SCA and jABC: Bringing a Service-Oriented
Paradigm to Web-Service Construction

Georg Jung!, Tiziana Margaria', Ralf Nagel?, Wolfgang Schubert!,
Bernhard Steffen?, and Horst Voigt!

! Universitét Potsdam, Chair Service and Software Engineering
{jung,margaria, schubert,voigt}@cs.uni-potsdam.de
2 TU Dortmund, Chair Programming Systems
{ralf.nagel,steffen}@cs.tu-dortmund.de

Abstract. Extensibility, flexibility, easy maintainability, and long-term
robustness are core requirements for modern, highly distributed infor-
mation and computation systems. Such systems in turn show a steady
increase in complexity. In pursuit of these goals, software engineering
has seen a rapid evolution of architectural paradigms aiming towards
increasingly modular, hierarchical, and compositional approaches.
Object-orientation, component orientation, middleware components,
product-lines, and - recently - service orientation.

We compare two approaches towards a service-oriented paradigm, the
Service Component Architecture (SCA) and the JABC.

1 Introduction

The Service Component Architecture (SCA) [I2] was developed recently as
an industry standard for service-oriented development of complex, distributed,
(web-based) applicationsEl Core of the SCA approach is the notion of the service
component. Applications are built by arranging a cooperative network of service
components which communicate through standardized interfaces.

In essence, SCA is an extensive set of specifications which describe an overall
assembly model, implementation support for various programming and data-
base languages, bindings to existing web-service-, messaging-, and middleware-
standards, and policy and profiling mechanisms to access and customize
infrastructure functionality. As such, SCA has proved effective and useful for
building applications in practice.

By continuously emphasizing the service component, service architecture or
service oriented development, SCA implicitly promotes a particular concept to
be associated with the term “service”. A service in the sense of SCA is a cer-
tain component that provides its functionality through a specific interface (the
service interface, often directly identified with the service). Likewise, an assem-
bly of services is merely a topology of components which are connected through

! The first SCA specification, version 0.9, dates from November 2005, version 1.0 from
March 2007.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 139 2008.
© Springer-Verlag Berlin Heidelberg 2008

140 G. Jung et al.

provide-use relations among their services or service interfaces. In other words,
SCA associates service-orientation with a structural, interface-centric view in an
assembly model which otherwise follows a component-oriented paradigm (similar
to the one proposed in, e.g., [3/4]).

While this notion has its merits in terms of intuition and viability, it is
by no means the only workable grounds to introduce a service-oriented para-
digm into the practice of application development. An orthogonal view is of-
fered by the service concept of JABC [BI6I7I89] a framework for model-driven
and service-oriented development that originated in the early '90s (previously
named METAFrame [I0]). Originally it was applied to the model-driven devel-
opment of advanced telecommunication services for Intelligent Networks [TTIT2].
Due to the ease of generalization of that service model, it meanwhile evolved
into a flexible model-driven approach spanning both local and distributed (web-
based) application development and customization [BIT3].

In jJABC the term “service” is used to denote functional building blocks
(SIBg4), which are viewed as independent from their location, the program-
entity, and hardware-platform which provides them. Instead, the defining quality
of a SIB, which forms the core abstraction of jJABC, is its interaction with the
environment, which manifests in its behavioural semantics and its manipulations
of a global context. The SIBs are assembled — or as one says, orchestrated — with
their operational or behavioural semantics in mind. Concretely, this means that
each SIB, once activated, executes its logic and upon termination triggers sub-
sequent SIBs according to the outcome of this execution. This methodology of
composition has been termed lightweight process coordination [9] and is closely
related to the SIB model standardized by ITU [I4].

The two approaches emphasize dual angles of the idea of a service, which can
be characterized as:

— resource-oriented vs. process-oriented
— architectural vs. behavioral
— static vs. dynamic

In the following we will investigate these dual views for their potential to support
a truly service-oriented development. We initiate the comparison of the SCA
and JABC concepts, considering properties, structures, meta models [I5], and
semantics, using some examples to illustrate the different viewpoints.

The rest of this paper is organized as follows. Sect. 2 and [B] introduce the
meta-models of SCA and jABC, respectively. Sect. Fl examines the common
component-middleware paradigm and compares it with the SCA and jJABC with
respect to structural and computational properties. Sect. [f] discussed the char-
acteristics of component flavored assembly. Sect. [evaluates both approaches
along technical and pragmatic characteristics. Finally, we briefly discuss related
work (Sect. [[), and summarize our findings so far in Sect.

2 SIB stands for Service Independent Building Block, a notion coined in the nineties in
the Telecommunication area [I4], where the notion of service was meant to denote
whole service orchestrations [1412]. SIBs were back then the atomic service-like
entities of which those services were aggregations.

SCA and jABC: Bringing a Service-Oriented Paradigm 141

2 The Meta-model of SCA

In SCA, each service component implements some specific business logic and
provides its functionality through standardized interfaces, described in SCA lit-
erature as service-oriented interfaces and shortly called services. To implement
its business logic, each service component can rely on third-party functionality
provided by other components by linking to their respective service interfaces
through so called references. A reference interface can be linked to a service in-
terface by means of a wire, which abstracts the communication infrastructure
through which functionality of third-party service interfaces can be accessed
remotely.

A given assembly of service components interconnected through a set of wires
can be summarized as a composite, and service or reference interfaces of the
components inside the composite can be propagated to be visible as interfaces of
the composite itself. Thus, the composite as a whole shows similar characteris-
tics as a single service component and can be used in the same way inside larger
composites. This enables a straightforward hierarchy structure for SCA assem-
blies, distinguishing “atomic” components and composite components. Finally,
a service component may feature property-interfaces which allow to customize
its behavior and can be propagated to be visible as properties of a composite in
the same way as interfaces.

[I D O

r L | L] | >
promote, \ promote
" _“promote

4

Composite

Fig. 1. Schematic of the SCA assembly-model

Fig. M shows a schematic of the SCA assembly model (see www.osoa.org).
Other than what one might expect, the service interfaces are the incoming in-
terfaces and the reference interfaces are the outgoing ones. This reflects a view
from inside the component/composite, where services (of others) are used and
the references to services (of oneself) are provided. It can therefore be described
as a developer’s view (as opposed to, e.g., a composer’s view), which again em-
phasizes the idea that services are used to integrate third-party functionality
into an application.

In [2], Edwards proposes a UML-model of the SCA assembly. The excerpt in
Fig. 2] shows the essential part: concrete components with their component-
properties, -references, and -services serve as implementation for component

www.osoa.org

142 G. Jung et al.

H service
- service

-
" H ComponentType }<)—{ H Implementation
-
-

- reference | b |
0 1 t]
E Reference 01
— implementation
p

p
H Property B

H ComponentService
- target — componentService

-
T " EComponent—‘

3) —comp - |
1|~ promote E ComponentReference -
- source ’

P ———.

E. 1=
1..¥|~ promote H ComponentProperty property
H CompositeService
— compositeService

-
—r~, H Composite —include
1 - compositeReference *
H CompositeReference B

— compositePrope!
B wire
~ wire
 —

H CompositeProperty

Fig. 2. An UML-model of the SCA-assembly

types. The composite on the other hand is a specific way to implement a com-
ponent type (indicated by the inheritance relation to implementation), and can in
turn contain multiple components. The wire as a part of the composite connects
one reference with one service interface. Unfortunately, this model leaves out
several crucial interrelation constraints, for example it shows that one service
and one reference can be attached to one wire, but it glosses over how many
wires can be attached to a single service or reference. E.g., a single wire per
service interface and zero-to-many wires per reference interface seem reasonable
connectivity constraints. Also, the model shows inheritance relations across dif-
ferent levels of abstraction (i.e., type—instance relations. Services on components
inherit from services on component types in this model. Here an implemen-
tation/interpretation relation would seem more appropriate. Nevertheless, the
model is clearly meant to expose structural or static interrelations of the SCA
notions to enable implementations. To this aim it is certainly more helpful than
a conceptional relationship model.

3 The Meta-model of jJABC

JABC follows a completely different compositional paradigm, called lightweight
process coordination [9], which - instead of structural properties - revolves around
the operational aspects of its elementary building blocks (see Sect.[I]). Concretely,
a SIB is an executable entity, internally realized as a specifically annotated Java
classf As such, it intrinsically carries an arbitrarily fine-grained/precise oper-
ational semantics. A SIB can be a model placeholder for some functionality
3 While jABC is currently implemented in Java, the core concept is independent of

the programming language. Previous versions, for example, realized the same model
in C++.

SCA and jABC: Bringing a Service-Oriented Paradigm 143

BB

SleepThread ShowMesSageDialog

default default

@ ok)> next——>>|
Showl nﬁFtDiang Repe1tLoop Beep

yes exit

|
BB

ShowConfirmDialog ShowMessageDialog

Fig. 3. Assembly of services in JABC: the SLG is a process

or a full implementation of that functionality, as well as any level of refine-
ment/abstraction expressible by the (Java) programming language in between.
Further, each SIB has one entry point, where the execution starts, and multiple
exit points (called branches) which represent different outcomes of its execution
at the model level.

SIBs can be arranged into topologies called Service Logic Graphs (SLG) which
specify process behavior by connecting outgoing SIB branches to the entry points
of other SIBs. Inside an SLG, the execution of a SIB starts whenever one of its
incoming branches is active, which means that the SIB which governs the branch
terminated its execution with an outcome associated with that branch. One SIBs
inside an SLG can be assigned to be start SIBs, which means that its execution
is started without an incoming active branch; start SIBs are the entry points of
the process modelled by the respective SLG.

Fig. [shows a simple process, graphically modeled as SLGH The labels of
start SIBs, here ShowlnputDialog, are underlined, those of possible exit SIBs
(e.g., ShowlnputDialog, RepeatLoop, ...) are printed in bold-font. In the basic,
sequential case, each SIB terminates with one active branch which determines
the next SIB to be executed. Parallel and concurrent structures are likewise
possible, as used in the bioinformatics applications [I6/17]. Hence, an SLG is a
graphical, executable, node-action process description.

SLGs can be canonically wrapped into (graph-) SIBs to allow for a hierarchical
organization of complex process models. Moreover, process models which follow
a certain standard defined by jJABC can be directly exported into (partial or com-
plete) stand-alone applications, a feature which turns JABC from a modeling into
a development tool. Finally, there are SIBs which serve as wrappers for outside

4 The process model shown in Fig. Blis one of the tutorial examples which come with
the standard installation of jABC.

144 G. Jung et al.

functionality (e.g., non-Java applications such as C++, C#, SOAP/WSDL Web
services, etc.): this enables modeling and building of heterogeneous, distributed,
applications.

The service concept as a compositional paradigm is particularly strong in
JABC, since all visible business-logic in an SLG boils down to orchestration
of the functionality abstracted within the SIBs. Each SIB independently and
without interruption manipulates the global context, similar to what happens in
blackboard systems [I§], and upon its termination the JABC passes the control
to the next SIB. As opposed to a component-oriented approach, SIBs never
access or interact with other SIBs through channels or interfaces; instead, their
functionality is local and self-contained.

4 Comparison with Component-Orientation

If one revisits the SCA meta-model with a regular, component oriented, archi-
tecture-methodology in mind (such as, e.g., the CORBA Component Model
CCM [19], or Enterprise Java Beans [20]), many structural similarities surface.
All of them support the concept of the component, accompanied by the notions
of the interface which offers access to the component, and the connector, which
allows composers to link components together. The variety of kinds of available
connectors, components, and interfaces is sometimes associated with the term
architectural style, depending on the communication capabilities it offers (e.g.,
publish-subscribe architecture, remote procedure-call RPC, broadcast, etc.).

These three fundamental concepts (colloquially: boxes, dots, and lines) gener-
ally appear in a middleware context or comparable setting, where a more or less
fixed infrastructure with a given set of communication, persistence, execution,
and similar capabilities is abstracted to be able to focus on business-level func-
tionality and high-level assembly. Fig. Hlfor example formalizes EJB in a two-part
meta-model which distinguishes between general parts of a component-oriented
paradigm (labeled platform independent model, PIM) and parts specific to the
EJB model (labeled platform specific model, PSM)!9 Meta-models of various
middleware-centric component frameworks can be built by simply exchanging
the PSM with the specifics of a different platform.

SCA fits into this structural model too, if one considers the use of (previously
existing, established) internet-communication protocols (HTTP, SMTP, etc.) to
be comparable to more local approaches such as a CORBA RPC layer. In this
case, a meta-model for SCA can be built by using the aforementioned PIM and
complementing platform-specific parts and terms of SCA (Fig. Bl).

Note that in middleware-centric architectural styles, the term “service” is of-
ten used for the capabilities of the middleware (e.g., persistence service, publish-
subscribe service, etc.). These middleware services are again fundamentally
distinct from the service concept of SCA. In high-level, and in particular busi-
ness process level service oriented environments, middleware services have to

5 The notions of PIM/PSM have been proposed in similar forms independently by
various authors; see, e.g., [I5], where the acronyms PIM and PSM appear first.

SCA and jABC: Bringing a Service-Oriented Paradigm 145

component constructs

software construction
element (SCE)

software

abstract to P> element description

interface connector

connects connects

(NId) usuodwoo |spow-joadse

interpret
,,,,,,,,,,,,,, -\ NN ___
intexpret \ interpret .
interface constructs | \¥ \V v run-time system constructs

\]
interpret

kel
local home interface remote interface @
Q
~

|
‘ local interface ‘ remote home interface (33
evaluate S
SCE constructs =
| container m
| reaizo | i configure o
‘ ise bean class re:hze isebean | - manage vs]
| | = . g
provide)
i 1 3
application server g
message driven bean session bean entity bean =

Fig. 4. A PIM/PSM model of the EJB component-middleware platform

be thoroughly abstracted so that they can be independently and mechanically
configurable. This is because, to actually facilitate development instead of mak-
ing it more complex, they have to support an agnostic developer (i.e., compo-
nent integrator). For example in a CCM architecture [I9], no matter where a
component is located, it can use the RPC service, hence the service has to be
location-agnostic. The middleware service is therefore not analogue to the ser-
vice (interface) in SCA which is location-bound. Instead the wire in SCA is a
much closer equivalent to the location-agnostic intuition of a service because it
abstracts a ubiquitous communication service. In fact, keeping the complexity
of the infrastructure and communication channels abstracted in SCA in mind,
it seems reasonable to consider their entirety as some kind of middleware.

The assembly model of JABC follows an entirely different approach which is
operation-centered, instead of structure-centered. As opposed to the SCA service
interface it does also not consider location. It does not correspond in any way
to the component-oriented, middleware-centric, paradigm. In fact, the notion of
the global context in JABC contradicts the strict data-encapsulation which is re-
quired by the component methodology. There is, however, a close correspondence
between the idea of the SIB and the (arbitrarily complex) middleware-service.
Like the SIB, the middleware service does not consider a localized persistence
feature in its definition, and like the SIB, it is defined rather through its func-
tionality than its structure.

146 G. Jung et al.

software construction
element (SCE)

software

abstract to P element description

component constructs

namespace
/Ay
system

q
component

has| has
vy [|

connector

connepts connects

(N1d) wauodwoo jspow—10adse

interpret interpret interpret
o o™~ " "~ Y v S
v interpret
SCE constructs interface constructs \ run-time system constructs W

component type ‘ ‘ reference ‘ ‘ service ‘ implementation

! |

@
component [)
(atomic implementation) wire

Fig. 5. SCA meta model, fitted into a component-middleware structure, cfr. Fig. @l

(WSd) VOS epow-1oadse

5 Characteristics of Component Flavored Assembly

We discuss here the two aspects that seem to us most prominent.

5.1 Complex, Fixed, Layer-Structures and the Service Concept

The two notions of service discussed in the previous section (the middleware/
infrastructure-layer service and the SCA service interface) fall short for the task
of service composition. In both concepts (as opposed to the one of JABC) the
service is only modeled through the structural properties of its access point, and
if services are to be combined the developer has to resort to hand-coded business
logic.

At the same time, even the complexity of the infrastructure layer itself sug-
gests the necessity for a methodology for easy assembly of services. The fact that
for example connectors in a component topology cannot be neglected as trivial
was first pointed out by Shaw [2]], and this realization subsequently found its
way into literature about practical application of the component-oriented par-
adigm (e.g., in [Bl pp. 429] Szypersky states that “A connector, when zooming
in, can easily have substantial complexity and really ask for partitioning into
components itself”). Nevertheless, discovering this “duality” between compo-
nent and connector [3, same page| did not yet trigger a revisiting of terminology,

SCA and jABC: Bringing a Service-Oriented Paradigm 147

(N
CarEanE [Thread Pool [20Hz | [5Hz]]
(Supplier)

subscriber—
Referencd list T Component
u
T Proxy P (Consumer)

Consumer

Proxy

5 eferenc
Supplier

nanb yoyedsip zH0;

Component
(Consumer)

Component :
(Supplier) Y 3
%ence\) SSr Supplier

pnenb yojedsip zZHG

Proxy
Consumer

push)

. J

EVENT CHANNEL

Fig. 6. Schematic view of the PRiSM Event-channel

paradigms, and abstractions of component-oriented architectural styles or an
introduction of lightweight process coordination into the middleware concepts.

To illustrate the lack of expressiveness, consider the PRiSM real-time com-
ponent middleware, which was developed by the Boeing company within the
Bold Stroke effort for middleware-based aviation control systems [22]. PRiSM
features, much like CCM, two main channels for communication: An asynchro-
nous event notification service with very limited payload capability and a syn-
chronous RPC connection which can be used to communicate data through the
return values (but not to trigger computation, since it is not thread-safe). The
implementation of the notification service called event-channel is intertwined
with the middleware’s thread handling mechanism (Fig.[dl). A thread starts with
a periodic timeout event (20Hz, 5Hz, 1Hz in Fig. B distributed through the
event notification service) and runs until all events within its buffer (called the
rate group’s dispatch queue) are handled. The events trigger computation within
the individual components and subsequent events can be queued within the same
dispatch queue or dispatch queues of other threads. In other words, timeout
events and dispatches drive the components of a rate group, and the buffering
within the event channel serves for messages to cross rate groups.

To exchange data between different threads/rate-groups, systems on the
PRiSM platform make heavy use of a so-called control-push—data-pull strategy.
If new data has been generated (e.g., by a device-driver component such as a
GPS), the generating component issues an event which notifies consumers of the
data. This event is queued within the dispatch queues of the receiver’s respective
threads. At the time these threads become active and the event is dispatched,
the receiving components actively fetch the announced data from the generating
component through RPC-calls. This method guarantees that threads never exe-
cute out of turn, and data is only transmitted when both available and needed.
The drawback is that two different middleware connectors are needed for one
logical connection.

To avoid “cross-wiring” or other inconsistencies which can occur with these
double connections it seems obvious that a new abstraction should be added

148 G. Jung et al.

|
. Notify >. invoke >I):
|

EventChannel Coordinator FacetReceptacleService

Fig. 7. Composing a non-blocking message service in jJABC

to the middleware capabilities which denotes the double connection as a single
connector of a new type. In a middleware-centric or generally in a tiered ap-
proach with emphasis on interface compatibility, we can certainly introduce the
abstraction, but the semantics of the new connector can only be implemented
“by hand”, since the operational semantics of the different existing connectors
are not captured by the model, even though the general push-pull strategy could
have been understood without knowledge about the implementation details of
the individual communication channels.

When using a lightweight process coordination methodology, as in the jJABC,
instead (applied to coordinating the middleware processes), the task of assem-
bling a new (ubiquitous, semantically unambiguous, hierarchically constructed)
communication service from existing ones becomes clear and simple. The two
connectors are composed as a sequence, together with a control unit which han-
dles possible data conversions if necessary (Fig. [T]).

In the PRiSM middleware, the infrastructure services are necessarily simplis-
tic due to the real-time aspects, with limited options to reasonably combine
multiple services into orchestrated compounds. Yet, even in this constrained
microcosm-setting the middleware would benefit from process coordination. In
the macrocosm of a web-based, highly distributed, application, the variety of ex-
isting services increases: there are services which would be considered infrastruc-
ture (such as communication), and services provided on top of the infrastructure.
Here the possibilities of assembling meaningful combinations multiply.

5.2 Perspective, Location, and Entry-Point:
Topology vs. Coordination

Consider a composite service where a central unit C acts as the orchestrator and
in turn relies on services provided by distinct units A and B. For example, for a
list of authorized database-accesses, A authorizes the access, B offers it, and C
orchestrates services A and B to allow its users to handle the authorization and
the complete list of accesses via a single call to C.

The difference between a model of this situation in SCA and in JABC can be
summarized as perspective or viewpoint (Fig.[§ (a) and (b)).

— SCA offers a model of the physical topology: C appears as the provider of the
service that promotes a reference for service access. Through wires, C con-
nects the service interfaces it needs to the respective references provided by
A and B. The structural aspects of the example are captured and localized by
the SCA model, but the operational aspects are hidden. In fact, SCA would
require to integrate tailored business logic into C as their orchestration.

SCA and jABC: Bringing a Service-Oriented Paradigm 149

echolon /

SCA control

/? C dynamic @
. A =t C static . layer/
J composition
B
B stratum /
abstraction
(a) (b) (©)

Fig. 8. Different perspectives: (a) SCA and jABC perspectives, (b) Topology or process
coordination, (c¢) Perspectives according to Mesarovic

— JABC on the other hand abstracts all location aspects. Entry point of the
operational model through the composite-service C is the start-SIB A, where
the first operation happens (the authorization), then C’ (the actual media-
tion service) is invoked, and subsequently a loop between C’ and B performs
the service until the list of authorized accesses is complete. The JABC model
glosses over the actual topology of the involved units (components, or SIBs,
or services).

Concerning executability and coding aspects, while the SCA-model only allows
auto-generating code-stubs which handle the interconnection and communica-
tion aspects, but needs control and business logic to be added, the jJABC model
is designed to be sufficient to generate the complete system through the Genesys
plugin [23]. As described in Sect.[3] given a sufficiently complete modeling of the
individual SIBs, JABC acts as an intuitive, graphical, development tool rather
than a modeling tool.

The need for multiple perspectives has been noted earlier. Most eminently in
[24], Mesarovic et al. propose three perspectives which have to be consolidated
for a complete system model. They coin the terms echelon, layer, and stra-
tum which—in current terminology—denote control or behavior, composition or
topology, and abstractions and data types respectively (Fig. Bl(c)).

6 Evaluation

In this section we are going to investigate the appropriateness of the described
specification styles for service orientation relative to the widely agreed upon
characteristics of service orientation. Here, we consider a technical and a prag-
matic side, both with three dimensions.

Technical characterization: as introduced in [7]

— (Extreme) loose coupling and self containment of the services.

— Virtualization: clear separation from implementation/realization details.

— Domain specificity: a service-oriented setup should seamlessly integrate into
the setup of the considered domain.

150 G. Jung et al.

Pragmatic characterization:

— Scalability, both for the successive ‘assembly’ of functionality, as well as for
the number of users of developed artifacts.

— Participation: service-orientation aims at giving the domain expert access
and control of the development and evolution of the artifacts.

— Agility: changes and adaptations should be easy and ideally be controllable
at the (process) model level.

Despite their strong semantic differences, the SCA approach and jABC ap-
proach are quite similar when it comes to the technical characteristics: both
support loose coupling and virtualization, and the organization in the virtual-
ized components enables a domain-specific development.

The differences show up, however, when it comes to the pragmatic character-
istics, which we will now consider individually.

6.1 Scalability

This first dimension is still supported quite similarly in the two approaches, by
clean concepts of hierarchy. Both SCA and jJABC offer conceptually similar op-
tions to assemble larger elements (service components or SIBs) out of topologies
of smaller ones: In SCA the composite can act as component, in jJABC an SLG
can be packed into a SIB, and in either case it is necessary to propagate or mark
interfaces of the internal structures to be visible on the external structure.

Concerning the scalability in the number of users, both approaches can make
adequate use of standard technology like scalable application servers, which sup-
port growing sizes of users.

The real difference between the SCA and the jJABC approach becomes appar-
ent when looking at the remaining two dimensions.

6.2 Participation

Technically, we can regard service orientation as an 80/20 approach to applica-
tion/process development. It aims at a maximal involvement of the application
expert in order to avoid misunderstandings and to overcome communication hur-
dles. At the best, users should be able to directly influence, control, and adapt
the services according to their needs. At least for typical day-to-day situations,
this should be possible without IT knowledge. Thus, service orientation poten-
tially has a disruptive impact on the current structures.

The jJABC directly addresses this goal by putting the application/business
process in the center of attention, while the architectural and resource-oriented
SCA approach still addresses I'T experts.

6.3 Agility

Agility can be regarded as a logical consequence of rigorous participation. Giv-
ing control (of the 80%) of system adaptation and evolution directly to the

SCA and jABC: Bringing a Service-Oriented Paradigm 151

application expert eliminates time consuming and expensive multi-party inter-
actions, with the misunderstandings and communication hurdles for the majority
of tasks.

The One-Thing Approach supported by the JABC [25]26] is directly designed
to establish this level of control: the user/application/business-level process re-
mains part of the artifact, which gradually turns into the product along the de-
velopment and which is maintained during the subsequent lifecycle. This allows
the application experts in particular to redesign their processes, control permis-
sions, and add business rules at the application/business process level, with the
immediate consequence of enactment. Thus, essentially, the changes are imple-
mented as soon as they were specified. Of course, more radical changes will still
require I'T support, but in our experience they are not as frequent. As before,
the SCA approach can be seen here as a valid support for IT involvement. Thus
it may well accelerate required modifications, but in a more ’classical’ setting.

7 Related Work

Previous work in service oriented architecture research focusses mostly on stan-
dards, languages, and features of SCA [27I28], or on the assembly model (i.e.,
interface definitions) [29]. There is little work on classifying the architectural
patterns or combining them with flexible behavioral semantics.

Among the approaches towards combining service orientation with general-
purpose behavioral descriptions is the SENSORIA project [30] and [31132]. SEN-
SORIA aims at a comprehensive approach to service-oriented development with
focus on specific problems of loose coupling and heterogeneous environments,
raising issues in security, specification, and communication, at a technical level.
In contrast, we focus on participation, meaning that we directly address and in-
volve the application expert via the ’One-Thing Approach’ [3325], throughout
the entire lifecycle.

8 Conclusions

Both SCA and jABC are frameworks with substantial practical merit. By em-
phasizing the term “service” within the basic modeling structures, they both
also claim to move forward to a novel, service-oriented, software-development
paradigm. Nevertheless, their notion of service is fundamentally different.

This paper presented a structural, concept oriented, comparison between these
two approaches, focussing on the main characteristics and of service orientation.
We showed that

— The SCA development paradigm is essentially component-oriented, and as such
it treats its extensive infrastructure specification as analogous to a middleware
layer. Therefore it builds on proven software construction methodologies which
are established as best practice in industrial software development, and brings
them into the realm of web-based application development.

152 G. Jung et al.

— By elevating the required interface, called service, to be the core modeling
entity, SCA deviates from the standard component-oriented paradigm, which
instead puts the component itself into the center of consideration. It seems
however questionable whether this shift of emphasis alone is sufficient to
warrant the label “service-oriented” development.

— As common to other component-oriented approaches, the operational aspects
of a software system are not captured within SCA models, which concentrate
on their structural aspects. This could become a handicap when addressing
problems as service orchestrations, where SCA can rely on strong capabilities
of the comprehensive infrastructure (i.e., a vast body of specification and
machinery, XML artifacts and ties to all major communication protocols,
maintained by a large community), but still needs hand-tailored solutions to
be supplied for control-flow.

— The jJABC methodology on the other hand is entirely operation centered and
it hides topology, location, and connection aspects. It appears as the better
candidate when it comes to transcending the semantic gap, as even control
structures exist as services. While the ties to web-communication protocols
are not an essential part of JABC, they are provided through various plugins
(most eminently through jETT).

— The service concept of jJABC is very close to an intuitive understanding of
service (which, e.g., manifests itself in the term “middleware service” and in
various other domains) that requires the service to be ubiquitously accessi-
ble (location-agnostic) and mechanically configurable. In fact it seems that
the lightweight process coordination offers an elegant way to recombine and
enhance common platform services as well as complex web-based business
services. Therefore, JABC is not only applicable to web-development or sim-
ilar tasks, it also offers itself as the semantic underpinning for an operational
modelling inside component-oriented methodologies.

Looking at the intent and main characteristics of service orientation, it became
clear to us that the two dual specification approaches, although being semanti-
cally quite different, are quite similar concerning the first four criteria, namely
loose coupling, virtualization, domain specificity, and scalability. In fact, both
approaches are based here almost on the same means — only applied to frame-
works that aim at covering different perspectives: SCA takes the architectural
perspective, which focusses on a resource view, and JABC a behavioral perspec-
tive, which focusses on a process view.

The real impact of the choice of perspective, however, becomes apparent when
looking at the remaining characteristics, namely participation and agility, and
this essentially for one single reason: Whereas SCA is based on lower level,
infrastructure-oriented modelling and design, which is accessible to typical do-
main experts, JABC puts the (user-level) process in the center of attention. This
directly supports participation, and, due to the One-Thing Approach, it also pro-
vides a new level of agility: the majority of day-to-day change requests can be
resolved directly at the application process level, without even involving IT sup-
port. Put figuratively, the JABC is a framework that support the slogan ”Easy

SCA and jABC: Bringing a Service-Oriented Paradigm 153

for the many, difficult for the few”, in particular by enabling the many, whereas
SCA addresses the few, and supports them in their role of solving difficult tasks.

References

. Margolis, B., Sharpe, J.L.: SOA for the Business Developer. MC Press (June 2007)

2. The Open SOA Collaboration: SCA web-site,

10.

11.

12.

13.

14.

15.

16.

http://www.osoa.org/display/Main/Service+Component+Architecture+Home

. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd

edn. ACM Press / Addison-Wesley (2002)

. Heineman, G., Councill, B.: Component-Based Software Engineering: Putting the

Pieces Together. Addison Wesley, Reading (2001)

. Steffen, B., Margaria, T., Nagel, R., Jorges, S., Kubczak, C.: Model-Driven De-

velopment with the JABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92-108. Springer, Heidelberg (2007)

. Homepage of the jABC framework, http://www.jabc.de
. Margaria, T., Steffen, B.: Service engineering: Linking business and IT. IEEE Com-

puter 39(10), 45-55 (2006)

. Steffen, B., Narayan, P.: Full life-cycle support for end-to-end processes. IEEE

Computer 40(11), 64-73 (2007)

. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable

system-level approach. STTT - Int. Journ. on Software Tools for Technology Trans-
fer 5(2), 107-123 (2004)

Steffen, B., Margaria, T.: METAFrame in practice: Design of Intelligent Network
Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 390-415. Springer, Heidelberg (1999)

Steffen, B., Margaria, T., Claflen, A., Braun, V., Reitenspiel, M.: An environment
for the creation of intelligent network services. In: Annual Review of Communica-
tion, Int. Engineering Consortium (IEC), Chicago, USA, pp. 919-935 (November
1996)

Margaria, T., Steffen, B., Reitenspief;, M.: Service-oriented design: The roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450-464. Springer, Heidelberg (2005)

Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented Mediation with
JABC/JETI. In: Petrie, C., Lausen, H., Zaremba, M., Margaria, T. (eds.) Semantic
Web Services Challenge: Results from the First Year (Semantic Web and Beyond).
Springer, Heidelberg (to appear, 2008)

ITU Geneva, Switzerland: Recommendation Q.1211 - General Recommendations
on Telephone Switching and Signaling Intelligent Network: Introduction to Intelli-
gent Network Capability Set 1 (March 1993)

Object Management Group: MDA guide version 1.0.1,
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

Lamprecht, A.L., Margaria, T., Steffen, B.: Seven variations of an alignment work-
flow — an illustration of agile process design/management in Bio-jETI. In: Mandoiu,
1., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983,
pp. 445-456. Springer, Heidelberg (2008)

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.jabc.de
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

154

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. Jung et al.

Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: Genefisher-p: Variations of genefisher as processes in biojeti. BioMed Central
(BMC) Bioinformatics 2008. In: Supplement dedicated to Network Tools and Ap-
plications in Biology 2007 Workshop (NETTAB 2007), April 25, vol. 9(Suppl. 4),
p. 13 (2008)

Nii, H.: Blackboard systems. AI Magazine 7(2), 38-53, 7(3), 82-106 (1986)
Object Management Group: OMG formal/06-04-01 (CORBA Component Model
Specification, v4.0) (April 2006)

Matena, V., Krishnan, S., DeMichiel, L., Stearns, B.: Applying Enterprise Jav-
aBeans. Addison Wesley, Reading (2003)

Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first-class status. In: Lamb, D.A. (ed.) Selected papers from
the Workshop on Studies of Software Design. LNCS, vol. 1078, pp. 17-32. Springer,
Heidelberg (1993)

Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Ranganath, V.P.: Cadena: An inte-
grated development, analysis, and verification environment for component-based
systems. In: Proc. 25th Int. Conf. on Software Engineering (ICSE 2003), May 2003,
vol. 841, pp. 160-173. IEEE Computer Soceity Press, Los Alamitos (2003)
Jorges, S., Margaria, T., Steffen, B.: Genesys: Service-oriented construction of cer-
tified code generators. ISSE — Int. Journal on Innovations in Systems and Software
Engineering — a NASA Journal (to appear)

Mesarovic, M., Macko, D., Takahara, Y.: Theory of Hierarchical, Multilevel, Sys-
tems. Mathematics in Science and Engineering, vol. 68. Academic Press, New York
(1970)

Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing
Approach. In: Handbook of Research on Business Process Modeling, IGI Global
(2008)

Margaria, T.: Service is in the eyes of the beholder. IEEE Computer 40(11), 33-37
(2007)

Curbera, F.: Component contracts in service-oriented architectures. IEEE Com-
puter 40(11), 74-80 (2007)

Zou, Z., Duan, Z.: Building business processes or assembling service components:
Reuse services with bpeldws and sca. In: ECOWS 2006, Proc. European Conference
on Web Services, pp. 138-147 (2006)

Ding, Z., Chen, Z., Liu, J.: A rigorous model of service component architecture.
ENTCS 207, 33-48 (2008)

Wirsing, M., Holzl, M., Acciai, L., Banti, F., et al.: SENSORIA patterns: Aug-
menting service engineering with formal analysis, transformation and dynamicity.
In: ISoLA 2008. CCIS, vol. 17, pp. 170-190. Springer, Heidelberg (This Volume)
(2008)

Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic Semantics of Service Component
Modules. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 37-55. Springer, Heidelberg (2007)

Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component Ar-
chitecture. In: Bravetti, M., Nufiez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 193-213. Springer, Heidelberg (2006)

Hoérmann, M., Margaria, T., Mender, T., Nagel, R., Steffen, B., Trinh, H.: The
jabc approach to rigorous collaborative development of scm applications. In: ISoLA
2008. CCIS, vol. 17, pp. 724-737. Springer, Heidelberg (This Volume) (2008)

	SCA and jABC: Bringing a Service-Oriented Paradigm to Web-Service Construction
	Introduction
	The Meta-model of SCA
	The Meta-model of jABC
	Comparison with Component-Orientation
	Characteristics of Component Flavored Assembly
	Complex, Fixed, Layer-Structures and the Service Concept
	Perspective, Location, and Entry-Point: Topology vs. Coordination

	Evaluation
	Scalability
	Participation
	Agility

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

