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Abstract. One purpose of Property Assurance is to check the satisfiability of
properties. The Sequential Extended Regular Expressions (SEREs) play impor-
tant roles in composing PSL properties. The SEREs are regular expressions with
repetition and conjunction. Current assurance method for LTL formulas are not
applicable to SEREs.

In this paper, we present a method for checking the satisfiability of SEREs.
We propose an extension of Alternating Finite Automata with internal transitions
and logs of universal branches (IAFA). The new representation enables memory-
ful synchronization of parallel words. The compilation from SEREs to IAFAs is
in linear space. An algorithm, and two optimizations are proposed for searching
satisfying words of SEREs. They reduce the stepwise search space to the product
of universal branches’ guard sets. Experiments confirm their effectiveness.

Keywords: Alternating Automata, Satisfiability, Memoryful Synchronization.

1 Introduction

The correctness of functional specifications is important. Conflicting properties will put
design and verification effort into vain. Property Assurance [4] [20] aims at a method-
ology for checking the existence of behaviors which satisfy a set of properties, and the
satisfaction of given properties for all possible behaviors of a system. With property
assurance, designers can develop a better understanding and have stronger confidence
in their specifications.

PSL [11] is an industry standard specification language (IEEE-1850) for circuit and
embedded system design. The core logic of PSL is an extension of LTL with the Se-
quential Extended Regular Expressions (SEREs). SEREs are operands of PSL’s LTL
operators. Therefore, the satisfiability of SEREs is critical to the correctness of PSL
specifications. Bloem et al. have addressed the satisfiability problem of LTL in [20].
In this paper, we present a method for Assuring the satisfiability of clocked SEREs [9]
(ASERE).
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Related Work
The automata-theoretic approach for proving the satisfiability (SAT) of regular expres-
sions starts with converting an expression r into an automaton Ar, then checks the non-
emptiness of the language L accepted by Ar, that is L(Ar) � φ. The formula holds if we
can find a word w such that w ∈ L(Ar).

The topic of automata construction for intersection-extended regular expressions
(IERE) was carefully studied by Ben-David et al. in [1]. Firstly, they transform an
IERE r into an Alternating Finite Automaton (AFA), then to a Non-deterministic Finite
Automaton (NFA). The state complexity of such a transformation is 2O(|r|), where | r |
refers to the size of r. The construction from SEREs to AFA is linear. The exponen-
tial increase takes place in transforming the AFA of r1&&r2 to NFA. r1&&r2 requires
that words of r1 and r2 should both start and terminate simultaneously. One important
reason that forces them to further transforming AFA to NFA is due to the fact that the
acceptance of r1&&r2 depends on the universal activeness of the accepting states of
r1 and r2. However, a traditional AFA does not have the accepting states for universal
branches.

Vardi et al. gave a systematic analysis on the time complexity of the language empti-
ness problem by automata-theoretic approach in [22] [15] [13]. For traditioanl alter-
nating automata, their time complexity is in exponential time. In the last ten years, the
progress was driven by the LTL model checking [2] [17] [10]. The expressiveness of
LTL is equivalent to that of the star-free ω-regular expressions. Runs of the alternating
automata for LTL are memoryless [13]. But SEREs are not memoryless. They can repeat
infinitively, and conjunct with other SEREs to form new ones, like r1&&r2. Therefore,
we must explore new methods for the SAT problem of SEREs.

Contribution
In summary, the contribution of this paper includes:

1. An extesion of Alternating Finite Automata with internal transitions and univer-
sal branching logs. The new representation enables memoryful synchronization of
parallel words. The construction from SEREs to IAFA is in linear space.

2. An algorithm for proving the satisfiability of SEREs by IAFA. Two optimization
methods are proposed. They reduce the stepwise search space to the product of
universal branches’ guard sets.

The rest of this paper is organized as follows. Section 2 presents the syntax and the se-
mantics of SERE. Section 3 reviews the evolution of Alternating Automata, and justifies
their use in representing SEREs. The new features to be enhanced for the satisfiability
problem of SERE are explored. Section 4 introduces the Internal-transition-enhanced
AFA (IAFA) as the operating representation of SEREs. In Section 5, we develop a
DPLL-like stepwise search algorithm and use zchaff [18] as the building block in each
step. After that, we propose two optimizations which are able to reduce the search space
of each step from exponential to linear. Experiments and analysis are presented in Sec-
tion 6. And Section 7 discusses our future works.

We leave the detailed proofs, the automaton constructions and the diagrams in a
technical report which, in along with the source code of ASERE, is available at [23].
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2 SERE: Syntax and Semantics

The syntax of SEREs supported by ASERE is defined recursively as follows:

Definition 2.1. (SEREs)

r ::= ε empty expression
| b Boolean expression
| {r} bracketed SERE
| r; r sequential concatenation
| r&&r length − matching conjunction
| r&r non − length − matching conjunction
| r | r disjunction
| r[∗] repeating r for zero or more times
| r[∗k] repeating r for k times
| r[∗n : m] repeating r for n to m times, n can be 0, and m can be infinitive

In accordance with [7], we define the semantics of SERE with finite and infinite
words over Σ = 2V ∪ {ε}, where V refers to the predicate variable set, and ε refers to an
empty word. We denote by BoolV the set of Boolean expressions over V , BoolV = 22V

.
We denote a letter from Σ by l, and a word by w. �w denotes the length of w. The

empty word ε has length 0, a finite non-empty word w = l0l1 . . . ln has length n + 1, and
an infinite word has length ∞. We denote the (i + 1)th letter of w by wi, the suffix of w
starting at wi by wi..., and the finite sequence of letters starting from wi and ending in
wj by wi...j. If i > �w, then wi = ε. w1w2 denotes the sequential concatenation of w1 and
w2. If w1 is infinite, then w1v = w1. W∗ denotes finite words whose letters are from W.
For the empty word ε, wε∗ = ε∗w = w.

l � b denotes that the letter l satisfies the Boolean expression b. The Boolean satis-
faction relation �⊆ Σ × BoolV behaves in the usual manner.

Definition 2.2. (Boolean Satisfaction) For letter l ∈ Σ, atomic proposition p ∈ V, and
Boolean expressions b, b1, b2 ∈ BoolV, then

1. l � p iff p ∈ l
2. l � ¬b iff l �� b
3. l � true ∧ l �� false, 4)
4. l � b1 ∧ b2 iff f � b1 ∧ f � b2

w |≡ r denotes that the word w satisfies the SERE r tightly.

Definition 2.3. (SERE Tight Satisfaction)

w |≡ ε iff �w = 0
w |≡ b iff �w = 1 ∧ w0 � b
w |≡ {r} iff w |≡ r
w |≡ r1; r2 iff ∃w1,w2 • w = w1w2 ∧ w1 |≡ r1 ∧ w2 |≡ r2

w |≡ r[∗] iff w |≡ ε ∨ ∃w1 � ε,w2 • w = w1w2 ∧ w1 |≡ r ∧ w2 |≡ r[∗]

w |≡ r[∗k] iff w |≡
k times
︷����︸︸����︷

r; . . . ; r

w |≡ r[∗n : m] iff w |≡
n to m times
︷����︸︸����︷

r; . . . ; r
w |≡ r1 && r2 iff w |≡ r1 ∧ w |≡ r2
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Fig. 1. Runs of a[∗4 : 5]; {a[∗1 : 2]&&c[∗1 : 2]}

w |≡ r1 | r2 iff w |≡ r1 ∨ w |≡ r2

w |≡ r1 &r2 iff w |≡ {r1 && {r2; true[∗]}} | {{r1; true[∗]} && r2}
SERE can describe non-deterministic behaviors succinctly [16]. One may have dif-

ferent interpretations of a SERE over a finite word. For instance, Fig.1 illustrates two
interpretations of

a[∗4 : 5]; {a[∗1 : 2]&&c[∗1 : 2]}
over the word given in the wave form. For the first interpretation, after 4 clocks of a,
it branches at t4, and its branches, a[∗2] (b11) and c[∗2] (b12), last two clocks. For the
second interpretation, after 5 clocks of a, it branches at t5, and its branches, a[∗1] (b21)
and c[∗1] (b22), last only one clock cycle. Though b12 and b22 all reach their accepting
states, b11 should length-match with b12, not b22. This example tells us that word length
is not sufficient enough for us to synchronize words of parallel SEREs.

3 A Review of Alternating Automata

By Definition 2.3, we know that SERE supports two types of branches. They are the
existential branch, r1 | r2, and the universal branch, r1&&r2. No cooperation takes place
between spawned processes in both types of branches, until the time comes to decide the
acceptance of the input. That kind of concurrency is termed as weak concurrency [12].

NFA is the counterpart of existential branching in the automaton world. AFA fur-
ther enrich NFA with universal branches. An AFA on finite words is a tuple of A =<
Σ, S, s0, ρ,F >, where Σ is the input letter set, S is a finite set of states, s0 is the initial
state, and F is a finite set of accepting states. ρ : S × Σ → 22S

is a transition func-
tion. The target of a transition is not a state of S, but a subset of S. A state may transit
to multiple target sets to express non-deterministic behavior. For instance, a transition
ρ(s, l) = {{s1, s2}, {s3, s4}} states that A accepts a letter l from state s, and it activates
both s1 and s2, or both s3 and s4. Chandra et al. [5] have proved that AFA is doubly
exponentially more succinct than Deterministic Finite Automata (DFA). Thus, we have
the following observation.
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Observation 3.1. AFA is a promising representation of SERE.

Traditionally, runs of AFAs are expressed in terms of trees [22] [13]. A finite tree is a
finite non-empty set T ⊆ N

∗ such that forall x · c ∈ T, with x ∈ N
∗ and c ∈ N, we have

x ∈ T. The elements of T are called nodes, and the empty word ε is the root of T. The
level of a node x, denoted | x |, is x’s distance from the root ε. Particularly, | ε |= 0. A
run of A on a finite word w = l0 · l1. . .¸ ln−1 is a S-labelled tree < TR,R >, where TR is a
tree and R : TR → S maps each node of TR to a state in S. For < TR,R >, the followings
hold:

– R(ε) = s0

– Let x ∈ TR with R(x) = s and ρ(s, l|x|) = S
′. There is a (possible empty) set SK =

{s1, . . . , sk} such that there exists a Sy ⊆ SK with Sy ∈ S
′, and for all 1 ≤ c ≤ k, we

have x · c ∈ TR and R(x · c) = sc

A word W is accepted iff there is an accepting run on it. A run is accepting if all
nodes at depth n are labelled by states in F.

By the above two statements, we can imply that in AFA, there is no accepting state
for universal branches. Usually, there should be certain extra-mechanism which mon-
itors whether the acceptance condition holds or not. This method is not elegant in
addressing expressions like {{r1&&r2}; r3}, where r3 starts after an accepting run of
{r1&&r2}. A better ways seems to be setting a special state whose activeness indicates a
successful synchronization of r1 and r2. With the state, we can concatenate the automata
of {r1&&r2} and r3 by usual approaches. Those acceptance states are internal. They are
not activated by input letters.

Observation 3.2. The synchronization states for universal branches are necessary for
keeping the elegance of automata-theoretic approach.

Another weakness of tree-represented AFA is that AFA do not constrain the breadth of a
level. An active state will move to sets of target states whenever an input letters satisfy
some corresponding guards. So with the verification process continuing, the memory
grows without restrictions.

Kupferman and Vardi [14] [13] proposed to merge similar target states of transitions
into a single one. That results in representing runs of AFAs by Directed Acyclic Graphs
(DAG). For two nodes x1 and x2, they are similar iff | x1 |=| x2 | and R(x1) = R(x2).
Recently, the DAG approach [8] [3] is accepted in static verification (model checking)
for LTL properties. The intuition is that the LTL formulas are equivalent to star-free
words. For AFAs converted from LTL formulas, they do not have loops other than self
loops. Hence, runs of traditional LTL-AFAs are memoryless [13]. During verification,
one only needs to look in the future, but never the past. In other words, similar states
correspond to the same future mission: to accept the suffixes which satisfy a common
property.

Kupferman et al. represent a memoryless run < TR,R > by a DAG GR =< V ,E >,
where

1. V ⊆ S × N is such that < s, l >∈ V iff there exists x ∈ TR with | x |= l and R(x) = s.
For example, < s0, 0 > is the only vertex of GR in S × {0}.
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2. E ⊆ ⋃l≥0(S × {l} × (S × {l + 1})) is such that E(< s, l >, < s′, l + 1 >) iff there exists
x ∈ TR with | x |= l, R(x) = s and R(x.c) = s′ for some c ∈ N.

Configurations Ci ⊆ S are sets of active states, where i refers to the level of a DAG. It is
evident that, by DAG, every configuration contains at most | S | states which are roots
of different subtrees. A DAG is acceptable if Ci ⊆ F holds.

The branches of AFA’s DAGs resemble the requirements of universal choices [8].
A DAG is just a single path through the existential choices of an AFA. One may have
to try breadth-first search, depth-first search or backward search [6] in looking for an
accepting run. That is why the EXPTIME complexity of AFA is unavoidable [21].

We find that if a memory can distinguish different universal branching histories, then
the runs with different branching histories will not be able to activate the synchroniza-
tion states. Thus a memoryful DAG with synchronization states can enable concurrent
runs of both existential and universal branches.

Observation 3.3. A memoryful DAG can accommodate all possible runs of an AFA.

4 Representing SEREs by IAFA

We formalize the Internal-transition-enhanced AFA (IAFA) as follows

Definition 4.1. An IAFA is a tuple of A = (V , ΣA, S,H, s0, ρ,F), where

• V is a set of variables of the SERE under assuring.
• S is a set of states.
• H = 22N

∗
is a set of historical log sets. A historical log h ∈ N

∗, namely h =
t0t1 . . . tn−1tn, is a finite sequence of time-stamps. It records the important timing in-
formation of runs which make a state active. We have H range over the sets of historical
logs.
• ΣA = BoolV ∪ FOPSH is the letter set of A. FOPSH refers to the first order predicates
over S ∪ S × H. We distinguish trueV and trueSH . trueV stands for logic true over V
and trueSH stands for logic true over S ∪ S ×H.
• s0 is the initial state.
• F is the set of states for tight acceptance.
• In IAFA, a transition ρ is in type of S × ΣA × U × 2S, where
• ΣA specifies the guarding conditions.
• U is a set of assignments which update historical logs whenever a tran-
sition takes place.
• The target of a transition is a subset of S. All elements of the subset
should be active after the transition.

We classify IAFA transitions into external and internal ones. Our SEREs are syn-
chronous. The external transition can be triggered only on clock events. Therefore the
guarding conditions of external transitions are in form of BoolV ∧ clock event. For
conciseness, we do not attach the clock event in reasoning external transitions. The
guarding conditions of internal transitions are in type of FOPSH. We call a special type
of internal self-loop transitions as τ transitions. τ-typed transitions are in form like
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(s, gs, us, {s}). A τ transition keeps a state active between two external transitions. We
have ρe, ρi and ρτ to represent the set of external, internal and τ transitions. Notation
s.τ denotes s’s τ transition.

A configuration C gives out the status and historical logs of active states. Configu-
rations are in type of 2S×H. Notation C.ST denotes the set of active states in C, that is
C.ST = {s | (s,H) ∈ C}. In a configuration, a state can have only one set of historical
logs. That is if (s,H1) ∈ C and (s,H2) ∈ C, then H1 = H2. Therefore, we represent the
historical log set of s by s.H. For two active states s1 and s2, they are synchronizable if
and only if they share common historical logs. That is s1.H ∩ s2.H � φ

A predicate g ∈ FOPSH holds under the configuration C, if there exists some pairs
(s, s.H) ∈ C which make g true. We represent the case by C |= g.

Definition 4.2. Let A = (V , ΣA, S,H, s0, ρA,F) be a IAFA, runs of A over a word w =
w0w1w2 . . .wk is a sequence of configurations Δ = C0C1 . . .Cn, where

1. C0 = {(s0, φ)}
2. Given a letter wi, if ∃ s ∈ Ci.ST, (s, g, u, S′) ∈ ρe, and wi � g, then S′ ⊆ Ci+1.ST
3. Given a state s ∈ Ci.ST, if (s, g, u, S′) ∈ ρi, and Ci |= g, then S′ ⊆ Ci+1.ST.
4. Given a state s ∈ Ci.ST, if s.τ ∈ ρτ, and s ∈ Ci+1.ST, then for all (s, g, u, S′) ∈ ρi,

Ci |= ¬g holds.

The second and the third clause of Definition 4.2 state that for external and inter-
nal transitions, whenever their guarding conditions hold, they should take place imme-
diately. That amounts to an identical treatment towards both universal and existential
branches. However, such a treatment will not impact the correctness of assuring SEREs.
Because in SEREs, the acceptance of universal branches asks for synchronization of
peers. For r1&&r2, if the branches of r1 and r2 are not able to synchronize on their
termination, then the condition for the tight satisfaction of r1&&r2 will fail.

Due to the existence of clock events, the external and internal transitions take place
interleavingly. An external transition increases the word length. However, an internal

Fig. 2. Transitions of IAFAs
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transition resembles the empty letter ε. The last clause of Definition 4.2 says that a τ
transitions are triggered only when the corresponding states do not have other enabled
internal transitions. Fig.2 illustrates the running patterns of IAFAs. Supposing the clock
events of external transitions are the posedges of clk, then on each posedge(clk), an
IAFA will sample the values of V and trigger enabled external transitions. After that,
there comes a sequence of internal transitions until all states have only τ transitions
enabled.

Proposition 4.3. For each SERE r, there is an IAFA Ar, such that w |≡ r iff w ∈ L(Ar)
and Ar has O(| r |) states.

Proof: In [23].
Here, we give out the IAFA construction for r1 && r2, as illustrated in Fig. 3. Given

Ai = (V , Σ, Si,Hi, s0(ri), ρi, {ss(ri)}) are IAFAs of ri, then
S(r1&&r2) = S(r1) ∪ S(r2) ∪ {s0, sf }
s0(r1&&r2) = s0

ρA(r1&&r2)
= ρA(r1) ∪ ρA(r2)
∪{(s0, trueLV , ui, {s0(ri)}) |

ui = {l s 0(ri).H.include(push(l s 0.H, t))}}
∪{(ss(r1), g, u, {sf }), (ss(r2), f ss 1, φ, φ)}

F(r1 && r2) = {sf }
where, g = f ss r 2 ∧ (f ss r 1.H ∩ f ss r 2.H � φ)

u = {T := f ss r 1.H ∩ f ss r 2.H;
f ′ s f := 1; f ′ s f .H.include(T.pop); }

In the above clause, all target states of s0 inherit s0’s history logs, and have a new
universal branching time as the last time stamp of their history logs. sf is the tight
accepting state of r1&&r2. Before reaching sf , we shall synchronize on the tight accep-

s0(r1)

s0(r2)

sx(r1)

sx(r2)

s0

ss(r1)

ss(r2)

sf

 f_ ss_ r2/\ (f_ ss_ 1.H      f_ ss_ 2.H        )

{  T =f_ ss_ 1.H      f_ ss_ 2.H;
f '_ s_ f::=  1;

    f '_ s_ f.H .inc lud e(T .p o p )
  }

true LV

{ f'_ ss_ 1.H.inc lud e(f_ ss_ 1.H)}

true LV

{ f'_ ss_ 2.H.inc lud e(f_ ss_ 2.H)}

f_ ss_ 1

true LV

true LV

{ f'_ s0(r1).H.inc lud e(p ush(f_ s_ 0.H, t))}

{ f'_ s0(r2).H.inc lud e(p ush(f_ s_ 0.H, t))}

true LV

Le ge nd:

Internal Transition

External Transition

Transitions w hose types are  not important
in the  context. They can be  e ither external
or internal ones.

Fig. 3. The IAFA of r1&&r2
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tance of both r1 and r2. For the transition from ss(r1), the guarding condition
f ss r 2 ∧ (f ss r 1.H ∩ f ss r 2.H � φ)
conveys the idea that for a successful synchronization, both ss(r1) and ss(r2) shall be
active and both of them have common histories of universal choices. The update part
activates sf and assigns the T.pop as histories to sf . T is a temporary variable. It is just
the common histories of ss(r1) and ss(r2). T.pop removes the branching time which is
pushed into logs on leaving s0. Once the automata reaches sf , both ss(r1) and ss(r2) are
deactivated.

By this example, we can see the effect of the τ transitions. According to the semantics
of PSL [7], The length of a clocked SERE is counted on clock events. Internal transi-
tions within two external transitions do not take time. It may takes different numbers of
internal transitions to reach ss(r1) and ss(r2). With the τ transition, ss(r1) will not miss
the synchronization with ss(r2) only if ss(r2) could be active in the current clock cycle.

Proposition 4.4. The time complexity of the satisfiability problem of SERE is O(2d·|V |),
where | V | is the number of variables in V and d is the search depth.

Proof: In [23].

5 The Implementation and Optimization

The search process of ASERE follows the classic DPLL algorithm [19], which is the
base of most Boolean SAT solvers. For SAT solvers, a conflict is an implied assignment
in which some variables are assigned both true and false . If no conflict is detected
in the preprocessing, a DPLL SAT solver starts by assigning a value to an unassigned
variable. If all variables are assigned, a solution is found. Otherwise, the solver will
deduce values of other variables through a process called Boolean Constraint Propaga-
tion (BCP). If a conflict is detected, it will perform backtrack to undo some decisions. If
all decisions have to be undone, then one can conclude the unsatisfiability of a boolean
expression. The deduce and backtrack processes form the inner loop. It stops if no more
deduction is possible and the deductions do not imply conflicts. After that, the solver
will decide the next branch provided that there are still unassigned variables.

Our ASERE algorithm is similar. The target of each decision is to find a letter which
can trigger the external transitions such that the IAFA can move forward. The internal
transitions take the role of BCP. The search process of ASERE is illustrated in Fig.4.

1. Line 1 says that ASERE will initially try for internal transitions.
2. If an internal trial returns TRIAL PASS, ASERE will commit the trial by configura-

tion update(). If in sat check, no states of F becomes active, ASEREwill continue
for more internal transitions.

3. The codes from line 13 to line 20 state that if ASERE finds that all internal tran-
sitions are τs, it shifts to external trials. Before the next external trial, ASERE will
check whether it reaches the maximal search depth. If so, ASERE backtracks to the
previous configuration for the last external trial by configuration retreat().
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Fig. 4. The Algorithm of ASERE
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4. For the external trials, ASERE calls a SAT solver to find a letter l which should
satisfy the disjunction of the guarding conditions of the active states. That is

l �
∨

k

gk with (s, gk, u, S
′) ∈ ρe ∧ s ∈ Ci.ST (1)

If such a l does exist, the external trial will return TRIAL PASS and some external
transitions of active states take place. Accordingly,ASERE updates the configuration
as specified in line 37.

5. However, if the external trial returns EXTERNAL FAIL and the search depth is
greater than 0, ASERE will backtrack as well. That amounts to the deduction that
the prefix word after the last external trial can not lead to a satisfying word. Then,
ASERE continues with external trials for other words.

6. The codes from lines 38 to line 44 state that after updating a configuration, if some
states of F become active, then a tight satisfying word is found. Otherwise, ASERE
will try all possible internal trials to propagate the influence of the last letter. As in
3, backtracking is necessary if ASERE reaches the maximal search depth.

Proposition 4.4 tells us that the time complexity of SERE’s satisfiability problem is
(2|V |)d. The base 2|V | gives the search space of each external trial. The complexity in-
creases exponentially along with the search depth. The exponent d is unavoidable. Our
optimization effort focuses on reducing the step-wise search space by extra constraints.
We propose 2 optimization methods, they are the the Post-Trial Check and the No-
Repeated-Transition Check.

Opt.1(Post-Trial Check)
The motivation is to utilize the structure information of SEREs. For instance, to the

length-matching conjunction r1&&r2, whenever an external transition of r1 (r2) takes
place, then at least one external transition of r2 (r1) has to take place as well. If a branch
has no more active states after a trial, it is impossible for further runs to synchronize.
And we can halt the search process earlier. Therefore, we must ensure the simultaneous
activeness of universal branches’ states. That criteria applies to internal trials too.

Given a temporary configuration C and an IAFA Ar generated from r, predicate
PTC(C,Ar) holds if C passes the Post-Trial Check. We setup a temporary configuration
C′i for the result of Ci after the current trial. Only when C′i passes PTC, can config-
uration update() commits the trial by assigning C′i to Ci+1. We define PTC(C,Ar) as
follows.

Definition 5.1.

• For r = ε, r = b, r = r1[∗n], r = r1[∗n : m] and r = r[∗]
PTC(C,Ar) =df

∨

s∈S(r)
s ∈ C.ST

• For r = r1; r2 and r = r1 | r2

PTC(C,Ar) =df PTC(C,Ar1) ∨ PTC(C,Ar2)
∨

s∈S(r)−S(r1)−S(r2)
s ∈ C.ST

• For r = r1&&r2 and r = r1&r2
1

1 Please refer the automata construction of Ar1 && r2 and Ar1 & r2 for s0, sf , sf 1 and sf 2.
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PTC(C,Ar) =df s0 ∈ C.ST ∨ sf ∈ C.ST
∨((PTC(C,Ar1) ∨ sf 1 ∈ C.ST) ∧ (PTC(C,Ar2) ∨ sf 2 ∈ C.ST))

Now, let us have a look at the time complexity of Opt.1. Suppose r1 and r2 are two
concurrent SEREs, C is a configuration, and CG1(C) and CG2(C) are the candidate
guard sets of Ar1 and Ar2.
CGi(C) = {g | ∃ u, S, s ∈ C.ST ∩ S(r1) • (s, g, u, S) ∈ ρ(ri)}

Let LET(C) be the set of letters which can trigger external transitions of C’s active
states and the resulting C′ can pass the Post-Trial Check. Then,
LET(C) = {l | ∃ g1i ∈ CG1(C), g2j ∈ CG2(C) • l � g1ig2j}

=
⋃

g1i,g2j

{l | l � g1i} ∩ {l | l � g2j}
Let size(g) be the size of the letter set whose elements satisfy g. Then,

| LET(C) |≤ Σ
g1i,g2j

min(size(g1i), size(g2j)) (2)

Formula (2) gives the upper bound of the letter space restricted by Opt.1 in each
external trial. The letter set characterized by g is a subset of 2V . Though the exponent
in size(g) is not removed, if the biggest size(g) are small, then | LET(C) | will be small.

Opt.2(No-Repeated-Transition Check)
Opt.1 reduces the search space from 2V to LET(C). It is observed that there is still

redundancy in LET(C). It is possible for different letters to trigger an identical bunch of
external transitions which lead to identical suffix words. It is reasonable to cancel a trial
if it does not contribute new transitions. That is the motivation of our second optimiza-
tion (Opt.2), the No-Repeated-Transition Check. Opt.2 reduces the search space to the
product of the guard sets of universal branches. In terms of Opt.1, the search space of
Opt.2 is CG1(C) × CG2(C). Consequently, its size is | CG1(C) | × | CG2(C) |. Now, we
get an algorithm whose time complexity is linear in each external trial. However, Opt.2
may not always reduce the number of external trials. Because, the check is applied after
external trials.

6 Experiments and Analysis

By Proposition 4.3, the size of Ar is linear to | r |, our experiment focuses on the
time aspect in concluding an unsatisfiable SERE and searching finite words of a satis-
fiable one. We carry out the algorithm comparison on a ThinkPad with dural 1.83GHz
CPUs, and 2GB RAM. The parallel feature of the machine is not exploited. We adopt
zchaff [18] (version 2007.3.12) as the engine for external trials. Currently, there is no
standard benchmark for the satisfiability of SEREs. We forge the test cases with the
object as covering as many SERE constructs as possible.

Table.1.2.3.4 demonstrate some test results. In those tests, the minimal search depth
is 1, the maximal search depth is 22, and the upper bound for external trials is 100,000.
If the value is reached before finding any satisfying word, we can not conclude on the
satisfiability of the SEREs Under Assuring (SUA).

The performance of our optimizations is encouraging. If a SUA has abundant features
of concurrency, as in experiment 1 and 2, the performance promotion is significant. It
confirms our prediction on the algorithm complexity. The effect of Opt.2 is dominant
in experiment 3 and 4. It is rather quick in concluding the unsatisfiability of the SUAs.
And the joint use of Opt.1 and Opt.2 is preferable if satisfiability is the only pursuit.
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It is interesting to investigate Table.2, which aims at the first 30 satisfying words.
We find that if we turn off Opt.2, the ratio of external trial against internal trial is less
than 1. But it is greater than 1 when Opt.2 = 0. That means quite a number of external
trials are not committed if they do not bring new transitions. Consequently, turning on
Opt.2 can work out more diversified words.

Table 1. Experiment 1

SERE {{{a xor b}[∗1 : 4]}&&{{b xor c}[∗2 : 5]}; {{[∗2 : 4]; !a[∗2 : 5]}[∗2]}&{[∗5]; a[∗4]}}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 11145 64.79 0
0 1 59 97 0.09 1
1 0 1357 759 0.78 1
1 1 32 82 0.07 1

Table 2. Experiment 2

SERE {{{a xor b}[∗1 : 4]}&&{{b xor c}[∗2 : 5]}; {{[∗2 : 4]; !a[∗2 : 5]}[∗2]}&{[∗5]; a[∗4]}}
Target To find the first 30 satisfying words
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 11145 65.15 0
0 1 106 420 0.36 30
1 0 49632 29066 29.19 30
1 1 3588 2743 2.78 30

Table 3. Experiment 3

SERE {[∗10]; {a}&&{!a}}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 33431 16.94 0
0 1 6141 9210 2.45 0
1 0 99 65 0.03 0
1 1 33 43 0.01 0

Table 4. Experiment 4

SERE [∗10]; {a[∗3]}&&{b; TRUE; !a}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 20057 22.96 0
0 1 100000 103598 22.08 0
1 0 256 104 0.09 0
1 1 62 52 0.03 0
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7 Future Works

In this paper, we have presented the algorithms behind the tool kit ASERE for assur-
ing the satisfiability of SEREs. We have formalized the IAFA as the representation of
SERE. Essentially, the IAFA conception is a memoryful, synchronization-enabled and
multi-tape computing model.

We have proposed a DPLL-like search process and discussed two optimizations aim-
ing at reducing the number of external trials. Experiments have confirmed our prediction
on their performance.

In the future, we will carry out our research in the following directions.

– Enabling the fusion operator : (overlapping concatenation) in ASERE.
– Extending ASERE to LTL so that we can solve the assurance problem for formulas

in PSL’s simple subset. A possible solution is to combine the alternating automaton
approach with the SNF approach [4] [20]. The SNF addresses the LTL constructs
and the alternating automaton addresses the embedded SEREs. The challenging
work lies in searching the satisfying words of r until b, which requires a new search
for r on each clock event until the assertion of b. However, the length of the satis-
fying words of r is so non-deterministic that it is rather hard to decide the depth at
which we can assert b .
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