) ak
1 − VmaxD < ac

1, EAD

0

50

100

150

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

500
vo

lta
ge

 (
m

v)

time (ms)

v
Ca

+g

v
NaK

AP
g

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

vo
lta

ge
 (

m
v)

0

200

400

time (ms)

vo
lta

ge
 (

m
v)v

Ca
+g

v
Nak

AP
g

(C) ak
1 < ac

1 < ak
1 − VmaxD and (D) ak

1 < ac
1 < ak

1 − VmaxD and

tCa
max ≤ 1

D
ln(

ak
1−ac

1
VmaxD

) tCa
max > 1

D
ln(

ak
1−ac

1
VmaxD

)

No EAD EAD

Fig. 6. PLAMIC-based analysis for EAD occurrence in segment A. The AP and decay
functions are plotted as solid lines and use the y-axis on the left; vNaK and vCa +decay
are plotted in dashed lines and use the y-axis on the right. The same conventions apply
to Figs. 7 and 8.

Case II. The defining segment-A equation for v is exactly the same as in case I,
modulo the replacement of tCa

max with tNaK
max in the time bound for t. Following

the case-I analysis for segment A, this observation yields the following condition
for the occurrence of EADs: ⎧⎪⎨⎪⎩

ac
1 > ak

1 > 0
0 <

ak
1−ac

1
VmaxD < 1

t < tNaK
max

Similarly, the major result for Case II can be summarized as follows.

Theorem 2. (ak
1 < ac

1 < (ak
1 − VmaxD)) ∧ (tNaK

max > 1
D ln(ak

1−ac
1

VmaxD)) is a suffi-
cient condition for a case-II occurrence of EAD during the suffix of segment A
beginning at notch-delay.

150 P. Ye et al.

For segment B, the first derivative of v is given by the following equation.

dv

dt
= ac

1 − ak
2 + VmaxDeDt (14)

As ac
1 > 0 and ak

2 < 0, and ac
1− ak

2 + VmaxDeDt > 0 for typical values of Vmax

and C, we observe an increasing AP during this segment. Thus, by Definition 1,
segment B always has case-II EAD. Based on whether or not segment A has
EAD, two cases are possible: EAD commences in (the tail end of) segment A or
it commences in segment B; see Fig. 7.

0

50

100

150

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

600

time (ms)

vo
lta

ge
 (

m
v)

v
Ca

+g

v
Nak

AP
g

0

50

100

150

200

250

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

600

time (ms)

vo
lta

ge
 (

m
v)

v
Ca

+g

v
Nak

AP
g

(A) Segment A has no EAD (B) Segments A and B both have EAD
and Segment B has EAD

Fig. 7. The existence of Case-II EAD for segment B

Although this particular EAD morphology was not observed in the computer
simulations we performed with the LRd model, this does not preclude its actual
occurrence. Further examination of experimental data is needed to confirm or
deny the physiological relevance of this case.

4 Experimental Validation of the PLAMIC Model

In this section, we consider the experimental validation of the PLAMIC model,
specifically, the validity of Theorem 1 as an EAD predictor (classification rule)
during the plateau phase of the AP cycle. To this end, we applied the protocols
presented in [5] to the LRd cardiac-myocyte model to reproduce a number of AP
curves with EADs. We also obtained the corresponding voltages for the calcium
and the combined sodium and potassium currents using the integration method
of Eqn. 3.

For each AP, in order to obtain the PLAMIC model parameters (tumax, v
u
max),

u ∈ {Ca, NaK}, we took the maximum value of VNa + VK as vNaK
max , and the time

at which it occurs as tNaK
max . Data points (tCa

max, v
Ca
max) were obtained in a similar

fashion. The constant coefficients in our experiments are defined as Vmax =
150, offset=127 (defined below), and D = −0.0052. These values have been

Formal Analysis of Abnormal Excitation in Cardiac Tissue 151

0

20

40

60

80

100

120

140
vo

lta
ge

 (
m

v)

0 100 200 300 400 500 600
0

200

400

600

time (ms)

vo
lta

ge
 (

m
v)

V
Ca

V
Na

+V
K

AP

0

50

100

150

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

200

400

500

vo
lta

ge
 (

m
v)

time (ms)

v
Ca

+g

v
NaK

AP
g

(A) Normal AP from LRd model. (B) Normal AP from PLAMIC model.

0

20

40

60

80

100

120

140

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600
0

500

1000

1400

time (ms)

vo
lta

ge
 (

m
v)

V
Ca

V
Na

+V
K

AP

0 100 200 300 400 500 600
0

50

100

150

time (ms)

vo
lta

ge
 (

m
v)

0

500

1000

1400

vo
lta

ge
 (

m
v)

v
Ca

+g

v
Nak

AP
g

(C) EAD caused by Bay K 8644. (D) EAD from PLAMIC model.

0

50

100

150

vo
lta

ge
 (

m
v)

0 200 400 600 800 1000
0

1000

2000

3000

time (ms)

vo
lta

ge
 (

m
v)

V
Ca

V
Na

+V
K

AP

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

time (ms)

vo
lta

ge
 (

m
v)

0 100 200 300 400 500 600 700 800 900 1000
0

1,000

2,000

3,000

vo
lta

ge
 (

m
v)

v
Ca

+g

v
Nak

AP
g

(E) EAD caused by cesium. (F) EAD from PLAMIC model.

Fig. 8. Comparison of AP curves from LRd and the PLAMIC model

chosen to match the LRd simulation results, but can be varied to fit different
AP morphologies and cell types.

A side-by-side comparison of the AP curves obtained from the LRd and
PLAMIC models for both normal and EAD-producing APs is illustrated in
Fig. 8. The top-left panel shows a normal AP and an EAD-exhibiting AP, trig-
gered by a calcium-current-enhancing drug, Bay K 8644. The top-right panel
shows the PLAMIC model simulation for the two cases, which uses a piecewise-
linear approximation of the current-inducing voltages obtained from the LRd

152 P. Ye et al.

0 200 400 600 800 1000
−100

−50

0

50

100

time (ms)

vo
lta

ge
 (

m
v)

0 200 400 600 800 1000
0

1000

2000

3000

time (ms)

vo
lta

ge
 (

m
v)

AP

V
ca

−(V
Na

+V
K
)

Fig. 9. Simulation of normal AP and APs including EAD with variable timing and
severity

0.1 0.15 0.2 0.25 0.3 0.35
100

200

300

400

500

600

700

800

Slope Difference

tim
e

(m
s)

tCa
max

TCa
max

APs with EADs

Normal AP

Fig. 10. Validation of the Theorem 1 classification rule for EADs

model. The bottom row shows similar results for the LRd and PLAMIC models
for EADs induced by the administration of cesium, resulting in a substantial
prolongation of the repolarization phase.

The AP curves generated by the PLAMIC model qualitatively match the LRd
curves, with an AP morphology that is more stylized due to the simplicity of the

Formal Analysis of Abnormal Excitation in Cardiac Tissue 153

linear functions on which the PLAMIC model is based. Nevertheless, the EAD
phenomenon and variations of the repolarization phase are well captured by the
much simpler PLAMIC model.

To validate Theorem 1, formulated for the PLAMIC model, we need only
focus on case I since the condition tCa

max < tNaK
max is always true in the LRd

model. We also need to reformulate (the last condition of) Theorem 1 for the
following reason. In the LRd model, vCa

max, the maximum value of Vca during one
AP cycle, serves as the sole contributor to the positive portion of the voltage.
In the PLAMIC model, however, the positive part is composed of the linear
function vCa(t) and the decay g(t). Thus, when calculating the slope ac

1 in the
LRd model, it is not accurate to use vCa

max directly. Rather, a “decay” factor given
by Vmaxe

DtCa
max should be subtracted from vCa

max.
The reformulation of Theorem 1 is given in Eqn. 15, where ãc

1 is the corrected
slope and offset is a constant used to ensure a non-negative AP value, as in the
PLAMIC model.

tCa
max > 1

D ln(ak
1−ãc

1
VmaxD)

where ãc
1 = vCa

max+offset−VmaxeDtCa
max

tCa
max

ak
1 = vNaK

max
tNaK
max

(15)

In order to test the validity of the derived condition for EADoccurrence givenby
Eqn. 15, we have assembled a test suite of LRd simulation data consisting of one
normal AP and seven APs with variable EADs. The simulation results for both
normal AP and abnormal APs are presented in Fig.9. The top panel shows the AP
curves and the bottom panel shows −(VNa + VK) and VCa as defined by Eqn. 3.

Let T Ca
max ≡ 1

D ln(ak
1−ãc

1
VmaxD) be the threshold value for the LRd model. That is,

according to Def. 1 and Thm. 1, an LRd AP should be EAD-producing if and
only if tCa

max > T Ca
max.1 Note that since C and Vmax are fixed for the LRd model,

T Ca
max is a function of ac

1 − ãk
1, the slope difference.

For each AP, we calculate ac
1 − ãk

1 using the data points (tumax, v
u
max), u ∈

{Ca, NaK}, obtained via numerical simulation from the LRd model, and calcu-
late the threshold time T Ca

max derived from our formal analysis. This allows us to
then compare the tCa

max values with the T Ca
max values. The results of these com-

parisons are given in Fig. 10, where we plot tCa
max and T Ca

max as a function of the
slope difference ac

1 − ãk
1.

As can be seen in Fig. 10, for all APs with EAD, we have that tCa
max > T Ca

max.
Conversely, for all APs without EAD (only one such AP in our data set), tCa

max <
T Ca

max. Physiologically, these results suggest that the cells generating EADs spend
an amount of time greater than the threshold in letting calcium accumulate and
thereby dominate the effects of repolarizing potassium in order to produce such
abnormal secondary depolarization. Regardless of the underlying physiology, the

1 The other conditions required by Theorem 1 for EAD occurrence, ak
1 < ac

1 < (ak
1 −

VmaxD), are needed to ensure the existence of a positive real solution for t and are
not considered here.

154 P. Ye et al.

results of Fig. 10 demonstrate that Theorem 1 can be used as a valid classifier
for EAD prediction, as suggested by the formal analysis.

5 Conclusions

In this paper, we presented the PLAMIC model, a new, simplified model of
the action potential in excitable cells. Despite its simplicity and piecewise-linear
nature, the PLAMIC model preserves ties to main ionic species and the time
course of their contributions to the AP. This allowed us to analyze biological
phenomena of clinical importance: early afterdepolarizations (EADs). Unlike the
original, highly nonlinear system of equations typically used to model an AP,
the PLAMIC model proved amenable to formal analysis.

Specifically, with the PLAMIC model, we were able to explore the parameter
space, without having to rely on exhaustive simulations, and to derive basic
rules for the conditions under which EADs may occur. Overall, such conditions
relate to the subtle balance of different ionic currents during the plateau phase
of the repolarization process. While this result is somewhat intuitive and not
surprising, to the best of our knowledge, our study is the first to formalize it and
to provide quantitative rules for prediction of normal and EAD-containing APs
based on the abstracted representation of the contributing ionic currents. We
successfully validated the classification rules obtained by formal analysis with
the PLAMIC model by computer simulations with widely accepted, detailed
nonlinear AP models.

The utility of the PLAMIC model is rooted in its direct links to experimentally
measurable parameters, and the relatively easy derivation of the EAD classifica-
tion rules for a wide range of AP shapes and different cell types and species. Such
a prediction tool can be very useful in designing new anti-arrythmic therapies
and in confirming the safety of any genetic or pharmacological manipulations of
excitable cells that may lead to alterations in the balance of ionic currents.

There are several limitations of the PLAMIC model. First, due to its simplic-
ity, the AP curves are only qualitatively reproduced. Second, as the PLAMIC
model studies the overall contribution of an ionic current to changes in the AP;
details about the components of a current (steady-state behavior, kinetics pa-
rameters), which may be important, are lacking. For example, calcium handling
constitutes an important aspect of cardiac-cell function, especially with regard
to electromechanical coupling. Our model only indirectly reflects the effects of
intracellular calcium on the action potential (AP). In particular, with VCa(t),
we have modeled the integral contribution of calcium fluxes to the AP. In the
Luo-Rudy model, for example, this term would correspond to the sum of the
L-type Ca2+ channel (which has a Ca2+ sensitive gate), the Na/Ca exchanger
and the background Ca2+ current. By qualitatively capturing the behavior of the
Luo-Rudy model, especially with respect to monotonicity in the post-upstroke
AP, we indirectly take into account changes in intracellular Ca2+, although the
PLAMIC model lacks parameters directly associated with these changes. While
developing the model, our goal was to maintain simplicity so that monotonicity

Formal Analysis of Abnormal Excitation in Cardiac Tissue 155

analysis could be performed on its parameter space for EAD-predictive purposes;
as such, the PLAMIC model focuses on transmembrane fluxes only.

Future work includes validation of the PLAMIC model using actual exper-
imental data with relevant statistical measures. Furthermore, we will explore
the derivation of a more accurate excitable-cell model for EAD prediction, yet
one that retains the possibility of formal analysis. Our work in using hybrid
automata to model excitable cells [11] is one possible formal framework for this
research direction.

References

1. Cranefield, P.F., Aronson, R.S.: Cardiac arrhythmias: the role of triggered activity
and other mechanisms. Futura Publishing Company (1988)

2. Fozzard, H.: Afterdepolarizations and triggered activity. Basic Res. Cardiol.
87(Suppl. 2), 105–113 (1992)

3. Hiraoka, M., Sunami, A., Zheng, F., Sawanobori, T.: Multiple ionic mechanisms of
early afterdepolarizations in isolated ventricular myocytes from guinea-pig hearts.
QT Prolongation and Ventricular Arrhythmias, pp. 33–34 (1992)

4. January, C., Moscucci, A.: Cellular mechanism of early afterdepolarizations. QT
Prolongation and Ventricular Arrhythmias, pp. 23–32 (1992)

5. Zeng, J., Rudy, Y.: Early afterdepolarizations in cardiac myocytes: mechanism and
rate dependence. Biophysical J. 68, 949–964 (1995)

6. Homma, N., Amran, M., Nagasawa, Y., Hashimoto, K.: Topics on the Na+/Ca2+
exchanger: involvement of Na+/Ca2+ exchange system in cardiac triggered activ-
ity. J. Pharmacol. Sci. 102, 17–21 (2006)

7. Clusin, W.: Calcium and cardiac arrhythmias: DADs, EADs, and alternans. Crit.
Rev. Clin. Lab. Sci. 40, 337–375 (2003)

8. Charpentier, F., Drouin, E., Gauthier, C., Marec, H.L.: Early after/depolarizations
and triggered activity: mechanisms and autonomic regulation. Fundam. Clin. Phar-
macol. 7, 39–49 (1993)

9. Luo, C.H., Rudy, Y.: A dymanic model of the cardiac ventricular action potential:
I. simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096
(1994)

10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane currents
and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544
(1952)

11. Ye, P., Entcheva, E., Smolka, S., Grosu, R.: A cycle-linear hybrid-automata model
for excitable cells. IET Systems Biology 2, 24–32 (2008)

The Distribution of Mutational E�ects on Fitness in a
Simple Circadian Clock

Laurence Loewe1 and Jane Hillston1�2

1 Centre for System Biology at Edinburgh,
The University of Edinburgh, Edinburgh EH9 3JU - Scotland

������������	�
��������
2 Laboratory for Foundations of Computer Science,

The University of Edinburgh, Edinburgh EH8 9AB, Scotland

��
������������

Abstract. The distribution of mutational e�ects on fitness (DMEF) is of fun-
damental importance for many questions in biology. Previously, wet-lab experi-
ments and population genetic methods have been used to infer the sizes of e�ects
of mutations. Both approaches have important limitations. Here we propose a new
framework for estimating the DMEF by constructing fitness correlates in molec-
ular systems biology models. This new framework can complement the other
approaches in estimating small e�ects on fitness. We present a notation for the
various DMEs that can be present in a molecular systems biology model. Then
we apply this new framework to a simple circadian clock model and estimate var-
ious DMEs in that system. Circadian clocks are responsible for the daily rhythms
of activity in a wide range of organisms. Mutations in the corresponding genes
can have large e�ects on fitness by changing survival or fecundity. We define
potential fitness correlates, describe methods for automatically measuring them
from simulations and implement a simple clock using the Gillespie stochastic
simulation algorithm within StochKit. We determine what fraction of examined
mutations with small e�ects on the rates of the reactions involved in this system
are advantageous or deleterious for emerging features of the system like a fitness
correlate, cycle length and cycle amplitude. We find that the DME can depend on
the wild type reference used in its construction. Analyzing many models with our
new approach will open up a third source of information about the distribution of
mutational e�ects, one of the fundamental quantities that shape life.

1 Introduction

Evolutionary theory has been very successful in predicting the fate of mutations in
various settings, assuming that the mutational e�ect on fitness is known. Determining
the actual e�ects of mutations is diÆcult. While many biological wet-lab experiments
have been conducted with the aim of determining the e�ects of new mutations, these
have been particularly successful for mutations with large e�ects, as experimental noise
obscures small e�ects [1].

This is unfortunate, as the evolutionary fate of mutations with big e�ects on fitness is
rather simple to understand: many advantageous ones become fixed in the population,

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 156–175, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 157

so that in some future generation all individuals will have inherited a copy, while dele-
terious (harmful) ones are removed rather quickly. The most interesting questions are
currently posed by mutations of “small”, but not “too small” e�ects on fitness. Here the
di�erence between “small” and “too small” depends on a threshold set by the e�ective
population size, where mutations in the “too small” category are behaving as if they had
no e�ect on fitness and thus exhibit simple neutral dynamics. Since all organisms have a
genome with a large number of opportunities to mutate in di�erent ways, it has become
custom to summarise these possibilities in the form of a distribution of mutational ef-
fects on fitness (DMEF), which associates a frequency of the occurrence of mutational
changes with each mutational e�ect and abstracts the various molecular causes that de-
termine the size of that e�ect. Various evolutionary theories make varying assumptions
about this distribution [1] and their quality as a predictive tool often depends on the
underlying DMEF . These theories are important for understanding the evolution of ge-
nomic sequences and thus play a crucial role in e�orts to interpret the sequence of the
human genome [1]. Because of the paramount importance of DMEFs, recent work in
population genetics has started to estimate DMEFs directly from sequence data [1,2].
Such methods are not limited by the lack of sensitivity seen in wet-lab experiments, as
they exploit the sensitivity of the evolutionary process on DMEFs to infer the location
and shape of a given type of DMEF in systems that evolve according to well understood
forces. The drawbacks include:

Limited mechanistic details. Current population genetic estimates of DMEFs from
DNA sequence data are descriptions of observations that lack a rigorous underpin-
ning in the form of a mechanistic model of mutational e�ects. There is little infor-
mation for distinguishing various types of distributions (e.g. gamma, lognormal),
once certain broad criteria are met.

Limited applicability. Each distribution is only a snapshot of a specific DMEF for
a specific organism. While comparing such snapshots helps to ascertain common
features of DMEFs, such descriptive results do not help with further explorations.

Sensitive to evolutionary process. All methods that estimate DMEFs from DNA se-
quence data require a set of assumptions about the evolutionary process that led
to the sample of DNA sequences used for the inference. These assumptions can
be diÆcult to test and may cast doubts on estimates of a DMEF . Since several
evolutionary processes can lead to similar features in a set of sequences, it can be
challenging to disentangle their e�ects from those of the underlying DMEF [3].

In this paper we propose a third approach to the study of distributions of mutational
e�ects on fitness, besides the direct experiments and the population genetical methods
mentioned above. Our main contribution is to describe the approach and to demonstrate
how it works in principle in a simple circadian clock model. We suggest that molecular
systems biological models can be used to obtain much of the evolutionary interesting
properties of a DMEF for a particular limited model system. Combining the in silico
experimental techniques of molecular systems biology with knowledge of the study
system from the wet-lab experiments allows the following improvements:

More mechanistic details. Molecular systems biology allows the construction of rig-
orous mechanistic models of biological systems that maintain a close link to bi-
ological reality. This reduces errors in estimates that are caused by biologically

158 L. Loewe and J. Hillston

misleading abstractions. In addition, such computational models allow the further
exploration of parameter space at the low cost of simulations as opposed to the
often prohibitive costs or diÆculties of performing equivalent wet-lab experiments.

Precision. The precise control over every aspect of a model that comes with in silico
models makes it possible in principle to compute emerging properties with a very
high degree of precision. Depending on the stochastic nature and computational
complexity of the model, it may still be too costly for some models to achieve the
level of precision that some evolutionary questions require. However, we anticipate
that many useful models can be analysed without such problems. In addition, ad-
vances that reduce the cost of computing and improve the speed of algorithms can
be translated into increasingly precise estimates of DMEFs.

To demonstrate the feasibility of our new approach we deliberately choose a simple
model to make it easier to focus on the fundamental challenges that arise from this new
perspective. Such challenges include (i) the construction of computable fitness corre-
lates that can be used as surrogates for biological fitness in the wild, (ii) the accuracy
with which such fitness correlates need to be (and can be) computed and (iii) funda-
mental biological questions about distributions of mutational e�ects. For example, how
often will a change of an underlying reaction rate improve or degrade overall function-
ality? Will the relative size of e�ects on the emerging properties of the system be larger
or smaller than the relative size of mutational e�ects on reaction rates?

Results demonstrate that our new approach can be used in principle to infer inter-
esting properties of distributions of mutational e�ects, where details strongly depend
on the model under focus. The rest of the paper is structured as follows. In Section 2
we present some background on key ideas from evolutionary biology which we will
use in the remainder of the paper. Section 3 outlines our framework for taking a sys-
tems biology approach to the study of the distribution of mutational e�ects. The model
we consider in this paper is presented in Section 4 whilst its analysis is described in
Section 5. A discussion of the results is given in Section 6 and conclusions in Section 7.

2 Background

Instead of obtaining DMEFs directly, our basic strategy is to (i) build a mechanistic
model of how the phenotype changes depending on lower level changes in reaction
rates that are ultimately caused by DNA changes, (ii) define a function that computes
fitness from the phenotype and (iii) use random perturbations together with (i) and (ii)
to determine the DMEF . While some commonly used models in quantitative genetics
also compute a phenotype as an intermediate step towards computing the distribution of
mutational e�ects [4], the approach presented here can include much more mechanistic
detail by building on molecular systems biological data. DMEFs can be used to quantify
robustness. Understanding robustness [5] is important for drug design [6].

2.1 A Nomenclature of Distributions of Mutational E�ects (DMEs)

In this subsection we explain precisely what we mean by distributions of mutational
e�ects. This is necessary to avoid confusion when discussing the various distributions.
We consider each of the terms in turn (for examples, see Figures 8�9):

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 159

E�ects. The e�ects are the changes in the emerging high-level systemic property under
focus in the investigated system. DMEY is used to denote a DME of the emergent
system property Y. All Y are high-level properties, so a superscript is used.

We denote DMEs that describe the e�ects on fitness in the wild by DMEF , where
the fitness can be easily linked to a trait like survival rate or fecundity that can be
observed in its natural environment. In the more limited example of our circadian
clock DMEL describes variations in the length of a cycle and DMEA variations in
the amplitude of the oscillations. E�ects are changes in phenotype properties.

Mutations. The mutations are low-level genotype changes that perturb the wild type
reference system and cause phenotypic e�ects to change. At the lowest level muta-
tions are DNA changes. In the absence of a mechanistic model for predicting enzy-
matic reaction rates from DNA, mutations can also be introduced as reaction rate
changes, as the mechanistic chain of causality that links DNA changes and fitness
changes must pass through the corresponding reaction rates at some point. DMXE
is used to denote the genotypic perturbations that are introduced into property X to
measure a DME. All X are low-level properties, so a subscript is used.

If mutations are a representative sample of naturally occurring DNA changes, we
omit X, as this is the most natural and most important DME. In the more limited
example of our circadian clock we can only change the reaction rates listed in
Table 2. For example DMvd EL denotes the distribution of mutational changes in
protein degradation rate vd that have e�ects on the length of clock cycles L.

Distribution sign. One may want to focus only on increases or decreases of the values
of a DME. For example, advantageous mutations in the DNA that increase fitness
could be analyzed separately from survival compromising mutations that decrease
fitness. Here we denote an increase and decrease with the additional letter ‘I’ and
‘D’, respectively. If these occur in a high-level emerging property of the system, the
letters are superscript, if in low-level mutational changes, the letters are subscript.
Specifying nothing is equivalent to ‘DI’.

Thus a distribution of increasing mutational changes in protein production rate
ks that have only decreasing e�ects on fitness is denoted by DD

I Mks E
F.

If we wish to be very general, we simply specify DME. If we want to be more specific,
we include the additional information according to the notation introduced above. Since
all DMEs describe how the emergent properties of complex systems change in response
to changes in lower level components, some generalities may emerge from their study.

2.2 Fitness and Selection CoeÆcients

Fitness is the highest level function of any biological system. As such it is diÆcult
to define rigorously [7]. Fitness correlates have been used successfully in the study of
life-history evolution [8]. We propose that it is possible to define meaningful fitness cor-
relates that are computable from molecular systems biological models. For simplicity,
we will assume that W, the absolute fitness in the wild, can be estimated by observing
a high level organismic fitness correlate in wet-lab experiments and that this is propor-
tional to the fitness correlate F that we compute in silico. Thus we can define:

FM � FWT (1 � s) �
WM

WWT
�

160 L. Loewe and J. Hillston

where the subscripts M and WT denote the mutant and the wild type. Here the wild
type is considered to be relatively ’mutation free’ and s is the selection coeÆcient,
commonly used in population genetics to denote the e�ects of a mutation on fitness.
Using this approach we can compute DMEs for F and any emerging property of our
model if we specify an underlying distribution of how reaction rates are a�ected by
DNA changes. Expressing our results as s allows direct comparison with population
genetics results.

2.3 Circadian Clocks

Circadian clocks are the internal molecular clocks that govern large parts of the molec-
ular machinery of life. They frequently have a huge impact on the behaviour of organ-
isms. They are responsible for waking us up in the morning and they make us feel tired
in the evening. Such clocks are of paramount importance for the vast majority of or-
ganisms from Cyanobacteria [9] through fruitflies to humans [10]. Much recent work
has focused on elucidating the various molecular components that perform the chemical
reactions that oscillate with a daily rhythm. This has resulted in a series of models with
increasing numbers of interlocking feedback loops [11]. In this paper we focus on one
of the simplest models for a circadian clock that exists. This decision is motivated by a
desire to focus the reader’s attention on the basic principles of our new approach and on
fundamental aspects of observing DMEs in clocks. We also wanted to apply our new
approach to simple systems first to collect experience before analyzing complex ones.

3 Evolutionary Systems Biology

Evolutionary genetics and molecular biology have both been very successful in further-
ing our understanding of the natural world. However, after decades of research some
familiar simplifying assumptions are now reaching their limits and evolutionary biolo-
gists are getting increasingly interested in the molecular details of their systems. At the
same time molecular biologists progressively recognize the merit of quantitative mod-
elling. Growing genomics and systems biology datasets provide a strong motivation
for exploring realistic models at the interface (e.g. [12]). Increasingly detailed models
of intracellular processes could help understand evolution by deriving DMEFs ab ini-
tio by computing fitness correlates. Below we define one possible fitness correlate for
circadian clocks. The following procedure can estimate a DME in a particular system:

1. Define a wildtype for use as a fixed ’mutation-free’ reference point.
2. Treat each protein like a system in order to link DNA changes to changes in protein

function by assuming a DMErate, which denotes a realistic distribution of muta-
tional e�ects on reaction rates for DNA changes within protein-coding and regu-
latory sequences. If necessary, scale the frequencies of mutations for a given rate
change by an estimate of the number of base pairs in the DNA that influence this
rate to reflect the varying mutational target sizes in the system under investigation.

3. Compute enough samples [13] to obtain a DMrateEF, which denotes a distribution of
the changes in the fitness correlate that emerges from the lower level distribution(s)
of the underlying reaction rate changes.

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 161

4. Plot the di�erences to the mutation free reference as a DMrateEF, on one logscale
for decreasing and on another logscale for increasing e�ects to visualise changes in
the frequency of small e�ects from potential random noise expectations. Compare
the number of fitness increases and decreases with the increases and decreases of
the underlying reaction rate distributions in order to establish whether the molecu-
lar structure within biomolecules, or the network structure of biochemical reaction
systems, has a larger influence on the DME of the fitness correlate.

The particular importance of small mutational e�ects in long-term evolution empha-
sizes the need for a careful analysis of numerical issues while computing fitness cor-
relates. In plotting DMEFs, logscales were found to be more helpful than linear scales
due to their ability to visualize very small di�erences.

mRNA
in cytosol Protein in cytosol

Inhibition (n, KI)

Ribo
some

ks

RNApol

mRNA

DNA

vs

Protein in nucleous

k1 k2

vm Km
vd Kd

complex
degradation

complex
degradation

Fig. 1. Overview over the basic negative transcriptional feedback system that implements the
simple clock analysed here

4 Model

The very simple model of a circadian clock that we use has been described elsewhere
[14] and is closely related to the elementary transcriptional feedback oscillator de-
scribed by Goodwin [15].

The basic reaction scheme is found in Figure 1. Briefly, the RNA polymerase com-
plex transcribes a gene into mRNA, which is exported into the cytosol, where it accu-
mulates at constant rate vs. The ribosome translates the mRNA into a protein which
accumulates at rate ks. The protein can migrate between the nucleus and the cytosol,
where the rates of transport are k1 and k2. Transportation into the nucleus is assumed
here to be equivalent to turning the protein into a repressor, so potentially more than
one reaction might be subsumed here. If enough copies of the protein have accumu-
lated in the nucleus, they can cooperatively bind to the DNA and thus prohibit the

162 L. Loewe and J. Hillston

Table 1. Stochastic simulation implementation of the simple clock model. The kinetics of the
chemical reactions shown here is governed by the propensity functions that determine which
reaction out of this list will occur next. Once it has occurred, the species counts are adjusted
according to the transition entry.

Number Reaction Propensity function Transition

1 gene � gene � mRNA (vs�)
(KI�)n

(KI�)n � Pn
N

M � M � 1

2 mRNA � � (vm�)
M

(Km�) � M
M � M � 1

3 mRNA � mRNA � protein ksM PC � PC � 1

4 protein � � (vd�)
PC

(Kd�) � PC
PC � PC � 1

5 protein � repressor k1PC PC � PC�1
PN � PN�1

6 repressor � protein k2PN PN � PN�1
PC � PC�1

Table 2. The parameters of our basic clock model and their assumed values for the two ’wild
types’ explored here

Parameter Meaning Neurospora 24h-clock
� Size of system 105 105

n Degree of Hill-type cooperativity 4 4
KI Threshold for Hill-type repression 1 1
vs E�ective rate of mRNA accumulation in cytosol 1.6 1.6
vm Maximal e�ective turnover of mRNA degradation 0.505 0.505
Km Michaelis-Menten constant for mRNA degradation 0.5 0.5
ks E�ective rate of protein production in cytosol 0.5 0.5
vd Maximal e�ective turnover of protein degradation 1.4 1.4
Kd Michaelis-Menten constant for mRNA degradation 0.13 0.13
k1 E�ective rate of repressor accumulation in nucleus 0.5 0.4623
k2 E�ective rate of repressor movement out of nucleus 0.6 1.2

binding of the RNA polymerase complex, e�ectively shutting down the production of
mRNA. This cooperative binding is described by kinetics of the Hill type with a given
degree of cooperativity, n, and a threshold constant for repression, KI . To allow tran-
scription to start again, mRNA and the protein are constantly degraded by reactions of
the Michaelis-Menten type. Here vm denotes the maximal e�ective turnover rate of the

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 163

mRNA degradation complex (with Michaelis-Menten constant Km). The corresponding
reaction for the protein is described by vd and Kd.

This model can be described by the following ordinary di�erential equations (ODEs),
where M, PC and PN denote the concentrations of mRNA, cyctosolic protein and nu-
clear repressor, respectively. The change in the concentration of mRNA is given by

dM
dt

� vs
Kn

I

Kn
I � Pn

N

� vm
M

Km � M
� (1)

the change in concentration of the cytosolic protein is given by

dPc

dt
� ksM � vd

PC

Kd � PC
� k1PC � k2PN (2)

and the change in the concentration of the repressor form of the protein in the nucleus
is given by

dPN

dt
� k1PC � k2PN � (3)

To translate these ODEs into chemical reaction equations, we followed the scheme de-
scribed in [16]. To this end all molecular concentrations in the ODEs are turned into
actual molecule counts by multiplying them by �, the parameter that describes the
scale of the system. Table 1 gives the important quantities that were used to compute
the propensity functions and the stoichiometry matrix in the stochastic simulations of
the system.

Such a model will have a degree of approximation due to the presence of the reaction
with Hill kinetics, since it has been shown that a direct application of Gillespie’s algo-
rithm to implement Hill’s kinetic law can lead to an overestimate of the variance when
compared to a more faithful low-level representation of the actual elementary reac-
tions [17]. Mass action and Michaelis-Menten reactions do not su�er from this problem
[18,19].

We used two sets of reaction rates as the starting points for our simulations: (i) the
original set of parameters that Leloup et al. [14] used to describe a simple model of
the 22h cycle circadian clock in Neurospora crassa and (ii) a modification of their
parameter combination which we introduced to approximate a 24h cycle with the same
set of reactions. Table 2 summarises the corresponding parameters.

5 Model Analysis

5.1 Simulations

We employed stochastic simulations to measure the emerging features of our model. To
allow for flexibility in the analysis and speed of computation, we employed StochKit
1.0 (http:��www.engineering.ucsb.edu� cse�StochKit�), which implements a variety of
algorithms that speed up Gillespie’s Direct Method algorithm for stochastic simulation
under particular sets of circumstances. For example, when large numbers of molecules
are in the system, the library can choose to use a tau-leaping algorithm. It then no longer
simulates every single reaction but rather estimates the number of reactions that will

164 L. Loewe and J. Hillston

Day

Clock On

Day

Clock Off

Night

Clock On

Night

Clock Off

Fig. 2. The four states of a system with external and internal oscillations. It is possible to unam-
biguously assign one of the four states given in the table on the right to every point on a time
course. Assignment to one of the four states is indicated by di�erent shades in the time course
on the right. We estimate the threshold from the observations as half the distance between the
minima and maxima.

happen in a particular period of time. Our implementation of StochKit automatically
switched between adaptive tau leaping [20] and fully detailed stochastic simulations.
An overview of the corresponding methods has been presented elsewhere [20,21] and
is also included in the StochKit manual.

5.2 Measuring Fitness Correlates

In order to explore the construction and behaviour of fitness correlates, we defined a
simple biologically credible measure that we expect to be linked to fitness in many
realistic situations. A schematic overview of the core principle is given in Figure 2.

Basically the existence of an external cycle (day or night) and an internal cycle
(molecule count high or low) allows the definition of four states that describe all states
that such a system can be in. Either it is ‘in phase’ (which can mean day or night) or it
is ‘anti-cyclic’ (molecule count high, while external light is low and vice versa). If the
internal system oscillates with a 24-hour period, then selection will favour mutations
that help the cell to organise its patterns of gene activity around that cycle. However,
if the internal oscillations are faster or slower, then the benefit of mutations that link
particular genes with a particular state of the clock will be very limited, if existent at
all: the genes that are in phase today will be out of phase in a few weeks and thus the
long-term expectation of such a clock is probably not very di�erent from random noise.
From such considerations we can derive two measures of fitness, the cyclical fitness
correlate FC , defined as:

FC �
T1D � T0N

Ttot
� (4)

and the anti-cyclical fitness correlate FA defined as;

FA �
T0D � T1N

Ttot
� (5)

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 165

where T1D, T0N , T0D and T1N sum over all time when the system is “On” during “Day”,
“O�” during “Night”, “O�” during “Day” and “On” during “Night”, respectively. All
these quantities scale with the total time that the system has been under observation,
Ttot. Based on such a definition, these fitness correlates can never be larger than 1.
While any of the two measures can become zero under some special circumstances, we
argue that more often the minimal value is 0.5, based on the random expectation of the
complete absence of an internal cycle. For our 24h-clock we found FA to be high and
FC to be low. Therefore we report only FA below.

threshold
molecule

count

start of cycle linear interpolation artificial cycle

y
2

y
1

t
1

t
2

t
1
= (t

1
+t

2
) y

1
/y

2

Fig. 3. Transitions of the clock. We use a threshold to distinguish the ’on’ and ’o�’ states of the
clock and keep track of the interpolated transition times to measure cycle length. In the presence
of high levels of stochastic noise, artificial cycles can be generated. This was no problem above
� � 10000 in our system. Squares denote observations.

5.3 Measuring Cycle Length and Amplitude

To obtain a robust understanding of DMEs in a particular system it is preferable to
investigate several of the emerging higher level properties of the system under investi-
gation. In our case we also wanted to explore properties that could be determined more
precisely than our present implementation of direct fitness correlates.

We decided to automatically observe the cycle length L and amplitude A, where the
amplitude is the di�erence in molecule counts between the highest and the lowest point
of a cycle. To define the beginning of a new cycle requires a threshold between the
number of molecules at which the clock is considered to be ’o�’ and the same count in
the ’on’ state. We implemented this by using the same threshold required for our fitness
measurements. Thus we stored the past state and determined for each current state,
whether the threshold had been passed in upwards or downwards direction (Figure 3). If
it had, the transition time was interpolated and cycle length was recorded. If it had not, it
was checked whether the current value was a new extremum, facilitating the observation
of cycle amplitudes. To get a good estimate of the true transition time we computed the
intersection of the threshold with the line joining the two closest observations using the
law of proportionality (see Figure 3, linear interpolation).

This system worked very well for large values of �. However, analyses at smaller
values of � showed a sudden increase in the corresponding standard error estimates.
Further scrutiny revealed that this was due to rare cases, where stochastic fluctuations
had temporarily crossed the threshold, bucking the trend for just a moment and thereby
triggering what the code considered a new, very short, cycle (Figure 3, right). This

166 L. Loewe and J. Hillston

Fig. 4. Oscillations of our 24h-clock at � � 100000. As in all our simulations the initial concen-
tration for all the reactants was 1 molecule. To avoid any influence from initial concentrations, we
allowed the clock to run for 50 hours before starting another 50 hour period, where merely max-
ima and minima were recorded to automatically estimate the threshold for fitness, cycle length
and amplitude at half way between the two. Before actual observations started after calibration,
two more cycles would be discarded, so that most observations would span the time from about
150 – 2000 hours.

0 2000 4000 6000 8000 10000

0
20

00
40

00
60

00
80

00
10

00
0

 dotted = Protein dashed = Repressor solid = mRNA

 d
ot

te
d

=
 m

R
N

A
 d

as
he

d
=

 P
ro

te
in

 s
ol

id
 =

 R
ep

re
ss

or

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

 dotted = Protein dashed = Repressor solid = mRNA

Fig. 5. Limit cycles for the 24h-clock at � � 1000 (left) and 100 000 (right). Smaller � increase
noise even more, but the general presence of oscillations is remarkably robust at this parameter
combination, even if � � 10.

phenomenon became prevalent at about � � 6000 in the parameter combinations that
we tested. To remedy this problem, two thresholds will have to be set up in such a way
that a cycle is only recognised as such, if it has crossed both thresholds.

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 167

5.4 Basic Clock Behaviour

Our clock models do not behave di�erently from those analysed in the literature. Figure
4 demonstrates the extraordinary regularity and long-term stability of the oscillations
at � � 100000. If � is reduced, noise is increased, as can be seen in the limit cycles
of Figure 5. To obtain solid estimates of the stochastic variability of the Neurospora
and our 24h-clock, we observed 6380 and 6927 single simulations for 2000 hours (less
the calibration period). The resulting distribution of anti-cyclic fitness, cycle length and
amplitude can be found in Figures 6 and 7 (see the next section for an explanation of
the DME plots in these figures).

5.5 Bootstraps and DME Estimates

Bootstraps. To obtain robust estimates of a DMEF is a statistical challenge. If an un-
derlying DDMEk1 or DIMEk1 is assumed to map DNA sequence changes to repressor
production rate changes, then one would like to know the e�ects on the distributions of
emerging properties given by DDIMk1 EFA, DDIMk1 EL and DDIMk1 EA.

Here we propose to use a slight modification of the statistical bootstrap technique to
achieve this. Bootstrapping in statistics was introduced to estimate the unknown distri-
bution U of variates that are computed by a known function f from a known distribution
D [13]. This is achieved by repeatedly sampling (with replacement) from the known dis-
tribution (or dataset). Then the function f is applied to each sample x to obtain samples
from the unknown distribution:

U � f (x)� where x � D (6)

Thus U can be quantified rigorously if enough samples can be generated. Here we
use as D the underlying DDMk1 E or DIMk1 E and as U any of the emerging properties
(FA, L, A) distributions specified above. f is specified by our simulation system that
implements and observes the circadian clock model. To quantify U, we plot it in the
DME plots shown in Figures 8-9. This approach allows us to detect changes in the
distribution of emerging features that are caused by di�erences in the underlying low-
level DDMk1 E or DIMk1 E.

Design of the DME plot. DMEs are notorious for being diÆcult to visualize due to
conflicting requirements. A Biologist would typically want to get an overview of dele-
terious, neutral and advantageous mutations at the same time, which is simple on a
linear scale. However recent results have shown that the DMEF is highly leptokurtic
[1,2], implying that most mutations have very small e�ects and would thus be lost in
something that looks like a bar around zero on a linear scale. Thus a logscale seems the
most appropriate way to visually convey information about most DMEs. We decided
to follow a pragmatic approach that combines the best of both worlds by neglecting
parameter ranges that are biologically uninteresting and implemented a corresponding
plotting function in R (http:��www.r-project.org�). The code first constructs a histogram
of bins for decreasing e�ects that are equally spaced on a logscale. Then it does the
same for increasing e�ects. The focus of the plot is on values within user-defined upper
and lower limits of interest, merely checking for the existence of other values. Then

168 L. Loewe and J. Hillston

24h clock stochastic noise in fitness correlate

anti−cyclic fitness correlate

co
un

t

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0
50

0
10

00
15

00

0
10

0
20

0
30

0
40

0
50

0

DMInherentNoiseE
FA

relative deviation from mean of wild type
co

un
t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.

1 1

n = 6927 I = 51.47 %

24h clock stochastic noise in cycle length

cycle length [hours]

co
un

t

23.98 24.00 24.02 24.04

0
50

0
10

00
15

00

0
10

0
20

0
30

0
40

0
50

0
DMInherentNoiseE

L

relative deviation from mean of wild type

co
un

t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.
1 1

n = 6927 I = 46.25 %

24h clock stochastic noise in amplitude

amplitude [molecules max−min]

co
un

t

255000 255500 256000 256500

0
20

0
40

0
60

0
80

0
10

00
12

00

0
10

0
20

0
30

0
40

0
50

0

DMInherentNoiseE
A

relative deviation from mean of wild type

co
un

t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.
1 1

n = 6927 I = 47.19 %

Fig. 6. The stochastic variability of the emerging features of the 24h-clock parameter combina-
tion. See Section 5.5 for an explanation of the right part of the figure.

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 169

Neurospora stochastic noise in fitness correlate

anti−cyclic fitness correlate

co
un

t

0.487 0.488 0.489 0.490 0.491 0.492 0.493

0
20

0
40

0
60

0
80

0
10

00
12

00

0
10

0
20

0
30

0
40

0
50

0

DMInherentNoiseE
FA

relative deviation from mean of wild type
co

un
t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.

1 1

n = 6380 I = 50 %

Neurospora stochastic noise in cycle length

cycle length [hours]

co
un

t

21.71 21.72 21.73 21.74 21.75

0
50

0
10

00
15

00

0
10

0
20

0
30

0
40

0
50

0
DMInherentNoiseE

L

relative deviation from mean of wild type

co
un

t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.
1 1

n = 6380 I = 50.82 %

Neurospora stochastic noise in amplitude

amplitude [molecules max−min]

co
un

t

338500 339000 339500 340000

0
20

0
40

0
60

0
80

0
10

00
12

00

0
10

0
20

0
30

0
40

0
50

0

DMInherentNoiseE
A

relative deviation from mean of wild type

co
un

t

−−
1

−−
0.

1

−−
0.

01

−−
10

−−3

−−
10

−−4

−−
10

−−5

−−
10

−−6 0

10
−−6

10
−−5

10
−−4

10
−−3

0.
01 0.
1 1

n = 6380 I = 48.5 %

Fig. 7. The stochastic variability of the emerging features of the Neurospora clock parameter
combination. See Section 5.5 for an explanation of the right part of the figure.

170 L. Loewe and J. Hillston

0
50

0
10

00
15

00
20

00
DDMk1

EFA in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.

1 1 10

n = 6925 I = 8.549 %

0
50

0
10

00
15

00
20

00

DIMk1
EFA in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.

1 1 10

n = 6813 I = 46.69 %

0
10

0
20

0
30

0
40

0

DDMk1
EL in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6925 I = 88.2 %
0

10
0

20
0

30
0

40
0

DIMk1
EL in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6813 I = 7.882 %

0
10

0
20

0
30

0
40

0

DDMk1
EA in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6925 I = 12.56 %

0
10

0
20

0
30

0
40

0

DIMk1
EA in 24h clock

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6813 I = 81.32 %

Fig. 8. These DMEs show the e�ects of assuming a low level lognormal DDMk1 E and DIMk1 E as
distribution of generated genotypes on the emerging phenotypic features anti-cyclic fitness FA,
cycle length L and amplitude A for the 24h-clock parameter combination. The thick line gives
the high level DME, the thin line the low level DME, n the sample size and I the fraction of
increasing e�ects on a high level.

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 171

0
20

0
40

0
60

0
80

0
DDMk1

EFA in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.

1 1 10

n = 6655 I = 73.15 %

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

DIMk1
EFA in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.

1 1 10

n = 6701 I = 85.99 %

0
10

0
20

0
30

0
40

0

DDMk1
EL in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6655 I = 91.78 %
0

10
0

20
0

30
0

40
0

DIMk1
EL in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6701 I = 4.552 %

0
10

0
20

0
30

0
40

0

DDMk1
EA in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6655 I = 87.57 %

0
10

0
20

0
30

0
40

0

DIMk1
EA in Neurospora

relative deviation from mean of wild type

co
un

t

1

0.
1

0.
01

10
3

10
4

10
5

10
6 0

10
6

10
5

10
4

10
3

0.
01 0.
1 1 10

n = 6701 I = 8.387 %

Fig. 9. These DMEs show the e�ects of assuming a low level lognormal DDMk1 E and DIMk1 E as
distribution of generated genotypes on the emerging phenotypic features anti-cyclic fitness FA,
cycle length L and amplitude A for the Neurospora parameter combination. The thick line gives
the high level DME, the thin line the low level DME, n the sample size and I the fraction of
increasing e�ects on a high level.

172 L. Loewe and J. Hillston

a combined array of bin boundaries is built that is then used to construct a histogram
with unequal bin width on a linear scale, but equal bin width in the ranges of interest
on the positive and negative logscale. Finally, a special linear scaling is constructed that
allows the final plot to be produced in a standard linear plotting environment. To read
these plots, the following features have to be understood:

– The smallest borders of the smallest bins of interest are marked by the axis labels
closest to zero. This is indicated by the grey dotted vertical lines.

– All values that are closer to 0 than the specified range are sorted into the 3 bins
defined by the limits of user interest and �10�15. Thus it is easy to see what data
might have been missed. The bin borders of�10�15 are plotted at values that allow
for easy visual distinction from zero.

– The break in the scales is indicated by the massive greying around zero.

In the production of these plots it is of paramount importance to have a precise refer-
ence point, which in our case is taken to be the parameter combination that we used to
start our explorations. We obtained these reference points by computing large numbers
of single simulations for the ’wild type’ Neurospora clock and the ’wild type’ 24h-clock
and combining their elementary statistics to obtain the aggregated estimates reported in
Table 3.

Table 3. High precision estimates of the emerging features of the two ’wild type’ clock param-
eter combinations that are used as a starting points for exploring DMEs here. N denotes the
Neurospora clock, 24h, the 24h-clock with the respective parameters specified in Table 2.

Mean StDev StErr CV n
N: FA 0.4897883 0.0009251 1�45 � 10�7 0.001888 6380
N: L 21.7338705 0.05796 1�07 � 10�7 0.002667 542300
N: A 339093.583 1836 0.00339 0.005415 542300

24h: FA 0.807005 0.03768 5�44 � 10�6 0.04669 6927
24h: L 24.0066962 0.06960 1�30 � 10�7 0.002899 533379
24h: A 255891.547 1620 0.00304 0.006331 533379

Since the reference points used for constructing DMEs are infinitesimally small and
our model system exibits a significant amount of stochasticity, any repeated observation
of an identical parameter combination will lead to what looks like many small increas-
ing and decreasing changes. The amount of such stochastic noise determines how close
the corresponding peaks will be to zero on the logscale. It is important to obtain a null-
observation for the DME that determines its natural stochasticity, to avoid reporting
spurious mutational e�ects that supposedly increase or decrease fitness. We report such
an observation in Figures 6 and 7 for our two clock parameter combinations that we use
as starting points for estimating real DMEs.

Equipped with such a framework, we can now present an example analysis of a
simple system using DMEs. Figure 8 and 9 show the DMEs that result from computing
many samples varying the rate k1 with which the repressor accumulates in the nucleus.
We ran four sets of simulations. In one set the rate was decreased by an amount that

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 173

was sampled from a lognormal distribution, while keeping the smallest resulting rates
at zero. The lognormal distribution had location � � 0�1 and shape � � 2 on the log
scale. In the other set the rate was increased by an amount that was sampled from the
same lognormal distribution. We chose a lognorm distribution, because it had performed
well in previous population genetical tests [2]. This analysis was performed for the
Neurospora and 24h-clock parameter sets to obtain an impression for how di�erent
DMEs are when sampled from di�erent points in parameter space.

The results in Figure 8 and 9 show that it depends on the starting point and other
parameters, whether a particular parameter change will be advantageous or deleterious.
For example decreases in k1 led to frequent increases in FA and A for Neurospora,
but mostly decreased these emerging properties for the 24h-clock. In other cases the
high level e�ects appear to follow the low level e�ects rather closely. For example, A
in Figure 8 follows the distribution of k1 so closely that one would expect that at this
point the intra-molecular structural e�ects of the corresponding enzymes have a larger
influence on clock amplitude than the larger biochemical reaction network. However,
this depends on other properties of the system, as the same is not true in Neurospora. It
is not the purpose of this paper to discuss all corresponding DMEs in this simple clock
model, but rather to demonstrate that the approach which has been presented is capable
of producing the raw data that is needed for more comprehensive analyses.

6 Discussion

We have introduced a new framework for quantifying distributions of mutational ef-
fects using molecular systems biological models and presented a compact notation for
navigating the complex multi-layered world of DMEs. We have demonstrated how this
new approach works in principle and addressed fundamental challenges by estimat-
ing DMk1 EFA, DMk1E

L and DMk1E
A in a simple model of a circadian clock. We were

able to observe significant changes in the DME that exceeded the noise present in our
system. The changes in this simple model show that it is important which parameter
combination is used as a starting point for estimating a DME. While some parameter
combinations lead to a majority of decreases, others mostly increase fitness. A more
comprehensive analysis of this and other models is needed to determine how frequent
fitness increasing e�ects are on a larger scale.

We deliberately did not include entrainment here to focus the reader’s attention on
our new framework. Our analysis showed that circadian clocks without entrainment
will in most cases have a fitness in the wild that will approximate the absence of a cir-
cadian clock. Other, non-circadian clocks might still be important, but realistic models
of robust circadian clocks in the wild need to include entrainment. This can be done by
allowing for time-dependent changes in the reaction rates used in propensity functions.

Future work can improve the accuracy of our estimates by using more computing
power. This will help building more realistic models, which is important, as the qual-
ity of our DMEF estimates depends on the quality of the molecular systems biological
models used. Recent advances in molecular systems biology provide hope for the con-
struction of quality models in an increasing number of model systems. Any such models
are likely to be closer to biological reality than most of the extremely abstract and simple

174 L. Loewe and J. Hillston

models of mutational e�ects that have been used in population genetics so far. As any
DMEF that has been observed by this new approach is specific to a very specific model,
one can start comparing many di�erent DMEFs from many di�erent systems. Such work
will show how specific such DMEs are, and how often general features emerge that are
robust to much of the underlying complexity.

7 Conclusions

We presented the first comprehensive application of our new framework for estimating
distributions of mutational e�ects. Using the example of a simple circadian clock we
demonstrated several fundamental features of this approach. Circadian clocks have been
analysed before with systems biology methods [14,16,22,23], but the distribution of
mutational e�ects has not been quantified in these systems before. Many more models
need to be analysed in order to determine the general features that DMEs may exhibit.

Acknowledgements. We thank Ozgur Akman for extensive discussions of molecular
clocks, Martha Loewe for help with LaTeX, John Welch and three anonymous reviewers
for helpful comments on this manuscript and the BBSRC and EPSRC for funding. The
Centre for Systems Biology at Edinburgh is a Centre for Integrative Systems Biology
(CISB) funded by BBSRC and EPSRC, reference BB�D019621�1.

References

1. Eyre-Walker, A., Keightley, P.D.: The distribution of fitness e�ects of new mutations. Nat.
Rev. Genet. 8, 610–618 (2007)

2. Loewe, L., Charlesworth, B.: Inferring the distribution of mutational e�ects on fitness in
Drosophila. Biology Letters 2, 426–430 (2006)

3. Keightley, P.D., Eyre-Walker, A.: Joint inference of the distribution of fitness e�ects of dele-
terious mutations and population demography based on nucleotide polymorphism frequen-
cies. Genetics 177, 2251–2261 (2007)

4. Martin, G., Lenormand, T.: A general multivariate extension of Fisher’s geometrical model
and the distribution of mutation fitness e�ects across species. Evolution 60, 893–907 (2006)

5. Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007)
6. Kitano, H.: A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug

Disc. 6, 202–210 (2007)
7. Brommer, J.E.: The evolution of fitness in life-history theory. Biol. Rev. Camb. Philos.

Soc. 75, 377–404 (2000)
8. Stearns, S.C.: The evolution of life histories. Oxford University Press, Oxford (1992)
9. Rust, M.J., Markson, J.S., Lane, W.S., Fisher, D.S., O’Shea, E.K.: Ordered phosphorylation

governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007)
10. Panda, S., Hogenesch, J.B., Kay, S.A.: Circadian rhythms from flies to human. Nature 417,

329–335 (2002)
11. Brunner, M., Káldi, K.: Interlocked feedback loops of the circadian clock of Neurospora

crassa. Mol. Microbiol. 68(2), 255–262 (2008)
12. Gjuvsland, A.B., Plahte, E., Omholt, S.W.: Threshold-dominated regulation hides genetic

variation in gene expression networks. BMC Syst. Biol. 1, 57 (2007)
13. Efron, B., Tibshirani, R.D.: An introduction to the bootstrap. Chapman & Hall, New York

(1993)

The Distribution of Mutational E�ects on Fitness in a Simple Circadian Clock 175

14. Leloup, J.C., Gonze, D., Goldbeter, A.: Limit cycle models for circadian rhythms based on
transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14(6), 433–448
(1999)

15. Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3,
425–438 (1965)

16. Gonze, D., Halloy, J., Goldbeter, A.: Deterministic versus stochastic models for circadian
rhythms. J. Biol. Phys. 28, 637–653 (2002)

17. Bundschuh, R., Hayot, F., Jayaprakash, C.: Fluctuations and Slow Variables in Genetic Net-
works. Biophys. J. 84, 1606–1615 (2003)

18. Arkin, A.P., Rao, C.V.: Stochastic chemical kinetics and the quasi-steady-state assumption:
application to the Gillespie algorithm. J. Chem. Phys. 11, 4999–5010 (2003)

19. Cao, Y., Gillespie, D.T., Petzold, L.: Accelerated Stochastic Simulation of the Sti� Enzyme-
Substrate Reaction. J. Chem. Phys. 123(14), 144917–144929 (2005)

20. Cao, Y., Gillespie, D.T., Petzold, L.: Adaptive explicit-implicit tau-leaping method with au-
tomatic tau selection. J. Chem. Phys. 126, 224101 (2007)

21. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–
55 (2007)

22. Bradley, J.T., Thorne, T.: Stochastic Process Algebra models of a Circadian Clock. In:
Nicol, D.M., Priami, C., Nielson, H.R., Uhrmacher, A.M. (eds.) Simulation and Verifi-
cation of Dynamic Systems, Dagstuhl Seminar Proceedings, Dagstuhl, Germany (2006),
��

23. Stenico, M.: Modelling molecular systems with discrete concentration levels in the context of
process algebra PEPA: Stochastic and deterministic interpretations. MSc.Thesis, University
of Trento (2006)

http://drops.dagstuhl.de/opus/volltexte/2006/705

SED-ML – An XML Format for the

Implementation of the MIASE Guidelines

Dagmar Köhn1 and Nicolas Le Novère2

1 Research Training School dIEM oSiRiS, University of Rostock, Germany
2 European Bioinformatics Institute, Hinxton, CB10 1SD, UK

Abstract. Share and reuse of biochemical models have become two of
the main issues in the field of Computational Systems Biology. There
already exist widely-accepted formats to encode the structure of models.
However, the problem of describing the simulations to be run using those
models has not yet been tackled in a satisfactory way. The community
believes that providing detailed information about simulation recipes will
highly improve the efficient use of existing models. Accordingly a set of
guidelines called the Minimum Information About a Simulation Exper-
iment (MIASE) is currently under development. It covers information
about the simulation settings, including information about the models,
changes on them, simulation settings applied to the models and out-
put definitions. Here we present the Simulation Experiment Description
Markup Language (SED-ML), an XML format that enables the storage
and exchange of part of the information required to implement the MI-
ASE guidelines. SED-ML is independent of the formats used to encode
the models – as long as they are expressed in XML –, and it is inde-
pendent of the software tools used to run the simulations. Several test
implementations are being developed to benchmark SED-ML on simple
cases, and pave the way to a more complete support of MIASE.

1 Introduction

As Systems Biology transforms into one of the main fields in life sciences, the
number of available computational models is growing at an ever increasing pace.
At the same time, their size and complexity are also increasing. The need to build
on existing studies by reusing models therefore becomes more imperative. It is
now generally accepted that one needs to be able to exchange the biochemical and
mathematical structure of models. Guidelines, such as the Minimum Information
Requested in the Annotation of Models (MIRIAM [1]), describe the information
that needs to be exchanged to properly understand a model; computer formats,
such as SBML [2] or CellML [3], allow people to implement those guidelines and
exchange models between a large diversity of tools.

However, the computational modeling procedure is not limited to the defini-
tion of the model structure. According to the MIRIAM specification, “the model,
when instantiated within a suitable simulation environment, must be able to re-
produce all relevant results given in the reference description that can readily

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 176–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SED-ML – An XML Format for the Implementation 177

be simulated” [1]. MIRIAM does not impose to list those relevant results, or to
describe how to obtain them. It became nevertheless clear that the description
of simulation experiments was mandatory to correctly exchange, re-use and in-
terpret models. This led to the development of the Minimum Information About
a Simulation Experiment (MIASE). Obtaining a desired numerical result of-
ten requires to run complex simulation tasks on original and perturbed models.
Furthermore, the same model can provide various results when simulated using
different approaches. Well-known examples are systems that exhibit steady-state
when simulated with deterministic approaches, and oscillation or multistation-
arity when simulated with stochastic methods. MIASE addresses exactly these
problems by providing a list of mandatory information required for the produc-
tion – or reproduction – of a given set of simulation results. This information
can be split into the following four categories:

Information about the models simulated
MIASE recommends to explicitly define all models used in a simulation by
providing a specific name and the source of each model. The use of a model
as such is often not sufficient to get a desired simulation result, therefore
changes that have to be applied to the model before the simulation must
be described in detail. Examples are the assignment of a new value (e. g.
constant, initial concentration), or the change of a mathematical expression
(e. g. using different enzyme kinetics).

Information about the simulation methods used
Each simulation can be characterized by certain types of simulation proce-
dures to be run (e. g. steady-state, time course) and the simulation algo-
rithms used to perform them. The information has to be sufficiently detailed
so that no arbitrary choices have to be made when setting up the simulations.

Information about the tasks performed
Once simulation settings and changes on the models have been defined, the
simulation tasks undertaken to complete the simulation experiment need to
be specified. Typically, that will involve describing how a simulation proce-
dure has to be applied to a specific model, and in which order.

Information about the outputs produced
It is often necessary to define the transformations that have to be performed
on the raw output of the simulation tasks, and how to provide the final
results. These results can be numerical or graphical. For instance, a model
of a periodic process can provide just time courses showing oscillations; or
it can, on the contrary, provide phase diagrams, which are more explicit in
describing the relationship between variables. An even more striking example
of the necessity for output definitions is the bifurcation diagram.

The adoption of MIASE will be greatly fastened, both on the generation and
the reuse sides, if the required information is encoded in a standard format
– produced and understood by simulation software. The object model (SED-
OM) presented in this paper is a platform independent prototype model encod-
ing MIASE guidelines for simple simulation experiments. We also present an
XML based implementation of that model (SED-ML) which is introduced with

178 D. Köhn and N. Le Novère

a detailed example in section 3. Related efforts are compared and discussed in
section 4.

2 The Simulation Experiment Description Object Model

The Simulation Experiment Description Object Model (SED-OM) is a formal
representation of the MIASE guidelines using the Unified Modeling Language
(UML [4]). The top-level classes of the SED-OM can be seen in Figure 1 and
will be described in more detail in the following section. For clarification, the
SED-OM class names are put in brackets using typewriter font.

2.1 Information on the Model and Model Changes

A MIASE based simulation description will in many cases make use of more than
just one model. That is why all models have to be defined clearly for later refer-
ence. In SED-OM, all models involved in the simulation experiment are in a list
of models (see Figure 2). Each model (Model) has its own unambiguous identifier
(id). Additionally, it may have a name (name) and it may hold information about
its encoding (type). As most simulation tools support only particular formats, it
is strongly recommended to provide the type of model encoding (e. g. CellML).
Information about the model format helps simulation tools to decide whether
the model can be loaded directly or has to be converted into another format
first. SED-OM also requires the source of the model to be defined (source). It is
not within the scope of SED-OM to store model representations, but to provide
a secure way of accessing them. The source should be reliable, meaning it should
point to a repository of curated models in order to ensure the correctness and
validity of the model.

Models often need to be modified before subjected to a simulation task. Those
changes can be direct atomic changes on simple attributes of a model, such
as changes on a parameter or on the initial concentration (ChangeAttribute).
Complex changes, depending on other values, can be described using mathemat-
ical expressions (ChangeMath). Those expressions are mathML [5] constructs
that are made up of parameters defined in a list of parameters (Parameter) and
variables defined in a list of variables (Variable). A variable object holds a ref-
erence to an already defined model and targets a certain XML element within
that model using XPath. Finally, a general class (ChangeXML) allows to replace
any piece of XML code by another valid one, including void which amounts to
a deletion.

The XML Path Language (XPath [6]) has been chosen to target model ele-
ments. Apart from being a natural choice when working with XML files, XPath
expressions allow to unambiguously identify any (syntactical) part of a model
that can be altered. XPath offers a very convenient way of describing changes on
the model independently of the actual model representation format: An XPath
expression defines a path through an XML document and points to a particular
XML element or XML attribute within the document. The only restriction im-
posed upon the model by the usage of XPath is that it has to be available in an

SED-ML – An XML Format for the Implementation 179

DataGenerator

+id : String [1]

+name : String [0..1]

+mathExpression : MathML

Output

+id : String [1]

+name : String [0..1]

Notes

+anyNote : String

Annotation

+anyAnnotation : String

SED-ML

+xmlns : String = http://www.sed-ml.org

+version : String

SEDBase

+metaID : String

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

Task

+id : String [1]

+name : String [0..1]

All classes inherit from

SEDBase.

+listOfOutputs

0..*

+listOfDataGenerators

0..*

+listOfSimulations

0..*

+listOfTasks

0..*

+notes

+listOfModels

0..*

+annotation

Fig. 1. SED-OM – Top level classes

XML based format. The addressed XML element can be a leaf element, or an el-
ement containing a whole mathematical expression. In principle, everything that
can be addressed by an XPath expression can be modified. Other solutions that
were considered for the definition of changes on a model would have involved
the creation of change classes for each supported language format, depending
on the current version of the standard and its syntactical naming of the model
elements.

180 D. Köhn and N. Le Novère

ChangeXML

+newXML : XML [1]

Variable

+id : String [1]

+name : String [0..1]

+target : XPath [1]

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

Change

+target : XPath [1]

ChangeAttribute

+newValue : String [1]

ChangeMath

+math : MathML [1]

Parameter

+id : String [1]

+name : String [0..1]

+value : String [1]

+modelReference
1

+listOfVariables

0..*

+listOfChanges

0..*

+listOfParameters

0..*

Fig. 2. SED-OM – The Model class

UniformTimeCourse

+initialTime : double [1]

+outputStartTime : double [1]

+outputEndTime : double [1]

+numberOfPoints : Integer [1]

AnySimulation

Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

SimulationProperty

+propertyName : String [1]

+propertyValue : String [1]

+listOfProperties 1..*

Fig. 3. SED-OM – The Simulation class

2.2 Information on the Simulation Settings

A simulation is typically characterized by the simulation algorithm used, the
settings applied to the simulation algorithm, and the simulation type.

Each simulation (Simulation, see Figure 3) can be referred to by an identi-
fier (id). It might also contain a name (name) and a reference to the simulation
algorithm used to run the experiment (algorithm). This algorithm reference

SED-ML – An XML Format for the Implementation 181

is an identifier corresponding to a KiSAO term. The Kinetic Simulation Algo-
rithm Ontology (KiSAO [7]) is an effort to characterize and categorize existing
algorithms for the simulation of quantitative models within the field of Systems
Biology. Using terms from an ontology rather than agreed-upon strings allows
for reasoning. The simplest reasoning procedure is to find that algorithm avail-
able from KiSAO which is the closest to the one described in the simulation
description, if the latter is not available for the user.

Depending on the chosen simulation algorithm different settings have to be
applied. The necessary information which settings that are can be retrieved from
the KiSA ontology which will provide the according information about additional
settings for each simulation algorithm covered by the ontology. At the current
state of development, KiSAO does not allow for extracting the mandatory simu-
lation algorithm settings. As a consequence, the storage of simulation algorithm
settings are not yet possible.

Very important is the type of simulation that should be launched. SED-OM de-
fines the different types of simulations as sub-classes of the Simulation class. For
the time being, UniformTimeCourse simulations are supported. The inclusion of
further simulation types has been postponed to future versions of SED-OM as the
integration of classes with different but overlapping attributes is not trivial. Until
then, the AnySimulationclass functions as a generic place holder for all additional
simulation types. Depending on the type of simulation, different additional infor-
mation has to be provided, such as the initial simulation time for uniform time
courses. For the AnySimulation class, those simulation properties can explicitly
be defined in the SimulationProperty class through the name and the value of
the property (propertyName, propertyValue). For particular simulation types
derived from the general simulation class, those attributes are already defined in
the SED-OM, e. g. initialTime in the UniformTimeCourse class.

2.3 Information on the Simulation Task

In a simulation experiment, simulation approaches described in a Simulation
object are combined with specific models described in a Model object. In SED-
OM, the association between those two objects is supported through the defini-
tion of tasks (Task, see Figure 4). Each task contains one reference to a model
and one reference to a simulation. The task itself can be referenced by its own
identifier (id) and might have an additional name (name).

By providing the opportunity of explicitly linking models to simulations, a
redundant definition of models as well as of simulation settings is avoided – a
single model can easily be used with several different simulations and vice versa.

2.4 Information on the Output

One important part of SED-OM is the description of a simulation experiment
based on particular (changed or unchanged) models. However, just as important
is the definition of the results to be produced and the way to provide them (see
Figure 5).

182 D. Köhn and N. Le Novère

Simulation

+id : String [1]

+name : String [0..1]

+algorithm : kisaoID [1]

Task

+id : String [1]

+name : String [0..1]

Model

+id : String [1]

+name : String [0..1]

+type : String [0..1]

+source : XLink [0..1]

+modelReference

1

+simulationReference 1

Fig. 4. SED-OM – The Task class

The output class (Output) can be referred to by an identifier (id) and an
optional name (name). The SED-OM allows for the definition of different kinds
of outputs, which can either be specified as simple data tables (i. e. reports) or
as plots. Reports (Report) consist of a number of columns (Column); a formula
defines how to generate the data written in each column (see the DataGenerator
class further down). In addition, the SED-OM provides structures for two dimen-
sional plots (Plot2D) and three dimensional plots (Plot3D). A two dimensional
plot displays a number of curves (Curve) and a three dimensional plot displays
a number of surfaces (Surface). Curves and surfaces refer to the data to be
mapped on the according axes, and precise if the mapping is logarithmic or not.
The aim of the output class is to define concisely the procedure leading to a
certain output rather than to define how it should be presented to the user.
Nonetheless, since all classes may have notes attached, it is always possible to
store meta data such as information on the output shape or labels for curves.

The formulas used to generate the data are described in the DataGenerator
class (see Figure 6). All types of output reference an instance of that class. In
doing so it does not matter whether the data is calculated for plots or for the
columns of a report. One example for such a calculation is the definition of the
x-axis of a plot (referenced through the Curve class by an xDataReference).
Each data generator has an identifier (id) and might have a name (name). A
single data generator consists of a list of variables (Variable), a list of param-
eters (Parameter) and a mathematical expression (Math). A variable definition
is a reference to an existing variable in one of the defined models. However, in-
stead of referencing an element in a particular model using the model id, the
variable definition refers to the the task that simulates the model. As every task
uses only one model and one simulation setting description, this reference is

SED-ML – An XML Format for the Implementation 183

Plot3D

DataGenerator

+id : String [1]

+name : String [0..1]

+math : MathML

Curve

+logX : Boolean

+logY : Boolean

Output

+id : String [1]

+name : String [0..1]

ReportPlot2D

DataSetSurface

+logZ : Boolean

+yDataReference

1

+dataReference

1

+xDataReference

1

+listOfSurfaces 1..* +listOfDataSets 1..*+listOfCurves 1..*

+zDataReference 1

Fig. 5. SED-OM – The Output class

Task

+id : String [1]

+name : String [0..1]

Parameter

+id : String [1]

+name : String [0..1]

+value : String [1]

DataGenerator

+id : String [1]

+name : String [0..1]

+math : MathML

Variable

+id : String [1]

+name : String [0..1]

+target : XPath [1]

+taskReference

1

+listOfVariables

0..*

+listOfParameters

0..*

Fig. 6. SED-OM – The DataGenerator class

unambiguous. The variable inside the model is addressed via XPath expressions
for the same reasons justifying the use of XPath in the description of model
changes. Parameters are values introduced additionally to be used in the math-
ematical post-processing of the variable’s values. To facilitate calculations based
on the defined parameters and variables, mathematical expressions (Math) can
be constructed using mathML. The use of a data generator could, for instance,
lead to the following definition of a plot: “Take variable v1 of model m02 and
multiply its values by 2. Use the result as the abcissa x-axis of a 2D plot”.

184 D. Köhn and N. Le Novère

3 A Simple Example for a Simulation Description

As an example for a simulation description in the Simulation Experiment De-
scription Markup Language (SED-ML) we will use a model of circadian oscilla-
tions of PER and TIM proteins in Drosophila published by Leloup and Goldbeter
[8]. The SED-ML file describes a uniform time course simulation run on the orig-
inal model, as well as on a perturbed version of it. As has been shown in [8], the
system changes its behavior from oscillation to chaos depending on the values
of two parameters (maximal velocity of TIM messenger degradation V mT and
maximal velocity of degradation of the bi-phosphorylated TIM V dT). In order
to show the difference between both behaviors, a simulation experiment with two
different parameter settings is described in the following simulation experiment
in listing 1.1.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <sedML version ="1.0" xmlns="http://www.miase.org/">
3 <notes >Changing a system from oscillation to chaos </notes >
4 <listOfSimulations>
5 <uniformTimeCourse id=" simulation1"
6 algorithm=" KiSAO :0000071" initialTime="0" outputStartTime="50"
7 outputEndTime="1000" numberOfPoints="1000" />
8 </listOfSimulations>
9 <listOfModels >

10 <model id=" model1" name=" Circadian Oscillations" type="SBML"
11 source ="urn:miriam:biomodels.db:BIOMD0000000021" />
12 <model id=" model2" name=" Circadian Chaos" type="SBML" source ="model1">
13 <listOfChanges >
14 <changeAttribute target ="/sbml/model/ listOfParameters/
15 parameter[@id=’V_mT ’]/@value" newValue ="0.28">
16 </changeAttribute >
17 <changeAttribute target ="/sbml/model/ listOfParameters/
18 parameter[@id=’V_dT ’]/@value" newValue ="4.8" >
19 </changeAttribute >
20 </listOfChanges >
21 </model >
22 </listOfModels >
23 <listOfTasks >
24 <task id="task1" name="Baseline " modelReference=" model1"
25 simulationReference="simulation1">
26 </task >
27 <task id="task2" name="Modified parameters" modelReference=" model2"
28 simulationReference="simulation1">
29 </task >
30 </listOfTasks >
31 <listOfDataGenerators>
32 <dataGenerator id=" time" name="Time">
33 <mathExpression >
34 <math >
35 <apply >
36 <plus />
37 <csymbol encoding ="text"
38 definitionURL=" http://www.sbml.org/sbml/symbols /time">time
39 </csymbol >
40 </apply >
41 </math >
42 </mathExpression >
43 </dataGenerator >
44 <dataGenerator id=" tim1" name="tim mRNA (total)">
45 <listOfVariables >
46 <variable id="v1" taskReference=" task1"
47 target ="/sbml/model/ listOfSpecies/species [@id=’Mt ’]" />
48 </listOfVariables >

SED-ML – An XML Format for the Implementation 185

49 <mathExpression >
50 <math >
51 <apply >
52 <plus />
53 <ci>v1 </ci>
54 </apply >
55 </math >
56 </mathExpression >
57 </dataGenerator >
58 <dataGenerator id=" tim2" name="tim mRNA (changed parameters)">
59 <listOfVariables >
60 <variable id="v2" taskReference=" task2"
61 target ="/sbml/model/ listOfSpecies/species [@id=’Mt ’]" />
62 </listOfVariables >
63 <mathExpression >
64 <math >
65 <apply >
66 <plus />
67 <ci>v2 </ci>
68 </apply >
69 </math >
70 </mathExpression >
71 </dataGenerator >
72 </listOfDataGenerators>
73 <listOfOutputs >
74 <plot2D id=" plot1" name="tim mRNA with Oscillation and Chaos">
75 <listOfCurves >
76 <curve logX="false" logY="false" xDataReference=" time"
77 yDataReference=" tim1" />
78 <curve logX="false" logY="false" xDataReference=" time"
79 yDataReference=" tim2" />
80 </listOfCurves >
81 </plot2D>
82 </listOfOutputs >
83 </sedML >

Listing 1.1. Encoding of simulation settings using SED-ML

The original model used for the simulation experiment is model number 21 in
BioModels database [9]. This is specified by the source attribute of the first
model entry in the list of models (l. 11). The second model defined in the
SED-ML file references the first one (source="model1", l. 12). Contrary to the
first model definition, this XML element contains a sub-element listOfChanges
(ll. 13-20) that has two changeAttribute elements, each defining one change
in the XML model representation. Both changes apply new values to exist-
ing parameters: The parameter V mT is adapted in the first change definition
(newValue="0.28", l. 15), and the parameter V dT is adapted in the second
change definition (newValue="4.8", l. 18).

In lines four to eight, the simulation settings are stored: The simulation has
been characterized as a uniform time course (ll. 5-7) running from timepoint zero
to 1000, but starting the output at timepoint 50. The simulation algorithm is
specified by a KiSAO id (KiSAO:0000071, l. 6) which corresponds to the ontology
entry ”livermore solver for ordinary differential equations” (LSODE).

After the models have been defined and the simulation settings have been
stored, the next step is to combine both of them by creating simulation tasks
(listOfTasks, ll. 23-30). The first task runs the original model with the (only)
simulation setting defined (model1with simulation1, ll. 24-26). The second task

186 D. Köhn and N. Le Novère

Fig. 7. Simulation result gained from the SED-ML description (created using COPASI
4.2 (Build 22) and Gnumeric Spreadsheet 1.7.11): tim mRNA concentration (line) and
tim mRNA concentration with updated parameters V mT and V dT (dotted line)

then runs model2 with modified parameters using the same simulation setting
(model2 with simulation1, ll. 27-28).

The information given so far is sufficient for the design of valid and repeatable
simulation experiments. SED-ML also offers structures for the specification of
desired outputs. The example in listing 1.1 creates three different data generator
elements: The first data generator (ll. 32-43) is a simple specification of time us-
ing the time construct available from SBML. The second data generator element
(ll. 44-56) points to the species with identifier Mt which is the total amount of
tim mRNA (as can be gained from the SBML model description file) that comes
out of the task task1. The third data generator again points to the total amount
of tim mRNA, but it is now using the values coming out of task task2 (ll. 57-69).
Note that task2 – in contrast to task1 – is performed on the changed model
(model2).

The last part of the SED-ML file describes a plot (listOfOutputs, ll. 70-
79). It consists of two curves (ll. 75-76). Both curves plot time on their x-axis;
however, the first curve plots the total amount of tim mRNA using the original
model (yDataReference="tim1"), and the second curve plots the total amount
of tim mRNA applying the parameter changes (yDataReference="tim2"). The
result of the simulation following the specifications in the SED-ML file is shown
in Figure 7.

4 Related Work

The problem of simulation experiment descriptions is not new to Systems Biology
and has been addressed by several groups before. Of course, each simulation tool
that is capable of storing simulation settings uses its own internal storage format.

SED-ML – An XML Format for the Implementation 187

For example, COPASI [10] uses an XML based format for encoding the selected
simulation algorithm and the task definitions. However, those formats can only
be used with a specific simulation tool, and therefore simulation experiment
descriptions cannot be exchanged with others.

Standardization communities face the problem of describing simulation ex-
periments as well. One example is the ongoing discussion about the CellML
Metadata Specification [11] in the CellML community. The authors mention the
need to not only describe a model but also to describe “details of any particular
simulation being run”. The proposed solution is to extend the CellML meta data
concept by additional simulation description concepts. CellML meta data, and
thus also the simulation meta data, are specified using the Resource Description
Framework (RDF [12]). With help of the CellML Metadata Specification, one
or more simulation runs can be associated and described in one model speci-
fication. The description covers information about the type of simulation and
about the simulation algorithm used (including the name of the linear solver,
the specification of the iteration method and the multistep method used). Apart
from that, the specification of step size and starting values for the simulation
are supported. The CellML Metadata Specification is currently in the state of
a discussion draft. Unlike SED-ML, the approach chosen by the CellML com-
munity will store simulation specification details inside the model definition and
thus be restricted to the use of CellML models. By suggesting to refer to a model
rather than being part of it, SED-ML enhances reusability of simulation descrip-
tions and supports the description of simulation experiments using not only a
single model, but a number of models – which could even be encoded in different
description formats.

A specification to characterize simulation experiments has been proposed in
the SBML community as well [13]. Along with the development of SBML Level 3
extensions, the author proposes the description of simulation settings. Although
part of Level 3 extensions, the description of simulation runs is suggested to be
included inside the SBML model. So as to define simulation runs, the proposal
consists of several parts: (1) the definition of changes on the model, such as
updates on initial values, model parameters and others; (2) the specification of
simulation parameters and the storage of (time,value) pairs to maintain simula-
tion results; and (3) the definition of plots through specification of the axes and
the data that should be shown in the output. The proposal is currently available
as a DTD [14] draft. Again, the approach as it has been introduced in [13] does
not follow the ideas of a simulation description format independent of software
tools and model description languages. Additionally, the inclusion of simulation
results is proposed. This is not considered to be part of SED-ML, but in our
opinion should be covered by other efforts.

5 Discussion and Future Work

In this paper, an approach for the description of simulation experiments has
been introduced. The novel idea is to define a set of minimal guidelines detailed

188 D. Köhn and N. Le Novère

enough to unambiguously define a simulation experiment, independent of specific
simulation tools and particular model description languages. A first version of a
model for the realization of those guidelines has been proposed (SED-OM) and
has been encoded using XML (SED-ML). A sample simulation experiment in
the SED-ML format has been described in detail. It showed that the SED-OM
can be applied to existing models. The use is restricted to simple simulation
experiments though.

SED-ML can encode simulation experiments being run with several models,
which can even exist in different formats (e. g. comparing simulation results of a
CellML model and an SBML model). SED-ML can specify different simulation
settings applicable to the same model (e. g. running a model with a stochastic and
a deterministic simulation algorithm). Combinations of both are also possible, it
is easily conceivable to set up a simulation experiment that results in an output
comparing a parameter of a CellML model to a parameter of an SBML model,
depending on different simulation algorithms.

However, there are a number of important issues in simulation experiments
that are currently not covered by the SED-OM. The description of more complex
simulation tasks, e. g. parameter scans, is not yet supported. The difficulty here
is to decide how to describe the range of parameter changes that have to be
applied to a model. One option is to do that in the Task class, another option
is to extend the functionality of the Change class. Furthermore, the current
SED-OM allows to freely combine variables from different tasks in one output –
although the combination is depending on integrity restrictions. For example, the
output of variables from different simulation settings in one plot is only possible
as long as all participating simulations produce the same time points. Another
complex task that is not yet supported is the linear execution of simulation
experiments, meaning that the result of one simulation is used as the input for
another simulation task. For example, the result of a steady state analysis will
lead to a model with changed parameters. If that model then should be simulated
using a time course simulation, the results of the steady state analysis have to
be applied to the original model before. The definition of such sequences is not
yet supported by the SED-OM.

For all those reasons, the SED-OM must be further discussed. The use of SED-
ML and test implementations in different simulation tools will help enhancing
the coverage and robustness of the format.

6 Resources

If you want to contribute to the SED-OM and SED-ML development, or should
you have any questions or comments, please contact the authors or visit the
website on http://www.ebi.ac.uk/compneur-srv/sed-ml. The current SED-
OM and sample SED-ML instances can be downloaded from the MIASE project
homepage on sourceforge http://www.sourceforge.net/miase. For discussions
of the MIASE guidelines, please join the mailing list miase-discuss@lists.
sourceforge.net or visit the web site on http://www.ebi.ac.uk/compneur-
srv/miase.

http://www.ebi.ac.uk/compneur-srv/sed-ml
http://www.sourceforge.net/miase
file:miase-discuss@lists.sourceforge.net
file:miase-discuss@lists.sourceforge.net
http://www.ebi.ac.uk/compneur-srv/miase
http://www.ebi.ac.uk/compneur-srv/miase

SED-ML – An XML Format for the Implementation 189

Acknowledgements

The authors would like to thank everybody from the community involved in
the discussion of the MIASE guidelines. Special thanks goes to all members of
the miase-discuss mailing list who have been very active in discussing both
the MIASE guidelines and the SED-OM format, in particular Frank Bergman
(roadRunner), Ion Moraru (VCell), Sven Sahle (COPASI) and Henning Schmidt
(SBToolbox). Exchanges with Sven Sahle enriched the discussion part. Part of
the work was funded by the Marie Curie program and by the German Research
Association (DFG Research Training School “dIEM oSiRiS” 1387/1).

References

1. Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-Vides,
J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro, H.,
Shapiro, B., Snoep, J., Spence, H., Wanner, B.: Minimum Information Requested
In the Annotation of biochemical Models (MIRIAM). Nature Biotechnology 23(12),
1509–1515 (2005)

2. Hucka, M., Bolouri, H., Finney, A., Sauro, H., Doyle, J., Kitano, H., Arkin, A.,
Bornstein, B., Bray, D., Cuellar, A., Dronov, S., Ginkel, M., Gor, V., Goryanin, I.,
Hedley, W., Hodgman, T., Hunter, P., Juty, N., Kasberger, J., Kremling, A., Kum-
mer, U., Le Novère, N., Loew, L., Lucio, D., Mendes, P., Mjolsness, E., Nakayama,
Y., Nelson, M., Nielsen, P., Sakurada, T., Schaff, J., Shapiro, B., Shimizu, T.,
Spence, H., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J.: The
Systems Biology Markup Language (SBML): A medium for representation and
exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

3. Lloyd, C., Halstead, M., Nielsen, P.: CellML: its future, present and past. Progress
in Biophysics & Molecular Biology 85, 433–450 (2004)

4. Object Management Group (OMG): Unified Modeling Language (UML), Version
2.1.2 (2007), http://www.omg.org/spec/UML/2.1.2/

5. Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Frou-
mentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith,
B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML)
Version 2.0, 2nd edn. (2003)

6. World Wide Web Consortium (W3C) Recommendation: XML Path Language
(XPath) (1999), http://www.w3.org/TR/xpath

7. Köhn, D., Le Novère, N.: The Kinetic Simulation Algorithm Ontology (KiSAO).
Website (2007), http://www.ebi.ac.uk/compneur-srv/kisao/

8. Leloup, J., Goldbeter, A.: Chaos and birhythmicity in a model for circadian os-
cillations of the per and tim proteins in drosophila. Journal of theoretical biol-
ogy 198(3), 445–459 (1999)

9. Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., Hucka, M.: Biomodels
database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids Research 34(Database
issue) (January 2006)

10. Hoops, S., Sahle, S., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P.,
Kummer, U.: Copasi a complex pathway simulator. Bioinformatics 22(24), 3067–
3074 (2006)

miase-discuss
http://www.omg.org/spec/UML/2.1.2/
http://www.w3.org/TR/xpath
http://www.ebi.ac.uk/compneur-srv/kisao/

190 D. Köhn and N. Le Novère

11. Miller, A.: CellML simulation metadata specification – a specification for sim-
ulation metadata (2007), http://www.cellml.org/specifications/metadata/
simulations

12. World Wide Web Consortium (W3C) Recommendation: Resource Description
Framework (RDF) (1997), http://www.w3.org/RDF

13. Kopalov, F.: SBML extensions for level 3: Experiments, simulation, parameters,
results and plots (March 2008) (unpublished proposal)

14. World Wide Web Consortium (W3C) Specification: Document Type Definition
(DTD) (1998), http://www.w3.org/XML/1998/06/xmlspec-report

http://www.cellml.org/specifications/metadata/simulations
http://www.cellml.org/specifications/metadata/simulations
http://www.w3.org/RDF
http://www.w3.org/XML/1998/06/xmlspec-report

On Parallel Stochastic Simulation of Diffusive

Systems

Lorenzo Dematté1,2 and Tommaso Mazza1

1 The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

Piazza Manci, 17, 38100, Povo (TN), Italy
{dematte,mazza}@cosbi.eu

2 Department of Information Engineering and Computer Science (DISI),
University of Trento

Abstract. The parallel simulation of biochemical reactions is a very in-
teresting problem: biochemical systems are inherently parallel, yet the
majority of the algorithms to simulate them, including the well-known
and widespread Gillespie SSA, are strictly sequential. Here we investi-
gate, in a general way, how to characterize the simulation of biochemical
systems in terms of Discrete Event Simulation. We dissect their inher-
ent parallelism in order both to exploit the work done in this area and
to speed-up their simulation. We study the peculiar characteristics of
discrete biological simulations in order to select the parallelization tech-
nique which provides the greater benefits, as well as to touch its limits.
We then focus on reaction-diffusion systems: we design and implement
an efficient parallel algorithm for simulating such systems that include
both reactions between entities and movements throughout the space.

Keywords: Parallel and distributed simulation, reaction-diffusion
systems, Gillespie SSA.

1 Introduction

In computational biology, the interest on multi-processor computing is growing
over the years, even if ubiquitous and parallel computing require deep knowledge
both on the bio-reality and on the tools in charge of handling and interpreting
it. Indeed, the correct parallel computation of whatever problem must take into
account four milestones: (i) the best computational splitting policy; (ii) how to
handle synchronization among the computational workers, (iii) the more suitable
hardware architecture and software packages to use and (iv) the nature of the
inherent parallelism.

There are problems naturally parallelizable and others purely serial. According
to the case, the additional computing power afforded by new machines can be
used to advantage of one or of the other. To enhance the efficiency of Monte Carlo
simulations, Single Replication in Parallel (SRIP) and Multiple Replications in
Parallel (MRIP) computational paradigms have been widely contemplated in
the past and deemed to be appropriate.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 191–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 L. Dematté and T. Mazza

Single Replication in Parallel. The SRIP approach is based on the decom-
position of a stochastic trajectory into logical processes, running on different
processors and communicating by means of message passing protocols [1].
For naturally divisible problems, it shows elevated performances in speed-up
and scale-up benchmarks. Significant drawbacks originate from the necessity
for warranty of synchronism.

Multiple Replications in Parallel. The MRIP method speeds up simulation
by launching independent replications on multiple computers and using dif-
ferent random seeds in such a way the processes result approximatively un-
correlated [2]. In contrast to SRIP, MRIP can be easily applicable to any
system, independent of the inherent system parallelism. However, the fact
that a single replication cannot be executed on a unique processor and that
outputs (or pieces of them) almost deterministic are identical when repli-
cated, make the use of MRIP approaches sometimes inappropriate [3]. The
MRIP and SRIP approaches are not exclusive, i.e., it is possible to use MRIP
and SRIP in the same simulation program.

In biology, whereas the MRIP policy, well understood and investigated for
a long time [2], [4], [5], [3], [6], [7], [8], [9], [10], [11], finds straightforward
application to real case-studies [12], [13], the SRIP policy has a rather vague
characterization. SRIP methods can be further divided into two opposite sub-
categories which include: (a) methods that exploit data-parallelism (or loop-level
parallelism), namely that exemplify simulation of interacting particles on a fi-
nite grid in which individual processors are in charge of simulating the state
of each site [14]; (b) methods that exploit task-parallelism (or functional par-
allelism), namely that divide the computation of a realization into a set of
sub-computations among cooperative processors by computational dependency
criteria [1], [15]. To date, the research in distributed-parallel processing has suc-
cessfully solved many related problems; however, it has not led yet to a portable
and efficient tool for distributing stochastic simulation in the field of computa-
tional biology. We aim to move the attention of the reader toward our target by
going through the theoretical bases and strategic decisions which configure our
insight.

In particular, the next section will introduce the Gillespie Stochastic Sim-
ulation Algorithm (SSA), the most known and the de-facto standard for the
simulation of biochemical systems at microscopic and mesoscopic level and a
possible extension for simulating bigger systems where spatiality and diffusion
are important variables. Next, we will briefly introduce the category of computer-
simulation systems known as DES and the work done on these systems in the
light of parallel and distributed computing. We will show how the SSA can be
reformulated in term of a DES system, and we will show the characteristics the
algorithm assumes when it runs in a parallel environment. Section 4 will present
how these concepts were used in the designing and implementation of a reaction-
diffusion simulator that runs on HPC clusters, and Sections 5 and 6 will close
the paper with an example and considerations about future work.

On Parallel Stochastic Simulation of Diffusive Systems 193

2 The Gillespie SSA

The stochastic approach to chemical kinetics was first employed by Delbruck in
the ’40s. The basic assumptions of this approach are that a chemical reaction
occurs when two (or more) molecules of the right type collide in an appropriate
way, and that such collisions are random in a system of molecules in thermal equi-
librium. Whenever two molecules come into a certain proximity, they can react
with some probability: collisions are frequent, but those with the proper orienta-
tion and energy, that is the collisions that allow molecules to react together, are
infrequent. In [16] and [17], Gillespie introduced the additional assumption that
the system is in thermal equilibrium. This assumption means that the considered
system is a well-stirred mixture of molecules, where the number of non-reactive
collisions is much higher than the number of chemical reactions. It makes pos-
sible to state that the molecules are randomly and uniformly distributed at all
times. The derived stochastic method becomes computationally lighter than the
classical methods in charge of predicting collisions by estimating the collision
volume of each particle.

The so called Stochastic Simulation Algorithm (SSA) models a general bi-
ological system as a set of pairs (entity type, quantity) and a set of possible
interactions between the entities. In the case of biochemical models, entities are
molecules and interactions are coupled chemical reactions. Therefore, we can
reduce the necessary parameters for describing a system to:

– the entities, usually referred to as species, present in the system S1, ..., SN ;
– the number and type of interactions, called reaction channels, through which

the molecules interact R1, ..., RM ;
– the state vector X(t) of the system at time t, where Xi(t) is the number of

molecules of species Si present at time t.

The state vector X(t) is a vector of random variables, that does not take account
of the position and velocity of the single molecules. For each reaction channel
Rj , a function aj , called propensity function for Rj , is defined as:

aµ = hµcµ, for µ = 1, . . . , M (1)

such that hµ is the number of distinct reactant combinations for reaction Rµ

and cµ is a constant depending on physical properties of the reactants. The cµ

constant is usually called base rate, or simply rate of an action, while the value
of the function aµ is called the actual rate.

Gillespie derived a physical correct Chemical Master Equation (CME) from
the above representation of biochemical interactions. Intuitively, this equation
shows the stochastic evolution of the system over time, which is indeed a Markov
process. Gillespie also presented in [17] an exact procedure, called exact stochas-
tic simulation, to numerically simulate the stochastic time evolution of a bio-
chemical system, thus generating one single trajectory. The procedure is based on
the reaction probability density function P (τ, µ), which specifies the probability
that the next reaction is an Rµ reaction and that it occurs at time τ :

194 L. Dematté and T. Mazza

P (τ, µ) =
{

aµ exp(−a0τ) if 0 ≤ τ <∞ and µ = 1, . . . , M
0 otherwise

where aµ is the propensity function and a0 is the sum of aµ, µ = 1, . . . , M .
The reaction probability density function is used in a stochastic framework

to compute the probability of an action to occur. The way of computing the
combinations hµ and, consequently the actual rate aµ, varies with the different
kind of reactions. In the case of first-order reactions, hµ is equal to the number
of entities (the cardinality) of the one reactant, while in the case of second-order
reactions, hµ corresponds to the number of all possible interactions that can take
place among the reactants.

2.1 Simulation of Reactive-Diffusive Systems

When studying a single localized pathway, the macroscopic description of its
kinetics usually suffices. On the other end, many biological processes are not
local and, often, they take place in an inhomogeneous medium, the cytosol, where
spatially localized fluctuations of inorganic catalysts and intracellular diffusion
can play an important role. When dealing with such processes, it is mandatory
to explicitly consider the cell geometry and, in general, spatial conformations
and diffusion processes.

Several algorithms for the simulation of reactive-diffusive systems exist; each
of them uses a different abstraction that gives a different level of detail which
influences both the accuracy of the simulation and its execution speed. Chemical
and biochemical reactions can be simulated in a very precise and detailed way
using molecular dynamics [18], a form of computer simulation where atoms are
allowed to interact under known physics laws. In these simulations, details about
the chemical reactions, like formation and bonds breaking between single atoms,
are explicitly simulated as well as the position and energy of every atom in the
system. These methods have been applied to a wide range of problems of chemical
and biological interest, such as chemical reactions in solution and enzymes and
solvent effects on electronic excited states.

Other methods, like the one used by Bray et al. in Smoldyn [19], operate
at a coarser level of detail, where molecules have an identity and an exact po-
sition in a continuous space, but no volume, shape or inertia. Moreover, every
molecule of interest is represented as an individual point, while those that are not
of interest (water, non-reactive molecules, etc.) are not represented. Molecules
move at rates specified by a diffusion coefficient and diffuse in random direc-
tions and distances calculated by means of the Fick’s second law. Bimolecular
reactions take account of the spatial relations; a bimolecular reaction occurs
if two reactants approach each other within a binding radius, a radius that is
different (typically smaller) than the physical radius of the molecules, and that
depends on the diffusion coefficients and on the reaction rate constant. Simulated
space is continuous; on the other hand, simulated time is discrete as reactions,
computation of movements and update of the position are done at fixed time
steps.

On Parallel Stochastic Simulation of Diffusive Systems 195

2.2 Reaction-Diffusion with the Gillespie Method

The Gillespie algorithm, introduced in Sec. 2, allows to simulate chemical re-
actions in an efficient way. Every collision that leads to a reaction is explicitly
simulated, but collisions that do not lead to a reaction are not. The stochastic
behaviour of the chemical system is preserved, as molecules are still represented
as discrete quantities, but information on a single molecule, and with it any
positional information, are lost. Moreover, the assumptions made by Gillespie
explicitly rule out diffusion from the system: since the solution is in thermal equi-
librium, it is assumed that diffusion is instantaneous so that each molecule has
the same probability of reacting with every other molecule in the system. The
algorithm works well locally, but cannot be used to represent complex pathways
that span over a considerable extension of reactions taking place in an inhomo-
geneous medium.

Fig. 1. The extension to the Gillespie SSA proposed by Bernstein. On the left, a
discretization of the space into four cells. On the right, the species and the reactions
added to the system in order to deal with diffusion.

A proposed extension is the discretization of the space by subdivision into
logical sub-volumes, often referred to as cells. The dimension of a cell is chosen
to be small enough for the sub-space to be homogeneous and for the enclosed
entities to have almost instantaneous diffusion, so that the assumptions made
by the Gillespie algorithm are valid inside a single cell; furthermore, spatial
information is added to the system by duplicating every species S. New species
with the same characteristics of S and with an index identifying its position
on the grid are added to the system (S1, S2, ..., Sn); diffusion is represented by
first-order reactions among species. This method, proposed by Bernstein [20], is
depicted in Fig. 1.

The advantage of this approach is that the algorithm in charge of simulating
the reaction-diffusion system does not change; it is possible to add more species
to model the molecules in different compartments and add reactions to “dif-
fuse” between adjacent compartments, and then to use the existing tools and
algorithms to simulate the modified system.

An efficient implementation for simulating reactive-diffusive systems by using
spatial structures is used in the next subvolume method (Elf et al. [21]). The

196 L. Dematté and T. Mazza

underlying theory is the same utilized by Bernstein, as both are based on the
exact realizations of the Markov process described by the Reaction Diffusion
Master Equation. The algorithm uses three data structures: (i) a connectivity
matrix, (ii) an event queue and (iii) a configuration matrix, used to naturally
partition reactions into sub-volumes. Instead of mapping movements of entities
using different species, the direct method [17] is used on each sub-volume to
compute the time for the next event, i.e. a chemical reaction or a diffusion
event. Then, the next reaction method [22] is used to identify the sub-volume
where the first event will occur. The event is simulated, then the reaction and
diffusion times in the volume (or volumes, in case of diffusion) are updated using
the direct method again.

3 Discrete Event Simulation (DES)

In DES, the life of a system is modelled as a sequence of timed events. With
this approach, a system is set up by a collection of processes P = {p1, p2, . . .}
and of activities or events E = {e1, e2, . . .}. A process is fully characterized by
a finite set of states S = {s, s′, . . .}. At any given time, each process has exactly
one active state. Each state s has a set of actions As = {αs, α

′
s, . . .} that can be

performed when the process is in that state; the aim of an action is to change
the current active state. Activities or events are sets of actions that are executed
together to transform the state of the system. Here, we refer to the state of a
system z as the collection of all the active states of the processes in the sys-
tem. A run is thus meant as a sequence of interleaved system states and events:
r : z0|e0 → z1|e1 → z2|e2 . . . z(u−1)|e(u−1) → zu. As opposed to continuous sim-
ulation, in discrete event simulation, state changes of the simulated system are
assumed to happen at discrete points of the virtual time and are thus controlled
by uncontinuous functions, resulting in a succession of events.

DES can be used to simulate stochastic processes. In a stochastic process, each
state is partiallybut not fully determined by the previous one. Typically, a stochas-
tic process can have one or more deterministic arguments1 and their values range
over an index collection of non-deterministic random variables Xi with certain
probability distributions. Such functions are equally known as realisations or sim-
ple paths. The view of a stochastic process as an indexed collection of random vari-
ables is the most common one. The events to be executed are bound to the set of
random variables Xi, that determine which event will be executed and when. A
simulation executes events in nondecreasing time-stamp order so that the virtual
time (the time-stamp of the last executed event) never decreases.

Indeed, the occurrence of an event typically causes four actions: (a) progres-
sion of the virtual time to the timestamp of the simulated event; (b) changes of
the state of the simulated system; (c) scheduling of new events and (d) deschedul-
ing of other events. Thus the basic data structure of a DES program consists
of: (i) a virtual simulation clock; (ii) a timestamp ordered list of pending events
and (iii) the state variables.
1 We consider the time as always present among the arguments.

On Parallel Stochastic Simulation of Diffusive Systems 197

3.1 Parallel and Distributed Discrete Event Simulation (PDES and
DDES)

In this summary, we deal with parallelism at model function level. In particular,
we focus on methods which make intensive use of multiprocessors architectures for
DES and which can be classified in between the following two classes: parallel dis-
crete event simulation (PDES) and distributed discrete event simulation (DDES).

In PDES and DDES, a simulation model is partitioned into regions or do-
mains2. Each region is simulated by a so-called logical process (LP). Each LP
consists of [23]: (i) a spatial region Ri of the simulated system; (ii) a simulation
engine SEi executing the events belonging to the region Ri and (iii) a commu-
nication interface, enabling LPs to send messages to and receive messages from
other LPs.

LPs are mapped onto distinct processors with (as an assumption) no common
memory. Thus, every LP can only access a subset of the state variables Si ⊂ S,
disjoint to the state variables assigned to the other LPs. The simulation engine
SEi of each LP processes two kinds of events: internal events which have no
direct causal impact on the state variables held in the other LPs and external
events that can change the state variables in one or more other LPs. If an external
event is processed, the LP holding the state variables that are to be changed is
informed through a message sent by the LP. The message routing between the
LPs is done by a communication system, connecting the LPs. Incoming messages
are stored in input queues, one for each sending process.

Due to different virtual time progression within the various LPs, the causality
principle is hard to be guaranteed and special considerations have to be made to
obtain the same simulation results from DDES as from sequential DES. The two
most commonly used synchronization protocols in DDES are: (i) The conser-
vative (or Chandy-Misra) synchronization protocol developed by Chandy and
Misra [24], [25] and (ii) the optimistic (or time warping) simulation protocol
based on the virtual time paradigm proposed by Jefferson [26].

3.2 Conservative vs. Optimistic

The basic idea of the conservative protocol is to absolutely avoid the occurrence
of causality violations. It is granted by strictly freezing the computation of an
event e with virtual time (VT) te until when no messages with VT lower than
te will be received. Under the assumption of FIFO message transport, this is
achieved by only simulating an event if its VT is lower than the minimum of the
timestamps of all events in all input queues.

An obvious problem arising in conservative simulation is the possibility of
deadlocks [27]. Some deadlock resolution schemes have been developed during
the last years. Among them, the more interesting are: [24] which avoids deadlock
by the use of NULL-messages and [25] which detects and recovers deadlock, in
advance. Some optimization protocols are discussed in [28], [29] (Null-messages

2 For the purposes of this paper, only spatial decomposition is considered; however, the
concepts illustrated here are also suitable for decompositions into general domains.

198 L. Dematté and T. Mazza

approach), in [30] (NULL-messages on request), in [31], [32] (lookahead compu-
tation), and in [33], [34] (local deadlock detection).

In contrast to the conservative protocol, there is no blocking mechanism in
the optimistic one. An event is simulated even if it is not safe to process. Thus,
causality errors are allowed to occur, but are later detected and solved. To guar-
antee causality, a mechanism called time warp or rollback has been designed.
Time warp is optimistic in the sense that each processor P0 executes events in
timestamp order under the optimistic assumption that causality is not being
violated. At any point, however, P0 may receive a straggler event E, that should
have been executed before the last several events already executed by P0. In
this case, it rolls back to a check pointed system state that corresponds to a
time-stamp which is a global minimum among all VT (global virtual time) and
less than the straggler’s time-stamp. Processor P0 resumes its execution from
this point, and P0 processes E, in the right time-stamp order.

A successful optimistic DDES minimizes the runtime costs of (i) state-saving
system state, (ii) rollback, (iii) global virtual time (gvt) computation, and (iv)
interprocessor communication.

3.3 Characterization of the Gillespie SSA as a PDES Algorithm

From a computational point of view, a biochemical system designed to be simu-
lated with SSA can be seen as a collection of interacting processes, where each
process can be in a different state among a set of discrete states. In this view,
biochemical species are treated as processes that are able to perform a set of
actions, changing their state in response to an external or internal action; reac-
tions can be codified as events that are composed of a number of complementary
actions, so that the execution of a reaction results in a simulation event that ex-
ecutes two (in the case of mono-molecular reactions) or more (in the case of
bi-molecular reactions) actions in two or more processes (see Fig. 2).

Fig. 2. A set of species and a set of reaction (left) represented as a set of processes and
events (right). Each event is composed by two or more actions that modify the state
of each process, typically decreasing or increasing the counter for the cardinality of the
corresponding species.

So, a biochemical system S = (P, E) can be seen as a set of processes P =
{p1, ..., pn}, each holding a set of states and a set of actions that can be performed
to modify its state, and a set of events E = {e1, ..., em}, each composed by a set of

On Parallel Stochastic Simulation of Diffusive Systems 199

actions; typically, for every process p there will be two actions (a+, a−) in charge
of decreasing and increasing the counter for the cardinality of the corresponding
species. However, it is possible and sometimes useful to add additional state
variables and corresponding actions.

It is easy to see that, following this computational view, the simulation of a
biochemical system with the Gillespie algorithm becomes a DES, where event
times are generated by sampling an exponential distribution. The fact that times
are generated by an exponential distribution leads to some insights in how this
particular DES can be parallelised. In particular, we will show that it is almost
never convenient to parallelize biochemical systems by using a conservative ap-
proach. In support of our analysis, we shall consider a dependency graph between
events, defined as the graph of reactions introduced by Gibson and Bruck [22].

Definition 1. Let Reactants(e) and Products(e) be the sets of reactants and
products, respectively, involved in the event e.

Here, for reactants we indicate the processes whose actions decrease the cardinal-
ity of their state variable, identified with the name of the process and a ‘-’ suffix.
For example, the event e1 in Fig. 3 is composed by the actions {a−, b−, c+};
the actions a− and b− modify the state of A and B, so Reactants(e1) = {A, B}.
Products are defined in a similar way as the processes whose actions increase the
cardinality of their state variable.

Definition 2. Let DependsOn(e) be the set of processes whose state change
affects the execution time of the event e, and Affects(e) the set of processes
whose state changes when an event is executed.

Following the description of the SSA given in Sec. 2, Reactants(e) = DependsOn
(e). Typically, Affects(e) = Reactants(e) ∪ Products(e), or better, the set
of processes on which the actions in e act. Sometimes, when two actions are
complementary (i.e. one cancels the effects of the other), the set can be a little
smaller. This is the case of the event e3 in Fig. 3, where e− cancels e+ and
Affects(e3) can be reduced to {D, F}.

Definition 3 (Dependency graph). The dependency graph of a biochemical
system S is a directed graph G(V, E) in which the set of nodes V corresponds
to the set of events and there is a directed edge between each pair of nodes
(V (e1), V (e2)) if and only if Affects(e1) ∩DependsOn(e2) �= ∅

The dependency graph can be used to show that the dependencies within reac-
tions, united with the times sampled from an exponential distribution, in many
cases lead to the need for sequential execution.

Definition 4. Considering a system S, its dependency graph can be partitioned
into a set of strongly connected components. We call the set of processes and
events belonging to a strongly connected component of cardinality greater than
one a subsystem (see Fig. 4).

200 L. Dematté and T. Mazza

Fig. 3. The dependency graph (right) for a simple biochemical system (left)

Fig. 4. A biochemical system partitioned into subsystems

Fig. 5. Due to the exponential distribution used to generate execution times, the exe-
cution of an event can lead to the re-computation of the times of all the events in the
same subsystem during the successive simulation steps

Proposition 1. The execution of an event may lead to the need to recompute
the next execution time for all the events in a subsystem.

Whenever an event is executed, the next execution time of the events depending
on it, i.e. its neighbours in the dependency graph, must be updated. Since times
are exponentially distributed, there is no lower bound that guarantees us that
the times we are going to recompute will be higher than a certain threshold.

The events with the new, lower, timestamps will in turn lead to the need for
recomputing the time of other events, with the possibility of generating lower
timestamps for the events they affect. By definition, in a strongly connected

On Parallel Stochastic Simulation of Diffusive Systems 201

Fig. 6. Due to the diffusion events, a reaction-diffusion system has only one single
subsystem

component there exists a path between any two vertexes, so it is possible that
the generation of new times ripples and affects all the events in the subsystem
(see Fig. 5). From this proposition, we can immediately derive two corollaries:

Corollary 1. In a subsystem, the absence of causality errors is guaranteed when-
ever actions are executed in increasing time stamp order (zero lookahead).

Corollary 2. Since the absence of causality errors is guaranteed only if actions
are executed one after the other, a pure conservative approach to PDES -which
allows actions to be executed only when they cannot incur in causality errors- has
a lookahead of zero, leading to a serialized execution where no speedup is possible.

In [35], the authors considered several techniques for obtaining the lookahead
necessary for concurrent execution of events under the conservative approach,
such as artificially inserting lookahead into the computation and relaxing or-
dering constraint. We examined these approaches as well, and we came to the
conclusion that using these techniques would lead to unacceptable compromises
concerning the accuracy of the simulation.

An alternative approach for having some lookahead even in presence of expo-
nential distributed random numbers is pre-sampling. Pre-sampling is a technique
proposed by Nicol [36] for computing lookaheads in queueing network simula-
tions with exponential distributed service time, and then used also for federated
military simulations by Loper and Fujimoto [37]. At a glance, this technique
seems to be applicable even in our domain. It carries a number of problems
that makes it infeasible for our simulations. As noted by Nicol and Fujimoto,
the service time variation has a strong effect on speedup. Under high variation,
very small lookahead values are possible, meaning that lookahead is computed
more often, thereby incurring in increased overhead. Furthermore, they also no-
tice that rich interconnections between simulated entities, such as those used
for simulating a continuous spatial environment, cause increased uncertainty in
future behavior, resulting again in small lookaheads, with poor performances
especially when using exponential distributed times.

202 L. Dematté and T. Mazza

Fujimoto conclusions that this technique requires (i) fixed sized time intervals,
(ii) the same distribution for all messages, (iii) precise timestamps with few
random number samples and (iv) knowledge concerning the number of messages
produced in the near future [37] convinced us to discard it, as reaction-diffusion
biochemical simulations do not meet any of these requirements.

Indeed, it is possible to make two crucial observations about reactive-diffusive
simulations: (a) in a reaction-diffusion systems where species are free to diffuse
in every direction, the dependency graph for diffusive events is fully connected;
thus, the whole system is made of a single big subsystem (see Fig. 6) and (b)
many biological systems show a little number of big subsystems; compounds,
molecules and enzymes in a cell are reused over and over, forming big intercon-
nected networks with loops. Indeed, regulation and transcription processes are
often based on feedback loops, that shows up as connected components (subsys-
tems) of dependency graphs.

In conclusion, the SSA can be characterized as a DES. Of the two main ap-
proaches to parallelize DES, the optimistic one is the most promising: as the
two corollaries show, a pure conservative approach, united with exponentially
distributed times and the particular dependency structure of biochemical sys-
tems, is very likely to perform poorly.

4 An Optimistic Reaction-Diffusion Simulator

As a proof of concept, we designed and developed a parallel stochastic reaction-
diffusion simulator. While designing the simulator, we kept three goals in mind:
(a) correctness : the simulator must respect the assumptions underlying the Gille-
spie method and its extension; (b) scalableness : the addition of further processing
power must result in an increased execution speed-up; (c) fastness : the speed
measured after running on a single processor must be comparable with that
would be achieved if the simulator was strictly sequential.

4.1 Distributed Simulator Design

The first goal can be met by implementing the extension of the Gillespie method
with diffusion events we introduced in Sec. 2.1, and the second and third goals
can be fulfilled by using an approach based on PDES with an optimistic schedul-
ing policy, as discussed in Sec. 3.

Notice that these two objectives must be considered together, as they heav-
ily influence each other. Some methods, like the one presented in [38], chose to
ignore correctness, violating the assumptions made by Gillespie and the proper-
ties stated by Bernstein with the aim to obtain fast parallel execution through
volume subdivision. The algorithm, as the authors themselves say, can be useful
in some cases, but it is not correct in a general sense. Indeed, when the spatial
localization of molecules becomes important for the purposes of the experiment,
the algorithm produces incorrect results.

For an effective implementation of the simulation algorithm as a PDES, spa-
tial structures and partition of reactions into sub-volumes must be provided.

On Parallel Stochastic Simulation of Diffusive Systems 203

Moreover, state information should be maintained in a decentralized way, avoid-
ing to keep global shared state informations, whenever it is possible. Partial local
state can be processed and updated concurrently by different processors. The
Next Subvolume Method (NSM) and algorithms derived from it employ spatial
partitioning into sub-volumes, but they maintain information of execution times
in global data structures; therefore they are not immediately adaptable to a
parallel environment (even if a distributed version of the algorithm was recently
proposed by Jeschke et. al. [35]).

We take a slightly different approach with respect to the NSM; we also divide
reactions into sub-volumes (cells), but we consider each cell on the two or three-
dimensional grid as an almost autonomous entity. We assume that every cell
knows and stores its local information: concentrations of species, diffusion and
reaction rates, next reaction time, as well as references to its neighbours. In each
cell there are some dependency relations, both between species inside the same
cell and between those in neighbour cells that can diffuse into it (see Fig. 7a).
We have noticed that each cell on the grid can evolve (i.e. execute simulation
events) independently from the other cells if the executed events do not violate
the restrictions imposed by the dependencies. Following the optimistic approach,
we let each cell evolve independently, up to a diffusion event occurs. When a
neighbour notifies to the current cell a diffusion event with a clock Tdiff smaller
than the current clock Tact, reactions with times between Tdiff and Tact are
marked as straggler. So, we rollback every action executed within Tdiff and
Tact, recompute propensities and reaction times and restart the simulation of
the events in that cell from time Tdiff .

In our initial implementation, each cell was mapped onto a logical process
(LP). The assignment of logical processes to physical processes may be done
either dynamically, possibly by using a load balancing algorithm, or statically,
by exploiting spatial locality to reduce communication overhead.

(a) (b)

Fig. 7. Each cell is modelled as a process in a PDES (a). Cells are grouped into systems
in order to reduce communication overhead (b).

204 L. Dematté and T. Mazza

4.2 Performance Considerations

The third goal, fastness, is not easy to achieve because a lot of practical, real
world considerations have to be taken into account. The SSA was designed to run
efficiently on hardware of the late ’70; and it is indeed very efficient. An efficient
implementation of the Gillespie algorithm can process and simulate roughly 105

reaction events per second; that is, a simulation loop takes approximately 10000-
30000 CPU cycles to execute. Since a simulation loop is so fast, it is really
difficult to speed it up by means of a parallel architecture. Execution of diffusion
or reaction events on different processors requires synchronization in order to
exchange messages. In the best of the hypotheses, processes can run on a single
multi-core machine, where communication is done using shared memory and
mutexes. According to the literature and to our own tests, even in this case
the mere cost of context switching and proceeding the execution on a different
thread (roughly 5000 CPU cycles) can easily result comparable to the loop time
(see Fig. 8).

Fig. 8. The execution time of a parallel simulation (running on 2 processors) using
various techniques of synchronization and inter-thread communication, compared to
a serial simulation (Base). Notice that the overhead for running on multiple threads
actually increases the execution times in all but the last case, where we used a pool of
threads and hand-written assembly code for synchronization.

On a shared memory architecture, the problem is even worse. Even if current
HPC architectures can rely upon very low-latency connections and upon very
efficient message passing implementations (like the MPI interface we used), com-
munication overheads can vanish any performance gain. For this reason, we chose
a coarser granularity, in order to reduce the overhead to the minimum. For this
reason, we designed our parallel simulator in a hierarchical way (Fig. 7b): cells
are grouped into Cell Systems, that hold the partial state for a set of spatially
contiguous cells. Cell Systems are then grouped and driven by a Root System
that holds some topological information on the Cell Systems and that caches
some essential information on the system global state. Every System has a spe-
cialized communicator. The Root System has a communicator based on MPI to
let the Cell Systems it manages to communicate with each other across proces-
sor and machine boundaries. The Cell Systems have a single threaded, shared
memory communicator in charge of maximizing the performance and reduce the

On Parallel Stochastic Simulation of Diffusive Systems 205

overhead on a single processor or core. A further layer can be added with the
aim to manage groups of Cell Systems which execute on different CPUs or cores
on the same computation node, i.e. on a machine that shares the same memory
and that does not need for network communication or message passing in case
of inter-groups interactions.

CellSystem ():
while true do

NextAction := FastestCell().FastestAction;
StateChange := Action.Execute();
History.Add(StateChange);
UpdateClock(StateChange);
if Action.IsDiffusion()

if Action.TargetCell /∈ CellSystem.Cells
RootComm.Notify(StateChange);

else
Action.TargetCell.Notify(StateChange);

if RootComm.HasNotification
Event := RootComm.HasNotification;
switch Event.Type

case Rollback :
DoRollback(Event.Time);

case Diffusion :
Event.TargetCell.Notify(

Event.DiffusionAction);

RootSystem ():
while true do

Timer := StartTimer();
Event := WaitForEvents(Timer, RootComm);
switch Event.WakeReason

case TimerTick :
SendCheckpointCommand(GlobalT ime);
SystemState := RecvCheckpointData();
DoCheckpoint(SystemState);

case Communication :
switch Comm.Type

case Error :
BroadcastRollback(Comm.Time);

case Diffusion :
TrgtSystem :=

LookupSystem(Comm.SourceCell);
TrgtSystem.ForwardDiffusion(Comm);

CurrentGlobalT ime := Event.UpdateTime();

Fig. 9. Pseudo-code for CellSystem and RootSystem

Cells and Cell Systems communicate through a consistent interface, that is
transparent, and that allows cells to communicate any diffusion information with-
out taking care of the hierarchy. To communicate a diffusion from the cell C1 to
the cell C2, C1 sends a message to its Cell System; if C2 is on the same physical
processor (i.e. it belongs to the same Cell System), the information is directly
propagated. If instead the Cell System realizes that C2 does not belong to the
set of cells it manages, it forwards the information up to the next System, until
it reaches a System that knows C2 or until it reaches the Root System. In the
second case, the information is propagated using inter-thread communication or
MPI messages (see the pseudo-code in Fig. 9).

The Root System is also responsible for checkpointing the system state, com-
puting the global virtual time and propagate rollbacks, if necessary. In order to
minimize the interprocessor communication, each Cell System has an incremen-
tal state history held in its own memory, as a queue of performed events. During
the checkpoint phase, the Root System receives the partial state histories from
the Cell Systems, computes the GVT, and commit all the events up to it. The
commit is done by saving the system state to disk in an incremental way or, in
alternative, by reconstructing the complete state on the fly. Each Cell System
can then flush its own history up to the new GVT.

When a Cell System receives a straggler event, first it examines its queue
and then it marks all the events with time-stamps greater than the straggler’s
one, performing a very quick rollback. If these events involve other Cell Systems,
it informs the Root System, that take care of forwarding any rollbacks to the

206 L. Dematté and T. Mazza

other Cell System(s). These examine their partial state and, if necessary, per-
form rollback on their state history. At this point, the Root System informs the
Cell Systems to resume their computations. Since cells are grouped into Cell
Systems -which are called LPs in PDES terminology- secondary rollbacks, and
thus propagation of rollbacks, are very infrequent.

Care is taken that the two operations of checkpointing and rollback do not
interfere with each other by means of a barrier.

5 Example

The simulator we developed accepts an input file that specifies reactions, reaction
rates and diffusion coefficients, as well as the initial location of the chemicals. We
also developed a visualizer, that is able to read the execution traces produced
by the simulator and display them as a 3D rendering of the simulated volume.

We tested our simulator with some models (enzymatic reactions, oscilla-
tory networks, chemotaxis pathway) under realistic conditions: most or all the
molecules not attached to membranes have been let to move and, mostly im-
portant, the diffusion coefficients have been set always higher or at least com-
parable to the reaction rates. Such conditions obviously increase the number of
messages sent, making harder for our simulator to appropriately scale. However,
it is fundamental to provide a realistic model that respects the assumptions we
made [20].

var predator : rate 100;
var prey : rate 100;

predator + prey -> predator + predator [55];
prey -> prey + prey [15];
predator -> nil [10];

Fig. 10. The input file for the 3D Lotka-Volterra model

As an example, we introduce a spatial version of the Lotka-Volterra predator-
prey model. This model was chosen because it is simple but realistic; many other
algorithms proposed in the same fields use completely artificial scenarios, with
diffusion and reaction rates that are unrealistic (especially the ratio between
them). Furthermore, a more complex model would not have contributed to the
discussion.

This model allowed us to use rates taken from literature. With these using
these rates, the model exhibits a different and interesting behaviour when ran in
an environment that includes spatial information [39]. The results we obtained
(see Fig. 11) are consistent with what we expected and with what is found in
the literature [39].

This model allowed us to perform some initial performances estimations, listed
in Table 1. We measured the execution time of the serial version of the algorithm,
where all the inter-process communications were removed and substituted with
direct manipulation of data structures in shared memory, and of the optimistic

On Parallel Stochastic Simulation of Diffusive Systems 207

(a) (b)

Fig. 11. A time-step of the Lotka-Volterra simulations (a) and the variation in cardi-
nality of each species over time (b)

Table 1. Times in second for the execution of 5 · 104 simulation steps, 400 entities,
(min/max/avg of five runs), and speedup for the parallel algorithm (∗: on a 3D grid)

N cells Serial 2 Cores 5 Cores 12 Cores
256 1.5 14.8 0.1x - - - -

10000 13.1 10.7 1.22x - - - -
16384 17.4 (12.3/15.4/13.5) 1.29x (9.1/10.1/9.4) 1.86x - -
26896 64.1 (34.7/42.8/38.7) 1.66x (14.2/17.2/15.1) 4.25x (7.0/9.4/8.0) 8.06x

32768∗ 75.8 (42.7/47.3/45.3) 1.67x (18.4/20.7/19.2) 3.95x (16.7/17.1/16.9) 4.49x

parallel algorithm. The hardware used for the simulation consists of PCs with
AMD Opteron 64-bit CPUs at 2.4GHz, 4GB of Ram, interconnected with a
10Gbps Infiniband connection. We can observe that the overhead is significant
when dealing with a small 16x16 2D grid, for a total of 256 node; the overhead
starts to be less heavy starting with a 100x100 2D grid. As the grid becomes
larger and larger, given a fixed number of subsystems, the diffusion events be-
tween different subsystems becomes less frequent. Note that a number of cells in
the tens or hundreds of thousands is not unrealistic; for example, data for the
last row of Table 1 were obtained for a 32x32x32 3D grid.

These preliminary figures are far from being complete performance measures,
but they give an indication of the feasability of our approach. Since we do not
have implemented or investigated work subdivision or load balancing techniques
at this stage, we expect our method to perform well when each subsystem have
to deal with the same amount of work, e.g. when there are not too big differences
in the total concentration of elements (or crowding), with the same order of mag-
nitude of activity. Note that concentration and activity of different compounds
can vary significantly without any problems. Furthermore, using Cell Systems
as computational units, we expect that our method performs well even in the
hard but very common case of diffusion rates higher than reaction rates, as seen
in the previous example.

208 L. Dematté and T. Mazza

6 Conclusion and Future Work

One of the obstacles on the way of computational systems biology is the scala-
bility of the current approaches, i.e. their ability to deal with bigger and more
complex models. With the aim to understand higher level behaviours, these
complex models need for both powerful modelling tools and efficient simulation
engines to analyse them.

In this paper we tackled the problem of designing a parallel simulator for bio-
chemical systems, based on the theory developed by Gillespie, from both a theoret-
ical and a practical point of view. The design of parallel and distributed algorithms
requires indeed both a strong theoretical background, in order to guarantee that
the designed algorithm is equivalent to the serial one, and a good deal of practical
tricks and experience in order to make it really scalable and efficient.

Here we presented some first steps in this direction; although the results we
obtained so far are promising, a lot of work needs to be done. In particular,
Jeschke et. al. [35] conducted a parallel research on the same topic, focusing on
the analysis of communication costs and on sizing of the window for optimistic
execution in a distributed grid environment. It will be interesting to incorporate
their studies and analysis of the window size to our framework, to see which
are the differences between their grid-based and our HPC based approaches.
Other problems we need to face are the analysis of the obtained data, whose
dimension grows at an impressive rate when dealing with spatial simulations,
load-balancing techniques for workload subdivision and analysis of the rollback
mechanisms on different biochemical systems. Finally, we would like to perform
an in-depth study of the performances, with different checkpoint frequencies,
different number of nodes, different policy of cell allocation between nodes and
different state saving strategies.

References

1. Fujimoto, R.M.: Parallel discrete event simulation. Comm. ACM 33(10), 30–53
(1990)

2. Ewing, G.C., McNickle, D., Pawlikowski, L.: Multiple replications in parallel: Dis-
tributed generation of data for speeding up quantitative stochastic simulation. In:
Proceedings of the 15th Congress of Int. Association for Matemathics and Com-
puter in Simulation, pp. 397–402 (1997)

3. Glynn, P.W., Heidelberger, P.: Analysis of initial transient deletion for parallel
steady-state simulations. SIAM J. Scientific Stat. Computing 13(4), 904–922 (1992)

4. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics.
Oxford University Press, Oxford (2000)

5. Glynn, P.W., Heidelberger, P.: Analysis of parallel replicated simulations under a
completion time constraint. ACM TOMACS 1(1), 3–23 (1991)

6. Glynn, P.W., Heidelberger, P.: Experiments with initial transient deletion for paral-
lel, replicated steady-state simulations. Management Science 38(3), 400–418 (1992)

7. Lin, Y.B.: Parallel independent replicated simulation on a network of workstations.
ACM SIGSIM Simulation Digest 24(1), 73–80 (1994)

On Parallel Stochastic Simulation of Diffusive Systems 209

8. Yau, V.: Automating parallel simulation using parallel time streams. ACM
TOMACS 9(2), 171–201 (1999)

9. Hybinette, M., Fujimoto, R.M.: Cloning parallel simulations. ACM
TOMACS 11(4), 378–407 (2001)

10. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L.: Concurrent replication of
parallel and distributed simulation. In: Proceedings of the 19th ACM/IEEE/SCS
PADS Workshop, pp. 430–436 (2005)

11. Streltsov, S., Vakili, P.: Parallel replicated simulation of markov chains: implemen-
tation and variance reduction. In: Proceedings of the 25th conference on Winter
simulation, pp. 430–436 (1993)

12. Tian, T., Burrage, K.: Parallel implementation of stochastic simulation for large-
scale cellular processes. In: Proceedings of of Eighth International Conference on
High-Performance Computing in Asia-Pacific Region, pp. 621–626 (2005)

13. Burrage, K., Burrage, P.M., Hamilton, N., Tian, T.: Computer-intensive simula-
tions for cellular models. In: Parallel Computing in Bioinformatics and Computa-
tional Biology, pp. 79–119 (2006)

14. Schwehm, M.: Parallel stochastic simulation of whole-cell models. In: Proceedings
of ICSB, pp. 333–341 (2001)

15. Mazza, T., Guido, R.: Guidelines for parallel simulation of biological reactive sys-
tems. In: Proceedings of NETTAB 2008, Bioinformatics Methods for Biomedical
Complex System Applications, pp. 83–85 (2008)

16. Gillespie, D.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Phys. Chem. 22, 403–434 (1976)

17. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81(25), 2340–2361 (1977)

18. McCammon, J.A., Harvey, S.C.: Dynamics of Proteins and Nucleic Acids. Cam-
bridge University Press, Cambridge

19. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial
resolution and single molecule detail. Phys. Biol. (1), 137–151 (2004)

20. Bernstein, D.: Exact stochastic simulation of coupled chemical reactions. PHYSI-
CAL REVIEW E 71 (April 2005)

21. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems
into spatial domains of opposite phases. Syst. Biol. 1(2) (December 2004)

22. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

23. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems.
McGraw-Hill, New York (1996)

24. Chandy, K.M., Misra, J.: Distributed simulation: A case study in design and veri-
fication of distributed programs. Comm. ACM 24(11), 198–206 (1981)

25. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of
parallel computations. IEEE Trans. on Software Engineering SE-5(5), 440–452
(1979)

26. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Computer Systems 7(3), 404–425 (1985)

27. Holt, R.C.: Some deadlock properties of computer systems. ACM Computing Sur-
veys 4(3), 179–196 (1972)

28. Cai, W., Turner, S.J.: An algorithm for distributed discrete-event simulation - the
’carrier null message’ approach. In: Proceedings of the SCS Multiconference on
Distributed Simulation, vol. 22, pp. 3–8 (1990)

29. Wood, K.R., Turner, S.J.: A generalized carrier-null method for conservative par-
allel simulation. In: Proceedings of the 8th PADS Workshop, pp. 50–57 (1994)

210 L. Dematté and T. Mazza

30. Bain, W.L., Scott, D.S.: An algorithm for time synchronization in distributed dis-
cret event simulation. In: Proceedings of the SCS Multiconference on Distributed
Simulation, vol. 19, pp. 30–33 (1988)

31. Groselj, B., Tropper, C.: The time-of-next-event algorithm. In: Proceedings of the
SCS Multiconference on Distributed Simulation, vol. 19, pp. 25–29 (1988)

32. Cota, B.A., Sargent, R.G.: A framework for automatic lookahead computation in
conservative distributed simulations. In: Proceedings of the SCS Multiconference
on Distributed Simulation, vol. 22, pp. 56–59 (1990)

33. Prakash, A., Ramamoorthy, C.V.: Hierarchical distributed simulations. In: Pro-
ceedings of the 8th International Conference on Distributed Computing Systems,
pp. 341–348 (1988)

34. Rukoz, M.: Hierarchical deadlock detection for nested transactions. Distributed
Computing 4, 123–129 (1991)

35. Jeschke, M., Ewald, R., Park, A., Fujimoto, R., Uhrmacher, A.: Parallel and dis-
tributed spatial simulation of chemical reactions. In: Proceedings of the 22nd
ACM/IEEE/SCS PADS Workshop (2008)

36. Nicol, D.M.: Parallel discrete-event simulation of fcfs stochastic queueing networks.
SIGPLAN Not. 23(9), 124–137 (1988)

37. Loper, M.L., Fujimoto, R.M.: Pre-sampling as an approach for exploiting temporal
uncertainty. In: PADS 2000, pp. 157–164 (2000)

38. Ridwan, A., Krishnan, A., Dhar, P.: A parallel implementation of gillespie’s direct
method. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS
2004. LNCS, vol. 3037, pp. 284–291. Springer, Heidelberg (2004)

39. Schinazi, R.B.: Predator-prey and host-parasite spatial stochastic models. The An-
nals of Applied Probability 7(1), 1–9 (1997)

Large-Scale Design Space Exploration of SSA

Matthias Jeschke and Roland Ewald

University of Rostock
Institute of Computer Science, Modelling and Simulation Group

Albert-Einstein-Str. 21, 18059 Rostock, Germany

Abstract. Stochastic simulation algorithms (SSA) are popular methods for the
simulation of chemical reaction networks, so that various enhancements have
been introduced and evaluated over the years. However, neither theoretical anal-
ysis nor empirical comparisons of single implementations suffice to capture the
general performance of a method. This makes choosing an appropriate algorithm
very hard for anyone who is not an expert in the field, especially if the system
provides many alternative implementations. We argue that this problem can only
be solved by thoroughly exploring the design spaces of such algorithms. This pa-
per presents the results of an empirical study, which subsumes several thousand
simulation runs. It aims at exploring the performance of different SSA imple-
mentations and comparing them to an approximation via τ -Leaping, while using
different event queues and random number generators.

Keywords: Stochastic Simulation Algorithms, Performance Evaluation.

1 Introduction

When simulating biological systems that contain species with low amounts of elements,
stochastic effects cannot be ignored. For example, in [1] intracellular viral kinetics are
studied with two approaches, one being continuous and deterministic, the other being
discrete and stochastic. The results reveal significant differences when the initial quan-
tity of viral genetic material is very small. While the deterministic simulation always
shows a spreading of the viral infection, the virus can be degraded before it is able to
infect a cell if stochastic fluctuations are considered.

In general, the time evolution of a stochastic system with a discrete set of states
S = {0, . . . , K}, K ∈ N can be written as a master equation (see e.g. [2] for a
detailed derivation). Basically, a first order differential equation dPk(t)/dt is defined
for each possible state k ∈ S, which describes the time evolution of the state prob-
ability function. The master equation is then the set of coupled differential equations
{dP0(t)/dt, . . . , dPK(t)/dt}. While it is possible to analytically solve the master equa-
tion for systems with few states, this problem is usually intractable for larger state
spaces. For example, if the state of a chemical system at time t can be described by
the vector X(t) = (X0(t), . . . , X9(t)), with Xi(t) ∈ [0, 9] representing the amount
of the i-th species, the total number of states (and therefore the number of coupled dif-
ferential equations that need to be solved) is 1010. Note that when a final simulation
time tf is given, not all states might be reachable during the interval [t0, tf] and hence
it is possible to restrict the number of states to consider. For example, in [3] subsets of

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 211–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 M. Jeschke and R. Ewald

the state space are used to efficiently approximate the solution to the master equation
at different time points t0 < t ≤ tf . It is shown that this approach can produce more
accurate statistics and executes faster compared to performing many SSA realizations
when both the time parameter tf and the model are not too large.

In 1977, Gillespie presented a stochastic simulation algorithm (SSA, also often called
Gillespie’s algorithm) [4] that allows the generation of exact trajectories for such sys-
tems. Here, ’exact’ refers to the probability of a generated trajectory, which equals its
actual probability if the system satisfies certain preconditions (e. g., it has to be in ther-
mal equilibrium). Repeatedly generating trajectories with SSA, i. e., sampling elements
of the universe defined by the master equation, allows to exactly approximate it. The
evolution of the system can be interpreted as a continuous Markov process with reac-
tion propensities representing the transition rates between states. In chemical reaction
networks, the reaction propensities rely on the amount and kind of existing particles,
so that they need to be re-calculated after each simulation step.

SSA therefore requires considerable computational effort, and since the result of
each run is merely one sample of the system’s behavior, general statements can only be
derived from repeated simulation runs with constant model parameters, i. e., simulation
replication. Although single trajectories may reveal some interesting stochastic aspects
of the given system, result analysis relies on statistics if general statements about the
system behavior shall be made, for example in terms of mean values and variances.
Unfortunately, gaining statistically significant results may require many hundred simu-
lation replications. This situation is aggravated by additional methods that are usually
employed on top of such simulation experiments, such as parameter estimation, sensi-
tivity analysis, or optimization. They require the evaluation of many parameter com-
binations, each of which requires many replications in turn. To speed up computation,
Gillespie’s original algorithms have been greatly improved during the last decade (see
section 3). However, the improvements are still up to some debate [5].

Another way to gain performance is to approximate the SSA. The τ -Leaping algo-
rithm [6], for example, abandons the idea of single reaction events. Instead, the method
carefully chooses time intervals of size τ and determines the number of occurrences
for each reaction within the interval, so that it can produce trajectories with fewer iter-
ations. As the method is not exact, it is possible that simulation outcomes are biased.
Additionally, the increased performance comes at the expense of a more complex algo-
rithmic description, which includes several parameters to adjust the algorithm’s func-
tioning (see section 3.2). Other approximate variants include, e. g., hybrid, multi-scale
algorithms [7] or a nested hierarchy of SSA [8].

Apart from different opinions on the merits of each algorithm, their empirical anal-
ysis is hampered by factors that are hard to capture: the underlying hardware and
operating system, the programming language and compiler, the quality of the imple-
mentation, and also the structure of the models used for benchmarking. The abundance
of these factors hampers reproducibility and comparability of results and requires a
thorough experimental evaluation to make reliable conclusions, since an algorithm’s
actual performance is often influenced by them [9]. For example, today’s CPUs may
give algorithms an advantage that are relatively slow in theory, but benefit from caching
hierarchies [10]. Therefore, theoretical complexity analysis can be regarded as a first

Large-Scale Design Space Exploration of SSA 213

step toward understanding the benefits of an algorithm, but performance evaluation is
mandatory for all implementations.

We address this need by conducting a large-scale performance evaluation for SSA
variants as well as approximations, for which we also assess accuracy and various pa-
rameter settings. The paper is structured as follows: Sections 2 and 3 provide some
background, i. e., they introduce some related work and survey the most important SSA
variants. Sections 4 and 5 describe our benchmark model and experimentation method-
ology, while sections 6 and 7 analyze the results and conclude the paper.

2 Background and Related Work

We conducted the performance study with JAMES II, a modelling and simulation frame-
work written in Java. It already provides support for several simulation approaches
from Computational Biology [11], is extensible via a plug-in mechanism [12], and
provides an experimentation layer that explicitly supports simulator performance eval-
uation. Moreover, performance data can be managed conveniently by a performance
database, which facilitates result analysis [13]. In JAMES II, re-usable algorithms and
data structures are provided as plugins of a certain type. They are managed by a cen-
tral Registry, which lets every plug-in request other plug-ins for solving subtasks. This
allows to reuse existing components and makes it easy to exchange one plug-in for a
subtask with another. The resulting algorithms to be executed are tree-like hierarchies
of sub-algorithms, where a parent node is relying on its child nodes to solve some parts
of the given problem.

For example, Gibson and Bruck pointed out that random number generation and
event queue implementation are crucial for the performance of their Next Reaction
Method [14]. We could therefore regard their SSA variant as a parent node with two
children: one is a generator of pseudo-random numbers, the other is an event queue.
The performance of the overall algorithm is defined by such a tree and depends on all
nodes, i. e., the random number generator, the event queue, and the SSA implementa-
tion itself. Gibson and Bruck’s approach is usually implemented with a heap as event
queue – but is this the best choice, and how important is it? Such questions can only be
answered by exploring the design space, e.g. by evaluating to which degree the overall
performance depends on each (sub-)algorithm. JAMES II supports such explorations by
providing tested implementations of various common utilities for simulator develop-
ment, including event queues [15] and random number generators (RNGs).

Algorithm performance evaluation has a long tradition in computer science. Seminal
work on the problem of comparing algorithms for a given problem has been presented
by Rice in 1976 [16]. He introduced a formal framework for the so-called algorithm
selection problem. It subsumes various sub-problems, but the basic problem is to iden-
tify an algorithm a ∈ A that performs good on a given problem p ∈ P. In JAMES II,
the set A of available algorithms consists of all algorithm trees applicable to a given
simulation problem. Identifying efficient methods now requires to explore the multi-
dimensional performance space Rn for each a ∈ A. Rice defines a performance map-
ping perf : A×P→ Rn for this, which is then mapped to R by a norm defined on Rn.
As will be discussed later, this norm usually depends on the user and the application

214 M. Jeschke and R. Ewald

at hand. These theoretical foundations are reflected in the performance database for
JAMES II, which allows to store simulation problems, performance measurements, and
corresponding algorithm trees in a concise and consistent manner [13].

Comparative studies on efficiency are quite common and cover virtually all kinds
of algorithms, e. g., for database query resolution, load balancing, or simply sorting.
If sufficient data regarding algorithm efficiency is available for a class of problems,
these can be combined to form algorithm portfolios [17,18]. A portfolio consists of
several algorithms to solve the same problem. If it is designed well, there is at least one
very efficient algorithm for any problem of a given class. Similar approaches have been
developed in the field of Problem Solving Environments, which tackle the algorithm
selection problem in a more general manner (e. g., PYTHIA II [19]).

Regarding the class of SSA problems, special attention must be paid to stiff systems,
which span multiple time scales. Here, the original SSA is not very efficient, as most
computing power is spent on executing fast reactions that, when summed up, have only
little impact on the system’s state. An interesting numerical method for dealing with
stiffness was presented in [20]: The state space is partitioned into sets of micro states
(referred to as aggregates or macro states), such that slow transitions only occur between
aggregates. When the aggregated state space is significantly smaller than the original
one, an approximation for the evolution of the system can be given by a continuous time
Markov process with states corresponding to the aggregates.

Work concerned with development and improvement of concrete SSA variants will
be surveyed in the next section. Note that in the context of this work stiff systems and
specific algorithms developed to handle these are not considered and left for future work.

3 SSA Variants

The original stochastic simulation algorithm as introduced by Gillespie simulates every
single reaction that occurs inside the system and produces exact trajectories according
to the underlying master equation. Variants of this basic algorithm belong to the class
of exact SSA algorithms [21]. While being accurate, their execution time increases dra-
matically when simulating stiff systems or systems with a large number of elements. To
speed up computation, approximate algorithms were introduced that perform ”jumps”
on the time line, i. e., aggregate reactions that occur in certain time intervals.

The following sub-sections will provide a short overview of the individual algorithm
classes, but general terms and variables common to all SSA algorithms shall be intro-
duced at first. The state of the system at time t is represented by the state vector

X(t) = [X0(t), . . . , XN−1(t)]T , Xj , N ∈ N,

i. e., the vector that holds the number of elements for each of the N species in the
model. The species can interact through M reaction channels {R0, . . . , RM−1} and a
stochastic rate constant ci is assigned to each reaction Ri, i ∈ [0, M − 1]. This con-
stant represents information about the physical properties of the reactants as well as the
volume and temperature of the modeled system. For each reaction, two state change
vectors

Large-Scale Design Space Exploration of SSA 215

vi
R = [vR

i0, . . . , v
R
i(N−1)]

T ,

vi
P = [vP

i0, . . . , v
P
i(N−1)]

T , vij ∈ N

are constructed that describe the population change of the reactant and product species,
respectively. Note that vR

ij > 0 if species j participates as a reactant in reaction Ri and
vP

ij > 0 if species j is a product of Ri. With X(t) = x, the propensity ai(x) of a
reaction Ri is the product of the stochastic rate constant ci with the number of distinct
reaction pairs, denoted by Hi(x). In general, Hi(x) can be written as

Hi(x) =
N−1∏
j=0

hij(x), with hij(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

xj

vR
ij

)
if xj > 0, vR

ij > 0,

0 if xj = 0, vR
ij > 0,

1 if vR
ij = 0.

(1)

For example, in case of a simple second order reaction equation A+ B → C, Hi(x) =
|A(t)| · |B(t)|, i. e., the product of the number of individual elements of species A
and B.

3.1 Exact Variants

Despite the variety of exact SSA implementations and optimizations, it is possible to
identify algorithmic sub-routines that are common to all versions. Basically, each vari-
ant performs the following steps:

1. initialize state vector X(0) = x0 and global time t = 0
2. main loop

(a) let X(t) = x
(b) τ, µ← SelectNextReaction(x), τ ∈ R, µ ∈ [0, M − 1]
(c) update state vector: X(t + τ) ← x− vR

µ + vP
µ

(d) update global time: t← t + τ

While state and time update are equal for all algorithms, the procedure for determining
the time and the index of the reaction that will occur next (SelectNextReaction(x))
might differ drastically between the approaches.

Direct and First Reaction Method (DRM, FRM). With the work that introduced the
general principle of the stochastic simulation algorithm, Gillespie also provided two
implementations of the SSA [4]. The first version is called the Direct Reaction Method
and calculates successive next event times based on the sum of the individual reac-
tion propensities. What reaction actually occurs is determined by randomly selecting a
reaction with a probability that corresponds to its propensity.

The SelectNextReaction(x) function for the DRM algorithm can be written as

1. Update the propensities ai(x), i ∈ [0, M − 1]
2. Calculate the sum of all reaction propensities

ag(x)←
M−1∑
i=0

ai(x) (2)

216 M. Jeschke and R. Ewald

3. Draw two random numbers u1 and u2 from the uniform distribution U(0, 1)
4. Calculate τ as a sample from the exponential distribution Exp(ag)

τ ← −ln(u1)
ag(x)

(3)

5. Determine pending reaction with µ being the smallest integer that satisfies

µ−1∑
i=0

ai(x)
ag(x)

< u2, µ ∈ [0, M − 1] (4)

6. Return τ, µ

In contrast, the second implementation, called First Reaction Method, samples event
times for each reaction and proceeds with the reaction having the smallest time of next
event. For this, the algorithm needs to sample M random numbers per iteration, which
can be rather costly compared to the two samples the DRM needs (one for the next event
time, the second for determining the reaction to execute). The SelectNextReaction(x)
function for the FRM as pseudo code:

1. Update the propensities ai(x), i ∈ [0, M − 1]
2. Draw M random numbers {u0, . . . , uM−1} from the uniform distribution U(0, 1)
3. Determine next event time and pending reaction

(τ, µ)← (min
i∈[0,M−1]

{
−ln(ui)
ai(x)

}
, argmin
i∈[0,M−1]

{
−ln(ui)
ai(x)

}
) (5)

4. Return τ, µ

Next Reaction Method (NRM). DRM and FRM recalculate the propensities for all
reactions after a state change. However, the propensity of a reaction is only changed
when the amounts of its reactants have been affected by the reaction executed before. It
is therefore unnecessary to recalculate propensities for reactions whose reactants were
neither reactants nor products of the last reaction. Doing so introduces overhead, par-
ticularly for sparse reaction networks, i. e., loosely coupled networks in which every
species only participates in a small number of reactions.

Following this line of thought, Gibson and Bruck [14] implemented a variant of the
SSA that uses a dependency graph to determine the set of reaction propensities that have
to be updated after processing a reaction. Additionally, Gibson and Bruck illustrated
how the event times of affected reactions can be reused to calculate new event times
by linear interpolation. Hence, it is only necessary to generate a single random number,
which is used for generating the executed reaction’s time of next event. NRM can be
regarded as an extension of Gillespie’s First Reaction Method. The dependency graph
is constructed during initialization, followed by the calculation of reaction propensities
and the first set of next event times for all reactions. The reactions are then enqueued in
an event queue structure ordered by increasing event time. The first reaction is dequeued
and executed. The SelectNextReaction(x) procedure looks as follows:

Large-Scale Design Space Exploration of SSA 217

1. Get the set Dµ of all reactions that depend on the last executed reaction µ from
dependency graph and update propensities and event times

∀ν ∈ Dµ : τν ←
(

aν,old(x)
aν,new(x)

)
(τν − t) + t (6)

2. Requeue reactions
3. Draw random number u from uniform distribution U(1, 0)
4. Update propensity and next event time for µ

τµ ←
−ln(u)
aµ(x)

(7)

5. Enqueue µ
6. Dequeue reaction µnew with the smallest next event time τnew

7. Return τnew, µnew

Optimized Direct Method (ODM). In [22], Cao et al. analyzed the computational ef-
ficiency of different SSA implementations (DRM, FRM, NRM) and proposed an opti-
mized version of Gillespie’s original Direct Reaction Method. Based on a thorough cost
analysis, two optimizations have been identified:

Reorder reaction indices: In the original DRM algorithm, the pending reaction is de-
termined by summing up the weighted individual propensities until the sum ex-
ceeds the sampled uniform random number. If some reactions fire more frequently
than others, e. g., in stiff systems, a reordering of the reaction indices can speed
up this search. In the presented approach, reactions are ordered by decreasing fir-
ing frequency. Therefore, reactions having a higher propensity are processed first
during the summation, making it more likely that the propensity sum already ex-
ceeds the threshold after only considering a few reactions (instead of summing up
many reactions with a very low individual propensity). Cao et al. suggest to use
pre-simulation for finding an optimal order of the indices.

Update propensities only when necessary: The second optimization was inspired by
the Next Reaction Method. The ODM also uses a dependency graph to determine
the reactions that need to be updated after the state has changed. Furthermore, in-
stead of recalculating the propensity sum in every iteration, the old propensity for
an affected reaction is simply subtracted and the new propensity added to the cur-
rent value of ag (see equation 2).

3.2 Approximative Variants

τ -Leaping. A step toward an approximative strategy has been made by Gillespie with
the introduction of the τ -Leaping algorithm [6]. The basic idea is to allow larger time
intervals and approximate the number of firings for each reaction during an interval. Let
us assume that τ was selected as a suitable interval, then the state at time t + τ with
X(t) = x can be written as

X(t + τ) = x +
M−1∑
i=0

Ki(τ ; x, t)vi, (8)

218 M. Jeschke and R. Ewald

where Ki(τ ; x, t) is a random variable that denotes how often the reaction Ri has oc-
curred in the time interval [t, t + τ). By defining a condition on the selection of τ ,
Ki(τ ; x, t) can be approximated by a Poisson distribution Pi(ai(x), τ) [23]. This con-
dition is the leap condition and it restricts τ to be small enough, so that the sum of
reaction propensities is nearly constant during the jump. But as the Poisson distribution
is unbounded, it could happen that the number of reaction firings exceeds the amount of
reactants at time t, resulting in negative species populations. Different approaches have
been developed to prevent this. Tian et al. [24] use a bounded binomial distribution for
determining the number of reaction firings. In [25], reactions are classified as either crit-
ical or non-critical at the beginning of each iteration. The class of a reaction depends
on the number of available reactants. A next event time is calculated for both reaction
classes. If the next reaction is non-critical, then no critical reaction may fire during the
leap, otherwise only one critical reaction gets executed. In any case, the number of oc-
currences for each non-critical reaction is sampled from the Poisson distribution (see
equation 8).

Gillespie also argued that τ -Leaping should be abandoned for some iterations if the
selected interval τ is smaller than a multiple of 1/ag(x), denoted by γ. This can be
implemented by falling back to an exact SSA implementation for a predefined num-
ber of steps. Summing up, the τ -Leaping algorithm ca be written as follows (this is a
shortened version of the algorithm presented in [26]):

1. Initialize initial state vector X(0) = x0, global time t = 0, threshold parameter γ
and number h ∈ N of SSA steps that get executed if leap is smaller than threshold
γ/ag(x)

2. Main loop
2.1 X(t) = x
2.2 Split set of reactions into critical and non-critical
2.3 Calculate τn as the next event time for non-critical reactions
2.4 if τn < γ/ag(x) then perform h SSA steps and goto (2.1)
2.5 Calculate τc as the next event time for a critical reaction
2.6 if τn < τc

– τ ← τn

– No critical reaction fires during τ
else

– τ ← τc

– Select critical reaction µ randomly, with point probability ac
µ(x)/ac

g(x),
that fires only once during τ

2.7 Sample for each non-critical reaction ν its number of firings during τ from
Pn

ν (an
ν (x), τ)

2.8 Update state and global time

There are a numerous τ -Leaping variants. In [27], Rathinam et al. introduced the
implicit τ -Leaping for handling stiff systems. Another version, called K-leaping, was
presented in [28] and overcomes the problem that occurs when a Poisson distribution is
used and the number of firings for a reaction is so high that the resulting state change
violates the leap condition. In this algorithm, a value for a variable K is calculated for
each iteration, similar to the calculation of τ in the original τ -Leaping. This K restricts

Large-Scale Design Space Exploration of SSA 219

the total number of occurrences for all reactions. Based on this, the value for the leap τ
and the number of firings for each individual reaction is determined.

4 Benchmark Models

We used three types of benchmark models for our design space exploration: a Linear
Chain System (LCS), a Totally Independent System (TIS) (both from [22]) and a Cyclic
Chain System (CCS). Every model consisted of N species {S0, . . . , SN−1}.

Linear Chain System (LCS). The N species can undergo N − 1 reactions, with the
product of reaction Ri participating as reactant for Ri+1:

Rn : Sn
cn→ Sn+1, n ∈ [0, N − 2]

This model describes a loosely coupled system with one reaction affecting at most two
propensity values. If the index of the executed reaction Ri is either 0 or N − 2, only the
value for ai(x) needs to be updated, otherwise ai+1(x) needs to be adapted in addition.
Considering this, the NRM is expected to perform better than the DRM, because the
recalculation of N − 1 propensities per iteration is necessary for the latter.

Totally Independent System (TIS). In this model, a single reaction changes only the
amount of its reactant, hence there are no dependencies between reactions:

Rn : Sn
cn→ ∅, n ∈ [0, N − 1]

Similarly to the LCS, the DRM needs to update N reaction propensities, although only
one propensity is actually affected. Again, the dependency graph of the NRM helps
filtering out unnecessary updates.

Cyclic Chain System (CCS). The Cyclic Chain System encompasses the following re-
action network structure:

Rn :
k∑

i=0

S(n+i) mod N
cn→

2k+1∑
i=k+1

S(n+i) mod N , n ∈ [0, N − 1], k ∈
[
0,

⌈
N − 1

2

⌉]

It is easy to see that the execution of an arbitrary reaction affects in any case 2k + 2
propensity values. The value of k determines the coupling of the system, with k = 0
representing a loosely coupled and k = "N−1

2 # a totally coupled system. With increas-
ing k, the NRM needs to update more propensities and the questions arises if – in case
of only few reactions and for some high value for k – the DRM might outperform the
NRM. In this scenario, the performance of the DRM should heavily depend on the ran-
dom number generator, as it always needs to generate an additional sample per iteration,
compared to the NRM.

We restricted our study to these three models, as thoroughly evaluating even such
a small set of models already requires considerable efforts (see section 5). Using syn-
thetic benchmark models instead of real-world examples offers several advantages in
the context of algorithm design space exploration:

220 M. Jeschke and R. Ewald

– Comparability: As two of these models have been introduced by Cao et al. [22], it
is possible to compare the runtime performance of the realizations. Large deviations
may indicate subtle implementation errors or the dependency on additional, yet
undiscovered, factors (such as specific hardware or compiler optimizations).

– Ease of Implementation: Due to their simple structure, the synthetic models can
be generated automatically and are easily prepared for any SSA simulator. This is
important for re-validating our results with other implementations.

– Scalability: The synthetic models are built to scale. Their size can be varied by ad-
justing N , which allows to analyze the efficiency of a simulator when the problem
size grows. There are many algorithms that perform very well on small problems,
but become more and more inefficient when the problem size is increased. Scalable
models help to find the problem size for which an algorithm is most efficient.

– Parameterization: Parameters of synthetic models allow to investigate algorithm
performance on classes of real-world models. For example, adjusting k for CCS
controls the degree of interdependency between reactions.

– Analytical results: It is usually much easier to derive analytical results for syn-
thetic models, since they exhibit a regular and simple structure. This may guide the
developers in case of invalid results and could facilitate result analysis in general.

Nevertheless, the experimentation with models of real systems, such as the Heat
Shock Response model also used for benchmarking in [22], is an important aspect, as it
reveals where typical ’use cases’ are situated in the problem space P (see
section 2). A comparison with curated models from the BioModels Database [29] shows
that our benchmark models cover a relevant subset of P with respect to the number of
species and reactions, as well as the ratio of those (ratio between reactions and species
(benchmark/BioModels):≈ 1.0/1.52; maximum species: 600/105; maximum number
of reactions: 600/300). Note that this only compares fairly basic model properties but
not, for example, the distribution of rate constants etc.

5 Experimentation Methodology

5.1 Evaluated Algorithms

JAMES II provides an implementation of DRM, two realizations of NRM, and the τ -
Leaping method described in section 3.2. All methods rely on random number gener-
ators (RNGs). DRM generates two numbers per iteration, NRM generates one number
per iteration, and for τ -Leaping this depends on the dynamics of the model, e. g., addi-
tional numbers need to be sampled if the τ gets rejected frequently.

Six JAMES II plugins for random number generation have been used in this study: the
default Java RNG, a custom implementation of a linear congruential generator (LCG)
with the same parameters as Java’s RNG, the Mersenne Twister [30], a recursion-with-
carry generator (Marsaglia’s mother of all RNGs [31]), ISAAC (a cryptographically
secure RNG, [32]), and RANDU, which is a classical LCG that is not of practical rel-
evance any more, due to its strong correlations. Using random numbers for stochas-
tic simulations is not a trivial task, since the pseudo-random numbers may correlate
and therefore bias a stochastic simulation [33,34]. This is particularly dangerous when

Large-Scale Design Space Exploration of SSA 221

RNGs are poorly initialized [35]. However, the SSA variants do not rely on high-
dimensional tuples of random numbers, so that correlations should be very rare. We
therefore focused our RNG-related investigations on runtime performance. Another im-
portant aspect of RNGs in the context of stochastic simulation is the size of their seed,
as it limits the maximal number of trajectories that can be generated [36]. We initialized
all RNGs with seeds of type long.

Direct ReactionSSA Variant Next Reaction -Leaping

ISAACRNG LCG Mersenne Twister ...

Event Queue SortedList MList CalendarQueue ...

Fig. 1. Combinations of JAMES II algorithms for SSA

The NRM implementations also rely on another data structure, namely an event
queue to manage the reactions and their time of next event. JAMES II provides 13 event
queue implementations, including a simple sorted list, a heap, the MList (an event queue
known for its good performance [37]), and the Calendar Queue [38]. This extends the
design space to be explored from a couple of configurations to more than hundred: DRM
and τ -Leaping should be executed with every RNG, which results in 12 configurations,
but we have two NRM realizations and these need to be tested with all RNGs and all
event queues. With two NRM variants, six RNGs, and 13 event queues, this results in
2 · 6 · 13 = 156 additional configurations for NRM evaluation alone, i. e., 168 con-
figurations when including DRM and τ -Leaping. Figure 1 illustrates the combinatorial
explosion.

5.2 Performance Measurements

Before investigating the performance of SSA design alternatives, it has to be defined
which aspects of their performance are of interest, and how these can be measured. An
algorithm’s performance has many facets, e. g., accuracy with respect to certain sim-
ulation outcomes, execution speed, memory load, network load, energy consumption,
stability, and so on.

In principle, the n performance facets of interest can be expressed as an element of
Rn ([16], see discussion in sec. 2). Now, the end user has to weight these aspects with
regards to the problem at hand and the desired outcomes, which can be defined as a norm
|| || on the performance space. An algorithm a1 ∈ A has a better performance than an
algorithm a2 ∈ A for a problem p ∈ P, iff ||perf(a1, p)|| ≥ ||perf(a2, p)|| (see sec. 2).
This study is focused on two performance measurements: execution speed and accuracy.
Weighting both measurements against each other should be left to the user.

Execution speed. Both mean and variance of an algorithm’s execution time are relevant,
since a large variance hints at its dependence on aspects of the simulation problem that
have not been controlled during the experiment. For example, τ -Leaping may exhibit a
large variance when tested with a bistable benchmark model, which has one equilibrium

222 M. Jeschke and R. Ewald

state that is disadvantageous for τ -Leaping’s runtime performance (e. g., small amounts
of species that lead to a frequent rejection of τn). The (potentially high) dependency of
execution speed on input can be regarded as the risk of using the algorithm [39].

Two additional factors need consideration when measuring execution times: the noise
introduced by hardware and operating system, and the potential bias introduced by
the benchmark model. The first problem is common to all studies on algorithm per-
formance; it can be resolved by replication. The second problem requires to limit the
set of seeds with which the RNGs are initialized. It arises when a benchmark model
exhibits strongly varying dynamics. If, for example, the impact of a sub-algorithm on
the overall performance shall be investigated, one needs to ensure that equivalent in-
put problems are solved by the competing setups. If that is not the case, execution time
differences due to the realization of different trajectories cannot be distinguished from
execution time differences due to the SSA configuration. In this context, both problems
are solved by limiting the number of RNG seeds for execution time experiments and
conducting numerous replications. Note that initializing two distinct SSA variants with
equivalent RNGs would lead to different trajectories, as each variant uses random num-
bers differently. Hence, a limited set of RNG seeds only facilitates the comparison of
sub-algorithms that have been plugged into the same SSA variant and do not change
their execution logic.

Accuracy. Additional efforts are required to quantify the accuracy of approximative
SSA variants. As generating trajectories with SSA realizations can be regarded as sam-
pling the underlying master equation, the generated trajectories of, e. g., τ -Leaping and
DRM should belong to the same universe. Each trajectory can be regarded as an inde-
pendent sample from that universe: we initialized each RNG with a different seed for
sampling trajectories, i. e., the RNGs produce independent pseudo-random numbers.

Unfortunately, the data to be tested is intractably large. Consider the Totally Inde-
pendent System (TIS) with N = 600 species, each initially comprised of Xi = 10000
particles. Six million reactions have to be computed until the system halts, and their re-
action times and indices define the trajectory. Using 6 bytes per reaction, i. e., four bytes
for the reaction time and two bytes for the reaction index, a single trajectory still has a
size of≈ 36 Megabyte. Now, this sampling has to be repeated many times, which would
result in trajectory data of many Gigabytes. To circumvent this problem, we sample the
current state of the model for k fixed points in time. This limits the required storage
per trajectory to k state vectors, e. g., 3 · 600 = 1800 integers in case of sampling the
aforementioned TIS setup thrice.

Now, we can compare the sampled state vector sets S1 and S2, generated by two SSA
variants for a fixed point in simulation time. The state vectors are checked species-wise
for deviations in their empirical distributions: if, for example, the average amount of
species x in S1 is significantly higher than in S2, both sets might not be sampled from
the same universe and the approximative variant of the two may therefore be inaccurate
with respect to the given species and the given point in time.

This allows to apply the well-known Kolmogorov-Smirnov (KS) test [40, p. 577
pp.] to check if the sampled distributions of two SSA variants deviate significantly for
a single species. Note that this method can only falsify. Our null hypothesis is that all
amounts of a species in S1 and S2 have been sampled from the same universe, i. e., their

Large-Scale Design Space Exploration of SSA 223

Replications of
SSA Variant 1Xs

time

Xs

time
Xst0 t0Xs

~

H0:

Empirical Distributions
for Species S at time t0

Replications of
SSA Variant 2

am
ou

nt
 o

f s
pe

ci
es

 S

am
ou

nt
 o

f s
pe

ci
es

 S

Fig. 2. Comparing the results of two SSA variants. Here for both SSA variants the state is saved
during each replication at time point t0, resulting in empirical distributions for each species S.
The null hypothesis H0 states that these distributions do not differ significantly.

distributions do not differ significantly. The basic idea is illustrated in figure 2. If the
null hypothesis can be rejected by a test, it means that there is a statistically significant
difference between the samples of both variants. Still, this species-wise approach does
not suffice to prove that two sets of state vectors are sampled from the same universe,
let alone two sets of trajectories. All exact SSA variants should be accurate by their very
definition, but it is crucial to measure the accuracy of approximative methods. We chose
DRM as a benchmark method and included NRM as another exact variant to control the
quality of the tests.

5.3 Experiments

Our experiments are mainly focused on the two performance measurements introduced
before: accuracy and execution speed. Accuracy has been investigated for the LCS
model with N = 101 and only the first species is present with S0 = 10000, Si>0 = 0.
Its linear structure should amplify and propagate errors that could be hidden and coun-
terbalanced otherwise. The model parameters are equal to those from [22]. DRM, NRM,
and τ -Leaping have been used to sample 1000 trajectories each. Three state vectors have
been recorded at times ti = (5.0, 15.0, 25.0).

All three benchmark models have been used for assessing execution speed. As de-
picted in figure 1, the combinatorial nature of the problem yields 156 configurations of
NRM, six configurations of DRM, and nine setups for τ -Leaping: the default configu-
ration and eight altered setups, as the τ -Leaping method from [26] is parameterizable
with four parameters. ε influences the determination of τ , as the expected propensity
change for each reaction is bounded by ε · ag, with 0 < ε $ 1. γ adjusts the lower
threshold for τ ; if τ is below the threshold, the algorithms switches to its SSA fallback
and executes h SSA steps (see sec. 3.2). Finally, nc controls the separation of critical
and non-critical reactions. If there are less than nc elements for any reactant participat-
ing in a given reaction, it is regarded as critical. Default values have been suggested in
[26] for each of these parameters: ε = 0.03, γ = 10, h = 100, and nc = 10. Each
of them was altered in both directions to assess their impact on τ -Leaping’s execution
speed. The lower and higher values were generated by multiplication with 0.1 and 10
respectively.

224 M. Jeschke and R. Ewald

All in all, this amounts to 171 configurations that are applied to various problem
instances (i. e., different RNG initializations) and also have to be replicated. The pa-
rameters for LCS and TIS have been adopted from [22], i. e., N = 600 and only the
first species is present in LCS (S0 = 10000), whereas every species is initialized with
10000 particles in TIS. CCS was configured with N = 10 and k = 3, so that it repre-
sents a well-connected model of realistic complexity. The rate constants have been set
to 1.0 throughout all experiments.

The simulation runs have been executed on a Windows XP 64 workstation with two
2.5 GHz QuadCore Xeon Processors and 8 GB of RAM. It achieves a Java Scimark 2.0
[41] result of 482.2 points. Each instance of JAMES II was assigned to a single core,
one core was always left to the operating system and the MySQL server hosting the per-
formance database [13]. To reduce additional bias from observation code or database
I/O, only state vectors for the experiments concerned with accuracy were stored. An-
other JAMES II plug-in was used to do so, and the data was written via JDBC into an
additional MySQL database for simulation data. The R language was used for statistical
result analysis [42].

6 Result Analysis

Performance. Figures 3, 4, and 5 show the results from performance experiments on
the three model types defined in section 4. In figure 3, the performance for a variety
of simulation configurations is plotted for the LCS and CCS model type. Note that we
only plotted the results with different random number generators for the configurations
(DRM;*), (NRMA;TwoList2;*), and (NRMA;TwoList;*), since the data only indicated
an insignificant dependency between execution speed and RNG implementation for

D
R

M
; D

ef
. J

av
a

D
R

M
; I

SA
A

C
D

R
M

; L
C

G
D

R
M

; M
T

D
R

M
; R

A
N

D
U

D
R

M
; R

W
C

N
R

M
A

; T
w

oL
is

t2
; D

ef
. J

av
a

N
R

M
A

; T
w

oL
is

t2
; I

SA
A

C
N

R
M

A
; T

w
oL

is
t2

; L
C

G
N

R
M

A
; T

w
oL

is
t2

; M
T

N
R

M
A

; T
w

oL
is

t2
; R

A
N

D
U

N
R

M
A

; T
w

oL
is

t2
; R

W
C

N
R

M
A

; T
w

oL
is

t;
D

ef
. J

av
a

N
R

M
A

; T
w

oL
is

t;
IS

A
A

C
N

R
M

A
; T

w
oL

is
t;

L
C

G
N

R
M

A
; T

w
oL

is
t;

M
T

N
R

M
A

; T
w

oL
is

t;
R

A
N

D
U

N
R

M
A

; T
w

oL
is

t;
R

W
C

N
R

M
A

; B
uc

ke
tT

hr
es

ho
ld

N
R

M
A

; C
al

en
da

r
N

R
M

A
; C

al
en

da
rR

e
N

R
M

A
; H

ea
p

N
R

M
A

; L
az

yQ
ue

ue
N

R
M

A
; M

L
is

t
N

R
M

A
; M

L
is

tR
e

N
R

M
A

; S
im

pl
eB

uc
ke

ts
N

R
M

A
; S

im
pl

eQ
ue

ue
N

R
M

A
; S

im
pl

eB
uc

ke
ts

R
e

N
R

M
A

; S
im

pl
eT

hr
es

ho
ld

N
R

M
B

; T
w

oL
is

t2
N

R
M

B
; T

w
oL

is
t

N
R

M
B

; B
uc

ke
tT

hr
es

ho
ld

N
R

M
B

; C
al

en
da

r
N

R
M

B
; C

al
en

da
rR

e
N

R
M

B
; H

ea
p

N
R

M
B

; L
az

yQ
ue

ue
N

R
M

B
; M

L
is

t
N

R
M

B
; M

L
is

tR
e

N
R

M
B

; S
im

pl
eB

uc
ke

ts
N

R
M

B
; S

im
pl

eQ
ue

ue
N

R
M

B
; S

im
pl

eB
uc

ke
ts

R
e

N
R

M
B

; S
im

pl
eT

hr
es

ho
ld

T
A

U

0

10

20

30

40

50

60

ru
n

tim
e

[s
]

DRM NRMA w. RNG NRMA NRMB
LCS
CCS

Fig. 3. Performance comparison of DRM, NRM, and τ -Leaping implementations with different
random number generators and event queues for the LCS and CCS model

Large-Scale Design Space Exploration of SSA 225

D
R

M

N
R

M
B

; T
w

oL
is

t2

N
R

M
B

; T
w

oL
is

t

N
R

M
B

; B
uc

ke
tT

hr
es

ho
ld

N
R

M
B

; C
al

en
da

r

N
R

M
B

; C
al

en
da

rR
e

N
R

M
B

; H
ea

p

N
R

M
B

; M
L

is
t

N
R

M
B

; M
L

is
tR

e

N
R

M
B

; S
im

pl
eB

uc
ke

ts

N
R

M
B

; S
im

pl
eQ

ue
ue

N
R

M
B

; S
im

pl
eB

uc
ke

ts
R

e

N
R

M
B

; S
im

pl
eT

hr
es

ho
ld

T
A

U

0

200

400

600

800

1000

ru
n

tim
e

[s
]

Fig. 4. Performance comparison of DRM, NRM, and τ -Leaping with different event queues for
the TIS model

these two models. The default Java RNG has been used in the remaining configurations.
These results are somewhat surprising, as the overhead of generating random numbers
is expected to have a recognizable impact on SSA performance (e. g., in [14]). This is
not the case, which leads us to the conclusion that other factors are more important for
efficient SSA realizations.

For example, the execution speed of DRM and NRM differs greatly between LCS
and CCS. In case of LCS, NRM outperforms DRM by several orders of magnitude. In
contrast DRM computes the CCS model much faster than most NRM configurations.
This is due to the different model structures, we suspect that the event queue overhead
simply exceeds the overhead of recalculating all propensities for this CCS setup. More-
over, it is apparent that the second NRM implementation (NRMB) is slightly faster than
NRMA for all configurations.

Figure 4 shows the performance of the SSA variants for the TIS model. Surprisingly,
the configuration (NRMB;SimpleQueue), which was very fast for the CCS model (cf.
fig. 3), is much slower in comparison to other NRMB configurations. This can only be
explained by differing event queue usage patterns imposed by the models; the perfor-
mance of NRM is mostly determined by the used event queue and the model at hand.
For example, the TIS model contains a lot of reactions with roughly the same propensi-
ties. Requeuing a reaction will therefore be very inefficient for the SimpleQueue, as it
is based on a sorted list and reactions are likely to be requeued near its end. This is not
so problematic for more sophisticated data structures like the MList.

The execution speeds of the τ -Leaping setups described in section 5.3 are shown
in figure 5. Except for the outlier maximum value of ε = 0.3 configuration, only one
parameter setup exhibits interesting behavior, the one with nc = 1, i. e., where nearly

226 M. Jeschke and R. Ewald

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

A
A

C
L

C
G

M
T

R
A

N
D

U
R

W
C

D
ef

. J
av

a
IS

SA
C

L
C

G
M

T
R

A
N

D
U

R
W

C
D

ef
. J

av
a

IS
SA

C
L

C
G

M
T

R
A

N
D

U
R

W
C

0

5

10

15

20

25

ru
n

tim
e

[s
]

n
c
 = 1

ε = 0.03
γ = 10
h = 100

n
c
 = 10

ε = 0.003
γ = 10
h=100

n
c
 = 10

ε = 0.03
γ = 1
h=100

n
c
 = 10

ε = 0.03
γ = 10
h=10

n
c
 = 10

ε = 0.03
γ = 10
h = 1000

n
c
 = 10

ε = 0.03
γ = 100
h = 100

n
c
 = 10

ε = 0.3
γ = 10
h = 100

n
c
 = 100

ε = 0.03
γ = 10
h = 100

Fig. 5. Performance comparison of different configurations for the τ -Leaping algorithm (LCS)

no reactions are defined as critical. This results in a huge overhead, since τ -Leaping
avoids negative species numbers by finding a small enough τ . Searching for this τ
requires additional random numbers, which explains the increased impact of RNGs on
execution speed.

Accuracy. As can be seen in figures 3 and 4, τ -Leaping outperforms any other SSA vari-
ant when it comes to execution speed. However, as table 1 shows, the null hypothesis
regarding the equivalence DRM’s and τ -Leaping’s empirical distributions gets rejected
for several state variables.

0

400

800

1200

1600

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

A
m
un

to
fp

ar
ti
cl
es

Species

t1 = 5.0 s

t2 = 15.0 s t3= 25.0 s

Fig. 6. LCS trajectories for time t1 = 5.0, t2 = 15.0, and t3 = 25.0

Although the null hypothesis for the equivalence of DRM’s and NRM’s empirical
distributions gets rejected as well, this is only the case for variables very far from the
mean (see fig. 6). This is not the case for τ -Leaping. Histograms of the empirical dis-
tributions show a shift of the mean when compared with DRM’s reference distribution.
These findings correspond to the results presented in [26].

Summary. Our study revealed several interesting aspects of SSA performance. First
of all, our design space exploration showed that a heap is not the most efficient event

Large-Scale Design Space Exploration of SSA 227

Table 1. KS-Test results for NRM and τ -Leaping algorithm at time points t = 5 and t = 25

t = 5 t = 25
NRM τ -Leaping NRM τ -Leaping

Species p D Rejected p D Rejected Species p D Rejected p D Rejected
S0 0.73 0.03 0 0 0.18 1 S8 0.86 0.03 0 0.99 0.02 0
S3 0.14 0.05 0 0.08 0.06 0 S14 0.96 0.02 0 0 0.2 1
S6 0.92 0.02 0 0 0.23 1 S20 0.31 0.04 0 0.24 0.05 1
S9 0.25 0.05 0 0 0.27 1 S26 0.16 0.05 0 0 0.18 1
S12 0.45 0.04 0 0 0.31 1 S32 0.64 0.03 0 0 0.12 1
S15 0 0.09 1 0 0.1 1 S38 0.7 0.03 0 0 0.17 1
S18 0 0.47 1 1 0.07 0 S44 0.08 0.06 0 0.01 0.07 1
S21 0.12 0.05 0 1 0 0 S50 0 0.5 1 1 0 0
S24 1 0 0 1 0 0 S56 0 0.1 1 1 0 0
S27 1 0 0 1 0 0 S62 1 0 0 1 0 0

queue implementation for NRM (as was suggested in [14]). In fact, NRM execution
speed depends heavily on the model in combination with the event queue. This result
encourages further research on that dependence. RNG performance, in contrast, seems
to only have a negligible impact on execution time for most setups. As expected, τ -
Leaping was faster than any other SSA variant, but we proved that there is a statistically
significant difference in its empirical distributions. Finally, we have to concede that the
actual execution times presented in [22] are for some configurations much faster than
ours, particularly for the DRM when applied to the TIS model. On the other hand, this
illustrates the need for performance studies on every single simulation system.

7 Conclusions and Outlook

This paper presents the results of exploring the SSA design space on a large scale (≈
40.000 simulation runs, see section 6). It highlights the difficulties of conducting an un-
biased comparison of SSA approaches and shortly sketches how these can be circum-
vented (sec. 5). We propose a statistical methodology to empirically detect inaccuracies
of approximative variants, which shares some basic ideas with experiments presented
in [26]. Our method employs a species-wise Kolmogorov-Smirnov test and is applied
to several points in time.

Having quantitative information on the performance of SSA variants is often helpful.
First of all, it identifies the most efficient implementations, which could be integrated
into an algorithm portfolio. Users would not have to choose an algorithm on their own,
this could be done by the simulation system instead. Another benefit is the qualitative
knowledge gained by analyzing the data, which allows to focus further research ef-
forts to the most promising algorithms and variants, which can then be pushed to their
full potential. Finally, the mechanisms for conducting such a large-scale performance
study facilitate a quick and unbiased evaluation of new algorithms or benchmark mod-
els within a predefined setup, which enables simulator validation against proven and
tested implementations.

Besides speeding up the simulation of chemical reaction networks, our results could
also help to choose appropriate SSA configurations for related methods, e. g., in

228 M. Jeschke and R. Ewald

multi-scale simulators [43] or simulators for the stochastic π calculus [44]. Future work
will address the automated exploration of larger SSA design spaces and the integra-
tion of new algorithms, data structures, and benchmark models. Additionally, a more
systematic exploration of the τ -Leaping parameter space might provide optimized pa-
rameter settings for different model types.

Acknowledgements

We thank Adelinde M. Uhrmacher for her helpful advice and her comments on an earlier
version of this work.

References

1. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intra-
cellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)

2. Gillespie, D.: A rigorous derivation of the chemical master equation. Physica A Statistical
Mechanics and its Applications 188, 404–425 (1992)

3. Macnamara, S., Burrage, K., Sidje, R.B.: Multiscale modeling of chemical kinetics via the
master equation. Multiscale Modeling & Simulation 6(4), 1146–1168 (2008)

4. Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Phys-
ical Chemistry 81(25) (1977)

5. Sandmann, W.: Simultaneous stochastic simulation of multiple perturbations in biological
network models (2007)

6. Gillespie, D.: Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of Chemical Physics 115(4), 1716–1733 (2001)

7. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J.
Chem. Phys. 122(1) (January 2005)

8. Weinan, E., Di, L., Vanden-Eijnden, E.: Nested stochastic simulation algorithms for chemical
kinetic systems with multiple time scales. J. Comput. Phys. 221(1), 158–180 (2007)

9. McGeoch, C.: Experimental algorithmics. Communications of the ACM 50(11), 27–31
(2007)

10. LaMarca, A., Ladner, R.: The influence of caches on the performance of sorting. In: SODA
1997: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics, pp. 370–379 (1997)

11. Uhrmacher, A., Himmelspach, J., Jeschke, M., John, M., Leye, S., Maus, C., Röhl, M.,
Ewald, R.: One modeling formalism & simulator is not enough! - a perspective for com-
putational biology based on james ii. In: Proceedings of the 1st FSMB Workshop, London.
LNCS. Springer, Heidelberg (2008)

12. Himmelspach, J., Uhrmacher, A.: Plug’n simulate. In: Proceedings of the 40th Annual Sim-
ulation Symposium, pp. 137–143. IEEE Computer Society, Los Alamitos (2007)

13. Ewald, R., Himmelspach, J., Uhrmacher, A.: An algorithm selection approach for simulation
systems. In: Proceedings of the 22nd ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS 2008) (2008)

14. Gibson, M., Bruck, J.: Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. J. Chem. Physics 104, 1876–1889 (2000)

15. Himmelspach, J., Uhrmacher, A.: The event queue problem and pdevs. In: Proceedings of
the SpringSim 2007, DEVS Integrative M&S Symposium, SCS, pp. 257–264 (2007)

Large-Scale Design Space Exploration of SSA 229

16. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
17. Gomes, C., Selman, B.: Algorithm portfolio design: Theory vs. practice. In: Proc. of the 13th

Conf. on Uncertainty in Artificial Intelligence (UAI 1997), pp. 190–197. Morgan Kaufmann,
San Francisco (1997)

18. Leyton-Brown, K., Nudelman, E., Andrew, G., Mcfadden, J., Shoham, Y.: Boosting as a
metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 899–903.
Springer, Heidelberg (2003)

19. Houstis, E.N., Catlin, A., Rice, J., Verykios, V., Ramakrishnan, N., Houstis, C.: Pythia ii:
A knowledge/database system for managing performance data and recommending scientific
software. ACM Transactions on Mathematical Software 26(2), 227–253 (2000)

20. Busch, H., Sandmann, W., Wolf, V.: A Numerical Aggregation Algorithm for the Enzyme-
Catalyzed Substrate Conversion (2006)

21. Cai, X., Wang, X.: Stochastic modeling and simulation of gene networks - a review of the
state-of-the-art research on stochastic simulations. Signal Processing Magazine, IEEE 24(1),
27–36 (2007)

22. Cao, Y., Li, H., Petzold, L.: Efficient formulation of the stochastic simulation algorithm for-
chemically reacting systems. The Journal of Chemical Physics 121(9), 4059–4067 (2004)

23. Gillespie, D.: The chemical langevin equation. The Journal of Chemical Physics 113(1),
297–306 (2000)

24. Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics.
The Journal of Chemical Physics 121(21), 10356–10364 (2004)

25. Cao, Y., Gillespie, D., Petzold, L.: Avoiding negative populations in explicit Poisson tau-
leaping. J. Chem. Phys. 123, 054104 (2005)

26. Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simu-
lation method. J. Chem. Phys. 124(4) (January 2006)

27. Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically react-
ing systems: The implicit tau-leaping method. The Journal of Chemical Physics 119, 12784–
12794 (2003)

28. Cai, X., Xu, Z.: K-leap method for accelerating stochastic simulation of coupled chemical
reactions. The Journal of Chemical Physics 126, 4102 (2007)

29. EMBL-EBI: Biomodels database, 10 (accessed July 18, 2008), http://www.ebi.ac.
uk/biomodels/

30. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30
(1998)

31. Marsaglia, G.: The Marsaglia random number CDROM including the Diehard battery of tests
of randomness (1995), http://www.stat.fsu.edu/pub/diehard/

32. Jenkins, B.: ISAAC, a fast cryptographic random number generator (1996), http://www.
burtleburtle.net/bob/rand/isaacafa.html

33. Hellekalek, P.: Good random number generators are (not so) easy to find. Math. Comput.
Simul. 46(5-6), 485–505 (1998)

34. Grassberger, P.: On correlations in “good” random number generators. Physics Letters
A 181(1), 43–46 (1993)

35. Matsumoto, M., Wada, I., Kuramoto, A., Ashihara, H.: Common defects in initialization of
pseudorandom number generators. ACM Trans. Model. Comput. Simul. 17(4) (September
2007)

36. Marsaglia, G.: Seeds for random number generators. Commun. ACM 46(5), 90–93 (2003)
37. Goh, R., Thng, I.: Mlist: An efficient pending event set structure for discrete event simulation.

International Journal of Simulation - Systems, Science & Technology 4(5-6), 66–77 (2003)
38. Brown, R.: Calendar queues: a fast 0(1) priority queue implementation for the simulation

event set problem. Commun. ACM 31(10), 1220–1227 (1988)

http://www.ebi.ac.uk/biomodels/
http://www.ebi.ac.uk/biomodels/
http://www.stat.fsu.edu/pub/diehard/
http://www.burtleburtle.net/bob/rand/isaacafa.html
http://www.burtleburtle.net/bob/rand/isaacafa.html

230 M. Jeschke and R. Ewald

39. Huberman, B., Lukose, R., Hogg, T.: An economics approach to hard computational prob-
lems. Science 275, 51–54 (1997)

40. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn.
Chapman & Hall/CRC, Boca Raton (January 2007)

41. Pozo, R., Miller, B.: Java scimark, http://math.nist.gov/scimark2/
42. R Development Core Team: R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria (2005)
43. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale method for

cell simulation. Bioinformatics 20 (2004)
44. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transac-

tions on Computational Systems Biology (2005)

http://math.nist.gov/scimark2/

Statistical Model Checking in BioLab:

Applications to the Automated Analysis of
T-Cell Receptor Signaling Pathway�

Edmund M. Clarke1, James R. Faeder2, Christopher J. Langmead1,
Leonard A. Harris2, Sumit Kumar Jha1, and Axel Legay1

1 Computer Science Department, Carnegie Mellon University, Pittsburgh PA
2 Department of Computational Biology,

University of Pittsburgh School of Medicine, Pittsburgh PA

Abstract. We present an algorithm, called BioLab, for verifying tem-
poral properties of rule-based models of cellular signalling networks.

BioLab models are encoded in the BioNetGen language, and prop-
erties are expressed as formulae in probabilistic bounded linear temporal
logic. Temporal logic is a formalism for representing and reasoning about
propositions qualified in terms of time. Properties are then verified using
sequential hypothesis testing on executions generated using stochastic
simulation. BioLab is optimal, in the sense that it generates the mini-
mum number of executions necessary to verify the given property. Bio-

Lab also provides guarantees on the probability of it generating Type-I
(i.e., false-positive) and Type-II (i.e., false-negative) errors. Moreover,
these error bounds are pre-specified by the user. We demonstrate Bio-

Lab by verifying stochastic effects and bistability in the dynamics of the
T-cell receptor signaling network.

1 Introduction

Computational modeling is an effective means for gaining insights into the dy-
namics of complex biological systems. However, there are times when the nature
of the model itself presents a barrier to such discovery. Models with stochastic
dynamics, for example, can be difficult to interpret because they are inherently
non-deterministic. In the presence of non-deterministic behavior, it becomes non-
trivial to determine whether a behavior observed in a simulation is typical, or

� This research was sponsored by the GSRC (University of California) under contract
no. SA423679952, National Science Foundation under contracts no. CCF0429120,
no. CNS0411152, and no. CCF0541245, Semiconductor Research Corporation under
contract no. 2005TJ1366, Air Force (University of Vanderbilt) under contract no.
18727S3, International Collaboration for Advanced Security Technology of the Na-
tional Science Council, Taiwan, under contract no. 1010717, the Belgian American
Educational Foundation, the U.S. Department of Energy Career Award (DE-FG02-
05ER25696), a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award, National
Institutes of Health grant GM76570 and a B.A.E.F grant.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 231–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 E.M. Clarke et al.

an anomaly. In this paper, we introduce a new tool, called BioLab, for for-
mally reasoning about the behavior of stochastic dynamic models by integrating
techniques from the field of Model Checking [8] into the BioNetGen [12, 13]
framework for rule-based modeling. We then use BioLab to verify the stochastic
bistability of T-cell signalling.

The term “Model Checking” refers to a family of automated techniques for
formally verifying properties of complex systems. Since its inception in 1981,
the field of Model Checking has made substantial contributions in industrial set-
tings, where it is the preferred method for formal verification of circuit designs.
Briefly, the system is first encoded as a model in a formal description language.
Next, properties of interest (e.g., absence of deadlock) are expressed as formulae
in temporal logic. Temporal logic is a formalism for representing and reason-
ing about propositions qualified in terms of time. Given a model, M, a set of
initial states, S0, and a property, φ, a model checking algorithm automatically
determines whether the model satisfies the formula.

Historically, Model Checking has most often been applied to engineered sys-
tems, and thus the majority of Model Checking algorithms are designed for such
systems. Recently, however, there has been growing interest in the application
of Model Checking to biology (e.g.,[5, 6, 19, 21, 22]). Biological systems present
new challenges in the context of formal verification. In particular, biological sys-
tems tend to give rise to highly parameterized models with stochastic dynamics.
Biologists are generally interested in determining whether a given property is
(or is not) sensitive to a plausible set of initial conditions and parameter val-
ues. Model checking algorithms targeting biological applications must therefore
apply to stochastic, multi-parameter models.

BioLab models stochastic biochemical systems using the BioNetGen mod-
eling language. The set of initial states (i.e., S0) comprise a user-specified set of
initial conditions and parameter values. Properties are expressed in probabilistic
bounded linear temporal logic. BioLab then statistically verifies the property
using sequential hypothesis testing on executions sampled from the model. These
samples are generated using variants of Gillespie’s algorithm [15, 11, 32], which
ensures that the executions are drawn from the “correct” underlying probabil-
ity distribution. This, combined with the use of sequential hypothesis testing
provides several guarantees. First, BioLab can bound the probability of Type-I
(i.e., false-positive) and Type-II (i.e., false-negative) errors, with regard to the
predictions it makes. These error bounds are specified by the user. Second, Bio-

Lab is optimal in the sense that it generates the minimum number of executions
necessary to determine whether a given property is satisfied. The number of
required executions varies depending on the behavior of the model and is deter-
mined dynamically, as the program is running.

The contributions of this paper are as follows: (i) Our method is the first
application of statistical Model Checking to rule-based modeling of biochemical
systems. (ii) Our algorithm provides guarantees in terms of optimality, as well
as bounds on the probability of generating Type-I and Type-II errors. (iii) We
verify that a stochastic model of T-cell receptor signaling exhibits behaviors that

Statistical Model Checking in BioLab 233

are qualitatively different from those seen in an ordinary differential equation
model of the same system [23]. In particular we verify that stochastic effects
induce switching between two stable steady states of the system.

2 BioNetGen

Proteins in cellular regulatory systems, because of their multicomponent com-
position, can interact in a combinatorial number of ways to generate myriad
protein complexes, which are highly dynamic [17]. Protein-protein interactions
and other types of interactions that occur in biochemical systems can be modeled
by formulating rules for each type of chemical transformation mediated by the
interactions [18]. The rules can be viewed as definitions of reaction classes and
used as generators of reactions, which describe the transformations of molecules
in the system possessing particular properties. The assumption underlying this
modeling approach, which is consistent with the modularity of regulatory pro-
teins [27], is that interactions are governed by local context that can be captured
in simple rules. Rules can be used to generate reaction networks that account
comprehensively for the consequences of protein-protein interactions. Examples
of rule-based models of specific systems can be found in [16, 3, 1, 26].

BioNetGen is a software package that provides tools and a language for
rule-based modeling of biochemical systems [2, 13]. A formal description of the
language and underlying graph theory is provided in [4]. BioNetGen is similar
to the κ-calculus, which has also been developed as a language for rule-based
modeling of biochemical systems [9]. Other tools for rule-based modeling are
reviewed in [18].

The syntax and semantics of BioNetGen have been thoroughly described in
[13]. Briefly, a BioNetGen model is comprised of six basic elements that are de-
fined in separate blocks in the input file: parameters, molecule types, seed species,
reaction rules, observables, and actions. Molecules are the basic building blocks
of a BioNetGen model, and are used to represent proteins and other structured
biological molecules, such as metabolites, genes, or lipids. The optional molecule
types block is used to defined the composition and allowable states of molecules.
Molecules may contain components, which represent the functional elements of
molecules, and may bind other components, either in the same molecule or an-
other molecule. Components may be associated with state variables, which take
on a finite set of possible values that may represent conformational or chemical
states of a component, e.g., tyrosine phosphorylation. An example of a molecule
type declaration is

TCR(ab,ITAM~U~P~PP,lck,shp)

which is used to define the structure of the T cell receptor in the model presented
in Sec. 5.2. The name of the molecule type is given first, followed by a comma-
separated list of its components in parenthesis. Any declared component may par-
ticipate in a bond. In addition, the allowed values of the state variable associated
with a component are indicated with ∼ followed by a name. In the above exam-
ple, a molecule of type TCR has four components, three of which (ab, lck, and

234 E.M. Clarke et al.

shp) may be used only for binding and one of which (ITAM) has an associated
state variable that takes on the values U, P, or PP—representing the unphospho-
rylated, phosphorylated, and doubly phosphorylated forms respectively.

The seed species block defines the molecules and molecular complexes that
are initially present in the system with an optional quantifier. Depending on
the semantics used in the simulation of the model (see below) the value of the
quantifier may be either continuous or restricted to discrete values. For example,
the line

Lck(tcr,Y~U,S~U) LCK

in the seed species block specifies that the initial amount of the species comprised
of a molecule of Lck with both its Y (tyrosine residue 394) and S (serine residue
453) components in the U (unphosphorylated) state is given by the parameter
LCK, which is defined in the parameters block. Only species with a non-zero
initial amount as declared in the seed species block are present in the system at
the beginning of simulation.

The reaction rules block contains rules that define how molecules in the system
can interact. A rule is comprised, in order of appearance, of a set of reactant
patterns, a transformation arrow, a set of product patterns, and a rate law.
A pattern is a set of molecules that select a set of species through a mapping
operation [4]. The match of a molecule in a pattern to a molecule in a particular
species depends only on the components that are specified in the pattern (which
may include wildcards), so that one pattern may select many different species.
Three basic types of operations are carried out by the rules in the T cell model:
binding (unbinding) of two molecules through a specified pair of components
and changing the state variable of a component. An example of a binding rule is

TCR(ab,shp)+pMHC(p~ag) -> TCR(ab!1,shp).pMHC(p~ag!1) b1

which specifies that any TCR molecule containing unbound ab and shp com-
ponents may bind through its ab component to a p component in the ag state
of a pMHC molecule. In this example, the first reactant pattern, TCR(ab,shp),
matches any TCR-containing species with free ab and shp components, indepen-
dent of the state of the remaining two components. The + operator separates two
reactant patterns that must map to distinct species. The transformation arrow
may be either unidirectional (->), as in the above rule, or bidirectional (<->),
indicating that the rule is to be applied in both the forward and reverse direc-
tions (i.e., switching the reactant and product patterns). The product patterns
define the configuration of the selected reactant molecules following the applica-
tion of the rule. Here, the ab component of TCR is bound to the p component
of pMHC by the addition of an edge labeled 1, as indicated by the two bond
labels (!1) in the products. The parameter b1 specifies the rate constant to be
used in determining the rate of the reaction, which is computed as a product of
the rate constant and each of the reactant amounts.

The observables block contains definitions of model outputs, which are defined
as sums over the amounts of species matched by a set of patterns. The output

Statistical Model Checking in BioLab 235

of the TCR model is the level of doubly-phosphorylated ERK, which is specified
by the following line in the BNGL file

Molecules ppERK ERK(S~PP)

where the first item is a keyword defining the type of observable, the second
item is the name of the observable, and the final item is a list of patterns that
determines the matching species.

The actions block specifies the operations that are to be carried out either
to generate or simulate a network. As we now discuss, the choice of operations
to perform also defines the semantics under which the model elements are in-
terpreted. BioNetGen uses three basic methods to simulate the time course of
observables for a rule-based network: generate-first (GF), on-the-fly (OTF), and
network-free (NF). These methods are described in detail in [13]; we provide a
brief overview in this section. In GF, rules are iteratively applied to the initial
set of seed species until all reachable species and reactions are generated or some
other stopping criterion is satisfied. The resulting network can be simulated ei-
ther by solving a set of ODE’s for the average concentration of each species in the
system under the influence of the mass action reactions (GF-ODE) or by Gille-
spie’s stochastic simulation algorithm (SSA) [15] to sample the exact solution
to the chemical master equations governing the species probabilities (GF-SSA).
Both methods generate traces1 of the species concentrations as a function of
time, but the GF-ODE algorithm is deterministic for a given initial state and
set of system parameters, whereas each simulation run of GF-SSA from a given
initial state represents a stochastic process and may generate a different trace.
Like GF-SSA, OTF uses the Gillespie algorithm to generate traces but only gen-
erates species and reactions that are reachable within a small number of specified
time steps [24, 11]. OTF was originally proposed as a way to maintain compu-
tational efficiency for large reaction networks, but is not practical for rule-based
models that include oligomerization or attempt a comprehensive description of
reaction networks [18, 10]. The NF method [10, 32] avoids explicit generation of
species and reactions by simulating molecules as agents and has been shown to
have per event cost that is independent of the number of possible species or re-
actions [10]. NF also relies on the SSA to sample reaction events that govern the
evolution of the molecular agents. Because species are not explicitly tracked, the
NF method generates traces over observables rather than individual species. This
restriction is not an issue for applications to biology because the concentrations
of individual species are typically not observable in biological experiments.

3 Model Checking for Stochastic Systems

The following section introduces the concept of statistical model checking. We
assume the reader is familiar with basic concepts in probability theory.

1 The term “trace” is equivalent to the term “execution”. From now, we will use
“trace” when we want to emphasize that we are talking about a BioNetGen Model.

236 E.M. Clarke et al.

3.1 The Problem

We use Pr(E) to denote the probability of the event E to occur. We consider a
system M whose executions (sequences of states of the system) are observable
and a property φ that is defined as a set of executions. We assume that one can
decide whether an execution trace of M satisfies φ, i.e. whether the execution
belongs to φ. In this paper, the probabilistic model checking problem consists
in deciding whether the executions of M satisfy φ with a probability greater
than or equal to a given threshold θ. The latter is denoted by M |= Pr≥θ(φ).
This statement only makes sense if one can define a probability space on the
executions of the system as well as on the set of executions that do satisfy φ.

The probabilistic model checking problem can be solved with a probabilistic
model checking algorithm. Such an algorithm is numerical in the sense that it
computes the exact probability for the system to satisfy φ and then compares
it with the value of θ. Successful probabilistic model checking algorithms [7,
20]) have been proposed for various classes of systems, including (continuous
time) Markov chains and Markov Decision Processes. The drawback with those
approaches is that they compute the probability for all the executions of the
system, which may not scale up for systems of large size.

Another way to solve the probabilistic model checking problem is to use a
statistical model checking algorithm. In the rest of this section, we recap the
statistical model checking algorithmic scheme proposed by Younes in [33].

3.2 Statistical Approach

The approach in [33, 29] is based on hypothesis testing. The idea is to check
the property φ on a sample set of simulations and to decide whether the system
satisfies Pr≥θ(φ) based on the number of executions for which φ holds compared
to the total number of executions in the sample set. With such an approach, we
do not need to consider all the executions of the system. To determine whether
M satisfies φ with a probability p ≥ θ, we can test the hypothesis H : p ≥ θ
against K : p < θ. A test-based solution does not guarantee a correct result but
it is possible to bound the probability of making an error. The strength (α, β)
of a test is determined by two parameters, α and β, such that the probability of
accepting K (respectively, H) when H (respectively, K) holds, called a Type-I
error (respectively, a Type-II error) is less or equal to α (respectively, β).

A test has ideal performance if the probability of the Type-I error (respectively,
Type-II error) is exactly α (respectively, β). However, these requirements make
it impossible to ensure a low probability for both types of errors simultaneously
(see [33] for details). A solution to this problem is to relax the test by working
with an indifference region (p1, p0) with p0≥p1 (p0−p1 is the size of the region).
In this context, we test the hypothesis H0 : p≥ p0 against H1 : p≤ p1 instead
of H against K. If both the values of p and θ are between p1 and p0 (the
indifference region), then we say that the probability is sufficiently close to θ so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted.

Statistical Model Checking in BioLab 237

3.3 An Algorithmic Scheme

Younes developed a procedure to test H0 : p≥ p0 against H1 : p≤ p1 that is based
on the sequential probability ratio test proposed by Wald [31]. The approach is
briefly described below.

Let Bi be a discrete random variable with a Bernoulli distribution. Such a
variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p and Pr[Bi = 0] =
1 − p. In our context, each variable Bi is associated with one simulation of the
system. The outcome for Bi, denoted bi, is 1 if the simulation satisfies φ and 0
otherwise. In the sequential probability ratio test, one has to choose two values
A and B, with A > B. These two values should be chosen to ensure that the
strength of the test is respected. Let m be the number of observations that have
been made so far. The test is based on the following quotient:

p1m

p0m
=

m∏
i=1

Pr(Bi = bi | p = p1)
Pr(Bi = bi | p = p0)

=
pdm
1 (1− p1)m−dm

pdm
0 (1− p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A,

and H1 if p1m

p0m
≤ B. An algorithm for sequential ratio testing consists of com-

puting p1m

p0m
for successive values of m until either H0 or H1 is satisfied. This

has the advantage of minimizing the number of simulations. In each step i, the
algorithm has to check the property on a single execution of the system, which
is handled with a new Bernoulli variable Bi whose realization is bi. In his the-
sis [33], Younes proposed a logarithmic based algorithm (Algorithm 2.3 page 27)
SPRT that given p0, p1, α and β implements the sequential ratio testing proce-
dure. Computing ideal values Aid and Bid for A and B in order to make sure
that we are working with a test of strength (α, β) is a laborious procedure (see
Section 3.4 of [31]). In his seminal paper [31], Wald showed that if one defines
Aid≥A = (1−β)

α and Bid ≤ B = β
(1−α) , then we obtain a new test whose strength

is (α′, β′), but such that α′ + β′ ≤ α + β, meaning that either α′≤α or β′ ≤ β.
In practice, we often find that both inequalities hold.

The SPRT algorithm can be extended to handle Boolean combinations of
probabilistic properties as well as much more complicated probabilistic Model
checking problems than the one considered in this paper [33].

Statistical Model Checker. The SPRT algorithm can be implemented in
order to solve the probabilistic model checking problem for a specific class of
systems and a specific class of properties. For this, we have to implement :

– A simulator that is able to simulate the system and produce observable
executions without necessarily constructing its entire state-space.

– An execution verifier that is a procedure to decide whether an execution
satisfies a given property.

In section 5, we propose BioLab, which is an implementation of the SPRT
algorithm for models encoded and simulated using BioNetGen.

238 E.M. Clarke et al.

4 Statistical Model Checking for CTMCs

A BioNetGen model can be interpreted as Continuous-time Markov Chain
(CTMC), which may be simulated using the stochastic simulation methods de-
scribed in Sec. 2. In this section, we review CTMCs and then introduce the
probabilistic bounded linear temporal logic, which will is used in BioLab to
define properties over CTMC and thus over BioNetGen models.

4.1 Continuous-Time Markov Chains

Let R (resp. N) denote the set of real (resp. natural) numbers and let R≥0 and
R>0 denote the set of non-negative and strictly-positive real numbers, respec-
tively. N is the set of natural numbers, and N≥0 is the set of strictly positive
natural numbers. We now recall the definition of Structured Continuous-time
Markov Chains.

Definition 1. A Structured Continuous-time Markov Chain is a tuple M =
(S, S0, R, SV, V), where

– S is a finite set of states;
– s0 ∈ S is the initial state;
– R : S × S → R≥0 is the rate matrix.
– SV is a finite set of state variables defined over R≥0. These variables repre-

sent the concentration of each molecular species in the model.
– V : S × SV → R≥0 is a value assignment function providing the value of

x ∈ SV in state s.

Let M = (S, S0, R) be a structured continuous-time Markov chain. Let t ∈ R>0

and s1, s2 ∈ S, the probability to go from s1 to s2 within t time unit is defined
as follows

P (s1, s2, t) =
R(s1, s2)

T (s1)
(1 − eT (s1)t), (2)

where T (s1) =
∑

s′∈S R(s, s′).
An execution, also called trace, ofM is a possibly infinite sequence σ = (s0, t0)

(s1, t1)(s2, t2) . . . such that for each i≥0, (1) p(si, si+1, ti) > 0, and (2) ti ∈ R>0.
Given (si, ti), ti is the time that is spent in state si. Given si,

∑
j<i tj is the

number of time units spent before reaching si. We use σ(i) (with i≥0) and σi to
reference the i−th state of the execution and the suffix of the execution starting
from the pair (si, ti), respectively. Given a set S′ ∈ S, we will use Path(S′) to
denote the set of all the executions whose initial states are in S′.

4.2 Probabilistic Bounded Linear Temporal Logic

BioLab is intended to be used as a tool for verifying properties of executions of
CTMCs. Users specify properties of interest in the probabilistic bounded linear
temporal logic. We now give the syntax and the semantics of bounded linear
temporal logic (BLTL).

Statistical Model Checking in BioLab 239

Let SV be a set of nonnegative real variables and ∼ ∈ {≥,≤, = }. A Boolean
predicate over SV is a constraint of the form x∼v, where x ∈ SV and v ∈ R≥0.
A BLTL property is built on a finite set of Boolean predicates over SV using
Boolean connectives and temporal operators. The syntax of the logic is given by
the following grammar :

φ ::= x∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ |X(φ) | (φ1Utφ2) | (φ1Ũtφ2) |Dt(φ).

The operators ¬, ∨, and ∧ are the normal propositional logic operators, which
are read “not”, “or”, and “and”, respectively. The operators X, Ut, Ũ, and
D are the temporal operators. The operator X is read “next”, and corresponds
to the notion of “in the next state”. The operator Ut is read “until t time
units have passed”, and requires that its first argument be true until its second
argument is true, which is required to happen within t time units. The operator
Ũ is read “release”, and requires that its second argument is true during the
first t time units unless this obligation has been released by its first argument
becoming true. The operator Dt is read “dwell”, and requires that each time
the argument becomes true, it is falsified within t time units.

Two additional temporal operators are in very common use. The first of
them is Ft, where F is read “eventually”. The eventually operator requires that
its argument becomes true within t units of time. Formally, we have Ftψ =
TrueUt ψ. The second operator is Gt, where G is read “always”. This operator
requires that its argument stays true during at least t units of time. Formally,
we have Gtψ = False Ũt ψ.

The semantics of BLTL was informally described above. We now present its
formal semantics. The fact that the execution σ = (s0, t0)(s1, t1), . . . satisfies
the BLTL property φ is denoted by σ |= φ. We have the following:

– σ |= x ∼ v if and only if V (σ(0), x) ∼ v;
– σ |= φ1 ∨ φ2 if and only if σ |= φ1 or σ |= φ2;
– σ |= φ1 ∧ φ2 if and only if σ |= φ1 and σ |= φ2;
– σ |= ¬φ if and only if σ �|= φ.
– σ |= Xφ if and only if σ1 |= φ.
– σ |= φ1Utφ2 if and only if there exists i ∈ N such that (1) σi |= φ2 and (2)∑

j<i tj≤t, and for each 0≤j < i σj |= φ1.
– σ |= φ1 Ũt φ2 if and only if for each i such that σi �|= φ2 and

∑
m<i tm≤t,

there exists 0≤j < i such that σj |= φ1.
– σ |= Dt(φ) if and only if for each state σ(i) such that σ(i) |= φ, there exists

j > i such that σ(j) �|= φ and
∑m=j−1

m=i tm≤t.

Remark 1. It should be noted that we can decide whether an infinite execution
satisfies a BLTL property by observing one of its finite prefixes.

We assume that properties of Structured Continuous-time Markov Chains are
specified with Probabilistic Bounded Linear Temporal Logic (BTL).

Definition 2. A BTL property is a property of the form ψ = Pr≥θ(φ), where
φ is a BLTL property.

240 E.M. Clarke et al.

We say that the Continuous-time Markov ChainM satisfies ψ, denoted byM |=
ψ, if and only if the probability for an execution ofM to satisfy φ is greater than
θ. The problem is well-defined since, as it is shown with the following theorem,
one can always assign a unique probability measure to the set of executions that
satisfy an BLTL property.

Theorem 1. Let M be a Continuous-time Markov Chain and φ be a BLTL
formula. One can always associate a unique probability measure to the set of
executions of M that satisfy φ.

5 Statistical Model Checking of a T Cell Model

5.1 The BioLab Algorithm

The BioLab algorithm is a statistical model checker that implements the SPRT
algorithm introduced in Section 3.3 for checking BTL properties against BioNet-

Gen models. BioLab uses the BioNetGen simulation engine described in
Section 2 to generate traces by randomly simulating biological models, and then
uses a Bounded Linear Temporal Logic trace verifier to validate the generated
traces against the BLTL part of the given BTL property. Depending on the result
of the validation of the generated tracess, the BioLab tool decides whether the
BTL formula is satisfied/falsified or if more samples are needed in order to make
this decision. The structure of the BioLab algorithm is outlined in Figure 4.2. The
BioNetGen simulator is used to generate stochastic traces and the trace verifier
verifies each of them against the BLTL property. Our trace verifier is based on
the translation from BLTL to alternating automata [30, 14]. The statistical model
checker continues to simulate the BioNetGen model until a decision about the
property has been made.

BioNetgen

Model

BioNetgen

Trace

 Simulation

Verifier

Trace

Verified / Failed

Property

by Trace

Temporal Logic

Property

Sequential
Hypothesis

Testing
Algorithm

Fig. 1. Architecture of BioLab

Statistical Model Checking in BioLab 241

5.2 The T Cell Receptor Model

T lymphocytes, also known as T cells, play a central role in the immune system
by detecting foreign substances, known as antigens, and coordinating the im-
mune response. T cells detect the presence of antigen through surface receptors,
called T cell receptors (TCRs), which bind to specific polypeptide fragments
that are displayed on the surface of neighboring cells by a protein called the
major histocompatibility complex (MHC). Variable regions of the immunoglob-
ulin chains that comprise the TCR give rise to a broad range of TCR binding
specificities. Individual T cells (or clonal populations derived from the same
precursor) express a unique form of TCR. Processes of positive and negative
selection during maturation of T cells in the thymus select T cells possessing
TCRs with a weak but nonzero affinity for binding MHC molecules carrying
peptides derived from host proteins. High-affinity binding between TCR and
peptide-MHC (pMHC) complexes induces a cascade of biochemical events that
leads to activation of the T cell and initiation of an immune response. To be
effective in detecting antigens while avoiding autoimmunity, T cells must gen-
erate strong responses to the presence of minute quantities of antigen—as low
as a few peptide fragments per antigen-presenting cell—while not responding
to the large quantities of endogenous (host) pMHC expressed on all cells. The
T cell appears to maintain this delicate balance between sensitivity and selec-
tivity through a combination of mechanisms that include kinetic proofreading,
which discriminates against pMHC-receptor interactions that are too short, pos-
itive feedback, which amplifies the response and makes it more switch-like, and
negative feedback, which acts in concert with kinetic proofreading to dampen re-
sponses to weak stimulation and with positive feedback to enhance the stability
of the inactive state.

A computational model incorporating all three of these mechanisms has re-
cently been developed by Lipniacki et al. [23], and serves as the basis for the
experiments we conduct here using BioLab. This model extends previous simpli-
fied models of kinetic proofreading [25] and feedback regulation [28] by incorpo-
rating mechanistic detail about the involvement of specific signaling molecules.
A schematic illustration of the model is presented in Fig. 5.2. Binding of pMHC
to the TCR initiates a series of binding and phosphorylation events at the re-
ceptor that can lead either to activation or inhibition of the receptor depending
on the strength of the stimulus, which is indicated along the kinetic proofread-
ing axis. The rectangular box in the figure represents the TCR complex, which
requires three components to make its passage to the activated form. These
components are pMHC (P), doubly phosphorylated receptor (Tpp), and singly-
phosphorylated LCK (Lp). In its active form, the LCK kinase can phosphorylate
SHP (S) to produce Sp, which acts as a negative feedback by reversing TCR ac-
tivation events and blocking TCR activation. LCK also acts through a series
of intermediate layers to activate the MAP kinase ERK, a potent activator of
transcription, whose active form (Epp) is taken as the final readout of T cell ac-
tivation. As shown in the figure, activated ERK also provides positive feedback
by blocking the activity of Sp.

242 E.M. Clarke et al.

Fig. 2. Overview of the TCR signaling model of Ref. [23]. Lines terminated by flat
heads indicate an inhibitory interaction.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

5

Time

C
on

ce
nt

ra
tio

n
of

 p
pE

R
K

SSA Simulation 1
SSA Simulation 2
SSA Simulation 3
SSA Simulation 4
SSA Simulation 5
ODE Simulation

Fig. 3. Traces from deterministic (ODE) and stochastic simulation of the TCR signal-
ing model. N1 : 100, N2 : 3000.

This model captures three important properties of T cell activation, which
are sensitivity to small numbers of pMHC with high binding affinity, high se-
lectivity between pMHCs of different affinity, and antagonism, the inhibition of
response by pMHC of intermediate affinity. Because only small numbers of high-
affinity pMHC ligands are displayed on cell surfaces, stochastic effects have a
major influence on the dynamics both of the model and of the initiation of sig-
naling through the TCR. The model also exhibits bistable ERK responses over a
broad range of pMHC number and binding affinity. This bistable regime has the
interesting property that stochastic trajectories may exhibit completely differ-
ent dynamics from the deterministic trajectory from the same initial state, and
even the average behavior of stochastic trajectories may differ qualitatively from
the deterministic behavior (see Fig. 7B of [23] for an example). This divergence

Statistical Model Checking in BioLab 243

between the stochastic and deterministic dynamics was the motivation for using
this model of TCR as the basis for the current study, which aims to show that
formal verification methods can be useful for the characterization of rule-based
biochemical models.

The TCR model has been encoded in the BioNetGen language (available at
http://bionetgen.org/index.php/Tcr tomek) and serves as the basis for the
current experiments. TheBioNetGenmodel is comprisedof sevenmolecule types
and 30 rules, which generate a biochemical network of 37 species and 97 reactions.
The main output of the model is fraction of ERK that is doubly phosphorylated,
denoted by the variable f , which is taken as a measure of T cell activation. For
f < 0.10 the cell is considered inactive, for f > 0.5 the cell is considered active.
The response is observed to be switch-like with respect to stimulation strength,
measured by the number of agonist (high affinity) pMHC per cell, given by N1

(see Fig. 2 of [23]). The system also exhibits bistability with respect to f over a
wide range of N1 values (see Fig. 7A of [23]). As shown in Fig. 5.2, under many
input conditions traces from stochastic simulations may sample both stable steady
states and thus diverge from deterministic traces starting from the same initial
conditions, which sample only a single steady state.

5.3 Experiments

We performed several in-silico BioLab experiments on the T Cell Receptor
model. Each of our experiments was performed on a cluster of 40 3GHz compu-
tational nodes communicating using the Message Passing Interface.

Property 1. In our first experiment, we were interested in the truth of the hy-
pothesis that the fraction f of doubly phosphorylated ERK stays below a given
threshold value with a given probability during the first 300 seconds of simula-
tion. We verified the following property with various values of the probability p
and the threshold value γ.

Pr≥θ (G300(ppERK / totalERK < γ))

The first model we analyzed started with 100 molecules of agonist pMHC (N1 =
100) while antagonist pMHC was absent (N2 = 0). We also set the dissociation
constant of agonist pMHC as 1/20 per second. The results of our experiment are
shown in Table 1.

In our second experimental setup, our system started with 100 molecules of
agonist pMHC while there were 3000 molecules of antagonist pMHC. We also
set the dissociation constant of agonist pMHC as 1/20 per second and that of
antagonist pMHC as 1/3. The results of our experiment are shown in Table 2.

In the third experiment, there were 100 molecules of agonist pMHC and
1000 molecules of antagonist pMHC. We set the dissociation constant of agonist
pMHC as 1/20 per second and that of antagonist pMHC as 1/3. We summarize
the results in Table 3.

The fourth experiment started with 100 molecules of agonist pMHC and 300
molecules of antagonist pMHC. We used the same dissociation constants as in
previous experiment. The results are presented in Table 4.

http://bionetgen.org/index.php/Tcr_tomek

244 E.M. Clarke et al.

Table 1. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 0 232.73
2 0.90 0.95 0.5 No 40 0 221.38
3 0.90 0.95 0.7 No 40 2 221.41
4 0.90 0.95 0.9 No 40 2 233.45
5 0.90 0.95 0.95 Yes 240 236 1162.87

Table 2. N1 : 100, N2 : 3000 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 24 54.25
2 0.90 0.95 0.5 Yes 120 97 168.22
3 0.90 0.95 0.7 Yes 240 237 320.30
4 0.90 0.95 0.9 Yes 200 199 263.87
4 0.90 0.95 0.95 Yes 400 385 533.39

Table 3. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 4 41.56
2 0.90 0.95 0.5 No 40 14 67.40
3 0.90 0.95 0.7 Yes 200 199 317.90
4 0.90 0.95 0.9 Yes 200 200 278.08
5 0.90 0.95 0.95 Yes 480 459 777.17

The fraction of phosphorylated ERK in the first and the fourth experiments
exceeded 0.9 within the first 300 seconds with at least 90% probability. This
phenomenon was not observed in the second and the third experiments.

Property 2. In our second experiment, we were interested in the truth of the
hypothesis that the system can go from the inactive state to the active state.
We verified the following property with various values of the probability p.

Pr≥θ(F300(ppERK/totalERK<0.1∧F300 (ppERK/totalERK>0.5)))

Our first model started with 100 molecules of agonist pMHC (with dissociation
constant 1/20 per second) while antagonist pMHC was assumed to be absent in
the initial state. The results are presented in Table 5.

Statistical Model Checking in BioLab 245

Table 4. N1 : 100, N2 : 300 , Type-I and Type II error : 0.001

Sl. No. p1 p0 γ Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 0.1 No 40 0 96.02
2 0.90 0.95 0.5 No 40 4 108.65
3 0.90 0.95 0.7 No 40 13 89.89
4 0.90 0.95 0.9 No 160 130 322.50
5 0.90 0.95 0.95 Yes 320 312 866.65

Table 5. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 412.25
2 0.70 0.75 Yes 120 120 309.58
3 0.50 0.55 Yes 80 80 214.74
4 0.20 0.25 Yes 40 40 88.32
5 0.10 0.15 Yes 40 40 98.84

We note that the number of samples needed to decide the property depends
both upon the fraction of samples that satisfied the property and the probability
with which we want the property to be satisfied.

In our second experimental setup, our system started with 100 molecules of
agonist pMHC while there were 3000 molecules of antagonist pMHC. We also
set the dissociation constant of agonist pMHC as 1/20 per second and that of
antagonist pMHC as 1/3. We present the results in Table 6.

In the third experiment, there were 100 molecules of agonist pMHC and 1000
molecules of antagonist pMHC. We also set the dissociation constant of agonist
pMHC as 1/20 per second and that of antagonist pMHC as 1/3. The results are
illustrated in Table 7.

Table 6. N1 : 100, N2 : 3000 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 0 24.92
2 0.70 0.75 No 40 0 27.05
3 0.50 0.55 No 80 0 52.19
4 0.20 0.25 No 120 0 86.30
5 0.10 0.15 No 160 0 108.25

246 E.M. Clarke et al.

Table 7. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 27 35.16
2 0.70 0.75 Yes 40 34 34.34
3 0.50 0.55 Yes 120 109 111.30
4 0.20 0.25 Yes 40 37 44.57
5 0.10 0.15 Yes 40 36 45.54

The fourth experiment started with 100 molecules of agonist pMHC and 300
molecules of antagonist pMHC. We used the same dissociation constants as in
previous experiment. The outcome of the experiments are shown in Table 8.

Table 8. N1 : 100, N2 : 300 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 346.92
2 0.70 0.75 Yes 120 116 226.08
3 0.50 0.55 Yes 80 80 168.87
4 0.20 0.25 Yes 40 40 81.10
5 0.10 0.15 Yes 40 40 73.11

The second model showed a qualitative difference in behavior from the other
three models while quantitative differences in behavior can be seen among all the
four models. We verified our hypothesis that the stochastic model of the T Cell
Receptor pathway can go from the inactive to the active state with a non-zero
probability.

Property 3. In our third set of experiments, we were interested in the truth of
the hypothesis that the system can go from the active state to the inactive state.
We verified the following property with various values of the probability p.

Pr≥θ(F300(ppERK/totalERK>0.5∧ F300 (ppERK/totalERK<0.1)))

Our model started with 100 molecules of agonist pMHC (with dissociation con-
stant 1/20 per second) while there was no antagonist pMHC. The results of our
experiments are illustrated in Table 9.

Our second model started with 100 molecules of agonist pMHC (with dis-
sociation constant 1/20 per second) while there were 1000 antagonist pMHC
(with dissociation constant 1/3 per second). The results of our experiments are
illustrated in Table 10.

Statistical Model Checking in BioLab 247

Table 9. N1 : 100, N2 : 0 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 40 0 107.25
2 0.70 0.75 No 40 0 106.95
3 0.50 0.55 No 80 0 218.42
4 0.20 0.25 No 120 0 168.98
5 0.10 0.15 No 160 0 330.80

Table 10. N1 : 100, N2 : 1000 , Type-I and Type II error : 0.001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 No 120 79 57.97
2 0.70 0.75 No 280 160 114.62
3 0.50 0.55 No 160 51 66.04
4 0.20 0.25 Yes 120 73 50.06
5 0.10 0.15 Yes 40 21 19.53

Property 4. In our fourth set of experiments, we were interested in asking the
question if the system spent more than a certain threshold of time in a given
state before leaving that state. We verified the following property with various
values of the probability p.

Pr≥p (D100 (ppERK / totalERK > 0.5))

The model we analyzed started with 100 molecules of agonist pMHC (with dis-
sociation constant 1/20 per second) while antagonist pMHC was absent. The
results of our analysis are presented in Table 11.

Table 11. N1 : 100, N2 : 0 , Type-I and Type II error : 0.0001

Sl. p1 p0 Result Total
Number of
Samples

Number of
Successful
Samples

Time

1 0.90 0.95 Yes 160 160 216.21
2 0.70 0.75 Yes 120 120 160.32
3 0.50 0.55 Yes 80 80 109.11
4 0.20 0.25 Yes 40 40 54.33

248 E.M. Clarke et al.

6 Discussion and Conclusion

In this paper, we have introduced an algorithm, called BioLab, for formally
verifying properties of stochastic models of biochemical processes. BioLab rep-
resents the first application of Statistical Model Checking to a rule-based model
of signaling, which is specified here using the BioNetGen modeling framework.
BioLab is (i) an optimal trace-based method for Statistical Model Checking,
which generates the minimum number of traces necessary to verify a property
and (ii) BioLab provides user-specified bounds on Type-I and Type-II errors.

We demonstrated BioLab on a recently-developed BioNetGen model of the
T-cell receptor signaling pathway [23] with two stable states. We verified that
both steady states are reachable on a single stochastic trajectory, whereas only
a single steady state is reached on a deterministic ODE-based trajectory start-
ing from the same initial conditions. Moreover, we verified that the system will
alternate between these two states with high probability. These findings are rel-
evant for understanding the TCR signaling pathway, which, under physiological
conditions, must generate a robust response to a handful of stimulatory input
molecules.

There are a number of areas for future research in BioLab. First, the T-cell
receptor signaling model has a number of parameters. We verified properties of
the pathway over a range of possible parameter values. In some contexts, it may
be preferable to first (re)estimate parameter values for a given model. This can be
accomplished by using standard parameter estimation techniques from the fields
of Statistics and Machine Learning. One might even incorporate Model Checking
into the parameter estimation phase by formally verifying that the parameter
estimates reproduce known data, with high probability. Second, our method is
presently limited to probabilistic bounded linear temporal logic formulas; we do
not allow nested operators. This restriction can be relaxed through the use of
different Model Checking algorithms. Pursuit of these two goals is ongoing.

References

1. Barua, D., Faeder, J.R., Haugh, J.M.: Structure-based kinetic models of modular
signaling protein function: Focus on Shp2. Biophys. J. 92, 2290–2300 (2007)

2. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

3. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of
early events in epidermal growth factor receptor signaling that accounts for com-
binatorial complexity. BioSyst. 83, 136–151 (2006)

4. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph theory for rule-based
modeling of biochemical networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B.,
Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS
(LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

Statistical Model Checking in BioLab 249

5. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006)

6. Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In:
Proc. 1st Internl. Workshop on Computational Methods in Systems Biology, pp.
149–162 (2003)

7. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

8. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

9. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

10. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular sig-
nalling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157.
Springer, Heidelberg (2007)

11. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Rule-based modeling of
biochemical networks. Complexity 10, 22–41 (2005)

12. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of
signal-transduction networks. In: SAC 2005: Proceedings of the 2005 ACM sym-
posium on Applied computing, pp. 133–140. ACM, New York (2005)

13. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical
systems with BioNetGen. In: Maly, I.V. (ed.) Systems Biology. Methods in Molec-
ular Biology. Humana Press, Totowa (2008)

14. Finkbeiner, B., Sipma, H.: Checking Finite Traces Using Alternating Automata.
Formal Methods in System Design 24(2), 101–127 (2004)

15. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

16. Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational mod-
els of immune-receptor signaling. Nat. Rev. Immunol. 4, 445–456 (2004)

17. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The
complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794
(2003)

18. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction systems. Science STKE 6 (2006)

19. Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O., Heath, J., Gaffney,
E.: Simulation and verification for computational modelling of signalling pathways.
In: WSC 2006: Proceedings of the 38th conference on Winter simulation, pp. 1666–
1674 (2006)

20. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic
model checking. In: QEST, pp. 322–323. IEEE, Los Alamitos (2004)

21. Langmead, C., Jha, S.K.: Predicting protein folding kinetics via model checking.
In: The 7th Workshop on Algorithms in Bioinformatics. Lecture Notes in Bioinfor-
matics, pp. 252–264 (2007)

22. Langmead, C., Jha, S.K.: Symbolic approaches to finding control strategies in
boolean networks. In: Proceedings of The Sixth Asia-Pacific Bioinformatics Con-
ference, pp. 307–319 (2008)

23. Lipniacki, T., Hat, B., Faeder, J.R., Hlavacek, W.S.: Stochastic effects and bista-
bility in T cell receptor signaling. J. Theor. Biol. (in press, 2008)

250 E.M. Clarke et al.

24. Lok, L., Brent, R.: Automatic generation of cellular networks with Moleculizer 1.0.
Nat. Biotechnol. 23, 131–136 (2005)

25. McKeithan, T.: Kinetic proofreading in T-cell receptor signal transduction. Proc.
Natl. Acad. Sci. 92(11), 5042–5046 (1995)

26. Mu, F., Williams, R.F., Unkefer, C.J., Unkefer, P.J., Faeder, J.R., Hlavacek, W.S.:
Carbon fate maps for metabolic reactions. Bioinformatics 23, 3193–3199 (2007)

27. Pawson, T., Nash, P.: Assembly of cell regulatory systems through protein inter-
action domains. Science 300(5618), 445–452 (2003)

28. Rabinowitz, J.D., Beeson, C., Lyonsdagger, D.S., Davisdagger, M.M., McConnell,
H.M.: Kinetic discrimination in T-cell activation. Proc. Natl. Acad. Sci. 93(4),
1401–1405 (1996)

29. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004)

30. Vardi, M.: Alternating automata and program verification. Computer Science To-
day, 471–485 (1995)

31. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

32. Yang, J., Monine, M.I., Faeder, J.R., Hlavacek, W.S.: Kinetic Monte Carlo method
for rule-based modeling of biochemical networks (2007) arXiv:0712.3773

33. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon (2005)

On a Continuous Degree of Satisfaction of

Temporal Logic Formulae with Applications to
Systems Biology

Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman

Projet Contraintes, INRIA Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France

Firstname.Lastname@inria.fr
http://contraintes.inria.fr

Abstract. Finding mathematical models satisfying a specification built
from the formalization of biological experiments, is a common task of
the modeller that techniques like model-checking help solving, in the
qualitative but also in the quantitative case. In this article we propose
to go one step further by defining a continuous degree of satisfaction of a
temporal logic formula with constraints. We show how such a satisfaction
measure can be used as a fitness function with state-of-the-art search
methods in order to find biochemical kinetic parameter values satisfying
a set of biological properties formalized in temporal logic. We also show
how it can be used to define a measure of robustness of a biological
model with respect to some specification. These methods are evaluated
on models of the cell cycle and of the MAPK signalling cascade.

1 Introduction

Temporal logics [1,2] have proven useful as specification languages for describing
the behavior of a broad variety of systems ranging from electronic circuits to
software programs, and more recently biological systems in either boolean [3,4,5],
discrete [6], stochastic [7,8] or continuous [9,10,4,11] settings.

Because temporal logics allow us to express both qualitative (e.g. some protein
is eventually produced) and quantitative (e.g. a concentration exceeds 10) infor-
mation about time and systems variables, they provide a powerful specification
language in comparison with the essentially qualitative properties considered in
dynamical systems theory (e.g. multistability, existence of oscillations) or with
the exact quantitative properties considered in optimization theory (e.g. curve
fitting). In particular, these logics are well suited to the increasingly quantita-
tive, yet incomplete, uncertain and imprecise information now accumulated in
the field of quantitative systems biology.

This use of temporal logics relies on a logical paradigm for systems biology
[12] which consists in making the following identifications:

biological model = transition system
biological properties = temporal logic formulae

biological validation = model-checking

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 251–268, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 A. Rizk et al.

In this paradigm, temporal logics have been used in many applications, either as
query languages of large interaction maps such as Kohn’s map of the cell cycle
[5,13] or gene regulatory networks [11], or as specification languages of biological
properties known or inferred [14] from experiments, and used for validating mod-
els, discriminating between models and proposing new biological experiments [6],
finding parameter values [9], or estimating robustness [15]. An important lim-
itation of this approach is however due to the logical nature of temporal logic
specifications and their boolean interpretation. A yes/no answer to a temporal
logic query does not provide indeed any information on how far we are from
satisfaction, nor how to guide the search to satisfy a formula. A measure of how
close a model is to satisfy a property is needed.

In this paper, we define a continuous violation degree that quantifies how far
from satisfaction an LTL formula is in a given model. In order to accommodate the
various kinds of quantitative models defined by either ordinary or stochastic differ-
ential equation systems [16,17], rule-based languages like SBML [18] or BIOCHAM
[19,20], hybrid Petri nets [21,22], stochastic process calculi [23,24], etc..., we rep-
resent the behavior of the system simply by numerical traces [14,25,9,10], so our
method is rather general. This notion of violation degree is then used for two appli-
cations in systems biology: the search of kinetic parameter values in a model, and
the quantitative estimation of the robustness of a model by adapting the general
framework of Kitano [26] to our temporal logic setting.

Section 2 presents the quantifier free fragment of first-order linear time logicwith
constraintsoverthereals,QFLTL(R),studied in[14]andused inthispaper.Section3
definesareal-valueddegreeofsatisfactionofanLTL formulausingavariableabstrac-
tionmechanismwhichreplaces realvaluedconstants inLTL formulaebyQFLTL(R)
variables, andusing an aggregation functionwhich composes the distances between
the validity domain of these variables and the corresponding constants.

Section 4 shows how such a continuous degree of satisfaction of an LTL for-
mula can be used as a fitness function in local search methods for searching
kinetic parameter values in order to satisfy a temporal logic specification. We
describe a gradient based method and use the state-of-the-art Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [27] to evaluate the method on mod-
els of the budding yeast cell cycle with 8 parameters and of the MAPK signaling
cascade with 30 parameters and 7 unknown initial conditions.

In section 5 we propose a definition of a robustness degree of a property
w.r.t. a set of model perturbations weighted by probabilities. This definition is
inspired by the abstract definition of robustness proposed by Kitano for systems
biology [26]. We develop it here in our temporal logic setting and illustrate its
relevance by applying it to the previous model of the cell cycle.

2 Preliminaries on Linear Time Logic with Constraints
over the Reals

2.1 LTL(R)

The Linear Time Logic LTL is a temporal logic [2] that extends classical logic
with modal operators for qualifying when a formula is true in an infinite sequence

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 253

of timed states, named a trace. The temporal operators are X (“next”, for at
the next time point), F (“finally”, for at some time point in the future), G
(“globally”, for at all time points in the future), U (“until”), and W (“ weak
until”). These operators enjoy some simple duality properties, ¬Xφ = X¬φ,
¬Fφ = G¬φ, ¬Gφ = F¬φ, ¬(ψ U φ) = (¬φ W ¬ψ), ¬(ψ W φ) = (¬ψ U ¬φ).
We have Fφ = true U φ, Gφ = φ W false.

A version of LTL with constraints over the reals, named LTL(R), has been
proposed in [10,9] to express temporal properties about molecular concentra-
tions. The atomic formulae of LTL(R) are formed with inequality relations and
arithmetic operators over the real values of molecular concentrations and of their
derivatives. The precise syntax of LTL(R) is given in Table 1. As negations and
implications can be eliminated by propagating the negations down to the atomic
constraints in the formula, we will assume in the following that all LTL(R) for-
mulae are in negation free normal form.

Table 1. Syntax of LTL(R) formulae

Formula ::= Atom | Formula ∧ Formula | Formula ∨ Formula
| Formula ⇒ Formula | ¬ Formula
| X Formula | F Formula | G Formula
| Formula U Formula | Formula W Formula

Atom ::= Value Op Value
Op ::= < | > | ≤ | ≥
Value ::= float | [molecule] | d[molecule]/dt | Time

| Value + Value | Value - Value | - Value | Value × Value
| Value / Value | Value ^ Value

For instance, F([A]>10) expresses that the concentration of A eventually gets
above the threshold value 10. G([A]+[B]<[C]) expresses that the concentration
of C is always greater than the sum of the concentrations of A and B. Oscillation
properties, abbreviated as oscil(M,K), are defined as a change of sign of the
derivative of M at least K times:
F((d[M]/dt > 0) ∧ F((d[M]/dt < 0) ∧ F((d[M]/dt > 0)...)))

LTL(R) formulae are interpreted over infinite traces of the form

(< t0, x0, dx0/dt >, < t1, x1, dx1/dt >, ...)

which give at discrete time points ti, the concentration values xi of the molecules,
and the values of their first derivatives dxi/dt. Whereas LTL(R) formulae are in-
terpreted over infinite traces, the ones we consider are always finite. For instance,
in a model described by a system of ordinary differential equations (ODE), and
under the hypothesis that the initial state is completely defined, numerical inte-
gration methods (such as Runge-Kutta or Rosenbrock method for stiff systems)
provide a finite simulation trace. To extend it to an infinite trace, we adopted
the solution of adding a loop on the last state, with the assumption that the
finite time horizon considered for the numerical integration is sufficiently large
to check the properties at hand.

254 A. Rizk et al.

Table 2. Inductive definition of the truth value of an LTL(R) formula in a trace π

s |= α iff α is a propositional formula and α is true in the state s,
π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.

π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.
or there exists k ≥ 0 s.t. πk |= ψ ∧ ψ′ and for all 0 ≤ j < k, πj |= ψ.

π |= ¬ψ iff π �|= ψ,
π |= ψ ∧ ψ′ iff π |= ψ and π |= ψ′,
π |= ψ ∨ ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π �|= ψ,

It is worth noticing that the semantics of the “next” operator refers to the
next time point on the trace and that in adaptive step size integration methods
of ODE systems, the step size ti+1 − ti is not constant but determined through
an estimation of the error made by the discretization.

Formally, the truth value of an LTL(R) formula in a trace π is given in Table 2.
These truth values can be computed on traces by model-checking [9].

2.2 QFLTL(R)

In [14], the quantifier free fragment of the first-order extension of LTL(R), named
QFLTL(R), has been considered for the purpose of analyzing numerical data
time series in temporal logic and computing automatically LTL(R) specifications
from experimental traces. Syntactically, QFLTL(R) adds variables to atomic
expressions with the following grammar:

Atom ::= Value Op Value | Value Op Variable

For instance, the QFLTL(R) formula G([A] < v) expresses the constraint that
v is greater than the maximum concentration of A. The restriction that a vari-
able can only appear in the right-hand side of a comparison is motivated by
computability results.

As usual, the semantics of a QFLTL(R) formula containing variables is de-
fined by its ground instances which are LTL(R) formulae. Given a trace π and
a QFLTL(R) formula φ(x) over a vector x of v real-valued variables, the con-
straint satisfaction problem, ∃x ∈ Rv (φ(x)), is the problem of determining the
valuations v of the variables for which the formula φ is true. In other words, we
look for the domain of validity Dφ ⊂ Rv such that π |= ∀v ∈ Dφ (φ(v)).

In [14], an LTL(R) model-checking algorithm has been generalized to a
QFLTL(R) constraint solving algorithm which computes the exact domain of
validity Dφ for any QFLTL(R) formula φ, in time O((nf)2v) where v is the
number of variables in φ, f the size of the formula and n the length of the
trace. This algorithm is at the heart of the methods presented in the following
sections.

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 255

3 Continuous Satisfaction Degree of LTL(R) Formulae

In order to evaluate numerically the adequateness of a model w.r.t. a temporal
logic specification, we introduce a continuous violation degree relating a trace
of the model to the given constraint LTL formula. When the model satisfies its
specification the degree will be null, and the farther the traces from the expected
behavior, the biggest the violation degree.

3.1 Variable Abstraction

Our definition of the violation degree of an LTL(R) formula relies on an abstrac-
tion of the constants occurring in the formula by variables. Starting from an
LTL specification φ of the expected behavior of a system, we transform it into a
QFLTL formula φ∗ by mapping the constants (i.e. real numbers corresponding
to concentration thresholds, amplitudes, etc.) c1, . . . , cn appearing in φ, to dis-
tinct variables x1, . . . , xn. It is worth noting that φ∗ is a QFLTL formula that
can also be seen as a function over Rn associating a closed LTL formula to an
instantiation of its variables.

Definition 1. Given an LTL(R) formula φ and a QFLTL abstraction φ∗, the
objective, noted var(φ), is the single point in the variable space Rn of φ∗, with
xi equal to ci for all 1 ≤ i ≤ n.

Example 1. Consider the LTL formula φ = F ([A] > 20) indicating that from
experiments it was observed that after some time the concentration of compound
A becomes greater than 20. We get φ∗ = F ([A] > x) as a QFLTL formula and
R as variable space. We have var(φ) = 20.

Because of the syntactical restriction imposed on the occurrences of variables in
the right-hand sides of the inequalities in QFLTL(R) formulae, the transforma-
tion from φ to φ∗ cannot always be done automatically. However for polynomial
expressions over concentrations and derivatives, one can apply the following
transformation on atomic expressions:

(e1 Op e2)∗ = e Op x

where Op is an inequality operator, e1−e2 is a polynomial in the concentrations
and derivatives with term c of degree 0, e = e1 − e2 − c and x is a new variable
introduced for the term −c.

More generally, φ∗ will be a QFLTL formula given with a variable space Rn

that may include variables defined from other φ∗ variables with linear inequali-
ties, allowing some rescaling between variables if necessary. The objective var(φ)
will be defined explicitly through an instantiation of those variables, i.e. a point
in the variable space.

Example 2. Consider the QFLTL formula φ∗ = F ([A] ≥ v) ∧ F ([A] ≤ w), let us
define the amplitude variable amp = v − w and use it as the only variable for
our variable space R. We can set as objective that the amplitude of variation of
the compound A is at least 10 with var(φ) = 10.

256 A. Rizk et al.

3.2 Quantitative Satisfaction

Given a QFLTL formula φ∗ and a numerical trace T , the QFLTL(R) constraint
solving algorithm of [14] computes the exact domain of validity for φ∗ on T , as
the domain of the variables Dφ∗(T) ⊂ Rn.

Definition 2. The violation degree of a numerical trace T to an LTL formula
φ, noted vd(T, φ) is the Euclidean distance between Dφ∗(T) and var(φ), i.e.
minv∈Dφ∗(T)d(v, var(φ)).

Example 3. In the example 1 and given a mathematical model of our system,
let us suppose that the QFLTL constraint solving algorithm applied to φ∗ on
simulation trace T computes Dφ∗(T) =]−∞, 15] as domain for variable x. Since
var(φ) = 20 we get vd(T, φ) = 5, i.e. the violation degree is 5 since the compound
reaches a maximum of 15 whereas the formula expresses that the threshold 20
be reached.

For the specification of example 2, suppose that the constraint solving com-
putes the domains of v and w: D(v) =]−∞, 15] and D(w) = [10, +∞[. For this
formula φ, the maximum value of D(v) represents the maximum value of [A]
and the minimum value of D(w) its minimum value in the trace. The domain
for variable amp is Dφ∗(T) =] − ∞, 5] since we know that amp = v − w, and
thus, since var(φ) = 10, we obtain vd(T, φ) = 5, i.e. the amplitude of the curve
is 5 whereas we wanted it to be 10.

Note that if T is such that φ is satisfied then vd(T, φ) = 0 since var(φ) ∈
Dφ∗(T). However when φ is not valid on T , the violation degree vd provides
a quantitative measurement of its degree of non satisfaction. The use of this
measure is illustrated in the following sections to improve parameter search for
biological models and to define a quantitative notion of robustness of a system
w.r.t. a temporal logic formula.

4 Kinetic Parameter Search Using Violation Degree

The violation degree provides a measure of how far a given numerical trace is
from an LTL specification. It is thus quite natural to use this measure to guide
the search when trying to satisfy such a formula by replacing the scanning of
parameter values described in [9] by a much more efficient local search method
which makes evolve parameter sets by exploring a neighborhood of the current
parameter set and by choosing the one which minimizes the violation measure.

4.1 Principle

Let us consider an LTL formula φ, an SBML/BIOCHAM reaction model with
initial conditions and known parameter values, a set of unknown parameters to
explore and for each of those an interval of search. We consider the problem of
finding a set of values of the unknown parameters such that the violation degree
of the corresponding trace T obtained by numerical simulation is vd(T, φ) = 0.

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 257

A generic optimization algorithm for parameter search can be described as
follows:

Algorithm 1 (generic parameter search method)

1. Set the current point in the parameter space to a random point belonging to
the provided search box, compute a numerical simulation with trace T and
the corresponding violation degree vd(T, φ);

2. if vd = 0 jump to 5.
3. for each point in a defined neighborhood of the current point, compute a trace

and its violation degree;
4. based on the violation degrees of the neighbors, determine the next point of

the iteration, set the current point to this point, update current vd and go to
2.

5. Return the current point in the parameter space.

This procedure can be interrupted after a given number of steps, returning
the best parameter set (minimizing the violation degree). It can also be restarted
with a new initial point (step 1) several times in order to diversify the search.

A naive method would be to define as neighborhood of the current parameter
state the parameter sets obtained by modifying one parameter by values ±δ ;
and to choose as next parameter set the best neighbor.

More efficient instances of this algorithm can be obtained however, by com-
bining state-of-the-art nonlinear optimization methods with the computation of
our violation degree used as a blackbox fitness function. In the following sec-
tions, we use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
of Hansen and Ostermeier [27]. This method uses a probabilistic definition of
the neighborhood, and stores information in a covariance matrix in order to re-
place the approximate gradient and Hessian of a quasi-Newton method by an
evolutionary algorithm.

4.2 Evaluation on Cell Cycle Models

In this section we present the application of the parameter search method outlined
above to the budding yeast cell cycle model of [28]. This model displays how pro-
teins cdc2 and cyclin interact to form the heterodimer Cdc2-Cyclin~{p1,p2}
known as maturation promoting factor (MPF) and playing a key role in the con-
trol of mitotic cycles. The reaction rules of the model are the following:

MA(k1) for _ => Cyclin.
MA(k3) for Cyclin + Cdc2~{p1} => Cdc2-Cyclin~{p1,p2}
MA(k4p) for Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}
AUTOCAT(k4) for Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}
MA(k6) for Cdc2-Cyclin~{p1} => Cyclin~{p1} + Cdc2
MA(k7) for Cyclin~{p1} => _
MA(k8) for Cdc2 => Cdc2~{p1}
MA(k9) for Cdc2~{p1} => Cdc2

258 A. Rizk et al.

0

0.1

0.2

0.3

0.4

 0 30 60 90 120 150

YT
MPF

0

0.1

0.2

0.3

0.4

 0 30 60 90 120 150

YT
MPF

0

0.1

0.2

0.3

0.4

 0 30 60 90 120 150

YT
MPF

b ca

Fig. 1. Dynamical behavior of the cell cycle model. The plots represent total cyclin
(YT) and maturation promoting factor (MPF). (a) Oscillatory behavior obtained with
parameter values kTyson . (b) Higher MPF peaks obtained with k∗

Tyson (solution of
problem S1). (c) Shorter oscillations period obtained with k∗

4 (solution of problem S4).

MA(k) denotes Mass Action law kinetics with parameter k while ~{p1} and
~{p1,p2} denote phosphorylated forms of a molecule. The rate of reaction 4 is
described by:
AUTOCAT(k4)= k4*[Cdc2-Cyclin~{p1,p2}]*[Cdc2-Cyclin~{p1}]^2.

We use as reference point kTyson the values of the kinetic parameters deter-
mined in [28]. The simulation for kTyson of the system of ODEs extracted from
these rules, given in appendix, is displayed in Figure 1. The total amount of
cyclin presents oscillations of period 35 while MPF exhibits activity peaks with
same period.

Using the optimization method CMA-ES together with our violation degree
as a parameter search method we wonder whether it is possible to find values of
the kinetic parameters corresponding to higher MPF peaks or oscillations with
higher amplitudes or shorter periods.

Search Problem S1: Higher MPF Peaks (2 Parameters Unknown) Two
parameters, k4 and k6, have been found in [28] to play a particular role for the
existence of oscillations. Depending on their values the system exhibits either a
steady state behavior or limit cycle oscillations. We wonder whether it is possible
to obtain higher MPF peaks by changing values of k4 and k6 only, all other
parameters remaining at the value kTyson chosen in [28]. More precisely, we
want to reach at least MPF peaks of 0.3, the maximum amount of MPF for
kTyson being 0.19.

Therefore we define the LTL specification : φ1 = F ([MPF] > 0.3) with the
corresponding QFLTL formula being :

φ∗
1 = F ([MPF] > max)

The variable space associated to φ∗
1 is R and corresponds to the sole variable

max. The objective is var(φ) = 0.3, i.e the target peak value of MPF is 0.3.
We have been able to find valid parameter values, denoted k∗

Tyson, satisfying
vd(T, φ∗

1) = 0 where T is the corresponding simulated trace (see Figure 1b).
k∗

Tyson is given in Table 3.

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 259

As the plot shows, for these parameter values essential features of the curve,
especially repeated MPF peaks, are conserved although it was not enforced by
the specification. In particular, a constantly growing amount of MPF would have
also resulted in a null violation degree of this formula.

All computations have been performed on an Intel Core 2 Duo 2Ghz with
2Go RAM. Note that as the optimization method CMA-ES uses a probabilistic
neighborhood two consecutive runs can yield different results. In this example
answers are typically obtained in less than 1 minute after around 250 numerical
simulations and violation degree computations.

Search Problem S2 : Amplitude of MPF Oscillation (2 Parameters
Unknown)
In this example we refine the previous query by constraining the minimum level
of MPF. We search for k4 and k6 values that preserve at least two periods of
MPF oscillations having same amplitudes as those observed for kTyson.

φ∗
2 = F ([MPF] > max ∧ F ([MPF] < min

∧F ([MPF] > max ∧ F ([MPF] < min))))

In order to specify that the amplitude is at least 0.19, we use the variable space
R corresponding to only one variable, amp = max−min, and set var(φ) = 0.19,
i.e the target amplitude is 0.19. This value corresponds to the amplitude obtained
for kTyson. Starting from a different value k2 for k4 and k6, we try to recover
the behavior of kTyson. We found such parameters (in 11 s), given in Table 3
and referred to as k∗

2.

k4

k6
.

.

k∗
2.

kA.

k2
.

kB.

kC
.

Fig. 2. Violation degree landscape of problem S2. This violation degree measures am-
plitude of oscillations. Non oscillating regions have highest violation degree.

260 A. Rizk et al.

To illustrate the path followed during the search from k2 to k∗
2 we computed

the violation degree landscape in the k4, k6 parameter space. The resulting
landscape is displayed in Figure 2. Note that as all constants of the formula
have been abstracted by variables, the violation degree can only be finite. In
particular when no oscillations are present in the trace amp will be equal to 0,
thus leading to a violation degree of 0.19. Regions where the violation degree
is 0.19 correspond to regions of steady state behavior whereas regions with a
violation degree between 0 and 0.19 correspond to regions of oscillations.

Under mild assumptions Tyson determined linear equations defining a region
in the k4, k6 plane where oscillations occurs, also represented in Figure 2. Our
results are fully consistent with his analytical analysis, and provide more infor-
mation on the amplitude of oscillation w.r;t. parameters k4 and k6.

Search Problem S3 and S4 : Amplitude and Period of Oscillations (All
8 Parameters Unknown)
To illustrate the scalability of the method we carry out two parameter searches
on all 8 parameters of the model. The first one (problem S3) is the same query
as above with formula φ∗

2 but with all parameters unknown. The second one is
a more complex query used to find shorter oscillation periods of Cdc2 :

φ∗
3 = F (d([Cdc2])/dt < 0 ∧X(d([Cdc2])/dt > 0 ∧ T ime = t1

∧X(F (d([Cdc2])/dt > 0 ∧X(d([Cdc2])/dt < 0 ∧ T ime = t2))

To specify that the target period is 20, we use the variable space R corre-
sponding to the variable per = t2− t1 with target var(φ) = 20. Search problem
S3 starts from parameter values k3 satisfying the constraints on their order of
magnitude given in [28]. k3 does not give rise to oscillations. Search problem S4
starts from k4 = kT yson. In both cases parameter values are found satisfying
the query (in 30 s for S3 and 350 s for S4). Results are given in Table 3.

Table 3. Resulting parameter values for search problems S1, S2, S3 and S4

S1 S2 S3 S4
Initial values Result Initial values Result Initial values Result Initial values Result

vd(T, φ) 0.11 0 0.04 0 0.19 0 15.1 4.90e-4

Parameters ktyson k∗
tyson k2 k∗

2 k3 k∗
3 k4 k∗

4

k1 1.50e-2 1.50e-2 1.50e-2 1.50e-2 1.00e-2 1.14e-2 1.50e-2 2.41e2
k3 2.00e2 2.00e2 2.00e2 2.00e2 1.00e2 1.13e2 2.00e2 2.83e2
k4p 1.80e-2 1.80e-2 1.80e-2 1.80e-2 1.00e-2 8.77e-3 1.80e-2 2.24e-2
k4 1.80e2 8.99e2 2.00e1 1.94e2 1.00e2 1.82e2 1.80e2 2.28e2
k6 1.00 3.23 0.25 1.41 1.00 4.17e-1 1 1.13
k7 0.60 0.60 0.60 0.60 1.00 1.37 0.60 5.99e-1
k8 1.00e2 1.00e2 1.00e2 1.00e2 1.00e3 8.99e2 1.00e2 1.42e2
k9 1.00e2 1.00e2 1.00e2 1.00e2 1.00e2 8.44e1 1.00e2 6.94e1

4.3 Evaluation on MAPK Signal Transduction Model

The MAPK signal transduction model [29] is used to test the scalability of the
parameter search method on a larger model. This model, made of a cascade of
phosphorylation reactions, consists of the following rules :

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 261

(MA(k1), MA(k2)) for RAF + RAFK <=> RAF-RAFK.
(MA(k3),MA(k4)) for RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.
(MA(k5),MA(k6)) for MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

where p2 not in $P.
(MA(k7),MA(k8)) for MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH.
(MA(k9),MA(k10)) for MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P.
(MA(k11),MA(k12)) for MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH.
MA(k13) for RAF-RAFK => RAFK + RAF~{p1}.
MA(k14) for RAF~{p1}-RAFPH => RAF + RAFPH.
MA(k15) for MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.
MA(k16) for MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}.
MA(k17) for MEK~{p1}-MEKPH => MEK + MEKPH.
MA(k18) for MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH.
MA(k19) for MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}.
MA(k20) for MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}.
MA(k21) for MAPK~{p1}-MAPKPH => MAPK + MAPKPH.
MA(k22) for MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH.

We denote by kMAPK the set of kinetic parameter values used as reference for
this model.

Search Problem S5 : Curve Fitting at Specific Time Points (22 Pa-
rameters Unknown)
In this example, we investigate the use of our parameter search method as a
curve fitting tool at specific time points, on 22 parameter values. In order to
express the classical distance between two curves at time points 30 and 60 for
instance, we use the following pattern of formulae :

φ∗
4 = G(T ime = 30→ [MEK − RAF˜{p1}] = u

∧T ime = 60→ [MEK − RAF˜{p1}] = v)

The parameter space of this formula is R2 is defined by the two variables u
and v. We set target var(φ) to the target values of [MEK − RAF˜{p1}] at time
30 and 60. Note that this formula can be extended to any number of time points
and molecules in order to perform a complete curve fitting, if it is relevant.

This pattern of formulae can be used to search the values of all the 22 pa-
rameters of the model to fit the concentration [MEK − RAF˜{p1}] at six time
points. The objective values for these time points are the values of the original
model, obtained by simulation with the original parameters kMAPK . The initial
values for the search are some random altered values kMAPKalt

. Numerical simu-
lations obtained with kMAPK , kMAPKalt

and the resulting parameter values are
given in Figure 3. It took 290 s to obtain the result. This shows that the search
method scales up well with the dimension of the parameter space, in comparison
with the parameter scanning method which has an exponential time complexity
in the number of parameters. Here, the computation time is more dependent on
the type of problem (formula used and initial values of the parameters) and on
the landscape of the violation degrees than on the number of parameters.

262 A. Rizk et al.

MEK-RAF~{p1} MEK-RAF~{p1} MEK-RAF~{p1}

ba c

0

0.015

0.03

0.045

 0 50 100 150 200
0

0.015

0.03

0.045

 0 50 100 150 200
0

0.015

0.03

0.045

 0 50 100 150 200

Fig. 3. Dynamical behavior of the MAPK model. The curves display
[MEK − RAF˜{p1}]. (a) Reference curve obtained with kMAPK (b) Simulated
curve obtained with altered parameter values kMAPKalt . Points are the reference
values taken from curve (a). (c) Simulated curve obtained after curve fitting (solution
of problem S5).

Fig. 4. Oscillations of MAPK found with CMA-ES in BIOCHAM

Search Problem S6: Find Oscillations (30 Kinetic Parameters and 7
Initial Conditions Unknown)
In [30], oscillations have been found in the MAPK cascade model of [29] al-
though this model does not contain any negative feedback reaction. This does
not contradict Thomas’ necessary condition for sustained oscillations as such a
purely directional cascade does contain negative feedback in its influence graph
as shown in [31] and analyzed in [32]. However, to know whether these negative
circuits in the influence graph are functional, one needs to search for kinetic
parameter values and initial conditions that exhibit sustained oscillations.

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 263

Just by defining the following formula:

φ∗
5 = F ([MAPKp1p2] > max ∧ F ([MAPKp1p2] < min))

using the variable space R for the single variable amp = max−min, and by asking
that the amplitude be at least 0.5, setting var(φ) = 0.5, parameter values leading
to sustained oscillations, such as the ones depicted in Figure 4, were found in a
few minutes.

5 Quantitative Robustness Analysis

5.1 Principle

We have seen in the previous section that our notion of violation degree allows us
to use optimization techniques to efficiently guide parameter search given tempo-
ral logic properties. Here, we show that the notion of violation degree also allows
us to define in a mathematically precise way a degree of robustness of a systems
behavior described in temporal logic w.r.t. a set of perturbations, and estimate it
computationally. This robustness degree is defined as the inverse of the average
violation degree of the property of interest over all admissible perturbations, pos-
sibly weighted by their probabilities. This definition is an adaptation of the general
definition given by Kitano [26] to our temporal logic setting. Formally, using the
notations introduced in previous sections, we set:

Definition 3. Let P be a set of perturbations, prob(p) be the probability of per-
turbation p, T (p) be the timed trace of the system under perturbation p ∈ P . The
robustness degree Rφ,P of a property φ with respect to P is the real value

Rφ,P =
(∫

p∈P

vd(T (p), φ)prob(p)dp

)−1

If the set of perturbations is finite (eg, gene knock outs), the robustness degree
is simply the inverse of a finite weighted sum and can be exactly computed. If
the set of perturbations is infinite, the robustness degree can be estimated by
computing the violation degree between the behavior of the perturbed system
T (p) and the specification φ for sufficiently many perturbations.

5.2 Evaluation on Cell Cycle Model

Using the same cell cycle model as in section 4.2, we compare the robustness of
oscillation properties with regard to perturbations of parameter values k4 and
k6 for different points in the parameter space.

We consider that parameter values for k4 and k6 are normally distributed
around their reference value with coefficient of variation equal to 0.2. We also
enforce that k4 ≥ 0 ∧ k6 ≥ 0. We examine the robustness of the property
expressed by φ∗

2, that is, MPF oscillations are of amplitude at least 0.19.

264 A. Rizk et al.

The robustness degree of this property is compared for three different values of
k4 and k6. These three points in the parameter space of k4 and k6 are indicated
by the three points kA, kB and kC in Figure 2. In all cases, the estimation of the
robustness degree is done by computing the mean value of the violation degree
for 500 samples.

The estimated degree of robustness for parameters kA, kB and kC are respec-
tively 133, 12.9 and 13.5. This is consistent with the location of points kA, kB

and kC . Perturbations around point kA have high probabilities of staying in the
region satisfying the specification whereas perturbations around point kB have
high probabilities of moving the system to the region with no oscillation. kC is
more robust than kB even though, as opposed to kB, its violation degree is non
null. This can be explained by the abrupt transition between oscillating and non
oscillating regions near kB compared to the smoother transition near kC .

The robustness degree can be estimated for perturbations on any number of
parameters. For instance, by computing a robustness estimate for perturbations
on all parameters, with coefficient of variation 0.2 for specification φ∗

2 and pa-
rameter values kTyson and k3, the estimated robustness degrees for kTyson and
k3 are 20.7 and 27.1 respectively. This indicates that the oscillations are more
robust to variations of the parameters values for k3 than for the parameters
given in the original model of Tyson.

6 Related Work

Probabilistic temporal logics and probabilistic model checking have been used
in systems biology [33], e.g. for an analysis of a probabilistic model of the MAP
kinase signaling cascade. However these techniques provide information on the
probability that a given property is exactly satisfied. They thus provide no quan-
titative information on unsatisfied formulae and cannot be compared to the sat-
isfaction degree presented in this paper.

More closely related to our continuous satisfaction degree are the linear met-
rics for quantitative transition systems defined in [34]. These metrics apply to
traces and can be characterized by quantitative LTL formulae. LTL formulae
are interpreted on the [0, 1] interval. However, no implementation is proposed,
and the applicability of this approach to solving optimization and robustness
problems is not discussed.

To the best of our knowledge, the most closely related approach is the one
proposed by Fainekos and Pappas [35], where a satisfaction degree for temporal
logic specifications is defined. Although the two approaches share many similar-
ities, a significant difference is that in [35] the satisfaction degree corresponds
to a distance between a trace and the set of traces satisfying a formula, whereas
in our case the violation degree corresponds to a distance between a formula
and the set of formulae satisfied by the trace. An advantage of the satisfaction
degree is that it offers a rather intuitive interpretation, since it corresponds to
the minimal perturbation of the trace that can change the truth value of the
specification. However, the dimension of the space of traces is in general con-

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 265

siderably higher than the dimension of the space of formulae. In the first case,
traces are represented in a space of dimension X |τ | where X the state space and
|τ | the lenght of the trace. In the second case, formulae are represented in a space
whose dimension equals the number of variables appearing in the QFLTL for-
mula, typically corresponding to the number of numerical constants appearing
in the original LTL formula. Because the computation of satisfaction or violation
degree involves set operations, the dimensionality of the corresponding spaces
may strongly affect the practical applicability of these methods. Note however
that these approaches, handling sets of traces [36,37], and our approach, han-
dling sets of formulae, are a priori compatible, and that their combination might
combine their benefits.

Concerning robustness, in [38], Chaves and colleagues propose a quantitative
measure of robustness corresponding to the volume of the set of valid parameters
in the parameter space. This measure thus reflects the proportion of parameters
that satisfy exactly the property, as opposed to our measure that represents how
close to satisfying the property the system is for various parameters. These two
measures provide complementary information on robustness. In [15], robustness
is similarly defined with respect to temporal logic specifications. However, it
has a Boolean interpretation, since a property is defined as robustly satisfied by
an ODE system if it is satisfied by the system for all possible perturbations. As
stated earlier, obtaining a quantitative measure of robustness is more informative
for many practical problems.

7 Conclusion

We have defined a continuous measure of satisfaction of an LTL(R) formula
in a numerical trace and shown that it can be computed using the QFLTL(R)
constraint solving algorithm of [14]. This measure is more informative that the
Boolean interpretation of the formulae and can be used in many situations in
systems biology to reason about numerical traces.

This measure can be used as a fitness function in state-of-the-art optimization
tools to efficiently guide the search of kinetic parameter values in biochemical
reaction models in order to satisfy a set of properties formalized in LTL(R).

It can similarly be used to estimate the robustness of a model w.r.t. temporal
logic specifications, in accordance to Kitano’s notion of robustness for systems
biology.

The generalization of model-checking to temporal logic constraint solving
which is at the basis of the computation of this satisfaction measure thus seems
to open new research avenues for the use of temporal logics in systems biology.

Acknowledgements

This work is partly supported by EU FP7 STREP project TEMPO and by the
INRA Agrobi project INSIGHT.

266 A. Rizk et al.

References

1. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 995–1072.
MIT Press, Cambridge (1990)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

3. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.:
Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the
seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

4. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biochemical interaction networks. Theoretical Computer Science 325,
25–44 (2004)

6. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal
methods to biological regulatory networks: Extending thomas’ asynchronous logical
approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)

7. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling path-
ways using the continuous time markow chains. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
44–67. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

8. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Proba-
bilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB
2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

9. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006) (CMSB 2005 Special Issue)

10. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model check-
ing for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

11. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking: Analysis of the nutritional stress response in Escherichia coli. Bioinfor-
matics 21, i19–i28 (2005)

12. Fages, F.: Temporal logic constraints in the biochemical abstract machine
BIOCHAM (invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901,
pp. 1–5. Springer, Heidelberg (2006)

13. Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and
DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)

14. Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numer-
ical data time series. Theoretical Computer Science (2008) (CMSB 2007 special
issue)

15. Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of
synthetic gene networks. Bioinformatics 23, 2415–2422 (2007)

16. Segel, L.A.: Modeling dynamic phenomena in molecular and cellular biology. Cam-
bridge University Press, Cambridge (1984)

17. Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology:
From Concepts to Nuts and Bolts. MIT Press, Cambridge (2006)

On a Continuous Degree of Satisfaction of Temporal Logic Formulae 267

18. Hucka, M., et al.: The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524–531 (2003)

19. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

20. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling bio-
logical systems and formalizing experimental knowledge. BioInformatics 22, 1805–
1807 (2006)

21. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and
analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

22. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation
of gene regulatory network. In: Proceedings of the 5th Pacific Symposium on Bio-
computing, pp. 338–349 (2000)

23. Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic
name passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80, 25–31 (2001)

24. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus.
Transactions on Computational Systems Biology, Special issue of BioConcur 2004
(to appear, 2004)

25. Nickovic, D., Maler, O.: Amt: a property-based monitoring tool for analog systems.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp.
304–319. Springer, Heidelberg (2007)

26. Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3,
137 (2007)

27. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9, 159–195 (2001)

28. Chen, K.C., Csikász-Nagy, A., Györffy, B., Val, J., Novàk, B., Tyson, J.J.: Kinetic
analysis of a molecular model of the budding yeast cell cycle. Molecular Biology of
the Cell 11, 369–391 (2000)

29. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect
the levels of mitogen-activated protein kinase signaling and reduce its threshold
properties. PNAS 97, 5818–5823 (2000)

30. Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscilla-
tions in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3,
1819–1826 (2007)

31. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theo-
rem. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054. Springer, Heidelberg
(2008)

32. Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling
cascades is revealed. PLoS Computational Biology (to appear, 2008)

33. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in
systems biology. SIGMETRICS Performance Evaluation Review 35, 14–21 (2008)

34. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quan-
titative transition systems. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)

268 A. Rizk et al.

35. Fainekos, G., Pappas, G.: Robustness of temporal logic specifications. In: Havelund,
K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006)

36. Fainekos, G., Pappas, G.: Robust sampling for MITL specifications. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 147–162.
Springer, Heidelberg (2007)

37. Dang, T., Donze, A., Maler, O., Shalev, N.: Sensitive state space exploration (sub-
mitted, 2008), http://www-verimag.imag.fr/∼maler/

38. Chaves, M., Sontag, E., Sengupta, A.: Shape, size and robustness: feasible regions in
the parameter space of biochemical networks (submitted, 2008) arXiv:0710.4269v1

http://www-verimag.imag.fr/~maler/

A Model Checking Approach to the

Parameter Estimation of Biochemical Pathways

Robin Donaldson and David Gilbert

Bioinformatics Research Centre, University of Glasgow
Glasgow G12 8QQ, Scotland, UK

{radonald,drg}@brc.dcs.gla.ac.uk

Abstract. Model checking has historically been an important tool to
verify models of a wide variety of systems. Typically a model has to ex-
hibit certain properties to be classed ‘acceptable’. In this work we use
model checking in a new setting; parameter estimation. We characterise
the desired behaviour of a model in a temporal logic property and al-
ter the model to make it conform to the property (determined through
model checking). We have implemented a computational system called
MC2(GA) which pairs a model checker with a genetic algorithm. To
drive parameter estimation, the fitness of set of parameters in a model is
the inverse of the distance between its actual behaviour and the desired
behaviour. The model checker used is the simulation-based Monte Carlo
Model Checker for Probabilistic Linear-time Temporal Logic with nu-
merical constraints, MC2(PLTLc). Numerical constraints as well as the
overall probability of the behaviour expressed in temporal logic are used
to minimise the behavioural distance. We define the theory underlying
our parameter estimation approach in both the stochastic and continu-
ous worlds. We apply our approach to biochemical systems and present
an illustrative example where we estimate the kinetic rate constants in
a continuous model of a signalling pathway.

1 Introduction

Modelling biochemical systems is a key activity in Systems Biology [1], for exam-
ple in the area of signal transduction pathways [2]. Models can be used to increase
the understanding of a biochemical network in terms of the interactions between
the components (the topology), or their dynamic behaviour. The representation
of such systems can range from the informal, for example pathway diagrams, to
the formal, which include qualitative and quantitative descriptions – the latter
being stochastic or continuous and requiring kinetic information including reac-
tion rates and concentrations/mass of components [3]. Formal models can permit
both simulation of behaviour as well as the analysis of behavioural properties.

One important issue is how models are obtained, a process that usually in-
volves fitting to some trusted data. Model fitting can involve identification of
alternative topologies [4], choice of types of kinetic laws and formulae, and esti-
mation of kinetic rate constants and initial concentration/mass values [5]. This

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 269–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

270 R. Donaldson and D. Gilbert

is a challenging task in the biochemical field, especially due to the lack of reliable
quantitative data.

A biologist or biochemist will often be unsure about exact values of biochem-
ical species over time due to the nature of the wet-lab experimental technol-
ogy, and will describe behaviour in a semi-quantitative manner. For example,
“the concentration of the protein peaks within 2 to 5 minutes and then falls
to less than 50% of the peak value within 60 minutes”. A significant challenge
is how to automatically build a model which conforms to semi-quantitative be-
haviour. Temporal logic is well-suited to formally represent such semi-quantiative
descriptions.

In this paper we report on work to use model checking to drive the estima-
tion of parameter values in biochemical models. We use a probabilistic tem-
poral logic to describe desired behavioural properties and the MC2(PLTLc)
model checker [6] to compute how closely the behaviour of a model conforms
to the desired behaviour. We use a genetic algorithm to explore model space
in order to generate a set of models which exhibit some desired behaviour. We
have defined a novel extension of PLTL temporal logic [7] in order to permit
a fine grained distance function suitable for use in our model exploration ap-
proach. This enables us to operate over both continuous as well as stochastic
models.

Given a model with a fixed topology and ranges of parameter values to be
explored, we can use a genetic algorithm to explore model space and generate
values of kinetic rate constants and initial concentration/masses for which the
model exhibits the desired behaviour. We illustrate this approach by consid-
ering a continuous model of the well-known MAPK signalling pathway stim-
ulated by EGF [8], and derive values for kinetic rate constants such that the
behaviour conforms to that under NGF stimulation. In doing so we confirm
the results of [8] which showed that the desired results could be achieved by
varying only one parameter, V28, 40-fold however in our approach we per-
form multi-parameteric fitting and show that the same desired behaviour can be
achieved by varying a set of kinetic parameters with V28 only requiring a 16-fold
increase.

Our approach contributes to the field of systems biology in terms of model
construction from desired behaviour as well as to the field of synthetic biology in
terms of system design and construction from desired behaviour properties [9].
This is the first step in a general approach to automatically constructing models
based on a formal description of desired behaviour of a model.

This paper is organised as follows. The following section outlines the theory
of our approach in both the stochastic and continuous worlds. The next section
describes our computational system for parameter estimation, MC2(GA). We
next present a case study where we estimate the parameters of a model of a
signalling pathway. In doing so, we attempt to answer an important biochemical
question concerning this pathway – what are the underlying model differences
explaining the cell reactions to different signals. We conclude with a summary
of our approach and propose further research ideas.

A Model Checking Approach to the Parameter Estimation 271

2 Theory

This section sets out the theory behind our computational system for parameter
estimation. First we explain the syntax and semantics of the PLTLc temporal
logic. Next, we describe how the desired behaviour of a model can be charac-
terised using PLTLc. Then we define probabilistic domains – the relationship
between the values of a free variable in a PLTLc property and the overall prob-
ability of the behaviour – and show how they can be helpful in characterising
the desired behaviour. Finally, we explain how to build a distance metric of the
distance between the model’s behaviour and the desired behaviour.

2.1 PLTLc Syntax

Linear-time Temporal Logic (LTL) [10] is the fragment of full Computational
Tree Logic (CTL*) [11] without path quantifiers, implicitly quantifying univer-
sally over all paths. LTL has been introduced in a probabilistic setting in [7],
and extended by numerical constraints over real value variables in [12]. PLTLc
combines both extensions, complemented by the filter construct as used in Prob-
abilistic Computational Tree Logic (PCTL) [13] and Continuous Stochastic Logic
(CSL) [14]. We start with the LTL with numerical constraints (LTLc) syntax:

φ ::= Xφ |Gφ | Fφ | φUφ | φRφ | φ ∨ φ | φ ∧ φ | ¬φ | φ→ φ |
value = value | value �= value | value > value| value ≥ value |
value < value | value ≤ value | true | false

Numerical constraints over free variables are defined in this logic through the
inclusion of free variables denoted by $fVariable in the definition of value below
– the symbol $ differentiates a free variable from a regular variable. Regular
variables are read-only values which form the behaviour of the model, whereas
free variables are instantiated during the model checking process to the range of
values for which the temporal logic property holds. In our current, implemen-
tation free variables are defined to have integer domains initialised to [0 → ∞)
and describe protein concentrations, numbers of molecules and time. Constraints
over free variables, which involve equality/inequality and relational operators,
restrict the domain of the free variable, such that with $X ∈ [0 → ∞), $X > 5
sets $X to be [6→∞). If there is a constraint over free variables involving real
numbers, then the real numbers are cast to integers. Notice also that disjunction,
conjunction, negation and implication of constraints over free variables are al-
lowed. Finally, the values considered in this logic are integers and real numbers,
and the four basic arithmetic operations over these values:

value ::= value + value | value− value | value ∗ value | value/value |
$fVariable | Variable | function | Int |Real

where Int is any integer number and Real is any real number. In our biochem-
ical pathway analysis we define Variable to be the time dependant value of
the concentration of any biochemical species in the model, either integers for
molecules/levels or real numbers for concentrations, and we define a special
variable called time to stand for the values of state time. State time values are
the simulation time points such that we can, for example, express properties

272 R. Donaldson and D. Gilbert

relative to simulation time. This is especially useful for expressing a property
before or after some event, such as introducing a drug into a cell. We provide the
ability to define any function returning a real or integer value, and in our current
system we have chosen to implement the two functions, max and d. The func-
tion max operates over all the values of a species to return the maximum of the
species’ value in the simulation run, thus the peak of a species can be expressed;
Protein = max(Protein). We also define a function d which returns the deriva-
tive of the concentration of the species at each time point, thus increasing and
decreasing species value can be expressed; d(Protein) > 0 and d(Protein) < 0
respectively.

PLTLc enhances LTLc by the inclusion of a probability operator and filter
construct, and the probabilistic interpretation of the domains for the free vari-
ables. The top-level definition of PLTLc is:

ψ ::= P�x[φ] |P�x[φ{SP}]
where φ is an LTLc expression. SP is a State Proposition defined to be φ

without any temporal operator (X, G, F, U, R), and containing no free variables
without a loss of expressivity. Note that the square and curly brackets are part
of PLTLc. Given that � ∈ {>,≥, <,≤}, P�x is any inequality comparison of
the probability of the property holding true, for example P≥0.5. We also per-
mit the expression P=? returning the value of the probability of the property
holding true. We disallow equality testing of the probability, P=x because of the
representation of real values and the semantics of their equality.

We define filters similar to those used in PCTL and CSL. This permits speci-
fications to refer to the state or states that the property is checked from, rather
than default to the initial state. Hence, for a property of the form φ{SP}, φ is
checked from the first state that SP is satisfied.

2.2 PLTLc Semantics

We introduce the semantics of PLTLc in an informal manner to cater to a wide
audience. The formal semantics of PLTLc are described in full in [6].

The semantics of PLTLc is defined over a finite set of finite paths through
the system’s state space – in our case, stochastic or deterministic simulations,
or time series data recorded in wet lab experiments.

First, let a path π be a finite sequence of states describing the behaviour of a
biochemical system, π = s0, s1, ..., sn (n < ∞) and πi be the subsequence of π
starting from state si, i ≤ n, thus πi = si, si+1, ..., sn. Each path in the set of
paths can be evaluated to a boolean value as to whether φ or φ{SP} holds. When
all paths are evaluated, the number of true values in the set over the size of the set
yields the overall probability of the PLTLc property. Hence for a stochastic model,
where the set of paths is typically > 1, the probability is in the range [0 → 1]
and calculated through Monte Carlo approximation, whereas a continuous model
which contains a single path has a probability of either 0 or 1.

Finally, the two PLTLc functions we have chosen to implement, max(variable)
and d(variable) are defined as follows. max(variable) calculates the first state
smax in the finite path π for which the value of variable is maximal and returns

A Model Checking Approach to the Parameter Estimation 273

this value. d(variable) calculates for each state si in the finite path π the deriva-
tive of the value of variable between state si and si+1. In the case of the final
state in the finite path sn which contains no next state, the derivative is equal
to the derivative of the previous state sn−1.

2.3 Characterising Biochemical Species’ Behaviour

The behaviour of biochemical species can be described with PLTLc using four
distinct descriptive approaches, with increasing specificity; qualitative, semi-
qualitative, semi-quantitative and quantitative. Qualitative uses derivatives of
biochemical species concentrations/mass and temporal operators to describe the
general trend of the behaviour. Semi-qualitative extends qualitative with rel-
ative concentrations. Semi-quantitative extends semi-qualitative with absolute
time values. Finally, quantitative extends semi-quantitative with absolute con-
centration values. For example, transient activation of a biochemical species
called Protein can be expressed in these approaches:

qualitative: Protein rises then falls
P=? [d(Protein) > 0 U (G(d(Protein) < 0))]

semi-qualitative: Protein rises then falls to less than 50% of peak concen-
tration

P=? [(d(Protein) > 0) U (G(d(Protein) < 0) ∧
F ([Protein] < 0.5 ∗ max[Protein]))]

semi-quantitative: Protein rises then falls to less than 50% of peak concen-
tration at 60 minutes

P=? [(d(Protein) > 0) U (G(d(Protein) < 0) ∧
F (time = 60 ∧ Protein < 0.5 ∗ max(Protein)))]

quantitative: Protein rises then falls to less than 100µMol at 60 minutes
P=? [(d(Protein) > 0) U (G(d(Protein) < 0) ∧

F (time = 60 ∧ Protein < 100))]

In our case study we find that the desired behaviour of the model is most
suited to semi-quantitative PLTLc. In fact, the informal explanation of results
from biochemical experiments bears a striking similarity to semi-quantitative
PLTLc.

2.4 Probabilistic Domains

Eachpath in the set of paths is also evaluated to a domain of validity, Dφ or φ{SP} ⊂
Nn for n free variables in the PLTLc property, $fV ar1, $fV ar2, ...$fV arn. The
domain of validity is defined such that for all valuations v of the n free variables,
where v ∈ Dφ or φ{SP}, the property φ or φ{SP} as appropriate holds true for the
path. Thus each path has an associated domain of validity, with paths resulting in
a boolean value of true having a non-empty domain of validity, i.e. for these paths
there must be valuations of the variables for which the property holds.

274 R. Donaldson and D. Gilbert

After the set of domains of validity is evaluated from the set of paths, a
probabilistic domain for each of the n free variables in the PLTLc property is
calculated. A probabilistic domain associates with each integer value in the do-
main the probability of the property holding true for that value. If the PLTLc
property evaluates to a probability p, then the maximum possible probability of
any value in the probabilistic domains is p, such that a property with 0 probabil-
ity has probabilistic domains with 0 probability for all values. The probabilistic
domain of free variable $fV ari is calculated by iterating through each integer
value I in the probabilistic domain. A count is performed on the set of domains
of validity for the number of domains of validity which contain at least one
valuation v with v($fV ari) = I. This number over the size of the set is the
probability of the value I in the probabilistic domain of $fV ari.

In the case that the system is described by a stochastic model, the probabilistic
domains are calculated through Monte Carlo approximation – the number of
occurrences of a value for a free variable in each domain of validity in the set
over the size of the set. In the case of a continuous model where the size of the
set is 1, the probabilistic domain contains probabilities 0 and 1 and can equally
be represented by a probabilistic domain or a regular domain.

The semi-quantitative property from the previous section can be enhanced
with free variables:

semi-quantitative with free variables. Protein rises then falls to less than
50% of peak concentration at 60 minutes

P=? [(d(Protein) > 0) U (Protein ≥ $PeakConc ∧ G(d(Protein) < 0)

∧ F (time = 60 ∧ Protein < 0.5 ∗ max(Protein)))]

where the probabilistic domain of $PeakConc associates with each value in the
domain the probability of a peak of at least that value.

2.5 Distance Metrics

The distance between a model’s behaviour and the desired behaviour can be
calculated using a distance metric. We define a metric for the distance, with
respect to some property ψ, from the behaviour of the model M to the desired
behaviour Mdes. The distance metric, written dψ(M, Mdes), should satisfy the
metric properties:

d(x, y) > 0 for x �= y w.r.t. ψ, d(x, y) = 0 for x = y w.r.t. ψ
d(x, y) = d(y, x) for all x, y , d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z
The metric is domain and behaviour specific, and can be based on the prob-

ability of the property or the probabilistic domains.
Perhaps the simplest definition of the metric is the square difference between

the model’s probability of exhibiting some behavioural property ψ, P (ψ) and
desired probability Pdes(ψ). For example, we may want the property ψ to always
hold in which case Pdes(ψ) is 1. The distance function is then written:

dψ(M, Mdes) = |P (ψ)− Pdes(ψ)|2
This approach works well in the stochastic world where the model exhibits

many behaviours and the probability of the property is in the range [0 → 1].
However, in the continuous world there is a single behaviour and the probability

A Model Checking Approach to the Parameter Estimation 275

is either 0 or 1, thus the metric is too coarse grained to be used in a search
algorithm in the continuous world. To be useful in the search algorithm, the dis-
tance metric should return a value which indicates whether altering the current
model has caused its behaviour to be closer to the desired behaviour, therefore
providing a gradient for the search algorithm to ascend.

Definitions of the distance metric over probabilistic domains of free variables
can result in finer grained distance values, crucial for distance metrics in the
continuous world. For a free variable $X in a property ψ, we can compare the
probabilistic domain in the model $X with the desired probabilistic domain
$Xdes. To do so, we use the residual sum of squares function, RSS:

RSS($X, $Xdes, m, n) =
∑n

i=m |$X(i)− $Xdes(i)|2
where m to n is some sub-section of the domain being assessed. Hence, we

could desire that a free variable describing the peak concentration value in tran-
sient behaviour $PeakConc of a continuous model is at least 50µMol. It is then
simple to set up a desired probabilistic domain $PeakConcdes with probability
1 for values 0 to 50. A call to RSS($Peakconc, $PeakConcdes, 0, 50) would then
return a value of how close the current model is to having its peak concentration
value at least value 50µMol.

We can implement a distance metric using the RSS function for any number
of free variables we define in our PLTLc property. In the case that we wish
to optimise more than one probabilistic domain, we normalise the RSS values
between 0 and 1:

dψ(M, Mdes) =
RSS($X, $Xdes, m, n)

(n−m)
+

RSS($Y, $Ydes, u, v)
(v − u)

+ . . .

3 Computational System

We implemented a computational system called the Monte Carlo Model Checker
with a Genetic Algorithm, MC2(GA). The purpose of this computational
system is to estimate the parameters of a model to make it exhibit desired
behavioural properties. A genetic algorithm is used to move models through pa-
rameter space to minimise their distance to the desired behaviour, checked using
a model checker.

A genetic algorithm [15] operates over a population of individuals, each of
which is represented by their chromosome containing one or more genes. The
individuals have an associated fitness based on how “good” their genes are. A
selection of individuals from the current population is performed which will be
used to create the next generation. Genetic operations on the chromosomes of
these selected individuals (reproduction, crossover and mutation) is used to build
a next generation with (hopefully) improved overall fitness.

Each model in our MC2(GA) system has a fixed structure and is represented
by a chromosome, which is a set of kinetic rate constant values to be estimated
(the model’s genes) within predefined ranges. The chromosome could equally
include initial concentrations/masses.

In the initial generation, a population of models is created by assigning to
each model random values within the ranges for the kinetic rate constants. The

276 R. Donaldson and D. Gilbert

number of models in the population should be proportional to the size of the
parameter space being explored. Each model in the population is evaluated to
a fitness value related to the distance of its behaviour to the desired behaviour,
hence a model with a smaller distance to the desired behaviour has a higher
fitness. This is achieved by formalising the desired behaviour in temporal logic
and the novel use of a model checker to calculate the distance of the model to
the behaviour. Our approach is to vary models’ kinetic rate constant values in
order to maximise their fitness values.

After the initial generation which builds a population of models with their
related fitness values, a subset of the population is selected to survive. Roulette-
wheel selection is used where models in the population are chosen to survive
probabilistically, with fitter models having a higher probability of survival. This
is done to keep a small number of less fit models in the population such that we
do not converge on a solution too early. If the computational system is exploring
a high dimensional parameter space, it is important to maintain good coverage
of this large space. The population for the next generation is created from the
selected models by performing genetic operations on these models’ chromosomes
representing the kinetic rate constant values. A chromosome may be duplicated
(reproduction), a section between two chromosomes may be swapped (crossover)
or a section of one chromosome may be randomly altered (mutation) within
preferred constraints. The models in the new population are evaluated to their
fitness values and then go on to form the next generation.

The best and average fitness value of a model in the population should increase
over successive generations of this algorithm. There are stochastic elements to
the algorithm however, including random mutation and probabilistic selection of
models for the next generation. Hence, it is not always the case that there will
be a continual increase in best or average fitness value, though the general trend
should increase. Various stopping conditions in this algorithm can be used– we
choose to stop after the best fitness of a model in the population has not changed
significantly after 10 generations or after a maximum of 100 generations has
elapsed.

A population of models with their respective fitness values is returned upon
termination of the genetic algorithm. This is quite a powerful result of parameter
estimation. By the very nature of a genetic algorithm, we get a set of candidate
solutions, which may be representative of more than one general solution type.
Hence, with the semi-quantitative description of the desired behaviour, we can
get many models, possibly grouped into distinct sub-populations, which exhibit
the desired behaviour.

Although any search algorithm which uses a fitness function could be used in
this approach, we have chosen a genetic algorithm because it avoids being lost
in local minima, which is likely in high dimensional parameter spaces. A genetic
algorithm avoids this by maintaining a population of candidate solutions and
probabilistically keeping some low fitness solutions in the population between
generations.

A Model Checking Approach to the Parameter Estimation 277

Our computational system, MC2(GA), currently operates over continuous
models only. The desired behaviour of a model is expressed in the PLTLc tem-
poral logic. Models are evaluated to a fitness value through interfaces to the
continuous simulator, BioNessie Lite [16] and the Monte Carlo Model Checker
for Probabilistic LTLc properties MC2(PLTLc) [17]. The model is simulated for
a predefined amount of time and the simulation output is checked for the desired
behaviour using MC2(PLTLc). A numerical value for the fitness of the model
based on the result of model checking can be computed using the probability of
the behavioural property and the probabilistic domains of free variables in the
property. The fitness function using the probabilistic domains of free variables
has been implemented using the theory described in Section 2.5. We employ the
Java Genetic Algorithms Package (JGAP) [18] to move our population of models
through parameter space in order to maximise their fitness.

4 Case Study: MAPK Pathway

We illustrate our technique to parameter estimation with a continuous model of
the MAPK pathway.

4.1 Biochemical Motivation

The EGF signal transduction pathway conveys Epidermal Growth Factor signals
from the cell membrane to the nucleus via the MAP Kinase cascade [2]. The model
of thepathway inPC12 cellswritten inSystemsBiologyMarkupLanguage (SBML)
[19] is the subject of [8]. The same core MAPK cascade can also be stimulated by
NerveGrowthFactor (NGF).The reaction of the cell toEGF stimulation is cellpro-
liferation, however the response to NGF is cell differentiation. The active ligand-
bound receptor acts as a kinase for the Shc protein. The active Shc and GS complex
(ShcGS) binds with the inactive RasGDP complex which enables Son of sevenless
homologue protein (SOS) to convert RasGDP to its active RasGTP form. Ras-
GTP acts as a kinase to phosphorylate Raf, which phosphorylates MAPK/ERK
Kinase (MEK), which in turn phosphorylates Extracellular signal Regulated Ki-
nase (ERK). Feedback regulation of the pathway is through ShcGS dissociation
catalysed by phosphorylated ERK. The EGF signal transduction pathway pro-
duces transientRas,MEK andERK activationwhereasNGF stimulationproduces
sustained activation. The underlying differences of the models describing EGF and
NGF stimulation is of key interest to biochemists.

The work in [8], referred to from now on as the original paper, attempted
to discover the quantitative differences in initial concentrations and kinetic rate
constants between models of these pathways with fixed topology. The authors
varied the initial concentrations and kinetic rate constants within biochemically
sensible ranges. Simulation was performed with the model using each parameter
value in the range and the output was manually inspected for sustained Ras,
MEK and ERK activation. A result of this work was the finding that a 40-fold
increase in the kinetic rate constant of SOS dephosphorylation can change the
behaviour of the model from transient activation to sustained activation.

278 R. Donaldson and D. Gilbert

We suggest that this analysis could be improved by constructing a formal
definition of the desired behaviour in temporal logic, and using model checking
of the desired behaviour to replace the manual inspection of the simulation
outputs. This facilitates the automation detection of a model which exhibits the
desired behaviour. We employ this in our computational system, MC2(GA), to
vary many kinetic rate constants in the model in parallel to estimate a parameter
set of the NGF signal transduction pathway.

4.2 Characterising the Desired Pathway Behaviour

The behaviour of sustained Ras, MEK and ERK activation arising from NGF
stimulation observed in wet-lab experiment was described in rather informal
statements in the original paper [8].

“The level of RasGTP rapidly reaches a maximum of up to 20% of total Ras
within 2 min [then] the level of RasGTP is sustained at around 8% of total Ras.”

Similar statements were made about sustained MEK and ERK activation. We
have formalised these statements using semi-quantitativePLTLc such that amodel
couldbe automatically checked for these behaviours using the MC2(PLTLc)model
checker. We formalised these statements in a way to account for biological error
by relaxing the constraints, for example that the stable level of RasGTP is 8% to
between 5% and 10%:

sustained Ras. Active Ras peaks within 2 minutes to a maximum of 20% of
total Ras and is stable between 5% and 10% from at least 15 minutes

P=? [(d(active Ras) > 0) ∧ (d(active Ras) > 0) U (time ≤ 2 ∧
active Ras ≥ 0.15∗total Ras ∧ active Ras ≤ 0.2∗total Ras ∧
d(active Ras) < 0 ∧ (d(active Ras) < 0 ∧ time < 15) U (G(
(active Ras) ≥ 0.05∗total Ras ∧ active Ras ≤ 0.10∗total Ras)))]

where the protein RasGTP is found in isolation and in two complexes, thus active Ras

= RasGTP+Ras Raf+Ras GAP and total Ras = RasGTP+Ras Raf+Ras GAP +

RasGDP + Ras ShcGS.

sustained MEK. Active MEK peaks within 2 to 5 minutes and is stable be-
tween 40% and 50% of peak value from at least 15 minutes

P=? [(d(MEKPP) > 0) ∧ (d(MEKPP) > 0) U (time ≥ 2 ∧ time ≤ 5 ∧
d(MEKPP) < 0 ∧ (d(MEKPP) < 0 ∧ time < 15) U (G(

MEKPP ≥ 0.40∗max(MEKPP) ∧ MEKPP ≤ 0.50∗max(MEKPP))))]

sustained ERK. Active ERK peaks within 2 to 5 minutes and is stable between
85% and 100% of peak value from at least 15 minutes

P=? [(d(ERKPP) > 0) ∧ (d(ERKPP) > 0) U (time ≥ 2 ∧ time ≤ 5 ∧
d(ERKPP) < 0 ∧ (d(ERKPP) < 0 ∧ time < 15) U (G(

ERKPP ≥ 0.85 ∗ max(ERKPP))))]

4.3 Identification of Critical Parameters

The work reported in the original paper [8] varies parameters individually in
the model and notes the effect on sustained Ras, MEK and ERK activation

A Model Checking Approach to the Parameter Estimation 279

by manual inspection of simulation output. We performed a similar analysis in
an automated fashion, which made it easy to count the number of parameter
values in a particular parameter range that gave our desired behaviour. Hence,
rather than a simple yes/no answer, we were able to quantify the significance of
a particular parameter regarding a particular behaviour. We used this feature to
identify a set of critical parameters to vary in our MC2(GA) system. A further
benefit of using an automated approach to detect desired output rather than
manual inspection is that we can explore many possible behaviours, generated
for example by varying one parameter within a large range.

In the absence of biochemical knowledge of acceptable ranges of kinetic rate
constants, we varied each kinetic rate constant in the range ± 2 orders of magni-
tude from their original value. We simulated the continuous model for 60 minutes
using 1,000 parameter values linearly spaced in the range. This produced a set
of 1,000 simulation outputs, and we checked each one for the behaviour of sus-
tained Ras, MEK and ERK activation expressed in PLTLc. We then computed
the fraction of simulation outputs which satisfy the behavioural property over
the number of simulation outputs. We call this fraction the parameter’s signifi-
cance value, such that a higher value represents parameter more likely to exhibit
the desired behaviour. Each kinetic rate constant in the model was varied indi-
vidually to produce their significance value.

Any kinetic rate constant with at least one non-zero significance value for
sustained Ras, MEK or ERK is called a critical parameter. The identified critical
parameters are listed in Table 1 along with their respective significance values.
Although we ignored initial concentration parameters as they had little effect on
sustaining activation in the original analysis, our approach can analyse initial
concentrations in the same manner as kinetic rate constants.

From the significance values it is clear that although sustained Ras and ERK
activation is quite possible, sustained MEK activation is more difficult to achieve.
In fact, when varying parameters individually it was only possible to achieve this
using the kinetic rate constant for SOS dephosphorylation, V 28. This was the
solution found in the original paper [8] and we note that it has the highest sum
of the three significance values. We suspected that other parameter sets could
produce our desired behaviour and thus we varied several parameters in parallel
using our computational system.

4.4 Genetic Algorithm

We first implemented a fitness function for use in MC2(GA) to describe how
close a model is to sustained activation. The descriptions of sustained Ras, MEK
and ERK activation given earlier were not particularly helpful in the continuous
setting due to the probability being simply 0 or 1. A fitness function based on
a description which includes free variables allows greater expressivity using the
probabilistic domains. Hence, we have rewritten these descriptions of sustained
behaviours using free variables:

280 R. Donaldson and D. Gilbert

Table 1. The identified critical kinetic rate constant parameters in the model with
their significance values with respect to sustained Ras, MEK or ERK

sustained sustained sustained
parameter Ras MEK ERK
V 20 0.01 0.0 0.001

V 24 0.076 0.0 0.0

V 25 0.023 0.0 0.001

V 27 0.614 0.0 0.0

V 28 0.478 0.151 0.679

k1 14 0.0 0.0 0.778

k1 16 0.0 0.0 0.001

k1 18 0.001 0.0 0.807

k2 18 0.191 0.0 0.0

Km 20 0.001 0.0 0.797

kcat 21 0.001 0.0 0.688

kcat 23 0.001 0.0 0.186

Km 23 0.121 0.0 0.0

Km 25 0.001 0.0 0.157

kcat 26 0.0 0.0 0.001

Km 26 0.0 0.0 0.005

sustained Ras with free variables. Active Ras peaks within 2 minutes to a
maximum of 20% of total Ras and is stable between any value in $RasTail1 and
any value in $RasTail2 from at least 15 minutes

P=? [(d(active Ras) > 0) ∧ (d(active Ras) > 0) U (time ≤ 2 ∧
active Ras ≥ 0.15∗total Ras ∧ active Ras ≤ 0.2∗total Ras ∧
d(active Ras) < 0 ∧ (d(active Ras) < 0 ∧ time < 15) U (G(

active Ras ≥ $RasTail1 ∧ active Ras ≤ $RasTail2)))]

sustained MEK with free variables. Active MEK peaks within 2 to 5 min-
utes with a peak greater than concentration 20,000 and is stable between any
value in $MekppTail1 and any value in $MekppTail2 from at least 15 minutes

P=? [(d(MEKPP) > 0) ∧ (d(MEKPP) > 0) U (time ≥ 2 ∧ time ≤ 5 ∧
MEKPP > 20000 ∧ d(MEKPP) < 0 ∧ (d(MEKPP) < 0 ∧ time < 15)

U (G(MEKPP ≥ $MekppTail1 ∧ MEKPP ≤ $MekppTail2)))]

sustained ERK with free variables. Active ERK peaks within 2 to 5 minutes
with a peak greater than concentration 350,000 and is stable above any value in
$ErkppTail from at least 15 minutes

P=? [(d(ERKPP) > 0) ∧ (d(ERKPP) > 0) U (time ≥ 2 ∧ time ≤ 5 ∧
ERKPP > 350000 ∧ d(ERKPP) < 0 ∧(d(ERKPP) < 0 ∧ time < 15) U

(G(ERKPP ≥ $ErkppTail)))]

The property ψ in our case study was the conjunction of the sustained Ras,
MEK and ERK properties expressed with free variables above. To explain the
addition of free variables in these properties we consider the active ERK shown
in Figure 4.4. This figure illustrates the relationship of a continuous simulation

A Model Checking Approach to the Parameter Estimation 281

output of ERKPP to the probabilistic domains of the free variable $ErkppTail
and the desired probabilistic domain $ErkppTaildes. The values in the proba-
bilistic domain $ErkppTail with probability 1 are in the range of values from 0
to the tail height. Our desired behaviour of the property is that it peaks within
2 minutes to a concentration of greater than 350,000 (defined in the PLTLc
property) and that the tail of the peak remains within 85% of the peak height.
We observe a tail characterised by $ErkppTail and now characterise our desired
tail of at least 85% of the peak height, $ErkppTaildes. This is done by setting
values from 0 to 85% of the peak height value in the probabilistic domain of
$ErkppTaildes to probability 1. Hence if the RSS between the model’s tail and
the desired tail is 0, then the model’s tail is within 85% of it’s own peak height
(our desired property) and if the model’s tail falls to concentration 0, then the
distance is value 85% of the peak height:

erkppDistance = RSS($ErkppTail,$ErkppTaildes, 0, max($ErkppTaildes))

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Simulation Output of
ERKPP

Time (minutes)

C
on

ce
nt

ra
tio

n

Model
Desired

0 20 40 60 80 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probabilistic Domain of
$ErkppTail

$ErkppTail value

P
ro

ba
bi

lit
y

Model
Desired

Fig. 1. Continuous simulation output of active ERK (left) with the probabilistic do-
main of free variables $ErkppTail (middle) and the desired probabilistic domain
$ErkppTaildes (right). The probabilistic domain of $ErkppTail contains probability
1 for all values from 0 up to the tail height and the desired probabilistic domain
$ErkppTaildes contains probability 1 for all values from 0 up to 85% of the peak height.

Next, recalling that sustained active MEK is defined to be stable between 40%
and 50% of the peak, we set the desired probabilistic domain of $MekppTail1
to have probability 1 for values 0 to 40% of the peak value and the desired
probabilistic domain of $MekppTail2 to have probability 1 for values 50% to
100% of the peak value. The distance of the active MEK behaviour was then:

mekppDistance = RSS($MekppTail1, $MekppTail1des, 0, max($MekppTail1des))

+RSS($MekppTail2, $MekppTail2des, min($$MekppTail2des),

max($$MekppTail2des))

Finally, recalling that sustained active Ras is defined to be stable between 5%
and 10% of total Ras, we set the desired probabilistic domain of $RasTail1 to

282 R. Donaldson and D. Gilbert

have probability 1 for values 0 to 5% of total Ras and the desired probabilistic
domain of $RasTail2 to have probability 1 for values 10% to 100% of total Ras.
The distance of the active Ras behaviour was then:

rasDistance = RSS($RasTail1, $RasTail1des, 0, max($RasTail1des))+

RSS($rasTail2, $rasTail2des, min($rasTail2des), max($rasTail2des))

The overall metric describing the distance between a model and the desired
behaviour can now be defined by averaging the sum of the normalised individual
distances, erkppDistance, mekppDistance and rasDistance, and ranges from 0
(identical) to 1:

dψ(M, Mdes) = (erkppDistance
85%ERKPeak

+ mekppDistance
90%MEKPeak

+ rasDistance
95%TotalRas

)/3

Note that if the model does not satisfy the PLTLc property – i.e. it does not
peak or does not peak within the concentration or time constraints – then all
values in the probabilistic domains of the free variables are set to probability 0,
thus the distance is 1.

The definition of a model’s fitness has opposite semantics from a distance
metric – i.e. a high fitness value represents a good model. Hence the fitness
function is:

fitness(M, Mdes) = 1− dψ(M, Mdes)
Finally, we added quantitative constraints to the properties to exclude the

behaviour being observed with insignificantly small concentration values by re-
quiring that both active ERK and active MEK be greater than approximately
half of their peak value in the EGF signalling pathway model. The concentra-
tion of RasGTP is kept to a significant level through its definition stating that
it must be between 15% and 20% of total Ras concentration.

As a proof of concept, we used MC2(GA) with a population of 2,000 models
to estimate the value of the kinetic rate constant V 28 only using the range
of ± 2 orders of magnitude from the original value as defined in the previous
section. We hoped to reproduce the result from the original paper [8] that a 40-
fold increase of V 28 (to value 3,000 molecule−1minute−1) produces sustained
activation of Ras, MEK and ERK. The fitness of the best model immediately
converged to value 1 and the genetic algorithm stopped 10 generations after the
convergence, which can be seen in Figure 4. The V 28 value against respective
fitness of the models in the final population can be seen in Figure 2. There
is a wide range of V 28 values which produce the desired model behaviour –
the V 28 value proposed in the original paper of 3000 molecule−1minute−1 falls
within the range of models with a fitness value 1, which suggests that our genetic
algorithm and behavioural properties are correct.

We then applied MC2(GA) to find novel parameter sets which exhibit the
desired behaviour. We estimated the values of the 16 critical parameters identi-
fied in the previous section, listed in Table 1. We also applied MC2(GA) to the
critical parameters without V 28, to assess whether V 28 is crucial to achieving
sustained activation. The result of the convergence of these runs are presented
in Figure 4. It can be seen from this figure that if the critical parameters are es-
timated with V 28, then the convergence is quicker and the best model returned
was fitter. The best model returned when estimating the critical parameters had

A Model Checking Approach to the Parameter Estimation 283

2000 4000 6000

0.
95

0.
97

0.
99

Model Fitness against
V_28 Value

V_28 Parameter Value

M
od

el
 F

itn
es

s

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Simulation of ERKPP with varying
V_28 values

Time (minutes)

P
er

ce
nt

ag
e

ac
tiv

at
io

n

Fig. 2. The population of models from the genetic algorithm (left) and simulation
output of three selected models (right). The model proposed in the original paper
(solid) has fitness value 1. Also, the model with lowest (dotted) and highest (dashed)
value of V 28 whilst maintaining fitness value 1 is shown.

fitness value 1, whereas with V 28 removed the best model returned had a fitness
value approximately 0.93.

Figure 3 shows the output of one of the best model returned when estimating
the critical parameters with and without V 28. Both behaviours showed good
similarity (visually and in terms of fitness value) to the behaviour of the NGF
signalling pathway outlined in the original paper. We also found that we can
achieve a model with fitness value 1 through a 16-fold increase of V 28, com-
pared with the original paper’s 40-fold increase, if we also vary the other critical
parameters.

0 10 20 30 40 50 60

5
10

15

Simulation output of RasGTP

Time (minutes)

P
er

ce
nt

ag
e

of
 to

ta
l R

as

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Simulation output of MEKPP

Time (minutes)

P
er

ce
nt

ag
e

ac
tiv

at
io

n

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Simulation output of ERKPP

Time (minutes)

P
er

ce
nt

ag
e

ac
tiv

at
io

n

Fig. 3. The original model of the NGF signalling pathway (dotted) compared with the
best model returned when varying the critical parameters (solid) and when varying the
critical parameters without V 28 (dashed). The best model returned when varying the
critical parameters only required a 16-fold increase in V 28 to achieve fitness value 1.

Finally we tested how MC2(GA) copes with a high dimensional parameter
space by estimating the values of all 65 kinetic rate constants in the model.
Again, these parameters were varied in the range ± 2 orders of magnitude from

284 R. Donaldson and D. Gilbert

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Convergence with
V_28

Generation

F
itn

es
s

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Convergence with
critical parameters

Generation

F
itn

es
s

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Convergence with
critical parameters minus V_28

Generation

F
itn

es
s

0 20 40 60 80 100
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Convergence with
all parameters

Generation

F
itn

es
s

Fig. 4. From top-left to bottom right, the convergence of varying; V 28 only, the critical
parameters, the critical parameters without V 28 and all parameters. The fitness of the
best model in the population (solid) is shown as well as the average fitness of the models
(dashed).

their original values. As shown in Figure 4 there is no convergence after the
maximum of 100 generations. However, the best model returned had fitness
value approximately 0.99. This is a strong result that even with such a high
dimensional parameter space, MC2(GA) still found a viable solution.

To give an idea of the computational expense of our system, a single generation
of the genetic algorithm took around ten minutes. Each generation contains on
the order of 2000 simulation and model checking operations, thus the evaluation
of each model’s fitness value took around 300ms. Overall, with a population of M
models and N generations, the number of calls to both the model checker and the
simulator is O(N ∗ M). In our case study which contained 2,000 models and a
maximum of 100 generations, we had around 2 · 105 calls to the model checker.

5 Related Work

Manual parameter estimation of a model can be performed, especially using in-
sight into the real-life system. The authors in [8] manually altered a model of the
MAPK pathway to change the behaviour from EGF stimulation to NGF stim-
ulation. They focus their estimation to parameters which have been identified
through biochemical experiments as possible targets to explain this difference.
This work was accomplished using computational tools, such as a continuous
simulator, however it relied heavily on manual inspection of simulation outputs.
As such, the degree to which the model could be varied was limited to the amount
of manual inspection possible. Hence, it was infeasible for the authors to vary
the parameters within a large range or vary parameters in parallel.

A Model Checking Approach to the Parameter Estimation 285

Automated parameter estimation approaches employ a function which returns
a value of how close model’s behaviour is to some desired behaviour. A search
algorithm can be used to alter the model to minimise the behavioural distance.
Representing the desired behaviour using target data derived from experiments
on the real-life system being modelled is an obvious choice. Approaches to pa-
rameter estimation using target data are studied and reviewed in [5]. Many
functions can compute the difference of a model’s output to the target data,
such as Maximum Likelihood, Bayes and Weighted Least Squares.

However, the target data of models of biochemical systems results from wet-
lab experiments. The data produced from such experiments is typically noisy and
sparse with relative concentrations [20]. Any function calculating the difference
of the output of a biochemical system model to the target data should account for
this. [20] used weights on time-series data derived from wet-lab experiments to
account for noise. Furthermore, a Bayesian approach to estimating the difference
in model output and target data is the subject of [4].

Although the literature contains approaches to parameter estimation ap-
proaches using target data, we found little evidence of implementing parame-
ter estimation with a target behaviour expressed in temporal logic. The closest
we have found is [21] which specifies the expected behaviour of a continuous
model of a biochemical pathway in the LTL temporal logic. The parameters in
the model are varied in some range until a satisfying parameter is found and
returned. However, this approach works only for the continuous world and the
authors note the computational expense of parameter scans of multiple variables
in parallel. They express desire for a “multi-valued measure of satisfaction” of a
temporal property rather than the boolean result of LTL checking. This would
facilitate the use of LTL as the target function in a search algorithm, allowing
many parameters to be varied in parallel.

6 Conclusion

We have shown how we have used probabilistic temporal logic descriptions of
biochemical pathway behaviours as the basis for a model checking approach to
the parameter estimation of biochemical pathways. This is the first step in a
general methodology for behaviour driven model construction.

A key aim of our approach is to be able to operate in both the stochastic and
continuous worlds. The PLTLc temporal logic and its simulation-based model
checker operate in both these worlds. It is especially important that the model
checker is simulation-based as the use of current analytical model checker would
be computationally infeasible due to the well-known state space explosion. This
is further exacerbated when used within a search algorithm which will typically
have many calls to the model checker – 2 · 105 in our case study. Furthermore, a
novel aspect of the numerical constraints in PLTLc is that they can be applied
in both the stochastic and continuous worlds; this is crucial to the calculation
of the distance of a model’s behaviour to the desired behaviour.

286 R. Donaldson and D. Gilbert

We have demonstrated our approach through a case study of a continuous
model of the well-known MAPK signalling pathway. This model has previously
been manually explored in [8]. They identify a single parameter which when
modified by a 40-fold increase produced the desired behaviour. Having first char-
acterising the desired behaviour in PLTLc, we then automatically identified a set
of critical parameters. We then used our MC2(GA) system to estimate the values
of the critical parameters and discovered novel kinetic rate constant parameter
sets which produce the desired behaviour. These include parameter sets which
do not require varying the parameter identified in [8]. Finally we showed that
the computational system can operate with high dimensional parameter spaces
by estimating the values of all 65 kinetic rate constants in the model.

The case study presented in this paper is of a continuous model of a biochem-
ical pathway. However, the theory underlying this approach has been described
for both the stochastic and continuous worlds. We are now working on apply-
ing this analysis to a stochastic model. Furthermore, we are currently able to
estimate the kinetic rate constant and initial concentration/mass values in the
model, however we could define theory to vary the model topology (adding, re-
moving or altering reactions). We then could answer questions such as what are
the topologies which give rise to particular behaviours of interest. Finally, PLTLc
is rather unfriendly to a biologist who is not well versed in temporal logic. We
are now developing a user-friendly interface for biologists to describe behaviours
using PLTLc.

The computational system, MC2(GA), together with the case study results
are available at: www.brc.dcs.gla.ac.uk/software/mc2/mc2ga bf.

Acknowledgements

This research was supported by the SIMAP project which is funded by the
European Commission framework 6 STREP programme.

References

1. Wolkenhauer, O.: Systems Biology: the Reincarnation of Systems Theory Applied
in Biology? Briefings in Bioinformatics 2(3), 258–270 (2001)

2. Kolch, W., Calder, M., Gilbert, D.: When kinases meet mathematics: the systems
biology of MAPK signalling. FEBS Lett. 579, 1891–1895 (2005)

3. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and
analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

4. Vyshemirsky, V., Girolami, M.: Bayesian Ranking of Biochemical System Models.
Bioinformatics 24(6), 833–839 (2008)

5. Maria, G.: A Review of Algorithms and Trends in Kinetic Model Identification
for Chemical and Biochemical Systems. Chem. Biochem. Eng. Q. 18(3), 195–222
(2004)

6. Donaldson, R., Gilbert, D.: A Monte Carlo Model Checker for Probabilistic LTL
with Numerical Constraints. Technical report, University of Glasgow, Department
of Computing Science (2008)

www.brc.dcs.gla.ac.uk/software/mc2/mc2ga_bf

A Model Checking Approach to the Parameter Estimation 287

7. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems. Habili-
tation thesis, University of Mannheim (1998)

8. Brightman, F., Fell, D.: Differential feedback regulation of the mapk cascade un-
derlies the quantitative differences in egf and ngf signalling in pc12 cells. FEBS
Lett. 482, 169–174 (2000)

9. Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybilo, M.: A Case Study in
Model-driven Synthetic Biology. In: Biologically Inspired Cooperative Computing:
BICC 2008. IFIP, vol. 268, pp. 163–175. Springer, Heidelberg (2008)

10. Pnueli, A.: The Temporal Semantics of Concurrent Programs. Theor. Comput.
Sci. 13, 45–60 (1981)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999) (third printing, 2001)

12. Fages, F., Rizk, A.: On the Analysis of Numerical Data Time Series in Temporal
Logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp.
48–63. Springer, Heidelberg (2007)

13. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing 6(5), 512–535 (1994)

14. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying Continuous-Time
Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 269–276. Springer, Heidelberg (1996)

15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

16. BioNessie: A Biochemical Pathway Simulation and Analysis Tool. University of
Glasgow, http://www.bionessie.org

17. MC2(PLTLc) Website: MC2(PLTLc) - PLTLc model checker. University of Glas-
gow (2008), http://www.brc.dcs.gla.ac.uk/software/mc2/

18. Meffert, K., et al.: JGAP - Java Genetic Algorithms and Genetic Programming
Package (2008), http://jgap.sf.net/

19. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.:
The systems biology markup language (SBML): A medium for representation and
exchange of biochemical network models. J. Bioinformatics 19, 524–531 (2003)

20. Fujarewicz, K., Kimmel, M., Lipniacki, T., Świerniak, A.: Parameter estimation
for models of cell signaling pathways based on semi-quantitative data. In: BioMed
2006: Proceedings of the 24th IASTED international conference on Biomedical
engineering, Anaheim, CA, USA, pp. 306–310. ACTA Press (2006)

21. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine Learning Bio-
chemical Networks from Temporal Logic Properties. In: Priami, C., Plotkin,
G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI),
vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

http://www.bionessie.org
http://www.brc.dcs.gla.ac.uk/software/mc2/
http://jgap.sf.net/

Compositional Definitions of Minimal Flows in

Petri Nets

Michael Pedersen

LFCS, School of Informatics, University of Edinburgh

Abstract. This paper gives algebraic definitions for obtaining the min-
imal transition and place flows of a modular Petri net from the minimal
transition and place flows of its components. The notion of modularity
employed is based on place sharing. It is shown that transition and place
flows are not dual in a modular sense under place sharing alone, but
that the duality arises when also considering transition sharing. As an
application, the modular definitions are used to give compositional defi-
nitions of transition and place flows of models in a subset of the Calculus
of Biochemical Systems.

Keywords: Petri nets, minimal flows, minimal invariants, modularity,
the Calculus of Biochemical Systems.

1 Introduction

Since their introduction in the early sixties, Petri nets have been used to model
concurrent systems in a wide variety of fields [1]. They have long been recognised
as a suitable modelling formalism for systems biology; see e.g. [2, 3,4] for basic
ideas and surveys, [5,6,7,8,9,10] for applications to metabolic pathways, [11,12,
13,14, 10] for applications to signalling pathways and [15,16] for applications to
gene regulatory networks. Applications in model-driven synthetic biology are also
starting to emerge [17]. Petri nets are appealing because of their intuitive visual
representation as bipartite graphs over places and transitions, which corresponds
well to that of informal biological pathway diagrams: places represent species,
transitions represent reactions, and weighted edges represent stoichiometries (see
Figure 1 for an example). In addition to their visual appeal, they have a formally
defined structure and behaviour and are supported by a large body of simulation
and analysis techniques.

High-level extensions of Petri nets enable complex models to be expressed
more concisely and at higher levels of abstraction, e.g. as in coloured Petri
nets [18]. A key feature of many such extensions is the notion of modularity,
meaning that a complex model can be composed from modules representing its
parts. This is a clear advantage from a modelling point of view as demonstrated
in e.g. [19, 20] for the yeast pheromone pathway. But modularity can also give
rise to modular analysis, potentially reducing computational complexity dramat-
ically, enabling parallel computation, and allowing analysis results to be reused
in different contexts.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 288–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compositional Definitions of Minimal Flows in Petri Nets 289

This paper investigates modular analysis in the specific case of Petri net flows
(also known as invariants). Intuitively, a transition flow (or T-flow) is a vector
representing reaction counts which, when the reactions occur together, have no
net effect on species populations. They hence correspond to a notion of cyclic
pathways. A place flow (or P-flow) is a vector representing species weights for
which the weighted sum of species populations is always constant. They hence
correspond to chemical conservation relations. More precisely, T and P-flows are
natural-number solutions to the equations Wx = 0 and xW = 0, respectively,
where W is the flow matrix of a Petri net which corresponds to the stoichiometry
matrix of a biological reaction network. These equations generally have infinitely
many solutions, but one can always find finite sets of minimal flows which can
be combined to generate all other flows. Algorithms for obtaining minimal flows
are computationally expensive and the exact algorithmic performance is difficult
to estimate [21].

Flow analysis has proven an important tool in biological model validation:
the modeller should be able to give biological justification to each minimal flow,
otherwise it is likely that the model is incorrect for the intended purpose [13,
10]. Flows are also closely related to the notion of elementary modes [22] from
metabolic pathway analysis.

The main contributions of this paper are the algebraic definitions of minimal
T and P-flows of a Petri net given the minimal T and P-flows of its components
(Sections 4 and 5, respectively). We employ a notion of modularity where two
modules are composed by merging their shared places/species, also known as
place fusion. As a second contribution we show that, perhaps contrary to expec-
tation, P and T-flows are not dual in a modular sense under place sharing alone,
but that the duality arises when also considering composition based on shared
transitions/reactions (also known as transition fusion, Section 3). Finally, as an
application we use our modular definitions to derive compositional definitions of
minimal flows in a subset of the Calculus of Biochemical Systems (CBS) [23,19]
in Section 6.

Previous efforts have been made towards modular definitions of P-flows in
particular, and related work will be discussed in Section 7 before concluding.
Detailed proofs of all results can be found in [24] and selected proofs are given
in Appendix A. Although the work in this paper is motivated by biological
applications, the results are equally applicable outside of biology and flows play
an important role in the general analysis of Petri nets; for example, P-flows
can be used for determining boundedness of a net, and T-flows can be used for
investigating liveness [25].

2 Preliminaries

2.1 Petri Nets

We start with the formal definition of Petri nets.

Definition 1 (Petri net). A Petri net P is a tuple (S, T, W in, W out) where

290 M. Pedersen

– S is a finite set of places.
– T is a finite set of transitions.
– W in : S × T → N is the flow-in function.
– W out : S × T → N is the flow-out function.

Define also the derived flow function W (s, t) ∆= W out(s, t)−W in(s, t).

Given a Petri net P , we shall often write SP for the places of P and similarly
for the transitions and flow functions. As a running example we shall consider
simple Petri net models of the foundations of life itself, namely photosynthesis
and respiration.

Photons

t1

CE

SugarH2O O2 CO2

t2 t3

(a) Photosynthesis

Heat

t1

CE′

SugarH2O O2 CO2

t3 t2 t1

(b) Respiration

Fig. 1. Two Petri net models of respectively photosynthesis and respiration, with a
distinct shading used for shared places

Example 1. Photosynthesis is the process by which plants produce sugar and
oxygen from water, carbon dioxide and sun light (photons). This is modelled by
the Petri net in Figure 1(a); places are circles, transitions are squares and arcs
(all with the weight 1 omitted) represent the flow function. The first transition
provides an unlimited amount of photons. The second converts photons and
water into chemical energy (CE) and oxygen, and the third converts chemical
energy and carbon dioxide into sugar.

Respiration is the converse process by which e.g. humans use oxygen to break
down sugar while producing carbon dioxide and water. This is modelled by the
Petri net in Figure 1(b). The first transition breaks down sugar into carbon
dioxide and chemical energy CE′, distinct from the chemical energy used in
photosynthesis. The second transition utilises this chemical energy and oxygen
to make e.g. muscles move, and in the process producing water and heat; the
heat is finally removed. Note that both models are strongly simplified and not
chemically correct.

Compositional Definitions of Minimal Flows in Petri Nets 291

If for a Petri net P we assume some arbitrary but fixed strict total order-
ings ≺s� SP × SP on places and ≺t� TP × TP on transitions, we can write
SP = (s1, . . . , sm) and TP = (t1, . . . , tn) and view the flow functions of P as
m× n matrices thus:

(W in
P)i,j

∆= W in
P (si, tj) (W out

P)i,j
∆= W out

P (si, tj) WP
∆= W out

P −W in
P

This will allow us to take advantage of matrix operations. Row (W in
P)(i,·) repre-

sents the number of tokens consumed from place si by the respective transitions,
and row (W out

P)(i,·) represents the number of tokens produced in place si by the
respective transitions. Row (WP)(i,·) then represents the net effect of transitions
on place si. The behaviour of Petri nets is defined in the following. Here, and
throughout the paper, we use (·)T to denote vector/matrix transposition.

Definition 2 (Behaviour). Let P = (S, T, W in, W out) be a Petri net. Let
M(P) ∆= N|S| be the set of markings of P. Then the transition relation
→⊆M(P)× (N|T |)T ×M(P) is defined as follows: M

x→M ′ if

1. M ≥W inx
2. M ′ = M + W outx−W inx = M + Wx

So in order for a transition count vector x to fire, the marking M must contain
enough tokens in each place to supply the inputs of all transitions in x. The
marking M ′ results from removing the tokens consumed by x and adding the
tokens produced. The marking of a Petri net then evolves from an initial marking
by playing this “token game”. But since we consider structural properties only,
we shall generally not be concerned with initial markings.

2.2 Petri Net Flows

Transition flows represent transitions which, after they fire, have no net effect on
any markings of a Petri net. Place flows represent weights for which the weighted
sum of places is constant in any marking reachable from the initial marking.
Hence flows give rise to invariance relations. Here is the formal definition:

Definition 3 (T and P-flows). Let P = (S, T, W in, W out) be a Petri net.
Define

TF(P) = TF(W) ∆= {x ∈ (N|T |)T |Wx = 0 ∧ x �= 0}

PF(P) = PF(W) ∆= {y ∈ N|S| | yW = 0 ∧ y �= 0}

The elements of TF(P) and PF(P) are called transition flows (or T-flows) and
place flow (or P-flows), respectively.

Observe that T and P-flows are dual in the following sense:

x ∈ TF(P)⇔Wx = 0 ⇔ xTWT = 0⇔ xT ∈ PF(PD)

292 M. Pedersen

where the Petri net duality operator (·)D swaps around the places and transitions
in a Petri net and reverses arcs (see [1] for details).

A Petri net generally has infinitely many flows. But it is possible to obtain a
finite set of minimal flows which can be combined to form all other flows. In the
following we shall consider the structure of flows irrespective of whether they are
T or P flows. We hence use F(P) and MF(P) to denote the set of either type of
flows and minimal flows of P , respectively.

Definition 4 (Support). The support of a vector x ∈ N∗, denoted by sup(x),
is the set of indices of non-zero entries in x: sup(x) ∆= {i | xi �= 0}.

Definition 5 (Minimal flows). A flow x ∈ F(P) is minimal if

1. x is canonical, i.e. the greatest common divisor of non-zero entries of x,
written gcd(x), is 1 and

2. x has minimal support, i.e. there are no other flows x′ ∈ F(P) with
sup(x′) � sup(x).

We denote by MTF(P) (or MTF(WP)) and MPF(P) (or MPF(WP)) the sets
of minimal T and P-flows of P, respectively.

Example 2. Let us find the minimal flows for the photosynthesis and respiration
Petri nets introduced in Example 1. We will do so informally without writing
out the flow matrices and full vectors, and instead simply listing the places and
transitions which have non-zero entries in the flows.

There are three minimal place flows in the photosynthesis Petri net determined
by the places (H2O, O2), (CO2, Sugar) and (CE, H2O, Sugar). Symmetrically,
there are three minimal place flows in the respiration Petri net determined by the
places (H2O, O2), (CO2, Sugar) and (H2O, Sugar, CE′). However, neither Petri
net has any transition flows.

The following two theorems are adapted from [21]. They state that MTF(P)
and MPF(P) are well-defined, and that any flow can be generated from minimal
flows by natural-number linear combinations followed by a division.

Theorem 1. MTF(P) and MPF(P) are finite and unique.

Theorem 2. For any flow x ∈ F(P) there are a, α1, . . . , αk ∈ N and minimal
flows x1, . . . , xk ∈ MF(P) s.t. x = 1

a (α1x1 + · · ·+ αkxk)

We shall also need the following theorem, adapted from [26], which states that
any two flows with the same minimal support are multiples of each other.

Theorem 3. Let x, y ∈ F(P). If they both have the same minimal support, i.e.
there are no other flows z ∈ F(P) with sup(z) � sup(x) = sup(y), then there is
n ∈ N s.t. either x = ny or y = nx.

Given a set of flows we shall need to filter out the non-minimal ones as in the
following definition.

Compositional Definitions of Minimal Flows in Petri Nets 293

Definition 6 (Minimisation). Let X be a set of flows. Define minimisation
thus:

min(X) ∆= { x

gcd(x)
| x ∈ X ∧ ∀x′ ∈ X.sup(x′) �� sup(x)}

There is a less common definition of minimality which dispenses with the notion
of support and defines a flow to be minimal if it cannot be written as the sum
of two other flows. This yields a unique set of minimal flows which contains,
possibly strictly, the set of minimal flows defined above [21]. The results in this
paper are proven valid for both definitions of minimality, and the details can be
found in [24].

3 Composition of Petri Nets

In this section we consider how, given two Petri nets P1 and P2, these can be
composed to form a parallel Petri net P1 |p P2. In order for this to be interesting,
P1 and P2 must have some means of interacting. Two common such means
are via shared places and shared transitions. We will focus on shared places
since this appears to be the natural interpretation in the context of chemical
reactions. We also see that P and T-flows are not dual in a modular sense when
considering place sharing alone, but that the duality arises when also considering
transition sharing. This allows our results for place sharing to be easily adapted
to transition sharing.

3.1 Composition Based on Place Sharing

Following [23] we let the shared places of two Petri nets be determined by syn-
tactic equality of place names rather than introducing explicit place fusion sets.
So if two Petri nets P1 and P2 both have a place named s, this will be merged
to a single place in the composite net P1 |p P2. When modelling large systems
one may wish to identify places with different syntactic names, but this can be
handled at a higher level of abstraction as in e.g. the Language for Biochemical
Systems [19].

In order to ensure that there is no transition sharing, the parallel composition
operation will implicitly rename the transitions of parallel component. This is
achieved in a notationally convenient manner by assuming that transitions are
strings over the binary alphabet, and prefixing 0 to the transitions of P1 and 1
to the transitions of P2.

Definition 7. Let P1 = (S1, T1, W
in
1 , W out

1) and P2 = (S2, T2, W
in
2 , W out

2) be
two petri nets with T1, T2 � {0, 1}∗. Then define P1 |p P2

∆= (S, T, W in, W out)

where S
∆= S1 ∪ S2, T

∆= {0t | t ∈ T1} ∪ {1t | t ∈ T2} and for io ∈ {in, out},
b ∈ {0, 1} we define W io : S × T → N as follows:

W io(s, bt) ∆=

⎧⎪⎨⎪⎩
W io

1 (s, t) if s ∈ S1 ∧ b = 0
W io

2 (s, t) if s ∈ S2 ∧ b = 1
0 otherwise

294 M. Pedersen

Photons

0t1

CE

SugarH2O O2 CO2

0t2 0t3

CE′Heat

1t11t21t3

Fig. 2. Photosynthesis and respiration combined into a single Petri net by merging
shared places

Example 3. LetP1 andP2 be the Petri nets shown in Figure 1. ThenP = P1 |p P2

is shown in Figure 2.

Let us consider the structure of the full flow matrix W arising from the compo-
sition of P1 and P2 with flow matrices W1 and W2. For notational convenience
we will assume that all shared places are ordered after the non-shared places
in P1, and before the non-shared places in P2. More precisely we assume for
∆S = SP1 ∩ SP2 and all s1 ∈ SP1 \∆S, s ∈ ∆S and s2 ∈ SP2 \∆S that s1 ≺s s
and s ≺s s2. In the running example we could for example order the places as
Photons, CE, H2O, O2, CO2, Sugar, CE′, Heat. Then W1, W2 and W can be par-
titioned as follows where, for i ∈ {1, 2}, W s

i consists of the rows from Wi which
represent shared places, and W−

i are the remaining rows for non-shared places.

W1 =
[

W−
1

W s
1

]
, W2 =

[
W s

2

W−
2

]
, W =

⎡⎣W−
1 0

W s
1 W s

2

0 W−
2

⎤⎦
When considering parallel compositions in the remainder of the paper, we shall
write W−

1 , W s
1 , W−

2 , W s
2 and W with the above meaning in mind. We shall

furthermore write W+
1 and W+

2 to denote respectively the left and right partition
of W , i.e. the extensions of W1 and W2 with 0-entries for non-shared places from
the parallel counterpart. W− will denote W without the rows W s

1W s
2 for shared

places.

3.2 Modular Duality: Composition Based on Transition Sharing

We have seen that T-flows and P-flows are duals. A natural question then
arises of whether this duality holds in the modular sense that PF(P1 |p P2) =
TF((P1 |p P2)D) = TF(PD

1 |p PD
2). The answer is no. To see why, let us assume

that TP1 ∩ TP2 = ∅ and write out the flow matrices WT of (P1 |p P2)D and W ′

of (PD
1 |p PD

2):

WT =

[
W−T

1 W sT

1 0
0 W sT

2 W−T

2

]
W ′ =

[
W−T

1 W sT

1 0 0
0 0 W sT

2 W−T

2

]

Compositional Definitions of Minimal Flows in Petri Nets 295

The two matrices do not generally have the same dimensions because the dual
nets PD

1 and PD
2 share transitions rather than places. Hence the modular duality

suggested above clearly does not hold in general.
However, we can define the transition-based composition operation where

transitions (rather than places) of a parallel net are merged based on name
equality, and where places are strings over the binary alphabet for the sake of
convenient renaming:

Definition 8. Let P1 = (S1, T1, W
in
1 , W out

1) and P2 = (S2, T2, W
in
2 , W out

2) be
two Petri nets with S1, S2 � {0, 1}∗. Then define P1 |t P2

∆= (S, T, W in, W out)
where S

∆= {0s | s ∈ S1}∪{1s | s ∈ S2}, T
∆= T1∪T2, and for io ∈ {in, out},

b ∈ {0, 1} we define W io : S × T → N as follows:

W io(bs, t) ∆=

⎧⎪⎨⎪⎩
W io

1 (s, t) if t ∈ T1 ∧ b = 0
W io

2 (s, t) if t ∈ T2 ∧ b = 1
0 otherwise

Then the P-flows of a parallel net under transition sharing are the same as
the T-flows of the parallel dual nets under place sharing, and symmetrically for
T-flows under transition sharing:

Theorem 4. Let P1 and P2 be Petri nets. Then

1. TF(P1 |t P2) = PF(PD
1 |p PD

2).
2. PF(P1 |t P2) = TF(PD

1 |p PD
2).

The proof relies on a partitioning of flow matrices similar to the partitioning in
the previous subsection, but for shared transitions rather than places. It follows
from Theorem 4 that the results for modular flows under place sharing, to be
given in the following sections, can be easily adapted to (dual) modular flows
under transition sharing.

4 Minimal Transition Flows

We start with an example of how T-flows arise through parallel composition.

Example 4. As noted in Example 2, neither of the photosynthesis and respiration
Petri nets has any T-flows. But observe that the composite net in Figure 2 does
have a single T-flow determined by the transitions (0t1, 0t2, 0t3, 1t1, 1t2, 1t3).
How did this flow arise from the parallel composition? To answer this, we need
to look at potential T-flows of the two nets rather than the actual T-flows of
which there are none. The potential T-flows are the ones arising from restrict-
ing individual components to private places only, i.e. by disregarding the shared
places. If we do so, the photosynthesis Petri net has a single T-flow determined
by (0t1, 0t2, 0t3), and the respiration net has a single T-flow determined by
(1t1, 1t2, 1t3). The T-flow in the parallel net is composed from these two, be-
cause the transitions from the two nets operating on shared places cancel each
other out.

296 M. Pedersen

The general case is slightly more complicated, because there may be many po-
tential T-flows of each parallel component. These T-flows can then be combined
by natural-number linear combinations in such a way that the resulting flow
has no net effect on shared places. The weights of this natural-number linear
combination must be minimal in some sense in order for there to be any hope
of minimality of the composite flow in the composite net. A formal definition
is given below, where we use the conventions on flow matrix partitioning in-
troduced in Section 3.1; by [MTF(W−

i)] we mean the matrix consisting of the
column vectors in MTF(W−

i) in some arbitrary order.

Definition 9. Let P1 and P2 be Petri nets and let X1 =
[
MTF(W−

1)
]
,

X2 =
[
MTF(W−

2)
]

and W s be given. Define the following:

1. X
∆=

[
X1 0
0 X2

]
2. C

∆= W sX.
3. Z

∆= {Xα | α ∈ MTF(C)}.

We then define MTFPar(X1, X2, W
s) ∆= min(Z).

To elaborate on this definition, let m1 = |TP1 |, m2 = |TP2 |, n1 = |MTF(W−
1)|

and n2 = |MTF(W−
2)|. Then X1 and X2 are m1×n1 and m2×n2 matrices with

the transition flows of respectively P1 and P2 without their shared places, i.e. of
W−

1 and W−
2 . Also,

1. X is an (m1 + m2) × (n1 + n2) matrix with columns representing minimal
T-flows of W−.

2. C is an (|SP1 ∩ SP2 |) × (n1 + n2) matrix with each column ci representing
the effect of the corresponding minimal T-flow xi on the shared places.

3. Z is a set of linear combinations of the minimal T-flow-columns in X . These
linear combinations are chosen in such a way that they have no net effect on
the shared species. Note that the set Z is well-defined because MTF(C) is
finite and unique by Theorem 1.

Remarks regarding the use of minimisation are made towards the end of the
section. The following results state that Definition 9 is sound and complete.
Soundness is split into two lemmas, the first of which is needed to prove com-
pleteness.

Lemma 1 (Soundness part 1). Let Z be as given in Definition 9. Then

1. Z � TF(P1 |p P2).
2. min(Z) � TF(P1 |p P2).

The proof uses the definition of C to show that any Xα ∈ Z is a T-flow of W s.
Since X consists of minimal T-flows of W−, Xα is also a T-flow of W−. Together
these give that Xα is a T-flow of W and hence of P1 |p P2.

Compositional Definitions of Minimal Flows in Petri Nets 297

p1

t4 p2

t1

t2

t3

p2

Fig. 3. Two Petri nets illustrating how Definition 9 can give rise to non-minimal flows
in Z

Lemma 2 (Completeness). Let P1, P2, X1, X2 and W s be as given in Defi-
nition 9. Then MTF(P1 |p P2) ⊆MTFPar(X1, X2, W

s).

The proof starts by showing that any x ∈ MTF(P1 |p P2) can be written
x = 1

aXα where α ∈ TF(C) and a ∈ N (uses Theorem 2 and the definition
of C). Using Euclid’s lemma and that x is canonical, we show that a canonical α
can in fact be chosen. We then use Theorem 3 and minimality of x to show that
any of the minimal-support α which generate x as above is in fact also minimal
in C. We arrive at x ∈ Z. To conclude that also x ∈ min(Z), we use that any
x′ ∈ Z with smaller support than x would also be in TF(P1 |p P2) (Lemma 1),
hence contradicting minimality of x in P1 |p P2.

Lemma 3 (Soundness part 2). Let P1, P2, X1, X2 and W s be as given in
Definition 9. Then MTFPar(X1, X2, W

s) ⊆MTF(P1 |p P2)

The proof carries on from Lemma 1. To show that the elements of min(Z) are
in fact minimal in P1 |p P2, we use that all minimal-support (although not
necessarily canonical) flows are represented in Z by completeness (Lemma 2).

Together the two previous lemmas prove our main T-flow theorem:

Theorem 5 (Soundness and completeness). Let P1, P2, X1, X2 and W s

be as given in Definition 9. Then MTFPar(X1, X2, W
s) = MTF(P1 |p P2)

The size of matrices X and C may be reduced by removing columns which have
all 0-entries in C; these columns are also flows in the composite net and can be
included directly.

The flows in Z may not be minimal, which is why the minimisation function
must be applied as a last step. This is illustrated by the following example.

Example 5. Figure 4 shows two Petri nets: the left, P1, has two places of which
one is shared with the right, P2, consisting of just a single place. The restriction of
P1 to the place p1 (corresponding to W−) has four minimal T-flows represented
by x1 = (t1, t2), x2 = (t2, t3), x3 = (t3, t4) and x4 = (t1, t4). The “minimal” com-
binations of these which preserve the flow for the shared place p2 (corresponding
to the minimal flows of C) are x1 + x2 = (t1, 2 · t2, t3), x1 + x3 = (t1, t2, t3, t4)
and x2 + x4 = (t1, t2, t3, t4). But the latter two flows are not minimal because
they strictly contain the support of the first.

298 M. Pedersen

Minimisation is however not necessary in cases where the minimal flows in X
are linearly independent. Then we get unique decomposition in the sense that
any flow can be written uniquely as combinations of minimal flows (linear inde-
pendence fails in the above example, for x1 + x3 = x2 + x4). This can be used
in the proof of the following theorem:

Theorem 6. Let X and Z be as given in Definition 9. If the columns of X are
linearly independent, then the elements of Z have minimal support (but still may
not be canonical).

5 Minimal Place Flows

As for T-flows we start by looking at an example of how P-flows in a composite
net arise from P-flows in parallel components.

Example 6. In example 2 we listed the three minimal P-flows for each of the
two Petri nets in Figure 1. These included x = (CE, H2O, Sugar) from the first
net and y = (H2O, Sugar, CE′) from the second net. Neither is a flow in the
composite net shown in Figure 2 because of interference from the additional
transitions. For example, 0t1 consumes tokens from Sugar and produces tokens
in CE′, and this violates the first flow.

However, because x and y have identical weights for their shared places
(namely 1 · H2O and 1 · Sugar), we can “join” them to obtain a new minimal
flow x � y = (CE, H2O, Sugar, CE′) for the composite net.

Here is the formal definition of P-flow joins where again we assume the parti-
tioning of flow matrices given in Section 3.1.

Definition 10 (Flow joins). Let P1, P2 be Petri nets and let x ∈ PF(P1),
y ∈ PF(P2). Write x = (x−xs), y = (ysy−) where, for ∆S = SP1 ∩ SP2 , x−

represents places SP1 \ ∆S, xs and ys represent places ∆S, and y− represents
places SP2 \∆S. If xs = ys we say that x and y are consistent and define their
join x � y

∆= (x−xsy−).

The join of consistent flows from two parallel nets is a flow in the composite net:

Lemma 4. Let P1 and P2 be Petri nets and let x ∈ PF(P1), y ∈ PF(P2). If x
and y are consistent then x � y ∈ PF(P1 |p P2).

Conversely, any P-flow z of a parallel composition P1 |p P2 is the join of a P-flow
from P1 and a P-flow from P2.

Lemma 5. Let P1 and P2 be Petri nets and let z ∈ PF(P1 |p P2). Then there
are x ∈ PF(P1) and y ∈ PF(P2) s.t. z = x � y.

In contrast to Example 6, it is generally not sufficient to join only minimal
consistent flows. Rather we must obtain two linear combinations of minimal
flows from the respective nets in such a way that they become consistent, and

Compositional Definitions of Minimal Flows in Petri Nets 299

then join them to form a flow of the composite net. As for modular T-flows, the
weights used in this linear combination must be minimal in some sense in order
for there to be any hope of minimality for the resulting join.

The general modular definition of P-flows is given below. Similarly to the
definition for T-flows, [MPF(P)] is a matrix with rows from MPF(P) in any
order.

Definition 11. Let P1 and P2 be Petri nets and let X = [MPF(P1)] and
Y = [MPF(P2)] be given. Let Xs and Y s be the sub-matrices of X and Y con-
taining only columns for shared places s ∈ SP1 ∩ SP2 . Define the following:

1. C
∆=

[
Xs

−Y s

]
.

2. Z
∆= {αX � βY | (αβ) ∈ MPF(C)}.

We then define MPFPar(X, Y) ∆= min(Z).

To elaborate on this definition, let ∆S = SP1 ∩SP2 , m = |∆S|, n1 = |MPF(P1)|,
n2 = |MPF(P2)|. Then

1. C is an (n1 + n2) ×m matrix with the first n1 rows representing minimal
P-flows of P1 and the last n2 rows representing negated minimal P-flows
from P2, but restricted to the m shared places only.

2. Z contains the joins of consistent linear combinations of flows from the two
nets. The weights for this linear combination are chosen exactly so that the
resulting flows have the same weights for shared places. Note that the set Z
is well-defined because MTF(C) is finite and unique by Theorem 1.

As for T-flows we have soundness and completeness results, and soundness is
split into two separate lemmas.

Lemma 6 (Soundness part 1). Let Z be as given in Definition 11. Then

1. Z � PF(P1 |p P2).
2. min(Z) � PF(P1 |p P2).

The proof uses Lemma 4 and the definition of C.

Lemma 7 (Completeness). Let P1,P2,X and Y be as given in Definition 11.
Then MPF(P1 |p P2) ⊆MPFPar(X, Y)

The proof first uses Lemma 5 to write any z ∈ MPF(P1 |p P2) as z = x � y
for some x ∈ PF(P1) and y ∈ PF(P2). Then the main challenge is to show that
there is some d and (αβ) ∈ MPF(C) s.t. dx = αX and dy = βY (for then we
can conclude that dz ∈ Z). First the existence of such (αβ) ∈ PF(C) is shown
using Theorem 2, the definition of C and the fact that dx and dy are consistent.
Minimality of (αβ) uses an idea similar to the proof of Lemma 2 (completeness
for T-flows).

Lemma 8 (Soundness part 2). Let P1,P2,X and Y be as given in Definition
11. Then MPFPar(X, Y) ⊆ MPF(P1 |p P2)

300 M. Pedersen

The proof is similar to that of Lemma 3 (soundness for T-flows). Together the
last two lemmas prove our main theorem on modular P-flows:

Theorem 7 (Soundness and completeness). Let P1,P2,X and Y be as given
in Definition 11. Then MPFPar(X, Y) = MPF(P1 |p P2)

The matrix C in Definition 11 can be reduced in size by removing rows with all
0 entries. Because these do not involve shared places, they are also flows of the
composite net and can be included directly.

As for the modular definition of T-flows, minimisation is not necessary in
cases where the minimal flows in the rows of C are linearly independent:

Theorem 8. Let C and Z be as given in Definition 11. If the rows of C are
linearly independent, then the elements of Z have minimal support (but still may
not be canonical).

6 Compositional Definitions of Minimal Flows

The modular definitions of flows given in the previous sections are not compo-
sitional for two reasons: 1) the flows of parallel components are given explicitly
and not defined inductively. This is because there is no inductive structure on
Petri nets and flows per se. 2) In the case of T-flows, the definition of MTFPar

requires more than just the flows of parallel components to be given. It requires
the flows of the components without shared places (which are super-sets of the
flows of the components) and the flow matrix for shared places.

In response to the first problem, we consider a simple calculus of Petri nets,
CP, which is a subset of the Calculus of Biochemical Systems (CBS) [23, 19]. In
response to the second problem, we define a compositional T-flow function which
returns not T-flows, but a) the flow function of the net together with b) a function
mapping shared places to T-flows of the restricted net without these places.

6.1 CP: A Calculus of Petri Nets

In the following, some fixed set of places S and transitions T
∆= {0, 1}∗ are

assumed.

Definition 12. The language CP is the set of programs generated by the follow-
ing grammar, where ni, n

′
j ∈ N and si, s

′
j ∈ S:

P ::=
∑

ni · si →
∑

n′
j · s′j | P1|P2

Intuitively, the program
∑

ni · si →
∑

n′
j · s′j represents a single Petri net

transition (reaction) with input places (reactants) {si}, output places (products)
{s′j} and flow functions (stoichiometries) given by the ni and n′

j . In the biological
setting, programs thus correspond directly to reactions taking place in parallel.

Example 7. Below are two programs representing respectively photosynthesis
and respiration. All stoichiometries are 1 and have hence been omitted. Note

Compositional Definitions of Minimal Flows in Petri Nets 301

the resemblance with chemical reactions. Also note that there are no reactants
in the first reaction of photosynthesis, and no products in the last reaction of
respiration.

P1
∆= → Photons | Photons + H2O → CE + O2 | CE + CO2 → Sugar

P2
∆= Sugar→ CE′ + CO2 | CE′ + O2 → Heat + H2O | Heat→

The parallel composition P1 | P2 then represents combined photosynthesis and
respiration.

The denotational semantics for CP is given in terms of the set PN of Petri nets.

Definition 13. Define �·� : CP → PN inductively on programs as follows.

– Basis: �
∑

ni · si →
∑

n′
j · s′j�

∆= ({si} ∪ {s′j}, {ε}, W in, W out)

where W in(si, ε)
∆= ni and W out(s′j , ε)

∆= n′
j.

– Step: �P1|P2�
∆= �P1� |p �P2�

In the base case, ε denotes the empty string over the binary alphabet. Note the
compositional nature of the denotation function.

Example 8. Let P1 and P2 be as defined in Example 7. Then �P1� and �P2� are
given by the Petri nets shown in Figure 1 (modulo transition naming), and �P1 |
P2� is given by the composite Petri net shown in Figure 2 (modulo transition
naming).

6.2 Flows in CP

We are now in a position to give compositional definitions of minimal flows for
CP programs. To do so, we first define P \ ∆S to be the Petri net P without
the places ∆S, and similarly P \∆S is the program P without the places ∆S.
The power set of a set X is denoted by 2X , and the domain of a function f is
denoted by dom(f).

Definition 14. Let W = S × T ↪→fin N be the set of (partial and finite) flow
functions. Define the parameterised minimal T-flows, ζ : CP → W × (2S →
2(N∗)), inductively as follows:

– Basis: ζ(
∑

ni · si →
∑

n′
j · s′j)

∆= (WP , h)

where P ∆= �
∑

ni · si →
∑

n′
j · s′j� and h(∆S) ∆= MTF(P \∆S).

– Step: ζ(P1|P2)
∆= (W, h)

where
• ζ(P1) = (W1, h1) and ζ(P2) = (W2, h2)
• W is composed from W1 and W2 as defined in Section 3.
• h(∆S) ∆= MTFPar(X1, X2, W

ss).
• X1

∆= h1(∆S′), X2
∆= h2(∆S′).

302 M. Pedersen

• ∆S′ ∆= ∆S ∪∆S′′.
• ∆S′′ ∆= {s ∈ S | ∃t1, t2 ∈ T.(s, t1) ∈ dom(W1) ∧ (s, t2) ∈ dom(W2)}

(i.e. the places shared between P1 and P2).
• W ss is the sub-matrix of W containing rows for shared places ∆S′′ \∆S.

In the inductive step observe how X1, X2 and W ss are obtained purely from the
results of recursively invoking ζ. Hence the definition is in fact compositional.
But compositionality comes at a high price: the return value of ζ “encapsulates”
both the flow matrix of the entire net and the flows arising from any restriction
of places – all of this information is needed for the composition.

Definition 15. Define the compositional minimal P-flows, ξ : CP → 2(N∗),
inductively as follows:

– Basis: ξ(
∑

ni · si →
∑

n′
j · s′j)

∆= MPF(�
∑

ni · si →
∑

n′
j · s′j�).

– Step: ξ(P1|P2)
∆= MPFPar(ξ(P1), ξ(P2)).

Note how we again obtained a compositional definition, albeit in a somewhat
simpler manner than for T-flows. This illustrates how modular T and P-flows
are intricately different and non-dual because more information is needed in the
compositional definition of T-flows.

The following theorem says that the compositional definitions given above
work as expected. The proof is by induction on the structure of programs, using
Theorems 5 and 7

Theorem 9. Let P be an CP program and ∆S a set of places. Then

1. ζ(P) = (WP , h)
where P = �P � and h(∆S) = MTF(P \∆S).

2. ξ(P) = MPF(�P �).

It follows as a special case of 1) that h(∅) = MTF(�P �).

7 Related Work and Conclusion

7.1 Related Work

The idea that consistent P-flows from two components can be joined to form
a P-flow in the composite net (Lemma 4) is not new. Neither is the converse
that any place flow in a composite net is a join of place flows from the parallel
component (Lemma 5). These results have been stated previously in some form
in [27,28,29,30, 31].

In [29] an algorithm is given for directly computing the minimal P-flows of
a “well-formed net” resulting from a place fusion operation, based on the mini-
mal P-flows of the net before fusion. But no proof of correctness is given. In [28]
a method similar to Definition 11 is proposed for generative sets of P-flows rather

Compositional Definitions of Minimal Flows in Petri Nets 303

than minimal P-flows. Such a method is also presented for “functional subnets”
in [31], which in addition considers how to obtain the modules in the first place.
However, in neither case is it clear to us how completeness follows from the proofs
given, i.e. that the method in fact results in generative families of P-flows. In
contrast, we give a full proof of minimality of the resulting P-flows (which is
stronger than generativity).

Modular definitions of T-flows have received somewhat less attention than
P-flows in the literature. To our knowledge, the only existing explicit work on
modular T-flows is [29] (for well-formed nets), but this only shows an example
of how new T-flows can arise after a place fusion. No general definition is given.
In [30], a characterisation of P-flows arising from a composition of modules is
given based on both place sharing and transition sharing. The duality elucidated
in Theorem 4 suggests that a dual characterisation can be given for T-flows
under place and transition sharing. Nevertheless, the characterisation does not
result in methods for finding minimal or generative sets of flows and hence is
of little practical use. It also considers flows in Z rather than in N as is more
common (and harder).

7.2 Conclusion

As the primary contribution, this paper has presented algebraic definitions for
obtaining the minimal P and T-flows of parallel Petri nets given the minimal
P and T-flows of its components (with some additional information in the case
of T-flows). These definitions have then been proven correct. Although the idea
used for minimal P-flows is not new, no complete proof has to our knowledge
been given before.

We have also shown modular dualities between T/P-flows under place sharing
and T/P-flows under transition sharing. This allows our results for place sharing
to be easily adapted to transition sharing. On the other hand, we have seen that
T and P-flows are not dual in the modular sense under place sharing alone, and
hence the existing work on modular P-flows under place sharing does not carry
over to T-flows.

As an application we have shown how our modular definitions of T and P-
flows can be used to define T and P-flows in a compositional manner for a subset
of CBS. This has turned out to be harder for T-flows than for P-flows, thus
further illustrating the intricate difference between the two when considering
place sharing alone.

Future work may consider the computational complexity of calculating mini-
mal flows using our compositional definitions and investigate if improvements can
be made over existing algorithms as in e.g. [28]. The inherent compositionality
can also be exploited by distributed computation. On the more theoretical side,
a potential next step is to extend the results to higher-level coloured Petri nets.
These allow species modifications and complexes to be represented compactly
and form a semantical foundation of the full CBS.

304 M. Pedersen

Acknowledgements

The author would like to thank Gordon Plotkin and Monika Heiner for useful dis-
cussions. This work was supported by Microsoft Research through its European
PhD Scholarship Programme.

References

1. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

2. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular
biology by using stochastic Petri nets. PNAS 95(12), 6750–6755 (1998)

3. Peleg, M., et al.: Using Petri net tools to study properties and dynamics of bio-
logical systems. Journal of the American Medical Informatics Association 12(2),
181–199 (2005)

4. Hardy, S., Robillard, P.N.: Modeling and simulation of molecular biology systems
using Petri nets: Modeling goals of various approaches. J. Bioinformatics and Com-
putational Biology 2(4), 619–638 (2004)

5. Reddy, V.N., et al.: Petri net representation in metabolic pathways. In: Proc. Int.
Conf. Intell. Syst. Mol. Biol., pp. 328–336 (1993)

6. Zevedei-Oancea, Schuster, S.: Topological analysis of metabolic networks based on
Petri net theory. Silico. Biol. 3, 323–345 (2003)

7. Heiner, M., et al.: Analysis and simulation of steady states in metabolic pathways
with Petri nets. In: Jensen, K. (ed.) Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, pp. 15–34 (2001)

8. Genrich, H., et al.: Executable Petri net models for the analysis of metabolic path-
ways. J. STTT 3(4), 394–404 (2001)

9. Voss, K., et al.: Steady state analysis of metabolic pathways using Petri nets. Silico.
Biol. 3 (2003)

10. Heiner, M., Koch, I.: Petri net based model validation in systems biology. In:
Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237.
Springer, Heidelberg (2004)

11. Sackmann, A., et al.: Application of Petri net based analysis techniques to signal
transduction pathways. BMC Bioinformatics 7(482) (2006)

12. Lee, D.Y., et al.: Colored Petri net modeling and simulation of signal transduction
pathways. Metab. Eng. 8(2), 112–122 (2005)

13. Heiner, M., et al.: Petri nets for systems and synthetic biology. In: Bernardo, M.,
Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer,
Heidelberg (2008)

14. Taubner, C., et al.: Modelling and simulation of the TLR4 pathway with coloured
Petri nets. In: Proc. Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Engineering in Medicine and Biology Society, pp.
2009–2012 (2006)

15. Matsuno, H., et al.: Hybrid Petri net representation of gene regulatory network.
In: Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)

16. Steggles, L.J., et al.: Qualitatively modelling and analysing genetic regulatory net-
works: a Petri net approach. Bioinformatics 23(3), 336–343 (2007)

17. Gilbert, D., et al.: A case study in model-driven synthetic biology. In: Biologically-
inspired cooperative computing. IFIP International Federation for Information Pro-
cessing, vol. 268, pp. 163–175. Springer, Heidelberg (2008)

Compositional Definitions of Minimal Flows in Petri Nets 305

18. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (1992)

19. Pedersen, M., Plotkin, G.: A language for biochemical systems. In: Heiner, M.,
Uhrmacher, A.M. (eds.) Proc. CMSB. LNCS. Springer, Heidelberg (2008)

20. Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway.
Yeast 21(10), 831–850 (2004)

21. Krückeberg, F., Jaxy, M.: Mathematical methods for calculating invariants in Petri
nets. In: Advances in Petri Nets 1987, covers the 7th European Workshop on Appli-
cations and Theory of Petri Nets, London, UK, pp. 104–131. Springer, Heidelberg
(1987)

22. Schuster, S., et al.: A general definition of metabolic pathways useful for systematic
organization and analysis of complex metabolic networks. Nature Biotechnology 18,
326–332 (2000)

23. Plotkin, G.: A calculus of biochemical systems (in preparation)
24. Pedersen, M.: Compositional definitions of minimal flows in Petri nets. Technical re-

port, University of Edinburgh (2008), http://www.inf.ed.ac.uk/publications/
report/1269.html

25. Reisig, W.: Petri nets. EATCS Monograps on Theoretical Computer Science.
Springer, Heidelberg (1982)

26. Memmi, G., Roucairol, G.: Linear algebra in net theory. In: Proc. Advanced Course
on General Net Theory of Processes and Systems, pp. 213–223. Springer, Heidel-
berg (1980)

27. Jensen, K.: Coloured Petri Pets: Basic Concepts, Analysis Methods and Practical
Use, vol. 2. Springer, Heidelberg (1995)

28. Bourjij, A., et al.: A decentralized approach for computing invariants in large scale
and interconnected Petri nets. In: Proc. IEEE International Conference on Systems,
Man, and Cybernetics, vol. 2, pp. 1741–1746 (1997)

29. Isabel, C.R.M.: Compositional construction and analysis of Petri net systems. PhD
thesis, School of Informatics, University of Edinburgh (1998)

30. Christensen, S., Petrucci, L.: Modular analysis of Petri nets. The Computer Jour-
nal 43(3), 224–242 (2000)

31. Zaitsev, D.A.: Decomposition-based calculation of Petri net invariants. In: Cor-
tadella, Yakovlev (eds.) Proc. Workshop on Token based Computing (ToBaCo),
Satellite Event of the 25-th International conference on application and theory of
Petri nets, pp. 79–83 (2004)

A Selected Proofs

A.1 Modular T-Flows

Proof (Lemma 2). Take any x ∈MTF(P1 |p P2). Then Wx = 0, so also W sx = 0
and W−x = 0. Hence x ∈ TF(W s) and x ∈ TF(W−). Observe that X consists
exactly of the minimal T-flows of W−. Therefore, by Theorem 2 there are α ∈
N|col(X)|T and a ∈ N s.t. x = 1

aXα, i.e. xa = Xα. There may generally be
multiple such α, so pick one which is canonical and has minimal decomposition-
support in the sense that no other choices have smaller support. Such a canonical
choice is indeed possible because it is always the case that gcd(α) divides a. To
see this, let c = gcd(α); then there is a canonical α′ s.t. ax = Xcα′ = cXα′.

http://www.inf.ed.ac.uk/publications/report/1269.html
http://www.inf.ed.ac.uk/publications/report/1269.html

306 M. Pedersen

Also a
dx = c

dXα′ where d = gcd(a, c). Since x has natural number entries, a
d

divides all entries in c
dXα′. It follows from Euclid’s lemma and gcd(a

d , c
d) = 1

that a
d divides all entries in Xα′. Canonicity of x then forces c = d, and hence

d = gcd(α) divides a as claimed.
We now show that α is a T-flow of C, i.e. that Cα = 0. The following steps

rely on the fact that matrix multiplication is associative:

Cα = (W sX)α = W s(Xα) = W s(xa) = (W sx)a = 0a = 0

Next we show that α is a minimal T-flow of C. It is canonical per assump-
tion. To get that α has minimal support, we show that any T-flow α′ of C with
sup(α′) � sup(α) will also generate x, contrary to our choice of α being the
smallest decomposition-support for which this holds. Note here the subtle dis-
tinction between minimality of α wrt. decomposition of x and wrt. flows of C;
the former holds per assumption, and we will now prove the latter.

So, we have sup(α′) � sup(α) and Cα′ = 0. Then 0 = Cα′ = (W sX)α′ =
W s(Xα′), so x′ = Xα′ is a T-flow of W s. Any linear combination of T-flows is
also a T-flow, so x′ is also a T-flow of W−. Together these give x′ ∈ TF(W). Now
since sup(α′) � sup(α) it must also hold that sup(x′) = sup(Xα′) ⊆ sup(Xα) =
sup(x). Since x has minimal-support, it must be the case that sup(x′) = sup(x).
By Theorem 3, either x = nx′ or x′ = nx for some n ∈ N. But x is canonical, so
x′ = nx i.e. x = 1

nx′ = 1
nXα′. This contradicts our original choice of α to be a

minimal-support decomposition of x.
We conclude that α ∈ MTF(C) and hence xa = Xα ∈ Z. Per assumption x

is minimal, so there is no other minimal flow x′′ ∈ MTF(P1 |p P2) ⊃ Z (the
inclusion is By Lemma 1) with sup(x′′) � sup(x). Hence x = xa

a ∈ min(Z) =
MTFPar(X1, X2, W

s).

A.2 Modular P-Flows

Proof (Lemma 7). Take any z ∈ MPF(P1 |p P2). By Lemma 5 there are re-
strictions x ∈ PF(P1) and y ∈ PF(P2) of z s.t. z = x � y. Claim: there are
(αβ) ∈ MPF(C) and d ∈ N such that

dx = αX and dy = βY

Then dz = dx � dy = αX � βY ∈ Z. Per assumption z is minimal so there is
no other flow z′ ∈ PF(P1 |p P2) ⊃ Z (Lemma 6) s.t. sup(z′) � sup(z) = sup(dz).
Hence z = dz

d ∈ min(Z) = MPF(X1, X2, W
−), so we are done.

Proof of claim. By Theorem 2 there are a, b ∈ N, α′′ ∈ N|row(X)| and β′′ ∈
N|row(Y)| s.t.

ax = α′′X and by = β′′Y ⇔
abx = α′′bX and aby = β′′aY

There may generally be many such (α′′, β′′), so pick one which has minimal
decomposition-support in the sense that there are no other choices with smaller
support satisfying the above equations.

Compositional Definitions of Minimal Flows in Petri Nets 307

Now let c = gcd(a, b), d = ab
c , α = α′′ b

c and β = β′′ a
c . Continuing with the

equations from above we then get

dx = αX and dy = βY

We know that x and y are consistent, i.e. xs = ys where xs and ys are the
restrictions of x and y to the shared places SP1 ∩ SP2 . Hence also dxs = dys. So

αXs = dxs = dys = βY s ⇔
αXs − βY s = 0 ⇔

(αβ)C = 0

It follows that (αβ) ∈ PF(C). We may assume that (αβ) is canonical, for if it is
not, it is always possible to divide through by gcd(αβ) since this always divides
d. To se why this is the case, let c = gcd(αβ). Then there are α′ and β′ s.t.
dx = cα′X and dy = cβ′Y . Now let e = gcd(c, d) and write d

ex = c
eα′X and

d
ey = c

eβ′Y . Since x and y have entries in N, d
e divides all entries in both c

eα′X
and c

eβ′Y . From e = gcd(c, d) and a standard result from number theory we get
that d

e divides all entries in α′X and β′Y . Therefore c
e divides all entries in both

x and y, and hence also in x � y = z. Canonicity of z then forces c = e, so c
divides d as claimed.

To see that (αβ) has minimal support in C, suppose towards a contradiction
that there is (α′β′) ∈ PF(C) with sup(α′β′) � sup(αβ) = sup(α′′β′′). From the
definition of C it follows that x′ = α′X and y′ = β′Y are consistent, i.e. x′s =
α′Xs = β′Y s = y′s. They are also place flows of P1 and P2 respectively. Lemma
4 then gives that z′ = x′ � y′ ∈ PF(P1 |p P2). We know that sup(z′) ⊆ sup(z),
but we cannot have sup(z′) � sup(c) since z is minimal. Hence sup(z′) = sup(z).
By Theorem 3, there is some n ∈ N s.t.

nz = z′ = x′ � y′ = α′X � β′Y

But we also know that nz = n(x � y) = nx � ny. Hence

nx = α′X and ny = β′Y

Per assumption either sup(α′) � sup(α′′) or sup(β′) � sup(β′′). This contradicts
our original choice of α′′ or β′′ to have minimal decomposition-support.

On Inner and Outer Descriptions of the

Steady-State Flux Cone of a Metabolic Network

Abdelhalim Larhlimi and Alexander Bockmayr

DFG-Research Center Matheon, FB Mathematik und Informatik, Freie Universität
Berlin, Arnimallee 6, 14195 Berlin, Germany

larhlimi@mi.fu-berlin.de,bockmayr@mi.fu-berlin.de

Abstract. Constraint-based approaches have proved successful in ana-
lyzing complex metabolic networks. They restrict the range of all pos-
sible behaviors that a metabolic system can display under governing
constraints. The set of all possible flux distributions over a metabolic
network at steady state defines a polyhedral cone, the steady-state flux
cone. This cone can be analyzed using an inner description based on sets
of generating vectors such as elementary flux modes or extreme path-
ways. Another possibility is the use of an outer description based on sets
of non-negativity constraints. In this paper, we study the relationship
between inner and outer descriptions of the cone. We give a generic pro-
cedure to show how inner descriptions can be computed from the outer
one. Then we use this procedure to explain why, for large-scale metabolic
networks, the size of the inner descriptions may be several orders of mag-
nitude larger than that of the outer description.

1 Introduction

The huge amount of biological data that is now available has allowed the recon-
struction of an increasing number of genome-scale metabolic networks. However,
this information is not sufficient to determine quantitatively the metabolic phe-
notypes that are expressed by metabolic systems under different environmental
conditions. Intuitive reasoning for predicting and analyzing metabolic pheno-
types can be inadequate, often giving incomplete or incorrect predictions. In
this respect, rigorous mathematical and computational methods are strongly
required to investigate the principles of metabolic behaviors.

Although kinetic modeling [1] is most appropriate for fully characterizing
metabolic systems, this approach has been hampered by the lack of detailed ki-
netic information. Moreover, the results that could be drawn from kinetic models
are strongly sensitive to the definition of both kinetic functions and parameters.
In the view of the limits of kinetic modeling, growing attention is being paid
to constraint-based modeling [2,3,4]. Rather than attempting to predict exactly
what a metabolic system does, constraint-based methods narrow the range of all
possible behaviors this system can display under physicochemical constraints.
In the present paper, we are specifically concerned with analyzing metabolic
networks subject to the stoichiometric and thermodynamic constraints. These

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 308–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Inner and Outer Descriptions of the Steady-State Flux Cone 309

constraints define the steady-state flux cone which contains all possible flux dis-
tributions in a metabolic network subsisting at steady state.

Since the flux cone in general contains infinitely many possible steady-state
flux distributions, it is interesting to find out which of these feasible flux dis-
tributions are actually displayed by the metabolic network under consideration.
Traditionally, optimization-based approaches [5,6,7] have been used to search for
single optimal behaviors. These methods, which assume that metabolic networks
behave optimally driven by an objective, have proved successful in analyzing
complex metabolic networks. However, the results are sensitive to the definition
of the optimality criterion, which need not be unique. A recent study has shown
that a microorganism could use different optimization criteria depending on the
environmental conditions [8]. The exploration of all suitable objective functions
is still a difficult task. Furthermore, an optimal solution with respect to a suit-
able objective function need not be unique. Optimization-based techniques often
return an arbitrary chosen flux distribution from the set of all optimal solutions.
In analogy with the flux cone, the set of all optimal flux distributions is often
an infinite convex set and requires an adequate description. A recursive mixed-
integer linear programming algorithm has been developed to find all alternative
optima [9]. This algorithm was, however, applied only to small networks. Fi-
nally, optimization-based approaches consider only optimal states, which form a
restricted subset of all possible behaviors of the living system. An interesting al-
ternative to optimization-based modeling is to describe all possible steady-state
flux distributions in the metabolic network using inner and outer descriptions
of the flux cone [10,11,12,13].

The purpose of this work is to study the relationship between inner and outer
descriptions of the flux cone. We first characterize the outcome of the network
reconfiguration in terms of the outer description of the reconfigured cone. The
reconfiguration leads to an increase in the size of the description and changes in
the reversibility type of reactions. Then we give a generic procedure to show how
inner descriptions can be computed from the outer one. We use this procedure to
explain why, for large-scale metabolic networks, the size of the inner descriptions
may be several orders of magnitude larger than that of the outer description. The
organization of this paper is as follows. We start in Sect. 2 with some basic facts
about polyhedral cones. In Sect. 3 we recall the definition of the steady-state
flux cone. Sect. 4 and 5 give an overview about inner and outer descriptions of
the flux cone. In Sect. 6, we analyze the impact of the network reconfiguration.
Finally, in Sect. 7, we give a generic procedure to compute inner descriptions
from the outer one.

2 Polyhedral Cones

We start with some basic facts about polyhedral cones (see e.g. [14]). A non-
empty subset C ⊆ Rn is called a (convex) cone if λx+µy ∈ C, whenever x, y ∈ C
and λ, µ ≥ 0. A cone C is polyhedral, if C = {x ∈ Rn | Ax ≥ 0}, for some real
matrix A ∈ Rm×n. If this is the case, lin.space(C) = {x ∈ Rn | Ax = 0} is called

310 A. Larhlimi and A. Bockmayr

the lineality space of C. A cone C is finitely generated if there exist g1, . . . , gs ∈
Rn such that C = cone{g1, . . . , gs} def= {λ1g

1 + . . . + λsg
s | λ1, . . . , λs ≥ 0}. A

fundamental theorem of Farkas-Minkowski-Weyl (see e.g. [14], p. 87) asserts that
a convex cone is polyhedral if and only if it is finitely generated. For the rest of
this paper, we will consider only polyhedral cones.

An inequality aT x ≥ 0, a ∈ Rn \{0}, is valid for C if C ⊆ {x ∈ Rn | aT x ≥ 0}.
The set F = C ∩ {x ∈ Rn | aT x = 0} is then called a face of C. The dimension
of F is defined as the dimension of the linear subspace generated by F . Any
non-zero element r ∈ C is called a ray of C. Two rays r and r′ are equivalent,
written r ∼= r′, if r = λr′, for some λ > 0. A ray r is extreme if there do not
exist rays r′, r′′ ∈ C, r′ �∼= r′′, such that r = r′ + r′′.

Pointed cones. A polyhedral cone C is called pointed if lin.space(C) = {0}.
Any pointed cone C has a canonical representation

C = cone{r1, . . . , rs}, (1)

where r1, . . . , rs are the (distinct) extreme rays of C. This representation, which
is used in the inner descriptions of the steady-state flux cone [15,16], is minimal
and unique up to multiplication by positive scalars.

Non-pointed cones. If C is not pointed, there is no longer such a unique min-
imal representation. Let t be the dimension of the lineality space of C. Instead
of the extreme rays, we consider now the minimal proper faces G1, . . . , Gs of C,
which are the faces of C of dimension t + 1. Each Gi can be represented by a

row vector aT
i and a submatrix A′

i of A, with rank
(

A′
i

aT
i

)
= n− t, such that [14]

Gi = {x ∈ C | aT
i x ≥ 0, A′

i x = 0}, (2)

and
lin.space(C) = {x ∈ C | aT

i x = 0, A′
i x = 0}.

If we select for each i = 1, . . . , s a vector gi ∈ Gi \ lin.space(C), and vectors
b0, . . . , bt ∈ lin.space(C) such that lin.space(C) = cone{b0, . . . , bt}, we get

C = cone{g1, . . . , gs, b0, . . . , bt}. (3)

For each minimal proper face Gi, i = 1, . . . , s, we get

Gi = cone{gi}+ lin.space(C) = {λgi + w | λ ≥ 0, w ∈ lin.space(C)} (4)

For additional information, we refer to [14].
(3) generalizes (1), but this representation is no longer unique. We may choose

an arbitrary base of lin.space(C), and arbitrary rays gi in Gi \ lin.space(C).
However, it follows from (2) that Gi can also be characterized using constraints
aT

i x ≥ 0, where aT
i is a row vector from the matrix A that defines the cone. In

the context of metabolic network analysis, this leads to a minimal and unique
outer description of the steady-state flux cone, based on sets of non-negativity
constraints [10].

On Inner and Outer Descriptions of the Steady-State Flux Cone 311

3 Steady-State Flux Cone

When modeling a metabolic system, we distinguish between external and in-
ternal metabolites [1]. External metabolites are the sources and sinks of the
network. For the internal metabolites, we assume that there is no accumulation
or depletion at steady state. In general, the classification of a metabolite as ex-
ternal or internal depends on the purpose of the model. It should be noted that
this classification has an impact on the algorithmic complexity of analyzing the
network [17].

It is also common to distinguish between internal and boundary reactions in a
metabolic network [18]. An internal reaction has the property that its substrates
and products each contain at least one internal metabolite. On the other hand, all
substrates consumed or all products formed by a boundary reaction are external.
Accordingly, a boundary reaction, which is also called an exchange reaction,
allows the transport of materials across the system boundary, and thus provides
a connection between the metabolic system and its environment.

In the context of metabolic pathway analysis, metabolic systems are assumed
to operate at steady state so that the rate of production and the rate of consump-
tion of each internal metabolite must be equal. In addition, the flux through each
irreversible reaction must be non-negative. Mathematically, the stoichiometric
and thermodynamic constraints that have to hold in a metabolic network at
steady state can be expressed as follows [12]:

Sv = 0, vi ≥ 0, for all i ∈ Irr , (5)

where S is the m× n stoichiometric matrix, with m internal metabolites (rows)
and n reactions (columns), and v ∈ Rn is the flux vector. Irr ⊆ {1, . . . , n}
denotes the set of irreversible reactions, and Rev = {1, . . . , n} \ Irr is the set of
reversible reactions.

The set of all solutions of the constraint system (5), which corresponds to the
set of all possible flux distributions over the network at steady state, defines a
polyhedral cone,

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr} (6)

which is called the flux cone [15,19]. Already in [15], we can find the distinction
between inner and outer descriptions of this cone, which are called there inter-
nal and external representations. The external representation gives a test for
determining whether a given flux vector belongs to the cone, while the internal
representation allows one to construct flux vectors from a set of generators.

4 Inner Descriptions of the Flux Cone

An inner description of the flux cone allows for describing the infinite flux cone
C (defined in equation (6)) by means of a finite set of generating vectors. A key
distinction to be made is whether the flux cone is pointed or not. By definition,
the flux cone is pointed if its lineality space

312 A. Larhlimi and A. Bockmayr

lin.space(C) = {v ∈ C | vi = 0, for all i ∈ Irr} (7)

is reduced to the origin, i.e., no steady-state flux distribution involves only
reversible reactions. In particular, if all reactions are irreversible, i.e., Irr =
{1, . . . , n}, then lin.space(C) = {0} and so the flux cone is pointed. In this case,
the flux cone is generated by a unique (up to multiplication by positive scalars)
and minimal set of flux vectors that correspond to its extreme rays.

In the presence of reversible reactions, the situation is more involved. Indeed,
if some reactions are reversible, the flux cone may be non-pointed and thus no
longer has a unique and minimal representation by its extreme rays. To deal with
this situation, some approaches propose to reconfigure the metabolic network in
order to render the flux cone pointed [15,16]. For this, one considers a subset
SR ⊆ Rev of reversible reactions and splits each reversible reaction j ∈ SR into a
forward and a backward reaction, which both are constrained to be irreversible.
Let s = |SR| and SR = {j1, . . . , js}. For convenience, the stoichiometric matrix
S′ ∈ Rm×(n+s) of the reconfigured network can be written as follows:

S′
∗j = S∗j for all j ∈ {1, . . . , n},

S′
∗(n+k) = −S∗jk

for all k ∈ {1, . . . , s}.

The set of irreversible reactions in the reconfigured network is given by

Irr ′ = Irr ∪ SR ∪ {n + 1, . . . , n + s}.

The reconfigured flux cone C′, which contains all possible steady-state flux dis-
tributions in the reconfigured network, is defined by

C′ = {v ∈ Rn+s | S′v = 0, vi ≥ 0, for all i ∈ Irr ′}. (8)

As a result of this reconfiguration, for a well-chosen set SR of split reactions,
the reconfigured flux cone C′ is pointed and can be described by a unique and
minimal set of extreme rays. This reconfiguration has, however, undesirable con-
sequences. On the one hand, the number of variables and constraints increases
by s resp. 2s. This renders more complex the constraint system that defines the
reconfigured flux cone. On the other hand, a significant number of rays in the re-
configured cone are extreme for the only reason that the split reversible reactions
have been decomposed into forward and backward reactions. In the initial cone,
these extreme rays are conically dependent. Accordingly, the number of extreme
rays increases by this reconfiguration, which limits the practical applicability of
this strategy.

Three main approaches have been proposed to analyze metabolic networks
using inner descriptions of the flux cone [15,16,18]. They all determine flux dis-
tributions corresponding to a convex basis of the flux cone, but use a different
set of reactions that have to be split [13]. If the latter includes all reversible
reactions, the reconfigured flux cone is pointed and generated by its extreme
rays called extremal currents [15]. If only internal reversible reactions are split,
the reconfigured flux cone is again pointed and the extreme rays are termed

On Inner and Outer Descriptions of the Steady-State Flux Cone 313

Table 1. Inner descriptions of the flux cone, with the set of split reversible reactions
SR, the characteristics of the reconfigured flux cone C′ and of the three inner de-
scriptions. Contrary to elementary modes, the sets of extreme pathways and extremal
currents correspond to the extreme rays of their corresponding reconfigured flux cone
and so are minimal. However, possibly many of these generating vectors could be in
the interior of the original flux cone.

Inner description Split reac- Characteristics of the reconfigured flux cone C′ Charact. of ID

ID tions SR Dimension Number of constraints lin.space(C′) Unique Minimal

Extreme pathways Revint n + |Revint| m + |Irr | + 2|Revint| {0} √
yes

Extremal currents Rev n + |Rev| m + |Irr | + 2|Rev| {0} √
yes

Elementary modes ∅ n m + |Irr | lin.space(C)
√

no

extreme pathways [16]. Note that if all boundary reactions are irreversible, both
concepts are identical. We should also mention that the extremal current and
the extreme pathway approach require a reconfiguration of the network even
if the initial cone is pointed. Also in this case, the set of extreme rays of the
reconfigured cone is much larger than that of the initial cone.

Schuster and Hilgetag [18,20] have proposed a description of the flux cone
without any reconfiguration, using elementary modes (EMs). An elementary
mode corresponds to a steady-state flux distribution involving a minimal set
of reactions. This concept is similar to that of a minimal T-invariant in Petri
net theory [21,22] and has also been used for analyzing signaling and regulatory
networks [23]. It has been shown that elementary modes span the steady-state
flux cone. In other words, each steady-state flux distribution can be expressed
as a non-negative linear combination of elementary modes. For a more detailed
explanation of the similarities and differences between the three inner descrip-
tions, we refer to [24,25,11,12,13]. Tab. 1 summarizes the characteristics of the
different inner descriptions.

Elementary modes are defined in the original n-dimensional flux space. In
contrast, to define extreme pathways (resp. extremal currents), the dimension of
the flux space is increased by p (resp. q), the number of internal reversible reac-
tions (resp. the number of all reversible reactions). In the following, we formally
characterize the relationships between the three inner descriptions.

Let Rev int be the set of reversible internal reactions. Suppose Rev int =
{j1, . . . , jp} and Rev = {j1, . . . , jq}. Let π : C → Rn+p (resp. φ : C → Rn+q) be
the function that maps each flux vector v ∈ C to v′ = π(v) (resp. v′ = φ(v))
such that v′j = vj for all j ∈ {1, . . . , n} \Rev int (resp. j ∈ {1, . . . , n} \Rev), and
for each k ∈ {1, . . . , p} (resp. k ∈ {1, . . . , q})

v′jk
= vjk

and v′n+k = 0 if vjk
≥ 0,

v′jk
= 0 and v′n+k = −vjk

if vjk
< 0.

The function π (resp. φ) formally defines the reconfiguration of a flux vector
v ∈ C by splitting each free variable vjk

with jk ∈ Rev int (resp. jk ∈ Rev) into
two non-negative variables v′jk

and v′n+k with vjk
= v′jk

− v′n+k. This operation
is similar to standard form transformation in linear programming. To define the

314 A. Larhlimi and A. Bockmayr

reverse operation, let πr : Rn+p → C (resp. φr : Rn+q → C) be the function that
maps each vector v′ ∈ Rn+p (resp. v′ ∈ Rn+q) to v = πr(v′) (resp. v = φr(v′))
such that vj = v′j for all j ∈ {1, . . . , n} \ Rev int (resp. j ∈ {1, . . . , n} \ Rev) and
vjk

= v′jk
− v′n+k for all k ∈ {1, . . . , p} (resp. k ∈ {1, . . . , q}).

Finally, let Π ⊆ Rn+p and Φ ⊆ Rn+q be the sets of 2-cycles corresponding to
the split reversible reactions, i.e.,

Π = {x ∈ Rn+p | xj = 0 for all j ∈ {1, . . . , n + p} \ {jk, n + k}
and xjk

= xn+k = 1, for some jk ∈ Rev int},

Φ = {x ∈ Rn+q | xj = 0 for all j ∈ {1, . . . , n + q} \ {jk, n + k}
and xjk

= xn+k = 1, for some jk ∈ Rev}.
The following proposition reformulates the relationship between extreme path-

ways and elementary modes given in [24]. Except the 2-cycles corresponding to
the split reactions, each extreme pathway completely defines a unique elementary
mode.

Proposition 1 ([24]). If x /∈ Π is an extreme pathway, then there exists a
unique elementary mode e ∈ C such that x = π(e) and e = πr(x).

According to the proposition above, the set of extreme pathways corresponds to a
subset of elementary modes. Next, we restate the equivalence between elementary
modes and extremal currents given in [26].

Proposition 2 ([26]). Let e ∈ C be a steady-state flux distribution. The fol-
lowing are equivalent:

– e is an elementary mode.
– There exists a unique extremal current x /∈ Φ such that x = φ(e) and e =

φr(x).

It follows that up to the 2-cycles corresponding to the split reactions, extremal
currents and elementary modes are equivalent. Accordingly, an algorithm for
computing extremal currents could also be used to calculate elementary modes
and vice versa.

Thus all three approaches are concerned with describing a pointed reconfig-
ured flux cone C′ by means of its extreme rays. There may exist many generating
vectors of the reconfigured flux cone C′ lying in the interior of the original flux
cone C. This observation is important because the number of these generators
may be very large, making a complete analysis of the whole metabolic network
impossible and limiting the practical applicability of these methods.

5 Outer Description of the Flux Cone

In [10,27,28], the authors proposed an outer description of the flux cone, based
on sets of non-negativity constraints. This approach defines a metabolic behavior
as a set of irreversible reactions D ⊆ Irr , D �= ∅, such that there exists a flux

On Inner and Outer Descriptions of the Steady-State Flux Cone 315

distribution v ∈ C with D = {i ∈ Irr | vi �= 0}. A metabolic behavior D is
minimal (MMB), if there is no metabolic behavior D′ � D strictly contained in D.

The set of flux distributions involving only reversible reactions defines the
reversible metabolic space (RMS),

RMS = lin.space(C), (9)

which corresponds to the lineality space of the flux cone C.
The minimal metabolic behaviors (MMBs) are closely related to the mini-

mal proper faces of the flux cone C, i.e., the faces of dimension t + 1, where
t = dim(RMS). According to [10], each minimal proper face is described by its
characteristic set D = {j ∈ Irr | vj > 0, for some v ∈ G}. Indeed, G is given by

G = {v ∈ C | vi = 0, for all i ∈ Irr \D}. (10)

The next theorem shows that each MMB completely defines a corresponding
minimal proper face of the flux cone C and vice versa.

Theorem 1 ([10]). Let D ⊆ Irr be a set of irreversible reactions. Then, the
following are equivalent:

– D is a minimal metabolic behavior.
– D is the characteristic set of a minimal proper face of the flux cone.

By the theorem above, the MMBs are in a 1-1 correspondence with the minimal
proper faces of the flux cone. Accordingly, the set of MMBs is minimal in the
sense that no strict subset of MMBs could completely describe the flux cone.
We conclude that there are two minimality properties that hold for minimal
metabolic behaviors: the minimality of each MMB and the minimality of the
set of MMBs. Furthermore, for each MMB D, there exists at least one EM e
involving exactly the irreversible reactions from D, i.e., D = {i ∈ Irr | ei �= 0}.

If G1, . . . , Gs are the minimal proper faces of the flux cone C, the correspond-
ing MMBs D1, . . . , Ds together with the RMS completely describe C, see [10] for
additional details. Note that finding such a minimal and unique outer description
is different from eliminating the stoichiometric and thermodynamic constraints
that are redundant in the flux cone definition.

Based on the concepts of MMBs and the RMS, a refined classification of
reactions has been proposed [10]. A reversible reaction j ∈ Rev is called pseudo-
irreversible if vj = 0, for all v ∈ RMS. A reversible reaction that is not pseudo-
irreversible is called fully reversible. In the following, Prev0 and Frev denote the
sets of pseudo-irreversible and fully reversible reactions, respectively.

Inside each minimal proper face, the (pseudo-) irreversible reactions take a
unique direction. More precisely, we have the following properties.

Theorem 2 ([10]). Let G be a minimal proper face of the flux cone C and let
j ∈ {1, . . . , n} be a reaction.

– If j ∈ Irr is irreversible, then vj > 0, for all v ∈ G \ lin.space(C), or vj = 0,
for all v ∈ G. Furthermore, vj = 0, for all v ∈ lin.space(C).

316 A. Larhlimi and A. Bockmayr

– If j ∈ Prev0 is pseudo-irreversible, then the flux vj through j has a unique
sign in G \ lin.space(C), i.e., either vj > 0, for all v ∈ G \ lin.space(C), or
vj = 0, for all v ∈ G \ lin.space(C), or vj < 0, for all v ∈ G \ lin.space(C).
For all v ∈ lin.space(C), we have again vj = 0.

– If j ∈ Frev is fully reversible, there exists v ∈ lin.space(C) such that vj �= 0.
We can then find pathways v+, v−, v0 ∈ G\lin.space(C) with v+

j > 0, v−j < 0
and v0

j = 0.

6 Outer Description of the Reconfigured Flux Cone

Now we analyze the impact of reconfiguring the network. The effects include
an increase in the size of the outer description of the reconfigured cone and
changes in the reversibility type of reactions. Here, we define the size of an outer
description of a flux cone as the sum of the number of its minimal proper faces
and the dimension of its lineality space.

Let SR ⊆ Rev be the set of split reactions. The network reconfiguration can be
seen as an iterative procedure that consists of |SR| iterations, each splitting some
reversible reaction. As will be shown, each iteration increases the description
of the flux cone depending on the reversibility type of the split reaction. The
increase is significant when the split reaction is pseudo-irreversible. Note that
there are at most t iterations where the split reaction can be fully reversible,
with t = dim(lin.space(C)).

In this section, we consider the case of splitting one reaction, which is denoted
by j. The reconfigured flux cone C′, which contains all possible steady-state flux
distributions in the reconfigured network, is given by

C′ = {(v, w) ∈ Rn+1 | Sv = w · S∗j , vi ≥ 0, for i ∈ Irr , vj ≥ 0, w ≥ 0}. (11)

According to equation (11), splitting reaction j increases the number of vari-
ables and constraints by 1 and 2, respectively. Indeed, the reconfigured network
contains one more reaction denoted by n + 1. The set of irreversible reactions
in the reconfigured network is Irr ′ = Irr ∪ {j, n + 1}. Accordingly, the lineality
space of the reconfigured flux cone C′ is given by

lin.space(C′) = {(v, 0) ∈ Rn+1 | Sv = 0, vi = 0, for all i ∈ Irr , vj = 0},

or equivalently,

lin.space(C′) = {(v, 0) ∈ Rn+1 | v ∈ lin.space(C ∩ {v ∈ Rn | vj = 0})}. (12)

Since lin.space(C ∩ {v ∈ Rn | vj = 0}) = lin.space(C) ∩ {v ∈ Rn | vj = 0}, it
follows from equation (12) that

dim(lin.space(C′)) = dim(lin.space(C) ∩ {v ∈ Rn | vj = 0}).

Lemma 3. If j ∈ Prev0 is pseudo-irreversible, then dim(lin.space(C′)) =
dim(lin.space(C)). If j ∈ Frev is fully reversible, then dim(lin.space(C′)) =
dim(lin.space(C)) − 1.

On Inner and Outer Descriptions of the Steady-State Flux Cone 317

Proof. Suppose j ∈ Prev0 is pseudo-irreversible. Then, bj = 0 for each
vector b ∈ lin.space(C). Hence, lin.space(C) ⊆ {v ∈ Rn | vj = 0}
and so dim(lin.space(C′)) = dim(lin.space(C)). Now suppose j ∈ Frev is
fully reversible. Then there exists b ∈ lin.space(C) such that bj �= 0 and
so lin.space(C) � {v ∈ Rn | vj = 0}. Therefore, dim(lin.space(C′)) =
dim(lin.space(C)) − 1. �

In the following, we will characterize the minimal proper faces of the reconfigured
flux cone C′. We first consider the case of a minimal proper face G′ with v′j =
v′n+1 = 0 for all v′ ∈ G′.

Lemma 4. Let G′ ⊆ C′ such that v′j = v′n+1 = 0 for all v′ ∈ G′. Then the
following are equivalent:

– G′ is a minimal proper face of C′.
– There exists a minimal proper face G of C ∩ {v ∈ Rn | vj = 0} such that

G′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

If this is the case, G and G′ have the same characteristic set.

Proof. ”⇒”: Suppose G′ is a minimal proper face of C′ and D′ is its characteristic
set. Since v′j = v′n+1 = 0 for all v′ ∈ G′, we get D′ ⊆ Irr . Let G = {v ∈ C |
vj = 0, vi = 0, for all i ∈ Irr \ D′}. We have G′ = {(v, 0) ∈ Rn+1 | v ∈
G} and so dim(G) = dim(G′). Since G′ is a minimal proper face of C′ and
dim(lin.space(C′)) = dim(lin.space(C ∩ {v ∈ Rn | vj = 0})), we get dim(G) =
dim(lin.space(C ∩ {v ∈ Rn | vj = 0})) + 1 and the claim follows.

”⇐”: Immediate. �

We now will study the minimal proper faces of the reconfigured flux cone C′,
depending on the reversibility type of the split reaction.

6.1 Splitting a Fully Reversible Reaction

If j ∈ Frev is fully reversible, there exists a flux distribution in the reconfigured
network that involves either reaction j or n+1 and no other irreversible reactions.
Accordingly, as will be stated in the following proposition, reactions j and n + 1
define two trivial minimal proper faces of C′ given by

Gj = {(v, 0) ∈ Rn+1 | Sv = 0, vi = 0, for all i ∈ Irr , vj ≥ 0},
Gn+1 = {(v, w) ∈ Rn+1 | Sv = w · S∗j , vi = 0, for all i ∈ Irr , vj = 0, w ≥ 0}.

Proposition 5. If j ∈ Frev is fully reversible, then Gj and Gn+1 are two min-
imal proper faces of C′ whose characteristic sets are Dj = {j} and Dn+1 =
{n + 1}, respectively.

Proof. Suppose j ∈ Frev is fully reversible. Then there exists b ∈ lin.space(C)
such that bj > 0. Let Ij = Irr ∪ {n + 1}. We have Gj = {v′ ∈ C′ |
v′j ≥ 0, v′i = 0, for all i ∈ Ij} and lin.space(C′) = {v′ ∈ C′ | v′j = 0,

v′i = 0, for all i ∈ Ij}. In addition, we have (b, 0) ∈ Gj \ lin.space(C′) and

318 A. Larhlimi and A. Bockmayr

so dim(Gj) = dim(lin.space(C′)) + 1. Therefore, Gj is a minimal proper face
characterized by reaction j. Similarly, let In+1 = Irr ∪ {j}. We have Gn+1 =
{v′ ∈ C′ | v′n+1 ≥ 0, v′i = 0, for all i ∈ In+1} and lin.space(C′) = {v′ ∈ C′ |
v′n+1 = 0, v′i = 0, for all i ∈ In+1}. Define u ∈ Rn+1 by uj = 0, un+1 = bj

and ui = −bi for all i ∈ {1, . . . , n} \ {j}. We have u ∈ Gn+1 \ lin.space(C′) and
so dim(Gn+1) = dim(lin.space(C′)) + 1. Accordingly, Gn+1 is a minimal proper
face characterized by reaction n + 1. Since for each v′ ∈ Gj (resp. v′ ∈ Gn+1),
v′i = 0 for all i ∈ Irr ′ \ {j} (resp. i ∈ Irr ′ \ {n + 1}), the claim follows. �

Next we are interested in non-trivial minimal proper faces of C′. Here, we get
the following result.

Proposition 6. Let G′ ⊆ C′ such that G′ �= Gj and G′ �= Gn+1. If j ∈ Frev is
fully reversible, then the following are equivalent:

– G′ is a minimal proper face of C′.
– There exists a minimal proper face G of C such that G′ = {(v, 0) ∈ Rn+1 |

v ∈ G ∩ {v ∈ Rn | vj = 0}}.

Proof. ”⇒”: According to Lemma 4, there exists a minimal proper face G′′ of
C ∩ {v ∈ Rn | vj = 0} such that G′ = {(v, 0) ∈ Rn+1 | v ∈ G′′}. Let D be the
characteristic set of G′′ and let G = {v ∈ C | vi = 0, for all i ∈ Irr \ D}. We
have G′′ = G∩{v ∈ Rn | vj = 0}. Let G0 ⊆ G be a minimal proper face of C and
D0 ⊆ D its characteristic set. Since j ∈ Frev , there exists g ∈ G0 \ lin.space(C)
such that gj = 0. Therefore, g ∈ G0 ∩ {v ∈ Rn | vj = 0} \ lin.space(C). Suppose
there exists k ∈ D \ D0. Then vk = 0 for all v ∈ G0 and G0 ⊆ G ∩ {v ∈ Rn |
vk = 0}. Since G′′ is a minimal proper face of C ∩ {v ∈ Rn | vj = 0}, we have
G′′ ∩ {v ∈ Rn | vk = 0} = lin.space(C ∩ {v ∈ Rn | vj = 0}). It follows that
G0 ∩ {v ∈ Rn | vj = 0} ⊆ lin.space(C ∩ {v ∈ Rn | vj = 0}), in contradiction to
g ∈ G0 ∩ {v ∈ Rn | vj = 0} \ lin.space(C). We conclude that D0 = D and so G
is a minimal proper face of C.

”⇐”: Immediate. �

In summary, if reaction j ∈ Frev is fully reversible, the minimal proper faces of
C′ are Gj , Gn+1 and those which are in a 1-1 correspondence with the minimal
proper faces of C. The dimension of the lineality space of C′ decreases by one.
Accordingly, the size of the flux cone description increases by one after splitting
a fully reversible reaction.

6.2 Splitting a Pseudo-irreversible Reaction

If j ∈ Prev0 is pseudo-irreversible, there is no flux distribution in the reconfigured
network that involves reaction j (resp. n+1) and no other irreversible reactions.
The following proposition shows that both (and only) reactions j and n + 1
characterize a trivial minimal proper face of C′ given by

Gc = {(v, w) ∈ Rn+1 | Sv = w · S∗j , vi = 0, for all i ∈ Irr , vj ≥ 0, w ≥ 0}.

On Inner and Outer Descriptions of the Steady-State Flux Cone 319

The minimal proper face Gc contains all the (2-cycle) flux distributions in
the reconfigured network that involve only the forward and backward reactions
j and n + 1.

Proposition 7. If j ∈ Prev0 is pseudo-irreversible, then Gc is a minimal proper
face of C′ whose characteristic set is Dc = {j, n + 1}.

Proof. We have Gc = {v′ ∈ C′ | v′j ≥ 0, v′i = 0, for all i ∈ Irr} and
lin.space(C′) = {v′ ∈ C′ | v′j = 0, v′i = 0, for all i ∈ Irr}. Let u ∈ Rn+1

with uj = un+1 = 1 and ui = 0 for all i ∈ {1, . . . , n} \ {j}. We have
u ∈ Gc \ lin.space(C′) and so dim(Gc) = dim(lin.space(C′)) + 1. Therefore,
Gc is a minimal proper face characterized by reaction j. Since un+1 �= 0 and
ui = 0 for all i ∈ Irr ′ \ {j, n + 1}, Dc = {j, n + 1} is the characteristic set
of Gc. �

Let G1, . . . , Gs be the minimal proper faces of C and D1, . . . , Ds their char-
acteristic sets, respectively. Starting from [29,10] and using that reaction j is
pseudo-irreversible, we partition the set J = {G1, . . . , Gs} of minimal proper
faces of C into three parts:

J0 = {G ∈ J | vj = 0 for all v ∈ G},
J+ = {G ∈ J | vj > 0 for all v ∈ G \ lin.space(C)},
J− = {G ∈ J | vj < 0 for all v ∈ G \ lin.space(C)}.

From each of the sets J0, J+, J− we will obtain different minimal proper faces
of C′. We start by characterizing minimal proper faces G′ with v′j = v′n+1 = 0
for all v′ ∈ G′. As will be stated in the next proposition, in addition to minimal
proper faces G ∈ J0, some minimal proper faces of C′ are obtained by combining
pairs (Gk, Gl) ∈ J+ × J− of adjacent minimal proper faces in C. The set Φ of
these pairs is given by

Φ = {(Gk, Gl) ∈ J+ × J− | Di � Dk ∪Dl for all i ∈ {1, . . . , s} \ {k, l}}.

Each pair (Gk, Gl) ∈ Φ defines a minimal proper face of C′

ζ(Gk, Gl) = {v ∈ C | vj = 0, vi = 0, for all i ∈ Irr \Dk ∪Dl}.

Finally, let Adj be the set given by

Adj = {ζ(Gk, Gl) | (Gk, Gl) ∈ Φ}. (13)

Proposition 8. Let G′ ⊆ C′ such that v′j = v′n+1 = 0 for all v′ ∈ G′. If
j ∈ Prev0 is pseudo-irreversible, then the following are equivalent:

– G′ is a minimal proper face of C′.
– There exists G ∈ J0 ∪ Adj such that G′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

Proof. According to Lemma 4, G′ is a minimal proper face of C′ if and only if
there is a minimal proper face G of C∩{v ∈ Rn | vj = 0} such that G′ = {(v, 0) ∈
Rn+1 | v ∈ G}. We show that G is a minimal proper face of C∩{v ∈ Rn | vj = 0}

320 A. Larhlimi and A. Bockmayr

if and only if G ∈ J0 ∪ Adj . Since j ∈ Prev0, we have lin.space(C ∩ {v ∈ Rn |
vj = 0}) = lin.space(C).

”⇒”: Let G = {v ∈ C ∩ {v ∈ Rn | vj = 0} | vi = 0, for all i ∈ Irr \ D}.
There exists g ∈ G \ lin.space(C) such that D = {i ∈ Irr | gi �= 0}. Let
gi ∈ Gi \ lin.space(C) for i = 1, . . . , s. Since g ∈ C, g can be written in the form
g =

∑s
i=1 αig

i + b, for some αi ≥ 0 and b ∈ lin.space(C). Since g /∈ lin.space(C),
there exists k ∈ {1, . . . , s} such that αk �= 0. Accordingly, Dk ⊆ D. We have the
following cases:

1. Gk ∈ J0: Since Dk ⊆ D and Gk ⊆ C ∩ {v ∈ Rn | vj = 0}, we get Gk ⊆ G.
Since G is a minimal proper face of C ∩ {v ∈ Rn | vj = 0} and lin.space(C ∩
{v ∈ Rn | vj = 0}) � Gk, we get Gk = G and G ∈ J0.

2. Gk ∈ J+: Suppose αi �= 0 implies Gi ∈ J+ for all i = 1, . . . , s. We get gj =
αkgk

j +
∑

i�=k αig
i
j > 0, contradicting gj = 0. Then there exists l ∈ {1, . . . , s}

such that αl �= 0 and Gl ∈ J−. It follows that Dl ⊆ D and Dk ∪Dl ⊆ D.
Let g′ = gl − (gl

j/gk
j) · gk and G′ = {v ∈ C | vj = 0, vi = 0, for all i ∈

Irr \ (Dk ∪ Dl)}. We have g′ ∈ G′ \ lin.space(C ∩ {v ∈ Rn | vj = 0}) and
G′ ⊆ G. Since G is a minimal proper face of C ∩ {v ∈ Rn | vj = 0}, we
get G′ = G and D = Dk ∪Dl. Suppose there exists i ∈ {1, . . . , s} such that
Di ⊆ Dk ∪Dl. If Gi ∈ J+ (resp. Gi ∈ J−), we prove in a similar way that
Di ∪ Dl = Dk ∪ Dl (resp. Dk ∪ Di = Dk ∪ Dl) and so Di = Dk (resp.
Di = Dl). It follows that (Gk, Gl) ∈ Φ, G = ζ(Gk, Gl) and G ∈ Adj .

3. Gk ∈ J−: The proof is similar to that of the case above.

”⇐”: We can easily see that if G ∈ J0, then G is a minimal proper face of
C ∩ {v ∈ Rn | vj = 0}. Suppose G = ζ(Gk, Gl) for some (Gk, Gl) ∈ Φ. Let
G′ ⊆ G be a minimal proper face of C ∩{v ∈ Rn | vj = 0} and D′ ⊆ Dk ∪Dl its
characteristic set. Accordingly, G′ ∈ J0 ∪Adj . Suppose G′ ∈ J0. It follows from
D′ ⊆ Dk ∪Dl and (Gk, Gl) ∈ Φ that D′ = Dk or D′ = Dl, contradicting vj = 0
for all v ∈ G′. We conclude that G′ = ζ(Gk′

, Gl′) for some (Gk′
, Gl′) ∈ Φ and

D′ = Dk′ ∪Dl′ . Since D′ ⊆ Dk ∪Dl, we get Dk′ ⊆ Dk ∪Dl and Dl′ ⊆ Dk ∪Dl.
Therefore, Dk′

= Dk and Dl′ = Dl. We get G′ = G and so G is a minimal
proper face of C ∩ {v ∈ Rn | vj = 0}. �

Next, we characterize non-trivial minimal proper faces G′ of C′ with v′j > 0 for
all v′ ∈ G′ \ lin.space(C′).

Proposition 9. Let G′ ⊆ C′ such that G′ �= Gc. If j ∈ Prev0 is pseudo-
irreversible, then the following are equivalent:

– G′ is a minimal proper face of C′ such that v′j > 0 for all v′ ∈ G′ \
lin.space(C′).

– There exists G ∈ J+ such that G′ = {(v, 0) ∈ Rn+1 | v ∈ G}.

Proof. Suppose j ∈ Prev0. Then, dim(lin.space(C′)) = dim(lin.space(C)).
”⇒”: Suppose G′ is a minimal proper face of C′ such that v′j > 0 for all

v′ ∈ G′ \ lin.space(C′) and let D′ be its characteristic set. Since G′ �= Gc and

On Inner and Outer Descriptions of the Steady-State Flux Cone 321

j ∈ D′, we have n + 1 /∈ D′ and D′ \ {j} ⊆ Irr . Let (g, 0) ∈ G′ \ lin.space(C′),
D = D′ \ {j} and G = {v ∈ C | vi = 0, for all i ∈ Irr \ D}. We have g ∈
G \ lin.space(C) and gj > 0. Suppose there exists v ∈ G \ lin.space(C) such that
vj ≤ 0 and let w = v − (vj/gj) · g. We have (w, 0) ∈ G′ \ lin.space(C′) and
wj = 0, in contradiction to v′j > 0 for all v′ ∈ G′ \ lin.space(C′). We conclude
that vj > 0 for all v ∈ G \ lin.space(C) and G′ = {(v, 0) ∈ Rn+1 | v ∈ G}.
Accordingly, dim(G) = dim(G′). Since G′ is a minimal proper face of C′, we have
dim(G′) = dim(lin.space(C ∩ {v ∈ Rn | vj = 0})) + 1 = dim(lin.space(C)) + 1
and so G ∈ J+.

”⇐”: Let G ∈ J+ such that G′ = {(v, 0) ∈ Rn+1 | v ∈ G}. Since dim(G′) =
dim(G) and dim(G) = dim(lin.space(C))+1 = dim(lin.space(C∩{v ∈ Rn | vj =
0}))+1, we conclude that G′ is a minimal proper face of C′. Since vj > 0 for all
v ∈ G \ lin.space(C), it follows that v′j > 0 for all v′ ∈ G′ \ lin.space(C′). �

Finally, we characterize non-trivial minimal proper faces G′ �= Gc of C′ with
v′n+1 > 0 for all v′ ∈ G′ \ lin.space(C′). In such a case, v′j = 0 for all v′ ∈ G′ and
the characteristic set of G′ is D ∪ {n + 1} for some D ⊆ Irr .

Proposition 10. Let D ⊆ Irr be a set of irreversible reactions. If j ∈ Prev0 is
pseudo-irreversible, then the following are equivalent:

– There exists a minimal proper face G′ of C′ whose characteristic set is D ∪
{n + 1}.

– There exists G ∈ J− whose characteristic set is D.

Proof. Suppose j ∈ Prev0. Then, dim(lin.space(C′)) = dim(lin.space(C)).
”⇒”: Suppose G′ is a minimal proper face of C′ whose characteristic set is

D ∪ {n + 1}. Let g′ ∈ G′ \ lin.space(C′) and g ∈ Rn such that gi = g′i for all
i ∈ {1, . . . , n}\{j} and gj = −g′n+1. Let G = {v ∈ C | vi = 0, for all i ∈ Irr\D}.
We have g ∈ G\lin.space(C) and gj < 0. Suppose there exists v ∈ G\lin.space(C)
such that vj ≥ 0 and let w = v−(vj/gj)·g. We have (w, 0) ∈ G′\lin.space(C′), in
contradiction to v′n+1 > 0 for all v′ ∈ G′ \ lin.space(C′). We conclude that vj < 0
for all v ∈ G\ lin.space(C). To show G ∈ J−, let F ⊆ G be a minimal proper face
of C and D′ ⊆ D its characteristic set. Let f ∈ F \ lin.space(C) and f ′ ∈ Rn+1

with f ′
i = fi for all i ∈ {1, . . . , n} \ {j}, f ′

j = 0 and f ′
n+1 = −fj > 0. Since

f ′ ∈ C′ and {i ∈ Irr ′ | f ′
i > 0} = D ∪ {n + 1}, we have f ′ ∈ G′ \ lin.space(C′).

Suppose there exists k ∈ D \D′. Then vk = 0 for all v ∈ F and F ⊆ G ∩ {v ∈
Rn | vk = 0}. Accordingly, f ∈ G ∩ {v ∈ Rn | vk = 0} \ lin.space(C) and
f ′ ∈ G′ ∩ {v ∈ Rn | vk = 0} \ lin.space(C′). Since G′ is a minimal proper
face of C′ and k ∈ D, G′ ∩ {v ∈ Rn | vk = 0} = lin.space(C′), contradicting
f ′ ∈ G′ ∩ {v ∈ Rn | vk = 0} \ lin.space(C′). We conclude that D′ = D, F = G
and so the claim follows.

”⇐”: Let G ∈ J− such that D is its characteristic set. Let G′ = {(v, w) ∈
Rn+1 | Sv = w · S∗j , vi = 0, for all i ∈ Irr \ D, vi ≥ 0, for all i ∈ D, vj =
0, w ≥ 0}. Let F ′ ⊆ G′ be a minimal proper face of C′ and D′ ⊆ D ∪ {n + 1}
its characteristic set. Suppose n + 1 /∈ D′. Since j /∈ D′, by Proposition 8,
there exists F ∈ J0 ∪ Adj such that F ′ = {(v, 0) ∈ Rn+1 | v ∈ F}. The

322 A. Larhlimi and A. Bockmayr

characteristic set of F is D′. Then either D′ = Di with Gi ∈ J0 or D′ = Dk∪Dl

with (Gl, Gk) ∈ Φ. Since D′ ⊆ D, both cases are contradicting G ∈ J−. We
conclude that n + 1 ∈ D′. Since j /∈ D′, F ′ �= Gc and its characteristic set is
(D′ \ {n + 1}) ∪ {n + 1}. There exists then K ∈ J− whose characteristic set is
D′ \ {n + 1}. Since D′ \ {n + 1} ⊆ D and both G and K are minimal proper
faces of C, it follows that K = G, D′ = D ∪ {n + 1} and F ′ = G′. We conclude
that G′ is a minimal proper face of C′ whose characteristic set is D∪{n+1}. �
To summarize, a non-trivial minimal proper face G′ of C′ is given either by

G′ = {(v, 0) ∈ Rn+1 | v ∈ G}, for some G ∈ J0 ∪ J+ ∪Adj ,

or by

G′ = {v′ ∈ C′ | v′i = 0 for all i ∈ (Irr ∪ {j}) \Dk}, for some Gk ∈ J−.

Since dim(lin.space(C′)) = dim(lin.space(C)), it follows that the size of the
flux cone description increases by |Adj | + 1 after splitting a pseudo-irreversible
reaction. Note that the set Adj can be quite large (cf. Sect. 7).

6.3 Changes in the Reversibility Type of Reactions

Another consequence of the network reconfiguration is the change in the re-
versibility type of reactions. Indeed, possibly many fully reversible reactions in
the original network may become pseudo-irreversible in the reconfigured net-
work. Let Frev ′ and Prev ′

0 be the sets of fully and pseudo-irreversible reversible
reactions in the reconfigured network, respectively, i.e.,

Frev ′ = {i ∈ Rev \ {j} | b′i �= 0, for some b′ ∈ lin.space(C′)},
Prev ′

0 = Rev \ (Frev ′
0 ∪ {j}).

Since lin.space(C′) = {(v, 0) ∈ Rn+1 | v ∈ lin.space(C), vj = 0}, we have
Frev ′ ⊆ Frev \ {j} and Prev0 \ {j} ⊆ Prev ′

0. Let ∆ be the set of fully reversible
reactions of the original network which become pseudo-irreversible in the recon-
figured network, i.e.,

∆ = Frev \ (Frev ′ ∪ {j}).
We can easily see that ∆ = {i ∈ Frev \ {j} | bi = 0 for each b ∈ lin.space(C) ∩
{v ∈ Rn | vj = 0}}. The following proposition further characterizes the set ∆
using a basis of the lineality space of C.

Proposition 11. Let B = (b1, . . . , bt) be a basis of lin.space(C). Then

∆ = {i ∈ Frev \ {j} | there exists λ �= 0 with bk
i = λbk

j for all k = 1, . . . , t}.

Proof. Let Ω = {i ∈ Frev \ {j} | there exists λ �= 0 such that bk
i =

λbk
j for all k = 1, . . . , t}. Then Ω ⊆ ∆. To show the reverse inclusion, sup-

pose i ∈ ∆. Since i ∈ Frev , there exists b ∈ B such that bi �= 0. Since
i ∈ ∆, we have bj �= 0. Let b′ ∈ B and let w = b′ − (b′j/bj) · b. We have
w ∈ lin.space(C) ∩ {v ∈ Rn | vj = 0} and wi = b′i − (bi/bj)b′j . Since i ∈ ∆, we

get wi = 0 and so b′i/b′j = bi/bj
def= λ �= 0, independently from b′. �

On Inner and Outer Descriptions of the Steady-State Flux Cone 323

Corollary 12. If j ∈ Prev0 is pseudo-irreversible, then Frev ′ = Frev and
Prev ′

0 = Prev0 \ {j}.

Proof. Suppose j ∈ Prev0. Then, bk
j = 0 for all k = 1, . . . , t. Consider i ∈ Frev \

{j}. There exists b ∈ B such that bi �= 0. Since bj = 0, it follows that i /∈ ∆.
Therefore, ∆ = ∅ and the claim follows. �

7 From Outer to Inner Descriptions

The results in Sect. 6 allow for obtaining an outer description of the reconfigured
flux cone after splitting one reversible reaction. Now we are seeking for an inner
description of the reconfigured flux cone after splitting a set SR = {j1, . . . , jp}
of reversible reactions. We propose an iterative procedure that splits, in each
iteration k, a reversible reaction, and obtains a minimal generating set of the
reconfigured flux cone using the following scheme. Let (R0, B0) be a minimal
generating set of the original flux cone. The set (R0, B0) can be computed using
an existing software for polyhedral computations such as cdd [29]. For 1 ≤ k ≤
p, let jk be the reversible reaction to be split in iteration k and let Irrk−1,
Prevk−1

0 and Frevk−1 be the set of irreversible, pseudo-irreversible and fully
reversible reactions after splitting reactions j1, . . . , jk−1, respectively. Set Irr0 :=
{1, . . . , n} \ Rev , Prev0

0 := {i ∈ Rev | bi = 0 for all b ∈ B0} and Frev0 :=
Rev \ Prev0

0. Iteration k comprises two basic steps. First, we deduce a minimal
generating set (Bk, Rk) from (Bk−1, Rk−1) based on the results given in Sect. 6.
This step is straightforward if jk ∈ Frevk−1. In such a case, the inner description
of the reconfigured flux cone increases by one. However, if jk ∈ Prevk−1

0 , in
addition to the generators we can directly deduce from (Bk−1, Rk−1), the inner
description of the reconfigured flux cone includes a subset Ψ ⊆ Rk−1 × Rk−1

that contains possibly many generators. In this case, the increase in the inner
description is equal to |Ψ | + 1. In the second step, we update the reversibility
type of reactions using Proposition 11. The deduction procedure terminates in
iteration p and an inner description of the reconfigured flux cone is (Bp, Rp).
For a more detailed description, see Algorithm 1.

Note that, for the reconfigured flux cone to be pointed, we must have p ≥ t,
where t is the dimension of the lineality space of the original flux cone, i.e.,
t = dim(lin.space(C)). This is typically the case for the extreme pathway and
extremal current approaches. In such a case, we have η := |{k ∈ {1, . . . , p} | jk ∈
Prevk−1

0 }| ≥ p−t. Accordingly, the above procedure contains at least η iterations
where the increase in the inner description of the flux cone is significant. This
explains why, for large-scale metabolic networks, the size of the inner descriptions
may be several orders of magnitude larger than that of the outer description.

Tab. 2 shows the sizes of the inner and outer descriptions of the flux cone
of some typical metabolic networks. The computation of the extreme pathways,
extremal currents, the minimal metabolic behaviors and the reversible metabolic
space was done using the software cdd [29]. For computing the elementary flux
modes, we used metatool [34]. We can see that the size of the outer descrip-
tion, given as the sum of the number of MMBs and dim(RMS), is typically much

324 A. Larhlimi and A. Bockmayr

Input : Set of reversible reactions to be split SR = {j1, . . . , jp};
Set J of minimal proper faces and lineality space L of the flux cone.

Output : Minimal generating set GenSet of the reconfigured cone.
Initialization: R0 := set of generators g ∈ G \ L, one for each G ∈ J ;

B0 := (b1, . . . , bt) vector basis of L;
Prev0

0 := {i ∈ Rev | bi = 0 for all b ∈ B0};
Frev 0 := Rev \ Prev0

0, Irr0 := {1, . . . , n} \ Rev .

foreach k ∈ {1, . . . , p} do
if jk ∈ Frevk−1 then

Choose u ∈ Bk−1 such that ujk > 0, add((u, 0), Rk),
Let w ∈ Rn+k such that w′

i := −ui for all i ∈ {1, . . . , n + k − 1} \ {jk},
wjk := 0 and wn+k := ujk , add(w, Rk),
foreach g ∈ Rk−1 do

add((g − (gjk/ujk) · u, 0), Rk),
end
foreach b ∈ Bk−1 \ {u} do

add((b − (bjk/ujk) · u, 0), Bk),
end
∆ := {i ∈ Frevk−1 \ {jk} | there exists λ �= 0 with bi = λbjk for all b ∈
Bk−1},
Frevk := Frevk−1 \ (∆ ∪ {jk}), Prevk

0 := Prevk−1
0 ∪ ∆.

end
else

Let w ∈ Rn+k such that w′
i := 0 for all i ∈ {1, . . . , n + k − 1} \ {jk},

wjk := wn+k := 1, add(w, Rk),
P := {g ∈ Rk−1 | gjk > 0}, N := {g ∈ Rk−1 | gjk < 0},
Z := {g ∈ Rk−1 | gjk = 0}.
foreach g ∈ P ∪ Z do

add((g, 0), Rk),
end
foreach g ∈ N do

Let g′ ∈ Rn+k such that g′
i := gi for all i ∈ {1, . . . , n + k − 1} \ {jk},

g′
jk

:= 0 and g′
n+k := −gjk , add(g′, Rk).

end
Ψ := {(g1, g2) ∈ P ×N | {i ∈ Irrk−1 | gi > 0} � {i ∈ Irrk−1 | g1

i +g2
i > 0},

for all g ∈ Rk−1 \ {g1, g2}},
foreach (g1, g2) ∈ Ψ do

add((g2 − (g2
jk

/g1
jk

) · g1, 0), Rk),
end
foreach b ∈ Bk−1 do

add((b, 0), Bk),
end
Frevk := Frevk−1, Prevk

0 := Prevk−1
0 \ {jk}.

end
Irrk := Irrk−1 ∪ {jk, n + k}.

end
GenSet := (Bp, Rp).

Algorithm 1. Deducing an inner description from an outer description

On Inner and Outer Descriptions of the Steady-State Flux Cone 325

Table 2. Metabolic networks, with the number of internal metabolites (Met), the
number of irreversible (Irr) reactions, the number of reversible internal (Rev-Int) and
external (Rev-Ext) reactions, the number of minimal metabolic behaviors (MMB), the
dimension of the reversible metabolic space (RMS), the number of elementary modes
(EM), extreme pathways (EP), and extremal currents (EC). ”?” indicates that the
existing implementation of cdd has failed in the computation of the inner description.
This is not the case for the computation of the outer description, illustrating that the
network reconfiguration renders more complex the constraint system that defines the
reconfigured flux cone. Except the 2-cycles corresponding to the split reactions, the set
of EPs corresponds to a subset of the set of EMs, which is equivalent to the set of ECs.

Metabolic network Network size Outer description size Inner description size

Met Irr Rev-Int Rev-Ext RMS MMB EM EP EC

Chloroplast stroma [30] 19 9 12 3 0 11 15 27 30

Human red blood cell [31] 38 18 17 15 1 48 3557 127 3590

S. cerevesiae [32] 48 30 17 0 0 657 8726 8743 8743

Escherichia coli [33] 90 83 27 1 0 3560 507632 ? ?

Purple bacteria [33] 77 61 24 3 2 12 393524 ? ?

smaller than the number of elementary flux modes, extreme pathways and ex-
tremal currents. This observation holds even if the flux cone is pointed. In such
a case, the MMBs correspond to the set of extreme rays of the flux cone. The
extreme pathways and extremal currents are extreme for the only reason that
the split reversible reactions have been decomposed into forward and backward
reactions. In the initial cone, these extreme rays are conically dependent and
their numbers are much larger than the number of MMBs.

8 Conclusion

In this paper, we have studied the relationship between inner and outer descrip-
tions of the steady-state flux cone. By distinguishing two types of reversible
reactions (pseudo-irreversible, fully reversible), we have analyzed the impact of
reconfiguring the metabolic network in terms of the size of the description of the
reconfigured flux cone as well as the reversibility type of reactions. This leads to
a generic procedure for computing inner descriptions from the outer one. This
procedure makes clear why the size of the inner descriptions may be several
orders of magnitude larger than that of the outer description.

References

1. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman and Hall,
New York (1996)

2. Covert, M., Famili, I., Palsson, B.: Identifying constraints that govern cell behavior:
a key to converting conceptual to computational models in biology? Biotechnol.
Bioeng. 84(7), 763–772 (2003)

326 A. Larhlimi and A. Bockmayr

3. Palsson, B.: The challenges of in silico biology. Nat. Biotechnol. 18(11), 1147–1150
(2000)

4. Price, N., Reed, J., Palsson, B.: Genome-scale models of microbial cells: evaluating
the consequences of constraints. Nat. Rev. Microbiol. 2(11), 886–897 (2004)

5. Bonarius, H., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic
networks: the quest for the missing constraints. Trends Biotechnol. 15(8), 308–314
(1997)

6. Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis. Curr.
Opin. Biotechnol. 14(5), 491–496 (2004)

7. Lee, J., Gianchandani, E., Papin, J.: Flux balance analysis in the era of
metabolomics. Brief. Bioinformatics 7(2), 140–150 (2006)

8. Schuetz, R., Kuepfer, L., Sauer, U.: Systematic evaluation of objective functions
for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007)

9. Lee, S., Phalakornkule, C., Grossmann, I., Domach, M.: Recursive MILP model
for finding all the alternate optima in LP models for metabolic networks. Comput.
Chem. Eng. 24, 711–716 (2000)

10. Larhlimi, A., Bockmayr, A.: A new constraint-based description of the steady-state
flux cone of metabolic networks. Discrete Applied Mathematics (to appear, 2008)

11. Papin, J., Price, N., Wiback, S., Fell, D., Palsson, B.: Metabolic pathways in the
post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)

12. Papin, J., Stelling, J., Price, N., Klamt, S., Schuster, S., Palsson, B.: Comparison
of network-based pathway analysis methods. Trends Biotechnol. 22(8), 400–405
(2004)

13. Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network.
Biophys. J. 89(6), 3837–3845 (2005)

14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
15. Clarke, B.: Stability of complex reaction networks. In: Prigogine, I., Rice, S. (eds.)

Advances in Chemical Physics, vol. 43, pp. 1–216. John Wiley & Sons, Chichester
(1980)

16. Schilling, C., Letscher, D., Palsson, B.: Theory for the systemic definition of
metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. J. Theor. Biol. 203(3), 229–248 (2000)

17. Dandekar, T., Moldenhauer, F., Bulik, S., Bertram, H., Schuster, S.: A method for
classifying metabolites in topological pathway analyses based on minimization of
pathway number. BioSystems 70(3), 255–270 (2003)

18. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction sys-
tems at steady state. J. Biol. Syst. 2(2), 165–182 (1994)

19. Clarke, B.: Complete set of steady states for the general stoichiometric dynamical
system. J. Chem. Phys. 75(10), 4970–4979 (1981)

20. Schuster, S., Hilgetag, C., Woods, J., Fell, D.: Reaction routes in biochemical re-
action systems: algebraic properties, validated calculation procedure and example
from nucleotide metabolism. J. Math. Biol. 45(2), 153–181 (2002)

21. Heiner, M., Koch, I., Voss, K.: Analysis and simulation of steady states in metabolic
pathways with Petri nets. In: Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, CPN 2001, Aarhus University, Denmark, pp. 15–34
(2001)

22. Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I., Dandekar, T.: Structural anal-
ysis of metabolic networks: elementary flux modes, analogy to Petri nets, and ap-
plication to Mycoplasma pneumoniae. In: German Conference on Bioinformatics,
GCB 2000, Heidelberg, Germany, pp. 115–120. Logos Verlag (2000)

On Inner and Outer Descriptions of the Steady-State Flux Cone 327

23. Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology
for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics 7, 56 (2006)

24. Klamt, S., Stelling, J.: Two approaches for metabolic pathway analysis? Trends
Biotechnol. 21, 64–69 (2003)

25. Palsson, B., Price, N., Papin, J.: Development of network-based pathway defi-
nitions: the need to analyze real metabolic networks. Trends Biotechnol. 21(5),
195–198 (2003)

26. Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework
and the new binary approach. BMC Bioinformatics 5, 175 (2004)

27. Larhlimi, A., Bockmayr, A.: A new approach to flux coupling analysis of metabolic
networks. In: Berthold, M.R., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS
(LNBI), vol. 4216, pp. 205–215. Springer, Heidelberg (2006)

28. Larhlimi, A., Bockmayr, A.: Minimal direction cuts in metabolic networks. In:
Computational Life Sciences III, CompLife 2007, Utrecht, The Netherlands. Amer-
ican Institute of Physics Conference Series, vol. 940, pp. 73–86 (2007)

29. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M.,
Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer,
Heidelberg (1996)

30. Poolman, M., Fell, D., Raines, C.: Elementary modes analysis of photosynthate
metabolism in the chloroplast stroma. Eur. J. Biochem. 270(3), 430–439 (2003)

31. Wiback, S., Palsson, B.: Extreme pathway analysis of human red blood cell
metabolism. Biophys. J. 83(2), 808–818 (2002)

32. Cakir, T., Tekir, D., Önsan, Z., Kutlu, U., Nielsen, J.: Effect of carbon source
perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces
cerevisiae. BMC Syst. Biol. 18(1) (2007)

33. Klamt, S., Saez-Rodriguez, J., Gilles, E.: Structural and functional analysis of
cellular networks with cellnetanalyzer. BMC Syst. Biol. 1, 2 (2007)

34. von Kamp, A., Schuster, S.: Metatool 5. 0: fast and flexible elementary modes
analysis. Bioinformatics 22(15), 1930–1931 (2006)

A Combinatorial Approach to Reconstruct Petri

Nets from Experimental Data

Markus Durzinsky, Annegret Wagler, and Robert Weismantel

Magdeburg Center of Systems Biology (MaCS),
Otto-von-Guericke Universität Magdeburg,

Universitätsplatz 2,
39106 Magdeburg, Germany

Abstract. For many aspects of health and disease, it is important to
understand different phenomena in biology and medicine. To gain the
required insight, experimental data are provided and need to be inter-
preted, thus the challenging task is to generate all models that explain
the observed phenomena. In systems biology the framework of Petri nets
is often used to describe models for the regulatory mechanisms of biolog-
ical systems. The aim of this paper is to present an exact combinatorial
approach for the reconstruction of such models from experimental data.

1 Introduction

Models of biological systems and phenomena are of high scientific interest and
practical relevance, but not always easy to obtain, as the underlying biological
systems are typically complex and, thus, their structure and function in most
cases non-obvious. One fundamental question in this context is to detect the
local mechanisms of interaction starting from the experimentally observed global
behavior of a biological system.

Structure and function of the studied system can be probed by stimulating
one or several of its elements and by measuring the values of a set of elements as
a function of time to see how this stimulation propagates through the system.
The task is to reconstruct all possible models from such experimental data, i.e.,
to determine the network topology (telling in which way the measured elements
interact with each other) and to describe the dynamic behavior of the system
(by presenting rules how the states of the system change).

In Section 2, we briefly outline an approach proposed in [7] that, starting
with the given experimental data, finally yields all solutions that account for
the time-dependent mass or signal flux in the system. The practical impact of
this approach was shown in [2], where the approach was applied to reconstruct
models from experimental data taken from [4,5,6] describing the light controlled
commitment of sporulation of physarum polycephalum plasmodia [4,6] and the
photocycles in halobacterial sensory rhodopsins [5].

One main step of this approach is to determine the topology of the network
in terms of a Petri net. Thereby, a central issue is to represent the vectors

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 328–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Combinatorial Approach to Reconstruct Petri Nets 329

representing the changes of the values of the observed elements as conic integer
combinations of yet unknown vectors which have to respect certain biological
constraints. The main contribution of this paper is to present an efficient way
for this step using experimental time series data of different quality as input
data of the problem (Section 3).

2 An Approach to the Network Reconstruction Problem

Regulatory mechanisms of biological systems are often modeled as certain bi-
partite graphs related to Petri nets, see [3,8,9]. In this paper we use the Petri
net terminology to present our reconstruction approach.

Let G = (N ∪ T, A, w) be a weighted directed bipartite graph with two
kinds of nodes, so-called places and transitions. The places represent the set
N = {1, . . . , n} of studied elements (as proteins or their conformational states,
enzymes ect.), the transitions t in T = {1, . . . , τ} reactions (as chemical reac-
tions, activations, causal dependencies ect.). The arcs a in A link a place with
a transition (or vice versa) and have some integral weights wa to reflect the
stoichiometric coefficients of the reactions. To keep things simple we assume
without loss of generality that there is no pair of place and transition linked in
both directions.

Each place i ∈ N can be marked with an integral number of tokens and
each labeling of the places with tokens defines a state x ∈ Zn

+ of the system. In
biological systems, all elements can be considered to be bounded, as the value xi

of any state refers to the measured concentration of the studied element, which
can only increase up to a certain maximum ui. Indeed, many of the elements
are binary (ui = 1) to distinguish between the presence (xi = 1) and absence
(xi = 0) of the element only. Thereby the set of all potential states of the system
can be restricted to

X = {x ∈ Zn : 0 ≤ xi ≤ ui ∀i ∈ N} .

This leads to a bounded Petri net P = (G, u).
The system can change its state by switching a transition. We associate with

each transition t ∈ T a reaction vector rt with

rt
i =

⎧⎨⎩
−wit if it ∈ A

wti if ti ∈ A
0 else

and say that t is applicable to a state x ∈ X if x+rt ∈ X holds 1. The dynamic of
a network can be described in terms of reachability (by constructing all possible
switching sequences starting in an initial state) or by means of stronger activation
rules (for deterministic systems where each state has a unique successor state),
see [7,10] for more details.
1 In the usual context of Petri nets, a switching event is called firing and, if the number

of tokens in a place i is not bounded by a capacity ui, a transition is enabled and
can fire if there are enough tokens available in its pre-places.

330 M. Durzinsky, A. Wagler, and R. Weismantel

Reconstructing a network G = (N ∪ T, A, w) from experimental data means
the following. One chooses a set N of elements which are expected to be crucial
for the studied phenomenon. Then one triggers the system (by external stimuli
like the change of nutrient concentrations or the exposition to some pathogens),
thereby generating an initial state x0 of the system. Then one observes how the
system reacts by changing its states according to the stimulus, thereby measuring
the values of the elements in N as a function of time. This generates experimental
time series data X ′ = (x0, x1, . . . , xm) with xj ∈ X for 0 ≤ j ≤ m. Eventually,
this procedure can be repeated for different initial states x0, see [7,10] for more
details.

In the best case, two consecutively measured states xj , xj+1 ∈ X ′ are also
consecutive system states, i.e., xj+1 can be obtained from xj by switching a
single transition. This is, however, in general not the case (and depends on
the chosen time points to measure the states in X ′). Indeed, xj+1 is typically
obtained from xj by a switching sequence

xj = y1 t1−→ y2 t2−→ . . .
tk−→ yk+1 = xj+1

of some length k in a yet unknown network, where the intermediate states
y2, . . . , yk are not reported in X ′, see Figure 1.

(a) (b)

Fig. 1. Sequences of states passed through by an experiment (depicted as directed
paths in the set of states) where only a subset of the passed states is measured (drawn
as black squares)

We say that a network G = (N ∪ T, A, w) is conformal with the given data
X ′ if for any two consecutively measured states xj , xj+1 in X ′ we have that

– for d = xj+1−xj , the linear equation system d = Rλ has a solution λ ∈ Z|T |
+

where R is the incidence matrix of G (with columns rt for all t ∈ T),

– λ is the Parikh vector of a sequence σd,λ = (t1, . . . , tk) of switches, i.e., there
are states xj = y1, y2, . . . , yk+1 =xj+1 ∈X with yl+1 = yl + rtl for 1 ≤ l ≤ k
and λ encodes how often each reaction occurs in the sequence.

To solve this problem of reconstructing a conformal network G = (N ∪ T, A, w)
for a given set N of elements, a capacity vector u ∈ Zn

+, and experimental data
X ′, the following approach was proposed in [7].

A Combinatorial Approach to Reconstruct Petri Nets 331

As initial step, extract the observed changes of states from the experimental
data. For that, define the set

D :=
{
dj = xj+1 − xj : xj , xj+1 ∈ X ′} .

The goal is to find a matrix R s.t. each d ∈ D has an integral conic representation
of the form d = Rλ. Every column rt of R belongs to the set

R = {r ∈ Zn : −ui ≤ ri ≤ ui ∀i ∈ N} \ Zn
+

as each rt has to respect the capacity bounds u, be a lattice point (due to the
integrality of the states), and must not be positive (as no internal reaction can
produce substances without consuming anything).

Remark 1. Note that some elements in N represent external stimuli to the sys-
tem, say all i ∈ Next ⊆ N . We encode such stimuli within the initial state(s)
x0 of the experimental time serie(s), instead of using reactions r ∈ Zn

+ with
ri > 0 for i ∈ Next. Therefore, we can exclude all vectors in Zn

+ from the set
R of all potential reactions in order to consider for the reconstruction process
only vectors corresponding to internal reactions of the system. In addition, for
every i ∈ Next, the value x0

i in an initial state x0 provides a natural upper bound
ui for the number of tokens in place i for any system state (or the maximum
of x0

i taken over all initial states x0, if several time series data are considered
simultaneously).

Thus, the set R contains the vectors corresponding to all potential reactions of
the studied network (resp. transitions of the Petri net). We are interested in this
(inclusion-wise) minimal subset B of R which is necessary to provide for each
d ∈ D all representations in the form

d =
∑

rt∈R
λt rt, λt ∈ Z+. (1)

Indeed, there are typically several solutions λ for this equation system as different
sequences can link two consecutively measured states in X ′, see Figure 1 again.
Note that in both pictures (a) and (b), the sets of measured states (drawn as
black squares) are the same, while the sequences of intermediate states passed
through by the experiment differ. We have to take into account all possible
solutions and denote by Λ(d) the set of all integral solutions of the linear equation
system (1). For each vector λ ∈ Λ(d), let

Rd,λ = {rt ∈ R : λt �= 0}

be the (multi-)set of reactions used for this representation λ, and let

R(d) =
⋃

λ∈Λ(d)

Rd,λ

332 M. Durzinsky, A. Wagler, and R. Weismantel

be the set of all reactions used for these representations. By construction,

B =
⋃

d∈D
R(d)

holds.
We discuss in Section 3 how the two sets Λ(d) and R(d) can be determined.

It turns out that in general (without any restriction on the intermediate states
between two consecutively measured states in X ′), the set Λ(d) is infinite and the
set R(d) equals R for any n ≥ 3. Thus, the reconstruction problem is in general
a trivial task and the network generated from B = R is certainly conformal with
X ′, but also with any other experimental data within X (Section 3.1).

The situation changes if the provided experimental data are of a certain qual-
ity, called locally bounded and monotone data, which reflect more or all changes
of states that are crucial to describe the studied biological phenomenon. We
show that in these cases both sets R(d) and Λ(d) are substantially smaller than
in the general case and that the problem can be efficiently solved (Section 3.2
and Section 3.3).

However, it can happen that there exists no network being conformal with
locally bounded or monotone data. We provide a feasibility test to detect this
situation directly by inspecting the set D. If our analysis shows that there is no
network conformal with the yet considered data, then additional non-observed
elements are required to provide us with a meaningful model (which leads to a
mixed case as there is no restriction for the values of the artificial elements). We
again determine R(d) and Λ(d) and show that there exists always a conformal
network using two artificial elements.

In summary, we present for different types of experimental data a complete
description of the sets R(d) and Λ(d) and an efficient way to determine the stud-
ied conformal network.

3 The Integer Decomposition of the Difference Vectors

The aim of this section is to determine, for each d ∈ D, the sets Λ(d) of integral
solutions λ of system (1) and R(d) ⊆ R of reactions used for these representa-
tions for different types of experimental data.

3.1 The General Case

In order to determine Λ(d) in the general case, i.e., without any restriction on
the intermediate states between two consecutively measured states in X ′, we
have also to consider the integral solutions η of the homogeneous system∑

rt∈R
ηtr

t = 0, ηt ∈ Z+,

and denote the set of all homogeneous solutions η �= 0 by Λ(0). The reason is that
every solution λ ∈ Λ(d) can be extended by a homogeneous solution η ∈ Λ(0)

A Combinatorial Approach to Reconstruct Petri Nets 333

to a new solution λ + η ∈ Λ(d). More precisely, Λ(d) can be represented by two
finite and uniquely determined minimal sets Λinhom(d) and H ⊂ Λ(0) such that

Λ(d) = Λinhom(d) + coneZ(H),

where coneZ(H) is the set of all integral conic combinations of vectors in H (the
so-called Hilbert basis of Λ(0), see [1,10] for more details).

Theorem 1. The set Λ(d) is

– empty if and only if n = 1, d > 0 or n = 2, d > 0, and u = 1,
– finite if and only if n = 1, d ≤ 0, and
– infinite otherwise.

Proof. We always have a representation for d �≥ 0 (as d ∈ R allows the solution
λ = et with rt = d) and for d = 0 (as the empty sequence λ = 0 is also a
solution). Consider now d > 0. For n = 1, there is clearly no representation as
R = {(−1), (−2), . . . , (−u1)}. For n = 2 and u = 1 we obtain

R =
{(

−1
−1

)
,

(
−1

0

)
,

(
−1

1

)
,

(
0
−1

)
,

(
1
−1

)}
and it is straightforward to see that (1) has no solution λ ∈ Z|R|

+ . For n = 2 and
u �= 1, say u1 ≥ 2, there is always a representation as any d can be decomposed as

d =
(

d1

−1

)
+
(
−1
d2

)
+ 2 ·

(
2

−1

)
+ 3 ·

(
−1

1

)
For n ≥ 3, we can always represent d = (d1, d2, d3, d

′)T for any u by

d =

⎛⎜⎝ d1

1
−1
d′

⎞⎟⎠+

⎛⎜⎝−1
d2

1
0

⎞⎟⎠+

⎛⎜⎝ 1
−1
d3

0

⎞⎟⎠ .

Hence, we have Λinhom(d) = ∅ and thus Λ(d) = ∅ if and only if d > 0 and
n = 1 or n = 2 and u = 1. There always exist homogeneous solutions, except for
n = 1. Combining the sets Λinhom(d) and H yields finally the assertion of the
theorem. �

Thus, except for some pathological cases, Λ(d) is infinite; whether a solution
λ ∈ Λ(d) has to be taken into account depends, however, on its realization as
a sequence σd,λ of switches. The inhomogeneous solutions λ ∈ Λinhom(d) are
minimal in the sense that, for any η ∈ H , the sets of involved reactions satisfy
Rd,λ ⊂ Rd,λ+η. We can discard those non-minimal solutions λ + η where in all
possible sequences σd,λ+η the reactions corresponding to η are consecutive and,
thus, form a cycle (i.e., there is a sequence σd,λ realizing the inhomogeneous
part λ of the solution, and on some intermediate state yl, the cycle of reactions
corresponding to the homogeneous part η is attached, returning back to the state

334 M. Durzinsky, A. Wagler, and R. Weismantel

yl). However, a solution λ + η is feasible if there exists a sequence σd,λ+η such
that the reactions corresponding to η are not consecutive and, thus, the sequence
is cycle-free. Indeed, for the sake of completeness we have to consider the subset
Λσ(d) of Λ(d) consisting of all inhomogeneous solutions λ ∈ Λinhom(d) and of all
feasible combinations λ+η1 + . . .+ηl with λ ∈ Λinhom(d), ηi ∈ H . Thus, Λσ(d) is
certainly finite (since there are only finitely many cycle-free paths between the
finitely many states in X), but still far too large in general and might contain
solutions without a meaningful biological interpretation.
R(0) is the set of reactions to represent the zero vector, so these are the

reactions involved in at least one minimal homogeneous solution.

Lemma 1. We have that R(0)

– is empty if and only if n = 1,
– equals

{(−1
1

)
,
(

1
−1

)}
if and only if n = 2, u = 1, and

– equals R otherwise.

Proof. If n = 1, there is no non-trivial solution of equation (1) using negative
reactions only, and R(0) = ∅.

If n = 2 and u = 1, then
(−1

1

)
+
(

1
−1

)
is the unique minimal cycle, thus R(0)

contains these two reactions only.
If n = 2 and u �= 1, say u2 ≥ 2, then any r = (r1

r2) ∈ R is part of a represen-
tation, namely(

0
0

)
=
(

r1

r2

)
+
(
−r1

−1

)
+
(
−1
−r2

)
+ 3 ·

(
1
−1

)
+ 2 ·

(
−1

2

)
.

If n ≥ 3, there is a homogeneous solution using any r ∈ R as well. Let
r = (r1, r2, r

′) with r′ ∈ Zn−2, then r is used in the representation⎛⎝ 0
0
0

⎞⎠ =

⎛⎝ r1

r2

r′

⎞⎠+

⎛⎝−1
−r2

−r′

⎞⎠+

⎛⎝−r1

−1
1

⎞⎠+

⎛⎝ 1
1

−1

⎞⎠ .

��

As clearly R(0) ⊆ R(d) holds for any d ∈ D with Λ(d) �= ∅, we obtain:

Theorem 2. The set R(d) is

– empty if and only if n = 1, d ≥ 0 or n = 2, d > 0, and u = 1,
– equals {d, d + 1, . . . ,−2,−1} if and only if n = 1, d < 0
– equals {r ∈ R : r1 + r2 ≥ d1 + d2} if and only if n = 2, d �> 0, u = 1, and
– equals R otherwise.

Proof. If n = 1, then any vector d < 0 can be represented with any r ∈ {d, d +
1, . . . ,−2,−1} by

d =
{

r if r = d
r + r′ if r �= d

where r′ = d − r < 0. Otherwise no reaction r < 0 can be used to represent a
vector d ≥ 0.

A Combinatorial Approach to Reconstruct Petri Nets 335

If n = 2, u = 1, we have Λ(d) = ∅ for any d > 0 (by Theorem 1), hence
R(d) is empty. In the case of d �> 0, the vector d is either zero or has a negative
component. In the former case, we obtain from the previous lemma

R(0) =
{(

−1
1

)
,

(
1

−1

)}
= {r ∈ R : r1 + r2 ≥ 0}.

In the latter case, say d1 = −1 and d2 ∈ {−1, 0, 1}, we examine the possible
sums d1 + d2 and r1 + r2 for any reaction r ∈ R.

d1 + d2 ∈ {−2,−1, 0}

r1 + r2 =

⎧⎨⎩
−2 if r =

(−1
−1

)
−1 if r ∈

{(−1
0

)
,
(

0
−1

)}
0 if r ∈

{(−1
1

)
,
(

1
−1

)}
For any representation d = r1 + r2 + · · ·+ rk, also

d1 + d2 = (r1
1 + r1

2) + · · ·+ (rk
1 + rk

2)

holds. Hence, r =
(−1
−1

)
can only be used if d1 + d2 = −2 and the reactions(−1

0

)
,
(

0
−1

)
can only be used if d1 + d2 ≤ −1. All other combinations are indeed

possible.

d =
(
−1
−1

)
=
(
−1

0

)
+
(

0
−1

)
⇒R(d) = R

d =
(
−1

0

)
=
(

0
−1

)
+
(
−1

1

)
⇒R(d) =

{(
−1

0

)
,

(
0
−1

)
,

(
−1

1

)
,

(
1

−1

)}
d =

(
−1

1

)
=
(
−1

1

)
⇒R(d) = R(0)

These sets contain exactly those reaction vectors with r1 + r2 ≥ d1 + d2.
In all other cases, n = 2 and u > 1 or n ≥ 3, Theorem 1 shows Λ(d) �= ∅

and the previous lemma implies R(0) = R, hence the final assertion R(d) = R
follows. �

Thus, except for some pathological cases, already R(d) = R holds and building
B =

⋃
d∈DR(d) cannot exclude any vector from R.

Corollary 1. For general experimental data X ′ and n ≥ 3, the incidence matrix
of the conformal network contains all potential reaction vectors from R.

Hence, the reconstruction problem is a trivial task in the general case as the con-
formal network can be generated without solving the linear equation system (1)
and the generated network is conformal with any experimental data on N .

3.2 The Case of Locally Bounded Experimental Data

From our analysis of the general case, the question emerges whether a nontrivial
reconstruction process for a given series of experimental data is possible if the

336 M. Durzinsky, A. Wagler, and R. Weismantel

data meet a certain quality which restricts the intermediate sequences linking
two consecutively measured states.

From a biological point of view it is interesting to consider the case when the
network elements have been measured so accurately that an oscillation of their
values between two measured states can be restricted a priori. This is the setting
where we can assume that the chosen level of resolution in time to produce the
time series data X ′ suffices to guarantee the following property:

Definition 1. We say that the experimental data X ′ are locally bounded if for
any two consecutively measured states xj , xj+1 ∈ X ′ and d = xj+1 − xj, the
intermediate states yl of the sequence

xj = y1, y2, . . . , yk, yk+1 = xj+1

belong to the box

X (d) = {y ∈ X : yi ∈ [xj
i , x

j+1
i] for all i ∈ N}.

Figure 2 shows again the two sequences from Figure 1 where for any two consec-
utively measured states (indicated by black squares) the state boxes are included
(drawn as grey-shaded regions). While the sequence (a) is locally bounded, the
sequence (b) is not since states outside the boxes are visited.

(a) (b)

Fig. 2. Sequences of states passed through by an experiment (depicted as directed paths
in the set of states) where the subset of measured states (drawn as black squares) are
(a) and are not (b) locally bounded

Remark 2. Note that the experimental sequence from Figure 1(b) can be turned
into locally bounded data by measuring additional states (in Figure 3(b) depicted
as white squares) as then the state boxes (again drawn as grey-shaded regions)
indeed cover the whole experimental sequence.

As in the case of locally bounded data, in all intermediate states the values of
the elements cannot arbitrarily oscillate, we have to choose the columns of the
studied matrix R from the set

Box(d) =
{

r ∈ Zn : −|di| ≤ ri ≤ |di| if di �= 0
ri = 0 if di = 0

}
\ Zn

+

A Combinatorial Approach to Reconstruct Petri Nets 337

(b)(a)

Fig. 3. Experimental sequence (depicted as directed path) where the subset of origi-
nally measured states (drawn as black squares) in (a) is extended by additional states
(depicted as white squares) in order to obtain locally bounded data (b)

in order to represent a vector d ∈ D which reduces the problem to find all integral
solutions λ of the system ∑

rt∈ Box(d)

λtr
t = d, λt ∈ Z+ (2)

and we only have to consider homogeneous solutions η of the system∑
rt∈ Box(d)

ηtr
t = 0, ηt ∈ Z+

as well.
That is, for the representation of any vector d ∈ D, we are locally in the

general setting. More precisely, we restrict the set of considered places to those
i ∈ supp(d) (i.e., to all i ∈ N with di �= 0), and use |di| as capacity bound for
any i ∈ supp(d) instead of ui. This implies that we obtain X (d) instead of X as
state space and Box(d) instead of R as reaction space.

Hence, we deduce as immediate consequence of Theorem 1:

Theorem 3. For locally bounded experimental data, the set Λ(d) is

– empty if and only if |supp(d)| = 1, d > 0 or |supp(d)| = 2, d > 0, and di = 1
for all i ∈ supp(d),

– finite if and only if |supp(d)| = 1, d ≤ 0, and
– infinite otherwise.

Proof. The set Box(d) is the projection of R to supp(d) and with bounds ui =
|di| for all i ∈ supp(d). Hence, this statement follows directly from Theorem 1
by adjusting the dimension n to |supp(d)| and the bounds u according to d. �

Thus, except for some cases, Λ(d) is infinite; whether a solution λ ∈ Λ(d) has
to be taken into account depends again on its realization as a sequence σd,λ of
switches. The inhomogeneous solutions λ ∈ Λinhom(d) are minimal and for any

338 M. Durzinsky, A. Wagler, and R. Weismantel

η ∈ H(d) ⊆ H using vectors from Box(d) only, a solution λ + η is feasible if
there exists a cycle-free sequence σd,λ+η. For the sake of completeness we have to
consider the subset Λσ(d) of Λ(d) consisting of all inhomogeneous solutions λ ∈
Λinhom(d) and of all feasible combinations λ+η1+. . .+ηl with λ ∈ Λinhom(d), ηi ∈
H(d). Thus, Λσ(d) is certainly finite (since there are only finitely many cycle-free
paths between the finitely many states in X (d)), and smaller than in the general
case.

Theorem 4. For locally bounded experimental data, the set R(d) is

– empty if and only if |supp(d)| = 1, d > 0 or |supp(d)| = 2, d > 0, and di = 1
for all i ∈ supp(d),

– equals {ei − ej , ej − ei} if and only if |supp(d)| = 2, di = 1, dj = −1, and
– equals Box(d) otherwise.

Proof. This Theorem can also be derived directly from Theorem 2 by adjusting
n and u as follows.

If |supp(d)| = 1, d > 0 or supp(d) = 2, d > 0, and di = 1 for all i ∈ supp(d),
then R(d) is empty.

If |supp(d)| = 1, d ≤ 0, then d has exactly one negative entry di < 0 and
R(d) = {d, d + ei, . . . ,−2ei,−ei} which actually equals Box(d).

If |supp(d)| = 2, d �> 0, |di| = 1 for all i ∈ supp(d), say di, dj ∈ {−1, 1}, then
R(d) = {r ∈ Box(d) : ri + rj ≥ di + dj}. In the case of di = −1 and dj = −1,
the property ri + rj ≥ di + dj = −2 is always true, such that R(d) = Box(d)
holds. In the other cases, where di and dj have different signs, the property
ri + rj ≥ di + dj = 0 is true only for r ∈ {ei − ej, ej − ei}.

In all remaining cases the sets R(d) and Box(d) are always equal. �

Thus, whenever d �> 0 or |supp(d)| ≥ 3 holds, R(d) is explicitly known and
building B =

⋃
d∈DR(d) can be easily done without any computation. However,

in two cases with d > 0 and |supp(d)| ≤ 2, we obtain R(d) = ∅ and, thus, d
cannot be represented. This implies:

Corollary 2. For locally bounded experimental data

– there is no conformal network if and only if there exists a vector d ∈ D with
|supp(d)| = 1, d > 0 or |supp(d)| = 2, d > 0, and di = 1 for all i ∈ supp(d);

– if a conformal network exists, then B =
⋃

d∈DR(d) holds where R(d) =
{ei − ej , ej − ei} for any d with |supp(d)| = 2, di = 1, dj = −1, and
R(d) = Box(d) otherwise.

Hence, if a conformal network exists, then the reconstruction problem is an
easy task in the case of locally bounded experimental data, as the conformal
network can be generated even without explicitly solving the linear equation
system (2). Moreover, we can deduce an efficient feasibility test for the existence
of a conformal network by inspecting the set D only which implies that the
problem is not solvable with the considered set N of elements in the two cases

A Combinatorial Approach to Reconstruct Petri Nets 339

with d > 0 and |supp(d)| ≤ 2. In this situation, we have to extend the set of
elements by some additional elements and partition the index set accordingly into
N = No ∪Na where No contains the indices 1, . . . , n of all original elements and
Na the indices n + 1, . . . , n + a of all additional elements. We choose an upper
bound ui = 1 for the capacity of each i ∈ Na (as we can only deal with the
availability of the additional elements). The n-dimensional vectors xj ∈ X ′ and
d ∈ D have to be extended to vectors xj and d of dimension n+ a, starting with
unknown values for the additional elements (as those elements were not subject
to experimental observation). We call this situation the mixed locally bounded
case as the values of the additional elements clearly cannot be restricted, but
the values of the original elements only. The columns of the matrix R have to
be chosen from the set

Box(d) =

⎧⎨⎩r ∈ Zn+a :
−|di| ≤ ri ≤ |di| if i ∈ No, di �= 0

ri = 0 if i ∈ No, di = 0
−1 ≤ ri ≤ 1 if i ∈ Na

⎫⎬⎭ \ Zn+a
+

and the system ∑
rt∈Box(d)

λtr
t = d, λt ∈ Z+ (3)

has to be solved for all possible start values di ∈ {−1, 0, 1} for all i ∈ Na. In
addition, we have to consider homogeneous solutions η of the system∑

rt∈Box(d)

ηtr
t = 0, ηt ∈ Z+.

In the mixed locally bounded case with a = 1, we obtain:

Theorem 5. For locally bounded experimental data on No and a = 1, R(d) is

– empty if and only if d = 0, dn+1 ≥ 0 or |supp(d)| = 1, d > 0 and di = 1
with i ∈ supp(d),

– equals {d} if and only if d = 0 and dn+1 = −1,
– equals {r ∈ Box(d) : ri + rn+1 ≥ di + dn+1} if and only if |supp(d)| = 1,

d �> 0, |di| = 1 with i ∈ supp(d), and
– equals Box(d) otherwise.

Proof. The projection of Box(d) to supp(d) ∪ Na results in the set of all reac-
tions with an upper bound ui = |di| for the original elements and ui = 1 for
the additional elements. This allows us to apply Theorem 2 by adjusting the
dimension to |supp(d)|+ a and the bounds as specified.

If |supp(d)| = 0 and dn+1 ≥ 0, we have R(d) = ∅. If |supp(d)| = 0 and
dn+1 = −1, the set R(d) reduces to the single vector d = (0−1).

If |supp(d)| = 1, let di be the single non-zero entry and |di| = 1 (implying and
upper bound u = 1 for Theorem 2). In the case of d ≥ 0, the set R(d) is again
empty. Otherwise di has a negative entry and we derive R(d) = {r ∈ Box(d) :
ri + rn+1 ≥ di + dn+1}.

In all other than the above cases, the set R(d) equals Box(d). �

340 M. Durzinsky, A. Wagler, and R. Weismantel

Thus, for every single vector d ∈ D there is an extension d which has a represen-
tation. The existence of a conformal network depends, therefore, on the sequence
of vectors in D. The previous theorem implies that there is no conformal net-
work using one additional element if and only if X ′ gives rise to two consecutive
positive vectors. In this situation, two additional elements are required:

Theorem 6. For locally bounded experimental data on No and a = 2, R(d) is

– empty if and only if d = 0,
(

dn+1

dn+2

)
> 0,

– equals {r ∈ Box(d) : rn+1 + rn+2 ≥ dn+1 + dn+2} if and only if d = 0,(
dn+1

dn+2

)
�> 0, and

– equals Box(d) otherwise (i.e., if |supp(d)| ≥ 1).

Proof. This theorem can be derived similarly to Theorem 5 with the only differ-
ence that a = 2 rises the dimension once more.

If |supp(d)| = 0, we use an upper bound u = 1 for each reaction. Applying
Theorem 2 results in R(d) = ∅ if d > 0 and R(d) = {r ∈ Box(d) : rn+1 +rn+2 ≥
dn+1 + dn+2} otherwise.

Any d with |supp(d)| ≥ 1 immediately results in R(d) = Box(d). �

Thus, for every single vector d ∈ D there is an extension d which has a represen-
tation. In addition, we can find suitable extensions for two consecutive positive
vectors dj , dj+1 ∈ D, for instance

d
j

=

⎛⎝ dj

−1
0

⎞⎠ and d
j+1

=

⎛⎝dj+1

0
−1

⎞⎠
which implies the existence of a network being conformal with any locally boun-
ded experimental data X ′ using up to two artificial elements.

3.3 The Case of Monotone Experimental Data

An even better situation occurs if the network elements can be measured so
accurately that an oscillation of their values inbetween two measured states can
be excluded a priori. This is the setting where we can assume that the chosen
level of resolution in time to produce the time series data X ′ suffices to guarantee
the following property:

Definition 2. We say that the experimental data X ′ are monotone if for any
two consecutively measured states xj , xj+1 ∈ X ′ and d = xj+1 − xj, the inter-
mediate states yl of the sequence

xj = y1, y2, . . . , yk, yk+1 = xj+1

satisfy

– y1
i ≤ y2

i ≤ . . . ≤ yk
i ≤ yk+1

i for all i ∈ N with xj
i ≤ xj+1

i and
– y1

i ≥ y2
i ≥ . . . ≥ yk

i ≥ yk+1
i for all i ∈ N with xj

i ≥ xj+1
i .

A Combinatorial Approach to Reconstruct Petri Nets 341

Monotone data are in particular locally bounded, hence all intermediate states
yl belong to the box X (d) again.

Recall that Figure 3 shows the sequence from Figure 1(a) and the refined
sequence from Figure 2(b) where for any two consecutively measured states
(indicated by black and white squares) the state boxes are included (drawn as
grey-shaded regions). While the sequence (a) is monotone, the sequence (b) is
not since in the last state box of the sequence, the values of one element oscillate
(w.r.t. the vertical axis).

Remark 3. Note that the refined experimental sequence from Figure 3(b) can
be turned into monotone data by measuring two further states (in Figure 4(b)
the two last white squares in the sequence) as then no oscillation of the values
within the state boxes (again drawn as grey-shaded regions) occurs anymore.

(b)(a)

Fig. 4. Experimental sequence (depicted as directed path) where the subset of origi-
nally measured states (drawn as black squares) in (a) is extended by additional states
(the last two white squares in the sequence) in order to obtain monotone data (b).

As in the case of monotone data, in all intermediate states the values of the
elements cannot oscillate at all, we have to choose the columns of the studied
matrix R from the set

Mon(d) =

⎧⎨⎩r ∈ Zn :
0 ≤ ri≤ di if di > 0

di ≤ ri≤ 0 if di < 0
ri = 0 if di = 0

⎫⎬⎭ \ Zn
+

in order to represent a vector d ∈ D which reduces the problem to find all integral
solutions λ of the system ∑

rt∈ Mon(d)

λtr
t = d, λt ∈ Z+. (4)

In fact, no homogeneous solutions have to be considered in the monotone case
and we can characterize R(d) explicitly:

342 M. Durzinsky, A. Wagler, and R. Weismantel

Theorem 7. Let X ′ satisfy the monotonicity property.

– For each d ∈ D, we have Λ(d) = Λinhom(d) and R(d) = Mon(d) \ U0 with

U0 =
{

r ∈ Zn :
ri = di for all i with di ≤ 0
ri �= di for at least one i with di > 0

}
.

For d > 0 it follows that Mon(d) = ∅ and Λ(d) = ∅.
– There is a network conformal with X ′ if and only if there is no d ∈ D with

d > 0.

Proof. Due to the monotonicity property, R(d) ⊆ Mon(d) clearly holds. As for
any i ∈ N and all r ∈ Mon(d), the entries ri are either all negative, all positive,
or all equal to zero, there are clearly no homogeneous solutions, which implies
H = ∅ and Λ(d) = Λinhom(d).

From d > 0 it follows r ≥ 0 for any r ∈ Mon(d), thus Mon(d) is empty. The
vector d = 0 has a representation by λ = 0. If d � 0 then d ∈Mon(d)\U0 allows
the solution λ = et with rt = d. Thus, Λ(d) and R(d) are non-empty iff d is
not positive. We next characterize which vectors occur in a representation of d.
Assume there is a representation λ ∈ Λ(d) with λt > 0 for some vector rt ∈ U0.
Then λ− et is a representation for d− rt > 0 using reactions from Mon(d) only,
a contradiction. All remaining reactions r ∈ Mon(d)\U0 with r �= d can indeed
be used to represent d, as also r′ = d−r ∈ Mon(d)\U0 holds (and thus d = r+r′

is a representation). This implies indeed R(d) = Mon(d) \ U0.
There is a network being conformal with X ′ if and only if Λ(d) �= ∅ for all

d ∈ D and the minimal network B =
⋃

d∈DR(d) containing all networks being
conformal with X ′ is explicitly known (without any computation). �

In particular, Λ(d) contains minimal inhomogeneous solutions only; it is not
necessary to solve equation system (4) in order to determine B as all sets R(d)
can be listed explicitly.

Moreover, we can deduce an efficient feasibility test for both the existence of a
representation for d ∈ D and a conformal network: whenever a positive vector d
occurs in D, the problem is not solvable with the considered set N of elements.

In this situation, we again extend the set of elements by additional elements
in Na = {n + 1, . . . , n + a} with ui = 1 for each of them and extend the n-
dimensional vectors in X ′ and D accordingly. We call this situation the mixed
monotone case as the additional elements clearly do not satisfy the monotonicity
property, but the original elements only. The columns of the matrix R have to
be chosen from the set

Mon(d) =

⎧⎪⎪⎨⎪⎪⎩r ∈ Zn+a :

0 ≤ ri ≤ di if i ∈ No, di > 0
di ≤ ri ≤ 0 if i ∈ No, di < 0

ri = 0 if i ∈ No, di = 0
−1 ≤ ri ≤ 1 if i ∈ Na

⎫⎪⎪⎬⎪⎪⎭ \ Zn+a
+

and the system ∑
rt∈Mon(d)

λtr
t = d, λt ∈ Z+ (5)

A Combinatorial Approach to Reconstruct Petri Nets 343

has to be solved for all possible start values di ∈ {−1, 0, 1} for all i ∈ Na. In the
mixed monotone case, homogeneous solutions can involve additional elements
only; thus all of them are integral solutions η of the system∑

rt∈R(0)

ηtr
t = 0, ηt ∈ Z+

using vectors from the following set

R(0) =
{

r ∈ Zn+a : ri = 0 if i ∈ No

−1 ≤ ri ≤ 1 if i ∈ Na

}
\ Zn+a

+ .

In the mixed monotone case with a = 1, for every single vector d ∈ D there
is an extension d which has a representation. Thus, the existence of a conformal
network again depends on the sequence of vectors in D.

Theorem 8. Let X ′ satisfy the monotonicity property on No and let a = 1.

– For each d ∈ D, we have Λ(d) = Λinhom(d) and R(d) ⊆Mon(d) \ U1 with

U1 =

⎧⎨⎩r ∈ Zn+1 :
ri = di for all i ∈ No with di ≤ 0
ri �= di for at least one i ∈ No with di > 0

rn+1 = −1

⎫⎬⎭ .

Moreover, if d > 0, then there is a unique representation

R(d) =
{(

d
−1

)}
and Λ(d) =

{
et : rt =

(
d
−1

)}
.

– There is a network conformal with X ′ if and only if X ′ does not contain
three consecutive states xj , xj+1, xj+2 ∈ X ′ with dj , dj+1 > 0.

Proof. Due to the monotonicity property on No and un+1 = 1, R(d) ⊆ Mon(d)
follows. As R(0) consists of the vector (0, . . . , 0,−1)T only, there are clearly no
homogeneous solutions, which implies H = ∅ and Λ(d) = Λinhom(d) again. For
any d ∈ D, we have rt = (d,−1)T ∈ Mon(d) \ U1 and thus λ = et is always a
solution. Thus, for any d ∈ D there is an extension d such that both sets R(d)
and Λ(d̄) are non-empty.

If d > 0, then Mon(d̄) only contains vectors r with rn+1 = −1. This yields
d̄n+1 = −1, and thus a single reaction has to create all changes on No at once,
which makes the above described representation the unique one in Λ(d̄). Any
representation λ ∈ Λ(d̄) with λt > 0 for some rt ∈ U1 would result in a repre-
sentation λ− et of the vector d̄− rt > 0 using only reactions from Mon(d̄), but
d̄n+1 − rt

n+1 ≥ 0 contradicts the unique representation. Hence, only reactions
r /∈ U1 can be used.

If there are three consecutive states xj , xj+1, xj+2 ∈ X ′ with dj , dj+1 > 0, the
unique representations imply d

j

n+1 = −1 (and thus xj
n+1 = 1 and xj+1

n+1 = 0) and

d
j+1

n+1 = −1 (and thus xj+1
n+1 = 1 and xj+2

n+1 = 0), a contradiction. Hence, there is
no conformal network in this situation, but there is always one otherwise (as we
can find appropriate values for the additional element). �

344 M. Durzinsky, A. Wagler, and R. Weismantel

Thus, if X ′ gives rise to two consecutive positive vectors in D, at least two
additional elements are required. We next obtain that two such elements always
suffice to obtain a conformal network. Since in this situation the set Λ(d) is
infinite for each d ∈ D, we consider again the realizations of the solutions in
Λ(d) as sequences. For a = 2, there is exactly one minimal homogeneous solution
η ∈ H using the two vectors rt = (0, . . . , 0, 1,−1)T and rt′ = (0, . . . , 0,−1, 1)T .
Thus, any solution in Λσ(d) is of the form λ + k η with λ ∈ Λinhom(d) and the
vectors corresponding to λ alternate in the worst case with rt and rt′ in any
sequence σd,λ+k η. This enables us to derive an upper bound on the number of
solutions in Λσ(d).

Theorem 9. Let X ′ satisfy the monotonicity property on No and a = 2.
– For each d ∈ D, the set Λ(d) is empty iff d ≥ 0, dn+1 + dn+2 ≥ 1 and

infinite otherwise. We have |Λσ(d)| ≤
(
1 + |R(d) |

)l
with l ≤ 1+2

∑
i≤n |di|

and R(d) ⊆ Mon(d).
– There is always a network being conformal with X ′.

Proof. Due to the monotonicity property on No and un+1 = un+2 = 1, R(d̄) ⊆
Mon(d̄) follows. If d ≥ 0, then similar arguments as in the general case show
that there is no representation if (d̄n+1, d̄n+2)T > 0; otherwise we have a valid
decomposition d̄ = (d, +1,−1)T +(0,−1, +1)T whenever d̄n+1 = d̄n+2 = 0 holds.
If d̄ � 0, then d̄ = rt ∈ Mon(d̄) follows and d̄ can be represented by λ = et.
Thus, there is for any d ∈ D an extension d such that Λinhom(d̄) is non-empty,
and the existence of a homogeneous solution η ∈ H implies that Λ(d̄) is infinite.

The number of representations in Λσ(d̄) is at most the number of sequences
σd,λ, which is clearly bounded by

∑l
i=0 |R(d̄)|i ≤ (1 + |R(d̄)|)l with l being

the maximal length of such a sequence. To also derive a bound on l, consider a
subsequence σ′ of σd,λ with d′ = r1 + r2 + · · ·+ rk consisting of reactions from

R(0) =

⎧⎨⎩
⎛⎝ 0
−1
−1

⎞⎠ ,

⎛⎝ 0
−1

0

⎞⎠ ,

⎛⎝ 0
−1

1

⎞⎠ ,

⎛⎝ 0
0
−1

⎞⎠ ,

⎛⎝ 0
1

−1

⎞⎠⎫⎬⎭
only. For any ri ∈ R(0), ri

n+1 + ri
n+2 ≤ 0 holds, thus d′n+1 + d′n+2 ≤ 0 follows,

which implies either d′ = 0 (the subsequence is a cycle) or d′ has a negative
component (thus, d′ ∈ R(0)). Hence, in any representation of d̄, each subse-
quence only modifying the elements Na can be replaced by a single reaction in
R(0), without changing the behavior of the network. We only have to consider
sequences, where each reaction in R(0) is followed by a reaction r ∈ R which
modifies an original element i ∈ No. Due to the monotonicity property, such
changes on No can occur at most

∑
i≤n |di| times, which leads to the specified

bound.
One conformal network can be obtained by alternatively extending the differ-

ence vectors

d̄1 =

⎛⎝ d1

−1
+1

⎞⎠ , d̄2 =

⎛⎝ d2

+1
−1

⎞⎠ , . . . , d̄m =

⎛⎝ d1

∓1
±1

⎞⎠ ,

A Combinatorial Approach to Reconstruct Petri Nets 345

and using these vectors as reactions and representations. Thus, for a = 2 there
is always a conformal network. �
Hence, our results show that we can efficiently solve the problem to reconstruct
a conformal network using up to two additional elements, if the experimental
data are monotone.

4 Concluding Remarks

To summarize, we provide in this paper different results for the reconstruction
of a conformal network, depending on the quality of the provided experimental
time series data X ′:

– In the general case where no information is known on the intermediate states
between two consecutively measured states in X ′, we have to consider homo-
geneous solutions in order to represent a difference vector d ∈ D. As soon as
at least 3 elements are considered in N , all potential reactions from R occur
in one minimal homogeneous solution (Lemma 1), which implies R(d) = R
for all d ∈ D (Theorem 2) and, thus, also B = R (Corollary 1). Hence, none
of the potential reactions from R can be excluded as transition of the stud-
ied conformal network. As consequence, the network has a huge number of
transitions (and is also conformal with any other experimental data using
the elements in N).

– In the case of locally bounded data, an oscillation of the values of the in-
termediate states between two consecutively measured states in X ′ can be
restricted as all such states belong to the box X (d). Here, the representations
of d and the involved homogeneous solutions use exclusively reactions from
the restricted set Box(d). This setting corresponds locally to the general case
(using d instead of u as capacity bound, X (d) instead of X as state space,
and Box(d) instead of R as reaction space) which is reflected by Theorem
3 and Theorem 4. In contrary to the general case, the representability of
a vector d ∈ D does not depend on the number of elements in N , but in
its support. This implies a feasibility test for the existence of a conformal
network: the problem is not solvable with the considered set N of elements
in two cases with d > 0 and |supp(d)| ≤ 2 (Corollary 2). If, however, a
conformal network exists as d �> 0 or |supp(d)| ≥ 3 holds for all d ∈ D, each
set R(d) is explicitly known and B can be easily constructed without any
computation (Corollary 2).

– In the case of monotone data, an oscillation of the values of the intermediate
states between two consecutively measured states xj , xj+1 in X ′ can be ex-
cluded. Thus, no homogeneous solutions occur and the representations of d
use exclusively reactions from the restricted set Mon(d). We can characterize
the set R(d) for all d ∈ D (Theorem 7) and, thus, again explicitly construct
the set B without any computation, provided a conformal network exists.
We again have a feasibility test for the existence of a conformal network: the
problem is not solvable with the considered set N of elements if and only if
D contains a positive vector.

346 M. Durzinsky, A. Wagler, and R. Weismantel

To conclude, we could show for all three cases in which situations a conformal
network exists. In particular, it turned out that it is not necessary to determine
the set Λ(d), as we could characterize all setsR(d) combinatorially and, thus, the
set B can be explicitly constructed without any computation. While infeasibility
occurs in the general setting only in some pathological cases (with n ≤ 2), we
have infeasibility in the locally bounded (and, thus, in the monotone) case if
one vector d ∈ D is positive. If this happens, we introduce additional elements
which enables us to generate conformal networks as there exists a network being
conformal with such data with

– a = 1 if and only if D contains no two consecutive vectors dj , dj+1 > 0;
– a = 2 always.

Thus, we conclude that the proposed approach provides a powerful tool for
efficiently reconstructing Petri net models of biological systems.

Acknowledgment. The authors thank Monica Heiner for helpful discussion
which helped to improve the presentation of the results.

References

1. Bertsimas, D., Weismantel, R.: Optimization over Integers. Dynamic Ideas, Bel-
mont, MA (2005)

2. Durzinsky, M., Marwan, W., Wagler, A., Weismantel, R.: Automatic reconstruc-
tion of molecular and genetic networks from experimental time series data. BioSys-
tems 93, 181–190 (2008)

3. Heiner, M., Koch, I.: Petri net based model validation in systems biology. In:
Proceedings of 25th International Conference on Application and Theory of Petri
Nets, Bologna. Springer, Berlin (2004)

4. Marwan, W.: Detecting functional interactions in a gene and signalling network by
time-resolved somatic complementation analysis. BioEssays 25, 950–960 (2003)

5. Hoff, W.D., Jung, K.-H., Spudich, J.L.: Molecular mechanism of photosignaling
by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26, 223–258
(1997)

6. Marwan, W., Sujatha, A., Starostzik, C.: Reconstructing the regulatory network
controlling commitment and sporulation in physarum polycephalum based on hi-
erarchical petri net modeling and simulation. J. Theor. Biol. 236, 349–365 (2005)

7. Marwan, W., Wagler, A., Weismantel, R.: A mathematical approach to solve the
network reconstruction problem. Math. Methods of Operations Research 67, 117–
132 (2008)

8. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopath-
ways representation and simulation on hybrid functional petri net. Silico Biol. 3,
389–404 (2003)

9. Pinney, J.W., Westhead, R.D., McConkey, G.A.: Petri net representations in sys-
tems biology. Biochem. Soc. Trans. 31, 1513–1515 (2003)

10. Wagler, A., Weismantel, R.: The combinatorics of modeling and analysing biolog-
ical systems. Natural Computing (submitted)

Analyzing a Discrete Model of Aplysia Central

Pattern Generator�

Ashish Tiwari and Carolyn Talcott

SRI International, Menlo Park, CA 94025
{tiwari,clt}@csl.sri.com

Abstract. We present a discrete formal model of the central pattern
generator (CPG) located in the buccal ganglia of Aplysia that is respon-
sible for mediating the rhythmic movements of its foregut during feeding.
Our starting point is the continuous dynamical model for pattern gener-
ation underlying fictive feeding in Aplysia proposed by Baxter et. al. [1].
The discrete model is obtained as a composition of discrete models of
ten individual neurons in the CPG. The individual neurons are inter-
connected through excitatory and inhibitory synaptic connections and
electric connections. We used Symbolic Analysis Laboratory (SAL) to
formally build the model and analyzed it using the SAL model check-
ers. Using abstract discrete models of the individual neurons helps in
understanding the buccal motor programs generated by the network in
terms of the network connection topology. It also eliminates the need for
detailed knowledge of the unknown parameters in the continuous model
of Baxter et. al. [1].

1 Introduction

Background The last several years have witnessed rapid growth in the amount
of detailed high quality experimental data on neural processes underlying be-
havior. Concurrently, computational neuroscience has also experienced a surge
of activity in the formulation of models of increasing complexity. These twin
developments present opportunities as well as challenges to neuroinformatics.
There are exciting opportunities to describe and simulate neural processes in
hitherto unprecedented detail. The challenges are to manage vast amounts of
intricate data consisting of experimental and model-derived results, and also
to construct tractable models at levels of abstraction that provide useful in-
sights for guiding research. Many current models of neural processes utilize a
framework of differential equations such as the Hodgkin-Huxley (H-H) equa-
tions [2]. Other modeling techniques include integrate-and-fire methods and ar-
tificial neural networks [3, 4]. Detailed models, such as the H-H models, tend
to exhibit high sensitivity to system parameters and consequently require very
accurate measurements of these parameters. However, such data are frequently

� Research supported in part by the National Science Foundation under grants IIS-
0513857 and CNS-0720721.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 347–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 A. Tiwari and C. Talcott

unavailable. Furthermore, these models do not scale easily because they rapidly
become intractable as the number of cells incorporated increases. The situation
is analogous to that in Systems Biology. A complementary approach based on
using logical computing formalisms and symbolic techniques [5, 6, 7], called Sym-
bolic Systems Biology, is being successfully pursued. By representing knowledge
at an abstract, symbolic level this approach has enabled development of mod-
els capable of performing sophisticated queries about large models of biological
processes, while not being overly constrained by lack of low-level details.

Neurons and Neural Circuits. Neurons are highly specialized eukaryotic cells
capable of communicating with each other by means of electrical and chemical
signaling (see, for example, [8]). While there are several kinds of neurons, all pos-
sess a cell body, called the soma, from which emerge several tree like structures
called dendrites as well as a single long tube called the axon, which ends in sev-
eral branches, the synaptic terminals. The synaptic terminals of the transmitting
(presynaptic) neuron communicate to the dendrites of nearby receiving (postsy-
naptic) neurons by releasing specialized molecules, the neurotransmitters, such
as glutamate, serotonin, and dopamine. A neurotransmitter is released by the
presynaptic neuron once a sufficient transmembrane voltage depolarization has
reached the synaptic terminal. The buildup of membrane depolarization at the
synapse occurs after a nerve impulse, or action potential, travels from the cell
body along the axon in a series of depolarizations and repolarizations caused by
transfer of sodium and potassium ions between the cytoplasm of the neuron and
the extracellular space. The ions are transferred by electrochemical gradients
and they cross the membrane through voltage-dependent channels, which are
membrane pores that become permeable to ions due to conformational changes
induced by transmembrane voltage depolarizations. Chemical synaptic connec-
tions between neurons can be of two types, inhibitory, and excitatory. Neurons
can also signal each other via electrical synapses (also called gap junctions) in
which the membranes of the two neurons contact each other via transmembrane
pores through which electrical signals can spread bidirectionally. All of these, and
other factors, endow neural signaling with a rich collection of signaling modalities
and enormous complexity in communications and signaling behavior.

Feeding Behavior and its Neural Circuit. A major goal of neuroscience is to un-
derstand neural processes that underlie the generation of behavior and the modi-
fication of behavior induced by learning. A basic tenet of neuroscience is that the
ability of the nervous system to generate behaviors arises from the organization
of neurons into networks or circuits and that the functional capabilities of these
circuits emerge from interactions among: i) the intrinsic biophysical properties of
the individual neurons, ii) the pattern of the synaptic connections among these
neurons, and iii) the physiological properties of these synaptic connections. To
investigate how neural circuits function, a diverse collection of animal model
systems has been developed. By virtue of their relatively simple nervous sys-
tems, often with large identifiable neurons that are amenable to detailed study,
invertebrates are frequent candidates for cellular analyses of neural circuits and

Analyzing a Discrete Model of Aplysia Central Pattern Generator 349

their relationship to behavior. A key advantage of invertebrate model systems
is that the neural circuits controlling specific behaviors often contain relatively
few neurons, which allows the circuit to be described in detail on a cell-by-
cell and synapse-by-synapse basis. Another advantage is that many of these
neural circuits produce fictive motor patterns when isolated in vitro, which fa-
cilitates investigating how behaviorally relevant neural activity is generated and
regulated.

One useful animal model system is the marine mollusk Aplysia. Feeding be-
havior in Aplysia has been an important focus of study and research. The neural
circuitry that mediates feeding behavior is located primarily in the cerebral and
buccal ganglia. The structure of this circuit is relatively well understood [9]. A
major component is the central pattern generator (CPG) in the buccal ganglia
(Figure 1) that generates the motor activity for controlling the rhythmic move-
ments of the odontophore and radula. Although a great deal is known about the
individual components of the feeding circuitry, how this collection of cells and
synapses functions as a circuit is not well understood. The nonlinear, diverse
and dynamic nature of neural circuits provide formidable challenges to system-
atically analyzing and understanding how circuits operate and adapt. Symbolic
system models can help in this endeavor. We believe that properties of a neuron
network can be understood as properties of the connections between the neurons
in the network. Such abstract models can also be used to test the plausibility of
hypotheses and to manipulate components of the system in a manner that may
not be feasible in the real nervous system.

2 Biology

We describe the biology of feeding in Aplysia and its neural control. The material
here is taken mainly from Baxter et. al. [10, 1].

The feeding cycle in Aplysia consists of ingestion, which brings food into the
buccal cavity, and egestion, which ejects unwanted material from the buccal
cavity. These two stages of feeding involve rhythmic movements of structures in
the foregut that can be classified into two phases: a protraction phase, where
the jaws open and the odontophore rotate forward and a retraction phase, the
odontophore retracts and the jaws close. During ingestion, the two halves of the
radula (grasping surface of the odontophore) are separated and open during pro-
traction, and closed during retraction. This causes the food to enter the buccal
cavity. On the other hand, during egestion, the radula is closed during protrac-
tion and open during retraction. This causes ejection of unwanted material.

The buccal ganglia of Aplysia contain a central pattern generator (CPG) that
controls the rhythmic movements of the foregut during feeding. The CPG gener-
ates two corresponding buccal motor programs (BMP), one for ingestion and an-
other for egestion. Based on extensive intracellular recordings of action potentials,
Baxter et.al. [10, 1] have proposed a speculative type of model of the CPG. This
model contains continuous dynamical models of ten neuron cells: B4,B8, B31,B34,
B35, B51, B52, B63, B64, and a hypothetical neuron Z, and their connections.

350 A. Tiwari and C. Talcott

B31

B63 B35B34

B8

P_Group

Closure

R_Group

Rejection
Gate

B51

B4 B52

Terminator

B64

Synaptic Connections
With Multiple Components

Electrical CouplingExcitatory Inhibitory

Ingestion Gate

P_R
Switch

Z

This diagram shows the model of
the central pattern generator. The
circles represent neurons and the
edges represent the interconnec-
tions. Subsets of neurons are col-
lected into groups to indicate their
function/role. The P Group neu-
rons are active during protraction
and the R Group neurons during
retraction. The rejection gate neu-
ron participates in egestion, whereas
the ingestion gate neuron plays a
role in the ingestion BMP. The
circle-terminated edge represents in-
hibitory synaptic connection, the
triangle-terminated edge denotes an
excitatory synaptic connection, and
the wiggly edge denotes an electri-
cal coupling. An edge terminating
on a group indicates that it effects
all members of the group.

Fig. 1. Central Pattern Generator: Neurons and their interconnections that are respon-
sible for generating the BMPs associated with ingestion and egestion [1]

We give a brief description of the role of these neurons. B8 is a radula-closer
motor neuron and the timing of its activity can distinguish ingestion from eges-
tion. Neurons B31, B35, and B63 are active during the radula protraction phase
whereas B4 and B64 are active during the radula retraction phase. The neu-
ron B52 terminates the retraction phase. The hypothetical neuron Z mediates
transition from the protraction to the retraction phase. The neurons B34 and
B51 control B8 and are part of the system that switches mode from egestion to
ingestion and vice-versa.

The ten identified neurons are connected to each other forming a complex
network. Each interconnection is either an excitatory synaptic connection, an
inhibitory synaptic connection, or an electric coupling. The connections between
the ten neurons used in the model of Baxter et.al. [10, 1] are reproduced in
Figure 1.

3 Related Work

Baxter et.al. [1] presented a continuous dynamical system model of the ten neu-
ron interconnected network. They used continuous differential equations, in the
form of Hodgkin-Huxley-type models, for each of the ten cells and their electrical
and synaptic connections. Unfortunately, such a model requires inferring, either
experimentally or computationally, several parameters that describe the details
of membrane currents. Specifically, there are about 18 parameters for each ion

Analyzing a Discrete Model of Aplysia Central Pattern Generator 351

channel (Na, K) of each neuron. In addition, there are three parameters for each
synaptic connection, two for synaptic plasticity, and two for every electric cou-
pling. Estimating these parameters is a challenge and after the parameters have
been discovered, the result is an immensely complicated model that can only be
analyzed by simulation.

In [11] a simple rewriting logic model of a two neuron subsystem (B31,B63)
of the Aplysia bucchal ganglia was presented. This work demonstrated that
essential features of the two neuron system could be modeled by appropriate
choice of a small number of parameters. This preliminary success lead us to look
for a more principled way of determining the parameters that control a neuron’s
behavior. After studying the various proposed neuron models [4, 12], including
the “simple model” of [4], we built a highly abstract qualitative model of a single
neuron and used it as a starting point.

Hybrid systems have been used as a modeling language for System Biology [13]
in general and for modeling single neurons [14] in particular. Due to their high
expressiveness, hybrid models can more closely approximate HH models, but
hybrid analysis does not scale to studying a large collection of cells and is re-
stricted to studying a single cell [14]. Our interest was in analyzing a large neuron
network and this motivated looking at discrete models.

4 Discrete Formal Model

In this section we present a simple discrete model of the central pattern generator
derived from the continuous model of Baxter et.al. [1]. The model of a single
neuron is a simple generic qualitative “integrate and fire” model. We use the same
model for each of the ten neurons, but specialize the generic model for some of the
“special” neurons in the network. The electrical and synaptic interconnections
are also modeled at a highly abstract qualitative level. There are no parameters
that need instantiation in our model. The properties exhibited by the model are
solely a consequence of the abstract model of neuron behavior and the positive
and negative interconnections.

We will complement our informal presentation of the discrete model with a
formal description in the Symbolic Analysis Laboratory (SAL) language [15].
SAL is a formal language for describing discrete state transition systems. We do
not present a detailed introduction to the syntax and semantics of SAL here.
Since SAL syntax uses inspiration from standard imperative and functional lan-
guages, readers unfamiliar with SAL can still possibly understand and appreciate
the formal description. The full SAL model is available online [16].

4.1 Discrete Model of a Single Neuron

A generic neuron is a simple input/output automaton. It receives an input i,
changes its internal state level in response to it, and optionally produces an out-
put o. In our model, the input i can be one of three qualitative values: pos, neg,
and zero, collectively referred to as SIGS. The value of i indicates whether the

352 A. Tiwari and C. Talcott

N: NATURAL = 4;
LEVELS: TYPE = [0 .. N];
SIGS: TYPE = { pos, neg, zero };
NEURONS: TYPE = { B31, B35, B63, B34, B64, B4, B51, B52, B8, Z };
PHASES: TYPE = { protraction, retraction, termination };
GNEURONS(n: NEURONS): BOOLEAN = (n /= B31 AND n /= B64);

Fig. 2. SAL Global Declarations. N is a constant. LEVELS, SIGS, NEURONS, PHASES are
types denoting finite sets. GNEURONS is a function that returns true when its argument
is a generic neuron, and false when it is a specific neuron (B31, B64).

neuron receives a positive (pos), negative (neg), or no (zero) impulse (from its
neighbors). The internal state of the neuron stores a value in the range [0, . . . , N]
in a variable called level1. A value of 0 indicates that the neuron is at its resting
potential, and N indicates that the neuron is at its highest membrane poten-
tial. The values in between represent abstractions of the concrete intermediate
membrane potentials. The output o is a Boolean-valued variable. A value of TRUE
indicates that the neuron emits an impulse, whereas FALSE indicates that it does
not do so.

Figure 2 shows the declarations for the parameter N1 and types used to
describe the complete discrete CPG model. The type NEURONS denotes the set of
all ten neurons, while the function GNEURONS identifies the eight that are generic.
The type PHASES denotes the set of three phases.

The dynamics of single generic neurons are given by the following intuitive
rules. The rules abstractly capture the “integrate and fire” behavior of neurons.

Integrate Positive Input Impulse (IPII): If the input impulse i is positive
(pos) and the level level is less-than N , then the level level is incremented.
The amount of increment is given by a parameter sens. Again, the properties
of the model are robust to changes in the value of sens. We use sens = 2 in
our experiments.

Integrate Negative Input Impulse (INII): If the input impulse i is nega-
tive (neg) and the level level is less-than N , then the level level is decre-
mented. The amount of decrement is fixed to 2 units. The increments and
decrements are always saturated so as to force the value of level to remain
in the range [0, . . . , N].

Fire: If the level level is equal to N , then it is reset to N − 2 ∗ sens (which
is 0 for the choices made above). Additionally, the output o is set to True
whenever level = N to indicate that the neuron fired.

If none of the conditions are applicable, then the state of the neuron remains
unchanged. In particular, this means that we do not model decay of the mem-
brane potential (level) with time. This is because in the time intervals of inter-
est, decay does not play an important role in determining the overall behavior
1 We could use any positive value for N . We used the value 4 in our model, but the

choice is really arbitrary and we could have used a different value, say 5 or 3: the
properties of the final CPG model do not dependent on the exact value used.

Analyzing a Discrete Model of Aplysia Central Pattern Generator 353

generic[n: NEURONS]: MODULE = BEGIN
INPUT i: SIGS
OUTPUT o: BOOLEAN, level: LEVELS
LOCAL sens: [1 .. 2], pir: BOOLEAN
INITIALIZATION

pir = FALSE; level = 0
DEFINITION

sens = IF (n = Z) THEN 1 ELSE 2 ENDIF;
o = (level = N)

TRANSITION
[
FIRE: level = N AND GNEURONS(n) AND NOT(pir) -->

level’ = N - 2*sens
[]
IPII: level < N AND i’ = pos -->

level’ = IF (level > N - sens) THEN N ELSE level + sens ENDIF
[]
INII: (NOT(GNEURONS(n)) OR level < N) AND i’ = neg -->

level’ = IF (level > 1) THEN level - 2 ELSE 0 ENDIF
[]
SPIR: n = B52 AND level = 0 AND i = neg AND i’ = neg -->

pir’ = TRUE; level’ = N
[]
ELSE -->
]

END;

Fig. 3. SAL Model of a Generic Neuron. The model is parameterized by the name
n of the neuron. The model is specialized for (a) neurons that exhibit a plateau-like
potential (identified by NOT(GNEURONS(n)) in the code above), (b) the neuron
B52 that exhibits postinhibitory rebound (PIR). The ELSE clause says that when all
the above conditions fail, do not change the state of the system. The neuron model
responds to the value of i in the “next” step (i′) because the module computing i
(aplysia wiring described later) already introduces a one-step delay.

of the system. Also note that the model of a single neuron is deterministic. The
conditions for the three cases above are mutually exclusive and given an input
i and level level, the next state of the neuron is deterministically specified.

The formal description of the above neuron model is given in SAL in Figure 3.
Since some of the neurons exhibit behavior that can not be entirely captured by
an “integrate and fire” model, the generic model has a couple of specializations.
The first one is for neurons that exhibit a plateau-like potential. In the model of
the CPG, neurons B31 and B64 fall in this category [17, 18]. They are modeled
to behave just like the other neurons, except that they do not fire; that is, the
membrane potential (level) is not reset (to 0) when it reaches its highest value
(N). As we shall later discuss, this distinction is important for the CPG to
exhibit the observed behavior.

354 A. Tiwari and C. Talcott

aplysia neurons: MODULE =
(WITH INPUT ins: ARRAY NEURONS OF SIGS
WITH OUTPUT outs: ARRAY NEURONS OF BOOLEAN
WITH OUTPUT levels: ARRAY NEURONS OF LEVELS
(|| (n: NEURONS): (RENAME o to outs[n], i to ins[n],

level to levels[n] IN generic[n])));

Fig. 4. SAL model of the collection of the ten neurons in the CPG. For example,
ins[B63], outs[B63], and levels[B63] will now denote the input signal for B63, the
output generated by B63 and the internal level of B63.

The second specialization is for neuron B52 that exhibits postinhibitory re-
bound (PIR). PIR is defined as membrane depolarization (activation) occurring
at the offset of a hyperpolarizing stimulus. The mechanism for PIR is not well
understood. In our abstract model, we modeled it in the form of a special tran-
sition (labeled SPIR in Figure 3) that depolarizes B52 when it is at its resting
potential and it receives an inhibitory pulse. Again, this special behavior of B52
is important for ensuring termination of the ingestion and egestion neural pro-
grams. Neither of these special behaviors can be exhibited by a simple “integrate
and fire” model [4].

4.2 Modeling a Collection of Neurons

We get a model of each of the ten neurons in the CPG network (enumerated
in Figure 2) by instantiating the model of a generic neuron described above ten
times. Thus, we get a collection of ten identical neurons. The few subtle distinc-
tions between these ten neurons have already been captured in the description
of the generic neuron described above.

Figure 4 describes the SAL code for generating models of the ten neurons.
The ten instantiations of the generic neuron are synchronously composed (|| is
the synchronous composition operator). The input i, output o, and the level
level variables are renamed to avoid a naming conflict.

The result is a collection of ten neurons, but there is no interconnection be-
tween them yet. In the next section, we will model the interconnections.

4.3 Modeling the Interconnects

As mentioned before, there are three types of connections between the neurons
in our model: excitatory synaptic connection, inhibitory synaptic connection,
and electrical connection.

Excitatory Synaptic Connection. This is a directed connection between a
source and a target neuron. In this connection, the source neuron produces an
excitatory postsynaptic potential (EPSP) in the target neuron. This connection
is modeled as follows: whenever the source neuron fires (that is, generates a TRUE
signal on its output port o), the target neuron receives a pos input on its input
port; otherwise, it receives only a zero input.

Analyzing a Discrete Model of Aplysia Central Pattern Generator 355

epsp(x: BOOLEAN): SIGS = IF x THEN pos ELSE zero ENDIF;

Inhibitory Synaptic Connection. This is a directed connection between a
source and a target neuron. In this connection, the source neuron produces an
inhibitory postsynaptic potential (IPSP) in the target neuron. This connection
is modeled as follows: whenever the source neuron fires (that is, generates a TRUE
signal on its output port o), the target neuron receives a neg input on its input
port; otherwise, it receives only a zero input.

ipsp(x: BOOLEAN): SIGS = IF x THEN neg ELSE zero ENDIF;

Electrical Coupling. Electrical connections are undirected, that is, they effect
both neurons that are coupled by an electrical connection. Electrical coupling
indicates that there can be flow of current between the two coupled neurons that
is proportional to the difference in the membrane potentials of the two cells.
Since the membrane potentials are abstracted to qualitative levels (level), we
model electrical coupling using the difference in the levels of the two neurons.
Specifically, if the levels of electrically-coupled neurons, say A and B, are levelA

and levelB respectively, then
(a) neuron A receives a pos input and neuron B receives a neg input if levelB >
levelA;
(b) neuron A receives a neg input and neuron B receives a pos input if levelB <
levelA; and
(c) both neurons receive a zero input if levelB = levelA.

diff(x1: LEVELS, x2: LEVELS): SIGS =
IF (x1>x2) THEN pos ELSIF (x1<x2) THEN neg ELSE zero ENDIF;

Accumulating Effects from Multiple Connections. The above three cases
describe the input each neuron receives from each of its neighboring neurons.
Each neuron now has to accumulate all its input signals and map the result to
one value: pos, neg, or zero, that it will use as its actual input signal.

The accumulation process is modeled using the following simple rules: If pp
denotes the total number of pos inputs and nn denotes the total number of neg
inputs received by the neuron, then
(1) if pp > nn, then the result is a pos signal.
(2) if pp < nn, then the result is a neg signal.
(3) Otherwise, the result is a zero signal.

integrate(x1: SIGS, x2: SIGS, . . ., x7: SIGS): SIGS =
LET pp:[0..7] = count(pos, x1,x2,x3,x4,x5,x6,x7),

nn:[0..7] = count(neg, x1,x2,x3,x4,x5,x6,x7) IN
IF (pp > nn) THEN pos
ELSIF (nn > pp) THEN neg
ELSE zero ENDIF;

356 A. Tiwari and C. Talcott

aplysia wiring: MODULE =
BEGIN
INPUT b63i: SIGS, outs: ARRAY NEURONS OF BOOLEAN
INPUT levels: ARRAY NEURONS OF LEVELS
OUTPUT ins: ARRAY NEURONS OF SIGS

INITIALIZATION ins = [[i: NEURONS] zero]
TRANSITION
[TRUE -->
ins’ = [[n:NEURONS] LET
ec:[[NEURONS,NEURONS]->SIGS]=LAMBDA(a,b:NEURONS):diff(levels[a],levels[b]),
ep:[NEURONS->SIGS] = LAMBDA(x:NEURONS): epsp(outs[x]),
ip:[NEURONS->SIGS] = LAMBDA(x:NEURONS): ipsp(outs[x]) IN
IF (n=B31) THEN integrate31(ip(B64),ep(B34),ep(B63),ep(B35),

ep(B4),ec(B63,B31),ec(B35,B31))
ELSIF (n=B34) THEN integrate(ep(B63),ip(B64),zero,...,zero)
ELSIF (n=B63) THEN integrate(ip(B64),ec(B31,B63),ep(B34),b63i,...)
ELSIF (n=B35) THEN integrate(ip(B64),ec(B31,B35),ip(B52),...)
ELSIF (n=B64) THEN integrate64(ep(Z),ip(B52),ip(B34),ip(B63),

ip(B4),ep(B51),ec(B51,B64))
ELSIF (n=B4) THEN integrate(ip(B52),ep(B35),ec(B51,B4),ep(B64),...)
ELSIF (n=B52) THEN integrate(ep(B35),ip(B64),ip(B51),ip(B4),...)
ELSIF (n=B8) THEN integrate8(ep(B51),ip(B52),ip(B63),ip(B4),ep(B34))
ELSIF (n=Z) THEN integrate(ep(B63),...)]
ELSE integrate51(ip(B35),ip(B52),ip(B4),ec(B64,B51),ec(B4,B51))

]
END;

Fig. 5. SAL Model of the Interconnections of the ten neurons in the CPG. Neurons
B31, B64, B8 and B51 have their own special integrate functions. Missing arguments,
indicated by . . ., are all zero.

The Wiring Diagram. Figure 5 contains the final wiring diagram for the ten
neurons. For each neuron, the integrate function described above is used to
collect all inputs for that neuron. Depending on the type of connection, each
input is obtained using either epsp, ipsp or the diff function.

Some of the neurons, namely B31, B64, B51 and B8, use a specialization of
the integrate function described above. (Hence the names of the function used
in Figure 5 for these neurons are different.) The specialization captures prefer-
ence of some neurons to some excitatory or inhibitory inputs; that is, strength
of some connections is stronger than others. The integrate function treats all
connections equally. If we use the integrate function to accumulate inputs for
all the neurons, then the resulting model’s behavior does not match the ob-
served behavior. We therefore specialized integrate for neurons B31, B64, B8
and B51 as follows: B31 requires inhibition from B64 to see a negative input,
B64 gives high priority to signals from Z and B52, B8 gives lower priority to
the inhibitory signal from B63, and B51 gives higher priority to its synaptic
connections and lower to its electrical coupling with B4. These priorities can be

Analyzing a Discrete Model of Aplysia Central Pattern Generator 357

observer: MODULE =
BEGIN
OUTPUT b63i: SIGS, phase: PHASES
INPUT levels: ARRAY NEURONS OF LEVELS

INITIALIZATION b63i = pos
DEFINITION
phase = IF (b63i=pos OR levels[B31]>=N-1) THEN protraction

ELSIF (levels[B64]=N OR levels[B4]=N) THEN retraction
ELSE termination ENDIF

TRANSITION
[levels[B35]=N --> b63i’ = zero
[] ELSE -->]

END;

Fig. 6. SAL Model of the Observer: It generates the input trigger and observes phase
changes

captured by weighting the inputs and doing a weighted sum in the integrate
function. These specializations are discussed further in Section 6.

4.4 Exciting the System and Observing the Phases

We wish to study the behavior of the system elicited by a brief depolarization of
B63. We add a separate component to our model to inject an abstract depolariz-
ing current pulse to B63. Figure 6 contains the SAL description of this additional
“observer” module. The module begins by sending a pos input to B63, but as soon
as B35 reaches its firing threshold (value N), the external input to B63 is reset to
zero. This simulates the effect of giving B63 a brief depolarizing current pulse.

The protraction and retraction phases are characterized by activity in, respec-
tively, the P Group and the R Group neurons (Figure 1). The “observer” module
observes these phase changes: depending on the levels of B31 (a P Group neu-
ron) and B64 (a R Group neuron), it decides whether the phase is protraction,
retraction, or termination.

4.5 The Complete Model: Putting It All Together

We have completely described the models of all components of the model, namely
the ten neurons, the connections between the neurons, and the observer. The final
complete model is simply a synchronous composition of the three components,
which is described in SAL as:

aplysia: MODULE = aplysia wiring || aplysia neurons || observer;

Synchronous composition means that at each abstract time step, each of the
components (the ten neurons, the wiring, and the observer) simultaneously take
a transition.

358 A. Tiwari and C. Talcott

We analyzed the above discrete abstract model using model checking tools (de-
scribed in detail in Section 5) and found that the CPG generates an egestion-like
behavior. As suggested in the literature [1, 19], external modulatory influences,
mostly through the neurotransmitter dopamine, can alter the CPG and cause it
to exhibit an ingestion-like behavior. Following the approach of [1], we modeled
the effect of dopamine by changing the strength of some of the interconnections.
Specifically, we decreased the excitability of B34 and B4. We achieved this by
specializing the integrate functions for B34 and B4. This resulted in a different
model that is revealed to have ingestion-like behavior by model checking.

5 Analysis

The discrete model described above is appealing for its simplicity of description
and the lack of any requirement for hundreds of parameters. Moreover, we can
use model checking to systematically explore the system for desired behaviors.

As a basic sanity check, we can verify that if there is no input trigger to
B63, then all neurons in the system indeed remain in their resting potentials.
Excitation of B63 by an external pulse initiates either the ingestion, or the
egestion buccal motor program. Figure 7 shows plots generated by the continuous
model of [1]. This bursting pattern is typical of the egestion BMP. We can capture
the salient features of the patterns in Figure 7 in the form of Linear Temporal
Logic (LTL) formulas. The LTL properties can then be model checked against
the developed abstract qualitative model of Section 4. This gives us a way to
validate our model against (experimental) observations.

We classify the properties into different groups depending on their pertinent
phase.

5.1 The Protraction Phase

The protraction phase is characterized by activity in B63, B31, and B35. We first
make sure that the input pulse to B63 is modeled correctly by checking that it is
initially present (pos), and then terminated (zero) before the system reaches the
retraction phase. Property p0 in Figure 8 formally states this fact in LTL.

An important feature in Figure 7 is that B31 (eventually) reaches a plateau
and stays there all through the protraction phase and until the start of retraction.
This is captured in Figure 8 Property p1.

The neurons B63 and B35 show periodic firings in the protraction phase.
Property p2 partly encodes this fact as follows: at all points until two steps
before retraction starts, it holds that B35 eventually fires. The same can be
stated and verified for B63. Note that non-plateau neurons, such as B35 and
B63, reset upon firing, and hence Property p2 says that B35 repeatedly (and not
necessarily periodically) fires. In the egestion scenario, the same is also true for
B34 and Property p3 captures this. Also during egestion, B8 fires during the
protraction phase (Property p4).

Analyzing a Discrete Model of Aplysia Central Pattern Generator 359

The plots show the activity in each of the ten neu-
rons of the modeled CPG when B63 is excited by
a short pulse. The excitation causes activity in the
neurons in the protraction group (P-group) neu-
rons (B31, B35, B63) . In the egestion mode, B34
and B8 are active in the protraction phase. To-
wards the end of the protraction phase, Z starts fir-
ing that in turn causes activity in B64. This imme-
diately causes the P-group neurons to switch “off”,
while the retraction group (R-group) neurons (B4,
B64) remain active. In this retraction phase, B8
is inactive, which indicates that this pattern cor-
responds to egestion. Activity in B52 signals an
end of the retraction phase. B51 shows little ac-
tivity throughout the two phases. In the ingestion
mode (not shown here), the plots of B34, B8, B4,
and B51 are different. Essentially, during ingestion,
B34 remains mostly inactive, B8 shows no activity
during protraction, but is active during retraction,
B4 shows reduced activity, and B51 shows higher
activity.

Fig. 7. [Figure 5 from [1]] Simulating the continuous model of the CPG [1] generates
patterns characteristic of egestion. These plots are formalized as LTL properties in
Figures 8, 9,10, and 11.

p0: THEOREM
aplysia
 U(b63i = pos, U(b63i = zero, phase = retraction));

p1: THEOREM
aplysia
 F(levels[B31]=N AND U(levels[B31] >= N-1, phase=retraction));

p2: THEOREM
aplysia
 U(F(levels[B35] = N), X(X(phase = retraction)));

p3: THEOREM
aplysia
 U(F(levels[B34] = N), X(X(levels[B64] = N)));

p4: THEOREM
aplysia
 F(phase = protraction AND levels[B8] = N);

Fig. 8. Temporal Properties for the Protraction Phase in SAL. F (A) means that A
holds eventually, U(A, B) means that eventually B holds and until then A holds, and
X(A) means that A holds in the next time step.

We successfully verified all the above properties on our discrete model. Prop-
erty p3 and Property p4 are verified for the egestion scenario, but, as expected,
they fail when the model is modified for ingestion. Instead, for the ingestion
model, the following property is verified, which states that B8 remains inactive
all through the protraction phase.

p5: THEOREM aplysia � G(phase=protraction => levels[B8] < N);

360 A. Tiwari and C. Talcott

t1: THEOREM
aplysia
 F(levels[Z] = N);

t2: THEOREM
aplysia
 F(b63i = zero AND levels[B64] = N);

t3: THEOREM
aplysia
 F(levels[B64] = N AND G(levels[B63] < N));

t4: THEOREM
aplysia
 F(phase = retraction AND levels[B64] = N);

Fig. 9. Temporal Properties for the Transition Phase in SAL. The notation G(A) means
that A holds always from that instance onwards.

5.2 Transitioning from Protraction to Retraction

Figure 9 contains LTL properties pertaining to the switching off of the protrac-
tion phase and transitioning into the retraction phase. The main events in the
transition from protraction to retraction are:

(a) the hypothetical neuron Z becomes active (Property t1),
(b) this causes the depolarization (activation) of B64, (Property t2),
(c) this, in turn, simultaneously causes the hyperpolarization (deactivation) of
the protraction group neurons, such as B63, (Property t3), and
(d) eventually the retraction phase neurons, such as B64, are active (Prop-
erty t4).
Property t3 also states that B63 remains deactivated ever after. The same can
also be said for the other protraction group neurons.

The properties above verify that the system eventually transitions from the
protraction to the retraction phase. These properties hold true for the egestion,
as well as the ingestion, model.

5.3 The Retraction Phase

Figure 10 contains LTL properties pertaining to the retraction phase. During re-
traction, B64 remains active (Property r0). The protraction phase neurons remain
inactive at all instances during the retraction phase. Property r1 states this for
neuron B35, but the property can be stated and verified for the other P-group
neurons as well. The same is also true for the neuron B34 (Property r2). Further-
more, the neuron B4 repeatedly fires during retraction. Again, this fact is partly
encoded in LTL as follows: (Property r3) at all instances until two steps before
the termination phase starts, it is true that the neuron B4 eventually fires.

The next two properties are specific to egestion. The neuron B51 is not part
of the egestion behavior, but participates only during ingestion. Property r4
states that B51 always remains inactive. Finally, Property r5 states that the
radula-closer motor neuron, B8, is inactive during the retraction phase (in fact,
at any non-protraction state).

All the properties described above, except r4, are verified to be valid for eges-
tion. Properties r0, r1 and r2 remain valid even when the model is specialized

Analyzing a Discrete Model of Aplysia Central Pattern Generator 361

r0: THEOREM
aplysia
 G(phase = retraction => levels[B64] = N);

r1: THEOREM
aplysia
 G(phase = retraction => levels[B35] < N);

r2: THEOREM
aplysia
 G(phase = retraction => levels[B34] < N);

r3: THEOREM
aplysia
 W(F(levels[B4] = N), X(X(phase = termination)));

r4: THEOREM
aplysia
 G(levels[B51] < N);

r5: THEOREM
aplysia
 G(phase /= protraction => levels[B8] < N);

Fig. 10. Temporal Properties for the Retraction Phase in SAL. The LTL operator W
is the “weak until” operator. W (A,B) says that A continues to hold until B becomes
true. Unlike U(A,B), here B may never become true.

e1: THEOREM
aplysia
 G(phase=termination => F(G(levels[B64]=0 AND levels[B4]=0)));

e2: THEOREM
aplysia
 G(phase=termination => G(levels[B31]<N AND levels[B63]<N));

e3: THEOREM
aplysia
 U(phase=protraction, W(phase=retraction, phase=termination));

Fig. 11. Temporal Properties for the Termination Phase in SAL

to the ingestion case. However, the remaining properties, Properties r3, r4 and
r5 are, as expected, invalid for ingestion. While the plots in Figure 7 suggest
that Property r4 should be valid for egestion, it is not so for our model. We
discuss this further in Section 6.

5.4 Termination

Figure 11 contains LTL properties pertaining to the termination of the inges-
tion/egestion Buccal Motor Program. As is evident from Figure 7, the termi-
nation phase is characterized by the hyperpolarization (deactivation) of all the
protraction group neurons and the retraction group neurons. Property e1 says
that when the system enters the termination phase, eventually B64 and B4 re-
turn to their resting levels. Note that B64 and B4 may not be at their resting
potential when the termination phase begins, and hence the eventuality operator
(F) is important. The same fact can be stated for the P-group neurons, B31,
B35, and B63. Property e2 states that B31 and B63 neurons always remain in-
active during the termination phase. Since we are stating that the neurons are
inactive (levels < N), and not asking for levels to be 0, we do not need the
eventuality operator (F) here.

Finally, we state one of the most important properties of the CPG network:
the protraction phase is followed by the retraction phase, which in turn is

362 A. Tiwari and C. Talcott

(optionally) followed by the termination phase – exactly in that order. This
is stated in Property e3, which basically says that the three phases occur se-
quentially.

The three termination phase properties are model checked and verified to hold
for both the egestion and the ingestion model.

6 Results and Discussion

The main observations from the study of the discrete model are described be-
low. Most of the observations made here are similar to those obtained by working
with the continuous model based on using Hodgkin-Huxley-type models for the
neurons and several hundreds of parameters. Thus, by just looking at the in-
terconnections at a fairly abstract level, it is still possible to build and analyze
useful and interesting models that help in refining our understanding of the way
a neuron network works.

Specialized neurons. B31 and B64 are different from the other neurons because
they exhibit a plateau-like potential [17, 18]. This difference is important to
sustain the activity in the protraction (B31) and retraction (B64) phases. If B31
and B64 are modeled in the same way as the other neurons, then the modified
model does not exhibit the sustained activity of B31, B35, and B63 during
protraction and that of B64 and B4 during retraction.

Electrical couplings. The effect of electrical coupling needs to be necessarily
asymmetric to enable the model to have the desired behavior. In a symmetric
scenario, if two neurons A and B are electrically coupled and if level(A) >
level(B), then level(A) decrements as level(B) increments. In an asymmetric
scenario, we are allowed to have, say, level(B) increase while level(A) remains
unchanged. In the model, using a symmetric effect on the B31 - B35 coupling
and the B31 - B63 coupling would cause the protraction phase to prematurely
end. Similarly, B64 - B51 coupling can cause the retraction phase to terminate
earlier if the effect is symmetric. We note that electrical coupling is asymmetric
in the continuous model [1].

Robust protraction phase. The positive feedback loops between the protraction-
phase neurons (B31, B35, B63, B34) lead to a very robust protraction phase, that
is, once the system settles into the protraction phase (characterized by periodic
firing of these neurons), it is not “easy” to drive the system out of that phase.
In fact, we had to make the inhibition of the protraction-phase neurons by B64
a very “strong” signal to really cause the protraction phase to terminate. The
transition from protraction to the retraction phase is not very well understood
and had led to the hypothetical neuron Z in the model [1]. Our observation here
suggests that apart from the unknown component Z, there is another important
aspect related to the strengths of the synaptic connections between the P-group
and the R-group neurons that is required to ensure transition into retraction.

Analyzing a Discrete Model of Aplysia Central Pattern Generator 363

Retraction phase. Unlike the protraction-phase neurons that are connected in
a strong positive feedback, the neurons active in the retraction phase do not
form any positive feedback cycle. As a result, the retraction phase is not robust
and it can be “easily” terminated. Again, its continued sustainability depends
crucially on the intrinsic ability of B64 to maintain a plateau-like potential,
despite the negative (inhibitory) feedback from its inter-connections. Note that
in the speculative model used here (proposed in [1]), B64 gets only inhibitory
inputs in the retraction phase of egestion.

Ingestion. The default model exhibits egestion behavior, that is, the radula
motor neuron (B8) is active (radula is closed) during protraction and inactive
(radula is open) during retraction. As suggested in the literature [1, 19], if the
excitability of cells B34 and B4 is reduced (characteristic of dopaminergic mod-
ulation), then the situation changes and B8 is inactive (radula is open) during
protraction and active (radula is closed) during retraction. This corresponds to
the ingestion BMP. The explanation for this change is as follows: reduced ex-
citability of B34 causes it to remain inactive during the protraction phase, and
hence B8, which depended on B34 for excitatory pulse, remains inactive too.
On the other hand, during retraction, the low excitability of B4 causes it to
remain relatively inactive, which allows B51 to activate and cause B8 to activate
as well. Note that the mode change is solely explained by the network and the
connections and does not depend on the detailed physical modeling of the single
neurons or their synaptic connections.

B51. In contrast to the prediction made by the continuous model of [1], B51 is
activated during egestion in our model. However, it does not affect the activation
pattern of B8. It is possible to reduce the responsiveness of B51 to positive
signals and have it remain inactive during egestion. However, in that case, it
also tends to remain inactive during ingestion: the reduced inhibition by B4
(during ingestion) is not enough to overcome the reduced responsive of B51 to
positive signals. These results indicate that the unmodeled components – the
sensory input neurons and the motor neurons – may have a significant effect on
firing of B51.

Specialization versus Robustness. One important feature of biological networks
is that they are robust to minor changes. The system continues to have the
same behavior (equivalently, satisfy the same set of properties) even when cer-
tain changes are made to it. The positive feedback in the P-group neurons that
sustains the protraction phase is such an example. Most properties that describe
the ingestion and egestion behaviors are, in fact, robust to minor changes in the
discrete model proposed in this paper. This robustness is the reason why ab-
stract discrete models are useful. However, some of the properties of our model
are quite sensitive to the strengths of certain synaptic connections. For exam-
ples, the interconnections of B64, and to some extent those of B51, B8, and B31
(note that we had to use specialized accumulator functions for these neurons, see
Figure 5), appear to influence the overall behavior. The specializations indicate

364 A. Tiwari and C. Talcott

the sensitive parts of the model. This suggests that we may have to refine our
current understanding of the CPG.

Weighted Integrate Function. Biological data shows that certain connections be-
tween neurons are stronger than others. Our definition of the weighted integrate
functions is chosen to reflect this fact. The exact integrate function is, how-
ever, not important and other qualitatively similar functions produce the same
behavior.

Model Checking Effort. Though we have used our in-house model checking envi-
ronment SAL for experiments, we could have used any other temporal logic model
checker. We used the symbolic model checker, sal-smc, which uses Boolean Deci-
sion Diagrams (BDDs) to represent states. Each model checking run (one for each
property) takes about 10 seconds. The total state space of the system is of the or-
der of 410; however, the set of reachable states must be significantly less. Adding
more non-determinism to the model increases the model checking effort.

We also note here that, for any reasonable choice for the parameters, N ,
increment, and decrement, the model satisfies the same set of LTL properties.
Our specific choice, such as N=4, was a reasonable compromise between being
small and giving enough qualitative states (N=0,1,2,3) to model details (of other
kinds of neurons we foresee adding to the network.)

7 Conclusions

We presented an abstract discrete model of the central pattern generator respon-
sible for generating the egestion and ingestion buccal motor programs during the
feeding cycle in Aplysia. We formalized the neural activation patterns, observed
during egestion and ingestion BMPs, using LTL formulas. We verified that our
model satisfies the LTL formulas using a symbolic model checker. While many
properties are a direct consequence of the excitatory, inhibitory, and electrical
connections between the various neurons, some of the properties – especially
those related to transitioning from protraction phase to the retraction phase
and finally to the termination phase – depend on the relative strengths of the
various synaptic and electrical connections.

We plan to expand the model to include other missing elements from the
feeding neural circuit, such as the sensory neurons in the cerebral ganglion and
the cerebral-buccal interneurons. Simultaneously, we will need to expand the
collection of LTL properties to capture more functions and behaviors.

A second direction for future work is generalizing the present model and mak-
ing it nondeterministic. The present model is deterministic, except for the initi-
ation of the termination phase. We can drop assumptions and make our model
more nondeterministic, while still preserving its properties. For example, when
a neuron receives both positive and negative inputs, it presently behaves as if
it received no input – implicitly assuming that all signals are of “equal strength”.

Analyzing a Discrete Model of Aplysia Central Pattern Generator 365

Instead, we can drop this assumption and let the neuron nondeterministically
behave as if it received a positive, negative, or zero input.

References

[1] Cataldo, E., Byrne, J.H., Baxter, D.A.: Computational model of a central pattern
generator. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 242–256.
Springer, Heidelberg (2006)

[2] Baxter, D., Canavier, C., Byrne, J.: Dynamical properties of excitable membranes.
In: [8], pp. 161–196

[3] Abbott, L.: Single neuron dynamics: an introduction. In: Ventriglia, F. (ed.)
Neural Modeling and Neural Networks, pp. 57–78. Pergamon Press, Oxford (1994)

[4] Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans.
on Neural Networks 15(5) (2004)

[5] Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Path-
way logic: Symbolic analysis of biological signaling. In: Proc. Pacific Symposium
on Biocomputing, pp. 400–412 (2002)

[6] Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of
biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 660–672. Springer, Heidelberg (2004)

[7] Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing path-
ways using sat-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.)
Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

[8] Byrne, J.H., Roberts, J.L. (eds.): From Molecules to Networks: An Introduction
to Cellular and Molecular Neuroscience. Elsevier, Amsterdam (2004)

[9] Elliott, C., Susswein, A.: Comparative neuroethology of feeding control in mol-
luscs. J. Exp. Biol. 205, 877–896 (2002)

[10] Susswein, A.J., Hurwitz, I., Thorne, R., Byrne, J.H., Baxter, D.A.: Mechanisms
underlying fictive feeding in aplysia: Coupling between a large neuron with plateau
potentials activity and a spiking neuron. J. Neurophysiology 87(5), 2307–2323
(2002)

[11] Iyengar, S.M., Talcott, C., Mozzachiodi, R., Cataldo, E., Baxter, D.A.: Executable
symbolic models of neural processes. In: Network Tools and Applications in Biol-
ogy NETTAB 2007 (2007)

[12] Herz, A.V.M., Gollisch, T., Manchens, C.K., Jaeger, D.: Modeling single-neuron
dynamics and computations: A balance of detail and abstraction. Science 314
(October 2006)

[13] Ghosh, R., Tiwari, A., Tomlin, C.: Automated symbolic reachability analysis with
application to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.)
HSCC 2003. LNCS, vol. 2623, pp. 233–248. Springer, Heidelberg (2003)

[14] Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I.V., Smolka, S.A.:
Learning cycle-linear hybrid automata for excitable cells. In: Bemporad, A., Bic-
chi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 245–258. Springer,
Heidelberg (2007)

[15] de Moura, L., Owre, S., Shankar, N.: The SAL intermediate language, Computer
Science Laboratory, SRI International, Menlo Park, CA (2003), http://sal.csl.
sri.com/

[16] Tiwari, A.: SAL model of aplysia central pattern generator (2008), http://www.
csl.sri.com/∼tiwari/html/cmsb08.html

366 A. Tiwari and C. Talcott

[17] Hurwitz, I., Goldstein, R., Susswein, A.: Compartmentalization of pattern-
initiation and motor function in the B31 and B32 neurons of the buccal ganglia
of aplysia californica. J. Neurophysiol. 71, 1514–1527 (1994)

[18] Susswein, A.J., Byrne, J.H.: Identification and characterization of neurons initi-
ating patterned neural activity in the buccal ganglia of aplysia. J. Neurosci. 8,
2049–2061 (1988)

[19] Kabotyanski, E.A., Baxter, D.A., Cushman, S.J., Byrne, J.H.: Modulation of fic-
tive feeding by Dopamine and Serotonin in aplysia. J. Neurophysiol. 83, 378–392
(2000)

Stochastic Analysis of

Amino Acid Substitution in Protein Synthesis�

D. Bošnački1, H.M.M. ten Eikelder1, M.N. Steijaert1, and E.P. de Vink2

1 Dept. of Biomedical Engineering, Eindhoven University of Technology
2 Dept. of Mathematics and Computer Science, Eindhoven University of Technology

Abstract. We present a formal analysis of amino acid replacement
during mRNA translation. Building on an abstract stochastic model of
arrival of tRNAs and their processing at the ribosome, we compute prob-
abilities of the insertion of amino acids into the nascent polypeptide
chain. To this end, we integrate the probabilistic model checker Prism in
the Matlab environment. We construct the substitution matrix contain-
ing the probabilities of an amino acid replacing another. The resulting
matrix depends on various parameters, including availability and con-
centration of tRNA species, as well as their assignment to individual
codons. We draw a parallel with the standard mutation matrices like
Dayhoff and PET91, and analyze the mutual replacement of biologically
similar amino acids.

1 Introduction

The transfer of genetic information from DNA to mRNA to protein happens with
very high precision. Errors can have dramatic consequences for the organism as
a whole. In this paper we analyze the second stage of this information pathway—
the translation from mRNA to protein, i.e., the protein biosynthesis, in the light
of translation errors and the factors of potential influence.

An mRNA molecule can be considered as a string of codons, each of which
codes for a specific amino acid. The codons of an mRNA molecule are sequentially
read by a ribosome, where each codon is translated using an amino acid specific
transfer-RNA (aa-tRNA). This way, one-by-one, a chain of amino acids, i.e. a
protein is built. In this setting, aa-tRNA can be seen as molecules containing a
so-called anticodon, and carrying a specific amino acid. Arriving by Brownian
motion, an aa-tRNA, docks into the ribosome and may succeed in adding its
amino acid to the chain under construction, or alternatively dissociates in an
early or later stage of the translation. This depends on the pairing of the codon
under translation with the anticodon of the aa-tRNA, as well as on the stochastic
influences such as the changes in the conformation of the ribosome.

Thanks to the vast amount of research during the last thirty years, the overall
process of translation is reasonably well understood from a qualitative perspec-
tive. The process can be divided into around twenty small steps/reactions, a

� Partially supported by EU FP6-project ESIGNET.

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 367–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 D. Bošnački et al.

number of them being reversible. Relatively little is known exactly about the
kinetics of the translation. Over the past several years, Rodnina and collabo-
rators have measured kinetic rates for various steps in the translation process
for a small number of specific codons and anticodons [16,18,21,9]. Using various
advanced techniques, they were able to show that in several of those steps the
rates strongly depend on the degree of matching between the codon and the an-
ticodon. Additionally, in [6] the average concentrations (amounts) of aa-tRNAs
per cell have been collected for the model organism Escherichia coli. Based on
these results, Viljoen and co-workers started from the assumption that the rates
found by Rodnina et al. can be used in general, for all codon-anticodon pairs
as estimates for the reaction dynamics. In [7], a complete detailed model is pre-
sented for all 64 codons and all 48 aa-tRNA classes for E. coli, on which extensive
Monte Carlo experiments are conducted. In particular, using the model, codon
insertion times and frequencies of erroneous elongations are established. A strong
correlation of the translation error and the ratio of the concentrations of the so-
called near-cognate and cognate aa-tRNA species was observed. Consequently,
one can argue that the competition of aa-tRNAs, rather than their availability,
decides both speed and fidelity of codon translation.

In the present paper, we model the translation kinetics via the modelchecking
of continuous-time Markov chains (CTMCs) using the tool Prism [15,10]. The
tool provides built-in performance analysis algorithms and a formalism (Com-
putational Stochastic Logic, CSL) to reason about various properties of the
CTMCs, removing the burden of extensive mathematical calculations from the
user. Additionally, in our case, the Prism tool provides much shorter response
times compared to Gillespie simulation.

We present an improvement of the stochastic model from [1], integrated in
a Matlab environment. We use our model in the context of an original case
study. To this end, we define the notion of a translation substitution matrix.
The columns and rows of this matrix are labeled with amino acids. The element
of the matrix indexed by amino acids a1 and a2 is the probability that a1 is
substituted by a2 in the polypeptide chain. The translation substitution matrix
can be used to check the error resistance capabilities of the translation process
and the genetic code in general. It can also be used as an alternative similarity
measure between amino acids from a point of view of translation.

The flexibility of our integrated Matlab-Prism model makes it possible to
relatively easily investigate possible factors that can influence the probabilities
in the substitution matrix. Here, we consider two of them:

– Concentrations of the tRNAs. To check this, we modify our model by assum-
ing artificial conditions where all tRNAs have concentrations that deviate
from the realistic E. coli model.

– An alternative set of tRNAs. Instead of the standard tRNAs that are con-
firmed by the experiments in E. coli we use ‘synthetic’ tRNAs assuming
different number of tRNA species and their distributions over codons.

The obtained results indicate that the overall translation error is dependent on
the tRNA set.

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 369

We also use the matrix to check the hypothesis that similar amino acids substi-
tute for one another with higher probability than dissimilar ones. As a measure of
similarity we use mutation data matrices, like Dayhoff [5] and PET91 [12] which
are used for a similar purpose in sequence alignment tools, like BLAST. Our
results confirm this hypothesis by showing that to a great extent the similarity
patterns implied by the mutation data matrices emerge also in the translation
substitution matrix.

Related work. We did not find other work on translation substitution matrices
and investigating the hypothesis that similar amino acids tend to substitute each
other. The model that is used in this paper builds upon [1], which was inspired
by the simulation experiments of mRNA translation reported in [7]. There, only
insertion errors per codon are considered, rather than amino acid-amino acid
substitution probabilities.1 A similar model, based on ordinary differential equa-
tions, was developed in [11]. Although probabilistic, it is used to compute in-
sertion times, but no translation errors. The model of mRNA translation in [8]
assumes insertion rates that are directly proportional to the mRNA concentra-
tions, but assigns the same probability of translation error to all codons.

There exist numerous applications of formal methods to biological systems.
A selection of recent papers from modelchecking and process algebra includes
[17,3,4]. More specifically pertaining to the current paper, [2] applies the Prism
modelchecker to analyze stochastic models of signaling pathways. Their method-
ology is presented as a more efficient alternative to ordinary differential equations
models, including properties that are not of probabilistic nature. Also, [10] em-
ploys Prism on various types of biological pathways, showing how the advanced
features of the tool can be exploited to tackle large models.

2 Biological Background

Proteins are essential building blocks for the production and regulation in cellular
life. In fact, proteins take care of the major part of the functioning of the cell.
Proteins are produced in two stages from the genetic information carried by
the DNA: From a gene at the DNA, several copies of mRNA can be generated
involving RNA-polymerases. Subsequently, from each mRNA, many identical
proteins can be produced with the help of a ribosome. In the present case study,
we will focus on the latter aspect of expression, the generation of proteins from
mRNA, the process generally referred to as translation.

In effect, proteins are long, typically folded, strains composed from amino
acids. Grossly, there are only twenty different types of amino acid present in
living material. On the other hand, a string of mRNA can be interpreted as a
sequence of nucleotides, molecules out of four types only, A, C, G and U, short for
adenine, cytosine, guanine and uracil. Each three consecutive nucleotides form
a codon. So, codons are essentially triplets of nucleotides. One type of codon

1 The implementation of [7] was not available to us, impeding a direct comparison with
our implementation. However, the overall insertion error per codon is comparable.

370 D. Bošnački et al.

prescribes exactly one type of amino acid, but not vice versa. Generally, in an
organism, several codons may code for the same amino acid. The correspondence
of codons and amino acids is the same for all organisms but for a few exceptions,
and is called the genetic code. So, an mRNA, as sequence of codons, specifies
precisely a protein, as sequence of amino acids.

Basically, the translation of an mRNA into a protein takes effect as follows: A
ribosome attaches to the mRNA. Next, the codons of the mRNA are processed
one-by-one, stepwise building up a chain of amino acids, the protein in nascent.
The amino acids used are brought to the mRNA-ribosome complex by aa-tRNA,
tRNA charged with an amino acid. Characteristic for an aa-tRNA is a specific
triplet of nucleotides, called the anticodon. It turns out that the anticodon de-
cides which amino acid can be charged at the tRNA. As for codons, there is
exactly one amino acid that corresponds to an anticodon. Now, an aa-tRNA
arriving at the mRNA-ribosome complex, docks into the A-site of the ribosome.
The aa-tRNA may either (i) immediately dissociate during the initial binding or
codon recognition phase, (ii) be rejected after reconfiguration of the elongation
factor Tu (EF-Tu) or (iii) successfully finish the second translocation phase and
have its amino acid added to the protein under construction. The particular
codon of the mRNA is then considered to be processed; the mRNA-ribosome
complex shifts one position with a new codon for translation, if available.

The binding of a codon and an anticodon differs from pair to pair. Given a
codon, we distinguish between cognate, near-cognate and non-cognate aa-tRNA,
dependent on the match of the codon and the anticodon of the particular aa-
tRNA. For a cognate aa-tRNA the binding of the codon and anticodon is strong,
for near-cognate the binding is less strong, for a non-cognate the binding is weak.
In fact, the codon-anticodon binding influences the success (going through none,
one or two phases) and the actual speed of a translation attempt.

Next, we give a brief overview of the individual steps of the translation mech-
anism. Our explanation is based on [18,20,13].

An aa-tRNA arrives at the ribosome-mRNA complex in a ternary complexa-
tion with EF-Tu and GTP with a rate determined by the interaction of EF-Tu
and the ribosome [20]. The initial binding is relatively weak. Codon recognition
comprises (i) the establishing of contact between the anticodon of the aa-tRNA
and the current codon in the ribosome-mRNA complex, and (ii) subsequent
conformational changes of the ribosome, that are different for cognate and near-
cognates. The overall rates are similar for cognates and near-cognates. Note
that, non-cognates are not selected during codon recognition. GTPase-activation
of the elongation factor is largely favored by the conformational changes in
the ribosome induced by a cognate aa-tRNA, while for near-cognate aa-tRNA
GTPase-activation is lessened [19,9]. During GTP-hydrolysis that takes place
next, inorganic phosphate Pi and GDP are produced. It is assumed that Pi is
released, EF-Tu reconfigures and that aa-tRNA dissociates from the complex
with EF-Tu and GDP, see [14]. The accommodation step that follows happens
rapidly for cognate aa-tRNA, whereas for near-cognate aa-tRNA this proceeds

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 371

slower and the aa-tRNA is likely to be rejected, also because of the instability
of the binding to the ribosome-mRNA complex.

The translocation phase that follows, is unidirectional except for its reversible
first step involving the elongation factor EF-G. In short, during the transloca-
tion phase, another GTP-hydrolysis catalyzed by EF-G, produces GDP and Pi
and results in unlocking and movement of the aa-tRNA to the P-site of the
ribosome. The latter step is preceded or followed by Pi-release. Translocation
of the ribosome, with dramatic shifts in the positioning of ribosomal subunits,
and release of EF-G moves the tRNA, that has transferred its amino acid to the
polypeptide chain, into the E-site of the ribosome. Further rotation eventually
leads to dissociation of the used tRNA.

3 Abstract Model

In this section, we present an abstract model of the translation mechanism
sketched in the previous section. Our aim is to capture various combined steps
by a probabilistic automaton. The grouping of multiple steps results in a limited
number of states and, subsequently, in a smoother analysis and quicker response
times for the Prism experiments. Figure 1 depicts the probabilistic automaton
obtained.

Given a particular codon under translation at the ribosome, we distinguish
the following states:

– State 1, initial binding. An aa-tRNA binds, in an arrival process, at the
mRNA-ribosome complex.

– State 2, recognition. The weak binding of aa-tRNA at the complex either
stabilizes (transition to state 3), or the binding breaks and the tRNA disso-
ciates (transition to state 0).

– State 3, conformation. Again, one out of two options may happen. A num-
ber of steps related to the processing of GTP may take place (modeled by
the transition to state 4). Alternatively, the binding of the aa-tRNA at the
mRNA-ribosome complex may lose strength (modeled by the transition back
from state 3 to state 2).

– State 4, proofreading. The aa-tRNA can either be rejected, resulting in a
dissociation from the mRNA-ribosome complex (transition to state 5), or
the aa-tRNA shifts to P-site of the ribosome.

– State 6, accommodation. A reversible reaction involving the elongation factor
EF-G, prepares for translocation (transition to state 7).

– State 7, translocation. Translocation may take place, as well as a number
of other unidirectional steps in the translation process, and the amino acid
is successfully added to the peptidyl chain (transition to state 8), or the
binding of EF-G does not lead to reconformation of the ribosome (transition
back form state 7 to state 6).

Further, we have a number of auxiliary states, that do not have a concrete,
biological counterpart. However, the states are introduced for modelchecking
purposes, to discriminate between the various ‘exit modes’ of an aa-tRNA.

372 D. Bošnački et al.

1 2

0

3 4 6 7

5

8

85

0.23/80

190

260/0.40 167/46

60/FAST

Fig. 1. Abstract automaton representing translation

– State 0, dissociation. The initial binding of the aa-tRNA and the mRNA-
ribosome complex does not stabilize and the aa-tRNA floats away.

– State 5, rejection. The aa-tRNA dissociates from the mRNA-ribosome com-
plex while being transferred from the A-site to the P-site of the ribosome.

– State 8, elongation. The amino acid carried by the aa-tRNA is added to the
peptide chain. The uncharged tRNA flows back into the cytosol. (aa-tRNA
synthesis, the recharging of a tRNA with an amino acid is not modeled here.)

The choices in the abstract automaton of Figure 1 can all be considered to be
probabilistic. Of relevance are those in states 2, 3 and 4. In states 1 and 6 the
choice is degenerated, in auxiliary states 0, 5 and 8 it does not occur. The prob-
abilistic choice in state 7 does not influence the eventual exit state. In the past
decade, Rodnina and co-workers have collected various kinetic parameters of a
number of steps in the peptidyl transfer phase of the translation mechanism
[16,18,21,9]. Additionally, using advanced fluorescent and crystallographic tech-
niques, they showed that the binding of the codon under translation, on the
one hand, and the anticodon of the aa-tRNA that has attached to the mRNA-
ribosome complex, on the other hand, decisively influences the success or failure
of some of the steps. Their rates are incorporated in the automaton, that can be
interpreted as a continuous-time Markov chain.2

In state 2, the transition to state 3 has rate 190 whereas the transition to
state 0 is taken with rate 85. These two rates are equal for cognate and near-
cognate aa-tRNA alike. The transition back from state 3 to state 2 has rate 0.23
for cognate aa-tRNA against 80 for near-cognate aa-tRNA. Conversely, the tran-
sition forward from state 3 to state 4 is of rate 260 for cognate aa-tRNA and of
rate 0.40 for near-cognate aa-tRNA. Note the difference between the two classes
of aa-tRNA. A similar phenomenon can be observed for state 4. A transition
from state 4 to state 6 of rate 167 and to state 5 of rate 60 for cognate aa-tRNA,
compared to a rate 46 from state 4 to state 6 for near-cognate aa-tRNA and a
fast rate (chosen to be 1000 in our experiments) for the alternative transition to
state 5.

Clearly, based on the rates provided, the probabilities of ending up in state 8
differ significantly for cognate aa-tRNA compared to near-cognate aa-tRNA.

2 All rates in this paper are of dimension s−1.

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 373

Non-cognate aa-tRNA probabilistic choices do not apply, as stable association
to the mRNA-ribosome complex is considered to be negligible.

The substitution error for a codon is the probability that another amino acid
is added to the nascent protein than is coded for by the codon under translation.
The average insertion time is the expected time it takes for any amino acid to be
added for the particular codon. The model given above has been used previously
in [1] to analyze both the substitution error for a codon and its average insertion
time. To this end, the automaton of Figure 1 is combined with an arrival process
of cognate, near-cognates and non-cognate aa-tRNAs, the separation in classes
of aa-tRNA depending on the active codon. In the current paper, we refine the
analysis of the substitution error, by considering the actual amino acid that is
inserted.

We define P(aa|cd) as the probability for an elongation of the peptidyl chain
with an amino acid aa, given a codon cd. Let cd code for amino acid bb. Then, we
distinguish five categories of aa-tRNA: xx-cognate, yy-cognate, xx-near-cognate,
yy-near-cognate and non-cognate aa-tRNA. A cognate aa-tRNA is classified as
an xx-cognate if it carries the amino acid aa of interest (i.e. if aa equals bb);
the cognate aa-tRNA is considered an yy-cognate if it carries an amino acid
different from the amino acid aa (i.e. if we are interested in an amino acid aa
that is different from the amino acid bb coded for by cd). Similarly, a near-
cognate aa-tRNA is referred to as an xx-near-cognate if its amino acid is aa, and
is called an yy-near-cognate if its amino acid is different from aa. All aa-tRNA
that do not belong to any of the other classes are considered non-cognates. Thus,
the selected amino acid determines the xx-type or yy-type for a cognate or near-
cognate aa-tRNA; the active codon decides whether an aa-tRNA is cognate,
near-cognate or non-cognate. In our model, non-cognates never lead to insertion
of an amino acid. The binding of a non-cognate anticodon and the codon under
translation is considered too weak for the tRNA to move to state 3. Non-cognate
aa-tRNA will always exit at state 0.

2

0

3 4

5

cyy

nxx

nyy

cxx

1

85

0.23/80

190

260/0.40 167/46

60/FAST

8

Fig. 2. Adapted automaton

Given the above definitions of aa-tRNA, we end up with the automaton as
given in Figure 2. The rates cxx, cyy, nxx and nyy depend on the amount of
the aa-tRNAs that are classified as xx-cognate, yy-cognate, xx-near-cognate and
yy-near-cognate, respectively, for the considered codon and amino acid. The
transitions from state 0 and state 5 to state 1 are added, since the process

374 D. Bošnački et al.

Table 1. Molecular reactions underlying the adapted model

167
CR4 CR8

60
CR4 C + R1

190

0.23

85

cxx/cyy 260
CR3 CR4CR2C + R1

190

80

85

nxx/nyy 0.40

FAST46
NR4 NN + R1NR4 NR8

NR2N + R1 NR3 NR4

continues as long as state 8 has not been reached, i.e. until an amino acid has
been transferred successfully. States 6 to 8 have been identified, as from state 6
the final state 8 will always be reached eventually. The rates have been kept
deliberately, although they could have been replaced by probabilities. In the
set-up of our experiments, it comes in handy to deal with CTMCs to which we
can feed numbers of aa-tRNAs, avoiding to calculate their relative fractions. An
overview of the reactions involved are collected in Table 1.

4 Amino Acid Substitution

In this section, we discuss how the amino acid-codon insertion probability ma-
trix AC and the amino acid-amino acid translation substitution matrix TS are
computed for the Escherichia coli bacterium. The abstract model of the previous
section is, per codon, supplemented with relevant concentrations of the various
types of aa-tRNAs, to establish the probability for an amino acid to be inserted
with the particular codon being active. When this information is available for
all codons, by proper grouping, the probability for an amino acid to replace the
amino acid that is actually coded for, can be obtained.

To calculate P(aa|cd), the probability of elongation of the growing protein
chain with the amino acid aa, when codon cd is under translation, we proceed
as follows: We provide the Prism modelchecker with four input parameters, viz.
xx cogn, yy cogn, xx near and yy near, each representing the amount of avail-
able cognate and near cognate tRNAs, carrying either the amino acid of interest
(indicated by xx) or an other amino acid (indicated by yy). This instantiates the
arrival process of an aa-tRNA at state 1 of the abstract automaton. The prob-
abilities for success, i.e. reaching state 8, and failure, dissociation via state 0 or
rejection via state 5 followed by re-activation of the arrival process at state 1,
are not independent from the arrival process itself. Therefore, we have to con-
sider the CTMC simultaneous representing the arrival process and translation
mechanism. With this done in Prism, we only need to establish the CSL formula

P=? [(s!=0 & s!=5) U (s=8)] .

See Appendix B for the complete Prism code.

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 375

In order to facilitate the construction of the insertion probability matrix, we
have combined the Prism modelchecker with Matlab. We make use of Matlab’s
extern call mechanism and Prism’s command line option for parameter instan-
tiation. In two nested loops, the outer loop iterating over codons, the inner
loop iterating over amino acids, we call from within Matlab the Prism tool, for
example by

prism ourmodel.sm ourformula.csl -const xx_cogn=1037, ...

communicating the values of parameter xx cogn and others to the modelchecker.
The negligible value 1.0e−6 is used instead of 0, as only positive values are al-
lowed as rates of an exponential distribution. Apart from directory management,
the interaction of the two tools quite conveniently suited our purposes.

For the usual E. coli aa-tRNA set with standard concentrations, referred to
as real, we illustrate how the parameter values are obtained for the codon UUU
and amino acids Phe, Leu, and Ile.

Table 2. Some input values for the realistic model

codon amino acid xx cogn yy cogn xx near yy near

UUU Phe 1037 0 0 2944

UUU Leu 0 1037 2944 0

UUU Ile 0 1037 0 2944

In case of calculating P(Phe|UUU), where the amino acid under consideration
coincides with the amino acid of the codon, we assign to xx cogn the total
amount of cognate tRNAs. From Table 7 in Appendix A, we see that tRNA 28 is
the only cognate, so xx cogn is set to 1037, the number of tRNA 28 in Table 8.
In this case, there are no cognates coding for an amino acid other than Phe,
hence yy cogn = 0. Next, we check the near-cognates of UUU. According to
Table 7, only tRNAs 22 and 23 act as near-cognates. Both code for Leu, the
amino acid leucine. Therefore, we put xx near = 0, as no near-cognate codes
for Phe and yy near = 1913+1031 = 2944 the sum of all counts of near-cognates
coding for an amino acid different from Phe. See the first row of Table 2.

To establish P(Leu|UUU), we put xx cogn to zero (or rather 10−6), as there
are no cognates of the codon UUU carrying Leu, and yy cogn to 1037, the num-
ber of molecules of the non-Leu cognate aa-tRNA 28. Since, the near-cognates
aa-tRNAs 22 and 23 both carry Leu, xx near is set to 2944, the sum of their
counts, and yy near is zero as there are no near-cognate with other amino acids.

To compute P(Ile|UUU), the substitution probability for the amino acid
isoleucine with respect to the codon UUU, we have that xx cogn and xx near
are both nihil. No cognate or near-cognate aa-tRNAs will insert Ile, hence the
substitution probability will be zero. Because of this, no further calculation is
required. The Matlab script automatically puts P (Ile|UUU) = 0.

Having the amino acid-codon insertion matrix AC = (P(aa|cd))aa,cd avail-
able, we derive the amino acid-amino acid translation substitution matrix TS.

376 D. Bošnački et al.

Each item TSaa, bb of TS denotes the probability that amino acid bb is inserted
while the current translation codes for the amino acid aa. To compensate for
the differences of occurrence in the E. coli genome of the various codons of an
amino acid, we balance the sum of amino acid-codon insertion probabilities, by
the relative frequencies of the codons:

TSaa, bb =
∑

cd∈codons(aa)

rf(cd, aa) · P(aa|cd)

with codons(aa) the set of codons coding for the amino acid aa according to the
genetic code, and rf(cd, aa) the relative frequency of the codon cd with respect
to codons(aa).

5 Alternative aa-tRNA Sets

We investigate how substitution probabilities are affected by the aa-tRNA pop-
ulation. We consider both the effect of the concentration of aa-tRNA molecules
of a specific species, and the influence of the composition of the aa-tRNA set.
Our starting point is the E. coli model from the previous sections with an aa-
tRNA set containing 48 different tRNA species and numbers of molecules from
each species as reported in [6]. Alternative models, with an aa-tRNA set dif-
ferent from usual and with concentrations deviating from standard values, are
examined as well. The experimental set-up is rather flexible in this respect, only
different aa-tRNA populations with other amounts of available molecules need
to be supplied. We consider eight different models, listed in Table 3.

Table 3. Alternative models: aa-tRNA sets of 48, 64 or 25 species, aa-tRNA concen-
trations based on real measurements, flat, or proportional to codon matching

Name species aa-tRNA counts

Model 48R 48 based on Table 8

Model 48F 48 1000 per aa-tRNA

Model 48C 48 1000 for per codon recognized

Model 64R 64 based on Table 8

Model 64FC 64 1000 per aa-tRNA / codon

Model 25R 25 based on Table 8

Model 25F 25 1000 per aa-tRNA

Model 25C 25 1000 per codon recognized

48 Species aa-tRNA Set

Model 48R, the so-called realistic model with parameters based on [7,6], has 48
aa-tRNA species and molecule counts based on physical measurements. In order
to assay the stability of amino acid substitution, we have run similar experiments
with varying parameters. In one model, we use for each tRNA species the same

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 377

amount of molecules, arbitrarily chosen as 1000. This model with flat aa-tRNA
concentrations is referred to as 48F, with F for flat. Another variation is a model
in which we assign the equal amounts (again 1000 molecules) to each codon. If
the same codon is recognized by multiple aa-tRNAs, each of them is assigned
a proportional part. So, the count of 1000 is equally split over the number of
cognate tRNA species. If an aa-tRNA is cognate to several codons, it will be
allotted accordingly. We refer this model as 48C, with C for codon. Note that,
for models 48F and 48C, the arbitrarily chosen value of 1000 does not influence
the outcome, as the error probabilities are determined by the fractions of cognate
and near-cognate species and not by the values themselves.

64 Species aa-tRNA Set

Apart from variations in the concentrations of aa-tRNAs, one can also modify,
in silico, the sets of tRNA species. An obvious choice, is the model with the
maximal number of 64 aa-tRNA species. In this model, each of aa-tRNA is
considered to recognize exactly one codon. Thus, under this assumption, each
codon has exactly one cognate tRNA and nine near-cognate aa-tRNA.

For the model 64R, the count for each aa-tRNA species is equal to the sum of
tRNA species in the original model that recognize the corresponding codon. For
aa-tRNAs in the original model that recognize more than one codon, the new
aa-tRNAs get an equal share of the original amount. Analogously to the models
with a 48 species aa-tRNA set, we also define flat and cognate models for the
64 aa-tRNA case, with equal amounts of molecules per tRNA species and per
codon. However, for this specific case these two models coincide, each with an
amount of 1000 molecules for each of the 64 aa-tRNA species. Consequently, the
model is named 64FC.

25 Species aa-tRNA Set

The other obvious choice of aa-tRNA set, is the opposite case, where the number
of species is minimal. However, instead of the theoretical minimum of aa-tRNA
species, where the choice of cognates seems arbitrarily, we decide to have exactly
one tRNA for each ‘genomic box or block’, i.e. a group of codons that codes for
the same amino acid and only differ in the third nucleotide. This model contains
25 aa-tRNA species, reminiscent to to fine-tuned genetic code in eukaryote mi-
tochondria. As before, 25F denotes the flat model variant, each tRNA species
having 1000 molecules. For 25R, the amount aa-tRNA is set to the total of the
tRNAs in the 48R model that belong to the block. The one exception being
release factor RF1, for which we assign the full amount to the block UAA, UAG
although it recognizes both UAA and UAG (which belong to separate blocks).
Finally, for the model 64C, the amount of molecules for each aa-tRNA species is
calculated as 1000 times the number of codons in the corresponding block. See
Table 4.

For all the above models we have computed the substitution probability ma-
trix as sketched in Section 4. The diagonal of the matrices denotes the probability

378 D. Bošnački et al.

Table 4. The 25 species aa-tRNA set

aa-tRNA recognized codons aa-tRNA recognized codons

1 (Phe) UUU, UUC 14 (Gln) CAA, CAG

2 (Leu) UUA, UUG 15 (Asn) AAU, AAC

3 (Leu) CUU, CUC, CUA, CUG 16 (Lys) AAA, AAG

4 (Ile) AUU, AUC, AUA 17 (Asp) GAU, GAC

5 (Met) AUG 18 (Glu) GAA, GAG

6 (Val) GUU, GUC, GUA, GUG 19 (Cys) UGU, UGC

7 (Ser) UCU, UCC, UCA, UCG 20 (End) UGA

8 (Pro) CCU, CCC, CCA, CCG 21 (Trp) UGG

9 (Thr) ACU, ACC, ACA, ACG 22 (Arg) CGU, CGC, CGA, CGG

10 (Ala) GCU, GCC, GCA, GCG 23 (Ser) AGU, AGC

11 (Tyr) UAU, UAC 24 (Arg) AGA, AGG

12 (End) UAA, UAG 25 (Gly) GGU, GGC, GGA, GGG

13 (His) CAU, CAC

for peptide elongation with the amino acid that was coded for. The average sub-
stitution error for the model, shown in Table 5, is obtained by taking the average
over all amino acid for the probability of a substitution by a non-coded amino
acid. The table displays in parentheses a weighted average of errors, obtained by
scaling the errors for individual amino acids with the relative occurrence of their
codons in the E. coli genome. Remarkably, the errors for the 48 tRNA models
are always smaller than those of the synthesized 25 and 64 tRNA models. The
errors for individual amino-acids are shown in Figure 3.

Table 5. Mean substitution error and occurrence-weighted substitution error (within
parentheses) for all eight models (model 64RF twice)

model ‘real’ ‘flat’ ‘codon’

48 aa-tRNA set 0.48% (0.45%) 0.45% (0.45%) 0.39% (0.36%)

64 aa-tRNA set 0.93% (0.85%) 0.73% (0.69%) 0.73% (0.69%)

25 aa-tRNA set 1.16% (0.83%) 0.66% (0.64%) 0.76% (0.68%)

Notably, the ‘real’ 48R model has a striking low probability for errors for stop-
codons. None of the other models reaches such low value. Moreover, the proba-
bility for other codons to accidentally act as a stop-codon is lowest for 48R model
as well. See the red/grey bars in Figure 4.

6 Groups of Related Amino Acids

In this section, we check the hypothesis that biologically similar amino acids sub-
stitute for each other during translation. Its rationale is that such substitutions
would lower the chance that the resulting protein is non-functional. Namely, it

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 379

Fig. 3. Substitution errors for individual amino acids and the for stop-codo n

Fig. 4. Percentage of erroneous substitution of a stop-codon for an amino acid
(blue/dark), and percentage of erroneous substitution of any other codon by a stop-
codon (red/gray)

has been observed that if in a polypeptide chain an amino acid is substituted
by another biochemically similar amino acid, then it is likely that the modi-
fied protein has biochemical properties similar to the original one. Therefore, it
seems plausible to assume that, under evolutionary pressure, an error robustness
mechanism has been developed also exploited at translational level.

380 D. Bošnački et al.

Our measure of similarity of amino acids is based on so-called mutation data
matrices, like Dayhoff [5] and PET91 [12]. Essentially, these matrices give for
each pair of amino acids an evolutionary substitution probability. Mutation data
matrices and their derivatives are widely used as an amino acid similarity mea-
sure, e.g. in sequence alignment tools like BLAST. At first sight it may look
strange that we compare mutation errors, which introduce protein changes that
are permanent for the organism, with translation errors which only affect one
copy of the protein and are not inherited. Thus, it is worth emphasizing that
we use the matrices only as a similarity measure ‘approved’ by the evolution
without trying to draw any further analogy between these two phenomena.

Based on the mutation data matrices, we divide amino acids in four groups.
There are different groupings of amino acids in the literature usually based on
their biochemical properties [23]. In this paper, we use the partitioning proposed
by Swanson [22] which is based on mutation data matrices, but also rather well
in agreement with the classifications based purely on biochemical properties.

The two main criteria for Swanson’s partitioning are the size (small vs. large)
of the amino acids and their positioning in the proteins based on their affinity
for water (hydrophobic/inner vs. hydrophilic/outer) The four groups are 1) the
small group: Pro, Gly, Ala, Ser, Thr, 2) the outer group: Glu, Asp, Asn, Gln,
Lys, His, 3) the large group: Arg, Trp, Tyr, Phe, and 4) the inner group: Cys,
Val, Ile, Met, Leu. A natural cyclic arrangement of those groups can be made
such that neighboring groups are small-outer, outer-large, large-inner and inner-
small. Thus, the groups small and large are considered as opposite groups and
the same holds for the groups inner and outer. See [22].

During translation three types of errors can be made. The least serious mis-
reading results in adding to the protein an amino acid of the same group as the
intended amino acid. A greater error would be a substitution with an amino acid
of a neighboring group. Finally, potentially greatest consequences have substi-
tutions with an amino acid of the opposite group. A completely different error
is the misinterpretation of a codon as the stop codon, which means that the
forming of the protein is terminated.

The probability GSPG1,G2 that an amino acid in group G1 will be substituted
with an amino acid from group G2 is given by

GSPG1,G2 =
∑

aa∈G1,bb∈G2

rf(aa, G1) · TSaa, bb

where aa and bb are amino acids in groups G1 and G2, respectively, rf(aa, G1)
is the relative occurrence frequency of amino acids aa within G1, and TSaa,bb

is the probability that bb substitutes aa, i.e., the corresponding element of the
substitution matrix TS as defined in Section 4. The relative frequency of amino
acid aa within its group G1 is obtained as a ratio between the sum of the occur-
rence frequencies of all codons of aa and the sum of the occurrence frequencies
of all codons of the amino acids in G1. (Again we deal with the so-called codon
bias, i.e. within the genome of an organism not all codons and amino acids are
used with equal frequency.)

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 381

Table 6. Realistic model, percentage of erroneous amino acids, stop codon and the
correct amino acid for amino acids from the four groups

to group 1 to group 2 to group 3 to group 4 stop-codon correct

group 1 0.22 % 0.077 % 0.047 % 0.11 % 0.0006 % 99.5 %

group 2 0.076 % 0.25 % 0.081 % 0.10 % 0 % 99.7 %

group 3 0.065 % 0.027 % 0.043 % 0.21 % 0.0019 % 99.7 %

group 4 0.069 % 0.029 % 0.055 % 0.17 % 0.0015 % 99.7 %

In Table 6 we give the above defined GSP probabilities for the realistic
model. Each row gives the error probabilities for amino acids of the correspond-
ing group. For all groups, the probability of generating the correct amino acid
is more than 0.995. The probability of generating a wrong amino acid from
the correct group is indicated in bold. Note that for groups 1, 2 and 4 this
probability is larger than the probability of generating a wrong amino acid of
another group. Somewhat surprisingly, this does not hold for group 3. Further-
more, the probability of an unexpected termination (stop codon) is extremely
small.

A graphical representation of the error probabilities is given in Figure 5. In
this figure only the error probabilities, except the very small probability of an
erroneous stop codon, are shown. The probabilities of generating an erroneous
amino acid of the original group are indicated in white. The probabilities of
indicating an amino acid of the opposite group are shown in black. Clearly, the
probability of generating erroneous amino acids in the correct (white) group is
higher than the probability of generating amino acids in the opposite (black)
group, except for group 3.

We performed analogous analyses of the other models and in all cases the
outcome was similar. This indicates that the relatively small probability of out-
of-group amino acid substitutions is due to the distribution of the amino acids
over codons, i.e., the genetic code, rather than to the tRNA species and their
concentrations.

Fig. 5. Realistic model, probabilities of erroneous amino acid from another group (own
group: white, opposite group: black)

382 D. Bošnački et al.

7 Conclusions and Future Work

We described a formal analysis of codon misreading errors during translation of
mRNA to protein, caused by a mismatch between codons and tRNAs. To this
end, we presented a method based on probabilistic modelchecking, in particular
the modelchecker Prism in combination with Matlab.

Inspired by mutation data matrices, we introduced the notion of a transla-
tion substitution matrix. Using our model, we computed the elements of this
matrix which are the probabilities that amino acids replace each other in the
protein as a result of codon misreading. Further, we investigated the influence of
some parameters, like tRNA concentrations and different tRNA species, to the
misreading probabilities. It turned out that the translation mechanism is quite
robust. The mean substitution error for the realistic model is in line with exper-
imental findings, cf. [7]. Remarkably, for the realistic model it is smaller than
for our synthesized models. We also showed that biologically similar amino acid
replace each other with higher probabilities than dissimilar ones. Experiments
as described in Section 5 can easily be done in silico, but will require substantial
effort, if not impossible on such rigorous scale, in a wetlab. Additionally, our
case studies confirm that probabilistic modelchecking has advantage over simu-
lation regarding reliability and running times. Preliminary experiments indicate
that our modelchecking approach is about 10 times faster than our Gillespie
simulations.

In the future, we plan to apply our translation model to further investigate the
robustness of the translation mechanism and the genetic code. The translation
substitution belongs to a class of case studies for which the essential properties
are of a probabilistic nature. It would be interesting to employ the methodology
of this paper to similar problems, like the precision of DNA repair and antibody
recognition.

Acknowledgements. We are indebted to Timo Breit, Christiaan Henkel, Erik
Luit, Jasen Markovski, Tessa Pronk and Hendrik Viljoen for fruitful discussions
and constructive feedback. We gratefully acknowledge the contribution of the
students of the 8P135 Bioinformatics project at TU/e.

References

1. Bosnacki, D., et al.: In Silico modelling and analysis of ribosome kinetics and aa-
trna competition. In: Proc. Computational Models for Cell Processes. Turku Centre
for Computer Science, Åbo Academia, Turku, 16 p. (2008)

2. Calder, M., et al.: Analysis of signalling pathways using continuous time Markov
chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems
Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)

3. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003)

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 383

4. Danos, V., et al.: Rule-based modelling of cellular signalling. In: Caires, L., Vascon-
celos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg
(2007)

5. Dayhoff, M.O.: Suplements 1, 2 and 3. Atlas of Protein Sequence and Structure 5
(1978)

6. Dong, H., et al.: Co-variation of tRNA abundance and codon usage in Escherichia
coli at different growth rates. Journal of Molecular Biology 260, 649–663 (1996)

7. Fluitt, A., et al.: Ribosome kinetics and aa-tRNA competition determine rate and
fidelity of peptide synthesis. Computational Biology and Chemistry 31, 335–346
(2007)

8. Gilchrist, M.A., Wagner, A.: A model of protein translation including codon bias,
nonsense errors, and ribosome recycling. Journal of Theoretical Biology 239, 417–
434 (2006)

9. Gromadski, K.B., Rodnina, M.V.: Kinetic determinants of high-fidelity tRNA dis-
crimination on the ribosome. Molecular Cell 13(2), 191–200 (2004)

10. Heath, J., et al.: Probabilistic model checking of complex biological pathways.
In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer,
Heidelberg (2006)

11. Heyd, A.W., Drew, D.A.: A mathematical model for elongation of a peptide chain.
Bulletin of Mathematical Biology 65, 1095–1109 (2003)

12. Jones, D.T., et al.: The rapid generation of mutation data matrices from protein
sequences. CABIOS 3, 275–282 (1992)

13. Karp, G.: Cell and Molecular Biology, 5th edn. Wiley, Chichester (2008)
14. Knudsen, C., et al.: The importance of structural transitions of the switch II region

for the functions of elongation factor Tu on the ribosome. Journal of Biological
Chemistry 276, 22183–22190 (2001)

15. Kwiatkowska, M., et al.: Probabilistic symbolic model cheking with Prism: a hybrid
approach. Journal on Software Tools for Technology Transfer 6, 128–142 (2004),
http://www.prismmodelchecker.org/

16. Pape, T., et al.: Complete kinetic mechanism of elongation factor Tu-dependent
binding of aa-tRNA to the A-site of E. coli. EMBO Journal 17, 7490–7497 (1998)

17. Priami, C., et al.: Application of a stochastic name-passing calculus to represent
action and simulation of molecular processes. Information Processing Letters 80,
25–31 (2001)

18. Rodnina, M.V., Wintermeyer, W.: Ribosome fidelity: tRNA discrimination, proof-
reading and induced fit. TRENDS in Biochemical Sciences 26(2), 124–130 (2001)

19. Rodnina, M.V., et al.: Codon-dependent conformational change of elongation fac-
tor Tu preceding GTP hydrolysis on the ribosome. EMBO Journal 14, 2613–2619
(1995)

20. Rodnina, M.V., et al.: Recognition and selection of tRNA in translation. FEBS
Letters 579, 938–942 (2005)

21. Savelsbergh, A., et al.: An elongation factor G-induced ribosome rearrangement
precedes tRNA–mRNA translocation. Molecular Cell 11, 1517–1523 (2003)

22. Swanson, R.: A unifying concept for the amino acid code. Bulletin of Mathematical
Biology 46(2), 187–203 (1984)

23. Taylor, W.R.: The classification of amino acid conservation. Journal of Theoretical
Biology 119, 205–218 (1986)

http://www.prismmodelchecker.org/

384 D. Bošnački et al.

A Additional Tables

Table 7. Codons and their cognate and near-conate tRNAs. Derived form Table 7

Codon Cognates Near-Cognates Codon Cognates Near-Cognates

UUU 28 22,23 GUU 44,45,46
UUC 28 9,17,20,22,23,36,42,43,45,46 GUC 45,46 2,8,15,17,20,28,44
UUG 22,23 18,19,25,26,27,28,34,41 GUG 44 13,18,19,22,25,26,27,45,46
UUA 23 21,22,28,32,33,44 GUA 44 1,12,14,21,23,45,46
UCU 33,36 34 GCU 1 2
UCC 36 2,9,28,30,33,34,37,39,42,43 GCC 2 1,8,15,30,36,37,39,45,46
UCG 33,34 22,29,36,38,41 GCG 1 2,13,29,34,38
UCA 33 1,23,31,32,34,36,40 GCA 1 2,12,14,31,33,40,44
UGU 9 3,32,41 GGU 15 3,13,14
UGC 9 15,28,32,35,36,41,42,43 GGC 15 2,8,9,13,14,35,45,46
UGG 41 4,6,9,13,22,32,34 GGG 13,14 4,6,15,41
UGA 32,48 5,9,14,23,33,41 GGA 14 1,5,12,13,15,32,44
UAU 42,43 GAU 8 12
UAC 42,43 7,8,9,16,28,36 GAC 8 2,7,12,15,16,42,43,45,46
UAG 47 11,22,34,41,42,43 GAG 12 8,11,13
UAA 47,48 10,12,23,24,32,33,42,43 GAA 12 1,8,10,14,24,44
CUU 20 3,19,21 AUU 17 18,25,26,27
CUC 20 16,17,19,21,28,30,45,46 AUC 17 7,18,20,25,26,27,28,35,37,39,45,46
CUG 19,21 4,11,18,20,22,25,26,27,29 AUG 25,26,27 6,17,18,19,22,38
CUA 21 10,19,20,23,31,44 AUA 18 5,17,21,23,24,25,26,27,40,44
CCU 30,31 3,29 ACU 37,39,40 38
CCC 30 2,16,20,29,31,36,37,39 ACC 37,39 2,7,17,30,35,36,38,40
CCG 29,31 4,11,19,30,34,38 ACG 38,40 6,18,25,26,27,29,34,37,39
CCA 31 1,10,21,29,30,33,40 ACA 40 1,5,24,31,33,37,38,39
CGU 3 4 AGU 35 3,5,6
CGC 3 4,9,15,16,20,30,35 AGC 35 5,6,7,9,15,17,37,39
CGG 4 3,6,11,13,19,29,41 AGG 6 4,5,13,18,25,26,27,35,38,41
CGA 3 4,5,10,14,21,31,32 AGA 5 6,14,24,32,35,40
CAU 16 3,10,11 AAU 7 24
CAC 16 7,8,10,11,20,30,42,43 AAC 7 8,16,17,24,35,37,39,42,43
CAG 11 4,10,16,19,29 AAG 24 6,7,11,18,25,26,27,38
CAA 10 11,12,16,21,24,31 AAA 24 5,7,10,12,40

Stochastic Analysis of Amino Acid Substitution in Protein Synthesis 385

Table 8. tRNA species in E. coli, data from [6] and [7]

tRNA Amino acid Anticodon Recognized Codons Molecules/cell

1 Ala1 A UGC GCU, GCA, GCG 3250
2 Ala2 A GGC GCC 617
3 Arg2 R ACG CGU, CGC, CGA 4752
4 Arg3 R CCG CGG 639
5 Arg4 R UCU AGA 867
6 Arg5 R CCU AGG 420
7 Asn N GUU AAC, AAU 1193
8 Asp1 D GUC GAC, GAU 2396
9 Cys C GCA UGC, UGU 1587

10 Gln1 Q UUG CAA 764
11 Gln2 Q CUG CAG 881
12 Glu2 E UUC GAA, GAG 4717
13 Gly1 G CCC GGG 1068.5
14 Gly2 G UCC GGA, GGG 1068.5
15 Gly3 G GCC GGC, GGU 4359
16 His H GUG CAC, CAU 639
17 Ile1 I GAU AUC, AUU 1737
18 Ile2 I CAU AUA 1737
19 Leu1 L CAG CUG 4470
20 Leu2 L GAG CUC, CUU 943
21 Leu3 L UAG CUA, CUG 666
22 Leu4 L CAA UUG 1913
23 Leu5 L UAA UUA, UUG 1031
24 Lys K UUU AAA, AAG 1924
25 Met f1 M CAU AUG 1211
26 Met f2 M CAU AUG 715
27 Met m M CAU AUG 706
28 Phe F GAA UUC, UUU 1037
29 Pro1 P CGG CCG 900
30 Pro2 P GGG CCC, CCU 720
31 Pro3 P UGG CCA, CCU, CCG 581
32 Sec X UCA UGA 219
33 Ser1 S UGA UCA, UCU, UCG 1296
34 Ser2 S CGA UCG 344
35 Ser3 S GCU AGC, AGU 1408
36 Ser5 S GGA UCC, UCU 764
37 Thr1 T GGU ACC, ACU 104
38 Thr2 T CGU ACG 541
39 Thr3 T GGU ACC, ACU 1095
40 Thr4 T UGU ACA, ACU, ACG 916
41 Trp W CCA UGG 943
42 Tyr1 Y GUA UAC, UAU 769
43 Tyr2 Y GUA UAC, UAU 1261
44 Val1 V UAC GUA, GUG, GUU 3840
45 Val2A V GAC GUC, GUU 630
46 Val2B V GAC GUC, GUU 635
47 RF1 X UAA, UAG 1200
48 RF2 X UAA, UGA 6000

386 D. Bošnački et al.

B Prism Code

stochastic

// constants
const double ONE=1;
const double FAST=1000;

// tRNA rates, precalculated
const double c_xx_cogn ;
const double c_yy_cogn ;
const double c_xx_near ;
const double c_yy_near ;
const double c_nonc ;

const double k1f = 140;
const double k2b = 85;
const double k2bx=2000;
const double k2f = 190;
const double k3bc= 0.23;
const double k3bn= 80;
const double k3fc= 260;
const double k3fn= 0.40;
const double k4rc= 60;
const double k4rn=FAST;
const double k4fc= 166.7;
const double k4fn= 46.1;
const double k6f = 150;
const double k7b = 140;
const double k7f = 145.8;

module ribosome

s_rib : [0..8] init 1 ;
cogn : bool init false ;
near : bool init false ;
nonc : bool init false ;
xx : bool init false ;

// initial binding
[] (s_rib=1) -> k1f * c_xx_cogn : (s_rib’=2) & (xx’=true) & (cogn’=true) ;
[] (s_rib=1) -> k1f * c_yy_cogn : (s_rib’=2) & (cogn’=true) ;
[] (s_rib=1) -> k1f * c_xx_near : (s_rib’=2) & (xx’=true) & (near’=true) ;
[] (s_rib=1) -> k1f * c_yy_near : (s_rib’=2) & (near’=true) ;
[] (s_rib=1) -> k1f * c_nonc : (s_rib’=2) & (nonc’=true) ;
[] (s_rib=2) & (cogn | near) -> k2b :

(s_rib’=0) & (cogn’=false) & (near’=false) & (xx’=false) ;
[] (s_rib=2) & nonc -> k2bx : (s_rib’=0) & (nonc’=false) ;

// codon recognition
[] (s_rib=2) & (cogn | near) -> k2f : (s_rib’=3) ;
[] (s_rib=3) & cogn -> k3bc : (s_rib’=2) ;
[] (s_rib=3) & near -> k3bn : (s_rib’=2) ;

// GTPase activation, GTP hydrolysis, EF-Tu conformation change
[] (s_rib=3) & cogn -> k3fc : (s_rib’=4) ;
[] (s_rib=3) & near -> k3fn : (s_rib’=4) ;

// rejection
[] (s_rib=4) & cogn -> k4rc : (s_rib’=5) & (cogn’=false) & (xx’=false);
[] (s_rib=4) & near -> k4rn : (s_rib’=5) & (near’=false) & (xx’=false);

// accommodation, peptidyl transfer
[] (s_rib=4) & cogn -> k4fc : (s_rib’=6) ;
[] (s_rib=4) & near -> k4fn : (s_rib’=6) ;

// EF-G binding
[] (s_rib=6) -> k6f : (s_rib’=7) ;
[] (s_rib=7) -> k7b : (s_rib’=6) ;

// GTP hydrolysis, unlocking, tRNA movement and Pi release,
// rearrangements of ribosome and EF-G, dissociation of GDP
[] (s_rib=7) -> k7f : (s_rib’=8) ;

// no entrance, re-entrance at state 1
[] (s_rib=0) -> FAST*FAST : (s_rib’=1) ;
// rejection, re-entrance at state 1
[] (s_rib=5) -> FAST*FAST : (s_rib’=1) ;
// elongation
[] (s_rib=8) -> FAST*FAST : (s_rib’=8) ;

endmodule

A Stochastic Single Cell Based Model of BrdU

Measured Hematopoietic Stem Cell Kinetics

Richard C. van der Wath and Pietro Lio’

Computer Laboratory, University of Cambridge, William Gates Building,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

Abstract. The therapeutic potential of stem cells due to their ability
to build and maintain tissues and organs is widely recognised. Much can
be learned by studying stem cell turnover dynamics and Bromodeoxyuri-
dine (BrdU) is often used for this purpose. Good computational models
are however needed for a full understanding of BrdU data and in this
paper we present such a model. Our approach is to model single cells as
well as their chromosomes as agents which make probabilistic decisions
over fixed intervals of time. We demonstrate the power of our model
by comparing its performance to a deterministic BrdU model used in
a recently published study on asymmetric chromosome segregation in
Hematopoietic stem cells.

1 Introduction

Stem cells can be defined as cells that have the ability to self-renew (produce
copies of themselves) or differentiate into mature specialised progeny (cells that
the body needs to grow and maintain itself) [1]. Much can be learned by studying
the turnover kinetics of stem cells and there are several experimental techniques
available to do this. One of the most widely used approaches is 5-bromo-2-
deoxyuridine (BrdU) assays. BrdU is a synthetic nucleotide and an analogue
of thymine and can thus be incorporated in synthesised DNA by substituting
for thymine (Fig. 1). Fluorescently marked antibodies that attaches to BrdU
are used to detect DNA strands that are BrdU+. BrdU are usually applied
by adding it to the drinking water of animals and/or by injection. Tracking
the proportion of BrdU+ cells during both the uptake and loss (chase) period
provides a mechanism to measure the turnover kinetics of a given population
of cells. BrdU data can be misleading however when interpreted directly. Much
more certainty about turnover rates can be gained by using computational and
mathematical models to simulate BrdU dynamics [2,3]. Note that BrdU uptake
and loss are monotonic systems: increasing during the administration phase and
decreasing during the chase phase.

A recent study by Kiel et al. [4] uses an ODE-based model to fit BrdU data
on murine Hematopoietic stem cells (HSCs). The authors use the result of their
model to refute the asymmetrical segregation of chromosomes hypothesis in
favour of the random segregation hypothesis. The asymmetrical segregation or
immortal strand hypothesis was first proposed in 1975 [5] and suggests that adult

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 387–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 R.C. van der Wath and P. Lio’

Fig. 1. A: Normal hydrogen bond between Adenine and Thymine (top) and BrdU
substituting for Thymine (bottom). B: Comparing the chemical structure of Thymine
and BrdU.

stem cells retain older DNA strands during mitotic cell division and newly syn-
thesised DNA strands is asymmetrically segregated to differentiating daughter
cells. The older DNA strands act as templates for all divisions thereby providing
a mechanism to limit the accumulation of DNA mutations. We will describe the
equations of the Kiel et al. model and give their solutions in Sect. 2.2, after
which we show how the system of uptake equations for random segregation can
be improved. In Sect. 2.4 we present a description of a stochastic single cell based
BrdU model. We use this model to repeat the study of Kiel et al. in Sect. 3 as
a case study to compare the results of the two approaches.

2 Methods

2.1 Model Evaluation

Two key criteria when evaluating a model’s suitability is complexity and how
well the model describes empirical data (goodness-of-fit). The quest is thus to
find the simplest model that fits experimental data at a satisfactory level, known
as the Occam’s razor principle. Often visual inspection of the plot comparing
model prediction with empirical data can be a quick and accurate goodness-
of-fit estimate, especially in the monotonic system we are considering. We will
use a single statistic, the Residual Sum of Squares (RSS), to quantify the visual
goodness-of-fit measure. The RSS statistic we use are calculated as follows

RSS =
n∑

i=1

(e(ti)−m(ti))2 , (1)

A Stochastic Single Cell Based Model 389

where e(ti) is the experimental value observed at time ti and m(ti) is the pre-
dicted value at time ti. Smaller values for RSS indicate a better fit. The RSS
statistic is suitable in this study since it is very difficult if not impossible to
define more complex model evaluation statistics (likelihood based criterions for
example) for the single cell model. In addition, the RSS statistic enables us to
compare two very different modelling approaches.

2.2 The Deterministic Model of Kiel et al.

The model of Kiel et al. consists of sets of coupled ordinary differential equations
(ODEs) that describe the rate of change of the fraction of BrdU labelled cells
over time. Different sets of equations describe the dynamics during BrdU uptake
and loss for the random and asymmetric segregation case separately. For both
random and asymmetric segregation, the rate of change of the proportion of
BrdU+ cells at time t during BrdU application, y1(t), is simply equivalent to the
proportion of BrdU− cells that has divided at time t, y0(t):

dy1

dt
= αy0 , (2)

where α is the proliferation rate of the cells. Because cells leave the y0 population
when they divide, the equation for y0 in turn is

dy0

dt
= −αy0 . (3)

The solution of y1(t) under the initial condition of y0(0) = 1 turns out to be the
Cumulative Distribution Function (CDF) of an exponential distribution with
parameter α:

y1(t) = 1− e−αt = 1− y0(t) . (4)

For modelling loss of labelling when BrdU is removed at day T , asymmetric
segregation is the simplest case since only one DNA strand can take up and
consequently lose BrdU. All BrdU+ cells will thus lose their labelling after a
single division, so the rate equation is:

dy10

dt
= −αy10 , (5)

where y10 represent the fraction of cells with one labelled strand that hasn’t
divided yet after day T . The initial condition is y10(0) = y1(T).

In the case of random segregation however, BrdU dilution is a more complex
process since the model needs to take both DNA strands and BrdU detection
sensitivity into account. Kiel et al. model BrdU detection sensitivity by defining
separate coupled equations for each (decreasing) level of BrdU labelling. With
each division it is assumed that labelling is halved and cells move from level k
to level k + 1. A cell with 2 labelled strands would need one extra division to be

390 R.C. van der Wath and P. Lio’

on the same level as a cell with only 1 labelled strand. The equations to model
this process are:

dy10

dt
= −αy10

dy11

dt
= −αy11 + αy10

...
dy1N

dt
= αy1(N−1)

(6)
dy20

dt
= −αy20

dy21

dt
= −αy21 + αy20

...
dy2N

dt
= αy2(N−1) ,

where yij : i ∈ {1, 2}, j ∈ {0, 1, .., N} is the fraction of cells with i labelled DNA
strand(s) that has divided j times after day T .

The equations in 6 are easiest solved if they are written in matrix form as:

y′
1 = K · y1, and y′

2 = K · y2 ,

with y1 =

⎡⎢⎢⎢⎣
y10

y11

...
y1(N−1)

⎤⎥⎥⎥⎦ , y2 =

⎡⎢⎢⎢⎣
y20

y21

...
y2(N−1)

⎤⎥⎥⎥⎦ , and K =

⎡⎢⎢⎢⎢⎢⎢⎣

−α 0 0 · · · 0
α −α 0 · · · 0

0 α −α
. . . 0

...
. 0

0 · · · 0 α −α

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here y1
′ and y2

′ are the vector derivatives of y1 and y2 respectively. The solution
can now be written in analogy to that of first order differential equations:

y1(t) = exp(K · t) · y1(0), and
y2(t) = exp(K · t) · y2(0) ,

with y1(0) =

⎡⎢⎢⎢⎣
y10(0)

0
...
0

⎤⎥⎥⎥⎦ , and y2(0) =

⎡⎢⎢⎢⎣
y20(0)

0
...
0

⎤⎥⎥⎥⎦ .

These initial conditions imply that the uptake equation (2) for the random seg-
regation case needs to be extended to predict both the proportion of cells with

A Stochastic Single Cell Based Model 391

1 labelled strand and 2 labelled strands during BrdU uptake. For this purpose
Kiel et al. introduced y1 to represent the fraction of cells with one DNA strand
BrdU+ after only one division, and y2 to represent the fraction of cells with both
DNA strands BrdU+ after two or more divisions. The updated uptake equations
now define a two step process:

dy1

dt
= −αy1 + αy0 (7)

dy2

dt
= αy1 . (8)

The initial conditions for (6) then becomes y10(0) = y1(T) and y20(0) = y2(T).
Note that the total uptake dynamics dy1

dt + dy2
dt = αy0 remains unchanged.

2.3 Improved Uptake Equations

Careful study of (8) reveals that it is based on an assumption that a cell has
100% of its DNA labelled after only 2 divisions in the presence of BrdU. A
more accurate continuous approximation would be that daughter.labelling =
0.5+ (0.5× parent.labelling), with labelling = 1.0 indicating all DNA (i.e. both
strands) are BrdU+. Equation (8) thus over-predicts y20(0), the proportion of
cells that has both strands labelled when BrdU is removed (see Fig. 3 in Sect.
3). This can be improved upon by rather letting y1 represent the fraction of cells
that has divided once or twice, and then letting y2 represent the fraction of cells
that has divided three or more times, making provision for an intermediate level
of labelling in between y1 and y2. Instead of modelling the number of labelled
strands explicitly, we rather define equations for two classes of labelling, allowing
cells to stay in the first class for one round of divisions:

dy11

dt
= −αy11 + αy0 (9)

dy12

dt
= −αy12 + αy11 (10)

dy2

dt
= αy11 , (11)

where y1 = y11 + y12 . There is no need to define a third class in this study, since
we will use T = 10 and alpha = 0.6 (see Sect. 3), and hence we can expect few
cells to divide four or more times during BrdU uptake.

2.4 Stochastic Single Cell Model

Since stem cells are rare entities with relatively low numbers compared to other
cells, it is quite feasible to simulate large stem cell systems with single cell based
methods in a reasonable amount of time. Single cell based models have a one-to-
one correspondence between a real cell and a software implementation of a cell
(which we will refer to as an agent). The result is that biologists can more easily

392 R.C. van der Wath and P. Lio’

relate to such models as opposed to more mathematically complex ones. Further-
more, agent-based approaches are lately gaining more widespread use in modelling
complex biological systems [6]. A single cell based BrdU model is surprisingly sim-
ple since all that it relies on are representation of time, cells, chromosomes and cell
division. We will describe our model under each of these components.

Time. We follow a discrete time approach where we evaluate each individual cell
at fixed intervals of time. Each instance of time is called a tick. A tick can be
set to represent any level of granularity (seconds, hours, days, etc.) with smaller
values producing more exact results but requiring more computational power.

Cells. Cells are implemented as agents. Agents can be of different types to
represent distinct cell populations. Each agent is member of a masterlist which
is used to keep track of the total cell population and its relevant properties,
in our case status of BrdU labelling. Each different type of agent has a certain
probability of dividing at each tick. Concurrency is simulated by traversing the
masterlist in random order and then performing each agent’s division action
with its corresponding probability. There is no need for the agents to have spatial
properties or to interact and communicate with each other.

Chromosomes. Chromosomes are implemented as collections of boolean pairs.
Each unit of the boolean pair represents one of the DNA strands of a cell’s chromo-
some (3-prime or 5-prime strand) and is set to true if the strand has taken up BrdU
and false otherwise. Depending on the organism we are simulating, the number
of chromosomes as well as the ploidy of cells can be set. A global boolean variable
brdu present indicates whether BrdU is applied or not, so that both BrdU uptake
and loss canbe simulated.With our agent-based approachwe can count the explicit
number of strands that are BrdU positive at each time point and this provides a
very accurate mechanism to model the sensitivity of BrdU detection.

Algorithm 1. Asymmetric segregation
for i = 1 to (num chromosomes ∗ ploidy) do

daughter1.chr(i).5prime ⇐ mother.chr(i).5prime
daughter1.chr(i).3prime ⇐ brdu present
daughter2.chr(i).5prime ⇐ brdu present
daughter2.chr(i).3prime ⇐ mother.chr(i).3prime

end for
masterlist.remove(mother)
masterlist.add(daughter1)
masterlist.add(daughter2)

Cell division. When a stem cell agent divides it spawns two new daughter agents
and itself is deleted from the masterlist. The way in which the hereditary infor-
mation (i.e. chromosomes) gets transferred to the two daughter cells depends on
whether we simulate asymmetric or random chromosome segregation (Algorithm
1 and 2).

A Stochastic Single Cell Based Model 393

Algorithm 2. Random segregation
for i = 1 to (num chromosomes ∗ ploidy) do

rnd ⇐ Random.uniform(0, 1.0)
if rnd > 0.5 then

daughter1.chr(i).5prime ⇐ mother.chr(i).5prime
daughter1.chr(i).3prime ⇐ brdu present
daughter2.chr(i).5prime ⇐ brdu present
daughter2.chr(i).3prime ⇐ mother.chr(i).3prime

else
daughter1.chr(i).5prime ⇐ brdu present
daughter1.chr(i).3prime ⇐ mother.chr(i).3prime
daughter2.chr(i).5prime ⇐ mother.chr(i).5prime
daughter2.chr(i).3prime ⇐ brdu present

end if
end for
masterlist.remove(mother)
masterlist.add(daughter1)
masterlist.add(daughter2)

We have implemented this model as an Object Oriented application in Java
using the Repast Agent Simulation Toolkit [7] and in the following section we
evaluate the usefulness of our model as a stochastic BrdU kinetics simulator over
the deterministic models described above (based on how well experimental data
is explained - see Sect. 2.1).

3 Results

The experimental data we model for BrdU uptake and loss are taken from
Figures 2d and 3c (HSCs) respectively in Kiel et al. [4]. Their ODE model
prediction is presented in Figure 3a of [4] where they explicitly indicate the
prediction values for day 70 only. Kiel et al. conclude that their data are most
consistent with random chromosome segregation and that BrdU detection is
lost after approximately three divisions. It seems that this conclusion is based
solely on the prediction of day 70. To evaluate the model based on all the ex-
perimental data we implemented the equations of Kiel et al. as given in Sect.
2.2 and plotted two versions of the predictions (together with the observed val-
ues and their standard deviation bars). Figure 2A shows the prediction using
the original random segregation uptake equations (7) and (8), and corresponds
to Figure 3a of [4]. Figure 2B shows the model prediction when the improved
random segregation uptake equations (9), (10) and (11) are used instead. We
also show the predicted distribution of y1 and y2 during BrdU uptake for the
two versions in Fig. 3. From these figures the following observations can be
made:

394 R.C. van der Wath and P. Lio’

Fig. 2. The deterministic model by Kiel et al., showing the model prediction for: BrdU
uptake, asymmetric segregation BrdU chase, and random segregation BrdU chase on
different detection thresholds. A: The prediction when using the original random seg-
regation uptake equations (7 & 8). B: The prediction when using the improved random
segregation uptake equations (9 - 10).

– The predictions for BrdU uptake are very accurate. The BrdU administra-
tion phase is a very robust system, independent of chromosome segregation
mechanism and BrdU detection threshold. The only real free parameter is
thus the proliferation rate, and it seems the estimate of 6% per day is very
good. In contrast, both models performs poorly in the chase period (days
0-130).

– For the model in Fig. 2A, if all experimental data are taken into account,
the 1-2 division threshold has the best fit (see Table 1) which is different to
what Kiel et al. concluded. This model thus predicts that BrdU will not be
detected unless each and every chromosome of a cell has at least one BrdU+

strand.
– For the model in Fig. 2B, the 2-3 division threshold has the best fit (Table

1) which seems more realistic than what is the case for Fig. 2A. For this
model the 1-2 division threshold prediction is very similar to the asymmetric
segregation curve. This is due to the smaller predicted proportion of y2 as
can be seen in Fig. 3B, which we think is a more realistic prediction than
Fig. 3A for cells with a daily turnover of 6%.

– From this perspective the model in Fig. 2B can thus be regarded as an
improved version, but nevertheless, prediction in general remain poor. At
any threshold, either the early (day 40), middle (day 70) or late stage (day
120) chase data can be fitted, but the models fails to satisfactorily describe
all stages simultaneously. One possible cause is that the poor fit is an artifact
of a continuous deterministic model describing a discrete stochastic process.
It can also imply the existence of a small more quiescent cell population that
retains BrdU for a longer period. Using our single cell model, we can take
both of these two possibilities into account.

A Stochastic Single Cell Based Model 395

Fig. 3. The proportion of y2 and y1 during BrdU uptake. A: The prediction of the orig-
inal random segregation uptake equations (7 & 8). B: The prediction of the improved
random segregation uptake equations (9 - 10).

Fig. 4. Single cell model simulation results of 50 runs, showing the average predicted
percentage of 400 cells that are BrdU positive after an uptake period of 10 days. A
threshold of 20 chr means at least 20 chromosomes needs to be BrdU labelled before
the agent is regarded as BrdU positive.

3.1 Homogenous Population

The prediction of our stochastic single cell model (assuming one homogeneous
cell population) is shown in Fig. 4 and Fig. 5. To improve comparison, parameter
values were chosen to match the values reported in Kiel et al.:

– Every tick represents one day. Division probability per tick is 0.06. We
used a homogenous population of 400 agents each with 40 chromosomes.

396 R.C. van der Wath and P. Lio’

Mus musculus (mice) have 20 chromosomes, but since they are diploid the
actual number of DNA strands that can take up BrdU is 80.

– BrdU uptake is simulated for 10 days, followed by a chase period of 130
days. Since each simulation produces slightly different results, 50 repetitions
were done and the location and spread of the predictions calculated. Using
more than 50 runs did not improve the statistical consistency of location and
spread estimates, whilst using fewer runs resulted in irregular and inconsis-
tent (between different simulations) sample averages and variances.

Fig. 5. The 50 individual runs of the single cell model (homogeneous population) with
their average and 95% confidence interval. A: Asymmetric segregation model pre-
dictions. B: Random segregation model predictions on a 20 chromosomes detection
threshold.

Like the model of Kiel et al., this version of our model also supports the
random segregation hypothesis (Comparing Fig. 5A to Fig. 5B). The best fit
suggests BrdU is detectable at a 20 chromosomes threshold (Table 1). But from
Fig. 5B we see that even with our stochastic simulator, the 2.0± 1.0% observed
rate at day 120 falls outside the 95% confidence interval of prediction. There is
thus strong reason to believe that the data was generated by a heterogeneous
cell population.

Note that our model is much more precise in terms of simulating the BrdU de-
tection threshold, since the model of Kiel et al. simulates the number of divisions
N before BrdU becomes undetectable rather than the labelled chromosomes it-
self. However, N depends on whether one or both DNA strands are labelled,
causing the ‘overlap’ effect between different detection thresholds as apparent
from the legend in Figure 3a of [4]. In addition, as pointed out in Sect. 2.2, their
model assumes that both DNA strands are BrdU+ after just two divisions during
BrdU application under random segregation (equation 3 in [4]). In reality, at the
single cell level, this is only one possible outcome in the 2#chromosomes ways in
which the chromosomes can segregate during the second division. Our discrete
model successfully captures this process and hence have a much more intuitive
and accurate way of simulating the BrdU detection sensitivity.

A Stochastic Single Cell Based Model 397

Table 1. RSS values for the two versions of the Kiel et al. model and our stochastic
single cell model (homogeneous population). The best RSS for each model are indicated
in bold.

Kiel et al. model Single cell model
original improved

immortal 55.9 55.9 immortal 59.6
1-2 div 29.7 49.7 20 chr 15.5
2-3 div 73.7 40.8 10 chr 194.8
3-4 div 421.4 324.9 5 chr 721.6
4-5 div 1095 883.7 3 chr 1263.8

3.2 Heterogeneous Populations

For this version of our model we assumed the existence of a smaller quiescent
population of cells which will retain BrdU for longer periods of time. We will
refer to the other group of cells as the active population. Quiescence and smaller
population size is associated with stronger stemness properties [8], so we further
assume that the quiescent cells are precursors of the active cells. Differentiated
daughter cells of the quiescent population are thus accrued in the active pop-
ulation. The complexity of our model is increased in that the size and division
rate of the quiescent population are now free parameters. Fortunately they are
constrained since the quiescent population size must be less than 50% of the
total population size, and the combined daily turnover rate must still be 6% to
accurately simulate BrdU uptake. We found that a 30% (120 out of 400) qui-
escent population with a 0.0156 probability of dividing per day (0.079 for the
active population) results in better RSS values than the homogeneous popula-
tion model (Table 1 and 2). The predictions based on random segregation are
shown in Fig. 6A. The most likely threshold is again 20 chromosomes and the
average with 95% confidence interval of this threshold is shown in Fig. 7A. The
assumption of heterogeneity has a dramatic effect on the predictions under the
immortal strand hypothesis, with two possible assumptions:

Immortal-immortal segregation. The first option is to assume that both
populations segregate their chromosomes asymmetrically. In this case a sce-
nario will be created where a small subset of cells (differentiated progeny of
the quiescent population during BrdU application) in the active population
will have immortal BrdU+ DNA strands. This model is thus extremely ef-
ficient in describing long term BrdU retaining data, with a lower RSS than
the random segregation model (Fig. 8A and Table 2).

Immortal-random segregation. The second option is for the quiescent pop-
ulation to have asymmetrical segregation, and the active population to have
random segregation. This might be a biological more acceptable assumption
but the model is not as effective as the previous option in describing the ob-
served data (Fig. 9A). There are nevertheless a significant reduction in RSS
compared to the immortal strand option of the homogeneous model (Table
1 and 2).

398 R.C. van der Wath and P. Lio’

Fig. 6. Prediction of the heterogeneous population model assuming random chromo-
some segregation and: single-phase turnover (A); or bi-phase turnover (B)

Fig. 7. Average and 95% confidence interval of 50 simulations (heterogeneous popu-
lation) assuming 20 chromosomes detection threshold random segregation and: single-
phase turnover (A); or bi-phase turnover (B)

Fig. 8. Average and 95% confidence interval of 50 simulations (heterogeneous popula-
tion) assuming immortal-immortal chromosome segregation and: single-phase turnover
(A); or bi-phase turnover (B)

A Stochastic Single Cell Based Model 399

Fig. 9. Average and 95% confidence interval of 50 simulations (heterogeneous popu-
lation) assuming a 20 chromosomes detection threshold on immortal-random chromo-
some segregation and: single-phase turnover (A); or bi-phase turnover (B)

Table 2. RSS values for the stochastic single cell model (heterogeneous population).
Comparing single phase vs bi-phase version. The best RSS values for each model are
indicated in bold.

1-phase 2-phase
immortal-immortal 7.5 5.9
immortal-random 13.7 5.7
20 chr 9.3 4.3
10 chr 47.3 87.9
5 chr 295.1 401.2
3 chr 598 746.9

Toxicity of BrdU. BrdU has been reported to be toxic for some cell types
[9], inducing an injury signal that causes the cells to increase their proliferation
rate in response. The proliferation rate return to its steady state (healthy) rate
soon after BrdU is removed. To take this possibility into account we simulated
a bi-phase heterogeneous population whose division probability during BrdU
uptake and the first 10 days of chase are higher than the division probability
during chase days 10 - 130. Parameters that produced good results are: (in the
order of population fraction, first phase division probability, second phase divi-
sion probability) for the random and immortal-random segregation case: quies-
cent population (30%,0.0156,0.0096), active population(70%,0.079,0.072); for the
immortal-immortal segregation case: quiescent population (10%,0.0156,0.008),
active population(90%,0.0649,0.04).

The results are shown in Fig. 6B and Fig. 7B for the random segregation case,
and in Fig. 8B and Fig. 9B for the asymmetric segregation case with the
corresponding RSS values in Table 2. All three cases (random segregation with 20
chromosomes detection threshold, immortal-random segregation with 20
chromosomes threshold, and immortal-immortal segregation) provides near-
perfect goodness of fit statistics. Although at 4.3 the random segregation model

400 R.C. van der Wath and P. Lio’

has the lowest RSS, no real preference can be given to any of the three hypothesis
based only on the RSS. For instance, the immortal-immortal model seems to be
the most effective in capturing the large variance observed at day 40 (Fig. 8B).
Both versions of the heterogeneous population model thus have equal support for
both random and asymmetric segregation.

4 Discussion and Conclusion

The model of Kiel et al. and that of other well known BrdU models in literature
[10,11,12] are all ODE-based and thus deterministic and continuous in nature.
There are several disadvantages in modelling biological systems as continuous de-
terministic processes, the most obvious being the fact that a deterministic model
needs to assume complete knowledge of the biological system under consideration
[13]. This is not possible for most biological systems that researchers are interested
in (due to the mere complexity of the spatial position, size, velocity, etc. of billions
of molecules). Hence deterministic models invariably have to adopt a higher level
view, representing actual biomolecular reactions as some form of aggregate. For
systems where all interacting components are present in high numbers individual
fluctuations get subsumed in the population average and deterministic models are
very effective. However, if some entities are present only in low numbers, the sys-
tem dynamics behaves in a stochastic manner and needs to be modelled as such.
A second advantage of stochastic models over deterministic models is that it pro-
vides for much more detailed statistical analysis as we have shown in this study.
The disadvantage is that stochastic models are usually much more computation-
ally intensive, and parameter estimates and inference are much harder for these
models and not as well established as is the case for deterministic models [13].

We have demonstrated how a single cell based approach, with probabilistic de-
cision making, resulted in a stochastic simulator of BrdU kinetics which can gener-
ate Monte Carlo samples from the underlying biological process. Analysis of these
samples in turn provides statistical information on the process, whilst being able
to take account of each individual cell and its chromosomes provides considerable
advantages over conventional approaches, as we have shown in this study.

We evaluated three versions of our model, systematically increasing its com-
plexity and also model prediction accuracy. Taking the results of all three versions
of our model together, we conclude that

1. The data of Kiel et al. are unsuitable for making conclusions about the im-
mortal strand hypothesis. More experimental data for the chase period 0-40
days and post 120 days might rectify this situation.

2. It is very likely that the data were generated by a heterogenous population,
supporting the possibility of a smaller quiescent group of cells that are the
precursors of the larger active cell population.

3. There is further support for the possibility that application of BrdU induces
an injury signal, increasing turnover rates.

4. The method used by Kiel et al. to detect BrdU+ cells (immunofluorescence
microscopy) has a maximum sensitivity threshold of 20 chromosomes.

A Stochastic Single Cell Based Model 401

Acknowledgements

Part of this work was supported by the Bradlow Foundation Scholarship. We are
grateful to Andreas Trumpp, Anne Wilson and Elisa Laurenti for helpful discus-
sions about BrdU and the biology of HSCs. We thank the reviewers for their com-
ments on improving the manuscript.

References

1. Potten, C.S., Loeffler, M.: Stem cells: attributes, cycles, spirals, pitfalls and uncer-
tainties. Lessons for and from the crypt. Development 110(4), 1001–1020 (1990)

2. Cheshier, S.H., Morrison, S.J., Liao, X., Weissman, I.L.: In vivo proliferation and
cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl.
Acad. Sci. USA 96(6), 3120–3125 (1999)

3. MacKey, M.C.: Cell kinetic status of haematopoietic stem cells. Cell Prolif. 34(2),
71–83 (2001)

4. Kiel, M.J., He, S., Ashkenazi, R., Gentry, S.N., Teta, M., Kushner, J.A., Jackson,
T.L., Morrison, S.J.: Haematopoietic stem cells do not asymmetrically segregate
chromosomes or retain brdu. Nature 449(7159), 238–242 (2007)

5. Cairns, J.: Mutation selection and the natural history of cancer. Nature 255(5505),
197–200 (1975)

6. Merelli, E., Armano, G., Cannata, N., Corradini, F., d’Inverno, M., Doms, A., Lord,
P., Martin, A., Milanesi, L., Müller, S., Schroeder, M., Luck, M.: Agents in bioin-
formatics, computational and systems biology. Brief Bioinform. 8(1), 45–59 (2007)

7. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations
of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1),
1–25 (2006)

8. Wilson, A., Oser, G.M., Jaworski, M., Blanco-Bose, W.E., Laurenti, E., Adolphe,
C., Essers, M.A., Macdonald, H.R., Trumpp, A.: Dormant and self-renewing
hematopoietic stem cells and their niches. Ann. N. Y. Acad. Sci. 1106, 64–75 (2007)

9. Caldwell, M.A., He, X., Svendsen, C.N.: 5-bromo-2’-deoxyuridine is selectively toxic
to neuronal precursors in vitro. Eur. J. Neurosci. 22(11), 2965–2970 (2005)

10. Grossman, Z., Herberman, R.B., Dimitrov, D.S., Rouzine, I.M., Coffin, J.M., Perel-
son, A.S., Bonhoeffer, S., Mohri, H., Ho, D.D.: T Cell Turnover in SIV Infection.
Science 284(5414), 555a (1999)

11. Bonhoeffer, S., Mohri, H., Ho, D., Perelson, A.S.: Quantification of cell turnover
kinetics using 5-bromo-2’-deoxyuridine. J. Immunol. 164(10), 5049–5054 (2000)

12. De Boer, R., Mohri, H., Ho, D.D., Perelson, A.S.: Estimating average cel-
lular turnover from 5-bromo-2’-deoxyuridine (brdu) measurements. Proc. Biol.
Sci. 270(1517), 849–858 (2003)

13. Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC,
Boca Raton (2006)

Analyzing a Discrete Model of Aplysia Central
Pattern Generator

Ashish Tiwari and Carolyn Talcott

SRI International, Menlo Park, CA 94025
{tiwari,clt}@csl.sri.com

M. Heiner and A.M. Uhrmacher (Eds.): CMSB 2008, LNBI 5307, pp. 347–366, 2008.
© Springer-Verlag Berlin Heidelberg 2008

DOI 10.1007/978-3-540-88562-7_27

In the original online version, the metadata is incorrect.

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-540-88562-7_24

ERRATUM

Author Index

Batt, Grégory 251
Bockmayr, Alexander 308
Bošnački, D. 367

Ciocchetta, Federica 2
Clarke, Edmund M. 231

de Jong, Hidde 1
Dematté, Lorenzo 191
de Vink, E.P. 367
Donaldson, Robin 269
Duguid, Adam 2
Durzinsky, Markus 328

Entcheva, Emilia 141
Ewald, Roland 211

Faeder, James R. 231
Fages, François 251
Fein, Marc 123
Flamm, Christoph 28

Gilbert, David 269
Gilmore, Stephen 2
Grosu, Radu 141
Guo, Shuixia 9

Harris, Leonard A. 231
Hillston, Jane 2, 156

Jeschke, Matthias 211
Jha, Sumit Kumar 231
John, Mathias 83

Köhn, Dagmar 176
Krishna, Ritesh 9
Kwiatkowski, Marek 103

Langmead, Christopher J. 231
Larhlimi, Abdelhalim 308

Lebiedz, Dirk 123
Legay, Axel 231
Le Novère, Nicolas 7, 176
Lhoussaine, Cédric 83
Lio’, Pietro 387
Loewe, Laurence 156

Maus, Carsten 44
Mazza, Tommaso 191

Niehren, Joachim 83

Oesterhelt, Dieter 8

Pedersen, Michael 63, 288
Plotkin, Gordon 63

Rizk, Aurélien 251

Skanda, Dominik 123
Smolka, Scott A. 141
Soliman, Sylvain 251
Stark, Ian 103
Steijaert, M.N. 367

Takahashi, Koichi 5
Talcott, Carolyn 347, E1
ten Eikelder, H.M.M. 367
Tiwari, Ashish 347, E1

Uhrmacher, Adelinde M. 83
Ullrich, Alexander 28

van der Wath, Richard C. 387

Wagler, Annegret 328
Weismantel, Robert 328

Ye, Pei 141

	Title Page
	Preface
	Organization
	Table of Contents
	Qualitative Modeling and Simulation of Bacterial Regulatory Networks
	Integrated Analysis from Abstract Stochastic Process Algebra Models
	References

	An Exact Brownian Dynamics Method for Cell Simulation
	Introduction
	Computational Method
	Results
	OtherTopics
	References

	Multiscale Modelling of Neuronal Signalling
	Systems Biology of Halophilic Archaea
	A Partial Granger Causality Approach to Explore Causal Networks Derived From Multi-parameter Data
	Background
	Methods
	Causal Model
	Partial Causal Influence
	Prerequisites for Causal Models
	Bootstrap Analysis

	Results and Discussion
	Application on T-Cell Data

	Conclusions
	References

	Functional Evolution of Ribozyme-Catalyzed Metabolisms in a Graph-Based Toy-Universe
	Introduction
	Model
	Genome
	Metabolites
	Enzymes
	Mapping
	Artificial Chemistry
	Metabolic Reaction Network

	Results
	Conclusions and Outlook
	References

	Component-Based Modelling of RNA Structure Folding
	Introduction
	Motivation – Modelling of Transcription Attenuation
	Principles of RNA Folding
	Thermodynamics
	Primary, Secondary, and Tertiary Structure

	Modelling Formalism
	The RNA Folding Model
	Nucleotides
	Macro Level Model

	Evaluation of the Folding Model
	Native Structure
	Structure Distribution
	Structure Refolding
	Assessment of Experiments

	Composed Attenuation Model
	RNA Polymerase
	Ribosome

	Conclusion
	References

	A Language for Biochemical Systems
	Introduction
	The Calculus of Biochemical Systems
	The Language for Biochemical Systems
	The Yeast MAPKCascade
	A General MAPK Cascade Module
	Receptor Activation and G-Protein Cycle Modules

	The Abstract Syntax of LBS
	Notation
	Pattern Expressions
	Programs
	Declarations

	The Semantics of LBS
	Static Semantics
	The General Translation Framework
	Translating LBS to Petri Nets

	Related Work and Future Directions
	References

	The Attributed Pi Calculus
	Introduction
	Extending the Π-Calculus
	Languages of Attribute Values
	Syntax of $\Pi(L)$
	Non-deterministic Semantics
	Biochemical Forms
	Stochastic Semantics

	Modeling Techniques and Biological Examples
	Space
	Cooperative Enhancement

	Stochastic Simulator
	Polyadic Synchronization and Compartments
	Conclusion and Outlook
	References

	The Continuous Π-Calculus: A Process Algebra for Biochemical Modelling
	Introduction
	Key Features
	Related Work

	The Continuous Π-Calculus
	Syntax
	Semantics

	Example
	The System
	The cΠ Model

	Discussion
	Alternative Behavioural Semantics
	Modelling Evolution
	Hybrid Modelling
	Refinement of Semantics

	References

	Automatic Complexity Analysis and Model Reduction of Nonlinear Biochemical Systems
	Introduction
	Model of the Regulatory Influence of RKIP on the ERK Signaling Pathway
	Complexity Analysis: Dynamic Sensitivity Analysis Allowing Orthogonal Decomposition of System Dynamics
	Model Reduction: Maximal Relaxation of Chemical Forces under Constraints
	Numerical Results
	Conclusion
	References

	Formal Analysis of Abnormal Excitation in Cardiac Tissue
	Introduction
	The PLAMIC Model
	Definition of the PLAMIC Model

	Formal Analysis of the PLAMIC Model
	Monotonicity and EADs
	Monotonicity Analysis of the PLAMIC Model

	Experimental Validation of the PLAMIC Model
	Conclusions
	References

	The Distribution of Mutational Effects on Fitness in a Simple Circadian Clock
	Introduction
	Background
	A Nomenclature of Distributions of Mutational E􀀀ects (DMEs)
	Fitness and Selection CoeÆcients
	Circadian Clocks

	Evolutionary Systems Biology
	Model
	Model Analysis
	Simulations
	Measuring Fitness Correlates
	Measuring Cycle Length and Amplitude
	Basic Clock Behaviour
	Bootstraps and DME Estimates

	Discussion
	Conclusions
	References

	SED-ML – An XML Format for the Implementation of the MIASE Guidelines
	Introduction
	The Simulation Experiment Description Object Model
	Information on the Model and Model Changes
	Information on the Simulation Settings
	Information on the Simulation Task
	Information on the Output

	A Simple Example for a Simulation Description
	Related Work
	Discussion and Future Work
	Resources
	References

	On Parallel Stochastic Simulation of Diffusive Systems
	Introduction
	The Gillespie SSA
	Simulation of Reactive-Diffusive Systems
	Reaction-Diffusion with the Gillespie Method

	Discrete Event Simulation (DES)
	Parallel and Distributed Discrete Event Simulation (PDES and DDES)
	Conservative vs. Optimistic
	Characterization of the Gillespie SSA as a PDES Algorithm

	An Optimistic Reaction-Diffusion Simulator
	Distributed Simulator Design
	Performance Considerations

	Example
	Conclusion and Future Work
	References

	Large-Scale Design Space Exploration of SSA
	Introduction
	Background and RelatedWork
	SSA Variants
	Exact Variants
	Approximative Variants

	Benchmark Models
	Experimentation Methodology
	Evaluated Algorithms
	PerformanceMeasurements
	Experiments

	Result Analysis
	Conclusions and Outlook
	References

	Statistical Model Checking in $BioLab$: Applications to the Automated Analysis of T-Cell Receptor Signaling Pathway
	Introduction
	BioNetGen
	Model Checking for Stochastic Systems
	The Problem
	Statistical Approach
	An Algorithmic Scheme

	Statistical Model Checking for CTMCs
	Continuous-Time Markov Chains
	Probabilistic Bounded Linear Temporal Logic

	Statistical Model Checking of a T Cell Model
	The BioLab Algorithm
	The T Cell Receptor Model
	Experiments

	Discussion and Conclusion
	References

	On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology
	Introduction
	Preliminaries on Linear Time Logic with Constraints over the Reals
	LTL(R)
	QFLTL(R)

	Continuous Satisfaction Degree of LTL(R) Formulae
	Variable Abstraction
	Quantitative Satisfaction

	Kinetic Parameter Search Using Violation Degree
	Principle
	Evaluation on Cell Cycle Models
	Evaluation on MAPK Signal Transduction Model

	Quantitative Robustness Analysis
	Principle
	Evaluation on Cell Cycle Model

	Related Work
	Conclusion
	References

	A Model Checking Approach to the Parameter Estimation of Biochemical Pathways
	Introduction
	Theory
	PLTLc Syntax
	PLTLc Semantics
	Characterising Biochemical Species’ Behaviour
	Probabilistic Domains
	Distance Metrics

	Computational System
	Case Study: MAPK Pathway
	Biochemical Motivation
	Characterising the Desired Pathway Behaviour
	Identification of Critical Parameters
	Genetic Algorithm

	Related Work
	Conclusion
	References

	Compositional Definitions of Minimal Flows in Petri Nets
	Introduction
	Preliminaries
	Petri Nets
	Petri Net Flows

	Composition of Petri Nets
	Composition Based on Place Sharing
	Modular Duality: Composition Based on Transition Sharing

	Minimal Transition Flows
	Minimal Place Flows
	Compositional Definitions of Minimal Flows
	CP: A Calculus of Petri Nets
	Flows in CP

	Related Work and Conclusion
	Related Work
	Conclusion

	References

	On Inner and Outer Descriptions of the Steady-State Flux Cone of a Metabolic Network
	Introduction
	Polyhedral Cones
	Steady-State Flux Cone
	Inner Descriptions of the Flux Cone
	Outer Description of the Flux Cone
	Outer Description of the Reconfigured Flux Cone
	Splitting a Fully Reversible Reaction
	Splitting a Pseudo-irreversible Reaction
	Changes in the Reversibility Type of Reactions

	From Outer to Inner Descriptions
	Conclusion
	References

	A Combinatorial Approach to Reconstruct Petri Nets from Experimental Data
	Introduction
	An Approach to the Network Reconstruction Problem
	The Integer Decomposition of the Difference Vectors
	The General Case
	The Case of Locally Bounded Experimental Data
	The Case of Monotone Experimental Data

	Concluding Remarks
	References

	Analyzing a Discrete Model of $Aplysia$ Central Pattern Generator
	Introduction
	Biology
	Related Work
	Discrete Formal Model
	Discrete Model of a Single Neuron
	Modeling a Collection of Neurons
	Modeling the Interconnects
	Exciting the System and Observing the Phases
	The Complete Model: Putting It All Together

	Analysis
	The Protraction Phase
	Transitioning from Protraction to Retraction
	The Retraction Phase
	Termination

	Results and Discussion
	Conclusions
	References

	Stochastic Analysis of Amino Acid Substitution in Protein Synthesis
	Introduction
	Biological Background
	AbstractModel
	Amino Acid Substitution
	Alternative aa-tRNA Sets
	Groups of Related Amino Acids
	Conclusions and Future Work
	References
	A Additional Tables
	B Prism Code

	A Stochastic Single Cell Based Model of BrdU Measured Hematopoietic Stem Cell Kinetics
	Introduction
	Methods
	Model Evaluation
	The Deterministic Model of Kiel et al.
	Improved Uptake Equations
	Stochastic Single Cell Model

	Results
	Homogenous Population
	Heterogeneous Populations

	Discussion and Conclusion
	References

	Erratum: Analyzing a Discrete Model of Aplysia Central Pattern Generator
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

