
Automated Formal Testing of C API
Using T2C Framework

Alexey V. Khoroshilov, Vladimir V. Rubanov, and Eugene A. Shatokhin

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Communisticheskaya, 25, Moscow, Russia
{khoroshilov,vrub,spectre}@ispras.ru

http://ispras.ru

Abstract. A problem of automated test development for checking basic
functionality of program interfaces (API) is discussed. Different tech-
nologies and corresponding tools are surveyed. And T2C technology
developed in ISPRAS is presented. The technology and associated tools
facilitate development of ”medium quality” (and ”medium cost”) tests.
An important feature of T2C technology is that it enforces that each
check in a developed test is explicitly linked to the corresponding place
in the standard. T2C tools provide convenient means to create such link-
age. The results of using T2C are considered by example of a project for
testing interfaces of Linux system libraries defined by the LSB standard.

Keywords: Formal testing, compliance testing, parameterized tests,
medium-quality tests.

1 Introduction

Verification of a complex software system, checking its correctness in each situ-
ation is a very important but an extremely difficult task. Automated testing is
often used for software verification and when considering developing such tests
we have to deal with the trade-off between thoroughness of the tests and the
resources needed to develop, use and maintain these tests.

The optimal solution depends on many factors specific to a particular project.
In this paper we consider development of tests that check program interfaces for
C language (”C API”) for compliance with a standardized specification (and
actually for other kinds of mature developers documentation) for program inter-
faces. Such problem statement suggests taking the following factors into account:

• The tests need to be maintained as the standard evolves.
• The existence of a standard means assuming that the behaviour of the system

under test is described in enough detail. Nevertheless, it may not be the case
for fast evolving standards.

• More often than not, the inconsistencies found by the tests will be analyzed
not by the tests’ developer but rather by the experts from the companies
that wish to check their products for compliance with the standard. So it
can be crucial to facilitate analysis of such failures.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 56–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://ispras.ru

Automated Formal Testing of C API Using T2C Framework 57

These factors lead to several requirements for test suites and thus for an
approach taken to develop test suites. But they impose no restrictions on the
trade-off between available resources and the thoroughness of the tests.

As far as compliance testing is concerned, testing of basic functionality is a
rather common choice. To check basic functionality means to verify behaviour
of the system in its several common use cases probably including some scenarios
when the system must report an error (error scenarios). This path is quite at-
tractive for verification of industrial software because it often gives a guarantee
of revealing all significant violations of the standard for reasonable cost.

When it is crucial to ensure strict compliance of a software system with a stan-
dard and there are enough resources available, more thorough (”deep”) testing
is chosen. For instance, the deep tests may strive to check each class of test
situations possible for each aspect of functionality of each interface function.
Deep tests of this kind that still remain maintainable can be created using the
tools based, for example, on UniTesK technology [1] that, among other things,
suggests using special model-based testing techniques. This technology is used,
for instance, in CTesK tools [2]. The following features of CTesK allow to go
through all the test situations and to facilitate analysis of test coverage:

• the means for formal description of the requirements for the system under
test;

• support for automatic generation of test action sequences by dynamic cre-
ation of a test system behaviour model;

• support for a wide range of test quality metrics in terms of a requirement
model with automated gathering of data concerning the achieved coverage.

There are alternatives, of course. When it is necessary to cover a large amount
of functions in a short period of time, the decision can be made in favour of less
thorough testing. Sometimes its purpose is to ensure that each of these functions
can just be called with correct arguments and does not lead to a crash. One of
the approaches to development of such tests (”shallow tests”), AZOV technology
is described in [15].

The purpose of T2C tools described in this paper is to facilitate development of
tests that check basic functionality of a software system. These tools, while being
inferior to CTesK in respect of test thoroughness, allow achieving a reasonable
balance between the quality of the tests and the resources needed to develop
and maintain these tests. T2C tools support basic recommendations for dealing
with requirements in formal testing for compliance with a standard such as
creating a catalog of elementary requirements specified in the standard, ensuring
traceability of the requirements in the tests and measuring test quality in terms
of covered elementary requirements. T2C technology enforces that each check in
a developed test is explicitly linked to the corresponding place in the standard
and T2C tools provide convenient means to create such linkage.

This paper is organized as follows. In the first part several approaches to
similar problems are considered and their advantages and disadvantages with
respect to testing basic software functionality are discussed. Then basic features
of T2C tools are described as well as the work flow they support. After that

58 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

the results of applying T2C for a real-world problem are discussed, namely the
experience of using this technology to develop tests for several libraries from
GTK+ stack and fontconfig for compliance with the Linux Standard Base (LSB)
[3]. The future directions of T2C development as well as its integration with other
tools from UniTesK family are presented in the conclusion.

2 Technologies and Tools for the Development of Basic
Functionality Tests for Program Interfaces

2.1 MANUAL

Test systems that ensure the functionality is checked thoroughly usually need
a range of services of underlying operating system. That is why when the very
operating system is under test, it is required to be relatively stable for these
tests to operate properly.

To mitigate this problem and to minimize unintentional influence of test sys-
tem on the target system, distributed architecture is often used in test develop-
ment. This implies that most of the tasks are performed on an auxiliary (”in-
strumental”) machine, while only a small test agent is working on the target
machine. But even in this case interaction between the test agent and the in-
strumental machine requires some components of the system under test to be
operational.

That is why it is important to make sure that the key components of the target
system are operational before proceeding to thorough testing of its program
interfaces.

An approach for creating tests of basic operation system’s functionality named
MANUAL was developed in software engineering department of ISPRAS for the
project that involved testing of a POSIX-compliant real time operating system
for embedded devices. These tests verified that the key components of the op-
erating system are operational before the beginning of deeper testing by the
system developed using CTesk tools.

A test in MANUAL is in fact code in C programming language using macros and
functions of MANUAL support library. Each test is a separate function beginning
with TC_START("name of the test") macro and ending with TC_END() macro.
The body of the test consists of three parts:

• preparation of data and of the environment;
• test action itself and checking its results;
• deallocation of resources.

Checking the system under test for correctness is done with the function
tc_assert(expression_to_check, "text describing the failure"). If the
expression to check is false, it is assumed that an failure has been detected
and a message is output that describes this failure. Besides, the system auto-
matically catches exceptional situations that appear during the execution of the
test and treats them like failures.

Automated Formal Testing of C API Using T2C Framework 59

MANUAL system supports hierarchical composition of tests into the packages.
There are two modes for running the tests: automatic and interactive. In the
automatic mode the system executes the specified set of tests or packages and
stores execution log. In the interactive mode the user can navigate the package
tree down to an individual test and execute the chosen test or package.

The main drawback of MANUAL system is its low scalability. The scalability
problems result from the fact that each test is a function in C language which,
as the test suite grows, requires either multiple duplication of the source code
or a significant amount of a rather tedious manual work to structure the code.

Lack of test parametrization, while reasonable when implementing simple op-
erability checks for basic functionality of a target system, is a significant obstacle
for applying this approach to development of more thorough test suites.

2.2 Check

Check system [4] is designed in the first place for unit testing of software dur-
ing the development process. Nevertheless, Check can also be used for testing
program interfaces for compliance with the standards.

Check provides the test developer with a set of macros and functions to per-
form checks in the tests, to combine the tests in suites, to manage output of the
results, etc.

A test is code in C programming language enclosed between START_TEST
and END_TEST macros. The requirements are checked in the tests using the
following functions: fail_unless(expression_to_check, "text describing
the failure") and fail_if(expression_to_check, "text describing the
failure").

Functions performing initialization and clean-up of used resources can be spec-
ified both for each particular test and for each test suite (so called checked and
unchecked fixtures).

Advantages of Check system:

• support for running each test in a separate process, i.e. a kind of isolation
of the tests from one another and from Check environment;

• automatic handling of exceptional situations in the tests;
• support for specifying maximum execution time for a test;
• special facilities for checking situations where execution of the function under

test should result in sending a signal;
• integration of test building and test execution system with autoconf and

automake the tools commonly used for automation of software building and
installation [5].

Check, however, has several drawbacks that prevent using it in some cases:

• It is difficult to develop parameterized tests with Check. It is often the case
that some function needs to be tested with different sets of its arguments’
values while the code of the test remains almost the same. It could be rea-
sonable to pass these sets of values to the test as parameters. However only

60 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

the number of the test can be explicitly passed to this test as a parameter
which is not convenient.

• There is no linkage of the checks performed in a test to the places in the
documentation (standard) where the corresponding requirements are stated.

• To add a new test in a suite, it is necessary to recompile the source of all
the other tests of this suite too, which is not always reasonable.

• Common test results codes (”verdicts”) listed in the standard for testing
compliance to POSIX [6] are not supported which may make it more difficult
to analyze test results.

2.3 CUnit

CUnit system [7] can be used in the same cases as Check [4], but is generally
less powerful.

One of the most important drawbacks of CUnit compared to Check is the fact
that all the tests as well as the harness that executes them and collects their
results run in the same process. This means that a failure in a test may, for
example, lead to corruption of memory used by CUnit harness or by some other
test.

Also, unlike Check, there is no protection from test ”hang-up”: maximum
execution time can not be specified for a test.

Still there are some advantages CUnit has over Check:

• Support for so called fatal and non-fatal assertions. In the first case if a check
reveals that a requirement was violated, test execution stops and thus further
checks are not performed in this test (this approach is always used in Check).
One the other hand, if violation of a requirement has been detected in a
non-fatal assertion, test execution continues. Further checks in this test can
probably provide the developer with more detailed information about what
was really happening in the system under test. This may help to discover
the cause of the detected failure.

• A set of special functions and macros that facilitate commonly used checks
such as equality and inequality of integers, floating-point numbers, strings,
etc.

• Support for reporting the test results in several formats including those that
can be displayed in a web browser (xml+xslt).

Nevertheless, the drawbacks pointed out for Check in the previous section
apply to CUnit too. Test Environment Toolkit (TET) described below is free
from some of these.

2.4 TET (Test Environment Toolkit)

TETware system (TET, TestEnvironmentToolkit) is quite widely used for test-
ing various program interfaces. TET tools provide a common way to run different
tests and to obtain a report of the test results in a common format [8]. Data

Automated Formal Testing of C API Using T2C Framework 61

concerning test execution including its result (test verdict) and the messages it
outputs is accumulated in so called TET journal.

TET consists of the following basic components:

• test case controller (tcc) this component manages test execution and gath-
ering information the tests output;

• application program interface (TET API) that should be used in the tests to
be able to run them within TET harness. TET API is available for several
programming languages including C and C++.

The most important advantages of TET are probably the following:

• a common environment for running the tests;
• handling exceptional situations in the tests (segmentation faults, for exam-

ple) by the means of the test case controller;
• common test result codes (verdicts) that comply with the standard [6]: PASS,

FAIL, UNRESOLVED, etc., along with the ability to define additional test
result codes;

• an ability to add new tests to the suite without recompiling the remaining
tests (using so called TET scenarios)

• a common format for a report of test execution (TET journal).

These TET’s features make the analysis of test execution results easier. Par-
ticularly, the program tools processing TET journal may not take the specifics of
the tests into account while collecting the statistics of test results, for example.

On the other hand, TET tools have something to do mostly with automation
of test execution and collecting of test results. TET provides neither means
to somehow automate test development nor the API for performing checks in
the tests. Consequently, there are several reasons that make using ”pure” TET
(without any enhancements) rather inconvenient:

• Lack of means to link the checks performed in the tests to the corresponding
parts of the standard.

• It is often necessary to create tests with almost the same source code and
the difference is, for example, only in the parameters passed to the functions
called in this test or, say, in element types of used arrays, etc. It seems
reasonable to automate development of such tests so as to reuse common
parts of the source code. Unfortunately, TET provides no special means for
this.

• The test developer needs to manually add definitions of special functions,
data structures, etc., required to run the tests within TET harness. This
could be done automatically as well.

• The tests being executed by the test case controller are not always easy to
debug. It could be helpful both for searching for errors in the test itself and
for investigating the behaviour of the system under test to be able to avoid
TET’s influence on test execution. This could facilitate the use of debugger
programs such as gdb and others.

Described below are two systems that have TET as their basis: GTKVTS and
T2C. These systems manage to overcome TET’s drawbacks to some extent.

62 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

2.5 Automation of TET-Compliant Test Development in GTK+-2.0
Verification Test Suite (GTKVTS)

An approach used in GTK+-2.0 Verification Test Suite (GTKVTS) for develop-
ment of TET-compliant tests allows avoiding some of the TET’s drawbacks [9].

First of all, GTKVTS uses so called parameterized tests. That is, the developer
writes a template for the test source code in plain C language just marking in
some special way the places where to put the values of test’s parameters. Several
sets of parameter’s values can be specified for each test template of this kind.
Almost anything can be a test parameter, not only parameters of tested functions
or their expected returns values. Sometimes its is reasonable to consider types of
used data as test parameters (like C++ templates) or even to make a statement
calling the target function a parameter and so on.

The GTKVTS C code generator creates a single function in C language for
each set of parameters’ values based on the test source template (see Fig. 1).

Fig. 1. Generating C code based on a template. ”<%0%>” and ”<%1%>” mark the
places in the template where actual values of the parameters are to be inserted.

Second, GTKVTS tools automatically insert in the generated C source code
definitions of special data structures and functions required to be able to run
the test within TET harness, so the developer does not have to worry about
this. Besides that, makefiles for building the tests and TET scenario files are
also generated automatically which can be convenient.

The authors of GTKVTS also tried to encourage linking the checks in the tests
with the relevant fragments of a standard: the test developer should specify
the text of the requirements checked in this test in the comments before it.
Unfortunately, this text is not used in the test itself and it is usually difficult to
find out from the trace of the test, which requirements have been checked and
which of them have been violated.

There are also some less significant drawbacks of GTKVTS tools, such as lack
of support for debugging the test outside of TET harness and the fact that the
tools are specialized for developing tests for the libraries from GTK+ stack only.

Automated Formal Testing of C API Using T2C Framework 63

2.6 Comparison of Existing Approaches

Considered above are five approaches (and corresponding tools) for test devel-
opment for program interfaces in C language. The summary of their advantages
and disadvantages is given in Table 1.

Table 1. Comparison of existing approaches

MANUAL Check CUnit TET GTKVTS
Test parametrization - - - - +
Traceability of requirements - - - - -
Execution of tests in separate processes - + - - -
Automatic handling of exceptional situations + + - + +
Restriction of test execution time - + - + +
Hierarchical package organization + - - - -
Convenience of debugging + + + - -
Portability of the tests - + + + -
Using standard test verdicts [6] - - - + +

Each of the approaches considered above has some advantages. However all
of them have one significant drawback from the point of view of testing program
interfaces for compliance with standards, namely lack of support for linkage of
the checks in the tests to the requirements of the standard (”traceability of
requirements”). In addition, none of these approaches has all the advantages
described above while there seems to be no contradiction between them.

When it was decided to develop T2C tools, a requirement was stated that
these tools support (and enforce to some extent rather than just encourage)
traceability of requirements while still keeping the advantages of existing ap-
proaches shown in table 1 except hierarchical organization of test packages. This
exception is due to the fact that the possibility to hierarchically organize the test
packages does not significantly affect the development and usage of compliance
tests.

3 T2C (”Template-to-Code”) System

3.1 General Information

T2C (”Template-to-Code”) system facilitates the development of parameterized
tests that can be executed both within and outside of TET harness.

The source code of the tests in C programming language is created based on
a T2C-file that contains test templates along with the sets of parameter’s values
for these tests (the idea is the same as in GTKVTS - see Fig. 2). A fragment of
a T2C-file is shown below.

The tests to be created based on a template presented in Fig. 2 have two
parameters: TYPE and INDEX. int will be used as TYPE and 6 as INDEX in the
first of the tests, double and 999, respectively, in the second one.

64 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

Fig. 2. A fragment of a T2C-file

Like in GTKVTS, definitions of data structures and functions required to run
the tests within TET harness will be added to the source of the tests automati-
cally. Necessary makefiles and TET scenario files will be created as well.

So T2C tools retain main advantages of GTKVTS system while supporting
the recommendations for development of compliance tests stated, for instance,
in [10]:

• creating a catalog of elementary requirements for program interfaces to be
tested;

• linkage of the checks performed in the tests to the relevant places in the
corresponding standard;

• testing quality measurement in terms of covered elementary requirements.

The following enhancements have been made in T2C compared to GTKVTS:

• The test developer is provided with a set of high level program interfaces
(T2C API) to perform the checks in the tests. Now if a check in the test
reveals violation of some requirement, the text of this requirement is output
to the test’s trace (TET journal) along with other useful information.

• It is possible to create a standalone version of a test in pure C/C++ without
using any of TET’s features. This can be rather convenient both for debug-
ging the test and for thorough investigation of what happens in the system
under test in case of a failure.

• Templates of T2C-files (do not confuse them with the test templates) are cre-
ated automatically for a text of the standard with the requirements marked
up in it in a special way.

• T2C-file can also contain the code needed for initialization and cleanup of
the resources used by any the tests to be generated from this file as well as
for deallocation of resources allocated in each particular test.

• Execution of each test in a separate process is supported as well as in a single
process.

• Maximum execution time for a test can be specified. This is useful if some
of the tests may hang.

Automated Formal Testing of C API Using T2C Framework 65

3.2 Test Development with T2C Tools: The Workflow

Main stages of test development process with T2C tools are described in this
section (see also Fig. 3).

Fig. 3. Test development with T2C

Analysis of Documentation and Interface Grouping. First of all, before
trying to write conformance tests for some interfaces one should examine the
documentation of these interfaces to find out what is to be tested. During this
analysis one should also split the interfaces to be tested into groups, each of which
implements a coherent part of the system’s functionality (”functional groups”).
One should avoid the situations when some interfaces from group A are needed
to check the interfaces from group B (”A depends on B”) and in the same time
interfaces from A are needed to test those from B (cyclic dependency).

Sometimes the grouping is already done in the documentation. For instance,
a reference manual for Glib2 library [11] is divided in sections such as ”Memory
Allocation”, ”String Utility Functions”, ”Key-value file parser”, etc. Interfaces
described in each section usually form a single functional group.

66 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

During the test development one or more T2C-files are created for each func-
tional group. It is often reasonable to create appropriate directory structure for
the test suite at this stage too.

From now on it is assumed that the standard (documentation) for the inter-
faces to be tested is a set of HTML documents.

Requirement (Assertion) Markup in the Documentation. Elementary
requirements for each of the interfaces to be tested are marked up in the docu-
mentation in a special way at this stage. Each elementary requirement is given a
unique identifier [10]. The text of a requirement can be assembled from several
parts if necessary or it can be reformulated to improve readability.

Markup of requirements is performed in HTML editor KompoZer (www.
kompozer.net) enhanced with ReqMarkup tool that was developed during
OLVER project [12] and then remodeled and integrated into T2C system.

Creating a Template of T2C-file. Once the requirements for a particular
functional group of interfaces have been marked up, the ReqMarkup tool auto-
matically creates a template for the corresponding T2C-file.

Populating the T2C File Template. This stage is the most important in
the development of the tests. Now the developer should populate the template
of a T2C-file adding the templates of test case source code along with the para-
meter’s values for the tests. In addition, the code for initialization and cleanup
of resources used by the tests should be specified in special sections of the file.

The T2C Editor tool a plugin for Eclipse IDE - can be helpful for visual
editing of T2C files providing advanced navigation among the file’s sections,
convenient means for dealing with the parameters of the tests, etc.

Preparing Catalog of Elementary Requirements. Based on the documen-
tation with the requirements marked up, ReqMarkup tool also creates a catalog
of requirements for the corresponding group of interfaces. This catalog is used
during the execution of the test: if it is detected that a requirement is violated,
the text of the requirement with the particular identifier is loaded from the
catalog and output to the test’s trace for future analysis.

Generating the Source Code of the Tests, Makefiles and TET Scenar-
ios. When the tests in T2C format are prepared and so is the catalog of elemen-
tary requirements, the developer should invoke T2C Code Generator that will
create the files with source code of the tests (in C or C++ language), makefiles
for building the tests from these sources, TET scenario files, etc.

Building, Executing and Debugging the Tests. At this stage the developer
should build the test suite using the makefiles generated at the previous step.
After that the test suite is ready. One may run the tests within TET harness or
debug some of them outside of TET and so forth.

www.
kompozer.net

Automated Formal Testing of C API Using T2C Framework 67

4 Applying T2C to Test Development for LSB Desktop

T2C system was used (and is used now) in development of tests for interface
operations (”interfaces”) of Linux libraries, defined in the Linux Standard Base
(LSB). For example, the tests for the following libraries were prepared using
T2C tools:

• Glib (libglib-2.0);
• GModule (libgmodule-2.0);
• GThread (libgthread-2.0);
• GObject (libgobject-2.0);
• ATK (libatk-1.0);
• Fontconfig (libfontconfig).

Table 2 shows the results of testing these libraries. The descriptions of inconsis-
tencies found by the tests are published in http://linuxtesting.ru/results/
impl reports.

Table 2. Results of testing several Linux libraries for compliance with LSB by the
tests developed using T2C tools

Library Version Total interfaces Tested interfaces Problems found
libatk-1.0 1.19.6 222 222 (100%) 11
libglib-2.0 2.14.0 847 832 (98%) 13
libgthread-2.0 2.14.0 2 2 (100%) 0
libgobject-2.0 2.16.0 314 313 (99%) 2
libgmodule-2.0 2.14.0 8 8 (100%) 2
libfontconfig 2.4.2 160 160 (100%) 11
Total 1553 1537(99%) 39

Remark 1. The ”Version” column shows the latest version of the corresponding
library at the moment when the test suite was published. The number of errors
found by the tests is shown for this very version of the library. There is an
ongoing work on these errors in collaborations with the developers of respective
libraries, so it is possible that some or even all of these errors are (or will be)
fixed in newer versions.

Remark 2. The ”Total interfaces” column shows total number of interface op-
erations (”interfaces”) defined in the LSB for the particular library including
undocumented ones. Almost all documented interfaces were tested.

The average costs for a full cycle of test development (from the analysis and
markup of requirements to the debugged code of the tests) for a single interface
are about 0.5 - 1 man-day.

It should also be mentioned that the interfaces from these libraries are not
always described in detail in the documentation. In average, 2 - 3 elementary
requirements were found for each interface.

http://linuxtesting.ru/results/
impl_reports

68 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

Table 3. Coverage of requirements for LSB libraries

Library Requirements Checked requirements Requirement coverage (%)
libatk-1.0 515 497 96%
libglib-2.0 2461 2290 93%
libgthread-2.0 2 2 100%
libgobject-2.0 1205 1014 84%
libgmodule-2.0 21 17 80%
libfontconfig 272 213 78%
Total 4476 4033 90%

Table 4. Code coverage data

Library Lines of code (total) Executed lines Code coverage (%)
libglib-2.0 16263 12203 75.0%
libgthread-2.0 211 149 70.6%
libgobject-2.0 7000 5605 80.1%
libgmodule-2.0 270 211 78.1%
Total 23744 18168 76.5%

The information concerning the number of elementary requirements for tested
interfaces is given in Table 3 as well as requirement coverage data.

It can be interesting to find out what portion the source code of the libraries
under test the tests act upon. The code code coverage data for four libraries of
glib2 group is shown in Table 4. The data was collected for glib2 package version
2.16.3 using gcov tool. The parts of these libraries not defined in the LSB were
not taken into account.

5 Conclusion

The problem of testing program interfaces for compliance with their documen-
tation (including standards) is very important for providing quality and inter-
operable software systems. Various technologies as well as corresponding tools
are developed for this purpose that allow to somehow automate the work and
make it more systematic. These approaches always have to deal with a trade-off
between the quality of the tests and the cost of developing these tests. The choice
is often made here based on some quite subjective factors. Meanwhile, the choice
of target testing quality governs the choice of the optimal technology and tools
as well, because different levels of cost and quality require different approaches.
For instance, as far as deep (thorough) testing is concerned, UniTesK technology
proved very useful [13], although the cost of learning the technology and of the
actual test development is rather high.

Automated Formal Testing of C API Using T2C Framework 69

This paper describes T2C technology which is oriented to efficient develop-
ment of ”medium level” tests checking basic functionality of program interfaces.
The term ”medium level” corresponds in this case to the common notion of in-
dustrial testing quality achieved in the most of the test suites analyzed by the
authors (e.g., Open Group certification tests, LSB certification tests, OpenPosix
tests and Linux Test Project). T2C allows raising the efficiency of development
of such tests by providing the following basic features that reduce manual work
for preparing the environment and duplicating the code that is not specific for
a particular test:

• automatic generation of test templates based on the catalog of requirements;
• usage of named parameters in the source code of the tests with automated

generation of a separate test instance for each set of parameters’ values;
• a high-level API that can be used in the code of the test to check the re-

quirements and output trace messages;
• generation of standalone tests, i.e. self-sufficient programs in C or C++ lan-

guage which significantly simplifies debugging the tests as well as the tested
system compared to debugging them within TET test execution environment
or the like.

The execution environment for the tests created using T2C technology is based
on widely used TETware tools, which facilitates integration of the tests into
existing test suites and the environments that manage test execution and analysis
of the results. Besides that, one of important features of T2C is systematic work
with catalogs of elementary requirements and enforcing the explicit linkage of
requirement checks in the tests to the relevant places in the standard and output
of corresponding messages to the test execution report.

T2C technology was successfully used at the Institute for System Program-
ming of Russian Academy of Sciences in the project [14] for development of
certification tests for checking compliance of Linux libraries with the LSB stan-
dard. Presented in this paper are the statistical data concerning the developed
tests, found errors in the libraries and the costs of development. The data al-
low concluding that the technology is efficient for development of tests of the
particular quality level for various modules and libraries. The tools support C
and C++ programming languages for the present, but there are no principal
obstacles that prevent applying the technology to other general purpose pro-
gramming languages such as C# and Java. It should be mentioned however that
the availability of quite stable text of the requirements is essential for success-
ful use of T2C because the stage of documentation analysis and preparing of
the requirement catalog may require a lot more work when the quality of the
documentation is low and/or when it is changed too actively.

It is planned to enhance integration of T2C tools with Eclipse IDE as well
as provide means for using these tools from other popular development environ-
ments. The possibility of integration of T2C and CTesK systems will be also
investigated.

70 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

References

1. Kuliamin, V.V., Petrenko, A.K., Bourdonov, I.B., Kossatchev, A.S.: UniTesK Test
Suite Architecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 77–88. Springer, Heidelberg (2002)

2. CTESK web page, http://www.UniTesK.com/products/ctesk
3. The Linux Standard Base, http://www.linux-foundation.org/en/LSB
4. Check web page, http://check.sourceforge.net/doc/check.html/index.html
5. Autoconf and Automake web page, http://www.gnu.org/software/automake/
6. IEEE.2003.1-1992 IEEE Standard for Information Technology – Test Methods for

Measuring Conformance to POSIX – Part 1: System Interfaces. IEEE, New York,
NY, USA (1992) ISBN 1-55937-275-3

7. CUnit web page, http://cunit.sourceforge.net/
8. TETware User Guide,

http://tetworks.opengroup.org/documents/3.7/uguide.pdf
9. GTKVTS Readme, http://svn.gnome.org/viewvc/gtkvts/trunk/README

10. Kuliamin, V.V., Pakulin, N.V., Petrenko, O.L., Sortov, A.A., Khoroshilov, A.V.:
Formalization of requirements in practice, ISPRAS, Moscow (preprint, 2006) (in
Russian)

11. Glib Reference Manual, http://www.gtk.org/api/2.6/glib/
12. Linux Verification Center, http://linuxtesting.ru/
13. UniTesK web site, http://UniTesK.com/
14. LSB Infrastructure project web page, http://ispras.linux-foundation.org/
15. AZOV Framework web page,

http://ispras.linux-foundation.org/index.php/AZOV Framework

http://www.UniTesK.com/products/ctesk
http://www.linux-foundation.org/en/LSB
http://check.sourceforge.net/doc/check.html/index.html
http://www.gnu.org/software/automake/
http://cunit.sourceforge.net/
http://tetworks.opengroup.org/documents/3.7/uguide.pdf
http://svn.gnome.org/viewvc/gtkvts/trunk/README
http://www.gtk.org/api/2.6/glib/
http://linuxtesting.ru/
http://UniTesK.com/
http://ispras.linux-foundation.org/
http://ispras.linux-foundation.org/index.php/AZOV_Framework

	Automated Formal Testing of C API Using T2C Framework
	Introduction
	Technologies and Tools for the Development of Basic Functionality Tests for Program Interfaces
	MANUAL
	Check
	CUnit
	TET (Test Environment Toolkit)
	Automation of TET-Compliant Test Development in GTK+-2.0 Verification Test Suite (GTKVTS)
	Comparison of Existing Approaches

	T2C ("Template-to-Code") System
	General Information
	Test Development with T2C Tools: The Workflow

	Applying T2C to Test Development for LSB Desktop
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

