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Abstract. Transaction-based services are increasingly being applied in
solving many universal interoperability problems. Exception and failure
are the typical phenomena of the execution of long-running transactions.
To accommodate these new program features, we extend the Guarded
Command Language [10] by addition of compensation and coordination
combinators, and enrich the standard design model [15] with new health-
iness conditions. This paper shows that such an extension is conservative
one because it preserves the algebraic laws for designs, which can be used
to reduce all programs to a normal form algebraically. We also explore
a Galois link between the standard design model with our new model,
and show that the embedding from the former to the latter is actually a
homomorphism.

1 Introduction

With the development of Internet technology, web services play an important
role to information systems. The aim of web services is to achieve the universal
interoperability between different web-based applications. In recent years, in
order to describe the infrastructure for carrying out long-running transactions,
various business modelling languages have been introduced, such as XLANG,
WSFL, BPEL4WS (BPEL) and StAC [25,16,9,7].

Coordination and compensation mechanisms are vital in handling exception
and failure which occur during the execution of a long-running transaction. But-
ler et al. investigated the compensation feature in a business modelling language
StAC (Structured Activity Compensation) [6]. Further, Bruni et al. studied the
transaction calculi for StAC programs, and provided a process calculi in the form
of Java API. [4]. Qiu et al. have provided a deep formal analysis of the coordina-
tion behaviour for BPEL-like processes [23]. Pu et al. formalised the operational
semantics for BPEL [22], where bisimulation has been considered. The π-calculus
has been applied in describing various compensable program models. Lucchi and
Mazzara defined the semantics of BPEL within the framework of the π-calculus
[19]. Laneve and Zavattaro explored the application of the π-calculus in the
formalisation of the compensable programs and the standard pattern of com-
position [17]. We introduced the notation of design matrix to describe various
irregular phenomena of compensable programs in [12,13].
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This paper is an attempt at taking a step forward to gain some perspectives
on long-running transactions within the design calculus [15]. Our novel contri-
butions include

– an enriched design model to handle exception and program failure.
– a set of new programming combinators for compensation and coordination
– an algebraic system in support of normal form reduction.
– a Galois link between the standard design model with our new model

The paper is organised as follows: Section 2 provides a mathematical framework
to describe the new program features. Section 3 extends the Guarded Command
Language by addition of compensation and coordination combinators to syn-
chronise the activity of programs. It also investigates the algebraic properties of
our new language. We introduce normal form in Section 4, and show that all
programs can be reduced to a normal form algebraically. Section 5 establishes a
Galois link between the standard design model with our new model, and prove
that the embedding from the former to the latter is a homomorphism. The paper
concludes with a short summary.

2 An Enriched Design Model

In this section we work towards a precise characterisation of the class of de-
signs [15] that can handle new programming features such as program failure,
coordination and compensation.

A subclass of designs may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that
all of them are equivalent. This section will put forward additional healthiness
conditions to capture such a subclass of designs. We leave their corresponding
algebraic laws in Section 3.

2.1 Exception Handling

To handling exception requires a more explicit analysis of the phenomena of
program execution. We therefore introduce into the alphabet of our designs a
pair of Boolean variables eflag and eflag′ to denote the relevant observations:

– eflag records the observation that the program is asked to start when the
execution of its predecessor halts due to an exception.

– eflag′ records the observation that an exception occurs during the execution
of the program.

The introduction of error states has implication for sequential composition: all
the exception cases of program P are of course also the exception cases of P ; Q.
Rather than change the definition of sequential composition given in [15], we
enforce these rules by means of a healthiness condition: if the program Q is asked
to start in an exception case of its predecessor, it leaves the state unchanged
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(Req1) Q = II � eflag � Q

when the design II adopts the following definition

II =df true � (s′ = s)

where s denotes all the variables in the alphabet of Q.
A design is Req1-healthy if it satisfies the healthiness condition Req1. Define

H1(Q) =df (II � eflag � Q)

Clearly H1 is idempotent. As a result, Q is Req1 healthy if and only if Q lies in
the range of H1.

The following theorem indicates Req1-healthy designs are closed under con-
ventional programming combinators.

Theorem 2.1

(1) H1(P � Q) = H1(P ) � H1(Q)

(2) H1(P � b � Q) = H1(P ) � b � H1(Q)

(3) H1(P ; H1(Q)) = H1(P ); H1(Q)

2.2 Rollback

To equip a program with compensation mechanism, it is necessary to figure out
the cases when the execution control has to rollback. By adopting the tech-
nique used in the exception handling model, we introduce a new logical variable
forward to describe the status of control flow of the execution of a program:

– forward′ = true indicates successful termination of the execution of the
forward activity of a program. In this case, its successor will carry on with
the initial state set up by the program.

– forward′ = false indicates it is required to undo the effect caused by the ex-
ecution of the program. In this case, the corresponding compensation module
will be invoked.

As a result, a program must keep idle when it is asked to start in a state where
forward = false, i.e., it has to meet the following healthiness condition:

(Req2) Q = II � ¬forward � Q

This condition can be identified by the idempotent mapping

H2(Q) =df II � ¬forward � Q

in the sense that a program meets Req2 iff it is a fixed point of H2.
We can charecterise both Req1 and Req2 by composing H1 and H2. To

ensure that their composition is an idempotent mapping we are going to show
that
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Theorem 2.2

H2 ◦ H1 = H1 ◦ H2

Proof: From the fact that

H1(H2(Q)) = II � eflag ∨ ¬foward � Q = H2(H1(Q))

Define H =df H1 ◦ H2..

Theorem 2.3

A design is healthy (i.e., it satisfies both Req1 and Req2) iff it lies in the range
of H.

The following theorem indicates that healthy designs are closed under the
conventional programming combinators.

Theorem 2.4

(1) H(P � Q) = H(P ) � H(Q)

(2) H(P � b � Q) = H(P ) � b � H(Q)

(3) H(P ; H(Q)) = H(P ); H(Q)

In the following sections, we will confine ourselves to healthy designs only.

3 Programs

This section studies a simple programming language, which extends the Guarded
Command Language [10] by adding coordination constructs. The syntax of the
language is as follows:

P ::= skip | fail | throw | ⊥ | x := e |
P � P | P � b � P | P ; P | b ∗H P |
P cpens P | P else P | P catch P | P or P | P par P |

In the following discussion, v will represent the program variables referred in the
alphabet of the program.

3.1 Primitive Commands

The behaviour of the chaotic program ⊥ is totally unpredictable

⊥ =df H(true)

The execution of skip leaves program variables intact.

skip =df H(success)

where success =df true � ((v′ = v) ∧ forward′ ∧ ¬eflag′)
The execution of fail rollbacks the control flow.

fail =df H(rollback)

where rollback =df true � ((v′ = v) ∧ ¬forward′ ∧ ¬eflag′)
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An exception case arises from the execution of throw

throw =df H(error)

where error =df true � ((v′ = v) ∧ eflag′)

3.2 Nondeterministic Choice and Sequential Composition

The nondeterministic choice and sequential composition have exactly the same
meaning as the corresponding operators on the single predicates defined in [15].

P ; Q =df ∃m • (P [m/s′] ∧ Q[m/s])

P � Q =df P ∨ Q

The change in the definition of ⊥ and skip requires us to give a proof of the
relevant laws.

Theorem 3.1

(1) skip; P = P = P ; skip

(2) ⊥; P = ⊥
(3) ⊥ � P = ⊥

Proof: Let s = (v, forward, eflag).

(1) skip; P {Theorem 2.4(3)}
= H(success; P ) {H(Q) = H((forward ∧ ¬eflag)�; Q)}
= H((true � (s′ = s)); P ) {(true � (s′ = s); D = D}
= H(P ) {P is healthy}
= P

Besides the laws presented in [15] for composition and nondeterministic choice,
there are additional left zero laws for sequential composition.

Theorem 3.2

(1) throw; P = throw

(2) fail; P = fail

Proof:
(1) throw; P {Theorem 2.4(3)}
= H(error; P ) {Def of error}
= H(error; (eflag)⊥; P ) {P = H(P )}
= H(error; (eflag)⊥; H(P )[true/eflag]) {Def of H}
= H(error; (eflag)⊥) {Def of throw}
= throw



20 H. Jifeng

3.3 Assignment

Successful execution of an assignment relies on the assumption that the expres-
sion will be successfully evaluated.

x := e =df skip[e/x] � D(e) � throw

where the boolean condition D(e) is true in just those circumstances in which e
can be successfully evaluated [21]. For example we can define

D(c) =df true if c is a constant

D(e1 + e2) =df D(e1) ∧ D(e2)

D(e1/e2) =df D(e1) ∧ D(e2) ∧ e2 
= 0

D(e1 � b � e2) =df D(b) ∧ (b ⇒ D(e1)) ∧ (¬b ⇒ D(e2))

Notice that D(e) is always well-defined, i.e., D(D(e)) = true.

Definition 3.1

An assignment is total if its assigning expression is well-defined, and all the
variables of the program appear on its left hand side.

3.4 Conditional

The definition of conditional and iteration take the well-definedness of its
Boolean test into account

P � b � Q =df (D(b) ∧ b ∧ P ) ∨ (D(b) ∧ ¬b ∧ Q) ∨ ¬D(b) ∧ throw

b ∗H P =df μHX • (P ; X) � b � skip

where μHX•F (X) stands for the weakest Req− healthy solution of the equation
X = F (X).

The alternation is defined in a similar way

if(b1 → P1, .., bn → Pn)fi =df

⎛
⎜⎝

∨
i (D(b) ∧ bi ∧ Pi)∨

D(b) ∧ ¬b ∧ ⊥ ∨
¬D(b) ∧ throw

⎞
⎟⎠

where b =df

∨
i bi.

The following theorem illustrates how to convert a conditional into an alter-
nation with well-defined boolean guards.

Theorem 3.3

P � b � Q =

if((b � D(b) � false) → P, (¬b � D(b) � false) → Q, ¬D(b) → throw)fi

A similar transformation can be applied to an assignment.
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Theorem 3.4

x := e = (x, y, ..z := (e, y, .., z) � D(e) � (x, y, .., z)) � D(e) � throw

The previous theorems enable us to confine ourselves to well-defined expressions
in later discussion. For total assignment, we are required to reestablish the fol-
lowing laws.

Theorem 3.5

(1) (x := e; x := f(x)) = (x := f(e))

(2) x := e; (P � b(x) � Q) = (x := e; P ) � b(e) � (x := e; Q)

(3) (x := e) � b � (x := f) = x := (e � b � f)

(4) (x := x) = skip

The following laws for alternation will be used in later normal form reduction.

Theorem 3.6

Let G denote a list of alternatives.

(1) if(b1 → P1, ... P2, .. bn → Pn)fi = if(bπ(1) → Pπ(1), .., bπ(n) → Pπ(n))fi

where π is an arbitrary permutation of {1, .., n}.

(2) if(b → if(c1 → Q1, .., cn → Qn)fi, G)fi =

if(b ∧ c1 → Q1, .., b ∧ cn → Qn, G)fi

provided that
∨

k ck = true

(3) if(b → P, b → Q, G)fi = if(b → (P � Q), G)fi

(4) if(b → P, c → Q, G)fi = if(b ∨ c → (P � b � Q) � (Q � c � P ), G)fi

(5) if(b1 → P1, .., bn → Pn)fi ; Q = if(b1 → (P1; Q), .., bn → (Pn; Q))fi

(6) if(b1 → P1, .., bn → Pn)fi � Q = if(b1 → (P1 � Q), .., bn → (Pn � Q)fi

(7) if(b1 → P1, .., bn → Pn)fi ∧ Q = if(b1 → (P1 ∧ Q), .., bn → (Pn ∧ Q))fi

provided that
∨

k bk = true

(8) if(false → P, G)fi = if(G)fi

(9) if(b1 → P1, .., bn → Pn)fi = if(b1 → P1, .., bn → Pn, ¬ ∨i bi → ⊥)fi

(10) if(true → P )fi = P

3.5 Exception Handling

Let P and Q be programs. The notation P catch Q represents a program which
runs P first, and if its execution throws an exception case then Q is activated.

P catch Q =df H(P ; φ(Q))

where φ(Q) =df II � ¬eflag � Q[false, true/eflag, forward]
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Theorem 3.7

(1) P catch (Q catch R) = (P catch Q) catch R

(2) (throw catch Q) = Q = (Q catch throw)

(3) P catchQ = P if P ∈ {⊥, fail, (v := e)}
(4) if(b1 → P1, .., bn → Pn)fi catch Q =

if(b1 → (P1 catch Q), .., bn → (Pn catch Q))fi

(5) (P � Q) catch R = (P catch R) � (Q catch R)

(6) P catch (Q � R) = (P catch Q) � (P catch R)

Proof:
(1) LHS {Def of catch}
= H(H(P ; φ(Q)); φ(R)) {Def of H}
= H((forward ∧ ¬eflag)�;

H(P ; φ(Q)); φ(R)) {Q � false � P = P}
= H(P ; φ(Q); φ(R)) {φ(Q); φ(R) = φ(Q; φ(R))}
= H(P ; φ(Q; φ(R))) {φ(S) = φ(H(S))}
= H(P ; φ(H(Q; φ(R)))) {Def of catch}
= H(P ; φ(Q catchR)) {Def of catch}
= RHS

(2) throwcatchQ {Def of catch}
= H(throw; φ(Q)) {Def of throw}
= H(Q[false, true/eflag, forward]) {Def of H}
= H(Q) {Q = H(Q)}
= Q {φthrow = skip}
= Q catchthrow

(3) LHS {Def of catch}
= H((v := e); φ(Q)) {Def of H}
= H((forward ∧ ¬efalg)�; (v := e); φ(Q)) {e is well-defined}
= H((forward ∧ ¬efalg)�; (v := e);

(forward ∧ ¬eflag)⊥; φ(Q)) {Def of φ}
= H((forward ∧ ¬efalg)�; (v := e);

(forward ∧ ¬eflag)⊥) {(v := e) = H(v := e)}
= RHS
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(5) LHS {Def of catch}
= H(if(b1 → P1, bn → Pn)fi ; φ(R)) {Theorem 3.6(5)}
= H(if(b1 → (P1; φ(R),

bn → (Pn; φ(R))fi {Theorem 2.4(2)}
= RHS

3.6 Compensation

Let P and Q be programs. The program P cpensQ runs P first. If its execution
fails, then Q is invoked as its compensation.

P cpens Q =df H(P ; ψ(Q)

where ψ(Q) =df (II � forward ∨ eflag � Q[true/forward])

Theorem 3.8

(1) P cpens (Q cpens R) = (P cpens Q) cpens R

(2) P cpens Q = P if P ∈ {throw, ⊥, (v := e)}
(3) (failcpensQ) = Q = (Q cpens fail)

(4) if(b1 → P1, .., bn → Pn)fi cpensQ =

if(b1 → (P1 cpensQ), .., bn → (P cpensQ))fi

(5) (P � Q) cpensR = (P cpensR) � (Q cpensR)

(6) P cpens (Q � R) = (P cpensQ) � (P cpensR)

(7) (v := e; P ) cpensQ = (v := e); (P cpensQ)

Proof:

Let B =df (forward ∧ ¬eflag).

(1) RHS {Def of cpens}
= H(H(P ; ψ(Q)); ψ(R)) {Def of H}
= H(B�; H(P ; ψ(Q)); ψ(R)) {Q � false � P = P}
= H(P ; ψ(Q); ψ(R)) {ψ(Q; ψ(R) = ψ(Q; φ(R))}
= H(P ; ψ(Q; ψ(R))) {ψ(Q) = ψ(H(Q))}
= H(P ; ψ(H(Q; ψ(R)))) {Def of cpens}
= LHS
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(7) LHS {Def of cpens}
= H(v := e; P ; ψ(Q)) {B�; (v := e) = B�; (v := e); B⊥}
= H(v := e; B⊥; P ; ψ(Q)) {Def of H}
= H(v := e; B⊥; H(P ; ψ(Q))) {B�; (v := e) = B�; (v := e); B⊥}
= H(v := e; H(P ; ψ(Q))) {Theorem 2.4(3)}
= RHS

3.7 Coordination

Let P and Q be programs. The program P elseQ behaves like P if its execution
succeeds. Otherwise it behaves like Q.

P else Q =df (P ; forward�) ∨ (∃t′ • P [false/forward′] ∧ Q)

where t denotes the vector variable < ok, eflag, v >.

Theorem 3.9

(1) P else P = P

(2) P else (Q else R) = (P else Q) else R

(3) P else Q = P if P ∈ {⊥, (v := e), (v := e; throw)}
(4) (x := e fail) elseQ = Q

(5) if(b1 → P1, ..., bn → Pn)fi else R =

if(b1 → (P1 else R), .., bn → (Pn else R))fi

(6) P else if(c1 → Q1, ..., cn → Qn)fi =

if(c1 → (P else Q1), .., cn → (P else Qn))fi

provided that
∨

k ck = true

(7) (P � Q) else R = (P else R) � (Q else R)

(8) P else (Q � R) = (P else Q) � (P else R)

Proof:

(1) LHS {Def of else}
= P ; forward� ∨ ∃t′ • P [false/forward′] ∧ P {predicate calculus}
= (∃t′ • P [false/forward′] ∨ ¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′])∧

(P ; forward�) ∨ ∃t′ • P [false/forward′] ∧ P {forward� ∨ II = II}
= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ (P ; forward�) ∨

∃t′ • P [false/forward′] ∧ P {P ; II = P}
= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ P ∨

∃t′ • P [false/forward′] ∧ P {predicate calculus}
= (∃t′ • P [true/forward′] ∨ ∃t′P [false/forward′]) ∧ P {∃t′, forward′ • P = true}
= RHS
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(6) LHS {Def of else}
= P ; forward� ∨ ∃t′ • P [false/forward′] ∧

if(c1 → Q1, .., cn → Qn)fi {Theorem 3.6(7)}
= P ; forward� ∨ if(c1 → ∃t′ • P [false/forward′] ∧ Q1, ...

cn → ∃t′ • P [false/forward′] ∧ Qn)fi {Theorem 3.6(6)}
= if(c1 → (P ; forward� ∨ ∃t′ • P [false/forward′] ∧ Q1), ..

cn → (P ; forward� ∨ ∃t′ • P [false/forward′] ∧ Qn))fi {Def of else}
= RHS

The choice construct P orQ selects a successful one between P and Q. When
both P and Q succeed, the choice is made nondeterministically.

P or Q =df (P else Q) � (Q else P )
Theorem 3.10

(1) P orP = P

(2) P orQ = Q orP

(3) (P or , Q) orR = P or (Q orR)

(4) if(b1 → P1, .., bn → Pn)fi orQ = if(b1 → (P1 orQ), ..., bn → (Pn orQ))fi

provided that
∨

k bk = true

(5) (P � Q) orR = (P orR) � (Q orR)

Proof:

(1) From Theorem 3.9(1)

(2) From the symmetry of �
(3) From Theorem 3.9(2)

(4) From Theorem 3.9(7) and (8)

(5) From Theorem 3.9(9) and (10)

Let P and Q be programs with disjoint alphabets. The program P parQ runs
P and Q in parallel. It succeeds only when both P and Q succeed. Its behaviour
is described by the parallel merge construct defined in [15]:

P par Q =df (P‖MQ)

where the parallel merge operator ‖M is defined by

P ‖M Q =df (P [0.m′/m′]‖Q[1.m′/m′]); M(ok, 0.m, 1.m, m′, ok′)

where m represents the shared variables forward and eflag of P and Q, and ‖
denotes the disjoint parallel operator

(b � R)‖(c � S) =df (b ∧ c) � (R ∧ S)

and the merge predicate M is defined by
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M =df

true �

⎛
⎜⎝

(eflag′ = 0.ef lag1 ∨ 1.ef lag)∧
(¬0.ef lag ∧ ¬1.ef lag) ⇒ (forward′ = 0.forward1 ∧ 1.forward)∧
(v′ = v)

⎞
⎟⎠

We borrow the following definition and lemma from [15] to explore the algebraic
properties of par.

Definition 3.2 (valid merge)

A merge predicate N(ok, 0.m, 1.m, m′, ok′) is valid if it is a design satisfying
the following properties

(1) N is symmetric in its input 0.m and 1.m

(2) N is associative

N3(1.m, 2.m, 0.m/0.m, 1.m, 2.m] = N3

where N3 is a three-way merge relation

N3 =df ∃x, t • N(ok, 0.m, 1.m, x, t) ∧ N(t, x, 2.m, m′, ok′)

(3) N [m, m, /0.m, 1.m] = true � (m = m′) ∧ (v′ = v)

where m represents the shared variables of parallel components.

Lemma 3.1

If N is valid then the parallel merge ‖N is symmetric and associative.
From the definition of the merge predicate M we can show that M is a valid

merge predicate.

Theorem 3.11

(1) (P par Q) = (Q par P )

(2) (P par Q) par R = P par (Q par R)

(3) ⊥ par Q = ⊥
(4) if(b1 → P1, ..., bn → Pn)fi par Q =

if(b1 → (P1 par Q), ..., bn → (Pn par Q))fi

(5) (P � Q) par R = (P par R) � (Q par R)

(6) (v := e; P ) par Q = (v := e); (P par Q)

(7) fail par throw = throw

(8) fail par fail = fail

(9) throw par throw = throw

(10) skipA parQ = Q+A

(b � R)+{x, ..,z} =df b � (R ∧ x = x′ ∧ .. ∧ z′ = z)
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Proof:

(1) and (2): From Lemma 3.1.

(3) From the fact that ⊥‖Q = ⊥ and ⊥; M = ⊥
(4) From Theorem 3.6(5) and the fact that

if(b1 → P1, ..., bn → Pn)fi‖Q = if(b1 → (P1‖Q), .., bn → (Pn‖Q))fi

(5) From the fact that (P � Q)‖R = (P ‖ R) � (Q ‖ R)

(6) From the fact that (v := e; P )‖Q = (v := e); (P‖Q)

4 Normal Form

The normal form we adopt for our language is an alternation of the form:

if(b1 → �i∈S1(v :=ei), b2 → �j∈S2(v := fj ; fail), b3 → �k∈S3(v := gk; throw)fi

where all expressions are well-defined, and all assignments are total, and all the
index sets Si are finite. The objective of this section is to show that all finite
programs can be reduced to normal form. Our first step is to prove that normal
forms are closed under the programming combinators defined in the previous
section.

Theorem 4.1

Let P = if (b1 → P1, b2 → P2, b3 → P3)fi

and Q = if (c1 → Q1, c2 → Q2, c3 → Q3)fi, where
P1 = �i∈S1(v := e1i) Q1 = �i∈T1(v := f1i)
P2 = �j∈S2(v := e2j); fail Q2 = �j∈T2(v := f2j); fail
P3 = �k∈S3(v := e3k); throw Q3 = �k∈T3(v := f3k); throw

Then P � Q =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ c ∨ c1 ∧ b) →
�i∈S1, j∈T1(v := (e1i � b1 � f1j)) � (v := (f1j � c1 � e1i))

(b2 ∧ c ∨ c2 ∧ b) →
�i∈S2, j∈T2(v := (e2i � b2 � f2j)) � (v := (f2j � c2 � e2i)); fail

(b3 ∧ c ∨ c3 ∧ b) →
�i∈S3, j∈T3(v := (e3i � b1 � f3j)) � (v := (f3j � c1 � e3i)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

fi

where b =df b1 ∨ b2 ∨ b3 and c =df c1 ∨ c2 ∨ c3
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Proof: LHS {Theorem 3.6(6)}
= if(b1 → (P1 � Q), b2 → (P2 � Q), b3 → (P3 � Q))fi

{Theorem 3.6(6)}

= if

⎛
⎝

b1 → if(c1 → (Q1 � P1), c2 → (Q2 � P1), c3 → (Q3 � P1))fi
b2 → if(c1 → (Q1 � P2), c2 → (Q2 � P2), c3 → (Q3 � P2))fi
b3 → if(c1 → (Q1 � P3), c2 → (Q2 � P3), c3 → (Q3 � P3))fi

⎞
⎠fi

{Theorem 3.6(2) and (9)}

= if

(
(b1 ∧ c) → P1, (b2 ∧ c) → P2, (b3 ∧ c) → P3,

(b ∧ c1) → Q1, (b ∧ c2) → Q2, (b ∧ c3) → Q3

)
fi

{Theorem 3.6(4)}

= if

⎛
⎝

(b1 ∧ c ∨ b ∧ c1) → (P1 � b1 � Q1) � (Q1 � c1 � P1)
(b2 ∧ c ∨ b ∧ c2) → (P2 � b2 � Q2) � (Q2 � c2 � P2)
(b3 ∧ c ∨ b ∧ c3) → (P3 � b3 � Q3) � (Q3 � c3 � P3)

⎞
⎠fi

{Theorem 3.5(3)}
= RHS

Let

W =df if(b1 → (x := e1), b2 → (x := e2); fail, b3 → (x := e3); throw)fi

R =df if(c1 → (x := f1), c2 → (x := f2); fail, c3 → (x := f3); throw)fi

Theorem 4.2

W ; R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ c1[e1/x]) → (x := f1(e1))

(b2 ∧ (¬b1 ∨ c[e1/x]) ∨ b1 ∧ c2[e1/x]) →
(x := (e2 � b2 � f2[e1/x]) � x := (f2[e1/x] � c2[e1/x] � e2)); fail

(b3 ∧ (¬b1 ∨ c[e1/x]) ∨ b1 ∧ c3[e1/x]) →
(x := (e3 � b3 � f3[e1/x]) � x := (f3[e1/x] � c3[e1/x] � e3)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof:
LHS {Theorem 3.6(5)}

= if(b1 → (x := e1); R, b2 → (x := e2); fail, b3 → (x := e3); throw)fi
{Theorem 3.5(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 → if

⎛
⎜⎝

c1[e1/x] → (x := f1[e1/x]),

c2[e1/x] → (x := f2[e1/x]); fail,

c3[e1/x] → (x := f3[e1/x]); throw

⎞
⎟⎠fi

b2 → (x := e2); fail

b3 → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(2) and (3)}
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= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ c1[e1/x] → (x := f1[e1/x]),

b1 ∧ c2[e1/x] → (x := f2[e1/x]); fail,

b2 ∧ ¬(b1 ∧ ¬c[e1/x]) → (x := e2); fail

b1 ∧ c3[e1/x] → (x := f3[e1/x]); throw,

b3 ∧ ¬(b1 ∧ ¬c[e1/x]) → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.3

W catchR =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ (¬b3 ∨ c[e3/x]) ∨ b3 ∧ c1[e3/x]) →
(x := (e1 � b1 � f1[e3/x]) � x := (f1[e3/x] � c1[e3/x] � e1))

(b2 ∧ (¬b3 ∨ c[e3/x]) ∨ b3 ∧ c2[e3/x]) →
(x := (e2 � b2 � f2[e3/x]) � x := (f2[e3/x] � c2[e3/x] � e2)); fail

(b3 ∧ c3[e3/x]) → (x := f3[e3/x]); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof:
LHS {Theorem 3.7(2) and (3)}

= if(b1 → (x := e1), b2 → (x := e2); fail, b3 → (x := e3); R)fi

{Theorem 4.6(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 → (x := e1),

b2 → (x := e2); fail,

b3 → if

⎛
⎜⎝

c1[e3/x] → (x := f1[e3/x]),

c2[e3/x] → (x := f2[e3/x]); fail,

c3[e3/x] → (x := f3[e3/x]); throw

⎞
⎟⎠fi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 4.6(2) and (3)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ (¬b3 ∨ c[e3/x]) → (x := e1),

b3 ∧ c1[e3/x] → (x := f1[e3/x]),

b2 ∧ (¬b3 ∨ c[e3/x]) → (x := e2); fail

b3 ∧ c2[e3/x] → (x := f2[e3/x]); fail,

b3 ∧ c3[e3/x] → (x := f3[e3/x]); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS
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Theorem 4.4

W cpensR =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ (¬b2 ∨ c[e2/x]) ∨ b ∧ c1[e2/x]) →
(x := (e1 � b1 � f1[e2/x]) � x := (f1[e2/x] � c1[e2/x] � e1))

(b2 ∧ c2[e2/x]) → (x := f2[e3/x]); fail

(b3 ∧ (¬b2 ∨ c[e3/x]) ∨ c3[e2/x] ∧ b) →
(x := (e3 � b3 � f3[e2/x]) � x := (f3[e2/x] � c3[e2/x] � e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof: Similar to Theorem 4.3.

Theorem 4.5

W elseR =

if

⎛
⎜⎝

(b1 ∧ c ∨ b ∧ c1) → (x := (e1 � b1 � f1) � x := (f1 � c1 � e1))

(b2 ∧ c2) → (x := f2); fail

(b3 ∧ c ∨ c3 ∧ b) → (x := (e3 � b3 � f3) � x := (f3 � c3 � e3)); throw

⎞
⎟⎠fi

Proof: LHS {Theorem 4.9(2) and (3)}
= if(b1 → (x := e1), b2 → R, b3 → (x := e3); throw)fi

{Theorem 4.6(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ (¬b2 ∨ c) → (x := e1),

b2 ∧ c1 → (x := f1),

b2 ∧ c2 → (x := f2); fail,

b2 ∧ c3 → (x := f3); throw,

b3 ∧ (¬b2 ∨ c) → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.6

W � d � R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(d̂ ∧ b1 ∨ ¬̂d ∧ c1) →
(x := (e1 � b1 � f1) � x := (f1 � c1 � e1))

(d̂ ∧ b2 ∨ ¬̂d ∧ c2) →
(x := (e2 � b2 � f2) � x := (f2 � c2 � e2)); fail

(d̂ ∧ b2 ∨ ¬̂d ∧ c2 ∨ ¬D(d)) →
(x := ((e3 � b3 � f3) � D(d) � x)�
x := ((f3 � c3 � e3) � D(d) � x)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

fi

where d̂ =df d � D(d) � false
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Proof: LHS {Theorem 3.3}
= if(d̂ → W, ¬̂d → R, ¬D(d) → throw)fi

{Theorem 3.6(2) and (3)}

= if

⎛
⎜⎜⎜⎜⎝

d̂ ∧ b1 ∧ c → (x := e1), ¬̂d ∧ c1 ∧ b → (x := f1),

d̂ ∧ b2 ∧ c → (x := e2); fail, ¬̂d ∧ c2 ∧ b → (x := f2); fail,

d̂ ∧ b3 ∧ c → (x := e3); throw, ¬̂d ∧ c3 ∧ b → (x := f3); throw,

¬D(d) → throw

⎞
⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.7

(x := e) parR = if

⎛
⎜⎝

c1 → (x, y := e, f1),

c2 → (x, y := e, f2); fail,

c3 → (x, y := e, f3); throw

⎞
⎟⎠fi

Proof:
LHS {Theorem 4.11(4)}

= if

⎛
⎜⎝

c1 → ((x := e) par (y := f1)),

c2 → ((x := e) par (y := f2; fail)),

c3 → ((x := e) par (y := f3; throw))

⎞
⎟⎠fi {Theorem 4.11(6) and (10)}

= RHS

Theorem 4.8

(x := e; fail) par R =

if

⎛
⎜⎝

c1 ∨ c2 →
(x, y := (e, f1) � c1 � (e, f2) � x, y := (e, f2) � c2 � (e, f1)); fail

c3 → (x, y := e, f3); throw

⎞
⎟⎠fi

Proof: Similar to Theorem 4.7.

Theorem 4.9

(x := e; throw) par R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 ∨ c2 ∨ c3 →⎛
⎜⎜⎜⎜⎝

(x, y := ((e, f1) � c1 � (e, f2)) � c1 ∨ c2 � (e, f3))�
(x, y := ((e, f2) � c2 � (e, f1)) � c1 ∨ c2 � (e, f3))�
(x, y := (e, f3) � c3 � ((e, f1) � c1 � (e, f2)))�
(x, y := (e, f3) � c3 � ((e, f2) � c2 � (e, f1)))

⎞
⎟⎟⎟⎟⎠

; throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi
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Proof: Similar to Theorem 4.7

Now we are going to show that all primitive commands can be reduced to a
normal form.

Theorem 4.10

skip = if(true → (v := v))fi

Proof: skip {Theorem 3.5(4)}
= v := v {Theorem 4.6(10)}
= if(true → v := v)fi

Theorem 4.11

fail = if(true → (v := v); fail)fi

Proof: Similar to Theorem 4.10.

Theorem 4.12

throw = if(true → (v := v); throw)fi

Proof: Similar to Theorem 4.10.

Theorem 4.13

⊥ = if()fi

Proof: From Theorem 4.6(10).

Theorem 4.14

x := e = if(D(e) → (x, y, .., z := (e � D(e) � x), y, .., z), ¬D(e) → throw)fi

Proof: From Theorem 4.4.

Finally we reach the conclusion.

Theorem 4.15

All finite program can be reduced to a normal form.

Proof: From Theorem 4.1–4.14.

5 Link with the Original Design Model

This section explores the link between the model of Section 2 with the original
design model given in [15].

For any design P and Req-healthy design Q we define

F(P ) =df H(P ; success)

G(Q) =df Q[true, false/forward, eflag]; (forward ∧ ¬eflag)⊥
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Theorem 5.1

F and G form a Galois connection:

(1) G(F(P )) = P

(2) F(G(Q)) � Q

Proof: G(F(P )) {Def of F and G}
= P ; success; (true � (v′ = v)) � forward ∧ ¬eflag � ⊥)

{Def of success}
= P ; (true � (v′ = v)) {unit law of ; }
= P

F(G(Q)) {Def of F and G}
= H(Q[true, ¬false/forward, eflag];

(true � (v′ = v) � forward ∧ ¬eflag � ⊥); success)

{Def of H, (P � b � Q); R = (P ; R) � b � (Q; R)}
= Q; (success� forward ∧ ¬eflag � ⊥) {Def of sucess}
= Q; ((true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

�forward ∧ ¬eflag � ⊥) {⊥ � D}
� Q; (true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

{unit law of ; }
= Q

F is a homomorphism.

Theorem 5.2

(1) F(true � (v′ = v)) = skip

(2) F(true � (x′ = e ∧ y′ = y ∧ z′ = z)) = (x := e)

provided that e is well-defined.

(3) F(true) = ⊥
(4) F(P1 � P2) = F(P1) � F(P2)

(5) F(P1 � b � P2) = F(P1) � b � F(P2)

provided that b is well-defined.

(6) F(P1; P2) = F(P1); F(P2)

(7) F(b ∗ P ) = b ∗H F(P )
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Proof:
(6) F(P1; P2) {Def of F}
= H(P1; P2; success} {success; P2; success =

P2; success}
= H((P1; success; P2; success)) {(forward ∧ ¬eflag)�; success; Q =

(forward ∧ ¬eflag)�; success; H(Q)}
= H((P1; success); H(P2; success)) {Theorem 2.4}
= H(P1; success); H(P2; success) {Def of F}
= F(P1) ; F(P2)

(7) LHS {fixed point theorem}
= F((P ; b ∗ P ) � b � (true � (v′ = v))) {Conclusion (1), (5), (6)}
= (F(P ); LHS) � b � skip

which implies that LHS � RHS

G(RHS) {fixed point theorem}
= G((F(P ); RHS) � b � skip) {G distributes over � b�}
= G(F(P ); RHS) � b � G(skip) {Def of G}
= (F(P )[true, false/forward, eflag]; RHS;

(foward ∧ ¬eflag)⊥) � b � (true � (v′ = v)) {Def of F}
= (P ; success; RHS;

(forward ∧ ¬eflag)⊥) � b � (true � (v′ = v)) {Def of success}
= (P ; RHS[true, false/forward, eflag];

(forward ∧ ¬eflag)⊥) � b � (true � (v′ = v)) {Def of G}
= (P ; G(RHS)) � b � (true � (v′ = v))

which implies

G(RHS) � (b ∗ P ) {F is monotonic}
⇒ F(G(RHS)) � LHS {Theorem 5.1(2)}
⇒ RHS � LHS

6 Conclusion

This paper presents a design model for compensable programs. We add new
logical variables eflag and forward to the standard design model to deal with
the features of exception and failures. As a result, we put forward new healthiness
conditions Req1 and Req2 to characterise those designs which can be used to
specify the dynamic behaviour of compensable programs.
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This paper treats an assignment x := e as a conditional (Theorem 4.1). After
it is shown that throw is a new left zero of sequential composition, we are allowed
to use the algebraic laws established for the conventional imperative language
in [15] to convert finite programs to normal form. This shows that the model
of Section 2 is really a conservative extension of the original design model in
[15] in the sense that it preserves the algebraic laws of the Guarded Command
Language.
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