
A Framework for Analyzing and Testing the
Performance of Software Services

Antonia Bertolino1, Guglielmo De Angelis1, Antinisca Di Marco2, Paola Inverardi2,
Antonino Sabetta1, and Massimo Tivoli2

1 ISTI-CNR, Pisa, Italy
{antonia.bertolino,guglielmo.deangelis,

antonino.sabetta}@isti.cnr.it
2 Università dell’Aquila

Dipartimento di Informatica, via Vetoio, L’Aquila, Italy
{adimarco,inverard,tivoli}@di.univaq.it

Abstract. Networks “Beyond the 3rd Generation” (B3G) are characterized by
mobile and resource-limited devices that communicate through different kinds
of network interfaces. Software services deployed in such networks shall adapt
themselves according to possible execution contexts and requirement changes. At
the same time, software services have to be competitive in terms of the Quality
of Service (QoS) provided, or perceived by the end user.

The PLASTIC project proposes an integrated model-based solution to the de-
velopment and maintenance of services deployable over B3G networks. Notably,
the PLASTIC solution includes formal techniques that combine predictive and
empirical evaluation of QoS-aware services.

In this paper we provide an overview of the PLASTIC approach to the assess-
ment of QoS properties. Referring to a complex eHealth service, we first gen-
erate and analyze performance models to establish requirements for stand-alone
services. Then we use an empirical technique to test the QoS of an orchestration
of services even when the actual implementations of the orchestrated services are
not available.

1 Introduction

The promise of the Service Oriented Architecture (SOA) paradigm is to enable the
dynamic integration between applications belonging to different, globally distributed
enterprises, connected through heterogeneous B3G (Beyond 3rd Generation) networks.
B3G service-oriented applications, as well as communication networks and embedded
systems [1], require to consider extra-functional characteristics as a critical aspect of
software development [2].

The openness of the B3G environments naturally leads the SOA paradigm to pursue
mechanisms for specifying the provided levels of Quality of Service (QoS) and for
establishing Service Level Agreements (SLAs) on them.

In addition, context-awareness and adaptation are key features for B3G services that
are to be deployed in different environments and on hardware platforms with differ-
ent characteristics. Applications must be able to react to context changes and to adapt

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 206–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Framework for Analyzing and Testing the Performance of Software Services 207

themselves to continue to provide services within the levels of QoS that were previously
agreed.

Let us consider the typical case of a service provider who is to offer a certain service
(S∗) to their clients according to QoS levels ratified in form of SLAs. In order to do
so, the service provider could orchestrate a number of other services (S1 . . . Sn), which
may be either under their direct control, or may be provided by third parties. However,
usually the life-cycle of service S∗ is independent of the life-cycle of the aggregated
services Si. For example, the actual implementation of some Si could not be used dur-
ing the development or the testing of S∗ because they are developed concurrently with
S∗ or because using them would imply additional costs or undesired side-effects (e.g.,
undesired writes on a DB). Furthermore, the binding between S∗ and Si is defined at
run-time. Therefore, assessing the properties of a service out of the properties of its con-
stituents is a complex task, which limits the possibility to define SLAs for the developed
service.

Traditional approaches applied to the development, the deployment and the mainte-
nance of SOAs do not provide adequate support to these needs in terms of languages,
methods, and tools. Nevertheless, in recent years much research has been devoted to
methodologies for QoS evaluation, including predictive and empirical techniques [3].

In this respect, the main target of the PLASTIC project [4] is an integrated model-
based solution supporting both the development of services deployable over B3G net-
works, and the definition of their related SLAs. The key idea of the project is that the
QoS characteristics of the network and of the devices should be visible at the level
of services. The solution proposed in PLASTIC includes formal techniques for both
predictive and empirical evaluation of QoS-aware services.

Predictive techniques span methodologies and tools that can be exploited by ser-
vice providers to guide the design starting from the earliest phases of the service de-
velopment. These methodologies can provide predictive assessments on whether the
proposed software solution is likely to meet the expected performance goals.

Also, in order to construct an efficient and effective application, developers should
test it in advance in all possible network scenarios. However, at development time it is
difficult to anticipate all possible configurations in which a service will be executed. An
empirical solution for the off-line validation consists in providing a testbed in which
the behavior of the underlying platform and of the network can be simulated in a re-
alistic way. In particular, starting from the performance requirements of the services
orchestrated to form a composite service, it is possible to automatically validate the
performance requirements of the resulting composite service hence making it possible
to define appropriate SLAs for it.

In this paper we provide an overview of the PLASTIC approach to the assessment of
QoS (performance) properties. We describe the predictive technique to assess the QoS
properties for stand-alone services under development, and the empirical technique to
test an orchestration of these services when their actual implementations are not yet
available. The combination of such techniques is illustrated through the design and the
implementation of an eHealth service that satisfies performance requirements.

The remainder of the paper is structured as follows: Sect. 2 introduces the PLAS-
TIC development process; Sect. 3 describes how to model an eHealth Service within



208 A. Bertolino et al.

PLASTIC; Sect. 4 and Sect. 5 respectively describe the predictive and empirical ap-
proaches used to assess the QoS of the modeled eHealth example. Conclusions and
future work are given in Sect. 6.

2 Development Process

In order to address in a comprehensive way the challenges in the development of B3G
applications, a new development process model has been devised [5] in the context of
the PLASTIC project (see Figure 1).

Fig. 1. The PLASTIC development process

All the activities in this process originate from the PLASTIC Conceptual Model
[4,6], which provides a shared conceptual foundation for the construction of a
Service Model. A Service Model involves the specification of both functional and extra-
functional aspects1 (see Functional Service Specification and the Extra-Functional Ser-
vice Specification in Figure 1).

Based on such a service model, the PLASTIC process is structured into four main
flows of activities (see Figure 1).

Flow 1 shows the generation of analysis models [8,9,10,11], which enable the QoS
analysis of the service under development. This flow consists in the performance analy-
sis process executed starting from the early phases of the software lifecycle. The aim
of this activity is twofold: (i) to verify the service model with respect to QoS require-
ments, and (ii) to generate QoS models that the service can use later, at run time, in
order to monitor the desired QoS and trigger adaptation when, e.g., the QoS level de-
grades due to possible context changes. The model-to-model (M2M) generation and

1 We use the term extra-functional, as opposed to non-functional, following the terminology
of [7].



A Framework for Analyzing and Testing the Performance of Software Services 209

the evaluation of the QoS models are automated and executed through a combination
of tools (e.g. UML to Queueing Networks transformations engine – uml2qn ), whereas
the interpretation of results and feedback provision is still a human activity.

Flow 2 represents the automated generation of the skeleton implementation of the
service from both M2M, and model to code (M2C) transformation engines. Specifically,
this flow concerns the development of both the core code and the “adaptable” code of a
service. The core code is the frozen unchanging portion of a self-adapting service (e.g.,
its required/provided interface). On the contrary, the adaptable code embodies a certain
degree of variability making it capable to evolve (e.g., the logic of a service operation
that depends on available resource constraints). This code portion is evolving in the
sense that, based on contextual information, the variability can be solved with a set of
alternatives (i.e., different ways of implementing a service) each of them suitable for a
particular execution context. An alternative can be selected by exploiting the analysis
models available at run-time.

Flow 3 on the right-hand side of the figure represents the off-line validation, which
concerns validation at development time. In this phase services are tested in a simulated
environment that reproduces functional and/or extra-functional run-time conditions.

Flow 4 concerns the on-line validation that consists in testing a service when it is
ready for deployment and final usage. In particular, the PLASTIC validation framework
supports validation during live usage stage, in which service behaviours are observed
during real execution to reveal possible deviations from the expected behaviour. On-line
validation can cover both functional and extra-functional properties.

All these four flows heavily rely on model-to-model and model-to-code automatic
transformations.

The final result of this process is a deployable service code [12,13,14] that, through
the support of the analysis models, has the capability to adapt to heterogeneous devices
while still providing the previously agreed level of QoS. The service modeling is based
on a UML profile that we have defined as a partial concrete implementation of the
PLASTIC Conceptual Model.

3 Application Scenario: The eHealth Service

In this section we describe how to model an eHealth Service using the PLASTIC pro-
file. In the following, we focus on the modelling views that contain useful information
(i.e., stereotypes and tagged values) for performance analysis and testing methodolo-
gies [9,15] as we will introduce later.

We will focus on the specification of a Panic Button Scenario (PBS): the alarm is
triggered when a patient’s panic button is pressed in case of emergency. The eHealth
Service (eHS) is in charge of handling the PBS work flow, response time and interaction
among the different parties (i.e., patient, relatives or doctors) that are involved. Criti-
cal decisions, such as establishing the severity of the emergency, are taken by health
specialists. An eHealth (sub-)service deployed on the patient’s side monitors the vital
parameters of the patient. When the patient presses the panic button, the system reg-
isters the patient’s vital parameters into the eHealth database. At the same time, at the
patient’s side, a beeper is turned on to notify the patient that the alarm is being handled



210 A. Bertolino et al.

by the Service Manager. An internal counter is started to handle an “unknown” event.
The eHealth database is scanned to search the most suitable supervisor to attend the
patient, and a request is sent to the call center. Depending on the response of the call
center, an alternative supervisor is requested or the event is assigned. The authorized
supervisor is driven to set up the severity of the event by means of phone call. In some
cases, the supervisor can also interact with the patient by means of cameras (e.g. the
call fails, the patient cannot interact with the voice). Once the severity is set, an appro-
priate service must be composed to provide both, medical attention and response time
according to the specific request, illness or accident.

The PLASTIC Service Model for eHS is composed of several views used to structure
the UML design in packages. These views span from requirement view to implemen-
tation (i.e., component-oriented implementation) and deployment views, through the
service view. Due to the lack of space, in the following we detail only the views that
allow performance analysis and testing. For further details we refer to [4] where the
service model is completely described with minor modifications.

Service View. The definition of the services that build up the PLASTIC application is
given from both the structural and the behavioral perspectives. In particular, a Struc-
tural View is given by means of Service Description Diagrams (SDescrD) that show
the ServiceDescriptions (e.g., ServiceManager, Patient Interactor Service) that may be
combined on demand (ServiceComposition or ServiceUsage dependency from compos-
ite client to composite supplier services) and collaborate to provide the mobile eHealth
Service, as illustrated in Figure 2.

Fig. 2. The eHealth Service Description Diagram

The key concept is the ServiceDescription, which is the base structural unit for the
description of PLASTIC applications at service level. It is a stereotype extending the
UML2 Interface meta class. It provides some OperationSpecifications that, together,
define what the user can request from its PLASTIC enabled device (e.g., doctors’ or
call center staff’s laptop or PDA). For the sake of clarity, in Figure 2, we show the
OperationSpecifications only for eHealthService and omit the ones for the other Ser-
viceDescriptions.

Once all ServiceDescriptions have been specified, a number of business process
descriptions have to be provided. Each of them describes the interactions (i.e., ser-
vice orchestration) between the ServiceDescriptions identified in the SDescrD. These



A Framework for Analyzing and Testing the Performance of Software Services 211

interactions model the behavior of a composite service operation. The composite service
is the one obtained by composing the services in the SDescrD as specified by the set of
business process descriptions. In particular, for each usage scenario of a composite ser-
vice (e.g., the AlarmHandling use case of the PLASTIC eHealth service application), a
Business Process Description Diagram (BPDD) has to be specified to describe the in-
teractions (as Actions that refer to the already specified OperationSpecification) among
the involved ServiceDescriptions.

As introduced above, one of the role played by the BPDD is describing the orchestra-
tion of different services. In this sense, the BPDD acts as the BPEL specification [16].
Nevertheless, BPDD also defines a well-structured set of annotations and tags that can
be used in order to stereotype the elements described into the models. Differently from
BPEL, such annotations can be instantiated at design time and then exploited for extra-
functional analysis (e.g. performance or reliability analysis).

In Figure 3 the ConversationSpecification that realizes the behavior of the AlarmHan-
dling use case is shown. At the bottom of Figure 3 there are two behaviors, Serious and
Mild Medical services, that refer to two corresponding (sub-)BPDDs.

Fig. 3. The BPDD representing the service orchestration

Component View. In PLASTIC, a service can be implemented by one or more software
components and, in turn, a software component can be used to implement one or more
services. The PLASTIC Profile provides modeling constructs aimed at describing the
component-based software architecture that implements a given service. Such descrip-
tion is organized in a Component View in turn distinguished into Structural View and
Behavioral View.

Service Specification Diagrams (SSD) are introduced for defining the components
implementing a ServiceDescription. Such diagrams are extensions of UML2 Class Di-
agrams and a number of new modeling constructs are provided, as detailed in Figure 4.
The ServiceRealization stereotype is introduced to link ServiceDescription stereotyped
interface and ComponentSpecification stereotyped components to describe how services
are implemented in terms of software components. Moreover, by means of the SSD the
designer can specify the contexts in which the service will be able to adapt. In particu-
lar DeviceContextSpecification elements are used to describe the possible devices (e.g.,
doctor’s mobile or laptop). Each tag of such stereotypes refers to an available resource



212 A. Bertolino et al.

Fig. 4. The Service Specification Diagram for the Doctor Service

specification of the Resource package. The DeviceContextSpecification is then linked
to adaptable services by means of ServiceAdaptation relationships.

Once the ComponentSpecifications of the components implementing the service be-
ing modeled have been given, their interactions have to be specified. The PLASTIC
profile provides the designer with Elementary Service Dynamics Diagrams (ESDD) to
model the interactions among the involved components (specified in the structural view
by means of ComponentSpecification elements). Each ESDD is a suitably stereotyped
UML sequence diagram annotated with information useful for performance analysis
purposes, e.g., latency, worst-case execution time, reliability (probability of failure), or
maximum number of simultaneous invocations of a component operation.

Figure 5 shows the Elementary Service Dynamics Diagram, i.e., the interaction be-
tween component instances providing the AlarmManagement uml.Action defined in
Figure 3. Additional information (i.e., stereotypes with their own tags) is introduced for
the sake of performance analysis.

4 Performance Model Generation and Analysis

In PLASTIC a service can be either a composition of other services or a basic one imple-
mented by an assembly of components. For a composite service, the performance analy-
sis can be conducted both at the service composition level (abstract view of
the service) and at the component level (detailed view of the service). For a stand-alone
service, instead, the analysis can be only conducted at the component level.

The analysis process is composed by three steps: (i) generation of performance mod-
els from the Service Model through Model-to-Model transformation; (ii) evaluation of
the generated performance models through solvers to obtain performance indices (e.g.,
response time); (iii) interpretation of the performance indices and possible production
of feedbacks on the Service Model to improve the performance. The performance model
that the service may use at run time is the last one generated during the analysis process.

In the following we first briefly recall what the SAP•one methodology [9] is (see
Sect. 4.1) and then we show how to use it to analyze service performance at the compo-
nent level. On the result of this analysis a provider might base the definition of the SLA
of a service operation. In Sect. 4.2 we describe the analysis process of the alarmMan-
agement operation of the ServiceManager service.



A Framework for Analyzing and Testing the Performance of Software Services 213

Fig. 5. The Elementary Service Dynamics Diagram for the Alarm Management

We used the approach several times to define the SLA concerning the mean response
time for the operations of the services that have been composed (see Figure 3) into the
PLASTIC eHealth composite service in order to implement the AlarmHandling func-
tionality.

4.1 The Used Analysis Approach and Tools

The performance analysis is carried out by means of two tools: MOSQUITO and
WEASEL.

MOSQUITO (MOdel driven conStruction of QUeuIng neTwOrks) [17] is a model
transformation tool that generates Queuing Networks (QNs) starting from the PLASTIC
Service Model. The model creation in MOSQUITO is based on two different methodolo-
gies: SAP•one [9] and Prima-UML [8]. In this work we use only the SAP•one method-
ology, hence details on the Prima-UML approach are omitted.

The SAP•one methodology, implemented by MOSQUITO, defines translation rules
that map UML architectural patterns (identified in the Component View) into QN pat-
terns. The target model is generated by composing the identified QN patterns suitably
instantiated according to the particular scenario. To carry on the performance analysis,
additional information generally missing in the software architecture description needs
to be annotated on the software system model. Such data are strictly related to the per-
formance aspects and are used both in the QN parameterization and in the workload de-
finition. They are: the operational profile of the system that models the way the system



214 A. Bertolino et al.

will be used by the users (i.e. the distribution of frequencies of invocation of service’s
use cases by the service consumer); the workload entering the system as the estimated
number of requests made to system components (modelled as service centers); the ser-
vice demand of a request to the system components; the performance characterization
of the system components represented by attributes such as service rate, scheduling
policy, waiting queue capacity.

SAP•one associates each QN service center to a software component, and the QN
customers represent the different requests that users make to the software system. The
QN topology reflects the one of the Service Specification Diagram. Each ESDD is
processed to lump the behavior that it represents into a class of jobs of the QN (i.e.
a chain). In other words, a job traverses the network following the behavior described
by the diagram it comes from. The workload of each chain is extracted from the anno-
tations in the Use Case Diagram.

After that, by using MOSQUITO (hence following the SAP•one methodology), a QN
model has been built, the WEASEL tool is used to solve the generated QN model in order
to predict performance indexes. WEASEL [18] (a WEb service for Analyzing queueing
networkS with multiplE soLvers) offers a Web Service that solves QN models specified
in PMIF [19] format, using several off-the-shelf QN solvers (e.g., MVA-QFP [20] and
SHARPE [21]). The performance measures are presented to the client as a text file in
the original output format of the selected tool.

4.2 Performance Analysis of the alarmManagement

The alarmManagement action in Figure 3 must satisfy the following performance re-
quirement2: the average response time of alarmManagement must not exceed 10 sec-
onds when the triggered alarms in the system are less than 100.

To perform the analysis, we have used the SAP•one methodology. This means that
the service has been considered at the component level where the alarmManagement
action is implemented by components’ interactions as specified in the Component View
of the service model [4].

We generated the performance model (at the software architecture level) of the alar-
mManagement design by means of MOSQUITO using the SAP•one approach.

The obtained queuing network has been then evaluated via WEASEL where the se-
lected solution technique was Exact MVA implemented in the MVA Queuing Formal-
ism Parser [20].

For the FirstDesign, we analyze the mean response time as the number of alarm
requests arriving to the system grows from 50 to 300. The proposed design did not
satisfy the requirement. The system response time reaches 10 seconds with only 65
alarms. Moreover, the analysis highlighted that a database component is the bottleneck
of this system design, hence to improve the system response time we should lighten the
load offered to the database.

We produced the second design alternative by modifying the alarmManagement de-
sign as follows. In the dynamics model of Figure 5, the Service Manager Logic accesses
the database twice to retrieve information on the two supervisors of the patient in trou-
ble. This can be optimized by introducing in the database interface a new method that

2 This requirement has been agreed by the customer together with the domain experts.



A Framework for Analyzing and Testing the Performance of Software Services 215

retrieves the information of all the supervisors of the patient. The call of this method
substitutes the first call of the method used to get information about only one single
supervisor, while the second call can be removed. In this way we reduce the load to the
database.

On this design alternative, i.e., SecondDesign, we repeated the analysis and the re-
quirement was satisfied since for the alarmManagement and the visualCheck operations
we predicted a mean response time respectively equal to 7.25s and to 4.83s when the
number of triggered alarms is 100. On the other hand, the mean system response time
was 10 seconds when the alarmManagement operation handles 126 concurrent alarms.

5 Performance Testing

Following the design and analysis stages described above, the subsequent step in de-
veloping B3G services consists in early testing them within a simulated environment,
which we referred to in Figure 1 as off-line validation. When developing a service or-
chestration, the composition of the external services must be tested both to validate
that the implementation respects the functional contracts in place, and to evaluate if it
actually meets the expected quality levels. Clearly the QoS offered by a composition
not only depends on its implementation, but is also affected by the quality levels of the
composed services. Furthermore, when the interaction happens through complex mid-
dlewares, the application of analytical techniques such as the one described above to
derive the exposed extra-functional properties is not always feasible, since the model-
ing of such infrastructures is particularly difficult and error prone. This task becomes
even harder when the analytical models of the platform have to be defined from scratch.

Testers may rely on empirical approaches when all the composed services are avail-
able, and can be also arbitrarily accessed at development time for testing purposes.
However, in general this solution is applicable only in few lucky cases. In fact, com-
monly at least some of the external services are either not available at all (for instance
simply not implemented, yet), or their usage comes along with unwanted side-effects
(for instance utilization fees or database modifications). To circumvent this problem, in
PLASTIC we provide support to the automatic derivation of testbeds to be used in the
place of the real composed service.

In the following we present the proposed approach for the empirical evaluation of
QoS properties of a composite B3G service and its application to the eHealth example
described in Sect. 3. The approach relies on the specification of reasonable agreements
on the extra-functional properties.

In a global view of the PLASTIC process, the performance bounds expected at design
time, as derived by the analytic approach presented in Sect. 4.2, are exploited to infer
the agreements used for testing the implementation of the orchestration described in
Figure 3.

5.1 PUPPET

As discussed in Sect. 4, predictive approaches are crucial during the design and the
development of a software system, to shape the quality of the final product [22]. But



216 A. Bertolino et al.

increasingly modern applications are deployed over complex platforms (i.e., the mid-
dleware), which introduce many factors influencing the QoS and not always easy to
model in advance. In such cases, empirical approaches, i.e., evaluating the QoS via run-
time measurement, could help smoothing platform-dependent noise. However, such ap-
proaches require the development of expensive and time consuming prototypes [23], on
which representative benchmarks of the system in operation can be run.

For example, testers may be interested in assessing that a specific service implemen-
tation can afford the required level of QoS (e.g., latency and reliability) when playing
one of the roles in a specified choreography or when used in composition with other
services (orchestration).

As we discussed in [15], there is large room for the adoption of empirical approaches
when model-based code-factories can be used to automatically generate a running
prototype from a given specification. In particular, as we argued in [15,24,25], given
the high availability of standardized computer processable information, Web Services
(WSs) and related technologies (e.g. WSDL, WS-BPEL, WS-CDL, WS-Agreement,
WSLA) yield very promising opportunities for the application of empirical approaches
to QoS evaluation.

In this direction, PUPPET (Pick UP Performance Evaluation Testbed) [15] is a code-
factory which realizes the automatic derivation of testbeds for evaluating the desired
QoS characteristics for a service under development, before it is deployed.

Fig. 6. PUPPET: The approach

PUPPET relies on the availability of the QoS specification of both the service under
evaluation and the interacting services. Such assumption is in line with the increasing
adoption of formal contracts to establish the mutual obligations among the involved
parties and the guaranteed QoS parameters, which is referred to as the SLA for the
WSs. For example, Figure 6 depicts the case when 3 different stubs are generated
during pre-testing activities. Each stub is derived from a model describing the public
interface of the remote services (WSDL), and the contracted SLA. During the testing
activities, testers can bind the resulting stubs to the Service Under Test (SUT) using
them as a testbed.

In [24], PUPPET was extended with a module able to include into the stubs also the
emulation of the supposed functional behavior. In this case, the functional behavior of
a service is described by means of the Symbolic Transition System (STS) models as
described in [26]. Specifically, for each received invocation, the service stub can query



A Framework for Analyzing and Testing the Performance of Software Services 217

the STS model and choose one of the possible functionally correct results, sending it
back to answer the service client request.

Also, possible dynamic transformation of the network topology and, consequently,
of the configuration of the environment must be taken into account when developing
a networked service, especially in the off-line testing phase. In B3G, the most typical
context change is due to the movement of nodes hosting services. Correspondingly,
latest work extends PUPPET adding a module that plugs into the generated stubs the
mobility emulation of the node hosting the service. The detailed description of this
module is given in [25].

5.2 Performance Testing of the eHealth Service

Let us consider again the BPDD in Figure 3, and let us assume that the orchestration it
describes is going to be implemented in parallel with the development of the four ser-
vices it composes (i.e. eHealthService, Patient, ServiceManager, PatientInteractor). The
problem that we want to solve here is how to test the performance of the orchestrated
service even when just models of the composed services are available but the actual
implementations are not (or we do not want to access to avoid undesired side-effects).

A possible solution to this problem is to use PUPPET to build stubs of the orches-
trated services. As mentioned in Sect. 5, PUPPET ensures by construction that the extra-
functional behavior exhibited by each generated stub conforms to the guaranteed levels
expressed in a SLA.

1 ...
2 <wsag:GuaranteeTerm ... wsag:Obligated="

ServiceProvider">
3 <wsag:ServiceScope wsag:ServiceName="

ServiceManager">
4 <puppetScope:PuppetScope>
5 <puppetScope:Method>
6 <NameMethod>alarmManagement</

NameMethod>
7 </puppetScope:Method>
8 </puppetScope:PuppetScope>
9 </wsag:ServiceScope>

10 ...
11 <wsag:ServiceLevelObjective>
12 <puppetSLO:PuppetSLO>
13 <puppetSLO:Latency>
14 <value>14500</value>
15 ...
16 </puppetSLO:Latency>
17 </puppetSLO:PuppetSLO>
18 </wsag:ServiceLevelObjective>
19 ...

–A–

1 ...
2 public class ServiceManagerSoapBindingImpl {
3 ...
4 public void alarmManagement ( ...
5 ...
6 Density D = new Density();
7 Double sleepValue = D.gaussian(14500-(

System.currentTimeMillis()-
cOmMoNinvocationTime));

8 if (sleepValue >= 0)
9 try {

10 Thread.sleep(sleepValue.longValue());
11 } catch (InterruptedException e) {}
12 ...

–B–

Fig. 7. alarmManagement : SLA and Generated Code into the Service Stub

Figure 7.A shows an example on how the QoS indexes obtained by the performance
analysis prediction can be instantiated in an SLA. Specifically, line 2 asserts that the
term of the SLA is a service-side constraint that is applicable to the service ServiceM-
anager (line 3) on the operation alarmManagement (line 6). Figure 7.B depicts



218 A. Bertolino et al.

the portion of the stub that PUPPET automatically generates with respects to the given
SLA. The operational semantic we give in PUPPET to emulate the clauses on latency
is defined in terms of a random and normally distributed sleeping period drawn in the
range between 0 and the maximum expected time by the operation [15,24]. In this ex-
ample, the stub emulates a service guaranteeing that its mean elapsed time conforms
to the index defined in Sect. 4. Thus in Figure 7.A at line 14 we imposed the max
elapsed time as 14500ms which means emulating the mean response time in 7250ms.

Note that in the stubs either the combined emulation of different QoS properties (e.g.
latency with reliability), or the emulation of other aspects of the service (e.g. the func-
tionality or the mobility) may affect the emulation of the latency clause. PUPPET solves
these issues reducing at run-time the maximum latency time with the time elapsed em-
ulating other aspects. Such delta is calculated as the difference between the timestamp
executing instructions at line 7 of Figure 7.B and the timestamp marked when the
operation is called.

The goal of the approach presented here is limited to evaluating technical constraints
that form the basis on which a SLA can be defined. However, in a more general setting, a
SLA is more than just (a set of) technical constraints. Indeed, a number of non-technical
aspects (legal clauses, penalties for violations, business strategies) play an important
role in making contractually-agreed service provision a viable solution. A more gen-
eral discussion of the problems related to establishing and enforcing a SLA as a legal
contract is beyond the scope of this work, but can be found in [27].

6 Conclusion

B3G networks are characterized by a distributed, heterogeneous and mutable nature,
which poses difficult problems in developing service-oriented systems. An additional
challenge arises when such systems must meet precise QoS requirements.

Several European research projects, such as ASG [28], COMET [29], MADAM [30],
MUSIC [31], SeCSE [32], recognized that it is certainly no longer possible to propose
solutions without adequate specification and validation of QoS features, especially in
heterogeneous and networked services contexts.

In particular, the SeCSE project exploits service specifications describing semantics
and QoS information in order to guide the test phase, proposing tools for the automatic
generation and execution of test cases. The exploitation of QoS-awareness in the context
of highly dynamic systems is also a key feature of the MADAM project. The objectives
of the project include the development of an adaptation theory and a set of reusable
adaptation strategies and mechanisms to be enacted at run-time. Context monitoring is
used as the basis for decision making about adaptation, which is managed to a large
extent by generic middleware components.

The PLASTIC project tackled these challenges by defining a platform and introduc-
ing a comprehensive process for developing lightweight and QoS-aware services. This
process spans the design, the predictive analysis and the validation of services, taking
into account both functional and extra-functional characteristics.

With respect to the problem of the assessment of QoS properties, this paper shows
how to fruitfully combine predictive and analytical approaches with empirical ones. In



A Framework for Analyzing and Testing the Performance of Software Services 219

particular, it described how to link the results of those phases that are typical of the
earliest stages of the service development process (i.e. performance model generation
and analysis) with the input of those phases that characterized the latest parts of the
development process (i.e. testing techniques and testing support tools).

It is important to remark that such integration was possible because all the common
entities, the relations among the entities, as well as the artifacts and the extra-functional
properties they model were formally defined and structured in the PLASTIC concep-
tual model [4,6]. In such a way it is ensured that the information captured and defined
starting from the early phases of the software lifecycle can be referred and reused at
each stage of the software development.

The application of the described approaches to a real world case study will further
permit to refine and validate the whole framework. Specifically, in collaboration with
the industrial partners of the PLASTIC project, we are applying the PLASTIC develop-
ment process on wider and more complex case studies.

Acknowledgements. The authors wish to thank Andrea Polini for his contribution to
the research on PUPPET, and Luca Berardinelli for his contribution in modeling the
eHealth example. This work was supported in part by the PLASTIC Project (EU FP6
STREP n. 26955) and in part by the TAS3 Project (EU FP7 CP n. 216287).

References

1. Bertolino, A., Bonivento, A., De Angelis, G., Sangiovanni Vincentelli, A.: Modeling and
Early Performance Estimation for Network Processor Applications. In: Proc. of 9th MoD-
ELS. Springer, Heidelberg (2006)

2. Ludwig, H.: WS-Agreement Concepts and Use – Agreement-Based Service-Oriented Archi-
tectures. Technical report, IBM (2006)

3. Woodside, M., Franks, G., Petriu, D.: The future of software performance engineering. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 171–187. IEEE Computer Society
Press, Los Alamitos (2007)

4. PLASTIC Project: (EU FP6 STREP n. 26955), http://www.ist-plastic.org
5. Autili, M., Berardinelli, L., Cortellessa, V., Di Marco, A., Di Ruscio, D., Inverardi, P., Tivoli,

M.: A development process for self-adapting service oriented applications. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 442–448. Springer,
Heidelberg (2007)

6. Autili, M., Cortellessa, V., Di Marco, A., Inverardi, P.: A conceptual model for adaptable
context-aware services. In: WS-MaTe 2006 (2006)

7. Bass, L., Clements, P., Kazman, R.: Quality Attributes. In: Software Architecture in Practice,
ch. 4, pp. 75–91. Addison-Wesley, Reading (1998)

8. Cortellessa, V., Mirandola, R.: PRIMA-UML: a Performance Validation Incremental
Methodology on Early UML Diagrams. Science of Computer Programming 44(1), 101–129
(2002)

9. Di Marco, A.: Model-based Performance Analysis of Software Architectures. PhD thesis,
University of L’Aquila (2005)

10. Di Marco, A., Mascolo, C.: Performance Analysis and Prediction of Physically Mobile Sys-
tems. In: ACM WOSP, Buenos Aires (Argentina) (2007)

11. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of UML based software
models. In: ACM WOSP, pp. 302–309 (2002)

http://www.ist-plastic.org


220 A. Bertolino et al.

12. Inverardi, P., Mancinelli, F., Nesi, M.: A declarative framework for adaptable applications in
heterogeneous environments. In: ACM SAC (2004)

13. SEA Group: (The Chameleon Project),
http://www.di.univaq.it/chameleon/

14. Autili, M., Di Benedetto, P., Inverardi, P., Mancinelli, F.: A resource-oriented static analysis
approach to adaptable Java applications. In: Proc. of CORCS 2008 (IEEE/COMPSAC 2008).
IEEE Computer Society Press, Los Alamitos (to appear, 2008)

15. Bertolino, A., De Angelis, G., Polini, A.: A QoS Test-bed Generator for Web Services. In:
Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 17–31.
Springer, Heidelberg (2007)

16. IBM: BPEL4WS, Business Process Execution Language for Web Services, v.1.1 (2003)
17. MOSQUITO: (User manual),

http://sealabtools.di.univaq.it/SeaLab/MosquitoHome.html
18. WEASEL: (User manual),

http://sealabtools.di.univaq.it/SeaLab/Weasel/
19. Smith, C.U., Llado, C.M.: Performance model interchange format (pmif 2.0): XML defini-

tion and implementation. In: QEST 2004 Proceedings, pp. 38–47. IEEE Computer Society
Press, Los Alamitos (2004)

20. Chereddi, C.: Mean Value Analysis for Closed, Separable, Multi Class Queueing Networks
with Single Server & Delay Queues (2006)

21. Sahner, R.A., Trivedi, K.S.: SHARPE: Symbolic Hierarchical Automated Reliability and
Performance Evaluator, Introduction and Guide for Users (2002)

22. Smith, C., Williams, L.: Performance Solutions: A practical Guide To Creating Responsive,
Scalable Software. Addison Wesley, Reading (2001)

23. Liu, Y., Gorton, I.: Accuracy of Performance Prediction for EJB Applications: A Statistical
Analysis. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS, vol. 3437, pp. 185–198.
Springer, Heidelberg (2005)

24. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based Generation of Testbeds
for Web Services. In: Suzuki, K., Higashino, T., Hasegawa, T., Ulrich, A. (eds.) TestCom/-
FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg (2008)

25. Bertolino, A., De Angelis, G., Lonetti, F., Sabetta, A.: Let The Puppets Move! Automated
Testbed Generation for Service-oriented Mobile Applications. In: Proc. of the 34th eμ-
SEAA, Parma, Italy. IEEE Computer Society Press, Los Alamitos (to appear, 2008)

26. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-Based Test-
ing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006.
LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

27. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The Monitorability of Service-Level
Agreements for Application-Service Provision. In: Proc. of WOSP 2007, pp. 3–14 (2007)

28. ASG: (EU IST FP6), http://asg-platform.org/
29. COMET: (EU IST FP6), https://www.comet-consortium.org/
30. MADAM: (EU IST FP6), http://www.ist-madam.org
31. MUSIC: (EU IST FP6), http://www.ist-music.eu/
32. SeCSE: (EU IST FP6), http://secse.eng.it

http://www.di.univaq.it/chameleon/
http://sealabtools.di.univaq.it/SeaLab/MosquitoHome.html
http://sealabtools.di.univaq.it/SeaLab/Weasel/
http://asg-platform.org/
https://www.comet-consortium.org/
http://www.ist-madam.org
http://www.ist-music.eu/
http://secse.eng.it

	A Framework for Analyzing and Testing the Performance of Software Services
	Introduction
	Development Process
	Application Scenario: The eHealth Service
	Performance Model Generation and Analysis
	The Used Analysis Approach and Tools
	Performance Analysis of the alarmManagement

	Performance Testing
	\textsc{Puppet}
	Performance Testing of the eHealth Service

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




