
T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 71–81, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tailoring and Optimising Software for Automotive
Multicore Systems

Torsten Polle and Michael Uelschen

Advanced Driver Information Technology GmbH
Robert-Bosch-Straße 200

31139 Hildesheim
{tpolle,muelschen}@de.adit-jv.com

Abstract. The software architecture of embedded systems is heavily influenced
by limitations of the underlying hardware. Additionally, real-time requirements
constrain the design of applications. On the other hand, embedded systems im-
plement specific functionalities and hence give the designer the opportunity to
optimize the system despite of limitations. Multicore systems compromise the
predictability of real-time requirements. Again, with the knowledge of the ap-
plication the software design can benefit from the multicore architecture. This
paper discusses how to decide on software design based on use-cases and shows
new avenues how to efficiently implement the design with an example.

Keywords: Multicore, Scheduling, Automotive Embedded Systems, Producer-
Consumer Pattern.

1 Introduction

Starting with a multiprocessor architecture at the super computer and main frame
classes in the 1970’s and 1980’s the technology process got improved, which enabled
chipset manufacturers to layout several cores on one die. The year 2005 was the in-
flection point when the increase of the clock frequency got restricted around 4 GHz,
primarily because of huge power consumption and it was then, when multicore tech-
nology hit the consumer market.

Now the multicore architecture is entering the embedded automotive domain. The
first adopters are driver information systems followed by multicore systems for clas-
sical electronic control units (ECU). Head units like car navigation systems combine
functionality from the consumer electronics market (like MP3 or video playback func-
tionality) with increasing complexity as well as from the automotive domain (like
CAN or MOST networking).

Therefore an ever-increasing demand for processing power has to be satisfied. Al-
though a multicore architecture has the potential to sate this demand, the change of
paradigm forestalls the efficient usage of the provided processing power. Certainly,
embedded systems can borrow from the approaches taken in the consumer electronics
market. But there are differences like priority-based scheduling and optimisation
techniques, which have to be taken care of. Therefore it will be interesting to see if

72 T. Polle and M. Uelschen

and how already established principles to use parallelism can be re-used in the auto-
motive domain.

This paper extends [1] by covering the entire software design process. The starting
point is six “meta” use-cases. These use-cases are in contrast with those that describe
what the developed software is doing; they rather describe how to change the software.
A multicore architecture offers several cores, on which software can be executed. The
question “Which parts of the software are executed where?” is a new aspect of soft-
ware design. The use-cases offer criteria on such decisions. Finally, it is shown that
well established optimisation techniques have to be replaced for multicore systems.

2 Use-Cases for Automotive Multicore Systems

For the investigation of use-cases it is assumed that a functional single-core system is
already available. This means migration of legacy code is a major requirement. This is
important especially for considerations outside the academic world since car makers
and suppliers usually cannot afford to start such complex systems from scratch.

In this paper the focus is on homogenous multicore systems [2]. The shared access
to the memory subsystem is symmetric and peripherals are identical from individual
core point-of-view. Heterogeneous architectures, e.g. constituting core connecting
with a DSP, are out of scope of following sections.

The major observed trends or use-cases for multicore in the automotive domain can
be classified as:

2.1 Use-Case 1: Deployment of New Functions

For the realization of upcoming features additional computing power is required. This
is to support technology advancement, on one hand (like the European satellite navi-
gation system Galileo). On the other hand, more rigid laws and standards (like the
European eCall) have to be implemented. The use case also covers the refactoring of
existing application, e.g. in order to increase performance or precision.

2.2 Use-Case 2: Redundant Systems

For automotive control units that require high safety and reliability, the use of multi-
core is a cost-efficient approach. However a failure of the underlying hardware will
affect the entire system. Further investigations are necessary to verify which applica-
tion can be designed for this approach.

2.3 Use-Case 3: Concentrating of Functions

Since cars are equipped with up to 100 ECUs, the minimization of the amount is a
strong objective. This is driven by many factors, hardware costs being one of them.
Also the configuration management and therefore the test and release process gets
less complex and time-consuming as the amount of possible combinations of software
and hardware versions goes down.

 Tailoring and Optimising Software for Automotive Multicore Systems 73

2.4 Use-Case 4: Convergence of Domains

Beside the requirement to reduce the amount of devices in the car it turns out that the
different automotive domains are getting closer to each other. In an example by Toy-
ota [3] the availability of the current position as well as the calculated route to some
destination can be used for other applications in the car like vehicle control. The do-
main of driver information gets closer to driver assistance or to the powertrain do-
main. Functionalities from the consumer electronics domain are getting into the car.
This leads to several challenges since the consumer and automotive domain follow
different rules, e.g. innovation cycles [4]. The requirements focus mainly on 2 fields:
visualization (human-machine-interface) and connectivity (mobile phones, media
player). Solutions known from the desktop world will be integrated in future info-
tainment systems [5].

2.5 Use-Case 5: Architecture Harmonization

The introduction of two or more identical cores reduces the need of specialized hard-
ware like a DSP. This approach is based on the assumption that a harmonized hard-
ware as well as software architecture increases flexibility. This also might simplify
the usage of tools (as compilers and debuggers) and programming languages.

2.6 Use-Case 6: Parallel Algorithms

Often algorithms can be parallelized to solve some problem more natural. Having a
hardware environment that supports parallelism avoids sequential refactoring of a
parallel algorithm. In contrast to fields of high performance computing the nature of
algorithms for car applications is different. For example it might be beneficial to par-
allelize the route calculation for getting shorter computation cycles in a navigation
system. But analysis of the current devices has shown that the access to the external
map data (e.g. on CD or DVD) rules the system performance.

Parallelism on control level utilizes (light-weight) threads, as provided by the un-
derlying real time operating system (RTOS) to get computing done concurrently. In
order to schedule these threads for execution on the individual cores, the kernel of the
operating system has several options. It turns out that different mechanisms need to be
considered for partitioning software on embedded systems compared to the desktop
world.

3 Scheduling

Scheduling in desktop or server systems for user level programs is round-robin in
nature, to give enough justice to all user programs under execution. This scheduling
mechanism is non-deterministic as the operating systems (OS) steals control from
threads to realize round-robin scheduling. In case of embedded systems, the schedul-
ing is generally priority based pre-emptive. And in such scheduling schemes, an ap-
plication may misbehave or lead to data race conditions if more than two threads of
different priority go to RUN state at the same time.

74 T. Polle and M. Uelschen

3.1 Symmetric Multiprocessing

In case of priority-based, pre-emptive scheduling on SMP kernels, the kernel provides
flexibility to decide, which thread runs on which core. Dynamic load balancing is one
of the properties of SMP mode.

The advantages of symmetrical multiprocessing are:

• The operating system manages automatic dynamic load balancing. The OS decides
how to distribute threads across processors/cores to assure effective usage of all
processors/cores.

• Inter-core communication can be implemented very easily using inter-processor
interrupts as memory is visible to all processors/cores. No explicit message passing
mechanism is required.

The drawbacks of symmetrical multiprocessing are:

• Deterministic behavior gets degraded because of automatic load balancing. Also
the load balancing algorithm consumes more CPU time as the number of proces-
sors/cores in the system, increases.

• Cache coherency, synchronization mechanisms and shared data, limits application
scalability.

• Synchronization among threads compels execution across cores to become sequen-
tial.

3.2 Asymmetric Multiprocessing

SMP is the de-facto standard of multicore server and desktop operating systems [6].
For the embedded world also other architectures are under consideration. On systems
with asymmetric multiprocessing (AMP) different operating systems or several in-
stances of the same are executed in parallel sharing the same physical hardware.

In this case load balancing is not supported and the communication between the
cores is costly. On the other hand porting of existing single-core applications is less
difficult.

The usage of several operating systems on a multicore system requires a com-
munication channel for the synchronization of shared resources (e.g. memory or I/O).
After virtualization was successfully introduced to the server and workstation domain,
there are initial attempts to apply similar concepts to embedded systems [7, 8].

3.3 Hybrid Multiprocessing

A promising approach is hybrid architecture: running just one RTOS but putting re-
strictions on the scheduling strategy. Such hybrid configuration is supported by the
clever design of the scheduler logic and its associated data structures available as a
part of the kernel:

• Single Core. A core is configured in the way that a set of threads is defined to run
exclusively on a specific core. Neither migrating of threads from this, nor to this
core is allowed. The scheduling strategy on this core is priority-based. Load bal-
ancing is not possible.

 Tailoring and Optimising Software for Automotive Multicore Systems 75

• Execution Order Preserving. Threads are pooled to a partition with dependencies.
The scheduler assures that the execution order of the depending threads is kept. If
two threads have no dependencies, the scheduler is allowed to run these in parallel
for load balancing reasons.

• Core Affinity. A thread is bound to a specific core. The scheduler does not migrate
the thread for execution even if a different core is idle. Other threads can migrate to
this core and will be scheduled priority-based.

The most flexibility is given if the RTOS supports the combination of SMP and the
described AMP modes. For example, on a three core system, the system designer can
configure at boot-time one core as one scheduling unit and the remaining two cores
together, as another scheduling unit.

Another configuration for a three core system could be that each core is treated as
one scheduling unit. Here the situation tends to be like an AMP system. Such configu-
ration gives flexibility to port existing legacy applications from single-core systems to
multicore systems.

Currently there are no standards on scheduling for multicore available. Some RTOS
like eT-Kernel [9] or Neutrino [10] support both these flavors of SMP and AMP.

4 Application Binding

Without detailed understanding of the system requirements no general rules can be
given how to apply the different multiprocessing modes to the described use-cases.
Therefore in this section only examples can be given how to bind an application to the
cores. A major open issue is the predictability of real-time requirements.

Based on the different use-cases the software partitioning varies. In contrast to
multi-purpose systems like desktop computers or the high performance computing
domain the symmetric multiprocessing design may be inappropriate. Table 1 summa-
rizes the mapping of the use-cases to different software partitioning.

A hybrid multiprocessing approach enables the designer to keep dependencies and
timings of the existing application and combine new functions. If algorithms can be
parallelized and a short execution time is required, then a pure symmetric scheduling
strategy fits. A hybrid approach does not gain additional benefits.

Table 1. The symmetric multiprocessing approach is most beneficial for load-balancing reason
or if an algorithm is following the single program-multiple data pattern

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case

76 T. Polle and M. Uelschen

Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread A0

Thread A1

Thread An

Application

Thread R0

Thread R1

Thread Rn

Redundancy

Thread C0

Control & Voting

Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread Vn

Thread MnThread M1

Thread M0

Thread V1

Thread N1 Thread NnThread N0

Thread V0

Navigation

Video Processing

Multimedia

Fig. 1. For the implementation of a redundant system vertical partitioning of the software is
appropriate, running each redundant application on a separate core and the control application
on the third. For combining several legacy applications horizontal partitioning gives the flexi-
bility of load balancing and preserving of execution order.

Usually redundant systems should be separated mutually. Therefore an asymmetri-
cal partitioning minimizes the influence of a system to the other. Depending on the
level of separation also single-core mode in a hybrid multiprocessing is appropriate
(cf. figure 1).

Core 0 Core 1 Core 2

OSEK-OS

Thread In

Thread I1

Thread I0

Multicore Operating System (SMP)

Thread A0

Thread A1

Thread An

Vehicle Control Infotainment/Multimedia

Core 0 Core 1 Core 2

Real-Time Operating System (priority-based, pre-emptive)

Thread A0

Thread A1

Thread An

Function A

Thread B0

Thread B1

Thread Bn

Function B

Thread C0

Thread C1

Thread Cn

Function C

Fig. 2. Using asymmetric multiprocessing two operating systems are running in parallel repre-
senting different automotive domains (left). A real-time operating system that supports hybrid
multiprocessing can bind functionalities to dedicated cores (right).

 Tailoring and Optimising Software for Automotive Multicore Systems 77

In case of replacing dedicated DSP functionality for harmonization reasons by a
multicore architecture a hybrid approach can be applied. The ported DSP application
can be moved in a hybrid environment running in single-core mode. But also an
asymmetrical multiprocessing system may be appropriate as first step of a migration
strategy. The drawback of asymmetrical multiprocessing is to have two operating
systems running in parallel that need to get synchronized in an appropriate manner.
But in specific cases this can be beneficial.

If pure computation power is required and the data can be arranged in a way that
the calculation is symmetrical a pure symmetrical multiprocessing scheduling is the
most appropriate. Again, the nature of automotive applications is usually not that way.

Figure 2 shows how different automotive domains can be mapped to multicore sys-
tems in different ways. Combining vehicle control functionality with the infotainment
domain leads to the sketched architecture. On a single-core the OSEK operating sys-
tem schedules threads (or tasks in OSEK nomenclature). Having a second symmetri-
cal multiprocessing operating system both domains can run on a joint multicore
hardware. Migrating different single-core applications to a multicore system can be
achieved in single-core mode of a hybrid environment.

5 Design Patterns

The task to decide on the layout of an application across several cores is governed by
the question to what degree the application can be parallelized. The challenge to get
an application in an embedded device parallelized is as complex as on the desktop or
server domain. No general guideline can be given since control parallelism always
requires specific knowledge on the problem space. Design patterns are a well-
accepted technique in software design. Some design patterns from the non-embedded
world [11, 12] may also be applied for the embedded domain. But special attention
has to be bestowed on the implementation.

5.1 Parallel Design

If a problem can be divided in the way that the algorithm can work in parallel and
independent on separate chunks of data, then the master-worker pattern is an appro-
priate approach. A master thread controls a set of workers in a fork-join manner. For
example sorting a large array can be implemented as parallel running worker threads
quick-sorting sub-arrays. Merging the workers’ output by the master thread finalizes
the algorithm. Since the locality of the sub-arrays is very high, negative effects to the
cache can be avoided. The speed-up is high. Other prominent examples are matrix
calculations like multiplication or solving of linear equations on a mesh for fluid dy-
namics. Usually the nature of an embedded automotive application is not that way.

A central time-consuming algorithm of a navigation device is the route calculation.
Finding the shortest path in a street network can be computed efficiently by Dijkstra’s
greedy algorithm [13]. Efficient parallelizing of such problem is much harder as the
simple divide-and-conquer cannot be used easily. In order to achieve load balancing
the pipelining programming pattern which works like an assembly line seems to be a
more beneficial approach. In case of route calculation the data reading from some

78 T. Polle and M. Uelschen

medium like DVD-Rom or SD-card can be arranged in the way that always a buffer
of the next edges of the street network is available for the shortest path calculation.
Using two threads on separate cores will speed-up the overall performance.

5.2 Efficient Implementations

Parallel design patterns require efficient implementations. The producer-consumer
pattern is a well-known pattern and can be used for the communication between com-
ponents. One component, the producer, generates data, which is used by another
component, the consumer. A simple and efficient implementation can be achieved,
when a ring buffer is used. As depicted in figure 3, the producer adds data at the posi-
tion write pointer, and the consumer reads data at the read pointer.

The producer has to take care that the write pointer never overtakes the read
pointer, while the consumer has to make sure that the read pointer does not overtake
the write pointer.

Producer Consumer

write pointer

read pointer

Producer Consumer

write pointer

read pointer

Fig. 3. The producer-consumer pattern is realised with a ring buffer

Although the implementation does not need further synchronisation mechanisms
for just one producer and one consumer, the implementation does not work, if multi-
ple producers or consumers enter the scene, because updates of the write pointer or
read pointer are not atomic and therefore open to race conditions. In this case, e.g. a
mutex must be used to protect the access to the ring buffer respectively the write and
read pointer. The introduction of the mutex comes with the additional cost of a system
call. In embedded systems these costs are often not acceptable. Therefore less “expen-
sive” implementations are chosen. E.g. instead of using a mutex to protect the access
to the ring buffer, CPU interrupts are masked as long as the access to the ring buffer is
performed. But unfortunately in a multicore system, this approach does not work.
When disabling interrupts for one core, another core is not prevented from accessing
the ring buffer. To make the implementation work for multicore systems, the imple-
mentation can use a spinlock. If the spinlock is taken on a core, other cores cannot
execute code in the critical section. They perform a busy wait until the lock is re-
leased. Alas, a simple spinlock is not sufficient, because the system might end in a
dead lock. If the spinlock is taken and as many tasks as cores are available want to
take the spinlock as well and these tasks have a higher priority than the task holding
the spinlock, these tasks will on the one hand side wait for the lock to be released and
on the other hand side prevent the task, which holds the lock, from releasing the lock.
Therefore before the spinlock is taken, the task has to disable interrupts, in order not
to be interrupted. The interrupts are enabled after the spinlock has been released.

 Tailoring and Optimising Software for Automotive Multicore Systems 79

The instructions to enable and disable interrupts are often privileged instructions,
which only can be executed when the processor is in privileged mode. Often it is not
desirable to run the processor in privileged mode. Instead user mode should be used
whenever possible.

Therefore an implementation, which does not rely on masking interrupts, is neces-
sary. To this end, atomic update operations like test and swap or load link and store
can be used. But these operations cannot cover the entire access to the ring buffer.
They can only be used to protect the update of the write and read pointer. First, a
component reserves space in the ring buffer by updating the write pointer and then
fills the ring buffer with data. Special care has to be taken, when a consumer wants to
read data from the ring buffer. Since the write pointer is updated before the data in the
ring buffer becomes ready, invalid data might be read by the consumer. If for example
two components reserve space in the ring buffer, they will update the write pointer to
hold first the value wpi and then the value wpi + 1 (cf. figure 4).

di di+1

fill pointer
wpi wpi+1

di di+1

fill pointer
wpi wpi+1

Fig. 4. Multiple Producers

Afterwards they each fill the reserved space with data di and di+1, respectively. At
this point, it is not known which of the data is written first. To keep track of the point
where data has been completely written, a fill pointer can be introduced. The fill
pointer is updated after di has been written. In order to know whether the data di+1 has
already been written or not, an indicator is necessary. One way to realise such an
indicator is to build up a list for the data, which has been filled, without updating the
fill pointer. E.g. the element corresponding to data di+1 holds the information wpi+1
and length(di+1) (see figure 5).

length(di+1)

wpi+1

filled list

length(di+2)

wpi+2

length(di+1)

wpi+1

length(di+1)

wpi+1

filled list

length(di+2)

wpi+2

length(di+2)

wpi+2

Fig. 5. Filled List

80 T. Polle and M. Uelschen

The elements are stored in ascending order of the write pointer value. The insertion
of elements into the list has to be done by test and swap operations.

Although the algorithm presented comes with an overhead for the insertion into the
filled list, the performance improvement is significantly compared to a solution using
a mutex. On a system with a processor clock of 400 MHz, the operating system T-
Kernel needs about 3µsecs for a system call. Whereas the implementation presented
above takes only 100 nsecs, if no element is in the list. If there are already elements in
the list when a new element is inserted, the traversal of each element takes 50 nsecs.
Additionally, the algorithm is non-blocking, hence a producer can also run in the
context of an interrupt.

Certainly, the optimisation can only be employed if the number of conflicting ac-
cesses to the ring buffer is an exception rather than the normal case.

6 Conclusion

Embedded systems are usually closed systems in the sense that user interaction is
limited and any direct interference like installing user-defined applications is prohib-
ited. This gives the opportunity to tune and optimise software. A multicore architec-
ture takes away some optimisation techniques like efficient locking through interrupt
masking, but at the same time offers new ways to gain performance like binding ap-
plications or threads to specific cores.

Based on use-cases this paper focuses on how to apply different operating system
modes. However multicore systems compromise the predictability of real-time re-
quirements. Further studies should focus on porting existing applications in order to
get more evidence that hybrid multiprocessing is a feasible approach to support keep-
ing such real-time conditions.

References

1. Das, B., Polle, T., Uelschen, M.: A Note on Software Partitioning for Embedded Homoge-
nous Multicore Systems. In: Informatik 2008, München (2008) (accepted as conference
submission)

2. Polle, T., Uelschen, M.: Softwareentwicklung für eingebettete Multi-Core-Systeme iX 3,
124–131 (2008)

3. Takei, T.: Toyota Works on Own OS for Automotive Terminals. Nikkei Electronics Asia
(2006),
http://techon.nikkeibp.co.jp/article/HONSHI/20061026/122752/

4. Lucke, H., Schaper, D., Siepen, P., Uelschen, M., Wollborn, M.: The Innovation Cycle Di-
lemma. In: Koschke, R., Herzog, O., Rödiger, K., Ronthaler, M. (eds.) Informatik 2007.
LNI, vol. 110, pp. 526–530. Gesellschaft für Informatik, Bonn (2007)

5. Microsoft Auto 3.0, http://www.mircosoft.com/windowsautomotive
6. Kleidermacher, D.: Is symmetric multiprocessing for you? Embedded Systems Design

Europe, January-February, 28–31 (2008)
7. Widmann, P.: Multi-Core-Systeme sinnvoll nutzen. Elektronik 13, 66–69 (2008)
8. Domeika, M.: Software Development for Embedded Multi-Core Systems: A Practical

Guide Using Embedded Intel Architecture. Butterworth Heinemann (2008)

 Tailoring and Optimising Software for Automotive Multicore Systems 81

9. Gondo, M.: Blending Asymmetric and Symmetric Multiprocessing with a Single OS on
ARM11 MPCore. Information Quarterly 4, 38–43 (2006)

10. Leroux, P.N., Craig, R.: Easing the Transition to Multi-Core Processors. Information Quar-
terly 4, 34–37 (2006)

11. Akhter, S., Roberts, J.: Multi-Core Programming. Intel Press (2006)
12. Rauber, T., Rünger, G.: Multicore: Parallele Programmierung. Springer, Heidelberg (2008)
13. Smith, J.D.: Design and Analysis of Algorithms. PWS-KENT Publishing, Boston (1989)

	Tailoring and Optimising Software for Automotive Multicore Systems
	Introduction
	Use-Cases for Automotive Multicore Systems
	Use-Case 1: Deployment of New Functions
	Use-Case 2: Redundant Systems
	Use-Case 3: Concentrating of Functions
	Use-Case 4: Convergence of Domains
	Use-Case 5: Architecture Harmonization
	Use-Case 6: Parallel Algorithms

	Scheduling
	Symmetric Multiprocessing
	Asymmetric Multiprocessing
	Hybrid Multiprocessing

	Application Binding
	Design Patterns
	Parallel Design
	Efficient Implementations

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

