
Computing Must and May Alias to Detect Null
Pointer Dereference�

Xiaodong Ma, Ji Wang, and Wei Dong

National Laboratory for Parallel and Distributed Processing, P.R. China
{xd.ma,wj,wdong}@nudt.edu.cn

Abstract. This paper presents a novel algorithm to detect null pointer
dereference errors. The algorithm utilizes both of the must and may alias
information in a compact way to improve the precision of the detection.
Using may alias information obtained by a fast flow- and context- in-
sensitive analysis algorithm, we compute the must alias generated by
the assignment statements and the must alias information is also used
to improve the precision of the may alias. We can strong update more
expressions using the must alias information, which will reduce the false
positives of the detection for null pointer dereference. We have imple-
mented our algorithm in the SUIF2 compiler infrastructure and the ex-
periments results are as expected.

1 Introduction

Null pointer dereference is a kind of common errors in programs written in C.
If a pointer expression (including a pointer variable) which points to NULL is
dereferenced, the program will fail. If a pointer expression is uninitialized or
freed, we call it an invalid pointer expression. Dereferencing an invalid pointer
expression may not crash the program, but will get a wrong datum. Therefore,
dereferencing a NULL pointer or an invalid pointer are regarded as null pointer
dereference errors in this paper.

Alias information is needed to detect the null pointer dereference error. For
example, dereferencing ∗e after statement e = NULL or free(e) will cause an
error. It should be noticed that dereferencing any expression which may be alias
of ∗e also possibly causes a null pointer dereference error. Thus a conservative
algorithm needs the may alias information. Of course, we know that although a
conservative algorithm does not miss any real error, it may produce many false
alarms. This paper makes attempt to find much information to improve the
precision of static analysis for null pointer dereference. Statement e = malloc()
assigns e with a non-NULL value, thus e can be dereferenced and ∗e can be
written after this statement under the condition that the l-value of e is not
changed. If e′ is the alias of e before every possible execution of this statement
� This work is supported by National Natural Science Foundation of China(60725206,

60673118 and 90612009), National 863 project of China(2006AA01Z429), Program
for New Century Excellent Talents in University under grant No. NCET-04-0996.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 252–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Must and May Alias to Detect Null Pointer Dereference 253

and its l-value cannot be changed, then we can say that dereferencing e′ or write
∗e′ is also a valid operation. If we do not have the must alias information, we
may report errors, which could be false alarms actually.

Figure 1 illustrates the usage of must and may alias information. Statement
3 will not cause error because ∗z is the must alias of ∗y. Statement 7 may cause
error because y is the may alias of ∗x and ∗x has been nulled at statement 6. It is
clear that must alias information can make the detection algorithm more precise.
However, the must alias information has not been well used in the existing error
finding techniques.

int **x, *y, *z;

...

1. y = malloc();

2. z = y;

3. *z = 5;

4. if(...)

5. x = &y;

6. *x = NULL;

7. *y = 5;

Fig. 1. Usage of must and may alias

There are some null pointer dereference detection tools, such as [13], [2] and
[9]. But they have not exploited the must alias information. There is a little work
about computing and exploiting the must alias information in C programs. To
the best of our knowledge, the only work is [1]. It defines an extended form of
must alias and uses the result to improve the precision of def-use computation. In
this paper, our algorithm computes the must and may alias information of a set
of k-limiting expressions [7] from the result of a fast flow- and context- insensitive
alias analysis algorithm and the must alias information is used to detect the null
pointer dereference errors. A tool prototype has been implemented and the initial
experimental results are as expected.

This paper is organized as follows. We first introduce the points-to graph and
the method for computing l-values of expressions in Section 2, then the details of
our must alias computation algorithm in Section 3 and null pointer dereference
detection algorithm in Section 4. Section 5 gives the experimental results. The
related work and conclusions are in Section 6.

2 Points-to Graph

We suppose the result of the flow- and context- insensitive alias analysis algo-
rithm is a points-to graph. In this section, we introduce the definition of points-to
graph and describe how to compute the l-value of an expression in a points-to
graph. Then we introduce the concept of may alias and define the must alias
used in this paper.

A location set is an abstraction of the memories. It is a pair of the form
(name, offset) where name describes a memory block and offset is the offset

254 X. Ma, J. Wang, and W. Dong

within that block. Notice that for a variable we just use its name as the name
and for the dynamically allocated heaps we use the allocation-site abstraction.
We consider an array as a variable with the type of its elements.

A points-to graph is a directed graph with the location sets as nodes. There is
a directed edge from one node to another if one of the memory locations repre-
sented by the first node may point to one of the memory locations represented
by the second one.

Figure 2 is a segment of C code and its corresponding flow-insensitive points-to
graph. heap 1 denotes all the memory locations allocated at line 1. heap 2.32 is
the “next” field of the structure allocated at line 2. Different fields of a structure
are represented by different location sets.

struct list{

 int d;

 struct list *n;

};

struct list *x, *y;

1. x = malloc();

2. x->n = malloc();

x.0 heap_1.0

heap_1.32

heap_2.0

heap_2.32

Fig. 2. An example segment of C code and the points-to graphs

Given a points-to graph, we can compute the l-value of an expression, which is
a set of the possible location sets used to store its value. Besides all the location
sets occurring in the points-to graph, we introduce another kind of location set
called “virtual location set”. It is in the form of “&l” where l is a location set.
We define the l-value of an expression e on the points-to graph G by a function
ll(e, G) as following.

ll(const, G) = ∅ ll(null, G) = ∅ ll(x, G) = {x.0}
ll(&e, G) = {&l | l ∈ ll(e, G)} ll(e.f, G) = {n.f | n.0 ∈ ll(e, G)}
ll(∗e, G) = {l′ | &l′ ∈ ll(e, G) or ((l, l′) ∈ G, l ∈ ll(e, G))}
ll(e→f, G) = {n.f | (l, n.0) ∈ G, l ∈ ll(e, G)}
May alias is discussed widely, such as [6], [8], [10] and [12]. Alias information

is computed at the control flow graph vertex, that is, before the execution of
each statement–we call it program point. It is obvious that there may be more
than one path through each program point. At a program point, if the l-value of
expression e1 and e2 may be the same, then e1 and e2 have may alias relationship.
It is possible that the l-value of e1 in some execution path is the same as that of
e2 in another execution path. In this case, e1 and e2 may not be alias actually.

In order to make the definition of must alias clear, we use the postfix form of
an expression e, which is defined by a function pf(e) in the following, where x
is a variable.

Computing Must and May Alias to Detect Null Pointer Dereference 255

pf(const) = const pf(x) = x pf(&e) = e& pf(∗e) = e∗ pf(e.f) = e.f
pf(e→n) = e ∗ .n

We say that e1 is the must alias of e2 at a program point p if e1 and e2 have
the same l-value at every possible execution of p. But in some cases, the l-value
of e1 or e2 may not be defined. For example, x→n→n does not have l-value
before the execution of statement 2 in Figure 2.

Let e1 = e′1ω, e2 = e′2ω, where ω can be empty. If e′1 and e′2 have the same
l-value, then we think e1 and e2 have must alias relationship.

3 Computing Must Alias

3.1 Must Alias Data Flow Fact

Based on a flow- and context- insensitive may alias analysis, we compute the
fixpoint of data flow fact of must alias at the program point before each state-
ment. The must alias relation is an equivalence relation, that is, it is reflexive,
symmetric and transitive. For example, if e1 is the must alias of e2 and e2 is
the must alias of e3, then e1 is the must alias of e3. May alias relation is also
reflexive, symmetric, but not transitive, because two may alias pairs may be
generated in different execution paths. Supposing r is a must alias relation on
the expression set E, we can get E\r = {C1

r , C2
r , ..., Cn

r }.
The data flow fact of must alias used in our algorithm is a tuple (r, M) where

r is a must alias relation on E and M is a map from the equivalence class with
respect to r to the location sets in the points-to graph. In other words, M(Ci

r)
denotes all the possible l-values of the expressions in Ci

r.
Let r1, r2 be must alias relation on E, we define r1 � r2 if and only if ∀e1 ∈

E, ∀e2 ∈ E, < e1, e2 >∈ r1 ⇒< e1, e2 >∈ r2. Thus the partial order of the data
flow fact is defined as (r1, M1) 	 (r2, M2) if and only if r1 � r2 and ∀e ∈ E,
M1([e]r1) ⊇ M2([e]r2). Two special elements are also defined: the top element �
and the bottom element ⊥. For any data flow fact d, we have d 	 � and ⊥ 	 d.

May alias information can be deduced from the data flow fact. If M([e1]r) ∩
M([e2]r) �= ∅, then we say that ∀ex ∈ [e1]r, ∀ey ∈ [e2]r, ex and ey have the may
alias relation. If two data flow facts d1 and d2 satisfy d1 	 d2, then the must
alias pairs in d2 is a superset of that in d1. Because the possible l-values of each
expression in d1 is also a superset of that in d2, it is easy to prove that the may
alias pairs deduced from d2 is a subset of that from d1. d2 has more must alias
pairs and less may alias pairs than that of d1, thus d2 is more precise than d1.

We use data flow analysis to compute the data flow fact at each program
point. Initially, the data flow fact at each program point is ⊥. “join” operation
“�” is defined to compute the fixpoint of the data flow fact at each program
point. In order to define the join operation of the data flow fact, we define
that of the equivalence relation. Join operation ∨ of two equivalence relations
r1 and r2 is defined as the transive closure of the union of r1 and r2, that is,
r1 ∨ r2 = closure(r1 ∪ r2). Thus r1 ∨ r2 is also an equivalence relation.

256 X. Ma, J. Wang, and W. Dong

The join operation of data flow fact is defined as:

(r1, M1) � (r2, M2) = (r1 ∨ r2, M
′), M ′ satisfies M ′(Ci

r1∨r2
) = (M1([e1]r1) ∩

M2([e1]r2)) ∩ ... ∩ (M1([en]r1) ∩ M2([en]r2)) where Ci
r1∨r2

= {e1, ..., en}.

Of course, for any data flow fact d, we have � � d = �, ⊥ � d = d.

3.2 Must Alias Analysis

In this subsection, we will show the effect of statements on data flow facts, that
is, how a statement produces a new data flow fact from an input data flow fact.

Some auxiliary functions need to be defined first.
deref(e) = stars(e) − addr(e). Where stars(e) is the number of character ‘*’

in e and addr(e) is the number of character ‘&’. The result of deref(e) is the
dereference depth of e. It is easily to know that ∀e ∈ E, deref(e) ≥ −1.

may(e, (r, M)) = {e′|M([e′]r) ∩ M([e]r) �= ∅, e′ ∈ E} is the set of expressions
which are the may aliases of e.

lchg(e, (r, M)) = {e′ω|e′ ∈ may(e, (r, M)), deref(ew) > deref(e), e′w ∈ E}.
The result of this function is all the expressions whose l-value may be changed
to different location sets by a statement which assigns a value to e.

We use a transfer function to define the effect of a statement. Three kinds of
statements are considered: the allocation statement e = malloc(); the free state-
ment free(e) and the assignment statement e0 = e1. Note that we think free(e)
has the same effect as that of e = NULL, so e1 in the assignment statement is
supposed not to be NULL.

The transfer function for e = malloc().
[e = malloc()](r, M) = (r′, M ′) where r′ satisfies the following condition.
(1) ∀e0 /∈ lchg(e, (r, M)), ∀e1 /∈ lchg(e, (r, M)): < e0, e1 >∈ r ⇒< e0, e1 >∈

r′;
(2) ∀e0 ∈ may(e, (r, M)), e0 /∈ lchg(e, (r, M)) and ∀e1 ∈ may(e, (r, M)), e1 /∈

lchg(e, (r, M)), < e0, e1 >∈ r ⇒< e0ω, e1ω >∈ r′ whenever deref(e0ω) >
deref(e0) and e0ω ∈ E, e1ω ∈ E.

(3) there are no more relation pairs in r′ other than that generated by rules
(1) and (2).

It can be proved that r′ is also an equivalence relation.
M ′ is defined on the equivalence class with respect to r′.
M ′([ex]r′) = M([ex]r) if [ex]r′ ∩ lchg(e, (r, M)) = ∅
For the equivalence class which contains expression whose l-value may be

changed, we write it in the form of [eyω]r′ where ey /∈ lchg(e, (r, M)) and ey ∈
may(e, (r, M)). The possible l-value of this set of expressions is defined as:

M ′([eyω]r′) =⎧
⎪⎪⎨

⎪⎪⎩

heap i.fx : if eω ∈ [eyω]r′ and deref(eyω) = deref(ey) + 1
heap i.fx ∪ M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) = deref(ey) + 1
∅ : if eω ∈ [eyω]r′ and deref(eyω) > deref(ey) + 1
M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) > deref(ey) + 1

Computing Must and May Alias to Detect Null Pointer Dereference 257

heap i is the abstract heap allocated at the current statement. The suffix fx

depends on the types of expression eyω. If the l-value of an equivalence class
is allocated definitely at the current statement, then we use heap i.fx as its l-
value, else we add heap i.fx to the original l-value set to make our computation
of l-value conservative. It is clear that the currently allocated heap cannot be
dereferenced-which explains why ∅ occurs in the definition.

The transfer function for free(e).

[free(e)](r, M) = (r′, M ′).

Because we regard the effect of free(e) as assigning NULL to e, the rules for
generating r′ are the same as that of statement e = malloc().

The definition of M ′ is divided into two cases.
For the equivalence class [ex]r′ which does not contain any expression in

lchg(e, (r, M)), we get M ′([ex]r′) = M([ex]r).
For the equivalence classes which contains expression in lchg(e, (r, M)), we

can write it as [eyω]r′ where ey ∈ may(e, (r, M)) and ey /∈ lchg(e, (r, M)).

M ′([eyω]r′) =
{

∅ : if eω ∈ [eyω]r′ and deref(eyω) > deref(ey)
M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) > deref(ey)

The transfer function for e0 = e1.

[e0 = e1](r, M) = (r′, M ′).

The effect of this statement can be divided into two parts: it first destroys
the old value of e0 and then assigns a new value to it. In other words, we replace
it with two statements: e0 = NULL; e0 = e1. The generation of r′ can also be
divided into two steps: the generation of equivalence relation r′′ after the exe-
cution of e0 = NULL and that of r′ after e0 = e1. We can get r′′ by applying
the same rules as that for the e = malloc() statement. The generation of r′ is
defined in the following.

r′ ={
closure(r′′ ∪ {< e0ω, e1ω >| deref(e0ω) > deref(e0)}) : if (1)
r′′ : else

where (1) ≡ e0 /∈ lchg(e0, (r, M)), e1 /∈ lchg(e0, (r, M)).
The definition of M ′ is as following.

M ′([ex]r′) = M([ex]r) if [ex]r′ ∩ lchg(e0, (r, M)) = ∅.

For the equivalence class [eyω]r′ which satisfies [eyω]r′ ∩ lchg(e0, (r, M)) �= ∅,
ey ∈ may(e0, (r, M)) and ey /∈ lchg(e0, (r, M)), we can have:

M ′([eyω]r′) =

⎧
⎨

⎩

M([e1ω]r) : if (2)
M([e1ω]r) ∪ M([eyω]r) : if (3)
bottom : else

In the above definition, (2) ≡ e1 /∈ lchg(e0, (r, M)) ∧ e0ω ∈ [eyω]r′ ∧ ∀ω′ :
deref(e1) < deref(e1ω

′)< deref(e1ω) ⇒ e1ω
′ /∈ lchg(e0, (r, M)). If (2) is

258 X. Ma, J. Wang, and W. Dong

satisfied, we are sure that the l-value of eyω is changed and the correspond-
ing l-value of the source equivalence class is not changed. Thus we can replace
the l-value of [eyω]r′ with that of [e1ω]r. (3) ≡ e1 /∈ lchg(e0, (r, M)) ∧ e0ω /∈
[eyω]r′ ∧∀ω′ : deref(e1) < deref(e1ω

′) < deref(e1ω) ⇒ e1ω
′ /∈ lchg(e0, (r, M)).

In this case, the l-value of the source equivalence class is not changed, too. But we
are not sure whether [eyω]r is the target equivalence class. So we use the union
operation to make our algorithm conservative. In the third case, bottom denotes
all the possible location sets of eyω. This value is used because the l-value of the
source class may be changed and the target class may not be assigned with the
l-value of the source class.

In the inter-procedural analysis phase, we add a sequence of statements which
assign the formal parameters with the corresponding real arguments before step-
ping into the called procedure. After exiting from the called procedure p, we clean
the must information of the local expressions of p. That is, there is no expression
which is the must alias of a local expression except itself.

4 Null Pointer Dereference Detection

The null pointer dereference detection algorithm which will be presented is based
on the results of the must alias analysis. The strong updates derived from the
must alias information can make the detection algorithm more precise. In this
section, we suppose the data flow fact of must alias information has already been
computed at the program point before each statement.

In order to detect null dereference error, we use a data flow fact to describe
the allocation information. It is a function A : E → {true, false}. A(e) = true
denotes that the pointer expression e points to a valid memory location. A(e) =
false means that e points to NULL or other invalid memory location, such as
an uninitialized or freed one.

As in the computing of must alias, there is a function describing the allocation
information at each program point. We compute its fixpoint. The top value of the
allocation information A� is defined as: ∀e ∈ E(A�(e) = true) and the bottom
∀e ∈ E(A⊥(e) = false). A1 	 A2 iff ∀e ∈ E(A1(e) = false ∨ A2(e) = true).
A1 � A2 = A′ where ∀e ∈ E(A′(e) = A1(e) ∨ A2(e)). The initial allocation
information at each program point is A⊥.

Each type of statements can be regarded as a transfer function which takes
a must alias data flow fact (r, M) and an allocation data flow fact A as inputs
and outputs allocation data flow fact A′.

The transfer function for e = malloc().
[e = malloc()]A((r, M), A) = A′ where:

A′(ey) =

⎧
⎨

⎩

false : if ey ∈ lchg(e, (r, M))
true : if ey /∈ lchg(e, (r, M)) and < ey, e >∈ r
A(ey) : else

Computing Must and May Alias to Detect Null Pointer Dereference 259

The transfer function for free(e).
[free(e)]A((r, M), A) = A′ where:

A′(ey) =
{

false : if ey ∈ may(e, (r, M)) or ey ∈ lchg(e, (r, M))
A(ey) : else

The transfer function for e0 = e1.
[e0 = e1]A((r, M), A) = A′.

The definition of A′ is divided into two parts. The first is for the expressions
which are not in lchg(e0, (r, M)) and the second is for the other expressions.
We also rewrite expressions in the second part in the form of eyω where ey ∈
may(e0, (r, M)) and ey /∈ lchg(e0, (r, M)).

A′(ex) = A(ex) if ex /∈ lchg(e0, (r, M)).

A′(eyω) =

⎧
⎨

⎩

A(e1ω) : if (2)
A(e1ω) ∧ A(eyω) : if (3)
false : else

The inter-procedural analysis is in the similar way as that in the must alias
analysis. A sequence of statements which assign real arguments to the corre-
sponding formal parameters are inserted at the entry of the called procedure.
A(e) is assigned with false after exiting from procedure p if e is the local ex-
pression of p.

Using the allocation information, we can decide whether an expression causes
null pointer dereference. If an expression eω is read or written and the following
conditions are satisfied: (1) A(e) = false; (2) deref(eω) > deref(e), then we
say that a null pointer dereference may occur.

5 Experiment

We have implemented the prototype of our algorithm in the SUIF2 compiler
infrastructure and evaluated it with the test cases from samate [11]. The de-
scription of the test cases and the results of our experiment are listed in Table 1.

NPD stands for “Null Pointer Dereference” in Table 1. From the results of
the experiment, we can see that our method has a good precision. It should be

Table 1. Experiment with the test cases from samate

Case IDs Reports Bugs Description
1760 1 1 Ordinary NPD.
1875 1 1 NPD through array element.
1876 1 1 NPD through array element in branch condition.
1877 1 1 NPD within branch of switch statement.
1879 1 1 NPD caused inter-procedurally.
1880 0 0 Dereferencing inter-procedurally without NPD.
1934 0 0 NPD within unreachable branch of if statement.

260 X. Ma, J. Wang, and W. Dong

noticed that in the program No. 1394, there is a dereference of a null pointer in
the branch of an if statement, but the condition cannot be satisfied. Our tool uses
the allocation information to decide whether some simple condition expressions
can be satisfied. For example, if A(e) = true, then we can know the value of
e �= NULL is true.

6 Related Work and Conclusions

Must alias information is very useful for many analysis like constant propagation,
register allocation and dependence analysis [3]. However, not much work has
been done for must alias analysis [5]. In most cases, it is the side effect of a may
alias analysis and is used during the process of may alias analysis in order to
improve the precision. [6] defines must alias in an optimistic manner: if during
the analysis a pointer only points to one object, then it is treated as a must alias.
This definition may miss the must alias information between some expressions
which have heap locations in their access path. [1] introduces an extended must
alias analysis to handle dynamically allocated locations and this result is used to
improved def-use information. CALYSTO [2] can detect null pointer dereference
errors. It embraces the ESC/Java [4] philosophy of combining the ease of use
of static checking with the powerful analysis of formal verification. It is fully
automatic, performing inter-procedural analysis. PSE [9] is also a null pointer
dereference detection tool. It tracks the flow of a single value of interest from
the point in the program where the failure occurred back to the point in the
program where the value may have originated. In other words, it can work in a
demand-driven fashion.

In this paper, we propose a novel must alias analysis algorithm. Using the
result of a fast, imprecise may alias analysis, it can compute the must alias
relation between complex expressions and improve the precision of the may alias
at the same time. Exploiting the must alias information, a precise null pointer
dereference detection algorithm is also proposed. In the futrue, we will improve
the scalability of our tool and use it to check some real world applications.

References

1. Altucher, R.Z., Landi, W.: An extended form of must alias analysis for dynamic
allocation. In: POPL 1995: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 74–84. ACM, New York
(1995)

2. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking.
In: Proceedings of 30th International Conference on Software Engineering (ICSE
2008), May 10–18 (2008)

3. Emami, M.: A practical interprocedural alias analysis for an optimiz-
ing/parallelizing c compiler. Master’s thesis, McGill University (1993)

4. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI 2002: Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implementation, pp.
234–245. ACM, New York (2002)

Computing Must and May Alias to Detect Null Pointer Dereference 261

5. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: PASTE 2001:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp. 54–61. ACM, New York (2001)

6. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems 21(4), 848–894 (1999)

7. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of lisp-like structures.
In: POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 244–256. ACM, New York (1979)

8. Liang, D., Harrold, M.J.: Efficient points-to analysis for whole-program analysis.
In: ESEC / SIGSOFT FSE, pp. 199–215 (1999)

9. Manevich, R., Sridharan, M., Adams, S., Das, M., Yang, Z.: Pse: Explaining pro-
gram failures via postmortem static analysis. In: Richard, N. (ed.) Proceedings
of the 12th International Symposium on the Foundations of Software Engineering
(FSE 2004)November 2004. ACM, New York (2004)

10. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. In: PLDI
1999: Proceedings of the ACM SIGPLAN 1999 conference on Programming lan-
guage design and implementation, pp. 77–90. ACM Press, New York (1999)

11. Samate test cases, http://samate.nist.gov
12. Steensgaard, B.: Points-to analysis in almost linear time. In: Symposium on Prin-

ciples of Programming Languages, pp. 32–41 (1996)
13. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Trans. Program. Lang. Syst. 29(3), 16 (2007)

http://samate.nist.gov

	Computing Must and May Alias to Detect Null Pointer Dereference
	Introduction
	Points-to Graph
	Computing Must Alias
	Must Alias Data Flow Fact
	Must Alias Analysis

	Null Pointer Dereference Detection
	Experiment
	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

