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Abstract. The software architecture of embedded systems is heavily influenced 
by limitations of the underlying hardware. Additionally, real-time requirements 
constrain the design of applications. On the other hand, embedded systems im-
plement specific functionalities and hence give the designer the opportunity to 
optimize the system despite of limitations. Multicore systems compromise the 
predictability of real-time requirements. Again, with the knowledge of the ap-
plication the software design can benefit from the multicore architecture. This 
paper discusses how to decide on software design based on use-cases and shows 
new avenues how to efficiently implement the design with an example. 
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1   Introduction 

Starting with a multiprocessor architecture at the super computer and main frame 
classes in the 1970’s and 1980’s the technology process got improved, which enabled 
chipset manufacturers to layout several cores on one die. The year 2005 was the in-
flection point when the increase of the clock frequency got restricted around 4 GHz, 
primarily because of huge power consumption and it was then, when multicore tech-
nology hit the consumer market. 

Now the multicore architecture is entering the embedded automotive domain. The 
first adopters are driver information systems followed by multicore systems for clas-
sical electronic control units (ECU). Head units like car navigation systems combine 
functionality from the consumer electronics market (like MP3 or video playback func-
tionality) with increasing complexity as well as from the automotive domain (like 
CAN or MOST networking). 

Therefore an ever-increasing demand for processing power has to be satisfied. Al-
though a multicore architecture has the potential to sate this demand, the change of 
paradigm forestalls the efficient usage of the provided processing power. Certainly, 
embedded systems can borrow from the approaches taken in the consumer electronics 
market. But there are differences like priority-based scheduling and optimisation 
techniques, which have to be taken care of. Therefore it will be interesting to see if 
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and how already established principles to use parallelism can be re-used in the auto-
motive domain. 

This paper extends [1] by covering the entire software design process. The starting 
point is six “meta” use-cases. These use-cases are in contrast with those that describe 
what the developed software is doing; they rather describe how to change the software. 
A multicore architecture offers several cores, on which software can be executed. The 
question “Which parts of the software are executed where?” is a new aspect of soft-
ware design. The use-cases offer criteria on such decisions. Finally, it is shown that 
well established optimisation techniques have to be replaced for multicore systems.  

2   Use-Cases for Automotive Multicore Systems 

For the investigation of use-cases it is assumed that a functional single-core system is 
already available. This means migration of legacy code is a major requirement. This is 
important especially for considerations outside the academic world since car makers 
and suppliers usually cannot afford to start such complex systems from scratch.  

In this paper the focus is on homogenous multicore systems [2]. The shared access 
to the memory subsystem is symmetric and peripherals are identical from individual 
core point-of-view. Heterogeneous architectures, e.g. constituting core connecting 
with a DSP, are out of scope of following sections. 

The major observed trends or use-cases for multicore in the automotive domain can 
be classified as: 

2.1   Use-Case 1: Deployment of New Functions 

For the realization of upcoming features additional computing power is required. This 
is to support technology advancement, on one hand (like the European satellite navi-
gation system Galileo). On the other hand, more rigid laws and standards (like the 
European eCall) have to be implemented. The use case also covers the refactoring of 
existing application, e.g. in order to increase performance or precision. 

2.2   Use-Case 2: Redundant Systems 

For automotive control units that require high safety and reliability, the use of multi-
core is a cost-efficient approach. However a failure of the underlying hardware will 
affect the entire system. Further investigations are necessary to verify which applica-
tion can be designed for this approach. 

2.3   Use-Case 3: Concentrating of Functions  

Since cars are equipped with up to 100 ECUs, the minimization of the amount is a 
strong objective. This is driven by many factors, hardware costs being one of them. 
Also the configuration management and therefore the test and release process gets 
less complex and time-consuming as the amount of possible combinations of software 
and hardware versions goes down. 
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2.4   Use-Case 4: Convergence of Domains 

Beside the requirement to reduce the amount of devices in the car it turns out that the 
different automotive domains are getting closer to each other. In an example by Toy-
ota [3] the availability of the current position as well as the calculated route to some 
destination can be used for other applications in the car like vehicle control. The do-
main of driver information gets closer to driver assistance or to the powertrain do-
main. Functionalities from the consumer electronics domain are getting into the car. 
This leads to several challenges since the consumer and automotive domain follow 
different rules, e.g. innovation cycles [4]. The requirements focus mainly on 2 fields: 
visualization (human-machine-interface) and connectivity (mobile phones, media 
player). Solutions known from the desktop world will be integrated in future info-
tainment systems [5].   

2.5   Use-Case 5: Architecture Harmonization 

The introduction of two or more identical cores reduces the need of specialized hard-
ware like a DSP. This approach is based on the assumption that a harmonized hard-
ware as well as software architecture increases flexibility. This also might simplify 
the usage of tools (as compilers and debuggers) and programming languages. 

2.6   Use-Case 6: Parallel Algorithms 

Often algorithms can be parallelized to solve some problem more natural. Having a 
hardware environment that supports parallelism avoids sequential refactoring of a 
parallel algorithm. In contrast to fields of high performance computing the nature of 
algorithms for car applications is different. For example it might be beneficial to par-
allelize the route calculation for getting shorter computation cycles in a navigation 
system. But analysis of the current devices has shown that the access to the external 
map data (e.g. on CD or DVD) rules the system performance. 

Parallelism on control level utilizes (light-weight) threads, as provided by the un-
derlying real time operating system (RTOS) to get computing done concurrently. In 
order to schedule these threads for execution on the individual cores, the kernel of the 
operating system has several options. It turns out that different mechanisms need to be 
considered for partitioning software on embedded systems compared to the desktop 
world. 

3   Scheduling 

Scheduling in desktop or server systems for user level programs is round-robin in 
nature, to give enough justice to all user programs under execution. This scheduling 
mechanism is non-deterministic as the operating systems (OS) steals control from 
threads to realize round-robin scheduling. In case of embedded systems, the schedul-
ing is generally priority based pre-emptive. And in such scheduling schemes, an ap-
plication may misbehave or lead to data race conditions if more than two threads of 
different priority go to RUN state at the same time. 



74 T. Polle and M. Uelschen 

3.1   Symmetric Multiprocessing 

In case of priority-based, pre-emptive scheduling on SMP kernels, the kernel provides 
flexibility to decide, which thread runs on which core. Dynamic load balancing is one 
of the properties of SMP mode.  

The advantages of symmetrical multiprocessing are: 

• The operating system manages automatic dynamic load balancing. The OS decides 
how to distribute threads across processors/cores to assure effective usage of all 
processors/cores. 

• Inter-core communication can be implemented very easily using inter-processor 
interrupts as memory is visible to all processors/cores. No explicit message passing 
mechanism is required. 

The drawbacks of symmetrical multiprocessing are: 

• Deterministic behavior gets degraded because of automatic load balancing. Also 
the load balancing algorithm consumes more CPU time as the number of proces-
sors/cores in the system, increases.  

• Cache coherency, synchronization mechanisms and shared data, limits application 
scalability. 

• Synchronization among threads compels execution across cores to become sequen-
tial. 

3.2   Asymmetric Multiprocessing 

SMP is the de-facto standard of multicore server and desktop operating systems [6]. 
For the embedded world also other architectures are under consideration. On systems 
with asymmetric multiprocessing (AMP) different operating systems or several in-
stances of the same are executed in parallel sharing the same physical hardware.  

In this case load balancing is not supported and the communication between the 
cores is costly. On the other hand porting of existing single-core applications is less 
difficult.  

The usage of several operating systems on a multicore system requires a com-
munication channel for the synchronization of shared resources (e.g. memory or I/O). 
After virtualization was successfully introduced to the server and workstation domain, 
there are initial attempts to apply similar concepts to embedded systems [7, 8].  

3.3   Hybrid Multiprocessing 

A promising approach is hybrid architecture: running just one RTOS but putting re-
strictions on the scheduling strategy. Such hybrid configuration is supported by the 
clever design of the scheduler logic and its associated data structures available as a 
part of the kernel:  

• Single Core. A core is configured in the way that a set of threads is defined to run 
exclusively on a specific core. Neither migrating of threads from this, nor to this 
core is allowed. The scheduling strategy on this core is priority-based. Load bal-
ancing is not possible.  
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• Execution Order Preserving. Threads are pooled to a partition with dependencies. 
The scheduler assures that the execution order of the depending threads is kept. If 
two threads have no dependencies, the scheduler is allowed to run these in parallel 
for load balancing reasons. 

• Core Affinity. A thread is bound to a specific core. The scheduler does not migrate 
the thread for execution even if a different core is idle. Other threads can migrate to 
this core and will be scheduled priority-based. 

The most flexibility is given if the RTOS supports the combination of SMP and the 
described AMP modes. For example, on a three core system, the system designer can 
configure at boot-time one core as one scheduling unit and the remaining two cores 
together, as another scheduling unit.  

Another configuration for a three core system could be that each core is treated as 
one scheduling unit. Here the situation tends to be like an AMP system. Such configu-
ration gives flexibility to port existing legacy applications from single-core systems to 
multicore systems.  

Currently there are no standards on scheduling for multicore available. Some RTOS 
like eT-Kernel [9] or Neutrino [10] support both these flavors of SMP and AMP. 

4   Application Binding 

Without detailed understanding of the system requirements no general rules can be 
given how to apply the different multiprocessing modes to the described use-cases. 
Therefore in this section only examples can be given how to bind an application to the 
cores. A major open issue is the predictability of real-time requirements.  

Based on the different use-cases the software partitioning varies. In contrast to 
multi-purpose systems like desktop computers or the high performance computing 
domain the symmetric multiprocessing design may be inappropriate. Table 1 summa-
rizes the mapping of the use-cases to different software partitioning. 

A hybrid multiprocessing approach enables the designer to keep dependencies and 
timings of the existing application and combine new functions. If algorithms can be 
parallelized and a short execution time is required, then a pure symmetric scheduling 
strategy fits. A hybrid approach does not gain additional benefits. 

Table 1. The symmetric multiprocessing approach is most beneficial for load-balancing reason 
or if an algorithm is following the single program-multiple data pattern 

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case
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Fig. 1. For the implementation of a redundant system vertical partitioning of the software is 
appropriate, running each redundant application on a separate core and the control application 
on the third. For combining several legacy applications horizontal partitioning gives the flexi-
bility of load balancing and preserving of execution order.  

Usually redundant systems should be separated mutually. Therefore an asymmetri-
cal partitioning minimizes the influence of a system to the other. Depending on the 
level of separation also single-core mode in a hybrid multiprocessing is appropriate 
(cf. figure 1). 
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Fig. 2. Using asymmetric multiprocessing two operating systems are running in parallel repre-
senting different automotive domains (left). A real-time operating system that supports hybrid 
multiprocessing can bind functionalities to dedicated cores (right). 
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In case of replacing dedicated DSP functionality for harmonization reasons by a 
multicore architecture a hybrid approach can be applied. The ported DSP application 
can be moved in a hybrid environment running in single-core mode. But also an 
asymmetrical multiprocessing system may be appropriate as first step of a migration 
strategy. The drawback of asymmetrical multiprocessing is to have two operating 
systems running in parallel that need to get synchronized in an appropriate manner. 
But in specific cases this can be beneficial. 

If pure computation power is required and the data can be arranged in a way that 
the calculation is symmetrical a pure symmetrical multiprocessing scheduling is the 
most appropriate. Again, the nature of automotive applications is usually not that way. 

Figure 2 shows how different automotive domains can be mapped to multicore sys-
tems in different ways. Combining vehicle control functionality with the infotainment 
domain leads to the sketched architecture. On a single-core the OSEK operating sys-
tem schedules threads (or tasks in OSEK nomenclature). Having a second symmetri-
cal multiprocessing operating system both domains can run on a joint multicore 
hardware. Migrating different single-core applications to a multicore system can be 
achieved in single-core mode of a hybrid environment.  

5   Design Patterns 

The task to decide on the layout of an application across several cores is governed by 
the question to what degree the application can be parallelized. The challenge to get 
an application in an embedded device parallelized is as complex as on the desktop or 
server domain. No general guideline can be given since control parallelism always 
requires specific knowledge on the problem space. Design patterns are a well-
accepted technique in software design. Some design patterns from the non-embedded 
world [11, 12] may also be applied for the embedded domain. But special attention 
has to be bestowed on the implementation. 

5.1   Parallel Design 

If a problem can be divided in the way that the algorithm can work in parallel and 
independent on separate chunks of data, then the master-worker pattern is an appro-
priate approach. A master thread controls a set of workers in a fork-join manner. For 
example sorting a large array can be implemented as parallel running worker threads 
quick-sorting sub-arrays. Merging the workers’ output by the master thread finalizes 
the algorithm. Since the locality of the sub-arrays is very high, negative effects to the 
cache can be avoided. The speed-up is high. Other prominent examples are matrix 
calculations like multiplication or solving of linear equations on a mesh for fluid dy-
namics. Usually the nature of an embedded automotive application is not that way. 

A central time-consuming algorithm of a navigation device is the route calculation. 
Finding the shortest path in a street network can be computed efficiently by Dijkstra’s 
greedy algorithm [13]. Efficient parallelizing of such problem is much harder as the 
simple divide-and-conquer cannot be used easily. In order to achieve load balancing 
the pipelining programming pattern which works like an assembly line seems to be a 
more beneficial approach. In case of route calculation the data reading from some 
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medium like DVD-Rom or SD-card can be arranged in the way that always a buffer 
of the next edges of the street network is available for the shortest path calculation. 
Using two threads on separate cores will speed-up the overall performance. 

5.2   Efficient Implementations 

Parallel design patterns require efficient implementations. The producer-consumer 
pattern is a well-known pattern and can be used for the communication between com-
ponents. One component, the producer, generates data, which is used by another 
component, the consumer. A simple and efficient implementation can be achieved, 
when a ring buffer is used. As depicted in figure 3, the producer adds data at the posi-
tion write pointer, and the consumer reads data at the read pointer. 

The producer has to take care that the write pointer never overtakes the read 
pointer, while the consumer has to make sure that the read pointer does not overtake 
the write pointer. 

Producer Consumer

write pointer

read pointer

Producer Consumer

write pointer

read pointer
 

Fig. 3. The producer-consumer pattern is realised with a ring buffer 

Although the implementation does not need further synchronisation mechanisms 
for just one producer and one consumer, the implementation does not work, if multi-
ple producers or consumers enter the scene, because updates of the write pointer or 
read pointer are not atomic and therefore open to race conditions. In this case, e.g. a 
mutex must be used to protect the access to the ring buffer respectively the write and 
read pointer. The introduction of the mutex comes with the additional cost of a system 
call. In embedded systems these costs are often not acceptable. Therefore less “expen-
sive” implementations are chosen. E.g. instead of using a mutex to protect the access 
to the ring buffer, CPU interrupts are masked as long as the access to the ring buffer is 
performed. But unfortunately in a multicore system, this approach does not work. 
When disabling interrupts for one core, another core is not prevented from accessing 
the ring buffer. To make the implementation work for multicore systems, the imple-
mentation can use a spinlock. If the spinlock is taken on a core, other cores cannot 
execute code in the critical section. They perform a busy wait until the lock is re-
leased. Alas, a simple spinlock is not sufficient, because the system might end in a 
dead lock. If the spinlock is taken and as many tasks as cores are available want to 
take the spinlock as well and these tasks have a higher priority than the task holding 
the spinlock, these tasks will on the one hand side wait for the lock to be released and 
on the other hand side prevent the task, which holds the lock, from releasing the lock. 
Therefore before the spinlock is taken, the task has to disable interrupts, in order not 
to be interrupted. The interrupts are enabled after the spinlock has been released. 
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The instructions to enable and disable interrupts are often privileged instructions, 
which only can be executed when the processor is in privileged mode. Often it is not 
desirable to run the processor in privileged mode. Instead user mode should be used 
whenever possible. 

Therefore an implementation, which does not rely on masking interrupts, is neces-
sary. To this end, atomic update operations like test and swap or load link and store 
can be used. But these operations cannot cover the entire access to the ring buffer. 
They can only be used to protect the update of the write and read pointer. First, a 
component reserves space in the ring buffer by updating the write pointer and then 
fills the ring buffer with data. Special care has to be taken, when a consumer wants to 
read data from the ring buffer. Since the write pointer is updated before the data in the 
ring buffer becomes ready, invalid data might be read by the consumer. If for example 
two components reserve space in the ring buffer, they will update the write pointer to 
hold first the value wpi and then the value wpi + 1 (cf. figure 4). 

di di+1

fill pointer
wpi wpi+1

di di+1

fill pointer
wpi wpi+1

 

Fig. 4. Multiple Producers 

Afterwards they each fill the reserved space with data di and di+1, respectively. At 
this point, it is not known which of the data is written first. To keep track of the point 
where data has been completely written, a fill pointer can be introduced. The fill 
pointer is updated after di has been written. In order to know whether the data di+1 has 
already been written or not, an indicator is necessary. One way to realise such an 
indicator is to build up a list for the data, which has been filled, without updating the 
fill pointer. E.g. the element corresponding to data di+1 holds the information wpi+1 
and length(di+1) (see figure 5). 
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Fig. 5. Filled List 
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The elements are stored in ascending order of the write pointer value. The insertion 
of elements into the list has to be done by test and swap operations. 

Although the algorithm presented comes with an overhead for the insertion into the 
filled list, the performance improvement is significantly compared to a solution using 
a mutex. On a system with a processor clock of 400 MHz, the operating system T-
Kernel needs about 3µsecs for a system call. Whereas the implementation presented 
above takes only 100 nsecs, if no element is in the list. If there are already elements in 
the list when a new element is inserted, the traversal of each element takes 50 nsecs. 
Additionally, the algorithm is non-blocking, hence a producer can also run in the 
context of an interrupt. 

Certainly, the optimisation can only be employed if the number of conflicting ac-
cesses to the ring buffer is an exception rather than the normal case. 

6   Conclusion 

Embedded systems are usually closed systems in the sense that user interaction is 
limited and any direct interference like installing user-defined applications is prohib-
ited. This gives the opportunity to tune and optimise software. A multicore architec-
ture takes away some optimisation techniques like efficient locking through interrupt 
masking, but at the same time offers new ways to gain performance like binding ap-
plications or threads to specific cores.  

Based on use-cases this paper focuses on how to apply different operating system 
modes. However multicore systems compromise the predictability of real-time re-
quirements. Further studies should focus on porting existing applications in order to 
get more evidence that hybrid multiprocessing is a feasible approach to support keep-
ing such real-time conditions. 
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