

Communications
in Computer and Information Science 17

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification andValidation

Third International Symposium, ISoLA 2008
Porto Sani, Greece, October 13-15, 2008
Proceedings

13

Volume Editors

Tiziana Margaria
Universität Potsdam
August-Bebel-Str. 89
14482 Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
Technische Universität Dortmund
Otto-Hahn-Str. 14
44227 Dortmund, Germany
E-mail: steffen@cs.tu-dortmund.de

Library of Congress Control Number: 2008937454

CR Subject Classification (1998): D.2.4, D.4.5, F.3, I.2.2, D.4.7

ISSN 1865-0929(Communications in Computer and Information Science)
ISSN 0302-9743(Standard)
ISBN-10 3-540-88478-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88478-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12546602 06/3180 5 4 3 2 1 0

Preface

This volume contains the conference proceedings of ISoLA 2008, the Third International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, which was held in Porto Sani (Kassandra, Chalkidiki), Greece during
October 13–15, 2008, sponsored by EASST and in cooperation with the IEEE Technical
Committee on Complex Systems.

Following the tradition of its forerunners in 2004 and 2006 in Cyprus, and the
ISoLA Workshops in Greenbelt (USA) in 2005 and in Poitiers (France) in 2007,
ISoLA 2008 provided a forum for developers, users, and researchers to discuss issues
related to the adoption and use of rigorous tools and methods for the specification,
analysis, verification, certification, construction, test, and maintenance of systems
from the point of view of their different application domains. Thus, the ISoLA series
of events serves the purpose of bridging the gap between designers and developers of
rigorous tools, and users in engineering and in other disciplines, and to foster and
exploit synergetic relationships among scientists, engineers, software developers,
decision makers, and other critical thinkers in companies and organizations. In par-
ticular, by providing a venue for the discussion of common problems, requirements,
algorithms, methodologies, and practices, ISoLA aims at supporting researchers in
their quest to improve the utility, reliability, flexibility, and efficiency of tools for
building systems, and users in their search for adequate solutions to their problems.

Additionally to regular and poster sessions, the program of the symposium con-
sisted of:

• Two invited talks, by Manfred Broy (TU Munich, Germany) and Dimitrios
Georgakopoulou (Telcordia Technologies, Austin, USA)

• A keynote by Jifeng He (East China Normal University, Shanghai, China)

Special tracks and thematic sessions were devoted to the following hot and
emerging topics:

• Service Engineering in a Converging Telecommunications / Web 2.0 World
(joint with SEW-32)

• Tools and Applications in Industrial Software Quality Control
• Introduction of Multi-Core Systems in Automotive Applications
• Model-Driven SOA
• Applications of Formal Approaches to Service-Oriented Computing
• Trustworthy Computing: Theories, Methods, Tools, and Experience in China

and South East Asia
• Non-Functional Requirements in Embedded Systems
• Processes, Methods and Tools for Developing Educational Modules to Sup-

port Teaching and Technology Transfer
• Ubiquitous and Context-Aware Systems

 Preface

VI

• Formal Methods for Analyzing and Verifying Very Large Systems
• Tools for Service-Oriented Discovery of Knowledge
• Tackling the Challenges of Software Development Process for SMEs with

Rigorous Support and Open Source

There were also two co-located events:

• SEW-32, the 32nd Software Engineering Workshop, in cooperation with
NASA and IEEE

• jABC Workshop with the jABC/jETI Developer and User Group meeting

We thank the Track and Session organizers and the members of the Program Com-
mittee and their subreferees for their effort in selecting the papers to be presented.

Special thanks are due to the following organizations for their endorsement:
EASST (European Association of Software Science and Technology), Fraunhofer
FOKUS (Berlin, Germany), and our own institutions – the TU Dortmund and the
University of Potsdam.

We are also grateful to Holger Willebrandt, Christian Winkler, and Zoi Choselidou
for their very appreciated help in preparing this volume.

August 2008 Tiziana Margaria
Bernhard Steffen

Organization

General Chair
Program Chair
Organization and Finance Chair

Bernhard Steffen (TU Dortmund, Germany)
Tiziana Margaria (Universität Potsdam, Germany)
Petros Stratis (Cyprusisland, Nicosia, Cyprus)

Program Committee

Tom Ball
Francine Ellen Barbosa
Karin Breitman
Ruth Breu
Jean-Pierre Briot
Maura Cerioli
Song Jin Dong
Schahram Dustdar
Stefania Gnesi
Karl M. Göschka
Hermann Edward Haeusler
Axel Hahn
Mike Hinchey
Antti Huima
He Jifeng
Raimund Kirner
Jens Knoop
Joost Kok
Bernd Krämer

Nada Lavrac
Björn Lisper
Zhiming Liu
Jian Lu
José Carlos Maldonado
Christian Metzler
Alexander K. Petrenko
Enrico Pittaluga
Peter Puschner
Christian Schallhart
Jörn Schneider
Markus Schordan
Hong-Linh Truong
Helmut Veith
Ji Wang
Martin Wechs
Uwe Zdun
Dirk Ziegenbein

Table of Contents

Invited Talks

Architecture Based Specification and Verification of Embedded
Software Systems . 1

Manfred Broy

Information System Engineering Supporting Observation, Orientation,
Decision, and Compliant Action . 14

Dimitrios Georgakopoulos

Keynote

Modelling Coordination and Compensation . 15
He Jifeng

Tools and Applications in Industrial Software Quality
Control

Animating Event B Models by Formal Data Models 37
Idir Ait-Sadoune and Yamine Ait-Ameur

Automated Formal Testing of C API Using T2C Framework 56
Alexey V. Khoroshilov, Vladimir V. Rubanov, and
Eugene A. Shatokhin

Introduction of Multi-core Systems in Automotive
Applications

Tailoring and Optimising Software for Automotive Multicore
Systems . 71

Torsten Polle and Michael Uelschen

Fault Handling Approaches on Dual-Core Microcontrollers in
Safety-Critical Automotive Applications . 82

Eva Beckschulze, Falk Salewski, Thomas Siegbert, and
Stefan Kowalewski

Timing Validation of Automotive Software . 93
Daniel Kästner, Reinhard Wilhelm, Reinhold Heckmann,
Marc Schlickling, Markus Pister, Marek Jersak, Kai Richter, and
Christian Ferdinand

X Table of Contents

Model-Driven SOA

Towards Using Reo for Compliance-Aware Business Process
Modeling . 108

Farhad Arbab, Natallia Kokash, and Sun Meng

On the Risk Management and Auditing of SOA Based Business
Processes . 124

Bart Orriens, Willem-Jan v/d Heuvel, and Mike Papazoglou

SCA and jABC: Bringing a Service-Oriented Paradigm to Web-Service
Construction . 139

Georg Jung, Tiziana Margaria, Ralf Nagel, Wolfgang Schubert,
Bernhard Steffen, and Horst Voigt

Applications of Formal Approaches to
Service-Oriented Computing

A Use-Case Driven Approach to Formal Service-Oriented Modelling 155
Laura Bocchi, José Luiz Fiadeiro, and Antónia Lopes

Sensoria Patterns: Augmenting Service Engineering with Formal
Analysis, Transformation and Dynamicity . 170

Martin Wirsing, Matthias Hölzl, Lucia Acciai, Federico Banti,
Allan Clark, Alessandro Fantechi, Stephen Gilmore, Stefania Gnesi,
László Gönczy, Nora Koch, Alessandro Lapadula, Philip Mayer,
Franco Mazzanti, Rosario Pugliese, Andreas Schroeder,
Francesco Tiezzi, Mirco Tribastone, and Dániel Varró

Safety and Response-Time Analysis of an Automotive Accident
Assistance Service . 191

Ashok Argent-Katwala, Allan Clark, Howard Foster,
Stephen Gilmore, Philip Mayer, and Mirco Tribastone

A Framework for Analyzing and Testing the Performance of Software
Services . 206

Antonia Bertolino, Guglielmo De Angelis, Antinisca Di Marco,
Paola Inverardi, Antonino Sabetta, and Massimo Tivoli

A Framework for Contract-Policy Matching Based on Symbolic
Simulations for Securing Mobile Device Application 221

Paolo Greci, Fabio Martinelli, and Ilaria Matteucci

Trustworthy Computing: Theories, Methods, Tools
and Experience in China and South East Asia

ASERE: Assuring the Satisfiability of Sequential Extended Regular
Expressions . 237

Naiyong Jin and Huibiao Zhu

Table of Contents XI

Computing Must and May Alias to Detect Null Pointer Dereference 252
Xiaodong Ma, Ji Wang, and Wei Dong

A Partial Order Reduction Technique for Parallel Timed Automaton
Model Checking . 262

Zhao Jianhua, Wang Linzhang, and Li Xuandong

Program Verification by Reduction to Semi-algebraic Systems
Solving . 277

Bican Xia, Lu Yang, and Naijun Zhan

Debugging Statecharts Via Model-Code Traceability 292
Liang Guo and Abhik Roychoudhury

Model Checking CSP Revisited: Introducing a Process Analysis
Toolkit . 307

Jun Sun, Yang Liu, and Jin Song Dong

Formal Use of Design Patterns and Refactoring . 323
Long Quan, Qiu Zongyan, and Zhiming Liu

A Component-Based Access Control Monitor . 339
Zhiming Liu, Charles Morisset, and Volker Stolz

Non-functional Requirements in Embedded Systems

Navigating the Requirements Jungle . 354
Boris Langer and Michael Tautschnig

Non-functional Avionics Requirements . 369
Michael Paulitsch, Harald Ruess, and Maria Sorea

A Simulation Approach for Performance Validation during Embedded
Systems Design . 385

Zhonglei Wang, Wolfgang Haberl, Andreas Herkersdorf, and
Martin Wechs

Optimizing Automatic Deployment Using Non-functional Requirement
Annotations . 400

Stefan Kugele, Wolfgang Haberl, Michael Tautschnig, and
Martin Wechs

Experiences with Evolutionary Timing Test of Automotive Software
Components . 415

Florian Franz

Measurement-Based Timing Analysis . 430
Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and
Peter Puschner

XII Table of Contents

ALL-TIMES – A European Project on Integrating Timing
Technology . 445

Jan Gustafsson, Björn Lisper, Markus Schordan,
Christian Ferdinand, Peter Gliwa, Marek Jersak, and
Guillem Bernat

Processes, Methods and Tools for Developing
Educational Modules to Support Teaching and
Technology Transfer

Weaving a Formal Methods Education with Problem-Based Learning . . . 460
J Paul Gibson

Encouraging the Uptake of Formal Methods Training in an Industrial
Context . 473

Michael G. Hinchey

Computer-Supported Collaborative Learning with Mind-Maps 478
Dmitrij Koznov and Michel Pliskin

Agile IT: Thinking in User-Centric Models . 490
Tiziana Margaria and Bernhard Steffen

Specialization and Instantiation Aspects of a Standard Process for
Developing Educational Modules . 503

Ellen Francine Barbosa and José Carlos Maldonado

Ubiquitous and Context Aware Systems

A Formal Framework for Modeling Context-Aware Behavior in
Ubiquitous Computing . 519

Isabel Cafezeiro, José Viterbo, Alexandre Rademaker,
Edward Hermann Haeusler, and Markus Endler

Contexts and Context Awareness in View of the Diagram Predicate
Framework . 534

Uwe Wolter and Zinovy Diskin

The Use of Adaptive Semantic Hypermedia for Ubiquitous
Collaboration Systems . 548

Patricia Seefelder de Assis and Daniel Schwabe

The Use of Formal Ontology to Specify Context in Ubiquitous
Computing . 561

Karin K. Breitman and Michael G. Hinchey

High Service Availability in MaTRICS for the OCS 572
Markus Bajohr and Tiziana Margaria

Table of Contents XIII

Supporting Requirements Definition and Quality Assurance in
Ubiquitous Software Project . 587

Rodrigo O. Sṕınola, Felipe C.R. Pinto, and Guilherme H. Travassos

Formal Methods for Analysing and Verifying Very
Large Systems

Squeeze All the Power Out of Your Hardware to Verify Your
Software! . 604

Jǐŕı Barnat and Luboš Brim

Static Partial-Order Reduction of Concurrent Systems in Polynomial
Time . 619

Robert Mittermayr and Johann Blieberger

An Extensible Space-Based Coordination Approach for Modeling
Complex Patterns in Large Systems . 634

Eva Kühn, Richard Mordinyi, and Christian Schreiber

Tools for Service-Oriented Discovery of Knowledge

On the Design of Knowledge Discovery Services Design Patterns and
Their Application in a Use Case Implementation . 649

Jeroen de Bruin, Joost N. Kok, Nada Lavrac, and Igor Trajkovski

The ASK System and the Challenge of Distributed Knowledge
Discovery . 663

Andries Stam

A Scenario Implementation in R for SubtypeDiscovery Examplified on
Chemoinformatics Data . 669

Fabrice Colas, Ingrid Meulenbelt, Jeanine J. Houwing-Duistermaat,
Margreet Kloppenburg, Iain Watt, Stephanie M. van Rooden,
Martine Visser, Johan Marinus, Edward O. Cannon,
Andreas Bender, Jacobus J. van Hilten, P. Eline Slagboom, and
Joost N. Kok

Requirements for Ontology Based Design Project Assessment 684
Axel Hahn, Stephan große Austing, Stefan Häusler, and
Matthias Reinelt

Organizing the World’s Machine Learning Information 693
Joaquin Vanschoren, Hendrik Blockeel, Bernhard Pfahringer, and
Geoff Holmes

Tackling the Challenges of Software Development
Process for SMEs with Rigorous Support and Open
Source

Workflow Testing . 709
R. Breu, A. Lechner, M. Willburger, and B. Katt

XIV Table of Contents

The jABC Approach to Rigorous Collaborative Development of SCM
Applications . 724

Martina Hörmann, Tiziana Margaria, Thomas Mender, Ralf Nagel,
Bernhard Steffen, and Hong Trinh

Gesper: Support to Capitalize on Experience in a Network of SMEs 738
Maura Cerioli, Giovanni Lagorio, Enrico Morten, and Gianna Reggio

Regular Papers

Directed Generation of Test Data for Static Semantics Checker 753
M.V. Arkhipova and S.V. Zelenov

Event-Based Approach to Modelling Dynamic Architecture: Application
to Mobile Ad-Hoc Network . 769

Christian Attiogbé

Trusted Theorem Proving: A Case Study in SLD-Resolution 782
Konstantine Arkoudas and Olin Shivers

High Level Analysis, Design and Validation of Distributed Mobile
Systems with CoreASM . 797

R. Farahbod, U. Glässer, P.J. Jackson, and M. Vajihollahi

Optimizing the System Observability Level for Diagnosability 815
Laura Brandán Briones, Alexander Lazovik, and Philippe Dague

Weaving Authentication and Authorization Requirements into the
Functional Model of a System Using Z Promotion . 831

Ali Nasrat Haidar and Ali E. Abdallah

Simple Gedanken Experiments in Leveraging Applications of Formal
Methods . 847

Raymond Boute

Composition of Web Services Using Wrappers . 862
Ali Nasrat Haidar and Ali E. Abdallah

Author Index . 867

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 1–13, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Architecture Based Specification and Verification of
Embedded Software Systems

(Work in Progress)

Manfred Broy

Institut für Informatik, Technische Universität München
D-80290 München Germany

broy@in.tum.de
http://wwwbroy.informatik.tu-muenchen.de

Abstract. Large scale embedded software intensive systems as we find them,
for instance, in cars today need structured techniques in terms of comprehensive
architectures for mastering their specification, development, and verification.
Comprehensive system architectures provide the appropriate levels of abstrac-
tion separating logical from technical views. We show how logical architecture
provides a systematic focal point for specification and refinement based devel-
opment with early verification.

Keywords: Large Scale Embedded Software Systems, Comprehensive Archi-
tecture, Specification, Verification.

1 Introduction

Modern software systems and software-intensive systems offer to their users large
varieties of different functions, in our terminology called services or features. We
speak of multi-functional distributed interactive systems. Such systems typically are
embedded within technical devices or organizational processes to support, control as
well as enhance those. They are mobile, dynamic, and accessed concurrently via fami-
lies of independent, often multi-modal user interfaces. They are not only connected to
such user interfaces but also to sensors and actuators.

For instance, in premium cars we find thousands of functions based on embedded
software systems. These functions are technically realized by networks of processing
units (CPUs).

Systems of the described type are typically deployed and distributed over large
networks of computing devices; they are based on software infrastructure such as
operating systems and communication services in terms of communication protocols
and busses. They exploit the services of middleware such as, for instance, object re-
quest brokers.

To master their complexity, large software systems are better constructed in a
modular fashion and decomposed into components. These components are grouped
together in software architectures. Today the concept of software architecture is rec-
ognized as a key contribution in software design. Ideas to structure systems along

2 M. Broy

these lines go way back to the early concepts of “structured programming” due to
Dijkstra (see [14]) and the ideas of “modularization” due to Parnas (see [15]).

In the following we give an overview over the ongoing research at the Technical
University of Munich aiming at a comprehensive, model-based, architecture driven,
verification based approach to system evolution. This work covers a broad spectrum
of foundational and practical research. At the Technical University of Munich we are
working in the field of systematic development of software intensive systems for
more than 10 years. We are following an approach where we combine quite founda-
tional research with practical transfer work. The foundational research concentrates
on system modelling, system specification, verification in terms of a system model-
ling theory, which gives the mathematical framework for describing systems, their
refinement, their specification and verification in a way that important properties like
modularity, transitivity of refinement and flexible ways to change levels of abstrac-
tions are supported. Furthermore, based on the foundational approach, we develop
concepts and notations that scale and that can be used in industrial engineering envi-
ronments and that are targeted towards the practical needs. To support and evaluate
our approach, we carry out a number of experimental pilot developments in coopera-
tion with industrial partners where on the one hand we try to understand which are the
most crucial challenges in industry and on the other hand apply our approach aiming
at proof of concept.

To be able to do such medium size experiments we need tool support. Therefore
we are working in prototyping tools for quite some years for several reasons. First of
all it is important to understand how tools can support the engineering approaches and
whether they are appropriate for a comprehensive tool support.

Second, the tool support is very important to be able to apply our approaches to
larger size applications. Moreover, we study the situations in practise and analyze,
which are the most pressing needs around. This helps us also to determine the direc-
tion of our more foundational research.

Finally, we do a number of ambitious experiments to see how the methods scale
and how they can be applied to industrial applications. A very typical example here is
what we did in the VERISOFT project (see [2], [3], [4]), where we carried out the veri-
fication of a function in a car – actually the emergency call function – which brings in
all the technical problems in real life systems how we typically find them today.

It is a goal of this paper to show the philosophy of our approach to work out a pro-
fessional engineering methodology, based on a proper theory, supported by tools and
capable to scale up with the needs of industrial processes. As a result this paper gives
just overviews and shows a few of the most important properties that we require from
theory and sketch how a development that is driven by specification, refinement, and
verification concepts could look like. Details to what is presented here can be found in
many papers that are referenced at the end of this contribution.

2 Seamless Model-Based Development

Seamless model-based development promises to lift software development and pro-
gramming onto higher levels of abstraction providing a seamless chain of models
covering all phases from requirements to integration and system verification. As long

 Architecture Based Specification and Verification of Embedded Software Systems 3

as model-based development mainly aims at generating code from models, modelling
languages are nothing but a kind of higher level programming languages. However, in
seamless model-based development modelling is not just an implementation method.
It is a paradigm that is capable to provide support throughout the entire development
and evolution life cycle (for more details, see [13]).

Modelling ideally has to start with requirements engineering. Actually it can be a
very important help in requirements engineering when informal requirements are
turned into models step by step such that at the end, the requirements engineering
produces a functional model capturing the functional requirements and a quality
model that describes the quality profile. Based on the model we can check the com-
pleteness and the consistency of the requirements, which is impossible for natural
language requirements specifications. In turn, the systems architecture and subse-
quently models can describe the software architecture. Provided these models are
chosen carefully enough and based on a proper theory then the architecture model can
be verified to guarantee the compliance to the functional requirements (see section 3).
Furthermore, a careful tracing is possible between the functional requirements and the
architecture model.

In particular, the quality model can be used to evaluate and validate the architecture.
To be able to do that a carefully structured model of architecture has to be worked out,
not just describing a system at the technical implementation level but also describing
carefully chosen useful abstractions such as logical architectures or function hierarchies.
A seamless and comprehensive model-based development is a key to a much more
systematic development process with significantly higher possibilities for automation.

To be able to carry out such an approach a number of ingredients are required.

• A sound and appropriate theoretical basis (see section 4): An appropriate
modelling theory that provides
o the needed modelling concepts such as the concept of a system and that of

a user function, with
 a concept for structuring the functionality by functional hierarchies,
 concepts to establish dependency relationships between these

functions,
 techniques to model the functions with their behaviour in isolation

including time behaviour and to connect them, according to their de-
pendency relations into a comprehensive functional model for the
system.

o a concept of composition and architecture to capture
 the decomposition of the system into components, that cooperate

and interact to achieve the system functionalities,
 the interfaces of the components including not only the syntactic in-

terfaces but also the behaviour interfaces
 a notion of modular composition, which allows us to define the in-

terface behaviour of a composed system from the interface behaviours
of its components.

 This provides a hierarchical notion of a logical architecture.
o a modelling theory that is strong and expressive enough to capture issues of

the technical architecture such as questions of structuring software
deployment, of tasks and threads, as well as modelling behaviour aspects of
hardware.

4 M. Broy

o A comprehensive system architecture model: The modelling theory must
be strong enough and expressive enough to model all relevant aspects of
hardware and software architectures of a system. These aspects and proper-
ties of architecture should be modelled in a very direct and explicit way.
The modelling theory should be able to express very directly properties of
the architecture and its components. A comprehensive architecture model
of an embedded system and its functionality is a basis for a system meta-
model that comprises all the content needed to describe a distributed em-
bedded system.

• Product Model: The product model provides a data model to capture all the
modelling artefacts. Its structure is described by a meta-model. The meta-model
is not only of interest from a theoretical point of view. Much more important, it
is the basis for a data model that allows to capture all the contents that describe
an embedded system inside a computer, forming a product model which can be
used at the backbone for the development. In the product model the dependen-
cies and relationships between the modelling artefacts should be identified,
which are a key to extensive tool support. In the end all artefacts produced
throughout the development should be part of the meta-model and all the parts
should be related in a semantic way such that tracing, impact analysis or consis-
tency checks are possible.

• Extensive Development Automation by Tool Support: Automation can only
be achieved if the models and their theory support this kind of automation. In
fact, the support in automation has to address the capturing and working out of
models, the analysis of models, in particular, towards their consistency and with
respect to important properties as well as techniques for generating further de-
velopment artefacts from models. Tooling should be based completely on the
artefact model such that tools that carry out the steps of capturing models and
creating models, analyzing models and generating new artefacts from existing
ones basically only manipulate and enhance the product model. The whole de-
velopment should be seen as an incremental and iterative process with the goal
to work out the comprehensive artefact model.

• Process Model: A comprehensive process model is needed that refers to the
modelling artefacts and to the activities that are needed to complete the architec-
ture model step by step. In particular, according to the consistency notions of the
artefact model, the checking of consistency but also the generating of consistent
parts has to be based on the artefact model. Typically, examples of at least semi-
automatic generation of parts of the model are the generation of component be-
haviour from scenarios, synthesis of state machines from interaction diagrams,
generation of test cases from requirement models, verification of architecture
models, generation of code.

• Process Support: On the artefacts model, beside the relationships that form
the structure of the product model, a careful version and configuration man-
agement has to be established. In the end all artefacts will exist in versions and
certain subsets of the artefacts form consistent configurations describing a
system.

 Architecture Based Specification and Verification of Embedded Software Systems 5

It is clear that such a comprehensive approach using modelling cannot be introduced
into practical development processes in one step. Therefore transition and migration
scenarios are needed.

Nevertheless we believe that it is important to develop a long-term vision and
based on this long-term vision to show the benefits of a seamless development proc-
ess and to indicate how steps are possible that result in earlier wins when following
such a road map.

3 Comprehensive System Architectures

A comprehensive architecture provides a structured view onto a system. We are in
particular interested in structuring a system in terms of its comprehensive architecture
into a logical and a technical architectural view (see [12]).

3.1 The Logical View

The logical system architecture defines the decomposition of the system into a set of
sub-systems (the components); it constitutes the logical design of the system.

We are interested to provide a formal model for the comprehensive architecture
and all of its views (see Fig. 1). In this paper we concentrate on the logical view onto
modelling the architecture and its foundation.

3.1.1 Functionality: Usage View by Functional Feature Hierarchies
The usage view models the overall functionality of a software (intensive) system.
Such a system offers, in general, a large set of functions, often for a number of differ-
ent classes of users. These functions can be modelled in isolation and later composed
into a comprehensive system functionality. Another issue is the relationship between
this service taxonomy and the logical architecture. The functionality in terms of the
usage/service view is modelled as follows:

• Feature hierarchies describe multi-functional systems by a directed acyclic graph
where each node represents a function (a “functional feature”) and the arcs rep-
resent the subsystem relation. They represent the logical decomposition of the
functionality of a system into sub-functions.

• Additional arcs in the feature hierarchy represent functional dependencies also
called feature interaction.

• The leaves in the hierarchy represent the “atomic” functions that are not further
decomposed.

The usage view sees the system as a hierarchy of functions (features, services) that are
offered by the system to its users.

The function hierarchy, also called service taxonomy is to be specified in the re-
quirements engineering. It comprises (models) all functional requirements. The dy-
namic modelling and specification of atomic functions can be done by specifying
assertions, by state machines, or by interaction diagrams. They describe interaction
patterns given by partial functions on streams.

6 M. Broy

Fig. 1. Comprehensive System Architecture

3.1.2 Logical System Architecture
The logical system architecture captures the design view:

• A set of components that interact by exchanging messages over channels,
• By their co-operation the components generate the behaviour as modelled by

the usage view (if the architecture is correct),
• Components can be further decomposed; this leads to a hierarchical logical

component architecture.

The logical system architecture has to be worked out in the design phase. It comprises
the decomposition of the systems into a set and hierarchy of sub-systems (logical
components) fixing their logical roles.

3.2 The Technical Architecture

The technical architecture describes how the system is implemented technically by a
system of hardware and software.

3.2.1 Software Architecture
The software architecture consists of the design time software architecture that de-
scribes the design classes in terms of the software components and how they work
together. It comprises the application software as well as the software platform
(OSEK, bus systems).

The run time software architecture decomposes a system into tasks and defines
their scheduling.

 Architecture Based Specification and Verification of Embedded Software Systems 7

3.2.2 Hardware Architecture
The hardware architecture consists of controllers (CPUs), the communication devices,
the sensors and actuators as well as the devices of the user interface.

3.2.3 Deployment
The deployment defines the mapping from software units onto the hardware devices.

4 Modeling Systems and Their Architectures

For a comprehensive modeling of the structural and dynamic properties of systems
and their architectures we need a basic system model. It allows us to model systems
and their components, and to construct systems by composition. It should allow us to
work out system specifications, to define logical architectures, to construct implemen-
tations and to carry out verifications.

4.1 A Universal System Model

In the following we outline the framework of the theory of system specification, re-
finement and verification without going into technical or formal details. Such details
can be found in [6] and [9].

4.1.1 Specifying Systems, Its Functions and Their Refinement
We aim at a black box view onto systems. This requires a system model capturing the
system interface. A system interface has a static and a dynamic part. We assume that
we can both describe the static and dynamic properties by a logical formula called
system specification. Let SysSpec be the set of system specifications.

A system function is a partial system behavior that is a “slice” of the system speci-
fication. Like a system a system function has a static and a dynamic specification.
Again, we assume that we can describe both by a logical formula. Let FunSpec be the
set of system functions. A system specification is a special case of a system function
specification.

SysSpec ⊆ FunSpec

A system may offer a set of system functions. For a system specification S ∈ SysSpec
and system function F ∈ FunSpec we write

S offers F

to express that the system specified by S offers the function specified by F. This con-
cept is the basis for the service taxonomy and function hierarchy.

On system functions and system specifications F1, F2 ∈ FunSpec we assume a re-
finement relation; the formula

F1 refinesto F2

expresses that the function specification F2 is a refinement of F1. The refinement
relation is assumed to be a partial order. In the simplest case refinement corresponds

8 M. Broy

to reverse implication. More precisely, since we assume that specifications F1 and F2
are represented by predicates, then we define:

F1 refinesto F2 ⇔ (F1⇐ F2)

This shows that refinement is a transitive and reflexive relation. Assuming that the
logical content of a specification describes it uniquely, refinement is antisymmetric
and thus a partial order.

In more sophisticated cases a function specification F2 ∈ FunSpec is a simulation
of the function specification F1 ∈ FunSpec. To capture simulations formally we need
the mathematical concept of simulations Ψ ∈ SysSim which can be modeled by map-
pings

Ψ: SysFun → SysFun

We assume that we generalize refinement using simulations by the rule that for all
simulations Ψ ∈ SysSim we have:

F1 refinesto F2 ∧ F3 = Ψ(F2) ⇒ F1 refinesto F3

This rule shows that the functional composition of simulations Ψ1, Ψ2 ∈ SysSim to a
mapping Ψ: SysFun → SysFun defined by

Ψ(F) = Ψ2(Ψ1(F))

leads to a refinement again if we assume that the refinement relation is transitive.
Conversely, if we assume that the functional composition of simulations yields simu-
lations the transitivity of refinement via simulation follows.

4.1.2 Composition
Both system specifications and system function specifications can be composed. We
assume a composition operator

⊗: SysFun × SysFun → SysFun

We assume that composition is monotonic for refinement as shown by the following
rule

F1 refinesto G1 ∧ F2 refinesto G2 ⇒ F1⊗ F2 refinesto G1⊗ G2

This rule is very essential, as we will see later.
We assume that ⊗ is a partial composition operator. Only systems and function

specifications that fit (syntactically) together can be composed. Given S1, S2, ... , Sn ∈
SysSpec such that the term

S1⊗S2⊗ ... ⊗Sn

denotes a well-defined system specification again, a system architecture is specified.
Note that S1⊗S2⊗ ... ⊗Sn is a system specification (and leads to a defined composi-
tion) again. Note that the system architecture is given by the specification S1⊗S2⊗ ...
⊗Sn of the sub-systems and by the term S1⊗S2⊗ ... ⊗Sn that shows the structure of the
architecture.

 Architecture Based Specification and Verification of Embedded Software Systems 9

4.2 Implementation

An implementation of a system can be given at the model level by a state machine or
by program code. Let SysImp be the set of system implementations. For P ∈ SysImp
and S ∈ SysSpec we write

S refinesto P

to express that P is a correct implementation. We assume that SysImp ⊆ SysSpec. In
other words, an implementation is a special case of an “operational” system specifica-
tion.

5 Specification and Verification Driven System Evolution

In this section we sketch how a system can be constructed in a specification and veri-
fication driven way based on the concept of a logical architecture.

5.1 Requirements Engineering: Specifying the System Functionality

In the course of requirements engineering a system specification F ∈ SysSpec is
worked out that represents the formal specification of the functional requirements.
This represents the overall system specification. We can specify F by specifying sub-
functions F1, … , Fm ∈ SysFun such that

F offers Fi

holds for all i, 1 ≤ i ≤ m. The F1, … , Fm form the function hierarchy – note that for
some i and j, 1 ≤ i, j ≤ m, we have

Fj offers Fi

This shows that the relation offer defines a partial order on the sub-functions F1, … ,
Fm with F as its upper bound.

5.2 Specifying and Verifying the Architecture

In the course of system evolution the system is decomposed into a set of sub-systems,
called components. We specify S1, S2, ... , Sn ∈ SysSpec are the specifications of these
components such that

S1⊗S2⊗ ... ⊗Sn

forms an architecture of the system.
The architecture is correct if

F refinesto S1⊗S2⊗ ... ⊗Sn

Showing correctness requires the proof of the formula

F ⇐ S1⊗S2⊗ ... ⊗Sn

10 M. Broy

Since we assume that the specifications of S and S1, S2, ... , Sn are given by logical
formulas and the refinesto-relation basically is reverse implication the verification is
equivalent to the proof of a logical statement in predicate logic.

5.3 Implementing the Components

In the next step we have to construct implementations P1, P2, ... , Pn ∈ SysImp for
each of S1, S2, ... , Sn ∈ SysSpec such that for all k = 1, ... , n

Sk refinesto Pk

holds. To prove the correctness of the implementation we have to prove these rela-
tions. Since we assume that the specifications S1, S2, ... , Sn of the components are
given by logical formulas and the refinesto-relation basically is reverse implication
the verification is again equivalent to the proof of a logical statement, if we are able to
prove logical formulas

Sk ⇐ Pk

for the implementations P1, P2, ... , Pn ∈ SysImp.

5.4 Integration and Verification

In the next step we integrate the system component implementations P1, P2, ... , Pn ∈
SysImp into the composed system P ∈ SysImp by

P = P1⊗P2⊗ ... ⊗Pn

By integration we obtain the implementation P of the overall system defined by the
composition of the sub-systems into the implementation P1⊗P2⊗ ... ⊗Pn. The correct-
ness of the implementation is expressed by the proposition

S1⊗S2⊗ ... ⊗Sn refinesto P

This proposition is actually a theorem by the monotonicity of composition for refine-
ment provided all components are correctly implemented.

5.5 Overall System Verification

Finally by integration we have obtained a system that should offer the required func-
tionality as specified by the system requirement specification F. This is a theorem,
however, since the proposition

F refinesto P

follows straightforward from

F = S1⊗S2⊗ ... ⊗Sn ∧ P = P1⊗P2⊗ ... ⊗Pn

and from

S1⊗S2⊗ ... ⊗Sn refinesto P1⊗P2⊗ ... ⊗Pn

by transitivity of refinement and monotonicity of composition.

 Architecture Based Specification and Verification of Embedded Software Systems 11

Fig. 2. The Specification, Refinement, and Verification Process

5.6 Conclusion

Our simple consideration shows that in principle it is possible to specify architectures
in such a precise and formal way that they can be verified before they are imple-
mented. What we have presented is a very idealistic approach where we assume
complete specifications both for the overall system and its architecture on which a
verification proof can be based. In practice, of course, we might use more pragmatic
techniques where we give more prototyping-like descriptions of architectures, perhaps
describing the behaviour of the subcomponents by state machines. This allows us, in
contrast to logical verification, an early verification by simulation, a partial verifica-
tion by model checking, or at least to generate test cases. This could also have the
benefit that from this we can derive quite a number of integration tests that are used in
practice.

What we have described is very much in contrast to what we usually observe in in-
dustry, where architectures are not sufficiently precisely described, in general. As a
result, all the further development work going on that should be based on architec-
tures cannot be done in a sufficiently precise way. Architectures are not precisely
specified and therefore cannot be verified before implementing the sub-systems. Im-
plementations have to be produced although the specifications are not properly
worked out and although it is not clear whether the specifications together form a
correct system when we compose them into the architecture. This is only discovered
very late in the integration phase.

12 M. Broy

As a result in the integration phase a lot of problems arise that are difficult to deal
with because they have to be handled by complex processes between the producers of
the subsystems – in case of the automotive industry often suppliers – and the OEMs
that do the integration. Even corrections of bugs in the components are not so simple
because as long as there is no precise architecture description also it is not clear how
to correct the components such that they work properly together. As a result integra-
tion goes through trial and error, many iterations are needed and lots of bugs might
still remain after the integration phase.

6 Concluding Remarks

What we have presented looks for the first moment only as a very rough and perhaps
superficial description of approaches to the design of software intensive system. Nev-
ertheless, all what is presented has a very precise and in detail worked out counterpart
in the ongoing research in our group. We believe it is important to point out the over-
all philosophy of the approach that at the same time aims at progress in the formal
foundations of system development and makes sure that what is produced there can be
practically used in engineering. In any case, to achieve that we have to work at several
scientific levels including theory, engineering and practice at the same time what is
certainly difficult and needs a large group of researchers but on the other hand might
be the only way to get progress towards a more systematic, formally sound develop-
ment process supported by tools. The feedback between the foundational work und
the practical evaluation and experimentation provides fruitful insights at both for
theory and practice.

What is needed is a deep theoretical understanding and a theory which has all the
required properties, an understanding of engineering issues and ways how to work out
a basis on which the theory can be applied in practice. Finally we need an understand-
ing of the engineering practice and its needs and how it relates to industrial practices.
On this basis experiments can be worked out that on the long run help to transfer the
concepts of such an approach into practice.

Acknowledgements

It is a pleasure for me to thank my colleagues from our research group and our indus-
trial partners for many useful discussions. David Trachtenherz provided a number of
helpful remarks about the manuscript.

References

1. Abrial, J.-R.: Formal methods: Theory becoming practice, vol. 13(5), pp. 619–628 (May
2007)

2. Botaschanjan, J., Gruler, A., Harhurin, A., Kof, L., Spichkova, M., Trachtenherz, D.: To-
wards Modularized Verification of Distributed Time-Triggered Systems. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 163–178. Springer, Hei-
delberg (2006)

 Architecture Based Specification and Verification of Embedded Software Systems 13

3. Botaschanjan, J., Kof, L., Kühnel, C., Spichkova, M.: Towards Verified Automotive Soft-
ware. In: SEAS 2005: Proceedings of the Second International ICSE Workshop on Soft-
ware Engineering for Automotive Systems, pp. 1–6. ACM Press, New York (2005)

4. Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof, L., Paul, W.,
Spichkova, M.: On the Correctness of Upper Layers of Automotive Systems. Formal As-
pects of Computing, FACS (to appear)

5. Broy, M., Krüger, I.H., Meisinger, M.: A Formal Model of Services. ACM Transactions
on Software Engineering and Methodology (TOSEM) 16(1), 5 (2007)

6. Broy, M.: Model-driven architecture-centric engineering of (embedded) software intensive
systems: modeling theories and architectural milestones, vol. 3(1), pp. 75–102 (2007)

7. Broy, M.: The Grand Challenge in Informatics: Engineering Software-Intensive Systems.
IEEE Computer, 72–80 (2006)

8. Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N., Sandner, R.,
Ziegenbein, D.: Auto-MoDe—Notations, Methods, and Tools for Model-Based Develop-
ment of Automotive Software. In: Proceedings of the SAE 2005 World Congress, Detroit,
MI. Society of Automotive Engineers (April 2005)

9. Broy, M.: Two Sides of Structuring Multi-Functional Software Systems: Function Hierar-
chy and Component Architecture. In: Kim, H.-K., Tanaka, J., Malloy, B., Lee, R. (eds.)
Proceedings 5th ACIS International Conference on Software Engineeering Research, Man-
agement & Applications (SERA 2007), August 20 – 22, pp. 3–10. IEEE Computer Soci-
ety, Los Alamitos (2007)

10. Broy, M., Krüger, I.H., Pretschner, A., Salzmann, C.: Engineering Automotive Software.
In: Proceedings of the IEEE, vol. 95(2), pp. 356–373 (February 2007)

11. Pretschner, A., Broy, M., Krüger, I.H., Stauner, T.: Software Engineering for Automotive
Systems: A Roadmap. In: Future of Software Engineering (FOSE 2007). IEEE Computer
Soceity, Los Alamitos (2007)

12. Broy, M., Feilkas, M., Grünbauer, J., Gruler, A., Harhurin, A., Hartmann, J., Penzen-
stadler, B., Schätz, B., Wild, D.: Umfassendes Architekturmodell für das Engineering
eingebetteter Softwareintensiver Systeme, Modellierungstheorien und Architekturebenen.
Technical Report. Technische Universität München

13. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless Model-
based Development: from Isolated Tools to Integrated Model Engineering Environments.
IEEE (to appear)

14. Dijkstra, E.W.: Notes on Structured Programming. In: Dahl, O.-J., Hoare, C.A.R., Dijkstra,
E.W. (eds.) Structured Programming. Academic Press, New York (1972)

15. Parnas, D.: On the criteria to be used to decompose systems into modules. Comm.
ACM 15, 1053–1058 (1972)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, p. 14, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Information System Engineering Supporting
Observation, Orientation, Decision,

and Compliant Action

Dimitrios Georgakopoulos

Telcordia, USA

The majority of today's software systems and organizational/business structures
have been built on the foundation of solving problems via long-term data col-
lection, analysis, and solution design. This traditional approach of solving prob-
lems and building corresponding software systems and business processes, falls
short in providing the necessary solutions needed to deal with many problems
that require agility as the main ingredient of their solution. For example, such
agility is needed in responding to an emergency, in military command control,
physical security, price-based competition in business, investing in the stock
market, video gaming, network monitoring and self-healing, diagnosis in emer-
gency health care, and many other areas that are too numerous to list here. The
concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding princi-
pal that captures the fundamental issues and approach for engineering informa-
tion systems that deal with many of these problem areas. However, there are
currently few software systems that are capable of supporting OODA. In this
talk, we provide a tour of the research issues and state of the art solutions for
supporting OODA. In addition, we provide specific examples of OODA solu-
tions we have developed for the video surveillance and emergency response
domains.

Modelling Coordination and Compensation

He Jifeng�

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, China

Abstract. Transaction-based services are increasingly being applied in
solving many universal interoperability problems. Exception and failure
are the typical phenomena of the execution of long-running transactions.
To accommodate these new program features, we extend the Guarded
Command Language [10] by addition of compensation and coordination
combinators, and enrich the standard design model [15] with new health-
iness conditions. This paper shows that such an extension is conservative
one because it preserves the algebraic laws for designs, which can be used
to reduce all programs to a normal form algebraically. We also explore
a Galois link between the standard design model with our new model,
and show that the embedding from the former to the latter is actually a
homomorphism.

1 Introduction

With the development of Internet technology, web services play an important
role to information systems. The aim of web services is to achieve the universal
interoperability between different web-based applications. In recent years, in
order to describe the infrastructure for carrying out long-running transactions,
various business modelling languages have been introduced, such as XLANG,
WSFL, BPEL4WS (BPEL) and StAC [25,16,9,7].

Coordination and compensation mechanisms are vital in handling exception
and failure which occur during the execution of a long-running transaction. But-
ler et al. investigated the compensation feature in a business modelling language
StAC (Structured Activity Compensation) [6]. Further, Bruni et al. studied the
transaction calculi for StAC programs, and provided a process calculi in the form
of Java API. [4]. Qiu et al. have provided a deep formal analysis of the coordina-
tion behaviour for BPEL-like processes [23]. Pu et al. formalised the operational
semantics for BPEL [22], where bisimulation has been considered. The π-calculus
has been applied in describing various compensable program models. Lucchi and
Mazzara defined the semantics of BPEL within the framework of the π-calculus
[19]. Laneve and Zavattaro explored the application of the π-calculus in the
formalisation of the compensable programs and the standard pattern of com-
position [17]. We introduced the notation of design matrix to describe various
irregular phenomena of compensable programs in [12,13].
� This work was supported by the National Basic Research Program of China (Grant

No. 2005CB321904) and Shanghai Leading Academic Discipline Project B412.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 15–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 H. Jifeng

This paper is an attempt at taking a step forward to gain some perspectives
on long-running transactions within the design calculus [15]. Our novel contri-
butions include

– an enriched design model to handle exception and program failure.
– a set of new programming combinators for compensation and coordination
– an algebraic system in support of normal form reduction.
– a Galois link between the standard design model with our new model

The paper is organised as follows: Section 2 provides a mathematical framework
to describe the new program features. Section 3 extends the Guarded Command
Language by addition of compensation and coordination combinators to syn-
chronise the activity of programs. It also investigates the algebraic properties of
our new language. We introduce normal form in Section 4, and show that all
programs can be reduced to a normal form algebraically. Section 5 establishes a
Galois link between the standard design model with our new model, and prove
that the embedding from the former to the latter is a homomorphism. The paper
concludes with a short summary.

2 An Enriched Design Model

In this section we work towards a precise characterisation of the class of de-
signs [15] that can handle new programming features such as program failure,
coordination and compensation.

A subclass of designs may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that
all of them are equivalent. This section will put forward additional healthiness
conditions to capture such a subclass of designs. We leave their corresponding
algebraic laws in Section 3.

2.1 Exception Handling

To handling exception requires a more explicit analysis of the phenomena of
program execution. We therefore introduce into the alphabet of our designs a
pair of Boolean variables eflag and eflag′ to denote the relevant observations:

– eflag records the observation that the program is asked to start when the
execution of its predecessor halts due to an exception.

– eflag′ records the observation that an exception occurs during the execution
of the program.

The introduction of error states has implication for sequential composition: all
the exception cases of program P are of course also the exception cases of P ;Q.
Rather than change the definition of sequential composition given in [15], we
enforce these rules by means of a healthiness condition: if the program Q is asked
to start in an exception case of its predecessor, it leaves the state unchanged

Modelling Coordination and Compensation 17

(Req1) Q = II � eflag �Q

when the design II adopts the following definition

II =df true � (s′ = s)

where s denotes all the variables in the alphabet of Q.
A design is Req1-healthy if it satisfies the healthiness condition Req1. Define

H1(Q) =df (II � eflag�Q)

Clearly H1 is idempotent. As a result, Q is Req1 healthy if and only if Q lies in
the range of H1.

The following theorem indicates Req1-healthy designs are closed under con-
ventional programming combinators.

Theorem 2.1

(1) H1(P �Q) = H1(P) � H1(Q)

(2) H1(P � b�Q) = H1(P) � b�H1(Q)

(3) H1(P ;H1(Q)) = H1(P);H1(Q)

2.2 Rollback

To equip a program with compensation mechanism, it is necessary to figure out
the cases when the execution control has to rollback. By adopting the tech-
nique used in the exception handling model, we introduce a new logical variable
forward to describe the status of control flow of the execution of a program:

– forward′ = true indicates successful termination of the execution of the
forward activity of a program. In this case, its successor will carry on with
the initial state set up by the program.

– forward′ = false indicates it is required to undo the effect caused by the ex-
ecution of the program. In this case, the corresponding compensation module
will be invoked.

As a result, a program must keep idle when it is asked to start in a state where
forward = false, i.e., it has to meet the following healthiness condition:

(Req2) Q = II � ¬forward �Q

This condition can be identified by the idempotent mapping

H2(Q) =df II � ¬forward �Q

in the sense that a program meets Req2 iff it is a fixed point of H2.
We can charecterise both Req1 and Req2 by composing H1 and H2. To

ensure that their composition is an idempotent mapping we are going to show
that

18 H. Jifeng

Theorem 2.2

H2 ◦ H1 = H1 ◦ H2

Proof: From the fact that

H1(H2(Q)) = II � eflag ∨ ¬foward �Q = H2(H1(Q))

Define H =df H1 ◦ H2..

Theorem 2.3

A design is healthy (i.e., it satisfies both Req1 and Req2) iff it lies in the range
of H.

The following theorem indicates that healthy designs are closed under the
conventional programming combinators.

Theorem 2.4

(1) H(P �Q) = H(P) � H(Q)

(2) H(P � b�Q) = H(P) � b�H(Q)

(3) H(P ;H(Q)) = H(P);H(Q)

In the following sections, we will confine ourselves to healthy designs only.

3 Programs

This section studies a simple programming language, which extends the Guarded
Command Language [10] by adding coordination constructs. The syntax of the
language is as follows:

P ::= skip | fail | throw | ⊥ | x := e |
P � P | P � b� P | P ;P | b ∗H P |
P cpens P | P else P | P catch P | P or P | P par P |

In the following discussion, v will represent the program variables referred in the
alphabet of the program.

3.1 Primitive Commands

The behaviour of the chaotic program ⊥ is totally unpredictable

⊥ =df H(true)

The execution of skip leaves program variables intact.

skip =df H(success)

where success =df true � ((v′ = v) ∧ forward′ ∧ ¬eflag′)
The execution of fail rollbacks the control flow.

fail =df H(rollback)

where rollback =df true � ((v′ = v) ∧ ¬forward′ ∧ ¬eflag′)

Modelling Coordination and Compensation 19

An exception case arises from the execution of throw

throw =df H(error)

where error =df true � ((v′ = v) ∧ eflag′)

3.2 Nondeterministic Choice and Sequential Composition

The nondeterministic choice and sequential composition have exactly the same
meaning as the corresponding operators on the single predicates defined in [15].

P ;Q =df ∃m • (P [m/s′] ∧Q[m/s])

P �Q =df P ∨Q

The change in the definition of ⊥ and skip requires us to give a proof of the
relevant laws.

Theorem 3.1

(1) skip;P = P = P ; skip

(2) ⊥;P = ⊥
(3) ⊥ � P = ⊥

Proof: Let s = (v, forward, eflag).

(1) skip;P {Theorem 2.4(3)}
= H(success;P) {H(Q) = H((forward ∧ ¬eflag)�;Q)}
= H((true � (s′ = s));P) {(true � (s′ = s);D = D}
= H(P) {P is healthy}
= P

Besides the laws presented in [15] for composition and nondeterministic choice,
there are additional left zero laws for sequential composition.

Theorem 3.2

(1) throw;P = throw

(2) fail;P = fail

Proof:
(1) throw;P {Theorem 2.4(3)}
= H(error;P) {Def of error}
= H(error; (eflag)⊥;P) {P = H(P)}
= H(error; (eflag)⊥;H(P)[true/eflag]) {Def of H}
= H(error; (eflag)⊥) {Def of throw}
= throw

20 H. Jifeng

3.3 Assignment

Successful execution of an assignment relies on the assumption that the expres-
sion will be successfully evaluated.

x := e =df skip[e/x] �D(e) � throw

where the boolean condition D(e) is true in just those circumstances in which e
can be successfully evaluated [21]. For example we can define

D(c) =df true if c is a constant

D(e1 + e2) =df D(e1) ∧ D(e2)

D(e1/e2) =df D(e1) ∧ D(e2) ∧ e2
= 0

D(e1 � b� e2) =df D(b) ∧ (b⇒ D(e1)) ∧ (¬b⇒ D(e2))

Notice that D(e) is always well-defined, i.e., D(D(e)) = true.

Definition 3.1

An assignment is total if its assigning expression is well-defined, and all the
variables of the program appear on its left hand side.

3.4 Conditional

The definition of conditional and iteration take the well-definedness of its
Boolean test into account

P � b�Q =df (D(b) ∧ b ∧ P) ∨ (D(b) ∧ ¬b ∧Q) ∨ ¬D(b) ∧ throw

b ∗H P =df μHX • (P ;X) � b� skip

where μHX•F (X) stands for the weakest Req− healthy solution of the equation
X = F (X).

The alternation is defined in a similar way

if(b1 → P1, .., bn → Pn)fi =df

⎛
⎜⎝

∨
i (D(b) ∧ bi ∧ Pi)∨

D(b) ∧ ¬b ∧⊥ ∨
¬D(b) ∧ throw

⎞
⎟⎠

where b =df

∨
i bi.

The following theorem illustrates how to convert a conditional into an alter-
nation with well-defined boolean guards.

Theorem 3.3

P � b�Q =

if((b�D(b) � false) → P, (¬b �D(b) � false) → Q, ¬D(b) → throw)fi

A similar transformation can be applied to an assignment.

Modelling Coordination and Compensation 21

Theorem 3.4

x := e = (x, y, ..z := (e, y, .., z) �D(e) � (x, y, .., z)) �D(e) � throw

The previous theorems enable us to confine ourselves to well-defined expressions
in later discussion. For total assignment, we are required to reestablish the fol-
lowing laws.

Theorem 3.5

(1) (x := e;x := f(x)) = (x := f(e))

(2) x := e; (P � b(x) �Q) = (x := e;P) � b(e) � (x := e;Q)

(3) (x := e) � b� (x := f) = x := (e� b� f)

(4) (x := x) = skip

The following laws for alternation will be used in later normal form reduction.

Theorem 3.6

Let G denote a list of alternatives.

(1) if(b1 → P1, ... P2, .. bn → Pn)fi = if(bπ(1) → Pπ(1), .., bπ(n) → Pπ(n))fi

where π is an arbitrary permutation of {1, .., n}.
(2) if(b→ if(c1 → Q1, .., cn → Qn)fi, G)fi =

if(b ∧ c1 → Q1, .., b ∧ cn → Qn, G)fi

provided that
∨

k ck = true

(3) if(b→ P, b→ Q, G)fi = if(b→ (P � Q), G)fi

(4) if(b→ P, c→ Q, G)fi = if(b ∨ c→ (P � b �Q) � (Q� c� P), G)fi

(5) if(b1 → P1, .., bn → Pn)fi ; Q = if(b1 → (P1;Q), .., bn → (Pn;Q))fi

(6) if(b1 → P1, .., bn → Pn)fi � Q = if(b1 → (P1 �Q), .., bn → (Pn �Q)fi

(7) if(b1 → P1, .., bn → Pn)fi ∧ Q = if(b1 → (P1 ∧Q), .., bn → (Pn ∧Q))fi

provided that
∨

k bk = true

(8) if(false→ P, G)fi = if(G)fi

(9) if(b1 → P1, .., bn → Pn)fi = if(b1 → P1, .., bn → Pn, ¬ ∨i bi → ⊥)fi

(10) if(true→ P)fi = P

3.5 Exception Handling

Let P and Q be programs. The notation P catch Q represents a program which
runs P first, and if its execution throws an exception case then Q is activated.

P catch Q =df H(P ;φ(Q))

where φ(Q) =df II � ¬eflag �Q[false, true/eflag, forward]

22 H. Jifeng

Theorem 3.7

(1) P catch (Q catch R) = (P catch Q) catch R

(2) (throw catch Q) = Q = (Q catch throw)

(3) P catchQ = P if P ∈ {⊥, fail, (v := e)}
(4) if(b1 → P1, .., bn → Pn)fi catch Q =

if(b1 → (P1 catch Q), .., bn → (Pn catch Q))fi

(5) (P � Q) catch R = (P catch R) � (Q catch R)

(6) P catch (Q � R) = (P catch Q) � (P catch R)

Proof:
(1) LHS {Def of catch}
= H(H(P ;φ(Q));φ(R)) {Def of H}
= H((forward ∧ ¬eflag)�;
H(P ;φ(Q));φ(R)) {Q� false� P = P}

= H(P ;φ(Q);φ(R)) {φ(Q);φ(R) = φ(Q;φ(R))}
= H(P ;φ(Q;φ(R))) {φ(S) = φ(H(S))}
= H(P ;φ(H(Q;φ(R)))) {Def of catch}
= H(P ;φ(Q catchR)) {Def of catch}
= RHS

(2) throwcatchQ {Def of catch}
= H(throw;φ(Q)) {Def of throw}
= H(Q[false, true/eflag, forward]) {Def of H}
= H(Q) {Q = H(Q)}
= Q {φthrow = skip}
= Q catchthrow

(3) LHS {Def of catch}
= H((v := e);φ(Q)) {Def of H}
= H((forward ∧ ¬efalg)�; (v := e);φ(Q)) {e is well-defined}
= H((forward ∧ ¬efalg)�; (v := e);

(forward ∧ ¬eflag)⊥;φ(Q)) {Def of φ}
= H((forward ∧ ¬efalg)�; (v := e);

(forward ∧ ¬eflag)⊥) {(v := e) = H(v := e)}
= RHS

Modelling Coordination and Compensation 23

(5) LHS {Def of catch}
= H(if(b1 → P1, bn → Pn)fi ; φ(R)) {Theorem 3.6(5)}
= H(if(b1 → (P1;φ(R),

bn → (Pn;φ(R))fi {Theorem 2.4(2)}
= RHS

3.6 Compensation

Let P and Q be programs. The program P cpensQ runs P first. If its execution
fails, then Q is invoked as its compensation.

P cpens Q =df H(P ;ψ(Q)

where ψ(Q) =df (II � forward ∨ eflag�Q[true/forward])

Theorem 3.8

(1) P cpens (Q cpens R) = (P cpens Q) cpens R

(2) P cpens Q = P if P ∈ {throw, ⊥, (v := e)}
(3) (failcpensQ) = Q = (Q cpens fail)

(4) if(b1 → P1, .., bn → Pn)fi cpensQ =

if(b1 → (P1 cpensQ), .., bn → (P cpensQ))fi

(5) (P � Q) cpensR = (P cpensR) � (Q cpensR)

(6) P cpens (Q � R) = (P cpensQ) � (P cpensR)

(7) (v := e;P) cpensQ = (v := e); (P cpensQ)

Proof:

Let B =df (forward ∧ ¬eflag).
(1) RHS {Def of cpens}
= H(H(P ;ψ(Q));ψ(R)) {Def of H}
= H(B�;H(P ;ψ(Q));ψ(R)) {Q� false� P = P}
= H(P ;ψ(Q);ψ(R)) {ψ(Q;ψ(R) = ψ(Q;φ(R))}
= H(P ;ψ(Q;ψ(R))) {ψ(Q) = ψ(H(Q))}
= H(P ;ψ(H(Q;ψ(R)))) {Def of cpens}
= LHS

24 H. Jifeng

(7) LHS {Def of cpens}
= H(v := e;P ;ψ(Q)) {B�; (v := e) = B�; (v := e);B⊥}
= H(v := e;B⊥;P ;ψ(Q)) {Def of H}
= H(v := e;B⊥;H(P ;ψ(Q))) {B�; (v := e) = B�; (v := e);B⊥}
= H(v := e;H(P ;ψ(Q))) {Theorem 2.4(3)}
= RHS

3.7 Coordination

Let P and Q be programs. The program P elseQ behaves like P if its execution
succeeds. Otherwise it behaves like Q.

P else Q =df (P ; forward�) ∨ (∃t′ • P [false/forward′] ∧Q)

where t denotes the vector variable < ok, eflag, v >.

Theorem 3.9

(1) P else P = P

(2) P else (Q else R) = (P else Q) else R

(3) P else Q = P if P ∈ {⊥, (v := e), (v := e; throw)}
(4) (x := e fail) elseQ = Q

(5) if(b1 → P1, ..., bn → Pn)fi else R =

if(b1 → (P1 else R), .., bn → (Pn else R))fi

(6) P else if(c1 → Q1, ..., cn → Qn)fi =

if(c1 → (P else Q1), .., cn → (P else Qn))fi

provided that
∨

k ck = true

(7) (P � Q) else R = (P else R) � (Q else R)

(8) P else (Q � R) = (P else Q) � (P else R)

Proof:

(1) LHS {Def of else}
= P ; forward� ∨ ∃t′ • P [false/forward′] ∧ P {predicate calculus}
= (∃t′ • P [false/forward′] ∨ ¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′])∧

(P ; forward�) ∨ ∃t′ • P [false/forward′] ∧ P {forward� ∨ II = II}
= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ (P ; forward�) ∨
∃t′ • P [false/forward′] ∧ P {P ; II = P}

= (¬∃t′ • P [false/forward′] ∧ ∃t′ • P [true/forward′]) ∧ P ∨
∃t′ • P [false/forward′] ∧ P {predicate calculus}

= (∃t′ • P [true/forward′] ∨ ∃t′P [false/forward′]) ∧ P {∃t′, forward′ • P = true}
= RHS

Modelling Coordination and Compensation 25

(6) LHS {Def of else}
= P ; forward� ∨ ∃t′ • P [false/forward′]∧

if(c1 → Q1, .., cn → Qn)fi {Theorem 3.6(7)}
= P ; forward� ∨ if(c1 → ∃t′ • P [false/forward′] ∧Q1, ...

cn → ∃t′ • P [false/forward′] ∧Qn)fi {Theorem 3.6(6)}
= if(c1 → (P ; forward� ∨ ∃t′ • P [false/forward′] ∧Q1), ..

cn → (P ; forward� ∨ ∃t′ • P [false/forward′] ∧Qn))fi {Def of else}
= RHS

The choice construct P orQ selects a successful one between P and Q. When
both P and Q succeed, the choice is made nondeterministically.

P or Q =df (P else Q) � (Q else P)
Theorem 3.10

(1) P orP = P

(2) P orQ = Q orP

(3) (P or , Q) orR = P or (Q orR)

(4) if(b1 → P1, .., bn → Pn)fi orQ = if(b1 → (P1 orQ), ..., bn → (Pn orQ))fi

provided that
∨

k bk = true

(5) (P � Q) orR = (P orR) � (Q orR)

Proof:

(1) From Theorem 3.9(1)

(2) From the symmetry of �
(3) From Theorem 3.9(2)

(4) From Theorem 3.9(7) and (8)

(5) From Theorem 3.9(9) and (10)

Let P and Q be programs with disjoint alphabets. The program P parQ runs
P and Q in parallel. It succeeds only when both P and Q succeed. Its behaviour
is described by the parallel merge construct defined in [15]:

P par Q =df (P‖MQ)

where the parallel merge operator ‖M is defined by

P ‖M Q =df (P [0.m′/m′]‖Q[1.m′/m′]);M(ok, 0.m, 1.m, m′, ok′)

where m represents the shared variables forward and eflag of P and Q, and ‖
denotes the disjoint parallel operator

(b � R)‖(c � S) =df (b ∧ c) � (R ∧ S)

and the merge predicate M is defined by

26 H. Jifeng

M =df

true �

⎛
⎜⎝

(eflag′ = 0.ef lag1∨ 1.ef lag)∧
(¬0.ef lag ∧ ¬1.ef lag) ⇒ (forward′ = 0.forward1 ∧ 1.forward)∧
(v′ = v)

⎞
⎟⎠

We borrow the following definition and lemma from [15] to explore the algebraic
properties of par.

Definition 3.2 (valid merge)

A merge predicate N(ok, 0.m, 1.m, m′, ok′) is valid if it is a design satisfying
the following properties

(1) N is symmetric in its input 0.m and 1.m

(2) N is associative

N3(1.m, 2.m, 0.m/0.m, 1.m, 2.m] = N3

where N3 is a three-way merge relation

N3 =df ∃x, t •N(ok, 0.m, 1.m, x, t) ∧N(t, x, 2.m, m′, ok′)

(3) N [m, m, /0.m, 1.m] = true � (m = m′) ∧ (v′ = v)

where m represents the shared variables of parallel components.

Lemma 3.1

If N is valid then the parallel merge ‖N is symmetric and associative.
From the definition of the merge predicate M we can show that M is a valid

merge predicate.

Theorem 3.11

(1) (P par Q) = (Q par P)

(2) (P par Q) par R = P par (Q par R)

(3) ⊥ par Q = ⊥
(4) if(b1 → P1, ..., bn → Pn)fi par Q =

if(b1 → (P1 par Q), ..., bn → (Pn par Q))fi

(5) (P � Q) par R = (P par R) � (Q par R)

(6) (v := e;P) par Q = (v := e); (P par Q)

(7) fail par throw = throw

(8) fail par fail = fail

(9) throw par throw = throw

(10) skipA parQ = Q+A

(b � R)+{x, ..,z} =df b � (R ∧ x = x′ ∧ .. ∧ z′ = z)

Modelling Coordination and Compensation 27

Proof:

(1) and (2): From Lemma 3.1.

(3) From the fact that ⊥‖Q = ⊥ and ⊥;M = ⊥
(4) From Theorem 3.6(5) and the fact that

if(b1 → P1, ..., bn → Pn)fi‖Q = if(b1 → (P1‖Q), .., bn → (Pn‖Q))fi

(5) From the fact that (P �Q)‖R = (P ‖R) � (Q ‖R)

(6) From the fact that (v := e;P)‖Q = (v := e); (P‖Q)

4 Normal Form

The normal form we adopt for our language is an alternation of the form:

if(b1 → �i∈S1(v :=ei), b2 → �j∈S2(v := fj ; fail), b3 → �k∈S3(v := gk; throw)fi

where all expressions are well-defined, and all assignments are total, and all the
index sets Si are finite. The objective of this section is to show that all finite
programs can be reduced to normal form. Our first step is to prove that normal
forms are closed under the programming combinators defined in the previous
section.

Theorem 4.1

Let P = if (b1 → P1, b2 → P2, b3 → P3)fi

and Q = if (c1 → Q1, c2 → Q2, c3 → Q3)fi, where
P1 = �i∈S1(v := e1i) Q1 = �i∈T1(v := f1i)
P2 = �j∈S2(v := e2j); fail Q2 = �j∈T2(v := f2j); fail
P3 = �k∈S3(v := e3k); throw Q3 = �k∈T3(v := f3k); throw

Then P �Q =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ c ∨ c1 ∧ b) →
�i∈S1, j∈T1(v := (e1i � b1 � f1j)) � (v := (f1j � c1 � e1i))

(b2 ∧ c ∨ c2 ∧ b) →
�i∈S2, j∈T2(v := (e2i � b2 � f2j)) � (v := (f2j � c2 � e2i)); fail

(b3 ∧ c ∨ c3 ∧ b) →
�i∈S3, j∈T3(v := (e3i � b1 � f3j)) � (v := (f3j � c1 � e3i)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

fi

where b =df b1 ∨ b2 ∨ b3 and c =df c1 ∨ c2 ∨ c3

28 H. Jifeng

Proof: LHS {Theorem 3.6(6)}
= if(b1 → (P1 �Q), b2 → (P2 �Q), b3 → (P3 �Q))fi

{Theorem 3.6(6)}

= if

⎛
⎝
b1 → if(c1 → (Q1 � P1), c2 → (Q2 � P1), c3 → (Q3 � P1))fi
b2 → if(c1 → (Q1 � P2), c2 → (Q2 � P2), c3 → (Q3 � P2))fi
b3 → if(c1 → (Q1 � P3), c2 → (Q2 � P3), c3 → (Q3 � P3))fi

⎞
⎠fi

{Theorem 3.6(2) and (9)}

= if

(
(b1 ∧ c) → P1, (b2 ∧ c) → P2, (b3 ∧ c) → P3,

(b ∧ c1) → Q1, (b ∧ c2) → Q2, (b ∧ c3) → Q3

)
fi

{Theorem 3.6(4)}

= if

⎛
⎝

(b1 ∧ c ∨ b ∧ c1) → (P1 � b1 �Q1) � (Q1 � c1 � P1)
(b2 ∧ c ∨ b ∧ c2) → (P2 � b2 �Q2) � (Q2 � c2 � P2)
(b3 ∧ c ∨ b ∧ c3) → (P3 � b3 �Q3) � (Q3 � c3 � P3)

⎞
⎠fi

{Theorem 3.5(3)}
= RHS

Let

W =df if(b1 → (x := e1), b2 → (x := e2); fail, b3 → (x := e3); throw)fi

R =df if(c1 → (x := f1), c2 → (x := f2); fail, c3 → (x := f3); throw)fi

Theorem 4.2

W ;R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ c1[e1/x]) → (x := f1(e1))

(b2 ∧ (¬b1 ∨ c[e1/x]) ∨ b1 ∧ c2[e1/x]) →
(x := (e2 � b2 � f2[e1/x]) � x := (f2[e1/x] � c2[e1/x] � e2)); fail

(b3 ∧ (¬b1 ∨ c[e1/x]) ∨ b1 ∧ c3[e1/x]) →
(x := (e3 � b3 � f3[e1/x]) � x := (f3[e1/x] � c3[e1/x] � e3)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof:
LHS {Theorem 3.6(5)}

= if(b1 → (x := e1);R, b2 → (x := e2); fail, b3 → (x := e3); throw)fi
{Theorem 3.5(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎝

b1 → if

⎛
⎜⎝
c1[e1/x] → (x := f1[e1/x]),

c2[e1/x] → (x := f2[e1/x]); fail,

c3[e1/x] → (x := f3[e1/x]); throw

⎞
⎟⎠fi

b2 → (x := e2); fail

b3 → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(2) and (3)}

Modelling Coordination and Compensation 29

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ c1[e1/x] → (x := f1[e1/x]),

b1 ∧ c2[e1/x] → (x := f2[e1/x]); fail,

b2 ∧ ¬(b1 ∧ ¬c[e1/x]) → (x := e2); fail

b1 ∧ c3[e1/x] → (x := f3[e1/x]); throw,

b3 ∧ ¬(b1 ∧ ¬c[e1/x]) → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.3

W catchR =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ (¬b3 ∨ c[e3/x]) ∨ b3 ∧ c1[e3/x]) →
(x := (e1 � b1 � f1[e3/x]) � x := (f1[e3/x] � c1[e3/x] � e1))

(b2 ∧ (¬b3 ∨ c[e3/x]) ∨ b3 ∧ c2[e3/x]) →
(x := (e2 � b2 � f2[e3/x]) � x := (f2[e3/x] � c2[e3/x] � e2)); fail

(b3 ∧ c3[e3/x]) → (x := f3[e3/x]); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof:
LHS {Theorem 3.7(2) and (3)}

= if(b1 → (x := e1), b2 → (x := e2); fail, b3 → (x := e3);R)fi

{Theorem 4.6(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 → (x := e1),

b2 → (x := e2); fail,

b3 → if

⎛
⎜⎝
c1[e3/x] → (x := f1[e3/x]),

c2[e3/x] → (x := f2[e3/x]); fail,

c3[e3/x] → (x := f3[e3/x]); throw

⎞
⎟⎠fi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 4.6(2) and (3)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ (¬b3 ∨ c[e3/x]) → (x := e1),

b3 ∧ c1[e3/x] → (x := f1[e3/x]),

b2 ∧ (¬b3 ∨ c[e3/x]) → (x := e2); fail

b3 ∧ c2[e3/x] → (x := f2[e3/x]); fail,

b3 ∧ c3[e3/x] → (x := f3[e3/x]); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

30 H. Jifeng

Theorem 4.4

W cpensR =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b1 ∧ (¬b2 ∨ c[e2/x]) ∨ b ∧ c1[e2/x]) →
(x := (e1 � b1 � f1[e2/x]) � x := (f1[e2/x] � c1[e2/x] � e1))

(b2 ∧ c2[e2/x]) → (x := f2[e3/x]); fail

(b3 ∧ (¬b2 ∨ c[e3/x]) ∨ c3[e2/x] ∧ b) →
(x := (e3 � b3 � f3[e2/x]) � x := (f3[e2/x] � c3[e2/x] � e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

Proof: Similar to Theorem 4.3.

Theorem 4.5

W elseR =

if

⎛
⎜⎝

(b1 ∧ c ∨ b ∧ c1) → (x := (e1 � b1 � f1) � x := (f1 � c1 � e1))

(b2 ∧ c2) → (x := f2); fail

(b3 ∧ c ∨ c3 ∧ b) → (x := (e3 � b3 � f3) � x := (f3 � c3 � e3)); throw

⎞
⎟⎠fi

Proof: LHS {Theorem 4.9(2) and (3)}
= if(b1 → (x := e1), b2 → R, b3 → (x := e3); throw)fi

{Theorem 4.6(2)}

= if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1 ∧ (¬b2 ∨ c) → (x := e1),

b2 ∧ c1 → (x := f1),

b2 ∧ c2 → (x := f2); fail,

b2 ∧ c3 → (x := f3); throw,

b3 ∧ (¬b2 ∨ c) → (x := e3); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.6

W � d�R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(d̂ ∧ b1 ∨ ¬̂d ∧ c1) →
(x := (e1 � b1 � f1) � x := (f1 � c1 � e1))

(d̂ ∧ b2 ∨ ¬̂d ∧ c2) →
(x := (e2 � b2 � f2) � x := (f2 � c2 � e2)); fail

(d̂ ∧ b2 ∨ ¬̂d ∧ c2 ∨ ¬D(d)) →
(x := ((e3 � b3 � f3) �D(d) � x)�
x := ((f3 � c3 � e3) �D(d) � x)); throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

fi

where d̂ =df d�D(d) � false

Modelling Coordination and Compensation 31

Proof: LHS {Theorem 3.3}
= if(d̂→ W, ¬̂d→ R, ¬D(d) → throw)fi

{Theorem 3.6(2) and (3)}

= if

⎛
⎜⎜⎜⎜⎝

d̂ ∧ b1 ∧ c→ (x := e1), ¬̂d ∧ c1 ∧ b→ (x := f1),

d̂ ∧ b2 ∧ c→ (x := e2); fail, ¬̂d ∧ c2 ∧ b→ (x := f2); fail,

d̂ ∧ b3 ∧ c→ (x := e3); throw, ¬̂d ∧ c3 ∧ b→ (x := f3); throw,

¬D(d) → throw

⎞
⎟⎟⎟⎟⎠

fi

{Theorem 3.6(4)}
= RHS

Theorem 4.7

(x := e) parR = if

⎛
⎜⎝
c1 → (x, y := e, f1),

c2 → (x, y := e, f2); fail,

c3 → (x, y := e, f3); throw

⎞
⎟⎠fi

Proof:
LHS {Theorem 4.11(4)}

= if

⎛
⎜⎝
c1 → ((x := e) par (y := f1)),

c2 → ((x := e) par (y := f2; fail)),

c3 → ((x := e) par (y := f3; throw))

⎞
⎟⎠fi {Theorem 4.11(6) and (10)}

= RHS

Theorem 4.8

(x := e; fail) par R =

if

⎛
⎜⎝
c1 ∨ c2 →

(x, y := (e, f1) � c1 � (e, f2) � x, y := (e, f2) � c2 � (e, f1)); fail

c3 → (x, y := e, f3); throw

⎞
⎟⎠fi

Proof: Similar to Theorem 4.7.

Theorem 4.9

(x := e; throw) par R =

if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1 ∨ c2 ∨ c3 →⎛
⎜⎜⎜⎜⎝

(x, y := ((e, f1) � c1 � (e, f2)) � c1 ∨ c2 � (e, f3))�
(x, y := ((e, f2) � c2 � (e, f1)) � c1 ∨ c2 � (e, f3))�
(x, y := (e, f3) � c3 � ((e, f1) � c1 � (e, f2)))�
(x, y := (e, f3) � c3 � ((e, f2) � c2 � (e, f1)))

⎞
⎟⎟⎟⎟⎠

; throw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

fi

32 H. Jifeng

Proof: Similar to Theorem 4.7

Now we are going to show that all primitive commands can be reduced to a
normal form.

Theorem 4.10

skip = if(true→ (v := v))fi

Proof: skip {Theorem 3.5(4)}
= v := v {Theorem 4.6(10)}
= if(true→ v := v)fi

Theorem 4.11

fail = if(true→ (v := v); fail)fi

Proof: Similar to Theorem 4.10.

Theorem 4.12

throw = if(true→ (v := v); throw)fi

Proof: Similar to Theorem 4.10.

Theorem 4.13

⊥ = if()fi

Proof: From Theorem 4.6(10).

Theorem 4.14

x := e = if(D(e) → (x, y, .., z := (e�D(e) � x), y, .., z), ¬D(e) → throw)fi

Proof: From Theorem 4.4.

Finally we reach the conclusion.

Theorem 4.15

All finite program can be reduced to a normal form.

Proof: From Theorem 4.1–4.14.

5 Link with the Original Design Model

This section explores the link between the model of Section 2 with the original
design model given in [15].

For any design P and Req-healthy design Q we define

F(P) =df H(P ; success)

G(Q) =df Q[true, false/forward, eflag]; (forward ∧ ¬eflag)⊥

Modelling Coordination and Compensation 33

Theorem 5.1

F and G form a Galois connection:

(1) G(F(P)) = P

(2) F(G(Q)) � Q

Proof: G(F(P)) {Def of F and G}
= P ; success; (true � (v′ = v)) � forward ∧ ¬eflag �⊥)

{Def of success}
= P ; (true � (v′ = v)) {unit law of ; }
= P

F(G(Q)) {Def of F and G}
= H(Q[true, ¬false/forward, eflag];

(true � (v′ = v) � forward ∧ ¬eflag �⊥); success)

{Def of H, (P � b�Q);R = (P ;R) � b� (Q;R)}
= Q; (success� forward ∧ ¬eflag �⊥) {Def of sucess}
= Q; ((true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

�forward ∧ ¬eflag �⊥) {⊥ � D}
� Q; (true � (v′ = v ∧ forwared′ = forward ∧ eflag′ = eflag))

{unit law of ; }
= Q

F is a homomorphism.

Theorem 5.2

(1) F(true � (v′ = v)) = skip

(2) F(true � (x′ = e ∧ y′ = y ∧ z′ = z)) = (x := e)

provided that e is well-defined.

(3) F(true) = ⊥
(4) F(P1 � P2) = F(P1) � F(P2)

(5) F(P1 � b� P2) = F(P1) � b� F(P2)

provided that b is well-defined.

(6) F(P1;P2) = F(P1);F(P2)

(7) F(b ∗ P) = b ∗H F(P)

34 H. Jifeng

Proof:
(6) F(P1;P2) {Def of F}
= H(P1;P2; success} {success;P2; success =

P2; success}
= H((P1; success;P2; success)) {(forward ∧ ¬eflag)�; success;Q =

(forward ∧ ¬eflag)�; success;H(Q)}
= H((P1; success);H(P2; success)) {Theorem 2.4}
= H(P1; success);H(P2; success) {Def of F}
= F(P1) ; F(P2)

(7) LHS {fixed point theorem}
= F((P ; b ∗ P) � b� (true � (v′ = v))) {Conclusion (1), (5), (6)}
= (F(P);LHS) � b� skip

which implies that LHS � RHS

G(RHS) {fixed point theorem}
= G((F(P);RHS) � b � skip) {G distributes over � b�}
= G(F(P);RHS) � b� G(skip) {Def of G}
= (F(P)[true, false/forward, eflag];RHS;

(foward ∧ ¬eflag)⊥) � b� (true � (v′ = v)) {Def of F}
= (P ; success;RHS;

(forward ∧ ¬eflag)⊥) � b� (true � (v′ = v)) {Def of success}
= (P ;RHS[true, false/forward, eflag];

(forward ∧ ¬eflag)⊥) � b� (true � (v′ = v)) {Def of G}
= (P ;G(RHS)) � b� (true � (v′ = v))

which implies

G(RHS) � (b ∗ P) {F is monotonic}
⇒ F(G(RHS)) � LHS {Theorem 5.1(2)}
⇒ RHS � LHS

6 Conclusion

This paper presents a design model for compensable programs. We add new
logical variables eflag and forward to the standard design model to deal with
the features of exception and failures. As a result, we put forward new healthiness
conditions Req1 and Req2 to characterise those designs which can be used to
specify the dynamic behaviour of compensable programs.

Modelling Coordination and Compensation 35

This paper treats an assignment x := e as a conditional (Theorem 4.1). After
it is shown that throw is a new left zero of sequential composition, we are allowed
to use the algebraic laws established for the conventional imperative language
in [15] to convert finite programs to normal form. This shows that the model
of Section 2 is really a conservative extension of the original design model in
[15] in the sense that it preserves the algebraic laws of the Guarded Command
Language.

Acknowledgement

The ideas put forward in this paper have been inspired from the discussion with
Tony Hoare, and the earlier work of my colleagues.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

2. Alonso, G., Kuno, H., Casati, F., et al.: Web Services: Concepts, Architectures and
Applications. Springer, Heidelberg (2003)

3. Bhargavan, K., et al.: A Semantics for Web Service Authentication. Theoretical
Computer Science 340(1), 102–153 (2005)

4. Bruni, R., Montanari, H.C., Montannari, U.: Theoretical foundation for compensa-
tion in flow composition languages. In: Proc. POPL 2005, 32nd ACM SIGPLAN-
SIGACT symposium on principles of programming languages, pp. 209–220. ACM,
New York (2004)

5. Bruni, R., et al.: From Theory to Practice in Transactional Composition of Web
Services. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005.
LNCS, vol. 3670, pp. 272–286. Springer, Heidelberg (2005)

6. Bulter, M.J., Ferreria, C.: A process compensation language. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 61–76. Springer,
Heidelberg (2000)

7. Bulter, M.J., Ferreria, C.: An Operational Semantics for StAC: a Lanuage for Mod-
elling Long-Running Business Transactions. LNCS, vol. 2949, pp. 87–104. Springer,
Heidelberg (2004)

8. Butler, M.J., Hoare, C.A.R., Ferreria, C.: A Trace Semantics for Long-Running
Transactions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating
Sequential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

9. Curbera, F., Goland, Y., Klein, J., et al.: Business Process Execution Language
for Web Service (2003), http://www.siebei.com/bpel

10. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1976)

11. Gordon, A.D., et al.: Validating a Web Service Security Abstraction by Typing.
Formal Aspects of Computing 17(3), 277–318 (2005)

12. Jifeng, H., Huibiao, Z., Geguang, P.: A model for BPEL-like languages. Frontiers
of Computer Science in China 1(1), 9–20 (2007)

13. Jifeng, H.: Compensable Programs. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 349–364.
Springer, Heidelberg (2007)

http://www.siebei.com/bpel

36 H. Jifeng

14. Hoare, C.A.R.: Communicating Sequential Language. Prentice Hall, Englewood
Cliffs (1985)

15. Hoare, C.A.R., Jifeng, H.: Unifying theories of programming. Prentice Hall, En-
glewood Cliffs (1998)

16. Leymann, F.: Web Service Flow Language (WSFL1.0). IBM (2001)
17. Laneve, C., et al.: Web-pi at work. In: De Nicola, R., Sangiorgi, D. (eds.) TGC

2005. LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)
18. Jing, L., Jifeng, H., Geguang, P.: Towards the Semantics for Web Services Chore-

ography Description Language. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 246–263. Springer, Heidelberg (2006)

19. Lucchi, R., Mazzara, M.: A Pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming (in press)

20. Milner, R.: Communication and Mobile System: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

21. Morris, J.M.: Non-deterministic expressions and predicate transformers. Informa-
tion Processing Letters 61, 241–246 (1997)

22. Geguang, P., et al.: Theoretical Foundation of Scope-based Compensation Flow
Language for Web Service. LNCS, vol. 4307, pp. 251–266. Springer, Heidelberg
(2006)

23. Qiu, Z.Y., et al.: Semantics of BPEL4WS-Like Fault and Compensation Handling.
In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
350–365. Springer, Heidelberg (2005)

24. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

25. Thatte, S.: XLANG: Web Service for Business Process Design. Microsoft (2001)

Animating Event B Models by Formal Data

Models

Idir Ait-Sadoune and Yamine Ait-Ameur

LISI / ENSMA - Téléport 2 - 1, avenue Clément Ader - B.P. 40109,
86960 Futuroscope Cedex - France
{idir.aitsadoune,yamine}@ensma.fr

Abstract. We present a formal approach allowing to animate event B
formal models. Invariants, deadlock freeness properties are expressed and
proved on these models. This paper presents an approach that suggests
to complete the proof activity in the event B method by animation activ-
ity. The obtained animator may be used to check if the event B models
obtained fulfill user requirements, or to provide a help to the developer
when describing its formal event B models and particularly in defining
event B invariants and guards. More precisely, event B models are trans-
lated into data models expressed in the EXPRESS formal data modeling
technique. The obtained data models are instantiated and provide an
animation of the original B models. Following this approach, it becomes
possible to trigger event B models, which themselves trigger entity in-
stantiation on the EXPRESS side. As a further step, we show that the
B models can be used as a monitoring system raising alarms in case of
incorrect systems behavior. The proposed approach is operationally im-
plemented in the B2EXPRESS tool which handles animation of event
B models. It has been experimented for the validation of multimodal
human interfaces in the context of VERBATIM project1.

1 Introduction

Formal developments of programs or systems based on refinement and proof
consist in defining a succession of models Mi, where Mi+1 is a refinement of
Mi. These models introduce gradually the elements describing the system to be
designed starting from the informally expressed requirements. Properties cor-
responding to requirements, expressed by pre-conditions, post-conditions, in-
variants, etc. are checked and maintained during this development process. In
addition, the correctness of refinement is ensured by a gluing invariant which
preserves the properties established at the previous refinement. To guarantee
the correctness of such developments, a set of proof obligations is associated
to each operation (preservation of the invariant, correctness of refinement, etc).
Discharging these proof obligations is performed either with an automatic prover
(model checkers, theorem provers or type systems) or interactively with a semi-
automatic one.
1 Project funded by the French research agency. http://iihm.imag.fr/nigay/

VERBATIM/

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 37–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 I. Ait-Sadoune and Y. Ait-Ameur

The B method [1,2], in particular the event B method, used in our developments,
is one of the development methods that supports the proof activity, refinement
and code production, but it does not support, in particular, models animation
for requirements validation. Properties related to the requirements are translated
into B expressions and the only way to establish them is by proving the generated
proof obligations. We get a proof based validation.

The possibility of animating event B models at any abstraction level, in a
refinement chain, would enrich the development process by other validation
techniques, offering other possibilities of validating not only the informal re-
quirements, but also the development itself. The interest of such a validation is
double.

- On the one hand, it makes it possible to control if the requirements are taken
into account in the various models. The capability to describe scenarios of
use and to animate the models according to these scenarios is offered to a
user.

- On the other hand, it guides the developer in the proof process. For example
checking if the gluing invariant is satisfied in a given refinement or not.
Offering the possibility of combining both animation of models and formal
proof of their proof obligations provides assistance to a developer.

Both activities help the developer and increase development quality.

There are many event B models animators. We quote ProB [3] based on the
model checking technique. Sequences of events are produced by exploring the
states of the model which causes a combinatorial explosion of explored states
and indeterminism is managed by evaluating finite sets of values. This article
describes the B2EXPRESS animator for event B models. It has been developed
on the basis of a data modeling technique. The animation principle consists
in translating every event B model to a formal data model expressed in the
EXPRESS formal data modeling language [4,5]. The animation process consists
in instantiating EXPRESS model entities. The generation of instances is guided
by a process algebra expression and indeterminism is managed in interaction
with the developer who can choose its values arbitrarily in a finite or potentially
infinite set. EXPRESS instances can be, also, produced by an external running
application and sent to B2EXPRESS. In this case, B can be used as a monitoring
system. This capability is not offered with ProB.

We have structured this paper as follows. First, we present a brief description
of the two formal techniques used in this paper: event B and EXPRESS. Then,
next sections are devoted to the description of the designed animator and the
approach we have proposed. Finally, last section relates our proposal to related
work and focuses on the two B animators Brama [6] and ProB [3].

2 Formal Techniques Implementations

Two formal techniques are put into practice : the event B method which supports
our developments and validation by proof, and the second is the technique of

Animating Event B Models by Formal Data Models 39

EXPRESS data modeling used as a support of the definition of the animator of
event B models and thus of validation by animation. For each technique, only
the major elements needed to understand this article are given.

2.1 Event B Method

Let us briefly describe the B formal method [1,2] in its event version. A model
is defined as a set of variables, defined in the VARIABLES, clause that evolve
thanks to events defined in the EVENTS clause. The notion of Event B model
encodes a state transition system where the variables represent the state and
the events represent the transitions from one state to another. Moreover, the
refinement capability offered by Event B allows to decompose a model (thus a
transition system) into another transition system with more and more design
decisions moving from an abstract level to a less abstract one. Refinement tech-
nique allows to preserve the proved properties and therefore it is not necessary
to prove them again in the refined transition system (which is usually more
complex). The structure of an Event B model is given on figure 1.

MODEL
m1

REFINES
m2

VARIABLES ...
INVARIANT ...
ASSERTIONS ...
INITIALISATION ...
EVENTS

...
END

Fig. 1. The structure of an Event B model

A model m1 is defined by a set of clauses. It may refine another model m2.
Briefly, the clauses mean:

– VARIABLES clause represents the variables of the model of the specifica-
tion. Refinement may introduce new variables in order to enrich the described
system.

– INVARIANT clause describes, thanks to first order logic expressions, the
properties of the attributes defined in the clause VARIABLES. Typing in-
formation and safety properties are described in this clause. These properties
shall remain true in the whole model and in further refinements. Invariants
need to be preserved by the initialisation and events clauses.

– ASSERTIONS are logical expressions that can be proved from the invari-
ants. They do not need to be proved for each event like for the invariant.
Usually, they contain properties expressing that there is no deadlock no live
lock.

40 I. Ait-Sadoune and Y. Ait-Ameur

– INITIALISATION clause allows to give initial values to the variables of
the corresponding clause. They define the initial states of the underlying
transition system.

– EVENTS clause defines all the events that may occur in a given model.
Each event is described by a body thanks to generalized substitutions de-
fined below. Each event is characterized by its guard (i.e. a first order logic
expression involving variables). An event is fired when its guard evaluates to
true.

The semantics of the effect of the initialisation and the events occurring in a
B model on states so described thanks to generalized substitutions. Generalized
substitutions are based on the weakest precondition calculus of Dijkstra [7]. For-
mally, several substitutions are defined in B. If we consider a substitution S and a
predicate P representing a post-condition, then [S]P represents the weakest pre-
condition that establishes P after execution of S. The substitutions occurring in
Event B models are inductively defined by the following expressions [1,2] :

[SKIP]P ⇔ P (1)
[S1 || S2]P ⇔ [S1]P ∧ [S2]P (2)

[ANY v WHERE G THEN S END]P ⇔ ∀v(G⇒ [S]P) (3)
[SELECT G THEN S END]P ⇔ G⇒ [S]P (4)

[BEGIN S END]P ⇔ [S]P (5)
[x := E]P ⇔ P (x/E) (6)

P(x/E) represents the predicate P where all the free occurrences of x are
replaced by the expression E.

Substitutions 1, 2, 5 and 6 represent respectively the empty statement, the
parallel substitution expressing that S1 and S2 are performed in parallel, the
block substitution and the affectation. Substitutions 3 and 4 are the guarded
substitutions where S is performed under the guard G.

In all the previous substitutions, the predicate G represents a guard. Each
event guarded by a guard G is fired if the guard is true and when it is fired, the
post-condition P is established (feasibility of an event). The guards define the
feasibility conditions given by the Fis predicate defined in [1].

Semantics of Event B Models. The events of a model are atomic events.
The associated semantics is an interleaving semantics. Therefore, the semantics
of an Event B model is trace based semantics with interleaving. A system is
characterized by the set of licit traces corresponding to the fired events of the
model which respects the described properties. The traces define a sequence of
states that may be observed by properties. All the properties will be expressed
on these traces.

This approach has proved to be able to represent event based systems like in-
teractive systems. Moreover, decomposition (thanks to refinement) allows build-
ing of complex systems gradually in an incremental manner by preserving the
initial properties thanks to the gluing invariant preservation.

Animating Event B Models by Formal Data Models 41

Refinement of Event B Models. Each Event B model can be refined. A re-
fined model is defined by adding new events, new variables and a gluing invariant.
Each event of the abstract model is refined in the concrete model by adding new
information by expressing how the new set of variables and the new events evolve.
All the new events appearing in the refinement refine the skip event of the refined
model. Each new event corresponds to an ε− transition in the abstract model.

The gluing invariant ensures that the properties expressed and proved at
the abstract level (in the ASSERTIONS and INVARIANTS clauses) are
preserved in the concrete level. Moreover, INVARIANT, ASSERTIONS and
VARIANT clauses allow to express deadlock and live lock freeness.

1. They shall express that the new events of the concrete model are not fired
infinitely (no live lock). A decreasing variant is introduced for this purpose.

2. They shall express that at any time an event can be fired (no deadlock).
This property is ensured by asserting (in the ASSERTIONS clause) that
the disjunction of all the abstract events guards implies the disjunction of all
the concrete events guards.

A Simple Example. Let us consider on the figure 2.a, the specifications of the
clock example [8]. The abstract specification Clock uses one variable h describing
the hours of the clock. Two events are described. The first (incr event) allows to
increment the hour variable. The second event is the zero event. It is fired when
h = 23 to initialize the hour variable.

MODEL REFINEMENT
Clock ClockWMinute

VARIABLES REFINES
h Clock

INVARIANT VARIABLES
h ∈ 0..23 h, m

ASSERTIONS INVARIANT
h < 100 m ∈ 0..59

INITIALISATION ASSERTIONS
h := 13 (h �= 23) ∨ (h = 23) ⇒ (h �= 23 ∧ m = 59)∨

EVENTS (h = 23 ∧ m = 59) ∨ (m �= 59)
incr = SELECT h �= 23 THEN h := h + 1 END ; VARIANT
zero = SELECT h = 23 THEN h := 0 END 59 − m

END INITIALISATION
h := 13 ‖ m := 14

EVENTS
incr = SELECT h �= 23 ∧ m = 59 THEN h := h + 1 ‖ m := 0 END ;
zero = SELECT h = 23 ∧ m = 59 THEN h := 0 ‖ m := 0 END ;
ticT ac = SELECT m �= 59 THEN m := m + 1 END

END

Fig. 2. (a) Example of a B event model. (b) Example of a B event refinement.

In the refinement specification ClockWMinute (figure 2.b), we introduce a new
variable m and a new event ticTac. We enhance the guards of the incr and zero
events in introducing the description of minutes. ASSERTIONS clause allows
to ensure that the new events of the description system can be fired.

2.2 The EXPRESS Data Modeling Language

EXPRESS [4,5] is an object oriented data modeling language, normalised as ISO
10303-11. It was originally defined to represent data models in the engineering

42 I. Ait-Sadoune and Y. Ait-Ameur

area and it is now widely used in several other data modeling domains. The major
advantage of this language is its capability to describe structural, descriptive and
procedural concepts in a common data model and semantics. This integration
avoids the use of several models and languages that require bridging over the
gap between all the defined models (like in UML). A data model in EXPRESS
is represented by a set of schemas that may refer to each other. Each schema
contains two parts. The first part is a set of entities that are structured in an
object oriented approach (supporting multiple inheritance). The second part
contains procedures, functions and global rules used to express constraints.

Entity definition. Entities are named and defined by a set of attributes (may
be an empty set) assigned to each entity. Each attribute has a domain (where it
takes its values) defining a data type. It can be either a simple domain (integer,
string ...) or a structured domain (lists, sets, bags ... hard encoded in EXPRESS)
or an entity type meaning that an attribute is of type another entity.

Figure 3.a shows the entity B with three attributes: a real, a list of strings
and a relation with another entity A which has only one integer attribute. att I
is an inverse attribute of entity A, corresponding to the inverse link defined by
attribute att 3 in entity B.

Entities may have instances. Each entity has an identifier. The attribute val-
ues are either literal values of the EXPRESS simple or structured built-in types
or they are references to other entity instances. An example of a model exten-
sion associated to the previous entity definitions is shown (figure 3.b). The #2
instance of the entity B, where att 1 evaluates to 4.0, att 2 is the list (’hello’,
’bye’) and att 3 points the particular instance #1 of the entity A where its att A
attribute evaluates to 3.

SCHEMA F oo1; # 1=A(3);
2=B(4.0, (’hello’,’bye’), #1);

ENTITY A; ENTITY B;
att A : INT EGER; att 1 : REAL;

INVERSE att 2 : LIST [0 :?] OF STRING;
att I : B FOR att 3; att 3 : A;

END ENTITY; END ENTITY;

END SCHEMA;

Fig. 3. (a) Entity definition. (b) Entity instance.

Multiple inheritance. Inheritance (single and multiple) is introduced by the
SUPERTYPE and SUBTYPE EXPRESS keywords. The SUBTYPE clause
occurring in an entity E is followed by the enumeration of the set of entity names
representing the superclasses of E.

Constraining entities. It is possible to limit the allowed set of instances of the
datamodels to those instances that satisfy some stated constraints.EXPRESSuses
firstorder logicwhich is completelydecidable since the setof instances isfinite.Con-
straints are introduced thanks to the WHERE clause that provides for instance
invariant, and to the global RULE clause that provides for model invariant.

Let us assume that the allowed values for att A in A are [1..10] and that
exactly only two instances of entity A shall have an attribute value equals to 1.

Animating Event B Models by Formal Data Models 43

These constraints are respectively described by the wr1 local rule in entity A
and by the Card global rule both defined on figure (4.a). SELF plays the same
role as this in the C++ or Java Languages.

Derivations and constraints are the only places where functions may occur.
They are inherited. Set inclusion defines the semantics of the EXPRESS inheri-
tance mechanism.

ENTITY A; RULE Card FOR A;
att A : INTEGER; WHERE FUNCTION F (x : typ 1; y : typ 2) : typ 3;
WHERE SIZEOF(QUERY(inst < ∗A| (∗F unction Body; ∗)
wr1 : (SELF.att A >= 1) (inst.att A = 1))) = 2; END FUNCTION;
AND END RULE;
(SELF.att A <= 10);

END ENTITY;

Fig. 4. (a) EXPRESS local and global constraints. (b) EXPRESS function declaration.

Functions and procedures. Functions can be used to associate rules to data.
These rules may be either derivation or (local or global) constraints. Figure
(4.b) shows the function declaration in EXPRESS. This declaration introduces
a function interface with two parameters (x and y) of types typ 1 and typ 2
respectively. The result is of type typ 3. Function Body represents the body of
the defined function. Assignment, sequence and control structures (if statements,
loops and recursion) may be used in the function body. These features give the
same expression possibilities as other recursive specification languages.

2.3 Graphical Representation

To help a user in understanding EXPRESS data models, the EXPRESS-G graph-
ical representation has been defined. It represents the structural and descriptive
constructs of the EXPRESS language (classes and attributes) but the procedural
constructs (derivation and rules) are not represented. The example of figure 5

Fig. 5. EXPRESS-G representation of geometric entities

44 I. Ait-Sadoune and Y. Ait-Ameur

illustrates an EXPRESS-G representation of a simple data model related to
geometrical entities.

In this example geometric entity can be either a circle or a point. A circle has
a center and a radius, and a derived attribute perimeter. A point has coordinates
X, Y, Z but Z may have either a real value or a null value introduced by the
SELECT (sum of types) type real or null value. Finally in this model, a point
can be the center of two circles at the maximum. This is specified by the inverse
attribute is center of.

We described above the concepts necessary for understanding the remainder
of this paper. For more information on the EXPRESS language, the reader may
consult [4,5].

3 Validation by Animation

This section addresses the animation of event B models. Based on a model
transformation, we have built the B2EXPRESS animator. It allows a developer
to validate the behavior of an event B model through the expression of scenarios
encoded by event traces.

3.1 From Event B Models to EXPRESS Data Models

The proposed transformation from B to EXPRESS starts from the observation
that an event B model can be seen as a transition system. So, we consider that
animating an event B model consists in traversing the underlying transition sys-
tem and building traces. Therefore, as a first step, we have defined an EXPRESS
meta-model for:

– transition systems with states and guarded transitions;
– describing the traces that result from the traversal of this transition system.

This model defines a set of generic resources shared by every event B model.
Each translated event B model into an EXPRESS data model subtypes these
generic resources for each particular B model. This process is detailed below.

Transition Systems Meta-Model. The transition systems meta-model of
figure (6.a) is composed of :

– states described by the STATE entity with no attributes;
– transitions of the TRANSITION entity with two attributes of STATE type.

They represent the source (DepState) and target (ArrState) states of this
transition;

– an initial state of the system described in the BEGIN entity by the InitState
attribute.

The abstract entity EVENTS is introduced to gather events. It is abstract
and thus does not have instances.

Animating Event B Models by Formal Data Models 45

ENTITY STATE
ABSTRACT SUPERTYPE ;

END ENTITY ;
ENTITY TRACE

ENTITY EVENTS ABSTRACT SUPERTYPE ;
ABSTRACT SUPERTYPE OF SEQUENCE : LIST [1 : ?] OF EVENTS ;
(ONEOF(BEGIN, TRANSITION)) ; WHERE

END ENTITY ; wr1 : VERIF TRACE(SEQUENCE) = TRUE ;
END ENTITY ;

ENTITY BEGIN
ABSTRACT SUPERTYPE FUNCTION VERIF TRACE (t : LIST [1 : ?] OF EVENTS)
SUBTYPE OF(EVENTS) ; : BOOLEAN ;
InitState : STATE ; (∗F unction Body; ∗)

END ENTITY ; END FUNCTION ;

ENTITY TRANSITION
ABSTRACT SUPERTYPE
SUBTYPE OF(EVENTS) ;
DepState : STATE ;
ArrState : STATE ;

END ENTITY ;

Fig. 6. (a) EXPRESS transition systems meta-model. (b) EXPRESS traces meta
model.

The Meta Model of Traces. In order to support animation, the previous
schema is enriched by the TRACE EXPRESS entity containing the animation
sequence represented by an ordered list of transitions. It represents one possible
sequence of interleaved events. A local constraint (WHERE rule wr1 on figure
(6.b)) ensures that, for each sequence, for two consecutive transitions Ti and
Ti+1, the target state of Ti is the source state of Ti+1. This constraint also
checks that the sequence starts from the initial state.

Transformation of an Event B Model into an EXPRESS Transition
System. Once the generic resources are defined, we are able to describe the
transformation rules from B to EXPRESS. These rules are defined on the struc-
ture of event B models. The transformation process is inductively defined on
the structure of the B models. It is based on the following rules defined for the
representation of the:

a- state variables of the B model (VARIABLES clause) by new attributes in
a new EXPRESS entity that subtypes the entity STATE of the transitions
systems meta-model. The B invariant is examined and analysed in order to
type these attributes;

b- logical properties expressed in the INVARIANT and ASSERTIONS
clauses by global EXPRESS rules (RULE) defined on the STATE entity;

c- INITIALISATION clause by an entity inherited from the BEGIN of the
transitions system meta-model;

d- events in the B clause EVENTS by entities inherited from the EXPRESS
entity TRANSITION of the transitions systems meta-model.

Next, we show how these rules are formally defined.

a- The VARIABLES clause and the typing part of the INVARIANT.
State variables are issued from the VARIABLES clause and their type from
the INVARIANT clause. Each variable is represented by an attribute of the

46 I. Ait-Sadoune and Y. Ait-Ameur

same name typed by an EXPRESS type. The attributes are defined in the VARI-
ABLES EXPRESS entity inherited from STATE entity (see figure 7 for an ex-
ample).

VARIABLES ENTITY VARIABLES
Var1, SUBTYPE OF (STATE);
Var2, Var1 : INTEGER;

... Var2 : BOOLEAN;
INVARIANT ...

Var1 ∈ INTEGER ∧ END ENTITY;
Var2 ∈ BOOL ∧

...

Fig. 7. Example of processing the VARIABLES clause and the typing part of the
INVARIANT

b- The INVARIANT and ASSERTIONS event B clauses. First the
invariant is re-written in a conjunctive normal form. This form allows the ani-
mator to check precisely the parts of the invariant or assertion that are violated
and thus to localize potential errors precisely in the invariant or assertion. The
variables typing expressions are not taken into account here, they are already
processed when declaring the state.

Each logical sub-expression of the invariant is transformated into global EX-
PRESSRULE (see figure 8 for an example). The EXPRESS iteratorQUERY(x<
∗E|P (x)) returning the bag of instances x of E satisfying the predicateP (x) is used.

INVARIANT RULE INVARIANT01 FOR (VARIABLES) ;
Var1 ∈ {0,1} ∧ WHERE
Var1 �= Var3 ∧ QUERY (x < ∗ VARIABLES |

... NOT (x.Var1 IN [0,1])) = [] ;
END RULE ;

RULE INVARIANT02 FOR (VARIABLES) ;
WHERE

QUERY (x < ∗ VARIABLES |
NOT (x.Var1 <> x.Var3)) = [] ;

END RULE ;
...

Fig. 8. Example of a transformation of the INVARIANT clause

c- The INITIALISATION event B clause. An INITIALISATION entity is
derived from the transitions system meta-model by subtyping the entity BEGIN.
Each substitution of the event B INITIALISATION clause is encoded by a
local constraint (WHERE clause in an entity) on the InitState attribute of
the INITIALISATION entity. This constraint expresses the attributes values
obtained after applying the different substitutions (figure 9).

INITIALISATION ENTITY INITIALISATION
Var1 := 1 ‖ SUBTYPE OF (BEGIN) ;
Var2 := TRUE ‖ WHERE

... (InitState.Var1 = 0) AND
(InitState.Var2 = TRUE) AND
...
END ENTITY ;

Fig. 9. Example of a transformation of the INITIALISATION event B clause

Animating Event B Models by Formal Data Models 47

d- The EVENTS event B clause. Each event of the EVENTS event B
clause is transformed into an entity subtyping the entity TRANSITION of the
transitions systems meta-model. The DepState and ArrState are inherited. The
guard and the substitutions of the body of each event are translated into local
constraints attached to the transitions.

Event1 = ENTITY Event1
SELECT SUBTYPE OF (TRANSITION) ;

Var1 = 1 WHERE
THEN Guard : DepState.Var1 = 1 ;

Var1 := 0 Sub : ArrState.Var1 = 0 ;
END ; Const : ArrState.Var2 = DepState.Var2 ;

END ENTITY ;

Fig. 10. Example of a transformation of the EVENTS event B clause

The guard is associated to the transition source state (DepState) and the
substitutions of the body of the event are associated to the transition target state
(ArrState). Finally, additional constraints guarantee that the state variables
that have not been affected by the event substitutions remain the same in the
ArrState. Figure 10 shows an example of a simple event transformation.

At this level, we have defined the transformation rules for the elements of B
which have their corresponding EXPRESS constructs defined in the EXPRESS
language, such as simple types (INTEGER, BOOLEAN, NATURAL) and the
basic operation like the assignment, arithmetic and logical operations.

In parallel to the translation of a B model to an EXPRESS data model,
Java classes used to browse and to instantiate the EXPRESS data model are
generated. These classes are used by the B2EXPRESS tool, described in section
5, to instantiate the EXPRESS data model in order to animate the translated
B model. The generated Java classes can be seen as an implementation of the
given B model, so, this approach can also be used as a Java code generator for B
models. The principle of generating such classes is not addressed in this paper.

3.2 An Example

We discuss an example of an intermediate B refinement Ref 1 (see figure 11).
It consists of querying a database system by giving the name and address of a
person. The system retrieves from the database the results of the query. The
Query event defines different manners of querying the system. It is decomposed
to take into account different interaction possibilities of entering name and ad-
dress. Name and address input events are interleaving events. Finally, the Search
event retrieves from a database the results of the query and the ResultQuery is
devoted to display the result to the user. This interacting scenario is described
by the expression:

“Query = (InputName∗||InputAddress∗);Search;ResultQuery”
where ∗ is the iteration, ; indicates the sequence and || defines the interleaving
operator. The Query event is encoded in the refinement Ref 1 of figure 11.

48 I. Ait-Sadoune and Y. Ait-Ameur

REFINEMENT Ref 1 InputName = SELECT
... ev1 = 2 ∧ nn �= 0
SETS THEN

string nn := nn − 1 ‖ name :∈ string
VARIABLES END ;

querySending, ev1, nn, na,
name, address InputAddress = SELECT

ev1 = 2 ∧ na �= 0
INVARIANT THEN

ev1 ∈ 0..3 ∧ nn ∈ N ∧ na ∈ N∧ na := na − 1 ‖ address :∈ string∧
name ∈ string∧ END ;
address ∈ string ∧
querySending ∈ {0, 1} ∧ Search = SELECT
(querySending = 1 ⇔ ev1 �= 0) ev1 = 2 ∧ nn = 0 ∧ na = 0

... THEN
ev1 := 1

INITIALISATION END ;
querySending := 0 ‖
nn, na := 1, 1 ‖ Query = SELECT
ev1 := 3 ‖ ev1 = 1
name, address :∈ string, string THEN

EVENTS querySending, ev1 := 1, 0
NameAddress = SELECT END;

EV 1 = 3
THEN ResultQuery = . . .

ev1 := ev1 − 1 ‖ nn :∈ N ‖ na :∈ N

END ; END

Fig. 11. Example of an event B model

The name and address variables of string type define the values of the name
and of the address. The nn and na integer variables indicate the arbitrary num-
bers of iterations (corresponding to ∗). They are initialized in the NameAddress
event. Finally, the ev1 variable (decreasing integer variable) initialized to three
is a variant that describes the sequence order of events trigging.

The EVENTS clause on Figure 11 describes the events of Ref 1 refinement.
The NameAddress event initializes the nn and na iterator whereas InputName,
InputAddress and Search events decompose (refine) the Query abstract event.
When these three events are triggered (ev1 = 0), they return the control to the
Query abstract event which ends the sequence.

The application of the transformation rules of section 3.1 to the B model
of figure 11 leads to the EXPRESS code presented in figure 12. The state
variables are represented by a set of attributes in the VARIABLES entity.
The invariant is described in a conjunctive normal form and contains two sub-
expressions represented in the global rules INVARIANT 0 and INVARIANT 1.
The INITIALISATION clause is encoded in the INITIALISATION entity.
The substitutions of this clause are defined by a local constraint, INIT on the
InitState attribute, expressing the values affected to the state variables (e.g.
querySending := 1 becomes InitState.querySending = 1). The event NameAd-
dress is encoded by the entity NameAddress inherited from TRANSITION. The
event guard is represented by the local constraint GUARD (where ev1 = 3 be-
comes DepState.ev1 = 3). Similarly, the substitution are encoded by the SUB
local constraint (e.g. ev1 := ev1−1 becomes ArrState.ev1 = DepState.ev1−1).
The unchanged variables remain unchanged from DepState to ArrState. It is ex-
pressed by the local constraints (cst1, .., cst4). The other events have not been
introduced to keep this paper in a reasonable length.

The EXPRESS models are checked by providing a set of instances. The con-
sistency of this set is ensured by data type, unicity, local and global constraints.
The checking ECCO Toolkit tool [9] supports such checks and provides a Java

Animating Event B Models by Formal Data Models 49

ENTITY V ARIABLES ENTITY INIT IALISATION
SUBTYPE OF (STATE) ; SUBTYPE OF (BEGIN);
querySending : INTEGER; WHERE
ev1 : INTEGER; INIT : (InitState.QuerySending = 1) AND

nn : INTEGER; (′ST RING′ IN T Y PEOF (InitState.name)) AND

na : INTEGER; (′ST RING′ IN T Y PEOF (InitState.adress)) AND
adress : STRING; (InitState.nn = 1) AND
name : STRING; (InitState.na = 1) AND

END ENTITY ; (InitState.ev1 = 3);
END ENTITY;

RULE INV ARIANT 0 F OR (V ARIABLES) ;
WHERE ENTITY NameAddress
QUERY (s < ∗V ARIABLES|TRUE) = SUBTYPE OF (T RANSITION);
QUERY (s < ∗V ARIABLES| WHERE

(s.ev1 >= 0) AND (s.ev1 <= 3)); GUARD : (DepState.ev1 = 3);
END RULE ; SUB : (ArrState.ev1 = DepState.ev1 − 1) AND

(′INTEGER′ IN T Y PEOF (ArrState.nn)) AND

RULE INV ARIANT 1 F OR (V ARIABLES) ; (′INTEGER′ IN T Y PEOF (ArrState.na));
WHERE cst1 : ArrState.name = DepState.name;
QUERY (s < ∗V ARIABLES|TRUE) = ...
QUERY (s < ∗V ARIABLES| cst4 : ArrState.address = DepState.address;

((s.querySending = 1) AND (s.ev1 <> 0)) END ENTITY ;
OR NOT (((s.querySending = 1) AND (s.ev1 <> 0))));

END RULE ; ...

Fig. 12. Translation of a B model in Figure 11 into an EXPRESS model

DATA; #19=INITIALISATION(#1);
#1=VARIABLES(0,3,1,1,.NULL.,.NULL.); #20=NAMEADDRESS(#1,#2);
#2=VARIABLES(0,2,2,1,.NULL.,.NULL.); #21=INPUTNAME(#2,#3);
#3=VARIABLES(0,2,1,1,.NULL.,.DAVID.); #22=INPUTNAME(#3,#4);
#4=VARIABLES(0,2,0,1,.NULL.,.LIONEL.); #23=INPUTADDRESS(#4,#5);
#5=VARIABLES(0,2,0,0,.RENNES.,.LIONEL.); #24=SEARCH(#5,#6);
#6=VARIABLES(0,1,0,0,.RENNES.,.LIONEL.); #25=RESULTQUERY(#6,#7);
#7=VARIABLES(1,0,0,0,.RENNES.,.LIONEL.); #26=QUERY(#7,#8);
#8=VARIABLES(0,3,1,1,.NULL.,.NULL.); #37=VAL TRACE((#19,#20,#21,#22,#23,#24,#25,#26))

ENDSEC;

Fig. 13. Instances corresponding to the EXPRESS model of figure 12

interface allowing to exploit the EXPRESS models and the instances of these
models.

Figure 13 shows a set of instances corresponding to the EXPRESS model of
figure 12. We observe that:

– there are 8 states identified by the instances #1 to #8 and 8 events have
been triggered;

– initialisation is defined by instance #19;
– the events leading from state #1 to state #8 are given by instances #19 to

#26. They correspond to the defined test sequence;
– the trace is described by the instance #37 which defines the sequence in the

order of execution.

4 Processing Higher Order Objects

The transformation process we described above is based on the transitions sys-
tems meta-model and on the EXPRESS language capabilities. However, some B
constructs do not have their corresponding EXPRESS construction (e.g. a func-
tion, an injective function, a domain restriction etc.) and higher order objects
cannot be manipulated in the EXPRESS language. In this case, like for tran-
sition systems, it is required to define a meta-model for higher order objects.
Instead of describing the whole proposed meta-model, we show how a function
is defined from a relation. Figure 14 shows the EXPRESS-G model associated

50 I. Ait-Sadoune and Y. Ait-Ameur

STRING

INTEGER

BOOLEAN

T_STRING

T_INTEGER

T_BOOLEAN

T_ABSTRACTT_DOMAIN

PAIR

S1

S2

SET
Elem S[0..?]

RELATION
Elem S[0..?]

sourceSet

targetSet

FUNCTION

*

*

Fig. 14. EXPRESS-G representation of higher order objects meta-model

to this description corresponding to the EXPRESS meta model we have written
to describe such objects.

The data type domain is extended to contain any abstract data type
(T ABSTRACT) more the ones available in EXPRESS (integer, boolean, string).
From the T ABSTRACT type, we introduce, by subtyping the notions of set and
pairs. These notions are themselves used to describe relations (a set of pairs in the
Elem attribute) and functions as specialised relations. The whole B constructs
have been modeled using this approach.

5 The B2EXPRESS Tool

The B2EXPRESS tool implements the previously described transformation
process. It takes the event B model as input and generates the correspond-
ing EXPRESS model. It offers several options and opportunities to animate the
event B models based on the EXPRESS obtained model. Animation consists
in instantiating the different entities of the obtained EXPRESS model which is
hidden to the user.

This section describes the various possibilities offered by B2EXPRESS for
animating event B models.

5.1 Triggering Events

Events are triggered on the graphical user interface (see figure 15) by mouse
clicks. Figure 15 shows the list of events in ①, the state variables and their
current values in ②, the trace of events in ④ and the potential error messages
in ⑤. In the case of an ANY substitution, a dialog box appears, it asks for
potential values for the local variables introduced by this substitution.

Animating Event B Models by Formal Data Models 51

11

22

33

44

55

66

Fig. 15. B2EXPRESS interface

Each time an event is triggered, B2EXPRESS produces instances of the cor-
responding EXPRESS schema. B2EXPRESS, using the ECCO API [9], checks
if the instances are correct and fulfill all the local and global EXPRESS con-
straints. Error messages (deadlock, invariant violation, ...) are returned and spied
by B2EXPRESS in order to localise the errors on the source event B code (⑥
on figure 15).

In order to offer various validation possibilities, two animation modes are
offered by B2EXPRESS:

– the guarded mode where only those events, whose guard evaluates to true,
can be triggered. They are in green color (① on figure 15) and those that
cannot be triggered are in red.

– the free mode, which leaves freedom to the user to trigger any event even if
its guard evaluates to false. This mode is useful when a developer wants to
check invariants, to detect deadlocks or to check if some suitable behaviors
are excluded from the model.

In addition to the different invariants and assertions, the event B model traces
can be controlled by a process algebra expression (with interleaving semantics)
to define the behavior expected for this model (③ on figure 15). For example,
we define for the model in Figure 11, the following behavior: “NameAddress ;
InputName ; InputAddress ; Search ; ResultQuery ; Query” (“;” indicates the
sequence). Thus, if the event InputAdress is triggered before InputName, an error
will be detected. This possibility allows a developer to validate requirements
expressed by either suited or unsuited behaviors.

52 I. Ait-Sadoune and Y. Ait-Ameur

5.2 Tracing Process Algebra Expressions

B2EXPRESS offers the possibility to instantiate EXPRESS entities by triggering
events corresponding to traces of a process algebra expressions with interleaving
semantics. The suited event B model traces may be defined by the user (③ on
figure 15). For example, we define for the model in Figure 11, the following ex-
pression : “NameAddress ; (InputName || InputAddress) ; Search ; ResultQuery ;
Query” (“;” indicates the sequence and “||” defines the interleaving operator).
From this expression, B2EXPRESS generates EXPRESS entity instances corre-
sponding to the two possible sequences “NameAddress ; InputName ; InputAd-
dress ; Search ; ResultQuery ; Query” and “NameAddress ; InputAddress ; In-
putName ; Search ; ResultQuery ; Query”. This possibility allows a developer to
validate requirements expressed by behaviors.

5.3 B2EXPRESS as a Monitoring System

B2EXPRESS accepts an input set of EXPRESS instances. These instances may
be generated by an external running application for which we want to validate
properties. When this application runs, it generates instances corresponding to
the various EXPRESS entities. B2EXPRESS reads these instances and verifies
whether they preserve the consistency of the event B models corresponding to
the specification of the application. In this case, B2EXPRESS can be used as
a monitoring system where B models are used to monitor the application they
specify.

In the context of the VERBATIM project, this option has been used to check
different properties of running multimodal user interfaces (CARE properties
[10]). The InputName event, described in figure 11, is refined by two events Input-
NameByVoice and InputNameByKeyBoard to take into account voice and key-
board modalities available in the application that describes this model [11].For
example, when the user has used the voice and the keyboard at the same time
to enter the name, the application has generated instances of EXPRESS entities
corresponding to this scenarios “NameAddress ; InputNameByVoice ; Input-
NameByKeyBoard ; InputName ; InputAddress”. We have been able to check
the redundancy property [10].

This possibility allows a developer to monitor a running application and to a
posteriori check relevant properties available in B models and absent from the
running application code.

6 Comparison with Related Work

Traditionally, the tools associated with the B method are AtelierB [12], B ToolKit
[13] and more recently the Rodin platform [14]. These tools support represen-
tation of B models, generation of proof obligations and a theorem prover to
discharge them. In order to equip proof based developments with validation and
animation techniques, several approaches have emerged and the recent years
have seen the birth of two main B animators : ProB [3] and Brama [6].

Animating Event B Models by Formal Data Models 53

The ProB animator is based on the model checking technique. To perform the
model checking procedure, abstract sets of B are valued by small finite sets and
integer variables are associated with intervals of integers. A transition system is
built from the B model to be animated.

Sequences of events, violating the invariant, are produced by exploration of
the states of the model, and visualized when the model is incoherent. This ex-
ploration is driven by the properties of the invariant. Moreover, ProB allows
the user to visualize the state of the model (all variables of the clause VARI-
ABLES) and evaluates the invariant at each step. The user can also limit the
number of the explored states.

Brama is the other animator we have studied. It is developed by ClearSY.
It allows a developer to realize graphical animations representing the transition
system associated with a B model. The animation can be viewed on the states
of the graph. The animation, visualized on the graphical representation is linked
to various events and variables of the B model.

The B2EXPRESS animator, we have developed, consists in producing an EX-
PRESS data model whose instances describe traces of events of the B model. The
EXPRESS models are checked by providing a set of instances. The consistency
of this set is checked by controlling the types of data, the unicity, local and global
constraints. The ECCO Toolkit tool [9] supports such checking and provides a
Java interface allowing to exploit the EXPRESS models and the instances of
these models.

Compared to other tools, B2EXPRESS offers the ability to run scenarios not
conform to the model and makes it possible to locate the nature of the error
caused by these scenarios, thanks to free mode (section 5).

To manage the indeterminism, ProB proposes small finite sets whereas
B2EXPRESS offers to the user the possibility to introduce the desired value.
The ProB approach is powerful and provides with an efficient model checking.
The B2EXPRESS tool does not offer automatic state exploration but it allows
to choosing any specific input value.

In addition, B2EXPRESS accepts an input set of EXPRESS instances that
can be issued from an external running application. In this case, B2EXPRESS
can be used as a monitoring system. It also offers the possibility of introducing a
process algebra expression that allows to expressing a desired behavior. When the
trace of triggered events is not conform to the described expression, then the tool
signals it. This last validation is useful to check if the user requirements expressed
as scenarios are supported by the written B model. This last capability was at the
origin of this approach, because we have been applying B for validating Human
Computer Interfaces where these scenarios are frequently defined as preliminary
specifications.

7 Conclusion: Combining Proof and Animation

Originally, the event B method has been defined to describe a stepwise refine-
ment. The development is a sequence of event B models linked by a refinement

54 I. Ait-Sadoune and Y. Ait-Ameur

relation. The method relies on the proof of a set of generated proof obligations
to ensure the models and refinement correctness. When these proof obligations
are proved, the development is said to be correct.

However, the event B method does not support animation. Animation is used
to check some user requirements expressed by scenarios. The animation can
play these scenarios and decide whether the event B model satisfies the user
requirements.

Moreover, it may happen that the written event B models are difficult to prove
because of complex proof obligations, missing of guard strengthening, incomplete
invariants and so on. In this case, the developer is not aware about the source
of this problem. Animation provides the developer with some help in designing
their event B models and conducting their proof process. The developer can
animate his models and check whether the invariant, or the guards are correct
by giving some input values to the animator. He also can write observers for
the proof obligations he considers as difficult to prove. Proceeding this way in a
development, process shows the possibility to combine both animation and proof.
The first helps the second. As shown in this paper B2EXPRESS also offers the
possibility to define traces of events that can be defined, at the requirement level,
for validating the model and constraining the behavior.

As further work, we plan to equip B2EXPRESS with animation of temporal
logic properties verification. Since we have explicitly shown the event traces. The
idea to follow is close to the one of Lustre where traces are flows of data.

Finally, the reader may refer to “http://www.lisi.ensma.fr/members/idir/”
for some videos running the B2EXPRESS tool.

References

1. Abrial, J.: The B Book. Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.R.: Extending b without changing it (for developing distributed systems).
In: Habrias, H. (ed.) First B Conference, Putting Into Pratice Methods and Tools
for Information System Design, Nantes, France, p. 21 (1996)

3. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

4. IS010303.02: Product data representation and exchange - part 2: Express reference
manual. ISO (055) (1994)

5. Schenck, D., Wilson, P.: Information Modelling The EXPRESS Way. Oxford Uni-
versity Press, Oxford (1994)

6. ClearSy: BRAMA, un nouvel outil d’animation graphique de modèles B. ClearSy
- Conférence B (2007)

7. Dijkstra, E.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
8. Cansell, D.: Assistance au développement incrémental et à sa preuve. Habilitation

à diriger les recherches, Université Henri Poincaré (2003)
9. Staub, G., Maier, M.: ECCO Tool-Kit, An Environnement for the Evaluation of

EXPRESS Models and the Development of STEP based IT Applications. User
Manual (1997)

Animating Event B Models by Formal Data Models 55

10. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four easy
pieces for assessing the usability of multimodal interaction: the CARE properties.
In: Proceedings of Human Computer Interaction - Interact 1995, pp. 115–120.
Chapman and Hall, Boca Raton (1995)

11. Ait-Ameur, Y., Ait-Sadoune, I., Baron, M., Mota, J.: Validation et vérification
formelles de systèmes interactifs multimodaux fondées sur la preuve. In: 18
Conférence Francophone sur l’Interaction Homme-Machine (IHM 2006), Montréal,
Canada, vol. 1, pp. 123–130. ACM Press, New York (2006)

12. ClearSy: Atelier B - version 3.5 (1997)
13. Limited, B.C.U.: B-toolkit, http://www.b-core.com
14. ClearSy: Rodin (2006), http://www.clearsy.com/rodin/industry day.html

http://www.b-core.com
http://www.clearsy.com/rodin/industry_day.html

Automated Formal Testing of C API

Using T2C Framework

Alexey V. Khoroshilov, Vladimir V. Rubanov, and Eugene A. Shatokhin

Institute for System Programming of Russian Academy of Sciences (ISPRAS),
B. Communisticheskaya, 25, Moscow, Russia
{khoroshilov,vrub,spectre}@ispras.ru

http://ispras.ru

Abstract. A problem of automated test development for checking basic
functionality of program interfaces (API) is discussed. Different tech-
nologies and corresponding tools are surveyed. And T2C technology
developed in ISPRAS is presented. The technology and associated tools
facilitate development of ”medium quality” (and ”medium cost”) tests.
An important feature of T2C technology is that it enforces that each
check in a developed test is explicitly linked to the corresponding place
in the standard. T2C tools provide convenient means to create such link-
age. The results of using T2C are considered by example of a project for
testing interfaces of Linux system libraries defined by the LSB standard.

Keywords: Formal testing, compliance testing, parameterized tests,
medium-quality tests.

1 Introduction

Verification of a complex software system, checking its correctness in each situ-
ation is a very important but an extremely difficult task. Automated testing is
often used for software verification and when considering developing such tests
we have to deal with the trade-off between thoroughness of the tests and the
resources needed to develop, use and maintain these tests.

The optimal solution depends on many factors specific to a particular project.
In this paper we consider development of tests that check program interfaces for
C language (”C API”) for compliance with a standardized specification (and
actually for other kinds of mature developers documentation) for program inter-
faces. Such problem statement suggests taking the following factors into account:

• The tests need to be maintained as the standard evolves.
• The existence of a standard means assuming that the behaviour of the system

under test is described in enough detail. Nevertheless, it may not be the case
for fast evolving standards.

• More often than not, the inconsistencies found by the tests will be analyzed
not by the tests’ developer but rather by the experts from the companies
that wish to check their products for compliance with the standard. So it
can be crucial to facilitate analysis of such failures.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 56–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://ispras.ru

Automated Formal Testing of C API Using T2C Framework 57

These factors lead to several requirements for test suites and thus for an
approach taken to develop test suites. But they impose no restrictions on the
trade-off between available resources and the thoroughness of the tests.

As far as compliance testing is concerned, testing of basic functionality is a
rather common choice. To check basic functionality means to verify behaviour
of the system in its several common use cases probably including some scenarios
when the system must report an error (error scenarios). This path is quite at-
tractive for verification of industrial software because it often gives a guarantee
of revealing all significant violations of the standard for reasonable cost.

When it is crucial to ensure strict compliance of a software system with a stan-
dard and there are enough resources available, more thorough (”deep”) testing
is chosen. For instance, the deep tests may strive to check each class of test
situations possible for each aspect of functionality of each interface function.
Deep tests of this kind that still remain maintainable can be created using the
tools based, for example, on UniTesK technology [1] that, among other things,
suggests using special model-based testing techniques. This technology is used,
for instance, in CTesK tools [2]. The following features of CTesK allow to go
through all the test situations and to facilitate analysis of test coverage:

• the means for formal description of the requirements for the system under
test;

• support for automatic generation of test action sequences by dynamic cre-
ation of a test system behaviour model;

• support for a wide range of test quality metrics in terms of a requirement
model with automated gathering of data concerning the achieved coverage.

There are alternatives, of course. When it is necessary to cover a large amount
of functions in a short period of time, the decision can be made in favour of less
thorough testing. Sometimes its purpose is to ensure that each of these functions
can just be called with correct arguments and does not lead to a crash. One of
the approaches to development of such tests (”shallow tests”), AZOV technology
is described in [15].

The purpose of T2C tools described in this paper is to facilitate development of
tests that check basic functionality of a software system. These tools, while being
inferior to CTesK in respect of test thoroughness, allow achieving a reasonable
balance between the quality of the tests and the resources needed to develop
and maintain these tests. T2C tools support basic recommendations for dealing
with requirements in formal testing for compliance with a standard such as
creating a catalog of elementary requirements specified in the standard, ensuring
traceability of the requirements in the tests and measuring test quality in terms
of covered elementary requirements. T2C technology enforces that each check in
a developed test is explicitly linked to the corresponding place in the standard
and T2C tools provide convenient means to create such linkage.

This paper is organized as follows. In the first part several approaches to
similar problems are considered and their advantages and disadvantages with
respect to testing basic software functionality are discussed. Then basic features
of T2C tools are described as well as the work flow they support. After that

58 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

the results of applying T2C for a real-world problem are discussed, namely the
experience of using this technology to develop tests for several libraries from
GTK+ stack and fontconfig for compliance with the Linux Standard Base (LSB)
[3]. The future directions of T2C development as well as its integration with other
tools from UniTesK family are presented in the conclusion.

2 Technologies and Tools for the Development of Basic
Functionality Tests for Program Interfaces

2.1 MANUAL

Test systems that ensure the functionality is checked thoroughly usually need
a range of services of underlying operating system. That is why when the very
operating system is under test, it is required to be relatively stable for these
tests to operate properly.

To mitigate this problem and to minimize unintentional influence of test sys-
tem on the target system, distributed architecture is often used in test develop-
ment. This implies that most of the tasks are performed on an auxiliary (”in-
strumental”) machine, while only a small test agent is working on the target
machine. But even in this case interaction between the test agent and the in-
strumental machine requires some components of the system under test to be
operational.

That is why it is important to make sure that the key components of the target
system are operational before proceeding to thorough testing of its program
interfaces.

An approach for creating tests of basic operation system’s functionality named
MANUAL was developed in software engineering department of ISPRAS for the
project that involved testing of a POSIX-compliant real time operating system
for embedded devices. These tests verified that the key components of the op-
erating system are operational before the beginning of deeper testing by the
system developed using CTesk tools.

A test in MANUAL is in fact code in C programming language using macros and
functions of MANUAL support library. Each test is a separate function beginning
with TC_START("name of the test") macro and ending with TC_END() macro.
The body of the test consists of three parts:

• preparation of data and of the environment;
• test action itself and checking its results;
• deallocation of resources.

Checking the system under test for correctness is done with the function
tc_assert(expression_to_check, "text describing the failure"). If the
expression to check is false, it is assumed that an failure has been detected
and a message is output that describes this failure. Besides, the system auto-
matically catches exceptional situations that appear during the execution of the
test and treats them like failures.

Automated Formal Testing of C API Using T2C Framework 59

MANUAL system supports hierarchical composition of tests into the packages.
There are two modes for running the tests: automatic and interactive. In the
automatic mode the system executes the specified set of tests or packages and
stores execution log. In the interactive mode the user can navigate the package
tree down to an individual test and execute the chosen test or package.

The main drawback of MANUAL system is its low scalability. The scalability
problems result from the fact that each test is a function in C language which,
as the test suite grows, requires either multiple duplication of the source code
or a significant amount of a rather tedious manual work to structure the code.

Lack of test parametrization, while reasonable when implementing simple op-
erability checks for basic functionality of a target system, is a significant obstacle
for applying this approach to development of more thorough test suites.

2.2 Check

Check system [4] is designed in the first place for unit testing of software dur-
ing the development process. Nevertheless, Check can also be used for testing
program interfaces for compliance with the standards.

Check provides the test developer with a set of macros and functions to per-
form checks in the tests, to combine the tests in suites, to manage output of the
results, etc.

A test is code in C programming language enclosed between START_TEST
and END_TEST macros. The requirements are checked in the tests using the
following functions: fail_unless(expression_to_check, "text describing
the failure") and fail_if(expression_to_check, "text describing the
failure").

Functions performing initialization and clean-up of used resources can be spec-
ified both for each particular test and for each test suite (so called checked and
unchecked fixtures).

Advantages of Check system:

• support for running each test in a separate process, i.e. a kind of isolation
of the tests from one another and from Check environment;

• automatic handling of exceptional situations in the tests;
• support for specifying maximum execution time for a test;
• special facilities for checking situations where execution of the function under

test should result in sending a signal;
• integration of test building and test execution system with autoconf and

automake the tools commonly used for automation of software building and
installation [5].

Check, however, has several drawbacks that prevent using it in some cases:

• It is difficult to develop parameterized tests with Check. It is often the case
that some function needs to be tested with different sets of its arguments’
values while the code of the test remains almost the same. It could be rea-
sonable to pass these sets of values to the test as parameters. However only

60 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

the number of the test can be explicitly passed to this test as a parameter
which is not convenient.

• There is no linkage of the checks performed in a test to the places in the
documentation (standard) where the corresponding requirements are stated.

• To add a new test in a suite, it is necessary to recompile the source of all
the other tests of this suite too, which is not always reasonable.

• Common test results codes (”verdicts”) listed in the standard for testing
compliance to POSIX [6] are not supported which may make it more difficult
to analyze test results.

2.3 CUnit

CUnit system [7] can be used in the same cases as Check [4], but is generally
less powerful.

One of the most important drawbacks of CUnit compared to Check is the fact
that all the tests as well as the harness that executes them and collects their
results run in the same process. This means that a failure in a test may, for
example, lead to corruption of memory used by CUnit harness or by some other
test.

Also, unlike Check, there is no protection from test ”hang-up”: maximum
execution time can not be specified for a test.

Still there are some advantages CUnit has over Check:

• Support for so called fatal and non-fatal assertions. In the first case if a check
reveals that a requirement was violated, test execution stops and thus further
checks are not performed in this test (this approach is always used in Check).
One the other hand, if violation of a requirement has been detected in a
non-fatal assertion, test execution continues. Further checks in this test can
probably provide the developer with more detailed information about what
was really happening in the system under test. This may help to discover
the cause of the detected failure.

• A set of special functions and macros that facilitate commonly used checks
such as equality and inequality of integers, floating-point numbers, strings,
etc.

• Support for reporting the test results in several formats including those that
can be displayed in a web browser (xml+xslt).

Nevertheless, the drawbacks pointed out for Check in the previous section
apply to CUnit too. Test Environment Toolkit (TET) described below is free
from some of these.

2.4 TET (Test Environment Toolkit)

TETware system (TET, TestEnvironmentToolkit) is quite widely used for test-
ing various program interfaces. TET tools provide a common way to run different
tests and to obtain a report of the test results in a common format [8]. Data

Automated Formal Testing of C API Using T2C Framework 61

concerning test execution including its result (test verdict) and the messages it
outputs is accumulated in so called TET journal.

TET consists of the following basic components:

• test case controller (tcc) this component manages test execution and gath-
ering information the tests output;

• application program interface (TET API) that should be used in the tests to
be able to run them within TET harness. TET API is available for several
programming languages including C and C++.

The most important advantages of TET are probably the following:

• a common environment for running the tests;
• handling exceptional situations in the tests (segmentation faults, for exam-

ple) by the means of the test case controller;
• common test result codes (verdicts) that comply with the standard [6]: PASS,

FAIL, UNRESOLVED, etc., along with the ability to define additional test
result codes;

• an ability to add new tests to the suite without recompiling the remaining
tests (using so called TET scenarios)

• a common format for a report of test execution (TET journal).

These TET’s features make the analysis of test execution results easier. Par-
ticularly, the program tools processing TET journal may not take the specifics of
the tests into account while collecting the statistics of test results, for example.

On the other hand, TET tools have something to do mostly with automation
of test execution and collecting of test results. TET provides neither means
to somehow automate test development nor the API for performing checks in
the tests. Consequently, there are several reasons that make using ”pure” TET
(without any enhancements) rather inconvenient:

• Lack of means to link the checks performed in the tests to the corresponding
parts of the standard.

• It is often necessary to create tests with almost the same source code and
the difference is, for example, only in the parameters passed to the functions
called in this test or, say, in element types of used arrays, etc. It seems
reasonable to automate development of such tests so as to reuse common
parts of the source code. Unfortunately, TET provides no special means for
this.

• The test developer needs to manually add definitions of special functions,
data structures, etc., required to run the tests within TET harness. This
could be done automatically as well.

• The tests being executed by the test case controller are not always easy to
debug. It could be helpful both for searching for errors in the test itself and
for investigating the behaviour of the system under test to be able to avoid
TET’s influence on test execution. This could facilitate the use of debugger
programs such as gdb and others.

Described below are two systems that have TET as their basis: GTKVTS and
T2C. These systems manage to overcome TET’s drawbacks to some extent.

62 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

2.5 Automation of TET-Compliant Test Development in GTK+-2.0
Verification Test Suite (GTKVTS)

An approach used in GTK+-2.0 Verification Test Suite (GTKVTS) for develop-
ment of TET-compliant tests allows avoiding some of the TET’s drawbacks [9].

First of all, GTKVTS uses so called parameterized tests. That is, the developer
writes a template for the test source code in plain C language just marking in
some special way the places where to put the values of test’s parameters. Several
sets of parameter’s values can be specified for each test template of this kind.
Almost anything can be a test parameter, not only parameters of tested functions
or their expected returns values. Sometimes its is reasonable to consider types of
used data as test parameters (like C++ templates) or even to make a statement
calling the target function a parameter and so on.

The GTKVTS C code generator creates a single function in C language for
each set of parameters’ values based on the test source template (see Fig. 1).

Fig. 1. Generating C code based on a template. ”<%0%>” and ”<%1%>” mark the
places in the template where actual values of the parameters are to be inserted.

Second, GTKVTS tools automatically insert in the generated C source code
definitions of special data structures and functions required to be able to run
the test within TET harness, so the developer does not have to worry about
this. Besides that, makefiles for building the tests and TET scenario files are
also generated automatically which can be convenient.

The authors of GTKVTS also tried to encourage linking the checks in the tests
with the relevant fragments of a standard: the test developer should specify
the text of the requirements checked in this test in the comments before it.
Unfortunately, this text is not used in the test itself and it is usually difficult to
find out from the trace of the test, which requirements have been checked and
which of them have been violated.

There are also some less significant drawbacks of GTKVTS tools, such as lack
of support for debugging the test outside of TET harness and the fact that the
tools are specialized for developing tests for the libraries from GTK+ stack only.

Automated Formal Testing of C API Using T2C Framework 63

2.6 Comparison of Existing Approaches

Considered above are five approaches (and corresponding tools) for test devel-
opment for program interfaces in C language. The summary of their advantages
and disadvantages is given in Table 1.

Table 1. Comparison of existing approaches

MANUAL Check CUnit TET GTKVTS

Test parametrization - - - - +

Traceability of requirements - - - - -

Execution of tests in separate processes - + - - -

Automatic handling of exceptional situations + + - + +

Restriction of test execution time - + - + +

Hierarchical package organization + - - - -

Convenience of debugging + + + - -

Portability of the tests - + + + -

Using standard test verdicts [6] - - - + +

Each of the approaches considered above has some advantages. However all
of them have one significant drawback from the point of view of testing program
interfaces for compliance with standards, namely lack of support for linkage of
the checks in the tests to the requirements of the standard (”traceability of
requirements”). In addition, none of these approaches has all the advantages
described above while there seems to be no contradiction between them.

When it was decided to develop T2C tools, a requirement was stated that
these tools support (and enforce to some extent rather than just encourage)
traceability of requirements while still keeping the advantages of existing ap-
proaches shown in table 1 except hierarchical organization of test packages. This
exception is due to the fact that the possibility to hierarchically organize the test
packages does not significantly affect the development and usage of compliance
tests.

3 T2C (”Template-to-Code”) System

3.1 General Information

T2C (”Template-to-Code”) system facilitates the development of parameterized
tests that can be executed both within and outside of TET harness.

The source code of the tests in C programming language is created based on
a T2C-file that contains test templates along with the sets of parameter’s values
for these tests (the idea is the same as in GTKVTS - see Fig. 2). A fragment of
a T2C-file is shown below.

The tests to be created based on a template presented in Fig. 2 have two
parameters: TYPE and INDEX. int will be used as TYPE and 6 as INDEX in the
first of the tests, double and 999, respectively, in the second one.

64 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

Fig. 2. A fragment of a T2C-file

Like in GTKVTS, definitions of data structures and functions required to run
the tests within TET harness will be added to the source of the tests automati-
cally. Necessary makefiles and TET scenario files will be created as well.

So T2C tools retain main advantages of GTKVTS system while supporting
the recommendations for development of compliance tests stated, for instance,
in [10]:

• creating a catalog of elementary requirements for program interfaces to be
tested;

• linkage of the checks performed in the tests to the relevant places in the
corresponding standard;

• testing quality measurement in terms of covered elementary requirements.

The following enhancements have been made in T2C compared to GTKVTS:

• The test developer is provided with a set of high level program interfaces
(T2C API) to perform the checks in the tests. Now if a check in the test
reveals violation of some requirement, the text of this requirement is output
to the test’s trace (TET journal) along with other useful information.

• It is possible to create a standalone version of a test in pure C/C++ without
using any of TET’s features. This can be rather convenient both for debug-
ging the test and for thorough investigation of what happens in the system
under test in case of a failure.

• Templates of T2C-files (do not confuse them with the test templates) are cre-
ated automatically for a text of the standard with the requirements marked
up in it in a special way.

• T2C-file can also contain the code needed for initialization and cleanup of
the resources used by any the tests to be generated from this file as well as
for deallocation of resources allocated in each particular test.

• Execution of each test in a separate process is supported as well as in a single
process.

• Maximum execution time for a test can be specified. This is useful if some
of the tests may hang.

Automated Formal Testing of C API Using T2C Framework 65

3.2 Test Development with T2C Tools: The Workflow

Main stages of test development process with T2C tools are described in this
section (see also Fig. 3).

Fig. 3. Test development with T2C

Analysis of Documentation and Interface Grouping. First of all, before
trying to write conformance tests for some interfaces one should examine the
documentation of these interfaces to find out what is to be tested. During this
analysis one should also split the interfaces to be tested into groups, each of which
implements a coherent part of the system’s functionality (”functional groups”).
One should avoid the situations when some interfaces from group A are needed
to check the interfaces from group B (”A depends on B”) and in the same time
interfaces from A are needed to test those from B (cyclic dependency).

Sometimes the grouping is already done in the documentation. For instance,
a reference manual for Glib2 library [11] is divided in sections such as ”Memory
Allocation”, ”String Utility Functions”, ”Key-value file parser”, etc. Interfaces
described in each section usually form a single functional group.

66 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

During the test development one or more T2C-files are created for each func-
tional group. It is often reasonable to create appropriate directory structure for
the test suite at this stage too.

From now on it is assumed that the standard (documentation) for the inter-
faces to be tested is a set of HTML documents.

Requirement (Assertion) Markup in the Documentation. Elementary
requirements for each of the interfaces to be tested are marked up in the docu-
mentation in a special way at this stage. Each elementary requirement is given a
unique identifier [10]. The text of a requirement can be assembled from several
parts if necessary or it can be reformulated to improve readability.

Markup of requirements is performed in HTML editor KompoZer (www.
kompozer.net) enhanced with ReqMarkup tool that was developed during
OLVER project [12] and then remodeled and integrated into T2C system.

Creating a Template of T2C-file. Once the requirements for a particular
functional group of interfaces have been marked up, the ReqMarkup tool auto-
matically creates a template for the corresponding T2C-file.

Populating the T2C File Template. This stage is the most important in
the development of the tests. Now the developer should populate the template
of a T2C-file adding the templates of test case source code along with the para-
meter’s values for the tests. In addition, the code for initialization and cleanup
of resources used by the tests should be specified in special sections of the file.

The T2C Editor tool a plugin for Eclipse IDE - can be helpful for visual
editing of T2C files providing advanced navigation among the file’s sections,
convenient means for dealing with the parameters of the tests, etc.

Preparing Catalog of Elementary Requirements. Based on the documen-
tation with the requirements marked up, ReqMarkup tool also creates a catalog
of requirements for the corresponding group of interfaces. This catalog is used
during the execution of the test: if it is detected that a requirement is violated,
the text of the requirement with the particular identifier is loaded from the
catalog and output to the test’s trace for future analysis.

Generating the Source Code of the Tests, Makefiles and TET Scenar-
ios. When the tests in T2C format are prepared and so is the catalog of elemen-
tary requirements, the developer should invoke T2C Code Generator that will
create the files with source code of the tests (in C or C++ language), makefiles
for building the tests from these sources, TET scenario files, etc.

Building, Executing and Debugging the Tests. At this stage the developer
should build the test suite using the makefiles generated at the previous step.
After that the test suite is ready. One may run the tests within TET harness or
debug some of them outside of TET and so forth.

www.
kompozer.net

Automated Formal Testing of C API Using T2C Framework 67

4 Applying T2C to Test Development for LSB Desktop

T2C system was used (and is used now) in development of tests for interface
operations (”interfaces”) of Linux libraries, defined in the Linux Standard Base
(LSB). For example, the tests for the following libraries were prepared using
T2C tools:

• Glib (libglib-2.0);
• GModule (libgmodule-2.0);
• GThread (libgthread-2.0);
• GObject (libgobject-2.0);
• ATK (libatk-1.0);
• Fontconfig (libfontconfig).

Table 2 shows the results of testing these libraries. The descriptions of inconsis-
tencies found by the tests are published in http://linuxtesting.ru/results/
impl reports.

Table 2. Results of testing several Linux libraries for compliance with LSB by the
tests developed using T2C tools

Library Version Total interfaces Tested interfaces Problems found

libatk-1.0 1.19.6 222 222 (100%) 11

libglib-2.0 2.14.0 847 832 (98%) 13

libgthread-2.0 2.14.0 2 2 (100%) 0

libgobject-2.0 2.16.0 314 313 (99%) 2

libgmodule-2.0 2.14.0 8 8 (100%) 2

libfontconfig 2.4.2 160 160 (100%) 11

Total 1553 1537(99%) 39

Remark 1. The ”Version” column shows the latest version of the corresponding
library at the moment when the test suite was published. The number of errors
found by the tests is shown for this very version of the library. There is an
ongoing work on these errors in collaborations with the developers of respective
libraries, so it is possible that some or even all of these errors are (or will be)
fixed in newer versions.

Remark 2. The ”Total interfaces” column shows total number of interface op-
erations (”interfaces”) defined in the LSB for the particular library including
undocumented ones. Almost all documented interfaces were tested.

The average costs for a full cycle of test development (from the analysis and
markup of requirements to the debugged code of the tests) for a single interface
are about 0.5 - 1 man-day.

It should also be mentioned that the interfaces from these libraries are not
always described in detail in the documentation. In average, 2 - 3 elementary
requirements were found for each interface.

http://linuxtesting.ru/results/
impl_reports

68 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

Table 3. Coverage of requirements for LSB libraries

Library Requirements Checked requirements Requirement coverage (%)

libatk-1.0 515 497 96%

libglib-2.0 2461 2290 93%

libgthread-2.0 2 2 100%

libgobject-2.0 1205 1014 84%

libgmodule-2.0 21 17 80%

libfontconfig 272 213 78%

Total 4476 4033 90%

Table 4. Code coverage data

Library Lines of code (total) Executed lines Code coverage (%)

libglib-2.0 16263 12203 75.0%

libgthread-2.0 211 149 70.6%

libgobject-2.0 7000 5605 80.1%

libgmodule-2.0 270 211 78.1%

Total 23744 18168 76.5%

The information concerning the number of elementary requirements for tested
interfaces is given in Table 3 as well as requirement coverage data.

It can be interesting to find out what portion the source code of the libraries
under test the tests act upon. The code code coverage data for four libraries of
glib2 group is shown in Table 4. The data was collected for glib2 package version
2.16.3 using gcov tool. The parts of these libraries not defined in the LSB were
not taken into account.

5 Conclusion

The problem of testing program interfaces for compliance with their documen-
tation (including standards) is very important for providing quality and inter-
operable software systems. Various technologies as well as corresponding tools
are developed for this purpose that allow to somehow automate the work and
make it more systematic. These approaches always have to deal with a trade-off
between the quality of the tests and the cost of developing these tests. The choice
is often made here based on some quite subjective factors. Meanwhile, the choice
of target testing quality governs the choice of the optimal technology and tools
as well, because different levels of cost and quality require different approaches.
For instance, as far as deep (thorough) testing is concerned, UniTesK technology
proved very useful [13], although the cost of learning the technology and of the
actual test development is rather high.

Automated Formal Testing of C API Using T2C Framework 69

This paper describes T2C technology which is oriented to efficient develop-
ment of ”medium level” tests checking basic functionality of program interfaces.
The term ”medium level” corresponds in this case to the common notion of in-
dustrial testing quality achieved in the most of the test suites analyzed by the
authors (e.g., Open Group certification tests, LSB certification tests, OpenPosix
tests and Linux Test Project). T2C allows raising the efficiency of development
of such tests by providing the following basic features that reduce manual work
for preparing the environment and duplicating the code that is not specific for
a particular test:

• automatic generation of test templates based on the catalog of requirements;
• usage of named parameters in the source code of the tests with automated

generation of a separate test instance for each set of parameters’ values;
• a high-level API that can be used in the code of the test to check the re-

quirements and output trace messages;
• generation of standalone tests, i.e. self-sufficient programs in C or C++ lan-

guage which significantly simplifies debugging the tests as well as the tested
system compared to debugging them within TET test execution environment
or the like.

The execution environment for the tests created using T2C technology is based
on widely used TETware tools, which facilitates integration of the tests into
existing test suites and the environments that manage test execution and analysis
of the results. Besides that, one of important features of T2C is systematic work
with catalogs of elementary requirements and enforcing the explicit linkage of
requirement checks in the tests to the relevant places in the standard and output
of corresponding messages to the test execution report.

T2C technology was successfully used at the Institute for System Program-
ming of Russian Academy of Sciences in the project [14] for development of
certification tests for checking compliance of Linux libraries with the LSB stan-
dard. Presented in this paper are the statistical data concerning the developed
tests, found errors in the libraries and the costs of development. The data al-
low concluding that the technology is efficient for development of tests of the
particular quality level for various modules and libraries. The tools support C
and C++ programming languages for the present, but there are no principal
obstacles that prevent applying the technology to other general purpose pro-
gramming languages such as C# and Java. It should be mentioned however that
the availability of quite stable text of the requirements is essential for success-
ful use of T2C because the stage of documentation analysis and preparing of
the requirement catalog may require a lot more work when the quality of the
documentation is low and/or when it is changed too actively.

It is planned to enhance integration of T2C tools with Eclipse IDE as well
as provide means for using these tools from other popular development environ-
ments. The possibility of integration of T2C and CTesK systems will be also
investigated.

70 A.V. Khoroshilov, V.V. Rubanov, and E.A. Shatokhin

References

1. Kuliamin, V.V., Petrenko, A.K., Bourdonov, I.B., Kossatchev, A.S.: UniTesK Test
Suite Architecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 77–88. Springer, Heidelberg (2002)

2. CTESK web page, http://www.UniTesK.com/products/ctesk
3. The Linux Standard Base, http://www.linux-foundation.org/en/LSB
4. Check web page, http://check.sourceforge.net/doc/check.html/index.html
5. Autoconf and Automake web page, http://www.gnu.org/software/automake/
6. IEEE.2003.1-1992 IEEE Standard for Information Technology – Test Methods for

Measuring Conformance to POSIX – Part 1: System Interfaces. IEEE, New York,
NY, USA (1992) ISBN 1-55937-275-3

7. CUnit web page, http://cunit.sourceforge.net/
8. TETware User Guide,

http://tetworks.opengroup.org/documents/3.7/uguide.pdf
9. GTKVTS Readme, http://svn.gnome.org/viewvc/gtkvts/trunk/README

10. Kuliamin, V.V., Pakulin, N.V., Petrenko, O.L., Sortov, A.A., Khoroshilov, A.V.:
Formalization of requirements in practice, ISPRAS, Moscow (preprint, 2006) (in
Russian)

11. Glib Reference Manual, http://www.gtk.org/api/2.6/glib/
12. Linux Verification Center, http://linuxtesting.ru/
13. UniTesK web site, http://UniTesK.com/
14. LSB Infrastructure project web page, http://ispras.linux-foundation.org/
15. AZOV Framework web page,

http://ispras.linux-foundation.org/index.php/AZOV Framework

http://www.UniTesK.com/products/ctesk
http://www.linux-foundation.org/en/LSB
http://check.sourceforge.net/doc/check.html/index.html
http://www.gnu.org/software/automake/
http://cunit.sourceforge.net/
http://tetworks.opengroup.org/documents/3.7/uguide.pdf
http://svn.gnome.org/viewvc/gtkvts/trunk/README
http://www.gtk.org/api/2.6/glib/
http://linuxtesting.ru/
http://UniTesK.com/
http://ispras.linux-foundation.org/
http://ispras.linux-foundation.org/index.php/AZOV_Framework

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 71–81, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tailoring and Optimising Software for Automotive
Multicore Systems

Torsten Polle and Michael Uelschen

Advanced Driver Information Technology GmbH
Robert-Bosch-Straße 200

31139 Hildesheim
{tpolle,muelschen}@de.adit-jv.com

Abstract. The software architecture of embedded systems is heavily influenced
by limitations of the underlying hardware. Additionally, real-time requirements
constrain the design of applications. On the other hand, embedded systems im-
plement specific functionalities and hence give the designer the opportunity to
optimize the system despite of limitations. Multicore systems compromise the
predictability of real-time requirements. Again, with the knowledge of the ap-
plication the software design can benefit from the multicore architecture. This
paper discusses how to decide on software design based on use-cases and shows
new avenues how to efficiently implement the design with an example.

Keywords: Multicore, Scheduling, Automotive Embedded Systems, Producer-
Consumer Pattern.

1 Introduction

Starting with a multiprocessor architecture at the super computer and main frame
classes in the 1970’s and 1980’s the technology process got improved, which enabled
chipset manufacturers to layout several cores on one die. The year 2005 was the in-
flection point when the increase of the clock frequency got restricted around 4 GHz,
primarily because of huge power consumption and it was then, when multicore tech-
nology hit the consumer market.

Now the multicore architecture is entering the embedded automotive domain. The
first adopters are driver information systems followed by multicore systems for clas-
sical electronic control units (ECU). Head units like car navigation systems combine
functionality from the consumer electronics market (like MP3 or video playback func-
tionality) with increasing complexity as well as from the automotive domain (like
CAN or MOST networking).

Therefore an ever-increasing demand for processing power has to be satisfied. Al-
though a multicore architecture has the potential to sate this demand, the change of
paradigm forestalls the efficient usage of the provided processing power. Certainly,
embedded systems can borrow from the approaches taken in the consumer electronics
market. But there are differences like priority-based scheduling and optimisation
techniques, which have to be taken care of. Therefore it will be interesting to see if

72 T. Polle and M. Uelschen

and how already established principles to use parallelism can be re-used in the auto-
motive domain.

This paper extends [1] by covering the entire software design process. The starting
point is six “meta” use-cases. These use-cases are in contrast with those that describe
what the developed software is doing; they rather describe how to change the software.
A multicore architecture offers several cores, on which software can be executed. The
question “Which parts of the software are executed where?” is a new aspect of soft-
ware design. The use-cases offer criteria on such decisions. Finally, it is shown that
well established optimisation techniques have to be replaced for multicore systems.

2 Use-Cases for Automotive Multicore Systems

For the investigation of use-cases it is assumed that a functional single-core system is
already available. This means migration of legacy code is a major requirement. This is
important especially for considerations outside the academic world since car makers
and suppliers usually cannot afford to start such complex systems from scratch.

In this paper the focus is on homogenous multicore systems [2]. The shared access
to the memory subsystem is symmetric and peripherals are identical from individual
core point-of-view. Heterogeneous architectures, e.g. constituting core connecting
with a DSP, are out of scope of following sections.

The major observed trends or use-cases for multicore in the automotive domain can
be classified as:

2.1 Use-Case 1: Deployment of New Functions

For the realization of upcoming features additional computing power is required. This
is to support technology advancement, on one hand (like the European satellite navi-
gation system Galileo). On the other hand, more rigid laws and standards (like the
European eCall) have to be implemented. The use case also covers the refactoring of
existing application, e.g. in order to increase performance or precision.

2.2 Use-Case 2: Redundant Systems

For automotive control units that require high safety and reliability, the use of multi-
core is a cost-efficient approach. However a failure of the underlying hardware will
affect the entire system. Further investigations are necessary to verify which applica-
tion can be designed for this approach.

2.3 Use-Case 3: Concentrating of Functions

Since cars are equipped with up to 100 ECUs, the minimization of the amount is a
strong objective. This is driven by many factors, hardware costs being one of them.
Also the configuration management and therefore the test and release process gets
less complex and time-consuming as the amount of possible combinations of software
and hardware versions goes down.

 Tailoring and Optimising Software for Automotive Multicore Systems 73

2.4 Use-Case 4: Convergence of Domains

Beside the requirement to reduce the amount of devices in the car it turns out that the
different automotive domains are getting closer to each other. In an example by Toy-
ota [3] the availability of the current position as well as the calculated route to some
destination can be used for other applications in the car like vehicle control. The do-
main of driver information gets closer to driver assistance or to the powertrain do-
main. Functionalities from the consumer electronics domain are getting into the car.
This leads to several challenges since the consumer and automotive domain follow
different rules, e.g. innovation cycles [4]. The requirements focus mainly on 2 fields:
visualization (human-machine-interface) and connectivity (mobile phones, media
player). Solutions known from the desktop world will be integrated in future info-
tainment systems [5].

2.5 Use-Case 5: Architecture Harmonization

The introduction of two or more identical cores reduces the need of specialized hard-
ware like a DSP. This approach is based on the assumption that a harmonized hard-
ware as well as software architecture increases flexibility. This also might simplify
the usage of tools (as compilers and debuggers) and programming languages.

2.6 Use-Case 6: Parallel Algorithms

Often algorithms can be parallelized to solve some problem more natural. Having a
hardware environment that supports parallelism avoids sequential refactoring of a
parallel algorithm. In contrast to fields of high performance computing the nature of
algorithms for car applications is different. For example it might be beneficial to par-
allelize the route calculation for getting shorter computation cycles in a navigation
system. But analysis of the current devices has shown that the access to the external
map data (e.g. on CD or DVD) rules the system performance.

Parallelism on control level utilizes (light-weight) threads, as provided by the un-
derlying real time operating system (RTOS) to get computing done concurrently. In
order to schedule these threads for execution on the individual cores, the kernel of the
operating system has several options. It turns out that different mechanisms need to be
considered for partitioning software on embedded systems compared to the desktop
world.

3 Scheduling

Scheduling in desktop or server systems for user level programs is round-robin in
nature, to give enough justice to all user programs under execution. This scheduling
mechanism is non-deterministic as the operating systems (OS) steals control from
threads to realize round-robin scheduling. In case of embedded systems, the schedul-
ing is generally priority based pre-emptive. And in such scheduling schemes, an ap-
plication may misbehave or lead to data race conditions if more than two threads of
different priority go to RUN state at the same time.

74 T. Polle and M. Uelschen

3.1 Symmetric Multiprocessing

In case of priority-based, pre-emptive scheduling on SMP kernels, the kernel provides
flexibility to decide, which thread runs on which core. Dynamic load balancing is one
of the properties of SMP mode.

The advantages of symmetrical multiprocessing are:

• The operating system manages automatic dynamic load balancing. The OS decides
how to distribute threads across processors/cores to assure effective usage of all
processors/cores.

• Inter-core communication can be implemented very easily using inter-processor
interrupts as memory is visible to all processors/cores. No explicit message passing
mechanism is required.

The drawbacks of symmetrical multiprocessing are:

• Deterministic behavior gets degraded because of automatic load balancing. Also
the load balancing algorithm consumes more CPU time as the number of proces-
sors/cores in the system, increases.

• Cache coherency, synchronization mechanisms and shared data, limits application
scalability.

• Synchronization among threads compels execution across cores to become sequen-
tial.

3.2 Asymmetric Multiprocessing

SMP is the de-facto standard of multicore server and desktop operating systems [6].
For the embedded world also other architectures are under consideration. On systems
with asymmetric multiprocessing (AMP) different operating systems or several in-
stances of the same are executed in parallel sharing the same physical hardware.

In this case load balancing is not supported and the communication between the
cores is costly. On the other hand porting of existing single-core applications is less
difficult.

The usage of several operating systems on a multicore system requires a com-
munication channel for the synchronization of shared resources (e.g. memory or I/O).
After virtualization was successfully introduced to the server and workstation domain,
there are initial attempts to apply similar concepts to embedded systems [7, 8].

3.3 Hybrid Multiprocessing

A promising approach is hybrid architecture: running just one RTOS but putting re-
strictions on the scheduling strategy. Such hybrid configuration is supported by the
clever design of the scheduler logic and its associated data structures available as a
part of the kernel:

• Single Core. A core is configured in the way that a set of threads is defined to run
exclusively on a specific core. Neither migrating of threads from this, nor to this
core is allowed. The scheduling strategy on this core is priority-based. Load bal-
ancing is not possible.

 Tailoring and Optimising Software for Automotive Multicore Systems 75

• Execution Order Preserving. Threads are pooled to a partition with dependencies.
The scheduler assures that the execution order of the depending threads is kept. If
two threads have no dependencies, the scheduler is allowed to run these in parallel
for load balancing reasons.

• Core Affinity. A thread is bound to a specific core. The scheduler does not migrate
the thread for execution even if a different core is idle. Other threads can migrate to
this core and will be scheduled priority-based.

The most flexibility is given if the RTOS supports the combination of SMP and the
described AMP modes. For example, on a three core system, the system designer can
configure at boot-time one core as one scheduling unit and the remaining two cores
together, as another scheduling unit.

Another configuration for a three core system could be that each core is treated as
one scheduling unit. Here the situation tends to be like an AMP system. Such configu-
ration gives flexibility to port existing legacy applications from single-core systems to
multicore systems.

Currently there are no standards on scheduling for multicore available. Some RTOS
like eT-Kernel [9] or Neutrino [10] support both these flavors of SMP and AMP.

4 Application Binding

Without detailed understanding of the system requirements no general rules can be
given how to apply the different multiprocessing modes to the described use-cases.
Therefore in this section only examples can be given how to bind an application to the
cores. A major open issue is the predictability of real-time requirements.

Based on the different use-cases the software partitioning varies. In contrast to
multi-purpose systems like desktop computers or the high performance computing
domain the symmetric multiprocessing design may be inappropriate. Table 1 summa-
rizes the mapping of the use-cases to different software partitioning.

A hybrid multiprocessing approach enables the designer to keep dependencies and
timings of the existing application and combine new functions. If algorithms can be
parallelized and a short execution time is required, then a pure symmetric scheduling
strategy fits. A hybrid approach does not gain additional benefits.

Table 1. The symmetric multiprocessing approach is most beneficial for load-balancing reason
or if an algorithm is following the single program-multiple data pattern

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case

Rating: * suitable with restrictions; ** suitable; *** most benefial approach

***6: Parallel Algorithms

******5: Architectural Harmonization

*****4: Convergence of Domains

*****3: Concentrating of Functions

*****2: Redundant Systems

*****1: Deployment of new Functions

HybridSymmetricAsymmetricUse Case

76 T. Polle and M. Uelschen

Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread A0

Thread A1

Thread An

Application

Thread R0

Thread R1

Thread Rn

Redundancy

Thread C0

Control & Voting

Core 0 Core 1 Core 2

Real Time Operating System (priority-based, pre-emptive)

Thread Vn

Thread MnThread M1

Thread M0

Thread V1

Thread N1 Thread NnThread N0

Thread V0

Navigation

Video Processing

Multimedia

Fig. 1. For the implementation of a redundant system vertical partitioning of the software is
appropriate, running each redundant application on a separate core and the control application
on the third. For combining several legacy applications horizontal partitioning gives the flexi-
bility of load balancing and preserving of execution order.

Usually redundant systems should be separated mutually. Therefore an asymmetri-
cal partitioning minimizes the influence of a system to the other. Depending on the
level of separation also single-core mode in a hybrid multiprocessing is appropriate
(cf. figure 1).

Core 0 Core 1 Core 2

OSEK-OS

Thread In

Thread I1

Thread I0

Multicore Operating System (SMP)

Thread A0

Thread A1

Thread An

Vehicle Control Infotainment/Multimedia

Core 0 Core 1 Core 2

Real-Time Operating System (priority-based, pre-emptive)

Thread A0

Thread A1

Thread An

Function A

Thread B0

Thread B1

Thread Bn

Function B

Thread C0

Thread C1

Thread Cn

Function C

Fig. 2. Using asymmetric multiprocessing two operating systems are running in parallel repre-
senting different automotive domains (left). A real-time operating system that supports hybrid
multiprocessing can bind functionalities to dedicated cores (right).

 Tailoring and Optimising Software for Automotive Multicore Systems 77

In case of replacing dedicated DSP functionality for harmonization reasons by a
multicore architecture a hybrid approach can be applied. The ported DSP application
can be moved in a hybrid environment running in single-core mode. But also an
asymmetrical multiprocessing system may be appropriate as first step of a migration
strategy. The drawback of asymmetrical multiprocessing is to have two operating
systems running in parallel that need to get synchronized in an appropriate manner.
But in specific cases this can be beneficial.

If pure computation power is required and the data can be arranged in a way that
the calculation is symmetrical a pure symmetrical multiprocessing scheduling is the
most appropriate. Again, the nature of automotive applications is usually not that way.

Figure 2 shows how different automotive domains can be mapped to multicore sys-
tems in different ways. Combining vehicle control functionality with the infotainment
domain leads to the sketched architecture. On a single-core the OSEK operating sys-
tem schedules threads (or tasks in OSEK nomenclature). Having a second symmetri-
cal multiprocessing operating system both domains can run on a joint multicore
hardware. Migrating different single-core applications to a multicore system can be
achieved in single-core mode of a hybrid environment.

5 Design Patterns

The task to decide on the layout of an application across several cores is governed by
the question to what degree the application can be parallelized. The challenge to get
an application in an embedded device parallelized is as complex as on the desktop or
server domain. No general guideline can be given since control parallelism always
requires specific knowledge on the problem space. Design patterns are a well-
accepted technique in software design. Some design patterns from the non-embedded
world [11, 12] may also be applied for the embedded domain. But special attention
has to be bestowed on the implementation.

5.1 Parallel Design

If a problem can be divided in the way that the algorithm can work in parallel and
independent on separate chunks of data, then the master-worker pattern is an appro-
priate approach. A master thread controls a set of workers in a fork-join manner. For
example sorting a large array can be implemented as parallel running worker threads
quick-sorting sub-arrays. Merging the workers’ output by the master thread finalizes
the algorithm. Since the locality of the sub-arrays is very high, negative effects to the
cache can be avoided. The speed-up is high. Other prominent examples are matrix
calculations like multiplication or solving of linear equations on a mesh for fluid dy-
namics. Usually the nature of an embedded automotive application is not that way.

A central time-consuming algorithm of a navigation device is the route calculation.
Finding the shortest path in a street network can be computed efficiently by Dijkstra’s
greedy algorithm [13]. Efficient parallelizing of such problem is much harder as the
simple divide-and-conquer cannot be used easily. In order to achieve load balancing
the pipelining programming pattern which works like an assembly line seems to be a
more beneficial approach. In case of route calculation the data reading from some

78 T. Polle and M. Uelschen

medium like DVD-Rom or SD-card can be arranged in the way that always a buffer
of the next edges of the street network is available for the shortest path calculation.
Using two threads on separate cores will speed-up the overall performance.

5.2 Efficient Implementations

Parallel design patterns require efficient implementations. The producer-consumer
pattern is a well-known pattern and can be used for the communication between com-
ponents. One component, the producer, generates data, which is used by another
component, the consumer. A simple and efficient implementation can be achieved,
when a ring buffer is used. As depicted in figure 3, the producer adds data at the posi-
tion write pointer, and the consumer reads data at the read pointer.

The producer has to take care that the write pointer never overtakes the read
pointer, while the consumer has to make sure that the read pointer does not overtake
the write pointer.

Producer Consumer

write pointer

read pointer

Producer Consumer

write pointer

read pointer

Fig. 3. The producer-consumer pattern is realised with a ring buffer

Although the implementation does not need further synchronisation mechanisms
for just one producer and one consumer, the implementation does not work, if multi-
ple producers or consumers enter the scene, because updates of the write pointer or
read pointer are not atomic and therefore open to race conditions. In this case, e.g. a
mutex must be used to protect the access to the ring buffer respectively the write and
read pointer. The introduction of the mutex comes with the additional cost of a system
call. In embedded systems these costs are often not acceptable. Therefore less “expen-
sive” implementations are chosen. E.g. instead of using a mutex to protect the access
to the ring buffer, CPU interrupts are masked as long as the access to the ring buffer is
performed. But unfortunately in a multicore system, this approach does not work.
When disabling interrupts for one core, another core is not prevented from accessing
the ring buffer. To make the implementation work for multicore systems, the imple-
mentation can use a spinlock. If the spinlock is taken on a core, other cores cannot
execute code in the critical section. They perform a busy wait until the lock is re-
leased. Alas, a simple spinlock is not sufficient, because the system might end in a
dead lock. If the spinlock is taken and as many tasks as cores are available want to
take the spinlock as well and these tasks have a higher priority than the task holding
the spinlock, these tasks will on the one hand side wait for the lock to be released and
on the other hand side prevent the task, which holds the lock, from releasing the lock.
Therefore before the spinlock is taken, the task has to disable interrupts, in order not
to be interrupted. The interrupts are enabled after the spinlock has been released.

 Tailoring and Optimising Software for Automotive Multicore Systems 79

The instructions to enable and disable interrupts are often privileged instructions,
which only can be executed when the processor is in privileged mode. Often it is not
desirable to run the processor in privileged mode. Instead user mode should be used
whenever possible.

Therefore an implementation, which does not rely on masking interrupts, is neces-
sary. To this end, atomic update operations like test and swap or load link and store
can be used. But these operations cannot cover the entire access to the ring buffer.
They can only be used to protect the update of the write and read pointer. First, a
component reserves space in the ring buffer by updating the write pointer and then
fills the ring buffer with data. Special care has to be taken, when a consumer wants to
read data from the ring buffer. Since the write pointer is updated before the data in the
ring buffer becomes ready, invalid data might be read by the consumer. If for example
two components reserve space in the ring buffer, they will update the write pointer to
hold first the value wpi and then the value wpi + 1 (cf. figure 4).

di di+1

fill pointer
wpi wpi+1

di di+1

fill pointer
wpi wpi+1

Fig. 4. Multiple Producers

Afterwards they each fill the reserved space with data di and di+1, respectively. At
this point, it is not known which of the data is written first. To keep track of the point
where data has been completely written, a fill pointer can be introduced. The fill
pointer is updated after di has been written. In order to know whether the data di+1 has
already been written or not, an indicator is necessary. One way to realise such an
indicator is to build up a list for the data, which has been filled, without updating the
fill pointer. E.g. the element corresponding to data di+1 holds the information wpi+1
and length(di+1) (see figure 5).

length(di+1)

wpi+1

filled list

length(di+2)

wpi+2

length(di+1)

wpi+1

length(di+1)

wpi+1

filled list

length(di+2)

wpi+2

length(di+2)

wpi+2

Fig. 5. Filled List

80 T. Polle and M. Uelschen

The elements are stored in ascending order of the write pointer value. The insertion
of elements into the list has to be done by test and swap operations.

Although the algorithm presented comes with an overhead for the insertion into the
filled list, the performance improvement is significantly compared to a solution using
a mutex. On a system with a processor clock of 400 MHz, the operating system T-
Kernel needs about 3µsecs for a system call. Whereas the implementation presented
above takes only 100 nsecs, if no element is in the list. If there are already elements in
the list when a new element is inserted, the traversal of each element takes 50 nsecs.
Additionally, the algorithm is non-blocking, hence a producer can also run in the
context of an interrupt.

Certainly, the optimisation can only be employed if the number of conflicting ac-
cesses to the ring buffer is an exception rather than the normal case.

6 Conclusion

Embedded systems are usually closed systems in the sense that user interaction is
limited and any direct interference like installing user-defined applications is prohib-
ited. This gives the opportunity to tune and optimise software. A multicore architec-
ture takes away some optimisation techniques like efficient locking through interrupt
masking, but at the same time offers new ways to gain performance like binding ap-
plications or threads to specific cores.

Based on use-cases this paper focuses on how to apply different operating system
modes. However multicore systems compromise the predictability of real-time re-
quirements. Further studies should focus on porting existing applications in order to
get more evidence that hybrid multiprocessing is a feasible approach to support keep-
ing such real-time conditions.

References

1. Das, B., Polle, T., Uelschen, M.: A Note on Software Partitioning for Embedded Homoge-
nous Multicore Systems. In: Informatik 2008, München (2008) (accepted as conference
submission)

2. Polle, T., Uelschen, M.: Softwareentwicklung für eingebettete Multi-Core-Systeme iX 3,
124–131 (2008)

3. Takei, T.: Toyota Works on Own OS for Automotive Terminals. Nikkei Electronics Asia
(2006),
http://techon.nikkeibp.co.jp/article/HONSHI/20061026/122752/

4. Lucke, H., Schaper, D., Siepen, P., Uelschen, M., Wollborn, M.: The Innovation Cycle Di-
lemma. In: Koschke, R., Herzog, O., Rödiger, K., Ronthaler, M. (eds.) Informatik 2007.
LNI, vol. 110, pp. 526–530. Gesellschaft für Informatik, Bonn (2007)

5. Microsoft Auto 3.0, http://www.mircosoft.com/windowsautomotive
6. Kleidermacher, D.: Is symmetric multiprocessing for you? Embedded Systems Design

Europe, January-February, 28–31 (2008)
7. Widmann, P.: Multi-Core-Systeme sinnvoll nutzen. Elektronik 13, 66–69 (2008)
8. Domeika, M.: Software Development for Embedded Multi-Core Systems: A Practical

Guide Using Embedded Intel Architecture. Butterworth Heinemann (2008)

 Tailoring and Optimising Software for Automotive Multicore Systems 81

9. Gondo, M.: Blending Asymmetric and Symmetric Multiprocessing with a Single OS on
ARM11 MPCore. Information Quarterly 4, 38–43 (2006)

10. Leroux, P.N., Craig, R.: Easing the Transition to Multi-Core Processors. Information Quar-
terly 4, 34–37 (2006)

11. Akhter, S., Roberts, J.: Multi-Core Programming. Intel Press (2006)
12. Rauber, T., Rünger, G.: Multicore: Parallele Programmierung. Springer, Heidelberg (2008)
13. Smith, J.D.: Design and Analysis of Algorithms. PWS-KENT Publishing, Boston (1989)

Fault Handling Approaches on Dual-Core

Microcontrollers in Safety-Critical Automotive
Applications

Eva Beckschulze, Falk Salewski, Thomas Siegbert, and Stefan Kowalewski

Embedded Software Laboratory, RWTH Aachen University, Germany
surname@cs.rwth-aachen.de

Abstract. The number of safety-critical applications is increasing in
the automotive domain. Accordingly, requirements given by recent safety
standards have to be met in these applications. These requirements in-
clude a demonstration of sufficient measures for the handling of perma-
nent and transient hardware faults. Moreover, a consideration of software
faults is required. In this work, approaches based on dual-core micro-
controllers are investigated with respect to their fault handling capabil-
ities. Therefore, function monitoring architectures that are based on a
supervision of the implemented function and generic architectures, which
monitor the hardware executing the application, are compared. This
comparison is then further illustrated by an application example. Sum-
marizing, both approaches come with their specific advantages and dis-
advantages, which should be considered during the development of the
functional safety concept.

1 Introduction

Modern automobiles include an increasing amount of functionalities and most of
these functionalities are implemented in software to allow flexible and complex
applications. Faults in most of these functions could lead directly or indirectly to
serious accidents which makes the majority of functions implemented in today’s
automobiles safety-critical. Most popular examples are driver assistance systems
for stability control and crash avoidance, which typically require access to at
least the brake system. However, even comparably simple applications as the
electronic locking of the steering wheel require extensive safety measures, as a
malfunction easily results in an accident.

The consideration of safety aspects in automobiles is complicated by two ma-
jor aspects. First of all, most of these systems are real-time systems which require
a completed computation of tasks before a given deadline. This requirement in-
cludes the execution of all required safety measures. The second aspect is that
high requirements for low costs and low power lead to controllers with restricted
resources. These requirements result in restricted memory sizes and computation
power, but also in the need to apply general purpose devices whenever possible.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 82–92, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fault Handling Approaches on Dual-Core Microcontrollers 83

The advent of dual-core microcontrollers might help to meet the mentioned
challenges. Although these devices are not yet established in the automotive do-
main, different approaches to use them in safety critical applications were pro-
posed already. This paper aims to compare these approaches for safety-critical
applications with a safety integrity level of ASIL C (automotive safety integrity
level according to ISO WD 26262 [6]). Therefore, the requirements for such an ap-
plication are presented briefly in the following Section 2. Next, known approaches
with dual-core microcontrollers are presented and compared in Section 3. Then,
a dual-core approach is applied on an example automotive application presented
in 4. Finally, a conclusion of these investigations is given in Section 5.

2 Requirements for ASIL C Application

Specific safety requirements have to be considered in safety-critical systems.
In this regard, it is important that safety is a system property [10]. Thus, it
has to be made sure that the combination of hardware and software never
leads to an unsafe state. This property is typically achieved by implementing
a sufficient safety function. A safety function is responsible for the detection
and the handling of all faults which could lead to unsafe states of the overall
system. One form of fault handling is to shut down the system as soon as a
critical fault is detected (fail-silent system). Another option is to try a form of
fault recovery. This recovery could include a simple reset of the system (could
mitigate transient hardware faults and some software faults) or a more fine
grained recovery (e.g. to defined recovery point in the system). During recovery,
the actuators have to be put into a safe state to prevent potential hazards.
Alternatively, the outputs might remain in their current state if fault handling
can be achieved in a time shorter than the so-called fault-tolerant time span [6].
A disadvantage of these approaches is that the system cannot perform its service
while the faults are handled. This disruption might be not acceptable for safety-
critical systems that require permanent service (e.g. drive-by-wire system) and
do not allow sufficiently fast recovery. A combination of two fail-silent units to
one fail-operational system is one solution to this problem (see e.g. [15]).

For the automotive domain, a specific safety standard, namely the standard
ISO WD 26262 [6] is currently developed1. The standard requires a comprehen-
sive safety analysis, in which potential hazards are determined. These hazards
are rated according to so-called automotive safety integrity levels (ASIL). They
range from ASIL A to ASIL D with the latter representing the most demanding
level. For each hazard, a safety goal is formulated that has to be assured by a
suitable safety concept.

For applications rated as ASIL C, specific safety requirements are given in the
ISO WD 26262. For the hardware parts of such a system, a sufficient handling of
possible hardware faults has to be shown by the application of fault metrics and
coverage criteria introduced in this standard. Accordingly, single point faults
(faults that alone could violate a safety goal) are only permitted, if their risk
1 As the standard is still a working draft, contents presented here might still change.

84 E. Beckschulze et al.

of occurrence is sufficiently low and special measures are taken to ensure this
low occurrence. Moreover, only a limited fraction of single point faults is allowed
according to the fault metrics. While a higher fraction of multiple point faults
(faults that could lead to the violation of the safety goal only in combination
with other faults) is allowed, measures are required to determine latent multiple
faults during a given time (e.g. one power-up and power-down cycle). There-
fore, extensive fault handling approaches are required in these systems. How
the specific properties of dual-core microcontrollers could be used to apply fault
handling approaches are described in the following section.

3 Safety Architectures with Dual-Core Microcontrollers

Dual-core architectures vary in the the kind of redundancy used for the sec-
ond core (homogeneous or heterogeneous) and in the kind of program execu-
tion (symmetrical or asymmetrical). Regarding safety architectures of dual-core
systems we distinguish generic architectures from function monitoring architec-
tures. Whereas in generic architectures there is a monitoring function for each
safety-related component, function monitoring architecture rely upon a simpli-
fied model of the safety-critical part of the application for detecting safety-critical
failures. In the following the two different approaches are discussed.

3.1 Function Monitoring Architectures

The concept of function monitoring is shown in Fig.1. The function level with
its sensors (S) and actuators (A) provides the functionality of the system. The
shown monitoring level implements the safety function. It uses redundant safety-
critical inputs and available additional independent sensors to determine the
state of the system regarding potential violations of the safety goals. Thereupon,
the monitoring function either enables or disables the safety-related actuators2

of the system independently or makes the decision based upon a comparison
with the result of the function level. For a comparison, tolerance ranges may
have to be specified, as usually the simplified model only indicates the order of
magnitude and does not compute exact values. Moreover, effects on reliability
have to be considered carefully (see Section 3.3).

A function monitoring architecture is known from the method for controlling
the drive unit of a vehicle [2]. This concept comprises three levels, where the first
and the second level act as shown in Fig. 1. As in the proposed approach these
two levels rely on the same hardware, a third level implemented by a different
computation element is responsible for detecting common cause failures in the
hardware of the first and second level via challenge response communication.
Applying this concept to dual-core systems we propose to implement the function
level (cp. Fig. 1) on the first core and the monitoring on the second core. In order
to establish the independence of the two levels, we propose simple additional
components off the shelf. These will be discussed in Section 3.4.
2 In Fig.1, only the lower actuator is assumed to be safety-related.

Fault Handling Approaches on Dual-Core Microcontrollers 85

Function level

S

Monitoring level

A

S

S

A

CAN

enable

Fig. 1. Concept of function monitoring architectures

Provided that the monitoring function is simple, the second core is not used
to capacity. A heterogenous dual-core system with a smaller and maybe slower
second core could reduce logic overhead.

If the dual-core system is used to gain performance benefits, the function
level is distributed to both cores and mutual monitoring can be applied. Again,
there exists a concept of three levels [1]. Here, the third level is motivated by
the limited communication capabilities of this approach (e.g. challenge response
procedure is executed via CAN bus). In a dual-core system there is a more
comfortable way of communication, as a so-called exchange RAM might be used
to exchange data between the function level and the monitoring level. In order to
guarantee as much hardware independence as possible, tasks should be assigned
statically to the cores. The difficulty is that of finding a sensible distribution of
both application and monitoring.

Function monitoring does not make special demands on the architecture of
the dual-core architecture which allows the use of general purpose devices. A
further advantage is the low complexity but at the same time the high fault
coverage. It is not confined to safety-critical hardware faults, but may detect also
certain software faults. Though, the crucial part of designing function monitoring
architectures is hazard and risk analysis. The resultant specification of safety
goals establishes the basis for the function monitoring. Therefore, a missing
safety goal might result in a single point fault. On the other hand certification
of the required safety integrity is considered as comparably easy, as a dedicated
safety function is implemented on the second core for each safety goal.

Further on, if formal verification is applied to show the correctness of the
implemented safety function, this verification can be reduced to the second core
executing the safety function. As this function has typically a much lower com-
plexity than the overall application, verification can be simplified this way. How-
ever, reuse of the safety function for other applications is limited and not every
application is suitable for function monitoring.

3.2 Generic Architectures

Generic architectures require a careful analysis of all safety-related components.
Fig. 2 illustrates the general concept, in which device supervision is responsible

86 E. Beckschulze et al.

Application

S

Device Supervision

A

S

A

CAN

enable

Fig. 2. Concept of generic architectures

Master

Checker

Comparator

Other

Peripherals

Signal error

Address Bus

Data Bus

Control Bus

Address Bus

Data Bus

Control Bus

Parity

Coder/Decoder

Program

Memory

Data

Memory

Fig. 3. Concept of lock step architecture

for detecting faults in the application hardware and disabling the safety-critical
output, if necessary. While this consideration typically has to include all com-
ponents of a microcontroller (e.g. I/O-blocks, memories, CPU, internal buses,
on-chip peripherals), we focus our inspection on the most important components,
processor and memory. Nevertheless, a brief discussion of fault handling for the
remaining components can be found in Section 3.4.

A popular approach for detecting faults in the processor is to run a dual-
core microcontroller in lock step configuration (symmetrical approach). There-
for, both processors receive the same input signals, execute the same software in
parallel and the output signals (addresses, data or control signals) of the proces-
sors are compared to each other. This comparison requires additional hardware
that detects discrepancies and disables the outputs if an error occurs. Fig. 3
illustrates the lock step principle.

Fault Handling Approaches on Dual-Core Microcontrollers 87

Lock step configuration provides concurrent detection of transient and perma-
nent processor faults. In order to avoid a common cause failure through electric
disturbances affecting both cores in the same way, it is suggested to delay the
clock signal for the second core by 1/2 cycle [7]. Though, as the second proces-
sor is exclusively used for redundancy, there is no performance advantage over
a single core microcontroller. An elegant solution to use the second core more
efficiently is presented in [9]. The proposed dual-core architecture provides two
different modes of operation, which can be switched dynamically. In safety mode
the system is run in lock step configuration while in performance mode the cores
execute different programs independently to gain maximal performance. This
requires a partition of the program into safety-critical and uncritical compu-
tations. Furthermore a switch to safety mode is required at least once in the
fault-tolerant time span, in order to ensure that safety-related outputs do not
violate the safety goals.

However, lock step configuration is limited to detect processor faults, whereas
the handling of memory faults is not included yet. Indeed, in a lock step archi-
tecture, the handling of faults in the memories seems to be the crucial point for
an ASIL C system. The use of parity with a diagnostic coverage of 60 % [6] for
both data and instruction memory suggested in [8] and illustrated in Fig. 3 pro-
vides a weak protection. Alternatively, data error correction codes offer higher
fault coverage, but the involved overhead, especially with respect to memory ac-
cess time, is a problem [12]. In the Delphi Secured Microcontroller Architecture
[5], the dual-core system is provided with a data stream monitor to enable con-
current error detection for nonvolatile memory. While that way no performance
disadvantage is introduced, further additional logic is needed.

Another possibility to monitor the correct functioning of the first processor
is a control flow checking algorithm executed by the second processor [3]. Fault
injection experiments in [14] showed that in average about 78% of the faults
induced by heavy-ion radiation and power supply disturbances resulted in control
flow errors, whereas those can also origin from memory and bus transients. Even
if all control flow errors are detected by the second processor, the so-called
watchdog-processor, bit flips in registers that result in corrupted data or in
the execution of a wrong instruction are not covered. Therefore it is doubtful,
whether control flow checking provides sufficient coverage of single point faults
for an ASIL C system.

In [4] an asymmetric dual-core system is proposed. The second core acts as
a safety monitor performing a variety of extensive tests with respect to the
processor, memory and different peripherals. As those tests cannot be executed
concurrently and probably take longer than the fault-tolerant time span, they are
not appropriate to the detection of single point faults. A high fault coverage is
therefore achieved for latent multiple point faults only, for which the acceptable
detection time span is more generous (10 hours for an ASIL C system). For
concurrent detection of single point faults in all components low-level hardware
support is demanded.

88 E. Beckschulze et al.

3.3 Comparison of Effects on Reliability

With respect to safety, it is often sufficient to switch over to a safe state as soon
as an error is detected (fail-silent). Taking reliability and availability into consid-
eration, a more sophisticated approach of fault handling is required. Comparing
function monitoring architectures and generic architectures, safety interferes dif-
ferently with reliability and availability.

Function monitoring states the set of safety-critical faults explicitly. This dis-
tinction between uncritical and safety-critical faults causes the system to switch
to the safe state only if necessary. However, this decision might be a false pos-
itive. These describe the decision of the safety function that the system is in a
safety-critical state, although the system’s state is correct. There are two differ-
ent causes of false positives. Possibly, the monitoring function does not define the
safety-critical state sufficiently accurately. If this applies, a trade-off between reli-
ability and safety is required. On the other hand, false positives can be caused by
transient faults in the monitoring function. In order to increase the reliability of
the monitoring function in event of a transient fault, it is possible to introduce error
counters. The counter is increased each time the safety function detects an error
but is reset if the safety function detects no error. Not until the counter reaches a
predefined value, the safety function switches in the safe state and initiates further
recovery procedures. Attention has to be turned to the fault-tolerant time spans
of the safety goals. These may not be exceeded while increasing the counter.

In contrast, in generic architectures the safety function cannot distinguish
between safety-critical and uncritical faults. In [3] the authors suggest to restrict
the handling of memory faults to an application-specific set of safety-critical
data. While this approach seems to be similar to function monitoring, there is a
difference. It has to be considered that even a fault in a safety-critical variable
may have no effect, e.g. if it is a bit-flip in the least significant bit of a variable.
It is even more complex to determine whether a fault is safety-critical in the
processor or in nonvolatile memory, as a wrong address in the program counter
could cause a jump to an arbitrary instruction.

On the other hand, memory error correction codes provide sufficient redundant
bits to correct single bit error (and detect some two bit errors) and are therefore
useful to increase reliability. While in general in software implemented error cor-
rection codes introduce a high overheadwith respect to memory and time, it might
be a feasible solution if this task is executed by the second processor.

Taking into account the missing distinction between critical and uncritical
faults in generic architectures, safety mechanisms must be able to handle all
faults in safety-related components. If redundancy provided by the safety mech-
anism is only designed for error detection (no correction technique included),
probability of failure is higher than in an one channel system. Therefore, reliabil-
ity is more affected by the kind of recovery performed in a generic architecture. A
traditional form of recovery is checkpointing in combination with rollback recov-
ery. In order to avoid overhead with respect to time and memory, the program
may be tested for a fixed point, where the program can be restarted without
saving the system’s state before. In [16], a more fine-grained approach for the

Fault Handling Approaches on Dual-Core Microcontrollers 89

lock step configuration is suggested, which enables the system to retry faulty
instructions immediately. The most comprehensive action, a software reset may
be performed after recovery failed.

Besides the interference of safety with reliability in generic architectures, it has
to be considered that the comprehensive error detection in generic architectures
provides the opportunity to increase the overall reliability of the system. This
will be of increasing importance due to technology scaling and small supply
voltage resulting in a high soft error rate for logic and memory [11].

3.4 Common Problems

Dual-core devices have a lack of sufficient independence between the two cores. A
simple solution for several common cause failures is an external time-windowed
watchdog [4]. In asymmetric dual-core architectures, the job of triggering the
watchdog can be assigned to the second core executing the safety functions. If
the system fails to trigger the watchdog in the specific time window, the watch-
dog initiates a reset. The smaller the time window, the higher is the probability
that failures of the clock or faults caused by heat are detected. For detecting
insufficient supply voltages, most watchdogs are provided with brown-out3 de-
tection. As the triggering of the watchdog requires a communication via the
internal system bus, a complete failure of this bus can also be detected. On the
other hand, not all transient faults in the internal bus system can be detected
this way. However, these faults represent dual point faults4, as the two cores
do not use the system bus simultaneously. Moreover, most bus faults could be
covered by a parity decoder as applied in the lock step approach.

It is difficult to design the safety architecture of a system completely indepen-
dent from the application. Simple software techniques can reduce overhead and
complexity of the overall system. Thus, to a certain extent, both types of archi-
tecture rely on hazard and risk analysis. In function monitoring architectures,
safety-critical faults caused by input or output pins are detected by the monitor-
ing function which has redundant inputs and outputs. In order to detect faulty
I/O concurrently in generic architectures, the simplest way is also duplication,
provided that no hardware measure is available to check the inputs and thus pre-
serve independence of the application. In both types of architecture, redundant
I/O should use different port registers to ensure maximal physical independence.
Some applications receive safety-critical information via the CAN bus. In this
case, the CAN controller represents a single point of failure. However, informa-
tion redundancy in combination with message counters can be applied to detect
faults in the CAN messages.

The interference of all further on-chip peripherals (e.g. timers, analog-to-
digital conversion) has to be analyzed. Future hardware architectures could sup-
port the designer by including self-checking abilities for some components.
3 The term brown-out describes an undesired lowering of the supply voltage for some

period of time.
4 The term dual point fault represents a special case of multiple point faults in which

faults in two components are required to violate the safety goal.

90 E. Beckschulze et al.

4 Evaluation of Application Example

Within this section, the implementation of an application example, namely a
controller for a convertible top, on a dual-core device is described briefly. The
main task of this controller is to open or close the convertible top. However,
potential hazards can occur during operation. As an example, the convertible
top might break away if opened while driving at high speed and might injure or
kill other road users. Another example could be that a person might shut a finger
or other bodily parts in the mechanic of the convertible top and therefore receive
an injury. Hence, it is necessary to establish safety goals and the corresponding
safety function to prevent the occurrence of these hazards. For this application
example, two safety goals have been defined:

1. The convertible top will not move if the vehicle is driving.
2. The convertible top will not move if this is not requested by the user.

In order to implement the main task of the controller, a lot of sensors (e.g.
roof status, window status, trunk status, vehicle speed, user panel) and actuators
(e.g. hydraulic pump and valves, electric motors) are required. However, for the
implementation of the safety function, only few sensors and actuators (those
that are safety-related) have to be considered. In the application example, the
following information is required to determine a violation of the safety goals:
vehicle speed, ignition status, and status of user request. The user request is
received from a control panel which is connected to two of the controller’s digital
inputs. The current speed and ignition status of the vehicle are sent via CAN
bus to the controller. Furthermore, only the hydraulic pump is responsible for
moving the convertible top and is therefore the only actuator which could lead
to a violation of the safety goals. Thus, the safety goals are achieved by the
following safety requirement:

An activation of the hydraulic pump will be allowed if the current speed is 0
Km/h, the ignition has been turned on and either the open button or the close

button is pressed.

In order to fulfill this safety requirement and to fulfill the requirements defined
by ASIL C in Section 2, the safety architectures which are presented in Section 3
could be applied.

For this application example, a generic architecture will result in a lot of
overhead. Each safety-related component has to be covered by a generic safety
mechanism to ensure that the safety goal will not be violated. The generic archi-
tecture does not take into account the specific characteristics of the application,
namely disabling the hydraulic pump.

In contrast, a function monitoring architecture is very easy to realize in this
case. This approach takes advantage of the specific characteristics of the appli-
cation. Therefore, the safety function does only check the boundary conditions
given by the safety requirements (speed, ignition status, status control panel)
and enables the hydraulic pump only if the conditions are fulfilled. Further safety

Fault Handling Approaches on Dual-Core Microcontrollers 91

mechanisms to detect latent multiple point faults can be implemented by addi-
tional measures easily and with a diagnostic coverage as high as required by [6].
Hence, the overhead is considered as lower in this architecture. Therefore, the
function monitoring architecture is the preferred safety architecture.

Nevertheless, it is generally not possible to say which architecture should be
used for other applications. In particular, it depends on the complexity of the
safety function to be implemented. In this application example, the complexity
of this function is very low. It has a size, measured in Lines of Code (LoC),
of about 200 LoC while the application itself has a size of roughly 1500 LoC.
Furthermore, the application example includes only one safety-related actuator.
The more actuators have to be controlled by the function monitor, the higher
will be the complexity of the function monitor itself. In case of a more complex
safety function, it might be better to use a generic approach, which is mostly
independent from the actual application. Since the complexity of generic archi-
tectures is also known, it is possible to estimate the costs for realizing the chosen
generic architecture for an application. Such an estimation is generally harder
to achieve for function monitoring architectures. However, the complexity of a
function monitor can be predicted roughly in most instances, since the boundary
conditions (and other safety functions used in the function monitor) are derived
from the function safety requirements.

Usually, the decision for or against generic architectures and function mon-
itoring architecture, respectively, can be made in a early development phase.
Since the boundary conditions and other safety functions used in the function
monitor are derived from the function safety requirements, it is usually possible
to predict the complexity of the function monitor.

5 Conclusion

In this paper we presented different approaches for implementing safety archi-
tectures with dual-core systems. These approaches were categorized into func-
tion monitoring architectures and generic architectures. The concept of function
monitoring can be implemented comparatively easy, if the complexity of the
corresponding safety function is low, which is the case in several automotive ap-
plications (as in the application example described above). In opposite to generic
architectures, coverage of both safety-critical hardware and software faults can
be achieved with an acceptable hardware overhead. Moreover, if only the safety
function is executed on the second core, (formal) verification of the correctness of
the implemented safety function will be simplified. On the other hand, generic
architectures are superior to function monitoring, if it is difficult to state the
application’s safety-critical states exactly. However, high fault coverage of the
component-based safety mechanisms in these approaches comes along with a
need for additional supporting hardware. Nevertheless, the comprehensive fault
detection mechanisms available in generic architectures can be used to increase
overall system reliability.

Moreover, the distinction between function monitoring architectures and
generic architectures is not limited to dual core architectures. Further methods

92 E. Beckschulze et al.

for comprehensive fault detection exist. A promising example is the platform-
based hardware-centric approach presented in [13].

Summarizing, both approaches come with their specific advantages and dis-
advantages and the choice depends on the application as well as on the cost and
the technical maturity of devices based on generic architectures.

References

1. Bauer, T.: Verfahren und Vorrichtung zur gegenseitigen Überwachung von Steuer-
einheiten. DE Patent n.19933086 by R.B. GmbH (2001)

2. Bederna, F., Zeller, T.: Verfahren und Vorrichtung zur Steuerung der Antriebsein-
heit eines Fahrzeugs. DE Patent 4438714 der Robert Bosch GmbH (1995)

3. Benso, A., Carlo, S.D., Natale, G.D., Prinetto, P.: A watchdog processor to detect
data and control flow errors. Iolts, 144 (2003)

4. Brewerton, S.: Dual core processor solutions for IEC61508 SIL3 vehicle safety sys-
tems. In: Embedded World Conference (2007)

5. Fruehling, T.L.: Delphi secured microcontroller architecture. In: Design and Tech-
nologies for Automotive Safety-Critical Systems. SAE World Congress (March 2000)

6. ISO. ISO/WD 26262 - Road vehicles - Functional Safety. International Organiza-
tion for Standardization, working draft (2007)

7. Kanekawa, N., Meguro, T., Isono, K., Shima, Y., Miyazaki, N., Yamaguchi, S.: Fault
detection and recovery coverage improvement by clock synchronized duplicated sys-
tems with optimal time diversity. In: FTCS 1998: Proceedings of the The Twenty-
EighthAnnual InternationalSymposiumonFault-TolerantComputing,Washington,
DC, USA, p. 196. IEEE Computer Society Press, Los Alamitos (1998)

8. Kottke, T., Steininger, A.: A generic dual-core architecture. In: 7th IEEE Inter-
national Workshop on Design and Diagnostics of Electronic Circuits and Systems
(DDECS 2004) (April 2004)

9. Kottke, T., Steininger, A.: A reconfigurable generic dual-core architecture. In: DSN
2006: Proceedings of the International Conference on Dependable Systems and
Networks, Washington, DC, USA, pp. 45–54. IEEE Computer Society Press, Los
Alamitos (2006)

10. Leveson, N.G.: Safeware - System Safety and Computers. Addison-Wesley, Reading
(1995)

11. Mariani, R.: Soft errors on digital components – an emerging reliability problem for
new silicon technologies. In: Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation, vol. 23, pp. 49–60. Springer, Heidelberg (2004)

12. Mariani, R., Boschi, G.: A system-level approach for embedded memory robustness.
Solid-State Electronics Journal 49, 1791–1798 (2005)

13. Mariani, R., Fuhrmann, P.: Comparing fail-safe microcontroller architectures in
light of IEC 61508. In: 22nd Int. Symposium on Defect and Fault-Tolerance in
VLSI Systems (DFT 2007), September 2007, pp. 123–131. IEEE Computer Society
Press, Los Alamitos (2007)

14. Miremadi, G., Karlsson, J., Gunneflo, U., Torin, J.: Two software techniques for on-
line error detection. In: Digest of Papers, 22nd Int. Symposium on Fault-Tolerant
Computing, pp. 328–335 (1992)

15. Montenegro, S.: Sichere und fehlertolerante Steuerungen. Hanser Verlag (1999)
16. Salloum, C.E., Steininger, A., Tummeltshammer, P., Harter, W.: Recovery mecha-

nisms for dual core architectures. In: DFT 2006: Proceedings of the 21st IEEE Inter-
national Symposium on Defect and Fault-Tolerance in VLSI Systems, Washington,
DC, USA, pp. 380–388. IEEE Computer Society Press, Los Alamitos (2006)

Timing Validation of Automotive Software

Daniel Kästner1, Reinhard Wilhelm2, Reinhold Heckmann1,
Marc Schlickling1,2, Markus Pister1,2, Marek Jersak3, Kai Richter3,

and Christian Ferdinand1

1 AbsInt GmbH, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

3 Symtavision GmbH, Braunschweig, Germany

Abstract. Embedded hard real-time systems need reliable guarantees
for the satisfaction of their timing constraints. During the last years so-
phisticated analysis tools for timing analysis at the code-level, controller-
level and networked system-level have been developed. This trend is
exemplified by two tools: AbsInt’s timing analyzer aiT, and and Sym-
tavision’s SymTA/S. aiT determines safe upper bounds for the execu-
tion times (WCETs) of non-interrupted tasks. SymTA/S computes the
worst-case response times (WCRTs) of an entire system from the task
WCETs and from information about possible interrupts and their pri-
orities. A seamless integration between both tools provides for a holistic
approach to timing validation: starting from a system model, a designer
can perform timing budgeting, performance optimization and timing ver-
ification, thus covering both the code and the system aspects. However,
the precision of the results and the efficiency of the analysis methods
are highly dependent on the predictability of the execution platform.
Especially on multi-core architectures this aspect becomes of critical im-
portance. This paper describes an industry-strength tool flow for timing
validation, and discusses prerequisites at the hardware level for ascer-
taining high analysis precision.

1 Introduction

Developers of safety-critical real-time systems have to ensure that their systems
react within given time bounds. Tests and measurements help to detect violations
of time bounds, but cannot prove their absence, unless all possible scenarios are
covered. Face to the complexity of today’s embedded software and the complexity
of contemporary hardware architectures this is virtually impossible. Moreover,
tests and measurements are only available late in the development cycle. Tools
for static program analysis can obtain results valid for all possible system runs
and inputs, even before the first real prototypes are available. Examples for such
tools are AbsInt’s timing analyzer aiT, and Symtavision’s SymTA/S tool. aiT
is a code-level analysis tool determining safe upper bounds for the execution
times (WCETs) of non-interrupted tasks. SymTA/S works at the system level;
it computes the worst-case response times (WCRTs) of an entire system from the
task WCETs and from information about possible interrupts and their priorities.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 93–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 D. Kästner et al.

A tool coupling between aiT and SymTA/S paves the path towards a holistic
timing validation tool chain. The system developer creates a system model in
SymTA/S, consisting of a task graph, information on task scheduling (priorities,
time slots, etc.), and information on task activation (time tables, interrupts, etc.).
To determine the WCRTs of the tasks with possible interrupts, the WCETs of
the non-interrupted tasks are required. To obtain these WCETs, SymTA/S sends
requests to aiT. Then aiT asks the developer for necessary information on hard-
ware configuration and executables, determines the requested WCETs, and sends
them back to SymTA/S. The coupling of SymTA/S with aiT allows SymTA/S
to determine end-to-end timings in an early development phase, with automatic
identification of problematic system configurations and automatic system opti-
mization as a next step. In the EU projects INTEREST and INTERESTED
the tool coupling is extended towards model-based code generation tools such as
ASCET[8] and SCADE[7] to support the entire development process from the
model till the implementation with formally verified timing behavior.

Static-analysis-based methods can give timing guarantees even for complex
processor architectures exhibiting a huge execution-time variability and a strong
dependency of the execution time on the initial execution state. Nevertheless,
the efficiency and the precision of the result of timing analysis highly depends on
the hardware architecture. As an example, a cache with a random replacement
strategy does not allow for a cache analysis with good precision. The design
of the internal and external buses, if done wrongly, leads to hardly analyzable
behavior and great loss in precision. Multi-core architectures with shared caches,
finally, will create a space of interleavings of interactions on these caches that
will make sound and precise timing analysis practically infeasible at all.

The trend in automotive embedded systems is towards unifying frameworks
like AUTOSAR. Such frameworks aim at managing the increasing functional
complexity and allowing for better reconfigurability and maintainability. Stan-
dardized interfaces allow to compose components, independently developed by
different suppliers, on ECUs. A runtime environment provides basic services, like
intra- or inter-ECU communication between components. At a lower level AU-

TOSAR abstracts from the underlying hardware, the actually deployed ECUs.
From a functional point of view this framework is appealing because of the gained
compositionality.

The AUTOSAR timing model currently being developed concerns mainly
the integration of scheduling requirements. The success of scheduling analy-
sis depends on the predictability of the execution times of the AUTOSAR-
“runnables”, the basic building blocks of a software component. When multiple
components are mapped to a hardware architecture where a high degree of inter-
ference between the components cannot be avoided (e.g., due to shared caches
or buses) execution times of runnables may vary considerably and the possi-
bilities to predict safe and precise execution time bounds can be rather limited.
This limits the success of the scheduling analysis and this counteracts the idea of
composing software components. Thus, the applicability of the AUTOSAR idea

Timing Validation of Automotive Software 95

depends on availability of architectures on which software composition doesn’t
lead to unpredictable timing behavior.

In the following, we present a tool flow for validating timing behavior based
on aiT and SymTA/S. In Sec. 2-Sec. 3 we discuss the influence of the hard-
ware architecture on the timing validation process, based on experience with
static timing-analysis in the embedded-systems industry [30,13] and theoretical
insights [23,22,11]. Sec. 5 first address hardware issues that have to be respected
both in single core and in multi-core architectures. Face to the increased com-
plexity of multi-core designs, there these aspects become even more critical than
they are in the single core domain. Sec. 5 concludes with discussing specific issues
for multi-core architectures.

2 The System Level: Schedulability Analysis

Scheduling analysis is a systematic approach that automatically finds and eval-
uates critical timing situations resulting from function and system integration.
Such corner case identification is the opposite of traditional test-based meth-
ods: instead of massive testing to try to find all corner cases, scheduling analysis
systematically constructs scenarios leading to worst-case timing.

SymTA/S [14] is Symtavision’s tool for timing and scheduling analysis and
optimization for controllers, networks and entire systems. SymTA/S computes
the worst-case response times (WCRTs) of tasks and the worst-case end-to-end
communication delays. It takes into account the worst-case execution times of
the tasks as well as information about RTOS scheduling, bus arbitration, pos-
sible interrupts and their priorities. The graphical user interface of SymTA/S
offers ways to specify a system architecture, select scheduling on controllers and
arbitration on buses, map functions to controllers and communication to busses,
and to describe dataflow, activation conditions, deadlines and other timing con-
straints.

The analysis results are displayed in a variety of ways. The most powerful
and easy to understand are Gantt-Charts that visualize to the designer why and
under which conditions deadlines can be violated. There are two main use cases
for SymTA/S:

1. timing design / budgeting during early design stages and
2. timing verification during later design stages.

The added value for verification is exemplified in Figure 1: the upper part of
the diagram displays a typical timing trace, showing a response time of 6.9ms for
a task executed every 10ms – well below the 10ms deadline. In the lower part,
SymTA/S scheduling analysis has constructed a worst-case schedule leading to a
WCRT of 9ms for the 10ms task – still below the deadline, but much closer. The
key message is that no other schedule will produce a longer WCRT. SymTA/S
thus safeguards against deadline violations resulting from worst-case schedules.
Furthermore, the Gantt-display enables the designer to check the reasoning of
SymTA/S and thus to see if some important information has been omitted in
the model.

96 D. Kästner et al.

Fig. 1. Safeguarding timing using scheduling analysis (as compared to measurement)

Furthermore SymTA/S also supports the system design stage. With a what-
if scheduling analysis it is easily possible to estimate how additional functions
and their scheduling will influence overall system timing, and whether deadlines
can be safely met for a specific design alternative. As a result, timing budgets
for individual functions of sub-systems can be derived early on, and given to a
designer as part of a requirements specification. Additionally, SymTA/S offers
a plugin for design-space exploration allowing designers to automatically evalu-
ate the strengths and weaknesses of alternative designs with respect to timing
and performance. A plugin for sensitivity analysis allows users to automatically
determine the amount of extra load (e.g., caused by additional functions) per-
missible without violating deadlines.

3 The Code Level: Static Timing Analysis

aiT computes safe upper bounds on the worst-case execution times (WCETs) of
sequential tasks. For a precise computation of the WCET, aiT operates on the
executable. If available, aiT can also read the source files for further information.
The WCET is computed in several phases [9] (see Figure 2).

In the first step a decoder reads the executable and reconstructs its control
flow [27]. Then, value analysis determines lower and upper bounds for the values
in the processor registers for every program point and execution context, which
lead to bounds for the addresses of memory accesses (important for cache analysis
and if memory areas with different access times exist). Value analysis can also
determine that certain conditions always evaluate to true or always evaluate
to false. As consequence, certain paths controlled by such conditions are never
executed. Thus value analysis can detect and mark some unreachable code.

WCET analysis requires that upper bounds for the iteration numbers of all
loops be known. aiT tries to determine the number of loop iterations by loop

Timing Validation of Automotive Software 97

Fig. 2. Phases of WCET Computation

Fig. 3. Call graph with WCET result

bound analysis [10], but succeeds in doing so for simple loops only. Bounds for
the remaining loops must be provided as specifications in a separate parameter
file (.ais file) or annotations in the C source. The micro-architectural analy-
sis [6,29,11] determines bounds on the execution time of individual basic blocks
by performing an abstract interpretation of the program. It thereby takes into
account the processor’s pipeline, caches, and speculation concepts: static cache
analyses determine safe approximations to the contents of caches at each pro-
gram point. All accesses into main memory are classified into hits, misses, or
accesses of unknown nature. A pipeline analysis analyzes how instructions pass
through the pipeline accounting for occupancy of shared resources like queues
and functional units etc., and for the classification of memory references by the
cache analysis etc [26]. Ignoring these average-case-enhancing features would re-
sult in imprecise bounds. Using this information, path analysis determines a safe

98 D. Kästner et al.

estimate of the WCET. The program’s control flow is modeled by an integer lin-
ear program [16,28] so that the solution to the objective function is the predicted
worst-case execution time for the input program.

After a successful analysis, aiT reports its results in several ways: aiT can
produce a graphical output showing the call graph and control flow graph of the
analyzed part of the application. Alternatively, aiT can write a text report meant
to be human readable, and a more formal XML report. These reports contain
detailed results for all analyzed routines in all calling contexts, including specific
results for the first few iterations of loops vs. a result for the remaining iterations.

4 The Interaction between SymTA/S and aiT

Timing analysis is a novel domain, and the requirements for coupling code-
level and system-level tools were not suitably covered by any existing exchange
format. Therefore, the concept of “Timing Cookies” has been developed in the
INTEREST project to avoid the duplication of the sophisticated user-interfaces
of the tools. The information exchanged is stored in such a Timing Cookie in
the first round of communication between the tools. During the next round of
communication this information is retrieved from that cookie so that invariant
parts do not have to be re-entered manually.

Fig. 4. Flow of requests and responses

The Timing Cookie Exchange Format XTC is defined as an XML schema.
It is organized hierarchically since some information can be reused for different
analyses. For instance, a CPU configuration can be reused for different runnables
sharing the same CPU. The information in the common section is structured in
four blocks: general, CPU, runnable (i.e., an atomic piece of software1), and
mode (a specific control-flow path through the runnable).

1 AUTOSAR [2] terminology has been adopted.

Timing Validation of Automotive Software 99

The interaction between SymTA/S and aiT follows the following pattern:
From a system model, SymTA/S launches a request for WCET information for
specific pieces of code (see Figure 4). This request is tagged with a unique ID
and sent to aiT in an XTC. If necessary, aiT queries the user for all missing
information required to service the request. For the first request issued for a
system model, this typically includes the type of processor, the location of the
executable code, the starting point of the analysis etc. When aiT answers the
request by sending an XTC with a response back to SymTA/S, it stores this
information in the private aiT-part of the cookie. This aiT-specific information
will be included in subsequent requests so that aiT can use the information
already gathered without the need to ask the user again.

5 Hardware and Predictability

In modern microprocessor architectures caches, pipelines, and all kinds of spec-
ulation are key features for improving (average-case) performance. Caches are
used to bridge the gap between processor speed and the access time of main
memory. Pipelines enable acceleration by overlapping the executions of different
instructions. Multi-core designs combine two or more independent cores into a
single die. Cores in a multi-core device may share a single coherent cache at the
highest on-device cache level or may have separate caches. The processors also
share the same interconnect to the rest of the system. Each core independently
implements the typical hardware features described above for the single core
domain.

The consequence is that the execution time of individual instructions, and
thus the contribution of one execution of an instruction to the program’s ex-
ecution time can vary widely. This variation depends on the execution state,
e.g., the contents of the cache(s), the occupancy of other resources, and thus on
the execution history. It is therefore obvious that the attempt to predict or
exclude timing accidents needs information about the execution history.

For WCET computation, the state space of input data and initial states is too
large to exhaustively explore all possible executions in order to determine the
exact worst-case execution times. Instead, bounds for the execution times of basic
blocks are determined, from which bounds for the whole system’s execution time
are derived. Some abstraction of the execution platform is necessary to make a
timing analysis of the system feasible. These abstractions lose information, and
thus are in part responsible for the gap between WCETs and upper bounds.
How much is lost depends both on the methods used for timing analysis and on
system properties, such as the hardware architecture and the analyzability of
the software.

Most of the problems posed to timing analysis are caused by the interfer-
ence on shared resources. Resources are shared for cost, energy and performance
reasons. Different users of a shared resource may often access the resource in a
statically unknown way. Different access sequences may result in different states
of the resource. The different sequences may already exhibit different execution

100 D. Kästner et al.

times, and the resulting resource states may again cause differences in the future
timing behavior. An out-of-order processor will execute an instruction stream in
one sequential order. Exhaustive exploration could, in principle, identify this
one sequence for each input and initial state, while in practice, this is infeasible.
Thus, this order is assumed to be not statically known. This forces the analysis
to consider all possible sequences. Different sequences may have different effects
on the cache contents. Examples of shared resources with interferences are buses
and memory: Buses are used by several masters, which may access the buses in
unpredictable ways. On a multi-core system the interference on shared resources
is significantly increased wrt a single core system. Memory and caches are shared
between several processors or cores. One thread executed on one core does not
know when accesses by another thread on another core will happen.

In the following we will first investigate the predictability of common elemen-
tary hardware features: pipelines, caches, and buses. This discussion applies both
for single core and multi-core architectures, since they determine the “internal´´
behavior of each core in a multi-core design. In Sec. 5.4 we additionally discuss
specific features of multi-core designs.

5.1 Pipelines

For non-pipelined architectures one can simply add up the execution times of
individual instructions to obtain a bound on the execution time of a basic block.
Pipelines increase performance by overlapping the executions of different in-
structions. Hence, a timing analysis cannot consider individual instructions in
isolation. Instead, they have to be considered collectively – together with their
mutual interactions – to obtain tight timing bounds. Superscalar- and out-of-
order execution increase the number of possible interleavings. The larger the
buffers (e.g., fetch buffers, retirement queues, etc.) are the longer lasts the in-
fluence of past events. Dynamic branch prediction, cache-like structures, and
branch history tables increase history dependence even more.

The analysis of a given program for its pipeline behavior is based on an
abstract model of the pipeline. All components that contribute to the timing
of instructions have to be modeled conservatively. Depending on the employed
pipeline features, the number of states the analysis has to consider varies greatly.
To compute a precise bound on the execution time of a basic block, the analysis
needs to exclude as many timing accidents, i.e., incidents that cause an increase
of an instruction’s execution time, as possible. Such accidents are data hazards,
branch mispredictions, occupied functional units, full queues, etc.

Abstract states may lack information about the state of some processor com-
ponents, e.g., caches, queues, or predictors. Transitions of the pipeline may
depend on such missing information. Then the analysis must take all alternative
scenarios into account. One could be tempted to design the analysis such that
only the locally most expensive pipeline transition is chosen. However, in the
presence of timing anomalies [17,23] this approach is unsound.

The notion of timing anomalies was introduced by Lundqvist and Stenström
in [17]. In the context of WCET analysis, [23] presents a formal definition.

Timing Validation of Automotive Software 101

Intuitively, a timing anomaly is a situation where the local worst-case does not
contribute to the global worst-case. For instance, a cache miss–the local worst-
case–may result in a globally shorter execution time than a cache hit. A scenario
where this can occur is when the cache miss penalty prevents the branch unit
from misspeculating and prefetching along the wrong path. An especially severe
timing anomaly is the so-called domino effect [17] that causes the difference in
execution time of the same program starting in two different hardware states
to become arbitrarily high. The existence of domino effects is undesirable for
timing analysis. Otherwise, one could safely discard states during the analysis
and make up for it by adding a predetermined constant. Unfortunately, domino
effects show up in real hardware. In [25], Schneider describes a domino effect
in the pipeline of the PowerPC 755. Another example is given by Berg [3] who
considers the PLRU replacement policy of caches. Thus, in general, the analysis
has to follow all possible successor states.

Architectures can be classified into three categories depending on whether
they exhibit timing anomalies or domino effects.

– Fully timing compositional architectures: The (abstract model of) an
architecture does not exhibit timing anomalies. Hence, the analysis can safely
follow local worst-case paths only. One example for this class is the ARM7.

– Compositional architectures with constant-bounded effects: These
exhibit timing anomalies but no domino effects. In general, an analysis has
to consider all paths. To trade precision with efficiency, it would be possible
to safely discard local non-worst-case paths by adding a constant number
of cycles to the local worst-case path. The Infineon TriCore is assumed, but
not formally proven, to belong to this class.

– Non-compositional architectures: These architectures, e.g., the Pow-
erPC 755 exhibit domino effects and timing anomalies. For such architec-
tures timing analyses always have to follow all paths since a local effect may
influence the future execution arbitrarily.

5.2 Caches

To obtain tight bounds on the execution time of a task, timing analyses must
take into account the cache architecture. The cache analysis tries to classify
memory accesses as hits or misses. Memory accesses that cannot be safely clas-
sified as a hit or a miss have to be conservatively accounted for by considering
both possibilities. The precision of a cache analysis is strongly dependent on the
predictability of the cache architecture, especially on its replacement policy. The
three most common replacement strategies are the following:

– The LRU(Least Recently Used) replacement strategy uses age bits to discard
the least recently used cache line in case of a cache miss. When a cache hit
occurs, the age information of all cache lines is updated. It is used in the
Freescale PPC603e core and the MIPS 24K/34K.

102 D. Kästner et al.

– With the FIFOstrategy the cache is organized like a queue: new elements are
inserted at the front evicting elements at the end of the queue. In contrast
to LRU, hits do not change the queue. FIFO is used in the Intel XScale

and some ARM9 and ARM11 based processor cells.
– PLRU(Pseudo-LRU) is a tree-based approximation of the LRU policy. It

arranges the cache lines at the leaves of a tree with k − 1 “tree bits” point-
ing to the line to be replaced next. For an in detail explanation of PLRU

consider [22,1]. It is used in the PowerPC 75x and the Intel Pentium

II-IV.

In [21] the influence of these three replacement strategies on the precision of
static cache analyses is analyzed. The results show that LRU-replacement has
the best predictability properties of all replacement policies. Employing other
policies, like PLRU or FIFO, yields less precise WCET bounds, because fewer
memory accesses can be classified as hits of misses. This also has the consequence
that timing analysis has to explore more possibilities so that the efficiency is
lower than with LRU.

Static cache analyses usually cannot make any assumptions about the initial
cache contents. Cache contents on entrance depend on previously executed tasks.
Even assuming a completely empty cache may not be conservative as shown
in [3,21], the notable exception being LRU. FIFO and PLRU are much more
sensitive to their state than LRU. Depending on its state, FIFO(k) may have up
to k times as many misses and arbitrarily more hits, on the same access sequence.
PLRU and LRU coincide at associativity 2. For greater associativities, the same
access sequence under a PLRU strategy may incur arbitrarily many more misses
for one starting state than for another. For PLRU(8), the number of hits of the
same access sequence with different starting states may differ by a factor of 11.
In [21] also the aggregated effect of the initial cache setting on WCET has been
investigated for a realistic hardware setting. For a 4-way set-associative FIFO

cache with a cache miss penalty of 50 cycles, the worst-case execution time may
be a factor of 3 higher than the measured time of the same access sequence,
only due to the influence of the initial cache state. If PLRU were used as a
replacement policy the difference could be even greater.

This is especially detrimental for measurement-based approaches [18,4,32].
Measurement would trivially be sound if all initial states and inputs would be
covered. Due to their huge number this is usually not feasible. Some measurement-
based approaches consider distributions of execution times (execution time pro-
files) of program snippets, which are then composed according to the control flow.
Each program fragment is measured with a subset of the possible initial states and
inputs so that the maximum of the measured execution times is in general an un-
derestimation of the worst-case execution time. Using corrective bounds for the
so-called execution time profiles can introduce large pessimism since they don’t
exploit context and flow information [19].

Relatively simple architectures without any performance-enhancing features
like pipelines, caches, etc., exhibit the same timing independently of the initial
state. For such architectures, measurement-based timing analysis is sound [32].

Timing Validation of Automotive Software 103

[5] and [32] propose to lock the cache contents [20,31] and to flush the pipeline at
program points where measurement starts. This is not possible on all architec-
tures and it also has a detrimental effect on both the average- and the worst-case
execution times of tasks.

5.3 Buses

A bus is a subsystem for transferring data between different components inside
a computer, between a computer and its peripheral devices, or between different
computers. Examples are system buses like the 60x-bus [12], internal computer
buses like PCI and external computer buses like CAN or FlexRay.

In general, busses are clocked with a lower frequency than the CPU. The
number of possible displacements of phase between CPU- and bus-clock signal
is bounded, i.e. at the start of a CPU cycle the bus cycle can only be in a finite
number of states. For example, if the CPU operates at fCPU = 100 MHz and
the bus at fBUS = 25 MHz, there are 4 different states. In general, the number
of states is determined by fCP U

gcd(fCP U ,fBUS) .
Analyzing timing behavior of memory accesses is special because these ac-

cesses cross the CPU/bus clock boundary. Since the time unit for timing an-
alyzes is one CPU cycle, the analysis needs to know when the next bus cycle
begins. Otherwise it would have to account for the worst case: the bus cycle has
just begun and the CPU needs to wait nearly a full bus cycle to perform a bus
action. This pessimism would lead to less precise WCET bounds. Therefore, the
displacement of phase has to modeled within a micro-architectural analysis so
that the search space for the analysis is augmented by the number of different
bus-clock-states.

Parallel buses (e.g., SCSI) introduce further complication. The execution
of consecutive memory accesses can be overlapped, i.e. for two accesses, the
address phase of the second access can be overlapped with the data phase of the
first access (bus pipelining). Pipelined buses need to arbitrate the incoming bus
requests, e.g. if there is an instruction fetch and a memory access at the same
time, the arbitration logic needs to decide which bus request is issued first.

Asynchronous mechanisms such as DMA or DRAM refresh cannot be ana-
lyzed with the methods described so far. A DMA transmission and a DRAM
refresh and their associated costs cannot be contributed to the execution of an
instruction. The costs of a DRAM refresh must be amortized over time. A similar
approach can be used if the frequency of DMA is statically known.

5.4 Multi-core Architectures

There is a tendency towards the use of multi-core architectures for their good
energy/performance ratio. Shared memories (Flash, RAM) and peripherals are
connected to the cores by shared buses or cross-bars. Conflicts when accessing
shared resources are usually resolved by assigning fixed priorities. Depending
on the architecture, conflicts on shared resources can be expected to happen
frequently. For example, if the cores have no private RAM, a potential conflict

104 D. Kästner et al.

might occur for each access (typically 20-30% of all executed instructions). Ex-
amples for current automotive multi-core architectures are the Infineon TriCore
TC1797, the Freescale MC9S12X and the Freescale MPC5516. They consist of a
powerful main processor and a less powerful co-processor. For future automotive
multi-core architectures we see a design trend towards the use of identical cores
mostly with shared memories.

Under the aspect of predictability, some existing and upcoming multi-core
architectures are unacceptable because of the interference of the different cores
on shared resources such as caches and buses. The execution time of a task
running on one core typically depends on the activities on the other cores. Static
worst-case execution time analysis usually assumes the absence of interferences.
The additional time (or penalty) caused by interferences must be bounded for a
scheduling analysis. For architectures with domino effects and timing anomalies
inside the cores the additional inter-core interferences represent a huge obstacle
to determining such a bound. Especially the unconstrained use of shared caches
can make a sound and precise analysis of the cache performance impossible. The
set of potential interleavings of the threads running on the different cores result
in a huge state space to be explored resulting in poor precision.

There exist first approaches to the analysis of the cache performance of shared
caches in multi-core systems. All approaches implicitly assume fully timing com-
positional architectures (see Sec. 5.1). They compute the cache footprint of pre-
empted and preempting tasks, determine the intersection, and assume the rest
as being eliminated (cf. [15]). This approach is neither context-sensitive nor flow-
sensitive and therefore overly pessimistic. For a fully timing-compositional archi-
tecture, Schlieker, Ivers, and Ernst [24] determine upper bounds of the penalties
by computing the number of potential conflicts when accessing shared mem-
ory by counting the number of memory accesses possibly generated on different
cores. Thus it becomes apparent that in order to achieve good predictability
results on a multi-core system choosing a fully timing compositional intra-core
architecture combined with separate caches is of utmost importance.

6 Conclusion

Embedded hard real-time systems need reliable guarantees for the satisfaction of
their timing constraints. In order to provide software and system designers with
an efficient way to verify timing properties of ECU software, the code-level timing
analysis tool aiT and the system-level timing analysis tool SymTA/S have been
coupled. Starting from a system model, a designer can perform timing budgeting,
performance optimization and timing verification, thus covering both the code
and the system aspects. XML Timing Cookies (XTC) provide for a user-friendly,
open, and efficient tool integration. SymTA/S communicates with aiT via XTC,
sending analysis requests and receiving responses. While providing a holistic tool
flow for timing validation to system designers, the precision of the results and the
efficiency of the analysis methods depend on the predictability of the execution
platform.

Timing Validation of Automotive Software 105

This is particularly important face to the trend towards unifying frameworks
like AUTOSAR in automotive embedded systems. The goal is to establish a stan-
dard in which components, possibly independently developed by different suppli-
ers, canbe integrated onECUs by standardized interfaces. To this endAUTOSAR

abstracts from the underlying hardware, the actually deployed ECUs. The AU-

TOSAR timing model currently being developed concerns mainly the integration
of scheduling requirements. However, the success of scheduling analysis depends
on the predictability of the execution times of the AUTOSAR-“runnables”.Thus,
the applicability of the AUTOSAR idea depends on availability of architectures
on which software composition doesn’t lead to unpredictable timing behavior.

The experience with the use of static timing analysis methods and the tools
based on it in the automotive and the aeronautics industries is positive. Static-
analysis-based methods can give timing guarantees even for complex processor
architectures exhibiting a huge execution-time variability and a strong depen-
dency of the execution time on the initial execution state. However, when mul-
tiple components are mapped to a hardware architecture where a high degree
of interference between the components cannot be avoided (e.g., due to shared
caches or buses) execution times of runnables may vary considerably and the
possibilities to predict safe and precise execution time bounds can be rather
limited. This limits the success of the scheduling analysis and this counteracts
the idea of composing software components. In contrast, choosing a fully timing
compositional intra-core architecture combined with separate caches will lead to
good predictability results. In consequence, the underlying hardware architecture
has to be chosen with timing predictability in mind.

This paper discusses the most important hardware components affecting timing
predictability and summarizes their effect on the applicability of measurement-
based approaches and on the efficiency and precision of static analysis methods.
An industry-strength tool flow for timing validation is presented, and the prereq-
uisites at the hardware level for ascertaining high analysis precision are detailed.

References

1. Al-Zoubi, H., Milenkovic, A., Milenkovic, M.: Performance evaluation of cache
replacement policies for the SPEC CPU2000 benchmark suite. In: ACM-SE 42:
Proceedings of the 42nd Annual Southeast Regional Conference, pp. 267–272. ACM
Press, New York (2004)

2. T. AUTOSAR Development Partnership. Automotive Open System Architecture
(AUTOSAR) (2003), http://www.autosar.org

3. Berg, C.: PLRU cache domino effects. In: Proceedings of 6th International Work-
shop on Worst-Case Execution Time (WCET) Analysis (July 2006)

4. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-
time systems. In: RTSS 2002: Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS 2002), Washington, DC, USA, p. 279. IEEE Computer Society,
Los Alamitos (2002)

http://www.autosar.org

106 D. Kästner et al.

5. Deverge, J.-F., Puaut, I.: Safe measurement-based WCET estimation. In: Wilhelm,
R. (ed.) 5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany (2005)

6. Engblom, J.: Processor Pipelines and Static Worst-Case Execution Time Analysis.
PhD thesis, Dept. of Information Technology, Uppsala University (2002)

7. Esterel Technologies. SCADE Suite,
http://www.esterel-technologies.com/products/scade-suite

8. ETAS Group. ASCET Software Products,
http://www.etas.com/en/products/ascet software products.php

9. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS,
vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

10. Ferdinand, C., Martin, F., Cullmann, C., Schlickling, M., Stein, I., Thesing, S.,
Heckmann, R.: New developments in WCET analysis. In: Reps, T., Sagiv, M.,
Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 12–52. Springer, Heidel-
berg (2007)

11. Ferdinand, C., Wilhelm, R.: Efficient and precise cache behavior prediction for
real-time systems. Real-Time Systems 17(2-3), 131–181 (1999)

12. Freescale Semiconductor, Inc. PowerPC Microprocessor Family: The Bus Interface
for 32-Bit Microprocessors, Rev. 0.1 (2004)

13. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of proces-
sor architecture on the design and the results of WCET tools. IEEE Proceedings
on Real-Time Systems 91(7), 1038–1054 (2003)

14. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis – the SymTA/S approach. IEEE Proceedings on Computers
and Digital Techniques 152(2) (March 2005)

15. Lee, C.-G., Hahn, J., Min, S.L., Ha, R., Hong, S., Park, C.Y., Lee, M., Kim, C.S.:
Analysis of cache-related preemption delay in fixed-priority preemptive scheduling.
In: RTSS 1996: Proceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS 1996), Washington, DC, USA, p. 264. IEEE Computer Society, Los Alamitos
(1996)

16. Li, Y.-T.S., Malik, S.: Performance Analysis of Embedded Software Using Implicit
Path Enumeration. In: Proceedings of the 32nd ACM/IEEE Design Automation
Conference (1995)

17. Lundqvist, T., Stenström, P.: Timing anomalies in dynamically scheduled mi-
croprocessors. In: Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS 1999), pp. 12–21 (December 1999)

18. Petters, S.M.: Worst Case Execution Time Estimation for Advanced Processor
Architectures. PhD thesis, Technische Universität München, Munich, Germany
(September 2002)

19. Petters, S.M., Zadarnowski, P., Heiser, G.: Measurements or static analysis or
both? In: Rochange, C. (ed.) WCET (2007)

20. Puaut, I., Decotigny, D.: Low-complexity algorithms for static cache locking in
multitasking hard real-time systems. In: RTSS 2002: Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS 2002), Washington, DC, USA, p. 114. IEEE
Computer Society, Los Alamitos (2002)

21. Reineke, J., Grund, D.: Sensitivity of cache replacement policies. Reports of
SFB/TR 14 AVACS 36, SFB/TR 14 AVACS (March 2008)ISSN: 1860-9821,
http://www.avacs.org

http://www.esterel-technologies.com/products/scade-suite
http://www.etas.com/en/products/ascet_software_products.php
http://www.avacs.org

Timing Validation of Automotive Software 107

22. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache re-
placement policies. Real-Time Systems 37(2), 99–122 (2007)

23. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A definition and classification of timing anomalies. In: Proceedings of 6th Inter-
national Workshop on Worst-Case Execution Time (WCET) Analysis (July 2006)

24. Schliecker, S., Ivers, M., Ernst, R.: Integrated analysis of communicating tasks
in MPSoCs. In: Proceedings of the 4th International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 288–293. ACM Press, New
York (2006)

25. Schneider, J.: Combined Schedulability and WCET Analysis for Real-Time Oper-
ating Systems. PhD thesis, Saarland University (2003)

26. Schneider, J., Ferdinand, C.: Pipeline Behavior Prediction for Superscalar Proces-
sors by Abstract Interpretation. In: Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems, vol. 34, pp. 35–44
(May 1999)

27. Theiling, H.: Extracting Safe and Precise Control Flow from Binaries. In: Proceed-
ings of the 7th Conference on Real-Time Computing Systems and Applications,
Cheju Island, South Korea (2000)

28. Theiling, H., Ferdinand, C.: Combining abstract interpretation and ILP for mi-
croarchitecture modelling and program path analysis. In: Proceedings of the 19th
IEEE Real-Time Systems Symposium, Madrid, Spain, pp. 144–153 (December
1998)

29. Thesing, S.: Safe and Precise WCET Determinations by Abstract Interpretation
of Pipeline Models. PhD thesis, Saarland University (2004)

30. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An abstract interpretation-based timing validation of
hard real-time avionics software systems. In: Proceedings of the 2003 International
Conference on Dependable Systems and Networks (DSN 2003), June 2003, pp.
625–632. IEEE Computer Society, Los Alamitos (2003)

31. Vera, X., Lisper, B., Xue, J.: Data cache locking for higher program predictability.
SIGMETRICS Perform. Eval. Rev. 31(1), 272–282 (2003)

32. Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr.
3/3/182-1, 1040 Vienna, Austria (2006)

Towards Using Reo for Compliance-Aware

Business Process Modeling

Farhad Arbab, Natallia Kokash, and Sun Meng

CWI, Kruislaan 413, Amsterdam, The Netherlands
firstName.lastName@cwi.nl

Abstract. Business process modeling and implementation of process
supporting infrastructures are two challenging tasks that are not fully
aligned. On the one hand, languages such as Business Process Modeling
Notation (BPMN) exist to capture business processes at the level of do-
main analysis. On the other hand, programming paradigms and technolo-
gies such as Service-Oriented Computing (SOC) and web services have
emerged to simplify the development of distributed web systems that un-
derly business processes. BPMN is the most recognized language for spec-
ifying process workflows at the early design steps. However, it is rather
declarative and may lead to the executable models which are incomplete
or semantically erroneous. Therefore, an approach for expressing and an-
alyzing BPMN models in a formal setting is required. In this paper we
describe how BPMN diagrams can be represented by means of a seman-
tically precise channel-based coordination language called Reo which ad-
mits formal analysis using model checking and bisimulation techniques.
Moreover, since additional requirements may come from various regula-
tory/legislative documents, we discuss the opportunities offered by Reo
and its mathematical abstractions for expressing process-related con-
straints such as Quality of Service (QoS) or time-aware conditions on
process states.

1 Introduction

The Service-Oriented Computing (SOC) paradigm supports the idea of building
distributed applications by composing self-contained and loosely-coupled ser-
vices. Service-Oriented Architecture (SOA) is the main architectural concept
within this paradigm designed to support the realization of cross-organizational
business processes. In this kind of architecture, services are employed to accom-
plish certain activities within a process. Several specifications coordinate the col-
laboration of individual services. In the simplest case, known as orchestration,
one business partner manages the order in which required services are executed.
In a more complex scenario, called choreography, each partner is responsible for
executing services that realize its own business logic as well as interacting with
other partners to achieve a common goal.

A stack of protocols that defines how web services collaborate is currently
established. In particular, WS-BPEL [1] and WS-CDL [2] are the most com-

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 108–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Using Reo for Compliance-Aware Business Process Modeling 109

monly recognized languages dealing with orchestration and choreography, respec-
tively. However, these languages are implementation-level languages while busi-
ness processes incorporate various aspects, both functional and non-functional,
that may be difficult to capture and convert directly into executable code. There-
fore, additional tools are used at the level of domain analysis and abstract process
design. The Business Process Modeling Notation (BPMN) [3] is a standard and
widely-accepted graphical notation for this purpose. According to this notation,
the process can be represented in the form of activities produced either by hu-
mans or software applications, important events occurring in the process and
control flow on the involved activities. One of the reasons why BPMN stands
out among other notations for business process modeling is its ability to define
concurrent tasks and sub-processes with exception handling and compensation
associations, which have been proven to be useful even at the stage of early
design. As a trade-off to its expressive power, BPMN lacks semantic precision.

Two attempts have been made at defining formal semantics for BPMN sub-
sets [4,5]. In the first approach [4], a core subset of BPMN is mapped into Petri
nets. However, this approach encounters problems with reflecting the behavior of
multiple concurrent activities in presence of exception handling. The second ap-
proach [5] formalizes the BPMN semantics (including time-aware semantics [6])
in a more consistent way using Communicating Sequential Processes (CSP). The
main drawback of this model is that it does not preserve the structure of BPMN
diagrams which makes the mapping difficult to follow. Additionally to these ap-
proaches, a number of works provide insights and tools for automated translation
of BPMN into BPEL processes [7,8]. Such translations bridge the gap between
the process modeling and their implementation using web services technology.
However, they pose significant restrictions on admissible BPMN patterns and do
not prevent developers from implementing erroneous processes. Later on, BPEL
processes can be verified using a wide range of formal techniques [9,10,11] and
model checking tools [12], but this scenario shifts the process verification to the
implementation phase and thus slows down the incremental process design.

A number of challenging issues need to be addressed before SOC becomes a
mature approach for developing flexible business applications. Among such issues
is the SOA adaptation to the ever changing business/legislative requirements
and process evolution. Multitudes of regulations constantly emerge to shape
businesses and incorporate the best practices into corresponding software appli-
cations. The aim of the recently started COMPAS (Compliance driven Models,
Languages, and Architectures for Services) project1 is to develop an infrastruc-
ture to ensure dynamic and ongoing compliance of services-oriented applications
to business regulations. These regulations come from legislative documents such
as Basel II1, IFRS2, MiFID3, LSF4, HIPAA, Tabaksblat5, and the Sarbanes-
Oxley6 Act, just to name a few. In addition to external regulations, there are
internal considerations of Quality of Service (QoS) which result in similar require-
ments. Currently, there are no well-established practices for representing and
tracking compliance-related controls. At the early process development stages,

1 http://www.compas-ict.eu/

http://www.compas-ict.eu/

110 F. Arbab, N. Kokash, and S. Meng

they can be expressed by means of modeling languages like BPMN or UML with
textual annotations. However, such specifications are often ambiguous and may
result in erroneous process implementation. Therefore, a modeling notation with
precise semantics is required. This notation should be powerful enough to rep-
resent the major structural and control/data flow elements of processes, as well
as to express various compliance concerns.

In this paper, our objective is two-fold. Firstly, we consider the main business
process modeling primitives as defined in BPMN and show how they can be
represented using a semantically precise coordination language, Reo. Secondly,
we discuss the potential of our formalism in expressing compliance concerns.

The rest of this paper is organized as follows. In Section 2, we sketch the main
steps of our approach to compliance-aware business process modeling. Section 3
contains an overview of BPMN and in Section 4, we introduce Reo. In Section 5,
we present the mapping from BPMN to Reo. In Section 6, we discuss compliance
rule modeling from the perspective of Reo. Finally, in Section 7, we outline our
conclusions and future work.

2 Overview

The overall vision of our framework is shown in Fig. 1. Business analysts may
use traditional notations for creating business process models such as BPMN or
UML Activity Diagrams (ADs) as well as more specific ones, e.g., BPEL Graphi-
cal Modeling Tools (GMT)2. At this level, compliance concerns can be expressed
using Domain Specific Languages (DSL) or GMT extensions, see [13] and [14]
for examples of such approaches. One of the goals of the COMPAS project is
to develop DSLs capable of expressing major categories of compliance concerns.
These models will not necessarily guarantee the level of precision sufficient for
the direct process implementation. Therefore, we propose to introduce an inter-
mediate layer on which the high-level models will be verified and refined. The
basic semantics of this layer is defined by Reo.

Reo is a channel-based exogenous coordination language supported by a
graphical tool, an animation engine and a model checker3. These tools allow
us to use Reo both for graphical process modeling and for formal process ver-
ification before its actual implementation. There are several reasons why Reo
seems appropriate in the context of the COMPAS project. First, using Reo
connectors it is possible to represent both choreography and orchestration of
process activities as well as internal and external behavior of involved services
in a unified formalism [15]. Moreover, Reo patterns can be automatically trans-
lated into Constraint Automata (CA) which are suitable for representing service
compositions with QoS guarantees [16] and time-aware processes [17]. CA are es-
sentially variants of labeled transition systems where transitions are augmented
with pairs 〈N, g〉 of synchronization and data constraints rather than action la-
bels. The states of a CA stand for the network configurations (e.g., contents
2 http://www.eclipse.org/bpel/
3 http://homepages.cwi.nl/∼koehler/ect/index.htm

http://www.eclipse.org/bpel/
h

Towards Using Reo for Compliance-Aware Business Process Modeling 111

Fig. 1. Reo for business process modeling with compliance concerns

of the buffers) while transition labels 〈N, g〉 can be viewed as I/O operations
performed in parallel (more precisely, sets of nodes where data flow is observed
in parallel and boolean conditions on the data items observed on those models).
Moreover, CA can be extended by associating various properties with states and
transitions (e.g., QoS characteristics). We assume that at this step, compliance
rules are converted into automata transition constraints, temporal logic formu-
lae, or result into automata state reachability checking. After model checking
and refinement, the Reo/CA process models can be automatically translated
into executable SOC languages such as WS-BPEL, as well as to Java code.

This paper focuses on the first step of the proposed framework, namely, on
the BPMN to Reo conversion. The choice of BPMN as a modeling notation is
justified by the fact that it comes with a number of useful process concepts such
as events, exception handling, transactions and message flow. BPMN is a de-facto
standard for business process modeling supported by a number of software tools.
Moreover, such a mapping is interesting from the research perspective since no
efficient semantic model for BPMN currently exists. Nonetheless, generally the
COMPAS project is not bound to this notation and we plan to develop similar
mapping tools for translating other design languages, in particular, UML ADs
and BPEL GMTs, into Reo models.

3 Business Process Modeling Notation (BPMN)

In this section we overview the main structural elements of BPMN.
The basic BPMN concepts are flow objects, connecting objects, swimlanes and

artifacts. Flow objects are the main graphical elements defining the behavior of a
business process. BPMN distinguishes three types of flow objects, namely, events,
activities and gateways. These elements are linked according to well-defined syn-
tactic rules by two connecting objects : sequence flow and message flow. A third

112 F. Arbab, N. Kokash, and S. Meng

Fig. 2. Selected BPMN elements

connecting object is association and it is used to connect flow objects with text
and non-flow elements. Two types of swimlanes, pools and lanes, arrange the
main BPMN elements into groups. Finally, artifacts are introduced to provide
additional information about a process. This concept is extendable and besides
three standard artifacts, that is, data objects, groups and annotations, designers
can introduce their own artifacts.

Figure 2 shows the selected BPMN elements that are essential for modeling
process behavior. BPMN identifies three types of events: a start event signals the
start of a process, an end event signals the end of a process and an intermediate
event is an event occurring during a process. Different triggers such as message,
timer, rule, link, error, cancel, compensation, terminate and multiple trigger can
be associated with events. The detailed description of the triggers and their usage
rules can be found in the BPMN specification [3].

An activity can be an atomic task or a sub-process. To each task a type can
be assigned. Among the specific task types are service, receive and send tasks.
A sub-process is a compound of other activities and a sequence flow on them.
BPMN introduces two attributes that are commonly used to identify special
types of activities (both tasks and sub-processes), namely, looping activities and
multiple concurrent instances of the same activity.

A gateway is a construct used to control divergence and convergence of the
sequence flows. A parallel fork gateway is used to split an incoming sequence
flow into several concurrent branches, while a parallel join gateway synchronizes
several concurrent sequence flows. A data/event-based XOR decision gateway

Towards Using Reo for Compliance-Aware Business Process Modeling 113

selects one out of a set of mutually exclusive sequence flows according to some
data-based condition or external event. An OR decision behaves similarly but
it allows more than one alternative to be selected. An OR merge shows the
convergence of several sequence flows into one sequence flow. Finally, complex
decision/merge gateways are used to cover the advanced sequence flow control
constructs that cannot be easily handled using other gateways. One such example
is the so called m out of n choice whenm arrived tokens out of n initiated parallel
sequence flows are required to continue the process.

BPMN distinguishes two basic types of flow. The sequence flow prescribes
the order of activities performed by one entity while the message flow regulates
the flow between two communicating entities represented by separate pools. The
sequence flow consists of a normal flow to which a transition guard can be as-
signed (uncontrolled, conditional or default flow) and exception flow that origi-
nates from some event and is used to handle exceptions. Finally, BPMN defines
a number of advanced constructs such as compensation association and trans-
action. Due to space limits, we will not consider these constructs in this paper.

4 Reo

Reo [18] is a channel-based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally constructed from simpler ones.
We summarize only the main concepts in Reo here. Further details about Reo
and its semantics can be found in [17,18,19,20].

Complex connectors in Reo are formed as a network of primitive connectors,
called channels, that serve to provide the protocol which controls and orga-
nizes the communication, synchronization and cooperation among the compo-
nents/services that they interconnect. Each channel has two channel ends which
can be of two types: source and sink. A source end accepts data into its channel,
and a sink end dispenses data out of its channel. It is possible for the ends of a
channel to be both sinks or both sources. Reo places no restriction on the be-
havior of a channel and thus allows an open-ended set of different channel types
to be used simultaneously together. Figure 3 shows the graphical representation
of basic channel types in Reo. A FIFO1 channel represents an asynchronous
channel with one buffer cell which is empty if no data item is shown in the box
(this is the case in Fig. 3). If a data element d is contained in the buffer of a
FIFO1 channel then d is shown inside the box in its graphical representation. A
synchronous channel has a source and a sink end and no buffer. It accepts a data

Fig. 3. Some basic channels in Reo

114 F. Arbab, N. Kokash, and S. Meng

(a) Exclusive router (b) Valve

Fig. 4. Examples of Reo connectors

item through its source end iff it can simultaneously dispense it through its sink.
A lossy synchronous channel is similar to synchronous channel except that it al-
ways accepts all data items through its source end. The data item is transferred
if it is possible for the data item to be dispensed through the sink end, otherwise
the data item is lost. For a filter channel, its pattern P ⊆ Data specifies the type
of data items that can be transmitted through the channel. Any value d ∈ P
is accepted through its source end iff its sink end can simultaneously dispense
d; all data items d /∈ P are always accepted through the source end but are
immediately lost. The P -producer is a variant of a synchronous channel whose
source accepts any data item, but the value dispensed through its sink is always
a data element d ∈ P .

There are some more exotic channels permitted in Reo: (A)synchronous drains
have two source ends and no sink end. A synchronous drain can accept a data
item through one of its ends iff a data item is also available for it to simul-
taneously accept through its other end as well, and all data accepted by this
channel are lost. An asynchronous drain accepts data items through its source
ends and loses them, but never simultaneously. (A)synchronous Spouts are duals
to the drain channels, as they have two sink ends. A timer channel with early
expiration allows the timer to produce its timeout signal through its sink end
and reset itself when it consumes a special “expire” value through its source [17].
Complex connectors are constructed by composing simpler ones via the join and
hiding operations, see [17] for more details.

Example 1. Figure 4(a) shows an implementation of an exclusive router by com-
posing five synchronous channels, one synchronous drain and two lossy synchro-
nous channels together. The connector provides three nodes A, B and C for
other entities (connectors or component instances) to write to or take from. A
data item arriving at the input port A flows through to only one of the output
ports B or C, depending on which one is ready to consume it. The input data
is never replicated to more than one of the output ports. If both output ports
are ready to consume a data item, then one is selected non-deterministically. To
avoid writing an exclusive router every time it is used, we introduce a notation
similar to a node to represent this connector. We will also use XOR-nodes with
more than two outputs. Such a connector can be defined by combining several
two-output exclusive routers.

Towards Using Reo for Compliance-Aware Business Process Modeling 115

Additionally, it is useful to define a priority on the outputs of an exclusive
router in such a way that the data item will always flow into the prioritized
output if more than one output is enabled. Such a deterministic prioritized ex-
clusive router can be implemented by connecting the input of an exclusive router
with its non-prioritized outputs through valve connectors (see Fig. 4(b)). A valve
connector is able to close and reopen the flow from A and B. Initially, the circuit
is in the “open” state, i.e., a data item arriving at the input port A flows to the
output B until the close command arrives. After that, the circuit goes into the
“close” state, i.e., the flow remains blocked until the open command arrives. If
the prioritized output of the exclusive router becomes ready to accept data, it
can simultaneously close the valves thus making other outputs unavailable.

5 Mapping BPMN to Reo

In this section we use Reo to represent a comprehensive set of BPMN modeling
primitives and common constructs.

5.1 Basic Objects: Tasks, Events, Gateways and Message Flow

Generally, BPMN tasks and sub-processes correspond to external components
or black-boxes whose collaboration is coordinated by Reo. However, it is still
possible to simulate the behavior of certain activities using Reo channels. For
example, an atomic task with one input and one output can be represented by a
simple FIFO1 or a timer channel while a sub-process can be modeled by a Reo
connector that preserves the number of its incoming and outgoing flows.

An event with no trigger (start, end or intermediate) or an end event with
a terminate trigger can be shown as a Reo node (source, sink or mixed). Other
event triggers can be modeled using the basic Reo channels. Thus, (i) a timer
event can be represented with the help of a timer channel, (ii) an incoming mes-
sage event can be simulated by a synchronous drain whose first end is an input
port and the second end is an internal process node (see Fig. 5(a)) while (iii)
an event with a rule trigger corresponds to a filter channel with an appropri-
ate transition condition. Other BPMN events such as outgoing messages, error,
compensate, cancel or link events occurring as a part of the sequence flow cor-
respond to the immediate transitions into required places of the process where
they will be triggered and can be represented by means of synchronous channels.
However, if a process or a subprocess that must react to such an event is not
ready to accept it, the current sequence flow will be blocked. This problem can
be resolved either by using a lossy synchronous channel which indicates that if
an event is not picked up at the destination point it will be lost, or a FIFO1
channel which indicates that a message generated by an event will wait until it
can be processed. Figure 5(b) shows the Reo connectors corresponding to these
three message sending protocols. The composite conditions such as the case
where the process execution continues when a required message has arrived or a
certain deadline has been reached, can be modeled by the combination of several

116 F. Arbab, N. Kokash, and S. Meng

(a) Events (b) Messages

Fig. 5. Modeling BPMN events and messages in Reo

Reo channels. The Reo pattern for the aforementioned complex event is shown
in Fig. 5(a). It uses a valve connector introduced in Fig. 4(b) to control the data
flow from the start to the end nodes. We assume that initially in this circuit the
valve is closed and reopens by a timer event or a message arrival.

Figure 6(a) shows the Reo connectors for the basic BPMN gateways, namely,
data-based XOR decision, event-based XOR decision, XOR merge, parallel fork
and parallel join. A data-based XOR decision is modeled using a synchronous
channel which represents the incoming flow and two (or more) filter channels with
a common source that represent the alternative outgoing flows. Filter transition
conditions (guards) are defined by boolean expressions g1 and g2. The repre-
sentation of an event-based XOR decision mainly depends on the semantics of
the events that affect the decision. In our case, the lower branch is selected if a
message arrives in a predefined period of time, and the higher branch is preferred
otherwise. An XOR merge consists of two (or more) synchronous channels with
a common sink. A parallel fork is composed of two (or more) diverging synchro-
nous channels. A parallel join consists of two (or more) synchronous channels
representing the incoming parallel sequence flows that are further synchronized
with the help of a synchronous drain channel. Several lossy synchronous chan-
nels with a common sink are then used to get a single outgoing token. An OR
decision gateway can be modeled in Reo similarly as the data-based XOR de-
cision whose guards are not necessarily mutually exclusive. Additionally, using
Reo, the designer can define various complex control gateways. For example,
Fig. 6(b) shows a connector for an m out of n synchronizer pattern. This is a
lossy version of the pattern, that is, the circuit loses its extra inputs before the
next cycle. Alternatively, by substituting n lossy synchronous channels introduc-
ing the input data with n simple synchronous channels one can create a sparing
m out of n pattern that delays to spare its extra inputs for the next cycle.

In BPMN a message flow is used to show the flow of messages between two
entities that are prepared to send and receive them. Therefore, by default we can
represent the BPMN message flow using synchronous channels. However, BPMN
does not aim at specifying any further details about entity communication except
perhaps in textual annotations. In contrast, the Reo syntax enables the process
designers to model this aspect at a high level of abstraction. Thus, one can
differentiate synchronous and asynchronous message exchanges. In the former
case, the sequence flow is blocked until the reply message is received. In the
latter case, other activities can be performed while waiting for a reply message.

Towards Using Reo for Compliance-Aware Business Process Modeling 117

(a) Basic gateways (b) Complex gateway: lossy m out of
n join

Fig. 6. Modeling BPMN gateways in Reo

(a) Synchronous message exchange: Send/
Receive Order Scenario

(b) Asynchronous message exchange

Fig. 7. Modeling BPMN message flows in Reo

Figure 7(a) shows a synchronous version of a Send/Receive Order scenario while
Fig. 7(b) demonstrates how the asynchronous messaging can be represented
in Reo: after sending a message M1 the entity can perform activities of the
subprocess P until a reply message M2 is received. Here we assume that the
output of the exclusive router being opened by the message M2 has priority and
a token will successfully leave the cycle. We use a small exclamation mark to
show the prioritized output in the figure.

Despite the behavioral simplicity of the basic Reo channels, the issue of build-
ing Reo connectors with a desired behavior is not a trivial task. Therefore, in
the following subsections we provide Reo connectors for the most tricky BPMN
constructs, namely, sub-processes with exception handling and transactions.

5.2 Sub-processes and Exception Handling

Each sub-process can be seen as a separate BPMN process. The translation of
BPMN processes without exception handling into Reo circuits is rather straight-
forward. However, the occurrence of an exception event within a sub-process in-
terrupts the execution of the sequence flow and spawns the exception flow that

118 F. Arbab, N. Kokash, and S. Meng

(a) Atomic tasks (b) Sub-processes with possible internal ex-
ceptions

Fig. 8. Exception handling in processes consisting of sequential activities

often affects other sub-processes and must be appropriately handled. There are
two major issues here, namely, (i) to be able to interrupt a sub-process at any
point of its execution and (ii) to clean all tokens/data in the circuit including
those used to propagate exception events. The composition of Reo connectors
implementing these issues depends on the structural aspects of sub-processes.
We consider four basic constructs, namely, (i) sequential execution of atomic
tasks, (ii) sequential execution of sub-processes, (iii) parallel execution of atomic
tasks, and (iv) parallel execution of sub-processes.

Figure 8(a) depicts a Reo circuit that simulates the execution of a process P
consisting of n serial atomic tasks. The normal flow traverses tasks (T1, T2, ..., Tn)
from the start to the end. Each two neighbor tasks are interconnected using an
exclusive router with priority that is used to interrupt the process. Another
exclusive router is used to direct a cancel message into the point where the
execution token currently resides. The cancel message opens the output of the
prioritized exclusive router and two tokens fire in the corresponding synchronous
drain. Simultaneously, the cancel message is directed to the exception output
which signals that the process has been interrupted.

In the above circuit we assumed that an atomic task, once invoked, always
completes successfully. This may not be the case for some activities. Figure 8(b)
depicts a Reo circuit that simulates the execution of a process P ′ consisting
of n serial sub-processes (P1, P2, ..., Pn). Each sub-process Pi, 1 ≤ i ≤ n, can
be interrupted from outside by a cancel message or can generate an internal
exception. The exception handling in the former case is analogous to the case of
atomic tasks. In the latter case, the exception flow originating from a sub-process
is redirected to the exception output of the process P ′.

Figure 9(a) shows a process consisting of n parallel atomic tasks. This Reo
circuit is essentially composed of a parallel fork and a parallel join gateways with
n outgoing and n incoming branches, respectively. When a task Ti, 1 ≤ i ≤ n,
is completed, the corresponding token waits in the FIFO1 channel until other
tasks are completed as well. After that, the token flows to the circuit output. For
interrupting the process, the cancel message is directed to each of the prioritized
exclusive routers. FIFO1 channels are used to avoid synchronization of task
cancelations. Indeed, the fact that some tasks were not completed when a cancel
message has arrived should not prevent the interruption of the tasks in other

Towards Using Reo for Compliance-Aware Business Process Modeling 119

(a) Atomic tasks (b) Sub-processes with possible internal
exceptions

Fig. 9. Exception handling in processes consisting of parallel activities

branches. Additionally, the cancel message is directed to the exception output
to signal the interruption of the process P .

If an internal exception occurs in a sub-process that is executed in parallel
with other sub-processes within a process, this exception should be propagated
to all other branches in order to interrupt them as well. Figure 9(b) shows how a
Reo connector looks in this case. In each branch, an additional exclusive router
is employed to propagate a cancel message (originating either from an internal
or external event) to an executing sub-process or to the point where the token
waits for a synchronization with other sub-processes.

In the Reo connectors for processes with sequential activities we assumed
that once a process has been invoked it will not be invoked again until the
first invocation has completed. Such mutual exclusion behavior can be ensured
by a FIFO1 channel whose source end coincides with the start state of the
process and whose sink end is connected using a synchronous drain with the end
state of the process. When a process is invoked, one token flows into the FIFO1
channel and waits until the execution reaches the end state, thus, preventing
other tokens from entering the circuit through the process input port. It is easy
to see that this assumption can be relaxed without significant changes in the
circuit behavior. The main difference is that in this case a cancel message will
choose one of the executions non-deterministically and stop it without affecting
the others. Observe also that if the previous invocation has been interrupted, the
valve connectors (see Fig. 4(b)) used to implement prioritized exclusive routers
may be closed. Before the next execution cycle, they must be reopened by means
of messages sent to their open ports.

6 Reo Perspectives in Compliance Rule Modeling

In this section we outline our initial ideas about using Reo for modeling advanced
compliance process requirements.

120 F. Arbab, N. Kokash, and S. Meng

Legal, regulatory, and business requirements cause a vast number of organi-
zations to make major changes in their business processes and supporting IT
infrastructures. Currently, there are no well-established techniques to ensure the
compliance of a process with regulations that may be relevant for it. Most of
the regulatory/legislative acts are subject to domain-specific and process-specific
interpretations. Often, these interpretations are not even properly documented.
Moreover, there is no obvious notation or (semi-)formal modeling language for
expressing compliance concerns.

Compliance policies are very broad in nature. Clearly, some policies relate to
business processes, while others may only partially do or may not relate to them
at all. Business process modeling languages and their graphical representations
are relevant for capturing, describing, formalizing, executing and enforcing poli-
cies that can be expressed in a form of local or global constraints or permissions
and obligations on control or data flow. Often, process definition languages are
augmented with modal or temporal logic formulae to encode certain kinds of
compliance rules such as that some condition will eventually be true or will not
be true until another statement becomes true. Several frameworks exploit this
approach for modeling legislative/regulatory compliance rules [14,21]. In par-
ticular, Liu et al. [14] introduce the Business Process Specification Language
(BPSL) for expressing compliance concerns on top of BPEL processes. Then,
BPSL constructs are automatically translated into Linear Temporal Logic (LTL)
while BPEL processes are first translated into pi-calculus and finally into Finite
State Machines to enable static process verification by means of model-checking
techniques. Ghose and Koliadis [21] deal with BPMN processes that are further
refined and represented in a form of semantically-annotated digraphs called Se-
mantic Process Networks (SPNets). Compliance rules in this work are modeled
using Computation Tree Logic (CTL). Giblin et al. [22] introduce REALM (Reg-
ulations Expressed as Logical Models), a metamodel and a method for modeling
compliance rules over concept models in UML. Since the UML Object Constraint
Language (OCL) does not support temporal predicates, REALM specifically fo-
cuses on time-based properties expressed in a specially designed Real-time Tem-
poral Object Logic (RTOL). Several other approaches consider specific categories
of compliance rules. For example, Governatori et al. [23] developed a Formal
Contract Language (FCL) for representing compliance requirements extracted
from service contracts. FCL expresses normative behavior of the contract signing
parties by means of chains of permissions, obligations, and violations. Brunel et
al. [24] use Labeled Kripke Structures (LKS) which are a state/event extension
of LTL both for specifying system behavior and related security requirements,
also defined in a form of permissions, obligations, and violations.

In this context, we see Reo and its underlying mathematical formalisms, in
particular extended CA (e.g, quantitative CA [16], timed CA [17], resource-
sensitive timed CA [25]), as a common operational semantics for unambigu-
ous modeling of both process workflows and compliance rules. As mentioned in
Section 2, Reo and CA have been successfully applied for service composition
with end-to-end QoS guarantees [16] and for the construction of systems with

Towards Using Reo for Compliance-Aware Business Process Modeling 121

real-time properties expressed by means of temporal logics [17]. Existing model-
checking and bisimulation tools for Reo are able to automatically verify some
important properties of process models such as the absence of deadlocks, reacha-
bility of certain states and proper completion, as well as to check the behavioral
equivalence of Reo circuits [26]. Moreover, we believe that using the application
of graph transformation theory to Reo [27] we will be able to guarantee process
compliance with some structural requirements such as that “any large loan must
be approved by at least two authorized bank officers”.

Our intuition that Reo and its formal models can be used for representing
and reasoning about (some kinds of) process-related compliance concerns is sup-
ported by a recent independent work in this direction. Brandt and Engel [28]
apply Reo, Abstract Behavior Types, and algebraic graph transformations in
addition to DSLs for secure modeling of distributed IT systems in a real-world
banking scenario. The authors as well claim that security requirements can be
modeled by graph constraints on the domain specific models. The mentioned
formal methods in particular are used to control requirements originating from
security compliance frameworks such as ISO 27001:2005, ISO 27002:2007, SOX
or CobiT (e.g., firewall placement and secure connection).

7 Conclusions and Future Work

In this paper, we have presented a novel approach to semantically unambiguous
modeling of business process workflows. We have used Reo channels as basic
building blocks to model a comprehensive set of BPMN objects and advanced
constructs such as sequential and parallel sub-processes with exception han-
dling. The mapping of BPMN diagrams into Reo networks helps to unveil some
process aspects that otherwise may remain underspecified (e.g. message syn-
chronization). The resulting Reo models make it possible to formally analyze
and compare business processes. In addition, we have discussed how Reo can
cope with possible business process modeling extensions that aim at enforcing
process-related compliance concerns.

Our approach has several advantages over existing efforts to formalize BPMN
semantics, most notably [4,5]. In contrast to the Petri-net-based approaches [4]
our model appropriately deals with exception handling and concurrency. In con-
trast to the CSP-based approaches [5], Reo is compositional and preserves the
exact structure of BPMN diagrams by appropriate grouping of basic channels
and finer-grained connectors into coarser-grained connectors. Similarly to [6], we
can take into account the time-aware aspects of business processes by means of
timer connectors. Moreover, in our work we have considered a significantly larger
set of BPMN elements. However, part of our results, in particular, representa-
tion of compensation associations, transaction modeling and dynamic reconfig-
uration of Reo connectors to deal with multiple instances of the same activity,
remain uncovered in this paper and are subjects for upcoming publications.

Our future work includes implementation of a BPMN to Reo convertor. We
also plan to elaborate our initial ideas on applying Reo and CA for modeling

122 F. Arbab, N. Kokash, and S. Meng

and analyzing compliance-driven processes as discussed in this paper, both the-
oretically and on a number of practical examples illustrating how the proposed
approach can be used to alleviate the problem of erroneous process implemen-
tation.

Acknowledgements

This work is part of the IST COMPAS project, funded by the European Commis-
sion, FP7-ICT-2007-1 contract number 215175, http://www.compas-ict.eu/

References

1. Curbera, F., Goland, Y., Klein, J., Leymann, F.: Business process execution lan-
guage for web services. Technical report, IBM (2002),
http://www.ibm.com/developerworks/library/ws-bpel/

2. Kavantzas, N., Burdett, D., Ritzinger, G.: Web services choreography description
language (WS-CDL) version 1.0. Working draft, W3C (2004),
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427

3. (OMG), O.M.G.: Business process modeling notation (BPMN) specification. Final
adopted specification, OMG (2006),
http://www.bpmn.org/Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models. In: Information and Software Technology (IST) (2008)

5. Wong, P., Gibbons, J.: A process semantics for BPMN. Technical report, Queens-
land University of Technology (2007),
http://www.comlab.ox.ac.uk/publications/publication454-abstract.html

6. Wong, P., Gibbons, J.: A relative timed semantics for BPMN. Technical report,
Queensland University of Technology (2007),
http://www.comlab.ox.ac.uk/publications/publication1496-abstract.html

7. Recker, J., Mendling, J.: On the translation between BPMN and BPEL: Concep-
tual mismatch between process modeling languages. In: Proc. of the Int. Conf. on
Advanced Information Systems Engineering, pp. 521–532 (2006)

8. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: Pattern-based trans-
lation of BPMN process models to BPEL web services. Int. Journal of Web Services
Research (JWSR) 5(1), 42–61 (2007)

9. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming 67(2-3), 162–198 (2007)

10. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77–91. Springer,
Heidelberg (2008)

11. Lucchia, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal
of Logic and Algebraic Programming 70(1), 96–118 (2007)

12. Nakajima, S.: Model-checking behavioral specification of BPEL applications. Elec-
tronic Notes in Theoretical Computer Science (ENTCS) 151, 89–105 (2006)

13. McCarty, L.T.: A language for legal discourse. In: Proc. of the Int. Conf. on Ar-
tificial Intelligence and Law (ICAIL 1989), pp. 180–189. ACM Press, New York
(1989)

http://www.compas-ict.eu/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427
http://www.bpmn.org/Documents/OMGFinalAdoptedBPMN1-0Spec06-02-01.pdf
http://www.comlab.ox.ac.uk/publications/publication454-abstract.html
http://www.comlab.ox.ac.uk/publications/publication1496-abstract.html

Towards Using Reo for Compliance-Aware Business Process Modeling 123

14. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2), 335–361 (2007)

15. Meng, S., Arbab, F.: Web service choreography and orchestration in Reo and con-
straint automata. In: Proc. of the ACM Symposium on Applied Computing (SAC
2007), pp. 346–353. ACM Press, New York (2007)

16. Arbab, F., Chothia, T., Meng, S., Moon, Y.J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467, pp. 286–304. Springer, Heidelberg (2007)

17. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logics
for timed component connectors. Int. Journal on Software and Systems Model-
ing 6(1), 59–82 (2007)

18. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004)

19. Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing,
M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 34–55.
Springer, Heidelberg (2003)

20. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)

21. Ghose, A.K., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

22. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed as
logical models (REALM). In: Proc. of the 18th Annual Conf. on Legal Knowledge
and Information Systems, pp. 37–48 (2005)

23. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proc. of the Int. Enterprize Distributed Object
Computing Conf. (EDOC 2006), pp. 221–232. IEEE Computer Society Press, Los
Alamitos (2006)

24. Brunel, J., Cuppens, F., Cuppens, N., Sans, T., Bodeveix, J.P.: Security policy com-
pliance with violation management. In: Proc. of the Workshop on Formal Methods
in Security Engineering (FMSE 2007), pp. 31–40. ACM Press, New York (2007)

25. Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 301–316.
Springer, Heidelberg (2007)

26. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: Proc. of the
Int. Workshop on Formal Aspects of Component Software (FACS) (2007)

27. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replace-
ment systems. Electronic Notes in Theoretical Computer Science (ENTCS) 194(4),
77–92 (2008)

28. Brandt, C., Engel, T., Braatz, B., Hermann, F., Ehrig, H.: An approach using
formally well-founded domain languages for secure coarse-grained IT system mod-
elling in a real-world banking scenario. In: Proc. of the Australasian Conf. on
Information Systems (ACIS 2007), pp. 386–395 (2007)

On the Risk Management and Auditing of SOA Based
Business Processes

Bart Orriens, Willem-Jan v/d Heuvel, and Mike Papazoglou

Dept. of Information Management, Tilburg University
PO Box 90153, 5000 LE Tilburg, The Netherlands
{b.orriens,wjheuvel,mikep}@uvt.nl

Abstract. SOA-enabled business processes stretch across many cooperating and
coordinated systems, possibly crossing organizational boundaries, and technolo-
gies like XML and Web services are used for making system-to-system interac-
tions commonplace. Business processes form the foundation for all organizations,
and as such, are impacted by industry regulations. This requires organizations to
review their business processes and ensure that they meet the compliance stan-
dards set forth in legislation. In this paper we sketch a SOA-based service risk
management and auditing methodology including a compliance enforcement and
verification system that assures verifiable business process compliance. This is
done on the basis of a knowledge-based system that allows integration of internal
control systems into business processes conform pre-defined compliance rules,
monitor both the normal process behavior and those of the control systems dur-
ing process execution, and log these behaviors to facilitate retrospective auditing.

1 Introduction

SOA is an integration framework for connecting loosely coupled software modules into
on-demand business processes. Business processes form the foundation for all organi-
zations, and as such, are impacted by industry regulations. Without explicit business
process definitions, flexible rule frameworks, and audit trails that provide for non-
repudiation, organizations face litigation risks and even criminal penalties. Compliance
regulations, such as Basel II [3], HIPAA [7], Sarbanes-Oxley (SOX) [27] and others
require all organizations to review their business processes and ensure that they meet
the compliance standards set forth in the legislation. This can include, but is not lim-
ited to, data acquisition and archival, document management, data security, financial
accounting practices, shareholder reporting functions and to know when unusual ac-
tivities occur. In all cases, these control and disclosure requirements create auditing
demands for SOAs.

Internal control constitutes a fundamental cornerstone in auditing, which is used to
assure business process compliance, delivering objective and independent guarantees
regarding virtually all accounting aspects of service-enabled business processes, in-
cluding risk management, financial checks and governance processes (Rezaee, 2007).
A typical financial reporting control might mitigate the risk of misstating revenue due
to inadequate physical or electronic security over sales documents and electronic files.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 124–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Risk Management and Auditing of SOA Based Business Processes 125

This helps implement a compliance regulation act, such SOX section 404, which man-
dates that well-defined and documented processes and controls be in place for all as-
pects of company operations that affect financial information and reports. To achieve
this functionality requires: (i) controlling and auditing who accesses financial informa-
tion, (ii) controlling and auditing what financial information is accessed, and (iii) ensur-
ing financial information is not compromised during transmission. Due to the inherent
complexity present in compliance regulations, such as SOX, most companies cannot
address these requirements without a strategy for automating the integration of the di-
verse business processes and their accompanying internal control systems throughout
the enterprise.

Existing auditing solutions and tools are hopelessly outdated and not applicable in
SOA environments [20]. These are tightly coupled to the controlled application, and
assume that applications are homogenous and monolithic in nature. Moreover, solu-
tions are typically reactive in nature (noted also in e.g. [25]). That is, their focus is to
detect violations after they have occurred. However, in today’s business environment a
pro-active approach is required in which organizations are able to control their business
processes such that violations are avoided; and in the event that violations do occur, an
immediate response can be carried out; for example by triggering an automated pro-
cedure to resolve a compliance problem or by notifying the business process manager.
Some initial work in the area of risk management has been done (e.g. [17] and [25]),
however, current proposals are still preliminary in nature. This paper introduces a ser-
vice compliance methodology (SCM) that is intended to be a first step towards filling
this SOA risk management and auditing void for service-enabled business processes
(henceforth referred to simply as business processes). Concretely, SCM is intended to
enable external control systems to be integrated into business processes during exe-
cution conform pre-defined compliance rules, monitor the behavior of these control
systems in order to react to compliance violations at the moment that they occur, and
log the application and outcome of the control systems for auditing purposes.

2 Risk Management and Auditing for SOAs

To provide the ability to establish control and documentation, reduce risk and error
potential, in cases where service-enabled processes impact financial reporting (e.g. in
end-to-end sales cycles, payment cycles or production cycles), we propose the use of a
methodology based on the concept of a risk management and auditing SOA. Such SOA
combines SOA with risk management and auditing principles for business processes,
and relies on: 1) a risk management strategy to integrate control systems into business
processes and monitor their behavior; and 2) an auditing strategy to evaluate the effec-
tiveness of these control systems. The first ensures that business processes are executed
according to predefined regulatory policies and that violations can be promptly dealt
with; while the second allows for providing explicit proof of compliance enforcement
and violation mitigation ro facilitate auditing.

By checking the control systems, risks can be mitigated while safeguarding service-
driven processes and increasing their reliability. Auditors rely on internal control sys-
tems as they provide audit evidence that helps reduce substantive testing. Assuring the

126 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

quality of internal control systems to reduce the number of auditing activities has in fact
been a proven strategy since the 1970s [29]. In addition, and perhaps more importantly,
auditing the internal control systems of processes within or between organizations is a
required practice.

Given this rationale, SCM adopts a risk management strategy that addresses those
fragments of a business process that are exposed to the risk of control weaknesses,
while fewer efforts need to be spent on those process fragments (and services on which
they rely) with strong controls. These items become candidates for immediate eval-
uation and, where necessary, remediation. For example, handling salaries might be
deemed a low-risk item since they are tightly controlled by a small group of people.
Revenue recognition, on the other hand, might be deemed high risk because of loosely
defined recognition procedures. This strategy becomes particularly significant in large,
business-critical SOA-applications.

According to the standard control definition given by ISA 315 [14], control activities
performed on business processes (and therefore part of any SOA-based solution) may
fall into several classes forming SOA risk management tenets:

1. Performance reviews: include reviews and analyses of actual performance versus
budgets, forecasts, and prior period performance; relating different sets of data (op-
erating or financial) to one another, together with analyses of the relationships and
investigative and corrective actions; comparing internal data with external sources
of information; and review of functional or activity performance.

2. Information processing control procedures: encompass application controls, which
apply to the processing of individual business processes. These controls help ensure
that all transactions occurred are authorized, and are completely and accurately
logged and processed.

3. Physical controls: encompass the network-level security of service end-points, in-
cluding adequate safeguards such as secured access/control to services; measures
against data availability threats (e.g., XML attacks), and data integrity.

4. Segregation of duties: intended to reduce the opportunities to allow any person to
be in a position to both perpetrate and conceal errors or fraud in the normal course
of the persons duties. This is achieved by assigning access roles along a business
process, logging service execution trails, and maintaining custody of services. For
example, if an employee has custody of services and also accounts for them, there
is a high risk of that person using the services for personal gain and adjusting their
logs to cover theft (Hayes, 2005).

5. Authorization: accounting controls need to check procedures of reviewing and ap-
proving specific operations or transactions, e.g., approving the invocation of pur-
chase orders, or change orders.

In addition, from a legislative perspective, an analysis of current compliance regula-
tions (like Basel II [3] and Sarbanes-Oxley [27]) reveals that compliance requirements
affect not only the basic structure of business processes, but also more advanced con-
cerns such as monitoring, privacy, quality, retention, security and transactionality. Ap-
propriate business process control activities should be integrated into process models to
address these risk management issues.

On the Risk Management and Auditing of SOA Based Business Processes 127

To monitor business process control activities, the service compliance methodology
should accommodate the following SOA auditing tenets (derived from intersecting core
SOA with basic auditing principles conform [13] and [14]):

1. Independent auditing: The auditor (which can be a human or automated agent) is to
be independent, but may be either internal or external to the organization(s) where
the service-enabled processes execute.

2. Policing the SOA behavior: requires the ability to monitor events or information
produced by the services/processes, monitoring instances of business processes,
viewing process instance statistics, including the number of instances in each state
(running, suspended, aborted or completed), viewing the status, or summary for
selected process instances, suspend, and resume or terminate selected process in-
stances. Of particular significance is the ability to be able to spot problems and
exceptions in the business processes and move toward resolving them as soon as
they occur.

3. Real-time reporting: requires the ability to disclose in real-time material events
such as significant write-downs or bad debt recognition. Alerts can be represented
as alarms directed to a human administrator. Alternatively, they can be real-time
electronic events that in turn are used to trigger an automated remediation event
like service shut-down or policy change.

4. Logging execution trails: requires the ability to log business processes and transac-
tion execution trails to provide auditing capability and non-repudiation. Audit in an
SOA transaction could involve tracking any number of activities and incidents. It
must provide evidence that a particular identity accessed a specific service resource;
the service consumers request satisfied the service providers security policies (com-
munication integrity, privacy, data cleanliness, etc.); and that the service providers
response satisfied security and performance contracts established with the service
consumer (particularly if an SLA is specified in the policy). Secure logging of what
happened, when, by whom and under what terms in an SOA communication un-
derpins any forensic audit of a transaction.

5. Continuous auditing: There is a critical need for continuous auditing replacing the
semiannual audits, which has become even more evident through new governmen-
tal regulations regarding real-time reporting requirements (SOX), that allows inde-
pendent auditors to provide written assurance on a subject matter using a series of
auditors reports issued simultaneously with, or a short period after, the occurrence
of events underlying the subject matter [5]. The fundamental philosophy is that
business processes must perform in a predictable manner accurately and precisely
around target performance limits.

3 Service-Enabled Process Compliance Methodology (SCM)

The SCM methodology supports integration of internal control systems into business
processes to facilitate risk management and auditing, and that meets the desiderata and
constraints that were defined in section 2. The methodology adopts a formal deduc-
tive inference approach to apply compliance policies and rules to business processes by

128 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

integrating appropriate control systems in a monitorable manner. The methodology is
grounded on an abstract compliance enriched process model and a corresponding com-
pliance rule specification language. The abstract, compliance enriched process model
defines the basic constructs for specifying the elementary interaction arrangements, re-
lationships and behavior of individual services that are to be assembled in a business
process. Compliance requirements are annotated to these constructs using control prim-
itives, which describe a specific usage of particular control system functionalities (e.g.
in relation to monitoring or security). This allows organizations to address the iden-
tified risk management SOA tenets by incorporating appropriate control systems into
their business processes.

Since the decision of whether or not to apply certain control mechanisms is often
context dependent, compliance rules can be selected to express under what circum-
stances particular control primitives must be enforced. For example, a sales manager
may only be interested in being notified about high risk sales orders made by customers
with bad credit history and above $500. These kinds of compliance rule are specified
using a sophisticated compliance rule specification language and packaged into compli-
ance policies that address particular compliance legislations (or parts thereof). Business
managers can select one or more compliance policy from a control directory and asso-
ciate it with a business process. As this process is being carried out conform its abstract
process model, the selected compliance rules will be applied to enrich the model with
appropriate control primitives. This is facilitated by the knowledge base, which allows
formal derivation of which control primitives are to be annotated to the model; where
decisions made based on the rules are logged so they are available for future inspection.

The abstract, compliance enriched process model is declarative in nature and as such
can not be directly executed. Therefore, to cater for the actual execution of business
processes the abstract process model and its annotated control primitives are translated
into an executable model. Here we adopt the defacto BPEL for that purpose. The trans-
lation of the elementary service interactions in the abstract process model is done by
mapping its elements to BPEL equivalent constructs. Control primitives are integrated
into the BPEL model by placing WS-Policy assertions on the services that are partici-
pating in the process. This ensures that only services capable of meeting the compliance
requirements are engaged. Also, appropriate control activities are inserted to ensure that
the BPEL process and its services actually behave in accordance with the specified con-
trol primitives. These can for example pertain to authorization aspects, segregation of
duties, information processing, enforcement of system security measures, and verifica-
tion of financial information in order to support the SOA risk management tenets. The
resulting BPEL process is subsequently executed as normal. Because the application of
compliance rules is typically runtime dependent (e.g. depending on the exact order mes-
sage that was received), this procedure is followed every time that the BPEL process
enters an execution scope (that is, there are activities to be executed). That is, each time
an execution scope is encountered, execution is paused and the current BPEL execution
model is translated into its abstract counterpart. Compliance rules are then applied to
this abstract process model as described before and execution is resumed in a normal
manner.

On the Risk Management and Auditing of SOA Based Business Processes 129

To support SOA auditing tenets 2,3 and 4 both the normal process activities in a
BPEL process as well as any inserted control activities can be monitored and logged.
For normal activities this is done by abstractly annotating them with appropriate mon-
itoring control primitives. During transformation into BPEL corresponding monitoring
activities are then included to enable monitoring. To accommodate the same for control
activities, the abstract process model allows control primitives to be applied to other
control primitives. This allows for example to define that in case a security authentica-
tion control is not passed, the response must be that this failure is logged and a notifi-
cation is send to a human manager. These activities can themselves be logged as well,
as such establishing a clear audit trail of the behavior of both the business process and
its integrated control systems. Moreover, automated handling of control related events
can be facilitated by defining appropriate responses in compliance rules (just like nor-
mal compliance rules). Furthermore, the behavior of integrated control systems can be
audited independent from particular business processes. This allows both external and
internal auditors (SOA auditing tenet 1) to verify the functioning of these control sys-
tems, after which they can be assured of their proper behavior when integrated into a
process; which in turn allows processes to be performed in a predictable manner in ac-
cordance with compliance rules. Also, given the runtime nature of the SCM continuous
auditing becomes more feasible. Finally, audit trails as well as reasoning logs can be
examined to distil trends such as controls that are repeatedly not applied successfully.

Fig. 1 illustrates the SCM methodology and its individual steps. The SCM method-
ology works as follows: as a first step business managers selects pre-defined com-
pliance policies and rules from the control repository by indicating what legislative

Fig. 1. SCM Methodology Overview

130 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

compliance requirements must be met by which particular business process. The com-
pliance control manager receives the compliance rules collected by the control
directory and assures that the targeted BPEL based business processes are executed
in conformance to these rules. Concretely, what happens is that each time during ex-
ecution that the BPEL engine enters an execution scope (i.e. one or more activities
to be performed), the engine halts execution and sends its current execution model
to the compliance control manager. The compliance control manager transforms
the received execution model into a so-called Business Process Compliance Language
(BPCL) based business process model. This BPCL model describes the prescriptive
BPEL execution model in a declarative manner. The compliance control manager
then carries out the rule matching activity to identify if and when certain compliance
controls must be enforced based on the applicable compliance rules (also defined in
terms of BPCL).

The rule matching activity is supported by the knowledge base which captures for-
malized models and rules and facilitates rule matching with logical inferences. Once
reasoning has been completed, the compliance control manager contacts the BPEL
engine in order to update its BPEL execution model by inserting control activities for
enforcing any applicable control requirements, as well as adding constraints to the ab-
stract services responsible for the process’ normal activities. We adopt the WS-Policy
standard for this purpose to express constraints as assertions. The BPEL engine then re-
starts execution, goes through the execution scope and carries out the activities it finds.
Any added control activities are called in the same way as normal activities through
service operation invocation; where these operations are implemented by special mid-
dleware services provided by internal control systems (e.g. offered via an enterprise
service bus). Also, any constraints placed on the abstract services responsible for the
execution of normal activities, are taken into account when the abstract services are
bounded to actual services. This is done by comparing the stipulated WS-Policy asser-
tions to those supported by available services (i.e. through standard service discovery
and selection). As such, from the perspective of the BPEL engine the only thing that
has changed is that more activities need to be performed.

In the remainder of this paper, we will discuss the workings of SCM in more detail.
Because of space limitations we will only focus here on the specification of compliance
enriched business process models, and compliance policies and rules; as such, our work
on the actual application of compliance rules using the reasoning engine is omitted here.
An overview of the BPCL in UML class diagram notation is shown in Fig. 2.

3.1 Modeling Compliance Enriched Business Processes

At the heart of the SCM methodology stands the Business Process Compliance Lan-
guage (BPCL), which is currently under development. This language is intended to
provide the constructs necessary to define compliance enriched business process mod-
els as well as compliance rules applicable to these models. The bottom part of Fig. 2
shows the portion of the BPCL that allows definition of the basic structure of business
processes, and its annotation with control primitives. As can be seen a business process
model is defined as a collection of process constructs. Such constructs represent build-
ing blocks from which a process model can be constructed. They are abstractly defined

On the Risk Management and Auditing of SOA Based Business Processes 131

Compliance
policy and rule

definition

Business
process
definition

Fig. 2. Business Process Compliance Language (BPCL) Overview

in the process construct class. Each process construct has an unique name for identifi-
cation and reference purposes. The process construct class has two subclasses, being
basic construct and control construct class. Also abstract in nature, these classes de-
marcate the difference between the basic constructs making up business process models
and the control primitives applicable to these constructs.

Basic process modeling constructs are themselves specialized into concrete classes
representing ’standard’ service enabled business process modeling constructs to cap-
ture the five viewpoints for business process modeling, being functional, locational,
temporal, informational and participational view. Fig. 2 only shows the main classes in
these viewpoints for reasons of clarity: activity, endpoint, event, message and service
class. Messages represent containers of information consisting of meta-data and actual
data. Meta-data comprises the information required to deliver the message and enable
its processing, while payloads contain any content of the message not conveyed in its
meta-data. Messages have a particular format (conform e.g. an XML schema), follow
certain semantics (e.g. defined in an ontology), be in a certain language, and consist of
message parts which represent snippets of information. Each message part has a name,
type and value. Its type can be basic like double, integer, string, but also refer to a
complex type (for example defined in the XML schema).

Messages function as the ’inputs’ and ’outputs’ of activities. Activities represent
well-defined functions and can be dependent on one another. Activities can be complex
in nature grouping other activities in parallel, loops or sequence (defined in appropriate
activity class subclasses). Activities are ’carried out by’ services. Services have prop-
erties like name and have associated classes capturing details concerning for example
category and version. Services are ’found at’ endpoints, which are related to classes
capturing characteristics like network location, time zone, jurisdiction, and address
information. Finally, events capture business process occurrences. Events are signaled

132 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

by messages and are crucial for facilitating the monitoring of business processes. Events
have an identifier, a time stamp, a severity indicating importance, and a causal vector
identifying the events that caused it. The causal relations among events will follow the
ordering of the activities generating the events. Also, events can be composite in nature
aggregating other events; which will be conform how the activities generating events
are structured into complex activities [18].

Control constructs annotate the basis process constructs with compliance related
primitives. The basic characteristics of control constructs are comprised in the abstract
control construct class. Control constructs are atomic or composite in nature. Atomic
control constructs define exactly one compliance requirement, and share four attributes:
’timing’, ’result’, ’rank’ and ’type’. The ’timing’ attribute expresses when a compliance
control must be enforced in relation to the normal process activities. It can be set to
’before’, ’in place of’ and ’after’, and affects the manner in which control activities are
integrated into the normal BPEL process. Timing is dependent on the type of control
and the context in which it is used. For example, for an authorization control associated
with an order approval activity the timing will be set to ’before’; as it does not make
sense to perform authorization afterwards. The ’result’ attribute of a control construct
depicts the outcome of the control activity, and can be equal to ’success’ or ’failure’.
This attribute allows to consider the result of control activities and define appropriate
responses in compliance rules.

The ’rank’ attribute of the control construct class allows ordering in case multiple
control constructs are associated with a process construct; e.g. to express that first noti-
fication of an event must be done and only then that the event is logged. To indicate that
control constructs associated with the same process construct are to be carried out in
parallel, their rank can be set to the same height. Lastly, the ’type’ property contains the
kind of control construct. We identify five main categories: functional, informational,
locational, participational and temporal constructs, which are attached to activities,
messages, endpoints, services, and events respectively. Individual control construct sub
classes are then added to the BPCL to define specific control mechanisms. Fig. 2 shows
two example control construct classes; e.g. the ’masquerading’ control construct for
a process activity, which can contain a property to depict that for authentication pur-
poses an username/password combination must be provided as proof of knowledge. We
are currently in the progress of developing a classification (and subsequent definition)
of control construct for addressing a diverse range of compliance requirements. These
concrete control constructs are all defined as sub-classes of the control construct class
with appropriate attributes to define the exact requirements of the expressed control
primitive (in addition to those defined in the control construct class). Due to space
limitations we do not discuss this further here.

Different from atomic control constructs, the BPCL also facilitates definition of
composite control constructs via ’groups’ relations between control constructs. These
constructs group other constructs (both atomic and/or composite) and apply their own
control primitive to it. This allows for example to define that the notification and log-
ging of an event must be done in an all-or-nothing manner (i.e. as an atomic transac-
tion). Additionally, since control constructs are process constructs, they can themselves
be annotated with control constructs. The interpretation of such annotation is that the

On the Risk Management and Auditing of SOA Based Business Processes 133

control primitives expressed in the latter control constructs are applied to those with
which they are associated. One important application of this is that it enables to attach
monitoring constructs to other control constructs. This has the effect that the outcome
of the application of these constructs is itself monitored. This empowers organizations
to not only monitor the progress of their normal business process activities, but also
those related to the effectuation of control mechanisms within these processes; e.g. al-
lowing to define that if authentication for an activity fails, then a human manager must
be notified. It also provides the means to express statement like that information must
be stored in a secure manner; which can be captured by associating a storage control
with an encryption control that itself is attached to a message. This has the effect that
first the message is encrypted, after which the resulting (encrypted) message is stored.

3.2 Defining Compliance Rules and Policies

In the previous subsection we discussed the BPCL in relation to the definition of compli-
ance enriched business process models; and explained how control constructs can be an-
notated to basic process modeling constructs. However, as observed in the introduction
of section 3, the decision of whether or not to apply certain control mechanisms is often
dependent on the specific business process conditions during execution. To accommo-
date for this the BPCL also provides the concepts for the definition of compliance rules
and policies. Concretely, compliance rules can be specified in an expressive manner on
top of the process modeling constructs. In Fig. 1, these rules are then matched against
the BPCL representation of a running BPEL process to customize integration of control
mechanisms into business processes. This is done with the help of the knowledge base
inferencing capabilities. Both the BPCL model and the applicable compliance rules are
translated into the knowledge base format, after which new facts constituting annota-
tions of control constructs are deduced based on the current BPCL model. BPCL rules
also have several attributes to facilitate their specification, categorization, application
and management.

The central class in the BPCL for compliance rule definition is the rule class. Rules
take the form IF [conditions are satisfied] THEN [annotate control
primitive]. A rule has zero or more conditions and exactly one conclusion. Both
are expressed as clauses based on the clause class. Clauses constrain process constructs
and link compliance rules to business process models. A clause constrains a parameter-
ized process construct. The clause class is specialized in the built-in class. Built-in
clauses allow to express: 1) an evaluation of the value of a particular process con-
struct attribute using a built-in operator and a set value; or 2) a derivation of a new
value based on one or more process construct attributes (potentially from different pa-
rameterized process constructs) conform a built-in operator. Supported evaluation op-
erators in BPCL include text and numerical comparison, membership evaluation, and,
date and time operators. Derivation operators encompass addition, substraction, divi-
sion and multiplication. An example is that IF [customer order amount in an
order is higher than $500], THEN [perform authentication using
an username/password combination]. To monitor the outcome of this con-
trol mechanism, another rule can then be that IF [result of authentication
equals failed], THEN [notify sales manager].

134 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

Rule conditions can be negated (via the clause ’negation’ attribute). Negation em-
powers organizations to express both desired and undesired conditions. This allows for
example to state that IF [customer status is not equal to ’gold’ and
order amount is higher than $1000], THEN [do credit check]. A rel-
evant distinction in this regard is the intent of the negation. Strong, or classical, negation
conveys the necessity to explicitly show that something is not true. In contrast, negation
interpreted in a weak sense indicates that something is considered not true if it can not
shown to be true. This is a subtle yet important difference for compliance, as in one case
explicit proof is required of separation of duties whereas in the other case this is not nec-
essary. At this point in time we only use negation in rule conditions; as we do not see
direct application of compliance rules of the form ”IF [conditions apply] THEN [do not
annotate control primitive]”. This also means that we restrict the usage of negation in
rule conditions to weak negation (since no explicit negative conclusions can be drawn).
This has the benefit that rules can be unambiguously be interpreted using perfect model
semantics [28]; as such avoiding situations in which it is unclear which interpretation is
correct.

Continuing, rules in BPCL can be monotonic or non-monotonic in nature as indi-
cated in their ’monoticity’ attribute. Non-monotonic rules (also known as defeasible
rules) are common in business, for example to override standard rules with special-
case exceptions, to incorporate more recent updates and etceteras [12]. In relation to
compliance the matter of non-monoticity is of interest as it allows organizations to indi-
cate to what extent it is important that a compliance rule is enforced; and consequently
how grave the consequences are in case the rule is not satisfied. Monotonic compliance
rules must always be met, but non-monotonic ones may be violated (albeit potentially
at a cost). Monoticity also empowers organizations to prioritize their compliance rules
in case they express conflicting requirements (e.g. the need for authentication contra-
dicts with a demand for anonymity). Monotonic rules always take precedence over non-
monotonic ones, while the latter can themselves be further ordered through the usage of
the ’rank’ property as well as ’relative prioritization’ relations between rules. The effect
of rule monoticity properties during inferencing is that it instructs the knowledge base
to prioritize rules in case they care conflicting with one another.

Additionally, each rule has the attributes ’activation date’, ’expiration date’, ’source’,
and ’steward’. The first two express the period in which a rule is active. From a compli-
ance point of view this is useful to ensure that rules are only enforced when appropriate.
For example, the IFRS [24] requirements for financial reporting in 2007 likely differ
from those of other years, and thus should not be applied for example in 2006 or 2008.
Situations such as these prompt the need for some form of life cycle management to
manage the status of compliance rules. The impact of activation and expiration dates is
that rules will only be applied by the knowledge base if these rules are active given the
internal clock of the knowledge base. In order to establish a link between a compliance
rule and one or more compliance legislations, the origin(s) of a rule can be specified in
the ’source’ attribute. This will identify the name of a specific section/subsection of a
legislation that the rule originates from (e.g. Sarbanes-Oxley section 402). This allows
the categorization of compliance rules, enabling for example to select a subset of the
Sarbanes-Oxley compliance rules and apply them to a business process. Finally, the

On the Risk Management and Auditing of SOA Based Business Processes 135

delegation of responsibility for achieving particular compliance goals is another con-
cern that is addressed in BPCL. Concretely, compliance rules have a ’steward’ attribute
to identify organizational actors. This allows the responsibility for compliance enforce-
ment to be tied to the organization’s management and operations structure.

Logically related compliance rules can be clustered into compliance policies using
the policy class. Such policies are similar in nature to WS-Policy based policies [2],
however they contain much more expressive rules than WS-Policy assertions. Currently
policies can not contain multiple alternatives like in WS-Policy, though we will to in-
clude such support in the future if this is deemed useful. For identification purposes
a policy has a name as well as a short textual description. Additionally, a policy has a
’source’ property, which identifies by name to what compliance legislation(s) the policy
is related (typically in more general terms than the source specified for a compliance
rule). Potentially a single policy can be related to multiple legislations, e.g. supporting
compliance of both Basel II and Sarbanes-Oxley at the same time. Each policy also has
a ’process’ property indicating to what type(s) of business process it is applicable (e.g.
the purchase and payment process). Finally, there can be multiple versions of policies in
existence. Differentiation between them is expressed using the ’version’ property. Based
on the source, process and version properties customized packaging of compliance poli-
cies and rules can be done by organizations when accessing their control directory. This
increases intuition, as it enables managers to refer to particular legislative compliance
issues (rather than manually collecting compliance rules and policies).

For example, if a sales process manager wishes to apply all ’Sarbanes-Oxley section
402’ related compliance rules to the sales process, then he/she will define a request by
stipulating the source (Sarbanes-Oxley section 402) and the type of process (the sales
process). In response, the control directory will search its contents and retrieve the SoX
compliance policy defined for the sales process by comparing against the ’source’ and
’process’ attributes of available policies. For each found policy, the control directory
removes any rules not related to section 402. The control directory next groups the re-
sulting rules into a compliance package. In case multiple versions of a Sox 402 policy
were found, these are presented to the sales process manager for selection. Interest-
ingly, this approach also allows specification of requests for compliance of a process
to multiple regulations. To illustrate, the sales process manager can stipulate to apply
all Sarbanes-Oxley 402 rules, as well as the Basel II related rules. The control direc-
tory will retrieve the appropriate rules for both types of legislation and merge these
into a single compliance policy. In all cases, the resulting compliance policy is sent to
the compliance control manager, who ensures that the contained rules will then be ap-
plied during business process execution conform the SCM methodology. Due to space
limitations we do not discuss this further here.

4 Related Work

In the last years there has been an increase in attention paid to the role of compliance
within business processes. A typical example is [21] which defines a formalization for
internal controls and how they relate to operational processes. Similar works include
[23] and [10]. Though these contribute to the insight in the relation between processes

136 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

and compliance, they do not address how control mechanisms can be integrated in ex-
ecutable business processes. In the area of process control objectives works have char-
tered the implications of compliance for IT, most notably COSO [6] and COBIT [15].
COSO identifies several control activities (including authorizations, data verifications,
reviews of operating performance, security of assets and segregation of duties), but does
not define how to integrate them in business processes. Related, COBIT (short for Con-
trol Objectives for Information and related Technology) is useful as it identifies a large
number of control objectives for business processes, which are subsequently refined
into concrete application controls. However, like COSO, COBIT does not provide the
means to integrate these objectives into business process models.

[25] presents a framework for the modeling of control objectives within business
process structures based on a modal logic based approach using Formal Contract Lan-
guage [11]. This is akin to the sketched BPCL, but we allow more expressive definition
as control constructs can be associated with and/or grouped by other control constructs.
[25] also advocates usage of a controls directory which holds the interpretation of com-
pliance regulations in the specific context of an organization (given the ambiguity of
such regulations). Our approach will be able to facilitate this following [8], which at-
taches meta-data to compliance rules to depict the relationship between specific rules
and compliance legislations. Finally, [25] hints at how the approach allows assessing
the degree of process compliance; and how the usage of logic allows for analyzing why
a particular decision in a business process was made. The SCM approach will be able
to provide the same kind of reasoning via its formal knowledge base. Moreover, given
the expressive nature of the BPCL (e.g. in terms of monoticity and prioritization), the
SCM is planned to facilitate more sophisticated assessment and reasoning.

[26] proposes an aspect-oriented based approach for linking compliance to business
protocols (i.e. abstract business processes). This is very similar to the usage of com-
pliance rules in this paper, where rule conditions express aspect pointcuts and the rule
conclusion defines the advice. The difference is that in our approach these are exter-
nalized and administered by a separate rule engine; positioning them better for analysis
and management purposes. [17] sketches a model checking method in which business
process models are expressed in the Business Process Execution Language (BPEL) [1],
and then transformed into pi-calculus and finite state machines. At the same time com-
pliance rules are expressed in a graphical Business Property Specification Language,
which are next translated into linear temporal logic. Then, process models are verified
against the resulting statements by means of model-checking technology. [9] proposes
a similar approach using semantically annotated process models based on Business
Process Modelling Notation (BPMN) [22] and Computational Tree Logic. Although
useful in nature, our work extends these approaches by allowing for more rich annota-
tion of control primitives.

[8] suggests to capture business processes and Canadian privacy related legislative
requirements separately using the User Requirements Notation (URN) [16]). The paper
also proposes to add documentation notes to the goal model capturing the privacy re-
quirements , similar like what is done in this paper. [4] observes that often compliance
objectives are delegated within the organizational hierarchy, where they are refined in
a top-down manner. The described management is similar to the one proposed in this

On the Risk Management and Auditing of SOA Based Business Processes 137

paper. In this regard [4] also notes that in delegation compliance requirements are often
refined; e.g. via goal refinement similar to for example what is proposed for security in
[19] in relation to the Tropos methodology. Our work does not address this issue yet,
but we plan to include this in the future.

5 Conclusions

Business processes form the foundation for all organizations and are subject to indus-
try regulations. Without explicit business process definitions, flexible rules frameworks,
and audit trails that provide for non-repudiation, organizations face litigation risks and
even criminal penalties. To address such problems we have proposed a SOA compliance
methodology (SCM) based on the concept of a risk management and auditing SOA - to
oversee the compliance of business processes with internal accounting control for the
purpose of risk management and auditing. The results that we have presented provide an
initial basic theoretical foundation for addressing the raised SOA based business process
risk management and auditing tenets. Significant extensions are needed in several direc-
tions to guarantee a practical methodology. Work is needed to realize runtime support in
the form of interaction with the BPEL engine to achieve integration and enforcement of
control requirements during execution. Also, validation of the approach (particularly in
terms of the adopted architecture and BPCL) in the context of real life case studies has
to be carried out. Moreover, for demonstration purposes illustrative compliance rules
and policies should be developed that address certain compliance regulations.

References

1. Alves, A., Arkin, A., Askary, A., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guı́zar, A., Kartha, N., Liu, C., Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S., van
der Rijn, D., Yendluri, P., Yiu, A.: Web services business process execution language version
2.0 (April 2007)

2. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M.,
Kaler, C., Langworthy, D., Nadalin, A., Nagaratnam, N., Prafullchandra, H., von Riegen,
C., Roth, D., Schlimmer, J. (eds.) Sharp, C., Shewchuk, J., Vedamuthu, A., Yalçýnalp, Ü.,
Orchard, D.: Web services policy 1.2 framework (April 2006)

3. Basel Committee on Banking Supervision. International convergence of capital measurement
and capital standards (June 2006)

4. Breaux, T., Antón, A., Spafford, E.: A distributed requirements management framework for
legal compliance and accountability. Technical Report 14, North Carolina State University
Computer Science (2006)

5. Canadian Institute of Chartered Accountants. Continuous auditing: research report.
CICA/AICPA (1999)

6. COSO. Internal control for financial reporting - guidance for smaller public companies
(2006)

7. Department of Health and Human Services. Hipaa privacy rule. US Federal Register (De-
cember 2000)

8. Ghanavati, S., Amyot, D., Peyton, L.: A requirements management framework for privacy
compliance. In: Proceedings of the Workshop on Requirements Engineering (2007)

138 B. Orriens, W.-J. v/d Heuvel, and M. Papazoglou

9. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Proceedings of the Inter-
national Conference on Service-Oriented Computing (2007)

10. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and
permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

11. Governatori, G., Milosevic, Z.: A formal analysis of a business contract language. Interna-
tional Journal of Cooperative Information Systems 15(4) (2006)

12. Grosof, B., Gruninger, M., Kifer, M., Martin, D., McGuinness, D., Parsia, B., Payne, T., Tate,
A.: Semantic web services language requirements (February 2008)

13. Hayes, R., Dassen, R., Schilder, A., Wallage, P.: Principles of Auditing: An introduction to
international standards on Auditing. Prentice Hall/Financial Times (2005)

14. International Federation of Accountants. Handbook of International Auditing, Assurance and
Ethics Pronouncements. John Wiley, Chichester (2006)

15. IT Governance Institute. Framework for control objectives: Management guidelines and ma-
turity models (cobit 4.1) (2007)

16. ITU-T. User requirements notation (urn) – language requirements and framework. ITU-T
Recommendation Z.150 (February 2003)

17. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Systems Journal 46(2), 335–362 (2007)

18. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems (Hardcover). Addison-Wesley Professional, Reading (2002)

19. Mouratidis, H., Giorgini, P., Manson, G.: An ontology for modelling security: The tropos ap-
proach. In: Proceedings of the 7th International Conference on Knowledge-Based Intelligent
Information & Engineering Systems, Oxford, United Kingdom (September 2003)

20. Murthy, U., Groomer, S.: A continuous auditing web services model for xml-based account-
ing systems. Accounting Information Systems 5, 139–163 (2004)

21. Namiri, K., Stojanovic, N.: Towards a formal framework for business process compliance.
In: Proceedings of the Multikonferenz Wirtschaftsinformatik (February 2008)

22. Object Management Group. Business process modeling notation (February 2006)
23. Padmanabhan, V., Governatori, G., Sadiq, S., Colomb, R., Rotolo, A.: Process modeling: The

deontic way. In: Proceedings Of The Australia-Pacific Conference on Conceptual Modeling
(2006)

24. PriceWaterhouseCoopers. Adopting ifrs first-time adoption of international financial report-
ing standards (June 2004)

25. Sadiq, S., Governatori, G., Naimiri, K.: Modeling control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 149–164. Springer, Heidelberg (2007)

26. Svirskas, A., Courbis, C., Molva, R., Bedzinskas, J.: Compliance proofs for collaborative in-
teractions using aspect-oriented approach. In: Proceedings of the IEEE Congress on Services
(2007)

27. US Congress. Sarbanes-oxley of 2002 (January 2002)
28. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.

Journal of the ACM 38(3), 620–650 (1991)
29. Yu, S., Neter, J.: A stochastic model of the internal control system. Journal of Accounting

Research 11, 273–295 (1973)

SCA and jABC: Bringing a Service-Oriented

Paradigm to Web-Service Construction

Georg Jung1, Tiziana Margaria1, Ralf Nagel2, Wolfgang Schubert1,
Bernhard Steffen2, and Horst Voigt1

1 Universität Potsdam, Chair Service and Software Engineering
{jung,margaria,schubert,voigt}@cs.uni-potsdam.de

2 TU Dortmund, Chair Programming Systems
{ralf.nagel,steffen}@cs.tu-dortmund.de

Abstract. Extensibility, flexibility, easy maintainability, and long-term
robustness are core requirements for modern, highly distributed infor-
mation and computation systems. Such systems in turn show a steady
increase in complexity. In pursuit of these goals, software engineering
has seen a rapid evolution of architectural paradigms aiming towards
increasingly modular, hierarchical, and compositional approaches.
Object-orientation, component orientation, middleware components,
product-lines, and - recently - service orientation.

We compare two approaches towards a service-oriented paradigm, the
Service Component Architecture (SCA) and the jABC.

1 Introduction

The Service Component Architecture (SCA) [1,2] was developed recently as
an industry standard for service-oriented development of complex, distributed,
(web-based) applications.1 Core of the SCA approach is the notion of the service
component. Applications are built by arranging a cooperative network of service
components which communicate through standardized interfaces.

In essence, SCA is an extensive set of specifications which describe an overall
assembly model, implementation support for various programming and data-
base languages, bindings to existing web-service-, messaging-, and middleware-
standards, and policy and profiling mechanisms to access and customize
infrastructure functionality. As such, SCA has proved effective and useful for
building applications in practice.

By continuously emphasizing the service component, service architecture or
service oriented development, SCA implicitly promotes a particular concept to
be associated with the term “service”. A service in the sense of SCA is a cer-
tain component that provides its functionality through a specific interface (the
service interface, often directly identified with the service). Likewise, an assem-
bly of services is merely a topology of components which are connected through
1 The first SCA specification, version 0.9, dates from November 2005, version 1.0 from

March 2007.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 139–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 G. Jung et al.

provide-use relations among their services or service interfaces. In other words,
SCA associates service-orientation with a structural, interface-centric view in an
assembly model which otherwise follows a component-oriented paradigm (similar
to the one proposed in, e.g., [3,4]).

While this notion has its merits in terms of intuition and viability, it is
by no means the only workable grounds to introduce a service-oriented para-
digm into the practice of application development. An orthogonal view is of-
fered by the service concept of jABC [5,6,7,8,9] a framework for model-driven
and service-oriented development that originated in the early ’90s (previously
named METAFrame [10]). Originally it was applied to the model-driven devel-
opment of advanced telecommunication services for Intelligent Networks [11,12].
Due to the ease of generalization of that service model, it meanwhile evolved
into a flexible model-driven approach spanning both local and distributed (web-
based) application development and customization [5,13].

In jABC the term “service” is used to denote functional building blocks
(SIBs2), which are viewed as independent from their location, the program-
entity, and hardware-platform which provides them. Instead, the defining quality
of a SIB, which forms the core abstraction of jABC, is its interaction with the
environment, which manifests in its behavioural semantics and its manipulations
of a global context. The SIBs are assembled – or as one says, orchestrated – with
their operational or behavioural semantics in mind. Concretely, this means that
each SIB, once activated, executes its logic and upon termination triggers sub-
sequent SIBs according to the outcome of this execution. This methodology of
composition has been termed lightweight process coordination [9] and is closely
related to the SIB model standardized by ITU [14].

The two approaches emphasize dual angles of the idea of a service, which can
be characterized as:

– resource-oriented vs. process-oriented
– architectural vs. behavioral
– static vs. dynamic

In the following we will investigate these dual views for their potential to support
a truly service-oriented development. We initiate the comparison of the SCA
and jABC concepts, considering properties, structures, meta models [15], and
semantics, using some examples to illustrate the different viewpoints.

The rest of this paper is organized as follows. Sect. 2 and 3 introduce the
meta-models of SCA and jABC, respectively. Sect. 4 examines the common
component-middleware paradigm and compares it with the SCA and jABC with
respect to structural and computational properties. Sect. 5 discussed the char-
acteristics of component flavored assembly. Sect. 6 evaluates both approaches
along technical and pragmatic characteristics. Finally, we briefly discuss related
work (Sect. 7), and summarize our findings so far in Sect. 8.
2 SIB stands for Service Independent Building Block, a notion coined in the nineties in

the Telecommunication area [14], where the notion of service was meant to denote
whole service orchestrations [14,12]. SIBs were back then the atomic service-like
entities of which those services were aggregations.

SCA and jABC: Bringing a Service-Oriented Paradigm 141

2 The Meta-model of SCA

In SCA, each service component implements some specific business logic and
provides its functionality through standardized interfaces, described in SCA lit-
erature as service-oriented interfaces and shortly called services. To implement
its business logic, each service component can rely on third-party functionality
provided by other components by linking to their respective service interfaces
through so called references. A reference interface can be linked to a service in-
terface by means of a wire, which abstracts the communication infrastructure
through which functionality of third-party service interfaces can be accessed
remotely.

A given assembly of service components interconnected through a set of wires
can be summarized as a composite, and service or reference interfaces of the
components inside the composite can be propagated to be visible as interfaces of
the composite itself. Thus, the composite as a whole shows similar characteris-
tics as a single service component and can be used in the same way inside larger
composites. This enables a straightforward hierarchy structure for SCA assem-
blies, distinguishing “atomic” components and composite components. Finally,
a service component may feature property-interfaces which allow to customize
its behavior and can be propagated to be visible as properties of a composite in
the same way as interfaces.

Component
B

Component
A

Composite

Wire
promote

promote
promote

promote

promote

Fig. 1. Schematic of the SCA assembly-model

Fig. 1 shows a schematic of the SCA assembly model (see www.osoa.org).
Other than what one might expect, the service interfaces are the incoming in-
terfaces and the reference interfaces are the outgoing ones. This reflects a view
from inside the component/composite, where services (of others) are used and
the references to services (of oneself) are provided. It can therefore be described
as a developer’s view (as opposed to, e.g., a composer’s view), which again em-
phasizes the idea that services are used to integrate third-party functionality
into an application.

In [2], Edwards proposes a UML-model of the SCA assembly. The excerpt in
Fig. 2 shows the essential part: concrete components with their component-
properties, -references, and -services serve as implementation for component

www.osoa.org

142 G. Jung et al.

Fig. 2. An UML-model of the SCA-assembly

types. The composite on the other hand is a specific way to implement a com-
ponent type (indicated by the inheritance relation to implementation), and can in
turn contain multiple components. The wire as a part of the composite connects
one reference with one service interface. Unfortunately, this model leaves out
several crucial interrelation constraints, for example it shows that one service
and one reference can be attached to one wire, but it glosses over how many
wires can be attached to a single service or reference. E.g., a single wire per
service interface and zero-to-many wires per reference interface seem reasonable
connectivity constraints. Also, the model shows inheritance relations across dif-
ferent levels of abstraction (i.e., type–instance relations. Services on components
inherit from services on component types in this model. Here an implemen-
tation/interpretation relation would seem more appropriate. Nevertheless, the
model is clearly meant to expose structural or static interrelations of the SCA
notions to enable implementations. To this aim it is certainly more helpful than
a conceptional relationship model.

3 The Meta-model of jABC

jABC follows a completely different compositional paradigm, called lightweight
process coordination [9], which - instead of structural properties - revolves around
the operational aspects of its elementary building blocks (see Sect. 1). Concretely,
a SIB is an executable entity, internally realized as a specifically annotated Java
class.3 As such, it intrinsically carries an arbitrarily fine-grained/precise oper-
ational semantics. A SIB can be a model placeholder for some functionality
3 While jABC is currently implemented in Java, the core concept is independent of

the programming language. Previous versions, for example, realized the same model
in C++.

SCA and jABC: Bringing a Service-Oriented Paradigm 143

Fig. 3. Assembly of services in jABC: the SLG is a process

or a full implementation of that functionality, as well as any level of refine-
ment/abstraction expressible by the (Java) programming language in between.
Further, each SIB has one entry point, where the execution starts, and multiple
exit points (called branches) which represent different outcomes of its execution
at the model level.

SIBs can be arranged into topologies called Service Logic Graphs (SLG) which
specify process behavior by connecting outgoing SIB branches to the entry points
of other SIBs. Inside an SLG, the execution of a SIB starts whenever one of its
incoming branches is active, which means that the SIB which governs the branch
terminated its execution with an outcome associated with that branch. One SIBs
inside an SLG can be assigned to be start SIBs, which means that its execution
is started without an incoming active branch; start SIBs are the entry points of
the process modelled by the respective SLG.

Fig. 3 shows a simple process, graphically modeled as SLG.4 The labels of
start SIBs, here ShowInputDialog, are underlined, those of possible exit SIBs
(e.g., ShowInputDialog, RepeatLoop, . . .) are printed in bold-font. In the basic,
sequential case, each SIB terminates with one active branch which determines
the next SIB to be executed. Parallel and concurrent structures are likewise
possible, as used in the bioinformatics applications [16,17]. Hence, an SLG is a
graphical, executable, node-action process description.

SLGs can be canonically wrapped into (graph-) SIBs to allow for a hierarchical
organization of complex process models. Moreover, process models which follow
a certain standard defined by jABC can be directly exported into (partial or com-
plete) stand-alone applications, a feature which turns jABC from a modeling into
a development tool. Finally, there are SIBs which serve as wrappers for outside

4 The process model shown in Fig. 3 is one of the tutorial examples which come with
the standard installation of jABC.

144 G. Jung et al.

functionality (e.g., non-Java applications such as C++, C#, SOAP/WSDL Web
services, etc.): this enables modeling and building of heterogeneous, distributed,
applications.

The service concept as a compositional paradigm is particularly strong in
jABC, since all visible business-logic in an SLG boils down to orchestration
of the functionality abstracted within the SIBs. Each SIB independently and
without interruption manipulates the global context, similar to what happens in
blackboard systems [18], and upon its termination the jABC passes the control
to the next SIB. As opposed to a component-oriented approach, SIBs never
access or interact with other SIBs through channels or interfaces; instead, their
functionality is local and self-contained.

4 Comparison with Component-Orientation

If one revisits the SCA meta-model with a regular, component oriented, archi-
tecture-methodology in mind (such as, e.g., the CORBA Component Model
CCM [19], or Enterprise Java Beans [20]), many structural similarities surface.
All of them support the concept of the component, accompanied by the notions
of the interface which offers access to the component, and the connector, which
allows composers to link components together. The variety of kinds of available
connectors, components, and interfaces is sometimes associated with the term
architectural style, depending on the communication capabilities it offers (e.g.,
publish-subscribe architecture, remote procedure-call RPC, broadcast, etc.).

These three fundamental concepts (colloquially: boxes, dots, and lines) gener-
ally appear in a middleware context or comparable setting, where a more or less
fixed infrastructure with a given set of communication, persistence, execution,
and similar capabilities is abstracted to be able to focus on business-level func-
tionality and high-level assembly. Fig. 4 for example formalizes EJB in a two-part
meta-model which distinguishes between general parts of a component-oriented
paradigm (labeled platform independent model, PIM) and parts specific to the
EJB model (labeled platform specific model, PSM).5 Meta-models of various
middleware-centric component frameworks can be built by simply exchanging
the PSM with the specifics of a different platform.

SCA fits into this structural model too, if one considers the use of (previously
existing, established) internet-communication protocols (HTTP, SMTP, etc.) to
be comparable to more local approaches such as a CORBA RPC layer. In this
case, a meta-model for SCA can be built by using the aforementioned PIM and
complementing platform-specific parts and terms of SCA (Fig. 5).

Note that in middleware-centric architectural styles, the term “service” is of-
ten used for the capabilities of the middleware (e.g., persistence service, publish-
subscribe service, etc.). These middleware services are again fundamentally
distinct from the service concept of SCA. In high-level, and in particular busi-
ness process level service oriented environments, middleware services have to
5 The notions of PIM/PSM have been proposed in similar forms independently by

various authors; see, e.g., [15], where the acronyms PIM and PSM appear first.

SCA and jABC: Bringing a Service-Oriented Paradigm 145

Fig. 4. A PIM/PSM model of the EJB component-middleware platform

be thoroughly abstracted so that they can be independently and mechanically
configurable. This is because, to actually facilitate development instead of mak-
ing it more complex, they have to support an agnostic developer (i.e., compo-
nent integrator). For example in a CCM architecture [19], no matter where a
component is located, it can use the RPC service, hence the service has to be
location-agnostic. The middleware service is therefore not analogue to the ser-
vice (interface) in SCA which is location-bound. Instead the wire in SCA is a
much closer equivalent to the location-agnostic intuition of a service because it
abstracts a ubiquitous communication service. In fact, keeping the complexity
of the infrastructure and communication channels abstracted in SCA in mind,
it seems reasonable to consider their entirety as some kind of middleware.

The assembly model of jABC follows an entirely different approach which is
operation-centered, instead of structure-centered. As opposed to the SCA service
interface it does also not consider location. It does not correspond in any way
to the component-oriented, middleware-centric, paradigm. In fact, the notion of
the global context in jABC contradicts the strict data-encapsulation which is re-
quired by the component methodology. There is, however, a close correspondence
between the idea of the SIB and the (arbitrarily complex) middleware-service.
Like the SIB, the middleware service does not consider a localized persistence
feature in its definition, and like the SIB, it is defined rather through its func-
tionality than its structure.

146 G. Jung et al.

Fig. 5. SCA meta model, fitted into a component-middleware structure, cfr. Fig. 4

5 Characteristics of Component Flavored Assembly

We discuss here the two aspects that seem to us most prominent.

5.1 Complex, Fixed, Layer-Structures and the Service Concept

The two notions of service discussed in the previous section (the middleware/
infrastructure-layer service and the SCA service interface) fall short for the task
of service composition. In both concepts (as opposed to the one of jABC) the
service is only modeled through the structural properties of its access point, and
if services are to be combined the developer has to resort to hand-coded business
logic.

At the same time, even the complexity of the infrastructure layer itself sug-
gests the necessity for a methodology for easy assembly of services. The fact that
for example connectors in a component topology cannot be neglected as trivial
was first pointed out by Shaw [21], and this realization subsequently found its
way into literature about practical application of the component-oriented par-
adigm (e.g., in [3, pp. 429] Szypersky states that “A connector, when zooming
in, can easily have substantial complexity and really ask for partitioning into
components itself”). Nevertheless, discovering this “duality” between compo-
nent and connector [3, same page] did not yet trigger a revisiting of terminology,

SCA and jABC: Bringing a Service-Oriented Paradigm 147

EVENT CHANNEL

push

subscriber−
list

...

Proxy
Consumer

Reference

Component
(Supplier)

push

subscriber−
list

...

Proxy
Consumer

Reference

Component
(Supplier)

Proxy
Supplier

Reference

Component
(Consumer)push

Proxy
Supplier

Reference

Component
(Consumer)push

...20Hz 5Hz 1HzThread Pool

5H
z dispatch queue

20H
z dispatch queue

Fig. 6. Schematic view of the PRiSM Event-channel

paradigms, and abstractions of component-oriented architectural styles or an
introduction of lightweight process coordination into the middleware concepts.

To illustrate the lack of expressiveness, consider the PRiSM real-time com-
ponent middleware, which was developed by the Boeing company within the
Bold Stroke effort for middleware-based aviation control systems [22]. PRiSM
features, much like CCM, two main channels for communication: An asynchro-
nous event notification service with very limited payload capability and a syn-
chronous RPC connection which can be used to communicate data through the
return values (but not to trigger computation, since it is not thread-safe). The
implementation of the notification service called event-channel is intertwined
with the middleware’s thread handling mechanism (Fig. 6). A thread starts with
a periodic timeout event (20Hz, 5Hz, 1Hz in Fig. 6, distributed through the
event notification service) and runs until all events within its buffer (called the
rate group’s dispatch queue) are handled. The events trigger computation within
the individual components and subsequent events can be queued within the same
dispatch queue or dispatch queues of other threads. In other words, timeout
events and dispatches drive the components of a rate group, and the buffering
within the event channel serves for messages to cross rate groups.

To exchange data between different threads/rate-groups, systems on the
PRiSM platform make heavy use of a so-called control-push–data-pull strategy.
If new data has been generated (e.g., by a device-driver component such as a
GPS), the generating component issues an event which notifies consumers of the
data. This event is queued within the dispatch queues of the receiver’s respective
threads. At the time these threads become active and the event is dispatched,
the receiving components actively fetch the announced data from the generating
component through RPC-calls. This method guarantees that threads never exe-
cute out of turn, and data is only transmitted when both available and needed.
The drawback is that two different middleware connectors are needed for one
logical connection.

To avoid “cross-wiring” or other inconsistencies which can occur with these
double connections it seems obvious that a new abstraction should be added

148 G. Jung et al.

Fig. 7. Composing a non-blocking message service in jABC

to the middleware capabilities which denotes the double connection as a single
connector of a new type. In a middleware-centric or generally in a tiered ap-
proach with emphasis on interface compatibility, we can certainly introduce the
abstraction, but the semantics of the new connector can only be implemented
“by hand”, since the operational semantics of the different existing connectors
are not captured by the model, even though the general push-pull strategy could
have been understood without knowledge about the implementation details of
the individual communication channels.

When using a lightweight process coordination methodology, as in the jABC,
instead (applied to coordinating the middleware processes), the task of assem-
bling a new (ubiquitous, semantically unambiguous, hierarchically constructed)
communication service from existing ones becomes clear and simple. The two
connectors are composed as a sequence, together with a control unit which han-
dles possible data conversions if necessary (Fig. 7).

In the PRiSM middleware, the infrastructure services are necessarily simplis-
tic due to the real-time aspects, with limited options to reasonably combine
multiple services into orchestrated compounds. Yet, even in this constrained
microcosm-setting the middleware would benefit from process coordination. In
the macrocosm of a web-based, highly distributed, application, the variety of ex-
isting services increases: there are services which would be considered infrastruc-
ture (such as communication), and services provided on top of the infrastructure.
Here the possibilities of assembling meaningful combinations multiply.

5.2 Perspective, Location, and Entry-Point:
Topology vs. Coordination

Consider a composite service where a central unit C acts as the orchestrator and
in turn relies on services provided by distinct units A and B. For example, for a
list of authorized database-accesses, A authorizes the access, B offers it, and C
orchestrates services A and B to allow its users to handle the authorization and
the complete list of accesses via a single call to C.

The difference between a model of this situation in SCA and in jABC can be
summarized as perspective or viewpoint (Fig. 8 (a) and (b)).

– SCA offers a model of the physical topology: C appears as the provider of the
service that promotes a reference for service access. Through wires, C con-
nects the service interfaces it needs to the respective references provided by
A and B. The structural aspects of the example are captured and localized by
the SCA model, but the operational aspects are hidden. In fact, SCA would
require to integrate tailored business logic into C as their orchestration.

SCA and jABC: Bringing a Service-Oriented Paradigm 149

A
B C

system

stratum /
abstraction

control
echolon /

dynamic

static
composition
layer /

B
A C

C’

A

B

C’

A

B

C

SCA

jABC

(c)(a) (b)

Fig. 8. Different perspectives: (a) SCA and jABC perspectives, (b) Topology or process
coordination, (c) Perspectives according to Mesarovic

– jABC on the other hand abstracts all location aspects. Entry point of the
operational model through the composite-service C is the start-SIB A, where
the first operation happens (the authorization), then C’ (the actual media-
tion service) is invoked, and subsequently a loop between C’ and B performs
the service until the list of authorized accesses is complete. The jABC model
glosses over the actual topology of the involved units (components, or SIBs,
or services).

Concerning executability and coding aspects, while the SCA-model only allows
auto-generating code-stubs which handle the interconnection and communica-
tion aspects, but needs control and business logic to be added, the jABC model
is designed to be sufficient to generate the complete system through the Genesys
plugin [23]. As described in Sect. 3, given a sufficiently complete modeling of the
individual SIBs, jABC acts as an intuitive, graphical, development tool rather
than a modeling tool.

The need for multiple perspectives has been noted earlier. Most eminently in
[24], Mesarovic et al. propose three perspectives which have to be consolidated
for a complete system model. They coin the terms echelon, layer, and stra-
tum which—in current terminology—denote control or behavior, composition or
topology, and abstractions and data types respectively (Fig. 8(c)).

6 Evaluation

In this section we are going to investigate the appropriateness of the described
specification styles for service orientation relative to the widely agreed upon
characteristics of service orientation. Here, we consider a technical and a prag-
matic side, both with three dimensions.

Technical characterization: as introduced in [7]

– (Extreme) loose coupling and self containment of the services.
– Virtualization: clear separation from implementation/realization details.
– Domain specificity: a service-oriented setup should seamlessly integrate into

the setup of the considered domain.

150 G. Jung et al.

Pragmatic characterization:

– Scalability, both for the successive ‘assembly’ of functionality, as well as for
the number of users of developed artifacts.

– Participation: service-orientation aims at giving the domain expert access
and control of the development and evolution of the artifacts.

– Agility: changes and adaptations should be easy and ideally be controllable
at the (process) model level.

Despite their strong semantic differences, the SCA approach and jABC ap-
proach are quite similar when it comes to the technical characteristics: both
support loose coupling and virtualization, and the organization in the virtual-
ized components enables a domain-specific development.

The differences show up, however, when it comes to the pragmatic character-
istics, which we will now consider individually.

6.1 Scalability

This first dimension is still supported quite similarly in the two approaches, by
clean concepts of hierarchy. Both SCA and jABC offer conceptually similar op-
tions to assemble larger elements (service components or SIBs) out of topologies
of smaller ones: In SCA the composite can act as component, in jABC an SLG
can be packed into a SIB, and in either case it is necessary to propagate or mark
interfaces of the internal structures to be visible on the external structure.

Concerning the scalability in the number of users, both approaches can make
adequate use of standard technology like scalable application servers, which sup-
port growing sizes of users.

The real difference between the SCA and the jABC approach becomes appar-
ent when looking at the remaining two dimensions.

6.2 Participation

Technically, we can regard service orientation as an 80/20 approach to applica-
tion/process development. It aims at a maximal involvement of the application
expert in order to avoid misunderstandings and to overcome communication hur-
dles. At the best, users should be able to directly influence, control, and adapt
the services according to their needs. At least for typical day-to-day situations,
this should be possible without IT knowledge. Thus, service orientation poten-
tially has a disruptive impact on the current structures.

The jABC directly addresses this goal by putting the application/business
process in the center of attention, while the architectural and resource-oriented
SCA approach still addresses IT experts.

6.3 Agility

Agility can be regarded as a logical consequence of rigorous participation. Giv-
ing control (of the 80%) of system adaptation and evolution directly to the

SCA and jABC: Bringing a Service-Oriented Paradigm 151

application expert eliminates time consuming and expensive multi-party inter-
actions, with the misunderstandings and communication hurdles for the majority
of tasks.

The One-Thing Approach supported by the jABC [25,26] is directly designed
to establish this level of control: the user/application/business-level process re-
mains part of the artifact, which gradually turns into the product along the de-
velopment and which is maintained during the subsequent lifecycle. This allows
the application experts in particular to redesign their processes, control permis-
sions, and add business rules at the application/business process level, with the
immediate consequence of enactment. Thus, essentially, the changes are imple-
mented as soon as they were specified. Of course, more radical changes will still
require IT support, but in our experience they are not as frequent. As before,
the SCA approach can be seen here as a valid support for IT involvement. Thus
it may well accelerate required modifications, but in a more ’classical’ setting.

7 Related Work

Previous work in service oriented architecture research focusses mostly on stan-
dards, languages, and features of SCA [27,28], or on the assembly model (i.e.,
interface definitions) [29]. There is little work on classifying the architectural
patterns or combining them with flexible behavioral semantics.

Among the approaches towards combining service orientation with general-
purpose behavioral descriptions is the SENSORIA project [30] and [31,32]. SEN-
SORIA aims at a comprehensive approach to service-oriented development with
focus on specific problems of loose coupling and heterogeneous environments,
raising issues in security, specification, and communication, at a technical level.
In contrast, we focus on participation, meaning that we directly address and in-
volve the application expert via the ’One-Thing Approach’ [33,25], throughout
the entire lifecycle.

8 Conclusions

Both SCA and jABC are frameworks with substantial practical merit. By em-
phasizing the term “service” within the basic modeling structures, they both
also claim to move forward to a novel, service-oriented, software-development
paradigm. Nevertheless, their notion of service is fundamentally different.

This paper presented a structural, concept oriented, comparison between these
two approaches, focussing on the main characteristics and of service orientation.
We showed that

– TheSCAdevelopmentparadigm is essentially component-oriented,andas such
it treats its extensive infrastructure specification as analogous to a middleware
layer. Therefore it builds on proven software construction methodologieswhich
are established as best practice in industrial software development, and brings
them into the realm of web-based application development.

152 G. Jung et al.

– By elevating the required interface, called service, to be the core modeling
entity, SCA deviates from the standard component-oriented paradigm, which
instead puts the component itself into the center of consideration. It seems
however questionable whether this shift of emphasis alone is sufficient to
warrant the label “service-oriented” development.

– As common to other component-oriented approaches, the operational aspects
of a software system are not captured within SCA models, which concentrate
on their structural aspects. This could become a handicap when addressing
problems as service orchestrations, where SCA can rely on strong capabilities
of the comprehensive infrastructure (i.e., a vast body of specification and
machinery, XML artifacts and ties to all major communication protocols,
maintained by a large community), but still needs hand-tailored solutions to
be supplied for control-flow.

– The jABC methodology on the other hand is entirely operation centered and
it hides topology, location, and connection aspects. It appears as the better
candidate when it comes to transcending the semantic gap, as even control
structures exist as services. While the ties to web-communication protocols
are not an essential part of jABC, they are provided through various plugins
(most eminently through jETI).

– The service concept of jABC is very close to an intuitive understanding of
service (which, e.g., manifests itself in the term “middleware service” and in
various other domains) that requires the service to be ubiquitously accessi-
ble (location-agnostic) and mechanically configurable. In fact it seems that
the lightweight process coordination offers an elegant way to recombine and
enhance common platform services as well as complex web-based business
services. Therefore, jABC is not only applicable to web-development or sim-
ilar tasks, it also offers itself as the semantic underpinning for an operational
modelling inside component-oriented methodologies.

Looking at the intent and main characteristics of service orientation, it became
clear to us that the two dual specification approaches, although being semanti-
cally quite different, are quite similar concerning the first four criteria, namely
loose coupling, virtualization, domain specificity, and scalability. In fact, both
approaches are based here almost on the same means – only applied to frame-
works that aim at covering different perspectives: SCA takes the architectural
perspective, which focusses on a resource view, and jABC a behavioral perspec-
tive, which focusses on a process view.

The real impact of the choice of perspective, however, becomes apparent when
looking at the remaining characteristics, namely participation and agility, and
this essentially for one single reason: Whereas SCA is based on lower level,
infrastructure-oriented modelling and design, which is accessible to typical do-
main experts, jABC puts the (user-level) process in the center of attention. This
directly supports participation, and, due to the One-Thing Approach, it also pro-
vides a new level of agility: the majority of day-to-day change requests can be
resolved directly at the application process level, without even involving IT sup-
port. Put figuratively, the jABC is a framework that support the slogan ”Easy

SCA and jABC: Bringing a Service-Oriented Paradigm 153

for the many, difficult for the few”, in particular by enabling the many, whereas
SCA addresses the few, and supports them in their role of solving difficult tasks.

References

1. Margolis, B., Sharpe, J.L.: SOA for the Business Developer. MC Press (June 2007)
2. The Open SOA Collaboration: SCA web-site,

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
3. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd

edn. ACM Press / Addison-Wesley (2002)
4. Heineman, G., Councill, B.: Component-Based Software Engineering: Putting the

Pieces Together. Addison Wesley, Reading (2001)
5. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-

velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

6. Homepage of the jABC framework, http://www.jabc.de
7. Margaria, T., Steffen, B.: Service engineering: Linking business and IT. IEEE Com-

puter 39(10), 45–55 (2006)
8. Steffen, B., Narayan, P.: Full life-cycle support for end-to-end processes. IEEE

Computer 40(11), 64–73 (2007)
9. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable

system-level approach. STTT - Int. Journ. on Software Tools for Technology Trans-
fer 5(2), 107–123 (2004)

10. Steffen, B., Margaria, T.: METAFrame in practice: Design of Intelligent Network
Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 390–415. Springer, Heidelberg (1999)

11. Steffen, B., Margaria, T., Claßen, A., Braun, V., Reitenspieß, M.: An environment
for the creation of intelligent network services. In: Annual Review of Communica-
tion, Int. Engineering Consortium (IEC), Chicago, USA, pp. 919–935 (November
1996)

12. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: The roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005)

13. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented Mediation with
jABC/jETI. In: Petrie, C., Lausen, H., Zaremba, M., Margaria, T. (eds.) Semantic
Web Services Challenge: Results from the First Year (Semantic Web and Beyond).
Springer, Heidelberg (to appear, 2008)

14. ITU Geneva, Switzerland: Recommendation Q.1211 - General Recommendations
on Telephone Switching and Signaling Intelligent Network: Introduction to Intelli-
gent Network Capability Set 1 (March 1993)

15. Object Management Group: MDA guide version 1.0.1,
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

16. Lamprecht, A.L., Margaria, T., Steffen, B.: Seven variations of an alignment work-
flow – an illustration of agile process design/management in Bio-jETI. In: Măndoiu,
I., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983,
pp. 445–456. Springer, Heidelberg (2008)

http://www.osoa.org/display/Main/Service+Component+Architecture+Home
http://www.jabc.de
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

154 G. Jung et al.

17. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,
R.: Genefisher-p: Variations of genefisher as processes in biojeti. BioMed Central
(BMC) Bioinformatics 2008. In: Supplement dedicated to Network Tools and Ap-
plications in Biology 2007 Workshop (NETTAB 2007), April 25, vol. 9(Suppl. 4),
p. 13 (2008)

18. Nii, H.: Blackboard systems. AI Magazine 7(2), 38–53, 7(3), 82–106 (1986)
19. Object Management Group: OMG formal/06-04-01 (CORBA Component Model

Specification, v4.0) (April 2006)
20. Matena, V., Krishnan, S., DeMichiel, L., Stearns, B.: Applying Enterprise Jav-

aBeans. Addison Wesley, Reading (2003)
21. Shaw, M.: Procedure calls are the assembly language of software interconnection:

Connectors deserve first-class status. In: Lamb, D.A. (ed.) Selected papers from
the Workshop on Studies of Software Design. LNCS, vol. 1078, pp. 17–32. Springer,
Heidelberg (1993)

22. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Ranganath, V.P.: Cadena: An inte-
grated development, analysis, and verification environment for component-based
systems. In: Proc. 25th Int. Conf. on Software Engineering (ICSE 2003), May 2003,
vol. 841, pp. 160–173. IEEE Computer Soceity Press, Los Alamitos (2003)

23. Jörges, S., Margaria, T., Steffen, B.: Genesys: Service-oriented construction of cer-
tified code generators. ISSE – Int. Journal on Innovations in Systems and Software
Engineering – a NASA Journal (to appear)

24. Mesarovic, M., Macko, D., Takahara, Y.: Theory of Hierarchical, Multilevel, Sys-
tems. Mathematics in Science and Engineering, vol. 68. Academic Press, New York
(1970)

25. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing
Approach. In: Handbook of Research on Business Process Modeling, IGI Global
(2008)

26. Margaria, T.: Service is in the eyes of the beholder. IEEE Computer 40(11), 33–37
(2007)

27. Curbera, F.: Component contracts in service-oriented architectures. IEEE Com-
puter 40(11), 74–80 (2007)

28. Zou, Z., Duan, Z.: Building business processes or assembling service components:
Reuse services with bpel4ws and sca. In: ECOWS 2006, Proc. European Conference
on Web Services, pp. 138–147 (2006)

29. Ding, Z., Chen, Z., Liu, J.: A rigorous model of service component architecture.
ENTCS 207, 33–48 (2008)

30. Wirsing, M., Hölzl, M., Acciai, L., Banti, F., et al.: SENSORIA patterns: Aug-
menting service engineering with formal analysis, transformation and dynamicity.
In: ISoLA 2008. CCIS, vol. 17, pp. 170–190. Springer, Heidelberg (This Volume)
(2008)

31. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic Semantics of Service Component
Modules. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 37–55. Springer, Heidelberg (2007)

32. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component Ar-
chitecture. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 193–213. Springer, Heidelberg (2006)

33. Hörmann, M., Margaria, T., Mender, T., Nagel, R., Steffen, B., Trinh, H.: The
jabc approach to rigorous collaborative development of scm applications. In: ISoLA
2008. CCIS, vol. 17, pp. 724–737. Springer, Heidelberg (This Volume) (2008)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 155–169, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Use-Case Driven Approach to
Formal Service-Oriented Modelling*

Laura Bocchi1, José Luiz Fiadeiro1, and Antónia Lopes2

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK
{bocchi,jose}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749-016 Lisboa, Portugal

mal@di.fc.ul.pt

Abstract. We put forward a use-case based approach for SRML – a formal
framework that is being defined by the SENSORIA consortium for service-
oriented modelling. We expand on the way SRML contributes to the engineer-
ing of software systems and we propose a number of extensions to the UML for
supporting that approach. We use a mortgage brokerage scenario for illustrating
our approach.

1 Introduction

This paper is about a new way of developing software, which we believe requires that
we revisit the methods and techniques that software engineers have been using so far.
This new approach is based on Service-Oriented Computing (SOC) over Global
Computers (GC).

We view SOC as a new computing paradigm in which interactions are no longer
based on fixed or programmed exchanges of products with specific parties – what is
known as clientship in object-oriented programming – but on the provisioning of
services by external providers that are procured on the fly subject to a negotiation of
service level agreements (SLAs). More precisely, the processes of discovery and
selection of services as required by an application are not programmed (at design
time) but performed by the middleware according to functional and non-functional
requirements (SLAs). The process of binding the client application and the selected
service is not performed by skilled software developers, but also at run time, by the
middleware. Because the set of available services changes as providers update their
portfolios, and that service-level agreements may involve context-dependent condi-
tions, different instances of the same application may bind to different services and
operate according to different SLAs resulting from different negotiations.

Having said this, one has to recognise that these capabilities of SOC as a paradigm
are not always fully exploited by current Web/Grid-based technologies. One of the

* This work was partially supported through the IST-2005-16004 Integrated Project SENSO-

RIA: Software Engineering for Service-Oriented Overlay Computers.

156 L. Bocchi, J.L. Fiadeiro, and A. Lopes

aims of the SENSORIA project [17] is to provide a framework in which the promise
of SOC can be captured and used for evolving existing software technologies and
engineering methodology. In this context, several formal languages and techniques
are being developed that address different aspect or phases of the envisaged develop-
ment process. Among these is SRML – the SENSORIA Reference Modelling Lan-
guage – aimed at supporting the more abstract levels of design specification, what we
call ‘business modelling’. Modelling in SRML is independent of the languages in
which services are programmed and the platforms in which they are deployed.

SRML provides a minimalistic textual language that has been devised in order to
facilitate the definition of a mathematical semantics for its constructs and the whole
process of service discovery and binding [1,10]. In this paper, we focus mainly on
methodological aspects, namely on a process that can be followed to arrive at (formal)
service models in SRML starting from informal (or semi-formal) specifications in
notations that are typical of the UML, including use-case diagrams to capture re-
quirements. The paper proceeds as follows. In Section 2, we provide an overview of
the engineering ‘architecture’ and processes that we see supporting SOC in GC. In
Section 3, we provide a brief overview of SRML. In Section 4, we investigate use
cases as a means of deriving the structure of SRML modules. In Section 5, we con-
sider the use of statecharts for the definition of the orchestration of services. As a
running example, we will use a mortgage brokerage service.

2 Service-Overlay Computers

Following the Global Computing EU initiative [12], ‘global computers’ are “compu-
tational infrastructures available globally and able to provide uniform services with
variable guarantees for communication, co-operation and mobility, resource usage,
security policies and mechanisms”. The notion of ‘service-overlay computer’ ex-
plored by SENSORIA addresses precisely the development of highly distributed
loosely coupled applications that can exploit services that are globally available.

In this setting, there is a need to rethink the way we engineer software applications,
moving from the typical ‘static’ scenario in which components are assembled to build
a (more or less complex) system that is delivered to a customer, to a more ‘dynamic’
scenario in which (smaller) applications are developed to run on such global com-
puters and respond to business needs by interacting with services and resources that
are globally available. In this latter setting, there is much more scope for flexibility in
the way business is supported: business processes can be viewed globally as emerging
from a varying collection of loosely coupled applications that can take advantage of
the availability of services procured on the fly when they are needed.

The notion of ‘system’ itself, as it applies to software, also needs to be revised. If
we take one of the accepted meanings of ‘system’ – a combination of related elements
organised into a complex whole – we can see why it is not directly applicable to
SOC/GC: services get combined at run time and redefine the way they are organised
as they execute; no ‘whole’ is given a priori and services do not compute within a
fixed configuration of a ‘universe’. In a sense, we are seeing reflected in software
engineering the trend for ‘globalisation’ that is now driving the economy.

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 157

SOC brings to the front many aspects that have already been discussed about com-
ponent-based development (CBD) [8]. Given that different people have different per-
ceptions of what SOC and CBD are, we will simply say that, in this paper, we will take
CBD to be associated with what we called the ‘static’ engineering approach. For in-
stance, starting from a universe of (software) components as ‘structural entities’, Broy
et al view a service as a way of orchestrating interactions among a subset of compo-
nents in order to obtain some required functionality – “services coordinate the interplay
of components to accomplish specific tasks” [6]. As an example, we can imagine that a
bank will have available a collection of software components that implement core
functionalities such as computing interests or charging commissions, which can be
used in different products such as savings or loans.

SOC differs from this view in that there is no such fixed system of components that
services are programmed to draw from but, rather, an evolving universe of software
applications that service providers publish so that they can be discovered by (and
bound to) business activities as they execute. For instance, if documents need to be
exchanged as part of a loan application, the bank may rely on an external courier
service instead of imposing a fixed one. In this case, a courier service would be dis-
covered for each loan application that is processed, possibly taking into account the
address to which the documents need to be sent, speed of delivery, reliability, and so
on. However, the added flexibility provided through SOC comes at a price – dynamic
interactions impose the overhead of selecting the co-party at each invocation – which
means that the choice between invoking a service and calling a component is a deci-
sion that needs to be taken according to given business goals. This is why SRML
makes provision for both SOC and CBD types of interaction (through requires and
uses interfaces as discussed in the next section).

To summarise, the impact that we see (and explore) SOC to have on software
engineering methodology stems from the fact that applications are built without
knowing who will provide services that may be required, and that the discovery and
selection of such services is performed, on the fly, by dedicated middleware compo-
nents. This means that application developers cannot rely on the fact that someone
will implement the services that may be required so as to satisfy their requirements.
Therefore, service-oriented ‘clientship’ needs to be based on shared ontologies of data
and service provision. Likewise, service development is not the same as developing
software applications to a costumer’s set of requirements: it is a separate business
that, again, has to rely on shared ontologies of data and service provision so that pro-
viders can see the services that they provide discovered and selected.

This view is summarised in Figure 1, where:

• Activities correspond to applications developed according to requirements pro-
vided by a business organisation, e.g. the applications that, in a bank, imple-
ment the financial products that are made available to the public. The activity
repository provides a means for a run-time engine to trigger such applications
when the corresponding requests are published, say when a client of the bank
requests a loan at a counter or through on-line banking. Activities may be im-
plemented over given components (for instance, a component for computing
and charging interests) in a traditional CBD way, but they can also rely on ser-
vices that will be procured on the fly using SOC (for instance, an insurance for
protecting the customer in case he/she is temporarily prevented from re-paying

158 L. Bocchi, J.L. Fiadeiro, and A. Lopes

the loan due to illness or job loss). Activities are typed by activity modules. As
discussed in Section 3, these identify the components that activities need to be
bound to when they are launched and the services (types) that they may require
as they execute. Modules also include a specification of the workflow that or-
chestrates the interactions among all the parties involved in the activity.

Current configuration
(software components and interaction protocols that

interconnect them [18])

Triggers Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

PublicationApplication

development

Ontology
(data and service

descriptions)

Configuration Management

Service repositoryActivity repository

Fig. 1. Overall ‘engineering’ architecture and processes

• Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service re-
positories) in ways that allow them to be discovered when a request for an exter-
nal service is published in the run-time environment. As such, they are classified
according to generic service descriptions – what in the next section we call
‘business protocols’ – that are organised in a hierarchical ontology to facilitate
discovery. Services are typed by ‘service modules’, which, like activity modules,
identify the components and additional services that may be required together
with a specification of the workflow that orchestrates the interactions among
them so as to deliver the properties declared in the service description – its

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 159

‘provides-interface’. Modules also specify ‘service-level agreements’ that need
to be negotiated during matchmaking and selection.

• The configuration management unit is responsible for the binding of the new
components and connectors that derive from the instantiation of new activities
or services. A formal model of this unit can be found in [11].

• The ontology unit is responsible for organising both data and service descrip-
tions. In this paper, we do not discuss the classification and retrieval mecha-
nisms per se. See, for instance, [14,16] for some of the aspects involved when
addressing such issues. Notice that the ‘business IT teams’ and the ‘service
providers’ can be totally independent and unrelated: the former are interested
in supporting the business of their companies or organisations, whereas the lat-
ter run their own businesses. They share the ontology component of the archi-
tecture so that they can do business together.

3 The SENSORIA Reference Modelling Language

In this section, we provide an overview of SRML focusing on the concepts needed to
understand the rationale for the use-case-based approach that is proposed in Section 4.
The main modelling primitive offered by SRML is called a module, with two speciali-
sations – activity and service modules – in the sense discussed in Section 2.

A module M consists of:

• A graph graph(M), i.e. a set nodes(M) of nodes and a set edges(M) of M where
each edge e is associated with two nodes – e:n↔m. Edges are also called
‘wire interfaces’.

• A distinguished subset of nodes requires(M)⊆nodes(M), called ‘requires-
interfaces’.

• A distinguished subset of nodes uses(M)⊆nodes(M), called ‘uses-interfaces’.
• In the case of service modules, a node provides(M)∈ nodes(M) distinct from

requires(M) and uses(M), called the ‘provides-interface’.
• In the case of activity modules, a node serves(M)∈ nodes(M) distinct from re-

quires(M) and uses(M), called the ‘serves-interface’.
• We denote by components(M) the set of nodes(M) that are not in provides(M)

or serves(M), nor in requires(M) or uses(M) – these are called ‘component in-
terfaces’.

• A labelling function labelM that assigns
o A ‘business role’ to every n∈components(M)
o A ‘business protocol’ to every n∈provides(M)∪requires(M)
o A ‘layer protocol’ to every n∈serves(M)∪uses(M)
o A connector <μA,P,μB> to every edge (e:n↔m) where P is an ‘interac-

tion protocol’ with two ‘roles’ roleAP and roleBP, and μA (resp. μB) is an
attachment between roleAP and labelM(n) (resp. roleBP and labelM(m)).

• An internal configuration policy (indicated by the symbol) consisting of
o For every node n∈requires(M), a condition trigger(n) that identifies the

trigger of the external service discovery process.

160 L. Bocchi, J.L. Fiadeiro, and A. Lopes

o For n∈components(M), two boolean functions init(n) and term(n) that de-
termine initialisation and termination conditions, respectively.

• An external configuration policy (indicated by) consisting of:

o A constraint system cs(M) based on a fixed c-semiring [4].
o A set sla(M) of constraints over cs(M).
o For every variable in cs(M), a type.
o A partial assignment owner of either a node or an edge of M to the vari-

ables of cs(M).

Variables and constraints in cs(M) determine the quality profile to which the discov-
ered services need to adhere. A precise account can be found in [11].

The formalisms used in SRML for defining business roles, business protocols,
layer protocols and interaction protocols are discussed in [2,9]: business roles are
(declarative) specifications of state transition systems in terms of state variables, trig-
gers, guards, and publication of events; business protocols consist of temporal logic
sentences (we are using a version of UCTL [3]) that specify properties of the (service-
oriented) conversations held with external parties; interaction protocols are specifica-
tions of the way wires coordinate interactions between parties; layer protocols specify
properties of the (component-based) interactions held with persistent components and
top-level users.

An activity module (ACT), depicted using the diagrammatic notation adopted in
SRML, is shown in Figure 2:

• The serves-interface (at the top-end of the module) identifies the
interactions that should be maintained between the activity and
the rest of the system in which it will operate.

• Uses-interfaces (at the bottom-end of the module) are defined for
those (persistent) components of the underlying configuration
that the activity will need to interact with once instantiated. The
corresponding layer protocols identify the views of those compo-
nents that the activity will need to see supported, i.e. the behaviour required of
the actual interfaces that need to be set up for the activity to interact with com-
ponents that correspond to (persistent) business entities.

• Requires-interfaces (on the right of the module) are defined (in
association with the configuration policies) for services that the
activity will have to procure from external providers if and
when needed. Typically, these reflect the structure of the business domain it-
self in the sense that they reflect the existence of business services provided
outside the scope of the local context in which the activity will operate.

• Component and wire interfaces (inside the module)
should be defined for orchestrating all these entities
(actors) in ways that will deliver stated user re-
quirements through the serves-interface. The actual
choice of the component interfaces and corresponding
business roles may also reflect the existence of pre-
defined patterns of orchestration that are available to

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 161

the designers or reflect business components that will be created in support of
the activity.

• The choice of the internal architecture of the module (components and wires)
should also reflect the nature of the communication and distribution network
over which the activity will run.

Fig. 2. Diagrammatic notation for activity (top) and service (bottom) modules

In the case of a service module, a similar diagrammatic notation is used except that
a provides-interface is used instead of a server-interface, as shown at the bottom of
Figure 2 (module SER). In this case:

• The provides-interface should be chosen from the hierarchy of
standard business protocols because the purpose here is to make
the service available to the wider market, not to a specific client.

• Some of the component interfaces will correspond to standard components that
are part of the provider’s portfolio. For instance, these may be application
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises.

• Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

162 L. Bocchi, J.L. Fiadeiro, and A. Lopes

4 From Use-Case Diagrams to SRML

In this section, we propose an extension of use-case diagrams for service-oriented
applications and discuss how to use these diagrams to obtain the skeleton of SRML
modules. In order to illustrate our proposal, we will use a fragment of a financial case
study. We consider the case of a financial services organisation that wants to develop
a mortgage brokerage service GetLoan capable of binding a customer activity with a
number of components with which it needs to interact to get a mortgage. This service
involves the following steps: (1) proposing the best mortgage deal to the customer
that invoked the service; (2) taking out the loan if the customer accepts the proposal;
(3) opening a bank account associated with the loan if the lender does not provide
one; and (4) getting insurance if required by either the customer or the lender.

The selection of lenders needs to be restricted to firms that are considered reliable.
For this reason, we consider an UpdateRegistry activity supporting the management
of a registry of reliable lenders. This activity relies on an external certification author-
ity that may vary according to the identity of the lender. Reporting to Figure 1, notice
that while the aim is to publish GetLoan in a service repository for being discovered
and invoked by other services, the UpdateRegistry activity is driven by the require-
ments of the financial services organisation itself – it will be stored in an activity
repository and will be invoked by internal applications (e.g., a web interface).

4.1 Use-Case Diagrams for Service-Oriented Applications

Traditionally, use-case diagrams are used for providing an overview of usage re-
quirements for a system that needs to be built. As discussed in Section 2, our aim is to
address a novel development process that does not aim at the construction of a ‘sys-
tem’ but, rather, of two kinds of software applications – services and activities – that
can be bound to other software components either statically (in a component-based
way) or dynamically (in a service-oriented way).

The methodological implications of this view are twofold. On the one hand, ser-
vices and activities have the particularity that each has a single usage requirement.
Hence, they can be perceived as use cases. On the other hand, from a business point
of view, the services and activities to be developed by an organisation constitute logi-
cal units. For instance, in our example, the UpdateRegistry activity and the GetLoan
service can be seen to operate as part of a same business unit and, hence, it makes
sense to group them together in the same use-case diagram. That is, use-case diagrams
may become useful to structure usage requirements of units of business logic.

In order to reflect these methodological implications in the usage of use cases, we
propose a number of extensions to the standard notation. Figure 3 illustrates our pro-
posal using the mortgage example: the diagram represents a business logical unit with
the two use cases identified before. The rectangle around the use cases, which in tra-
ditional use-case diagrams indicates the boundary of the system at hand, is used to
indicate the scope of the business unit. Anything within the box represents functional-
ity that is in scope and anything outside the box is considered not to be in scope.

For the UpdateRegistry service, the primary actor is Registry Manager; its goal is
to control the way a registry of trusted lenders is updated. The registry itself is re-
garded as a supporting actor. The Certification Authority on which UpdateRegistry

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 163

relies is also considered a supporting actor in the use case because it is an external
service that needs to be discovered based on the nature of each candidate lender.

In the GetLoan activity, the primary actor is a Customer that wants to obtain a
mortgage. The use case has four supporting actors: Lender, Bank, Insurance and Reg-
istry. The Lender represents the bank or building society that lends the money to the
customer. Because only reliable firms can be considered for the selection of the
lender, the use case involves communication with Registry. When the lender does not
provide a bank account, the use case involves an external Bank for opening of a new
account. Similarly, the use case involves interaction with an Insurance provider for
cases where the lender requires insurance or the customer decides to get one.

Fig. 3. Service-oriented use-case diagram for Mortgage Finder

As happens in traditional use cases, we view an actor as any entity that is external
to the business unit and interacts with at least one of its elements in order to perform a
task. As motivated above, we can distinguish between different kinds of actors, which
led us to customise the traditional icons as depicted in Figure 3. These allow us to
discriminate between user/requester and resource/service actors.

164 L. Bocchi, J.L. Fiadeiro, and A. Lopes

User-actors and requester-actors are similar to primary actors in traditional use-
case diagrams in the sense that they represent entities that initiate the use case and
whose goals are fulfilled through the successful completion of the use case. The dif-
ference between them is that a user-actor is a role played by an entity belonging to
the business organisation that operates the activity triggered by the entity, while a
requester-actor is a role played by any entity (usually belonging to a different busi-
ness organisation) that triggers the discovery of (and binds to) the service.

For instance, the user-actor Registry Manager represents an interface for an em-
ployee of the business organisation that is running Mortgage Finder whereas the
requester-actor Customer represents an interface for a service requester that can come
from any external organisation. A requester-actor can be regarded as an interface to an
abstract user of the functionality that is exposed as a service; it represents the range of
potential customers of the service and the requirements typically derive from standard
service descriptions stored in service repositories such as the UDDI. In SRML, and
reporting to Figure 1, these descriptions are given by business protocols and organised
in a shared ontology, which facilitates and makes the discovery of business partners
more effective. The identification of requester-actors may take advantage of existing
descriptions in the ontology or it may identify new business opportunities. In this
case, the ontology would be extended with new business protocols corresponding to
the new types of service.

Resource-actors and service-actors of a use case are similar to supporting actors in
traditional use-case diagrams in the sense that they represent entities to rely on in
order to achieve the underlying business goal. The difference is that a service-actor
represents an outsourced functionality to be procured on the fly and, hence, will typi-
cally vary from instance to instance, whereas a resource-actor is an entity that is stati-
cally bound and, hence, is the same for all instances of the use case. Resource-actors
are typically persistent sources/repositories of information. In general, they are com-
ponents already available to be shared within a business organisation.

The user- and resource-actors, which we represent on the top and bottom of our
specialised use-case diagrams, respectively, correspond in fact to the actors that are
presented on the left and right-hand side in traditional use-case diagrams, respec-
tively. In contrast, the ‘horizontal dimension’ of the new diagrams, comprising re-
quester- and service-actors, captures the types of interactions that are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact and that
the association between a primary actor and a use case represents an instantia-
tion/invocation. For this reason, in this context, we constrain every use case to be asso-
ciated with only one primary actor (either a requester or a user).

4.2 Deriving the Structure of SRML Modules

The proposed specialisations of use-case diagrams allow us to derive a number of
aspects of the structure of SRML modules. Each use case, representing either a service
or an activity, is naturally modelled as either a SRML service module or activity mod-
ule, respectively. The actors associated with a use case identify the interfaces used in
the module. It is straightforward to model each actor type with a specific type of inter-
face of the SRML module. Each user-actor, which represents the interface to the user
that triggers the instantiation of an activity, is modelled as a SRML serves-interface.

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 165

Each requester-actor, which represents the interface to the entity that invokes a service,
is modelled as a SRML provides-interface. Similarly, service-actors are modelled as
requires-interfaces and resource-actors as serves-interfaces. Figure 4 presents the struc-
ture of the modules derived from the use-case diagram in Figure 3.

The definition of the internal structure of the module (i.e., the components and
wires that define the internal workflow) may depend on the portfolio of components
already available for reuse within the business organisation. In our case study, the
orchestration of the modules relies on a single component. The definition of a com-
plex internal structure from scratch, deriving from the decomposition of the orchestra-
tion in a number of coordinated units, can be done using traditional techniques for
CBD. We leave this topic for further investigation and discussion.

Fig. 4. The SRML modules for the service GetLoan and the activity UpdateRegistry

5 Using Statecharts for SRML Orchestration

Section 4.2 describes how to derive the structure of SRML modules corresponding to
use cases. In this section, we discuss how in SRML we model the internal behaviour of
a module in terms of a (possibly distributed) orchestration of a number of interactions
among the identified partners. For this purpose, we adapt UML statechart diagrams to
operate with the interaction primitives that are available in SRML.

166 L. Bocchi, J.L. Fiadeiro, and A. Lopes

We illustrate the method considering the orchestration of the SRML module Get-
Loan. Initially, the customer sends his/her profile and preferences for the mortgage. If
the customer accepts the proposal, and depending on the services provided by the
lender, some additional activities may be performed separately: opening a bank ac-
count and buying insurance. The workflow terminates when the customer rejects the
proposal or the deal is signed off.

Fig. 5. Statechart diagram for GetLoan

Figure 5 presents the statechart corresponding to the orchestration of GetLoan. The
labels of the transitions (triggers and effects) use the language of interaction events
that is provided by SRML. SRML supports asynchronous one-way (receive and send)
and conversational (send&receive and receive&send) interactions. A conversational
interaction may involve a number of possible steps, which we call interaction events:
the initiation of the interaction (e.g., getProposal), the reply event (e.g., getPro-
posal) sent by the co-partner, the confirmation and cancellation events (e.g., get-
Proposal and getProposal), and a revoke event (e.g., getProposal) that triggers a
compensation process. A one-way interaction is associated with only one event. The
language and semantics of this language is discussed in [1,2].

Such a statechart defines what in Section 3 we called a ‘business role’, i.e. the type of
orchestration that every instantiation of the service will implement to coordinate the
interactions among the parties involved in the provision of the service. SRML also offers
a textual notation for business roles that consists of a declaration of the interactions in
which the components can be involved and a specification of the state parameters and
state transitions of the orchestration process.

Figure 6 presents the interactions supported by WorkFlow, the specification of the
component WF of the module GetLoan.

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 167

BUSINESS ROLE WorkFlow is

INTERACTIONS

r&s getProposal
idData:usrdata
income:moneyvalue
partnerIncome:moneyvalue
preferences:prefdata
proposal:mortgageproposal

s&r askProposal
idData:usrdata
income:moneyvalue
partnerIncome:moneyvalue

 proposal:mortgageproposal
s&r processLoan

proposal:mortgageproposal
loanData:loandatatype
accountIncluded:bool
insuranceRequired:bool

s&r getInsurance
idData:usrdata
loanData:loaddatatype
insuranceData:insurancedatatype

s&r openAccount
idData:usrdata
loanData:loaddatatype
accountData:accountdatatype

s&r signOutLoan
loanData:loandatatype
insuranceData:insurancedatatype
accountData:accountdatatype
contract:loancontract

snd confirmation
contract:loancontract

Fig. 6. Interactions supported by WF in the SRML module GetLoan

Each transition in a business role is defined by: a trigger, typically the occurrence
of an event, a guard enabling the transition, the effects over the local state and the
events that are published with the corresponding parameter assignments. An extract of
the transitions resulting from the statechart of GetLoan are presented in Figure 7.

An advantage of using the (formal) specification language of business roles over
statecharts is that it supports underspecification (logical formulas are used for specify-
ing effects and publication of events) and a refinement process that allows designers
to start with loose requirements over states and transitions and add detail as more
knowledge is gathered about the required behaviour. Another advantage is that is
provides us a formal framework to which we can map specifications in other notations
such as the ones available in workflow languages like BPEL [5]. More details and
examples can be found in [9].

ORCHESTRATION
local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION, PROPOSAL_ACCEPTED,
 PROCESSING, READY2SIGN, SIGN, FINAL], needAccount,needInsurance:bool
transition GetClientRequest

triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL
sends askProposal

 askProposal.idData=getProposal.idData
 askProposal.income=getProposal.income
 askProposal.partnerIncome=getProposal.partnerIncome

transition GetLenderProposal
triggeredBy askProposal
guardedBy s= WAIT_PROPOSAL
effects s’= WAIT_DECISION
sends getProposal

 getProposal.proposal=askProposal.proposal

Fig. 7. Fragment of Workflow in the SRML module GetLoan

6 Concluding Remarks and Further Work

We presented an approach for modelling service-oriented application based on (1) use-
case diagrams and statecharts in order to capture requirements on units of business
logic structured in terms of services and activities, and (2) the SENSORIA Reference

168 L. Bocchi, J.L. Fiadeiro, and A. Lopes

Modelling Language (SRML) to derive formal models of those services and activities.
We proposed an extension of use-case diagrams in order to identify the relevant ser-
vices and activities, and derive the structure of a SRML model for each of them. We
also proposed a customisation of statechart diagrams in order to model the behaviour
of the business processes executed by activities and services in terms of the basic inter-
action primitives available in SRML.

SENSORIA is also producing a more global approach to modelling service orches-
trations in UML2 – called UML4SOA – and utilising these models for code generation
(including BPEL code) [14,19]. This approach favours the use of activity diagrams.
Our choice for statecharts reflects the way we organise the behaviour of each module
in terms of (internal and external) partners: the idea is that the behaviour of each part-
ner can eventually be described by one or more statecharts, and that the behaviour of
the activity/service emerges from the concurrent execution of these statecharts. This is
also the view that is supporting analysis through the use of model-checking techniques
[3,13]. This is on-going joint research between Leicester and ISTI (Pisa).

The overall methodology that we have in mind for developing software for global
computers was also discussed and illustrated through (a much simplified version of)
the financial case study being investigated in SENSORIA, namely the aspects that
relate to a mortgage brokering service and registry activity. A novel aspect of SRML
is the separation that it provides for services in the sense of component-based devel-
opment (CBD) and service-oriented computing (SOC). This separation is reflected in
the use of different kinds of actors in the proposed extension of use-case diagrams and
different modelling primitives in SRML.

The specific formal support that is available in SRML was deliberately omitted be-
cause of lack of space but it can be found in a number of publications [e.g. 1,2,9,10,11].
This includes a computational model and associated logic through which we can reason
about the properties of provided services using model-checking techniques [13], and
also a formalism for service-level agreements [7]. However, the integrated use of these
techniques within the overall methodology is still being investigated, including the
support for the classification of service descriptions within an ontology that can support
dynamic discovery. We are also investigating how the decomposition of use-cases using
<<include>>/<<extend>> relationships, usually used to indicate potential reuse, can
suggest better ways of structuring the orchestration of services and activities, as well as
facilitate the checking of the properties of SRML modules.

Acknowledgments

We would like to thank our colleagues in the SENSORIA project for many useful
discussions on the topics covered in this paper, especially Reiko Heckel for his in-
sights and suggestions on use cases. We are also indebted to Colin Gilmore from Box
Tree Mortgage Solutions (Leicester) for taking us through the mortgage business.

References

1. Abreu, J., Fiadeiro, J.: A coordination model for service-oriented interactions. In: Lea, D.,
Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 1–16. Springer, Hei-
delberg (2008)

 A Use-Case Driven Approach to Formal Service-Oriented Modelling 169

2. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interaction pro-
tocols for service-oriented system modelling. In: Derrick, J., Vain, J. (eds.) FORTE 2007.
LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007)

3. ter Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model checking
approach for the analysis of communication protocols for Service-Oriented Applications.
In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–148. Springer,
Heidelberg (2008)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimi-
zation. Journal of the ACM 44(2), 201–236 (1997)

5. Bocchi, L., Hong, Y., Lopes, A., Fiadeiro, J.: From BPEL to SRML: a formal transforma-
tional approach. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 92–
107. Springer, Heidelberg (2008)

6. Broy, M., Krüger, I., Meisinger, M.: A formal model of services. ACM TOSEM 16(1), 1–
40 (2007)

7. Buscemi, M., Montanari, U.: CC-Pi: A constraint-based language for specifying service
level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

8. Elfatatry, A.: Dealing with change: components versus services. Communications of the
ACM 50(8), 35–39 (2007)

9. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented architecture.
In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 193–
213. Springer, Heidelberg (2006)

10. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component modules.
In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 37–55.
Springer, Heidelberg (2007)

11. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Semantics of Service-Oriented System Configuration
(submitted, 2008), http://www.cs.le.ac.uk/jfiadeiro

12. Global Computing Initiative, http://cordis.europa.eu/ist/fet/gc.htm
13. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state ma-

chines. In: ACIS International Conference on Software Engineering Research, Manage-
ment and Applications, pp. 331–338 (2004)

14. Mayer, P., Koch, N., Schröder, A.: A Model-Driven Approach to Service Orchestration.
In: Proceedings of IEEE International Conference on Services Computing (SCC 2008).
IEEE Press, Los Alamitos (in print, 2008)

15. Pahl, K.: An ontology for software component matching. International Journal on Software
Tools and Technology Transfer 9, 169–178 (2007)

16. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J.,
Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg
(2005)

17. SENSORIA consortium, White paper (2007), http://www.sensoria-ist.eu/
files/whitePaper.pdf

18. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, London (1996)

19. Wirsing, M., Clark, A., Gilmore, A., Hölzl, M., Knapp, A., Koch, N., Schröder, A.: Se-
mantic-based development of service-oriented systems. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Hei-
delberg (2006)

SENSORIA Patterns: Augmenting Service Engineering
with Formal Analysis, Transformation and Dynamicity�

Martin Wirsing1, Matthias Hölzl1, Lucia Acciai2, Federico Banti2, Allan Clark3,
Alessandro Fantechi2, Stephen Gilmore3, Stefania Gnesi4, László Gönczy5,

Nora Koch1, Alessandro Lapadula2, Philip Mayer1, Franco Mazzanti4,
Rosario Pugliese2, Andreas Schroeder1, Francesco Tiezzi2, Mirco Tribastone3,

and Dániel Varró5

1 Ludwig-Maximilians-Universität München, Germany
2 Università degli Studi di Firenze

3 University of Edinburgh, Scotland
4 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” of CNR

5 Budapest University of Technology and Economics

Abstract. The IST-FET Integrated Project SENSORIA is developing a novel
comprehensive approach to the engineering of service-oriented software sys-
tems where foundational theories, techniques and methods are fully integrated
into pragmatic software engineering processes. The techniques and tools of
SENSORIA encompass the whole software development cycle, from business and
architectural design, to quantitative and qualitative analysis of system proper-
ties, and to transformation and code generation. The SENSORIA approach takes
also into account reconfiguration of service-oriented architectures (SOAs) and
re-engineering of legacy systems.

In this paper we give first a short overview of SENSORIA and then present a
pattern language for augmenting service engineering with formal analysis, trans-
formation and dynamicity. The patterns are designed to help software developers
choose appropriate tools and techniques to develop service-oriented systems with
support from formal methods. They support the whole development process, from
the modelling stage to deployment activities and give an overview of many of the
research areas pursued in the SENSORIA project.

1 Introduction

Service-oriented computing is a paradigm where services are understood as autonomous,
platform-independent computational entities that can be described, published, cate-
gorised, discovered, and dynamically assembled for developing massively distributed,
interoperable, evolvable systems and applications. These characteristics have been re-
sponsible for the widespread success that service-oriented computing enjoys nowadays:
many large companies invest efforts and resources in promoting service delivery on a
variety of computing platforms, mostly through the Internet in the form of Web services.
Soon there will be a plethora of new services as required for e-government, e-business,
and e-science, and other areas within the rapidly evolving Information Society.

� This work has been partially sponsored by the project SENSORIA, IST-2 005-016004.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 170–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 171

However, service-oriented computing and development today is mostly done in a
non-systematic, ad-hoc way. Full-fledged theoretical foundations are missing, but they
are badly needed for trusted interoperability, predictable compositionality, and for guar-
anteeing security, correctness, and appropriate resource usage.

The IST-FET Integrated Project SENSORIA addresses the problems of service-
oriented computing by building, from first-principles, novel theories, methods and tools
supporting the engineering of software systems for service-oriented overlay computers.
Its aim is to develop a novel comprehensive approach to the engineering of service-
oriented software systems where foundational theories, techniques and methods are
fully integrated into pragmatic software engineering processes. The SENSORIA ap-
proach to service-oriented software development encompasses the whole development
process, from systems in high-level languages, to deployment and re-engineering, with
a particular focus on qualitative and quantitative analysis techniques, and automatic
transformation between different development artifacts.

However, the broad range and the depth of the methods developed as part of the
SENSORIA project means that it may be difficult for developers to identify the tech-
nique or tool that solves a particular problem arising in the development process, unless
the developers are familiar with the whole range of scientific results of the project. To
ameliorate this problem we are developing a catalogue of patterns that can serve as
an index to our results and that illustrates, in a concise manner, the advantages and
disadvantages of the individual techniques.

The structure of the paper is as follows: after a short overview of the SENSORIA

project we explain the reasons for using patterns to present the SENSORIA results. Pat-
terns are referenced in the usual format, with the pattern name followed by the page
number of the pattern in parenthesis, e.g., Service Modelling describes the pattern
named “Service Modelling” on page 175.

We then introduce several patterns ranging from the early design stage to deployment:
Service Modelling, Service Specification and Analysis, Functional Service Verification,
Sensitivity Analysis, Scalability Analysis, Declarative Orchestration, Declarative Ser-
vice Selection, and Model-Driven Deployment. The last section summarises other results
of the SENSORIA project and concludes.

2 The SENSORIA Project

SENSORIA is one of the three Integrated Projects of the Global Computing Initiative of
FET-IST, the Future and Emerging Technologies action of the European Commission.
The SENSORIA Consortium consists of 12 universities, three research institutes and
four companies (two SMEs) from seven countries1.

1 LMU München (coordinator), Germany; TU Denmark at Lyngby, Denmark; Cirquent GmbH
München, S&N AG, Paderborn (both Germany); Budapest University of Technology and Eco-
nomics, Hungary; Università di Bologna, Università di Firenze, Università di Pisa, Università
di Trento, ISTI Pisa, Telecom Italia Lab Torino, School of Management Politecnico di Milano
(all Italy); Warsaw University, Poland; ATX Software SA, Lisboa, Universidade de Lisboa
(both Portugal); Imperial College London, University College London, University of Edin-
burgh, University of Leicester (all United Kingdom).

172 M. Wirsing et al.

Fig. 1. SENSORIA approach: high-level models in UML4SOA are transformed into mathemat-
ical models based on the foundational calculi; qualitative and quantitative analsys can then be
performed on these models

2.1 The SENSORIA Approach

SENSORIA is focusing on global services that are context adaptive, personalisable, and
may require hard and soft constraints on resources and performance, and takes into
account the fact that services have to be deployed on different, possibly interoperating,
platforms, to provide novel and reusable service-oriented systems.

To this end, SENSORIA is generalising the concept of service in such a way that

– it is independent from the particular global computer and from any programming
language;

– it can be described in a modular way, so that security issues, quality of service
measures and behavioural guarantees are preserved under composition of services;

– it supports dynamic, ad-hoc, “just-in-time” composition;
– it can be made part of an integrated service-oriented approach to business mod-

elling.

The results of SENSORIA include a comprehensive service ontology, and modelling
languages for service-oriented systems based on UML [32] and SCA [21,40]. We
have also defined a number of process calculi for service-oriented computing, such as
SCC [6], a session-oriented general purpose calculus for service description; Sock [26],
a three layered calculus inspired by the Web Services protocol stack; and COWS [30],
the Calculus for the Orchestration of Web Services.

These foundational process calculi serve as a base for higher-level formalisms to
specify and analyse service-oriented systems, such as process calculi and languages for
coordination, quality of service and service-level agreements [10,13], or type systems
for services, e.g., for data exchange [31] or resource usage [3].

SENSORIA is also addressing the important areas of languages, frameworks, tools and
techniques for qualitative and quantitative analysis. Qualitative analysis methods are suc-
cessfully applied, e.g., to the areas of cryptography, security and trust [4,35,37], whereas

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 173

Fig. 2. SENSORIA tools, see [39] for the current list

calculi, logics and methods for quantitative analysis such as StoKlaim [16], MoSL [15],
and PEPA [27] can be used in areas such as scalability or performance analysis [7].

Further work of SENSORIA concerns service contracts for checking the compliance
of protocols and for automatic discovery and composition [8,9], new techniques for
specifying and verifying the dynamic behaviour of services, including spatial logics
and the verification of fault-tolerant systems [11,25], and programming- and modelling-
level approaches to software architectures [22].

Moreover, SENSORIA is proposing a model-driven approach for service-oriented
software engineering [41,32] that starts from high-level specifications in languages like
SRML or UML4SOA and uses model transformation techniques [17,2] to generate both
suitable input for the analysis tools, and executable services.

The development of mathematical foundations and mathematically well-founded en-
gineering techniques for service-oriented computing constitutes a main research part of
SENSORIA. Another important research direction focuses on making these foundations
available for designers and developers by creating systematic and scientifically well-
founded methods of service-oriented software development (cf. Fig. 1). The proposed
approach is to build high-level models, e.g., in UML4SOA which can then be trans-
formed into mathematical models based on the foundational calculi. Because of the
precise definition of these calculi it is then possible to perform qualitative and quantita-
tive analysis on the transformed models in order to gain valuable information about the
quality, security, and performance of the system in the early stages of system develop-
ment. Since the results of static analysis are transformed into annotations for the original
high-level model, the designer does not have to be concerned with the formalisms used
in the analysis process.

To facilitate the practical application of the results, SENSORIA is developing a
service-based suite of tools (cf. Fig. 2) that support the new language primitives, the
analysis techniques, re-engineering of legacy software into services [14] and other as-
pects of service development and deployment [23,34]. The tool suite gives continuous
feedback on the usefulness and applicability of the research results; it is also a starting
point for the design of new industrial support tools for service-oriented development.

174 M. Wirsing et al.

Q
ua

lit
at

iv
e

an
d

Q
ua

nt
it

at
iv

e
A

na
ly

si
s

Service-Oriented Modeling

Model-driven
Development

R
e-

En
gi

ne
er

in
g

Le
ga

cy
 S

ys
te

m
s

Core Calculif or Service Computing

Model-driven
Deployment

Legacy System Global ComputerGlobal Computer

Fig. 3. SENSORIA research themes

Another main element of SENSORIA is the set of realistic case studies for differ-
ent important application areas including telecommunications, automotive, e-university,
and e-business. Most of the case studies are defined by the industrial SENSORIA part-
ners to provide continuous practical challenges for the new techniques of Services En-
gineering and demonstrate the research results.

The interplay of the different research themes and activities of SENSORIA are illus-
trated in Fig. 3: Service-oriented modelling provides specifications and models which
are transformed by model-driven development into the core calculi for service comput-
ing. Model-driven deployment is used for implementing services on different platforms.
Legacy systems can be transformed into services using systematic re-engineering tech-
niques. Qualitative and quantitative analysis back the service development process and
provide the means to guarantee functional and non-functional properties of services and
service aggregates.

The impact of SENSORIA on the development of services will be to bring mathemat-
ically well-founded modelling technology within the reach of service-oriented software
designers and developers. By offering these techniques and tools, we hope to allow
adopters to move to a higher and more mature level of SOA software development.
In particular, we hope to contribute to an increased quality of service of SOA applica-
tions, measured both in qualitative and quantitative terms. As SENSORIA methods are
portable to existing platforms, application of these methods is possible while keeping
existing investments.

2.2 A Pattern-Based Approach to Service Engineering

The SENSORIA project is investigating many issues of engineering SOAs. One of the
challenges is to make the research results available in a way that is useful not only as the
basis for future research but also for software developers seeking to apply the research
results. To this end we are developing a pattern language that describes which problems

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 175

are addressed by the various SENSORIA tools and techniques, how they solve the prob-
lems they address, and which forces determine whether a technique is appropriate for a
given situation or not.

The SENSORIA patterns are not limited to implementation issues, they encompass
a wide range of abstraction levels, from implementation-oriented patterns in the spirit
of [24] to architectural or process patterns. We structure the patterns in a way that ap-
proximately follows the “Pattern Language for Pattern Writing” presented in [33], but
add some pattern elements that seem to be helpful for describing patterns specifically
related to service-oriented software engineering. For readers familiar with the pattern
community, it should be noted that we use the pattern format as an expository tool; our
patterns are not necessarily obtained by “mining” existing applications for patterns.

Several elements have to be contained in each pattern: a pattern name; a context
in which the pattern is applicable; a concise description of the problem solved by the
pattern; the forces that determine the benefits and drawbacks of using the pattern; the
solution proposed and the consequences resulting from the use of the solution. Further-
more each pattern has to be accompanied by examples. Several optional sections can
be used to clarify the pattern, e.g., related patterns, code or model samples, or tools to
support the pattern. For space reasons we have omitted some of the mandatory elements
from some of the patterns in this paper.

3 Service Modelling

Context. Systems built on SOAs add new layers of complexity to software engineer-
ing, as many different artifacts must work together to create the sort of loosely coupled,
adaptive, fault-tolerant systems envisioned in the service domain. It is therefore impor-
tant to apply best practices already in use for older programming paradigms to services
as well; in particular, modelling of systems on a higher level of abstraction should be
used to get a general idea of the solution space. Modelling services should be possible
in a language which is both familiar to software architects and thus easy to use, but also
contains the necessary elements for describing SOA systems in a straightforward way.

You are designing a system which is based on a SOA. The system is intended to
offer services to multiple platforms and makes use of existing services and artifacts
on multiple hosts which must be integrated to work together in order to realise the
functionality of the system.

Problem. When designing SOA systems, it is easy to get lost in the detail of technical
specifications and implementations. Providing an overview of the service oriented ar-
chitecture to realise is therefore crucial for effective task identification, separation, and
communication in large projects. In this context, using a familiar, easy-to-understand,
and descriptive language is a key success factor.

Forces
– The amount of specifications and platforms in the SOA environment makes it diffi-

cult to get a general idea of the solution space.

176 M. Wirsing et al.

– Modelling the whole system in an abstract way gives a good overview of the tasks to
be done, but does not directly yield tangible results. For small systems and projects,
it is necessary to tailor this modelling task or even to skip it altogether.

– The model must be updated to reflect the architecture if it changes during imple-
mentation, or new requirements appear.

– The model is platform independent, and may be used to generate significant parts
of the system. In case the system’s target platform is not fixed or may experience
changes, the workload involved in system re-implementation can be reduced con-
siderably.

– Having a global architectural view eases the task of understanding the SOA envi-
ronment considerably. This fact is of major significance if the SOA environment is
to be extended by another team of software engineers or at a later date.

– The envisioned target platform(s) and language(s) should be supported by the mod-
elling approach such that code generation may be used.

Solution. Use a specialised (graphical) modelling language to model the system and
employ these models as far as possible for generating the system implementation.
There are several languages which might be employed for this kind of task. One of
the most widespread languages in the software engineering domain for modelling tasks
is the Unified Modelling Language (UML). As UML itself however does not offer
specific constructs for modelling service-oriented artifacts, it needs to be extended us-
ing its built-in profile mechanism. One profile for service oriented architectures is the
UML4SOA profile [32], which enables modelling of both the static and the dynamic
aspects of service-oriented systems. UML4SOA features specialised constructs for ser-
vices, service providers and descriptions in its static part, as well as service interactions,
long-running transactions, and event handling in its dynamic part. UML4SOA is also
part of a model driven development approach for SOA, MDD4SOA, which in turn of-
fers tools for generating code from UML4SOA models.

Consequences. A positive result of modelling a service-oriented system in a high-level
way is that it gives a better idea of how the individual artifacts fit together. This is
of particular importance in larger projects and for communication between developers
and/or the customer. By using transformations, the models can also be employed for
generating skeletons to fill with the actual implementation. However, the effort involved
in creating readable models should not be underestimated. Also, care should be taken to
only model aspects relevant on the design level instead of implementing the complete
system on the modelling level.

A problem arising when specifying systems by models and applying model transfor-
mations to generate implementation fragments is the problem of model/implementation
divergence. Therefore, special care must be taken that models are kept consistent with
the implementation.

Tools. The use of a UML profile has the advantage that all UML CASE tools that
support the extension mechanisms of the UML can be used, i.e. there is no need for
the development of specific and proprietary tools. The UML4SOA profile may be pro-
vided already for the UML tool of choice, or may be defined by the means provided

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 177

by the platform. In the SENSORIA project, the UML4SOA profile was defined for the
Rational Software Modeler (RSM) and MagicDraw. MDD4SOA provides executable
transformations for models from both UML tools to code skeletons of various target
platforms, including the Web service platform and the Java platform. The transformers
are integrated into the Eclipse environment.

Example. We illustrate the process by modelling an excerpt of a service-oriented eU-
niversity system: the management process of a student thesis, which is specified from
the announcement of a thesis topic by a tutor to the final assessment and student notifi-
cation. Figure 4 shows part of the orchestration process, namely the registration of the
thesis and the compensation in case of cancellation.

Fig. 4. UML4SOA activity diagram example

The UML2 activity diagram shows several stereotypes from the UML4SOA profile:

– A scope is a UML StructuredActivityNode that contains arbitrary ActivityNodes,
and may have an associated compensation handler.

– Specialised actions have been defined for sending and receiving data. In particular,
a send is an UML CallBehaviourAction that sends a message; it does not block.
A receive is a UML AcceptCallAction, receiving a message, which blocks until a
message is received.

– Service interactions may have interaction pins for sending or receiving data. In
particular, lnk is an UML Pin that holds a reference to the service involved in the
interaction, snd is a Pin that holds a container with data to be sent, and rcv is a Pin
that holds a container for data to be received.

– Finally, specialised edges connect scopes with handlers. For example, compensa-
tion is a UML ActivityEdge to add compensation handlers to actions and scopes.

Our profile also contains elements for event- and exception handling; they are not
included here for lack of space. For a complete overview see [32].

178 M. Wirsing et al.

4 Service Specification and Analysis

Context. You are designing a service-oriented system that has to operate in an open-
ended computational environment. The system is supposed to rely on autonomous and
possibly heterogeneous services, hence different services may be implemented by dif-
ferent languages. Information about actual implementation of some services may be not
accessible and only the services interactive behavior is known.

Problem. Specify a service-oriented system and verify that it guarantees some desirable
behavioural properties.

Forces
– Process calculi have been proved able to define clean semantic models and lay

rigorous methodological foundations for service-based applications and their com-
position.

– Process calculi enjoy a rich and elegant meta-theory and are equipped with a large
set of analytical tools, such as e.g. typing systems, behavioural equivalences and
temporal logics, that support reasoning on process specification.

– The additional cost and development effort incurred by using process calculi is only
justified for systems with particularly high quality or security requirements.

– The use of process calculi requires highly trained personnel.

Solution. Use a service-oriented process calculus for formally specifying the system
under consideration. Analyse the formal specification of the system by using suitable
analytical tools.

Consequences. Process calculi, being defined algebraically, are inherently com-
positional and, therefore, convey in a distilled form the paradigm at the heart of
service-oriented computing. On the other hand, a formal specification of service-
oriented systems based on process calculi permits using powerful analysis tools to guar-
antee relevant properties.

Various kinds of typing systems, behavioural equivalences and temporal logics can
be defined in order to deal with specific aspects of service-oriented systems. Thus, from
time to time, the appropriate kind of reasoning mechanisms to work with should be
chosen/defined depending on the property one intends to guarantee. As an example,
to ensure that a system respects the expected behaviours, type systems can work in a
complete statical manner or combine static and dynamic checks.

On the negative side, an analytical tool designed for a process calculus, in general,
cannot be directly applied to a different one but has to be properly tailored.

Example. Two examples of process calculi suitable for modelling service-oriented sys-
tems are CaSPiS [5] and COWS [28]. Two classes of properties that, for example, can
be verified on top of specifications defined by using the above calculi are progress (e.g.
a client does not get stuck because of inadequate service communication capabilities)
and confidentiality (e.g. critical data can be accessed only by authorised partners). Both
properties can be verified by using the type systems introduced in [1], for CaSPiS, and
in [29], for COWS, respectively.

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 179

Consider now a bank account service scenario where a client can ask for his balance.
Specifically, upon receiving a balance request, the bank account service waits for the
client’s credentials and sends either the requested balance or an error message, depend-
ing on the validity of the credentials.

Code Example. Consider the following CaSPiS specification of the scenario:

BA= bank account.(c : credts).if is valid(c) then 〈balance〉 else 〈err〉
C = bank account.〈cred〉.

(
(b : int). ↑ 〈true, b〉 + (e : err). ↑ 〈false, 0〉

)

Sys= C |BA

where err is a message with associated type err and the validity of credentials is
checked by means of an auxiliary function, is valid, that is private to the service
bank account.

According to the safety result in [1], client progress is guaranteed in Sys. Indeed,
supposing that bank account has associated type ?credts.(τ. !int + τ. !err), it can
be inferred that client C is well-typed. More precisely, C’s protocol has associated
type !credts.(?int + ?err), which is compliant with bank account’s type. Therefore,
the whole system Sys is well-typed.

Consider now the new system Sys′ defined below, where client C′ does not comply
with bank account communication protocol:

C′ = bank account. 〈cred〉. (b : int). ↑ 〈true, b〉
Sys′ = C′ | BA .

C′’s protocol has associated type !credts.?int, which clearly does not comply with
bank account’s type. Therefore, client progress is not guaranteed in Sys′. Actually,
Sys′ can reduce to [(b : int). ↑ 〈true, b〉|||〈err〉], where client protocol (b : int). ↑
〈true, b〉 is stuck.

The same scenario can be specified by using COWS as follows:

BA= ∗ [xclient, xcredts] bank account• balance req?〈xclient, xcredts〉.
[p, o] (p • o!〈is valid(xcredts)〉

| p • o?〈true〉. xclient • balance resp!〈balance〉
+ p • o?〈false〉. xclient • balance resp!〈err〉)

C = bank account• balance req!〈client, cred〉 | [x] client• balance resp?〈x〉
Sys= C | BA .

The type system for COWS introduced in [29] permits expressing and forcing poli-
cies regulating the exchange of data among interacting services and ensuring that, in
that respect, services do not manifest unexpected behaviours. This permits checking
confidentiality properties, e.g., that client credentials are shared only with the bank ac-
count service. The types can be attached to each single datum and express the policies
for data exchange in terms of sets of partners that are authorised to access the data.
Thus, the credentials cred, communicated by C to BA, gets annotated with the policy

180 M. Wirsing et al.

{bank account}, that allowsBA to receive the datum but prevents it from transmitting
the datum to other services. The typed version of C is defined as follows

bank account• balance req!〈client, {cred}{bank account}〉| [x] client• balance resp?〈x〉

Once the static type inference phase ends, theBA’s variable xcredts gets annotated with
the policy {bank account}, which means that the datum that dynamically will replace
xcredts will be used only by the partner bank account. In this way, the communication
can safely take place.

Suppose instead that service BA (accidentally or maliciously) attempts to reveal the
credentials through some “internal” operation such as pint • o!〈{xcredts}r〉, for some
set r such that pint ∈ r. Then, as result of the inference, we would get declaration of
variable xcredts annotated with r′, for some set r′ such that r ⊆ r′. Now, the commu-
nication would be blocked by a runtime check because the datum sent by C would be
annotated as {cred}{bank account} while the set r′ of the receiving variable xcredts is
such that pint ∈ r ⊆ r′
⊆ {bank account}.

Related Patterns. The Functional Service Verification pattern is often useful to verify
services specified according to this pattern.

5 Functional Service Verification

Context. You are designing a service-oriented system that has to operate in an open-
ended computational environment. The system should perform its tasks and should not
manifest unexpected behaviours in each state of the environment.

Problem. Current software engineering technologies for service-oriented systems re-
main at the descriptive level and do not support formal reasoning mechanisms and ana-
lytical tools for checking that systems enjoy desirable properties.

Forces

– The functionalities required of a service must be verified at design time.
– Properties to be insured by services should be expressed at a higher level of abstrac-

tion and therefore be independent from the technical details of the implementation.
– Logics have been since long proved able to reason about complex software sys-

tems as service-oriented applications are. In particular temporal logics have been
proposed in the last twenty years, as suitable means for specifying properties of
complex systems owing to their ability of expressing notions of necessity, possibil-
ity, eventuality, etc.

– The additional cost and development effort incurred by verification may only be
justified for systems with particularly high quality or security requirements.

– Logic-based verification can only be performed by highly qualified developers.

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 181

Solution. Use a logical verification framework for checking functional properties of
services by abstracting away from the environments in which they are operating. In
particular, specify the properties of interest by using a temporal logic capable of captur-
ing specific aspects of services, e.g. the logic SocL [20]. Define a formal specification
of the system under consideration by using a process calculus, e.g. COWS [28], and, on
top of this specification, define more abstract views by appropriately classifying system
actions. Finally, verify the formulae over the abstract views of the system by using a
model checker, e.g. the on-the-fly model checker CMC [20].

Consequences. The fact that the verification of properties is done over the abstract
views of the system has many important advantages. On the one hand, it enables defin-
ing and working with many different abstract views of a system, thus reducing the
complexity of the model of the system to be analysed. On the other hand, it enables
defining service properties in terms of typical service actions (request, response, can-
cel, . . .) and in a way that is independent of the actual specification of the service, both
with regards to the process calculus used and with regards to the actual actions’ names
used in the specification. As a further consequence, it permits to identify classes of
functional properties that services with similar functionalities must enjoy.

Example. Consider the following general properties that express two desirable at-
tributes of services:

– responsiveness: the service under analysis always guarantees a response to each
received request;

– availability: the service under analysis is always capable to accept a request.

Consider now a bank service scenario where a client can charge its credit card with
some amount. Specifically, consider a client that tries to charge his credit card 1234
with two different amounts, Euros 100 and 200, by performing two requests in paral-
lel. An abstract view of the above system can be obtained by properly identifying the
system actions corresponding to requests, responses and failure notifications of the in-
teraction between the bank service and the client, and by specifying the system states
where the service is able to accept a request. This way, the two general properties can
be verified over the abstract system specification.

Code Example. The two properties presented in the previous section can be expressed
as SocL formulae as follows:

– responsiveness: AG(accepting_request(charge))
– availability: AG[request(charge,$id)]

AF{response(charge,%id)
or fail(charge,%id)} true

where charge indicates the interaction between the bank service and the client, while
the variable id is used to correlate responses and failure notifications to the proper
accepted requests.

182 M. Wirsing et al.

A COWS specification of the scenario is

let
Bank = * [CUST] [CC] [AMOUNT] [ID]

bank.charge?<CUST,CC,AMOUNT,ID>.
[p#][o#] (p.o!<>

| p.o?<>. CUST.chargeOK!<ID>
+ p.o?<>. CUST.chargeFail!<ID>)

Client = bank.charge!<client,1234,100,id1>
| (client.chargeOK?<id1>.nil

+ client.chargeFail?<id1>.nil)
| bank.charge!<client,1234,200,id2>

| (client.chargeOK?<id2>.nil
+ client.chargeFail?<id2>.nil)

in
Bank() | Client()

end

Once prompted by a request, the service Bank creates one specific instance to serve
that request and is immediately ready to concurrently serve other requests. Two differ-
ent correlation values, id1 and id2, are used to correlate the response messages to the
corresponding requests. Notably, for the sake of simplicity, the choice between approv-
ing or not a request for charging the credit card is here completely non-deterministic.
An abstract view of the system can be obtained by applying the following rules:

Abstractions {
Action charge<*,*,*,$1> -> request(charge,$1)
Action chargeOK<$1> -> response(charge,$1)
Action chargeFail<$1> -> fail(charge,$1)
State charge -> accepting_request(charge)

}

The first rule prescribes that whenever the concrete actions bank.charge!<cli
ent,1234,100,id1> and bank.charge!<client,1234,200,id2>are ex-
ecuted, then they are replaced by the abstract actions request(charge,id1) and
request(charge,id2), respectively. Variables “$n” (with n natural number) can
be used to defined generic (templates of) abstraction rules. Also the wildcard “*” can be
used for increasing flexibility. The other rules act similarly. Notably, communications
internal to the bank service are not transformed and, thus, become unobservable.

Related Patterns. The Service Specification and Analysis pattern is often useful to
specify services that should be verified.

Tools. The tool CMC can be used to prove that the bank service specified above
exhibits the desired characteristics to be available and responsive. A prototypical
version of CMC can be experimented via a web interface available at the address
http://fmt.isti.cnr.it/cmc/

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 183

6 Sensitivity Analysis

Context. You are analysing a service-oriented system in order to identify areas where
the system performance can be improved with relatively little effort. There are many po-
tential ways in which the system can be modified including optimising software com-
ponents, purchasing new hardware or infrastructure, re-deploying existing hardware
resources for other purposes, and many other possibilities.

Problem. Identify a low-cost method of improving system performance.

Forces
– The impact of changes on system performance can be hard to predict. Improving the

efficiency of one component will not necessarily lead to an improvement overall.
Optimisations which are applied in the wrong place may even lead to the overall
performance being reduced.

– Some changes are expensive, others cheap. One change might require replacing a
large part of the communication network, another might require rewrites of com-
plex software, whereas one might require only reducing a delay such as a timeout.

– Given the many possible changes one could make it is infeasible to try each of them
and compare the relative increase (or decrease) in performance.

Solution. Develop a high-level quantitative model of the service and experiment on
the model in order to determine the changes which have the greatest positive impact.
Of these, identify those which can be implemented with lowest cost, and carry out
this implementation. The quantitative model can be evaluated using a modelling tool
such as a simulator or a Markov chain solver computing the transient and passage-
time measures which relate to user-perceived performance, together with the use of
parameter sweep across the model to vary activity rates.

Consequences. The analysis has the potential to identify useful areas where optimisa-
tions can be applied. The numerical evaluation may be long-running but it is entirely
automatic. The quantitative evaluation has the potential to generate many analysis re-
sults which need to be considered and assessed by a domain expert.

Example. This pattern is applied in [13] to investigate an automotive accident assis-
tance service. A framework for experimentation and analysis allows many instances
of a Markov chain solver to be executed and the results combined to identify how the
service can most easily meet its required service-level agreement.

Related Patterns. The Service Specification and Analysis pattern is complementary in
the sense that it uses similar methods to analyse behaviour.

Tools. The SENSORIA Development Environment hosts formal analysis tools which
allow service engineers to perform parameter sweep across models of services ex-
pressed in the PEPA process algebra [27]. The PEPA model is automatically compiled
into a continuous-time Markov chain and passage-time analysis is performed using the
ipclib analysis tools [12].

184 M. Wirsing et al.

7 Scalability Analysis

Context. You are a large-scale service provider using replication to scale your service
provision to support large user populations. You need to understand the impact on your
service provision of changes in the number of servers which you have available or
changes in the number of users subscribed to your service.

Problem. Understanding the impact of changes on a large-scale system.

Forces
– Large user populations represent success: this service is considered by many people

to be important or even vital. Scale of use is a tangible and quantifiable measure of
value and being able to support large-scale use is an indicator of quality in planning,
execution and deployment in service provision. Maintaining a large-scale system
attracts prestige, attention and acclaim.

– Large user populations represent heavy demand. The service must be replicated in
order to serve many clients. Replication represents cost in terms of hosting provi-
sion, hardware and electricity bills. Service providers would like to reduce service
provision while continuing to serve large user populations.

– Modelling would help with understanding the system but large-scale systems are
difficult to model. Conventional discrete-state quantitative analysis methods are
limited by the the size of the probability distribution vector across all of the states
of the system. Discrete-state models are subject to the well-known state-space ex-
plosion problem. It is not possible simply to use a very large Markov chain model
to analyse this problem.

Solution. Develop a high-level model of the system and apply continuous-space analy-
sis to the model. A continuous-space model can make predictions about a large-scale
system where a discrete-state model cannot.

Consequences. TO DO

Related Patterns. The Sensitivity Analysis pattern is closely related in that it is possible
to use the parameter sweep employed there to perform dimensioning for large-scale
systems (i.e. determining whether a planned system has enough capacity to serve an
estimated user population).

Tools. The SENSORIA Development Environment hosts analysis tools which allow ser-
vice engineers to perform continuous-space analysis on models expressed in the PEPA
process algebra [27]. The PEPA model is automatically compiled into a set of coupled
ordinary differential equations and the initial value problem is evaluated using numeri-
cal integration. This predicts the number of users in different states of using the service
at all future time points. Static analysis, compilation and integration are performed us-
ing the PEPA Eclipse Plug-in Project [36].

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 185

8 Declarative Orchestration

Context. You are designing a service-oriented system that has to operate in an open-
ended, changing environment in which the presence of certain services cannot be guar-
anteed. The system should perform its tasks to the maximum extent possible in each
state of the environment, possibly by utilising features of the environment that were not
present when the system was designed.

Problem. Design a service-oriented system that can operate in an open-ended, changing
environment.

Forces
– A pre-determined orchestration of services cannot adapt to significant, unforeseen

changes in the environment.
– Specifying orchestrations for all possible changes is not feasible in some environ-

ments.
– Not having a pre-determined orchestration makes it more difficult to reason about

the system.
– If the environment is too different from the one for which a system was originally

designed it may no longer be possible to fulfil the system’s function.
– Services have to provide a rich semantic description to be usable for declarative

orchestrations.

Solution. Define an ontology for the problem domain that is rich enough to capture the
capabilities of services. Specify the results of combining several services in a declar-
ative manner, e.g., as plan components or logical implications. Use a reasoning com-
ponent such as an planner, model checker, or a theorem prover to create orchestrations
from these specifications and a description of the current environment.

Consequences. Declarative orchestrations can adapt to large changes in the environ-
ment without manual reconfiguration. They can easily incorporate information about
new kinds of services and use them to fulfil their tasks.

On the negative side, declarative orchestration depends on an expressive domain
model for which the reasoning process is often computationally expensive and time
consuming, and also on the availability of rich semantic descriptions of unknown ser-
vices. It is often difficult to control the behaviour of systems built on top of reasoning
components and to ensure their correctness.

Related Patterns. Unless the environment is extremely unpredictable, a system de-
signed according to Declarative Service Selection can often satisfy similar requirements
while remaining easier to understand and analyse.

9 Declarative Service Selection

Context. You have designed an orchestration for a service-oriented system. During run-
time, a number of services with similar functionality but different cost, reliability and
quality trade-offs are available that can fulfil the requirements of the orchestration.

186 M. Wirsing et al.

Problem. Find an optimal combination of services, taking into account the current
situation and user preferences.

Forces
– The functionality required of the services is determined by the orchestration.
– The services available at run-time are not known during design-time.
– Different services with the same functionality can be differentiated according to

other Quality of Service metrics.

Solution. Define a context-aware soft-constraint system that ranks solution according
to their quality. Model user preferences using a partial order between the criteria de-
scribed by individual soft constraints when possible, otherwise build a more complex
mapping from the values of individual constraints to an overall result that describes
the user preferences. A soft-constraint solver can the compute the optimal combination
of services or a “good enough” combination of services computable in a certain time
frame.

Consequences. The specification of the problem can be given without reference to a
solution algorithm, thus the communication with domain experts and users is simplified.
The computation of the quality of different combinations of services and the preference
given to each individual characteristic are decoupled from each other. A soft-constraint
solver provides a general mechanism to compute the desired combination of services.

On the other hand, the choice of evaluation functions is restricted by the theories that
the soft-constraint solver can process. A general-purpose mechanism such as a solver is
often less efficient than a well-tuned specialised implementation.

10 Model-Driven Deployment

Context. You are designing a service configuration where non-functional requirements
(security, reliable messaging, etc.) play an important role. Models are designed in UML
while the underlying standards-compliant platform have to be parametrised at a very
low abstraction level (e.g. using specific APIs or XML formats).

Problem. There is a big semantical gap between the modelling and deployment con-
cepts. Platforms and concepts are changing rapidly, interoperability is not guaranteed
between low level models.

Forces. A service configuration is typically designed in high level modelling languages
such as UML. The configuration of the underlying implementation platforms, however,
needs the deep technical knowledge of related standards and product specific know-
how. Services have to be redeployed, refactored and moved between runtime environ-
ments. Moreover, non-functional properties should be handled differently for different
classes of users. It should be avoided to have the service designer specify the detailed
technical requirements, he should rather work with predefined profiles.

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 187

Solution. We propose a multiple-step model driven workflow where separate model
transformations implement the PIM2PSM and PSM2code mappings, as defined in the
MDA approach. Services have to be modelled either in a specialised UML dialect or in a
Domain Specific Editor. First, relevant parts of the model are filtered out and stored in a
simplified representation format (neglecting e.g. tool-specific information). Then differ-
ent Platform Independent Models are created for the different aspects of non-functional
requirements, e.g. security, reliable messaging, component deployment, etc. Up to this
step, platform requirements do not affect the process. Platform Specific Models con-
tain implementation-specific attributes, taken from the PIM and predefined parameter
libraries. Finally, structured textual code (e.g. XML descriptors) is generated.

Consequences. The method has the potential to connect high level models to low level
runtime representations. Transformation chain targets server configurations with exten-
sions for reliable messaging and security.

Example. Examples are the UML4SOA for modelling, VIATRA2 framework for trans-
formation and Apache Axis (using Rampart and Sandesha modules) and IBM Web-
Sphere as relevant industrial platforms. The method is used in different scenarios of the
project.

Tools. The input of transformation is UML2 models in UML4SOA (designed e.g. in
Rational Software Architect (RSA)). The transformation is integrated in the SENSORIA

Development Environment while the output consist of descriptor files and client stubs.

11 Related Work

The idea of using patterns to describe common problems in software design and de-
velopment was popularised by the so-called “Gang of Four” book [24]. Since its pub-
lication a wide range of patterns and pattern languages for many areas of software
development has been published, see, e.g, the Pattern Languages of Programs (PLoP)
conferences and the associated Pattern Languages of Program Design volumes, or the
LNCS Transactions on Pattern Languages of Programming.

The area of patterns for SOA has recently gained a lot of attention, and several col-
lections of design patterns for SOA have been recently published or announced [19,38].
The article [18] provides a short introduction. However these patterns address more
general problems of SOA, while our patterns are focused on the formally supported
techniques provided by SENSORIA. Therefore, our patterns can serve as an extension
of, rather than as a replacement for, other pattern catalogues.

12 Conclusions and Further Work

In this paper, we have presented some results of the IST-FET EU project SENSORIA,
in the form of a pattern language. The patterns address a broad range of issues, such
as modelling, specification, analysis, verification, orchestration, and deployment of
services. We are currently working on systematising and extending the collection of

188 M. Wirsing et al.

patterns in these areas, and we will also be developing patterns for areas which are not
currently addressed, e.g., business process analysis and modelling.

This pattern catalogue is a useful guide to the research results of the SENSORIA

project: as already mentioned in Section 2.1, we are investigating a broad range of
subjects and without some guidance it may not be easy for software developers to find
the appropriate tools or techniques.

However, the patterns presented in this paper only present a very brief glimpse at
the research of the SENSORIA project. Important research areas include a new gener-
alised concept of service, modelling languages for services based on UML and SCA,
new semantically well-defined modelling and programming primitives for services, new
powerful mathematical analysis and verification techniques and tools for system behav-
iour and quality of service properties, and novel model-based transformation and devel-
opment techniques. The innovative methods of SENSORIA are being demonstrated by
applying them to case studies in the service-intensive areas of e-business, automotive
systems, and telecommunications.

By integrating and further developing these results SENSORIA will achieve its over-
all aim: a comprehensive and pragmatic but theoretically well founded approach to
software engineering for service-oriented systems.

References

1. Acciai, L., Boreale, M.: A Type System for Client Progress in a Service-Oriented Calculus.
In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

2. Balogh, A., Varró, D.: Advanced Model Transformation Language Constructs in the VIA-
TRA2 Framework. In: ACM Symposium on Applied Computing — Model Transformation
Track (SAC 2006), pp. 1280–1287. ACM Press, New York (2006)

3. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Types and effects for Resouce Usage
Analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47. Springer, Heidel-
berg (2007)

4. ter Beek, M.H., Moiso, C., Petrocchi, M.: Towards Security Analyses of an Identity Fed-
eration Protocol for Web Services in Convergent Networks. In: Proceedings of the 3rd Ad-
vanced International Conference on Telecommunications (AICT 2007). IEEE Computer So-
ciety Press, Los Alamitos (2007)

5. Boreale, M., Bruni, R., Nicola, R.D., Loreti, M.: Sessions and Pipelines for Structured Ser-
vice Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 19–38. Springer, Heidelberg (2008)

6. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-
nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a Service Centered
Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 38–57. Springer, Heidelberg (2006)

7. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for scalability.
In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 204–221.
Springer, Heidelberg (2008)

8. Bravetti, M., Zavattaro, G.: A Theory for Strong Service Compliance. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 96–112. Springer, Heidelberg
(2007)

SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis 189

9. Bravetti, M., Zavattaro, G.: Contract based Multi-party Service Composition. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer, Heidelberg (2007)

10. Buscemi, M.G., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32.
Springer, Heidelberg (2007)

11. Ciancia, V., Ferrari, G.: Co-Algebraic Models for Quantitative Spatial Logics. In: Quantita-
tive Aspects of Programming Languages (QAPL 2007) (2007)

12. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M., Telek, M.
(eds.) Proceedings of the 4th International Conference on the Quantitative Evaluation of
SysTems (QEST), September 2007, pp. 55–56. IEEE Computer Society Press, Los Alamitos
(2007)

13. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements. In: Brim,
L., Leucker, M. (eds.) Proceedings of the 11th International Workshop on Formal Methods
for Industrial Critical Systems, Bonn, Germany, pp. 172–185 (August 2006)

14. Correia, R., Matos, C., Heckel, R., El-Ramly, M.: Architecture migration driven by code
categorization. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 115–122. Springer,
Heidelberg (2007)

15. Nicola, R.D., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking mobile
stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

16. Nicola, R.D., Katoen, J.-P., Latella, D., Massink, M.: STOKLAIM: A Stochastic Extension
of KLAIM. Technical Report 2006-TR-01, ISTI (2006)

17. Ehrig, K., Taentzer, G., Varró, D.: Tool Integration by Model Transformations based on the
Eclipse Modeling Framework. EASST Newsletter 12 (June 2006)

18. Erl, T.: Introducing soa design patterns. SOA World Magazine 8(6) (June 2008)
19. Erl, T.: SOA Design Patterns. Prentice Hall/Pearson PTR (to appear, 2008)
20. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking

approach for verifying COWS specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

21. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A Formal Approach to Service Component Architec-
ture. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp.
193–213. Springer, Heidelberg (2006)

22. Foster, H., Kramer, J., Magee, J., Uchitel, S.: Towards Self-Management in Service-oriented
Computing with Modes. In: Proceedings of Workshop on Engineering Service-Oriented Ap-
plications (WESOA 2007), Vienna, Austria, Imperial College London (September 2007)

23. Foster, H., Mayer, P.: Leveraging integrated tools for model-based analysis of service com-
positions. In: Proceedings of the Third International Conference on Internet and Web Ap-
plications and Services (ICIW 2008), Athens, Greece. IEEE Computer Society Press, Los
Alamitos (2008)

24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

25. Gönczy, L., Varró, D.: Modeling of Reliable Messaging in Service Oriented Architectures.
In: Proc. of the International Workshop on Web Services - Modeling and Testing (2006)

26. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
327–338. Springer, Heidelberg (2006)

27. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

28. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

190 M. Wirsing et al.

29. Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service oriented applica-
tions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 223–239. Springer,
Heidelberg (2007)

30. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

31. Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service oriented applica-
tions. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 223–239. Springer,
Heidelberg (2007)

32. Mayer, P., Schroeder, A., Koch, N.: A Model-Driven Approach to Service Orchestration.
In: Proceedings of the IEEE International Conference on Services Computing (SCC 2008).
IEEE Computer Society Press, Los Alamitos (2008)

33. Meszaros, G., Doble, J.: Metapatterns: A pattern language for pattern writing (1996)
34. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware Service Composition in

Dino. In: Proceedings of the 5th European Conference on Web Services (ECOWS 2007),
Halle, Germany. IEEE Computer Society Press, Los Alamitos (2007)

35. Nielson, F., Nielson, H.R.: A flow-sensitive analysis of privacy properties. In: 20th IEEE
Computer Security Foundations Symposium, CSF 2007, Venice, Italy, 6-8 July 2007, pp.
249–264. IEEE Computer Society Press, Los Alamitos (2007)

36. Web site for the pepa eclipse plugin (last accessed 2008-06-24),
http://homepages.inf.ed.ac.uk/mtribast/plugin/download.html

37. Probst, C.W., Nielson, F., Hansen, R.R.: Sandboxing in myKlaim. In: The First International
Conference on Availability, Reliability and Security, ARES 2006 (2006)

38. Rotem-Gal-Oz, A.: SOA Patterns. Manning (to appear, 2009)
39. Tools integrated into the SENSORIA Development Environment,

http://svn.pst.ifi.lmu.de/trac/sct/wiki/SensoriaTools
40. Wirsing, M., Bocchi, L., Clark, A., Fiadeiro, J.L., Gilmore, S., Hölzl, M., Koch, N., Pugliese,

R.: SENSORIA: Engineering for Service-Oriented Overlay Computers, ch. 7. MIT Press,
Cambridge (submitted, 2007)

41. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-Peyre, J.-F.,
Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–45. Springer, Heidelberg
(2006)

Safety and Response-Time Analysis of an

Automotive Accident Assistance Service

Ashok Argent-Katwala1, Allan Clark2, Howard Foster1,
Stephen Gilmore2, Philip Mayer3, and Mirco Tribastone2

1 Imperial College, London, England
2 The University of Edinburgh, Scotland

3 Ludwig-Maximilians-Universität, Munich, Germany

Abstract. In the present paper we assess both the safety properties
and the response-time profile of a subscription service which provides
medical assistance to drivers who are injured in vehicular collisions. We
use both timed and untimed process calculi cooperatively to perform the
required analysis. The formal analysis tools used are hosted on a high-
level modelling platform with support for scripting and orchestration
which enables users to build custom analysis processes from the general-
purpose analysers which are hosted as services on the platform.

1 Introduction

Service providers who sell services which are concerned with human health and
human safety have a responsibility to assess the quality of the service which they
provide in terms of both its correctness of function and its speed of response.
One way to carry out such an assessment is to construct a precise formal model
of the service and perform the analysis on the model to shed light on the behav-
iour of the service itself. Such an assessment exercises the ability to apply both
qualitative methods (such as model-checking) and quantitative methods (such as
transient analysis) in service evaluation. The service providers delivering these
critical services may not themselves have the technical skills to apply methods
such as these. Further, even if they are able to source the necessary skills from
expert users elsewhere, they may not be happy to take advantage of this because
they would then risk revealing information about their current service provision
which they might be unwilling to disclose to anyone outside their organisation.

One possible way in which the stakeholders of formal analysis methods can
contribute to alleviating this problem is by embedding their analysers in mod-
elling environments which lower the barrier to use of the methods. These en-
vironments can then be adopted and applied by the service providers in-house,
allowing them to evaluate their service provision without revealing sensitive in-
formation about their current service. The SENSORIA Development Environ-
ment (SDE) assists us in the goal of bringing state-of-the-art analysis methods
closer to the service providers who need to apply them.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 191–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 A. Argent-Katwala et al.

The SDE brings together analysis tools for process calculi and allows users to
combine them using scripting. In particular the SDE includes analysis tools for
the two process calculi which we use in the present work:

– Finite State Processes (FSP), and
– Performance Evaluation Process Algebra (PEPA).

Specifically, the SDE hosts the following tools:

– the LTSA model-checker for FSP, and
– the ipclib response-time analyser for PEPA.

We describe the use of the SDE on an analysis problem which is of particular
interest to one of the industrial partners in our current research project. The
partner in question is a consultancy providing advice to a major Bavarian car
manufacturer. They have been asked to consult on a subscription service which
uses the on-board diagnostic and communication systems in high-end cars to
provide an accident assistance service. In this paper we use the SDE and other
tools to assess the accident assistance service against both safety properties
(using model-checking over labelled transition systems) and response-time prop-
erties (using transient analysis of continuous-time Markov chains).

2 Service Design

Our model of the Accident Assistance Service details the events which are the
area of responsibility of the service itself. That is, those activities which occur
between an accident report being received and the service discharging its re-
sponsibility to act on the accident report. In some cases this will lead to an
ambulance being sent, and in other cases not. Our model does not require us to
know – or allow us to predict – anything about activities which happen before
or after these events. For example, we do not estimate how often accidents occur
and we do not calculate how long ambulances take to arrive. Both of these many
be interesting to know, but our model here does not speak of them.

The activity diagram shown in Figure 1 provides a high-level view of the
events in the scenario. Events are triggered by an incoming accident report
which the service begins to process (Process Accident Data). From this incoming
report is obtained all of the available information about the status of the vehicle.
Multiple attempts are made to contact the driver (Contact Driver) and the
service must then respond (Classify Severity). In the cases when the accident has
been classified as critical medical assistance is dispatched (Dispatch Ambulance).
Events are logged in a central log for audit purposes, whether an ambulance was
dispatched or not.

The service needs to take two major decisions during its realm of responsibil-
ity. First, whether to continue to attempt to contact the driver, or assume that
they are injured. Second, to classify this accident as critical or not.

Considering the accident assistance service at a lower level of detail we note
that the service is triggered by any impact or collision which causes the car

Safety and Response-Time Analysis 193

Fig. 1. UML2 Activity Diagram of Accident Assistance Service

airbag to deploy. Immediately after the airbag has deployed the on-board com-
munication module transmits to the assistance service a report with as much
information as it can obtain from the car’s diagnostic system. This report in-
cludes information about the state of the car itself obtained from sensors in the
engine and the braking system. The report also specifies the speed of the car at
the moment of impact and, most importantly, the geographical location of the
car as obtained from the on-board GPS.

On receipt of such a report, the subscription service attempts to contact
the registered driver of the car by mobile telephone. If the driver answers the
telephone and confirms that they are unhurt then no further action needs to
be taken. If they instead say that they have been hurt in the accident then the
service will dispatch an ambulance to the reported location to assist them.

The third case to consider occurs when the service cannot get confirmation from
the driver that they do not need assistance. It might seem that the obvious course
of action should be to consider not getting an answer to be a critical case but
there is evidently a possibility that the service will send an ambulance when it is
not needed. That is, the driver is unhurt but did not have their mobile telephone
with them, or it had no battery charge, or they had no signal from their telephone
service provider, or many other similar reasons. Because critical services should
not be deployed without good reason, the accident assistance service would like
to reduce the number of occasions when an ambulance is dispatched in error.

The information on the car status and the speed of the car at the moment of
impact sent with the accident report become significant in the case where we have
no answer from the driver. The service needs to classify this accident as critical
or not and many factors will influence the classification of an accident. Speed at
the time of impact is a major factor, as is degree of damage to the car, but the
geographical location and the time of day also impact on the classification. The
reason for this is that the injured driver is less likely to get help from passing
motorists if the car accident happens in a remote location late at night than if
the accident happens in a heavily-populated area during the day.

194 A. Argent-Katwala et al.

In the case of no answer and car diagnostics which point to very little damage
(say, the car was stationary at the time of impact, and the engine, brakes, lights
and other critical functions seem to be functioning normally) then the service
will decide not to send an ambulance to prevent sending one when it could be
needed elsewhere.

3 Safety Analysis of the Assistance Service

In this section we discuss the safety analysis of the Accident Assistance Ser-
vice. Safety Analysis is concerned with assuring that properties of the service
behaviour are upheld and in particular, that there are no undesirable behaviour
traces exhibited given the various constraints of the service. The nature of this
service exhibits various specified conditions of progress, for example, if the driver
answers his or her cellphone within a number of attempts, then the progress is
different to that if he or she does not. Such conditions need to be examined
for behaviour consistency. For this reason, we focus on the behaviour process of
the service rather than data analysis, given the design of the service specified
in section 2 and an implementation written in some software process language.
For the purpose of our analysis, we translate the service process workflow in to
the Finite State Process (FSP) notation to concisely and formally model the
workflow states and transitions.

3.1 FSP, LTS and Behaviour Models

The FSP notation [1,2] is designed to be easily machine readable, and thus pro-
vides a preferred language to specify abstract processes. FSP is a textual notation
(technically a process calculus) for concisely describing and reasoning about con-
current programs. FSP supports a range of operators to define a process model
representation.

A summary of the operators for FSP is given as follows.

Action prefix “->”: (x->P) describes a process that initially engages in the
action x and then behaves as described by the auxiliary process P;

Choice “|”: (x->P|y->Q) describes a process which initially engages in either
x or y, and whose subsequent behaviour is described by auxiliary processes
P or Q, respectively;

Recursion: the behaviour of a process may be defined in terms of itself, in
order to express repetition;

Sequential composition “;”: (P;Q) where P is a process with an END state,
describes a process that behaves as P and when it reaches the END state of P
starts behaving as the auxiliary process Q;

Parallel composition “||”: (P||Q) describes the parallel composition of
processes P and Q;

Relabelling “/”: Re-labelling is applied to a process to change the names of
action labels. The general form of re-labelling is / {newlabel/oldlabel};

Safety and Response-Time Analysis 195

The hiding, trace equivalence minimisation, and weak semantic equivalence min-
imisation operators of FSP are not used here. We omit their descriptions for
brevity.

3.2 Translation of Service Design to FSP

The Accident Assistance Service design illustrated in Figure 1 specifies a num-
ber of activity transitions linked either as a sequence or through decisions. To
translate these to the FSP notation, and a formal model, we traverse the work-
flow and build a series of FSP processes composed to build a complete process
architecture model. To begin with we start with the initial node. The initial node
specifies a transition to the Process Accident Data activity, which represents a
report from the on-board vehicle diagnostics system. Additionally at this step,
we need to determine and store a variable which holds a report status. In the
FSP (listed below), we represent these actions by creating a process (PROCES-
SACCIDENTDATA) and a sequence for the choice of status reported from the
vehicle diagnostics. The VEHDIAGCHOICE process has two options, one for a
normal status or one for a critical status. Note that we need to look ahead to
see which activity follows this to determine whether this process composition is
complete. In this case the next activity is again a simple transition.

// Diagnostics Composition
DIAGCHOICE =
(vehicle .emergsrv .diags_normal ->emergsrv .diag.write[0]->END
| vehicle .emergsrv .diags_critical ->emergsrv .diag.write[1]->END).

REQUESTDIAGS = (emergsrv .vehicle .requestdiags ->END).
REQUESTDIAGSEQ = REQUESTDIAGS; DIAGCHOICE; END.
|| DIAGNOSTICS = (REQUESTDIAGSEQ).

Immediately following the Process Accident Data activity is the Contact Driver
activity. This activity is linked with two steps in the workflow. Firstly the ac-
tivity itself is linked with a decision step, to determine if either the driver was
successfully contacted or a maximum number of calls has been reached. The
composition for this therefore is the action of calling the driver, and then a
choice of either proceeding to the next step of the workflow (because the call
was successful or maximum call attempts reached) or the action is repeated.

// Call Attempts Composition
const Max = 3 // no of calls before automatic dispatch
range Int = 0..2 // 0 - not critical , 1 - critical , 2 - unknown

CALLATTEMPT(N=0) = CALL[N],
CALL[v:Int] = (emergsrv .driver.callphone ->ANSWER [v]),
ANSWER[v:Int] =

(driver.emergsrv .noanswer ->CALL[v+1]
| driver.emergsrv .answer-> ANSWEREDACTION),

ANSWEREDACTION =
(emergsrv .phone.write[0]->END
| emergsrv .phone.write[1]->END),

CALL[Max] = (emergsrv .phone.write[2]->END).

set ACTSET = {emergsrv .driver .callphone ,
driver.emergsrv .noanswer , driver.emergsrv .answer}

TERMS = (ACTSET ->TERMS).
|| CALLATTEMPTS = (TERMS || CALLATTEMPT(0)).

196 A. Argent-Katwala et al.

Lastly, two processes are built to represent the Classify Severity and Dispatch
Ambulance activities. In the first activity again the workflow specifies a deci-
sion point. The classification activity represents a choice of transition depending
on the status of both the accident data report and contacting the driver. To
represent this in FSP we recall the values assigned as part of the two previ-
ous compositions (Process Accident Data and Contact Driver). The choice of
process transition is represented using a conventional structured construct of
IF..THEN..ELSE. The FSP below represents the conditional operation of the
diagnostics status reported by the vehicle. A similar model is built to represent
the result of calling the driver and then these two choice models are composed.
The comparison of whether the status is critical determines if the Dispatch Am-
bulance is undertaken.

// check phone answered
QUERYPHONESTATUS = (emergsrv .phone.read[i : 0..2]->QUERYPHONESTATUS[i]),
QUERYPHONESTATUS[i : 0..2] =

if (i==2) then QUERYDIAGSTATUS; END
else if (i==1) then DISPATCH ; END

else LOGREPORT; END.

// check diagnostic information received
QUERYDIAGSTATUS = (emergsrv .diag.read[i : 0..1]-> QUERYDIAGSTATUS[i]),
QUERYDIAGSTATUS[i : 0..1] =

if (i==1) then DISPATCH ; END
else LOGREPORT; END.

A simple sequence process represents the actual Dispatch Ambulance activity,
which is triggered if the status is critical. In preparation for analysis a com-
plete architecture model – representing the sequence composition of the workflow
processes we have defined – is also summarised in the code below.

// Dispatch Ambulance
SENDAMBULANCE = (emergsrv .station .send_ambulance ->END).
|| DISPATCH = (SENDAMBULANCE).

// Dispatch Report (Final Action)
LOG = (emergsrv .log.result->END).
|| LOGREPORT = (LOG).

// Service Main sequence
set PHONE_ALPHABET = { emergsrv .phone.{read ,write }.[0..2]}
MAINSEQ = ACCIDENT ; AIRBAG; GETSTATUS; QUERYPHONESTATUS; END

+ {PHONE_ALPHABET}.

3.3 Analysis Using LTSA

The constructed FSP can be used to model the exact transition of workflow
processes through a modelling tool such as the Labelled Transition System Ana-
lyzer (LTSA) [1], which compiles an FSP model into a state machine and provides
a resulting Labelled Transition System (LTS). LTSA is made available as a com-
ponent of the SDE. The LTSA tool has an inbuilt safety check to determine
whether a specified process is deadlock free. Deadlock analysis of a model in-
volves performing an exhaustive search of the LTS for deadlock states (i.e. states

Safety and Response-Time Analysis 197

with no outgoing transitions). A default deadlock check of the service process
results in no violations being found (i.e. that there are no deadlock states in the
model).

However, we need to check properties of the service to meet the requirements
in operation. For example, that an ambulance is dispatched only when requested
by the driver or, (in the case of no answer) when the car diagnostics indicate
severe damage. We add this property to the model through a further FSP state-
ment using the keyword property and specifying that both the driver asked for
an ambulance (emergsrv.phone.read[1]) or did not answer but the diagnostic
information on the car indicated severe damage (emergsrv.diag.read[1]). The
formal statement of this property is listed below.

// FSP Property to check only critical status leads to dispatch
property PROP =
(emergsrv .phone.read[2] ->

emergsrv .diag.read[1] ->
emergsrv .station . send_ambulance -> END

| emergsrv .phone.read[1] ->
emergsrv .station . send_ambulance -> END

).

Using this property specification language we were able to apply model-checking
to uncover errors in our original model which we corrected before going on to
response time analysis of the model.

4 Response-Time Analysis of the Assistance Service

Response-time analysis considers the timed behaviour of the system under study
in the context of a particular workload and a particular sequence of activities
which must take place. It is possible to think of this as a sub-scenario with a
distinguished start activity which starts a clock running and a distinguished stop
activity which stops it. The analysis will determine the probability of completing
the work needed to take us from the start activity to the stop activity, via
any possible path through the system behaviour. This probability value can be
plotted against time to give a complete picture of the response-time distribution.
With respect to the accident assistance service we will consider the response-
time from the airbag being deployed until the assistance service logs that it has
completed its investigation and has discharged its duty to send an ambulance if
one was required (or it has determined that an ambulance was not required).

For this aspect of the work we require a timed process algebra (FSP is un-
timed). We will use Performance Evaluation Process Algebra (PEPA) [3], a
stochastically-timed Markovian process algebra. The PEPA language is sup-
ported by the Sensoria Development Environment and by formal analysis tools
on the SDE such as the PEPA Eclipse Plug-in project [4] and the ipclib tool
suite [5].

4.1 PEPA, CTMCs and Response Time

Many of the combinators of the PEPA language resemble the operators of FSP
seen in Section 3. The most significant difference is that all activities in PEPA

198 A. Argent-Katwala et al.

are timed. We provide a brief summary of the language here, referring the reader
to [3] for the full formal details.

Prefix: (α, r).P describes a process which will first perform the activity α at
an exponentially-distributed rate r and then evolve to become P .

Choice: (α, r).P +(β, s).Q describes a process which either performs activity α
at rate r and evolves to become P , or it performs activity β at rate s and
evolves to become Q. The two activities α and β are simultaneously enabled
and whichever completes first will determine the continuation of the process.

Cooperation: In P ��
L
Q the processes P and Q cooperate over all of the ac-

tivities in the set L, meaning that they must synchronise on these activities.
Activities not in L are performed independently, without any synchronisa-
tion. We write P ‖ Q if L is empty.

Hiding: The process P/L is identical to P except that any uses of the activities
in the set L have been renamed to τ (the silent activity) and no other
process may cooperate with these activities. The duration of the activity is
unchanged so that, for example, (β, s) becomes (τ, s).

Because an exponentially-distributed random variable is associated with the rate
of each activity a PEPA model gives rise to a stochastic process, specifically a
continuous-time Markov chain (CTMC). The generator matrix,Q, of this CTMC
is “uniformised” with: P = Q/q + I where q > maxi |Qii| and I is the identity
matrix. This process transforms a CTMC into one in which all states have the
same mean holding time 1/q. The required computation for the response-time
distribution is to compute the probability of reaching a set of designated tar-
get states from a set of designated source states. This rests on two key sub-
computations. First, the time to complete n hops (n = 1, 2, 3, . . .), which is an
Erlang distribution with parameters n and q. Second, the probability that the
transition between source and target states occurs in exactly n hops. After gen-
erating the state-space of the model to derive the generator matrix of the CTMC
the required response-time distribution can be computed by uniformisation [6,7].

4.2 Analysis Using ipclib

Because of the strong similarity between FSP and PEPA translating our exist-
ing FSP model into the PEPA language was straightforward. We checked the
consistency of the PEPA model against the FSP model by translating the FSP
logical propositions into PEPA stochastic probes [8] and confirmed that (the
translations of) these propositions held for (the translation of) the model.

We analysed the PEPA model with the ipclib [5] tool suite. We investigated
the response time of the model across a range of feasible rates for each of the
activities performed. Each of the rates can vary independently of the others and
to cover all of the cases being considered we generated more than 300 experi-
mental runs of the ipclib tools with different parameter values. We performed
sensitivity analysis of response-time profiles for the possible parameter values.

We varied the three rates corresponding to the rates at which each subsequent
call attempt is ended either by the customer answering the phone or a timeout.

Safety and Response-Time Analysis 199

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Main::r_wait_answer_1

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Main::r_wait_answer_1

Time

Pr

Fig. 2. Response-time graphs for the accident assistance service

These are the rates r wait answer 1, r wait answer 2 and r wait answer 3.
The analysis tool then produces a group of sensitivity-analysis graphs for each
of the three rates. Each graph in the first group plots the cumulative distribution
function of completing the passage against the varying rate of r wait answer 1
while the other two rates are kept constant. There is one such graph in the
first group for all possible combinations of the two rates r wait answer 2 and
r wait answer 3. Each graph in group one relates the effect that varying the
rate r wait answer 1 will have on the completion of the passage. There must
be one for every combination of the other two rates because the effect that
r wait answer 1 has on the outcome depends upon the values of the other two
rates.

Figure 2 shows two graphs in the first group of sensitivity graphs. In the graph
on the left rates r wait answer 2 and r wait answer 3 are at low values while
in the graph on the right the two rates are held at high values. We see that in
either case the rate of r wait answer 1 does have an effect on the probability of
completion. We can see this because each line in the graph is different resulting
in a ‘warped’ surface plot. The graph on the left is less warped than the graph
on the right. This suggests that varying the rate of r wait answer 1 has more
effect whenever the two other rates are at high values. This is because when those
rates are high, the bottleneck in completing the passage becomes the activities
performed at rate r wait answer 1. When the other two rates are lower they
become the bottleneck and indeed we see that by time t = 15 there is not yet a
probability of approximately 1.

Figure 3 shows two graphs in the third group of sensitivity graphs. These
look similar to the graphs in Figure 2 but we see that they are less warped. This
tells us that r wait answer 3 has less effect on the probability of completing the
passage. This confirms our intuition because the activities which occur at rate
r wait answer 3 are not always performed at all in a successful completion of
the passage. In some cases the driver will answer the phone call at the first or
second attempt. The graph on the left shows the sensitivity of r wait answer 3
when the rates r wait answer 1 and r wait answer 2 are held at low values
and in the graph on the right those rates are held at high values. As before we
see that the varied rate has more effect when the unvaried rates are held high.
Again this confirms our intuition; all of the rates measured here are performed
along the passage and increasing any one of them has a positive effect on the

200 A. Argent-Katwala et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Main::r_wait_answer_3

Time

Pr

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Main::r_wait_answer_3

Time

Pr

Fig. 3. Response-time graphs for the accident assistance service

probability of completion, therefore we expect that when one rate is the slowest
rate varying that rate will achieve more of a performance gain than varying
the already faster rates. Overall from these sensitivity-analysis graphs we can
surmise that if one wishes to increase the performance then it is of most benefit
to increase the rate of the first rate (r wait answer 1) before the others and the
second rate (r wait answer 2) before the final rate (r wait answer 3). However
if any of the rates are significantly slower than the others then that is the rate
which should be increased even if it is r wait answer 3.

We also obtain summary information about all of the experiments performed.
The graph (Figure 4, left) shows best case, worst case, median and the 20-80
percentiles over all response-time graphs. From this we can see that we need to
wait until time 80 to be over 50% confident that the passage will have completed
regardless of the configuration. However at this time the median is above 95%
meaning that in half of the configurations we are very confident that the passage
will have completed. Also at this time removing the worst performing 10% of
the configurations gives us over 80% confidence of completing the passage. Also
from this graph we can see that at time 120 the median begins to approximate
100% confidence that the passage has completed (meaning that in half of the
configurations we can be sure that the passage has completed).

Probability of completion at a time bound can be plotted across the more
than 300 experiments which we performed, leading to a different summary
(Figure 4, right) from which we can make conclusions such as “the probabil-
ity of service being completed by t = 195 seconds is at least 90%, even if all
calls to the driver take the longest time which has been allocated for them”. We
can also see from both styles of summary graphs that the difference between the
best and lowest performing configurations starts off small at low time bounds
where there is little probability of completing the passage regardless of the con-
figuration. As the time increases the gap grows wider until at some point the
worst performing configuration begins to close the gap until eventually there is
a near 100% probability of completing the passage for all configurations. For the
modeller if this peak in the difference occurs at an important time the config-
uration of the real system is very important. On the other hand the modeller
may be given more confidence if this peak occurs before a time bound in which
(for whatever reason) they are particularly interested.

Safety and Response-Time Analysis 201

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180

P
ro

ba
bi

lit
y

Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

Instance Number

time = 15.0
time = 30.0
time = 45.0
time = 60.0
time = 75.0
time = 90.0

time = 105.0
time = 120.0
time = 135.0
time = 150.0
time = 165.0
time = 180.0
time = 195.0

Fig. 4. Summary information for all response-time calculations

5 SENSORIA Development Environment

The previous sections have described qualitative and quantitative methods with
corresponding tools for performing safety and response-time analysis of services.
In order to make these tools available to software engineers in the field, they
have been integrated into the SENSORIA Development Environment (SDE).
The SDE is a modelling, simulation and analysis platform which supports the
integrated evaluation of both functional and non-functional aspects of systems
and services. Based on Eclipse, the SDE may also be integrated with various
other tools available for this platform.

5.1 SDE Features

Being based the OSGi platform underlying Eclipse, the SDE is itself built in
a service-oriented way. Upon installation, tools register themselves in the SDE
core, thereby offering their functionality to all other installed tools, including
orchestrators. Through various integrated tools, the SDE currently offers func-
tionality which falls into these major categories:

– Modelling functionality. This includes graphical editors for familiar mod-
elling languages such as UML, as supported by industry-standard tools such
as the Rational Software Architect, which allow for intuitive modelling on a
high level of abstraction. However, there are also text- and tree-based editors
for process calculi.

– Formal analysis functionality. The SDE offers model checking and nu-
merical solvers for stochastic methods based on process calculi code defined
by the user or generated by model transformation.

The tools presented in this paper offer functionality which falls into the second
category. In particular, the PEPA tools including the SRMC extensions [4] as
well as LTSA and WS-Engineer have been made available as services in the SDE.
They offer the follow functionality:

202 A. Argent-Katwala et al.

– Simulators and Single-Step Navigators which allow the user to inves-
tigate a model and look for modelling errors in the input and unexpected
behaviour in execution related to liveness or reachability problems.

– Model-Checkers which check consistency between the model and an inter-
esting property. In case of errors, a (graphical) violation trace is generated.

– Steady-State and Transient Analysers for performance analysis. These
analysers provide simulation traces showing variation in the states of the
model components over time, and utilisation charts, cumulative distribu-
tion plots and other visualisations which represent graphically the numerical
results computed.

Through scripting, these analyses can be combined, as will be outlined in the
next section.

5.2 Orchestrating Tools with the SDE

During software development and analysis of software systems, it is often desir-
able to run several analyses as a suite, perhaps passing input from one tool to
the other, and gathering and presenting the output in a single place – in other
words, orchestrating tools to perform as a whole.

To enable such orchestrations, the SDE offers the ability to compose installed
tools by means of arbitrary orchestration mechanisms. In particular, we offer the
ability to script such orchestrations by means of JavaScript. An orchestration
may be written as a set of annotated JavaScript functions, thus in effect creating
a new service orchestrating the referenced tools.

As an example, we consider the orchestration of the tools for the methods pre-
sented in the previous sections to perform analysis on the Automotive Accident

function checkUML(umlSource) {

// transform to PEPA
uml2pepa = sCore.findToolById("uml2pepa");
pepaModel = uml2pepa.transform(umlSource);

// perform analysis with PEPA tool
pepa = sCore.findToolById("pepa");
markovChain = pepa.getMarkovChain(pepaModel);
distribution = pepa.getSteadyState(markovChain);
throughput = pepa.getThroughput(markovChain);

// back annotation
uml2pepa.reflect(umlSource, distribution, throughput);

// transform to LTSA FSP (input to WS-Engineer)
uml2ltsa = sCore.findToolById("uml2ltsa");
fspModel = uml2ltsa.uml2fsp(umlSource);

// perform analysis with WS-Engineer
wse = sCore.findToolById("wsengineer");
result = wse.analyse(fspModel);

if (result.hasErrors())
return ltsa.mscFromLTSATrace(result.getTrace());

return umlSource;

}

Fig. 5. Orchestration of the four tools together with JavaScript orchestration code

Safety and Response-Time Analysis 203

Assistance Service. As the orchestration is intended to be used by developers
not too familiar with formal methods, we will start with a UML model and, at
the end, provide back-annotated UML for showing results of the quantitative
analysis with PEPA/SRMC as well as a (graphical) violation trace in case of
errors during the qualitative analysis with LTSA.

The JavaScript code for this orchestration is concise (Fig. 5, right). In the
beginning, we retrieve the tools by unique identifiers, invoke the functions in-
volved, and finally return the combined output to the user. Within the SDE,
a generic wizard handles this call such that users are able to select the input
model graphically using a file open wizard, and also get the results opened in
appropriate editors inside the Eclipse workbench or externally. Thus, it is easy
for developers to employ such orchestrations as part of their work.

6 Related Work

We have considered performance aspects of the accident assistance service previ-
ously [9]. Our work in that earlier paper did not incorporate any model-checking
aspects and dealt only with a simpler version of the accident assistance service
without priority classifications.

Other authors have applied model-checking to analyse automotive safety ser-
vices. In [10] the authors use high-level UML specification that makes use of
domain-specific extensions The on-the-fly model checker UMC [11] is subse-
quently used to verify a set of correctness properties formalized in the action-
and state-based temporal logic UCTL. Subsequently to the authors writing this
paper the UMC model-checker has been made available as a service on the SDE,
opening the possibility of conjoined use with the methods deployed in this paper.

In [12] an on-road assistance scenario is considered where the authors treat the
process of obtaining assistance for a car subsequent to a breakdown (which is not
necessarily a life-threatening accident). The authors formalise the problem in the
COWS process calculus and give a formal treatment of fault and compensation
handling.

Formal model-checking of service compositions has been undertaken mostly
on their implementation, rather than the design of the service itself. For example,
as a result of new standards to define and execute service compositions (such as
the Web Services Business Process Execution Language), model-checking these
has included translation to Finite State Machines, graphs and simulation models.
We have already considered analysing these models in [13], whilst more recently
in [14] using UML Deployment Models to analyse service compositions with
deployment constraints. There has also been some similiar work on UML to
Finite State Machines, particularly Activity Diagrams in [15]. These works also
define a formal semantics for UML Activity Diagrams, but do so with a differing
focus of aligning activities as two or more distributed processes and structure of
roles within activities.

204 A. Argent-Katwala et al.

7 Conclusions

In this paper we presented a co-ordinated analysis of safety properties and the
response-time profile of an automotive accident assistance scenario. We used
the untimed process calculus FSP to express our model of the scenario and
model-checked critical properties using the WS-Engineer tool in the SDE. We
added rate information to convert the FSP model into one in the stochastically-
timed process calculus PEPA. We next converted the FSP logical properties into
stochastic probes on the PEPA model. We then used the PEPA Eclipse Plug-in
to check that the PEPA model which was obtained by translation from FSP
respected the stochastic probes which were obtained by translation from the
FSP logic. The PEPA Eclipse Plug-in confirmed that this was the case. We then
used the ipclib tool suite to perform many response-time evaluations leading
to the quantitative results seen.

Our overarching goal in this work has been to make the outputs from the
formal analysis tools open to inspection by users who are not experts in process
calculi. To this end, reports are often returned in a graphical form such as a
message sequence chart or a graph. Our next goal is to streamline the mod-
elling process by allowing users to express their initial model in a language with
widespread acceptance, such as UML. We have made some progress on this, and
have a scripting infrastructure in place to allow such conversions to be performed
automatically but more remains to be done in this area.

Acknowledgements. The authors are supported by the EU FET-IST Global
Computing 2 project SENSORIA (“Software Engineering for Service-Oriented
Overlay Computers” (IST-3-016004-IP-09)) and the EPSRC PerformDB project
(EP/D054087/1). The ipc/Hydra tool chain has been developed in co-operation
with Bradley, Knottenbelt and Dingle of Imperial College, London.

References

1. Magee, J., Kramer, J.: Concurrency - State Models and Java Programs, 2nd edn.
John Wiley, Chichester (2006)

2. Magee, J., Kramer, J., Giannakopoulou, D.: Analysing the behaviour of distributed
software architectures: a case study. In: 5th IEEE Workshop on Future Trends of
Distributed Computing Systems, Tunisia (1997)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,
M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), pp. 53–54. IEEE Computer Society Press,
Los Alamitos (2007)

5. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quanti-
tative Evaluation of SysTems (QEST), pp. 55–56. IEEE Computer Society Press,
Los Alamitos (2007)

Safety and Response-Time Analysis 205

6. Grassmann, W.: Transient solutions in Markovian queueing systems. Computers
and Operations Research 4, 47–53 (1977)

7. Gross, D., Miller, D.: The randomization technique as a modelling tool and solution
procedure for transient Markov processes. Operations Research 32, 343–361 (1984)

8. Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements
using regular expressions to specify stochastic probes over process algebra mod-
els. In: Proceedings of the Fourth International Workshop on Software and Per-
formance, Redwood Shores, California, USA, pp. 49–58. ACM Press, New York
(2004)

9. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172–185
(2006)

10. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: Proceedings of the 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, pp.
613–622. ACM Press, New York (2008)

11. UMC model checker (2008), http://fmt.isti.cnr.it/umc/
12. Lapadula, A., Pugliese, R., Tiezzi, F.: Specifying and analysing SOC applications

with COWS. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 701–720. Springer, Heidelberg (2008)

13. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web
Service Compositions. In: Proc. of the 18th IEEE Int. Conference on Automated
Software Engineering, pp. 152–161. IEEE Computer Society Press, Los Alamitos
(2003)

14. Foster, H., Emmerich, W., Magee, J., Kramer, J., Rosenblum, D., Uchitel, S.:
Model Checking Service Compositions under Resource Constraints. In: The Eu-
ropean Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2007) (2007)

15. Badica, C., Badica, A., Litoiu, V.: Role activity diagrams as finite state processes.
In: Second International Symposium on Parallel and Distributed Computing (2003)

http://fmt.isti.cnr.it/umc/

A Framework for Analyzing and Testing the
Performance of Software Services

Antonia Bertolino1, Guglielmo De Angelis1, Antinisca Di Marco2, Paola Inverardi2,
Antonino Sabetta1, and Massimo Tivoli2

1 ISTI-CNR, Pisa, Italy
{antonia.bertolino,guglielmo.deangelis,

antonino.sabetta}@isti.cnr.it
2 Università dell’Aquila

Dipartimento di Informatica, via Vetoio, L’Aquila, Italy
{adimarco,inverard,tivoli}@di.univaq.it

Abstract. Networks “Beyond the 3rd Generation” (B3G) are characterized by
mobile and resource-limited devices that communicate through different kinds
of network interfaces. Software services deployed in such networks shall adapt
themselves according to possible execution contexts and requirement changes. At
the same time, software services have to be competitive in terms of the Quality
of Service (QoS) provided, or perceived by the end user.

The PLASTIC project proposes an integrated model-based solution to the de-
velopment and maintenance of services deployable over B3G networks. Notably,
the PLASTIC solution includes formal techniques that combine predictive and
empirical evaluation of QoS-aware services.

In this paper we provide an overview of the PLASTIC approach to the assess-
ment of QoS properties. Referring to a complex eHealth service, we first gen-
erate and analyze performance models to establish requirements for stand-alone
services. Then we use an empirical technique to test the QoS of an orchestration
of services even when the actual implementations of the orchestrated services are
not available.

1 Introduction

The promise of the Service Oriented Architecture (SOA) paradigm is to enable the
dynamic integration between applications belonging to different, globally distributed
enterprises, connected through heterogeneous B3G (Beyond 3rd Generation) networks.
B3G service-oriented applications, as well as communication networks and embedded
systems [1], require to consider extra-functional characteristics as a critical aspect of
software development [2].

The openness of the B3G environments naturally leads the SOA paradigm to pursue
mechanisms for specifying the provided levels of Quality of Service (QoS) and for
establishing Service Level Agreements (SLAs) on them.

In addition, context-awareness and adaptation are key features for B3G services that
are to be deployed in different environments and on hardware platforms with differ-
ent characteristics. Applications must be able to react to context changes and to adapt

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 206–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for Analyzing and Testing the Performance of Software Services 207

themselves to continue to provide services within the levels of QoS that were previously
agreed.

Let us consider the typical case of a service provider who is to offer a certain service
(S∗) to their clients according to QoS levels ratified in form of SLAs. In order to do
so, the service provider could orchestrate a number of other services (S1 . . . Sn), which
may be either under their direct control, or may be provided by third parties. However,
usually the life-cycle of service S∗ is independent of the life-cycle of the aggregated
services Si. For example, the actual implementation of some Si could not be used dur-
ing the development or the testing of S∗ because they are developed concurrently with
S∗ or because using them would imply additional costs or undesired side-effects (e.g.,
undesired writes on a DB). Furthermore, the binding between S∗ and Si is defined at
run-time. Therefore, assessing the properties of a service out of the properties of its con-
stituents is a complex task, which limits the possibility to define SLAs for the developed
service.

Traditional approaches applied to the development, the deployment and the mainte-
nance of SOAs do not provide adequate support to these needs in terms of languages,
methods, and tools. Nevertheless, in recent years much research has been devoted to
methodologies for QoS evaluation, including predictive and empirical techniques [3].

In this respect, the main target of the PLASTIC project [4] is an integrated model-
based solution supporting both the development of services deployable over B3G net-
works, and the definition of their related SLAs. The key idea of the project is that the
QoS characteristics of the network and of the devices should be visible at the level
of services. The solution proposed in PLASTIC includes formal techniques for both
predictive and empirical evaluation of QoS-aware services.

Predictive techniques span methodologies and tools that can be exploited by ser-
vice providers to guide the design starting from the earliest phases of the service de-
velopment. These methodologies can provide predictive assessments on whether the
proposed software solution is likely to meet the expected performance goals.

Also, in order to construct an efficient and effective application, developers should
test it in advance in all possible network scenarios. However, at development time it is
difficult to anticipate all possible configurations in which a service will be executed. An
empirical solution for the off-line validation consists in providing a testbed in which
the behavior of the underlying platform and of the network can be simulated in a re-
alistic way. In particular, starting from the performance requirements of the services
orchestrated to form a composite service, it is possible to automatically validate the
performance requirements of the resulting composite service hence making it possible
to define appropriate SLAs for it.

In this paper we provide an overview of the PLASTIC approach to the assessment of
QoS (performance) properties. We describe the predictive technique to assess the QoS
properties for stand-alone services under development, and the empirical technique to
test an orchestration of these services when their actual implementations are not yet
available. The combination of such techniques is illustrated through the design and the
implementation of an eHealth service that satisfies performance requirements.

The remainder of the paper is structured as follows: Sect. 2 introduces the PLAS-
TIC development process; Sect. 3 describes how to model an eHealth Service within

208 A. Bertolino et al.

PLASTIC; Sect. 4 and Sect. 5 respectively describe the predictive and empirical ap-
proaches used to assess the QoS of the modeled eHealth example. Conclusions and
future work are given in Sect. 6.

2 Development Process

In order to address in a comprehensive way the challenges in the development of B3G
applications, a new development process model has been devised [5] in the context of
the PLASTIC project (see Figure 1).

Fig. 1. The PLASTIC development process

All the activities in this process originate from the PLASTIC Conceptual Model
[4,6], which provides a shared conceptual foundation for the construction of a
Service Model. A Service Model involves the specification of both functional and extra-
functional aspects1 (see Functional Service Specification and the Extra-Functional Ser-
vice Specification in Figure 1).

Based on such a service model, the PLASTIC process is structured into four main
flows of activities (see Figure 1).

Flow 1 shows the generation of analysis models [8,9,10,11], which enable the QoS
analysis of the service under development. This flow consists in the performance analy-
sis process executed starting from the early phases of the software lifecycle. The aim
of this activity is twofold: (i) to verify the service model with respect to QoS require-
ments, and (ii) to generate QoS models that the service can use later, at run time, in
order to monitor the desired QoS and trigger adaptation when, e.g., the QoS level de-
grades due to possible context changes. The model-to-model (M2M) generation and

1 We use the term extra-functional, as opposed to non-functional, following the terminology
of [7].

A Framework for Analyzing and Testing the Performance of Software Services 209

the evaluation of the QoS models are automated and executed through a combination
of tools (e.g. UML to Queueing Networks transformations engine – uml2qn), whereas
the interpretation of results and feedback provision is still a human activity.

Flow 2 represents the automated generation of the skeleton implementation of the
service from both M2M, and model to code (M2C) transformation engines. Specifically,
this flow concerns the development of both the core code and the “adaptable” code of a
service. The core code is the frozen unchanging portion of a self-adapting service (e.g.,
its required/provided interface). On the contrary, the adaptable code embodies a certain
degree of variability making it capable to evolve (e.g., the logic of a service operation
that depends on available resource constraints). This code portion is evolving in the
sense that, based on contextual information, the variability can be solved with a set of
alternatives (i.e., different ways of implementing a service) each of them suitable for a
particular execution context. An alternative can be selected by exploiting the analysis
models available at run-time.

Flow 3 on the right-hand side of the figure represents the off-line validation, which
concerns validation at development time. In this phase services are tested in a simulated
environment that reproduces functional and/or extra-functional run-time conditions.

Flow 4 concerns the on-line validation that consists in testing a service when it is
ready for deployment and final usage. In particular, the PLASTIC validation framework
supports validation during live usage stage, in which service behaviours are observed
during real execution to reveal possible deviations from the expected behaviour. On-line
validation can cover both functional and extra-functional properties.

All these four flows heavily rely on model-to-model and model-to-code automatic
transformations.

The final result of this process is a deployable service code [12,13,14] that, through
the support of the analysis models, has the capability to adapt to heterogeneous devices
while still providing the previously agreed level of QoS. The service modeling is based
on a UML profile that we have defined as a partial concrete implementation of the
PLASTIC Conceptual Model.

3 Application Scenario: The eHealth Service

In this section we describe how to model an eHealth Service using the PLASTIC pro-
file. In the following, we focus on the modelling views that contain useful information
(i.e., stereotypes and tagged values) for performance analysis and testing methodolo-
gies [9,15] as we will introduce later.

We will focus on the specification of a Panic Button Scenario (PBS): the alarm is
triggered when a patient’s panic button is pressed in case of emergency. The eHealth
Service (eHS) is in charge of handling the PBS work flow, response time and interaction
among the different parties (i.e., patient, relatives or doctors) that are involved. Criti-
cal decisions, such as establishing the severity of the emergency, are taken by health
specialists. An eHealth (sub-)service deployed on the patient’s side monitors the vital
parameters of the patient. When the patient presses the panic button, the system reg-
isters the patient’s vital parameters into the eHealth database. At the same time, at the
patient’s side, a beeper is turned on to notify the patient that the alarm is being handled

210 A. Bertolino et al.

by the Service Manager. An internal counter is started to handle an “unknown” event.
The eHealth database is scanned to search the most suitable supervisor to attend the
patient, and a request is sent to the call center. Depending on the response of the call
center, an alternative supervisor is requested or the event is assigned. The authorized
supervisor is driven to set up the severity of the event by means of phone call. In some
cases, the supervisor can also interact with the patient by means of cameras (e.g. the
call fails, the patient cannot interact with the voice). Once the severity is set, an appro-
priate service must be composed to provide both, medical attention and response time
according to the specific request, illness or accident.

The PLASTIC Service Model for eHS is composed of several views used to structure
the UML design in packages. These views span from requirement view to implemen-
tation (i.e., component-oriented implementation) and deployment views, through the
service view. Due to the lack of space, in the following we detail only the views that
allow performance analysis and testing. For further details we refer to [4] where the
service model is completely described with minor modifications.

Service View. The definition of the services that build up the PLASTIC application is
given from both the structural and the behavioral perspectives. In particular, a Struc-
tural View is given by means of Service Description Diagrams (SDescrD) that show
the ServiceDescriptions (e.g., ServiceManager, Patient Interactor Service) that may be
combined on demand (ServiceComposition or ServiceUsage dependency from compos-
ite client to composite supplier services) and collaborate to provide the mobile eHealth
Service, as illustrated in Figure 2.

Fig. 2. The eHealth Service Description Diagram

The key concept is the ServiceDescription, which is the base structural unit for the
description of PLASTIC applications at service level. It is a stereotype extending the
UML2 Interface meta class. It provides some OperationSpecifications that, together,
define what the user can request from its PLASTIC enabled device (e.g., doctors’ or
call center staff’s laptop or PDA). For the sake of clarity, in Figure 2, we show the
OperationSpecifications only for eHealthService and omit the ones for the other Ser-
viceDescriptions.

Once all ServiceDescriptions have been specified, a number of business process
descriptions have to be provided. Each of them describes the interactions (i.e., ser-
vice orchestration) between the ServiceDescriptions identified in the SDescrD. These

A Framework for Analyzing and Testing the Performance of Software Services 211

interactions model the behavior of a composite service operation. The composite service
is the one obtained by composing the services in the SDescrD as specified by the set of
business process descriptions. In particular, for each usage scenario of a composite ser-
vice (e.g., the AlarmHandling use case of the PLASTIC eHealth service application), a
Business Process Description Diagram (BPDD) has to be specified to describe the in-
teractions (as Actions that refer to the already specified OperationSpecification) among
the involved ServiceDescriptions.

As introduced above, one of the role played by the BPDD is describing the orchestra-
tion of different services. In this sense, the BPDD acts as the BPEL specification [16].
Nevertheless, BPDD also defines a well-structured set of annotations and tags that can
be used in order to stereotype the elements described into the models. Differently from
BPEL, such annotations can be instantiated at design time and then exploited for extra-
functional analysis (e.g. performance or reliability analysis).

In Figure 3 the ConversationSpecification that realizes the behavior of the AlarmHan-
dling use case is shown. At the bottom of Figure 3 there are two behaviors, Serious and
Mild Medical services, that refer to two corresponding (sub-)BPDDs.

Fig. 3. The BPDD representing the service orchestration

Component View. In PLASTIC, a service can be implemented by one or more software
components and, in turn, a software component can be used to implement one or more
services. The PLASTIC Profile provides modeling constructs aimed at describing the
component-based software architecture that implements a given service. Such descrip-
tion is organized in a Component View in turn distinguished into Structural View and
Behavioral View.

Service Specification Diagrams (SSD) are introduced for defining the components
implementing a ServiceDescription. Such diagrams are extensions of UML2 Class Di-
agrams and a number of new modeling constructs are provided, as detailed in Figure 4.
The ServiceRealization stereotype is introduced to link ServiceDescription stereotyped
interface and ComponentSpecification stereotyped components to describe how services
are implemented in terms of software components. Moreover, by means of the SSD the
designer can specify the contexts in which the service will be able to adapt. In particu-
lar DeviceContextSpecification elements are used to describe the possible devices (e.g.,
doctor’s mobile or laptop). Each tag of such stereotypes refers to an available resource

212 A. Bertolino et al.

Fig. 4. The Service Specification Diagram for the Doctor Service

specification of the Resource package. The DeviceContextSpecification is then linked
to adaptable services by means of ServiceAdaptation relationships.

Once the ComponentSpecifications of the components implementing the service be-
ing modeled have been given, their interactions have to be specified. The PLASTIC
profile provides the designer with Elementary Service Dynamics Diagrams (ESDD) to
model the interactions among the involved components (specified in the structural view
by means of ComponentSpecification elements). Each ESDD is a suitably stereotyped
UML sequence diagram annotated with information useful for performance analysis
purposes, e.g., latency, worst-case execution time, reliability (probability of failure), or
maximum number of simultaneous invocations of a component operation.

Figure 5 shows the Elementary Service Dynamics Diagram, i.e., the interaction be-
tween component instances providing the AlarmManagement uml.Action defined in
Figure 3. Additional information (i.e., stereotypes with their own tags) is introduced for
the sake of performance analysis.

4 Performance Model Generation and Analysis

In PLASTIC a service can be either a composition of other services or a basic one imple-
mented by an assembly of components. For a composite service, the performance analy-
sis can be conducted both at the service composition level (abstract view of
the service) and at the component level (detailed view of the service). For a stand-alone
service, instead, the analysis can be only conducted at the component level.

The analysis process is composed by three steps: (i) generation of performance mod-
els from the Service Model through Model-to-Model transformation; (ii) evaluation of
the generated performance models through solvers to obtain performance indices (e.g.,
response time); (iii) interpretation of the performance indices and possible production
of feedbacks on the Service Model to improve the performance. The performance model
that the service may use at run time is the last one generated during the analysis process.

In the following we first briefly recall what the SAP•one methodology [9] is (see
Sect. 4.1) and then we show how to use it to analyze service performance at the compo-
nent level. On the result of this analysis a provider might base the definition of the SLA
of a service operation. In Sect. 4.2 we describe the analysis process of the alarmMan-
agement operation of the ServiceManager service.

A Framework for Analyzing and Testing the Performance of Software Services 213

Fig. 5. The Elementary Service Dynamics Diagram for the Alarm Management

We used the approach several times to define the SLA concerning the mean response
time for the operations of the services that have been composed (see Figure 3) into the
PLASTIC eHealth composite service in order to implement the AlarmHandling func-
tionality.

4.1 The Used Analysis Approach and Tools

The performance analysis is carried out by means of two tools: MOSQUITO and
WEASEL.

MOSQUITO (MOdel driven conStruction of QUeuIng neTwOrks) [17] is a model
transformation tool that generates Queuing Networks (QNs) starting from the PLASTIC
Service Model. The model creation in MOSQUITO is based on two different methodolo-
gies: SAP•one [9] and Prima-UML [8]. In this work we use only the SAP•one method-
ology, hence details on the Prima-UML approach are omitted.

The SAP•one methodology, implemented by MOSQUITO, defines translation rules
that map UML architectural patterns (identified in the Component View) into QN pat-
terns. The target model is generated by composing the identified QN patterns suitably
instantiated according to the particular scenario. To carry on the performance analysis,
additional information generally missing in the software architecture description needs
to be annotated on the software system model. Such data are strictly related to the per-
formance aspects and are used both in the QN parameterization and in the workload de-
finition. They are: the operational profile of the system that models the way the system

214 A. Bertolino et al.

will be used by the users (i.e. the distribution of frequencies of invocation of service’s
use cases by the service consumer); the workload entering the system as the estimated
number of requests made to system components (modelled as service centers); the ser-
vice demand of a request to the system components; the performance characterization
of the system components represented by attributes such as service rate, scheduling
policy, waiting queue capacity.

SAP•one associates each QN service center to a software component, and the QN
customers represent the different requests that users make to the software system. The
QN topology reflects the one of the Service Specification Diagram. Each ESDD is
processed to lump the behavior that it represents into a class of jobs of the QN (i.e.
a chain). In other words, a job traverses the network following the behavior described
by the diagram it comes from. The workload of each chain is extracted from the anno-
tations in the Use Case Diagram.

After that, by using MOSQUITO (hence following the SAP•one methodology), a QN
model has been built, the WEASEL tool is used to solve the generated QN model in order
to predict performance indexes. WEASEL [18] (a WEb service for Analyzing queueing
networkS with multiplE soLvers) offers a Web Service that solves QN models specified
in PMIF [19] format, using several off-the-shelf QN solvers (e.g., MVA-QFP [20] and
SHARPE [21]). The performance measures are presented to the client as a text file in
the original output format of the selected tool.

4.2 Performance Analysis of the alarmManagement

The alarmManagement action in Figure 3 must satisfy the following performance re-
quirement2: the average response time of alarmManagement must not exceed 10 sec-
onds when the triggered alarms in the system are less than 100.

To perform the analysis, we have used the SAP•one methodology. This means that
the service has been considered at the component level where the alarmManagement
action is implemented by components’ interactions as specified in the Component View
of the service model [4].

We generated the performance model (at the software architecture level) of the alar-
mManagement design by means of MOSQUITO using the SAP•one approach.

The obtained queuing network has been then evaluated via WEASEL where the se-
lected solution technique was Exact MVA implemented in the MVA Queuing Formal-
ism Parser [20].

For the FirstDesign, we analyze the mean response time as the number of alarm
requests arriving to the system grows from 50 to 300. The proposed design did not
satisfy the requirement. The system response time reaches 10 seconds with only 65
alarms. Moreover, the analysis highlighted that a database component is the bottleneck
of this system design, hence to improve the system response time we should lighten the
load offered to the database.

We produced the second design alternative by modifying the alarmManagement de-
sign as follows. In the dynamics model of Figure 5, the Service Manager Logic accesses
the database twice to retrieve information on the two supervisors of the patient in trou-
ble. This can be optimized by introducing in the database interface a new method that

2 This requirement has been agreed by the customer together with the domain experts.

A Framework for Analyzing and Testing the Performance of Software Services 215

retrieves the information of all the supervisors of the patient. The call of this method
substitutes the first call of the method used to get information about only one single
supervisor, while the second call can be removed. In this way we reduce the load to the
database.

On this design alternative, i.e., SecondDesign, we repeated the analysis and the re-
quirement was satisfied since for the alarmManagement and the visualCheck operations
we predicted a mean response time respectively equal to 7.25s and to 4.83s when the
number of triggered alarms is 100. On the other hand, the mean system response time
was 10 seconds when the alarmManagement operation handles 126 concurrent alarms.

5 Performance Testing

Following the design and analysis stages described above, the subsequent step in de-
veloping B3G services consists in early testing them within a simulated environment,
which we referred to in Figure 1 as off-line validation. When developing a service or-
chestration, the composition of the external services must be tested both to validate
that the implementation respects the functional contracts in place, and to evaluate if it
actually meets the expected quality levels. Clearly the QoS offered by a composition
not only depends on its implementation, but is also affected by the quality levels of the
composed services. Furthermore, when the interaction happens through complex mid-
dlewares, the application of analytical techniques such as the one described above to
derive the exposed extra-functional properties is not always feasible, since the model-
ing of such infrastructures is particularly difficult and error prone. This task becomes
even harder when the analytical models of the platform have to be defined from scratch.

Testers may rely on empirical approaches when all the composed services are avail-
able, and can be also arbitrarily accessed at development time for testing purposes.
However, in general this solution is applicable only in few lucky cases. In fact, com-
monly at least some of the external services are either not available at all (for instance
simply not implemented, yet), or their usage comes along with unwanted side-effects
(for instance utilization fees or database modifications). To circumvent this problem, in
PLASTIC we provide support to the automatic derivation of testbeds to be used in the
place of the real composed service.

In the following we present the proposed approach for the empirical evaluation of
QoS properties of a composite B3G service and its application to the eHealth example
described in Sect. 3. The approach relies on the specification of reasonable agreements
on the extra-functional properties.

In a global view of the PLASTIC process, the performance bounds expected at design
time, as derived by the analytic approach presented in Sect. 4.2, are exploited to infer
the agreements used for testing the implementation of the orchestration described in
Figure 3.

5.1 PUPPET

As discussed in Sect. 4, predictive approaches are crucial during the design and the
development of a software system, to shape the quality of the final product [22]. But

216 A. Bertolino et al.

increasingly modern applications are deployed over complex platforms (i.e., the mid-
dleware), which introduce many factors influencing the QoS and not always easy to
model in advance. In such cases, empirical approaches, i.e., evaluating the QoS via run-
time measurement, could help smoothing platform-dependent noise. However, such ap-
proaches require the development of expensive and time consuming prototypes [23], on
which representative benchmarks of the system in operation can be run.

For example, testers may be interested in assessing that a specific service implemen-
tation can afford the required level of QoS (e.g., latency and reliability) when playing
one of the roles in a specified choreography or when used in composition with other
services (orchestration).

As we discussed in [15], there is large room for the adoption of empirical approaches
when model-based code-factories can be used to automatically generate a running
prototype from a given specification. In particular, as we argued in [15,24,25], given
the high availability of standardized computer processable information, Web Services
(WSs) and related technologies (e.g. WSDL, WS-BPEL, WS-CDL, WS-Agreement,
WSLA) yield very promising opportunities for the application of empirical approaches
to QoS evaluation.

In this direction, PUPPET (Pick UP Performance Evaluation Testbed) [15] is a code-
factory which realizes the automatic derivation of testbeds for evaluating the desired
QoS characteristics for a service under development, before it is deployed.

Fig. 6. PUPPET: The approach

PUPPET relies on the availability of the QoS specification of both the service under
evaluation and the interacting services. Such assumption is in line with the increasing
adoption of formal contracts to establish the mutual obligations among the involved
parties and the guaranteed QoS parameters, which is referred to as the SLA for the
WSs. For example, Figure 6 depicts the case when 3 different stubs are generated
during pre-testing activities. Each stub is derived from a model describing the public
interface of the remote services (WSDL), and the contracted SLA. During the testing
activities, testers can bind the resulting stubs to the Service Under Test (SUT) using
them as a testbed.

In [24], PUPPET was extended with a module able to include into the stubs also the
emulation of the supposed functional behavior. In this case, the functional behavior of
a service is described by means of the Symbolic Transition System (STS) models as
described in [26]. Specifically, for each received invocation, the service stub can query

A Framework for Analyzing and Testing the Performance of Software Services 217

the STS model and choose one of the possible functionally correct results, sending it
back to answer the service client request.

Also, possible dynamic transformation of the network topology and, consequently,
of the configuration of the environment must be taken into account when developing
a networked service, especially in the off-line testing phase. In B3G, the most typical
context change is due to the movement of nodes hosting services. Correspondingly,
latest work extends PUPPET adding a module that plugs into the generated stubs the
mobility emulation of the node hosting the service. The detailed description of this
module is given in [25].

5.2 Performance Testing of the eHealth Service

Let us consider again the BPDD in Figure 3, and let us assume that the orchestration it
describes is going to be implemented in parallel with the development of the four ser-
vices it composes (i.e. eHealthService, Patient, ServiceManager, PatientInteractor). The
problem that we want to solve here is how to test the performance of the orchestrated
service even when just models of the composed services are available but the actual
implementations are not (or we do not want to access to avoid undesired side-effects).

A possible solution to this problem is to use PUPPET to build stubs of the orches-
trated services. As mentioned in Sect. 5, PUPPET ensures by construction that the extra-
functional behavior exhibited by each generated stub conforms to the guaranteed levels
expressed in a SLA.

1 ...
2 <wsag:GuaranteeTerm ... wsag:Obligated="

ServiceProvider">
3 <wsag:ServiceScope wsag:ServiceName="

ServiceManager">
4 <puppetScope:PuppetScope>
5 <puppetScope:Method>
6 <NameMethod>alarmManagement</

NameMethod>
7 </puppetScope:Method>
8 </puppetScope:PuppetScope>
9 </wsag:ServiceScope>

10 ...
11 <wsag:ServiceLevelObjective>
12 <puppetSLO:PuppetSLO>
13 <puppetSLO:Latency>
14 <value>14500</value>
15 ...
16 </puppetSLO:Latency>
17 </puppetSLO:PuppetSLO>
18 </wsag:ServiceLevelObjective>
19 ...

–A–

1 ...
2 public class ServiceManagerSoapBindingImpl {
3 ...
4 public void alarmManagement (...
5 ...
6 Density D = new Density();
7 Double sleepValue = D.gaussian(14500-(

System.currentTimeMillis()-
cOmMoNinvocationTime));

8 if (sleepValue >= 0)
9 try {

10 Thread.sleep(sleepValue.longValue());
11 } catch (InterruptedException e) {}
12 ...

–B–

Fig. 7. alarmManagement : SLA and Generated Code into the Service Stub

Figure 7.A shows an example on how the QoS indexes obtained by the performance
analysis prediction can be instantiated in an SLA. Specifically, line 2 asserts that the
term of the SLA is a service-side constraint that is applicable to the service ServiceM-
anager (line 3) on the operation alarmManagement (line 6). Figure 7.B depicts

218 A. Bertolino et al.

the portion of the stub that PUPPET automatically generates with respects to the given
SLA. The operational semantic we give in PUPPET to emulate the clauses on latency
is defined in terms of a random and normally distributed sleeping period drawn in the
range between 0 and the maximum expected time by the operation [15,24]. In this ex-
ample, the stub emulates a service guaranteeing that its mean elapsed time conforms
to the index defined in Sect. 4. Thus in Figure 7.A at line 14 we imposed the max
elapsed time as 14500ms which means emulating the mean response time in 7250ms.

Note that in the stubs either the combined emulation of different QoS properties (e.g.
latency with reliability), or the emulation of other aspects of the service (e.g. the func-
tionality or the mobility) may affect the emulation of the latency clause. PUPPET solves
these issues reducing at run-time the maximum latency time with the time elapsed em-
ulating other aspects. Such delta is calculated as the difference between the timestamp
executing instructions at line 7 of Figure 7.B and the timestamp marked when the
operation is called.

The goal of the approach presented here is limited to evaluating technical constraints
that form the basis on which a SLA can be defined. However, in a more general setting, a
SLA is more than just (a set of) technical constraints. Indeed, a number of non-technical
aspects (legal clauses, penalties for violations, business strategies) play an important
role in making contractually-agreed service provision a viable solution. A more gen-
eral discussion of the problems related to establishing and enforcing a SLA as a legal
contract is beyond the scope of this work, but can be found in [27].

6 Conclusion

B3G networks are characterized by a distributed, heterogeneous and mutable nature,
which poses difficult problems in developing service-oriented systems. An additional
challenge arises when such systems must meet precise QoS requirements.

Several European research projects, such as ASG [28], COMET [29], MADAM [30],
MUSIC [31], SeCSE [32], recognized that it is certainly no longer possible to propose
solutions without adequate specification and validation of QoS features, especially in
heterogeneous and networked services contexts.

In particular, the SeCSE project exploits service specifications describing semantics
and QoS information in order to guide the test phase, proposing tools for the automatic
generation and execution of test cases. The exploitation of QoS-awareness in the context
of highly dynamic systems is also a key feature of the MADAM project. The objectives
of the project include the development of an adaptation theory and a set of reusable
adaptation strategies and mechanisms to be enacted at run-time. Context monitoring is
used as the basis for decision making about adaptation, which is managed to a large
extent by generic middleware components.

The PLASTIC project tackled these challenges by defining a platform and introduc-
ing a comprehensive process for developing lightweight and QoS-aware services. This
process spans the design, the predictive analysis and the validation of services, taking
into account both functional and extra-functional characteristics.

With respect to the problem of the assessment of QoS properties, this paper shows
how to fruitfully combine predictive and analytical approaches with empirical ones. In

A Framework for Analyzing and Testing the Performance of Software Services 219

particular, it described how to link the results of those phases that are typical of the
earliest stages of the service development process (i.e. performance model generation
and analysis) with the input of those phases that characterized the latest parts of the
development process (i.e. testing techniques and testing support tools).

It is important to remark that such integration was possible because all the common
entities, the relations among the entities, as well as the artifacts and the extra-functional
properties they model were formally defined and structured in the PLASTIC concep-
tual model [4,6]. In such a way it is ensured that the information captured and defined
starting from the early phases of the software lifecycle can be referred and reused at
each stage of the software development.

The application of the described approaches to a real world case study will further
permit to refine and validate the whole framework. Specifically, in collaboration with
the industrial partners of the PLASTIC project, we are applying the PLASTIC develop-
ment process on wider and more complex case studies.

Acknowledgements. The authors wish to thank Andrea Polini for his contribution to
the research on PUPPET, and Luca Berardinelli for his contribution in modeling the
eHealth example. This work was supported in part by the PLASTIC Project (EU FP6
STREP n. 26955) and in part by the TAS3 Project (EU FP7 CP n. 216287).

References

1. Bertolino, A., Bonivento, A., De Angelis, G., Sangiovanni Vincentelli, A.: Modeling and
Early Performance Estimation for Network Processor Applications. In: Proc. of 9th MoD-
ELS. Springer, Heidelberg (2006)

2. Ludwig, H.: WS-Agreement Concepts and Use – Agreement-Based Service-Oriented Archi-
tectures. Technical report, IBM (2006)

3. Woodside, M., Franks, G., Petriu, D.: The future of software performance engineering. In:
FOSE 2007: 2007 Future of Software Engineering, pp. 171–187. IEEE Computer Society
Press, Los Alamitos (2007)

4. PLASTIC Project: (EU FP6 STREP n. 26955), http://www.ist-plastic.org
5. Autili, M., Berardinelli, L., Cortellessa, V., Di Marco, A., Di Ruscio, D., Inverardi, P., Tivoli,

M.: A development process for self-adapting service oriented applications. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 442–448. Springer,
Heidelberg (2007)

6. Autili, M., Cortellessa, V., Di Marco, A., Inverardi, P.: A conceptual model for adaptable
context-aware services. In: WS-MaTe 2006 (2006)

7. Bass, L., Clements, P., Kazman, R.: Quality Attributes. In: Software Architecture in Practice,
ch. 4, pp. 75–91. Addison-Wesley, Reading (1998)

8. Cortellessa, V., Mirandola, R.: PRIMA-UML: a Performance Validation Incremental
Methodology on Early UML Diagrams. Science of Computer Programming 44(1), 101–129
(2002)

9. Di Marco, A.: Model-based Performance Analysis of Software Architectures. PhD thesis,
University of L’Aquila (2005)

10. Di Marco, A., Mascolo, C.: Performance Analysis and Prediction of Physically Mobile Sys-
tems. In: ACM WOSP, Buenos Aires (Argentina) (2007)

11. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of UML based software
models. In: ACM WOSP, pp. 302–309 (2002)

http://www.ist-plastic.org

220 A. Bertolino et al.

12. Inverardi, P., Mancinelli, F., Nesi, M.: A declarative framework for adaptable applications in
heterogeneous environments. In: ACM SAC (2004)

13. SEA Group: (The Chameleon Project),
http://www.di.univaq.it/chameleon/

14. Autili, M., Di Benedetto, P., Inverardi, P., Mancinelli, F.: A resource-oriented static analysis
approach to adaptable Java applications. In: Proc. of CORCS 2008 (IEEE/COMPSAC 2008).
IEEE Computer Society Press, Los Alamitos (to appear, 2008)

15. Bertolino, A., De Angelis, G., Polini, A.: A QoS Test-bed Generator for Web Services. In:
Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 17–31.
Springer, Heidelberg (2007)

16. IBM: BPEL4WS, Business Process Execution Language for Web Services, v.1.1 (2003)
17. MOSQUITO: (User manual),

http://sealabtools.di.univaq.it/SeaLab/MosquitoHome.html
18. WEASEL: (User manual),

http://sealabtools.di.univaq.it/SeaLab/Weasel/
19. Smith, C.U., Llado, C.M.: Performance model interchange format (pmif 2.0): XML defini-

tion and implementation. In: QEST 2004 Proceedings, pp. 38–47. IEEE Computer Society
Press, Los Alamitos (2004)

20. Chereddi, C.: Mean Value Analysis for Closed, Separable, Multi Class Queueing Networks
with Single Server & Delay Queues (2006)

21. Sahner, R.A., Trivedi, K.S.: SHARPE: Symbolic Hierarchical Automated Reliability and
Performance Evaluator, Introduction and Guide for Users (2002)

22. Smith, C., Williams, L.: Performance Solutions: A practical Guide To Creating Responsive,
Scalable Software. Addison Wesley, Reading (2001)

23. Liu, Y., Gorton, I.: Accuracy of Performance Prediction for EJB Applications: A Statistical
Analysis. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS, vol. 3437, pp. 185–198.
Springer, Heidelberg (2005)

24. Bertolino, A., De Angelis, G., Frantzen, L., Polini, A.: Model-based Generation of Testbeds
for Web Services. In: Suzuki, K., Higashino, T., Hasegawa, T., Ulrich, A. (eds.) TestCom/-
FATES 2008. LNCS, vol. 5047, pp. 266–282. Springer, Heidelberg (2008)

25. Bertolino, A., De Angelis, G., Lonetti, F., Sabetta, A.: Let The Puppets Move! Automated
Testbed Generation for Service-oriented Mobile Applications. In: Proc. of the 34th eμ-
SEAA, Parma, Italy. IEEE Computer Society Press, Los Alamitos (to appear, 2008)

26. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-Based Test-
ing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006.
LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

27. Skene, J., Skene, A., Crampton, J., Emmerich, W.: The Monitorability of Service-Level
Agreements for Application-Service Provision. In: Proc. of WOSP 2007, pp. 3–14 (2007)

28. ASG: (EU IST FP6), http://asg-platform.org/
29. COMET: (EU IST FP6), https://www.comet-consortium.org/
30. MADAM: (EU IST FP6), http://www.ist-madam.org
31. MUSIC: (EU IST FP6), http://www.ist-music.eu/
32. SeCSE: (EU IST FP6), http://secse.eng.it

http://www.di.univaq.it/chameleon/
http://sealabtools.di.univaq.it/SeaLab/MosquitoHome.html
http://sealabtools.di.univaq.it/SeaLab/Weasel/
http://asg-platform.org/
https://www.comet-consortium.org/
http://www.ist-madam.org
http://www.ist-music.eu/
http://secse.eng.it

A Framework for Contract-Policy Matching Based on
Symbolic Simulations for Securing Mobile Device

Application �

Paolo Greci1, Fabio Martinelli1, and Ilaria Matteucci1,2

1 IIT CNR, Pisa, via Moruzzi, 1 - 56125 Pisa, Italy
2 CREATE-NET, Trento, Italy

fabio.martinelli@iit.cnr.it, ilaria.matteucci@iit.cnr.it

Abstract. There is a growing interest on programming models based on the no-
tion of contract. In particular, in the security realm one could imagine the situation
where either downloaded code or software service exposes their security-relevant
behavior in a contract (that must to be fulfilled). Assuming to have already a
mechanism to ensure that the program/service adheres to the contract, it just re-
mains to check that the contract matches with the user security policy. We refer
to this testing procedure as contract-policy matching.

We specialize this framework in the ambit of mobile devices. The contract and
the user policy are formally expressed by using (symbolic) transition systems.

Then, contract-policy matching amounts to simulation checking, i.e., a con-
tract transition system is simulated by a policy one. This means that we check if
for each transition corresponding to a certain security action of the contract (and
so possibly performed by the program), the policy system has a similar transition
and resulting contract system is again simulated by the resulting policy one.

Showing some running examples, we eventually present an implementation of
simulation-matching algorithm, developed in J2ME and suitable to run also on
smart phones.

Keywords: Contract-policy matching, simulation relation, symbolic transition
systems, mobile application.

1 Introduction

Over the last few years the amount of users that download from the net programs or
applications (e.g., Java Midlets) for smart phones and other mobile devices has been
growing. However, in many cases, either the identity of developers of the applications
is unknown to the user or those developers could not be trusted. Thus, the execution
of these programs is possibly unsafe. For this reason, the study of mechanisms and
techniques that permit to safely execute programs has been increased.

In this paper we exploit the security contract concept that lies at the core of the
approach for securing mobile services developed in the S3MS project ([1]). A contract

� Work partially supported by EU project “Software Engineering for Service-Oriented Overlay
Computers”(SENSORIA), Artist2 “Network of Excellence on Embedded Systems Design”
and ”Secure Software and Services for Mobile Systems” (S3MS).

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 221–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 P. Greci, F. Martinelli, and I. Matteucci

(see [2]) is a specification of the intended security-relevant behavior of the program
by the producer. The use of contracts allows the program developer to declare which
are the security-relevant actions the program might perform at run-time. Then, users
that plan to download and execute such programs might just check that 1) the program
adheres to the contract 2) the contract matches their local security policy, i.e., a policy
that specifies the set of acceptable executions (e.g., see [3,4]) w.r.t. the local user.

Both steps are necessary to ensure safe program execution. For the first point, program-
contract compliance, one could use static verification techniques and, in the following,
we assume this can be solved (e.g., see [1] for an overview of the possible techniques).
When the code is available, as in the case of mobile applications, these techniques allow
the user to directly inspect the code-contract compliance. Clearly, in service oriented
architectures, where the code implementing the service is usually not available the phase
of code-contract cannot be directly checked by the service user and different tools must
be applied as run-time monitoring or reputation mechanisms.

As a whole, this contract-based framework enables very interesting business models
that empower users with full control on the applications executed on their devices. The
user may decide whether to execute an application even if the program developer is not
trusted, provided that the code-contract-policy compliance phases are satisfied. Indeed,
in this case the application is harmless (actually will adhere to the security policy).

If one restricts the attention to the contract-policy matching phase, than one might
note that the same idea also works when dealing with service oriented architectures.
Indeed services might declare the usage of the security-sensible resources on perform-
ing a given service. For instance, an user could choose a service only of this service
declares not to disclose any private information acquired during service execution (or
to communicate this information only to a specific partner).

In this paper we mainly focus on the second phase of the framework, i.e., contract-
policy matching phase, by presenting an appropriate theory and implementation for
mobile devices.

Both the contract and the policy specification are given in ConSpec language (see
[5]) strongly inspired by the policy specification language PSLang which was developed
by Erlingsson and Schneider in [6] for runtime monitoring. We also use the notion of
symbolic transition systems in order to deal with infinite state systems.

The basic idea underlying contract-policy matching is that any sequence of security
relevant actions allowed by the contract is also allowed by the policy. Trace inclusion is
thus a suitable candidate for the contract-policy matching. However, for generic contract
and policy, the complexity is PSPACE complete, even for finite state systems.

Our main idea is to use the simulation relation (see [7]) as a formal compliance re-
lation between contracts and policies. This relation can be efficiently checked on finite
state systems. In addition, there exists a semi-decision procedure for checking similar-
ity between symbolic transition systems. We have already studied in [4,8] a simulation-
based approach for the guarantee that a system results secure by describing mechanisms
for enforcing security property at run-time. Here we present a framework for using
simulation relation for doing contract-policy matching. In particular, contract transition
system is simulated by a policy one, if, for each transition corresponding to a certain

A Framework for Contract-Policy Matching Based on Symbolic Simulations 223

security action of the contract (and so possibly performed by the program), the policy
has a similar transition and resulting contract system is yet simulated by the resulting
policy one.

When the algorithm reports that the contract is simulated by the policy then one is
sure that the contract matches the policy and so the program can be safely executed on
the device.

We have also implemented this algorithm for the J2ME Platform. The tool takes
as input a contract and a policy specified in ConSpec language. Then, using a parser,
we translate the ConSpec specification into symbolic transition systems syntax and so
we obtain two objects of type Policy. Once we have the two symbolic systems, we
check if they are similar. Moreover, our implementation is developed in order to run
also on smart-phones, PDAs and other devices with a limited computation and storage
resources.

This document is organized as follows: Section 2 recalls some notion about the Con-
Spec language and symbolic transition system. Section 3 presents the contract-policy
matching algorithm and Section 4 describes our developed tool. Section 5 shows as ex-
ample of how the presented algorithm, and consequently our tool, works and Section 6
concludes the paper.

2 Background

In this section we recall some notions about the ConSpec language for contract and pol-
icy specification (see [5]) and symbolic transition systems (see [9,10]), that are useful
for the rest of the paper.

2.1 Contracts, Policies and Their Specification Language ConSpec

Firstly, according to [11], we give the following definition of a contract and a policy.

Definition 1. A contract is a formal complete and correct specification of the behavior
of the application for what concerns relevant security actions (e.g., Virtual Machine
API call, Operating System Calls). It defines a subset of the traces of all possible secu-
rity actions.

For instance, a contract could be composed by the following list of relevant security
actions:

– The application does not send MMS messages
– The application only sends messages to determined numbers
– The application sends only text (or binary) messages

Definition 2. A policy is a formal complete specification of the acceptable behavior of
applications to be executed on the platform for what concerns relevant security actions
(e.g., Virtual Machine API call, Operating System Calls). It defines a subset of the traces
of all possible security actions.

For example, a policy could contain the following relevant security actions:

224 P. Greci, F. Martinelli, and I. Matteucci

– The application only receives SMS messages on a specific port
– The application does not use Bluetooth or IrDA connections
– The application doesn’t use local socket connections (like 127.0.0.1 or localhost)

Both the contract and the policy are syntactically described by exploiting the ConSpec
language that is introduced in [5,12] for contract and policy specification. ConSpec
formal specification defines the contract that is guaranteed by the application and the
policy that is desired/enforced by the platform (see Figure 1 for the syntax).

The ConSpec language is strongly inspired by the policy specification language
PSLang which was developed by Erlingsson and Schneider in [6] for runtime monitor-
ing. However, even if ConSpec is a more restricted language than PSLang, it is expressive
enough to write policies on multiple executions of the same application, and on execu-
tions of all applications of a system. In addition to policies on a single execution of the
application and of a certain class object lifetime according to the scope of the policy.

A ConSpec policy, after the declaration of the integer range (MAXINT) and string
length (MAXLEN) that are used, specified its scope definition that reflects at which
scope the specified contract will be applied. If the SCOPE is Object than only object
are modified. If the requirements are on a single run of the application, then we talk
about a SCOPE Session and if the policy talks about multiple runs of the same ap-
plication the SCOPE is Multisession. Moreover there is also a Global scope for
monitoring all the applications on a system.

The tag RULEID identifies the area of the contract (which security-relevant actions
the policy concerns, for example “files” or “connections”).

After the specification of the scope, the policies in ConSpec are composed of the
declaration of the security state followed by event clauses that state the conditions for
the effect of security relevant actions.

SCOPE <Object ClassName | Session | MultiSession> [RuleID] [VersionID]

SECURITY STATE
<bool | int | string> VarName1 = <DefaultValue1>

...
<bool | int | string> VarNameN = <DefaultValueN>

<BEFORE | AFTER> EVENT MethodSignature1 PERFORM
condition1 -> update1

...
<conditionM1> -> updateM1

...
<BEFORE | AFTER > EVENT MethodSignatureK PERFORM

condition1 -> update1

...
<conditionMK > -> updateMK

Fig. 1. Syntax of ConSpec

A Framework for Contract-Policy Matching Based on Symbolic Simulations 225

Because the primitive types of the language are int, boolean and string, the
state declaration is a series of variables declarations of the primitive types.

An event clause is composed by a security relevant action (the event) and a event
modifier which states when update to the state is performed w.r.t. the execution of the
event.

Events are method invocations, e.g., system calls or methods provided by an API.
Event clauses define the allowed transitions of the ConSpec automaton. The security
relevant action is fully specified by the signature which consists of the name of the
method belongs and the types of its arguments. For each security relevant action, there
exists at most one event clause in ConSpec.

The modifier is followed by a sequence of guard-update block pairs. The available
modifiers are BEFORE and AFTER which indicate when the guards must be evaluated
and the update block must be executed (or program aborted in case no guard applies)
before or after the event.

The update specifies how a state is updated for the security relevant action while
the guard select the states, which the particular update will apply, as a subset of states.
The guards are consider from the top to the bottom and, if none of them are matched
there is no transition for that command from the current state. For the sake of simplicity,
we here assume that all the guards are mutually disjointed, so that the order of evaluation
does not matter.

The event specification of ConSpec also contains names to formal arguments. The
scope of these identifiers is the sequence of guard and update blocks that follow. The
guard is a side-effect free boolean expression which can mention only the set argument
values and the security state. Guards may also use decidable predicates on variables,
e.g., “url.startsWith(”sms://”)” in Example 1 that ensures the parameter url is a string
that starts with ”sms://”.

The update is specified using a simple imperative language. The update block begins
with local variable declarations. The scope of these variables is limited to the current
block. The update block consists of a list of assignments. The variables that can occur on
the left hand of assignments are restricted to local variables and security state variables.
As requirement we have that there exists at least one statement in each update block (at
least skip). In this way we consider both cases: in the case the value of a local variable
is not changed then the statement skip is used, on the contrary, if the statement is
different to skip, the variable’s value is update.

Example 1. Let us specify the policy: “The maximum number of SMSs that can be sent
in a session is 3” A ConSpec specification of this policy is presented at Figure 2.

Example 2. Let us consider the following policy: “Only network connections with
www.google.it and www.yahoo.it can be opened, but after a connection with
www.yahoo.it no connection with www.google.it can be opened”. The Con-
Spec specification for this policy is in Figure 3. The ConSpec specification of the con-
sidered policy said that, initially the security state is characterized by a state variables
yahoo set to false. Before the execution of the action open, there is a check: If the
URL’s name starts with http://www.google.it and the yahoo boolean vari-
able is set to false then once is allowed to open the URL without doing other actions
(url.startsWith(”http://www.google.it”) && (!yahoo) -> skip). On the other hand, if

226 P. Greci, F. Martinelli, and I. Matteucci

SCOPE Session *

SECURITY STATE
int smsno = 0

BEFORE javax.io.microedition.Connector.open(String url) PERFORM
url.startsWith("sms://") -> skip

BEFORE javax.wireless.messaging.MessageConnection.send(String msg)PERFORM
(smsno <3) ->smsno=smsno+1

Fig. 2. A ConSpec specification of the policy from Example 1

SCOPE Session *

SECURITY STATE
boolean yahoo = false

BEFORE javax.io.microedition.Connector.open(String url) PERFORM
url.startsWith("http://www.google.it") && (!yahoo) -> skip
url.startsWith(" http://www.yahoo.it") -> yahoo = true

Fig. 3. A ConSpec specification of the policy from Example 2

the URL’s name starts with http://www.yahoo.it, the URL is open and the flag
yahoo is set to true (url.startsWith(” http://www.yahoo.it”) -> yahoo = true).

It is possible to note that one clause exclude the other.

2.2 Symbolic Transition System

We recall here the process algebra language introduced in [9,10] and its formal se-
mantics in terms of symbolic transition systems that we will use later to give formal
semantics to ConSpec language.

The language consists of a syntactic categoryDExp of data expressions, ranged over
by e, e′ etc. This includes, at least, an infinite set V al of values, ranged over by v, v′

etc. and a countably infinite set of variables V ar of data variables, ranged over by x, y
etc. which is disjointed from V al. There is also a syntactic category BExp of boolean
expressions, ranged over by b, b′, etc. with the usual set of boolean operators (true, false,
∧, ∨ and→). Furthermore, for every pair of data expressions e, e′ we assume that e = e′

is a boolean expression. Moreover, each data expression e and each boolean expression
b has associated to it a set of free data variables, fv(e) and fv(b) respectively, and that
only data variables can occur free in these expressions.

We need the notion of evaluation ρ which is the total mapping from V ar to V al.
We assume that an application ρ to data expression e denoted �e�ρ, always yields a

A Framework for Contract-Policy Matching Based on Symbolic Simulations 227

value from V al and similarly for boolean expressions, �b�ρ is either true or false.
Moreover, the notion ρ |= b indicates that �b�ρ = true and b |= b′ indicates that for
every evaluation ρ, ρ |= b implies ρ |= b′.

Let t be a term of the language, and P a process identifier, the syntax of the language
is the following:

t ::= 0 | a.t | t+ t | if b then t | t[f] | P (ē)
a ::= τ | c?x | c!e

where c is a channel name,f a relabelling function and P (ē) is a process which is
defined recursively by associating to each identifier P and equation of the formP (x̄) ⇐
t and x̄ and ē are vectors of variables or expressions respectively.

The operational semantics of process algebra languages is usually given by using
the notion of labelled transition system that is triple 〈S,Act,→〉 where S is the set of
states, Act is the set of action names and →⊆ S × Act × S is a transition relation.
Usually the notation s1

a−→ s2 is used in place of (s1, a, s2) ∈→.
The PRE operator means that a (closed) term a.P represents a process that performs

an action a and then behaves as P . The operator COND means that if the guards
b holds than the transition is allowed. SUM1 and SUM2 are the non-deterministic
choice between the terms t and u. Choosing the action of one of the two components
means dropping the other.REN is the relabelling operators: The term t[f] behaves like
t, but its actions are renamed through relabelling function f . Finally REC permits the
definition of recursive terms.

In order to deal more easily with infinitely branching transition systems, one could
use the notion of symbolic transition systems (see again [9,10]). This is a labelled tran-
sition system in which there is a symbolic transition relation, in place of →, which has

the form
b,a−→ where b is a boolean expression and a is a symbolic action, namely:

a ∈ ActSymb = {c!e, c?x|e ∈ DExp, x ∈ V ar}

where c!e and c?x means the output and input actions respectively.

Intuitively, t
b,a−→ u means that, if b holds, t can perform a and thereby evolve into u.

Hence it is possible abbreviate
true,a−→ as

a−→. The set of bound variables of a symbolic
action is defined thus: bv(c?x) = {x}.

Now it is possible to give the following formal definition.

Table 1. Symbolic Transitional Semantics

PRE −
a.t

true,a−→ t
COND t

b′,a−→t′

if b then t
b′∧b,a−→ t′

fv(b) ∩ bv(a) = ∅

SUM1 t
b,a−→t′

t+u
b,a−→t′

SUM2 u
b,a−→u′

t+u
b,a−→u′

REN t
b,a−→t′

t[f]
b,f(a)
−→ t′[f]

REC t[ē\x̄]
b,a−→t′

P (ē)
b,a−→t′

P (x̄)⇐ t

228 P. Greci, F. Martinelli, and I. Matteucci

Definition 3. A symbolic transition system is a n-tuple 〈Q,BExp,ActSymb,→〉,
where Q is the set of states, BExp is a set of boolean expressions ActSymb is the
set of symbolic actions and →⊆ Q× (BExp×ActSymb)×Q as defined in Table 1.

A symbolic transition system is said to be deterministic when, whenever, given a state

q and an symbolic transaction
b,a−→ there exists one and only one q′ s.t. q

b,a−→ q′. This

means that if there exist two state q′ and q′′ s.t. q
b,a−→ q′ and q

b,a−→ q′′ then q = q′′.

3 Contract-Policy Matching

In this section we are going to show the technical machinery for formal contract-policy
matching. In particular, we first show how to give formal semantics to ConSpec and
then how to perform contract-policy matching through simulation checking.

3.1 From ConSpec Language to Process Algebra

To map a ConSpec language into the language we have recalled in Section 2.2 we
restrict ourselves to consider policy and contract with only one RuleID. We take the
following steps.

First we consider a process constant S(x) with as many variables as the state vari-
ables. Basically, when instantiated, this represents an actual state of the ConSpec
automaton.

Then, each BEFORE event clause:

<BEFORE > EVENT MethodSignature1 PERFORM
condition1 -> update1

...
<conditionM1> -> updateM1

is mapped into the corresponding process

EC(u)=if condition1 then MethodSignature1.S(e1)+
. . .

if conditionM1 then MethodSignature1.S(en)

where, u is the set of parameters of the method MethodSignature1 and ej , with j =
1, . . . ,M1, corresponds to the new assignment of each variable, if any. For instance, if
update1 is x := x + 1 and x is the ith variable in the state, then e1 is the vector of
expression where ith expression is x + 1. We also note that parameters in u cannot be
assigned.

Now let us consider an event clause with AFTER as modifier as follows:

<AFTER > EVENT MethodSignature1 PERFORM
condition1 -> update1

...
<conditionM1> -> updateM1

A Framework for Contract-Policy Matching Based on Symbolic Simulations 229

It can be encoded in the following process:

MethodSignature1(r).(if condition1 then S(e1)+
. . .

if conditionM1 then S(en))

where conditions can also mention the return values in r.
Then, the final process description is the summation of the corresponding processes

for each clause and its initial state is the process constant with parameters the initial
values in the security state. Hence, a ConSpec specification can be seen as a symbolic
process.

Example 3. Considering again the policy in Figure 3 that informally says “Only net-
work connections with www.google.it and www.yahoo.it can be opened, but
after a connection with www.yahoo.it no connection with www.google.it can
be opened”.

Let S(yahoo) be the process constant state with the boolean variable yahoo. The ini-
tial security state is S(false). This specification corresponds to the following process:

E(url)=if b(google) ∧(¬ yahoo) thenm(url)!.S(false)+
if b(yahoo) thenm(url)!.S(true)

where b(google)=url.startsWith(”http://www.google.it”), b(yahoo)= url.startsWith(”
http://www.yahoo.it”) and m(url)!=javax.io.microedition.Connector.open(String url).
The graphical representation of this policy is depicted in Figure 4.

m(url)!

S(false)

S(true)

b(google),

m(url)!

b(yahoo),

m(url)!

b(yahoo),

Fig. 4. The graphical representation of the symbolic process that specifies the policy in Figure 3

3.2 Contract-Policy Matching as Simulation Checking

Contract-policy matching should ensure that any security relevant behavior allowed by
the contract is also allowed by the policy. A natural candidate relation among contracts
and policies, when specified formally through transition systems, is language inclusion
and as a matter of fact, such an approach has been advocated in [13].

In our previous work (e.g., [8,14,15]), we successfully used the simulation relations
for security policies enforcement. We thus decided to use also in the S3MS project

230 P. Greci, F. Martinelli, and I. Matteucci

this notion that has several nice features. In particular, we consider simulation rela-
tion because checking language inclusion for non-deterministic (finite) automata is
PSPACE-complete while simulation relation on finite automata can be checked in
polynomial time. In addition, since the simulation relation is a stronger relation than
language inclusion, we are on the safe side when we use this relation. (It is also a con-
gruence w.r.t. process algebras operators.)

We thus recall the notion of simulation in symbolic transition systems (e.g., see [16]).
A set of boolean expressions B is called a b-partition if

∨
B = b. Semantically B

can be regarded as a partition of the value space represented by b, or more precisely, for
any evaluation ρ, ρ |= b iff ρ |= b′ for some b′ ∈ B.

In the following we write a =b a′ to mean that if a ≡!e then a′ has the form !e′ with
b |= e = e′ and a ≡ a′ otherwise.

Definition 4. A BExp-indexed family of relations R = {Rb|b ∈ BExp} is a strong
symbolic simulation if it satisfies: (t, u) ∈ Rb implies that

if t
b,a−→ t′ with bv(a) ∩ fv(b, t, u) = ∅, then there is a b ∧ b1-partition B s.t. for each

b′ ∈ B there exist b2, a′ and u′ with b′ |= b2, a =b′
a′, u

b2,a′

−→ u′ and (t′, u′) ∈ Rb′
.

We write t ≺b u if (t, u) ∈ Rb ∈ R for some symbolic simulation R.

This definition offers a method to check when one process is simulated by another one.
We illustrate this through the following example.

Example 4. Let us consider again the policy in Example 3 with its mapping into the
following symbolic process:

E(url)=if b(google) ∧(¬ yahoo) thenm(url)!.S(false)+
if b(yahoo) thenm(url)!.S(true)

where b(google)=url.startsWith(”http://www.google.it”), b(yahoo)= url.startsWith(”
http://www.yahoo.it”) andm(url)!=javax.io.microedition.Connector.open(String url).

Now let us consider the following ConSpec contract specification:

MAXINT 10 MAXLEN 10
RULEID Rule5
VERSION 1.0

SCOPE SESSION
SECURITY STATE

BEFORE javax.io.microedition.Connector.open(String myurl) PERFORM
myurl.equals(“http://www.google.it”)→ skip;

This contract means that the application only has access to the URL that is equal to
“http://www.google.it”.

Since there is no state variable, here the constat process S does not depend on any
variable. The contract is also represented by the process:

A Framework for Contract-Policy Matching Based on Symbolic Simulations 231

Contract

b’(google),

S

m(myurl)!

Policy

S(false)

b(google),
m(url)!

b(yahoo),
m(url)!

S(true)

b(yahoo),
m(url)!

≺true

≺b′(google)

Fig. 5. The graphical representation of the symbolic process that specified the policy and the
contract

if b′(google) thenm(myurl)!.S

where b′(google)= myurl.equals(“http://www.google.it”).
In Figure 5 there is a graphical representation of the two symbolic processes that

specify the policy and the contract respectively. In order to prove that the contract
and the policy are in simulation relation we start to consider the couple (S, S(false))

∈ Rtrue. Now we have that S
b′(google),m(url)−→ S. Let B={b′(google)} be the b′(google)∧

true-partition, we have to prove that there exist b, a′ and S’ s.t. b(google) |= b,
m(url) =b′(google) a′ and (S,S’) ∈ Rb′(google). These conditions hold by taking b =
b(google) ∧ ¬yahoo, a′ = m(myurl) and S’=S(false). Indeed it remains to prove
that (S,S’) ∈ Sb(google) but this follows from the fact that the only transition from S is
b(google),m(url)−→ to S itself and b′(google) ∧ b(google) ≡ b′(google).

In [16], a sound and complete proof systems for simulation has been provided. It
assumes the decidability of implication and equivalence among boolean expressions.

In order to simplify the computation steps, one could consider deterministic policies.
In this case, finding the appropriate partition on the second process becomes much eas-
ier. We use this simplifying assumption in the actual implementation of the simulation
checking tool.

4 A Tool for Simulation Checking on Mobile Device

Here we describe the structure and performances of the tool that we developed for the
simulation contract-policy matching. It has been implemented on Java 2 Micro Edition
(J2ME) and may actually run on smart-phones.

232 P. Greci, F. Martinelli, and I. Matteucci

4.1 Architecture of the Tool

The architecture of the tool can be schematically represented as in Figure 6.
According to Figure 6, at the beginning there are a policy and a contract described by

using ConSpec language. In order to obtain two transition systems from the ConSpec
specification, the method parseFile() of the ConSpecParseis used. It takes in
input ”file.pol” and gives as output the symbolic system. Hence we have two transition
systems, one for the contract and one for the policy.

Contract system

SIMULATION

MATCHING

startSimulationMatching(Policy,Policy)

ConSpec Policy

ConSpec Contract
PARSER

Policy system

Fig. 6. The architecture of the tool

MySystem

Policy system

Contract system

startSimulationMatching(Policy,Policy)

Contract

Policy

List of rules

List of rules

MySystem

Composition

and

Simulation

They Match

Fig. 7. Zoom of the Simulation Matching part

From the applicative point of view, the most important class of the tool is the class
utilSimulMatch whose behavior is represented in Figure 7. This class contains
among its methods the method startSimulationMatching (Policy,Policy)
that is the main method of the class. As a matter of fact, once it receives in input two
objects of the type Policy it checks if they are similar.

4.2 Performance

For our experiments we used HTC Universal (as also know as IMATE JASJAR or
QTEK 9000) with the PhoneME Java platform that runs on Linux OpenMoco distri-
bution, Kernel 2.6.21, CPU Intel XScale PXA270, CPU Clock 520 MHz, ROM type
Flash EEPROM, ROM capacity 128 MiB, including 43.5 MiB user-accessible non-
volatile storage, RAM type SDRAM and RAM capacity 64 MiB, 50MiB accessible.

We tested several couples contract-policy of different number of states and we no-
ticed that the amount of time spent from the machine to generate the symbolic systems

A Framework for Contract-Policy Matching Based on Symbolic Simulations 233

and to do the matching is directly proportional to the number of states of the generated
symbolic systems.

The results we observed are summarize in Table 2.

Table 2. Performance of the simulation contract-policy matching tool on device

Policy � Contract states number System time
60 100-120ms
120 320-370ms
350 3000-4000ms

5 Some Examples

Because the tool must run on mobile devices, or, in general, on devices with a little
amount of available memory, the policies that we have studied are very simple.

Letusconsider to haveasmart-phoneon which is set thepolicy of theExample2:“Only
network connections with www.google.it and www.yahoo.it can be opened, but
after a connection with www.yahoo.itno connection withwww.google.it can be
opened”1.

As we have already said, our tool takes in input a ConSpec specification for the pol-
icy which, as we can see in Fig 8 and Example 2, is the following:

MAXINT 50 MAXLEN 20
RULEID Rule5
VERSION 1.0

SCOPE SESSION
SECURITY STATE
boolean yahoo=false;

BEFORE javax.io.microedition.Connector.open(String url) PERFORM
url.startsWith(“http://www.google.it”)&&!yahoo→ skip;
url.startsWith(“http://www.yahoo.it”)→ yahoo=true;

Let us suppose to consider an application with the following ConSpec contract spec-
ification (see Figure 8).

MAXINT 10 MAXLEN 10
RULEID Rule5
VERSION 1.0

SCOPE SESSION
SECURITY STATE

1 Even if tests were made on a real device, the images that we present in this section are screen
shots obtained by using an emulator given by the Sun Java Wireless Toolkit 2.5.1.

234 P. Greci, F. Martinelli, and I. Matteucci

Fig. 8. The contract matches with the policy

BEFORE javax.io.microedition.Connector.open(String myurl) PERFORM
myurl.equals(“http://www.google.it”)→ skip;

Running our tool we obtain that this contract matches our policy (see Figure 8). As
a matter of fact, it means that the application has access to URLs equal to “http://www.
google.it”. Hence, it never accesses to URLs starting with “http://www.yahoo.it”, it is
allowed to open URLs equal to “http://www.google.it” whenever it wants.

On the other hand, if the application has the following contract (see also Figure 9):

MAXINT 50 MAXLEN 20
RULEID Rule5
VERSION 1.0

SCOPE SESSION
SECURITY STATE
boolean ya=false;

BEFORE javax.io.microedition.Connector.open(String urlx) PERFORM
urlx.startsWith(“http://www.yahoo.it”)→ ya=true;
urlx.startsWith(“http://www.google.it”)→ skip;

A Framework for Contract-Policy Matching Based on Symbolic Simulations 235

Fig. 9. A contract that does not match

In this case the response of our tool is negative. Indeed, by analyzing the contract, it
is easy to see that it is allowed to access to google also after an access to yahoo but this
is forbidden by our policy (see Figure 9).

6 Conclusion and Future Work

The paper presents a framework on symbolic simulation based contract-policy match-
ing. We have shown how contract and policies can be formally expressed through (sym-
bolic) process algebras terms. Then we advocated the usage of symbolic simulation as
the notion of contract-policy matching.

Moreover, we also described our tool, developed in J2ME, that permits us to do the
contract-policy matching also on smart phone and small devices.

As future work, we aim to apply this framework also to service oriented architec-
tures. This would be useful both to allow secure service composition as well as to ne-
gotiate services based on their security relevant behavior. The technology developed till
now, working also on devices with limited resources could be instrumental for enhanc-
ing usage of pervasive service applications.

Acknowledgments

We would like to thank the reviewers for their helpful comments.

236 P. Greci, F. Martinelli, and I. Matteucci

References

1. Dragoni, N., Martinelli, F., Massacci, F., Mori, P., Schaefer, C., Walter, T., Vetillard, E.:
Security-by-contract (SxC) for software and services of mobile systems. In: At your service:
Service Engineering in the Information Society Technologies Program. MIT Press, Cam-
bridge (2008)

2. Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I.: Security-by-contract: Toward a semantics
for digital signatures on mobile code. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI
2007. LNCS, vol. 4582, pp. 297–312. Springer, Heidelberg (2007)

3. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3(1), 30–50 (2000)

4. Martinelli, F., Matteucci, I.: An approach for the specification, verification and synthesis of
secure systems. Electr. Notes Theor. Comput. Sci. 168, 29–43 (2007)

5. Aktug, I., Naliuka, K.: Conspec – A formal language for policy specification. Electr. Notes
Theor. Comput. Sci. 197(1), 45–58 (2008)

6. Erlingsson, Ú., Schneider, F.B.: Sasi enforcement of security policies: a retrospective. In:
NSPW 1999: Proceedings of the 1999 workshop on New security paradigms, pp. 87–95.
ACM, New York (2000)

7. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University
Press, Cambridge (1999)

8. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. Electr.
Notes Theor. Comput. Sci. 179, 31–46 (2007)

9. Hennessy, M., Lin, H.: Symbolic bisimulations. In: MFPS 1992: Selected papers of the meet-
ing on Mathematical foundations of programming semantics, Amsterdam, The Netherlands,
pp. 353–389. Elsevier Science Publishers, Amsterdam (1995)

10. Hennessy, M., Lin, H.: A Symbolic Approach to Value-Passing Processes. In: Handbook of
Process Algebra. Elsevier, Amsterdam (2001)

11. Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I., Quillinan, T., Matteucci, I., Schaefer, C.:
Deliverable 2.1.4-Methodologies and tools for contract matching- S3MS European Project
(2007)

12. Aktung, I.: Syntax and semantics of conspec (last visited 09/07/2008) (2007),
https://trinity.dit.unitn.it/bscw/bscw.cgi/d33953/ConSpec

13. Desmet, L., Joosen, W., Massacci, F., Philippaerts, P., Piessens, F., Siahaan, I., Vanover-
berghe, D.: Security-by-contract on the.net platform, vol. 13, pp. 25–32. Elsevier Advanced
Technology Publications, Oxford (2008)

14. Matteucci, I.: Automated synthesis of enforcing mechanisms for security properties in a
timed setting. Electr. Notes Theor. Comput. Sci. 186, 101–120 (2007)

15. Martinelli, F., Matteucci, I.: Partial model checking, process algebra operators and satisfiabil-
ity procedures for (automatically) enforcing security properties. Technical report, IIT-CNR
(2005) Presented at the International Workshop on Foundations of Computer Security (FCS
2005)

16. Ingolfsdottir, A., Lin, H.: Handbook of Processes Algebra. In: A Symbolic Approach to
Value-passing Processes, ch. 7. Elsevier, Amsterdam (2001)

https://trinity.dit.unitn.it/bscw/bscw.cgi/d33953/ConSpec

ASERE: Assuring the Satisfiability of Sequential
Extended Regular Expressions

∗

Naiyong Jin and Huibiao Zhu

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University
{nyjin,hbzhu}@sei.ecnu.edu.cn

Abstract. One purpose of Property Assurance is to check the satisfiability of
properties. The Sequential Extended Regular Expressions (SEREs) play impor-
tant roles in composing PSL properties. The SEREs are regular expressions with
repetition and conjunction. Current assurance method for LTL formulas are not
applicable to SEREs.

In this paper, we present a method for checking the satisfiability of SEREs.
We propose an extension of Alternating Finite Automata with internal transitions
and logs of universal branches (IAFA). The new representation enables memory-
ful synchronization of parallel words. The compilation from SEREs to IAFAs is
in linear space. An algorithm, and two optimizations are proposed for searching
satisfying words of SEREs. They reduce the stepwise search space to the product
of universal branches’ guard sets. Experiments confirm their effectiveness.

Keywords: Alternating Automata, Satisfiability, Memoryful Synchronization.

1 Introduction

The correctness of functional specifications is important. Conflicting properties will put
design and verification effort into vain. Property Assurance [4] [20] aims at a method-
ology for checking the existence of behaviors which satisfy a set of properties, and the
satisfaction of given properties for all possible behaviors of a system. With property
assurance, designers can develop a better understanding and have stronger confidence
in their specifications.

PSL [11] is an industry standard specification language (IEEE-1850) for circuit and
embedded system design. The core logic of PSL is an extension of LTL with the Se-
quential Extended Regular Expressions (SEREs). SEREs are operands of PSL’s LTL
operators. Therefore, the satisfiability of SEREs is critical to the correctness of PSL
specifications. Bloem et al. have addressed the satisfiability problem of LTL in [20].
In this paper, we present a method for Assuring the satisfiability of clocked SEREs [9]
(ASERE).
∗

This paper is supported by the “863” project (2007AA01302) of Ministry of Science and
Technology of China, and the “Dengshan Project”(067062017) of the Science and Technology
Commission of Shanghai Municipality.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 237–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

238 N. Jin and H. Zhu

Related Work
The automata-theoretic approach for proving the satisfiability (SAT) of regular expres-
sions starts with converting an expression r into an automaton Ar, then checks the non-
emptiness of the language L accepted by Ar, that is L(Ar) � φ. The formula holds if we
can find a word w such that w ∈ L(Ar).

The topic of automata construction for intersection-extended regular expressions
(IERE) was carefully studied by Ben-David et al. in [1]. Firstly, they transform an
IERE r into an Alternating Finite Automaton (AFA), then to a Non-deterministic Finite
Automaton (NFA). The state complexity of such a transformation is 2O(|r|), where | r |
refers to the size of r. The construction from SEREs to AFA is linear. The exponen-
tial increase takes place in transforming the AFA of r1&&r2 to NFA. r1&&r2 requires
that words of r1 and r2 should both start and terminate simultaneously. One important
reason that forces them to further transforming AFA to NFA is due to the fact that the
acceptance of r1&&r2 depends on the universal activeness of the accepting states of
r1 and r2. However, a traditional AFA does not have the accepting states for universal
branches.

Vardi et al. gave a systematic analysis on the time complexity of the language empti-
ness problem by automata-theoretic approach in [22] [15] [13]. For traditioanl alter-
nating automata, their time complexity is in exponential time. In the last ten years, the
progress was driven by the LTL model checking [2] [17] [10]. The expressiveness of
LTL is equivalent to that of the star-free ω-regular expressions. Runs of the alternating
automata for LTL are memoryless [13]. But SEREs are not memoryless. They can repeat
infinitively, and conjunct with other SEREs to form new ones, like r1&&r2. Therefore,
we must explore new methods for the SAT problem of SEREs.

Contribution
In summary, the contribution of this paper includes:

1. An extesion of Alternating Finite Automata with internal transitions and univer-
sal branching logs. The new representation enables memoryful synchronization of
parallel words. The construction from SEREs to IAFA is in linear space.

2. An algorithm for proving the satisfiability of SEREs by IAFA. Two optimization
methods are proposed. They reduce the stepwise search space to the product of
universal branches’ guard sets.

The rest of this paper is organized as follows. Section 2 presents the syntax and the se-
mantics of SERE. Section 3 reviews the evolution of Alternating Automata, and justifies
their use in representing SEREs. The new features to be enhanced for the satisfiability
problem of SERE are explored. Section 4 introduces the Internal-transition-enhanced
AFA (IAFA) as the operating representation of SEREs. In Section 5, we develop a
DPLL-like stepwise search algorithm and use zchaff [18] as the building block in each
step. After that, we propose two optimizations which are able to reduce the search space
of each step from exponential to linear. Experiments and analysis are presented in Sec-
tion 6. And Section 7 discusses our future works.

We leave the detailed proofs, the automaton constructions and the diagrams in a
technical report which, in along with the source code of ASERE, is available at [23].

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 239

2 SERE: Syntax and Semantics

The syntax of SEREs supported by ASERE is defined recursively as follows:

Definition 2.1. (SEREs)

r ::= ε empty expression
| b Boolean expression
| {r} bracketed SERE
| r; r sequential concatenation
| r&&r length − matching conjunction
| r&r non − length − matching conjunction
| r | r disjunction
| r[∗] repeating r for zero or more times
| r[∗k] repeating r for k times
| r[∗n : m] repeating r for n to m times, n can be 0, and m can be infinitive

In accordance with [7], we define the semantics of SERE with finite and infinite
words over Σ = 2V ∪ {ε}, where V refers to the predicate variable set, and ε refers to an
empty word. We denote by BoolV the set of Boolean expressions over V , BoolV = 22V

.
We denote a letter from Σ by l, and a word by w. �w denotes the length of w. The

empty word ε has length 0, a finite non-empty word w = l0l1 . . . ln has length n + 1, and
an infinite word has length ∞. We denote the (i + 1)th letter of w by wi, the suffix of w
starting at wi by wi..., and the finite sequence of letters starting from wi and ending in
wj by wi...j. If i > �w, then wi = ε. w1w2 denotes the sequential concatenation of w1 and
w2. If w1 is infinite, then w1v = w1. W∗ denotes finite words whose letters are from W.
For the empty word ε, wε∗ = ε∗w = w.

l � b denotes that the letter l satisfies the Boolean expression b. The Boolean satis-
faction relation �⊆ Σ × BoolV behaves in the usual manner.

Definition 2.2. (Boolean Satisfaction) For letter l ∈ Σ, atomic proposition p ∈ V, and
Boolean expressions b, b1, b2 ∈ BoolV, then

1. l � p iff p ∈ l
2. l � ¬b iff l �� b
3. l � true ∧ l �� false, 4)
4. l � b1 ∧ b2 iff f � b1 ∧ f � b2

w |≡ r denotes that the word w satisfies the SERE r tightly.

Definition 2.3. (SERE Tight Satisfaction)

w |≡ ε iff �w = 0
w |≡ b iff �w = 1 ∧ w0 � b
w |≡ {r} iff w |≡ r
w |≡ r1; r2 iff ∃w1,w2 • w = w1w2 ∧ w1 |≡ r1 ∧ w2 |≡ r2

w |≡ r[∗] iff w |≡ ε ∨ ∃w1 � ε,w2 • w = w1w2 ∧ w1 |≡ r ∧ w2 |≡ r[∗]

w |≡ r[∗k] iff w |≡
k times
︷����︸︸����︷

r; . . . ; r

w |≡ r[∗n : m] iff w |≡
n to m times
︷����︸︸����︷

r; . . . ; r
w |≡ r1 && r2 iff w |≡ r1 ∧ w |≡ r2

240 N. Jin and H. Zhu

Fig. 1. Runs of a[∗4 : 5]; {a[∗1 : 2]&&c[∗1 : 2]}

w |≡ r1 | r2 iff w |≡ r1 ∨ w |≡ r2

w |≡ r1 &r2 iff w |≡ {r1 && {r2; true[∗]}} | {{r1; true[∗]} && r2}
SERE can describe non-deterministic behaviors succinctly [16]. One may have dif-

ferent interpretations of a SERE over a finite word. For instance, Fig.1 illustrates two
interpretations of

a[∗4 : 5]; {a[∗1 : 2]&&c[∗1 : 2]}
over the word given in the wave form. For the first interpretation, after 4 clocks of a,
it branches at t4, and its branches, a[∗2] (b11) and c[∗2] (b12), last two clocks. For the
second interpretation, after 5 clocks of a, it branches at t5, and its branches, a[∗1] (b21)
and c[∗1] (b22), last only one clock cycle. Though b12 and b22 all reach their accepting
states, b11 should length-match with b12, not b22. This example tells us that word length
is not sufficient enough for us to synchronize words of parallel SEREs.

3 A Review of Alternating Automata

By Definition 2.3, we know that SERE supports two types of branches. They are the
existential branch, r1 | r2, and the universal branch, r1&&r2. No cooperation takes place
between spawned processes in both types of branches, until the time comes to decide the
acceptance of the input. That kind of concurrency is termed as weak concurrency [12].

NFA is the counterpart of existential branching in the automaton world. AFA fur-
ther enrich NFA with universal branches. An AFA on finite words is a tuple of A =<
Σ, S, s0, ρ,F >, where Σ is the input letter set, S is a finite set of states, s0 is the initial
state, and F is a finite set of accepting states. ρ : S × Σ → 22S

is a transition func-
tion. The target of a transition is not a state of S, but a subset of S. A state may transit
to multiple target sets to express non-deterministic behavior. For instance, a transition
ρ(s, l) = {{s1, s2}, {s3, s4}} states that A accepts a letter l from state s, and it activates
both s1 and s2, or both s3 and s4. Chandra et al. [5] have proved that AFA is doubly
exponentially more succinct than Deterministic Finite Automata (DFA). Thus, we have
the following observation.

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 241

Observation 3.1. AFA is a promising representation of SERE.

Traditionally, runs of AFAs are expressed in terms of trees [22] [13]. A finite tree is a
finite non-empty set T ⊆ N∗ such that forall x · c ∈ T, with x ∈ N∗ and c ∈ N, we have
x ∈ T. The elements of T are called nodes, and the empty word ε is the root of T. The
level of a node x, denoted | x |, is x’s distance from the root ε. Particularly, | ε |= 0. A
run of A on a finite word w = l0 · l1. . .¸ ln−1 is a S-labelled tree < TR,R >, where TR is a
tree and R : TR → S maps each node of TR to a state in S. For < TR,R >, the followings
hold:

– R(ε) = s0

– Let x ∈ TR with R(x) = s and ρ(s, l|x|) = S′. There is a (possible empty) set SK =

{s1, . . . , sk} such that there exists a Sy ⊆ SK with Sy ∈ S′, and for all 1 ≤ c ≤ k, we
have x · c ∈ TR and R(x · c) = sc

A word W is accepted iff there is an accepting run on it. A run is accepting if all
nodes at depth n are labelled by states in F.

By the above two statements, we can imply that in AFA, there is no accepting state
for universal branches. Usually, there should be certain extra-mechanism which mon-
itors whether the acceptance condition holds or not. This method is not elegant in
addressing expressions like {{r1&&r2}; r3}, where r3 starts after an accepting run of
{r1&&r2}. A better ways seems to be setting a special state whose activeness indicates a
successful synchronization of r1 and r2. With the state, we can concatenate the automata
of {r1&&r2} and r3 by usual approaches. Those acceptance states are internal. They are
not activated by input letters.

Observation 3.2. The synchronization states for universal branches are necessary for
keeping the elegance of automata-theoretic approach.

Another weakness of tree-represented AFA is that AFA do not constrain the breadth of a
level. An active state will move to sets of target states whenever an input letters satisfy
some corresponding guards. So with the verification process continuing, the memory
grows without restrictions.

Kupferman and Vardi [14] [13] proposed to merge similar target states of transitions
into a single one. That results in representing runs of AFAs by Directed Acyclic Graphs
(DAG). For two nodes x1 and x2, they are similar iff | x1 |=| x2 | and R(x1) = R(x2).
Recently, the DAG approach [8] [3] is accepted in static verification (model checking)
for LTL properties. The intuition is that the LTL formulas are equivalent to star-free
words. For AFAs converted from LTL formulas, they do not have loops other than self
loops. Hence, runs of traditional LTL-AFAs are memoryless [13]. During verification,
one only needs to look in the future, but never the past. In other words, similar states
correspond to the same future mission: to accept the suffixes which satisfy a common
property.

Kupferman et al. represent a memoryless run < TR,R > by a DAG GR =< V ,E >,
where

1. V ⊆ S × N is such that < s, l >∈ V iff there exists x ∈ TR with | x |= l and R(x) = s.
For example, < s0, 0 > is the only vertex of GR in S × {0}.

242 N. Jin and H. Zhu

2. E ⊆ ⋃l≥0(S × {l} × (S × {l + 1})) is such that E(< s, l >, < s′, l + 1 >) iff there exists
x ∈ TR with | x |= l, R(x) = s and R(x.c) = s′ for some c ∈ N.

Configurations Ci ⊆ S are sets of active states, where i refers to the level of a DAG. It is
evident that, by DAG, every configuration contains at most | S | states which are roots
of different subtrees. A DAG is acceptable if Ci ⊆ F holds.

The branches of AFA’s DAGs resemble the requirements of universal choices [8].
A DAG is just a single path through the existential choices of an AFA. One may have
to try breadth-first search, depth-first search or backward search [6] in looking for an
accepting run. That is why the EXPTIME complexity of AFA is unavoidable [21].

We find that if a memory can distinguish different universal branching histories, then
the runs with different branching histories will not be able to activate the synchroniza-
tion states. Thus a memoryful DAG with synchronization states can enable concurrent
runs of both existential and universal branches.

Observation 3.3. A memoryful DAG can accommodate all possible runs of an AFA.

4 Representing SEREs by IAFA

We formalize the Internal-transition-enhanced AFA (IAFA) as follows

Definition 4.1. An IAFA is a tuple of A = (V , ΣA, S,H, s0, ρ,F), where

• V is a set of variables of the SERE under assuring.
• S is a set of states.
• H = 22N

∗
is a set of historical log sets. A historical log h ∈ N∗, namely h =

t0t1 . . . tn−1tn, is a finite sequence of time-stamps. It records the important timing in-
formation of runs which make a state active. We have H range over the sets of historical
logs.
• ΣA = BoolV ∪ FOPSH is the letter set of A. FOPSH refers to the first order predicates
over S ∪ S × H. We distinguish trueV and trueSH . trueV stands for logic true over V
and trueSH stands for logic true over S ∪ S ×H.
• s0 is the initial state.
• F is the set of states for tight acceptance.
• In IAFA, a transition ρ is in type of S × ΣA × U × 2S, where
• ΣA specifies the guarding conditions.
• U is a set of assignments which update historical logs whenever a tran-
sition takes place.
• The target of a transition is a subset of S. All elements of the subset
should be active after the transition.

We classify IAFA transitions into external and internal ones. Our SEREs are syn-
chronous. The external transition can be triggered only on clock events. Therefore the
guarding conditions of external transitions are in form of BoolV ∧ clock event. For
conciseness, we do not attach the clock event in reasoning external transitions. The
guarding conditions of internal transitions are in type of FOPSH. We call a special type
of internal self-loop transitions as τ transitions. τ-typed transitions are in form like

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 243

(s, gs, us, {s}). A τ transition keeps a state active between two external transitions. We
have ρe, ρi and ρτ to represent the set of external, internal and τ transitions. Notation
s.τ denotes s’s τ transition.

A configuration C gives out the status and historical logs of active states. Configu-
rations are in type of 2S×H. Notation C.ST denotes the set of active states in C, that is
C.ST = {s | (s,H) ∈ C}. In a configuration, a state can have only one set of historical
logs. That is if (s,H1) ∈ C and (s,H2) ∈ C, then H1 = H2. Therefore, we represent the
historical log set of s by s.H. For two active states s1 and s2, they are synchronizable if
and only if they share common historical logs. That is s1.H ∩ s2.H � φ

A predicate g ∈ FOPSH holds under the configuration C, if there exists some pairs
(s, s.H) ∈ C which make g true. We represent the case by C |= g.

Definition 4.2. Let A = (V , ΣA, S,H, s0, ρA,F) be a IAFA, runs of A over a word w =
w0w1w2 . . .wk is a sequence of configurations Δ = C0C1 . . .Cn, where

1. C0 = {(s0, φ)}
2. Given a letter wi, if ∃ s ∈ Ci.ST, (s, g, u, S′) ∈ ρe, and wi � g, then S′ ⊆ Ci+1.ST
3. Given a state s ∈ Ci.ST, if (s, g, u, S′) ∈ ρi, and Ci |= g, then S′ ⊆ Ci+1.ST.
4. Given a state s ∈ Ci.ST, if s.τ ∈ ρτ, and s ∈ Ci+1.ST, then for all (s, g, u, S′) ∈ ρi,

Ci |= ¬g holds.

The second and the third clause of Definition 4.2 state that for external and inter-
nal transitions, whenever their guarding conditions hold, they should take place imme-
diately. That amounts to an identical treatment towards both universal and existential
branches. However, such a treatment will not impact the correctness of assuring SEREs.
Because in SEREs, the acceptance of universal branches asks for synchronization of
peers. For r1&&r2, if the branches of r1 and r2 are not able to synchronize on their
termination, then the condition for the tight satisfaction of r1&&r2 will fail.

Due to the existence of clock events, the external and internal transitions take place
interleavingly. An external transition increases the word length. However, an internal

Fig. 2. Transitions of IAFAs

244 N. Jin and H. Zhu

transition resembles the empty letter ε. The last clause of Definition 4.2 says that a τ
transitions are triggered only when the corresponding states do not have other enabled
internal transitions. Fig.2 illustrates the running patterns of IAFAs. Supposing the clock
events of external transitions are the posedges of clk, then on each posedge(clk), an
IAFA will sample the values of V and trigger enabled external transitions. After that,
there comes a sequence of internal transitions until all states have only τ transitions
enabled.

Proposition 4.3. For each SERE r, there is an IAFA Ar, such that w |≡ r iff w ∈ L(Ar)
and Ar has O(| r |) states.

Proof: In [23].
Here, we give out the IAFA construction for r1 && r2, as illustrated in Fig. 3. Given

Ai = (V , Σ, Si,Hi, s0(ri), ρi, {ss(ri)}) are IAFAs of ri, then
S(r1&&r2) = S(r1) ∪ S(r2) ∪ {s0, sf }
s0(r1&&r2) = s0

ρA(r1&&r2)
= ρA(r1) ∪ ρA(r2)
∪{(s0, trueLV , ui, {s0(ri)}) |

ui = {l s 0(ri).H.include(push(l s 0.H, t))}}
∪{(ss(r1), g, u, {sf }), (ss(r2), f ss 1, φ, φ)}

F(r1 && r2) = {sf }
where, g = f ss r 2 ∧ (f ss r 1.H ∩ f ss r 2.H � φ)

u = {T := f ss r 1.H ∩ f ss r 2.H;
f ′ s f := 1; f ′ s f .H.include(T.pop); }

In the above clause, all target states of s0 inherit s0’s history logs, and have a new
universal branching time as the last time stamp of their history logs. sf is the tight
accepting state of r1&&r2. Before reaching sf , we shall synchronize on the tight accep-

s0(r1)

s0(r2)

sx(r1)

sx(r2)

s0

ss(r1)

ss(r2)

sf

 f_ ss_ r2/\ (f_ ss_ 1.H f_ ss_ 2.H)

{ T =f_ ss_ 1.H f_ ss_ 2.H;
f '_ s_ f::= 1;

 f '_ s_ f.H .inc lud e(T .p o p)
 }

true LV

{ f'_ ss_ 1.H.inc lud e(f_ ss_ 1.H)}

true LV

{ f'_ ss_ 2.H.inc lud e(f_ ss_ 2.H)}

f_ ss_ 1

true LV

true LV

{ f'_ s0(r1).H.inc lud e(p ush(f_ s_ 0.H, t))}

{ f'_ s0(r2).H.inc lud e(p ush(f_ s_ 0.H, t))}

true LV

Le ge nd:

Internal Transition

External Transition

Transitions w hose types are not important
in the context. They can be e ither external
or internal ones.

Fig. 3. The IAFA of r1&&r2

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 245

tance of both r1 and r2. For the transition from ss(r1), the guarding condition
f ss r 2 ∧ (f ss r 1.H ∩ f ss r 2.H � φ)
conveys the idea that for a successful synchronization, both ss(r1) and ss(r2) shall be
active and both of them have common histories of universal choices. The update part
activates sf and assigns the T.pop as histories to sf . T is a temporary variable. It is just
the common histories of ss(r1) and ss(r2). T.pop removes the branching time which is
pushed into logs on leaving s0. Once the automata reaches sf , both ss(r1) and ss(r2) are
deactivated.

By this example, we can see the effect of the τ transitions. According to the semantics
of PSL [7], The length of a clocked SERE is counted on clock events. Internal transi-
tions within two external transitions do not take time. It may takes different numbers of
internal transitions to reach ss(r1) and ss(r2). With the τ transition, ss(r1) will not miss
the synchronization with ss(r2) only if ss(r2) could be active in the current clock cycle.

Proposition 4.4. The time complexity of the satisfiability problem of SERE is O(2d·|V |),
where | V | is the number of variables in V and d is the search depth.

Proof: In [23].

5 The Implementation and Optimization

The search process of ASERE follows the classic DPLL algorithm [19], which is the
base of most Boolean SAT solvers. For SAT solvers, a conflict is an implied assignment
in which some variables are assigned both true and false . If no conflict is detected
in the preprocessing, a DPLL SAT solver starts by assigning a value to an unassigned
variable. If all variables are assigned, a solution is found. Otherwise, the solver will
deduce values of other variables through a process called Boolean Constraint Propaga-
tion (BCP). If a conflict is detected, it will perform backtrack to undo some decisions. If
all decisions have to be undone, then one can conclude the unsatisfiability of a boolean
expression. The deduce and backtrack processes form the inner loop. It stops if no more
deduction is possible and the deductions do not imply conflicts. After that, the solver
will decide the next branch provided that there are still unassigned variables.

Our ASERE algorithm is similar. The target of each decision is to find a letter which
can trigger the external transitions such that the IAFA can move forward. The internal
transitions take the role of BCP. The search process of ASERE is illustrated in Fig.4.

1. Line 1 says that ASERE will initially try for internal transitions.
2. If an internal trial returns TRIAL PASS, ASERE will commit the trial by configura-

tion update(). If in sat check, no states of F becomes active, ASEREwill continue
for more internal transitions.

3. The codes from line 13 to line 20 state that if ASERE finds that all internal tran-
sitions are τs, it shifts to external trials. Before the next external trial, ASERE will
check whether it reaches the maximal search depth. If so, ASERE backtracks to the
previous configuration for the last external trial by configuration retreat().

246 N. Jin and H. Zhu

Fig. 4. The Algorithm of ASERE

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 247

4. For the external trials, ASERE calls a SAT solver to find a letter l which should
satisfy the disjunction of the guarding conditions of the active states. That is

l �
∨

k

gk with (s, gk, u, S
′) ∈ ρe ∧ s ∈ Ci.ST (1)

If such a l does exist, the external trial will return TRIAL PASS and some external
transitions of active states take place. Accordingly,ASERE updates the configuration
as specified in line 37.

5. However, if the external trial returns EXTERNAL FAIL and the search depth is
greater than 0, ASERE will backtrack as well. That amounts to the deduction that
the prefix word after the last external trial can not lead to a satisfying word. Then,
ASERE continues with external trials for other words.

6. The codes from lines 38 to line 44 state that after updating a configuration, if some
states of F become active, then a tight satisfying word is found. Otherwise, ASERE
will try all possible internal trials to propagate the influence of the last letter. As in
3, backtracking is necessary if ASERE reaches the maximal search depth.

Proposition 4.4 tells us that the time complexity of SERE’s satisfiability problem is
(2|V |)d. The base 2|V | gives the search space of each external trial. The complexity in-
creases exponentially along with the search depth. The exponent d is unavoidable. Our
optimization effort focuses on reducing the step-wise search space by extra constraints.
We propose 2 optimization methods, they are the the Post-Trial Check and the No-
Repeated-Transition Check.

Opt.1(Post-Trial Check)
The motivation is to utilize the structure information of SEREs. For instance, to the

length-matching conjunction r1&&r2, whenever an external transition of r1 (r2) takes
place, then at least one external transition of r2 (r1) has to take place as well. If a branch
has no more active states after a trial, it is impossible for further runs to synchronize.
And we can halt the search process earlier. Therefore, we must ensure the simultaneous
activeness of universal branches’ states. That criteria applies to internal trials too.

Given a temporary configuration C and an IAFA Ar generated from r, predicate
PTC(C,Ar) holds if C passes the Post-Trial Check. We setup a temporary configuration
C′i for the result of Ci after the current trial. Only when C′i passes PTC, can config-
uration update() commits the trial by assigning C′i to Ci+1. We define PTC(C,Ar) as
follows.

Definition 5.1.

• For r = ε, r = b, r = r1[∗n], r = r1[∗n : m] and r = r[∗]
PTC(C,Ar) =df

∨

s∈S(r)
s ∈ C.ST

• For r = r1; r2 and r = r1 | r2

PTC(C,Ar) =df PTC(C,Ar1) ∨ PTC(C,Ar2)
∨

s∈S(r)−S(r1)−S(r2)
s ∈ C.ST

• For r = r1&&r2 and r = r1&r2
1

1 Please refer the automata construction of Ar1 && r2 and Ar1 & r2 for s0, sf , sf 1 and sf 2.

248 N. Jin and H. Zhu

PTC(C,Ar) =df s0 ∈ C.ST ∨ sf ∈ C.ST
∨((PTC(C,Ar1) ∨ sf 1 ∈ C.ST) ∧ (PTC(C,Ar2) ∨ sf 2 ∈ C.ST))

Now, let us have a look at the time complexity of Opt.1. Suppose r1 and r2 are two
concurrent SEREs, C is a configuration, and CG1(C) and CG2(C) are the candidate
guard sets of Ar1 and Ar2.
CGi(C) = {g | ∃ u, S, s ∈ C.ST ∩ S(r1) • (s, g, u, S) ∈ ρ(ri)}

Let LET(C) be the set of letters which can trigger external transitions of C’s active
states and the resulting C′ can pass the Post-Trial Check. Then,
LET(C) = {l | ∃ g1i ∈ CG1(C), g2j ∈ CG2(C) • l � g1ig2j}

=
⋃

g1i,g2j

{l | l � g1i} ∩ {l | l � g2j}
Let size(g) be the size of the letter set whose elements satisfy g. Then,

| LET(C) |≤ Σ
g1i,g2j

min(size(g1i), size(g2j)) (2)

Formula (2) gives the upper bound of the letter space restricted by Opt.1 in each
external trial. The letter set characterized by g is a subset of 2V . Though the exponent
in size(g) is not removed, if the biggest size(g) are small, then | LET(C) | will be small.

Opt.2(No-Repeated-Transition Check)
Opt.1 reduces the search space from 2V to LET(C). It is observed that there is still

redundancy in LET(C). It is possible for different letters to trigger an identical bunch of
external transitions which lead to identical suffix words. It is reasonable to cancel a trial
if it does not contribute new transitions. That is the motivation of our second optimiza-
tion (Opt.2), the No-Repeated-Transition Check. Opt.2 reduces the search space to the
product of the guard sets of universal branches. In terms of Opt.1, the search space of
Opt.2 is CG1(C) × CG2(C). Consequently, its size is | CG1(C) | × | CG2(C) |. Now, we
get an algorithm whose time complexity is linear in each external trial. However, Opt.2
may not always reduce the number of external trials. Because, the check is applied after
external trials.

6 Experiments and Analysis

By Proposition 4.3, the size of Ar is linear to | r |, our experiment focuses on the
time aspect in concluding an unsatisfiable SERE and searching finite words of a satis-
fiable one. We carry out the algorithm comparison on a ThinkPad with dural 1.83GHz
CPUs, and 2GB RAM. The parallel feature of the machine is not exploited. We adopt
zchaff [18] (version 2007.3.12) as the engine for external trials. Currently, there is no
standard benchmark for the satisfiability of SEREs. We forge the test cases with the
object as covering as many SERE constructs as possible.

Table.1.2.3.4 demonstrate some test results. In those tests, the minimal search depth
is 1, the maximal search depth is 22, and the upper bound for external trials is 100,000.
If the value is reached before finding any satisfying word, we can not conclude on the
satisfiability of the SEREs Under Assuring (SUA).

The performance of our optimizations is encouraging. If a SUA has abundant features
of concurrency, as in experiment 1 and 2, the performance promotion is significant. It
confirms our prediction on the algorithm complexity. The effect of Opt.2 is dominant
in experiment 3 and 4. It is rather quick in concluding the unsatisfiability of the SUAs.
And the joint use of Opt.1 and Opt.2 is preferable if satisfiability is the only pursuit.

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 249

It is interesting to investigate Table.2, which aims at the first 30 satisfying words.
We find that if we turn off Opt.2, the ratio of external trial against internal trial is less
than 1. But it is greater than 1 when Opt.2 = 0. That means quite a number of external
trials are not committed if they do not bring new transitions. Consequently, turning on
Opt.2 can work out more diversified words.

Table 1. Experiment 1

SERE {{{a xor b}[∗1 : 4]}&&{{b xor c}[∗2 : 5]}; {{[∗2 : 4]; !a[∗2 : 5]}[∗2]}&{[∗5]; a[∗4]}}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 11145 64.79 0
0 1 59 97 0.09 1
1 0 1357 759 0.78 1
1 1 32 82 0.07 1

Table 2. Experiment 2

SERE {{{a xor b}[∗1 : 4]}&&{{b xor c}[∗2 : 5]}; {{[∗2 : 4]; !a[∗2 : 5]}[∗2]}&{[∗5]; a[∗4]}}
Target To find the first 30 satisfying words
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 11145 65.15 0
0 1 106 420 0.36 30
1 0 49632 29066 29.19 30
1 1 3588 2743 2.78 30

Table 3. Experiment 3

SERE {[∗10]; {a}&&{!a}}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 33431 16.94 0
0 1 6141 9210 2.45 0
1 0 99 65 0.03 0
1 1 33 43 0.01 0

Table 4. Experiment 4

SERE [∗10]; {a[∗3]}&&{b; TRUE; !a}
Target To find the first satisfying word
Opt. 2 Opt. 1 NO. External-Trial NO. Internal-Trial Time(s) NO. Found

0 0 100000 20057 22.96 0
0 1 100000 103598 22.08 0
1 0 256 104 0.09 0
1 1 62 52 0.03 0

250 N. Jin and H. Zhu

7 Future Works

In this paper, we have presented the algorithms behind the tool kit ASERE for assur-
ing the satisfiability of SEREs. We have formalized the IAFA as the representation of
SERE. Essentially, the IAFA conception is a memoryful, synchronization-enabled and
multi-tape computing model.

We have proposed a DPLL-like search process and discussed two optimizations aim-
ing at reducing the number of external trials. Experiments have confirmed our prediction
on their performance.

In the future, we will carry out our research in the following directions.

– Enabling the fusion operator : (overlapping concatenation) in ASERE.
– Extending ASERE to LTL so that we can solve the assurance problem for formulas

in PSL’s simple subset. A possible solution is to combine the alternating automaton
approach with the SNF approach [4] [20]. The SNF addresses the LTL constructs
and the alternating automaton addresses the embedded SEREs. The challenging
work lies in searching the satisfying words of r until b, which requires a new search
for r on each clock event until the assertion of b. However, the length of the satis-
fying words of r is so non-deterministic that it is rather hard to decide the depth at
which we can assert b .

References

1. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata construc-
tion algorithm optimized for PSL. Technical Report Delivery 3.2/4, PROSYD (July 2005)

2. Benedetti, M., Cimatti, A.: Bounded model checking for past ltl. In: Proceedings of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 18–33 (2003)

3. Bloem, R., Cimatti, A., Pill, I., Roveri, M., Semprini, S.: Symbolic implementation of al-
ternating automata. In: H. Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp.
208–218. Springer, Heidelberg (2006)

4. Bloem, R., Cavada, R., Esiner, C., Pill, I., Roveri, M., Semprini, S.: Manual for property
simulation and assurance tool. Technical Report Deliverable D1.2/4-5, PROSYD (2005)

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. Journal of ACM 28(1), 113–114 (1981)
6. Feikbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Formal Methods

in System Design 24(2), 101–127 (2004)
7. Fisman, D., Eisner, C., Havlicek, J.: Formal syntax and Semantics of PSL: Appendix B of

Accellera’s Property Specification Language Reference Manual, 1.1 edn. Accellera (March
2004)

8. Hammer, M.: Linear Weak Alternating Automata and The Model Checking. PhD thesis
(2005)

9. Havlicek, J., Fisman, D., Eisner, C.: Basic results on the semantics of accellera PSL 1.1
foundation language (2004)

10. Heljanko, K., Junttila, T.A., Keinänen, M., Lange, M., Latvala, T.: Bounded model checking
for weak alternating büchi automata. In: Proceedings of the 18th International Conference
on Computer Aided Verification, pp. 95–108 (2006)

11. IEEE. IEEE 1850-2005 Standard for Property Specification Language (PSL) (2005)
12. Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Concurrency counts (2001)

ASERE: Assuring the Satisfiability of Sequential Extended Regular Expressions 251

13. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata emptiness. In:
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, pp.
224–233 (1998)

14. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Transac-
tions on Computational Logic (TOCL) 2(3), 408–429 (2001)

15. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time
model checking. Journal of the ACM 47(2), 312–360 (2000)

16. Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little bit of
succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
90–104. Springer, Heidelberg (2007)

17. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: Efficient bounded model
checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 380–395.
Springer, Heidelberg (2005)

18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient sat solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001),
pp. 530–535 (2001)

19. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in sat-based formal verifica-
tion. International Journal on Software Tools for Technology Transfer 7, 156–173 (2005)

20. Roveri, M.: Novel techniques for property assurance. Technical Report Deliverable D1.2/2,
PROSYD (2004)

21. Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J. (ed.) Com-
puter Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg (1995)

22. Vardi, M.Y.: An automata-theoretic approach to linaer temporal logic. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Hei-
delberg (1996)

23. http://sites.sei.ecnu.edu.cn/Teachers/nyjin/e/asere e.html

http://sites.sei.ecnu.edu.cn/Teachers/nyjin/e/asere_e.html

Computing Must and May Alias to Detect Null

Pointer Dereference�

Xiaodong Ma, Ji Wang, and Wei Dong

National Laboratory for Parallel and Distributed Processing, P.R. China
{xd.ma,wj,wdong}@nudt.edu.cn

Abstract. This paper presents a novel algorithm to detect null pointer
dereference errors. The algorithm utilizes both of the must and may alias
information in a compact way to improve the precision of the detection.
Using may alias information obtained by a fast flow- and context- in-
sensitive analysis algorithm, we compute the must alias generated by
the assignment statements and the must alias information is also used
to improve the precision of the may alias. We can strong update more
expressions using the must alias information, which will reduce the false
positives of the detection for null pointer dereference. We have imple-
mented our algorithm in the SUIF2 compiler infrastructure and the ex-
periments results are as expected.

1 Introduction

Null pointer dereference is a kind of common errors in programs written in C.
If a pointer expression (including a pointer variable) which points to NULL is
dereferenced, the program will fail. If a pointer expression is uninitialized or
freed, we call it an invalid pointer expression. Dereferencing an invalid pointer
expression may not crash the program, but will get a wrong datum. Therefore,
dereferencing a NULL pointer or an invalid pointer are regarded as null pointer
dereference errors in this paper.

Alias information is needed to detect the null pointer dereference error. For
example, dereferencing ∗e after statement e = NULL or free(e) will cause an
error. It should be noticed that dereferencing any expression which may be alias
of ∗e also possibly causes a null pointer dereference error. Thus a conservative
algorithm needs the may alias information. Of course, we know that although a
conservative algorithm does not miss any real error, it may produce many false
alarms. This paper makes attempt to find much information to improve the
precision of static analysis for null pointer dereference. Statement e = malloc()
assigns e with a non-NULL value, thus e can be dereferenced and ∗e can be
written after this statement under the condition that the l-value of e is not
changed. If e′ is the alias of e before every possible execution of this statement
� This work is supported by National Natural Science Foundation of China(60725206,

60673118 and 90612009), National 863 project of China(2006AA01Z429), Program
for New Century Excellent Talents in University under grant No. NCET-04-0996.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 252–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Must and May Alias to Detect Null Pointer Dereference 253

and its l-value cannot be changed, then we can say that dereferencing e′ or write
∗e′ is also a valid operation. If we do not have the must alias information, we
may report errors, which could be false alarms actually.

Figure 1 illustrates the usage of must and may alias information. Statement
3 will not cause error because ∗z is the must alias of ∗y. Statement 7 may cause
error because y is the may alias of ∗x and ∗x has been nulled at statement 6. It is
clear that must alias information can make the detection algorithm more precise.
However, the must alias information has not been well used in the existing error
finding techniques.

int **x, *y, *z;

...

1. y = malloc();

2. z = y;

3. *z = 5;

4. if(...)

5. x = &y;

6. *x = NULL;

7. *y = 5;

Fig. 1. Usage of must and may alias

There are some null pointer dereference detection tools, such as [13], [2] and
[9]. But they have not exploited the must alias information. There is a little work
about computing and exploiting the must alias information in C programs. To
the best of our knowledge, the only work is [1]. It defines an extended form of
must alias and uses the result to improve the precision of def-use computation. In
this paper, our algorithm computes the must and may alias information of a set
of k-limiting expressions [7] from the result of a fast flow- and context- insensitive
alias analysis algorithm and the must alias information is used to detect the null
pointer dereference errors. A tool prototype has been implemented and the initial
experimental results are as expected.

This paper is organized as follows. We first introduce the points-to graph and
the method for computing l-values of expressions in Section 2, then the details of
our must alias computation algorithm in Section 3 and null pointer dereference
detection algorithm in Section 4. Section 5 gives the experimental results. The
related work and conclusions are in Section 6.

2 Points-to Graph

We suppose the result of the flow- and context- insensitive alias analysis algo-
rithm is a points-to graph. In this section, we introduce the definition of points-to
graph and describe how to compute the l-value of an expression in a points-to
graph. Then we introduce the concept of may alias and define the must alias
used in this paper.

A location set is an abstraction of the memories. It is a pair of the form
(name, offset) where name describes a memory block and offset is the offset

254 X. Ma, J. Wang, and W. Dong

within that block. Notice that for a variable we just use its name as the name
and for the dynamically allocated heaps we use the allocation-site abstraction.
We consider an array as a variable with the type of its elements.

A points-to graph is a directed graph with the location sets as nodes. There is
a directed edge from one node to another if one of the memory locations repre-
sented by the first node may point to one of the memory locations represented
by the second one.

Figure 2 is a segment of C code and its corresponding flow-insensitive points-to
graph. heap 1 denotes all the memory locations allocated at line 1. heap 2.32 is
the “next” field of the structure allocated at line 2. Different fields of a structure
are represented by different location sets.

struct list{

 int d;

 struct list *n;

};

struct list *x, *y;

1. x = malloc();

2. x->n = malloc();

x.0 heap_1.0

heap_1.32

heap_2.0

heap_2.32

Fig. 2. An example segment of C code and the points-to graphs

Given a points-to graph, we can compute the l-value of an expression, which is
a set of the possible location sets used to store its value. Besides all the location
sets occurring in the points-to graph, we introduce another kind of location set
called “virtual location set”. It is in the form of “&l” where l is a location set.
We define the l-value of an expression e on the points-to graph G by a function
ll(e,G) as following.

ll(const,G) = ∅ ll(null, G) = ∅ ll(x,G) = {x.0}
ll(&e,G) = {&l | l ∈ ll(e,G)} ll(e.f,G) = {n.f | n.0 ∈ ll(e,G)}
ll(∗e,G) = {l′ | &l′ ∈ ll(e,G) or ((l, l′) ∈ G, l ∈ ll(e,G))}
ll(e→f,G) = {n.f | (l, n.0) ∈ G, l ∈ ll(e,G)}
May alias is discussed widely, such as [6], [8], [10] and [12]. Alias information

is computed at the control flow graph vertex, that is, before the execution of
each statement–we call it program point. It is obvious that there may be more
than one path through each program point. At a program point, if the l-value of
expression e1 and e2 may be the same, then e1 and e2 have may alias relationship.
It is possible that the l-value of e1 in some execution path is the same as that of
e2 in another execution path. In this case, e1 and e2 may not be alias actually.

In order to make the definition of must alias clear, we use the postfix form of
an expression e, which is defined by a function pf(e) in the following, where x
is a variable.

Computing Must and May Alias to Detect Null Pointer Dereference 255

pf(const) = const pf(x) = x pf(&e) = e& pf(∗e) = e∗ pf(e.f) = e.f
pf(e→n) = e ∗ .n

We say that e1 is the must alias of e2 at a program point p if e1 and e2 have
the same l-value at every possible execution of p. But in some cases, the l-value
of e1 or e2 may not be defined. For example, x→n→n does not have l-value
before the execution of statement 2 in Figure 2.

Let e1 = e′1ω, e2 = e′2ω, where ω can be empty. If e′1 and e′2 have the same
l-value, then we think e1 and e2 have must alias relationship.

3 Computing Must Alias

3.1 Must Alias Data Flow Fact

Based on a flow- and context- insensitive may alias analysis, we compute the
fixpoint of data flow fact of must alias at the program point before each state-
ment. The must alias relation is an equivalence relation, that is, it is reflexive,
symmetric and transitive. For example, if e1 is the must alias of e2 and e2 is
the must alias of e3, then e1 is the must alias of e3. May alias relation is also
reflexive, symmetric, but not transitive, because two may alias pairs may be
generated in different execution paths. Supposing r is a must alias relation on
the expression set E, we can get E\r = {C1

r , C
2
r , ..., C

n
r }.

The data flow fact of must alias used in our algorithm is a tuple (r,M) where
r is a must alias relation on E and M is a map from the equivalence class with
respect to r to the location sets in the points-to graph. In other words, M(Ci

r)
denotes all the possible l-values of the expressions in Ci

r.
Let r1, r2 be must alias relation on E, we define r1 � r2 if and only if ∀e1 ∈

E, ∀e2 ∈ E, < e1, e2 >∈ r1 ⇒< e1, e2 >∈ r2. Thus the partial order of the data
flow fact is defined as (r1,M1) � (r2,M2) if and only if r1 � r2 and ∀e ∈ E,
M1([e]r1) ⊇M2([e]r2). Two special elements are also defined: the top element �
and the bottom element ⊥. For any data flow fact d, we have d � � and ⊥ � d.

May alias information can be deduced from the data flow fact. If M([e1]r) ∩
M([e2]r)
= ∅, then we say that ∀ex ∈ [e1]r, ∀ey ∈ [e2]r, ex and ey have the may
alias relation. If two data flow facts d1 and d2 satisfy d1 � d2, then the must
alias pairs in d2 is a superset of that in d1. Because the possible l-values of each
expression in d1 is also a superset of that in d2, it is easy to prove that the may
alias pairs deduced from d2 is a subset of that from d1. d2 has more must alias
pairs and less may alias pairs than that of d1, thus d2 is more precise than d1.

We use data flow analysis to compute the data flow fact at each program
point. Initially, the data flow fact at each program point is ⊥. “join” operation
“ ” is defined to compute the fixpoint of the data flow fact at each program
point. In order to define the join operation of the data flow fact, we define
that of the equivalence relation. Join operation ∨ of two equivalence relations
r1 and r2 is defined as the transive closure of the union of r1 and r2, that is,
r1 ∨ r2 = closure(r1 ∪ r2). Thus r1 ∨ r2 is also an equivalence relation.

256 X. Ma, J. Wang, and W. Dong

The join operation of data flow fact is defined as:

(r1,M1) (r2,M2) = (r1 ∨ r2,M ′), M ′ satisfies M ′(Ci
r1∨r2

) = (M1([e1]r1) ∩
M2([e1]r2)) ∩ ... ∩ (M1([en]r1) ∩M2([en]r2)) where Ci

r1∨r2
= {e1, ..., en}.

Of course, for any data flow fact d, we have � d = �, ⊥ d = d.

3.2 Must Alias Analysis

In this subsection, we will show the effect of statements on data flow facts, that
is, how a statement produces a new data flow fact from an input data flow fact.

Some auxiliary functions need to be defined first.
deref(e) = stars(e)− addr(e). Where stars(e) is the number of character ‘*’

in e and addr(e) is the number of character ‘&’. The result of deref(e) is the
dereference depth of e. It is easily to know that ∀e ∈ E, deref(e) ≥ −1.
may(e, (r,M)) = {e′|M([e′]r) ∩M([e]r)
= ∅, e′ ∈ E} is the set of expressions

which are the may aliases of e.
lchg(e, (r,M)) = {e′ω|e′ ∈ may(e, (r,M)), deref(ew) > deref(e), e′w ∈ E}.

The result of this function is all the expressions whose l-value may be changed
to different location sets by a statement which assigns a value to e.

We use a transfer function to define the effect of a statement. Three kinds of
statements are considered: the allocation statement e = malloc(); the free state-
ment free(e) and the assignment statement e0 = e1. Note that we think free(e)
has the same effect as that of e = NULL, so e1 in the assignment statement is
supposed not to be NULL.

The transfer function for e = malloc().
[e = malloc()](r,M) = (r′,M ′) where r′ satisfies the following condition.
(1) ∀e0 /∈ lchg(e, (r,M)), ∀e1 /∈ lchg(e, (r,M)): < e0, e1 >∈ r ⇒< e0, e1 >∈

r′;
(2) ∀e0 ∈ may(e, (r,M)), e0 /∈ lchg(e, (r,M)) and ∀e1 ∈ may(e, (r,M)), e1 /∈

lchg(e, (r,M)), < e0, e1 >∈ r ⇒< e0ω, e1ω >∈ r′ whenever deref(e0ω) >
deref(e0) and e0ω ∈ E, e1ω ∈ E.

(3) there are no more relation pairs in r′ other than that generated by rules
(1) and (2).

It can be proved that r′ is also an equivalence relation.
M ′ is defined on the equivalence class with respect to r′.
M ′([ex]r′) = M([ex]r) if [ex]r′ ∩ lchg(e, (r,M)) = ∅
For the equivalence class which contains expression whose l-value may be

changed, we write it in the form of [eyω]r′ where ey /∈ lchg(e, (r,M)) and ey ∈
may(e, (r,M)). The possible l-value of this set of expressions is defined as:

M ′([eyω]r′) =⎧⎪⎪⎨
⎪⎪⎩

heap i.fx : if eω ∈ [eyω]r′ and deref(eyω) = deref(ey) + 1
heap i.fx ∪M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) = deref(ey) + 1
∅ : if eω ∈ [eyω]r′ and deref(eyω) > deref(ey) + 1
M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) > deref(ey) + 1

Computing Must and May Alias to Detect Null Pointer Dereference 257

heap i is the abstract heap allocated at the current statement. The suffix fx

depends on the types of expression eyω. If the l-value of an equivalence class
is allocated definitely at the current statement, then we use heap i.fx as its l-
value, else we add heap i.fx to the original l-value set to make our computation
of l-value conservative. It is clear that the currently allocated heap cannot be
dereferenced-which explains why ∅ occurs in the definition.

The transfer function for free(e).

[free(e)](r,M) = (r′,M ′).

Because we regard the effect of free(e) as assigning NULL to e, the rules for
generating r′ are the same as that of statement e = malloc().

The definition of M ′ is divided into two cases.
For the equivalence class [ex]r′ which does not contain any expression in

lchg(e, (r,M)), we get M ′([ex]r′) = M([ex]r).
For the equivalence classes which contains expression in lchg(e, (r,M)), we

can write it as [eyω]r′ where ey ∈ may(e, (r,M)) and ey /∈ lchg(e, (r,M)).

M ′([eyω]r′) =
{
∅ : if eω ∈ [eyω]r′ and deref(eyω) > deref(ey)
M([eyω]r) : if eω /∈ [eyω]r′ and deref(eyω) > deref(ey)

The transfer function for e0 = e1.

[e0 = e1](r,M) = (r′,M ′).

The effect of this statement can be divided into two parts: it first destroys
the old value of e0 and then assigns a new value to it. In other words, we replace
it with two statements: e0 = NULL; e0 = e1. The generation of r′ can also be
divided into two steps: the generation of equivalence relation r′′ after the exe-
cution of e0 = NULL and that of r′ after e0 = e1. We can get r′′ by applying
the same rules as that for the e = malloc() statement. The generation of r′ is
defined in the following.

r′ ={
closure(r′′ ∪ {< e0ω, e1ω >| deref(e0ω) > deref(e0)}) : if (1)
r′′ : else

where (1) ≡ e0 /∈ lchg(e0, (r,M)), e1 /∈ lchg(e0, (r,M)).
The definition of M ′ is as following.

M ′([ex]r′) = M([ex]r) if [ex]r′ ∩ lchg(e0, (r,M)) = ∅.
For the equivalence class [eyω]r′ which satisfies [eyω]r′ ∩ lchg(e0, (r,M))
= ∅,

ey ∈ may(e0, (r,M)) and ey /∈ lchg(e0, (r,M)), we can have:

M ′([eyω]r′) =

⎧⎨
⎩
M([e1ω]r) : if (2)
M([e1ω]r) ∪M([eyω]r) : if (3)
bottom : else

In the above definition, (2) ≡ e1 /∈ lchg(e0, (r,M)) ∧ e0ω ∈ [eyω]r′ ∧ ∀ω′ :
deref(e1) < deref(e1ω′)< deref(e1ω) ⇒ e1ω

′ /∈ lchg(e0, (r,M)). If (2) is

258 X. Ma, J. Wang, and W. Dong

satisfied, we are sure that the l-value of eyω is changed and the correspond-
ing l-value of the source equivalence class is not changed. Thus we can replace
the l-value of [eyω]r′ with that of [e1ω]r. (3) ≡ e1 /∈ lchg(e0, (r,M)) ∧ e0ω /∈
[eyω]r′ ∧∀ω′ : deref(e1) < deref(e1ω′) < deref(e1ω) ⇒ e1ω

′ /∈ lchg(e0, (r,M)).
In this case, the l-value of the source equivalence class is not changed, too. But we
are not sure whether [eyω]r is the target equivalence class. So we use the union
operation to make our algorithm conservative. In the third case, bottom denotes
all the possible location sets of eyω. This value is used because the l-value of the
source class may be changed and the target class may not be assigned with the
l-value of the source class.

In the inter-procedural analysis phase, we add a sequence of statements which
assign the formal parameters with the corresponding real arguments before step-
ping into the called procedure. After exiting from the called procedure p, we clean
the must information of the local expressions of p. That is, there is no expression
which is the must alias of a local expression except itself.

4 Null Pointer Dereference Detection

The null pointer dereference detection algorithm which will be presented is based
on the results of the must alias analysis. The strong updates derived from the
must alias information can make the detection algorithm more precise. In this
section, we suppose the data flow fact of must alias information has already been
computed at the program point before each statement.

In order to detect null dereference error, we use a data flow fact to describe
the allocation information. It is a function A : E → {true, false}. A(e) = true
denotes that the pointer expression e points to a valid memory location. A(e) =
false means that e points to NULL or other invalid memory location, such as
an uninitialized or freed one.

As in the computing of must alias, there is a function describing the allocation
information at each program point. We compute its fixpoint. The top value of the
allocation information A� is defined as: ∀e ∈ E(A�(e) = true) and the bottom
∀e ∈ E(A⊥(e) = false). A1 � A2 iff ∀e ∈ E(A1(e) = false ∨ A2(e) = true).
A1 A2 = A′ where ∀e ∈ E(A′(e) = A1(e) ∨ A2(e)). The initial allocation
information at each program point is A⊥.

Each type of statements can be regarded as a transfer function which takes
a must alias data flow fact (r,M) and an allocation data flow fact A as inputs
and outputs allocation data flow fact A′.

The transfer function for e = malloc().
[e = malloc()]A((r,M), A) = A′ where:

A′(ey) =

⎧⎨
⎩
false : if ey ∈ lchg(e, (r,M))
true : if ey /∈ lchg(e, (r,M)) and < ey, e >∈ r
A(ey) : else

Computing Must and May Alias to Detect Null Pointer Dereference 259

The transfer function for free(e).
[free(e)]A((r,M), A) = A′ where:

A′(ey) =
{
false : if ey ∈ may(e, (r,M)) or ey ∈ lchg(e, (r,M))
A(ey) : else

The transfer function for e0 = e1.
[e0 = e1]A((r,M), A) = A′.

The definition of A′ is divided into two parts. The first is for the expressions
which are not in lchg(e0, (r,M)) and the second is for the other expressions.
We also rewrite expressions in the second part in the form of eyω where ey ∈
may(e0, (r,M)) and ey /∈ lchg(e0, (r,M)).

A′(ex) = A(ex) if ex /∈ lchg(e0, (r,M)).

A′(eyω) =

⎧⎨
⎩
A(e1ω) : if (2)
A(e1ω) ∧A(eyω) : if (3)
false : else

The inter-procedural analysis is in the similar way as that in the must alias
analysis. A sequence of statements which assign real arguments to the corre-
sponding formal parameters are inserted at the entry of the called procedure.
A(e) is assigned with false after exiting from procedure p if e is the local ex-
pression of p.

Using the allocation information, we can decide whether an expression causes
null pointer dereference. If an expression eω is read or written and the following
conditions are satisfied: (1) A(e) = false; (2) deref(eω) > deref(e), then we
say that a null pointer dereference may occur.

5 Experiment

We have implemented the prototype of our algorithm in the SUIF2 compiler
infrastructure and evaluated it with the test cases from samate [11]. The de-
scription of the test cases and the results of our experiment are listed in Table 1.

NPD stands for “Null Pointer Dereference” in Table 1. From the results of
the experiment, we can see that our method has a good precision. It should be

Table 1. Experiment with the test cases from samate

Case IDs Reports Bugs Description
1760 1 1 Ordinary NPD.

1875 1 1 NPD through array element.

1876 1 1 NPD through array element in branch condition.

1877 1 1 NPD within branch of switch statement.

1879 1 1 NPD caused inter-procedurally.

1880 0 0 Dereferencing inter-procedurally without NPD.

1934 0 0 NPD within unreachable branch of if statement.

260 X. Ma, J. Wang, and W. Dong

noticed that in the program No. 1394, there is a dereference of a null pointer in
the branch of an if statement, but the condition cannot be satisfied. Our tool uses
the allocation information to decide whether some simple condition expressions
can be satisfied. For example, if A(e) = true, then we can know the value of
e
= NULL is true.

6 Related Work and Conclusions

Must alias information is very useful for many analysis like constant propagation,
register allocation and dependence analysis [3]. However, not much work has
been done for must alias analysis [5]. In most cases, it is the side effect of a may
alias analysis and is used during the process of may alias analysis in order to
improve the precision. [6] defines must alias in an optimistic manner: if during
the analysis a pointer only points to one object, then it is treated as a must alias.
This definition may miss the must alias information between some expressions
which have heap locations in their access path. [1] introduces an extended must
alias analysis to handle dynamically allocated locations and this result is used to
improved def-use information. CALYSTO [2] can detect null pointer dereference
errors. It embraces the ESC/Java [4] philosophy of combining the ease of use
of static checking with the powerful analysis of formal verification. It is fully
automatic, performing inter-procedural analysis. PSE [9] is also a null pointer
dereference detection tool. It tracks the flow of a single value of interest from
the point in the program where the failure occurred back to the point in the
program where the value may have originated. In other words, it can work in a
demand-driven fashion.

In this paper, we propose a novel must alias analysis algorithm. Using the
result of a fast, imprecise may alias analysis, it can compute the must alias
relation between complex expressions and improve the precision of the may alias
at the same time. Exploiting the must alias information, a precise null pointer
dereference detection algorithm is also proposed. In the futrue, we will improve
the scalability of our tool and use it to check some real world applications.

References

1. Altucher, R.Z., Landi, W.: An extended form of must alias analysis for dynamic
allocation. In: POPL 1995: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 74–84. ACM, New York
(1995)

2. Babić, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking.
In: Proceedings of 30th International Conference on Software Engineering (ICSE
2008), May 10–18 (2008)

3. Emami, M.: A practical interprocedural alias analysis for an optimiz-
ing/parallelizing c compiler. Master’s thesis, McGill University (1993)

4. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI 2002: Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implementation, pp.
234–245. ACM, New York (2002)

Computing Must and May Alias to Detect Null Pointer Dereference 261

5. Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: PASTE 2001:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp. 54–61. ACM, New York (2001)

6. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems 21(4), 848–894 (1999)

7. Jones, N.D., Muchnick, S.S.: Flow analysis and optimization of lisp-like structures.
In: POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 244–256. ACM, New York (1979)

8. Liang, D., Harrold, M.J.: Efficient points-to analysis for whole-program analysis.
In: ESEC / SIGSOFT FSE, pp. 199–215 (1999)

9. Manevich, R., Sridharan, M., Adams, S., Das, M., Yang, Z.: Pse: Explaining pro-
gram failures via postmortem static analysis. In: Richard, N. (ed.) Proceedings
of the 12th International Symposium on the Foundations of Software Engineering
(FSE 2004)November 2004. ACM, New York (2004)

10. Rugina, R., Rinard, M.: Pointer analysis for multithreaded programs. In: PLDI
1999: Proceedings of the ACM SIGPLAN 1999 conference on Programming lan-
guage design and implementation, pp. 77–90. ACM Press, New York (1999)

11. Samate test cases, http://samate.nist.gov
12. Steensgaard, B.: Points-to analysis in almost linear time. In: Symposium on Prin-

ciples of Programming Languages, pp. 32–41 (1996)
13. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean

satisfiability. ACM Trans. Program. Lang. Syst. 29(3), 16 (2007)

http://samate.nist.gov

A Partial Order Reduction Technique for

Parallel Timed Automaton Model Checking

Zhao Jianhua, Wang Linzhang, and Li Xuandong�

State Key Laboratory of Novel Software Technology
Dept. of Computer Sci. and Tech. Nanjing University

Nanjing, Jiangsu, P.R. China 210093
zhaojh@nju.edu.cn

Abstract. We propose a partial order reduction technique for timed au-
tomaton model checking in this paper. We first show that the symbolic
successors w.r.t. partial order paths can be computed using DBMs. An
algorithm is presented to compute such successors incrementally. This
algorithm can avoid splitting the symbolic states because of the enu-
meration order of independent transitions. A reachability analysis algo-
rithm based on this successor computation algorithm is presented. Our
technique can be combined with some static analysis techniques in the
literate. Further more, we present a rule to avoid exploring all enabled
transitions, thus the space requirements of model checking are further
reduced.

1 Introduction

Timed automata, and their parallel compositions, can be used to model realtime
systems. A timed automaton[1] is derived by extending a conventional finite state
automaton with clock variables and time guards. A (concrete) state of a timed
automaton is a tuple composed of a concrete control location and clock values,
which are real numbers. The concrete state space of a timed automaton is infinite.
So the model checking on timed automata is performed by enumerating symbolic
states. Each symbolic state is a tuple of a control location and a clock constraint.
It represents a set of concrete states on the same location, of which the clock val-
ues satisfying the constraint. Nowadays, powerful timed automata model check-
ing [2][3] tools have succeeded in verifying many industrial systems. However, the
state space explosion problem still remains a challenge to researchers.

In the domain of model checking for temporal systems, partial order reduction
methods are proved to be efficient. Such methods try to avoid exhaustive state
space exploration by avoid enumerating all interleaves of independent transitions.
Intuitively speaking, two transitions a, b are independent to each other implies
that, the sequence ab is a transition sequence from a state s to another state s′

if and only if ba is also a sequence from s to s′. One of these two sequences can
be selected as the representative of them. Checking one sequence is equivalent
to checking all these sequences.
� This paper is supported by the National Grand Fundamental Research 973 Program

of China (No.2002CB312001).

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 262–276, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Partial Order Reduction Technique 263

However, in the domain of real time systems, the clock values should also be
considered. Even if two transition does not interfere with each other, different
orders of these transitions lead to different successive states. Considering the
case that a, b respectively reset the clocks c1 and c2 to 0. Given a symbolic
state s, the symbolic state enumeration algorithm used in tools like UPPAAL
and Kronos generally gets two different symbolic successors with respect to the
sequences ab and ba. So these two transitions is considered to be dependent to
each other if such symbolic analysis algorithms are employed.

In the paper [4] and [5], a local time semantics is proposed to decouple the
transitions of different component of a parallel composition of timed automaton.
Each component has its local time. Under such semantics, the transitions a and
b are independent if they are from two different components. However, only for
a specific class of timed automata, the symbolic state spaces are finite.

In the paper [6], D. Dams, etc. proposed that only a subset of the enabled
transitions should be explored if the transitions in this subset covers all other
transitions. However, such covering relations are restrictive.

In the paper [7], D. Lugiez, P. Niebert, and S. Zennou presented a method to
avoid symbolic state splitting. They compute symbolic successors with respect
to the infinite index Myhill-Nerode congruence, but test whether a state should
be further explored by a finite index preorder. In their algorithm, the symbolic
states is called ’event zones’, which are conjunctions of difference bounds on
clock variables and a set of auxiliary variables.

In this paper, we propose a partial order reduction technique for parallel timed
automaton model checking. Using such a technique, the symbolic successors are
computed w.r.t. partial order paths, instead of single transitions. Thus, we avoid
splitting the symbolic state because of the enumeration order of transitions. An
efficient algorithm which can compute the successors incrementally is presented in
this paper. This technique can be combined with some static analysis techniques
in the literate. Also, we present a rule to avoid exploring all enabled transitions.

This paper is organized as follows. We give a brief introduction to parallel
timed automata in Section 2. In Section 3, we give the definitions of a transition
independence relation and partial order paths. We also show that the succes-
sor of a symbolic state w.r.t. a partial order path is also a symbolic state. In
Section 4, we present an incremental algorithm to compute the successors w.r.t.
partial order paths. The reachability analysis algorithm employing this succes-
sor computation algorithm is presented Section 5. A rule to avoid exploring all
enabled transitions is presented in Section 6. The Section 7 presents some case
studies. We conclude this paper in Section 8.

2 Background

2.1 Parallel Timed Automata

Let C be a finite set of clock variables. We use G(C) to denote the set of time
guards, which are conjunctions of the formulas of the form c � n, where c ∈ C,
�∈ {<,≤,=,≥, >}, and n is a non-negative integer.

264 Z. Jianhua, W. Linzhang, and L. Xuandong

A timed automaton can be viewed as a conventional finite state automaton
equipped with clock variables and time guards. These clock variables and time
guards are used to constrain the time distance between the occurrence of transi-
tions. A finite set of timed automata can be composed through synchronization
channels or shared variables to model concurrent systems. We use parallel timed
automata, which are defined as follow, to describe such parallel compositions.

Definition 1. A parallel timed automaton A is a tuple (S, s0, C,Σ,→, F, I),
where

1. S is a finite set of locations;
2. s0 ∈ S is the initial location;
3. C is a finite set of clock variables;
4. Σ ⊆ G(C) × 2C is a finite set of transitions. Given a transition e = (g, r),

we say g is the time guard of e, and e resets the clocks in r;
5. →⊆ S ×Σ × S is a finite set of edges. We write l e→ l′ if (l, e, l′) ∈→.
6. F ⊆ S is the set of acceptance locations.
7. I ⊆ S #→ G(C) assigns each location in S a location invariant. Each location

invariant is a conjunction of formulas of the form c < n or c ≤ n, where
c ∈ C and n is a non-negative integer.

Using this definition, we can avoid details such as shared variable assignments
and guards, synchronization channels, and so on. Thus we can discuss about
partial order reduction on an abstract level.

Given a location l, a transition e is enabled at l, denoted as Enable(l, e),
if l e→ l′ for some location l′. A transition may take place many times during
the evolution of a timed automaton. So there may be many occurrences of a
transition during the evolution. Given a transition occurrence o, we use o to
denote the corresponding transition. A path leaving from a location l to another
location l′ is a sequence of transition occurrences o1, o2, . . . , on satisfying that
there exists a sequence of locations l0, l1, l2, . . . , ln such that l0 = l, ln = l′, and

li
oi+1
→ li+1 for i = 0, 1, 2, . . . , n−1. We say l′ is the final location of p. Let (gi, ri)

be the transition of oi for i = 1, 2, . . . , n. We define

R(p, i, c) =
{

0
 ∃k.(k < i) ∧ (c ∈ ri)
j j is the bigest integer satisfying that (c ∈ rj) ∧ (j < i)

Intuitively speaking, if R(p, i, c) > 0, it is the index of the last transition oc-
currence resetting the clock c before oi; R(p, i, c) = 0 means that there is no
transition occurrence resetting c before oi.

A state of the timed automaton A is a tuple (l, v), where l ∈ S, v is a clock
valuation which maps each clock in C to a non-negative real value, and v satisfies
the time guard I(l), i.e. the location invariant of l.

Let p = o1, o2, . . . , on be a path from l to l′. A sequence of time-stamped
transition occurrences α = (ε, t0), (o1, t1), (o2, t2), . . . , (on, tn) is said to be an
execution starting from a state (l, v) to another state (l′, v′) following p, denoted
as (l, v) α→ (l′, v′) if the following conditions hold.

A Partial Order Reduction Technique 265

1. (Transition occurrence order). For each i(0 ≤ i ≤ n− 1), ti ≥ ti+1.
2. (Transition time guards). For each integer i(1 ≤ i ≤ n) and each atomic

formula c � m of the time guard of oi, tR(p,i,c) − ti � m if R(p, i, c) > 0;
v(c) + t0 − ti � m if R(p, i, c) = 0.

3. (Location invariants). Let l0, l1, l2, . . . , ln be a sequence of locations sat-
isfying that ∀k(1 ≤ k ≤ n).lk−1

ok→ lk, l0 = l and ln = l′. For each integer
i(1 ≤ i ≤ n) and each atomic formula c � m of the location invariant of li−1,
tR(p,i,c) − ti � m if R(p, i, c) > 0; v(c) + t0 − ti � m if R(p, i, c) = 0.

4. (Final state). The clock valuation v′ is defined as follow. For each clock c,
v′(c) = tR(p,n+1,c) if R(p, n+ 1, c) > 0; v′(c) = v(c) + t0 if R(p, n+ 1, c) = 0.
The clock valuation v′ must satisfy the location invariant of ln,

In this paper, an execution is viewed as a history of evolution. The time stamp of
a transition occurrence represents the time elapsed since the transition occurred.
The time guards and location invariants constraint the difference between time
stamps.

A transition e = (g, r) is said to be invariant-irrelevant w.r.t. a clock c if and
only if for any two locations l1, l2 such that l1

e→ l2, the constraints about c of
I(l1) and I(l2) are same. Otherwise, it is said to be invariant-relevant.

Now considering the condition about location invariants. Notice that ti−1 ≥ ti,
it is unnecessary to check the location invariant about a clock c on li−1 if the
atomic formulas about c in I(li−1) and the ones in I(li) are same and oi does
not reset c. So the third condition can be changed to the following one.

3′ (Location invariants). For any integer i(1 ≤ i ≤ n) such that either oi

is invariant-relevant to a clock c, or oi resets c, and c � m (�∈ {<,≤})
is an atomic formula of I(li−1), we have that tR(p,i,c) − ti � m holds if
R(p, i, c) > 0; v(c) + t0 − ti � m holds if R(p, i, c) = 0.

2.2 Symbolic States and the Symbolic Successors w.r.t. Paths

Because the value of clocks are real numbers, the state space of a parallel timed
automaton is generally infinite. Model checking for timed automata can be per-
formed by enumeration of symbolic states. A symbolic state is a tuple (l, D),
where l is a location, and D is a conjunction of atomic formulas of the form
x − y � m, where x, y ∈ C ∪ {0}, and m is an integer. A symbolic state (l, D)
represents the set of states {(l, v)|v(c) � m holds for each formula x � m of D}.
We say a state (l, v) is in a symbolic state (l, D), denoted as (l, v) ∈ (l, D), if
and only if (l, v) is in this set.

Let (l, D) be a symbolic state, p = o1, o2, . . . , on be a path from l to l′. The set
of concrete states reachable from a state in (l, D) through an execution following
p can also be represented as a symbolic state. We call this state as the symbolic
successor of (l, D) w.r.t. p, denoted as sp(p, (l, D)). The set of reachable concrete
states is as follow.

{
(l′, v′)

∣∣∣∣∃ (l, v), α.((l, v) ∈ (l, D)) ∧ ((l, v) α−→ (l′, v′))
∧(α is an execution following p)

}
.

266 Z. Jianhua, W. Linzhang, and L. Xuandong

Let {c1, c2, . . . , ck} be the clock set of a parallel timed automaton A. We intro-
duce the following auxiliary time variables: tc1 , tc2 , . . . , tck

, t0, to1 , to2 , . . . , tok
.

We define V (p, i, c) as follows.

V (p, i, c) =
{
toj where j = R(p, i, c) if R(p, i, c) > 0
tc if R(p, i, c) = 0

A time variable x is said to be active after oi if and only if either x = V (p, i+1, c)
for some clock c, or x = toi .

The above set of concrete successive state can be expressed as a conjunction
of difference bounds of these auxiliary variables. The way we used here is similar
to the one in the paper [7].

The condition that the sequence α = (ε, t0), (o1, to1), (o2, to2), . . . , (on, ton) is
an execution following p starting from (l, v) to (l′, v′), where ∀c ∈ C.v(c) = tc−t0
if and only if

1. ORDER(p) ∧ GUARDS(p) ∧ INV(p) and
2. ∀c ∈ C.v′(c) = V (p, n+ 1, c) and v′ satisfies the location invariant of l′.

Here, the formulas ORDER(p), GUARDS(p) and INV(p) are defined according to
the conditions of the definition of executions. All of them are conjunctions of
difference bounds of the form x− y ∼ m, where x, y are auxiliary time variables,
∼∈ {<,≤}, and m is an integer. The condition which specifies that (l, v) is in
a symbolic (l, D) can also expressed as a conjunction of difference bounds. We
use IN(D) to denote this condition.

The set of concrete states reachable from a state in (l, D) through an execution
following p is as follow.

⎧⎪⎪⎨
⎪⎪⎩

(l′, v′)

∣∣∣∣∣∣∣∣

∃ tc1 , tc2 , . . . , tck
, t0, to1 , to2 , . . . , ton .

(IN(D) ∧ ORDER(p) ∧ GUARDS(p) ∧ INV(p)
∧(∀c ∈ C.vn(c) = V (p, n+ 1, c)))
∧(v′ satisfies the location invaraint of l′)

⎫⎪⎪⎬
⎪⎪⎭

3 Independent Transitions and Partial Order paths

In this section, we first define an independence relation on transitions. If two
transitions e1, e2 are independent to each other, the occurrence of e1 does not
disable or enable e2, and vice versa. Further more, as we will show later, changing
their occurrence order in a path does not change the conditions about the time
guards and location invariants.

Definition 2. Given two transitions e1 = (g1, r1) and e2 = (g2, r2), we say e1
and e2 are independent to each other, denoted as Indep(e1, e2), if and only if
the following conditions hold.

1. For any two locations l, l′ such that l e1→ l′, Enable(l, e2) ⇔ Enable(l′, e2);
and vice versa.

2. For any two given locations l, l′, there exists a location l1 such that l e1→ l1
and l1

e2→ l′, iff there exists a location l2 such that l e2→ l2 and l2
e1→ l′.

A Partial Order Reduction Technique 267

3. r1 ∩ r2 = ∅.
4. For any atomic formula c � n in g1 (or g2), c is not in r2 (or r1 respectively).
5. For any clock c, either e1 or e2 is invariant-irrelevant to c.

We can exchange two adjacent transition occurrences of a path to derive another
path, if the corresponding transitions are independent to each other. The derived
path and the original one start from same location, and also arrive at same lo-
cation. Notice that the conditions corresponding to time guards and location
invariants constrain the time distance between a pair of transition occurrences:
the first one resets a clock c and the second one tests c. Exchanging two inde-
pendent transition occurrence does not changing such occurrence pairs. So we
have the following conditions.

Proposition 1. Let p = o1, o2, . . . , on be a path of a timed automaton from l to
l′, and oi, oi+1 are two adjacent transition occurrences of p and Indep(oi, oi+1).
We have the following conclusions.

1. p′ = o1, o2, . . . oi−1, oi+1, oi, oi+2, . . . , on is also a path form l to l′.
2. GUARDS(p′) and INV(p′) are respectively same as GUARDS(p) and INV(p).
3. For each clock c, V (p, n+ 1, c) is same as V (p′, n+ 1, c).

Definition 3. A partial order path (POP) of a timed automaton A is a tuple
(p,<), where p = o1, o2, . . . , on is a path of A from l to l′, and < is a partial
order on the set {o1, o2, . . . , on} satisfying that for any two integer i, j, (1) oi <
oj ⇒ i < j, and (2) (i < j) ∧ ¬Indep(oi, oj) ⇒ oi < oj.

Let p′ = o′1, o
′
2, . . . , o

′
n be an arbitrary topological sort of the POP (p,<). Notice

that p′ can be derived from p by repeatedly exchanging adjacent independent
transition occurrences, from Proposition 1, p′ is also a path.

We say an execution α conforms to (p,<) iff the corresponding path of α is a
topological sort of (p,<). The set of states which are reachable from a state in
(l, D) through an execution conforming to (p,<) can be expressed as follow.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(l′, v)

∣∣∣∣∣∣∣∣∣∣

∃ tc1 , tc2 , . . . , tck
, t0, to1 , to2 , . . . , ton , p

′.(
(p′ is a topological sort of (p,<))∧
IN(D) ∧ ORDER(p′) ∧ GUARDS(p′) ∧ INV(p′)∧
∀c ∈ C.v(c) = V (p′, n+ 1, c))

∧ (v satisfies the location invariant of ln)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Notice that all topological sorts of (p,<) can be derived by repeatedly ex-
changing adjacent independent transition occurrences. From Proposition 1, the
formulas GUARDS(p′), INV(p′), V (p′, n+ 1, c) are respectively same as GUARDS(p),
INV(p), V (p, n+1, c). The condition ∃p′.((p′ is conforming to (p,<))∧ORDER(p′))
is equivalent to ORDER((p,<)), which is defined as follow.

(
n∧

i=1

0− toi ≤ 0) ∧ (
n∧

i=1

toi − t0 ≤ 0) ∧ (
∧

for each oi, oj such that oi < oj

toj − toi ≤ 0)

268 Z. Jianhua, W. Linzhang, and L. Xuandong

So the set can be rewritten as follow.
⎧⎪⎪⎨
⎪⎪⎩

(l, v)

∣∣∣∣∣∣∣∣

∃ tc1 , tc2 , . . . , tck
, t0, to1 , to2 , . . . , ton .(

ORDER((p,<)) ∧ IN(D) ∧ GUARDS(p) ∧ INV(p)∧
∀c ∈ C.v(c) = V (p, n+ 1, c))

∧ (v satisfies the location invariant of ln)

⎫⎪⎪⎬
⎪⎪⎭
.

In our implementation of the reachability analysis algorithm, the partial order
< is represented using a directed acyclic graph G which induces <. We also
write the POP (p,<) as (p,G). The condition ORDER((p,<)) is equivalent to the
following condition, denoted as ORDER((p,G)).

(
n∧

i=1

0− toi ≤ 0) ∧ (
n∧

i=1

toi − t0 ≤ 0) ∧ (
∧

(oi, oj) is an edge of G

toj − toi ≤ 0)

We use SI((p,<), (l, D)), or SI((p,G), (l, D)), to denote the set of concrete
states which are reachable from a state in (l, D) through an execution conforming
to (p,<). From the above discussion, we have the following proposition.

Proposition 2. For two POPs (p,<) and (p,<′) from l satisfying that <⊆<′,
SI((p,<′), (l0, D0)) ⊆ SI((p,<), (l0, D0)).

4 Compute Symbolic Successors w.r.t. POPs

In this subsection, we will present a method to compute a symbolic state rep-
resenting the set SI((p,G), (l, D)) for a given symbolic state (l, D) and a given
POP (p,G). We first present a basic method to compute symbolic successors
w.r.t. POPs. This method employs a well-known data structure called differ-
ence bound matrixes (DBM). Then we will present an optimized algorithm to
compute such successors incrementally.

4.1 Difference Bound Matrixes and the Basic Successor Algorithm

A difference bound matrix (DBM)[9] over a set of variables is a matrix of which
each row and column corresponding to a variable or the constant 0. Each element
is a tuple (�,m) or (<,+∞), where �∈ {<,≤} and m is an integer or +∞.
Given a conjunction of atomic formulas of the form x − y � m, the DBM M
representing this conjunction is as follow. For each atomic formula x − y � m,
M [x, y] = (�,m), where M [x, y] represents the element at the cross of the row
corresponding to x and the column corresponding to y. All the other elements
are set to (<,+∞).

The operator + over the elements of a DBM is defined as follow. (≺,m)+(≺′,
m′) � (≺′′,m+m′), where ≺′′∈ {<,≤}, and ≺′′ is ≤ if and only if both ≺ and
≺′ are ≤ and m′,m
= +∞. Here we define +∞+ n = n+ (+∞) = +∞.

We say (≺,m) is smaller than (≺′,m′), denoted as (≺,m) < (≺′,m′), if either
m < m′, or (m = m′) ∧ (≺=<) ∧ (≺′=≤).

A Partial Order Reduction Technique 269

Let M be a DBM over a set of variables. A sequence of these variables
x1, x2, . . . , xk is said to be a chain of M from x1 to xn if M [xi, xi+1] is not
(<,+∞) for i = 1, 2, . . . , k−1. The length of this chain is defined as M [x1, x2]+
M [x2, x3] + . . .+M [xk−1, xk]. A DBM M is said to be canonical if and only if
for any two variables x, y, either M [x, y] = (<,+∞) and there is no chain from
x to y, or the chain x, y is (one of) the shortest chain from x to y.

Given a non-empty DBM M , for any two variables x, y such that there is
a chain from x to y, there must be a shortest chain from x to y and no time
variable appears in the chain more than once.

Given a DBM M over a variable set V , there is a canonical DBM M ′ such
that the conjunctions represented by M and M ′ are equivalent. Let D be the
conjunction represented byM . Let {x1, x2, . . . , xk} be a subset of V . The formula
∃x1, x2, . . . , xk.D is equivalent to a conjunction represented by the DBM derived
by removing from M ′ all the columns and rows corresponding to x1, x2, . . . , xk.

Given a symbolic state (l, D), and a partial order path (p,G) from l, the
formulas ORDER((p,G)), IN(D), GUARDS(p), and INV(p) are conjunctions of atomic
formulas of the form x−y � m, where �∈ {<,≤}, and x, y are time variables or
0. So the conjunction of these four formulas can be represented as a DBM over
time variables and 0. We use M((p,G), (l, D)) to denote this DBM.

Without loss of generality, suppose {tc1, tc2 , . . . , tck′ , to1 , to2 , . . . , ton′} (0 ≤
k′ ≤ k, 0 ≤ n′ ≤ n) be the set of variables which are active after on. The set of
concrete states which are reachable from a state in (l, D) through an execution
conforming to (p,G) can be expressed as follow.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(l′, v′)

∣∣∣∣∣∣∣∣∣∣

∃ tc1 , tc2 , . . . , tck′ , to1 , to2 , . . . , ton′ .(
∃ tck′+1

, tck′+2
, . . . , tck

, t0, ton′+1
, ton′+2

, . . . , ton .

(ORDER((p,G)) ∧ IN(D) ∧ GUARDS(p) ∧ INV(p))
∧ ∀c ∈ C.v′(c) = V (p, n+ 1, c))

∧ (v′ satisfies the location invariant of ln)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

Here, the formula ∃tck′+1
, tck′+2

, . . . , tck
, t0, ton′+1

, ton′+2
, . . . , ton .(ORDER(p,<) ∧

IN(D) ∧ GUARDS(p) ∧ INV(p)) is equivalent to a conjunction represented by a
DBM derived by removing all the columns and rows corresponding to variables
which are not active after on from the canonical form ofM((p,G), (l, D)). We use
SA((p,G), (l, D)) to denote this DBM. Let DA be the conjunction represented
by SA((p,G), (l, D)), the above set can be written as follow.

⎧⎨
⎩(l′, v′)

∣∣∣∣∣∣
(∃ tc1 , tc2 , . . . , tck′ , to1 , to2 , . . . , ton′ .

(DA ∧ ∀c ∈ C.v′(c) = V (p, n+ 1, c)))∧
(v′ satisfies the location invariant of ln)

⎫⎬
⎭ .

The above set can be represented by a symbolic state (l′, D ∧ I(l′)), where I(l′)
is the location invariant of l′, and D is a conjunction derived as follows. For
any two clocks c1, c2, c1 − c2 ∼ m is an atomic formula of D if and only if
V (p, n+ 1, c1)− V (p, n+ 1, c2) ∼ m is an atomic formula of DA.

From the above discussion, the symbolic successor of (l, D) w.r.t. (p,G), i.e.
SI((p,G), (l, D)), can be computed as follow.

270 Z. Jianhua, W. Linzhang, and L. Xuandong

Step 1. Construct the DBM M((p,G), (l, D)) according to the definition, and
compute the canonical form of this DBM. Then compute SA((p,G), (l, D)) by
removing the columns and rows corresponding to the non-active variables.

Step 2. Compute SI((p,G), (l, D)) based on SA((p,G), (l, D)) as above.
The first step is time-consuming when the path p is composed of many tran-

sition occurrences. The second step is efficient and the time complexity is inde-
pendent to the length of p. In the next subsection, we will present a method to
compute SA((p,G), (l, D)) incrementally.

4.2 An Incremental Algorithm to Compute Successors w.r.t. POPs

Let (p,G) be a POP from l to l′, where p = o1, o2, . . . , on. Let (l, D) be a symbolic
state. For each i = 1, 2, . . . , n, (pi, Gi) is a POP defined as pi = o1, o2, . . . , oi,
and for any two transition occurrences oj , ok where j, k ≤ i, (oj , ok) is an edge
of G if and only if (oj , ok) is an edge of Gi. Mi is used to denote the DBM
SA((pi, Gi), (l, D)), M0 is used to denote the canonical DBM representing D.
In this subsection, we will show that Mn can be computed efficiently based on
M0,M1,M2, . . . ,Mn−1.
Vi is used to denote the set {tc1 , tc2 , . . . , tck

, t0, to1 , to2 , . . . , toi} for i = 1 to
n. A chain of M((p,<), (l, D)) is said to be an i-chain if and only if all of
the time variables are in the set Vi. From the definition of (pi, Gi), ORDER, IN,
GUARDS and INV, Mi can be derived by removing from Mn the columns and rows
corresponding to variables in Vn − Vi. So a sequence of variables is an i-chain
of M((p,G), (l, D)) if and only if it is a chain of M((pi, Gi), (l, D)). So, for any
two variables x, y which are active after oi, Mi[x, y] equals to the length of the
shortest i-chain of M((p,G), (l, D)) from x to y.

Let x, y be two variables in the set Vn, we say y is later than x if either
x ∈ {tc1, tc2 , . . . , tck

, t0} and y ∈ {to1 , to2 , . . . , ton}, or x = toi , y = toj and i < j.
From the definition of ORDER and IN, for any atomic formula x − y ∼ m of

ORDER((p,G)) and IN(D), y is not later than x. For any two variables x, y such
that y is later than x and M((p,G), (l, D))[x, y] = (�,m)
= (<,+∞), x−y � m
must be an atomic formula of GUARDS(p) or INV(p). According to the definition
of GUARDS and INV, let y be toj for some j, x must be the variable V (p, j, c) for
some clock c. So for any integer m such that R(p, j, c) ≤ m < j, x is active after
om. So we have the following proposition.

Proposition 3. Let x1, x2, . . . , xm be a time variable chain of M((p,G), (l, D)),
and i, j be two integers such that (1) toi is the latest variable satisfying that x1 is
active after oi; (2) xn is active after oj; (3) toj is later than toi , x1, x2, . . . , xm.
We have the following conclusion. Either x1, x2, . . . , xm is an i-chain of the DBM
M((p,G), (l, D)); or there is a variable xk (1 < k ≤ n) such that xk is active
after oi, xk+1 is later than toi and x1, x2, . . . , xk is an i-chain if k > 1.

Notice that SA((p,G), (l, D)) is derived by removing some columns and rows
from the canonical form of M((p,G), (l, D)). Given two variables x1, x2 which
are active after on, SA((p,G), (l, D))[x1, x2] is the length of the shortest chain
of M((p,G), (l, D)) from x1 to x2.

A Partial Order Reduction Technique 271

Let {x1, x2, . . . , xm, ton} be all the variables which are active after on. All
the xis are also active after on−1. If the shortest chain from xi to xj does not
contains ton , this chain is also an (n − 1)-chain. So the length of this chain is
Mn−1[xi, xj]. If the shortest chain from xi to xj passes through ton , the chain
can be divided into two parts: the shortest chain from xi to ton , and the shortest
chain from ton to xj . The length of the shortest chain from xi to xj equals to
the sum of the length of these two parts.

Let y1, y2, . . . , yk, ton be the shortest chain from y1 to ton such that y1 is active
after on−1 and no variable appears in this chain twice. Because ton is later than yk

and M((p,G), (l, D)) is not (<,+∞), yk is also active after on−1. Further more,
y1, y2, . . . , yk is an (n− 1)-chain. So the length of the chain y1, y2, . . . , yk, ton is
Mn−1[y1, yk] +M((p,G), (l, D))[yk, ton].

Let ton , y1, y2, . . . , ym be the shortest chain from ton to ym such that ym is
active after on−1. There are two cases: none of y1, y2, . . . , ym−1 is active after
on−1; and otherwise.

In this first case, from Proposition 3, we can separate y1, y2, . . . , ym into fol-
lowing segments.

y1, y2, . . . , ym1 , ym1+1, ym1+2, . . . , ym2 , . . . , ymj−1+1, ymj−1+2, . . . , ymj (= ym)

such that for a set of integers n1 < n2 < . . . < nj, the following conditions hold
for i = 1, 2, . . . , j. (Here, we set m0 to 0.)

1. The time variable toni
is the latest one such that ymi−1+1 is active after oni .

2. Either mi = mi−1 + 1; or ymi−1+1, ymi−1+2, . . . , ymi is an ni-chain of the
DBM M((p,G), (l, D)) and ymi are active after oni .

3. ymi is later than toni−1
.

For any DBM M and a variable x, we can set M [x, x] to (≤, 0) and get an
equivalent DBM. If we set Mi[x, x] to (≤, 0), the length of the ith segment is
Mni [ymi−1+1, ymi]. So the length of this chain equals M[ton , y1]+Mm1 [y1, ym1]+
M[ym1 , ym1+1] +Mm2 [ym1+1, ym2] + M[ym2 , ym2+1] + . . . +Mmj [yj−1+1, yj] +
M[ymj , xi], where M = M((p,G), (l, D)). Notice that ton is later than y1 and
y1 is not active after on−1 and M[ton , y1] is not (<,+∞), ton − y1 ∼ m must be
an atomic formula of the condition ORDER((p,G)), where M[ton , y1] = (∼,m).

From the above discussion, the algorithm depicted in Figure 1 compute the
shortest lengths of chains from ton to variables through a set of variables which
are not active after on−1. When this algorithm returns, the value Length(x)
is the length of the shortest chain of the first case from ton to x. The time
complexity of DistanceFromTon() depends on the length of p. However, it is
efficient in real applications if the directed acyclic graph is constructed carefully.

In the second case, the chain can be divided into two parts: ton , y1, y2, . . . , yk

and yk, yk+1, . . . , ym, where k is the least integer such that yk is active after
on−1 and k < m. The first part is a path in the first case while the length of the
second part is Mn−1[yk, ym].

From the above discussion, for any variable x which is active after on, the
length of the shortest chain from x to the time variable ton is Mn−1[x, y] +

272 Z. Jianhua, W. Linzhang, and L. Xuandong

DistanceFromTon((p,G))
{ S := the set of transition occurrences o of p such that (o, on) is an edge of G;

for each x in S, set Length(x) = (≤, 0);
while (S
= ∅) do
{ v := a time variable in S; S := S − {v};

Let toj
be the latest time variable such that v is active after oj.

for each time variable x which is active after oj do
for each y which is later than toj

and M[x, y]
= (<, +∞) do

{ if Length(y) is undefined, or M[x, y] + MJ [v, x] + Length[v] < Length(y)
{ Set Length(y) to M[x, y] + MJ [toI

, x] + Length[toI
]

if (y is not active after on−1) S := S ∪ {y}
}

}
}
return Length.

}

Fig. 1. The algorithms compute the distance from tn to other variables

M[y, ton] for a variable y active after on−1 (y may be identical to x). The length
of the shortest chain from ton to x is Length(x) + Mn−1[x, y] for a variable y
active after on−1 (y may be identical to x). For any two variables x, y (x, y are
not ton) which are active after on, they must also be active after on−1. The
length of the shortest chain from x to y may be Mn−1[x, y], or l1 + l2, where l1
and l2 are respectively the lengths of the shortest chain from x to ton , and the
one from ton to y. So SA((p,G), (l, D)) can be computed as follow. First, use the
algorithm depicted in Figure 1 to compute the map Length(x); then compute
the shortest length between two variables which are active after on as described
above.

5 A Reachability Analysis Algorithm Using Partial Order
Path

In this section, we will present a reachablity analysis algorithm which explores
the state space in a depth-first method. Let the p = o1, o2, . . . , on be the cur-
rent path being explored, this algorithm compute successor of the initial sym-
bolic state w.r.t. the POP (p,<p), where <p is defined as {(oi, oj)|(i < j) ∧
¬Indep(oi, oj).

This algorithm represent the relation <p as a directed acyclic graph. During
the exploration, each time the current POP (p,<p) is appended with a new
transition occurrence o, o is added to the graph as a node. An arc from oi to
o is added if and only if ¬Indep(oi, o) and there is no occurrence oj such that
(oi, oj) and (oj , o) are two arcs of the directed acyclic graph.

This reachability analysis algorithm uses the incremental algorithm presented
in the previous section to compute the symbolic successors w.r.t. POPs.

The algorithm is depicted in Figure 2. It checks whether the parallel timed
automaton can reach a location in F . The function Backtracking() removes
the last elements of p and NodeList, and restore the directed acyclic graphs
inducing <p after the last elements of p is removed.

A Partial Order Reduction Technique 273

Proposition 4. All the locations generated by this algorithm is reachable. Fur-
ther more, if no location in F is reachable, the algorithm generates all the reach-
able control locations of the parallel timed automaton.

Proposition 5. In the algorithm depicted in Figure 2, the relation ⊆K can
be replaced by a simulation relation � between symbolic states if for any two
symbolic states (l, D) and (l, D′), (l, D) ⊆ (l, D′) ⇒ (l, D) � (l, D′).

From this proposition, we can using some static analysis techniques in the literate
in our algorithm. These techniques, for example the technique in [8], have been
proved to be successful.

NodeList =� (l0, D0) �, where (l0, D0) is the initial symbolic state;
p =��; ReachableStateSet = ∅;
while(TRUE){

Let EnableSet = {e|Enable(l, e)} where l is the final location of p.
if (all transitions in EnableSet are explored for the current path p){

if (p = ε) return FALSE;
Backtracking();

} else {
e := an unexplored transition in EnableSet;
Mark e as explored for the current path p;
p := po, where (o) = e;

Compute the new directed acyclic graph which induces <p;
Compute SA((p, <p), (l0, D0)) and SI ((p, <p), (l0, D0)) incrementally;
if (SI((p, <p), (l0, D0)) is not empty){

if l′ ∈ F return TRUE;
if (∃(l′, M ′′) ∈ ReachableStateSet.SI ((p, <p), (l0, D0)) ⊆K M ′′)

Backtracking();/*because of contained successor*/
else

ReachableStateSet := ReachableStateSet ∪ (l′,SI((p, <p), (l0, D0)))
}else

Backtracking();/*because of empty successor */
}/*end of if (all transitions . . .*/

}/*of while*/

Fig. 2. The reachablity analysis algorithm

6 A Rule to Avoid Exhaustive Exploration

The algorithm in Figure 2 can avoid splitting symbolic states because of the
enumeration order of independent transitions. However, all enabled transitions
are explored in that algorithm. In this section, we will present a rule to cut off
some enabled transitions.

A transition e is called invisible if for any two locations l and l′ such that
l

e→ l′, l ∈ F ⇔ l′ ∈ F .
A set of transitions {e1, e2, . . . , en} is called inevitable after a location l if the

following conditions hold.

1. For i = 1, 2, . . . , n, Enable(l, ei).
2. Let p = o1, o2, . . . , ok be an arbitrary path from l, either ∃i, j.oi = ej , or
∀i, j.Indep(oi = ej).

274 Z. Jianhua, W. Linzhang, and L. Xuandong

Intuitively speaking, one of these transitions eventually takes place after l if the
time constraints are not considered.

Suppose that at a time during the state space exploration using the algorithm
in Figure 2, p is the current path being explored, and e is an explored transition
which is enabled at the last node of the NodeList. We say e is exposed at
p if the algorithm has backtracked because of empty successor or contained
successor, when the current path is poo1o2 . . . on, where o = e, and Indep(e, oi)
for i = 1, 2, . . . n.

Proposition 6. During the state space exploration, let p be the current path be-
ing explored. Let l be the last locations. Let {e1, e2, . . . , en} be a set of transitions
enabled on l and all of these transitions are explored on p. The algorithm can
avoid exploring the transitions not in this set if all the following conditions hold.

1. This set is inevitable after l.
2. All the transitions are invisible.
3. All of them are explored but not exposed.

7 Case Studies

We have implemented an experimental tool which employs the partial order
reduction technique in this paper. This tool can also use the static analysis tech-
nique presented in the paper [8]. We have applied our algorithm to several ex-
amples including the artificial Diamond example from the paper [7], CSMA/CD
protocol, and Fischer’s mutual protocol. The CSMA/CD protocol checked by
our algorithm is slightly modified. The collision is broadcasted to all the sta-
tions through a commit location and one channel, instead of a set of channels.

We have applied our experimental tool to these cases using an IBM Z60t
ThinkPad with an Intel Pentium 1.86G processor and 512M memory. The space

Systems Basic POP RIF POP+RIF PSET

DIAMOND 2 24 11 11 11 7

DIAMOND 3 91 19 19 19 10

DIAMOND 4 344 29 29 29 13

DIAMOND 5 1309 41 41 41 16

DIAMOND 6 5017 55 55 55 19

Fischer 2 21 20 18 18 18

Fischer 3 166 152 65 65 65

Fischer 4 1753 1580 220 220 220

Fischer 5 23016 20652 727 727 727

CSMA 4 929 755 531 531 258

CSMA 5 7468 5023 2878 2878 850

CSMA 6 61143 31631 15197 15197 2594

CSMA 7 N/A N/A 78032 78032 7490

Fig. 3. The numbers of symbolic states generated for difference cases

A Partial Order Reduction Technique 275

requirement is expressed as the number of states generated. These data are
depicted in Figure 3. The columns DIAMOND n, CSMA n, and Fischer n re-
spectively stand for Diamond example with 2n clocks, CSMA/CD protocol with
n stations, and Fischer protocol with n processes. The row Basic, POP, RIF,
POP+RIF, PSET respectively stand for the basic reachability analysis algo-
rithms, the algorithm depicted in Figure 2, the algorithm with ‘removing irrel-
evant formulas’ optimization as described in the paper [8], the algorithm with
both RIF and PO, and the algorithm with all above techniques and the tech-
nique to avoid exhaustive exploration described in the section 6. The cpu time
used by the algorithm with POP reduction is generally 1-2 times as the time
used by the reachability algorithm without POP reduction.

These data shows that the POP successor algorithm results in some space
reduction. When both the POP technique and the RIF technique are applied to
these cases, the POP technique results in no further reduction. However, this
does not means that RIF technique always outperforms the POP reduction. We
have changed the DIAMOND example slightly, the RIF technique results in no
reduction for the new DIAMOND example, but the POP technique works well.

It is also shown that the rule in Section 6 can reduce the space requirement
further.

8 Conclusions

In this paper, we proposed a partial order reduction technique for parallel timed
automaton model checking.

We first define an independence relation on transitions. Then, we present
a reachability analysis algorithm which explores the state space by generating
successors w.r.t. partial order paths. A partial order path is composed of a set
of transition occurrences and a partial order on this set. The order of two in-
dependent transition occurrences may be unspecified by the partial order. All
topological sorts of this partial order are paths of the parallel timed automaton.
Further more, we show that a symbolic state can be used to represent the set of
all the concrete states reachable from some concrete states in a symbolic state
through any one of these paths.

We present an algorithm to compute such symbolic successors incrementally.
A reachability analysis algorithm based on this successor algorithm is presented.
These algorithm can avoid splitting symbolic states because of the occurrence
order of independent transitions.

One advantage of our partial order technique is that our technique can be
combined with some static analysis technique in the literate.

Further more, we presented a rule to compute persistent transition set. Under
some conditions, the reachability analysis algorithm needs only explore a subset
of the enabled transitions.

276 Z. Jianhua, W. Linzhang, and L. Xuandong

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Larsen, L., Pettersson, Y.: Compact Data Structures and State-space Reduction for
Model-Checking Real-Time Systems. Real-time system 25, 255–275 (2003)

3. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: DIMACS Work-
shop on Verification and Control of Hybrid Systems, October 1995. LNCS, vol. 1066.
Springer, Heidelberg (1995)

4. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed
systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 485–500. Springer, Heidelberg (1998)

5. Minea, M.: Partial order reduction for verification of timed systems, Ph.D. thesis,
Carnegie Mellon University (1999)

6. Dams, D., Gerth, R., Knaack, B., Kuiper, R.: Partial-order reduction techniques for
real-time model checking, Formal Methods for Industrial Critical Systems, Amster-
dam, vol. 10, pp. 469–482 (May 1998)

7. Lugiez, D., Niebert, P., Zennou, S.: A Partial Order Semantics Approach to the
Clock Explosion Problem of Timed Automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 296–311. Springer, Heidelberg (2004)

8. Zhao, J., Li, X., Zheng, T., Zheng, G.: Removing Irrelevant Atomic Formulas for
Checking Timed Automata Efficiently. In: Larsen, K.G., Niebert, P. (eds.) FOR-
MATS 2003. LNCS, vol. 2791. Springer, Heidelberg (2004)

9. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS,
vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

Program Verification by Reduction to

Semi-algebraic Systems Solving�

Bican Xia1, Lu Yang2, and Naijun Zhan3��

1 LMAM & School of Mathematical Sciences, Peking University
2 Shanghai Key Lab. of Trustworthy Computing, East China Normal University
3 Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences

znj@ios.ac.cn

Abstract. The discovery of invariants and ranking functions plays a
central role in program verification. In our previous work, we investi-
gated invariant generation and non-linear ranking function discovering
of polynomial programs by reduction to semi-algebraic systems solving.
In this paper we will first summarize our results on the two topics and
then show how to generalize the approach to discovering more expressive
invariants and ranking functions, and applying to more general programs.

Keywords: Program Verification, Ranking Functions, Invariants, Poly-
nomial Programs, Semi-Algebraic Systems, Quantifier Elimination.

1 Introduction

The discovery of invariants and ranking functions plays a central role in pro-
gram verification, and is therefore thought as the most challenging problem of
program verification. In recent years, due to the advance of computer algebra,
various approaches to non-linear invariant generation and termination analysis of
polynomial programs have been established, based on computer algebra. These
approaches have widely been applied to program verification and made tremen-
dous success. However, almost each of these approaches has its limitations, e.g.
some of them are limited to linear (affine) systems, some of them suffers from
high complexity, some of them can only generate weak invariants or ranking
functions and so on.

In order to overcome the weakness of the well-established approaches, fol-
lowing the line of [14], by exploiting our results on solving semi-algebraic sys-
tems (SASs), we proposed more practical and efficient approaches to polynomial
invariant generation and ranking function discovering of polynomial programs
respectively in [5] and [4]. In this paper, we will first summarize the results re-
ported in [4,5] and correct mistakes in Example 7 in [5]. Then we will extend
� This work is supported in part by NKBRPC-2002cb312200, NKBRPC-

2004CB318003, NSFC-60493200, NSFC-60721061, NSFC-60573007, NSFC-90718041,
and NSFC-60736017 and NKBRPC-2005CB321902.

�� The corresponding author: South Fourth Street, No. 4, Zhong Guan Cun, Beijing,
100080, P.R. China.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 277–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

278 B. Xia, L. Yang, and N. Zhan

the approach such that it can not only be applicable to more general classes of
programs and show how to synthesize more expressive invariants and ranking
functions. We will investigate to extend the approach to general multivariate
polynomial systems and even fractional polynomial systems. We also study to
extend the approach to synthesizing invariants that can be represented by a
general polynomial formula, even a fractional polynomial formula, and ranking
functions that could be either a polynomial or a fractional polynomial.

1.1 Related Work

Up to now, most of well-established invariant generation methods either based
on abstract interpretation [10,2,18,9], or on quantifier elimination [7,14], or on
polynomial algebra [15,16,19,20,21].

The basic idea of the approaches based on abstract interpretation is to per-
form approximate symbolic execution of a program until an assertion is reached
that remain unchanged by further executions of the program. However, in order
to guarantee termination, the method introduces imprecision by the use of an ex-
trapolation operator called widening/narrowing. This operator often causes the
technique to produce weak invariants. Moreover, proposing widening/narrowing
operators with certain concerns of completeness is not easy and becomes a key
challenge for abstract interpretation based techniques [10,2].

In contrast, [15,16,19,20,21] exploited the theory of polynomial algebra to
discover invariants of polynomial programs. The technique of linear algebra to
generate polynomial equations of bounded degree as invariants of programs with
affine assignments was applied in [15]. In [19,20], it was first proved that the set
of polynomials serving as loop invariants has the algebraic structure of an ideal,
then was proposed an algorithm to obtain a finite base of the ideal by using
fixpoint computation. Finally an algorithm by using Gröbner bases and the
elimination theory was given. The approach is theoretically sound and complete
in the sense that if there is an invariant of the loop that can be expressed as
a conjunction of polynomial equations, applying the approach is guaranteed to
generate it. A similar approach to finding polynomial equation invariants whose
form is priori determined (called templates) by using an extended Gröbner basis
algorithm over templates was presented in [21].

Compared with polynomial algebra based approaches that can only generate
invariants represented as polynomial equations, the approach from [7] can gener-
ate linear inequalities as invariants for linear programs, which based on Farkas’
Lemma and non-linear constraint solving. In [14], a very general approach for au-
tomatic generation of more expressive invariants was proposed, which is based
on the technique of quantifier elimination, and applied the approach to Pres-
burger Arithmetic and quantifier-free theory of conjunctively closed polynomial
equations. Theoretically speaking, the approach can also be applied to the the-
ory of real-closed fields, but it was pointed out in [14] that this is impractical in
reality because of the high complexity of quantifier elimination, which is at least
double exponential [12].

Program Verification by Reduction to Semi-algebraic Systems Solving 279

Following the line of [14], a very general and efficient approach to ranking
function discovery and invariance generation of linear and polynomial programs
was presented in [9]. However, the approach of [9] is incomplete in the sense
that, for some program that may have ranking functions and invariants of the
predefined form, applying the approach may not be able to find them, as La-
grangian relaxation and over-approximation of the positive semi-definiteness of
a polynomial are used.

Likewise, inspired by [14], by exploiting our results on solving semi-algebraic
systems (SASs), we proposed more practical and efficient approaches to polyno-
mial invariant generation and ranking function discovering of polynomial pro-
grams respectively in [5] and [4]. Comparing with other well-established invariant
generation methods, the advantages of the approach of [5] include: Can generate
more expressive invariants, which are represented as a semi-algebraic systems
consisting of polynomial equations, inequations and inequalities; Has lower com-
plexity, compared with the methods directly based on Gröbner Base or first-order
quantifier elimination. The complexity of the approach in [5] is singly exponen-
tial in the number of program variables plus doubly exponential in the number of
parameters approximately, while the latter with double exponential in the num-
ber of program variables and parameters; Still is complete, compared with the
approach of [9] in the sense that whenever there exist invariants of the predefined
form, our approach can indeed synthesize them.

On the other hand, compared to other well-established termination analysis
approaches, the advantages of [4] include: Firstly, it can be applied to non-linear
programs and discover non-linear ranking functions, whereas most of other well-
established can only be applicable to linear programs and synthesize linear rank-
ing functions, such as [11,8,17]; Secondly, the approach is complete compared
with [9] in the sense that if there exist ranking functions of the predefined tem-
plate, it can indeed discover them. But, our approach is just a sufficient method
for termination analysis, not a sufficient and necessary one like [22,1] which fo-
cuses on a special subclass of linear programs; Furthermore, the complexity of
our approach is still very high comparing with the approaches of [9,3].

1.2 Basic Notions

Let K[x1, ..., xn] be the ring of polynomials in n indeterminates, X = {x1, · · · , xn},
with coefficients in the field K. Let the order of the variables be x1 ≺ x2 ≺ · · · ≺ xn.
Then, the leading variable (or main variable) of a polynomial p is the variable
with the greatest index which indeed occurs in p. If the leading variable of a poly-
nomial p is xk, p can be collected w.r.t. its leading variable as p = cmxm

k + · · ·+ c0

where m is the degree of p w.r.t. xk and cis are polynomials in K[x1, ..., xk−1]. We
call cmxm

k the leading term of p w.r.t. xk and cm the leading coefficient. For
example, let p(x1, . . . , x5) = x5

2 + x4
3x

2
4 + (2x2 + x1)x

3
4. The leading variable, term

and coefficient of p(x1, . . . , x5) are x4, (2x2 + x1)x
3
4 and 2x2 + x1, respectively.

An atomic polynomial formula over K[x1, ..., xn] is of the form p(x1, . . . , xn) � 0,
where � ∈ {=, >,≥,
=}. A polynomial formula is a boolean combination of atomic
polynomial formulae. We will denote by PF (K[x1, . . . , xn]) the set of polynomial

280 B. Xia, L. Yang, and N. Zhan

formulae over K[x1, ..., xn] and by CPF (K[x1, . . . , xn]) the set of conjunctive poly-
nomial formulae over K[x1, ..., xn], which only contain logical connective ∧,
respectively.

An atomic fractional polynomial formula over K[x1, ..., xn] is of the form
p(x1,...,xn)
q(x1,...,xn) � 0, where p(x1, . . . , xn)
= 0 is relative prime to q(x1, . . . , xn), both of
them are in K[x1, . . . , xn], and � ∈ {=, >,≥,
=}. A fractional polynomial formula is
a boolean combination of atomic fractional polynomial formulae. We will denote
by FPF (K[x1, . . . , xn]) the set of fractional polynomial formulae over K[x1, ..., xn].

It is easy to prove the following theorem that indicates FPF (K[x1, . . . , xn]) is
as expressive as PF (K[x1, . . . , xn]).

Theorem 1

i) PF (K[x1, . . . , xn]) ⊆ FPF (K[x1, . . . , xn]);
ii) For any φ ∈ FPF (K[x1, . . . , xn]), there exists φ′ ∈ PF (K[x1, . . . , xn]) such that

φ⇔ φ′.

In what follows, we will use Q to stand for rationales and R for reals, and fix K
to be Q. In fact, all results discussed below can be applied to R.

In the following, the n indeterminates are divided into two groups: u =
(u1, ..., ut) and x = (x1, ..., xs), which are called parameters and variables, re-
spectively, and we sometimes use “,” to denote the conjunction of atomic for-
mulae for brevity.
Definition 1. A semi-algebraic system is a conjunctive polynomial formula of
the following form: ����

���

p1(u, x) = 0, . . . , pr(u,x) = 0,
g1(u, x) ≥ 0, . . . , gk(u,x) ≥ 0,
gk+1(u,x) > 0, . . . , gl(u,x) > 0,
h1(u,x)
= 0, . . . , hm(u,x)
= 0,

(1)

where r > 0, l ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u, x] \Q. An SAS
of the form (1) is called parametric if t
= 0, abbreviated as PSAS, otherwise
constant, written as CSAS.
An SAS of the form (1) is usually denoted by a quadruple [P, G1, G2, H], where
P = [p1, ..., pr], G1 = [g1, ..., gk], G2 = [gk+1, ..., gl] and H = [h1, ..., hm].

For a CSAS S, interesting questions are how to compute the number of real
solutions of S, and if the number is finite, how to compute these real solutions.
For a PSAS, the interesting problem is so-called real solution classification, that
is to determine the condition on the parameters such that the system has the
prescribed number of distinct real solutions, possibly infinite.

2 Discoverer

Theories on how to classify real roots of PSASs and isolate real roots of CSASs
were developed in [26,25,24,27]. The core of the theories is the generalized Com-
plete Discrimination System (CDS). A computer algebra tool named DISCOV-
ERER [23] has been developed in Maple to implement these theories. Comparing
with other well-known computer algebra tools like REDLOG [13] and QEPCAD
[6], DISCOVERER has two distinct features as follows.

Program Verification by Reduction to Semi-algebraic Systems Solving 281

Real Solution Classification of PSASs: For a PSAS T of the form (1) and an
argument N of the following three forms:

– a non-negative integer b;
– a range b..c, where b, c are non-negative integers and b < c;
– a range b.. +∞, where b is a non-negative integer,

DISCOVERER provides the functions tofind and Tofind, which determine the
conditions on u such that the number of the distinct real solutions of T equals
to N if N is an integer, otherwise falls in the scope N .

Real Solution Isolation of CSASs: For a CSAS T of the form (1) only with a
finite number of real solutions, DISCOVERER can determine the number of
distinct real solutions of T , say n, and find out n disjoint cubes with rational
vertices in each of which there is only one solution. In addition, the width of the
cubes can be less than any given positive real. The two functions are realized by
calling nearsolve and realzeros, respectively.

3 Invariants and Ranking Functions

We use transition systems to represent programs.

Definition 2. A transition system is a quintuple 〈V, L, T, �0, Θ〉, where V is a
set of program variables, L is a set of locations, and T is a set of transitions.
Each transition τ ∈ T is a quadruple 〈�1, �2, ρτ , θτ 〉, where �1 and �2 are the pre-
and post- locations of the transition, the transition relation ρτ is a first-order
formula over V ∪ V ′, and θτ is a first-order formula over V , which is the guard
of the transition. The location �0 is the initial location, and the initial condition
Θ is a first-order formula over V .

Only if θτ holds, the transition can take place. Here, we use V ′ (variables with
prime) to denote the next-state variables.

If all formulae of a transition system are from CPF (K[x1, . . . , xn]), the sys-
tem is also called semi-algebraic transition system (SATS). Similarly, a sys-
tem is called polynomial transition system (PTS) (resp. fractional polynomial
transition system (FPTS)), if all its formulae are in PF (K[x1, . . . , xn]) (resp.
FPF (K[x1, . . . , xn])).

According to Theorem 1, it is easy to see that

Theorem 2. For each fractional polynomial transition system, there is a poly-
nomial transition system such that the two transition systems are equivalent in
the sense that any property holds on one of them iff the property holds on the
other either.

A state is a valuation of the variables in V . The space of states is denoted by
Val(V). Without confusion we will use V to denote both the variable set and an
arbitrary state, and use F (V) to mean the (truth) value of function (formula) F

282 B. Xia, L. Yang, and N. Zhan

under the state V . The semantics of transition systems can be explained through
state transitions as usual.

We denote the transition τ = (l1, l2, ρτ , θτ) by l1
ρτ ,θτ→ l2, or simply by l1

τ→ l2. A
sequence of transitions l11

τ1→ l12, . . . , ln1
τn→ ln2 is called composable if li2 = l(i+1)1

for i = 1, . . . , n− 1, and written as l11
τ1→ l12(l21)

τ2→ · · · τn→ ln2. A composable se-
quence is a transition circle at l11, if l11 = ln2. For any composable sequence
l0

τ1→ l1
τ2→ · · · τn→ ln, it is easy to show that there is a transition of the form

l0
τ1;τ2;··· ;τn→ ln such that the composable sequence is equivalent to the transition,

where τ1; τ2 · · · ; τn, ρτ1;τ2;··· ;τn and θτ1;τ2;··· ;τn are the compositions of τ1, τ2, . . . , τn,
ρτ1 , . . . , ρτn and θτ1 , . . . , θτn , respectively. The composition of transition rela-
tions is defined in the standard way, for example, x′ = x4 + 3; x′ = x2 + 2 is x′ =
(x4 + 3)2 + 2; while the composition of transition guards have to be given as
a conjunction of the guards, each of which takes into account the past state
transitions. In the above example, if the guard of the first transition is x + 7 = x5

and that of the second is x4 = x + 3, then guard of the composition is
x + 7 = x5 ∧ (x4 + 3)4 = (x4 + 3) + 3.

3.1 Invariants

Informally, an invariant of a program at a location is an assertion that holds on
any program state reaching the location. An invariant of a program can be seen
as a mapping to map each location to an assertion which has inductive property,
that is, initiation and consecution. Initiation means that the image of the map-
ping at the initial location holds on the loop entry; while consecution means that
for any transition the invariant at the pre-location together with the transition
relation and its guard implies the invariant at the post-location. In many cases,
people only consider an invariant at the initial location and do not care about
invariants at other locations. In this case, we can assume the invariants at other
locations are all true and therefore initiation and consecution mean that the
invariant holds on the loop entry, and is preserved by any transition circle at the
entry point.

Definition 3 (Invariant at a Location). Let P = 〈V, L, T , l0, Θ〉 be a transi-
tion system. An invariant at a location l ∈ L is a first-order formula φ over V

such that φ holds on all states that can be reached at location l.

Definition 4 (Invariant of a Program). An assertion map for a transition
system P = 〈V, L, T , l0, Θ〉 is a map associating each location of P with a first-
order formula. An assertion map η of P is said to be inductive iff the following
conditions hold:

Initiation: Θ(V0) |= η(l0).
Consecution: For each transition τ = 〈li, lj , ρτ , θτ 〉,

η(li)(V) ∧ ρτ (V, V ′) ∧ θτ (V) |= η(lj)(V ′).

It is well-known that if η is an inductive mapping of P , then η(l) is an invariant
of P at l. Therefore, an inductive mapping of P forms an invariant of P .

Program Verification by Reduction to Semi-algebraic Systems Solving 283

3.2 Ranking Functions

Definition 5 (Ranking Function). Assume P = 〈V, L, T , l0, Θ〉 is a transition
system. A ranking function is a function γ : V al(V)→ R+ such that the following
conditions are satisfied:

Initiation: Θ(V0) |= γ(V0) ≥ 0.
Decreasing: There exists a constant C ∈ R+ such that C > 0 and for any tran-

sition circle l0
τ1→ l1

τ2→ · · · τn−1→ ln−1
τn→ l0 at l0,

ρτ1;τ2;··· ;τn(V, V ′) ∧ θτ1;τ2;··· ;τn(V) |= γ(V)− γ(V ′) ≥ C ∧ γ(V ′) ≥ 0.

Condition 1 says that the ranges of all the initial states satisfying the initial
condition under the ranking function is nonnegative; Condition 2 expresses the
fact that the value of the ranking function decreases by at least C as the pro-
gram moves back to the initial location along any transition circle, and is still
nonnegative.

In Definition 5, if γ is a polynomial, then it is called a polynomial ranking
function.

Remark 1

– According to Definition 5, for any transition system, if a ranking function
exists, then the system will not go through l0 infinitely often.

– Ranking functions can be seen as loop invariants at the entry point.

In the subsequent two sections, we will summarize the results of [5,4], where all
formulae are in CPF (K[x1, . . . , xn]) and ranking functions are polynomial.

4 Generating Polynomial Invariants

Given an SATS S, the procedure of generating polynomial invariants with the
approach of [5] includes the following 4 steps:

1. Predefine Parametric Invariants. Predefine a template of invariants at
each of the underlining locations, which is a PSAS. All of these predefined
PSASs form a parametric invariant of the program.

2. Derive PSASs from Initial Condition and Then Solve. According to
Definition 4, we have Θ |= η(l0) which means that each real solution of Θ

must satisfy η(l0). In other words, Θ ∧ ¬η(l0) has no common real solutions.
This implies that for each atomic polynomial formula φ in η(l0), Θ ∧ ¬φ has
no real solutions. Note that η(l0) is the conjunction of a set of atomic poly-
nomial formulae and therefore Θ ∧ ¬φ is a PSAS according to the definition.
Thus, applying the tool DISCOVERER to the resulting PSAS Θ ∧ ¬φ, we
get a necessary and sufficient condition such that the derived PSAS has no
real solutions. The condition may contain the occurrences of some program
variables. In this case, the condition should hold for any instantiations of
these variables. Thus, by universally quantifying these variables (we usually

284 B. Xia, L. Yang, and N. Zhan

add a scope to each of these universally quantified variables according to the
program) and then applying QEPCAD, we can get a necessary and sufficient
condition only on the presumed parameters.

Repeatedly apply the procedure to each atomic polynomial formula of the
predefined invariant at l0 and then use the conjunction of all the resulting
conditions.

3. Derive PSASs from Consecutive Condition and Then Solve. From
Definition 4, for each transition τ = 〈li, lj , ρτ , θτ 〉, η(li) ∧ ρτ ∧ θτ |= η(lj),
so η(li) ∧ ρτ ∧ θτ ∧ ¬η(lj) has no real solutions, which implies that for each
atomic polynomial formula φ in η(lj),

η(li) ∧ ρτ ∧ θτ ∧ ¬φ (2)

has no real solution. It is clear that (2) is a PSAS. By applying the tool
DISCOVERER, we obtain a necessary and sufficient condition on the para-
meters for (2) to have no real solution. Similarly to Step 2, we may need to
use quantifier elimination in order to get a necessary and sufficient condition
only on the presumed parameters.

4. Generate Invariants. According to the results obtained from Steps 1, 2
and 3, we can get the final necessary and sufficient condition only on the
parameters of each of the invariant templates. If the condition is too compli-
cated, we can utilize the function of PCAD of DISCOVERER or QEPCAD
to prove if or not the condition is satisfied. If yes, the tool can produce
the instantiations of these parameters. Thus, we can get an invariant of the
predetermined form by replacing the parameters with the instantiations, re-
spectively.

Note that the above procedure is complete in the sense that for any given
predefined parametric invariant, the procedure can always produce the corre-
sponding concrete invariant, if it exists. Therefore, we can also conclude that
our approach is also complete in the sense that once the given polynomial pro-
gram has a polynomial invariant, our approach can indeed find it theoretically,
because we can assume parametric invariants in program variables of different
degrees, and repeatedly apply the above procedure until we obtain a polynomial
invariant.

Remark 2. In Steps 2 and 3, we can also apply DISCOVERER for first-order
quantifier elimination in a special manner. We will illustrate this point by the
following example.

4.1 Example

In this subsection, we will illustrate the above procedure by revising Example 7
from [5] which contains some mistakes in the resulting conditions because of
incorrect use of the tools DISCOVERER and QEPCAD.

Example 1. The code of the program is on Fig.4 (a).

Program Verification by Reduction to Semi-algebraic Systems Solving 285

Integer (x, y) := (0, 0);

l0 : while x ≥ 0 ∧ y ≥ 0 do

(x, y) := (x + y2, y + 1);

end while

P = {
V = {x, y}
L = {l0}
T = {τ} }

where
τ = 〈l0, l0, x′ − x− y2 = 0∧

y′ − y − 1 = 0, x ≥ 0 ∧ y ≥ 0〉
(a) (b)

Fig. 4.

The corresponding SATS is on Fig.4 (b).
Firstly, we predefine a parametric invariant at l0 as

eq(x, y) = a1y
3 + a2y

2 + a3x− a4y = 0, (3)

ineq(x, y) = b1x + b2y
2 + b3y + b4 > 0 (4)

where a1, a2, a3, a4, b1, b2, b3, b4 are parameters. Therefore, η(l0) = (3) ∧ (4).
Secondly, according to Initiation of Definition 4, Θ |= η(l0) is equivalent to

neither of the following two PSASs having real solutions.

x = 0, y = 0, eq(x, y)
= 0 (5)

x = 0, y = 0, ineq(x, y) ≤ 0 (6)

By calling tofind(([x, y], [], [], [eq(x, y)], [x, y], [a1, a2, a3, a4], 0) we get that (5) has
no real solutions iff true. While calling tofind([x, y], [−ineq(x, y)], [], [], [x, y], [b1, b2,

b3, b4], 0) we get that (6) has no real solutions iff b4 > 0.
Thirdly, consider Consecution w.r.t. the transition τ . We have

eq(x, y) = 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 |= eq(x′, y′) = 0 ∧ ineq(x′, y′) > 0. (7)

This means that the following two PSASs both have no real solutions.

eq(x, y) = 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ x ≥ 0 ∧ y ≥ 0 ∧ eq(x′, y′)
= 0 (8)

ineq(x, y) > 0 ∧ x′ − x− y2 = 0 ∧ y′ − y − 1 = 0 ∧ x ≥ 0 ∧ y ≥ 0 ∧ ineq(x′, y′) ≤ 0 (9)

By calling tofind([x′ − x− y2, y′ − y − 1, eq(x, y)], [x, y], [], [eq(x′, y′)], [x′, y′, x],

[y, a1, a2, a3, a4], 0), we obtain that (8) has no real solutions if and only if

a3y
2 + 3a1y

2 + 2ya2 + 3a1y − a4 + a2 + a1 = 0 ∨ (10)

a3 = 0.1 (11)

Further by Basic Algebraic Theorem, (10) holds for all y iff

− a4 + a2 + a1 = 0 ∧ 3a1 + 2a2 = 0 ∧ a3 + 3a1 = 0, (12)

while (11) leads to a trivial result.
1 This resulting condition on a1, a2, a3, a4 from Consecution is different from the one

given in [5], as there happened a mistake in calling tofind in [5]. But the final
condition in [5] is correct, same as here.

286 B. Xia, L. Yang, and N. Zhan

For (9), by calling tofind([x′−x−y2, y′−y−1], [−ineq(x′, y′), x, y], [ineq(x, y)], [],
[x′, y′], [x, y, b1, b2, b3, b4], 0), we obtain that (9) has no real solutions iff

b4 + b3 + b2 + 2b2y + b3y + b2y
2 + b1x + b1y

2 > 0. (13)

Then, we have to perform quantifier elimination on (13) under the premise that
x ≥ 0, y ≥ 0, ineq(x, y) > 0. Here, we use DISCOVERER in a complicated way2,
and get the following sufficient and necessary condition3

b1 > 0 ∧ b4 > 0 ∧ b2 + b3 + b4 > 0 ∧ ((b2 ≥ 0 ∧ b2 + b3 ≥ 0) ∨
(b1 + b2 ≥ 0 ∧ 2b2 + b3 ≥ 0) ∨ d1 ≤ 0 ∨ d2 < 0 ∨ (f1 ≤ 0 ∧ f2 ≥ 0)) (14)

where

d1 = −4b1b3 − 4b1b2 + 4b2
2

d2 = −4b1b2 − 4b1b3 − 4b4b1 + b2
3 − 4b4b2

f1 = 2b4b
2
1 + 2b4b1b2 − 2b2

2b1 − 4b1b2b3 − b1b
2
3 + 2b3

2

f2 = b4
2 − 2b2

2b1b4 + b2
4b

2
1 − 4b4b1b3b2 − b2

2b
2
3 + 4b3

2b4 + b1b
3
3 + b1b2b

2
3

Remark 3. We also applied QEPCAD to the above formula and obtained a dif-
ferent formula, though equivalent formula.

It is easy to see that the invariant given in [5] is still an invariant of the program
with the predefined template, i.e.�

−2y3 + 3y2 + 6x− y = 0,
x− y2 + 2y + 1 > 0

is an invariant of P , where

(a1, a2, a3, a4) = (−2, 3, 6, 1), (b1, b2, b3, b4) = (1,−1, 2, 1).

Furthermore, �
−2y3 + 3y2 + 6x− y = 0,
4
3x− y2 + 1

4y + 3 > 0

is another invariant of P , where

(a1, a2, a3, a4) = (−2, 3, 6, 1), (b1, b2, b3, b4) = (
4

3
,−1,

1

4
, 3).

However, the latter invariant does not satisfy the formula (17) in [5].

5 Discovering Non-linear Ranking Functions

As we explained in Remark 1, a ranking function can be represented as a special
loop invariant of a loop at the entry point. Therefore, the above procedure still

2 The procedure is so involved, as we need to apply the tool multiple times, so we here
omit the detailed discussion.

3 The formula (17) in [5] is not correct because of a mistake when using QEPCAD.

Program Verification by Reduction to Semi-algebraic Systems Solving 287

works for non-linear ranking function discovering subject to appropriate mod-
ifications. Roughly speaking, The approach to discovering non-linear ranking
functions in [4] consists of the following 4 steps:

Step 1–Predefine a Ranking Function Template. Predetermine a temp-
late of ranking functions.

Step 2– Encode Initial Condition. According to the initial condition of
ranking function, we have Θ |= γ ≥ 0 which means that each real solution
of Θ must satisfy γ ≥ 0. In other words, Θ ∧ γ < 0 has no real solution. It is
easy to see that Θ ∧ γ < 0 is a PSAS according to Definition 1. Therefore,
by applying DISCOVERER, we get a necessary and sufficient condition for
the derived PSAS to have no real solutions. The condition may contain the
occurrences of some program variables. In this case, the condition should
hold for any instantiations of the variables. Thus, by introducing universal
quantifications of these variables (we usually add a scope to each of the
variables according to different situations) and then applying QEPCAD or
DISCOVERER, we can get a necessary and sufficient condition in terms of
the parameters only.

Step 3–Encode Decreasing Condition. From Definition 5, there exists a
positive constant C such that for any transition circle l0

τ1→ l1
τ2→ · · · τn→ l0,

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn |= γ(V)− γ(V ′) ≥ C ∧ γ(V ′) ≥ 0, (15)

equivalent to

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V ′) < 0, (16)

ρτ1;τ2;··· ;τn ∧ θτ1;τ2;··· ;τn ∧ γ(V)− γ(V ′) < C (17)

both have no real solutions. Obviously, (16) and (17) are PSASs according to
Definition 1. Thus, by applying DISCOVERER, we obtain some conditions
on the parameters. Subsequently, similarly to Step 2, we may need to use
QEPCAD or DISCOVERER to simplify the resulting condition in order to
get a necessary and sufficient condition in terms of the parameters only.

Step 4–Solve Final Constraints. According to the results obtained from
Steps 1, 2 and 3, we can get the final necessary and sufficient condition
only on the parameters of the ranking function template. Then, by utilizing
DISCOVERER or QEPCAD, prove if or not the condition is satisfied and
produce the instantiations of these parameters such that the condition holds.
Thus, we can get a ranking function of the predetermined form by replacing
the parameters with the instantiations, respectively.

Remark 4. Note that the above procedure is complete in the sense that for any
given template of ranking function, the procedure can always synthesize a rank-
ing function of the give template, if there indeed exist such ranking functions.

5.1 Discussions: Generating Invariants vs. Discovering Ranking
Functions

We have shown how to reduce the discovery of invariants and ranking functions
to directly solving SASs by exploiting the inductive property of invariants and

288 B. Xia, L. Yang, and N. Zhan

ranking functions. Although invariants and ranking functions both have such a
property, the former is inductive w.r.t. a small step, i.e. each of single transitions
of the given loop in contrast that the latter is inductive w.r.t. a big step, that is
each of transition circle at the initial location of the loop. The difference entails
that the approach from [5] can be simply applied to single loop programs as
well as nested loop programs, without any change; but regarding the discovery
of ranking functions, we have to further develop the approach of [4] in order to
handle nested loop programs, although it works well for single loop programs.

6 Complexity Analysis

Assume given an SATS P = 〈V, L, T , l0, Θ〉, we obtain k distinct PSASs in order
to generate its polynomial invariants or ranking functions with the approach.
W.l.o.g., suppose each of these k PSASs has at most s polynomial equations,
and m inequations and inequalities. All polynomials are in n indeterminates
(i.e., variables and parameters) and of degrees at most d.

For a PSAS S, by CAD (cylindrical algebraic decomposition) based quanti-
fier elimination on S has complexity O((2d)2

2n+8
(s + m)2

n+6
) according to the

results of [12], which is double exponential w.r.t. n. Thus, the total cost is
O(k(2d)2

2n+8
(s + m)2

n+6
) for directly applying the technique of quantifier elimi-

nation to generate invariants and ranking functions of a program as advocated
by Kapur [14].

In contrast, the cost of our approach includes two parts: one is for applying
real solution classification to generate condition on the parameters possibly still
containing some program variables; the other is for applying first-order quanti-
fier elimination to produce condition only on the parameters (if necessary) and
further exploiting PCAD to obtain the instantiations of these parameters. Ac-
cording to the complexity analysis in [5], the cost for the first part is singly
exponential in n and doubly exponential in t, where t stands for the dimension
of the ideal generated by the s polynomial equations. The cost for the second
part is doubly exponential in t. So, compared to directly applying quantifier
elimination, our approach can dramatically reduce the complexity, in particular
when t is much less than n.

7 Beyond Semi-Algebraic Transition Systems

In this section, we will discuss how to generalize the above approach to more
general programs beyond SATSs.

Polynomial Transition Systems. A PTS can be transformed into an equivalent
SATS by adding additional transitions. The basic idea is as follows: First, given
a PTS P , we rewrite all guards and transitions relations in disjunctive normal
form. Let P ′ be the resulting PTS; Second, if there is a transition of the form
τ = 〈i, j, ρτ , θ′

τ ∨ θ
′′
τ 〉, then we replace τ by τ1 = 〈i, j, ρτ , θ′

τ 〉 and τ2 = 〈i, j, ρτ , θ
′′
τ 〉;

Program Verification by Reduction to Semi-algebraic Systems Solving 289

if there is a transition of the form τ = 〈i, j, ρ′
τ ∨ ρ

′′
τ , θτ 〉, then we replace τ by

τ1 = 〈i, j, ρ′
τ , θτ 〉 and τ2 = 〈i, j, ρ′′

τ , θτ 〉; Repeat the second step until all guards and
transition relations are conjunctive polynomial formulae. Finally, we obtain an
SATS that is equivalent to P .

The following theorem guarantees that we can reduce the problem of discovery
of invariants and ranking functions of a PTS to that of the resulting SATS.

Theorem 3. Let P be a PTS, and P ′ be the resulting SATS from the above
procedure. Then, P and P ′ have the same invariants and ranking functions.

Fractional Polynomial Transition Systems. According to Theorem 2 and the
above discussion, it is easy to see that the problems of invariant generation and
ranking function discovering for FPTSs can be reduced to those of SATSs too.

8 More Expressive Invariants and Ranking Functions

In this section, we will discuss how to extend the approach to synthesizing more
expressive invariants and ranking functions. According to the results of the above
section, for simplicity, here we only need to consider to extend the approach to
synthesize more expressive invariants and ranking functions of SATSs.

General Polynomial Formula as Invariant. Given an SATS, we will extend the
approach presented in Section 4 in the following way: In first step, we allow to
predefine a template of invariant φ, which is a parametric polynomial formula
rather than a PSAS. Then, we rewrite the parametric polynomial formula into a
conjunctive normal form φ1 ∧ φ2 ∧ · · · ∧ φn, where each φi is a disjunction of some
atomic polynomial formulae. In the second step, according to Initiation, we have
Θ0 |=

�n
i=1 φi. This means that Θ0 ∧

�n
i=1 ¬φi has no real solutions. This entails

that for i = 1, · · · , n, Θ0 ∧ ¬φi has no real solutions. It is easy to see that Θ0 ∧ ¬φi

is a PSAS, therefore, Initiation case is reduced to solving SASs. Applying the
technique used in Section 4, we can obtain a condition on the parameters only. In
the third step, similarly to the above, we can show that Consecution can also be
reduced to solving SASs either, and therefore, we can get another condition on
the parameters. Finally, similarly to Section 4, we can instantiate the parameters
according to the resulting condition on them and generate invariants with the
predefined template.

Fractional Polynomial Formula as Invariant. For this case, in the first step,
we predefine a template of invariant that is a parametric fractional polynomial
formula. According to Theorem 1, the parametric fractional polynomial formula
is equivalent to a parametric polynomial formula. So, the rest steps are reduced
to those of the above case.

Fractional Polynomial as Ranking Function. By Theorem 1, similarly to the
previous discussion, it is quite easy to extend the approach of [4] to synthesize
a ranking function represented by a fractional polynomial.

290 B. Xia, L. Yang, and N. Zhan

9 Conclusions

In this paper, we first summarized our previous work on synthesizing polynomial
invariants and ranking functions reported in [4,5] by reduction to solving SASs,
and redid Example 7 from [5] by correcting some mistakes. Then, we investi-
gated the issue to generalize the approach in two directions: one is applicable to
more general programs, beyond SATSs, to PTSs, even to FPTSs; the other is to
synthesize more expressive invariants and ranking functions.

How to further improve the efficiency of the approach is still a big challenge
as well as our main future work, since the complexity is still single exponential
w.r.t. the number of program variables, and doubly exponential w.r.t. the number
of parameters (at least). It is worth investigating how to further extend the
approach to handle more general programs with more complicated data. The
potential solution could be to integrate different decision procedures. Here, we
only focus on Tarski’s Algebra, so we can only deal with real variables.

Acknowledgements

We are so grateful to Prof. Chaochen Zhou and Yinhua Chen for their contribu-
tions to the previous joint work. We also thank Prof. Chaochen Zhou for many
fruitful discussions with him on this work and his valuable comments on the
draft of this paper. We thank Dr. Dimitar P. Guelev for his proof-reading and
comments to improve the presentation of this paper so much.

References

1. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)

2. Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis of synchronous languages.
In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–69. Springer,
Heidelberg (1999)

3. Bradley, A., Manna, Z., Sipma, H.: Terminaition of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidel-
berg (2005)

4. Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering non-linear ranking
functions by solving semi-algebraic systems. In: Jones, C.B., Liu, Z., Woodcock, J.
(eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007)

5. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with
DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer,
Heidelberg (2007)

6. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. of Symbolic Computation 12, 299–328 (1991)

7. Colón, M., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

8. Colón, M., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)

Program Verification by Reduction to Semi-algebraic Systems Solving 291

9. Cousot, P.: Proving program invariance and termination by parametric abstrac-
tion, Langrangian Relaxation and semidefinite programming. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the
variables of a program. In: ACM POPL 1978, pp. 84–97 (1978)

11. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Workshop on Advances in Verification (WAVe 2000), pp. 1–8
(2000)

12. Davenport, J.H., Heintz, J.: Real Elimination is Doubly Exponential. J. of Symbolic
Computation 5, 29–37 (1988)

13. Dolzman, A., Sturm, T.: REDLOG: Computer algebra meets computer logic. ACM
SIGSAM Bulletin 31(2), 2–9

14. Kapur, D.: Automatically generating loop invariants using quantifier llimination.
In: Proc. IMACS Intl. Conf. on Applications of Computer Algebra (ACA 2004),
Beaumont, Texas (July 2004)

15. Müller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg
(2002)

16. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: ACM SIGPLAN Principles of Programming Languages, POPL 2004, pp. 330–
341 (2004)

17. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

18. Rodriguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for au-
tomatic generation of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 280–295. Springer, Heidelberg (2004)

19. Rodriguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop in-
variants: algebraic foundations. In: Proc. Intl. Symp on Symbolic and Algebraic
Computation (ISSAC 2004) (July 2004)

20. Rodriguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. Journal of Symbolic Computation 42, 443–476 (2007)

21. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using Gröbner bases. In: ACM POPL 2004, pp. 318–329 (2004)

22. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)

23. Xia, B.: DISCOVERER: A tool for solving semi-algebraic systems. In: Software
Demo at ISSAC 2007, Waterloo, July 30 (2007); ACM SIGSAM Bulletin, 41(3),
102–103 (2007)

24. Xia, B., Yang, L.: An algorithm for isolating the real solutions of semi-algebraic
systems. J. Symbolic Computation 34, 461–477 (2002)

25. Yang, L.: Recent advances on determining the number of real roots of parametric
polynomials. J. Symbolic Computation 28, 225–242 (1999)

26. Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials.
Science in China (Ser. E) 39, 628–646 (1996)

27. Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-
algebraic systems. In: Proc. of Int’l Conf. on Algorithmic Algebra and Logic, pp.
281–289 (2005)

28. Yang, L., Zhan, N., Xia, B., Zhou, C.: Program verification by using DISCOV-
ERER. In: Proc. VSTTE 2005. LNCS, vol. 4171, pp. 528–538. Springer, Heidelberg
(2005)

Debugging Statecharts Via Model-Code Traceability

Liang Guo and Abhik Roychoudhury

School of Computing, National University of Singapore
{guol,abhik}@comp.nus.edu.sg

Abstract. Model-driven software development involves constructing behavioral
models from informal English requirements. These models are then used to guide
software construction. The compilation of behavioral models into software is the
topic of many existing research works. There also exist a number of UML-based
modeling tools which support such model compilation. In this paper, we show
how Statechart models can be validated/debugged by (a) generating code from
the Statechart models, (b) employing established software debugging methods
like program slicing on the generated code, and (c) relating the program slice
back to the Statechart level. Our study is presented concretely in terms of dynamic
slicing of Java code produced from Statechart models. The slice produced at the
code level is mapped back to the model level for enhanced design comprehension.
We use the open-source JSlice tool for dynamic slicing of Java programs in our
experiments. We present results on a wide variety of real-life control systems
which are modeled as Statecharts (from the informal English requirements) and
debugged using our methodology. We feel that our debugging methodology fits
in well with design flows in model-driven software development.

Keywords: Statecharts, Traceability, Debugging, Slicing.

1 Introduction

Model-driven software development is becoming increasingly popular. There exist
many tools which enable design specification in terms of Unified Modeling Language
(UML) diagrams. Subsequently code is generated from these diagrams either semi-
automatically (as in Rhapsody from I-Logix [1] which compiles Statechart models into
C/C++/Java code) or manually using the UML diagrams as guidance. Irrespective of
whether the code is generated automatically or manually, some of the testing/dynamic
analysis is done at the code level. At the UML level, usually verification methods like
model checking are employed to check critical properties about the design.

If the testing/debugging of a piece of model-driven software reveals/explains an “un-
expected program behavior” how do we reflect it at the model level? This requires us to
maintain associations between model elements and code (which are built during code
generation), and then exploit these associations to highlight the appropriate model ele-
ments which are responsible for the so-called unexpected behavior. We advocate such a
method for debugging model-driven software in this paper. The benefits of relating the
results of debugging model-driven software to the model level are obvious — it enables
design comprehension and debugging at the model level. Since most debugging tools

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 292–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Debugging Statecharts Via Model-Code Traceability 293

work at the code level, this forms an important step in enabling model-driven software
development.

To make our study concrete, we fix a modeling langauge and a debugging method
— Statecharts [2] as the modeling language and dynamic slicing [3,4] as the debugging
method.1 Given a program P and input I , the programmer provides a slicing criterion
of the form (l, V), where l is a control location in the program and V is a set of pro-
gram variables referenced at l. The purpose of slicing is to find out the statements in
P which can affect the values of V at l via control/data flow, when P is executed with
input I . Thus, if I is an offending test case (where the programmer is not happy with
the observable values of certain variables), dynamic slicing can be performed and the
resultant slice can be inspected (at the code level). However, at this stage, it might be
important to reflect the results of slicing at a higher level, say at the model level — to
understand the problem with the design. We address this issue in this paper.

We consider the situation where the design is modeled using class diagrams and
Statecharts i.e. the behavior of each class is given by a Statechart and these Statecharts
are automatically compiled into code in a standard programming language like Java.
We present experimental results on a number of real-life control systems drawn from
various application domains such as avionics, automotive and rail-transportation. These
control systems are designed as Statecharts from which we automatically generate Java
code (into which associations between model elements and lines of code are embedded).
Subject to an observable error, the generated Java code is subjected to dynamic slicing.
The resultant slice is mapped back to the model level, while preserving the Statechart’s
structure, orthogonality (multiple processes executing concurrently) and hierarchy.

One could argue that, if the models are executable and automatic compilation of
models to code is feasible (as is the case for Statecharts) — the debugging should be
done at the model level. Indeed, we could build a dynamic slicing tool directly for Stat-
echarts.2 However, to popularize such tools for debugging model-driven software will
require a bigger shift in mind-set of programmers who are accustomed to debugging
code written in standard programming languages. Moreover, debugging the implemen-
tation is a more focused activity, since it allows us to ignore the bugs in the model which
do not appear in the implementation (since the implementation may have lesser behav-
iors than the model, as is the case when we compile Statecharts to sequential code).

In summary, this paper proposes a methodology for debugging model-driven soft-
ware, in particular, code generated from executable models like Statecharts. Our pro-
posed methods/tools focus on generating code with tags (to associate models and code),
using existing tools and algorithms to debug the generated code and exploiting the
model-code tags to reflect the debugging results at the model level. We feel that it is
important to develop backward links between the three layers in software development
— requirements, models and code. This article constitutes a step in this direction where
we relate results of debugging at code level to the model level.

1 The reason for choosing a dynamic analysis technique as the debugging method is obvious —
it corresponds more closely to program debugging by trying out selected inputs.

2 Static slicing of Statecharts has been studied in [5]. Direct simulation of statecharts has been
discussed in [6].

294 L. Guo and A. Roychoudhury

2 State-of-the-Art in Statechart Compilation

Compilation of Statecharts for generating code has been studied in many research arti-
cles. Some of these works, specifically those focusing on embedded system designs,
give importance to generating efficient C/SystemC code from State diagrams [7,8].
Certain other works (e.g., [9] and, to a lesser extent, [10]) generate Java code from
full-fledged UML designs consisting of Class Diagrams, State Diagrams and Collabo-
ration Diagrams. None of these works support full-fledged model-code association, so
lines of generated code cannot be easily mapped back to model elements. In fact, as
we illustrate in the following via an example, even the commercial tools for Statechart
modeling and code generation do not properly support association between Statechart
models and generated code.

Rhapsody and Stateflow are two of the successful tools released by I-Logix[1] and
MathWorks[11] respectively, which can generate code from Statechart models. Rhap-
sody supports all Statechart features and is capable of generating C, C++, and Java code.
Stateflow supports Statechart models as part of a complete embedded system design. It
supports most of the Statecharts’ features, and can generate C code from Statecharts.
Given a Statechart with sufficient details, all three tools (Rhapsody, Stateflow and our
tool) are able to generate executable code supporting AND/OR-states and event broad-
casting. Meanwhile, all three tools provide model-code association to some extent. All
tools tag pieces of code with the corresponding Statechart elements information.

However, tags maintained by Rhapsody and Stateflow are not sufficient for support-
ing full model-code association. The purpose of tags in Rhapsody is to help users refer
to model elements automatically while editing the generated code. The tags only as-
sociate actions (in transitions and states) and conditions (in transitions). The code cor-
responding to events and transition firings is not tagged, and hence there is no direct
association for these elements. Stateflow generates tags on model structure for refer-
ence purpose only. Only state entry and state exit are tagged before and after each
transition firing. There is no association existing for events, transitions, actions and
conditions. When a transition is entering or leaving a composite state, all levels of
states entered/exited are tagged, instead of the target/source (sub-)state only. Although
it shows clearly the execution behavior of a composite state, it increases the difficulty
in understanding the triggered transition as well as its source and target states.

The problem with incomplete tags for model element is, we cannot construct a com-
plete trace of the Statechart execution, and hence no systematic analysis method can
be applied. After the code is generated, we can perform debugging when an error is
found. To enable a comprehensive understanding of the bug report at model level, the
code-level bug report should be mapped back to model level. In both Rhapsody and
Stateflow, since some model elements are not tagged for model-code association, the
model-level bug report becomes incomplete. Our tool is able to build a full model-code
association, and it maps bug report from code-level back to model-level.

In the following, we capture the capabilities of the existing tools as far as maintaining
code to model backward associations is concerned. We use the popular Rail-car exam-
ple developed by David Harel and Eran Gery in [12] to illustrate the differences. The
example is drawn from the rail-transportation domain and has been widely used as a
case study of UML-based system behavior modeling. In this example, there are a fixed

Debugging Statecharts Via Model-Code Traceability 295

Idle Standby

Operating

Departure*

Cruising

Arrival

destSelected

setDest

tm

end

end

alert100

(a)

Departure*

waitExit syncExit

waitCruise syncCruise

End

(b)

Fig. 1. Statechart fragment corresponding to car object. (a) the top-level Statechart, and (b) the
details of composite state Departure. State Arrival is also a composite state, the details of
which is not shown.

T_action
E

T_fire
E

T_fire
:
:

S_entry
E

T_fire
E

T_action
T_fire

:
:

S_entry
E

T_action
T_condition

T_fire

initial
destSelected
Idle2Standby

tm
standby2departure

:
:

DepartureEnd
end

departure2cruising
alert100

cruising2arrival
cruising2arrival

:
:

ArrivalEnd
end

arrival2cond
arrival2idle
arrival2idle

T_action

:
:

S_entry

T_action

:
:

S_entry

T_action
T_condition

initial

:
:

DepartureEnd

cruising2arrival

:
:

ArrivalEnd

arrival2cond
arrival2idle

Element
Type

Element
Type

Element
Name

Element
Name

Our Tool Rhapsody

T_fire
:
:

S_entry

T_fire

T_fire
:
:

S_entry

T_fire

standby2departure
:
:

DepartureEnd

departure2cruising

cruising2arrival
:
:

ArrivalEnd

arrival2idle

Element
Type

Element
Name

Stateflow

Fig. 2. Model-level slices based on the code generated from (a) our tool, (b) Rhapsody, and
(c) Stateflow. A dashed line shows a missing model element in the slice resulting from Rhap-
sody or Stateflow. “E”, “T”, and “S” appearing in “Element Type” denote “Event”, “Transition”,
and “State”. Model elements for CarHandler and details inside the states Departure and
Arrival of Car are omitted for the ease of understanding.

number of terminals located along a cyclic path. Each adjacent pair of these terminals is
connected by two rail tracks, one of which is for clockwise travel and another for anti-
clockwise travel of the rail cars. There are several (a fixed number of) rail cars available
for transporting passengers between the terminals. There is a control center which re-
ceives, processes and communicates data between various terminals and railcars. Each
terminal has several car handlers to process transactions between the terminal and cars.
More details about the example along with the class diagrams and Statecharts for each
class appears in [12].

In particular, we consider the Statechart of a car object (shown in Figure 1). Sup-
pose we have a car moving from a terminal to a neighboring terminal (its destination).
In terms of the Statechart behavior, the car object is expected to visit states Idle,
Standby, Departure,Cruising, Arrival, and back to Idle. Here we use slic-
ing as the debugging method to study how the car finally comes back to state Idle. We

296 L. Guo and A. Roychoudhury

set the last occurrence of Idle 3 as the slicing criterion and perform slicing based on
the car object. As shown in Figure 2, the model-level slice on column (a) is produced by
mapping the code-level slice backward using our approach, while the slices on column
(b) and (c) are from code generated by Rhapsody and Stateflow. Although code from all
three tools have almost identical behavior, our tool is able to produce a complete model-
level slice. More specifically, all events and transition-firings are missing in the slice
resulting from Rhapsody, which contains only a sequence of actions executed and con-
ditions checked. For example, since the transition between states Idle and Standby
is missing, we have no idea which event - setDest or destSelected - triggers
the car object transiting from Idle to Standby. In the slice resulting from Stateflow,
the transition-firings are only reconstructed from state entry/exit information as well as
the model structure. Here also, we cannot determine the transition triggered from state
Idle to Standby. Note that the missing event here (setDest or destSelected)
could be broadcast to other objects (running concurrently), thereby triggering transi-
tions in other objects. Thus, not tracking these events hampers our understanding of the
overall system behavior (and not just the behavior of the car object in question).

In summary, the existing tools do not maintain detailed model-code associations
while generating code from Statecharts. Rhapsody only tags actions (which are exe-
cuted as an effect of states/transitions) and conditions (which serve as the guard of tran-
sitions). Stateflow only tracks the states through which the Statechart moves. None of
the tools track the events which trigger the transitions and are broadcasted resulting in
non-trivial communication patterns across the different concurrent objects represented
by a Statechart. These events are often responsible for “unexpected behaviors”; without
considering them in our debugging methods (and bug reports) it would be impossible
to comprehend concurrent system designs represented by Statecharts.

3 Overall Methodology

In this section, we present the methodology to trace design information between models
and code. Specifically, our work consists of the following steps.

– Forward code generation. We automatically generate Java code from Statecharts
while using appropriate tags to store model-code association information. The Java
code can then be used to perform code-level analysis (e.g., debugging via dynamic
slicing).

– Backward code-to-model mapping. With the debugging result (bug report) from
code analysis and the association information obtained, we perform a mapping to
produce a model-level bug report, which is more tightly related to the Statechart
and also smaller.

– Hierarchical analysis result. Although the model-level bug report is easier to under-
stand than code-level report, it may still be large and complex. We utilize the impor-
tant features of Statecharts (hierarchy/orthogonality) to re-structure the model-level
bug report. Furthermore, we separate out the flow of different active objects (from
the same class) whose behavior is captured by the same Statechart.

3 We assume that the execution of Statechart model can be finished by entering an “End” state
eventually.

Debugging Statecharts Via Model-Code Traceability 297

Statechart

Java code
with tag

Code-level
bug report

Model-level
bug report

code
generation

with tag

debugging

backward
mapping

Hierarchical
bug report

hierarchical
processing

(statechart structure
information)

(association
information)

Action
performed

Information
provided

Model-code
association

static
analysis of

tag

Fig. 3. Maintaining the traceability between model and code

Class Statechart

1 1

ANDStateORState
11..*

1 *

AbstractORState

AbstractANDState

1

*

Fig. 4. Class diagram of Java code generated from Statecharts

The whole methodology is summarized in Figure 3. When a Statechart model is
available4, we can generate code automatically. Since the code is generated completely
from the model, we know exactly which part of code results from a particular model
element. By tagging this piece of code with the corresponding model element informa-
tion, we are able to derive the association between model and code. If we encounter
an observable error while executing the code, we can use methods (such as slicing) to
debug it. With the debugging result (code-level bug report), we can map the bug report
backward to model-level by changing statements in code-level bug report to the corre-
sponding model elements. To fully regain the structure of Statecharts, the model-level
bug report can be re-organized. The re-organized hierarchical bug report maintains both
the structure of Statechart as well as the elements in the original model-level bug report.
We now elaborate the intricacies involved in each of these steps.

4 Code Generation

First we discuss how we can maintain tags between model elements and generated
code during the process of code generation. It is worthwhile to note that, we always
translate a Statechart to a single-threaded Java program. Thus, event communication
at the Statechart level gets translated to method calls at the code level.

For each class of active objects in the system model, the corresponding Statechart
is realized at the software level via several Java classes. As shown in Figure 4, a Stat-
echart contains a set of OR-state classes. Meanwhile, an OR-state class may have sev-
eral AND-state classes — where each AND-state class corresponds to a concurrently

4 The states and transitions must be defined, and all appropriate triggers/conditions/actions must
be available — such that the system is executable after generating code.

298 L. Guo and A. Roychoudhury

1. public void trigger(Events event)
2. {
3. switch(event) {
4. <% for each (transition t in current state) { %>
5. case Events.<% transtion t's event %>:
6. <% if (transition t has condition) { %>
7. if(<% transition name %>_Condition()) {
8. <% } %>
9. <% if (transition t has action) { %>
10. <% transition name %>_Action(event);
11. <% } %>
12. <% transition name%>_Fire();
13. <% if(transition t has condition) { %>
14. }
15. <% } %>
16. break;
17. <% } //end for each %>
18. default:
19. for each (AND-State as contained) {
20. as.trigger(event);
21. }
22. }
23. }

24. <% for each (transition t in current state) { %>
25. <% if(transition t has action) { %>
26. /**
27. * @model type=transition_action name=<% transition name %>
28. */
29. private void <% transition name %>_Action(Object parameter) {
30. <% transition t's action %>
31. }
32. <% } %>

33. <% for each (transition t in current state) { %>
34. /**
35. * @model type=transition_fire name=<% transition name %>
36. */
37. private void <% transition name %>_Fire() {
38. Create target state object;
39. make transition;
40. }
41. <% } %>

Fig. 5. A fragment of template used in code generation

executing component. Each AND-state class may again contain different classes cor-
responding to the possible (OR-)states in which the system component (corresponding
to the AND-state) can be in. The design of OR-states within an AND-state follows the
State design pattern [13].

While generating code from Statechart models, we mark the lines of code corre-
sponding to specific model elements with the model element name and type. The usual
model element types correspond to events, states, transitions, conditions, actions and
etc. Note that while generating Java code, each method only contains code for at most
one model element. These markers or tags are inserted as Javadoc comments in the
generated code in the form of: @model type=type name=name For example, if a
method meth in code corresponds to state S2 in a Statechart model, we insert the fol-
lowing comment beforemeth:
/**
*@model type=state name=S2

*/
The code generation mechanism is implemented using Eclipse framework, which is

capable of emitting text files w.r.t. a set of templates and inputs to the templates. Figure 5
shows a fragment of a template used in generating an ORState class as in Figure 4,
which is writing in pseudo code for ease of understanding. Line 1 - 23 represents the
method to dispatch event, and line 24 - 32 and line 33 - 41 represents two methods for
transition’s action and transition firing respectively. Note that text contained in “<%”
and “%>” is to be substitute with the real input - e.g. transition name, code for transition
action, and etc. Other text is emitted as is. Each element is written as a method. For
example, line 30 will be replaced with the code of transition action during generation.
The tag for model element is written in the template as well, with appropriate names
to be substitute. Line 26 - 28 shows such a tag for transition’s action. Inserting tags as
Javadoc comments at method level serves several purposes: (a) instead of inserting tag
to every statement related to a model element, we greatly reduce the space overhead
for tags; (b) Javadoc is a standard documentation format in Java program, and thus the

Debugging Statecharts Via Model-Code Traceability 299

generated tags can be easily processed by other design tools for their own analysis, and
(c) it allows us to incrementally change the code, for minimal changes in the Statechart
model.

Note that the tags in the generated code cannot be efficiently used for relating code-
level bug reports to the model level. Indeed this is the main motivation of our work —
debugging model-driven software such that the results of debugging can be shown and
communicated to the designers at the model level. Since the tags are embedded inside
the generated code as plain text, relating the lines in bug-reports to the model-level
will involve expensive file accesses. Consequently, we use the tags in the generated
code to build an in-memory representation of the model-code association. The associa-
tion consists of tuples of the following form: (Model element name, Element
type, Java class file, Line numbers) indexed by (element name,
type) and (class file, line numbers) separately. Maintaining the model-
code associations in-memory as well as in the file for generated code allows us to avoid
regenerating the code for minor changes in the model.

Effect of incremental changes. The process of maintaining tags during code genera-
tion and building the in-memory model-code association is important for model-level
debugging. Once the bugs are found and fixed at the model level, the changes need to
be propagated to the generated code. This can be done automatically using the tags,
provided the fixes at the model level do not add/remove any model elements. We note
that often the bug-fixes involve correcting a wrong condition or a wrong action in the
Statechart model. Such changes in the model level only modify model elements. These
changes do not affect the tags, and thus do not require re-generating code from the
modified model. In fact, as long as the structure of the Statechart model (the structure
resulting from states and transitions) is not affected, there is no need to re-generate
code from the Statechart. Instead we can use existing tags, to directly (and automat-
ically) propagate the changes from the model level to the code level. The in-memory
model-code associations can then be re-built on demand from the modified code.

5 Mapping Code-Level Bug Reports to Statechart-Level

We now elaborate the method for mapping the debugging results of the generated code
back to the Statechart model level. Most debugging methods report a list of statements
(the bug report) that are potentially related to the observable “error”. These statements
are at the level of the generated code. Recall that our model-code association stored
in-memory contains tuples of the form

(Model element name, Element type, Java class file, Line #).

Thus, we can map a set of statements in the generated code to a set of model elements
at the Statechart model level. This constitutes our preliminary model level bug report.
The model-level bug report is smaller and more compact than the code-level bug report.

Take the example in Figure 1, where the “car” object visits states Idle, Standby,
Departure, Cruising, Arrival, and back to Idle (the states inside composite
states are not mentioned here). Suppose we set the last occurrence of Idle state as the

300 L. Guo and A. Roychoudhury

slicing criterion, which is essentially translated to a number of lines in generated code
passed to JSlice. The code-level bug report will consist of a set of (Java class
file, line number) tuples. Apparently, a number of entries in the bug report
corresponds to one model element. By utilizing the model-code association, we can get
a set of model elements as the model-level bug report. For this example, we will have:

State Idle, Transition Idle → Standby, State Standby,
..., State waitExit, State syncExit, ...

Note that in the model-level bug report, all related model elements are reported as a
simple set. The hierarchy structure of Statechart is totally disregarded. The designer
cannot figure out those more important (more suspicious) elements quickly from the
element set. Thus, we need to further re-organize the model-level bug report.

Separating flows from different objects in a class. We observe that debugging program
generated from Statechart models differs in one significant way from normal debug-
ging of sequential programs. A Statechart modelM for a process class can capture the
communication and control flow of several active objects running concurrently. This is
because there might be several active objects in the class whose behavior is captured
by M . Consequently, in the model-level bug report, it is important to separate out the
relevant control flows of these different objects — so that the designer can trace the
source of the observable “error”. For example, if a state S2 appears in the model-level
bug report, it might capture the visit of several active objects of the same class to the
state S2 (each possibly multiple times). To separate out the control flows of the different
objects, we can let our code-level debugging method return a sequence of statement in-
stances rather than a set of statements. This is possible for popular debugging methods
such as dynamic slicing [4,3,14] and fault localization [15]. The sequence of statement
instances (call it σcode) gets mapped to a sequence of model element instances (call
it σmodel) using model-code associations. These model element instances may come
from different objects; we can project σmodel to get the sequences of model element
instances for the different active objects.

Hierarchical Bug reports. Even after we project the model-level bug report for each
active object, the bug report for objects are still sets of model elements, which may
be huge compared to the entire model for the designer to inspect. In fact, we can go
beyond the projection of model level bug report for active objects. Since a Statechart
model has a hierarchy structure, the parent-children relationship of states can be formed
as a tree automatically. Nodes in this hierarchy tree correspond to OR-states in State-
chart. Children of a node n are OR-states directly contained by n’s AND-states. Note
that in the hierarchy tree we do not include AND-states. Usually the model designers
are interested in how the model is executed - that is, how transitions are fired between
OR-states. Building hierarchical bug report at code-level is studied in [16]. However,
the organization of code-level hierarchical bug report may not correspond to the struc-
ture of Statechart. Thus, we need to build hierarchical bug report at model-level w.r.t
the Statechart organization.

Given a model-level bug report (as a sequence of model element instances), we first
project the report to get the sequence of model element instances for every object of

Debugging Statecharts Via Model-Code Traceability 301

Standby

Root

Idle

Arrival

Depature

Operating

End

Departure Cruising

End

Arrival

syncCruise

syncExit

Departing End

waitExit syncExit waitCruise syncCruise

...

Level 1

Level 2

Level 3

Level 4

Fig. 6. Hierarchical bug report for the example in Figure 1

class C. This sequence is projected further for each node of the hierarchy tree of Stat-
echart model M for class C. This leads to a bug report which contains the structure
of the Statechart model and enables greater design comprehension. Figure 6 shows
the hierarchical bug report (as a hierarchy tree) of Statechart example as in Figure 1. As
the top level states in the statechart are Idle, Standby, and Operating, we have
three nodes representing these three states at Level 1 in Figure 6. The nodeOperating
can be further divided into three nodes as in Level 2, corresponding to the three OR-
states contained by state Operating, and so on. At each level, we shows transitions
(in bug reports) across nodes only. That is, transitions within a composite state is hided
for current level, and can be examined by zooming into the composite state. Further-
more, each node (state) may selectively show sub-states where there exist cross-node
transitions connecting them. For example, at Level 1 in Figure 6, we have transition
connecting Standby and Departure (in Operating).The hierarchical bug report
can be constructed as follows.

1. project model-level bug report to get the sequence of model element instances for
every active object o (object-level bug report Ro);

2. build the hierarchy tree of states To for every active object o;
3. prune the hierarchy tree - for a sub-tree rooted at node n, if all nodes in the sub-tree

are not in Ro, and no transition connecting them, we can prune this sub-tree in To;
4. connect nodes in To with all transitions in Ro, and expand node to show sub-states

if any transition connects to them. In particular, for each transition t ∈ Ro, we
connect it to two states/nodes s1 and s2, where

– parent(s1) = parent(s2), and
– ancestor(source state(t)) = s1, and
– ancestor(target state(t)) = s2.

By presenting this hierarchical bug report, the model designer can determine which
model state is potentially buggy at higher level, and navigate inside to see the detailed

302 L. Guo and A. Roychoudhury

transitions reported for that state, and so on. This approach is more effective to designer
than being presented a long list of model elements.

6 Experimental Setup

In order to experimentally evaluate our methodology, we adopt and construct four stat-
echart models. These models used are shown in Table 1. The third column shows the
number of elements in the statechart model, counting OR-states, AND-states, transi-
tions, actions, and conditions. Except for the RailCar example discussed in section 2,
the other three models are based on real-life systems. The automated shuttle system [17]
consists of several shuttles running on a railway network. They bid to transport passen-
gers between two stations and earn money upon the completion of the transportation;
meanwhile, the shuttles have to pay for the rail network usage. The weather control
system is part of the Center TRACON Automation System (CTAS) [18] developed by
NASA. It is used to control the air traffic at large airports. The weather controller con-
tains a weather control panel dispatching weather status, a communication manager,
and several clients receiving weather information. Such an update may succeed or fail
and clients must respond with correct actions. The Media Oriented Systems Transport
(MOST) [19] is a networking standard for multi-media devices (such as CD player)
communicating in a car network. The network may contain up to 64 nodes, and each
node corresponds to a multimedia device. These nodes are known as Network Slaves
in MOST terminology. There is a special node called Network Master responsible for
maintaining the network information in a central registry. The Network Master scans
the whole network upon a change in the network status. Network Slaves may reply with
valid or invalid information and further action must be performed (e.g. a re-scan). The
MOST standard is currently maintained by the “MOST Cooperation”, an umbrella or-
ganization consisting of various automotive companies and component manufacturers
like BMW, Daimler-Chrysler and Audi.

Table 1. Statechart models used in our experiment

Statechart Description # model
elements

RailCar A rail car system from [12] 121
ShuttleSystem Shuttles transporting passengers between stations [17] 117
WeatherControl Updating weather status to clients [18] 202
MOST Networking standard of multimedia system in cars [19] 277

For each of the above four models, we manually inject four to five bugs, resulting in
four to five buggy versions (from each of which code is subsequently generated). These
bugs can be categorized as follows.

– Wrong control flow - The bug affects states visited, including transition pointing to
a wrong state, a condition is tightened or relaxed, or the event trigger of a transition
is wrong. These correspond to “branch errors” in the generated code.

Debugging Statecharts Via Model-Code Traceability 303

– Wrong action - The assignment to a variable in the action corresponding to a Stat-
echart state/transition may be wrong. These correspond to “assignment errors” in
the generated code.

– Missing element - The bug results from a missing transition, condition, or action.
These correspond to “code missing errors” in the generated code. For bugs of this
type, we define the bug in terms of elements existing in the Statechart model. Thus,
if a condition or action is missing we mark the corresponding transition as buggy,
and so on.

For each buggy version, we manually generate five to ten test cases which are failing
runs with observable errors. In other words, the executions of these test cases are dif-
ferent w.r.t the correct version and the buggy version.

We choose dynamic slicing [3,4] as the debugging method to produce code-level bug
reports and perform backward mapping to model-level. Given a programP , input I , line
of code l and set of variables V — dynamic slicing can find the statements/statement-
instances of P which (directly or transitively via control or data flow) affect the value
of V at l in the execution trace corresponding to I .

We modify and exploit the dynamic Java slicing tool JSlice [20,21] from our previous
work [14] to produce code-level slices. JSlice is an open-source tool which performs
backwards dynamic slicing of sequential Java programs. Since backwards slicing re-
quires storing of the execution trace, JSlice performs online compression during trace
collection. The compressed trace representation is traversed without decompression dur-
ing slicing. The program slices produced by JSlice are mapped back to model elements
using the association between model entities and the generated code. The model-level
slice is then further processed to produce hierarchical slices which correspond to the
structure of the Statechart.

7 Experimental Results

We employ our tool on nineteen buggy program versions (for the four Statecharts in
Table 1) to evaluate the efficiency and effectiveness of the methodology.

7.1 Code Generation

Given a Statchart model, we automatically generate a single-threaded Java program.
While generating code from Statechart model, we also insert tags in generated Java files;
the tags are processed to construct an in-memory structure representing association
between model and code. Thus it is important to make sure the overhead of tags and
building the in-memory association is small enough.

Figure 7(a) shows the time to generate code for the four models. For each model,
it shows the time to generate code without tags, the time to generate code and tags,
and the time to generate tagged code as well as the in-memory model-code association.
The time overhead of tags in code generation is mainly for emitting into files (and
writing to disk) and is largely system dependent. Among all models, the time required
to generate code with tags increases 3% - 13%, compared with generating code without
tag. From the figure, the time for generating code and tags is 34% - 45% of the total

304 L. Guo and A. Roychoudhury

0.00
0.20
0.40
0.60
0.80
1.00

Shuttle Railcar Weather MOST
Statechart models

P
ro

ce
ss

in
g

tim
e

(s
ec

s)

Generate code without tag
Generate code with tag
Generate code/tag & build association

0
500

1000
1500
2000
2500
3000

Shuttle Railcar Weather MOST
Statechart models

N
um

be
r o

f l
in

es
 o

f c
od

e

Without tag With tag

(a) (b)

Fig. 7. (a) Time to generate code and build model-code association. It compares the time to
generate code without tag, time to generate code with tag, and time to generate code/tag and
build association; and (b) The number of lines of code for four models.

time. The remaining time is spent in building the in-memory associations. We recall
that modifications to Statecharts which only modify model elements do not require re-
generation of code. Thus, the overhead of code generation is usually incurred only once
across several runs of debugging.

The size of generated code is shown in Figure 7(b). The increase in code size due to
tags is low — 15% - 22%.

7.2 Dynamic Slicing

After we have the Java code and the model-code association information, we perform
dynamic slicing on each of the nineteen buggy programs (corresponding to the four
Statechart models). At the model level, we specify the slicing criterion as the last
“wrong” state visited by a particular object (which gives the observable “error”). Since
we actually perform slicing at code level, we specify the criterion as the corresponding
state entry point (not necessarily the state entry action) in the code.

As mentioned earlier, each Statechart model has several buggy versions, and in each
buggy version the slicing criterion is set based on the observable error. However, for
dynamic slicing, apart from the slicing criterion, we also need inputs which exhibit the
observable error in question. Hence corresponding to each buggy version, (at least) five
test cases are chosen. The experimental results (shown in Table 2) report all quantities
corresponding to a buggy version as the average over all the test cases for that buggy
version. The goal for choosing different inputs for the slicing was to get rid of (or at
least reduce) the influence of any specific program input on the overall results. Fur-
thermore, the same bug may manifest itself as different observable errors for different
inputs (leading to different slicing criteria).

The columns with heading “Slice Size” in Table 2 show the comparison of slice
sizes. For all the buggy versions, the size of model-level slice is 12% to 25% of cor-
responding code-level slice. This is not surprising since a single model element may
require a couple of lines of code to implement. The model-level slice is 27% to 47%
compared with the total number of model elements, while the corresponding ratio for
code-level slices is 17% to 30%. The larger ratio for model-level slices (as compared to

Debugging Statecharts Via Model-Code Traceability 305

Table 2. Summary of Experimental Results. Column 2 shows the type of bug, 1 - wrong control
flow, 2 - wrong action, and 3 - missing element. The four columns under the heading “Slice
Size” represent average size of code-level slices, total lines of code, average size of model-level
slices, and total number of statechart elements. The two columns under the heading “Time” show
the average dynamic analysis time, including time to map slice from code level and to build
hierarchical slice.

Model Bug
Type

Slice Size Time (secs)
Code-level

Slice LOC Model-level
Slice

Total
Elements

Map from
Code-level

Build
Hierarchy Slice

Shuttle
System

1 316.2

1167

42.7

117

0.046 0.691
1 334.8 43.5 0.039 0.609
3 331.8 43.5 0.036 0.604
2 282.0 37.5 0.027 0.591
1 286.3 37.7 0.031 0.599

Railcar

2 412.8

1389

49.2

121

0.053 0.639
3 405.3 47.0 0.044 0.613
1 411.9 49.0 0.053 0.620
1 414.0 48.4 0.045 0.607

Weather
Control

1 353.7

1889

89.7

202

0.092 0.963
1 324.8 78.2 0.090 0.985
3 338.8 84.0 0.094 1.018
1 376.4 94.6 0.097 1.016
2 356.5 88.8 0.099 0.996

MOST

1 447.0

2440

74.3

277

0.118 1.009
3 454.0 76.8 0.113 0.985
1 491.1 92.0 0.194 1.058
2 494.6 85.8 0.172 1.037
1 466.0 81.3 0.133 1.028

code-level slices) is due to the same reason as above - when an element is included in
the model-level slice, it is common that only a portion of corresponding code appears
in the code-level slice.

The time to map code-level slice to model-level is shown in the first column under the
heading “Time” in Table 2. We did not find significant differences across buggy versions
of the same model. The average time to build hierarchical slice is shown in the second
column under the heading “Time” in Table 2. It includes analyzing and constructing
hierarchy tree for the Statechart and projecting the dynamic slice corresponding to the
different nodes of the hierarchy tree. The time is almost same for each model, because
reading the Statechart structure and constructing the tree needs a large amount of time.

Note that not all bugs can be found in dynamic slices. In our experiment, three of the
nineteen buggy program versions (corresponding to the four Statecharts considered) had
slices that do not contain the bug. For example, none of the dynamic slices contained
the bug for the second buggy version of Shuttle System. Here, the condition of a choice
transition was wrong and the corresponding transition never got fired. Thus, the error
here occurred due to some portion of the model not being executed. Such errors cannot
be located via dynamic slicing, and we need to employ techniques such as “relevant
slicing” [22,14].

8 Discussion

More and more software is not being produced in a hand-written manner. Indeed, in
certain safety-critical domains (e.g., avionics), developers are strongly encouraged to
generate code from behavioral models. Consequently, we need new debugging method-
ologies. In this article, we have suggested the use of software debugging methods (such

306 L. Guo and A. Roychoudhury

as dynamic slicing) on the code generated from behavioral models. The bug-report is
then played back at the model level by exploiting the associations between program
fragments and model elements, thereby achieving model debugging.

Acknowledgments. This work was partially supported by a NUS research grant R252-
000-321-112, and a Public Sector Funding research grant from A*STAR, Singapore.

References

1. Rhapsody tool. I-logix, inc. website, http://www.ilogix.com
2. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming 8(3), 231–274 (1987)
3. Agrawal, H., Horgan, J.: Dynamic program slicing. In: ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI) (1990)
4. Korel, B., Laski, J.W.: Dynamic program slicing. Information Processing Letters 29(3), 155–

163 (1988)
5. Heimdahl, M.P.E., Whalen, M.W.: Reduction and slicing of hierarchical state machines. In:

Intl. Symp. on Foundations of Software Engineering (FSE) (1997)
6. Feldman, Y.A., Schneider, H.: Simulating reactive systems by deduction. ACM Transactions

on Software Engineering and Methodology (TOSEM) 2(2) (1993)
7. Nguyen, K.D., Sun, Z., Thiagarajan, P.S., Wong, W.-F.: Model-driven SoC design via exe-

cutable UML to systemc. In: IEEE Real-time Systems Symp (RTSS) (2004)
8. Wasowski, A.: On efficient program synthesis from statecharts. In: Intl. Conf. on Languages,

Compilers and Tools for Embedded Systems (LCTES) (2003)
9. Kohler, H.J., Nickel, U., Niere, J., Zundorf, A.: Integrating UML diagrams for production

control systems. In: Intl. Conf. on Software engineering (ICSE) (2000)
10. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML designs to Java. In: Intl. Conf.

on Object-oriented Prog. Sys. and Languages (OOPSLA) (2000)
11. Stateflow tool. The MathWorks, inc. website, http://www.mathworks.com
12. Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer 30(7)

(1997)
13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading

(1995)
14. Wang, T., Roychoudhury, A.: Using compressed bytecode traces for slicing Java programs.

In: Intl. Conf. on Software Engineering (ICSE) (2004)
15. Guo, L., Roychoudhury, A., Wang, T.: Accurately choosing execution runs for software

fault localization. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 80–95.
Springer, Heidelberg (2006)

16. Wang, T., Roychoudhury, A.: Hierarchical dynamic slicing. In: International Symposium on
Software Testing and Analysis (ISSTA) (2007)

17. Shuttle Control System. New rail-technology Paderborn, http://www.cs.uni-
paderborn.de/cs/ag-schaefer/CaseStudies/ShuttleSystem

18. CTAS. Center TRACON automation system, http://www.ctas.arc.nasa.gov
19. MOST Cooperation, http://www.mostcooperation.com
20. JSlice: dynamic slicing tool for Java. T. Wang and A. Roychoudhury, National University of

Singapore, http://jslice.sourceforge.net
21. Wang, T., Roychoudhury, A.: Dynamic slicing on Java bytecode traces. ACM Transactions

on Programming Languages and Systems (TOPLAS) 30(2) (2008)
22. Gyimóthy, T., Beszédes, Á., Forgács, I.: An efficient relevant slicing method for debugging.

In: 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 303–321 (1999)

http://www.ilogix.com
http://www.mathworks.com
http://www.cs.uni-paderborn.de/cs/ag-schaefer/CaseStudies/ShuttleSystem
http://www.cs.uni-paderborn.de/cs/ag-schaefer/CaseStudies/ShuttleSystem
http://www.ctas.arc.nasa.gov
http://www.mostcooperation.com
http://jslice.sourceforge.net

Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit

Jun Sun, Yang Liu, and Jin Song Dong

School of Computing,
National University of Singapore

{dongjs,liuyang,sunj}@comp.nus.edu.sg

Abstract. FDR, initially introduced decades ago, is the de facto analyzer for
Communicating Sequential Processes (CSP). Model checking techniques have
been evolved rapidly since then. This paper describes PAT, i.e., a process analysis
toolkit which complements FDR in several aspects. PAT is designed to analyze
event-based compositional system models specified using CSP as well as shared
variables and asynchronous message passing. It supports automated refinement
checking, model checking of LTL extended with events, etc. In this paper, we
highlight how partial order reduction is applied to improve refinement checking
in PAT. Experiment results show that PAT outperforms FDR in some cases.

1 Introduction

Hoare’s classic Communicating Sequential Processes (CSP [7]) has been a rather suc-
cessful event-based modeling language for decades. Theoretical development on CSP
has advanced formal methods in many ways. Its distinguishable features like alphabet-
ized parallel composition have proven to be useful in modeling a wide range of systems.

FDR (Failures-Divergence Refinement) [12] is the de facto analyzer for CSP, which
has been successfully applied in various domains. Based on the model checking algo-
rithm presented in [12] and later improved with other reduction techniques presented
in [15], FDR is capable of handling large systems. Nonetheless, since FDR was initially
introduced, model checking techniques have evolved a lot in the last two decades. Quite
a number of effective reduction methods have been proposed which greatly enlarge the
size the systems that can be handled. Some noticeable ones include partial order re-
duction, symmetry reduction, predicate abstraction, etc. Moreover, verification based
on temporal logic properties has gathered much attention. In this work, we present a
process analysis toolkit named PAT1, which is designed to incorporate advanced model
checking techniques to analyze event-based compositional system models. PAT comple-
ments FDR in a number of ways. The following is a list of PAT’s main functionalities.

– refinement checking. Refinement checking in FDR has been proved useful [16,14].
Given a process representing the implementation and another representing the spec-
ification, PAT (like FDR) automatically verifies whether there is a refinement rela-
tionship between them. Refinement checking in FDR replies on normalizing the

1 Available at http://www.comp.nus.edu.sg/˜liuyang/pat

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 307–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 J. Sun, Y. Liu, and J.S. Dong

specification before hand, which has proven to be very effective for some sys-
tems [15]. Nonetheless, normalization is computational expensive in general. In
PAT, an alternative approach which brings normalization on-the-fly is adopted.

– temporal logic based model checking. An LTL model checker is embedded in PAT.
Users are allowed to specify properties using standard LTL (extended with events,
refer to Section 4.4). An on-the-fly explicit model checking algorithm is then used
to produce counterexamples (if there is) or to conclude true.

– simulation. PAT supports various ways of system simulation, e.g., random simula-
tion, user-guided step-by-step simulation, system graph generation, etc.

Besides, dedicated algorithms have been developed to analyze specialized properties,
e.g., deadlock-freeness, divergence-freeness, invariants, LTL properties under weak or
strong fairness assumptions, etc. In order to handle systems with large number of states,
partial order reduction has been realized in PAT to enhance LTL model checking, re-
finement checking as well as other dedicated verification algorithms. Previous works
on partial order reduction have only been applied to refinement checking in limited
ways (refer to diamond reduction presented in [15]). Based on previous theoretical
works [18,19], novel reduction techniques have been developed in PAT to enhance re-
finement checking. In this paper, the algorithms for partial order reduction as well as its
soundness are discussed in detail. Other features of PAT are briefly introduced.

The remainder of the paper is organized as follows. Section 2 reviews PAT’s input
language. We briefly introduce FDR and its refinement checking in Section 3. Section 4
presents FDR’s refinement checking algorithm and the refined one with partial order
reduction. Section 5 concludes the paper and reviews related works and future works.

2 Communicating Sequential Processes with Extensions

In this section, we introduce our extended CSP language, i.e., its operational semantics
as well as the definitions of the trace refinement, stable failure refinement and fail-
ure/divergence refinement.

Definition 1 (Process). A process is defined as follows,

P ::= Stop | Skip | e → P | c!exp → P | c?x → P
| P ; Q | P � Q | P � Q | P � b � Q | [b] • P | P & Q | P \X
| P1 ‖ P2 ‖ · · · ‖ Pn | P1 ||| P2 ||| · · · ||| Pn

where c is a channel with bounded buffer size, b is a Boolean expression, X is a set of
events, exp is an expression and e is an event. Event e may be a simple abstract event
or a compound one (e.g., e.x .y) with an optional sequence of assignments.

We support most of the CSP language constructs. The two most noticeable extensions
are shared variables and asynchronous message passing. It has long been known (see [7]
and [13], for example) that one can model a variable as a process parallel to the one that
uses it. The user processes then read from, or write to, the variable by CSP communica-
tion. Similarly, one can model a (bounded) message channel as a process. Nonetheless,
these ‘syntactic sugars’ are mostly welcomed. Supporting them explicitly allows us to

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 309

avoid generating multiple parallel processes and hence verify more efficiently in some
cases2. Most of the operators (as explained in [7]) are well-understood. We briefly re-
view the extended ones as well as ones whose semantics needs clarification. The oper-
ational semantics is presented in Appendix A.

Let Σ denote the set of all visible events and τ denote an invisible action. Let Σ∗

be the set of finite traces. Let Στ be Σ ∪ {τ}. Event prefixing e → P performs e and
behaves as P afterward. If e is attached with assignments, the valuation of the global
variables is updated accordingly. For simplicity, assignments are restricted to update
only global variables.Skip = � → Stop where � is the termination event. Sequential
composition, P1; P2, behaves as P1 until its termination and then behaves as P2. An
external choice is solved only by the engagement of an visible event. A choice depend-
ing on the truth value of a Boolean expression is written as P1 � b � P2. If b is true,
the process behaves as P1, otherwise P2. State guard [b] • P is blocked until b is true
and then proceeds as P. P1 & P2 behaves as P1 until the first visible event of P2 is en-
gaged, then P1 is interrupted and P2 takes control. Process P \X hides all occurrences
of events in X . One of the key features of CSP is the alphabetized multi-threaded paral-
lel composition. Let αP be the alphabet of P which excludes τ and �. In PAT, alphabets
can be manually set or derived from the events constituting the process expression. Par-
allel composition of processes is written as P1 ‖ P2 ‖ · · · ‖ Pn , where shared events
must be synchronized by all processes whose alphabet contains the event. The indexed
interleaving is written as P1 ||| P2 ||| · · · ||| Pn , in which all processes run inde-
pendently except communication through shared variables and message channel (and
synchronization upon termination, i.e., rule ter). Recursion is allowed by process refer-
encing. The semantics of recursion is defined as Tarski’s weakest fixed-point. Processes
may be parameterized (see examples later).

For simplicity, we focus on the operational semantics in this work, i.e., the semantics
of a model is associated with a labeled transition system. Due to the global variables
and channels, configuration of a given system is composed of three parts (P ,V ,C)
where P is the current process expression, V is the current valuation of the global
variables which is a set of mappings from a name to a value, and C is the current status
of the channels which is a set of mappings from a channel name to a sequence of items
in the channel. A transition is of the form (P ,V ,C) e→ (P ′,V ′,C ′), which means
(P ,V ,C) evolves to (P ′,V ′,C ′) by performing event e.

Example 1. The following models the classic dining philosophers [7],

Phil(i) = get .i .(i + 1)%N → get .i .i → eat .i →
→ put .i .(i + 1)%N → put .i .i → think .i → Phil(i)

Fork(i) = get .i .i → put .i .i → Fork(i) �

get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i)
Pair(i) = (Phil(i) ‖ Fork(i)) \ {get .i .i , put .i .i , think .i}
College = (‖N−1

i=0
Pair(i)) \⋃N−1

i=0 {get .i .(i + 1)%N , put .i .(i + 1)%N }

where N is a global constant (i.e., the number of philosophers), get .i .j (put .i .j) is the
action of the i-th philosopher picking up (putting down) the j -th fork and fc is a global

2 Refer to [13] for cases in which this is not true in the world of FDR.

310 J. Sun, Y. Liu, and J.S. Dong

variable recording the amount of food that has been consumed. The system is composed
of N philosopher-fork-pairs running in parallel. The following is the transition system
of College with N = 2. All events except the bolded ones are invisible. �

eat.0 eat.1
get.0.1

get.0.0
get.1.0

get.1.1
get.1.0 get.0.1

0

123
put.0.1

put.0.0 think.0
put.1.0

put.1.1think.1
4 5

6 7 8

910

11

3 FDR and Refinement Checking

Failures-Divergence Refinement (FDR [12]) is a well-established model checker for
CSP. Different from temporal logic based model checking, using FDR, safety, liveness
and combination properties can be verified by showing a refinement relation from the
CSP model of the system to a CSP process capturing the properties. In addition, FDR
verifies whether a process is deadlock-free or not. In the following, we review the notion
of different refinement/equivalence relationship in terms of labeled transition systems.

Definition 2 (Labeled Transition System). An LTS is 3-tuple L = (S , init ,T) where
S is a set of states, init ∈ S is the initial state and T : S × Στ × S is a labeled
transition relation. Let s , s ′ be members of S .

– s
e1,e2,···,en→ s ′ if and only if there exists s0, · · · , sn ∈ S such that for all 0 ≤ i ≤ n

such that si
ei→ si+1 and s0 = s ∧ sn = s ′.

– Let tr : Σ∗ be a sequence of visible events. s tr⇒ s ′ if and only if there exists
e1, e2, · · · , en such that s

e1,e2,···,en→ s ′ and tr = 〈e1, e2, · · · , en〉 � {τ} is the trace
with invisible actions filtered.

– s →∗ s ′ if and only if there exists e1, · · · , en such that s
e1,e2,···,en→ s ′. In particular,

s →∗ s .
– enabled(s) = {e : Στ | ∃ s ′ • s e→ s ′}. A state is stable if and only if τ
∈

enabled(S).
– mrefusal(S) = Σ \ enabled(S) is the maximum refusal set, i.e., the maximum set

of events which can be refused.
– s τ∗→ s ′ if and only if s

τ,···,τ→ s ′. τ∗(s) = {s ′ : S | s τ∗→ s ′} is the set of stable states
reachable from s by performing zero or more τ transitions.

– A state is a divergence state div(s) if and only if τ ∈ enabled(s) ∧ s ∈ τ∗(s).

The set of traces of L is traces(L) = {tr : Σ∗ | ∃ s ′ : S • init tr⇒ s ′}. The set of diver-
gence traces of L, written as divergence(L), is {tr : Σ∗ | ∃ tr ′ • tr ′ is a prefix of tr ∧
∃ s : S • init tr ′

→ s ∧ div(s)}. Note that if some prefix of a given trace is a di-
vergence trace, the given trace is too. The set of failures of L, written as failures(L), is

{(tr ,X) : Σ∗×2Σ | ∃ s : S • init tr→ s ∧ X ⊆ Σ\enabled(s)}∪{(tr , Σ) : Σ∗×2Σ |
tr ∈ divergence(L)}. Note that the system state reached by a divergence state may
refuse all events. Given a model composed of a process P and a valuation V and a set of

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 311

channels C , we may construct an LTS (S , init ,T) where S = {s | (P ,V ,C) →∗ s},
init = (P ,V ,C) and T = {(s1, e, s2) : S × Στ × S | s1

e→ s2} using the
operational semantics. However, S can be infinite due to several reasons. The first
one is that the variables may have infinite domains or the channels may have infi-
nite buffer size. We require (syntactically) that the sizes of the domains and buffers
are bounded. The second is that P may allow unbounded recursion or replication, e.g.,
P = (a → P ; c → Skip) � b → Skip or P = a → P ||| P . In this paper, we
focus on LTSs with finite number of states for practical reasons. The following defines
refinement and equivalence.

Definition 3 (Refinement and Equivalence). Let Lim = (Sim , initim ,Tim) be an
LTS representing an implementation. Let Lsp = (Ssp , initsp ,Tsp) be an LTS represent-
ing a specification. Lim refines Lsp in the trace semantics, written as Lim �T Lsp ,
if and only if traces(Lim) ⊆ traces(Lsp). Lim refines Lsp in the stable failures se-
mantics, written as Lim �F Lsp , if and only if failures(Lim) ⊆ failures(Lsp). Lim

refines Lsp in the failures/divergence semantics, written as Lim �D Lsp , if and only if
failures(Lim) ⊆ failures(Lsp) and divergence(Lim) ⊆ divergence(Lsp). Lim equals
Lsp in the trace (stable failures/failures divergence) semantics if and only if they refine
each other in the respective semantics.

Different refinement relationship can be used to establish different properties. Safety
can be verified by showing a trace refinement relationship. Combination of safety and
liveness is verified by showing a stable failures refinement relationship if the system is
divergence-free or otherwise by showing a failures/divergences refinement relationship.
The readers shall refer to [14] for a discussion on the expressiveness of CSP refinement.
In the following, we write Im � Sp to mean LIm � LSp whenever it will not cause
confusion. Internally, equivalence relationships may be used to simplify process expres-
sions, e.g., P � P is replaced by P for simplicity.

Example 2. Assume that the following process is used to capture the property for the
dining philosophers: Prop =̂‖N−1

i=0 Eat(i) where Eat(i) = eat .i → Eat(i). It can
be shown that College trace-refines Prop (given a particular N). Informally speaking,
that means it is possible for each philosopher to eat, i.e., {eat .0, · · · , eat .(N − 1)}∗
are traces of College. In order to show that it is always possible for him/her to eat,
we need to establish College �F Prop, which is not true, i.e., assume N = 2,
(〈get .0.1, get .1.0〉, {eat .0, eat .1}) is in failures(College) but not failures(Prop). �

In order to check refinement, every state of the implementation reachable from the ini-
tial state via some trace must be compared with every state of the specification reachable
via the same trace. There may be many such states in the specification due to nonde-
terminism. In FDR, the specification is firstly normalized so that there is exactly one
state corresponding to each possible trace. A state in the normalized LTS is a set of
states which can be reached by the same trace from the initial state. For instance, The
following shows the normalized LTS of the one presented in Example 1.

0,1,2,3,6,7,110,1,2,3,4,5,6,7,11 0,1,2,6,7,8,9,10,11
eat.0eat.1

eat.1

eat.1

eat.0

eat.0

312 J. Sun, Y. Liu, and J.S. Dong

Definition 4 (Normalized LTS). Let (S , init ,T) be an LTS. The normalized LTS is
(NS ,Ninit ,NT) where NS are subsets of S , Ninit = τ∗(init) and NT ={(P , e,Q) |
Q = {v : S | ∃ v1 : P • v1

e→ v2 ∧ v ∈ τ∗(v2)}}. Given a normalized state s ∈ NS ,

– enabled(s) is
⋃

x∈s enabled(x),
– mrefusal(s) is {mrefusal(x) | x ∈ s}, which is a set of maximum refusal sets,
– div(s) is true if and only if there exists x ∈ s such that div(x) is true.

Given an LTS constructed from a process, the normalized LTS corresponds the nor-
malized process. A state in the normalized LTS groups a set of states in the origi-
nal LTS which are all connected by τ -transitions. Given a trace, exactly one state in
the normalized LTS is reached. FDR then traverses through every reachable states of
the implementation and compare them with the corresponding normalized states in the
specification (refer to the algorithm presented in [12]).

4 Verification

This section is devoted to algorithms for refinement checking. We start with reviewing
a slightly modified on-the-fly checking algorithm based on the one implemented in
FDR and then improve it with partial order reduction. Lastly, we review an alternative
approach for verification that has been implemented in PAT, i.e., LTL-based verification.

4.1 On-the-Fly Refinement Checking Algorithm

Let Spec be the specification and Impl be the implementation. In FDR, Spec is firstly
normalized. Refinement checking is then reduced to reachability analysis of the product
of the Impl and the normalized Spec. It has been shown that such an approach works
well for certain models [15]. Nonetheless, because normalization in general is com-
putational expensive, it may not be always desirable. Thus, we adopted an alternative
approach. Figure 1 presents the on-the-fly refinement checking algorithm which is mod-
ified and implemented in PAT. The algorithm similarly performs a reachability analysis
in the product of the implementation and the normalized specification. The different is
that normalization is brought on-the-fly as well.

Details of the following procedures are skipped for brevity. Procedure tau(S) ex-
plores all outgoing transition of S and returns the set of states reachable from S via a τ -
transition. We remark that this procedure will be refined later. Procedure tauclosure(S)
implements τ∗(S) using a depth-first-search procedure. The set of states reachable
from S via only τ transitions is returned. For instance, given the LTS in Example 1,
tauclosure(0) returns {0, 1, 2, 6, 7, 11}. The procedure tau(S) is applied repeatedly
until all τ -reachable states are identified. Procedure existSuperSet(x ,Y) where x is a
set and Y is a set of sets returns true if and only if there exists y in Y such that x ⊆ y .

Depending on the type of refinement relationship, the algorithm performs a depth-
first search for a pair (Im,NSp) where Im is a state of the implementation and NSp is a
state of the normalized specification such that, the enabled events of Im is not a subset
of those of NSp (C1), or Im is stable and there does not exist a state in NSp which
refuse all events which are refused by Im (C2), or Im diverges but not NSp (C3). The

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 313

procedure refines(Impl ,Spec)
0. checked := ∅
1. pending .push((Impl , tauclosure(Spec)));
2. while pending
= ∅
3. (Im,NSp) := pending .pop();
4. checked := checked ∪ {(Im,NSp)};
5. if ¬(enabled(Im) \ {τ} ⊆ enabled(NSp)) – C1
6. ∨ (τ
∈ Im ∧ ¬ existSuperSet(mrefusal(Im), mrefusal(NSp))) – C2
7. ∨ (¬ div(NSp) ∧ div(Im)) – C3
8. return false;
9. else
10. foreach (Im ′, NSp′) ∈ next(Im,NSp)

11. if (Im ′,NSp′)
∈ checked
12. pending := pending ∪ {(Im ′,NSp′)}
13. endif
14. endfor
15. endif
16. endwhile
17. return true;

Fig. 1. Algorithm: refines(Impl , Spec)

algorithm returns true if no such pair is found. Note that if C1 is satisfied, a coun-
terexample is found for any refinement checking; if C2 is satisfied, a counterexample is
found for stable failures refinement checking or fairlure/divergence refinement check-
ing; if C3 is satisfied, a counterexample is found for fairlure/divergence refinement
checking only. The procedure for producing a counterexample is skipped for simplicity.
Producing the shortest counterexample requires a breath-first-search after identifying
the faulty state. Line 10 to 14 of algorithm refines explores new states of the product
and pushes them into the stack pending . The procedure next is presented in Figure 2.
Given a pair (Im,NSp), it returns a set of pairs of the form (Im ′,NSp′) for each en-
abled event in Im. If the event is visible, NSp′ is a successor of NSp via the event
and Im ′ is the successor of Im via the same event. Otherwise, Im ′ is a successor of
Im via a τ -transition and NSp′ is Sp. Because normalization is brought on-the-fly, it
is sometimes possible to find a counterexample before the specification is completely
normalized. The soundness of the algorithm follows the soundness discussion in [12].

4.2 Partial Order Reduction

As any model checking algorithm, refinement checking suffers from state space explo-
sion. A number of attempts have been applied to reduce the search space [15]. This
section describes the one implemented in PAT based on partial order reduction. Our
reduction realizes and extends the early works on partial order reduction for process
algebras and refinement checking presented in [18] and [19]. The inspiration of the re-
duction is that events may be independent, e.g., think .i is mutually independent of each
other. Given P = P1 ‖ · · · ‖ Pn and two enabled events e1 and e2, e1 is dependent of
e2, written as dep(e1, e2), and vice versa only if one of the following is true,

314 J. Sun, Y. Liu, and J.S. Dong

procedure next(Im,NSp)
0. toReturn := ∅
1. foreach e ∈ enabled(Im)
2. if e = τ
3. foreach Im ′ ∈ tau(Im)
4. toReturn := toReturn ∪ {(Im ′,NSp)};
5. endfor
6. else
7. NSp′ := {s | ∃ x : NSp • x e→ x ′ ∧ s ∈ tauclosure(x ′)};
8. foreach Im ′ such that Im e→ Im ′

9. toReturn := toReturn ∪ {(Im ′,NSp′)};
10. endfor
11. endif
12. endfor
13. return toReturn;

Fig. 2. Algorithm: next(Im, NSp)

– e1 and e2 are from the same process Pi .
– e1 = e2 so that they may be synchronized, e.g., get .i .i of process Phil(i) and

get .i .i of process Fork(i).
– e1 updates a variable which e2 depends on or vice versa, e.g., because eat .i updates

a global variable, all eat .i are inter-dependent.

Two events are independent if they are not dependent. Because the ordering of inde-
pendent events may be irrelevant to a given property, we may deliberately ignore some
of the ordering so as to reduce the search space. Partial order reduction may be ap-
plied to a number of places in algorithm refines , namely, the procedure tau(S) (and
therefore tauclosure) and next . Since indexed parallel composition (and indexed inter-
leaving) is the main source of state space explosion, we assume that Im is of the form
((P1 ‖ P2 ‖ · · · ‖ Pn) \X ,V ,C) in the following and show how it is possible to only
explore a subset of the enabled transitions and yet preserve the soundness.

We start with applying partial order reduction to the procedure tau . Note that tau
is applied to the specification or implementation independently. Thus, as long as we
guarantee that the reduced state space (of either Impl or Spec) is failures/divergence
equivalent to the full state space, we prove that there is a refinement relationship in
the reduced state space if and only if there is one in the full state space. Figure 3
show our algorithm for selecting a subset of the τ -transitions. The soundness proof
is presented in Appendix B. In the algorithm tau ′, we try to identify one set of τ -
transitions which are independent of the rest. If such a subset is found (i.e., the al-
gorithm stubborn tau returns a non-empty set of successors), only the subset is ex-
plored further. Otherwise (i.e., stubborn tau returns an empty set), all possible τ -
transitions are explored. In stubborn tau , the idea is to identify one process Pi such
that all τ -transitions from Pi are independent of those from other processes. Note that
this approach is most effective with τ -transition generated from one process only. It is
possible to handle τ -transition generated from multiple processes with a slightly more
complicated procedure (which we skip for brevity). The details of the following simple

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 315

procedure tau ′(Im)
0. nextmoves := stubborn tau(Im);
1. if (nextmoves
= ∅) then return nextmoves; else return tau(Im);

procedure stubborn tau(Im)
0. foreach Pi

1. por := enabledPi (Im) ⊆ {τ} ∪X ∧ enabledPi (Im) = current(Pi)
2. foreach e ∈ enabledPi (Im)
3. por := por ∧ ¬ loop(e) ∧ ∀ e ′ : Σj • j
= i ⇒ ¬ dep(e, e ′)
4. endfor
5. if por then
6 return {(((· · · ‖ P ′

i ‖ · · ·) \ X),V ,C ′) | (Pi , V ,C)
e→ (P ′

i ,V ,C ′)};
7. endif
8. endfor
9. return ∅;

Fig. 3. Algorithm: tau ′(Im) and stubborn tau(Im)

procedures have been skipped. Given Im = (P ,V ,C), enabledPi (Im) is the set of
enabled event from component Pi , i.e., enabled(Im) ∩ enabled((Pi ,V ,C)). For in-
stance, given College with N = 2, enabled(Pair(0)) is {get .0.1}. current(Pi) is the
set of events that could be enabled in process Pi given the most cooperative environ-
ment. For instance, current(Phil(i)) = {get .i .(i + 1)%N } despite whether the fork
is available or not. loop(e) is true if and only if performing this event results in a state
on the search stack, i.e., forming a cycle.

A process Pi is considered a candidate only if all enabled events from Pi result
in τ -transitions (i.e., enabledPi (Im) ⊆ {τ} ∪ X) and no other transition could be
possibly enabled given a different environment (i.e., enabledPi (Im) = current(Pi)).
The former is required because we are only interested in τ -transitions. The latter (partly)
ensures that no disabled event from Pi is enabled before executing an event from Pi .
Furthermore, all enabled events from Pi must not form a cycle (so that an enabled event
is not skipped for ever) or dependent on an enabled event from some other component.
For detailed discussion on the intuition behind these conditions, refer to [4].

Example 3. Assume that N = 2 and the following is the current process expression,

((think .0 → Phil(0) ‖ put .1.0 → Fork(0)) \ {get .0.0, put .0.0, think .0}) ‖
(((get1.1 → eat .1 → put .1.0 → put .1.1 → think .1 → Phil(1)) ‖ Fork(1))

\{get .1.1, put .1.1, think .1})\ {get .0.1, get .1.0, put .0.1, put .1.0}

where the first philosopher has just put down both forks while the second one has just
picked up his first fork. Two τ -transitions are enabled, i.e., one due to think .0 and the
other due to get .1.1. The algorithm tau ′ would return only the successor state after
performing get .1.1 (assuming it is not on the stack). This is the only event enabled for
the second component of the outer parallel composition is the τ transition due to get .1.1
(and thus the condition at line 1 of stubborn tau is satisfied). Because get .1.1 is local
to the component, por is true after the loop from line 2 to line 4. �

316 J. Sun, Y. Liu, and J.S. Dong

procedure next ′(Im,Sp)
0. if τ ∈ enabled(Im)
1. nextmoves := stubborn tau(Im);
2. if (nextmoves
= ∅) then return nextmoves;
3. else
4. foreach e ∈ enabled(Im)
5. por := stubborn visible(Im, e);
6. foreach S ∈ Sp
7. por := por ∧ stubborn visible(S , e);
8. endeach
9. if por then return {(Im ′, tauclosure(Sp′)) | Im e→ Im ′ ∧ Sp e→ Sp′}
10. endeach
11. return next(Im,Sp);

procedure stubborn visible(Im, e)
0. por := ¬ loop(e) ∧ ∀ e ′ : Σj • e ′
= e ⇒ ¬ dep(e, e ′);
1. foreach Pi ∈ processes(e)
2. por := por ∧ enabledPi (Im) = current(Pi) = {e};
3. return por ;

Fig. 4. Algorithm: next ′(Im,Sp) and stubborn visible(Im, e)

The above algorithms apply partial order reduction to τ -transitions only. tauclosure
is refined as well since it is based on tau ′. Unlike FDR, PAT is capable of applying
partial order reduction to visible events. Because both Impl and Spec must make cor-
responding transitions for a visible event, reduction for visible events is complicated.
A conservative approach has been implemented in PAT. Figure 4 present the algorithm,
i.e., the refined next . If Im is not stable, we apply the algorithm stubborn tau to iden-
tify a subset of τ -transitions (line 1). If no such subset exists, the pair (Im,Sp) is fully
expanded (line 11). An algorithm stubborn visible similar to stubborn tau is used
to check if a given visible event e is a candidate for partial order reduction. Function
processes(e) returns all process components (of the parallel composition) whose al-
phabet contains e. Firstly, we choose a possible candidate from Im using the algorithm
stubborn visible. Event e is chosen if and only if, for each process in processes(e), e
is the only event from the process which can be enabled and all other enabled events
are independent of e and performing e does not result in a state on the stack. Next, we
check if e satisfies the same set of conditions for each state in the normalized state of
the specification. If it does, e is used to expand the search tree at line 9 (and all other
enabled events are ignored). In order to find such e efficiently, the candidate events are
selected in a pre-defined order, i.e., events which have the least number of associated
processes are chosen first. The soundness of the algorithm is presented in Appendix B.

Example 4. Let P(i) = a.i → b.i → P(i). Assume the specification and implemen-
tation is defined as: Spec =‖2i=0 P(i) and Impl =‖1i=0 P(i). Assume we need to show
that Impl trace-refines Spec. Initially, two events are enabled in Impl , i.e., a.0 and a.1.
Assume that a.0 is selected first, because loop(a.0) is false and a.0 is independent of
all other enabled events (i.e., a.1), the condition at line 0 of algorithm stubborn visible

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 317

is satisfied. Because a.0 is the only event that would possibly be enabled from P(0),
the condition at line 2 is satisfied too. Thus, a.0 is a possible candidate for partial order
reduction for Impl . Similarly, it is also a candidate for Spec (which is the only state in
the normalized initial state). Therefore, we only need to explore a.0 initially. �

4.3 Refinement Checking Experiments

We compare PAT with FDR using benchmark models for refinement checking. For the
sake of a fair comparison, all models use only standard CSP features which are sup-
ported by both. The following table shows the experiment results for three models,
obtained on a 2.0 GHz Intel Core Duo CPU and 1 GB memory.

model N property result PAT FDR
Dining Philosophers 5 P [T= S true 0.28125 0.067
Dining Philosophers 6 P [T= S true 0.8593 0.069
Dining Philosophers 8 P [T= S true 13.78 0.076
Dining Philosophers 10 P [T= S true 430.28 0.107
Dining Philosophers 12 P [T= S true - 0.319

Reader/Writers 12 P [T= S true < 1 0.812
Reader/Writers 14 P [T= S true < 1 6.906
Reader/Writers 16 P [T= S true < 1 81.247
Reader/Writers 18 P [T= S true < 1 -
Reader/Writers 50 P [T= S true 1.097 -
Reader/Writers 100 P [T= S true 9 -
Reader/Writers 200 P [T= S true 77.515 -

Milner’s Cyclic Scheduler 11 P [T= S true < 1 19.011
Milner’s Cyclic Scheduler 13 P [T= S true < 1 419.021
Milner’s Cyclic Scheduler 14 P [T= S true < 1 -
Milner’s Cyclic Scheduler 50 P [T= S true 2.406 -
Milner’s Cyclic Scheduler 100 P [T= S true 9.765 -
Milner’s Cyclic Scheduler 200 P [T= S true 60.453 -

The first example is the classic dining philosopher problem, where N is the number of
philosophers and forks. Because of the modeling, partial order reduction is not effective
for this example. As a result, PAT handles about 107 states (about 11 philosophers and
forks) in a reasonable amount of time. FDR performs extremely well for this exam-
ple because of the strategy discussed in [15]. Namely, it builds up a system gradually,
at each stage compressing the subsystems to find an equivalent process with (for this
particular example) many less states. Notice that with manual hiding (to localize some
events), PAT performs much better. The second example is the classic readers/writers
problem, in which the readers and writers coordinate to ensure correct read/write or-
dering. N is the number of readers/writers. Reduction in PAT is very effective for this
example. As a result, PAT handles a few hundreds readers/writers efficiently, whereas
FDR suffers from state space explosion quickly (for N = 18). The third example is

318 J. Sun, Y. Liu, and J.S. Dong

the Milner’s cyclic scheduling algorithm, in which multiple processes are scheduled
in a cyclic fashion. Partial order reduction is extremely effective for this model. As a
result, PAT handles hundreds of processes, whereas FDR handles less than 14 processes.
The experiment results show our best effort by far on automated model checking of an
extended version of CSP. It by no means suggests the limit of our tool. We believe
that by incorporating more reduction techniques (e.g., symmetry reduction) as well as
fine-tuning the implementation, the performance of PAT can be improved significantly.

4.4 Temporal Logic Based Verification

Verification of CSP models has been traditionally based on refinement checking. CSP
refinement is expressive enough to cover a large class of properties [14]. Nonetheless,
temporal logic formulae have been proved effective as well as intuitive. Verification
based on temporal logic has gathered much, evidenced by the rich set of theories and
tools developed for CTL/LTL based verification [3,8]. In this section, we briefly discuss
the LTL model checker embedded in PAT. We adopt an automata-based approach for ex-
plicit LTL model checking as Spin [8]. Because we are dealing with an event-based for-
malism, we extend standard Linear Temporal Logic (LTL) with events so that properties
concerning both states and events can be stated and verified. For instance, the following
specifies a desirable property of process College: ��eat0 ∧ ��eat1 · · ·��eatN−1

where � reads as “always” and � reads as “eventually”. The property states that every
philosopher will always eventually eat, i.e., no one starves.

Definition 5. Let Pr be a set of propositions. An extended LTL formula is3,

φ ::= p | a | ¬φ | φ ∧ ψ | �φ | �φ | φUψ

where p ranges over Pr and a ranges over Σ. Let π = 〈P0, x0,P1, x1, · · ·〉 be an
infinite sequence of events. Let πi be the suffix of π starting from Pi .

πi � p ⇔ Pi � p
πi � a ⇔ xi−1 = a
πi � ¬φ ⇔ ¬(πi � φ)
πi � φ ∧ ψ ⇔ πi � φ ∧ πi � ψ
πi � �φ ⇔ ∀ j ≥ i • πj � φ
πi � �φ ⇔ ∃ j ≥ i • πj � φ
πi � φUψ ⇔ ∃ j ≥ i • πj � ψ ∧ ∀ k | i ≤ k ≤ j − 1 • πj � φ

The simplicity of writing formulae concerning events as in the above example is not
purely a matter of aesthetics. It may yield gains in time and space (refer to examples
in [2]). Given an extended LTL formula, PAT internally constructs a trace equivalent
Büchi automaton using the state-of-the-art conversion proposed in [6]. For efficient
reasons, the Büchi automata are transition-labeled (instead of state-labeled). Let B¬φ

be the Büchi automaton constructed from property ¬φ. The product of B¬φ and the
model is generated. Two different algorithms (e.g., nested depth first search and strongly

3 The next operator is not supported purposely because of partial order reduction.

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 319

connected component search based on Tarjan’s algorithm) are then used to determine
the emptiness of the product, i.e., explore on-the-fly whether the product contains a loop
which is composed of at least one accepting state. Finite traces are extended to infinite
ones in a standard way. In the presence of a counterexample, on-the-fly model checking
usually produces a trace leading to a bad state or a loop quickly (refer to Section 4.3).
Partial order reduction (similar to the one implemented in Spin) is applied for LTL
verification. One unique feature of LTL verification in PAT is that we allow fairness
assumptions to be associated with individual events and then verify the system under
the fairness assumptions. For details, refer to [9].

5 Conclusion and Future Works

We present PAT, a process analysis toolkit, designed to apply model checking tech-
niques to verify event-based compositional models. A number of verification algorithms
have been implemented. This paper is related to works on developing tool support for
CSP and process algebras, works on heuristics for partial order reduction and works
on model checking in general. ARC (Adelaide Refinement Checker [11]) is a refine-
ment checker based on ordered binary decision diagrams (BDD). It has been shown
that ARC outperforms FDR in a few cases [11]. PAT adapts an explicit approach for
model checking. It has long been known there are pros and cons choosing an explicit
approach or a BDD approach (refer to comparisons between SPIN and SMV). Nonethe-
less, in the future, we may incorporate partial order reduction and BDD to achieve better
performance. ProBE [1] is a simulator developed by Formal Method Europe to inter-
actively explore traces of a given process. The simulator embedded in PAT has the full
functionality of Probe. Though we have shown cases where PAT outperforms FDR,
we believe that a full comparison is yet to be carried out with more experiments. A
number of algorithms have been previously proposed for partial order reduction which
is trace/failures/divergence preserving, e.g., [18,19]. The algorithms presented in the
paper may be considered as lightweight realization and extension of those presented
in [18,19]. In addition, this work is related to the huge amount of works dedicated to
theories and tools development for model checking.

We are actively developing PAT. There are a number of directions to pursue in the fu-
ture. Firstly, based our framework, more languages features will be incorporated, e.g.,
higher-order processes, broadcasting communication, integrated data operations as in
integrated languages [10,5,17], etc. Secondly, more advanced reduction techniques will
be incorporated. Lastly, a broad range of experiments and case studies must be per-
formed to not only fully compare PAT with FDR but also to make PAT as a reliable and
extensible framework for developing model checking techniques.

Acknowledgement

This work is partially supported by the research project “Sensor Networks Specification
and Validation” (R-252-000-320-112) funded by Ministry of Education, Singapore.

320 J. Sun, Y. Liu, and J.S. Dong

References

1. Formal Systems (Europe) Ltd. Process Behaviour Explorer (2003),
http://www.fsel.com/probe download.html

2. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based Software
Model Checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

3. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)
5. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed Patterns: TCOZ to Timed Automata.

In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 483–498.
Springer, Heidelberg (2004)

6. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

7. Hoare, C.A.R.: Communicating Sequential Processes. International Series in Computer Sci-
ence. Prentice-Hall, Englewood Cliffs (1985), www.usingcsp.com/cspbook.pdf

8. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. on Soft. Eng. 23(5), 279–295 (1997)
9. Sun, J.S.D.J., Liu, Y., Wang, H.H.: Specifying and Verifying Event-based Fairness Enhanced

Systems. In: Proceedings of the 10th International Conference on Formal Engineering Meth-
ods (ICFEM 2008) (accepted, 2008)

10. Mahony, B., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions on Software
Engineering 26(2) (February 2000)

11. Parashkevov, A., Yantchev, J.: ARC - a Tool for Efficient Refinement and Equivalence Check-
ing for CSP. In: Proceedings of the IEEE International Conference on Algorithms and Archi-
tectures for Parallel Processing (ICA3PP 1996), pp. 68–75 (1996)

12. Roscoe, A.W.: Model-checking CSP, pp. 353–378 (1994)
13. Roscoe, A.W.: Compiling Shared Variable Programs into CSP. In: Proceedings of

PROGRESS workshop 2001 (2001)
14. Roscoe, A.W.: On the expressive power of CSP refinement. Formal Aspects of Comput-

ing 17(2), 93–112 (2005)
15. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M., Scattergood,

J.B.: Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G.,
Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg
(1995)

16. Roscoe, A.W., Wu, Z.Z.: Verifying Statemate Statecharts Using CSP and FDR. In: Liu, Z.,
He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 324–341. Springer, Heidelberg (2006)

17. Sun, J., Dong, J.S.: Design Synthesis from Interaction and State-Based Specifications. IEEE
Transactions on Software Engineering 32(6), 349–364 (2006)

18. Valmari, A.: Stubborn Set Methods for Process Algebras. In: Proceedings of the Workshop
on Parital Order Methods in Verification (PMIV 1996). DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 29, pp. 213–231 (1996)

19. Wehrheim, H.: Partial order reductions for failures refinement. Electronic Notes in Theoreti-
cal Computer Science 27 (1999)

http://www.fsel.com/probe_download.html
www.usingcsp.com/cspbook.pdf

Model Checking CSP Revisited: Introducing a Process Analysis Toolkit 321

Appendix A: Operational Semantics

The following Structural Operational Semantics (SOS) rules. We remark that �, �, ‖
and ||| are symmetric and associative. eval(V , exp) evaluates the value of the exp given
valuation V . Notice that for any P , � ∈ ΣP .

(Skip,V ,C)
�→ (Stop,V ,C)

(P ,V ,C)
e→ (P ′,V ′,C ′), e
= �

[int1]
(P ||| Q ,V ,C)

e→ (P ′ ||| Q ,V ′,C ′)

[ass]
(e{x = exp} → P ,V ,C)

e→ (P ,V [x/eval(V , exp)],C)

¬ full(C [c])
[output]

(c!exp → Q ,V ,C)
c!eval(V ,exp)→ (Q ,V ,C [c/C [c] 	 〈c!eval(V , exp)〉])

¬ empty(C [c])
[input]

(c?x → Q ,V ,C)
c?C [c].head→ (Q ,V ,C [c/C [c].tail])

(P ,V ,C)
e→ (P ′,V ′,C ′)

(P ; Q ,V ,C)
e→ (P ′; Q ,V ′,C ′)

(P ,V ,C)
�→ (P ′,V ′,C ′)

[seq2]
(P ; Q ,V ,C)

τ→ (Q ′,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ′,C ′), e
= τ

[ex1]
(P � Q ,V ,C)

e→ (P ′,V ′,C ′)

(P ,V ,C)
τ→ (P ′,V ′,C ′)

(P � Q ,V ,C)
τ→ (P ′ � Q ,V ′,C)

(P � Q ,V ,C)
τ→ (P ,V ,C)

(P ,V ,C)
e→ (P ′,V ′,C ′),V � b

[con1]
(P � b � Q ,V ,C)

e→ (P ′,V ′,C ′)

(Q ,V ,C)
e→ (Q ′,V ′,C ′),V
� b

(P � b � Q ,V ,C)
e→ (Q ′,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ′,C ′),V � b

[grd]
([b] • P ,V ,C)

e→ (P ′,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ′,C ′)

(P � Q ,V ,C)
e→ (P ′ � Q ,V ′,C ′)

(Q ,V ,C)
e→ (Q ′,V ′,C ′), e
= τ

[int2]
(P � Q ,V ,C)

e→ (Q ′,V ′,C ′)

(Q ,V ,C)
τ→ (Q ′,V ′,C ′)

(P � Q ,V ,C)
τ→ (P � Q ′,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ′,C ′), e
∈ X

(P \X ,V ,C)
e→ (P ′ \X ,V ′,C ′)

322 J. Sun, Y. Liu, and J.S. Dong

(P ,V ,C)
e→ (P ′,V ′,C ′), e ∈ X

(P \X ,V ,C)
τ→ (P ′ \X ,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ′,C ′) ∧ e
∈ ΣQ

(P ‖ Q ,V ,C)
e→ (P ′ ‖ Q ,V ′,C ′)

(P ,V ,C)
e→ (P ′,V ,C) ∧ (Q ,V ,C)

e→ (Q ′,V ,C)
[syn]

(P ‖ Q ,V ,C)
e→ (P ′ ‖ Q ′,V ,C)

Appendix B: Soundness of the Partial Order Reduction

We prove the soundness in two steps. Firstly, because the algorithm tau ′ applies to one
model only (whereas next ′ must coordinate both the implementation and the specifica-
tion), it is sufficient to show that the reduction regarding τ -transitions (i.e., the algorithm
stubborn tau) preserves failures/divergence equivalence. Secondly, we show that the
reduction regarding visible events (i.e., the algorithm next ′) is sound.

In [18], a set of sufficient conditions has been proved to preserve CSP failures diver-
gence equivalence. It is thus sufficient to prove that the reduction regarding τ -transitions
satisfies the sufficient conditions. In the following, let E be the reduced set of succes-
sors (i.e., the stubborn set as in [18]) and F be the full set. Notice that the result returned
by algorithm stubborn tau is returned by algorithm tau ′ or next ′ if and only if it is not
empty (line 1 of tau ′ and line 2 of next ′). Thus, as long as F is not empty, E is not
empty. By line 3 of algorithm stubborn tau , transitions other than those selected in E
are all independent of those in E . By line 1 of stubborn tau , because the set of pos-
sibly enabled events must be the same of the set enabled event from the component, a
transition from the component must remain disabled unless a transition from the com-
ponents has been taken. By theorem 3.2 of [18], Ä0, Ä1, Ä2, Ä3 hold. Because only
τ -transitions are reduced in tau ′, condition Ä4 is trivial. By the condition ¬ loop(e)
at line 3 of stubborn tau , no action will be ignored forever, and thus Ä5 holds. Ä6 is
trivial for the same reason as for Ä4. By theorem 4.2 and 5.3 in [18], the reduction re-
garding τ -transitions preserves trace/failures/divergence equivalence and thus is sound.

In order to prove that algorithm next ′ is sound, we need to prove (in addition to
the above) that the reduction regarding visible events are sound as well. We reuse the
results which have been proved in [19] and show that the sufficient conditions proposed
in [19] have been full-filled. Firstly, C1 and C3 in [19] are trivial true. Because of line
0 and 2 of stubborn visible, an action dependent (say e) on an action selected can only
be executed after some action selected has been executed. There are two cases in which
this might be violated. In both of these cases, some transition (say a) independent of e
are executed, eventually enabled a transition that is dependent on e. In the first case, if
a belongs to some other components. A necessary condition for this to happen is that a
is dependent on e. This is prevented by line 1. In the other case, a belongs to the same
component of e, which is not possible because we require that current(Pi) = {e}. The
same argument applies to line 6 to 8 which guarantees that no action dependent on e is
executed before e is executed (and there C1in [19] is proved). C2 in [19] is guaranteed
by the condition¬ loop(e). Therefore, we conclude the reduction is sound.

Formal Use of Design Patterns and Refactoring�

Long Quan1, Qiu Zongyan1, and Zhiming Liu2

1 LMAM & Dept. of Informatics, School of Math. Peking University, Beijing 100871, China
2 IIST, United Nations University, Macao, China

{longquan,qzy}@math.pku.edu.cn, lzm@iist.unu.edu

Abstract. Design patterns has been used very effectively in object-oriented de-
sign for a long time. Refactoring is also widely used for producing better main-
tainable and reusable designs and programs. In this paper, we investigate how
design patterns and refactoring rules are used in a formal method by formulating
and showing them as refinement laws in the calculus of refinement of component
and object-oriented systems, known as rCOS. We also combine refactoring and
design patterns to provide some big-step rules of pattern-directed refactoring.

Keywords: Object-Orientation, Design Pattern, Refactoring, rCOS, Refinement.

1 Introduction

Design pattern is widely accepted as a very useful OO technique to produce designs
which are maintainable and reusable, as well as to reduce time and cost of develop-
ment [9]. Refactoring is another important techniaue for improving existing designs or
programs [20,8,21]. These techniques are also related that design patterns can be used
to guide refactoring. In [8], Fowler collected 68 refactoring rules, where an example
shows how the State Pattern is used to guide transformations of a program step by step
using refactoring rules. Kerievsky discussed in [13] the pattern-directed refactoring,
which can be seen as big-step refactoring rules toward patterns. However, there has
been little investigation on how the techniques of design patterns and refactoring can be
used in a formal method until recently when a few attempts are published.

Roberts [18] defined refactoring rules as program transformations, but there is no
formal semantic-based proof to ensure that such transformations preserve the behavior
of programs. M. Cornélio et al. [6] formalized and proved some of Fowler’s refactoring
rules as refinement laws in ROOL [2]. However, ROOL takes a copy semantics defined
by weakest precondition transformers. Without references, some important and interest-
ing laws of OO programs do not hold in ROOL [19]. More recently in [7], refactoring
rules are defined and automated as model transformations for models at different ab-
straction levels including platform independent models, platform specific models and
implementation specific models. Also in [17], refactoring of UML class diagrams is
studied using the standard Object Constraint Language (OCL).

In this paper, we investigate how design patterns and refactoring rules can be both
formulated as program refinement laws in rCOS [12,3]. The advantage of using rCOS is

� Supported by NNSF of China (No. 60718002), and Projects on HighQSofD and HTTS funded
by Macao S&T Fund.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 323–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 L. Quan, Q. Zongyan, and Z. Liu

that it takes a reference semantic model with rich OO features, including subtypes, vis-
ibility, inheritance, dynamic binding and polymorphism. Also a UML profile is defined
for rCOS [22,5] in a component-based model driven development process.

Similar to the idea in [6], we formulate refactoring rules as rCOS refinement laws
of OO specification and programs. Take the advantage of the relational semantics of
rCOS, the formulation of the refactoring rules and their proofs are better comprehen-
sive compared with the approach of predicate transformers. We go one step further to
formulate the pattern-directed refactoring rules suggested in [13]. Sketches of proofs
are given in this paper, leaving the full details in a technical report [15].

We will briefly introduce rCOS in Section 2, and give the rCOS definition of the
refactoring rules in Section 3, and the pattern-directed refactoring rules in Section 4.
Ideas and sketches of proofs are given in Section 5. An example is used to illustrate
the formal use of refactoring and pattern directed refactoring is presented in Section 6.
Finally, we summarize the conclusions and discuss some future work.

2 Basics of rCOS

A program in rCOS is of the form cdecls • P, where P is the main program playing
the role as main method in Java programs. P takes the form (gbv, c), where gbv de-
notes global variable declarations and c is a command. cdecls is a sequence of class
declarations cdecl1; . . . ; cdeclk, where each cdeclj declares a class in the form :

[private] class N [extends M] {
private U1 u1 = a1, . . . , Um um = am;
protected V1 v1 = b1, . . . , Vn vn = bn;
public W1 w1 = c1, . . . , Wk wk = ck;
method m1(T 11 x1, T 12 y

1
, T 13 z1){c1}; · · · ; m�(T �1 x�, T �2 y

�
, T �3 z�){c�}

}

where we use x to denote a sequence of x. Here are some explanations:

– A class can be declared as private, but public by default. Only public classes and
primitive types can be used in global variable declarations.

– N is a class name, and M is its direct superclass.
– Initial values of attributes are given in declarations.
– A method can have value parameters (T i1 xi), result parameters (T i2 yi

), and value-
result parameters (T i3 zi). We often use m(paras){c} to denote method m, with
paras its parameter list and c its body command which will be defined below.

– Following the Java convention, we assume an attribute protected when it is not
tagged with an accessible modifier.

The issues of visibility are omitted here for the simplicity of the theory. We assume that
all methods in a public class are public and and accessible in the main method, and all
methods in a private classes are protected.

rCOS supports typical OO constructs, as will as some special “statements” for the
specification and refinement:

c ::= S | skip | chaos | var T x = e; c; end x | c; c | c � b � c |
c � c| b ∗ c | le.m(e, v, u) | le := e | C.new(le)[e]

Formal Use of Design Patterns and Refactoring 325

Here S is a specification statement in the form of a framed design f : p � R in UTP,
b a Boolean expression, e an expression, and le an assignable expression of the form
le ::= x | le.a,where x is a variable name and a an attribute name. We have sequential
composition c; c, conditional c� b� c, and iteration b ∗ c, whilevar T x = e; c; end x
is a command within a local declaration scope. The nondeterministic choice c � c, skip,
chaos and S are introduced only for the specification and refinement.

We use le.m(e, v, u) to denote a call to method m of the object denoted by le, with
value arguments e, result arguments v for return values, and value-result arguments u.
Command C.new(x)[e] creates a new object of class C with initial attribute values from
expressions e and assigns the object to variable x, which should be of the type C or its
supertype. The form of expressions e is standard.

rCOS adopts an observation-based relational semantics and extends UTP to deal
with the OO features. As in UTP, the semantics of a program is defined as a design
D = (α, P), where α is the alphabet of the program consisting of its input and out-
put variables, denoted as x and x′ respectively, and P is a specification in the form
pre(x) � post(x, x′) with semantics defined by predicate:

(ok ∧ pre(x))⇒ (ok ′ ∧ post(x, x′))

where pre(x) and post(x, x′) are predicates describing the effect of the program based
on the pre- and post-states of the alphabet, ok and ok ′ are auxiliary Boolean variables
denoting the successful startup and termination of the program, x, x′ denote values of
variables x in the initial and final states, respectively. This convention will be used
throughout the paper. The difference from UTP is that variables can also hold objects.

For defining semantics of a command, a framed design D is often used in which
specification P is of the form β : pre(x) � post(x, x′), meaning that D only changes
variables in the subset β of α.

For OO programs, the semantic definition of a command makes use of the static
structure information given by the class declarations for dynamic binding and visi-
bility control. These structure details are represented by a group of logical variables,
where variable cname of the set of declared class names, attr of a function returning
the attributes of each class, op of a function returning the method set of each class,
superclass of a function returning the direct superclass. In addition to the global vari-
ables gbv in the main program, we need a variable Σ representing the set of currently
existing objects during the execution. The commands in the program make changes to
these variables. For example, an object creation command changes Σ by adding in the
new created object; when an attribute of object o is modified, this change is reflected in
Σ accordingly. For the details of the model we refer the reader to paper [12].

rCOS has a powerful theory of refinement developed from the refinement of design
in UTP. We first recall definitions of design refinement and data refinement in UTP [11].

Definition 1 (Refinement). DesignD2 = (α, P2) is a refinement ofD1 = (α, P1), de-
noted by D1 � D2, if P2 entails P1, i.e. ∀x, x′, ok, ok′ · (P2 ⇒ P1), where x are the
variables contained in α. �

Definition 2 (Data refinement). Suppose ρ be a mapping from alphabet α2 to alpha-
bet α1. Design D2 = (α2, P2) is a data refinement of design D1 = (α1, P1) under ρ,
denoted byD1 �ρ D2, if (P1; ρ) � (ρ;P2). Here ρ is called a refinement mapping. �

326 L. Quan, Q. Zongyan, and Z. Liu

Note in the the definition, the refinement mapping ρ can be specified as a design.
In rCOS, we define the notions of OO system refinement and OO structure refinement

(also known as class refinement) [12,22].

Definition 3 (System refinement). For S1 = (cdecls1 • P1) and S2 = (cdecls2 • P2)
with the same global variables gbv in P1 and P2, we say that S2 is a refinement of S1,
denoted by S1 �sys S2, if the behavior of S2 is less nondeterministic than that of S1:

∀x, x′, ok, ok′ · (S2 ⇒ S1)

where x are the variables declared in gbv. �
S1 �sys S2 requires that S2 is less nondeterministic that S1 with regards to the states
of the global variables.

Definition 4 (Structure refinement). Let cdecls1 and cdecls2 be two class declaration
sections, cdecls1 is a refinement of cdecls2, denoted by cdecls2 �class cdecls1, if the
former can replace the later in any object system:

cdecls2 �class cdecls1 �= (cdecls2 • P �sys cdecls1 • P)

holds for all main programs P = (gbv, c). �
Intuitively, cdecls1 provides the same or refined services as cdecls2 can.

In [12], we studied the basic refinement laws that capture the nature of incremental
development in OO programming, including the laws for adding a class into the dec-
larations, introducing inheritance, functionality delegation, class decomposition, and
encapsulating data, etc. Our work in [22] uses a graph theory for further study of the
structure refinement where the soundness and completeness are established. We will
study a set of special refinement laws that formalize the refactoring rules here.

3 Refactoring Rules in rCOS

In Fowler’s book [8], refactoring rules are described via examples. Here we formulate
them as rCOS refinement rules in order for their correctness to be provable. Fowler
classifies refactoring rules into six categories. We show here the formalization for one
rule from each category as a representative, leaving the others in our report [15].

In general, a refactoring rule should be formalized as a refinement law of the form
cdecls0 • P0 � cdecls1 • P1, where the left hand side is the original program and the
right is the refactoring result. However, all rules presented here only involve structure
refinement, except for rule Parameterize Method which needs modifications of main
program. Thus, most of the rules take the form of cdecls0 � cdecls1, where cdecls0
and cdecls1 are the class declarations involved.

We will use N[M, pri, prot, pub, ops] to denote a class N with M as its direct super-
class, pri, prot, and pub its private, protected and public attributes, respectively, and ops
its methods. When no confusion, we will only give explicitly the parameters involved
in a rule. For example, N[ops] denotes a class with method set ops, and N[prot, ops] for
a class with protected attribute set prot and method set ops. In the rest of this section,
the six refactoring rules are also presented with UML diagrams for illustration.

Rule Extract Method allows us to replace a piece of code in a method body with a
call to a newly introduced method, which has the replaced code as its body.

Formal Use of Design Patterns and Refactoring 327

M

m 1(){body[m2()]}
m 2(){c }

M

m 1(){body[c]}

Fig. 1. Extract Method

M

m A(x){x:=e(a);}
m B(x){x:=e(b);}

M

m (r, x)
{x:=e(r);}

Fig. 2. Parameterize Method

Rule 1 (Extract Method). Assume that M has method set {m1(){body[c]}} ∪ ops. If
c is part of the body of m1 that does not modify any local variables of m1 outside the
scope1 of c. We have

cdecls; M[{m1(){body[c]}} ∪ ops]
� cdecls; M[{m1(){body[m2()]}, m2(){c}} ∪ ops] (1)

wherem2 is a new method name that is not used in cdecls or ops.

This rule is illustrated in Fig. 1 where the program command c in the body of method
m1 and it is extracted as a method m2(). Actually this is a special case of the general
Extract Method rule. In the general case, cmay refer to local variables that can be passed
as arguments to the extracted method, with adequate parameter passing mechanisms.

If several methods do similar work with different values in their bodies, the following
rule permits using only one method with an extra parameter for different values.

Rule 2 (Parameterize Method). Let ops be a set of methods, c a command, and m a
name not used in ops or cdecls. We have below rule where x is a result parameter ofm:

cdecls; M [ops ∪ {ma(x){x := e(a)}, mb(x){x := e(b)}}] • P (c)
� cdecls′; M [ops′ ∪ {m(r, x){x := e(r)}}] • P (c′)

where
cdecls′

�= cdecls[m(a, x)/ma(x), m(b, x)/mb(x)]
ops′

�= ops[m(a, x)/ma(x), m(b, x)/mb(x)]
c′

�= c[m(a, x)/ma(x),m(b, x)/mb(x)]

The idea of this rule is depicted in Fig. 2, where the two similar methods are replaced
by the parameterized one. As said before, this is a system refinement rule.

Rule Move Method says that if a method of a class M only refers to attributes of
another class N , we can move the method to class N .

Rule 3 (Move Method). Let N b an attribute of class M, ops ∪ {m(){c}} the method
set of M , where m is only used locally in M . And ops1 the method set of N such that
m() is not in ops1. If c only refers to an attribute b.x of N and a method b.n() of b for
theoretical neatness2. Define

ops′
�= ops[b.m()/m()]− {m()}

c′
�= c[x/b.x, n()/b.n()]

where F [a/b] stands for the substitution of all occurrences of b. We have

cdecls; M [N b, ops ∪ {m(){c}}]; N [ops1]
� cdecls; M [N b, ops′]; N [ops1 ∪ {m(){c′}}]

provided thatm() is not called from outside of M on the left hand side of the rule.

1 This means local variables declared outside c.
2 It can be the case that c refers to a number of attributes and a number of methods of N.

328 L. Quan, Q. Zongyan, and Z. Liu

M

N b
m 1(){b.m 2();}

N

m 2()

M

N b
m 1(){m 2();}

m 2()

N

Fig. 3. Move Method

M

T a
op()

M

N n
op()

N

T a

Fig. 4. Replace Data Value with Object

M

m 1()
{var x;m 2(x);
if(x) c ; end x}
m 2(x){x:=e;}

M

m 1()
{if(e) c ;}

Fig. 5. Decompose Conditional

M

N1

m ()

N2

m ()

M

m ()

N1 N2

Fig. 6. Pull Up Method

A special case of this rule is shown in Fig. 3, where a arrow fromM to N denotes that
M has anN attribute. The combination of the rules for extracting and moving methods
allows us to decompose a class for low coupling and high cohesion [14].

When we have a data item that needs additional data or behavior, the following rule
allows us to define a new class to turn the data item into an object.

Rule 4 (Replace Data Value with Object). Assume M is a class with attribute a of
some primary data type T and methods ops, we have a refinement law:

cdecls; M [T a, ops] � cdecls; N [T a]; M [N n, ops′]

HereN is a fresh class name not used in cdecls. If a is not public, we can define access-
ing methods geta() and seta(). Further, ops′ is the same as ops except the references
to a are replace by suitable “get” or “set” method calls when necessary.

This rule is shown in Fig. 4. One can see that the attribute T a is replaced by an object
in the refactorred program which encapsulates the data.

When there is a complicated conditional (if-then-else) statement, we can extract a
method from the condition, and use the result of the method in the conditional instead.

Rule 5 (Decompose Conditional). Assume e is a boolean expression, then

cdecls; M [ops ∪ {m1(){c1 � e � c2}}]
� cdecls; M [ops ∪ {m1(){var bool x;m2(x); c1 � x � c2; end x}, m2(; bool y){y := e}}]

where m2 is a name that does not occur in ops, x is a new variable that is not in the
body ofm1, and y is a result parameter of m2.

In the general cases, the conditional is only a part of the body of m1. This rule is
illustrated in Fig. 5, where condition e is replaced by a variable which might make the
program clearer.

When a method presents in each of several subclasses of a class, we can move it to
the superclass. The rule below shows a special case with only two subclasses involved.

Formal Use of Design Patterns and Refactoring 329

Rule 6 (Pull Up Method). Assume M is the super class of N1 and N2, methodm() are
declared with the same definition in both N1 and N2, and all attributes used inm() are
in M. Let ops be the operations declared inM which does not includem(). Then

cdecls; M [ops]; N1[M, {m()} ∪ ops1]; N2[M, {m()} ∪ ops2]
� cdecls; M [ops ∪ {m()}]; N1[M, ops1]; N2[M, ops2]

As shown in Fig. 6, the duplicated methodm() is pulled up to the superclass.

4 Pattern-Directed Refactoring Rules

Design Patterns [9] are widely accepted as good practice in OO development. We focus
on how to transform a program to make it conforming design patterns, i.e. the transfor-
mation from a naiver program to a design pattern styled program. The formal rules for
these transformations are more effective and relatively more complex. We would like to
keep the term design pattern directed refactoring rules for these transformations.

Different from basic refactoring rules, many design patterns directed rules are con-
textually sensitive, which require a change in the class declarations to be related to the
corresponding modification of the main program. Therefore, they need to be defined as
program refinement. We formalize each of these rules as a refinement law of the form:

Cds; cdecls • P [c0] � Cdsd; cdecls • P [c/co]

where

– Cds are some class declarations in the original naive program, Cdsd for the corre-
sponding classes in the result, while cdecls for the classes unchanged,

– P [c0] and P [c/c0] are the main programs before and after the refinement, contain-
ing c0 and c respectively, which will be called as protocols of the rule.

We call touple 〈Cds,Cdsd, c0, c〉 the frame of a rule, and give each rule by defining its
frame.

Some pattern-directed rules require tedious side-conditions. A fully formal definition
requires to specify these conditions so that the rules can be proved and the conditions
can be checked when the rules are applied or automated. For simplicity of the presenta-
tion, however, we assume that all the new methods and attributes on the right hand side
of a rule use fresh names. The correctness issues of the rules are discussed in the next
section, and more details are left in the technical report [15].

In the Gang-of-Four book [9], design patterns are classified into three categories:
Creational, Structural and Behavioral patterns. We will take one representative pattern
from each of these categories in this paper.

Abstract Factory: It is a creational pattern providing an interface for creating a family
of related objects without explicitly invoking the class-specific constructors, thus en-
hancing extensibility and adaptability. The following rule shows how to refactor a piece
of program with constructor invocations to Abstract Factory pattern-style program.

The classes and their relations for this rule corresponding to this pattern is depicted in
Fig. 7, where we use methods named as constructor in classes ConcreteA0, ConcreteB0,

330 L. Quan, Q. Zongyan, and Z. Liu

Abstrac tF

CreatA()
CreatB()

Conc reteF

CreatA()
CreatB()

Abstrac tA

c onstruc tor()

Conc reteA

c onstruc tor()

Abstrac tB

c onstruc tor()

Conc reteB

c onstruc tor()

Client

m (Abstrac tF f)

Conc reteA0

c onstruc tor()

Client0

m 0()

Conc reteB0

c onstruc tor()

c0/c

Fig. 7. Abstract Factory

ConcreteA and ConcreteB to explicitly show their constructor methods, that are gener-
ally assumed for all classes C and invoked by C.new(x) in rCOS.

The class declarations Cds that will be refactored are shown on the left. The protocol
c contains an invocation to method m0() which makes calls to the constructors of the
associated two “concrete classes” ConcreteA0 and ConcreteB0

m0(){ConcreteA0.new(a); ConcreteB0.new(b)}

The classes after refactoring are shown on the right of the figure that includes the
new classes AbstractF , AbstractA and AbstractB and the concreteF . Also in the class
declarations, the original ConcreteA0 and ConcreteB0 are changed to ConcreteA and
ConcreteB, where the original constructor methods keep unchanged. In the new pro-
tocol c, method m0() is replaced by m in which the object creations ConcreteA and
ConcreteB are carried out indirectly via its associated factory object ConcreteF . This
is formalized in the following rule. Besides, new classes AbstractA and AbstractB are
added with signatures for the constructor methods of corresponding concrete classes.

Rule 7 (Abstract Factory). The frame of this rule is defined as:

– For the parts of the frame on the left hand side of the rule (in the program to be
refactored)

Cds �= Client0[]; ConcreteA0[]; ConcreteB0[];
c0 �= {var Client0 x; Client0.new(x);x.m0();γ; end x}
m0() �= m0(){ConcreteA0.new(a); ConcreteB0.new(b)}

where γ is an arbitrary statement.
– For the classes and protocol on the right hand side (the refactoring result)

Cdsd �= Client[]; AbstractF[]; ConcreteF[AbstractF]; AbstractA[]; AbstractB[];
ConcreteA[AbstractA]; ConcreteB[AbstractB];

c �= {var Client x, ConcreteF cf; Client.new(x);
ConcreteF.new(cf); x.m(cf); γ; end cf, x}

where
• class AbstractF declares two method signatures CreateA(,AbstractA xa,) and

CreateB(,AbstractA xb,) where xa and xb are result parameters.

Formal Use of Design Patterns and Refactoring 331

Dec oratorA

op()
addA()

Dec oratorB

op()
addB()

Dec orator

Com ponent c om p
op()

Com ponent

op()

c0/c

Com ponent

op()

Dec oratorA0

op()
addA()

Dec oratorB0

op()
addB()

Fig. 8. Decorator

• the two are defined in class ConcreteF:

CreateA(, AbstractA xa,){ConcreteA.new(xa)}
CreateB(, AbstractA xb,){ConcreteB.new(xb)}

• in the client class Client, the new methodm() is defined as

m(AbstractF f){f.CreateA(a); f.CreateB(b)}

Concrete creation methods are encapsulated in the factory object. Because no concrete
class is mentioned in the client program explicitly, the same program can be used to
manipulate objects produced by other concrete factories without any modification. �

Decorator: Designers often need to add new functions to existing programs for various
reasons. An example is given in Fig. 8, where the naive structures is shown on the
left. Here are two classes DecoratorA0 and DecoratorB0 to decorate class Component
with additional functions addA and addB injected into method op sequentially. This
solution is not flexible enough. For example, it does not support the object with only
addB added to op but not addA. Decorator is a structural pattern to provide a flexible
solution for adding functionalities. The corresponding pattern style program is shown
in Fig. 8 (right). The following rule describes the details of this refactoring.

Rule 8 (Decorator). The frame of this rule is defined as:

Cds �= Component[]; DecoratorA0[Component]; DecoratorB0[DecoratorA0]
Cdsd �= Component[]; Decorator[Component];

DecoratorA[Decorator]; DecoratorB[Decorator]
c0 �= {var DecoratorB0 comp; DecoratorB0.new(comp); comp.op(); end comp}
c �= {var Component comp1, DecoratorA comp2, DecoratorB comp;

Component.new(comp1); DecoratorA.new(comp2)[comp1];
DecoratorB.new(comp)[comp2]; comp.op(); end comp, comp1, comp2}

Here the actual parameters comp1 and comp2 are used to initialize attribute comp, and

– In class DecoratorA0 and DecoratorB0, the definitions of method op are given as
follows:

op(){Component.op(); addA()} // in DecoratorA0

op(){DecoratorA0.op(); addB()} // in DecoratorB0

332 L. Quan, Q. Zongyan, and Z. Liu

StrategyB

algorithm ()

Strategy

algorithm ()

Context

Strategy s
op()

StrategyA

algorithm ()

Context0

op0()

c/c0

Fig. 9. Strategy

– In Decorator, DecoratorA and DecoratorB, we have the following definitions:

op(){comp.op()} // in Decorator
op(){Decorator.op(); addA()} // in DecoratorA
op(){Decorator.op(); addB()} // in DecoratorB

The new program supports the flexible function-extension. �
Originally, the client obtains the results of addA() and addB() by invoking op() of
the lowest sub-class DecoratorB0. After refactoring, the client still invokes addA() and
addB(), in turn via the reference comp in Decorator. So the behavior is preserved.

Strategy: Sometimes we have a family of algorithms, and want to make them inter-
changeable during executions. Strategy pattern allows the context to select the algo-
rithms dynamically without using conditionals that may make a program hard to read
and maintain. We use this pattern as an example for the last category, behavioral pat-
terns. This rule also shows how to refactor a program containing a conditional statement
to a pattern-style program. This pattern is shown in Fig. 9.

Rule 9 (Strategy). The frame of this rule is defined as follows:

Cds �= Context0[];
Cdsd �= Context[]; Strategy[]; StrategyA[Strategy]; StrategyB[Strategy];
c0 �= {var Context0 con; Context0.new(con)[]; con.op0(); end con}
c �= {var Strategy s; (StrategyA.new(s) � b � StrategyB.new(s));

var Context con; Context.new(con)[s]; con.op();end s, con}
where

– In classes Context0 and Context, we have the method definitions:

op0(){cA � b � cB} // in Context0, use conditional to make choice
op(){algorithm()} // in Context, call an algorithmaccording to the object

where b is a global variable for the choice between specific algorithms cA and cB .
– In class Strategy, StrategyA and StrategyB

algorithm() // in Strategy, no implementation
algorithm(){cA} // in StrategyA
algorithm(){cB} // in StrategyB

where cA and cB are the same sequence of commands as above. �
In the naive program, the context will execute cA (or cB) if b is true (or false). Corre-
spondingly, in the pattern style program, it will create an object StrategyA (or StrategyB)
if b is true (or false) for the reference s, and then execute cA (or cB) via the reference.
So the behavior is preserved.

Formal Use of Design Patterns and Refactoring 333

5 The Proofs

In this section we give the basic idea and the general proof procedure for the refinement
laws, and illustrate the procedure via an example.

5.1 Class Refinement Laws

As shown above, each class refinement law is of the form

LHS � RHS

According to Definition 4 (Class Refinement), to prove the law, we have to check

LHS • P � RHS • P, For any P = (gbv, c)

According to the definition, for each class refinement law, we need to prove that, for
any P = (gbv, c),

∀stateV, stateV ′ • (RHS; init; c) ⇒ ∀stateW, stateW ′ • (LHS; init; c)

where (stateV , stateV ′) and (stateW , stateW ′) represent the initial and final states
of the alphabets of the systems, respectively.

Using the definition of sequence composition in [11], we can prove that the following
statement is equivalent to the above one,

∀stateV, stateV ′ • (∃stateV0 • {RHS; init}
(stateV ∪ gbv, stateV0 ∪ gbv) ∧ c(stateV0 ∪ gbv, stateV ′ ∪ gbv′))

⇒
∀stateW, stateW ′ • (∃stateW0 • {LHS; init}

(stateW ∪ gbv, stateW0 ∪ gbv) ∧ c(stateW0 ∪ gbv, stateW ′ ∪ gbv′))

As in UTP, c(x1, x2) here stands for a predicate for the meaning (semantics) of com-
mand c, where x1 is the state before execution of c, and x2 the state after the execu-
tion. Further, c1(x, x0) ∧ c2(x0, x

′) denotes that the final state after the execution of
command c1 is the same as the initial state of c2, that is the middle state described
by x0.

We use WS to denote the state space of original design, and VS for the state space
of corresponding refined design, thus stateW, . . . ∈ WS, and stateV, . . . ∈ VS. Now
what we need to do is to find the corresponding states stateW, stateW0, stateW′ in WS
according to the states stateV, stateV0, stateV′ ∈ VS.

To get the corresponding states, the proof goes through following steps:

1. In the first, take stateW = stateV.
2. Find a refinement mapping ρwhich maps the refined state space to the original state

space3, then take stateW0 = ρ(stateV0).

3 Please note that the alphabet of the state spaces is the alphabet given in section 2.2.

334 L. Quan, Q. Zongyan, and Z. Liu

3. Prove the existence of stateW′ by showing that for any command c in rCOS, the
commuting diagram Fig. 10 holds. With structural induction, we need to show that
the commuting diagram holds for all primitive commands. The compound ones can
be proved by the structure induction easily. It is easy to check that if this commuting
diagram holds, then state stateW′ exists.

As an example, we show here the proof skeleton for Rule 1 (Extract Method) in
Section 3. For the work, we need to give first a refinement mapping from the state space
of the alphabet of our system (the seven element tuple) to itself. The mapping ρ for this
rule is as follows:

ρ =̂ id ⊕ {op(M) #→ op(M)\{m2()}}
where id stands for the identity mapping. Informally, ρmodifies only op(M) and keeps
all the others unchanged.

Finally, we need to check that for all primitive commands, the commuting diagram
in Fig. 10. holds. In this rule, we only add a method m2() and change the body of
m1(), so only le.m() in Section 2.1 should be checked. In the proof, we need to use
accessorial mappings Set , Reset and φ. The exact definitions of these mappings can be
found in [12]. Here are some informal explanations:

– Set(·) and Reset are adjuvant designs for initiating and recovering the state envi-
ronments when the system enters and leaves the local environment of a method call.
They can be nested and act as commands to maintain the status of local variables.
Although acting as “commands”, they are not allowed to use explicitly in programs,
but can only be used in semantic definitions and reasoning about programs.

– φ defines the semantics of method calls as well as any potential recursive structures.
It is useful when we need to expand the semantics of a nested method call.

The proof is as follows.

– If c = o.m1() where o is an object of M , then we compute the semantics ofm1().
On the right hand side

[[o.m1()]] = φM (m1()) = Set(M); φM (c); Reset

And on the left hand side we have

[[o.m1()]] = φM (m1())
= Set(M); φM (m2()); Reset
= Set(M); Set(M); φM (c); Reset;Reset
= Set(M); φM (c); Reset

This command does not have affect on op(M), so here ρ acts as id. Thus

ρ; c � c; ρ

– If c = o.m2(), then the right hand is not well formed. This makes the design on the
right hand become false. Thus the law holds.

From the above example, one can see that once the refinement mapping ρ is given, the
checking of the commuting diagram is straightforward by using the evaluation function.
Other rules can be proved in the similar manner.

Formal Use of Design Patterns and Refactoring 335

 W S command

 VS VS

 W S

command

ρρ

Fig. 10. Comm. Diagram for Class Ref.

c0

c

 W S

 VS VS

 W S

ρρ

Fig. 11. Comm. Diagram of Program Ref.

Sale

Payment

Product
Specification

Product
Catalog

SalesLineItem

Post

Fig. 12. Initial Structure of POST

5.2 System Refinement Laws

For System refinement laws, the strategy is almost the same as for the Class refinement.
The only difference is in the third step, where we should check c and c0 of the corre-
sponding protocol rather than relative primitive commands, i.e., we have to prove

ρ; c0 � c; ρ

where c and c0 are the given protocols in the refinement law.
The commuting diagram to be checked is illustrated in Fig. 11. Please notice that

what on the arrows here are the original protocol c0 and new protocol c rather than the
primitive commands. We have given the refinement mappings and detailed proofs as
well for all of our three pattern-directed rules in the report [15]. The proofs go almost
the same manner as shown in Section 5.1. We omit the details here for the space.

6 A Case Study

rCOS is designed to support development of no-trivial software in an incremental way.
Here we present a case study for the development of the POST system which is origi-
nally discussed in [14,5]. We give only an overview of this complicated case study.

POST (Point-Of-Sale Terminal) is a system used to record sales and handle pay-
ments, which is typically used in retail stores or supermarkets. It includes several hard-
ware components such as a bar code scanner and a printer, and also a software part. We
work on the software part only here. With the refinement laws for OO development, we
can incrementally design the system, and finally, implement it on some platform, e.g.,
Java, or Visual C#.Net, etc.

In the initial design, the class structures of the program is modeled by the class
diagram shown in Fig. 12.

In the refinement-based development process, supported by the relatively simple re-
finement laws in [12], we transform the system by steps, and finally have its Design
Model depicted in Fig. 13, which is already very close to an executable program.

336 L. Quan, Q. Zongyan, and Z. Liu

Product
Specification

UPC u p c
flo at p rice
s trin g n ame

Sale

Time time
Pro d u ctCatalo g
p catalo g
Pay men t p ay men t
Lis t
items <Sales Lin eItem>

makeLin eItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)

POST

Sale s ale
Lis t s ales <Sale>
Pro d u ctCatalo g
p catalo g

makeSale(Time time)
en terItem(UPC u p c,
 in t q u an tity)
makePay men t(in t ty p e)
p rin tSale()
en d Sale()

Payment

flo at amo u n t
in t ty p e

p ay ()

SalesLineItem

Pro d u ctSp ecificatio n p s
in t q u an tity

*1

1 *

1 *

ProductCatalog

Lis t p s lis t
<Pro d u ctSp ecificatio n >

s earch (UPC u p c,
Pro d u ctio n Sp ecificatio n p s)

1*

1

1

1

* **

Fig. 13. Design Model of POST

CreditPaymentCashPayment

Product
Specification

U PC up c
float p rice
st ring name

Sale

T ime t ime
Bool iscomp lete
ProductCatalog p catalog
Pay ment p ay ment
List it ems<SalesLineItem>

makeLineItem(U PC up c,
 int quant ity)
makePay ment(int ty p e)

POST

Sale sale
RecordStore rstore
List sales<Sale>
ProductCatalog p catalog

makeSale(T ime t ime)
enterItem(U PC up c,
 int quant ity)
makePay ment(int ty p e)
p rintSale()
endSale()

Payment

float amount
int ty p e

p ay ()

SalesLineItem

ProductSp ecificat ion p s
int quant ity

SubT otal()

*1

1 *

1

*

ProductCatalog

List p slis t
<ProductSp ecificat ion>

Search(U PC up c,
P roductSp ecificat ion p s)

1

*

1

1

1

* *
*

SaleRecordStore

List sales<Sale>

addSale(Sale sale)

1

*

Fig. 14. Refactorred Final Model of POST

However, with a carefully analysis, we see that there are many poor-structured parts
in this design model, such as:
1. Class Post has an attribute sales which is a list to record all the finished sales. It is

not suitable to let the interface class maintain such a long list. In fact, this list can
be considered as a database for the records. There may be several instances of Post
working in parallel and need to share the same list. We would better use another class
to maintain the list. From this consideration, we may extract a new class RecordStore.

2. There may be several ways to make the payment. This fact should be reflected in
the design. Thus, in method pay() of Payment, we use a flag to direct the behavior
of the method4. This kind of flag-directed code is thought a bad design for lack of
flexibility and maintainability. Use the Strategy Pattern, we refactor it to a program
with polymorphism.

4 Please refer to [16] for the details.

Formal Use of Design Patterns and Refactoring 337

3. For method makePayment() in class Sale to computer the total payment, it use now
directly the attributes of SalesLineItem. It is better if the computation happens in
the SalesLineItem objects to reduce the coupling between classes. So we would like
to extract a method in class Sale and then move it to SalesLineItem.

Motivated by the feeling of the “bad smells”, we use refactoring and pattern-directed
refactoring rules to refine the system step by step. The development, or refinement,
process is composed of six phases and each phase is done within several steps. The
refactoring rules used include, for examples, the Extract Method, Move Method, and
Strategy patterns etc. Here we only present the skeleton of the result of the last phase,
as Fig. 14. We ignore the code of all the methods in Fig. 13 and Fig. 14..

7 Conclusions and Future Work

Refactoring and Design Pattern are both important concepts and powerful techniques in
OO software development [8,13]. However, the definition of them are informal, based
on intuition. Formalization of design patterns and refactoring rules is useful for scaling
up the tradition refinement calculi, and it is important for tool support to correct by
construction of software systems. This is the primary motivation of this work.

Based on rCOS, we present the work on formalization of refactoring rules given
in [8], as well as a set of pattern-directed refactoring rules. Proving these rules and
patterns precisely requires a formalism that defines object references and sharing. For
example, with Rule 7, clients can create objects via a reference to a factory rather than
invoke a constructor explicitly. This transformation improves the flexibility, reusability
and maintainability of the system. In other two pattern-directed refactoring rules pre-
sented (Rule 8 and Rule 9), we also use reference type to support the implicit up-cast.
This justifies the use of rCOS which is a refinement calculus with the needed features.

We include also here a detailed discussion on the skeleton of formal proofs of refac-
toring rules, and a proof example to illustrate the whole procedure. At last, we presented
briefly a case study to show the formal development process based on these rules.

Our future work will aim at the automation of these rules and patterns and to integrate
them into the rCOS tool for component-based and model driven design [4]. There exist
some environments claiming to support refactoring [1]. However, a closer look at them
reveals that what they do are only modifying the code rudely under people’s command.
There is no support to ensure that the modification is semantics-reserved.

In our current work, the proofs of the rules are based on the semantic model of
rCOS. We would also like to develop an algebraic proof system for the refactoring and
pattern-directed ones, so that many rules can be proved algebraically from a small set
of refactoring rules. This will provide calculus of patterns and factoring rules to allows
us to relate and compose patterns and rules.

References

1. Refactoringtools, http://www.refactoring.com/tools.html
2. Cavalcanti, A.L.C., Naumann, D.: A weakest precondition semantics for refinement of

object-oriented programs. IEEE Trans. on Software Engineering 26(8), 713–728 (2000)

http://www.refactoring.com/tools.html

338 L. Quan, Q. Zongyan, and Z. Liu

3. Chen, Z., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer, Heidelberg (2007)

4. Chen, Z., Liu, Z., Stolz, V.: The rCOS tool. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008.
LNCS, vol. 5014. Springer, Heidelberg (2008)

5. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-
based model driven design. Technical Report 388, UNU/IIST, Macao SAR, China, Science
of Computer Programming (submitted, 2008)

6. Cornélio, M.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Refactoring by Transformation. In:
Pro. of REFINE 2002. ENTCS, vol. 70. Elsevier, Amsterdam (2002) (invited Paper)

7. Favre, L., Pereira, C.: Formalizing mda-based refactorings. In: 19th Australian Software En-
gineering Conference, pp. 377–386. IEEE, Los Alamitos (2008)

8. Fowler, M.: Refectoring, Improving the Design of Existing Code. Addison-Wesley, Reading
(2000)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (1994)

10. He, J., Liu, Z., Li, X., Qin, S.: A relational model for object-oriented designs. In: Chin, W.-N.
(ed.) APLAS 2004. LNCS, vol. 3302, pp. 415–436. Springer, Heidelberg (2004)

11. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood Cliffs
(1998)

12. Jifeng, H., Li, X., Liu, Z.: rCOS: A refinement calculus for object systems. Theoretical Com-
puter Science 365, 109–142 (2006)

13. Kerievsky, J.: Refactoring to Patterns. Addison-Wesley, Reading (2004)
14. Larman, C.: Applying UML and Patterns. Prentice-Hall International, Englewood Cliffs

(2001)
15. Long, Q., He, J., Liu, Z.: Refactoring and pattern-directed refactoring: A formal perspective.

Technical Report 318, UNU/IIST, Macao SAR, China (2005)
16. Long, Q., Qiu, Z., Liu, Z., Shao, L., He, J.: POST: A case study for an incremental devel-

opment in rCOS. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp.
498–513. Springer, Heidelberg (2005)

17. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. Journal Software
and Systems Modeling 7, 25–47 (2008)

18. Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, University of Illinois at Urbana
Champain (1999)

19. Silva, L., Sampaio, A., Liu, Z.: Laws of object-orientation with reference semantics (submit-
ted for publication)

20. Tokuda, L.A.: Evolving Object-Oriented Designs with Refactoring. PhD thesis, University
of Texas at Austin (1999)

21. Wake, W.C.: Refactoring Workbook. Pearson Education, London (2004)
22. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refinement.

Formal Aspects of Computing (2008) doi:10.1007/s00165-007-0067-y

A Component-Based Access Control Monitor

Zhiming Liu, Charles Morisset, and Volker Stolz

United Nations University
International Institute for Software Technology

P.O. Box 3058, Macau SAR, China
{lzm,morisset,vs}@iist.unu.edu

Abstract. A control of access to information is increasingly becoming
necessary as the systems managing this information is more and more
open and available through non secure networks. Integrating an access
control monitor within a large system is a complex task, since it has
to be an “all or nothing” integration. The least error or mistake could
lead to jeopardize the whole system. We present a formal specification of
an access control monitor using the calculus of refinement of component
and object systems (rCOS). We illustrate this implementation with the
well known Role Based Access Control (RBAC) policy and we show how
to integrate it within a larger system. Keywords: Component, Access
Control, RBAC, Composition

1 Introduction

In the design of most information systems, security issues are usually considered
as a secondary task. Roughly speaking, the first objective is to design a “working”
system and then, if it is possible within the time and budget constraints, try to
inject some security mechanisms. As a result of this approach, these mechanisms
are often poorly designed and their lack of integration in the global system can
cause major flaws. A classical example is when one can find, on a public server,
both an SSH server (quite secure) and a Telnet server (usually non secure). This
is often due to the fact that the telnet server is installed first, while the server is
not public yet and the SSH server is only installed afterwards. The consequence
is that not only the server is subject to simple attacks due to the weakness
of Telnet, but the server administrator thinks he is protected because he has
installed an SSH server and so will not enforce other security mechanisms.

Of course, there exist some domains where security issues are highly consid-
ered, usually because human beings or important sums of money are at stake.
This is particularly true for the military field, where many security mechanisms
have been created, including cryptographic techniques and access control mod-
els. In these fields, the question of security is addressed from the beginning, as
a part of the global system, which usually ensures a greater confidence in the
system.

The component-based approach in rCOS allows us to integrate the security
aspect closer into the software engineering process instead of trying to add

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 339–353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 Z. Liu, C. Morisset, and V. Stolz

it later. Some works already combine UML modeling and security issues, like
UMLsec [15]. However, the latter focuses more on the cryptographic problemat-
ics while we try to address access control. Basically, the access control problem-
atics consists in defining a policy, that is the set of granted (or denied) accesses
to a system by subjects (users, processes, etc) over some objects (files, resources,
processes, etc). An access control monitor (or reference monitor) is a program
enforcing the policy, that filters all the accesses to grant only the ones allowed
and to deny the ones forbidden.

The concept of access control can be split into the interface to the access con-
trol monitor and its actual implementation. As the rCOS software development
methodology of component systems uses the familiar features of UML for the
development process, we expect that a formalisation of monitoring will make
this important aspect more accessible to practitioners and students.

But not only allows this to talk about security in familiar terms to software
engineers, it also eliminates the disconnect between the software and reasoning
about security aspects that might introduce additional errors when both were
handled in different formalisms.

By using the notion of rCOS component interfaces, we can make sure that
the monitor component is at least used syntactically correct and according to
its protocol, that is the sequence of possible traces. Even the implementation
of a monitor profits from being modeled in rCOS: we can give a high-level,
mathematical specification and use the rCOS refinement techniques to obtain
an executable implementation [4,19]. Additionally, the available formal methods
for rCOS, like the verification of component composition through process algebra
and model checking, allows reasoning about the correctness and properties of the
composition of components realising access control with components providing
the system behaviour that is to be protected.

From a normative point view, according to the Common Criteria [2], which is
one of the authoritative references in the domain of safety and security systems,
a reference monitor is an abstract machine which enforces the access control
policies in a system and it should have the three following properties:

– unsafe subjects cannot interfere with it,
– unsafe subjects cannot circumvent its controls,
– it is simple enough to be analyzed and its behaviour understood.

We present here an approach addressing these properties. The main contri-
butions of this paper are:

– the implementation of an access control model based on a recent formaliza-
tion, which clearly separates the notion of policy and the one of implemen-
tation of a policy, and introduces some new concepts, such as the semantics
of requests,

– another case study of the rCOS tool, showing how its features can be suc-
cessfully applied to the access control problematics.

We first introduce in section 2 a formalisation of access control policies and
models, with the example of the Role Based Access Control (RBAC) policy.

A Component-Based Access Control Monitor 341

This formalisation, together with the different proofs, ensures that the monitor
behaviour is understood and could be analyzed. It also guarantees that unsafe
subjects cannot interfere with it, at least on the design level. Indeed, our ap-
proach, as most of classical software engineering approaches, does not ensure
that the implementation will not be modified at run-time, or that the hardware
the system is running on is safe. Then, in section 3, we outline the main fea-
tures of rCOS and section 4 gives a description of a specification of the access
control monitor within rCOS. Thanks to the component-based approach, it is
possible to ensure that the monitor cannot be circumvented by hiding the non
secure interfaces and integrating the monitor directly into the system. Finally,
we present in this section a way to integrate such a monitor in a larger system.

2 Defining Access Control Models

In this section, we present a way to define access control systems, based on two
main concepts: policy and model. Due to space limitation, we only give here
an overview, a complete definition can be found in [14,21]. The policy is the
description of the system on which it is enforced, defined as a state machine
together with the notion of secure states. Hence, an access control policy is
considered here as a functional property that a state machine must satisfy. Of
course, the definition of the policy also includes all the information relevant to
the definition of the system, such as subjects, objects, security information, etc.
At this point, a policy can be seen as “static”, since it is expressed over states,
and a state is a snapshot of the system. We then introduce the notion of the
model, which is basically a policy together with a set of requests (and, as we will
see later, the semantics of these requests). These requests are a way for subjects
to access objects. Lastly, it is possible to define an implementation (or several)
for a model, through a transition function and a set of initial states. Intuitively,
this implementation corresponds to a reference monitor and should be proved
correct with respect to the security policy, that is, returning a secure state for
any secure state and any request.

2.1 Access Control Policy

We first define the main entities of a system: S is the set of subjects (active
entities initiating actions in the system), O is the set of objects (passive entities
on which actions are made) and A is the set of access modes (read, write, append,
etc). In this paper, we represent an access by a triple (s, o, a) expressing that a
subject s accesses an object o according to the access mode a. Hence, we define
the set of accesses A as the Cartesian product S × O × A. Other approaches
are possible to represent accesses. For example, in order to deal with “joint
access” of a group of subjects over an object, as in [20], A can be defined as
(℘(S)\{∅})×O × ℘(A).

Then we can define an access control policy P[ρ] = (S,O,A, Σ,Ω), where ρ is
the security parameter (that is all the information needed to define the policy),

342 Z. Liu, C. Morisset, and V. Stolz

S the set of subjects, O the set of objects, A the set of access modes, Σ the set
of states and Ω the security predicate, characterizing the secure states.

Role-Based Access Control models are a set of fairly new models first intro-
duced in the nineties. The key concept of theses models is the notion of a role,
which can be seen as an abstraction of the one of subject. Intuitively, a subject
can have many roles and an object can be accessed by many roles. This indirec-
tion eases the management of subjects within a system, since the authorizations
are related to roles (which are supposed not to change a lot) rather than sub-
jects (who can change a lot). We give here a version of RBAC based on the
RBAC92 model [7], in order to simplify the presentation, but some more com-
plex versions can be found, as RBAC96 [24] extends RBAC92 with the addition
of users (different from the subjects) and a roles hierarchy defined as a partial
order. We write ρrbac = R for the security parameter of RBAC, where R is the
set of roles. A state σ ∈ Σrbac is a tuple σ = (m,UA,PA, roles) where m is the
set of current accesses, UA ⊆ S × R is the relation specifying which subject can
activate which roles, PA ⊆ (O × A) × R is the relation associating permissions
(i.e. pairs (o, a) ∈ O × A) to roles, and roles : S → ℘(R) specifies the set of
roles that have been activated by a subject. Hence, a subject may endorse many
roles, as defined by UA, but does not have to activate all of them at the same
time. The RBAC policy is specified by the predicate Ωrbac as follows. Given a
state σ = (m,UA,PA, roles), Ωrbac(σ) holds iff the two following properties are
satisfied.

∀s ∈ S {(s, r) | r ∈ roles(s)} ⊆ UA
∀s ∈ S ∀o ∈ O ∀a ∈ A (s, o, a) ∈ m⇒ ∃r ∈ R (r ∈ roles(s) ∧ ((o, a), r) ∈ PA)

We write Prbac[ρrbac] = (S,O,A, Σrbac, Ωrbac) for the RBAC policy.

2.2 Access Control Model

As we said previously, a language of requests provides to the subjects of a system
a way to access to objects. We write R for the set of requests. Most access
control models consider at least the set Racc = {〈+, s, o, a〉, 〈−, s, o, a〉} allowing
to express that the subject s asks to get (+) or to release (-) an access over the
object o according to the access mode a. Depending of the access control model,
there can also exist some “administrative” requests allowing to modify security
functions of a state. We introduce here the requests allowing to change the active
roles of a subject: Radm = {〈+, s, r〉, 〈−, s, r〉}. The set of requests considered is
thenRrbac = Racc∪Radm. We make here a clear distinction between accesses and
requests. An access is the internal representation of actions currently done in the
system and is authorized or not according to the security policy. A request is an
action that a subject has to submit and is granted or not by an implementation.
However, requests are usually strongly related to accesses, and to make explicit
this relation, we introduce a notion of “weak” semantics of requests as a relation
[|R|]Σ ⊆ R×Σ. Given a request R and a state σ, the statement (R, σ) ∈ [|R|]Σ
characterizes the properties that a state σ must satisfy when it is obtained by

A Component-Based Access Control Monitor 343

applying (in a successful way) the request R over another state. For Rrbac, we
can define [|Rrbac|]Σ as follows:

(〈+, s, o, a〉, σ) ∈ [|Rrbac|]Σ ⇔ (s, o, a) ∈ Λ(σ)
(〈−, s, o, a〉, σ) ∈ [|Rrbac|]Σ ⇔ (s, o, a)
∈ Λ(σ)
(〈+, s, r〉, (m,UA,PA, roles)) ∈ [|Rrbac|]Σ ⇔ r ∈ roles(s)
(〈−, s, r〉, (m,UA,PA, roles)) ∈ [|Rrbac|]Σ ⇔ r
∈ roles(s)

where Λ(σ) denotes the set of all current accesses in σ. Note that such an ap-
proach to express a part of the semantics of requests only specifies the properties
that a state must satisfy but does not describe how such a state has been changed.
We introduce in [14,21] a semantical characterisation of such modifications. Due
to space limitation, we omit here this technical part which is not essential at
this level of specification.

Given a security parameter ρ, an access control model M[ρ] is defined by a tu-
ple M[ρ] = (P[ρ], [|R|]Σ) where P[ρ] = (S,O,A, Σ,Ω) is an access control policy,
R is a set of requests, and [|R|]Σ ⊆ R×Σ is a relation specifying the semantics
of requests. For example, we write Mrbac[ρrbac] = (Prbac[ρrbac], [|Rrbac|]Σrbac

) for the
RBAC model.

Implementing a model M[ρ] consists in defining both a set ΣI of initial states
and a transition function τ : R×Σ → D ×Σ (where D = {yes, no} are the an-
swers) which allows moving from a state to another state of the system according
to a request in R. We write (τ,ΣI) for such an implementation and Γτ (E) for
the set of reachable states by τ from states occurring in E. For example, given
the set of initial states Σrbac

I = {σ ∈ Σrbac | Λ(σ) = ∅}, we introduce the imple-
mentation (τrbac, Σ

rbac
I) of Mrbac[ρrbac] where τrbac is defined in table 1 and where

we use the following denotations:

(roles⊕ (s′, r))(s) =
{
roles(s) ∪ {r} if s = s′

roles(s) otherwise

(roles((s′, r))(s) =
{
roles(s) \ {r} if s = s′

roles(s) otherwise

Due to the huge number of states, we do not draw here the corresponding au-
tomaton. In [21,10], this implementation is proved to be correct according to both
the policy and the semantics of requests. More formally, we prove that each state
reachable from an initial state is secure (i.e. Γτ (ΣI) ⊆ {σ ∈ Σ | Ω(σ)}) and that
for all σ1, σ2 ∈ Σ, and R ∈ R, if τ(R, σ1) = (yes, σ2), then (R, σ2) ∈ [|R|]Σ .

This definition of the RBAC model within our formal framework ensures
that when a request is authorized, then the security policy is not violated. An
implementation of this model is defined in Focal [10], which is a IDE combining
a functional language, a specification language and a theorem prover. We now
want to implement it following a component-based approach, and we use the
rCOS methodology, which we introduce in the next section.

344 Z. Liu, C. Morisset, and V. Stolz

Table 1. Implementation of the RBAC Model

τrbac(R, (m, UA, PA, roles))

=

��������������������������
�������������������������

(yes, (m ∪ {(s, o, a)}, UA, PA, roles))
if R = 〈+, s, o, a〉
∧ ∃r ∈ R r ∈ roles(s) ∧ ((o, a), r) ∈ PA

(yes, (m \ {(s, o, a)}, UA, PA, roles))
if R = 〈−, s, o, a〉

(yes, (m,UA, PA, roles⊕ (s, r)))
if R = 〈+, s, r〉
∧ (s, r) ∈ UA

(yes, (m,UA, PA, roles� (s, r)))
if R = 〈−, s, r〉

(no, (m, UA, PA, roles)) otherwise

3 Models and Their Refinement and Composition

For a formal method and its tool support to be practically effective, it will have to
be integrated with a development process and CASE tools, such as MasterCraft
[26,18]. For these purposes, the rCOS semantic theory defines the important con-
cepts and artifacts in the domain of object-oriented and component-based soft-
ware engineering, like classes, objects, components, interfaces, contracts, compo-
sition (connectors), coordination and glue. It provides the behavioral semantics
of these concepts with high level rules for refinement and verification.

Interfaces, Contracts and Components. Component-based software engi-
neering creates new software by combining prefabricated components with pro-
grams that provide both glue between the components, and new functionality
[5]. Furthermore, there seems to be no disagreement on the following interrelated
properties that components enjoy.

1. Black-box composability, substitutability and reusability:“a component is a
unit of composition with contractually specified interfaces and fully explicit
context dependencies that can be deployed independently and is subject to
third party composition” [25].

2. Independent development: components can be designed, implemented, veri-
fied, validated and deployed independently.

3. Interoperability: components can be implemented in different programming
languages and paradigms; but they can be composed, be glued together and
cooperate with each another. These features require that a component has a
black-box specification of what it provides to and what it requires from its
environment [25].

A Component-Based Access Control Monitor 345

Components and Processes. We distinguish service components from process
components [12,3]. A service component, simply called a component, provides
computational services to the environments through their provided interfaces.
However, the implementation of a provided service may also require services
from other components. Thus, a component can have required interfaces, and a
component with required interfaces is called an open components and one with-
out required interfaces is called a closed component. A distinct feature of the
rCOS definition of a component is that contracts are associated to the provided
interfaces and the required interfaces separately. This separation makes the spec-
ification of a component a truly black-box specification, even without the need
to know the information about the temporal dependency between a provided
service and a required service.

A process component, simply called a process, does not provide services to
other components. Instead it coordinates and glues components so that the ser-
vice components become suitable for a specific application. Therefore, a process
only has required interfaces and it actively invokes services of other components.
A component on the other hand, though it may contain coordinating processes
inside it, is passive and only interacts with the outside when a provided service is
requested. We will see that compositions among components are different from
their compositions with processes and compositions of processes [3]. We also
proved in [3] the composition of a component and a process is a component.

In rCOS, a process is used to model programs that coordinate and schedule
services of components, programs that are used to glue components together
to make new components, and to model application tasks that are realized by
requesting services from components.

Contracts of Interfaces. An interface provides the syntactic type information
for an interaction point of a component. It consists of two parts: the fields decla-
ration section, that introduces a set of variables with their types, and the method
declaration section, that defines a set of method signatures. Each signature is
of the form m(T1 in;T2 out), where T1 and T2 are type names, in stands for an
input parameter, and out stands for an output parameter.

Current practical component technologies provide syntactical aspects of in-
terfaces only and leave the semantics to informal conventions and comments.
This is obviously not enough for rigorous verification and validation. For this,
we define the notion of contracts of interfaces.

The contracts of the interfaces of a component describe what is needed for the
component to be used in building and maintaining software systems. The descrip-
tion of an interface must contain information about the viewpoints among, for
example functionality, behavior, protocols, safety, reliability, real-time, power,
bandwidth, memory consumption and communication mechanisms, that are
needed for composing the component in the given architecture for the appli-
cation of the system. However, this description can be incremental in the sense
that newly required properties or view points can be added when needed accord-
ing to the application [11].

346 Z. Liu, C. Morisset, and V. Stolz

In the current version of rCOS, a contract of an interface specifies the seman-
tics of the interface:

– The initial condition defines the allowable starting states.
– The functionality specification of each method op is a reactive design of the

form g&p � R. In Hoare and He’s UTP [13], g is called the guard for a syn-
chronization with the environment, p is called the precondition and R the
postcondition of the design. An invocation to op when the guard is false will
be blocked. When the guard is true, the execution will take place and ter-
minate in a state satisfying the postcondition R if the precondition p holds,
otherwise the execution diverges.

– The interaction protocol, specifies traces of method invocations, for the en-
vironment to follow when interacting with component via the interface.

The domain of the reactive designs forms a complete lattice with the predicate
implication as the partial order, and it is closed under the convention program-
ming compositions of sequential composition, condition choice, non-deterministic
choice and the fixed point of iteration. These compositions are also monotonic.

A contract has a failure-divergence semantics with that the refinement re-
lation between contracts is defined in the same way as CSP refinement under
this semantics [22]. A complete proof technique using upwards and downwards
simulation is established [3].

We can divide the fields (that are the state variables) of an interface into data
variables and control flow variables, the reactive designs can be decomposed into
design of the synchronisation control the design of data functionality. The designs
of the flow of control are reactive designs about the change of control states, and
the designs of the data functionality are simply pre and post conditions.

4 Access Control Component

Defining a reference monitor component from the previous formalisation requires
a slight adaptation. Indeed, most of the concepts introduced in section 2 are de-
fined in a formal way, using a set-based denotation and a functional approach.
Since rCOS follows an object-oriented approach, we need to adapt these con-
cepts. Roughly speaking, we first introduce a new class for every set, as described
in figure 1. Rather than defining functions to associate roles to a subject, we use
the object-oriented approach by defining a UML association between the class
Subject and the class Role, with the target roles: Role[*] {unique}. Note
that we define the relation UA as an attribute of the class Subject rather than
as another association, to clarify the presentation. We define the permissions
by introducing the method pa(r:Role, m:Mode ; ret:boolean), where r and
m are input parameters and ret is the output parameter, in the class Object:
o.pa(r,m;ret) will set ret to true if the role r can access the object o according
to the access mode m.

Moreover, a class is defined for every kind of request and as a direct conse-
quence, the reference monitor contains four different methods, that we will refer

A Component-Based Access Control Monitor 347

Fig. 1. Class Diagram in the rCOS Modeler

to below as the τ methods, each one of them treating a different type of request.
The set of current accesses belongs to the internal state of the monitor and so
we remove the reference to states in the parameters of the τ methods, which
take a request r and return a decision d.

To stick more to the formal definition, we would have to also define a global
method τ , which would take any type of request and would call the appropriate
method according to the type. Such a method is however not necessary, so we
do not include it in the interface ValReq.

component Monitor {
provided interface ValReq {

public tauAdd(AddRequest r ; Decision d);
public tauRel(RelRequest r ; Decision d);
public tauAddR(AddRoleRequest r ; Decision d);
public tauRemR(RelRoleRequest r ; Decision d); }}

The controller class of this component (i.e. the class implementing the inter-
face) is the class Monitor, which contains the current state, itself containing the
set of current accesses. The security predicate is expressed as a class invariant,
which ensures that the set of current accesses is always correct.
public class Monitor {

public State currentState;
invariant : ∀ Subject s, ∀ Role r ∈ s.roles: s .ua(r)

∧ ∀ Access a ∈ currentState.currentAccesses:
∃ Role r ∈ a.subject.roles: a.object.pa(r, a.mode);

348 Z. Liu, C. Morisset, and V. Stolz

Note that we use here the simplified notation of rCOS about output parame-
ters: when there is only one output parameter, it can be considered as a return
parameter like in usual programming languages. In the same way, to ease the
reading of this paper, we use mathematical denotations for the logical connectors
and the set operations instead of the rCOS keywords.

We are now in position to specify in the class Monitor the four τ methods
defined in the interface ValReq. We specify them to respect the semantics of
requests.
public tauAdd(AddRequest r ; Decision d) {
[� d’.isYes() ⇒ ∃ Access a ∈ currentState’.currentAccesses:

r .subject = a.subject ∧ r .object = a.object ∧ r .mode = a.mode]
}

where d’ denotes the value of the variable d after the evaluation of the method.

public tauRel(RelRequest r ; Decision d) {
[� d’.isYes() ⇒ ∀ Access a ∈ currentState’.currentAccesses:

r .subject
= a.subject ∨ r .object
= a.object ∨ r .mode
= a.mode]
}

public tauAddR(AddRoleRequest r ; Decision d) {
[� d’.isYes() ⇒ r . role ∈ r.subject.roles ’]
}

public tauRemR(RemRoleRequest r ; Decision d) {
[� d’.isYes() ⇒ r . role
∈ r.subject.roles ’]
}

The notation [� p] stands for the design with the precondition true and the
postcondition p. This specification ensures that the methods tauAdd, tauRel,
tauAddR and tauRemR behave correctly according to the requests. Moreover, the
separation of the definition of the security policy from the specification of these
methods eases the reusability of the component. Indeed, it is possible to modify
the security policy without changing this specification, if the considered requests
are the same. This approach introduces a level of indirection, since these methods
are not specified to respect the security policy, but rather to change the set of
current accesses according to the requests, and this set is required to respect the
security policy by the invariant.

Note that we present here a simple design for a reference monitor, in the sense
that there is no need for defining a protocol between these methods. However,
it is possible to define several global τ functions, each one of them applied in a
different “security mode”.

For instance, let us consider that our component relies upon an authentication
mechanism (as a login/password system). If an attack is detected against this
mechanism, like a brute-force attack, where an opponent tries every possible
password for a given login, the system could decide to prevent any risk by denying
any access asked by non-root subjects (we consider here that the root user cannot
connect from the outside and so it is less prone to a brute force attack). In this
case, a special mode “brute-force attack detected” could be switched on, and
the method used to authorize accesses would be a more restrictive one. Such an
approach would imply to define a protocol for the interface, corresponding to

A Component-Based Access Control Monitor 349

the several modes that could be switched on. Here again, specifying the policy
as an invariant helps, since it is defined only once, and as long as the different
methods tau respect the semantics of requests, they also respect the policy.

The definition of the different methods in the rCOS tool according to the
formal definition given in table 1 and both refining the previously defined design
and respecting the class invariant could be the following one.
public tauAdd(AddRequest r ; Decision d) {

for (Role ro : r .subject. roles){
if (r .object.pa(ro, r .mode))
then {

currentState.currentAccesses.add(r.subject, r .object, r .mode);
return yes;

}
}
return no;

}

public tauRel(RelRequest r ; Decision d) {
currentState.currentAccesses.remove(r.subject, r .object, r .mode);
return yes;

}

public tauAddR(AddRoleRequest r ; Decision d) {
if (r .subject.ua(r. role)){

r .subject. roles .add(r.subject);
return yes;

}
return no;

}

public tauRemR(RemRoleRequest r ; Decision d) {
r .subject. roles .remove(r.subject);
return yes;

}

These implementations have been obtained using the rCOS refinement tech-
niques [4,19]. They are proved to be correct by showing that the predicate corre-
sponding to their semantics logically implies the previous specifications. Current
work in the rCOS tool consists in integrating a theorem prover, in order to for-
mally prove this implication.

Since we do not require the monitor to be complete, that is, to accept every
correct request, the statement return no is also a valid implementation for each
of the previous methods.

Integration. The reference monitor component described in the previous sub-
section acts as an oracle: its interface allows submitting a request which is either
granted or denied. The set of current accesses stored in the internal state is only
used to describe the policy. Indeed, some policies (e.g. Bell and LaPadula [16]
or the Chinese Wall [1]) are defined according to the current accesses, to avoid
some forbidden flows of information between objects. But in most of the cases,
the interface of the reference monitor is not directly called by the user of the
system. For instance, let us consider a Database Management System (DBMS),
where the subjects of the monitor are the users of the database and the objects
are the tables. It is also possible to consider an object as a tuple, but it can raise

350 Z. Liu, C. Morisset, and V. Stolz

some problems with polyinstantiation [23]. A user executes an SQL query, which
should be translated in a request 〈+, s, o, a〉, where s is the subject associated
with the user (usually known in the environment from the connection), o is the
concerned table and a is defined according to the query.

A DBMS can be described as the following component (we consider here only
the SQL queries INSERT, SELECT, UPDATE).
component DBMS {

provided interface SQLQuery {
public connect (string id, string password; string con);
public select (string con, string query; boolean ok);
public insert (string con, string query; boolean ok);
public update (string con, string query; boolean ok);
public disconnect (string con);

}
}

The method connect allows a user to connect to the DBMS using his login/pass-
word, and get a connection identifier, the methods select, insert and update
allow to respectively execute a SELECT, an INSERT and an UPDATE SQL query
over a connection identifier and disconnect closes a connection identifier.

The problem is the following one: we want to keep this interface for the user,
in order to be transparent, and at the same time filter the SQL queries in order
to grant only the ones respecting the security policy. We introduce a component
Proxy as described in figure 2, which composes the Monitor and DBMS compo-
nents (and hides their interfaces) and provides the same interface as DBMS.

Fig. 2. Integration of a monitor in a database

A Component-Based Access Control Monitor 351

component Proxy {
provided interface SQLQuery { ... }
composition : (Monitor || DBMS) \ { DBMS.SQLQuery, Monitor.ValReq }

}

The controller class of Proxy implements the interface SQLQuery and the
pseudo-code for the method select is the following one.
public select(string con, string query; boolean ok) {

Subject s := subject associated with the user;
Object o := table concerned by the query;
if (Monitor.valReq.tauAdd(〈+, s, o, r〉) = yes)
then return DBMS.SQLQuery.select(con, query)
else return false;

}

The method insert (resp. update) is defined in a similar way, except that the
request passed to tauAdd is 〈+, s, o,w〉 (resp. both 〈+, s, o, r〉 and 〈+, s, o,w〉).

With the previous definition, the accesses are never released, which is not a
problem with the usual RBAC model, but which could be one with other policies
such as the one of Bell and LaPadula. To address this issue, it is possible to
release the accesses either at the end of the method, after the call to the DBMS
or when the user disconnects from the DBMS.

5 Conclusion

By following a component-based approach to design and implement an access
control reference monitor, we address some major issues as stated by the Com-
mon Criteria. Indeed, the mechanisms of composition and interfaces hiding allow
to have a real black-box component, thus preventing unsafe subjects to inter-
fere with it or to circumvent its controls. Moreover, the definition of a Proxy
component makes its use transparent and easily integrable in a larger system, as
a Database Management System. Our development relies upon a sound formal
definition, which guarantees the correctness of the specification, since the rCOS
tool allows integrating the formal aspect and will, in the future, use external
tools, like model-checking or theorem proving, to verify and validate that the
implementation meets the specification. Indeed, the proof of the correctness of
the monitor is currently only done “on the paper”, by induction over the reach-
able states. However, an objective of the rCOS Tool is to generate JML [17]
specifications, and by using a tool like Krakatoa [8], which generates the proof
obligations related to pre- and post-conditions and to class invariants, we could
prove the correctness of the monitor with a theorem prover.

We have implemented here the RBAC policy, but thanks to the formal frame-
work our work is based on, this approach could be used to define other poli-
cies, some of them are even already defined within this framework (e.g. Bell
and LaPadula, the Chinese Wall, RBAC96, Delegation-Based, Lampson, ACL,
Capabilities).

There are several ways to extend this work. For instance, nothing is said about
the way to associate subjects and objects with roles in the example. Though it
is not possible to define them in the most general case, it could be possible to
determine them from use cases [6].

352 Z. Liu, C. Morisset, and V. Stolz

Finally, from a more practical point of view, a library of access control com-
ponents could be defined. Such a library could allow software engineers with no
experience in security and/or formal methods to easily use and enforce certified
reference monitors.

Acknowledgements

Many thanks to Julien Blond and Mathieu Jaume for their precious help on this
subject. This work was supported by the project HTTS funded by the Macao
Science and Technology Development Fund and by the projects NSFC-60673114
and 863 of China 2006AA01Z165.

References

1. Brewer, D.F.C., Nash, M.J.: The Chinese wall security policy. In: Proc. IEEE
Symposium on Security and Privacy, pp. 206–214 (1989)

2. Common Criteria for Information Technology Security Evaluation,
http://www.commoncriteriaportal.org/

3. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007)

4. Chen, Z., Liu, Z., Stolz, V.: The rCOS tool. In: Fitzgerald, et al. (eds.) [9]
5. de Alfaro, L., Henzinger, T.: Interface automata. In: Proc. of the 9th Annual Sym-

posium on Foundations of Software Engineering, pp. 109–120. ACM press, New
York (2001)

6. Fernandez, E.B., Hawkins, J.C.: Determining role rights from use cases. In: RBAC
1997: Proc. of the second ACM workshop on Role-based access control, pp. 121–
125. ACM, New York (1997)

7. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference (1992)

8. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: 19th International Conference on Computer Aided Veri-
fication. Springer, Berlin (2007)

9. Fitzgerald, J., Larsen, P.G., Sahara, S. (eds.): Modelling and Analysis in VDM:
Proceedings of the Fourth VDM/Overture Workshop, number CS-TR-1099 in
Technical Report Series. Newcastle University (May 2008)

10. Habib, L.: Formalisation, comparaison et implantation d’un modèle de contrôle
d’accès à base de rôles. Master’s thesis, UPMC, Paris, France (2007)

11. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D.,
Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidelberg
(2005)

12. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

13. Hoare, C., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood
Cliffs (1998)

14. Jaume, M., Morisset, C.: On specifying, implementing and comparing access control
models. A Semantical Framework. Technical report, Univ. Paris 6, LIP6 (2007)

http://www.commoncriteriaportal.org/

A Component-Based Access Control Monitor 353

15. Jürjens, J.: UMLsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

16. LaPadula, L., Bell, D.: Secure Computer Systems: A Mathematical Model. Journal
of Computer Security 4, 239–263 (1996)

17. Leavens, G.T.: Jml’s rich, inherited specifications for behavioral subtypes. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer, Heidelberg
(2006)

18. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
In: Intl. Symp. on Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2006), full version as UNU-IIST Technical Report 343 (August
2006), http://www.iist.unu.edu

19. Liu, Z., Stolz, V.: The rCOS method in a nutshell. In: Fitzgerald, et al. (eds.) [9]
20. McLean.: The algebra of security. In: Proc. IEEE Symposium on Security and

Privacy, pp. 2–7. IEEE Computer Society Press, Los Alamitos (1988)
21. Morisset, C.: Sémantique des systèmes de contrôle d’accès. PhD thesis, Université

Pierre et Marie Curie - Paris 6 (2007)
22. Roscoe, A.: Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs

(1997)
23. Sandhu, R., Chen, F.: The multilevel relational (mlr) data model. ACM Trans. Inf.

Syst. Secur. 1(1), 93–132 (1998)
24. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. IEEE Computer 29(2), 38–47 (1996)
25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.

Addison-Wesley, Reading (1997)
26. Tata Consultancy Services. Mastercraft, http://www.tata-mastercraft.com/

http://www.iist.unu.edu
http://www.tata-mastercraft.com/

Navigating the Requirements Jungle�

Boris Langer1 and Michael Tautschnig2

1 Diehl Aerospace GmbH
An der Sandelmühle 13, 60439 Frankfurt, Germany

2 Institut für Informatik
Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany

Abstract. Research on validation and verification of requirements specifications
has thus far focused on functional properties. Yet, in embedded systems, func-
tional requirements constitute only a small fraction of the properties that must
hold to guarantee proper and safe operation of the system under design.

In this paper we try to shine some light on the kinds of requirements occurring
in current embedded systems design processes. We present a set of categories
together with real-life examples. For each of them, we briefly describe possible
approaches towards formal modeling and automated verification of the respective
properties.

1 Introduction

Control systems deployed in commercial aircrafts, emergency systems installed in nu-
clear power plants, remote-controlled surgery robots in hospitals, and automated brak-
ing assistants in automobiles are just a few examples of modern safety-critical systems.
During the last decades, humans are increasingly poised to hand the responsibility for
their lives over to electronic systems.

The growing complexity of these systems, and the fact that a failure of a single sub-
system may have fatal consequences for the users, forces the industry to reconsider the
underlying development process to obtain products of the required quality.

The large scale of the systems inevitably requires a great number of stakeholders.
Communication of needs and constraints is thus fundamentally complex, both
because of the sheer amount, and even more because of different—domain specific—
vocabularies. Ambiguities in early specifications (Figure 1) then yield costly changes at
later project phases.

To overcome such issues, requirements based approaches (cf. [1]) are used in systems
development. Requirements describe properties of a system. They give specifications
of varying precision of the system to be developed, and later provide means to judge
whether the product meets the goals.

The IEEE Standard 830 [2] lists desirable characteristics of requirements: (a) correct,
(b) unambiguous, (c) complete, (d) consistent, (e) ranked in importance and/or stabil-
ity, (f) verifiable, (g) modifiable, and (h) traceable. Further, each requirement shall be
uniquely identified.
� Supported by DFG grant FORTAS – Formal Timing Analysis Suite for Real Time Programs

(VE 455/1-1).

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 354–368, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Navigating the Requirements Jungle 355

How the customer
explained it

How the analyst
designed it

How the programmer
wrote it

What the customer
really needed

Fig. 1. Well known misunderstandings in a project

Requirements Engineering in Avionics Industry
Because of the background of the authors, our view on the development process is
inherently biased towards avionics industry. The term “avionics” is a synthesis of avi-
ation and electronics. Starting in the early 1970s, the number of systems in an aircraft
has grown in orders of magnitude. Thus it was necessary to emphasize integration of
subsystems. It was primarily driven by the change from mechanical instruments to elec-
tronic instruments. This gave birth to avionics industry. Nowadays more than half of the
budget of a new aircraft is spent on avionics systems.

Diehl Aerospace is one of the largest avionics suppliers in Europe. We deliver sys-
tems for Airbus and Boeing. Typical products are control systems for flaps, display
systems, and cabin systems.

The avionics industry has been successful since around 30 years in developing highly
reliable systems. Traveling by aircraft is safer than in any other vehicle. This might be
due to a good understanding of the typical problems that can occur during a flight, but
also because of the huge amount of money that is spent during the analysis phases of
each newly developed program. As we expect air traffic to triple in the next 20 years,
sustaining the quality and safety becomes a huge challenge for the existing infrastruc-
ture and new systems will need to be developed.

To guarantee quality and safety, regularities and guidelines controlled by official
authorities must be adhered to. At systems level this is the international standard SAE-
4754 [3], and for the software sub-systems DO-178B / ED-12B [4] applies. All guide-
lines are built on consensus of all players in industry. Most of these standards are based
on older international standards like [5]. Further, many manufacturers compile internal
standards based on existing ones to tailor them towards their typical projects (cf. [6]).

As we focus on software in this paper, we are primarily concerned with the objectives
laid out in DO-178B / ED-12B. It delineates verification constraints to detect and report
errors that may have been introduced during the software development processes. Soft-
ware verification objectives are satisfied through a combination of reviews and analysis,
the development of test cases and procedures, and the subsequent execution of those test
procedures.

356 B. Langer and M. Tautschnig

Contribution. In all such assessments, requirements specified earlier are checked. Not
only the ability to assess varies largely among the set of requirements, but also the
techniques used to describe the requirements are non-uniform. In this paper we we give
a taxonomy of the kinds of requirements typically found in avionics system design,
and take a short glance at possibilities of verifying that a requirement is met by an
implementation. We therefore wade through the jungle of requirements along several
paths: Requirements are first grouped according to their occurrence in the development
process in Section 2.1, and then following our categorization in Section 3. We give
examples from our domain to illustrate the abstract terms.

2 Requirements in the Design Process

Abstraction is a key concept in dealing with large scale system designs. Successive
refinement keeps complexity local and manageable. Requirements follow this schema
and occur at all levels of abstraction. For example, requirements coming from the cus-
tomer are very high level and implementation independent, whereas the requirements
for a specific software module are as detailed as necessary to directly derive source code
based on them.

2.1 Hierarchy of Requirements

In Figure 2 the hierarchy of requirements is illustrated as a pyramid. The top level
process in the aircraft development cycle includes the identification of aircraft functions
and the requirements associated with these functions ([3] §5.1). As a result the purchaser
technical specification (PTS) is the first document that describes the need of a new
program. Each of the potential suppliers must explain to the purchaser how they intend
to satisfy the requirements.

High Level Requirements. Specifications given in the PTS are also known as high level
requirements (HLR). These are then refined to more detailed requirements. It is up to
the systems design department to decide which of the requirements to allocate to a
software modules or to a hardware modules.

Low Level requirements. The refinements of HLRs are called low level requirements.
These describe software and hardware components in further detail. In the implemen-
tation phase, the low level requirements will be directly linked to parts of the system,
i.e., source code or software architecture artifacts.

Derived Requirements. The class of derived requirements contains all specifications
that do not stem from any design decision and thus cannot be traced backwards the re-
quirements hierarchy. They are, however, essentially linked towards lower level require-
ments. As an example, consider the use of a specific scheduler (derived requirement),
which dictates the least possible sampling rate (low level requirement).

Navigating the Requirements Jungle 357

HW

User
Requirements

System Requirements

High Level
Requirements

SW

Derived
Requirements

Low Level
Requirements

Problem
Domain

Solution
Domain

Fig. 2. The requirements pyramid

2.2 Assessment of Requirements

Requirements present the necessary conditions for quality and safety. Achievement, and
thus the sufficient conditions thereof, must be checked in all phases of systems design.
Therefore several principal processes of assessment are linked to requirements, which
are detailed next. An overview of all activities in the development process is given in
Figure 3.

Validation. In avionics, [3] §7 defines the process of validation as follows:

Validation of requirements and specific assumptions is the process of ensuring
that the specified requirements are sufficiently correct and complete so that
the product will meet applicable airworthiness requirements. Validation is a
combination of objective and subjective processes.

Thus, in Figure 3, the arrows labeled “validation” are drawn backwards to preceding
phases. In each phase, all requirements must be validated against the requirements of
the previous phases before a project can proceed.

Traceability. The key to validation of requirements is traceability [7], i.e., the existence
of links between requirements, with the exception of derived requirements, as laid out
in Section 2.1. Traceability enables later validation of the entire design and guaran-
tees correspondence of the customer’s high level requirements down to implementation
details. DO-178B / ED-12B [4] §5.1.3 states this as follows:

Each system requirement allocated to software should be traceable to one or
more software high-level requirements.

358 B. Langer and M. Tautschnig

Verification

D
e
sig

n

A
n
a
lysis

Requirements
Verification

V
a
lid

a
tio

n

V
a
lid

a
tio

n

Programming
Language

Object Code

Model

A
b

s
tr

a
c
ti

o
n

In
te

g
ra

tio
n

V
e
ri
fic

a
tio

n

Im
p
le

m
e
n
ta

tio
n

Fig. 3. The V-Model

Verification. While validation and traceability are only concerned with requirements
themselves, verification links requirements and implementation. It is the process of as-
sessing correctness of the implementation according to given requirements derived dur-
ing analysis phase [3] §8.

Because of the complexity of requirements involved in large scale systems design,
this calls for tool support (cf. [8]). While this is available using tools like Telelogic’s
Doors and Rhapsody, and Mathworks’ MATLAB, qualification as required by DO-
178B / ED-12B restricts the set of tools applicable in a DO-178B / ED-12B conforming
process.

Qualification of a tool is needed when processes of DO-178B / ED-12B are elim-
inated, reduced or automated by the use of a software tool without its output being
verified. Only deterministic tools may be qualified, that is, tools which produce the
same output for the same input data when operating in the same environment. The tool
qualification process may be applied either to a single tool or to a collection of tools.

Formal Methods. Proper formal verification requires the use of formal methods, both
in requirements specification and in the process of verification itself. Further, [3] states:

Any attempt to justify that a complex or highly integrated system is sufficiently
error free, solely by means of testing, quickly becomes impractical as the sys-
tem complexity increases.

DO-178B / ED-12B §12.3.1 explicitly states that formal methods may be applied to
software requirements that (a) are safety-related, (b) can be defined by discrete mathe-
matics, and (c) involve complex behavior, such as concurrency, distributed processing,
redundancy management, and synchronization.

Navigating the Requirements Jungle 359

Current considerations for the successor of DO-178B / ED-12B take further formal
methods into account. This means that future avionic programs can and/or must benefit
from the power of mathematical techniques for validation and verification.

Nevertheless, there is a certain gap in practical applicability. In general, the benefits
of formal methods are well acknowledged in avionics industry and several ongoing
projects work on the introduction of related tools. From a system engineers perspective,
however, there is a hurdle of fear to be overcome. The anxiety is twofold: First, a loss of
control because of the involved complexity and lack of understanding is feared. Second,
costs have not been fully understood, not even investigated, yet. Therefore, acceptance
of formal methods is still lacking in many areas.

3 Categorizing Requirements

In the following we try to establish a sensible taxonomy for requirements found in
real avionics projects. We also list possibilities for formal modeling and verification
of the respective requirements. These listings will emphasize some gaps between the
often idealized academic view and industrial requirements found in our projects. The
examples of requirements are taken from an assessment of six recent projects conducted
by Diehl Aerospace:

– The Onboard Airport Navigation System (OANS) for the A380
– The Doors and Slides Control System (DSCS) for the A350
– The Doors Control and Management Unit (DCMU) for the A380
– The Smart MultiFunction Display for the NH90 (SMD88)
– The Loader Software for the A400M
– The Display System of for Sikorsky S76

To avoid issues with intellectual property, however, in the given examples we have
replaced the original names referring to these projects by MODULE, SYSTEM, etc.

3.1 Towards a Taxonomy

Obtaining a common taxonomy has proved to be very difficult. Even in the projects an-
alyzed there were inconsistencies and heterogeneous categories. We decided to choose
the main categories proposed by [9] and consider all other categories as sub-categories
that can be assigned to one main category. The main categories are:

– Functional
• behavior of the system
• inputs, outputs and the functions it provides to the user

– Non-Functional
• express attributes of the system
• attributes of the environment
• usability
• reliability
• performance
• supportability

360 B. Langer and M. Tautschnig

– Design Constraints
• impose limits on the design of the systems
• do not affect the external behavior of the system
• must be fulfilled to meet technical, business or contractual obligations

To contrast some current trends, we will focus on non-functional requirements and
design constraints in this document. Functional properties are already well supported by
several modeling toolkits. The verification then focuses on simulation-based techniques,
but formal methods like model checking [10] are in use as well.

Our focus on non-functional properties is also due to the fact that non-functional
requirements are more generic than application-specific functional properties. Addi-
tionally, the ratio between functional and non-functional requirements in the programs
under consideration was significantly towards the non-functional requirements (approx-
imately 70 percent).

3.2 Non-functional Requirements

Non-functional requirements are also known as qualities of a system. We define non-
functional requirements as the set of properties specifying in detail how to perform the
intended functionality, in contrast to functional properties that state what the system
under scrutiny shall do.

Safety Requirements. We refer to safety as described in [3]:

Safety is defined as the state in which risk is lower than the boundary risk.
The boundary risk is the upper limit of the acceptable risk. It is specific for a
technical process or state.

Safety requirements should be determined by conducting a functional hazard assess-
ment consistent with the processes in [11]. Safety can be considered as the most
important aspect in avionics systems. Even though closely related, the security aspect
currently is under consideration, but has less impact. This will change due to the fact
that a system that is not secure cannot be safe (due to malicious persons). We distinguish
qualitative and quantitative safety, as defined by [6]:

Qualitative Safety is the compliance with requirements associated with hazard
reduction principles, (common cause failure avoidance, requirement for segre-
gation or fail safe at item of equipment level, requirements for particular type
of function, monitoring, type of failure detection, requirement associated with
components, requirement of Development Assurance Level, etc.).

Quantitative Safety is the compliance with requirements for occurrence rate as-
sociated to particular functioning mode or to particular mal-functioning reper-
cussions (failure conditions at item of equipment level).

We consider the following examples as representatives of safety requirements typically
occurring in our projects:

Navigating the Requirements Jungle 361

Req 1. Neither run-time errors, nor non-deterministic constructs the consequence of
which includes processor halt, nor data corruption, nor security breaches, shall remain
in the software.

Req 2. The code in use shall assure that no undesired or unscheduled events can be
generated by the software itself.

Formal correctness according to such requirements may be shown through static analy-
sis [12] or model checking [10]. Both approaches may be fully automated, but require
specifications to be expressed using specific logics and implementations to be translated
or rewritten. To make the specification accessible to the system engineer, approaches
such as SALT [13] may be followed. Recently, software model checking [14,15,16] has
emerged as a sub-discipline of model checking, where implementations provided as C
or Java code may be checked directly. Specifications may be given within the source
code, using assertions and dedicated labels. The effective applicability of model check-
ing depends upon the expressibility and availability of requirements in the specification
dialect in use. We will, in the following, refer to model checking as one possible ap-
proach in several requirement categories, but note the dependency on usable formal
specifications.

At this point it should be noted that the term safety is used for a specific class of
specifications in this community. While at an abstract level qualitative safety may be
expressed using safety properties (as used in formal verification), this does not hold for
all examples of requirements listed here, as seen below.

Further formal and semi-formal techniques include automated and interactive theo-
rem proving [17,18], Simulation [19], and Testing [20,21]. Most notably, both simula-
tion and testing can be performed without any explicit specifications at hand and may
thus see frequent use in development processes; but conversely, guarantees of correct-
ness are a lot harder to obtain there.

In all of the above listed approaches, scalability to large scale systems is still an issue.
Furthermore, purchaser and supplier must establish a level of trust that verification has
been applied [22].

Req 3. The safety relevant items/functions should provide adequate isolation; i.e., fail-
ure of one component/sub-function shall not cause a failure of another one.

Req 4. It shall be demonstrated where practical that all possible combinations of input
signals independent of their sequence will not lead to abnormal system operation or
status indication.

Requirements describing interaction between components may be formally modeled us-
ing interface automata [23], or in certain cases also using type- and effect systems [24].
Whereas the latter has seen frequent practical applications [25], interface automata have
not been widely adopted in industry thus far.

Req 5. Inadvertent activation of the MODULE shall be less than 1× 10−5.

Req 6. The SYSTEM equipment shall be designed to minimize the potential for human
errors that would significantly reduce safety.

362 B. Langer and M. Tautschnig

Whenever requirements do not fully prohibit errors, but instead constrain error rates
by certain bounds, probabilistic models [26,27] and failure mode and effect analysis
(FMEA) [28] is called for. This may be combined with model checking [29,30].

Req 7. Special care shall be taken by the supplier and the purchaser to avoid display
of ambiguous and/or meaningless information and messages.

Even though clearly a safety requirement, the lack of metrics for such a requirement
make the application of formal methods impossible in Req. 7.

Reliability Requirements. Reliability is the probability that an item will perform a
required function under specified conditions, without failure, for a specified period of
time [5].

Req 8. The possibility of common mode faults that significantly reduce the reliability
should be avoided.

Req 9. The reliability of monitoring functions shall be better (at least one order of
magnitude) than the reliability of the corresponding monitored systems.

The aspect of availability is closely tied to reliability. Availability is the “probability
that an item is in a functioning state at a given point in time [6]” or the “Continuity of
function [3] §5.2.1”. Since some aircraft systems are required to perform a safe landing
(e.g., the primary flight display in the cockpit) they have very high availability require-
ments. Example requirements for availability are:

Req 10. The equipment should continue to operate correctly and continue to meet the
safety requirements when subjected to several simultaneous fault conditions.

Req 11. Total loss of the MODULE functions shall be less than 1× 10−6.

Both, reliability and availability requirements may be modeled and checked using
FMEA techniques and probabilistic systems, as detailed for Req. 5 and 6. It shall be
noted, however, that for software systems numbers analogous to MTBF (mean time
before failure), which constitute the core of assessment in hardware systems, have not
been established yet. Further, probabilistic reasoning generally is applied on abstract
models, and not on an effective implementation.

Performance Requirements. Performance requirements define attributes of the func-
tion or system that make it useful to the aircraft and the customer. In addition to defining
the type of performance expected, performance requirements include function specifics
such as accuracy, fidelity, range, resolution, speed and response time [3] §5.2.2.3. This
means that performance requirements do not cover only the aspect of processing speed,
but also consider operational aspects and usability. Nevertheless, the worst case exe-
cution time (WCET) is often assessed during requirement analysis and has to demon-
strated on the final product.

Req 12. If the mechanism has no strictly predictable time behavior, as e.g., main loops
applying polling mechanism, additional design precautions and verification measures
shall be taken to fulfill the real time requirements of the system.

Navigating the Requirements Jungle 363

It should be noted that in real-time systems time likely affect proper function, and thus
must also be considered to be a functional requirement in some cases:

Req 13. The maximum response time between MODULE commands available on NET-
WORK receiver and availability on NETWORK transmitter shall not exceed 50ms.

Req 14. The MODULE shall draw the reference format in a maximum time of 20 ms.

Execution time analysis has traditionally been based on informal testing of the sys-
tem under scrutiny on the effective target platform or using a simulator of the plat-
form [31,32]. Formalizations of testing based approaches are presented in [33]. Safe
upper bounds on WCET may be computed using static analysis [34].

Examples of performance requirements not related to execution time are:

Req 15. The SYSTEM shall ensure that A/C position accuracy is not degraded by more
than 0.5 m.

Req 16. The MODULE shall process only a single operation at a time.

Again, probabilistic models and (probabilistic) model checking may be applied. As
above, the translation of Req. 15 and 16 to specifications usable in model checking may
be difficult and is very specific to the techniques used in the implementation. If it is
applicable, however, the specifications used in model checking may become part of the
software model. This would cater for support within the software engineering process,
which is essential in cases where timing behavior affects proper function (see above).

Physical and Installation Requirements. We consider two sub-categories of physical
requirements: environmental and equipment specific. The former deal with the loca-
tion and surroundings of the avionics system, which is located in a special room called
avionics bay. This room has an air conditioning system available that produces an op-
timal climate for electronic components. In case the air conditioning system fails, the
electronic equipment has to perform the functionalities for a certain amount of time
without degrading. Another problem arises when the air conditioning is powered down
and the aircraft is parked in a hot location. Thus temperatures in the avionics bay can
climb up to 80◦C. Even in this situation the equipment has to perform its tasks after
power up without problems.

One of the issues coming up recently in avionics is the single event upset (SEU). With
a higher integration of electronic circuits the probability of a neutron hitting a memory
cell has increased. Especially for aircrafts flying at high altitudes this has become a real
issue. To guarantee safe operations some measures have to be taken.

Req 17. The hardware and software implementation solutions shall consider the possi-
bility of atmospheric radiation effect. E.g., SEU (single event upset) and MBU (multiple
bit upset, specifically MBUs leading to single word multiple upset) due to particle en-
vironment (radiations as for example: neutrons, protons, heavy ions, etc.) at high flight
altitude (see also ABD0100.1.2 §4, also applicable for MBU).

Both at software and hardware level (using models of the processing units), model
checking and other formal methods listed for safety requirements may be applied. Spec-
ifications, however, will be highly involved and must be tailored towards each imple-
mentation. A more generic method would thus be desirable.

364 B. Langer and M. Tautschnig

Req 18. Each equipment of the SYSTEM shall be compliant with the conditions speci-
fied in document RTCA/DO-160 §13 “Fungus Resistance” with category depending on
the component’s installation location.

Equipment specific requirements deal with all physical onboard pieces. Each piece of
equipment adds up to the total weight of an aircraft. The airlines demand an efficient
fleet and therefore the aircraft manufacturers try to minimize weight and power con-
sumption on every single component.

Req 19. The maximum weight of the complete SYSTEM shall be less than 35 kg.

Req 20. The maximum power consumption of the system/equipment shall be 80 VA.

Mathematical modeling of Req. 18–20 may be based on computer aided design (CAD)
tools, possibly with specific annotations. Statistic analysis of the modules in each de-
sign then yield the desired numbers. This technique is referred to as computer aided
engineering (CAE) and tool support is widely available.

Maintainability Requirements. In [5] maintainability is defined as follows:

Maintainability is the capability of the [. . .] product to be modified. Modifica-
tions may include corrections, improvements or adaptions of the software to
changes in environment, and in requirements and functional specifications.

This category includes scheduled and unscheduled maintenance requirements, and any
links to specific safety related functions. Factors such as the percent of failure detec-
tion or the percent of fault isolation may also be important. Provisions for external test
equipment signals and connections should be defined in these requirements [3] §5.2.2.5.

Req 21. The supplier shall comply with ABD0100.1.14 and GRESS module 1.8 for
Obsolescence Management requirements.

Req 22. Fault tolerance principles or components intrinsic reliability shall be adopted
where appropriate to achieve operational reliability targets and minimizes line mainte-
nance work.

Req 23. SYSTEM software in-field loading shall not exceed 15 minutes.

At best, annotated CAD models or module lists may be used to check such require-
ments. Maintainability, however, essentially involves business processes and thus would
require formal models of the development processes as well.

3.3 Design constraints

Design constraints can be considered as special non-functional requirements. In fact,
these requirements restrict the designer in choosing their architecture. Although require-
ments should be implementation independent, these special requirements are often used
to enforce a certain design to conform with other developments. Design constraints are
usually found in the lower level requirements specifications.

Navigating the Requirements Jungle 365

Architectural Requirements. Architectural requirements cope with the structure of
a software module, and the way components are tied together. In the last years, the
architecture of a system has become more and more important. Since most software
systems are part of a larger system, interface design becomes crucial, and the chosen
structure must be easily integrated into the next level of abstraction.

Req 24. Software modularity shall be considered in order to improve the efficiency of
future function evolutions.

Req 25. A modular programming style with clear predefined module interfaces shall
be introduced in the operational software in order to layer the whole software package
in a hardware dependent part and in a hardware independent part.

Req 26. Functional independent software parts shall be segregated in different soft-
ware modules.

Req 27. The SYSTEM shall be able to support slight modifications with a minimum
impact on the software and without needing a new architecture definition.

Req 28. The SYSTEM function software shall be designed to be highly re-usable and
to optimize hardware/software independence. In particular, the software design shall
ensure:

– Independence of the SYSTEM functions related to the aircraft environment (such as
HMI or I/O functions).

– Independence of the different SYSTEM software functions between themselves to
ensure efficient future evolutions of these functions.

– Independence of the SYSTEM software related to the hardware (for portability on
PC host unit).

Req 29. The breakdown of the software shall be the same as the one used by the pur-
chaser to produce the application detailed specification. To achieve this objective a
procedure shall be mutually defined so that the purchaser specification integrates the
supplier’s wishes.

From a formal point of view, Req. 24–29 describe syntactic properties of the implemen-
tation. Checking such specification thus is tied to the languages and modeling formalism
used in the implementation. Further, metrics to measure progress and fulfillment of the
requirements must be defined (cf. [35]).

Development Requirements. This class of requirements is also referred to as coding
guidelines. Most important are those requirements that restrict the usage of dynamic
memory allocation. Almost all of the projects under analysis contained one of these
requirements.

Req 30. The use of pointers is allowed provided the supplier applies specific coding
standard rules and review check lists to restrict and manage its use. These rules shall
be agreed upon by the supplier and the purchaser, shall forbid the dynamic memory
allocation, and shall be applied for the new software and C++ reused software.

366 B. Langer and M. Tautschnig

Req 31. Features with dynamic run-time behavior shall be avoided. No dynamic ob-
jects shall be created or destroyed during run-time.

Req 32. The MODULE shall not use dynamic memory allocation. All the memory shall
be allocated at startup. The update by copy of the pre-allocated memory is allowed but
the boundaries shall be checked.

Other development requirements are:

Req 33. The policy for the intended use of IEEE floating point computation shall be
described in the Plan for Software Aspects of Certification (PSAC) and detailed in Soft-
ware Design and Code Standards.

Req 34. The instrumented code shall only be used for demonstration of structural
coverage, timing behavior, etc. Subsequently, the target executable object code shall
be compiled and linked from the non-instrumented source code. Requirements based
testing shall be repeated at the same level of testing and documented for the non-instru-
mented software package to demonstrate equivalence of functional and runtime-behav-
ior for both instrumented and non-instrumented code.

Req 35. For validation purposes, the equipment shall allow to simulate internal failure.

An analysis of approaches towards formal verification yields three groups here: (i) Sta-
tic properties of source code. Here, syntactic checks as proposed for architectural re-
quirements apply. (ii) Dynamic properties of the implementation. Model checking and
static analysis may be used, as suggested for Req. 1. (iii) Business process related. For-
mal methods at software level do not apply.

HW/SW Interface Requirements

Req 36. If the status returned by a MODULE register access function call is not RE-
SULT OK, then an application error shall be raised.

This reachability property is best modeled and verified using model checking tools.
Even though it may involved interaction with hardware, abstract models enable check-
ing of the combined system.

Req 37. The software design shall not compromise the hardware failure tolerance.

The lack of metrics makes the formal analysis of such a requirement infeasible. Estab-
lishing appropriate metrics would be highly desirable, however, and enable probabilistic
modeling and analysis of such requirements.

Req 38. If the supplier uses the cache memory of a processor, they shall demonstrate
as part of the verification plan the deterministic behavior of their solution.

Req 39. Usage of special software dependent resources (e.g., usage of CPU-registers
for special purposes or cache memory) shall be justified and mentioned within the Soft-
ware Accomplishment Summary.

Req. 38 and 39 involve parts of the business process and thus cannot be formally
checked at the implementation level.

Navigating the Requirements Jungle 367

4 Conclusions

Requirements form the basis of all systems developments processes in avionics indus-
try. The large scale systems, however, yield a vast amount of requirements that must
be managed and communicated. Based on our ongoing projects, we have presented a
taxonomy to categorize the occurring requirements.

Focusing on non-functional properties and design constraints, we have given a set of
examples of effectively occurring requirements and tried to elaborate formal means of
verifying the respective properties.

The list of requirements and possibly applicable formal methods emphasizes the gap
between an idealized mathematical model and practical applicability in an industrial
context. While we do acknowledge the progress in fundamental research, we also hope
that our work stimulates the development of tools that can be applied in our industrial
context to further improve quality and safety in airborne traffic.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. In: Finkelstein,
A.C.W. (ed.) The Future of Software Engineering, Companion volume to ICSE (2000)

2. IEEE New York, NY, USA: IEEE Recommended Practice for Software Requirements Spec-
ifications (June 1998)

3. Society of Automotive Engineers, Inc. Warrendale, PA, USA: SAE ARP 4754, Certification
Considerations For Highly-Integrated Or Complex Aircraft Systems (November 1996)

4. RTCA Inc. / EUROCAE: DO-178B / ED-12B, Software Considerations in Airborne Systems
and Equipment Certification (December 1992)

5. International Organization for Standardization: ISO/IEC 9126-1:2001, Software engineering
– Product quality – Part 1: Quality model (2001)

6. Airbus Industries Blagnac Cedex, France: Equipment – Design – General Requirements For
Suppliers (December 1996)

7. Eide, P.L.H.: Quantification and Traceability of Requirements. Technical report, NTNU Nor-
wegian University of Science and Technology (2005)

8. Kornecki, A.J., Hall, K., Hearn, D., Lau, H., Zalewsi, J.: Evaluation of software development
tools for high assurance safety critical systems. In: HASE (2004)

9. Leffingwell, D., Widrig, D.: Managing Software Requirements. Addison-Wesley, Reading
(2003)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
11. Society of Automotive Engineers, Inc. Warrendale, PA, USA: SAE ARP 4754, Guidelines

and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and
Equipment (December 1996)

12. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn. Springer,
Heidelberg (2005)

13. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for temporal logic.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775. Springer, Heidelberg
(2006)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software Verification with BLAST. In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer, Heidel-
berg (2003)

368 B. Langer and M. Tautschnig

15. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

16. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized Symbolic Execution for Model
Checking and Testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 553–568. Springer, Heidelberg (2003)

17. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2. Elsevier
and MIT Press (2001)

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order
Logic. Springer, Heidelberg (2002)

19. Wall, A., Andersson, J., Norström, C.: Probabilistic simulation-based analysis of complex
real-times systems. In: ISORC (2003)

20. Tretmans, J., Brinksma, E.: TorX: Automated model-based tesing. In: ECMDSE (2003)
21. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case Genera-

tion for Dynamic Analysis and Measurement. In: CAV, pp. 209–213 (2008)
22. Chaki, S., Schallhart, C., Veith, H.: Verification Across Intellectual Property Boundaries. In:

Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 82–94. Springer, Heidel-
berg (2007)

23. de Alfaro, L., Henzinger, T.A.: Interface Automata. In: FSE, pp. 109–120 (2001)
24. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
25. Kühnel, C., Bauer, A., Tautschnig, M.: Compatibility and reuse in component-based systems

via type and unit inference. In: SEAA, pp. 101–108 (2007)
26. Vesely, W.E., et al.: Fault tree handbook. Technical Report NUREG-0492, Systems and Reli-

ability Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commis-
sion, Washington, DC (1981)

27. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand Reinhold, New York (1960)
28. Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd

edn. ASQ Quality Press (2003)
29. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:

FOCS, pp. 327–338 (1985)
30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 2.0: A tool for probabilistic model check-

ing. In: QEST, pp. 322–323 (2004)
31. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully automatic worst-case execution time

analysis for Matlab/Simulink models. In: ECTRS, pp. 31–40 (2002)
32. Wang, Z., Haberl, W., Kugele, S., Tautschnig, M.: Automatic Generation of SystemC Models

from Component-based Designs for Early Design Validation and Performance Analysis. In:
WOSP (2008)

33. Kirner, R., Veith, H.: Formal timing analysis suite for real-time programs. Technical Re-
port 58, Technische Universität Wien, Vienna, Austria (2005)

34. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H.,
Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-life proces-
sor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 469–485.
Springer, Heidelberg (2001)

35. Lakos, J.: Large Scale C++ Software Design. Addison-Wesley, Reading (1996)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 369–384, 2008.
© Honeywell International Inc 2008

Non-functional Avionics Requirements

Michael Paulitsch1, Harald Ruess2, and Maria Sorea3

1 Honeywell Aerospace, Golden Valley, MN 55422, USA
Michael.Paulitsch@honeywell.com

2 IABG, Ottobrunn, Germany
Ruess@iabg.de

3 EADS Innovation Works, Munich, Germany
Maria.Sorea@eads.net

Abstract. Embedded systems in aerospace become more and more integrated in
order to reduce weight, volume/size, and power of hardware for more fuel-effi-
ciency. Such integration tendencies change architectural approaches of system
architectures, which subsequently change non-functional requirements for
platforms. This paper provides some insight into state-of-the-practice of non-
functional requirements for developing ultra-critical embedded systems in the
aerospace industry, including recent changes and trends. In particular, formal
requirement capture and formal analysis of non-functional requirements of avi-
onic systems – including hard-real time, fault-tolerance, reliability, and perfor-
mance – are exemplified by means of recent developments in SAL and HiLiTE.

Keywords: Non-functional requirements, avionics, integrated modular avionics.

1 Introduction

Sometimes a clear separation between functional requirements (FR), which specify
behavior, and non-functional requirements (NFR) consisting of constraints and quali-
ties is suggested [24]. Hereby, qualities are properties of the system that its stake-
holders care about and, hence, will affect their degree of satisfaction with the system;
in contrast, constraints are not subject to negotiation and, unlike qualities, are off-
limits during design trade-offs.

In the context of avionics systems we are arguing that such a clear separation be-
tween FR and NFR is often not possible as such a classification depends on the given
context and the level of abstraction. Indeed, Paech et al. [29] propose an integrated
view of NFRs, FRs, and architecture. This view is shared by the authors as will be
illustrated in the avionics, and in particular the integrated modular avionics (IMA),
domain.

The paper starts with related work in the field, followed by a general discussion of
a selected set of NFRs in avionics. In particular, we discuss the impact of aerospace
electronic system integration on NFR. In the remainder, we exemplify the formal cap-
ture and analysis of NFR in integrated modular avionics (IMA) architectures.

370 M. Paulitsch, H. Ruess, and M. Sorea

2 Related Work

There are multiple papers describing nonfunctional requirements (NFR) and func-
tional requirements (FR) similar to this paper’s overview on NFR. E.g., Glinz pro-
vides a detailed overview and discussion on NFR and FR and their differences [17].

The second class of related papers describes approaches of formally capturing and
analyzing NFRs. Srivastava and Narasimhan [43] describe architectural support for FR
and NFR of software exhibiting different mode-driven fault tolerance while consider-
ing quality of service properties. AADL (Architecture Analysis and Design Language)
is an architecture description language (based on the MetaH developed by Binns et al.
[12]) and standardized by the SAE [39]. AADL aims to provide support for domain-
specific architectural styles and software patterns on distributed processor platforms.
Heitmeyer et al. [20] formally analyze requirements specifications for type errors,
completeness, circular definitions and non-determinism and apply these to examples in
avionics. Morris and Koopman [26] present a technique to visualize system-level non-
functional properties of embedded systems. Xu et al. [53] transform dependability re-
quirements and architectural patterns into software architecture. Bate et al. [8] provide
an approach to capture and model functional and non-functional properties in safety-
critical systems. Owens et al. [27] present an integrated safety-oriented methodology
for system development that combines the four state-of-the-art techniques intent speci-
fication, STAMP, STAMP-based hazard analysis (STPA), and state analysis. This
methodology helps managing NFR especially safety-related aspects of NFRs. Bhatt et
al. [10,11] address FR and NFR for the model-based development (MBD) of avionics
systems. MARTE, a UML Profile for Modeling and Analysis of Real-time and Em-
bedded Systems [27], allows capturing of NF properties.

3 Background: The Evolution of Avionics Platforms

The ongoing trend to even more integration and modular architecture approaches for
avionics with Integrated Modular Architectures (IMA) influences the NFR for avionic
platforms. Accompanied with trends of ever-decreasing design cycles and life expec-
tancy of consumer electronics, NFRs are changing as do FRs with additional perform-
ance, pilot, and safety enhancements, such as synthetic vision, electronic flight bag,
and required navigation performance. This document discusses aspects of integration
of different subsystems into a common avionics platform characterized by a general
compute platform and I/O interfaces and its impact on non-functional properties. I/O
and computers are connected by a shared system network. The benefits of an IMA,
like scalability, and obsolescence, have been widely recognized and are discussed
with other NFR and properties in this paper.

Drivers for integration are reduction of size/volume, weight, and power needs
(main theme is weight!); also some functional aspects, pilot workload reduction and
convenience, and safety enhancements are direct or indirect drivers for integration
(e.g. paperless cockpit). The term avionics comprises different systems depending on
target market (commercial or military) or even for different markets (air transport,
regional, and general aviation). Hence, integrated avionics can have a different mean-
ing across various business segments. At the point of writing this paper, integration

 Non-functional Avionics Requirements 371

level reached in air transport commercial avionics is characterized by a common open
system bus ARINC664 [1], with interfaces to different systems including flight con-
trol, engine control, passenger entertainment. Future integration efforts could stretch
to include flight control electronics and engine control electronics into “traditional”
avionic systems, such as display, navigation, communication, management, even for
air transport category aircraft. In the military domain ASAAC (Allied Standard Avi-
onics Architecture Council) is an emerging standard, which includes health-
monitoring and in-flight reconfiguration capabilities.

4 Non-functional Avionics Requirements

This section presents multiple different avionics NFRs, related to dependability, per-
formance, development, and operation.

4.1 Security

Security is a NFR that gains importance in integrated avionics as described by Jacob
[21], Johnson [22] and Royalty [33] for the commercial airplanes sector. For example,
recent approaches of connecting aircraft management networks, passenger entertain-
ment, and avionic system in combination with the deployment of well-known COTS
technology such as Ethernet and variants of internet protocols have led to increased
security considerations as indicated by a recent FAA inquiry for Boeing's 787 [54].

In a federated architecture each subsystem is physically separate with minimal inter-
action and largely independent failure behavior from a security perspective. Tradition-
ally, avionics systems address security requirements by using system high (operating at
the highest classification of data entering the system) or by deploying an “air gap”
(physical separation). Integrated avionics require partitioning for security (partitioned
kernels and support for MILS – Multiple Independent Levels of Security/Safety) [21].
MILS is a process-oriented security architecture based on mathematical verification that
draws from ARINC-653 [384] and ensures trusted foundations. Integration of functions
has led to size, weight, and power reduction while maintaining or increasing functional-
ities (like software loading).

4.2 Maintenance

Traditionally commercial aircraft maintenance has followed very cyclic and sched-
uled maintenance approaches with multiple levels of maintenance actions depending
on service. This is largely driven by the requirement for operational schedules of air-
craft and crews as well as passenger satisfaction demanding high on-time departure
and arrival. Clear quantitative metrics like schedule interruption indexes are designed
to and tracked for an aircraft and its subsystems like avionics.

There is always an effort in significantly reducing requirements for maintenance.
For example, parts management in avionics is very rigid and each part requires a
separated number in case hardware or software load (firmware) is slightly different. In
order to streamline maintenance and reduce inventory cost, there is a strong desire
towards common parts. In IMA systems, this leads to generic I/O or general purpose
compute cards and sometimes even one module having multiple software loads stored

372 M. Paulitsch, H. Ruess, and M. Sorea

with mechanical pin strap selection schemes for functionality selection (e.g. via back-
plane connectors) dependent on its position in the rack.

Another effort underway is the extension of electronic distribution of software as
defined in the ARINC report 666 [2, 3]. This should enable correction of problems
within original specifications, resolve conflicts with emerging, preferred media-less
operations, incorporate standards for digital signatures and web services, and set the
stage for enhanced A/C software delivery, load, and management [6].

A significant effort is the extension of condition-based maintenance and prognos-
tics in avionics as, e.g. described in [19, 40]. The reason for this development lays in
the expanding role of electronics in aircraft and increased wear-out phenomena of
silicon observed at smaller feature sizes and the imperfection of built-in local test and
diagnostic test capability. Use of prognostics optimizes aircraft dispatch ability due to
two major factors. One is the higher likelihood of available parts and/or personnel
once prognostics and part supply management are interlinked. The second is that indi-
cation of failure cause reduces maintenance personnel time. Prognostic helps decreas-
ing the equipment where no faults are found. Obstacles to deployment of prognostics
are the multitude of failure modes and mechanisms, large number of parts with small
failure probability, and missing signatures of failure mechanisms [19].

A very progressive approach towards maintenance is taken by engine electronics.
Recognizing the mechanical wear-out dominance in turbine engines due to the severe
environment and the superior performance of redundant electronics with respect to
faults, extended operation and dispatch despite faults in electronics have been intro-
duced. The methodology described in [38] is a good publicly available description and
background for a time-limited dispatch process for redundant Full Authority Digital
Engine Controllers (FADECs). Basically, the aircraft is allowed to continue operation
for a specified period after detection of a fault dependent on the severance of potential
fault effects.

Avionics equipment (e.g., flight, display, navigation, and environmental control as
well as passenger comfort and utilities) have clearly established guidelines regarding
dispatch requirements often referred to as Minimum Equipment Lists (MELs).

4.3 Safety, Availability, and Integrity

Dependability as NFR – especially related to safety – can be divided in two major
classes. One class addresses the requirements of operation in the system environment
in case of component failures. Requirements of this class often directly manifests in
the architecture of avionics. An example of this class would be the success of a mis-
sion despite faulty components. The second class concerns the development process
of the system itself and its implication of performance in the environment. Such NFRs
may or may not show up in the avionics architecture. The second class comprises all
efforts undertaken to assure the correctness of the design and efforts addressing re-
quirements correctness as related to safety. Such non-functional requirements of de-
sign assurance have their roots – amongst others – in the impossibility of being able to
purely test to the required levels of life-critical designs [14].

Availability and integrity (in relation to safety) is hard to distinguish from safety as
any impact of availability or integrity loss of systems could directly impact safety,
where availability is continuity of function and integrity is correctness of behavior

 Non-functional Avionics Requirements 373

[36]. From a development perspective, safety of aircraft and, hence, IMA is governed
by the Federal Aviation Regulations (FAR) and Joint Airworthiness Requirements
(JAR) Part 25 for transport category aircraft and guidance material is presented in
ARP4754 [36], and ARP4761 [37]. An important aspect for understanding NFR of
avionics related to safety is the understanding of aircraft-level functions of avionics,
which traditionally have been mainly implemented with separate equipment and,
hence, have been able to be certified separately – to a certain extent. ARP4754 discus-
ses certification-aspects of highly integrated and complex avionics systems where the
term “highly-integrated” refers “to systems that perform or contribute to multiple air-
craft-level functions”. The term “complex” refers “to systems whose safety cannot be
shown solely by test and whose logic is difficult to comprehend without the aid of
analytical tools.” Aircraft level functions are e.g. flight control, flight management
system, situational awareness functions, and navigation. During certification, safety
does not only need to be assessed with respect to avoidance of spare exhaustion but
with respect to common mode influences, assurance of configuration and process (see
e.g. DO178B [35]).

An important derived NFR of IMA architectures is the separation of different
“chapters” (namely airplane-level functions) for the purpose of the easier analyses of
the impact of faults on safety of the aircraft. As a consequence, aircraft-level shared
components (like data concentrators or common compute platforms) of highly inte-
grated complex systems, will likely be implemented in a high integrity manner (for
example, using self-checking components) for transport category aircraft, so that a
single device faults have a fail passive behavior and the impact of a highly shared
device do not lead to failure effects that are hard to analyze as they would “stretch”
into interaction of multiple aircraft level functions. Such high-integrity compute plat-
forms also have a significant effect on the platform architecture and actuator redun-
dancy approaches (due to reduced need for voting in end effector).

Typical process-related requirements are that any function in an IMA needs to be
hosted on a platform with the same or higher development assurance level. Also the
integrity of a function is determined by its failure condition impact (e.g. catastrophic
impact would require level A assurance). The process also considers configuration
management and common mode analysis, such as fault tree analysis (cut set), and
zonal safety, in addition to verification and validation to ensure safe operation.

An interesting example of an NFR that is often discussed regarding its effective-
ness is the use of dissimilarity. Dissimilar designs alone (at least for software) is be-
lieved to not yield the required availability and integrity requirements [23] and
assumed to be impractical or may even provide a barrier between efficient communi-
cation between the software and the requirements team [25]. An example of success-
ful application of dissimilarity (at hardware level) is the architectural design of the
flight control computers in the Airbus A320/A330/A340. Dissimilar design on the
platform level (not application level) is uncommon to take credit for (see e.g. com-
ments in ARP4761 on dissimilarity or [13]), yet can be helpful to require on an in-
formal level. The A320 flight control incurred a loss of cooling failure and all ELACs
(ELevator and Aileron Computers) incurred a common mode fault due a batch of
components not meeting its temperature operating range [13]. Due to SECs (Spoiler
and Elevator Computers) different design from ELACs, SECs did not incur the fault
and the affected plane landed safely. If the process would have been fully trusted,

374 M. Paulitsch, H. Ruess, and M. Sorea

SEC and ELAC had not had to be dissimilar. Dissimilarity on the system-level (e.g.
different ways to display essential flight data via independent backup instruments) is
often required and successfully implemented. Similar controversy underpins the use
of signature-based approaches [30].

Typical NFRs of availability and integrity addressing redundancy-based techniques
of compensating for failing hardware due to physical effects (permanent faults) are
the well-known 10-9 failures per hour (or sometimes per mission) with respect to
safety at the aircraft level.

In order to achieve such high levels of integrity and availability, typical reliability
estimations not only need to consider reliability during mission, but also built-in test
coverage or coverage of protection functions (scrubbing). Protection functions to en-
sure availability and integrity can have latent errors. Such errors would defeat the sole
purpose of existence of protection functions, namely protection in case of fault of
other systems. An example of a protection function for a network is the enforcement
of bandwidth allocations in networks (guardian functions).

Transient faults are becoming more and more likely due to the decreased feature
size in electronics [9]. NFR to tolerate transient faults are an important aspect in the
design of IMA addressed e.g. in error detection or correction schemes for memories
or other especially vulnerable components. Transient faults traditionally do not show
up in fault tree analysis, but need analysis and design approaches depending on mag-
nitudes. Transients can be a reliability hit and impact no-fault-found rates. The recent
move towards composite airframe led to potentially increase transient upset rates of
(as well as lightning effects to) electronics due to decreased shielding.

4.4 Temporal Performance Aspects

IMA uses powerful processors to optimize size, weight and power. Yet, increasing
use of pipeline approaches and caches for performance reasons make worst-case exe-
cution time analyses harder. Dual-processor approaches with shared resources (like
caches and memory busses) may exacerbate this even further.

With the increasing gap between worst-case and best-case processor performance,
ARINC653 Operating System (OS) approaches [5] can get even more inefficient due
to static allocation of time slots. Honeywell’s OS DEOS, as used on the PRIMUS
EPIC platform, allows slack management, which basically allows a managed ap-
proach of unused execution time for other “performance hungry” processes with the
advantage of reduced response times (in single-core systems), but loss of ability of
sub-frame scheduling. Timing requirements of platforms are often application-related
end-to-end maximum requirements considering control and/or human factors. A very
demanding application to host on an integrated platform is audio. MOPS (Minimum
Operational Performance Standards) [34] requires end-to-end absolute audio delay of
10ms, which can lead to demanding platform requirements. Interesting for audio is
also a differential output maximum delay to minimize interferences and audio cancel-
lation effects between different cockpit audio outputs, which translate to maximum of
multiple tens of microsecond synchronization between audio outputs resulting in a
need of synchronization of the audio platform components.

Wittenmark et al. [52] describe impact of timing problems (jitter, delay, transient
errors) on control applications and application or platform related treatment and

 Non-functional Avionics Requirements 375

mitigation of impact of communication delays, which can increase in integrated
communication approaches. A special effect of asynchronous communication ap-
proaches like ARINC664 part 7 [1] is the possibility of oscillatory latency variations –
also referred to as “beating” – due to variations of clocks of asynchronous end
systems and resulting effects of queuing. While in ARINC629 [4] such effects have
been avoided by special bus access approaches, asynchronously switched networks
cannot prevent such effects, which may lead to application-level requirements for
mitigation.

4.5 Testing and Diagnosis

In addition to built-in test and latent error scrubbing tests described above, integration
and flight test and potentially diagnosis can require special architecture and NFR.
Especially in IMAs, flight test requires observation of a significant amount of data
flowing over the network. In addition, end systems send data on the network espe-
cially for testing purposes. All test data may need to be selectively evaluated. Given
the amount of data, this requires special network bandwidth considerations and other
performance and scheduling considerations.

4.6 Obsolescence

COTS electronics refresh cycles get shorter and shorter resulting in potential earlier
redesign of avionics platforms. As this is often not financially viable, obsolescence
aspects become an important non-functional design aspect of avionics.

Wilkinson et al. [51] describe this aspect in more details and propose a modular ar-
chitecture approach with special interconnects (network, north bridge for processors)
for electronics that become obsolete quickly (e.g. processors and memories). An ex-
ample for a glue component that is not immediately affected by obsolescence is
AFDX™ (ARINC664 part 7) network as it has been especially designed for aero-
space. Honeywell addressed obsolescence and low production volume by deploying
the MAC (Modular Aerospace Control) architecture for engine control.

4.7 Schedulability

Since the IMA approach allows multiple applications of different criticality levels to
share common computing resources, it is important to keep individual applications
away from potential interference. The main way for protecting integrated applications
and system resources is via temporal and spatial partitioning. Spatial partitioning
guarantees that an application has exclusive control over its own data and state infor-
mation. With spatial partitioning, an application can be protected from any erroneous
behaviors of other applications while sharing same physical resources. Temporal par-
titioning guarantees that an application or communication server has temporal exclu-
sive access to its pre-allocated resources. With guaranteed pre-scheduled temporal
partitioning, an application can meet their timing requirements.

For enforcing temporal partitioning, shared resources have to be scheduled while
guaranteeing timing constraints of the application. When considering ARINC-based
IMA systems, composed of several communicating applications that are connected by
a fault tolerant time division multiplexing (TDM) bus, one has to take into account

376 M. Paulitsch, H. Ruess, and M. Sorea

not only the constraints imposed by the applications but also the characteristics and
efficient usage of the underlying communication bus [31,46,49]. Temporal partition-
ing also requires careful design when leveraging hardware-based data movement
acceleration schemes (like DMAs) in that they do not interfere with partition-based
accounting of timing.

In order to extent platforms with minimum interference of existing applications, an
incremental scheduling approach should ideally be supported, where platform proper-
ties like communication latency and jitter are maintained for applications even after
adding of additional applications or boxes to the platform. This is sometimes also
referred to as delta-mode scheduling capability.

5 Exemplary Formal Requirements Capture and Analysis

The development of integrated modular avionics systems is subject to strong re-
quirements for optimality in the use of resources, and correctness with respect to non-
functional properties, as well as requirements for time-to-market and low cost through
reuse and easy customization. For early design error detection, application of valida-
tion and analysis techniques is essential, especially to guarantee NFR and properties.

Several research projects deal with the aspects of non-functional requirements. The
OMEGA project (http://www-omega.imag.fr/) extended a subset of UML with formal
modeling and analysis methods for non-functional requirements, in particular, sched-
ulability, time and performance. The SPEEDS project addresses the integration of
heterogeneous components (http://www.speeds.eu.com). Its main goal is to develop a
meta-model, which defines rich-component models to represent both functional and
non-functional aspects in a uniform way and which allows the construction of com-
plete virtual system models. COMBEST (http://www.combest.eu) extends the model-
ing methodology established in SPEEDS by developing a design theory for complex
embedded systems, fully covering components heterogeneity, interface specifications,
composability, compositionality, and refinement for functional and non-functional
properties. A first step in this direction is realized by the BIP (Behavior, Interaction,
Priority) framework that provides a methodology for modeling heterogeneous real-
time components [41]. BIP allows for analyzing functional and non-functional re-
quirements in an integrated manner, through composition of functional system models
with the architecture of the underlying execution platform, where the platform archi-
tecture is described by non-functional characteristics, such as tasks, resources, and
scheduling policies.

The SAE AADL standard [39] provides formal modeling concepts for the descrip-
tion and analysis of application systems architecture in terms of distinct components
and their interactions. AADL supports the early prediction and analysis of critical
system qualities—such as performance, schedulability, and reliability. For example,
in specifying and analyzing schedulability, AADL-supported thread components in-
clude the predeclared execution property options of periodic, aperiodic (event-driven),
background (dispatched once and executed to completion), and sporadic (paced by an
upper rate bound) events. AADL specifications may be compiled into BIP and SAL,
thereby serving as an application-specific language front-end to these verification-
oriented systems.

 Non-functional Avionics Requirements 377

Automated analysis of time-triggered bus protocols and architectures is challenging
since it requires modeling timing aspects in a precise manner, dealing with very large
state spaces, and taking failure models into account. A way for addressing this chal-
lenge is through model-based analysis (MBA). MBA is based on a four steps approach.
In a first step, a model of the protocol/system under consideration is constructed, the
so-called nominal system model. The second step involves the construction of a fault
model that basically describes all possible faults that can affect the system, under the
given fault hypothesis. Both system and faults models are usually represented as state
machines or variants thereof, for expressing timings or probabilities. These state ma-
chines are usually expressed in convenient special-purpose languages such as Simulink
or SCADE. In a third step, the desired requirements (functional and non-functional) are
specified in some formal notation to support automated analysis. There are several
candidate notations, including temporal logics like CTL or LTL and various extensions
thereof. Once the extended system model, which consists of both the nominal system
model and the fault model, is obtained, the forth step, analysis, involves verifying
whether the system requirements hold in the presence of the faults defined in the
model. Consequently, given a system model M, a fault hypothesis FH, and a NFR, the
analysis problem may formally be expressed as the well-known model-checking prob-
lem M || FH |= NFR; here, M || FH denotes the combination of the system under con-
sideration and the associated fault hypothesis. Using state-of-the-art model-checking
tools such as SAL (http://sal.csl.sri.com) [15], all possible behaviors in the presence of
faults within the scope of the specified fault hypothesis, may be analyzed. Therefore,
these techniques may be used both for exhaustive fault injection and for verification.

5.1 Dependability

Model-checking techniques have been proven as efficient for analyzing the robustness
of time-triggered communication protocols in the presence of faulty components dur-
ing design [44]. The main approach here is model-based fault injection. It is essential
to the utility of model checking for exploration and verification of fault-tolerant,
distributed systems to be able to consider a large number of different kinds of faults—
ideally, the fault model should be exhaustive, meaning that every kind of fault is de-
scribed and that the model checker injects these in all possible ways in the considered
model. Several classifications of failure modes in distributed systems can be found in
literature [32,7]. A classification of component and system level failure modes for
time-triggered communication networks, such as TTP and FlexRay is given in [42].
There, various failure modes, particularly related to time-triggered buses are distin-
guished and classified within the faults categories fail-silent, fail-omission, fail-
invalid, fail-incorrect, and fail-untimely. A dependable time-triggered protocol has to
ensure that the services it provides, such as, startup or re-integration are not flawed,
even in presence of faulty components.

The most accurate representation of a faulty component can be obtained by placing
the fault injector at the node module describing the component [45]. On the other
hand, modeling faulty communication links is realized by injecting faults in the mod-
ule specifying the communication. Faults vastly increase the state space that must be
explored in model checking, since they introduce genuinely different behaviors. This
aspect is considered in SAL by introducing a fault degree, as illustrated in [44]. A

378 M. Paulitsch, H. Ruess, and M. Sorea

fault degree classifies the possible outputs of a faulty component, according to the
failure modes identified above. For covering all failure modes related to time-
triggered communication based on TTP, a fault degree of six is necessary. For exam-
ple, a fault degree of 1 allows a faulty node only to fail silent, while fault degree 6
allows a node to send an arbitrary combination of frames with correct or incorrect
semantics, noise, or nothing on each channel (i.e., Byzantine node failures). This sce-
nario covers all failure modes from [42]. The following guarded command is used to
inject into a node module a fault with a degree greater or equal 2.

 [] state = faulty AND degree >= 2
 msg_out' = [[j:channels] IF j = 0 THEN cs_frame ELSE quiet ENDIF];
 time_out' = [[j:channels] IF j = 0 THEN S2 ELSE S1 ENDIF];
 state' = state;

Here, a faulty node sends a message (here cs_frame) on one channel and quiet on
the other. Moreover, on the first channel the faulty node masquerades as node S2 (by
sending the ID of node S2 in its time slot, here identified by S2).

Model-based fault injection techniques are used for assessing the robustness and
fault-tolerance properties of systems. For example, in case of the startup service in
time-triggered networks evaluating the robustness amounts to checking the safe
startup of the system even if faulty components are present. The informal safe startup
requirement “whenever there are two nodes in active state, these two nodes have syn-
chronized local clocks (will agree on the slot time)” is specified in SAL as:

safety: LEMMA system |- G(FORALL (i,j: index):
 (states[i]=active AND states[j]=active) => (time_out[i]=time_out[j]));

Here, G denotes the always or □ modality of linear temporal logic (LTL), and sys-
tem denotes the extended system model, consisting of the nominal models of the
components, the nominal model of the redundant communication links, and the corre-
sponding fault models.

5.1.1 Timings and Worst-Case Execution
Non-functional requirements include timeliness, that is, the ability of the considered
system to provide response to events (e.g., originated in an external controlled envi-
ronment) which must be functionally correct and furnished within precise and predict-
able timing constraints (e.g., deadlines). To ensure a system development compliant
with timing requirements, the use of formal tools is mandatory.

SAL allows for expressing timing properties with respect to minimum timeouts, or
the time required to stabilize after an upset. For instance, the requirement that a time-
triggered system should start up within 10ms, as imposed on the TTP startup when
deployed in safety-critical systems is formulated in SAL as the following lemma:

timely_startup: LEMMA system |- G(startup_time <= 10);

The variable startup_time measures the startup time of the system. It is initialized
with zero and increased in every step until the components have reached the synchro-
nous state. Here, the variable startup_time can be increased either discrete, in 1ms
steps, or continuous, depending on the chosen modeling paradigms [42]. In the dis-
crete paradigm time is encoded by finite data-types, resulting in a finite state space
that can be analyzed using symbolic model checking techniques.

 Non-functional Avionics Requirements 379

Systems involving continuous time can be efficiently represented in SAL using an
explicit real-time model, called calendar automata [16]. The model includes a set of
state variables and a set of timeout variables ranging over the reals. Additionally,
there is a real-value variable time that denotes the current time. These variables con-
trol when discrete and time-progress transitions are enabled. Discrete transitions are
enabled when the current time reaches the value of a timeout. Such a transition must
increase the timeout to a new value strictly greater than its current value. In time tran-
sitions, the time variable time is updated to the value of the next timeout, that is, the
minimum of the timeout variables. Since timeout automata models give rise to an
infinite state space, verification of such models is usually based on infinite bounded
model checking techniques such as for example provided by SAL' s inf-bmc tool. In
the above example, the value of startup_time is given by the value of the variable time
obtained when all components have reached the synchronous state.

A slightly modification of the above lemma allows one to compute the worst-case
startup time for a given cluster consisting of n nodes and redundant links. This is done
by parameterizing the timely_startup lemma by a variable par_startup, and using the
model-checking algorithm to compute the value for this variable.

timely_startup: LEMMA system |- G(startup_time<=@par_startup);

By analyzing different cluster sizes and different degrees of fault, the worst-case
startup time was computed to be 7·τ_round + 5·τ_slot, where τ_round denotes the
duration of a round, and τ_slot the duration of a slot [44]. This lemma was proven for
5 nodes in the presence of a faulty node with fault degree of 6 in 4480 seconds show-
ing the feasibility of such analysis during development.

5.2 Dependability of the Development Process and Robustness of MBD

Simulink or SCADE are often used in MBD. Because SCADE has been described in
detail in public literature and Honeywell uses HiLiTE in production, we present an
alternative tooling approach called HiLiTE for achieving process assurance. HiLiTE
(Honeywell Integrated Lifecycle Tools & Environment) [10,11] has been used for
engine and flight control MBD testing support during production. Differences be-
tween HiLiTE and SCADE are described in [10]. HiLiTE leverages a domain-specific
block library that describes and augments Simulink with independent concise ana-
lytical representation and test vector augmentation. The capabilities of HiLiTE are:

• Auto generation of test cases and vectors from Matlab Simulink and StateFlow
models

• In-depth semantic analysis of models for design consistency and robustness
• Auto generation of code from Matlab Simulink and StateFlow models

HiLiTE analyzes the design for soundness and robustness (like divide-by-zero,
overflow/underflow, deactivated blocks, un-testable conditions) and verifies that the
object code as implemented on the target processor complies with functional behavior
specified with the by-product of code coverage hence addressing DO-178b [35] ob-
jectives (Section A-4.2,3,5; A-6.3,4,5; A-7.4,5,6,7) in an automated manner.

In the following, HiLiTE’s test generation is briefly described followed by exam-
ple model evaluations of non-functional property model. Fig. 1 presents logic gates

380 M. Paulitsch, H. Ruess, and M. Sorea

and a library block under test called ConfirmSec. The low-level requirement of this
block are a timer that expires (Timeout = 1), if input Confirm has been 1 for as many
seconds as the value of input TimeLimit. Timeout is 0 if input Confirm is 0 and in all
other cases (timeout not yet expired).

Block Under Test
Confirm Timeout

TimeLimit

In 1

In 2

In 4

Out 1

In 3

Fig. 1. Example Model for Test Generation. Block ConfirmSec

Fig. 2 depicts a test case template for the ConfirmSec block, where rows depict
vector values to be applied at inputs of the blocks and expected values of block out-
puts in consecutive, contiguous time steps of the model. HiLiTE’s test generation
performs a backward data flow search from the block under test through intermediate
blocks to find values to be applied at model inputs (In1, In2, In3) that leads to values
required by the template at the block under test. In addition forward data flow is per-
formed to allow externally-visible model output, that the block under test produced
that expected value at its output. More details of the test generated and the approach
and description and discussion of the achieved coverage can be found in [10,11]. Such
a test approach assures correctness of the translation of model to target.

Time
Steps

Rate = 50 Hz

TimeoutTimeLimitConfirm

1 cycle after

timer expires

1 cycle before

reset timer

comment

1Range.mid11

1Range.mid11

0Range.mid1TimeLimit * Rate − 1

0Range.mid01

No. of Time Steps
Block Under Test

TimeoutTimeLimitConfirm

1 cycle after

timer expires

1 cycle before

reset timer

comment

1Range.mid11

1Range.mid11

0Range.mid1TimeLimit * Rate − 1

0Range.mid01

No. of Time Steps
Block Under Test

Fig. 2. Test case template for ConfirmSec

[- 5,15]

HiLiTE-calculated max possible range

[2, 22]

Fig. 3. Achieving robustness of models: Range checking of HiLiTE can detect potential divide-
by-zero vulnerabilities

 Non-functional Avionics Requirements 381

In addition HiLiTE performs analysis targeting robustness and soundness. Fig. 3
presents an example were HiLiTE used range checking and build-in assertions check-
ing for divide-by-zero vulnerabilities to find a potential divide-by-zero in the platform
code related to block Divide1.

HiLiTE can automatically detected unbounded counter patterns (as found by the
connected blocks plusOne, Counter, delay in the model depicted in Fig. 4) by detect-
ing counter semantics in models. This brief description of HiLiTE shows how
non-functional requirements of models and process assurance can be achieved via a
template and block-based model augmentation approach.

LessEq_Out (a) [1]

C

plusOne
c=double(1)

not
1/z

delay
{IC=0}

C

b
c=double(9.4)

a

b
a<=b

LessEq

+

+

Counter

Fig. 4. Achieving robustness of models: detection of unbounded counter patterns by HiLiTE

5.3 Quantitative Dependability and Timing Assessment

Vestal et al. [48] describe the specification of an avionics IMA in MetaH and an
automated error model to fault tree translation and follow-on quantitative assessment
of the architecture using a COTS fault tree solver. Vestal et al. [47,48] provides an
example avionics timing analysis and investigation of an IMA as well as theory of
end-to-end timing based assessment of asynchronous distributed systems.

5.4 Schedulability

Recent work has shown the adequacy of SAL for schedulability analysis of IMA sys-
tems [49,50]. SAL’s model checkers can be efficiently used to automatically compute
schedulers that minimize the transmission latency, by encoding the task and message
scheduling problem as a satisfiability problem with linear arithmetic constraints and
tusing SAL’s bounded model checker for finding the shortest schedule. We are cur-
rently investigating this line of work for IMA applications.

6 Summary and Conclusions

This paper presents a large variety of non-functional requirements (NFR) in avionics
that are often treated as functional requirements. NFRs are reflected in the architectural
approach of software, hardware, and systems very similar to functional requirements.
The work presented is new as it provides a dense list of NFR for avionics and its
trends. It also provides known exemplary formal capturing and analysis approaches.
The mentioned requirements are by no means complete, but paint a picture of the

382 M. Paulitsch, H. Ruess, and M. Sorea

breadth capability needed of a potential holistic tool chain that would capture, manage,
and analyze non-functional and functional requirements, and avionics architectures.
The authors hope to encourage system and tool designers to take on the work presented
and integrate it into their approaches of NFR representation and analyses.

Acknowledgement

We would like to thank Devesh Bhatt, principle investigator of HiLiTE, for his MBD
examples and input.

References

1. ARINC, Aircraft Data Network, Part 7, Avionics Full Duplex Switched Ethernet (AFDX)
Network, ARINC 664 part 7 (June 2005)

2. ARINC, Electronic Distribution of Software, ARINC report 666 (May 17, 2002)
3. ARINC, Electronic Distribution of Software, ARINC Report 666A (May 24, 2005)
4. ARINC, Multi-Transmitter Data Bus ARINC 629 Part 1-2 (1999)
5. ARINC, Avionics Application Standard Software Interface. ARINC 653 (2003)
6. ARINC. Electronic Distribution of Software (EDS) Working Group (March 5, 2008)
7. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de

and secure computing. IEEE Trans. on Dependable and Secure Comp. 1(1), 11–33 (2004)
8. Bate, I., Hawkins, R., McDermid, J.: A contract-based approach to designing safe systems.

In: Proc. of the 8th Australian Workshop on Safety Critical Systems and Software, Can-
berra, Australia, vol. 33, pp. 25–36 (2003)

9. Baumann, R.: Soft Errors in Advanced Computer Systems. IEEE Design and Test of Com-
puters, 258–266 (2005)

10. Bhatt, D., Hall, B., Dajani-Brown, S., Hickman, S., Paulitsch, M.: Model-based develop-
ment and the implications to design assurance and certification. In: 24th Digital Avionics
Systems Conference (October 2005)

11. Bhatt, D., Hickman, S., Schloegel, K., Oglesby, D.: An Approach and Tool for Test Gen-
eration from Model-Based Functional Requirements. In: Proc. of the Intl. Workshop on
Aerospace Software Engineering (May 2007)

12. Binns, P., Englehart, M., Jackson, M., Vestal, S.: Domain-specific software architectures
for guidance, navigation and control. Int. Journal of Software Engineering and Knowledge
Engineering 6(2), 201–227 (1996)

13. Briere, D., Traverse, P.: Airbus A320/A330/A340 Electrical Flight Controls: A Family of
Fault-Tolerant Systems. F TCS 23 (1993)

14. Butler, R.W., Finelli, G.B.: The infeasibility of quantifying the reliability of life-critical
real-time software. IEEE Trans. on Software Engineering 19(1), 3–12 (1993)

15. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: Tool
presentation: SAL2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–
500. Springer, Heidelberg (2004)

16. Dutertre, B., Sorea, M.: Modeling and Verification of a Fault-Tolerant Real-time Startup
Protocol using Calendar Automata. FORMATS/FTRTFT, 199–214 (2004)

17. Glinz, M.: On Non-Functional Requirements. In: Proc. of IEEE Int. Requirements Engi-
neering Conference, pp. 21–26 (2007)

 Non-functional Avionics Requirements 383

18. Hall, B., Paulitsch, M., Benson, D., Behbahani, A.: Jet Engine Control Using Ethernet with
a BRAIN. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA
Paper No AIAA-2008-5291. Hartford, CT, USA (July 2008)

19. Hecht, H.: Why prognostics for avionics. In: Proc. of Aerospace Conf. IEEE, Los Alamitos
(2006)

20. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of re-
quirements specifications. ACM Trans. on SW Eng. and Method. 5(3), 231–261 (1996)

21. Jacob, J.M.: High assurance security and safety for digital avionics. In: Proc. of the 23rd
Digital Avionics Systems Conference, Vol. 2, pp.8.E.4 - 8.1–9 (24-28 October 2004)

22. Johnson, D.P.: Assessing the Security of Airborne Networks. Aerospace Safety- Design,
Maintenance/Operations, and Safety/Security. SAE Doc.No 2007-01-3784 (2007)

23. Knight, J.C., Leveson, N.G.: An Experimental Evaluation of the Assumption of Independ-
ence in Multi-version Programming. IEEE Trans. on Software Engineering SE-12(1), 96–
109 (1986)

24. Malan, R., Bredemeyer, D.: Defining Non-Functional Requirements. white paper (ac-
cessed May 2008) (August 3, 2001), http://www.bredemeyer.com

25. McWha, J.: Development of the 777 flight control system. AIAA Guidance, Navigation,
and Control Conference (August 2003)

26. Morris, J., Koopman, P.: Representing Design Tradeoffs in Safety Critical Systems. In:
Proc. of 2005 Workshop on Architecting Dependable Systems, pp. 1–5 (2005)

27. Object Management Group (OMG). A UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded systems, Version Beta 2 (June 8, 2008)

28. Owens, B.D., Herring, M.S., Dulac, N., Leveson, N.G., Ingham, M.D., Weiss, K.A.: Ap-
plication of a Safety-Driven Design Methodology to an Outer Planet Exploration Mission.
In: IEEE Aerospace Conference. Big Sky, MT (March 2008)

29. Paech, B., Dutoit, A., Kerkow, D., von Knethen, A.: Functional requirements, non-
functional requirements and architecture specification cannot be separated – A position
paper. REFSQ (2002)

30. Paulitsch, M., Morris, J., Hall, B., Driscoll, K., Latronico, E., Koopman, P.: Coverage and
the use of cyclic redundancy codes in ultra-dependable systems. In: Proc. of Int. Conf. on
Dependable Systems and Networks (DSN), 28 June - 1 July 2005, pp. 346–355 (2005)

31. Pop, P., Eles, P., Peng, Z.: Schedulability-Driven Communication Synthesis for Time
Triggered Embedded Systems. In: 6th Int. Conf. on Real-Time Computing Systems and
Applications (RTCSA 1999), Hong Kong, December 13-15, 1999, pp. 287–294 (1999)

32. Powell, D.: Failure mode assumptions and assumption coverage. In: Proc. of FTCS 1992,
pp. 386–395. IEEE Computer Society Press, Los Alamitos (1992)

33. Royalty, C.: Keep the User in Mind: Operational Considerations for Securing Airborne
Networks, Aerospace Safety- Design, Maintenance/Operations, and Safety/Security. SAE
Doc. No 2007-01-3785 (September 2007)

34. RTCA SC-164. Audio Systems Characteristics and Minimum Operational Performance
Standards for Aircraft Audio Systems and Equipment Systems and Equipment, Wash.
D.C., RTCA Inc. (1993)

35. RTCA SC-167/EUROCAE WG-12, DO-178B/ED12B Software Considerations in Air-
borne Systems and Equipment Certification, Wash. D.C., RTCA Inc. (1992)

36. SAE, Certification Considerations for Highly-Integrated Or Complex Aircraft Systems,
SAE Doc. No ARP4754 (November 1996)

37. SAE, Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, SAE Doc. No ARP4761 (December 1996)

384 M. Paulitsch, H. Ruess, and M. Sorea

38. SAE, Guidelines for Time-Limited-Dispatch (TLD) Analysis for Electronic Engine Con-
trol Systems, SAE Doc. No ARP5107 Ref. B (November 2006)

39. SAE, SAE Architecture Analysis Design Language (AADL) Doc.AS5506/1 (June 2006)
40. Shawlee, W., Humphrey, D.: Aging avionics- what causes it and how to respond. IEEE

Trans on Components and Packaging Technologies 24(4), 739–740 (2001)
41. Sifakis, J.: A Framework for Component-based Construction. In: 3rd IEEE Int. Conf. on

Software Engineering and Formal Methods (SEFM 2005), pp. 293–300 (September 2005)
42. Sorea, M., Steiner, W.: Classification and analysis of failure modes for time-triggered sys-

tems. In: Proceedings of FeT (2007)
43. Srivastava, D., Narasimhan, P.: Architectural Support for Mode-Driven Fault Tolerance in

Distributed Applications. In: Proc. of the 2005 workshop on Architecting Dependable Sys-
tems, St. Louis, Missouri, USA, pp. 1–7 (2005)

44. Steiner, W., Rushby, J., Sorea, M., Pfeifer, H.: Model checking a fault-tolerant startup al-
gorithm: From design exploration to exhaustive fault simulation. In: DSN 2004 (2004)

45. Steiner, W.: Startup and Recovery of Fault-Tolerant Time-Triggered Communication. PhD
Thesis, Technische Universität Wien (2004)

46. Tovar, E., Vasques, F.: From Task Scheduling in Single Processor Environments to Mes-
sage Scheduling in a PROFIBUS. In: IPPS/SPDP Workshops, pp. 339–352 (1999)

47. Vestal, S.: Real-Time Sampled Signal Flows through Asynchronous Distributed Systems.
In: IEEE Real-Time and Embedded Technology and Applications Symp. (2005)

48. Vestal, S., Stickler, L., Kune, D.F., Binns, P., Lamba, N.: Architecture Specification and
Automated Timing and Safety Analysis for a Large Avionics System (June 16, 2004),
http://la.sei.cmu.edu/aadl/documents/AADL-
MetaH%20for%20LAS.pdf

49. Voss, S.: Scheduling in time-triggered networks. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1081–1091. Springer, Heidelberg
(2007)

50. Voss, S., Sorea, M., Echtle, K.: Symbolic Scheduling in Time-Triggered Systems (in
preparation, 2008)

51. Wilkinson, C., Haselrick, B., Paulitsch, M., Hall, B.: Transitioning Aerospace Electronic
Systems from Reactive to Proactive Obsolescence Management. IEEE Trans. on Compo-
nents and Packaging Technologies (2008)

52. Wittenmark, B., Nilsson, J., Törngren.: Timing Problems in Real-Time Control Systems.
In: Proc. of American Control Conf., June 21-23, vol. 3, pp. 2000–2004 (1995)

53. Xu, L., Ziv, H., Richardson, D., Alspaugh, T.A.: An architectural pattern for non-
functional dependability requirements. SIGSOFT Softw. Eng. Notes 30(4), 1–6 (2005)

54. Zetter, K.: FAA: Boeing’s New 787 May Be Vulnerable to Hacker Attack. wired.com
(April 1, 2008)

A Simulation Approach for Performance

Validation during Embedded Systems Design

Zhonglei Wang1, Wolfgang Haberl1, Andreas Herkersdorf1, and Martin Wechs2

1 Technische Universität München
Arcisstraße 21, 80290 München, Germany

zhonglei.wang@tum.de, haberl@in.tum.de, herkersdorf@tum.de
2 BMW Forschung und Technik GmbH

Hanauer Straße 46, 80992 München, Germany
martin.wechs@bmw.de

Abstract. Due to the time-to-market pressure, it is highly desirable to
design hardware and software of embedded systems in parallel. However,
hardware and software are developed mostly using very different meth-
ods, so that performance evaluation and validation of the whole system
is not an easy task. In this paper, we propose a simulation approach to
bridge the gap between model-driven software development and simula-
tion based hardware design, by merging hardware and software models
into a SystemC based simulation environment. An automated procedure
has been established to generate software simulation models from formal
models, while the hardware design is originally modeled in SystemC. As
the simulation models are annotated with timing information, perfor-
mance issues are tackled in the same pass as system functionality, rather
than in a dedicated approach.

Fordesigningreal-timesystems,althoughperformanceevaluationbased
on simulation cannot provide guarantees of safety, it can provide realis-
tic performance values to validate whether the performance requirements
are really satisfied or not and show how pessimistic the static analysis
is. Further, the simulative approach is also able to provide the develop-
ers an insight into the system architecture to help find bottlenecks of
the system. We use the simulative approach as a complement of static
analysis and combine them in an integral development cycle.

1 Introduction

During embedded systems development, it is a critical issue to manage non-
functional requirements concerning performance, security, power consumption
and so on. Among these, performance is one of the most important factors to
be considered. If performance requirements cannot be met, this could lead to
system failure. This is especially true for safety critical systems. Since perfor-
mance problems detected at later development phases may result in considerable
changes in the whole system, including hardware platform and software architec-
ture, it is necessary to handle performance issues from early development phases
until system implementation.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 385–399, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 Z. Wang et al.

Today, many embedded systems are multiprocessor or distributed systems,
where applications are partitioned into several tasks and allocated to a set of
processors or processing elements, which are interconnected and cooperate to
realize the system functionality. A good example for a distributed system is an
automotive network, which consists of several buses that connect the electronic
control units (ECU) as well as sensors and actuators. Most such embedded sys-
tems are designed for applications in a specific domain and require both, the
software and the hardware system, to be adapted to the applications. Regarding
traditional system development methods, software design starts after the hard-
ware platform is ready for use. Due to the time-to-market pressure it is desirable
to develop both hardware and software in a tightly coupled loop.

However, the methods for hardware and software development are quite dif-
ferent, which makes performance estimation of the whole embedded system diffi-
cult. Today, model driven development (MDD) approaches are increasingly used
to deal with the ever-growing complexity of software, while the current industry
practice for hardware platform design is mostly based on simulation. Among
system level design languages (SLDL), SystemC is the most frequently used one
in both academia and industry and has become a standard for system level de-
sign space exploration [1]. An ideal co-development process should provide an
efficient way to bridge the gap between MDD processes for software development
and SystemC based simulative approaches for hardware design.

1.1 Overview of SystemC

SystemC supports modeling systems at different levels of abstraction, from sys-
tem level to register-transfer level, and allows to co-simulate software and hard-
ware components within a single framework. Essentially, it is a C++ class library
featuring methods for building and composing SystemC elements. In order to
model concurrent system behavior, SystemC extends C++ with concepts used
by hardware modeling languages, like VHDL and Verilog.

TLM (transaction-level modeling) [2,3] is a widely used modeling style in
SystemC. In this modeling style, communication architectures are modeled as
channels, which provide interfaces to functional units. Modeling effort can be re-
duced, if different communication architectures support a common set of abstract
interfaces. Thus, communication and computation can be modeled separately.

The OSCI (Open SystemC Initiative) Transaction Level Working Group has
defined seven levels of abstraction supported by SystemC [3]: algorithmic (ALG),
communicating processes (CP), communicating processeswith time (CP+T), pro-
grammer’s view (PV), programmer’sview with time (PV+T), cycle accurate (CA)
andregister transfer level (RTL).A systemcanbemodeledatahigh level of abstrac-
tion, for example ALG, and refined stepwise to a lower level of abstraction, which
might be RTL, where simulation is more accurate but simulation time increases.

1.2 A Model Driven Development Process

In a MDD process, design starts at high levels of abstraction and captures a
system’s functionality in a formal model. The resulting design can be formally

A Simulation Approach for Performance Validation 387

reasoned about, for example using formal verification, and implementation code
can be generated, all supported by automated tools.

In our MDD process, we chose COLA [4], the Component Language, as the
formal basis and have developed an automatic deployment process for hard real-
time systems design, using non-functional requirements as a guidance for auto-
matic allocation and scheduling of the modeled tasks. The modeling framework
and the deployment process will be introduced in Section 2.

The current MDD process supports software modeling down to the implemen-
tation on a concrete platform, retaining correctness with respect to the model.
Still the following problems remain to be solved:

– Static scheduling and schedulability analysis are based on calculations em-
ploying worst case execution times of the tasks as a basis. This can avoid
underestimation and guarantees safety of the system, but is often overly
pessimistic, especially when applied to event-triggered systems. The formal
model that static analysis is based on cannot accurately capture dynamic
effects, such as resource contentions and varying communication delays.

– In the current process the modeled tasks are targeted to a given platform,
which is assumed to be existing. However, if the hardware architecture is still
under design, the execution time and resource usages cannot be estimated
precisely. This might result in erroneous deployment. On the other hand, if
software development starts after the hardware system is ready, the time-to-
market would be delayed and the hardware system were designed without
evaluation using the real application.

– The last but not the least problem is that static analysis can only answer “yes
or no” questions, that is, it can only tell us whether the tasks are schedulable
on the given platform or not. It cannot provide an insight into the system
and thus cannot give important information for detection of performance
bottlenecks and system improvement.

The mentioned problems not only exist in our process but generally in static
analysis centric design methods. We will present an approach to tackle these
problems in this paper.

1.3 An Overview of the Proposed Approach

Concerning the facts discussed above we propose a simulative approach, which
bridges the gap between SystemC-based design methods and the COLA-based
MDD process for real-time software development. The advantage of our simula-
tive approach, compared to static analysis, is that, on the one hand it delivers
more realistic values and, on the other hand hardware details which might be
neglected by the abstract perspective of static analysis are taken into account.
In contrast, static analysis has the advantage that it is able to guarantee feasible
designs under hard real-time performance requirements. Our approach combines
the two design methods in an integral hardware/software co-development process
that makes use of the advantages of both methods. In this co-development

388 Z. Wang et al.

process, the COLA-based MDD process is used for behavior modeling and auto-
matic deployment. Simulation is used for system level hardware design decisions
and performance evaluation of the whole system. The simulation results give
us detailed performance statistics to validate whether all the performance re-
quirements are satisfied and how pessimistic the static analysis is, and also to
provide information for system enhancement. If some requirements are not sat-
isfied, we can generate enough information to find performance bottlenecks to
decide which parts of the system should be improved. In this way, hardware
design and software development are tightly coupled and the exploration cycle
is repeated to achieve high performance of the whole system.

As discussed, static analysis and simulation are complementary approaches
to manage performance requirements. Static analysis uses given performance
requirements as constraints to find an optimal allocation and scheduling, while
simulation evaluates a design to check if the requirements are satisfied. In our
view, the design space exploration is finished, when both approaches indicate
the satisfaction of the performance requirements. To establish such a desired
simulation approach, we investigated the following aspects:

– Automatic generation of software simulation models from COLA models.
– A well-suited technique for estimation and representation of software perfor-

mance in the simulation models.
– Automatic construction of simulators using existing simulation components.

In addition, we have also considered coverage-based test case generation for
reduction of simulation time.

1.4 Organization

The rest of the paper is organized as follows: Section 2 gives a brief introduction
to modeling concepts of COLA and also presents the COLA based development
process. Section 3 describes the proposed simulation approach. Following this,
Section 4 contains a detailed description of the generation process of software
simulation models and a performance estimation technique. The way of building
simulators is presented in Section 5. Section 6 concludes this paper.

2 The COLA-Based MDD Process

In the following we will detail on the COLA language and the development
process established thereon. The described concept allows for consistent model-
ing and preservation of the model’s semantics down to the executable system.

2.1 Modeling Concepts of COLA

COLA is a component-based modeling language especially targeted at embed-
ded control systems. It offers a graphical representation to specify the functional
behavior of the modeled application. Being a synchronous formalism, COLA

A Simulation Approach for Performance Validation 389

follows the hypothesis of perfect synchrony [5]. Basically, this asserts that com-
putation and communication occur instantly in a system, i.e. take no time. Com-
ponents in a synchronous data flow language then operate in parallel, processing
input and output signals at discrete instants of time. This discrete uniform time-
base allows for a deterministic description of concurrency by abstracting from
concrete implementation details, such as physical bus communication, or sig-
nal jitter. To take the resulting models to the designated hardware platform,
automated code generation is supported by our established tool chain [6,7].

COLA offers several advantages in a tool-backed MDD process. There, not
only behavioral modeling is sought for, but several views onto the complete sys-
tem must be distinguished. Following the nomenclature of Pretschner et al. [8],
behavioral models form the logical architecture. The description of the target
hardware platform and other non-functional requirements then comprise the
technical architecture. The latter is usually excluded in the modeling formalisms,
or rather, focused on with a lack of description of the logical layer. This kind of
lower abstraction is applied, e.g. in the Metropolis project [9] and the CARAT
toolkit [10].

The basic language element of COLA is the unit. Units can be composed
hierarchically, or occur in terms of blocks that define the basic (arithmetic) op-
erations of a system. Each unit has a set of typed ports describing the interface,
called signature of the unit in COLA, and which are categorized into input and
output ports. Units can be used to build more complex components by building
a network of units and by defining an interface to such a network. The individ-
ual connections of (sub-) units in a network are called channels and connect an
output port with one or more suitably typed input ports.

In addition to the hierarchy of networks, COLA provides a decomposition
into automata (i. e., finite state machines, similar to Statecharts [11]). If a unit
is decomposed into an automaton, each state of the automaton is associated
with a corresponding sub-unit, which determines the behavior in that particular
state. This definition of an automaton is therefore well-suited to partition com-
plex networks of units into disjoint operating modes (cf. [12]), whose respective
activation depends on the input signals of the automaton.

The collection of all units forms a COLA system, which models the appli-
cation, possibly including its environment. Such a system does not have any
unconnected input or output ports as there would be no way to provide input to
systems. For effective communication with the environment, sources and sinks
provide connectors to the underlying hardware.

2.2 Development Process

As mentioned already, COLA is ideally applied in a development process that
employs modeling, model analysis, formal verification, automatic hardware and
software synthesis and automated deployment to a concrete platform within a
well integrated tool chain. The whole development cycle from feature modeling
down to implementation is done in a single formalism. An overview of the COLA

based process is illustrated in Figure 1.

390 Z. Wang et al.

Fig. 1. The COLA-based system development process

Feature Modeling: In the requirement phase, the system features and how
these features interact with each other should be captured in a feature tree.
In COLA a feature tree is described by networks and automata, connected
by untyped channels. The hierarchical nature of COLA networks allows for
decomposition of features into sub-features.

Functional Modeling and Model Refinement: The leaves of the feature
tree set the starting points for modeling the system’s functionality. The fea-
ture model is converted to a functional model throughout several steps of model
transformation and rearrangement. The resulting high-level models are further
refined until all designated functionality of the system is covered. As both model-
ing and model refinement are performed using the easily understandable COLA

graphical representation, human faults can be significantly reduced. Further,
thanks to COLA’s formal semantics, the models correctness can be checked
by formal verification. Another advantage of COLA modeling concepts is the

A Simulation Approach for Performance Validation 391

model reusability because of its composability nature. In order to guarantee the
compatibility between components in different contexts and runtime safety, type
checking and type inference are supported by automated tools [13].

Deployment Process: In oder to reduce human design effort and retain the
model’s correctness down to the implementation on a concrete platform, an au-
tomatic deployment process is highly desired. Our deployment process contains
the following steps:

– Clustering: Before allocation, units of the functional model are grouped into
clusters, depending on performance constraints as well as other important
non-functional requirements. A cluster is the model representation of a task
from an operating system’s point of view and is the basic element in the
deployment process. For more details on clustering, please refer to [14].

– Performance estimation: During this step execution times, including worst-
(WCET) and best-case execution times (BCET), and resource usages for
each cluster are estimated. These non-functional properties are based on
generated C code and back-annotated to clusters for later use.

– Allocation: Allocation is the process of assigning tasks to available computing
resources with respect to non-functional requirements. To tackle this chal-
lenge we have developed an algorithm, which takes cluster architecture and
hardware topology as its input and tries to find an optimal allocation under
certain non-functional constrains.

– Scheduling: Scheduling is aimed at determining execution order of tasks while
minimizing the overall completion time of the system. The role of schedula-
bility analysis is to determine whether there is a scheduling plan that satisfies
the given performance requirements. More information on scheduling can be
found in [15].

Implementation: After finding a proper design that fulfills the requirements, C
code is generated [6] and compiled for execution on the target platform. To satisfy
the communication demands of the modeled system, we developed a configurable
middleware [16] fulfilling this duty. Sometimes, it is also necessary to implement
some tasks in hardware [7], when higher performance is required.

3 Simulation Environment

As already discussed, it is our goal to establish a simulation framework for per-
formance validation of the whole system design including application software,
hardware and service layers between software and hardware. The service layers
typically include a real-time operating system (RTOS) and a middleware. As
SystemC is considered as the most suitable SLDL for our purpose, the simulator
is implemented on top of the SystemC simulation kernel.

As both software behavior and hardware architecture can be formalized into
COLA models, our approach allows for automatic generation of software simu-
lation models, hardware topology and deployment information. An overview of

392 Z. Wang et al.

Fig. 2. The process of creating a simulator

the approach of creating a sample simulator is given in Figure 2. The following
required steps are depicted in the figure:

– Software simulation models are automatically generated from COLA clus-
ters. Each model corresponds to one cluster. During the generation process,
a timing estimation tool is called to predict the execution time for each ba-
sic block of the cluster and to carry back the timing information into the
software model. Thus, the software model runs on the host machine instead
of an instruction set simulator. Still, the temporal behavior of the target
execution is accurately simulated.

– Because the hardware model in COLA is an abstraction of the real hardware
and only contains information required for allocation and scheduling, such as
processing speed of a processing unit and bandwidth of a bus, hardware sim-
ulation models cannot be generated directly through model transformations.
However, the basic configuration information including hardware topology,
allocation of clusters and scheduling information can be generated and stored
in an XML file. A tool reads this file and combines existing simulation com-
ponents to construct a simulator. Therefore, before a simulator can be built,
hardware designers should spend effort to establish a SystemC model library,
which contains simulation models of the system components in question. For
example bus models of Flexray and CAN should be included in the library
for an automotive system design.

– The choice of test cases is very important. A poorly selected set of test
cases might lack corner cases or might even contain redundant test cases.
Using several test cases that cover the same execution path cannot provide
any additional information but wastes time. In other words, an ideal test
generator should generate the smallest set of test cases to cover the whole
test space. Several established test case generation methods can be used with

A Simulation Approach for Performance Validation 393

our approach. They generate test cases either by model checking (e.g. [17])
or directly from C code (e.g. [18]). To use the former method, COLA models
can be transformed into Promela code and checked using the SPIN model
checker [19].

A detailed description of test case generation is out of the scope of this paper. We
rather focus on the first two working steps and give a more detailed introduction
to them in the following sections.

4 Software Simulation Model Generation

Software simulation model generation is a key factor to bridge the gap between
hardware design and software development. To allow for a combination of hard-
and software simulation components in SystemC, the software models have to be
encapsulated in SystemC modules. Figure 3 depicts the generation process. First,
C code is generated from COLA clusters. Then a timing estimation tool predicts
the execution time for each basic block, annotates the timing information for the
C code and finally encapsulates the code into a SystemC module. The C code
generated in this step can be regarded as a temporary representation that is
used only for timing estimation. After the design space exploration the same
code generator is used to generate C code for the production system.

Fig. 3. Software simulation model generation

4.1 C Code Generation

The code generation relies on a template-like set of translation rules. As COLA

has a slender syntax, the number of translation rules is small. The translation
rules are well documented in [6]. We just give an overview here.

For each composite unit found in the given COLA system, the code genera-
tor creates a C function with an appropriate signature, where variables defined
for inputs and outputs of the unit are included. The body of a generated C
function implements the related unit’s behavior. For a network, this means that
the generated function for each sub-unit included in the network is called. Of
course the sequence of calls has to preserve the order induced by semantics of

394 Z. Wang et al.

the data flow. To realize a channel that is being written to by a unit and read by
the descendant one, a variable is used to pass data from one function call to the
next. For an automaton, the code describing the behaviors of its contained states
are organized in a switch-case construct. Which case is to be executed depends
on the stored automaton’s state. The guards for the outgoing transitions of the
active state are evaluated. Depending on the result of this evaluation, either the
actual state stays active or a following one is activated.

4.2 Timing Estimation

The C code generated by the code generator is subsequently input to the timing
estimation tool. The execution time of a program is influenced by several factors
including execution path and low level timing effects due to microcontrollers’
features like pipeline, cache and branch predictor. It is a goal of the simulation to
provide dynamic performance values, which resemble to the system performance
of real executions. Therefore, during the timing estimation we do not bound
execution paths like WCET analysis, but rather keep the execution paths, and
hence execution times, dependent on concrete input data derived from a test case
generator. Thus, the estimation pessimism of a static analysis tool is avoided.

The low-level timing effects can be categorized into local timing effects and
global timing effects. Pipeline effects are a typical example of local timing effects.
When loading instructions into a pipeline, adjacent instructions affect each other
but remote instructions do not affect their respective execution. Local timing
effects can be accurately estimated in the scope of a basic block using either
static timing analysis or simulation. Whereas, global timing effects are highly
context-related and different execution paths set different context scenarios for a
basic block. A cache access or branch instruction will affect future cache accesses
or branch predictions, so the cache and branch prediction effects are global timing
effects. They have to be estimated at run time.

We propose to use static analysis to estimate the local timing effects in order
to reduce overhead of run-time simulation. In embedded software, an instruction
is often repeated many times either because it is in a loop or because the task is
triggered many times in an application. During static analysis, timing estimation
is performed only once for each instruction related to the timing effect, while
the run-time simulation must be repeated as often as the instruction is executed.
Thus static analysis generates significantly less effort in this case.

For global timing effects, a dynamic estimation method is proposed in our
previous work [20]. We insert function calls into the source code to send run-time
data to a data cache simulator and a branch predictor simulator for load/store
instructions and branch instructions, respectively. The simulators are driven by
the run-time data to analyze the dynamic behaviors of the respective instructions
related to the global timing effects.

The instruction cache effect is a special case of global timing effects. Instruc-
tion cache accesses are not as context-related as other global timing effects ex-
cept for the instructions in a loop body. If there are no nested loops used and
instructions in a loop body are analyzed for the first iteration and for the later

A Simulation Approach for Performance Validation 395

Fig. 4. Performance estimation framework

iterations separately, the instruction cache effect can also be estimated by static
timing analysis in the scope of a basic block. This approximation will not reduce
estimation accuracy too much.

The work of timing estimation and back-annotation is supported by a tool.
Figure 3 gives an overview of the work flow of the timing estimation tool. Its
working steps are introduced in the following:

– Cross-compilation: the generated C code is cross-compiled into target binary
code with debugging information included. We use the GCC (GNU compiler
collection) compilers, which support lots of processors commonly used. The
generated binary code is in ELF (executable and linkable format), which is
a standard binary format for Unix and Unix-like systems.

– Timing analysis: From the binary file, two pieces of important information
are to be extracted: the low-level instruction timing and the information
describing the mapping between source code and binary code. As already
discussed, a hybrid method is used to estimate the execution time: pipeline
analysis and instruction cache analysis are done statically and timing effects
of data cache and branch predictor are simulated at run time.

– Extraction of the mapping information: We extract the DWARF’s line table
from the binary file. DWARF is a common debugging data format and is as-
sociated with ELF. DWARF’s line table provides the mapping between source
code lines and the target machine instructions generated from these lines. The
mapping information is stored in a specific data structure to facilitate later use.

396 Z. Wang et al.

– Back-annotation: The tool reads a basic block of source code and finds the
corresponding binary instructions by checking the mapping information. The
individual instruction timings are cumulated and inserted into the source
code. Finally the C code is rewritten in SystemC format, thus allowing for
a timed simulation in SystemC.

5 Simulator Construction

As already mentioned, SystemC supports system modeling at seven levels of
abstraction. However, COLA is more suitable for modeling at the ALG (algo-
rithmic) and CP (communicating processes) levels than SystemC, because the
artifacts of COLA can be formally reasoned about, resulting in less errors con-
tained in the modeled systems. In our approach, the system modeling in SystemC
starts from the PV+T (programmer’s view with time) level. As described in the
last section, software simulation models at the PV+T level are generated form
COLA models at the CP level, skipping modeling at the CP+T (communicating
processes with time) and PV (programmer’s view) levels. Although COLA pro-
vides mechanisms for modeling hardware platforms, this hardware model is very
abstract and cannot be employed to generate simulation models through model
transformation. Therefore the platform simulation components must be specified
by hardware designers as library elements. The components of the COLA hard-
ware model are mapped to corresponding platform simulation components. This
mapping information can be generated from the hardware topology captured in
COLA. In addition, the information about allocation decisions and scheduling
is also generated from the COLA hardware model and can be used to construct
an executable whole-system simulator.

At the PV+T level platform simulation models include typically communica-
tion architectures and service layers:

– Communication architecture: It gives a structural view of a bus or network.
For each transaction, the message length is defined and the sending order
of the messages is determined by a specific mechanism, e.g. by priorities of
the senders. The communication architecture can be further refined to the
cycle accurate level, where the communication is triggered by a clock, and
its timing behavior is accurately modeled.

– RTOS model: In real-time systems, there is commonly an RTOS running
on each node, liable for scheduling and dispatching the tasks running on
the node and for providing an abstraction of the underlying hardware to
the running applications. In our approach, a scheduler is modeled first to
realize the scheduling determined by the schedulability analysis. In the next
refinement step, the scheduler model is replaced by an RTOS model, which
captures the influences of the target RTOS on the timing behaviors of the
tasks more accurately. Similar RTOS models are introduced in [21,22].

A Simulation Approach for Performance Validation 397

– Middleware model: To assemble hardware and software simulation models, the
software has to be adapted to specific TLM APIs provided by the hardware
platform model. As a result, the code for interaction with the underlying
platform highly depends on the TLM APIs, which however may vary during
the development. This is rather inconvenient for software developers. To
allow for platform independent software development a middleware model
that provides a set of abstract services supported by different platforms is
used. It can not only be used in the transaction-level modeling but also be
refined and implemented on a real hardware platform as we described in [16].

Fig. 5. Platform meta-model

Figure 5 shows a class model of the COLA platform meta-model. In the meta-
model most information for simulator construction is covered, such as hardware
topology and allocation decisions. The scheduling will be determined in the
schedulability analysis of our process. This information is transformed into an
XML file. The simulator construction tool parses the XML file and employs the
existing simulation components to build a simulator.

6 Conclusion

In this paper we have presented a simulation approach for evaluation of the per-
formance of embedded systems in a holistic manner. This approach combines
model driven software development and simulation based hardware systems de-
sign. We chose COLA as the formal basis of our exemplified MDD process.
From COLA clusters, the presented tool generates software simulation models
extended with timing information. We showed the use of a hybrid performance
estimation technique, which combines static timing analysis and simulation. The
generated software simulation models can be connected with hardware simula-
tion models afterwards. The whole simulator is built according to a configuration
file which is generated from the COLA hardware model and contains hardware
topology, allocation and scheduling information. This allows for a semantically
correct simulation of the modeled system, thus leading to realistic results. With

398 Z. Wang et al.

the performance statistics obtained from the simulation, the system components
can be evaluated to find performance bottlenecks in the system for improvement.

For soft real-time systems design, this simulation approach is iterated for de-
sign space exploration. Yet, for hard real-time systems design, static analysis
is desirable to guarantee feasible designs under hard real-time performance re-
quirements. In this context, the simulation is used as a necessary complement of
the static analysis to validate the analysis results. It is able to check whether the
performance requirements are really satisfied by the designs found by the static
analysis and how pessimistic the analysis is.

At the time of writing this paper, the whole framework is not yet completed,
but most of the tools such as the code generator, the timing estimator and the
tool for scheduling have been implemented. The COLA-based MDD process has
also been established. We are currently implementing the tools for automatic
construction of the simulation model and for test case generation. Subsequently,
we will validate the efficiency of the proposed approach by using the simulator
with a case study.

References

1. Institute of Electrical and Electronics Engineers: IEEE Std 1666 - 2005 IEEE
Standard SystemC Language Reference Manual. IEEE Std 1666-2005 (2006)

2. Cai, L., Gajski, D.: Transaction level modeling: an overview. In: Proceedings of
the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis (CODES+ISSS 2003), pp. 19–24 (2003)

3. Donlin, A.: Transaction level modeling: flows and use models. In: Proceedings of
the 2nd IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis (CODES+ISSS 2004), pp. 75–80 (2004)

4. Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haberl, W.,
Kühnel, C., Müller, F., Wang, Z., Wild, D., Rittmann, S., Wechs, M.: COLA –
The component language. Technical Report TUM-I0714, Institut für Informatik,
Technische Universität München (September 2007)

5. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1) (Jan-
uary 2003)

6. Haberl, W., Tautschnig, M., Baumgarten, U.: Running COLA on embedded sys-
tems. In: Proceedings of The International MultiConference of Engineers and Com-
puter Scientists, Hongkong, China (March 2008) (accepted)

7. Wang, Z., Merenda, S., Tautschnig, M., Herkersdorf, A.: A model driven develop-
ment approach for implementing reactive systems in hardware. In: Proceedings of
International Forum on Specification and Design Languages (FDL 2008) (Septem-
ber 2008)

8. Pretschner, A., Broy, M., Krüger, I.H., Stauner, T.: Software engineering for auto-
motive systems: A roadmap. In: Future of Software Engineering (FOSE 2007), Los
Alamitos, CA, USA, pp. 55–71. IEEE Computer Society, Los Alamitos (2007)

9. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: An integrated electronic system design environment.
IEEE Computer 36(4), 45–52 (2003)

A Simulation Approach for Performance Validation 399

10. Bondarev, E.R.V., Chaudron, M., de With, P.H.N.: Carat: a toolkit for design and
performance analysis of component-based embedded systems. In: Lauwereins, R.,
Madsen, J. (eds.) DATE, pp. 1024–1029. ACM, New York (2007)

11. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1998)

12. Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N.,
Sandner, R., Ziegenbein, D.: AutoMoDe —Notations, Methods, and Tools for
Model-Based Development of Automotive Software. In: Proceedings of the SAE
2005 World Congress, Detroit, MI. Society of Automotive Engineers (April 2005)

13. Kühnel, C., Bauer, A., Tautschnig, M.: Compatibility and reuse in component-
based systems via type and unit inference. In: Proceedings of 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications, Lübeck, Ger-
many, pp. 101–108 (2007)

14. Kugele, S., Haberl, W.: Mapping Data-Flow Dependencies onto Distributed Em-
bedded Systems. In: Proceedings of the 2008 International Conference on Software
Engineering Research & Practice (SERP 2008), Las Vegas Nevada, USA (July
2008)

15. Cheng, A.M.K.: Real-Time Systems: Scheduling, Analysis, and Verification. John
Wiley & Sons, Chichester (2002)

16. Haberl, W., Baumgarten, U., Birke, J.: A Middleware for Model-Based Embed-
ded Systems. In: Proceedings of the 2008 International Conference on Embedded
Systems and Applications (ESA 2008), Las Vegas, Nevada, USA (July 2008)

17. Rayadurgam, S., Heimdahl, M.: Coverage based test-case generation using model
checkers. In: Proceedings of the Eighth Annual IEEE International Conference and
Workshop on Engineering of Computer Based Systems (ECBS 2001), pp. 83–91
(2001)

18. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case
Generation for Dynamic Analysis and Measurement. In: Proceedings of the 20th
International Conference on Computer Aided Verification (CAV 2008), Princeton,
NJ, USA, pp. 209–213 (July 2008)

19. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, Reading (2003)

20. Wang, Z., Sanchez, A., Herkersdorf, A.: SciSim: A Software Performance Estima-
tion Framework using Source Code Instrumentation. In: Proceedings of the 7th
International Workshop on Software and Performance (WOSP 2008), Princeton,
NJ, USA (June 2008)

21. Yu, H., Gerstlauer, A., Gajski, D.: RTOS scheduling in transaction level models.
In: Proceedings of the International Symposium on System Synthesis, pp. 31–36
(October 2003)

22. Moigne, R.L., Pasquier, O., Calvez, J.P.: A generic rtos model for real-time systems
simulation with systemc. In: Proceedings of the conference on Design, automation
and test in Europe (DATE 2004) (2004)

Optimizing Automatic Deployment Using

Non-functional Requirement Annotations

Stefan Kugele1,2, Wolfgang Haberl1, Michael Tautschnig2, and Martin Wechs3

1 Institut für Informatik
Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
2 Institut für Informatik

Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

3 BMW Forschung und Technik GmbH
Hanauer Straße 46, 80992 München, Germany

Abstract. Model-driven development has become common practice in
design of safety-critical real-time systems. High-level modeling constructs
help to reduce the overall system complexity apparent to developers.
This abstraction caters for fewer implementation errors in the resulting
systems. In order to retain correctness of the model down to the software
executed on a concrete platform, human faults during implementation
must be avoided. This calls for an automatic, unattended deployment
process including allocation, scheduling, and platform configuration.

In this paper we introduce the concept of a systems compiler using
non-functional requirements (NFR) as a guidance for deployment of real-
time systems. The postulated requirements are then used to optimize the
allocation decision, i. e., the process of mapping model entities to avail-
able computing nodes, as well as the subsequent generation of schedules.

1 Introduction

By far the largest part of computer systems today is used in embedded systems
(98%) [1]. These are integrated in laundry machines, medical systems, cars, and
aircrafts, just to name a few. In this paper we focus on large scale distributed
embedded systems, built up from dozens or even hundreds of computing nodes,
interconnected by various bus systems. Such systems contain or constitute life-
critical electronic resources. Faults, of any kind, thus may be fatal. Even if not
fatal, they bare large warranty costs for the designers and integrators of the
product. The design methodology described in this paper tries to reduce the
error rate of problems resulting from implementation errors. We do not consider
bugs in specifications or byzantine software failures due to hardware errors, but
extensions proposed to alleviate such issues may well be integrated.

Today, model driven development (MDD) is an established means of tackling
the enormous complexity involved in designing distributed embedded systems.
The large scale prohibits engineers from grasping the entire system at once.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 400–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimizing Automatic Deployment Using NFR Annotations 401

Code
generation

Functional
model

Non-functional
requirements

Clustering SchedulingAllocation

Platform
model

Platform
configuration

Fig. 1. Systems compilation steps

Rather, a hierarchy of abstractions is applied to attain manageability at each
given level of abstraction. Pretschner et al. [2] for example consider three layers
of abstraction: a model of system features (requirements), a logical view (system
behavior), and a technical architecture (description of the target platform).

At higher levels of abstraction, even full formal verification, e.g., using model
checking, can be applied to guarantee adherence to a set of properties. Then,
proper behavior at model level may be guaranteed. In case of embedded real-time
systems, however, the target platform to operate on likely invalidates several as-
sumptions made at model level, or exposes properties that are not captured by
functional/behavioral modeling. We call such properties non-functional require-
ments, which includes the description of the target platform, or supplier specific
artifacts (see Section 3).

The complexity of the modeled system not only necessitates proper abstrac-
tions, but also calls for automation to take a model to an executable object, and
later to a functional integrated system. An automated translation likely reduces er-
rors and further guarantees reproducible results, and thus improves overallquality.
Such an automatism, however, must be made aware of all requirements concerning
the translation, which to a large extend involves non-functional requirements.

In this paper we describe concepts and implementation, both for specification
of non-functional requirements and the automated translation from behavioral
models down to the effective runnable. The process of translation is best com-
pared to that of a software compiler. Given a functional model, usually as a piece
of source code, a runnable entity is produced. Compiler and linker will be given
all constraints imposed by the operating system and the target hardware plat-
form to obtain an appropriate piece of software. Apart from the straightforward
translation, a fundamental job of today’s compilers is optimization in terms of
size and execution speed.

In embedded systems, we will call this process systems compilation, since the
compilation will be accomplished for the overall system model where the in-
volved software and hardware components may be of various types. Here, both
translation and optimization are by no means straightforward. As per transla-
tion, a heterogenous heap of models and requirements must be considered to
obtain a valid runnable entity (cf. [3]). Today, a certain level of black magic
performed by engineers is required to fit the software and hardware components
into the targeted vehicle. In this paper, additional non-functional requirements
are considered with the objective of a cost optimized system.

402 S. Kugele et al.

In Figure 1 we outline the process of automated systems compilation as de-
scribed in this paper. We propose non-functional requirements be annotated to
the functional models. The obtained executables are tailored towards the specific
platform and require no further manual intervention.

1.1 Related Work

Annotation of non-functional requirements and a notation of platform capabil-
ities was described by Dinkel and Baumgarten [4]. Their goal, however, was
the dynamic system reconfiguration at run-time. We not only model these non-
functional requirements and capabilities, but describe a fully automatic deploy-
ment process. This process ranges from a system design modeled in the language
COLA (Component Language) [5], to determination of optimal allocation with
respect to an optimization goal and pre-runtime scheduling.

Wuyts and Ducasse instrument components, with non-functional requirements,
specified in Comes (a general Component Meta-Model) [6]. In Comes, components
are seen as black boxes annotated with properties. This may be sufficient for allo-
cation and scheduling, but lacks the information necessary for model-checking and
other verification techniques. In COLA, each level of abstraction—from a very
high-level system design down to the low implementation level—offers a white-
box view and therefore provides all necessary information.

The UML profile MARTE (Modeling and Analysis of Real-Time and Embed-
ded Systems) [7] is currently in the course of standards definition. Therefore,
Espinoza et al. proposed an annotation of UML models with non-functional
properties [8]. UML, however, is a general purpose language, which does not
cater for the specific needs of the sub-domains of embedded systems design, like
automotive or avionics industry. In [1], Broy objects and favors the use of do-
main specific languages and architectures to improve the state of the art. We
present COLA as such a domain specific language, which, in contrast to UML,
also features a unique formal semantics.

Moreover, Matic et al. [9] take platform specifications, e.g., power modes of
the micro-controller, into account, as well as application specific information like
periods of tasks, in order to generate an optimal scheduling. Compared to our
approach, their work starts from having tasks to schedule. Our approach, how-
ever, supports an integrated development process of distributed hard real-time
systems from requirements engineering (system features) over the design phase
to the actual code generation, task allocation and scheduling in a consistent
modeling formalism. Furthermore, we optimize an objective function subject to
certain constraints stemming from non-functional requirements.

Regarding the overall design process, the DECOS project [10] is closest to
our approach. Unlike COLA, however, they do not use a consistent modeling
formalism, but rather resort to various techniques.

1.2 Organization

The rest of the paper is structured as follows. The next section gives a brief
introduction to the Component Language (COLA). In Section 3, we discuss

Optimizing Automatic Deployment Using NFR Annotations 403

different non-functional requirements. Section 4 introduces the platform model
used throughout this paper with its annotated requirements and capabilities. The
optimized automatic deployment process is described in Section 5. Allocation
and scheduling are mentioned as well as the concluding platform configuration.
Finally, conclusions of the presented work are given in Section 6.

2 COLA—The Component Language

During the past years, synchronous data-flow languages have become increas-
ingly popular tools for the description and design of safety-critical embedded
control-systems. Like MATLAB/Simulink [11], the industry standard CASE-
tool, or SCADE by Esterel Technologies (A380, FCS) [12], COLA uses data-flow
networks to describe complex automotive and avionics systems. Approaches for
model-based development and design for embedded control systems based on
the synchronous paradigm have been described in [13,14]. In synchronous data-
flow languages, components work in parallel with respect to data dependen-
cies and process their input and output values at clock ticks, i. e., discrete time
points. In COLA, similar to other approaches following the hypothesis of perfect
synchrony [15] it is assumed that communication of data via connections—in
COLA, they are called channels—as well as computation of data-flow networks
elapse infinitely fast and therefore take no time. In this paper we use the synchro-
nous data-flow language COLA, which supports both a graphical and textual
syntax and is based on a rigorous semantics.

The key concept of COLA are units. Units are at the very heart of the
COLA syntax definition because all COLA models are built up by units and
form data-flow networks. A unit itself can further be decomposed into sub-units
in a hierarchical fashion and build up complex networks. The lowest level of
those hierarchical networks consist only of so-called basic blocks that provide
basic arithmetic and comparison operators. Environmental interaction is given
via typed ports. In addition to basic blocks and networks, units can be decom-
posed into automata, i. e., finite state machines similar to Statecharts [16]. The
behavior in each state is again determined by units corresponding to each of the

ignition on

ignition

ignition
off

ignition
on

some further
decomposition

100

Fig. 2. Fictive ignition modeled in COLA using operating modes

404 S. Kugele et al.

states. This capability is well suited to express disjoint system modes, also called
operating modes (cf. [13,17, 18]). Figure 2 shows a COLA system implementing
parts of an ignition with its states ignition on and ignition off. The state ignition
on is further decomposed in this example. Furthermore, COLA includes a spe-
cial unit, called delay, to retain data for one clock tick. In this way, memories
and feedback-loops can be realized.

To make distributed execution of COLA models possible, a partitioning into
runnable software components has to be accomplished. These components are
referred to as clusters in the context of COLA.

3 Non-functional Requirements

In requirements engineering of software systems, we distinguish functional and
non-functional requirements. Functional requirements cover all requisites neces-
sary for the correct evaluation of the specified algorithms, i. e., the mathematical
functions. These mainly depend on the availability of input data. Contrariwise,
non-functional requirements cover all additional demands, which are specified
for a piece of software and which do not directly influence the resulting output
data. They are measurable such that their compliance can be checked.

In this paper, we further distinguish two kinds of non-functional requirements:
first, non-functional requirements that are essential for a correct operation of the
specified system are considered. If at least one of these requirements is not satis-
fied, an error-free operation of the overall system cannot be guaranteed. Second,
we consider non-functional requirements that are not necessary for the system
to operate, but rather improve a system’s quality regarding timely execution
(i. e., preservation of deadlines), resource usage, redundancy, etc. Some possible
quality requirements are given in ISO 9126. For example, it could be beneficial
to allocate safety-critical tasks onto processors on different, redundant electronic
control units (ECU). Another requirement might be to allocate all tasks imple-
mented by the same third-party supplier onto the same ECU, resulting in a
simplified maintenance process.

We use the terms processor and processing unit interchangeably and mean a
CPU or DSP without RAM, ROM, etc., whereas an ECU may include several
processors, RAM, ROM, and is connected to sensors, actuators and buses (cf.
Figure 4).

The NFRs mentioned here are intended to show the use of our methodology.
Of course, more than the discussed NFRs can be taken into account and easily
integrated in both the described model and the used allocation and scheduling
algorithms.

3.1 Essential Non-functional Requirements

In the following, we briefly outline those NFRs that are essential for a correct
operation of the overall system.

Optimizing Automatic Deployment Using NFR Annotations 405

Computing power: Each cluster needs a certain amount of computing power
for execution. This amount is annotated to the cluster embodying its worst-
case requirement. Hence this requirement can be checked against the given
platform. If more clusters are allocated onto a single processing unit than it
can handle, not all clusters are guaranteed be be evaluated.

Memory: Similarly to computing power, a cluster needs a minimum amount of
available memory. Two forms of memory are consumed: first, the binary file
generated for a cluster has to be stored in the permanent storage (ROM) of
the ECU. Second, the code generated for the cluster has demands regarding
the RAM available during execution.

Power state: Typically, embedded systems are bound to limited power supply.
Hence huge efforts are put into research and development of power sav-
ing technologies. For distributed embedded systems like cars, this can be
achieved through the definition of different power states. According to the
actual state of the car, e.g. locked, ignition off, ignition on, a varying number
of ECUs might be active. Other nodes are shut down at the same time to
avoid a waste of power.

To distinguish power states, a state hierarchy is given. Each power state
defines the set of ECUs running in it. Each higher state contains the same
ECUs, and at least one additional more. Therefore the relation S0 ⊂ S1 ⊂
S2 ⊂ S3 indicates four power states which S0 being the lowest state and S3

being the highest state in that example.

3.2 Auxiliary Non-functional Requirements

In addition to the mentioned essential NFRs, we also address auxiliary NFRs.
These are not necessary for correct operation, but raise further demands on the
system that, e.g., lower its cost or improve its efficiency.

Supplier: Large scale embedded systems are often the result of a cooperation
of several partners in industry. When defining a model for the whole system,
the definition of work packages for the different team partners is desirable.
These could consist of several clusters each in case of COLA. To allow for
this partitioning the designated partner can be annotated to each cluster
of the model. The supplier information can then be used to allocate tasks
implemented by a single supplier exclusively onto the same ECU(s). This
approach enables the partners to retain their current work-sharing where
each partner implements a piece of hardware, e.g., an ECU, together with
the corresponding software.

Redundancy: Dealing with safety-critical hard real-time systems, demands for
the implementation of error correcting techniques in case of a system node’s
failure emerge. A frequently used technique for error masking is the use of
redundant software components, specified using clusters in our case. The
specification of a redundancy requirement defines the number of redundant
cluster copies to use in the system, i. e., on how many different ECUs a
cluster should be deployed.

406 S. Kugele et al.

Processor architecture: If a cluster’s implementation is dependent on a spe-
cific processor’s capabilities, e.g. a digital signal processor (DSP), the cluster
has to be placed accordingly. This might be necessary for implementations
of algorithms requiring a large amount of processing power without violating
given deadlines.

Cost: From an economical point of view, one of the most important NFRs are
costs. In the automotive domain, for example, manufacturers operate in a
highly competitive mass market with strong cost pressure. Therefore, the
major part of the presented optimization approach is guided by costs. In
this paper cost is seen from the manufacturer’s point of view. In some cases
it may be beneficial to assemble more processors than needed to fulfill the
desired functionality, only to reduce the overall system costs. It is due to the
optimization process to decide on the most economic solution.

4 Requirements and Capabilities Meta-models

In order to allow for an automatic transformation of the modeled COLA system
into an executable system, algorithms for allocation and scheduling of clusters
are needed. Their evaluation is influenced by the NFRs specified in the COLA

model. Thus each cluster of the COLA model may be annotated with several
NFRs. In the following we detail on the meta-model for specification of cluster
requirements and platform capabilities.

Requirements Specification. Cluster requirements are captured as annota-
tions in the system model. These annotations occur in two forms: first, annota-
tions like power states, call frequency, etc. can be set. The values given for these
requirements are fixed independent of the processor the cluster is deployed.

Second, cluster requirements annotations that are specific for each processing
unit the cluster is deployed to, can be defined. For example, consider the number
of computing cycles and the memory consumption. In contrast to simple NFRs,
these requirements are specific for each processor on an ECU, because the val-
ues differ for the processor architecture, memory segmentation, etc. used on the
ECU in question. Therefore, these values have to be defined for each possible
allocation target. Thus these requirements are given for the cluster as a set of

NFR
<<abstract>>

Cluster
call_periode : int
replicas : int
supplier : String
pu_type : String
power_state : int
deadline : int

ECU

RAM_req : int
ROM_req : int

Memory

cpu_cycles : int
ProcessingTime

Fig. 3. Cluster annotation model

Optimizing Automatic Deployment Using NFR Annotations 407

tuples, each tuple consisting of the addressed node and the according value of
the requirement for that node. A class diagram of the meta-model for clusters
and their requirement annotations is given in Figure 3. As depicted, the require-
ments presented in Section 3 are covered in this meta-model. Simple annotations
are added to the clusters as attributes. In order to allow for a matching of these
requirements and the platform capabilities, a unit for the requirement has to be
chosen for each value. For example, the redundancy requirement for a cluster
is specified by giving the number of needed copies. Other values may be repre-
sented by sets, e.g., the specification of clusters implemented by a single supplier.
Besides these simple requirements, node specific requirements are covered by the
meta-model. As their values differ according to each node the cluster might be
deployed to, the requirements are stored in an association class. Therefore, dis-
tinct values are stored for each possible cluster allocation onto a system’s node.
A complete list as well as an explanation for the attributes covered in Figure 3
is given in Table 1.

Capabilities Specification. In order to calculate allocation and scheduling
decisions, the capabilities of the platform have to be given. These capabilities are
stored as an extension of the platform model, which include hardware, software
and other aspects. The algorithms described in Section 5 rely on the availability
of this information. While most capabilities are used as constraints for choosing
valid allocation and scheduling schemes, the cost attribute has to be handled

Table 1. Table of NFRs and capabilities

Requirement Unit Description

cpu cycles (ID, cycles) The amount of processing cycles needed is specific for every proces-
sor in question. Thus the value is specified as a tuple mapping the
processor ID to a number of cycles.

RAM req kByte The dynamic memory demand during task execution.
ROM req kByte The memory needed for binary file storage.

power state Name Name of the lowest power state in which this task is active.
supplier Name The name of the supplier implementing this cluster.
replicas Instances The number of copies distributed over the system for redundancy

reasons.
pu type Set<Arch.> The names of valid processor architectures.
deadline ms Specifies a deadline within a cluster has to be executed.

Capability Unit Description

cost Euro The cost generated by using this hardware component.
ROM cap kByte The amount of permanent memory available on the node.
RAM cap kByte The working memory available on the node.

os overhead ms For every called task, a certain amount of operating system over-
head is generated for dispatching, memory management, etc.

power state State An ECU is active in the specified power state and all higher power
states.

supplier Name The name of the supplier building this piece of hardware.
pu arch Name Processing units differ by their respective processor architecture.

Thus general purpose processors, DSPs and others can be distin-
guished.

proc cycles Cycles/ms To state the amount of processing power available, the number of
cycles per milliseconds is given.

408 S. Kugele et al.

System

Sensor

Actuator

cost : int
Bus

pu_arch : String
proc_cycles : int
cost : int

ProcessingUnit

cost : int
BusInterface

ROM_cap : long
RAM_cap : long
os_overhead : int
power_state : int
supplier : String
cost : int

ECU

1

2..*

1

*

1

*

11..* 1 1..*

connectedTo

1 1..*

Fig. 4. Platform model

differently. It allows for an optimization of the resulting allocation and scheduling
plan by calculating the most economic system architecture.

The complete list of platform model attributes, and an explanation of these, is
given in Table 1. The attributes are taken from the COLA platform meta-model,
which can be seen in Figure 4.

5 Deployment Process

The aim of a fully automatic deployment process is bridging the gap between
the system description—in our case, in a model-based fashion—and the target
platform without a need for human interaction. As the system is modeled with-
out taking distribution aspects into account, a division of software components
into cluster—the model representation of software tasks—and an allocation of
these onto processing units is defined. A clustering is derived from an optimized
software architecture w.r.t. reusability, maintainability, design guidelines, docu-
mentation and others (cf. [19]).

Subsequently, a static schedule for the tasks on each node is defined and
the appertaining C code is generated. Finally, the execution platform has to
be configured, regarding addressing of messages, buffer allocation, etc. In the
following, we will briefly introduce these steps.

5.1 Allocation

Our approach focuses on an optimized automatic deployment process for embed-
ded hard real-time systems w.r.t. a set of given non-functional requirements. In
Section 4, we introduced a meta-model for annotating systems with NFRs. These
requirements are now taken into account by the presented allocation algorithm.
Similar to Zheng et al. [20] and Matic et al. [9] we use an integer linear program-
ming (ILP) approach and therefore chose a similar nomenclature. In addition
to Zheng et al., Metzner and Herde [21] who are using a SAT-based approach
for the task allocation problem, our approach takes non-functional requirements

Optimizing Automatic Deployment Using NFR Annotations 409

during the deployment process into account. Before listing a set of constraints
and defining the optimization function, we introduce the notation used in this
section.

Notation. Let T denote the set of all clusters (tasks), and let P be the set of all
processing units. In the following, we use the indicator variable at,p where t ∈ T
is a task and p ∈ P is a processing unit to indicate where a task is deployed to:

at,p =

{
1 if task t is allocated to processor p
0 otherwise.

Furthermore, as abbreviating notation for the set {t | t ∈ T ∧ φ(t)}, where φ is
some predicate over model attributes, we write t|φ, e.g., p|supplier=s ≡ {p | p ∈
P∧supplier(p) = s}. Variable names written in sans serif font refer to attributes of
the platform model shown in Figure 4 and the cluster annotation model depicted
in Figure 3, respectively.

In the following, we refer to several sets of model artifacts: ECU (electronic
control units), P (processing units), PA (processor architectures), T (tasks), PS
(power states), and S (suppliers).

Constraints

1. The following essential NFRs have to be met:

(a) Computing power: For all processing units p ∈ P it holds
∑
t∈T

at,p · (cpu cycles(t, p) + os overhead(p)) · � ≤ proc cycles(p)

where � defines the number of task invocations per time unit.
(b) Memory consumption: For all ECUs e ∈ ECU it holds

∑
p∈proc(e)

∑
t∈T

at,p · RAM req(t, p) ≤ RAM cap(p)

∑
p∈proc(e)

∑
t∈T

at,p · ROM req(t, p) ≤ ROM cap(p)

where proc(e) returns a set of processors present at ECU e.
(c) Power states: For all power states ps ∈ PS and all tasks t|power state=ps it

holds: ∑
p|power state≥ps

at,p = N

2. Auxiliary non-functional requirements:

(a) Supplier: For all suppliers s ∈ S and all tasks t|supplier=s holds:
∑

p|supplier=s

at,p = N

410 S. Kugele et al.

(b) Redundancy: Each cluster has to be deployed onto N processing units.
If no redundancy annotation is given, then N = 1, otherwise N =
replicas(t). This holds for all tasks t ∈ T .

∑
p∈P

at,p = N

(c) Processor architecture: For all processor architectures pa ∈ PA and all
tasks t|pu arch=pa it holds: ∑

p|pu arch=pa

at,p = N

(d) Communication costs: Inter- and intra-processor communication may
be important in a real-time system to guarantee certain deadlines. We
introduce indicator variables atj ,pv

ti,pu
which are 1, if task task ti is deployed

onto processor pu and task tj onto processor pv, and 0 otherwise. It holds:
a

tj ,pv

ti,pu
⇐⇒ ati,pu ∧ atj ,pv . Formulated as linear constraints we get for

all 1 ≤ i, j ≤ |T | and 1 ≤ u, v ≤ |P |:

−ati,pu − atj ,pv + atj ,pv

ti,pu
> −2 and − 2 atj ,pv

ti,pu
+ ati,pu + atj ,pv ≥ 0

These indicator variables are then multiplied by measured costs for inter-
and intra-ECU communication. These costs include, amongst others, the
communication frequency. Both, indicator variables and costs form the
basis for a possible metric in the optimization function.

(e) Costs: Hardware is an important expense factor. Hence unused compo-
nents like controllers, buses and connection interfaces are only assembled
if for example the costs for future extensions are then reduced. If a bus
is exclusively used by unnecessary nodes, i. e., no tasks are mapped onto
them, it can be economized. This scenario, which is representative for
similar dependencies, can be expressed as follows:

∀t ∈ T ∀p ∈ P − at,p + cp > −1

where cp ∈ {0, 1} indicates that the expense for processor p has to be
taken into account during the optimization process. This decision im-
plies that costs for the involved connection interfaces etc. have to be
considered:

∀p ∈ P − cp + cb > −1

where cb ∈ {0, 1} is an indicator for the costs due to processor p being
connected to the bus b via a connection interface.

(f) Fixed allocation for some other reason: If a task t ∈ T has to be allocated
onto a special processor p, then at,p = 1 has to be added as constraint.

All the mentioned constraints, and other conceivable constraint extensions have
to be fulfilled such that it is possible to find an (optimal) solution. Additional
requirements include for example maintainability, extensibility and locality of

Optimizing Automatic Deployment Using NFR Annotations 411

input/output hardware. Maintainability demands for a placement of related
tasks onto the same or a small number of ECUs. This results in fewer system
nodes involved in software maintenance activities. Considering future function-
ality improvements, it may be beneficial to include some spare system capacity.
This can be achieved by introducing dummy clusters. Regarding bus communi-
cation, it is convenient to place tasks involved in environmental interaction on
the ECU the respective sensors and actuators are connected to. To allow for
optimization, in the following an objective function is given.

Optimization Function. Beside the given constraints, it is mandatory to de-
fine an optimization function. It consists of the two main components costs
and metrics. Costs characterize actual expenses whereas metrics subsume non-
functional optimization factors like memory, CPU time, or communication costs.

minimize
s.t.

∑
j

λj · costj +
∑

k

μk ·metrick

E.g., the costs for processors costproc sum up to: costproc =
∑

p∈P cp · κp, where
κp is the cost per unit obtained from the bill of material (BOM). By setting an
upper and a lower bound for costj and metrick, outliers during optimization are
avoided. Metrics can be gained in a similar way. The distinct but fixed weight-
ings λj and μk enable to characterize OEM’s optimization criteria. Criteria for
this parameter selection will be subject to subsequent work. Hereby, statistical
processes as well as methods from financial mathematics are involved.

5.2 Scheduling

In this paper we describe a static, i. e., offline approach, which is comparable to
the work of Schild and Würz [22], but in contrast, our approach optimizes the
result w.r.t. costs and other metrics.

To realize the modeled system, the assumption we made on the logical
architecture—the complete system is evaluated in zero time and operate at dis-
crete ticks—is replaced by deadlines specified in the model. As long as all active
clusters are evaluated and all their deadlines are met, the time assumption can
be seen as fulfilled. Hardware interaction has to be handled in a specific way
to converge towards the synchrony assumption. Assuming this hypothesis, all
sensors and actuators are read from or written to, respectively, at the same in-
stant of time. In a car, however, this cannot be achieved, as a parallel reading
of several sensors connected to the same ECU is technically impossible. For ex-
ample, consider the four wheel speed sensors providing rotation values used for
the electronic stability control task. A lag in reading times beyond a certain
threshold would lead to malfunction. Therefore, we propose a scheduling cycle
starting with reading all sensors, subsequent execution of application tasks, and
finally the writing of all actuators. This conforms to the described scenario as
close as possible. Figure 5 illustrates such a scheduling cycle. The generation of
schedules is—among other prerequisites—guided by the causal order of clusters.

412 S. Kugele et al.

read
sensors

write
actuators

scheduling cycle

t1 tn

t2

t...

ECU3

ECU1

ECU2

Fig. 5. Scheduling cycle

This causality can be derived from the data-flow defined in the COLA model
and depicted in a cluster dependency graph (CDG), as described in [19].

Since allocation and scheduling are separated, the scheduler already knows
about task distribution. This separation may result in a worse result compared
to a combined approach, but seems to be more feasible. The challenge remains
to find an optimal schedule for the complete system, preserving the model se-
mantics. The objective is to minimize:

f :
∑
t∈T

tc(t)

where tc(t) defines the completion time of task t taken from the set of all tasks T .
Our algorithm is implemented in a way that all tasks of the distributed system
are scheduled to have their completion times as early as possible w.r.t. possible
data dependencies. This procedure causes a compaction of tasks at the beginning
of the schedule cycle. The possibly remaining cycle time can be used in future
extensions to schedule aperiodic and sporadic tasks.

5.3 Platform Configuration and Execution

Subsequent to scheduling, C code for the modeled system is generated. As men-
tioned before, a cluster is the model representation of a task. Thus a single source
file is generated for each cluster by our code generator [23]. The automatic gen-
eration of code guarantees the conformance of the C code to the COLA model.

Comparing the overall system model designed in COLA and its realization in
software, obviously a mapping from COLA channels to communication between
tasks has to be defined. In a distributed system this may be local communication
as well as bus communication. The data dependencies are captured in a task
graph [19] in the COLA modeling process. It is our intention to allow for a
flexible distribution of tasks without defining static communication addresses.
This is realized using a communication middleware for all task interactions as
well as task state storage. Additionally, the middleware is responsible for the
dispatching of tasks according to the calculated schedule. The dispatching plan,

Optimizing Automatic Deployment Using NFR Annotations 413

as well as the task to address mapping is generated unattended, and therefore
avoids manual faults. We employ our middleware [24] for mapping channels to
communication.

6 Conclusions

In this paper, we introduced an integrated model-driven development process
for embedded real-time systems. We outlined the necessary steps for getting
from a functional system design modeled with COLA to a runnable entity. The
metaphor of a systems compiler best describes this process. First, the model is
cut into clusters which are subsequently allocated onto the available processing
units. Afterwards, an optimal schedule for the complete system is calculated. By
annotating the model with non-functional requirements, we were able not only
to find a feasible solution, but even an optimal solution for both task alloca-
tion and task scheduling, respectively, w.r.t. the given NFRs. The unattended
platform configuration tops the process off. Using this deployment process, an
adaptive cruise control system (ACC) was realized on the LEGO Mindstorms
platform as well as a parking assistance using several interconnected gumstix
microcontrollers with a RTOS installed.

References

1. Broy, M.: Automotive software and systems engineering (panel). In: MEMOCODE,
pp. 143–149 (2005)

2. Pretschner, A., Broy, M., Krüger, I.H., Stauner, T.: Software engineering for auto-
motive systems: A roadmap. In: FOSE 2007, pp. 55–71 (2007)

3. Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. IEEE
Computer 40(10), 32–40 (2007)

4. Dinkel, M., Baumgarten, U.: Modeling nonfunctional requirements: a basis for
dynamic systems management. SIGSOFT Softw. Eng. Notes 30(4), 1–8 (2005)

5. Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haberl, W.,
Kühnel, C., Müller, F., Wang, Z., Wild, D., Rittmann, S., Wechs, M.: COLA –
The component language. Technical Report TUM-I0714, Institut für Informatik,
Technische Universität München (September 2007)

6. Wuyts, R., Ducasse, S.: Non-functional requirements in a component model for
embedded systems. In: SAVCBS 2001 (2001)

7. Object Management Group: Uml profile for modeling and analysis of real-time and
embedded systems (marte). OMG document: ptc/07-08-04 (2007)

8. Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside, C.M.:
Annotating UML models with non-functional properties for quantitative analysis.
In: MoDELS Satellite Events, pp. 79–90 (2005)

9. Matic, S., Goraczko, M., Liu, J., Lymberopoulos, D., Priyantha, B., Zhao, F.:
Resource modeling and scheduling for extensible embedded platforms. Technical
Report MSR-TR-2006-176, Microsoft Reasearch, One Microsoft Way, Redmond,
WA, USA (2006)

10. Kopetz, H., Obermaisser, R., Peti, P., Suri, N.: From a federated to an integrated
architecture for dependable embedded real-time systems. Technical Report 22,
Technische Universität Wien, Institut für Technische Informatik, Austria (2004)

414 S. Kugele et al.

11. The MathWorks Inc.: Using Simulink (2000)
12. Berry, G., Gonthier, G.: The esterel synchronous programming language: design,

semantics, implementation. Sci. Comput. Program 19(2), 87–152 (1992)
13. Bauer, A., Broy, M., Romberg, J., Schätz, B., Braun, P., Freund, U., Mata, N.,

Sandner, R., Ziegenbein, D.: AutoMoDe —Notations, Methods, and Tools for
Model-Based Development of Automotive Software. In: Proceedings of the SAE
2005 World Congress, Detroit, MI. Society of Automotive Engineers (April 2005)

14. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From
simulink to SCADE/lustre to TTA: a layered approach for distributed embedded
applications. In: LCTES, pp. 153–162. ACM, New York (2003)

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

16. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1998)

17. IEEE: IEEE Std 830-1998: IEEE Recommended Practice for Software Require-
ments Specifications. Institute of Electrical and Electronics Engineers (1998)

18. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for
the development of safe critical systems. Science of Computer Programming 46(3),
219–254 (2003)

19. Kugele, S., Haberl, W.: Mapping Data-Flow Dependencies onto Distributed Em-
bedded Systems. In: SERP 2008, Las Vegas, Nevada, USA (July 2008)

20. Zheng, W., Zhu, Q., Natale, M.D., Vincentelli, A.S.: Definition of task allocation
and priority assignment in hard real-time distributed systems. In: RTSS 2007,
Washington, DC, USA, pp. 161–170. IEEE Computer Society Press, Los Alamitos
(2007)

21. Metzner, A., Herde, C.: Rtsat–an optimal and efficient approach to the task allo-
cation problem in distributed architectures. In: RTSS, pp. 147–158 (2006)

22. Schild, K., Würtz, J.: Off-line scheduling of a real-time system. In: Proceedings of
the 1998 ACM symposium on Applied Computing (January 1998)

23. Haberl, W., Tautschnig, M., Baumgarten, U.: Running COLA on Embedded Sys-
tems. In: IMECS 2008 (March 2008)

24. Haberl, W., Baumgarten, U., Birke, J.: A Middleware for Model-Based Embedded
Systems. In: ESA 2008, Las Vegas, Nevada, USA (July 2008)

Experiences with Evolutionary Timing Test of

Automotive Software Components

Florian Franz

BMW Group and Institute for Real-Time Computer Systems TU Munich
florian.franz@cdtm.de

Abstract. This paper reports our experiences in estimating the worst
case execution time (WCET) of automotive software components with
evolutionary testing (ET). The concept maximizes the runtime of soft-
ware components (SWCs) with internal states by evolving the applied
test sequences. We show that the use of timing tests is strongly facili-
tated by the automotive architecture framework AUTOSAR. A problem
of the testing concept is the high temporal effort, that comes along with
measuring the execution time of a test sequence on the target hardware.
An analysis of the evolutionary testability shows, that the high number
of input parameters makes it hard to find the maximum execution time.
The WCET estimates obtained with genetic algorithms (GAs) are in-
ferior compared with the results of random testing. GAs run into local
optima in case of flat execution time profiles, whereas random testing
keeps searching globally. Random testing is outperformed by extended
GAs which are adaptive to the underlying optimization problem.

1 Introduction

The standard approach to determine the WCET is static analysis. This method
provides the system architect with a conservative estimate of the WCET, that
is larger than the actual value. It is an analytical technique that is especially
useful for hard, safety-critical real time systems, where the execution time must
be strictly bounded. However the static analysis has two major drawbacks. It
often requires manual input, which is time-consuming and error-prone, and it
tends to be overly pessimistic.

In case of soft real time systems, where missed deadlines do not have dramatic
consequences, the application of static analysis often cannot be justified. To
ensure sufficient quality, the timing of SWCs is examined with other methods.
A common approach in the industry is to perform runtime tests on the target
hardware for estimating the WCET. The benefit of measuring execution times on
the target is, that it avoids the tedious and error-prone modeling of the processor.
If the component is not split up for measuring, this so called dynamic analysis
by definition leads to WCET estimates, that are below the actual value. The
use of these optimistic estimates is problematic, because a system with too high
actual computation times might be classified as sufficiently fast. In consequence,
it is necessary to make sure that the gap between estimated and actual WCET

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 415–429, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

416 F. Franz

is small. The challenge for the dynamic test is to find input data that cause large
runtimes.

The concept of the evolutionary timing test with GAs has been introduced
by Wegener [1]. He interprets the problem of determining the maximum runtime
of SWCs as an optimization problem. The WCET is searched by varying the
input parameters of the examined SWC. An iteration of the heuristic search
consists of a test case generations step and a start-to-end runtime measurement.
In contrast to the concept from Bernat et al. the component is not divided into
its basic blocks but measured as a whole [2]. This avoids the pessimism in the
WCET estimate, which results from combining the basic block measurements
conservatively. Wegener showed, that GAs are well-suited for estimating the
WCET of SW components with no internal state [3].

We applied the concept for testing the WCET of state-based SW components
in the serial-development process of automotive SW. The contribution of this
paper is to adapt the evolutionary timing test for practical problems, to evaluate
its performance and to examine the related work-effort. The paper is structured
as follows. After a depiction of the basic concepts of evolutionary testing and
AUTOSAR, we present our approach for testing state-based SWCs. In a next
step our adaptations for testing AUTOSAR SWCs are described. In this context
the benefits for evolutionary testing that arise from the AUTOSAR architecture
are explained. After that, the genetic optimization concept is evaluated for SWCs
of two electronic control units (ECUs) relative to random testing. On this basis
the problem is analyzed in more depth and the optimization concept is refined
to outperform the random test.

2 Related Work

2.1 Evolutionary Test of the WCET

This section briefly describes the basic concept for genetic WCET tests. More
detailed information can be found in [1] and [5]. GAs are parallel optimization
techniques, that apply the concepts of genetics and darwinism. A population of
individuals evolves over generations by genetic changes and selection processes.

The individuals represent input data vectors of the examined SWC. The el-
ements of the input data vectors form the genetic material which is evolved.
Consequently the elements of the input data vector are called chromosomes. Ba-
sically the optimization heuristic performs a controlled search of the input space
by changing and combining the chromosomes of individuals. Individuals that are
close to the optimization goal are selected to replace other individuals. Apply-
ing this darwinistic technique GAs manage to be more goal oriented than pure
random search. The genetic evolution of the individuals is based on the iterative
execution of the steps fitness evaluation, selection, recombination, mutation, and
replacement.

The fitness of the individuals corresponds to the start-to-end execution time
that results from the input data vector. To obtain an individual’s fitness the
examined piece of software is executed with the corresponding input data vector.

Experiences with Evolutionary Timing Test of Automotive SWCs 417

In the next phase individuals with high fitness are selected for further evolu-
tion. This selection step makes sure that the GA concentrates on genetic material
with high execution times and that no further resources are spent for examining
search regions with low execution times.

In the recombination phase, the genetic material of two randomly selected
individuals is merged. In this merging step the corresponding chromosomes of the
two individuals are exchanged or interpolated. This operation allows a knowledge
exchange between the selected individuals.

In the mutation phase a few chromosomes of the individuals are randomly
changed. This local random search helps the algorithm to keep on searching for
the global optimum.

The last step of the GA is the replacement operation where the genetically
evolved population replaces the original population. At the beginning of the
GA all individuals are initialized with random values. Then the individuals are
genetically evolved until a termination criterion is reached. Potential termina-
tion criteria are the stagnation of the fitness or a reached maximum number of
generations.

A combination of static WCET analysis and dynamic test has been presented
in [6]. Puschner and Nossal developed a concept to prove the results of static
WCET analysis by applying dynamic tests with GAs.

2.2 Runtime Test of AUTOSAR SWCs

The WCET estimations performed in this paper are done by testing applica-
tion SWCs, that are based on the automotive architecture standard AUTOSAR
[7,8]. An extension of the AUTOSAR model to capture timing properties more
adequately has been presented in [9,10]. According to Scheickl and Rudorfer
there are currently no known research activities, that estimate WCET values
by applying information from the AUTOSAR model [9]. We close this gap by
harvesting the benefits from AUTOSAR, which are depicted in section 4.3.

The aspects of AUTOSAR, which are relevant for the timing test shall be
briefly reviewed. A major element of the AUTOSAR architecture is a middleware
layer, which is called runtime environment (RTE). Above the RTE one can
find application SWCs, which implement the abstracted functionality in an HW
independent way.

A SWC communicates with other SWCs or underlying SW layers exclusively
via its RTE interface. In consequence, a component‘s RTE interface captures the
inputs and outputs of a SWC, which are relevant for performing WCET tests,
completely. AUTOSAR requires a precise modeling of both the static interface
of a SWC and the communication relationships between the SWCs. The RTE
is the test interface, which we use for determining the temporal properties of
the SWCs. The communication between two AUTOSAR SWCs via the RTE is
pictured in figure 1.

An application SWC typically does not run directly in a task of the operat-
ing system (OS). Instead, the SWC is clustered in multiple runnable entities,
that can be independently mapped to OS tasks with different periodicities. In

418 F. Franz

AUTOSAR
SW-Component

A

Autosar Runtime Environment (RTE)

AUTOSAR
SW-Component

B

AUTOSAR
Interface B

AUTOSAR
Interface A

Fig. 1. AUTOSAR architecture with SWCs and RTE

consequence, multiple runnable entities of different SWCs can reside on the same
OS task. The runnable entity is the unit under test, whose WCET is estimated
within this paper. For a scheduling analysis of an ECU that is composed from
several SWCs one is typically interested in the WCET of a complete task. Tim-
ing composability is given, because the analyzed ECUs do not contain sources
of timing anomalies like caches [11]. Consequently the WCET of a task can be
easily computed by adding up the WCETs of its contained runnable entities.

3 Adaptation of ET Concept for Test of State-Based
Systems

3.1 State-Based Timing Test with Test Sequences

The basic concept for ET examines SWCs with no internal state by applying
a test vector to all inputs. There are multiple concepts for extending ET to
state-based systems [5]. One concept is to apply the evolutionary optimization
concept to test sequences. This means that a separate test vector is applied to
the inputs of the SWC in each temporal step of the test sequence. The problem
of this approach is, that it can lead to a considerable enlargement of the search
space.

Another approach is to perform separate WCET estimations for each system
state. The drawback of this concept is, that it requires a mechanism to reach all
system states. One possibility to cope with this, is to rely on already existing
test sequences. Another way are special test input variables, which allow a tester
to establish internal states.

None of these mechanisms to reach the internal system states was available or
easy-to-implement for the SWCs that we examined. Consequently we decided to
perform an evolutionary optimization of test sequences. By limiting the number
of changed variables in each test step, we avoided an explosion of the search area.

Experiences with Evolutionary Timing Test of Automotive SWCs 419

3.2 Data Structure for Optimizing Test Sequences

To model test sequences we adapted the optimized data structure such, that it
reflects the temporal properties. A generic structure is to describe a test case
as a temporal sequence of test steps. A test step shall be defined such, that the
examined runnable entity is executed once in every test step.

When evaluating a test sequence one runtime measurement is performed with
every execution of the examined runnable. We define the fitness of a test sequence
as the maximum execution time during its test steps.

The structure of the examined runnables corresponds to the simple task model
from Kopetz [4]. The runnables do not contain synchronization operations, that
may cause blockings. All relevant RTE variables are read in at the begin of
the runnable‘s execution. Consequently an RTE variable that changes its value
during the execution of a runnable does not impact the runnable, if the value
changed after the atomic reading operation. Therefore the exact timestamps
when input signals change are irrelevant for the operation of the runnables. For
the optimized data structure this means, that it is sufficient to capture the values
of the inputs at the discrete instants, when the atomic reading operations are
performed. The reading operations are performed once per test step, and so the
optimized data structure only needs to store the input values in the different
test steps.

To avoid a data structure with unmanageable size, we made the simplifica-
tion, that only one input changes its value in a single test step. The value of the
other inputs remains like in the previous test step. Considering, that the examined
runnables are called in short periods of few milliseconds, this assumption seems
plausible for the SWCs that have been analyzed in this paper, as they mainly de-
pend on physical input parameters and user interactions. The reduced data struc-
ture cannot analyze such applications correctly, that exhibit their WCET when all
input parameters change at the same time. But without reducing the data struc-
ture one obtains large test sequences, which are hard to optimize. For instance, a
component that is analyzed in 100 test steps would require a data structure with
10 000 elements, if it has 100 inputs that may change in every test step.

A refined reduction concept for the data structure limits the total number of
variable alterations per test case by an upper boundary and allows an arbitrary
number of input parameter changes per test step while the upper boundary is
kept. The drawback of this approach is an inhomogeneous data structure, which
makes it hard to define an effective crossover operator. This refined concept is
subject to further research.

The simplified concept can be efficiently mapped to a data structure that
only holds that single input parameter per test step, which will be changed. The
advantage of just storing differential information is the avoidance of redundant
data and the focus on the decisive information. The coding of a test sequence
is illustrated in figure 2. In each of the three exemplary test steps Si, one input
Ij changes its value. As shown with I1 one input can change its value multiple
times. The value of an input is encoded as a bit string, whose size depends on
the data range of the corresponding input parameter.

420 F. Franz

Fig. 2. Data structure for test sequence

The number of test steps which is used for ET has to be configured a priori
by a system expert. In the best case, the largest time constant involved with
the software component under test is modestly high, such that the test vector
remains small. It is a limitation of the testing approach that processes which
require a long time span to elapse cannot be tested efficiently. If the runtime test
requires very many executions of the examined runnable, too much experimental
time is spent.

A theoretical option is to work with a simulated system clock that is speeded
up by software. We did not pursue this approach, as we found out that several
SWCs do not only rely on the system clock but also on implicit timing informa-
tion. An example is a function, which exploits the fact, that it is called every 5
milliseconds to deduct an internal timer. A speed up of the system time without
of executing the runnable consistently distorts the behavior of the component
under test. Without removing the internal timers from the tested SWCs it is not
possible to reduce the experimental time by avoiding explicit executions of the
runnables.

4 Evolutionary Test of AUTOSAR SWCs

4.1 Runnable Execution Pattern

As stated above, each SWC has its defined interface to the RTE, which we use
for testing. The analyzed test objects are the runnables from which the SWCs
are composed. The communication between the runnables of a SWC is typically
via shared variables and not via the RTE. This means, that a tested runnable
is not fully separated by the RTE test interface. The constellation is pictured in
figure 3.

To utilize the formally specified RTE interface despite of this problem, it is
required to execute not only the runnable whose maximum execution time is
tested, but also the remaining runnables in the same SWC.

Experiences with Evolutionary Timing Test of Automotive SWCs 421

AUTOSAR SW-Component A

AUTOSAR Interface A

5ms
Runnable Entity

Run_A_5ms

20ms
Runnable Entity

Run_A_20ms

Startup
Runnable Entity
Run_A_Startup

Fig. 3. Communication between runnables that compose a SWC

5ms 5ms 5ms 5ms 20ms 5ms 5ms 5ms 20msStart

Fig. 4. Pattern of executed runnables

An example for this problem is the processing of vehicle configuration para-
meters. These constant parameters are often solely read in from the RTE in
a startup runnable, which is only executed once in the boot up phase of the
ECU. A runtime test of a second runnable within the same SWC does not take
into account the impact of non-default configuration parameters, if the startup
runnable has not been called beforehand.

Another example is the preprocessing of input data and the downsampling of
the result in the same SWC. A 5ms runnable shall read in input data from the
RTE and preprocess them. The result is stored in a shared variable, that is read
by a 20 ms runnable. It is not possible to test the 20 ms runnable via the RTE
interface sufficiently without of executing the 5ms runnable in advance.

To incorporate the interdependencies between runnables of the same SWC
with different periodicities in the timing tests, we execute all runnables of a
SWC in their designated temporal sequence. An example is pictured in figure 4.

In section 3.2 we stated, that only one input parameter changes its value per
test step. An exception to this rule has been made for the startup runnable.
Before the very first runnable is executed, a larger set of parameters is allowed
to change their value to be different from default. Otherwise the input data of the
startup runnable are very close to the default parameters for all generated test
sequences. In the example with the vehicle configuration parameters this avoids,
that the SWC is only tested with close-to-default configuration parameters.

4.2 Test Environment for AUTOSAR SWCs

The runtime test of SWCs requires a method to control the SWC on the tar-
get HW. We developed a dedicated testbed, that can be controlled via a serial

422 F. Franz

connection, for running the tested SWC. The testbed allows a test control on a
PC to set the input RTE variables and to trigger the execution of the runnables
on the target HW. Moreover the testbed measures and provides the execution
times of the executed runnables. To enable undisturbed measurements all inter-
rupts are deactivated while a runnable is executed.

The runtime test of a test sequence with 250 test steps requires approxi-
mately 80 seconds. This is three orders of magnitude longer than the pure ex-
ecution time on the target HW. The overhead can be reasoned with the time
that is required for communicating with the testbed, for triggering the measure-
ments and for configuring the input parameters. Another time-consuming aspect
is the necessity to reset the SWC and the underlying HW between subsequent
test sequences. This helps to avoid mutual interferences between separate
test sequences.

The applied communication concept is considered bandwidth efficient, as we
transmit identifiers instead of full names. We evaluated other concepts for oper-
ating the SWCs on the target, but we could not find a more efficient one. One
approach is to control the runtime experiments with an interfaced embedded
debugger.

4.3 Benefits of AUTOSAR for Evolutionary Timing Test

AUTOSAR provides the evolutionary timing test with the following benefits:

– Homogeneous SW architecture
The AUTOSAR middleware enforces clear cut SWCs with a standardized
(test-) interface.

– Formal interface specification
Machine readable specification of the components and their interfaces avoids
manual user input of the test interface, which is an error-prone and te-
dious task. From the specified interface the test stubs can be generated
automatically.

– Orientation of data flow specified
The AUTOSAR interface description specifies the direction of the data-flow.
This makes it possible to differentiate between input and output parameters.
Therefore the dimensionality of the search region for optimizing the input
parameters can be cut roughly by factor two.

– Range of values specified accurately
The value ranges that the RTE variables can have are specified in bit-
accuracy. With this information the search region can be restricted further.

– Periods of the cyclic runnables specified
This makes it possible to generate the runnable execution pattern from sec-
tion 4.1 automatically.

– HW independent source code allows test on PC and embedded
system
The problem of high experiment duration when running the SWCs on the
target HW will be avoided in the future by shifting the pre-analysis of gen-
erated test cases to a PC environment.

Experiences with Evolutionary Timing Test of Automotive SWCs 423

5 Evaluation of Genetic Optimization Concept

5.1 Tested SWCs

The tested SW components are in the domain of body- and comfort electronics.
Examples for customer functions are central locking, power windows, terminal
control, comfort access and interior light. The SWCs have been taken from real-
life serial-development projects.

The complexity of the runnables RUN10 to RUN15 is illustrated in table 1. It
lists the number of executable lines of code, the cyclomatic complexity, the knot
count, the maximum nesting level and the number of input / output variables.

Table 1. Complexity of examined runnables

Runnable RUN10 RUN11 RUN12 RUN13 RUN14 RUN15

Executable Lines of Code 2956 1710 1538 1995 2957 6553
Cyclomatic Complexity 448 271 273 292 442 1161

Knot Count 140 182 38 218 287 430
Maximum Nesting Level 34 6 13 9 8 7
Number of I/O variables 252 90 71 114 81 154

The complexity metrics for runtime-tested SWCs, that have been stated by
Tlili et al. in [13], indicate that our examples are considerably more complex.
In this study, the number of executable lines of code and the cyclomatic com-
plexity, which corresponds to the number of decisions plus one, carry values that
are roughly one order of magnitude higher. Also the knot count, that sums up
the number of jump statements like break or continue, is clearly higher. The
maximum nesting level from our examples is approximately twice as high as in
[13]. The high number of inputs and outputs is a further metric that indicates
the complexity of the examined SWCs.

5.2 Results of Genetic Optimization

This section discusses the results, which were obtained with the evolutionary
timing test. The parameters, which were used in the evaluation are listed in
table 2. This parameter set reached the best results in comparison with other
parameterizations, that require the same total number of test steps. Considering
the complexity of the problems, that contain up to 252 input / output variables,
it is advisable to increase the testing effort by allowing a higher population size,
more generations and test steps, if sufficient experimental time is available. With
the selected configuration approximately 100 minutes are required to obtain the
WCET estimate for a runnable. An increase of the testing time is not practicable
within the scope of this paper, that requires numerous WCET experiments for
analyzing different SWCs with miscellaneous algorithms. For the evaluation of a
non-deterministic search algorithm’s estimation accuracy, one requires multiple
WCET test runs to reduce the impact of statistical outliers.

424 F. Franz

Table 2. Parameterization of GA

Parameter Value

Population size 25
Number of generations 3

Selection scheme Ranking (best 10 %)
Replacement scheme Comma replacement

Elitism Weak elitism
Number of test steps 250

The population size has been dimensioned to be larger than the number of
generations. This reduces the impact of the randomly generated initial popula-
tion on the estimation accuracy. Due to the low genetic testability, that will be
shown in section 5.3, a deeper search with more generations obtains less accurate
results, if the testing effort is hold constant.

The selection scheme performs a hard decision for the best 10% of the testcases.
The replacement is such, that old generations are completely replaced by younger
generations. The only exception is the case where the new generation’s best indi-
viduum is inferior to the best individuum of the old generation. In this case, the
weak elitism strategy conserves the best individuum of the old generation to en-
sure that the population does not develop negatively. The number of teststeps has
been deducted from time constants of the SW components.

We tested the WCET of runnable entities from two ECUs, which shall be
called ECU1 and ECU2. The results of the evaluation are pictured in the tables
3 and 4. They show the WCET estimations obtained with GAs relative to results
of random testing for the runnables RUN1 to RUN15. Because of the random
nature of the algorithms the results have been averaged over eight test runs.
The fourth column shows the results of an improved GA concept, which will
be explained in section 5.4. The highest WCET estimate, which has been ever
obtained for a certain runnable with any of the algorithms is listed in the fifth
column. We use this value as an estimation for the true WCET. For interpreting
the performance of the algorithms, one has to reconsider that the results of the
dynamic start-to-end test are below the actual worst case. This means that larger
estimation results are closer to the actual WCET and therefore more accurate.

The experimental results have been divided into two groups by a horizontal
line. For the runnables RUN1 to RUN6 and RUN10 to RUN13 the result of ran-
dom testing is close to the largest WCET estimation ever obtained by different
testing methods. This means, that there is little room for the GA to outperform
random testing for these examples. For these examples the results of the GA are
similar to the WCET estimations obtained with random testing. An exception
is runnable RUN6, where random testing even outperforms the GA.

A more significant gap between largest ever determined WCET and random
testing can be found for the runnables RUN7 to RUN9 and RUN14 to RUN15.
For these runnables the estimated WCET of random testing tends to be more
accurate than for the GA. The reason for this is the problem, that GAs run into
local optima whereas random testing searches globally.

Experiences with Evolutionary Timing Test of Automotive SWCs 425

Table 3. WCET estimation with GAs relative to random testing for ECU 1

Component Standard GA Random test GA with fitness Best WCET
landscape adaptation estimation

RUN1 235 μs 235 μs 235 μs 235 μs
RUN2 684 μs 684 μs 684 μs 684 μs
RUN3 276 μs 277 μs 276 μs 277 μs
RUN4 852 μs 852 μs 853 μs 855 μs
RUN5 581 μs 583 μs 582 μs 585 μs
RUN6 952 μs 974 μs 974 μs 977 μs

RUN7 1084 μs 1076 μs 1091 μs 1095 μs
RUN8 766 μs 797 μs 836 μs 1191 μs
RUN9 5374 μs 5703 μs 8819 μs 14593 μs

Table 4. WCET estimation with GAs relative to random testing for ECU 2

Component Standard GA Random test GA with fitness Best WCET
landscape adaptation estimation

RUN10 224,4 μs 224,2 μs 224,3 μs 225,5 μs
RUN11 61,7 μs 61,4 μs 61,5 μs 63,1 μs
RUN12 76,0 μs 76,0 μs 76,0 μs 76,9 μs
RUN13 88,8 μs 88,6 μs 88,9 μs 89,2 μs

RUN14 112,4 μs 111,0 μs 111,8 μs 114,6 μs
RUN15 203,1 μs 204,0 μs 207,1 μs 213,9 μs

An illustrative example where random testing is superior to GAs can be found
in [15]. A more detailed analysis of the optimization problem in the next section
analyzes the root cause for the inferior performance of GAs.

5.3 Quantification of Genetic Testability

In order to find out, why the GAs’ performance in testing the WCET is inferior
to random tests we analyze the genetic testability of our components under test.
Gross has developed a concept to forecast the result quality of evolutionary
timing tests by analyzing the control flow structure of the tested SWC [12]. We
did not apply this concept, because it has been criticized in the literature to not
capture all required dependencies [5] and because it requires considerable work
effort to perform a syntax analysis of source code.

An alternative concept from the optimization literature is the so-called fitness-
distance correlation (FDC) [14]. The FDC is the correlation between the individ-
uals’ distance to the global optimum and their fitness. A positive FDC means,
that an individual which is far away from the global optimum tends to have a
high fitness. A high positive FDC is disadvantageous for an optimization, be-
cause individuals, that have a high distance from the global optimum will be
encouraged due to their high fitness. Analogously, a high negative FDC leads to
optimization problems, that are more easily solved.

426 F. Franz

Table 5. Fitness-Distance Correlation for different runnables

Runnable Fitness-Distance Correlation

RUN1 - 0,08
RUN2 0,0
RUN3 0,0
RUN4 + 0,01
RUN5 0,0
RUN6 - 0,05
RUN7 + 0,09
RUN8 - 0,12
RUN9 - 0,10

500

600

700

800

900

1000

1100

1200

0,1 0,11 0,12 0,13 0,14 0,15

distance to the global optimum

fi
tn

es
s

(r
es

p
. r

u
n

ti
m

e
)

Fig. 5. Scatter plot of fitness and distance to global optimum for RUN8

Jones and Forrest provide a decision boundary to classify genetic optimization
problems [14]. If the FDC is above +0, 15 the optimization problem is hard to
solve with GAs, if it is below −0, 15 it is easy to solve.

The global optimum, which is required for calculating the FDC, is unfortu-
nately not known. To cope with this, we assumed that the maximum observed
execution time from all experiments is close to the global optimum and took this
value accordingly. The FDC values for the ECU ECU1 are depicted in table 5.

One can observe, that the norm of the FDC value is below the decision-
boundary 0, 15 for all examples. This means that there is only a weak relation
between the distance to the optimization target and the fitness value. It cannot
be classified, if the global optimum attracts or detracts the optimized individu-
als. The reason for this is the high dimensionality of the input data space. We

Experiences with Evolutionary Timing Test of Automotive SWCs 427

presume a higher correlation between few runtime-decisive parameters and the
resulting fitness. It was observed, that there is a high number of input para-
meters, which do not impact the fitness resp. the maximum runtime of a test
sequence. However, these parameters have an impact on the distance from the
optimal test sequence, which contains arbitrary values for irrelevant inputs. The
resulting distortion leads to a low norm of the FDC.

A detailed profile of fitness and distance is depicted in figure 5, that shows a
scatter plot for the runnable RUN8. One can see that the fitness profile is very
flat. This means, that the GA gets little guidance on the search for the maximum
execution time. In this example the GA performs worse than random testing, if
all individuals of the initial population have low fitness values around 700. This
can be reasoned with the local search of the GA, that focuses on search regions
around the best individuals of the population. The best individuals in this case
do not provide guidance to the global optimum. In that example, random testing
performs better, as it may find a test sequence whose fitness is above 1100 in
every randomly generated test sequence.

5.4 Concept Refinement for Flat Fitness Profiles

This paragraph tries to refine the GA concept such, that it also performs good in
case of flat fitness profiles. Section 5.3 showed, that random testing is superior in
the case, where there is no learning potential from the current population. Our
refined approach inserts a step that analyzes the fitness profile of the population
before the selection phase. If the analysis finds out, that the GA has yet found
interesting individuals the standard selection concept is performed, that selects
individuals with high fitness for further optimization. If the analysis result shows
that the current population contains only few or no interesting individuals, the
population is enriched with random individuals. This adaptive concept makes
it possible to exploit the advantages of both random testing and GAs. The
algorithm flexibly adapts to the fitness profile of the test object by applying the
appropriate strategy.

The result of GAs with fitness landscape adaptation can be found in the tables 3
and 4. For the runnables RUN1 to RUN6 and RUN10 to RUN14 the enhanced
GA reaches the same estimation accuracy as random testing. In the remaining
runnables the fitness adaptive GA outperforms random testing.

6 Conclusion

We developed a concept and reported our experiences in measuring the WCET
of automotive SWCs by applying test sequences, that have been generated with
GAs. For this purpose one can leverage the AUTOSAR architecture by using
information that has been formally modeled. The RTE provides a test interface
that makes it possible to test free-cut SWCs. The necessary adaptations to mea-
sure runtimes of runnables are in a reasonable extent. A drawback of the testing
concept is the long time, that is required for measuring a complete test sequence

428 F. Franz

on the target HW. In the future, we will increase the efficiency by pre-evaluating
test sequences on the test PC. By examining the traversed control flow path, it
is possible to avoid costly timing tests of paths, which are unlikely to increase
the present WCET estimate.

We found out, that the estimation quality of standard GAs is below the per-
formance of random tests for state-based SWCs with real-life complexity. This
can be reasoned with the flat runtime profile and the difficulty of an optimization
problem with many input parameters. The extended GA version, which adapts
to the runtime profile of the examined SWC, performs better or equal relative
to random testing for all examples.

References

1. Wegener, J., Sthamer, H.-H., Jones, B.F., Eyres, D.E.: Testing real-time systems
using genetic algorithms. Software Quality Journal, 127–135 (1997)

2. Bernat, G., Colin, A., Petters, S.: WCET analysis of probabilistic hard real-time
systems. In: Real-Time Systems Symposium (RTSS), Austin, USA (2002)

3. Mueller, F., Wegener, J.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. In: IEEE Real-Time Technology and
Applications Symposium, pp. 179–188 (1998)

4. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications, 1st edn., vol. 75. Kluwer Academic Publishers, Dordrecht (1997)

5. Wegener, J.: Evolutionaerer Test des Zeitverhaltens von Realzeitsystemen. Shaker
Verlag (2001)

6. Puschner, P., Nossal, R.: Testing the results of static worst-case execution time
analysis. In: IEEE Real-Time Systems Symposium, pp. 134–143 (1998)

7. AUTOSAR consortium website, http://www.autosar.org/
8. Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fuerst, S., Schnelle, K.-P.,

Grote, W., Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J., Lundh, L., Sandèn,
T., Heitkämper, P., Rimkus, R., Leflour, J., Gilberg, A., Virnich, U., Voget, S.,
Nishikawa, K., Kajio, K., Lange, K., Scharnhorst, T., Kunkel, B.: Achievements
and Exploitation of the AUTOSAR Development Partnership Convergence 2006,
Detroit (2006)

9. Scheickl, O., Rudorfer, M.: Automotive Real Time Development Using a Timing-
augmented AUTOSAR Specification. In: Embedded Real Time Software (ERTS),
Toulouse (2008)

10. Rudorfer, M., Ochs, T., Hoser, P., Thiede, M., Moessmer, M., Scheickl, O., Hei-
necke, H.: Realtime System Design Utilizing AUTOSAR Methodology. Elektronik
Automotive (2007)

11. Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A definition and classification of timing anomalies. In: 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis (2006)

12. Gross, H.G.: Measuring Evolutionary Testability of Real-Time Software. PhD the-
sis, Univ. of Glamorgan, UK (2000)

13. Tlili, M., Sthamer, H., Wappler, S., Wegener, J.: Improving Evolutionary Real-
Time Testing by Seeding Structural Test Data Evolutionary Computation (CEC
2006), pp. 885–891 (2006)

http://www.autosar.org/

Experiences with Evolutionary Timing Test of Automotive SWCs 429

14. Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Diffi-
culty for Genetic Algorithms. In: Proceedings of the Sixth International Conference
on Genetic Algorithms (1995)

15. Borenstein, Y., Poli, R.: Fitness distribution and GA hardness. In: Yao, X., Burke,
E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E.,
Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 11–20.
Springer, Heidelberg (2004)

Measurement-Based Timing Analysis�

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner

Institut für Technische Informatik,
Technische Universität Wien, Vienna, Austria

Abstract. In this paper we present a measurement-based worst-case execution
time (WCET) analysis method. Exhaustive end-to-end execution-time measure-
ments are computationally intractable in most cases. Therefore, we propose to
measure execution times of subparts of the application code and then compose
these times into a safe WCET bound.

This raises a number of challenges to be solved. First, there is the question
of how to define and subsequently calculate adequate subparts. Second, a huge
amount of test data is required enforcing the execution of selected paths to per-
form the desired runtime measurements.

The presented method provides solutions to both problems. In a number of
experiments we show the usefulness of the theoretical concepts and the practical
feasibility by using current state-of-the-art industrial case studies from project
partners.

1 Introduction

In the last years the number of electronic control systems has increased rapidly. In order
to stay competitive, more and more functionality is integrated into a growing number
of powerful and complex computer hardware. Due to these advances in control systems
engineering, new challenges for analyzing the timing behavior of real-time computer
systems arise.

Resulting from the temporal constraints for the correct operation of such a real-time
system, predictability in the temporal domain is a stringent imperative to be satisfied.
Therefore, it is necessary to determine the timing behavior of the tasks running on a real-
time computer system. Worst-case execution time (WCET) analysis is the research field
investigating methods to assess the worst-case timing behavior of real-time tasks [1].

A central part in WCET analysis is to model the timing behavior of the target plat-
form. However, manual hardware modelling is time-consuming and error prone, espe-
cially for new types of highly complex processor hardware. In order to avoid this effort
and to address the portability problem in an elegant manner, a hybrid WCET analysis
approach has been developed. Execution-time measurements on the instrumented appli-
cation executable substitute the hardware timing model and are combined with elements
from static static timing analysis.

There are also other approaches of measurement-based timing analysis. For example,
Petters et al. [2] modifies the program code to enforce the execution of selected paths.
The drawback of this approach is that the measured program and the final program can-
not be the same. Bernat et al. [3] and Ernst et al. [4] calculate a WCET estimate from

� This work has been supported by the FIT-IT research project “Model-based Development of
Distributed Embedded Control Systems (MoDECS)”.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 430–444, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Measurement-Based Timing Analysis 431

the measured execution times of decomposed program entities. While the last two ap-
proaches like our technique also partition the program for the measurements, they do
not address the challenging problem of systematic generation of input data for the mea-
surements. Heuristic methods for input-data generation have been developed [5] which
alone are not adequate to ensure a concrete coverage for the timing measurements.

2 Basic Concepts

In this section, basic concepts for modeling a system by measurement-based timing
analysis are introduced. These include modeling the program representation, the se-
mantics, and the physical hardware.

2.1 Static Program Representation

A control flow graph (CFG) is used to model the control flow of a program. A CFG
G = 〈N,E, s, t〉 consists of a set of nodes N representing basic blocks, a set of edges
E : N ×N representing the control flow, a unique entry node s, and a unique end node
t. A basic block contains a sequence of instructions that is entered at the beginning and
the only exit is at the end, i.e., only the last instruction may be a control-flow changing
instruction. The current support for function calls is done by function inlining.

2.2 Execution Path Representation

We introduce paths in order to describe execution scenarios (Def. 1).

Definition 1. Path / Execution Path / Sub-Path
Given a CFGG = 〈N,E, s, t〉, a path π from node a ∈ N to node b ∈ N is a sequence
of nodes π = (n0, n1, ..., nn) (representing basic blocks) such that n0 = a, nn = b,
and ∀ 0 ≤ i < n : 〈ni, ni+1〉 ∈ E . The length of such a path π is n+ 1.
An execution path is defined as a path starting from s and ending in t. Π denotes the
set of all execution paths of the CFG G, i.e., all paths that can be taken through the
program represented by the CFG.
A sub-path is a subsequence of an execution path.

If programs are analyzed the set of feasible paths, i.e., the set of paths that can be
actually executed is of special interest (because exclusively the execution times of these
paths can influence the timing behavior).

Our approach, based on model-checking, allows to check the feasibility of a path
(see Def. 2). To ensure the termination of the analysis, the model checker is stopped if
it cannot perform the analysis of a path within a certain amount of time. However, in
this case the feasibility of the respective paths has to be checked manually.

Definition 2. Feasibility of paths
Given that the set of execution paths of a program P is modeled by its CFGG, we call a
path π ∈ G feasible, iff there exist input data for program P enforcing that the control-
flow follows π. Conversely, paths that are not feasible are called infeasible. DefiningΠ
as the paths of the CFG andΠf as the set of feasible paths, it holds thatΠf ⊆ Π .

432 I. Wenzel et al.

3 The Principle of Measurement-Based Timing Analysis

The measurement-based timing analysis (MBTA) method is a hybrid WCET analysis
technique, i.e., it combines static program analysis with a dynamic part, the execution-
time measurements. As shown in Figure 1, the following steps are performed [6]:

Analyzer

tool

Execution time

measurement

framework

Calculation

tool

C-Source

Analysis phase

Measurement phase

Calculation phase

WCET

bound

+

Fig. 1. The three phases of measurement-based timing analysis

1. Analysis Phase: First the source code is parsed and static analyzes extract path
information. Then, the program is partitioned into segments, which are defined in Sec-
tion 4. The segment size is customizable to keep the number of different paths for
the later measurement phase tractable. To assess the execution time that a task spends
within each of the identified program segments, adequate test data are needed to guide
the program’s execution into all the paths of a segment. These test data are generated au-
tomatically. Besides applying random test-data vectors and heuristics, bounded model
checking for test-data generation is introduced.

As described in Section 4, when using model checking, we generate for each program
segment and instrumented instance of the source-code.

In contrast to methods that work on object-code level, the C-code analysis ensures a
high level of portability because ANSI C is a well established programming language in
control systems engineering. Additionally, C is also used as output format of code gener-
ation tools like Real-Time Workshop (Mathworks Inc.) or TargetLink (dSpace GmbH).

2. Measurement Phase: The generated test data force program execution onto the
required paths within the program segments. The measured execution times are cap-
tured by code instrumentations that are automatically generated and placed at program
segment boundaries. The instrumented programs are executed and timed on the target
platform.

3. Calculation Phase: The obtained execution times and path information are com-
bined to calculate a final WCET bound. This calculation uses techniques from static
WCET analysis. It utilizes the path information acquired in the static analysis phase.
(see 1.)

In case of complex hardware where the instruction timing depends on the execu-
tion history, MBTA can still provide safe WCET bounds when using explicit state

Measurement-Based Timing Analysis 433

enforcement at the beginning of each segment to eliminate state variations. For example,
the pipeline could be flushed or the cache content could be invalidated or pre-loaded.

The contributions of this measurement-based worst-case execution time analysis
(MBTA) method are:

Avoidance of explicit hardware modelling. In contrast to pure static WCET analysis
methods [1], this approach does not require to build a sophisticated execution-time
model for each instruction type. In fact, the actual timing behavior of instructions
within their context is obtained from execution-time measurements on the concrete
hardware.

Automated test-data generation using model checking. This allows us to completely
generate all required and feasible test data. In the first experiments we used sym-
bolic model checking. Later, bounded model checking turned out to be superior
wrt. model size and computation times.

Parametrizable complexity reduction. The control-flow graph partitioning algorithm
allows a parameterizable complexity reduction of the analysis process (i.e., the
number of required execution-time measurements and the size of the test data set
can be chosen according to the available computing resources). On the reverse side,
the accuracy of the analysis decreases by reducing the number of tests. This allows
for an adaptation to user demands and available resources.

Modular tool architecture. The tool structure is completely modular. It is possible to
improve the components for each step independently (e.g., the test-data generation
mechanism, WCET bound calculation step).

Scalability of the analysis process. Execution-time measurements and test-data gen-
eration (that consume together around 98% of the total analysis time) can be ex-
ecuted highly parallel if multiple target machines respectively host computers are
available.

In our implementation, the interface data passed between the three phases (i.e., ex-
tracted path information, the test data, and the obtained execution times) are stored in
XML files.

4 Parameterizable Program Partitioning for MBTA

In the following sections, the main concepts of the measurement-based timing analysis
approach [7] are described in detail. The proposed method is a hybrid approach that
combines elements of static analysis with the dynamic execution of software.

After preparing the previously described CFG, the partitioning algorithm is invoked
to split the CFG into smaller entities, so-called program segments (Definition 3). This
segmentation is necessary, because when instead trying to use end-to-end measure-
ments the number of paths in Π (the set of paths of the function subject to analysis) is
in general intractable. Our segmentation is similar to that described by Ernst et al. [4].
However, we do not differ between segments of single or multiple paths, instead we
use a path bound to limit segment size. In a second step, the paths within the pro-
gram segments are explicitly enumerated in a data structure called dtree (coming from
decision-tree).

434 I. Wenzel et al.

Definition 3. Program Segmentation (PSG)
A program segment (PS) is a tuple PS = 〈s, t,Π〉 where s is the start node and t is
the respective end node. Π refers to the set of associated paths πi ∈ Π . Further, each
path of a segment has its origin in s and its end in t:

∀π = (n1, ..., nn) ∈ Π : n1 = s ∧ nn = t

The intermediate nodes of a path of a segment may not be equal to its start or end node:
∀π = (n1, n2, ..., nn−1, nn)∈Π ∀2≤i≤n−1 : ni
= s ∧ ni
= t

The set of all program segments PS of a program is denoted as PSG .

Each program segment spawns a finite set of paths Πj . For each of these paths we are
interested in the set of feasible paths and the respective input data (test data) that force
the execution of the code onto this path. This set is constructed by using a hierarchy of
test-data generation methods. When decomposing a program into program segments,
two important issues arise:

First, each program segment has to be instrumented for obtaining the execution times
of its feasible paths. Each instrumentation introduces some overhead. Therefore, these
instrumentations are not desired and their number should be minimized.

Second, the computational effort of generating input data increases with larger pro-
gram segments sizes, especially when using model checking.

If no constraints are given, there are many different program segmentations possible.
For instance, one extreme segmentation would be that for each CFG edge one program
segment is generated, i.e., PSG = {PS i | PS i = 〈no, np, {(no, np)}〉 ∧ (no, np)∈E}.
The other end of the spectrum would be to put all nodes into one program segment, i.e.,
PSG = {PS} with PS = 〈s, t,Π〉 andΠ having a complete enumeration of all paths
within a function (and its called functions).

A “good” program segmentation PSG is a program segmentation that balances the
number of program segments and the average number of paths per program segment.
These two “goals” are not independent. When the number of program segments is de-
creased, typically1 the sum of paths increases and vice versa. A segmentation resulting
in fewer program segments causes (i) less instrumentation effort and related overheads
at runtime and (ii) higher computational resource needs during analysis because more
paths have to be evaluated. In contrast, a segmentation into more program segments
results in (i) higher instrumentation effort and (ii) faster path evaluation. This is be-
cause the larger a segment is, the more paths are inside a segment, but the less different
segment boundaries have to be instrumented.

In practice, a reasonable combination of the number of paths per segment and the
number of program segments has to be selected. The major limitation turned out to
be the computational resources required to generate the input data for the paths (see
Section 5).

4.1 Path-Bounded Partitioning Algorithm

The partitioning algorithm automatically partitions a CFG into program segments. As
there is a functional relationship between the number of program segments and the

1 The term “typically” is used because there are some exceptions at the boundaries. Examples
for this are presented in Section 4.2.

Measurement-Based Timing Analysis 435

overall number of sub-paths to be measured, we choose one factor and derive the other
one. One possibility is to provide a target value for the maximum number of paths for
each PS j (denoted as path bound PB), i.e., ideally |Πj | ≈ PB .

The detailed description of the partitioning algorithm is given in [6]. Basically, the
partitioning algorithm investigates the number of paths between dominated nodes and
in case it is higher than PB a recursive decomposition is performed. Due to the short
runtime of the partitioning algorithm (even for large code samples), it is possible to
experiment with various values for PB and calculate the resulting number of paths
within reasonable time (< 1s).

4.2 Example of Path-Bounded Program Partitioning

To demonstrate the operation of the MBTA framework, the C code example given in
Figure 2(a) is used. The corresponding CFG is given in Figure 2(b).

1 i n t x ;
2
3 i n t m a i n n i c e p a r t i t i o n i n g (
4 i n t y , i n t i , i n t a , i n t b)
5 {
6 i f (x == 1) {
7 x ++; / / BB 2
8 } e l s e {
9 x−−; / / BB 4

10 }
11 / / BB 3
12 i f (b == 1) {
13 / / BB 5
14 i f (a == 1) {
15 / / BB 7
16 i f (x == 3) {
17 x ++; / / BB 9
18 } e l s e {
19 / / BB 11
20 i f (x == 2) {
21 x ++; / / BB 12
22 } e l s e {
23 / / BB 14
24 i f (x == 4) {
25 x ++; / / BB 15
26 }

27 }
28 }
29 } e l s e {
30 x ++; / / BB 17
31 }
32 x ++; / / BB 8
33 }
34 / / BB 6
35 i f (b == 2) {
36 / / BB 18
37 i f (a == 1) {
38 x ++; / / BB 20
39 } e l s e {
40 x−−; / / BB 22
41 }
42 x ++; / / BB 21
43 }
44 / / BB 19
45 i f (y == 1) {
46 x ++; / / BB 23
47 } e l s e {
48 x−−; / / BB 25
49 }
50 }

(a) Sample Code

0

19

25

2

9

21

4

11

1

8

3

12

5

14

6

15

7

20

17

22

18

23

(b) CFG

Fig. 2. Example code and the corresponding CFG

Assuming a path bound PB = 5, the partitioning algorithm constructs a segmenta-
tion with 6 program segments, i.e., PSG = {PS0,PS1,PS2,PS 3,PS 4,PS 5} with

PS 0 = (0, 3, {(0, 2, 3), (0, 4, 3)}),
PS 1 = (3, 5, {(3, 5)}),
PS 2 = (3, 6, {(5, 7, 9, 8, 6), (5, 7, 11, 12, 8, 6), (5, 7, 11, 14, 8, 6),

(5, 7, 11, 14, 15, 8, 6), (5, 17, 8, 6)}),
PS 3 = (3, 6, {(3, 6)}),
PS 4 = (6, 19,{(6, 18, 20, 21, 19), (6, 18, 22, 21, 19), (6, 19)}),
PS 5 = (19, 1,{(19, 23, 1), (19, 25, 1)}).

436 I. Wenzel et al.

The partitioning results for PB being 5, 10, 20, and 100, respectively are summarized
in Figure 3(a). Figure 3(b) shows the dependency of the number of segments (|PSG|)
and the number of sub-paths (

∑
|Πj |) for each of these segmentations. This example

illustrates that in general fewer program segments cause a higher overall number of
paths to be considered.

Path Bound |PSG| #Paths (| j|)
1 30 30

5 6 14

10 3 14

20 2 18

100 1 72

(a) Partitioning Results

0

10

20

30

40

50

60

70

80

0 10 20 30

Program segments (|PSG|)
#P

at
hs

 (
 |

j|
)

PB=100

PB=20
PB=10

PB=5

PB=1

(b) Dependency between |PSG | and
�
|Πj |

Fig. 3. Dependency between number of segments (|PSG |) and number of sub-paths (
�
|Πj |)

5 Automated Test-Data Generation

For each path that has been previously determined in the program segmentation step, we
are interested in whether it is a feasible path. Feasible paths may contribute to the timing
behavior of the application and thus have to be subject to execution-time measurements.

5.1 Problem Statement

As described previously the set of paths
∑
|Πj | has to be executed to perform the

execution-time measurements. Therefore, it is necessary to acquire for each path πi ∈
Πj a suitable set of input-variable assignments such that the respective assignments
at the function start causes exactly the control flow that follows πi. In contrast, for
infeasible paths their infeasibility has to be proven to know that they cannot contribute
to the timing behavior of the program.

5.2 Test-Data Generation Hierarchy

When applying the method it turned out that the test-data generation process is the
bottleneck of the analysis. Especially, model checking is very resource intensive. To
improve performance we decided to use a combination of different methods for gener-
ating the input data. We start by using fast techniques and gradually use more formal
and resource-consuming methods to cover the paths for which the cheaper methods did
not found appropriate input data. Figure 4 shows the hierarchy of methods we apply.
On the basic level test-data reuse is applied. This means that we reuse all existing test
data for that application from previous runs. On the second level, pure random search
is performed, i.e., all input variables are bound to random numbers. Third, heuristics
like genetic algorithms can be used. Finally, all data that could not be found using the
generation methods of level 1 to 3, are calculated by model checking. Especially, the
infeasibility of paths can be proven only by model checking (at level 4). The actual

Measurement-Based Timing Analysis 437

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

Level 1: Test-data reuse

Level 4: Model checking

Level 3: Heuristics

Level 2: Random search

Fig. 4. Test-data generation hierarchy

computational effort spent on each of the levels is application dependent. If an applica-
tion has many infeasible paths, model checking is required to show that each of these
paths is really infeasible.

The key advantages of this hierarchical test-data generation approach are (i) that
many test data are generated by fast strategies, only left over cases have to resort to
expensive model checking; (ii) the correlation of test data and the covered path is known
even when applying heuristics since we monitor the covered paths before doing the
measurements; (iii) and complementary, model checking is used in the final phase of
test data generation. This allows generating input data for a desired path whenever such
a path is feasible or otherwise to prove that the path is infeasible.

5.3 Test-Data Generation Using Model Checking

The basic idea of performing test-data generation by model checking (level 4) is that
the CFG (and the instructions in the nodes) are transformed into a model that can be
analyzed by a model checker. For each πi ∈ Πj to be analyzed a new model model(πi)
is generated. This model is passed to a model checker check (model (πi)) that yields a
suitable variable binding in case a counter example can be found by the model checker.
Otherwise, the function check returns that the path is infeasible.

When generating a model model (πi), an assertion is added stating that the particular
path πi cannot be executed within that model. Program code that does not influence the
reachability of that path πi is cut away (slicing) to reduce the size of the model. Then
the model checker tries to prove this formally. Whenever the proof fails, the model
checker provides a counter example that represents the exact input data that enforce an
execution of the desired path πi. However, if the assertion holds, the path is infeasible
and therefore no input data do exist.

The current implementation does not support the analysis of loops. However, we
work on loop unrolling to support loops.

Symbolic Model Checking vs. Bounded Model Checking. We implemented model
checking backends for symbolic model checking and bounded model checking [8]. The
model checker SAL [9] is used for symbolic model checking [9] and the model checkers
SAL-BMC [9] and CBMC [10] are used for bounded model checking. In experiments,
it turned out that bounded model checking supports (i) bigger applications in terms of
lines of code and (ii) supports longer program segments (i.e., longer paths). Therefore,
our MBTA uses the bounded model checker CBMC by default.

5.4 Example Application for Test-Data Generation

In this section we show the result of applying bounded model checking to find a spe-
cific path in the sample program of Figure 2. The paths for program segmentation PSG

438 I. Wenzel et al.

described in Section 4.2 are represented as dtree data structure (Figure 5). This data
structure is a tree which root node has the name of the CFG (name of subroutine). All
immediate successor nodes denote a program segment. In the parentheses the starting
basic-block node is denoted, e.g., PS 0 starts at basic block 0. Then, the succeeding
nodes denote the intermediary basic blocks. The end nodes provide additional informa-
tion corresponding to the path starting from the start node and leading to this end node,
i.e., every end node represents one path within a program segment. This information
consists of the data-set number and the model number. The data-set number identifies
the input data to reach this path. When using model checking to generate the test data,
the model number identifies the model model(πi) for path πi. For instance, the model
number of model(π3) for path π3 = (5, 7, 9, 8, 6) equals 3.

main_nice_partitioning

1
ds=0

PS0(0)

2

3
ds=1
mc=1

4

3
ds=0

PS1(3)

5
ds=2
mc=2

PS2(5)

7

9

8

6
ds=3
mc=3

11

12

8

6
ds=4
mc=4

14

8

6
ds=6
mc=6

15

8

6
ds=5
mc=5

17

8

6
ds=7
mc=7

PS3(3)

6
ds=0

PS4(6)

18

20

21

19
ds=8
mc=8

22

21

19
ds=9
mc=9

19
ds=0

PS5(19)

23

1
ds=10
mc=10

25

Fig. 5. Representation of dtree data structure for test-data generation

In Figure 6 the code of the automatically generated model for π3 = (5, 7, 9, 8, 6)
is depicted. In the main function the program counter mc pc is initialized. Next, the
function subject to analysis is called with its respective parameters. Within the function,
first all instructions preceding the PS are conserved, i.e., basic blocks BB0, BB2, BB4,

Measurement-Based Timing Analysis 439

BB3. Starting with BB5, the PS entry node, cut off actions take place. These cut-off ac-
tions mean that the functional code of BB17 has been removed. Instead of this removed
code additional exits have to be added. This avoids that other basic blocks modify the
calculations and change the execution path.

Whenever code of basic blocks residing on the actual investigated path is executed,
the program counter mc pc of the model is increased. Thus, this increase is performed
for basic blocks BB5, BB7, BB9, BB8 and BB6.

Finally, after returning to main the assertion assert(mc pc != 5) ensures that
mc pc
= 5, i.e., path π3 = (5, 7, 9, 8, 6) cannot be executed.

In a standard program execution, this assertion would be raised whenever – depend-
ing on the currently assigned variable values – path π3 is executed. However, when
passed to a C model checker, the model checker tries to formally prove whether this
assertion always holds. If not, the model checker provides a counter example contain-
ing variable bindings that violate the assertion. In this case, we get the data binding
{x← 4, y ← 0, i ← 0, a ← 1, b ← 1}. If the model checker affirms that the assertion
holds, then we know that the path is infeasible. In case the model checker runs out of
resources, the path has to be checked manually.

i n t mc pc ;
i n t x , l o c a l y , l o c a l i , l o c a l a , l o c a l b

i n t m a i n n i c e p a r t i t i o n i n g (i n t y , i n t i , i n t a , i n t b)
{

i f (x == 1) {
x ++; / / BB 2

} e l s e {
x−−; / / BB 4

}
/ / BB 3
i f (b == 1) {

mc pc ++; /∗ BB 5 ∗/ /∗ mc pc i n c r e m e n t ∗/
i f (a == 1) {

mc pc ++; /∗ BB 7 ∗/ /∗ mc pc i n c r e m e n t ∗/
i f (x == 3) {

mc pc ++; /∗ BB 9 ∗/ /∗ mc pc i n c r e m e n t ∗/
x ++;

} e l s e {
mc pc = −1; /∗ BB 11 ∗/ /∗ mc c u t o f f ∗/
return 0 ; /∗ mc c u t o f f ∗/

}
} e l s e {

mc pc = −1; /∗ BB 17 ∗/ /∗ mc c u t o f f ∗/
return 0 ; /∗ mc c u t o f f ∗/

}
mc pc ++; /∗ BB 8 ∗/ /∗ mc pc i n c r e m e n t ∗/
x ++;

}
mc pc ++; /∗ BB 6 ∗/ /∗ mc pc i n c r e m e n t ∗/
return 0 ; /∗ mc c u t o f f ∗/

}

i n t main ()
{

mc pc = 0 ; /∗ mc pc r e s e t ∗/
m a i n n i c e p a r t i t i o n i n g (l o c a l y , l o c a l i , l o c a l a , l o c a l b) ;

a s s e r t (mc pc != 5) ; /∗ mc a s s e r t i o n ∗/
}

Fig. 6. Automatically generated code for model(π3) with π3 = (5, 7, 9, 8, 6)

5.5 Complexity Reduction

When evaluating the paths
⋃
Πj | Πj ∈ PSG that have to be analyzed with model

checking, it is essential to apply a number of complexity reductions on the models.
For each path πi the complexity reduction is performed in several steps:

1. All paths after a PS are cut off because they do not influence the control flow
leading to a PS or inside a PS .

2. Paths preceding the PS are kept without modifications. This has practical reasons.
Originally, it was intended to remove the preceding code. However, it turned out
that this is not necessary immediately because the model checker can solve the
problem within a reasonable amount of time. The advantage why this code remains
unchanged is that more infeasible paths – namely from the global function view –
can be determined. Thus, only feasible paths contribute to the timing information
of the program segment.

440 I. Wenzel et al.

3. Due to the goal of model checking (namely to check whether there exists a spe-
cific path), the model checker can perform optimizations on its own, e.g., program
slicing [11] by removing unused variables (i.e., variables that do not influence the
actual execution paths).

6 The Execution-Time Model of MBTA

The role of the execution time model is to provide the information to map execution
times to instruction sequences. The use of the execution time model in MBTA is in
principal the same as in static WCET analysis [1]. However, the main difference is that
in MBTA the timing information is obtained by measurements instead of deriving it
from the user manual and other sources as done in static WCET analysis.

The execution time measurements of MBTA in general require to instrument the
code with additional instructions to signal program locations and/or store measurement
results. Since the instrumentations change the analyzed object code, there are some
requirements on the code instrumentations:

1. The impact of the instrumentation code on the execution time and code size should
be small.

2. If the instrumented code used for MBTA is not the same as the final application
code under operation, the code instrumentations should allow to determine an es-
timate on the change of the WCET of suitable precision between the instrumented
code and the final application code. Fulfilling this requirement may be challeng-
ing in practice, e.g, when requiring precise safe upper bounds on complex target
hardware.

6.1 Enforcing Predictable Hardware States

Besides the above quality criteria of code instrumentations, there is also a substantial
potential of using code instrumentations: on complex hardware where the instruction
timing depends on the execution history it is challenging to determine a precise WCET
bound. Code instrumentations can be used to enforce an a-priori known state at the
beginning of a program segment, thus avoiding the need for considering the execution
history when determining the execution time within a program segment. For example,
code instrumentations could be used to explicitly load/lock the cache, to synchronize
the pipeline, etc.

6.2 Execution-Time Composition

After performing the execution-time measurements we know that each path π ∈ Πj

is assigned its measured execution time t(π). Now, the next step is to compose these
measured execution times into a WCET estimate. In general, three different approaches
are possible, which are explained in [1]. Using tree-based methods, the WCET is calcu-
lated based on the syntactic constructs. In path-based methods, a longest path search is
performed. The Implicit path enumeration technique (IPET) models the program flow
by (linear) flow constraints. After applying this calculation step, we get a final WCET
estimate that is the overall result of the MBTA.

Measurement-Based Timing Analysis 441

In order to illustrate this flexibility of choosing the calculation method, a path-based
calculation method (longest path search) and IPET (using integer linear programming
- ILP) have been implemented in our MBTA framework. It has been shown that it is
possible to incorporate flow facts into the ILP model without restricting generality [6].

7 Experiments

We have implemented the described MBTA as a prototype. The host system of the
framework has been installed on two systems, on Linux and also on Microsoft Windows
XP with Cygwin. The quantitative results described in this section have been obtained
using a PC system with an Intel Pentium 4 CPU at 2.8 Ghz and 2.5GB RAM running
on a Debian 4.0 Linux system.

As target system we used a Motorola HCS12 evaluation board (MC9S12DP256).
The board is clocked at 16Mhz, has 256kB flash memory, 4kB EEPROM, and 12kB
RAM. It is equipped with two serial communication interfaces (SCI), three serial port
interfaces (SPI), two controller area network (CAN) modules, eight 16bit timers, 16
A/D converters.

As a measurement device our frameworks can either use one of the counters of the
HCS12 board or an external timer. The experiments reported here have been performed
using a custom-built external counter device that is clocked at 200MHz. This device is
connected via USB to the host system and by two I/O pins to the target hardware [6].

Application Name Source LOC #BB #Execution Paths
TestNicePartitioning Teaching example 46 30 72

ActuatorMotorControl Industry 1150 171 1.90E+11

ADCConv Industry 321 31 144

ActuatorSysCtrl Industry 274 54 97

Fig. 7. Summary of the used case studies

In order to study relevant program code, we investigated the code structure of ap-
plications delivered by industrial partners (Magna Steyr Fahrzeugtechnik, AVL List). It
was decided to support code structures representing a class of highly important appli-
cations (safety-critical embedded real-time system). Figure 7 summarizes the bench-
mark programs used in the experiments (LOC = lines of code, #BB = number of basic
blocks, #ExecutionPaths = number of execution paths) of the active application.
The first benchmark has been written by hand as a test program in order to evaluate
the MBTA framework. The second one has been developed using Matlab/Simulink in
order to walk through all stages of a modern software development process. The last
three benchmarks representing industrial applications from our industrial project part-
ners have been the key drivers for the development of the MBTA framework.

7.1 Experiment with Model Checking for Automated Test-Data Generation

The goal of this experiment is to compare the performance of different model checkers
for automatically generating test data. Figure 8 shows the analysis time of the different
model checkers that have been introduced in Section 5.3. Please note that these figures
do not state anything about the general quality of a model checker, as even in case of

442 I. Wenzel et al.

CBMC SAL SAL BMC
TestNicePartitioning 63 11.2 109.6 259.3

ActuatorMotorControl 280 1202.2 N.A.
1

N.A.
1

ADCConv 136 65.2 7202.5 2325.5

ActuatorSysCtrl 96 32.7 507.4 491.3

1
Model size is too big, memory error of the model checker (core dump)

Time Analysis [s]#Paths MC

Fig. 8. Comparison of required model-checking time to generate test data

test-data generation, the model-checker performance is of high sensitivity. Thus, the
following interpretation is only valid for the concrete case study (model).

The main result gained from our experiment is that the CBMC model checker is well-
suited for these types of problems. It boosts test data calculation by factors 10-20 over
using symbolic model checking. Some applications cannot be analyzed using SAL at all.

7.2 Experiments with Automated Complexity Reduction

In this experiment we repeated the complexity reduction of the didactic sample code
summarized in Figure 3 with the industrial case study ActuatorMotorControl.
The results are given in Figure 9 using a logarithmic scale for the X-axis.

Path bound |PSG| #Paths (| j|)
1 171 171

2 88 117

4 38 84

6 21 83

10 14 92

15 13 106

20 11 130

50 8 242

100 7 336

1000 5 1455

(a) Partitioning results

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000

Program segments (|PSG|)

#P
at

hs
 (

 |
j|

)

PB=1000

PB=100

PB=10 PB=1

(b) Dependency between |PSG | and
�
|Πj |

Fig. 9. Program segmentation results for ActuatorMotorControl

Enumerating all 1.9 ∗ 1011 different execution paths (see Figure 7) of the case study
ActuatorMotorControl is practically intractable. Thus, partitioning into program
segments is necessary. With a path bound PB = 1 each basic block of the program re-
sides in a separate segment and with an unlimited path bound the whole program is
placed in one segment. The partitioning results in Figure 9 show that there is a certain
path bound for which the resulting number of sub-paths

∑
|Πj | is minimal. When fur-

ther increasing the path bound the number of program segments still decreases (which
is profitable as it increases the precision of the measurements because the segments
get larger). However, at the same time the number of sub-paths strongly increases,
which increases the overall computational effort needed for test-data generation and
execution-time measurements. Thus, the right path bound to be chosen depends on how
much computational resources are available and how much precision is required.

7.3 Experiments with MBTA

Applying the MBTA on the case studies presented in Figure 7 using different values for
the path bound leads to the results in Figure 10. “#Paths Random” gives the number of paths

Measurement-Based Timing Analysis 443

that have been already found by using random generation of test data and “#Paths MC”
gives the remaining number of paths that had to be generated using model checking.
“Coverage (#Paths)” represents the number of feasible paths. Note that if for a path bound
PB=1 it implies that “#Paths Random” + “#Paths MC”
= “Coverage (#Paths)” it follows that the
program contains unreachable code. Column “WCET Bound” shows the WCET estimate
obtained with the MBTA framework.

“Time (Analysis) [s]” shows the time spent within the analysis phase. “Time (ETM) [s]” shows
the time spent within the execution-time measurement phase, which includes also the
compile and load time. “Overall Time [s]” is the sum of “Time (Analysis) [s]” and “Time (ETM)

[s]”. “Time Analysis / Path MC [s]” gives the average time required for using model checking
(CBMC) to generate a single test vector for a sub-path. This number is quite significant,
because the time required for test-data generation using model checking contributes
most of the runtime of the analysis phase (except for very low path bounds). It has a
rather small variation over different sub-paths of the same model. “Time (ETM) / Covered Path

[s]” gives the average runtime needed to measure a single sub-path. “#Paths / Program Segment”
shows the average number of feasible paths per program segment.

Pa
th

 B
ou

nd

#P
at

hs
 (

 |
j|

)

#P
ro

gr
am

 S
eg

m
en

ts

#P
at

hs
 R

an
do

m

#P
at

hs
 M

C

C
ov

er
ag

e
(#

Pa
th

s)

W
C

ET
 B

ou
nd

Ti
m

e
(A

na
ly

si
s)

 [s
]

Ti
m

e
(E

TM
) [

s]

O
ve

ra
ll

Ti
m

e
[s

]

Ti
m

e
A

na
ly

si
s

/ P
at

h
M

C
 [s

]

Ti
m

e
ET

M
 /

C
ov

er
ed

 P
at

h
[s

]

#P
at

hs
 /

Pr
og

ra
m

 S
eg

m
en

t

ActuatorMotorControl 1 171 171 165 6 165 N.A. 468 1289 1757 78.00 7.8 1.0

10 92 14 63 29 68 3445 841 116 957 29.00 1.7 6.6

100 336 7 57 279 89 3323 7732 62 7794 27.71 0.7 48.0

1000 1455 5 82 1373 130 3298 41353 49 41402 30.12 0.4 291.0

ADCConv 1 31 31 31 0 31 872 24 192 216 N.A. 6.2 1.0

10 17 3 8 9 9 870 31 22 53 3.44 2.4 5.7

100 74 2 8 66 14 872 220 17 237 3.33 1.2 37.0

1000 144 1 12 132 12 872 483 11 494 3.66 0.9 144.0

ActuatorSysCtrl 1 54 54 54 0 54 173 26 318 344 N.A. 5.9 1.0

10 36 14 36 0 36 173 10 85 95 N.A. 2.4 2.6

100 97 1 18 79 25 131 191 10 201 2.42 0.4 97.0

TestNicePartitioning 1 30 30 6 24 30 151 34 175 209 1.42 5.8 1.0

5 14 6 4 10 14 151 15 39 54 1.50 2.8 2.3

10 14 3 3 11 14 151 16 21 37 1.45 1.5 4.7

20 18 2 2 16 15 150 22 16 38 1.38 1.1 9.0

100 72 1 1 71 26 129 106 12 118 1.49 0.5 72.0

Fig. 10. Summarized experiments of case studies

The experimental results illustrate the tradeoff between precision and required analy-
sis time. For the case study TestNicePartitioning the gained bound contains
some pessimism due to the lack of flow facts that characterize path dependencies across
program segment boundaries. However, it has been shown that it is possible to include
additional flow information in the analysis in order to tighten the bound by increas-
ing the program-segment size. For ActuatorSysCtrl the situation is similar. With
increasing program-segment size (i.e., by choosing a higher path bound) the existing
pessimism can be stepwise eliminated. Such variations do not exist for ADCConv. Here
all obtained results are almost identical. ActuatorMotorControl indicates similar
results. Whenever the path bound is increased, the WCET bound is tightened a little bit
yielding a WCET bound of 3298 cycles (for a program segmentation having path bound
1000). However, the cost for this increase in precision is an analysis time of about 11.5

444 I. Wenzel et al.

hours. The missing WCET bound (N.A.) for path bound PB=1 is caused by a limitation
in the current tool implementation and is not a conceptional problem.

8 Conclusion

In this paper we presented the design and implementation results of MBTA, a fully
automated WCET analysis process that does not require any user intervention. The
input program is partitioned into segments, allowing the user to select a path bound for
the size of the segments. Depending on this parameter, the analysis time ranges from
a few seconds up to multiple hours. The bigger the chosen program-segment size, the
more implicit flow information and hardware effects are incorporated into the timing
model. Also, in this case the number of required instrumentations is low.

As a separate model (to be solved by the model checker) is used for each required
path, this stage of the test-data generating process can be easily parallelized. The MBTA
is easily retargetable to new target hardware due to its operation on a restricted set of
ANSI-C code.

The MBTA allows to derive safe WCET estimates even on complex hardware. To
achieve this, additional instrumentations are necessary to enforce predictable hardware
states. The experimentation with such instrumentations and the analysis of program
loops is considered future work.

References

1. Kirner, R., Puschner, P.: Classification of WCET analysis techniques. In: Proc. 8th IEEE
International Symposium on Object-oriented Real-time distributed Computing, Seattle, WA,
May 2005, pp. 190–199 (2005)

2. Petters, S.M.: Bounding the execution of real-time tasks on modern processors. In: Proc. 7th
IEEE International Conference on Real-Time Computing Systems and Applications, Cheju
Island, South Korea, pp. 12–14 (2000)

3. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-time systems.
In: Proc. 23rd Real-Time Systems Symposium, Austin, Texas, USA, pp. 279–288 (2002)

4. Ernst, R., Ye, W.: Embedded program timing analysis based on path clustering and architec-
ture classification. In: Proc. International Conference on Computer-Aided Design (ICCAD
1997), San Jose, USA (1997)

5. Puschner, P., Nossal, R.: Testing the results of static worst-case execution-time analysis. In:
Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS 1998), pp. 134–143.
IEEEP (1998)

6. Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria (2006)

7. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based worst-case execution
time analysis. In: Third IEEE Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS), pp. 7–10 (2005)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

9. Moura, L.D., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114. Springer, Heidelberg (2004)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

11. Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3, 121–
189 (1995)

ALL-TIMES – A European Project on

Integrating Timing Technology�

Jan Gustafsson1, Björn Lisper1, Markus Schordan2, Christian Ferdinand3,
Peter Gliwa4, Marek Jersak5, and Guillem Bernat6

1 School of Innovation, Design, and Engineering, Mälardalen University,
721 23 Väster̊as, Sweden

2 Vienna University of Technology, Argentinierstrasse 8/4/185.1,
A-1040 Vienna, Austria

3 AbsInt Angewandte Informatik GmbH, Science Park 1,
66123 Saarbruecken Germany

4 Gliwa GmbH, Dollmannstr. 4, D-81541 München, Germany
5 Symtavision GmbH, Frankfurter Str. 3 B, 38122 Braunschweig, Germany

6 Rapita Systems Ltd., IT Centre, York Science Park, York,
YO10 5DG, United Kingdom

Abstract. ALL-TIMES is a research project within the EC 7th Frame-
workProgramme.Theproject concerns embedded systems that are subject
to safety, availability, reliability, and performance requirements. Increas-
ingly, these requirements relate to correct timing. Consequently, the need
for appropriate timing analysis methods and tools is growing rapidly. An
increasing number of sophisticated and technically mature timing analysis
tools and methods are becoming available commercially and in academia.
However, tools and methods have historically been developed in isolation,
and the potential users are missing a process-related and continuous tool-
and methodology-support. Due to this fragmentation, the timing analysis
tool landscape does not yet fully exploit its potential.

The ALL-TIMES project aims at: combining independent research
results into a consistent methodology, integrating available timing tools
into a single framework, and developing new timing analysis methods
and tools where appropriate.

ALL-TIMES will enable interoperability of the various tools from
leading commercial vendors and universities alike, and develop integrated
tool chains using as well as creating open tool frameworks and interfaces.
In order to evaluate the tool integrations, a number of industrial case
studies will be performed.

This paper describes the aims of the ALL-TIMES project, the part-
ners, and the planned work.

1 Introduction

ALL-TIMES (Integrating European Timing Analysis Technology) [1] is a re-
search project within the EC 7th Framework Programme, with focus on correct
� This work was supported by the EU FP7 project ALL-TIMES (Integrating European

Timing Analysis Technology, grant agreement no. 215068).

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 445–459, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

446 J. Gustafsson et al.

timing of real-time embedded systems. The project started in December 2007
and will go on for 2 years and 3 months. The subject of ALL-TIMES has wide
industrial relevance and there is a significant body of European research and
experience in this area including a number of hi-tech SMEs. Timing measure-
ment/analysis is vital for improving the reliability, performance, and efficiency
of embedded systems. It helps to reduce the overall system costs by validating
timing requirements, reducing the cost of development, and reducing unit costs
in production.

Existing tools (commercial and academic) provide a set of powerful analysis
techniques. Nevertheless there is a growing need, addressed in the ALL-TIMES
project, for the integration of existing timing measurement/analysis techniques
with the latest academic results in this area.

1.1 Concept, and General Objectives

A large class of embedded systems have safety, availability, reliability and perfor-
mance requirements. This class spans across several areas, including automotive,
avionics, telecom, and space systems. Common for these systems is the need to
guarantee their correct behaviour as well as the satisfaction of non-functional
requirements, in particular regarding timing.

The cost for delivering products with latent errors is staggering. For example,
warranty costs in the automotive industry run 2% - 5% of sales [2]. Such levels
have tremendous impact on the profitability. Timing is an essential dimension,
notably one of the most difficult to analyze, and one that is generally only
addressed late in the design cycle. In the automotive industry 50% of warranty
costs today can be traced to software and electronics problems [2], for which
about one third are reported to be directly related to timing issues. Current
trends in industry of increased size and complexity of systems make the timing
problem much more difficult, and in the future, consequences could be more dire.

Engineering timing correctness into a system requires treating timing as a
first-class citizen throughout the software development process, including early
stages: not as a property that is only addressed at the latest stage of this process.
Early stage means before all code is available and all system design decisions have
been made.

1.2 Timing Analysis

Timing analysis can be divided into code-level analysis and system-level analysis.
Worst-case execution time (WCET) analysis and scheduling analysis are two
exemplary techniques for the respective levels. WCET analysis computes an
upper bound to the longest execution time that a fragment of code (e.g., a task)
takes to execute in the worst case. Scheduling analysis determines the end-to-end
execution time of a set of tasks. Code-level analysis thus assumes an isolated
view of a fragment of code, whereas system-level analysis takes the complete
system (one Embedded Control Unit (ECU), or even several ECUs including
their communication interfaces) into consideration.

ALL-TIMES – A European Project on Integrating Timing Technology 447

1.3 The Problem

Industry faces a difficult task to improve the reliability, safety, performance and
resource efficiency of systems with regard to timing. The take up by industry
of research and development in timing analysis is still low. There are several
aspects to this problem; we classify them in the following themes:

– interoperation, scale and automation;
– integration into build process;
– education, and dissemination of knowledge.

Interoperation, Scale and Automation. Current technologies lack strong
interoperability with other timing tools and compilers, making the adoption
effort much more significant. Standard formats for representation and interoper-
ability with tools are needed. Early efforts in the ARTIST2 [3] and INTEREST
[4] projects indicate promising technologies.

Furthermore, some of the current analysis techniques have serious scalability
issues relating to the size of the programs to be analyzed. Finally, a major issue
is the full automation of the analysis process (the magic one-button solution)
that is a pre-requisite for integration of timing analysis tools into current build
processes.

Integration into Build Process. Industries that do need timing analysis tend
to be conservative by nature. The adoption of a new technology implies change,
which demands clear demonstrable benefits in perspective, and may be costly.
Thus, new technology may be slow to deploy and integrate into the end-customer
process. Especially difficult is the integration of a new technology into a project
in progress. Academic prototypes are not usable by large companies that require
commercial quality tools with long-term support guarantees. This results in large
lead times to get these technologies to market, and consequently in the loss of
market opportunity. A second issue is the large number of evolved procedures and
constraints, which can make it difficult to exploit a technology simply because
required input data cannot be obtained, or because parameters yielding the
biggest improvements cannot be changed. This project will address these issues
by targeted pilot studies to demonstrate the added value that investing in timing
analysis tools brings to customers.

Education, and Dissemination of Knowledge. The timing analysis exper-
tise is fragmented over universities and small companies, and its ability to reach a
wider audience is limited. Large companies know that they need timing analysis,
and are aware of the risks and consequences of timing errors in their products.
However, few have knowledge of the available solutions, and even fewer have the
capacity and will to take up the technology.

The current level of engineers, as regards knowledge of timing issues, is not
sufficient. A recent example is the failure to establish a timing model in the cur-
rent AUTOSAR [5] standard. An ALL-TIMES partner (Symtavision) is heavily
involved in this activity. On the other hand there have been a good number

448 J. Gustafsson et al.

of success stories on companies adopting these technologies. Unfortunately, the
dissemination of these results is slow, partially due to restrictive corporate pub-
lishing policies.

The rest of this article is organized as follows: We present the main objectives
of the ALL-TIMES project in Section 2 and its expected results in Section 3.
In Section 4, we list the ALL-TIMES partners and their respective roles in the
project. In Section 5, we describe the work packages. Finally, in Section 6, we
draw some conclusions.

2 Main Project Objectives

The two principal project objectives are:

– to integrate different timing measurement/analysis tools using an open tool
framework, and

– to achieve 25% improvement in the design time pertaining to timing issues.

One of the overall objectives of the project is the provision of new integrated
tool sets for timing measurement and analysis targeted at the embedded real-
time systems market. This relates to the advancement of new analysis techniques
for integrated scheduling analysis, WCET analysis and timing measurement. In
particular, the project will deliver new methods for timing measurement and
analysis at both the system level and the code level in an open framework. An
important aspect is a precise characterization of industrial requirements regard-
ing timing. The project will provide a detailed requirements study in the first
project phase.

A demonstrable 25% improvement in design time of embedded systems de-
velopment can be achieved by enabling a quick, safe, automatic and efficient
mechanism for deriving timing data instead of conventional manual and laborious
approaches. The tool integration and analysis development work in ALL-TIMES
aims at this. The fulfilment of the objective will be estimated by interviewing
engineers participating in case studies on the efforts required to obtain timing
estimates, and the quality of the results.

3 Expected Results

The ALL-TIMES project will:

– interface the different analysis techniques (three code-level and two system-
level techniques) that are represented in the project;

– provide an open interface to integrate additional timing measurement/
analysis techniques and tools, aiming at becoming a de-facto standard;

– provide solutions for timing analysis/estimation in early design phases as
part of design-space exploration and architecture optimization.

ALL-TIMES – A European Project on Integrating Timing Technology 449

4 Partners, Their Tools, and Their Roles

Two partners in ALL-TIMES are university groups:

– The WCET group at Mälardalen University - MDH (coordinator) [6]
– The SATIrE group at Vienna University of Technology - TUV [7]

The other four partners are SMEs. They will contribute to the development,
evaluation and exploitation of different parts of the project:

– AbsInt Angewandte Informatik GmbH - ABS [8]
– Gliwa GmbH - GLI [9]
– Symtavision GmbH - SYM [10]
– Rapita Systems Ltd - RPT [11]

The partners, and the tools they contribute to the project, are shortly described
below. We also briefly indicate the tool integrations that may be considered.

4.1 Mälardalen University

The WCET group at Mälardalen University works with methods and tools for
WCET analysis for real-time systems. Specifically, they have developed a tool
(SWEET) for analysis of programs written in C. Its modular tool architecture
consists of three major phases:

1. A flow analysis phase, where bounds on the number of times instructions can
be executed are derived, given the program code and possible input values.

2. A low-level analysis phase, where bounds on time it might take to execute
instructions are derived, given the program object code and the architectural
features of the target hardware.

3. A WCET estimate calculation phase, where the costliest program execution
path is found using information from the first two phases.

The analysis phases communicate their results through well-defined data struc-
tures. The current research topic of the Mälardalen group is flow analysis. An
annotation language can be used to constrain input data values.

4.2 Vienna University of Technology

The researchers involved in this project in the compilers and languages group
at TU Vienna are concerned with the design, implementation, and application
of programming languages, program analysis and optimization, and tools for
embedded systems. Specifically they have developed the Static Analysis Tool
Integration Engine (SATIrE) and integrated components of different program
analysis tools. The design philosophy of SATIrE is the integration of analysis
tools such that the results can always be used by all other integrated tools,
enabling the composition of arbitrary tool chains. A plug-in mechanism for user-
defined components enables connections to other external tools. SATIrE offers
the following integrated base components:

450 J. Gustafsson et al.

– EDG C/C++ Front End
– LLNL-ROSE C/C++ intermediate representation
– ROSE C++ Unparser
– Program Analysis Generator (PAG) from AbsInt
– Annotation Parser & Mapper
– Annotation Generator
– Generator & Parser for external representation of AST
– Loop Optimizer (part of LLNL-ROSE, ported from Fortran D)

SATIrE currently allows to address all features of C++ with Exceptions being
the only open issue. It supports all features of EC++. For C most features includ-
ing some dialects are supported. The mapping of analysis information through
different intermediate levels is supported by user-defined analysis-information
transformers.

Based on SATIrE, the WCET tool TuBound [12] is being developed for com-
puting the worst-case execution time of C programs by static analysis. The
TuBound approach combines source-level analysis and code-level analysis in the
presence of compiler optimizations.

4.3 AbsInt Angewandte Informatik GmbH

aiT is AbsInt’s family of WCET analyzer tools. aiT WCET Analyzers statically
compute tight upper bounds for the worst-case execution times (WCET) of
tasks in real-time systems. They directly analyze binary executables without
any need for instrumentation, and take the intrinsic cache and pipeline behavior
into account.

The analyzers employ abstract interpretation to determine estimations for the
WCETs of basic blocks. Integer linear programming (ILP) is used to derive a
worst-case program path and an overall WCET estimation from the basic block
WCET estimations. A graphical user interface supports the visualization of the
worst-case path and the interactive inspection of all pipeline and cache states at
arbitrary program points.

aiT’s results are valid for all inputs and each execution of a task. aiT can
be run interactively via a graphical user interface (GUI). The fields in the GUI
can be filled with appropriate values, which may be stored in a project file.
Alternatively, an existing project file can be loaded. aiT can also be started in
simple batch mode with a project file.

4.4 Gliwa GmbH

Gliwa develops debugGURU, which is a framework for measuring and debugging
timing related aspects of embedded software. The target code gets instrumented
to gather timing information at run-time. This information is either processed
“on the fly” by the target or transferred to and interpreted/visualized by a PC.
Since debugGURU supports various target interfaces such as CAN, Nexus or
KWP2000, measuring is possible not only in a development environment but
also “on the road”.

ALL-TIMES – A European Project on Integrating Timing Technology 451

There are several plug-ins available that are easy to integrate into a system which
supports debugGURU, for example:

timeGURU measures reliable run-time information about tasks, interrupts,
processes, and/or any piece of code.

memGURU monitor memory accesses and consumption
delayGURU examines how much time is left in a task or an interrupt for addi-

tional functionality, useful for example during the development of embedded
systems.

4.5 Symtavision GmbH

SymTA/S, developed by Symtavision, stands for Symbolic Timing Analysis for
Systems. SymTA/S focuses exclusively on system timing and performance. De-
tailed functionality is abstracted, and only those properties that impact timing
are modeled. The main advantages of this approach are: efficient modeling; un-
rivalled analysis speed; applicability in early design phases (when functions have
not even been implemented); flexibility and independence of specific hardware
and software.

SymTA/S is not a single, monolithic tool but rather a flexible and extensi-
ble tool suite. SymTA/S performs scheduling analysis for CPUs with RTOSes,
buses with arbitrating protocols, and systems consisting of multiple resources
(CPUs and buses). SymTA/S calculates resource loads, worst-case response
times for tasks scheduled on CPUs, worst-case transmission times for messages
sent via shared buses, end-to-end latencies and compares these values against
user-specified constraints, e.g., deadlines. Additionally, SymTA/S has powerful
exploration and sensitivity analysis modules for optimization of electronic archi-
tectures and scheduling. SymTA/S can be used early on in architecture definition
and contracting phases, and continuously throughout the design until timing is
verified as part of sign-off.

The core package is the SymTA/S analysis engine. The analysis engine provides
all the basic functions to design and analyze the timing in a system, regardless of
the internal implementation of the resources. It focuses on the interfaces between
resources, where input-output timing and buffering are of central concern.

For the analysis of individual resources, SymTA/S has an interface to compo-
nent libraries. The analysis engine integrates these local resource performance
models into a global, system-level analysis model, and solves it. The analysis
engine together with one or more component libraries allows quick modeling,
configuration, and analysis of the performance and timing – from a single re-
source all the way to a distributed system including complex functional and
architectural dependencies.

4.6 Rapita Systems Ltd

RapiTime is a software toolkit that provides a unique solution to the problem
of worst-case execution time analysis and performance profiling, a solution that
works for complex software running on advanced embedded microprocessors.

452 J. Gustafsson et al.

RapiTime is a comprehensive performance analysis and WCET tool. It supports
software written in C and Ada. It is compatible with industrial-scale programs
from a few KBytes to millions of lines of code, and works with virtually every
8, 16, and 32-bit embedded microprocessor on the market, including those with
advanced hardware features.

RapiTime contains the following main functions:

Performance Profiling. View high and low water marks, examine how different
functions contribute to the average, longest, and shortest execution times, and
locate performance bottlenecks at the root of throughput problems.

Code Coverage Analysis. Identify code coverage omissions, assess the cov-
erage necessary for WCET analysis, check if the worst-case path has been
followed during testing, and more.

Worst-Case Execution Time Analysis. Determine accurate worst case exe-
cution times, visualize the contribution of each function to the overall worst-
case, examine worst-case execution frequencies, identify code on the worst-case
path, and explore the variability in execution times due to hardware effects.

Targeted Optimization. Identify worst-case hotspots, select the best oppor-
tunities for optimization via advanced code metrics, see the difference be-
tween code that contributes the most on average, and code that contributes
the most to the worst-case. Assess the headroom available to add new
functionality.

Report Viewer. Eclipse-based, interactive access to data. Configurable views
of worst-case, high water mark, and average-case behavior. Code metrics and
comparisons. Search and sort facilities to highlight hotspots. Call-tree views
of program structure and worst-case path. Graphical analysis of execution
time distributions.

4.7 Possible Tool Integrations

Figure 1 indicates the possible integrations between timing analysis tools that
may be considered within ALL-TIMES.

5 Work Packages

The project is divided into four work packages. We now briefly describe these.

5.1 Work Package 1: Requirements

The aim of this work package is to identify the particular requirements for ALL-
TIMES. These requirements appear on two different levels:

– requirements on timing analysis tools in general, and
– requirements on interfaces between tools.

The first level requires an identification of relevant use cases. These will come
from (potential) end-users of timing analysis technology, in particular in the
avionics and automotive industry. The SME partners all have customers in these

ALL-TIMES – A European Project on Integrating Timing Technology 453

Fig. 1. Possible integrations between timing analysis tools

areas, and representative use cases will be collected from some of these. In this
process, it is possible to apply the “Mälardalen model” (see Section 5.4), and
involve M.Sc. students in the collection and analysis of use cases.

The second level is of a more technical nature, and requires close interaction
between tool experts.

Identification of Use Cases. The project needs to focus on most promising
use cases. Project partners already have visions and concepts for use cases during
different design stages. These use cases can serve as a starting point for discussion
with end users. In this process, those use cases that are both valuable from the
end users’ perspective, and realistic from the project partners’ perspective, will
be identified, elaborated, and prepared for implementation.

Along with the use cases, an initial evaluation of timing analysis tools will be
conducted. This investigation will elaborate the strengths and weaknesses of the
respective tools, for different use cases, leading to a methodology to decide on
the right tool for a given development phase.

General Requirements on Timing Analysis Tools. An initial estimate of
the most important factors influencing the choice/combination of timing analy-
sis/performance verification tools includes:

– Criticality of timing constraints
– Design stage (early estimation vs. late verification)
– Established design flow and hence availability / type / quality of input data

454 J. Gustafsson et al.

This needs to be verified and refined based on the identified use cases. The
identified use cases need to be refined into technical requirements and design
steps. On system level, one crucial aspect is the availability of input data re-
quired for scheduling analysis. This data will come from the different tools and
techniques present in this project. The combination of test-based, tracing, semi-
formal and formal approaches will enable to identify and demonstrate best fits
for each of these techniques. Aspects to be considered:

– Accuracy of analysis
– Ease of obtaining the required input data
– Refinement from early, abstract models to later, more detailed models
– Roundtrip engineering / product lines / product evolution
– Architecture alternatives
– Different contexts and corresponding system behavior
– Tool interface requirements

The requirements on the code- and system level tools, in order to communi-
cate with each other, need to be examined. For code level tools, the various tool
characteristics result in specific input requirements and possible output. Broad
room in this examination will for example be given to the import of measure-
ment data in analysis tools and the communication of the results of source level
analysis to analyzers working on binary code, to list but a few. The requirements
on the communication of timing estimates from code level to system level will
also be examined.

As a starting point, existing tool integration technologies will be reviewed
(e.g., the XML timing cookies developed in INTEREST [4] or AIR, the ARTIST2
Intermediate program Representation for WCET analysis tools [3]) to assess
these w.r.t. possible adaptation/extension for ALL-TIMES purposes. An appro-
priate solution will be specified.

5.2 Work Package 2: System-Level Integration

This work package addresses reliable integration of multiple functions sharing a
processor in a real-time system. For this, system-level analysis takes the com-
plete system into consideration (whereas code-level analysis in Work Package 3
assumes an isolated view of a piece of code). The key to system-level integration
is to assure schedulability of the system under all relevant conditions. The dif-
ferent timing analysis techniques in ALL-TIMES will be combined to determine
system schedulability, with the goal to exploit the strengths of the different tech-
niques, to avoid their weak points, and to overcome their limitations. The work
package consists of three parts: interface, early-stage methodology and late-stage
methodology. Here, early-stage and late-stage refer to design stages of a system
that the user of an integrated tool chain is designing.

Development of the system-level tool interface will start in parallel with devel-
opment of the early-stage system-level analysis methodology. The interface will
then be refined and extended together with the development of the late-stage
system-level analysis methodology. The rationale for this ordering (early stage

ALL-TIMES – A European Project on Integrating Timing Technology 455

before late stage) is the lack of detailed system information at an early stage.
Therefore, a relatively simple interface will be sufficient, and the emphasis should
be on speed and flexibility of the integrated tool chain. In the second step, the
interface will be enriched to allow exchanging a larger variety of detailed system
data available in later design stages.

System-level InterfaceSpecification forTimingAnalysisTechniques. An
open interface to combine different timing analysis techniques (scheduling analy-
sis, WCET analysis, simulation, test, tracing, . . .) will be specified. The interface
specification will be rich and flexible enough to allow combining timing analysis
techniques in different ways depending on a specific design situation, to exchange
data between tools at different levels of granularity and detail, and to iterate be-
tween different techniques for refinement of analysis results. Specifically, the inter-
face must be suited for both early design stages and late design stages.

Early-Stage System-level Timing Analysis methodology. A methodology
for system-level timing analysis will be developed that exploits the strengths of
different timing analysis techniques (scheduling analysis, WCET analysis, simu-
lation, test, tracing, . . .) during early design stages. The goal is to enable a user
of an integrated-tool chain-specific solution.

The methodology will include execution time estimation for software compo-
nents on alternative processors as well as performance estimation using schedul-
ing analysis and sensitivity analysis. The latter will allow a user to assess how
much room there is for estimation errors and how much flexibility remains for
later changes.

Late-Stage System-level Timing Analysis Methodology. A methodology
for system-level timing analysis will be developed that exploits the strengths of
different timing analysis techniques (scheduling analysis, WCET analysis, simu-
lation, test, tracing, . . .) during late design stages. The goal is to enable a user
of an integrated-tool chain to verify system timing on a level of quality and
reliability not achievable by any single technique.

The methodology will combine the various techniques:

– to determine worst-case response times and response jitter, response time
distributions and other important performance measures of a system

– to obtain tight analysis bounds by considering correlations between functions
and events in different system contexts and scenarios.

5.3 Work Package 3: Code-Level Tool Integration

Code-level analysis assumes an isolated view of a piece of code whereas system-
level analysis takes the complete system into consideration. The ALL-TIMES
project will consider three different approaches to code-level analysis: Measure-
ment of execution time (GLI), measurement-based (or hybrid) analysis (RPT),
and static analysis on binary level (ABS) and source/intermediate level (MDH,
TUV). The focus of this work package is to combine these approaches in an
optimal manner, to exploit the strengths of the different methods, to avoid their
weak points, and to overcome their limitations.

456 J. Gustafsson et al.

Incorporating Time Measurement Data. The purpose of this work is to
improve static analyzers by using the results of time measurements. This will be
done in the following directions:

– Comparison of the statically computed longest path with measured data to
identify the unwanted inclusion of error cases in the statically computed
longest path. Once identified, the error cases can usually be excluded by a
manual user annotation.

– Adaptation of the different tools to measurement methods with different
number and position of measurements points in a program. For example,
AbsInt’s aiT can directly handle basic block measurements, but the results
of less fine-grained measurement require some extensions. The result of this
work will include a common format to specify all kinds of timing measure-
ment results.

Source-level Analyses. The micro-architecture analysis has to consider the
very details of a processor implementation and therefore works on the binary
program representation. A tool like AbsInt’s aiT also tries to determine auxiliary
information such as upper bounds of loop iterations on the binary level. Yet
better results usually can be expected from source code analyses. One of the
goals of the project is to overcome the limitations of considering only one level.

Examples of analyses that can be promising on source level involve the determi-
nation of loop bounds and recursion depths, possible values of function pointers,
(non-)accessed variables of a function/task, and path exclusions. Measurement-
based WCET analyses can usually do without such analyses. Yet an important as-
pect is quality of the measured data. Analyses like the ones enumerated above can
give hints on the reached coverage of measurements. The purpose of this work is
to create analyses using an industrial strength front-end for C/C++, to integrate
the results of source code analyses as performed by TUV’s and MDH’s tools into
binary-level and measurement-based tools, and to develop a worst-case execution
time estimator for programs in C/C++ source code. This estimator will use some
parameters to configure a virtual processor so that it resembles real processors.

Code-level Timing Analysis in Early Design Stages. Code-level timing
analysis currently requires executable code as well as a detailed model of the
target processor for static analysis or actual hardware for measurements. This
means that all current code-level techniques can be applied only relatively late
in the design, when code and hardware (models) are already far developed.
Yet timing problems becoming apparent only in late design stages may require a
costly re-iteration through earlier stages. Thus, we are striving for the possibility
to perform code-level timing analysis already in early design stages.

Choosing a suitable processor configuration (core, memory, peripherals, . . .)
for an automotive project at the beginning of the development is a challenge.
In the high-volume market, choosing a too powerful configuration can lead to a
serious waste of money. Choosing a configuration not powerful enough leads to
severe changes late in the development cycle and might delay the delivery.

ALL-TIMES – A European Project on Integrating Timing Technology 457

Currently, to a great extent this risky decision is taken based on gut feeling
and previous experience. Our goal is to provide a family of tools to assist in the
exploration of alternative system configurations before committing to a specific
solution. Our approach requires that (representative) source code of (represen-
tative) parts of the application is available. This code can come from previous
releases of a product or can be generated from a model within a rapid prototyp-
ing development environment.

To achieve the task, we will extend AbsInt’s family of aiT WCET analyzers.
aiT WCET analyzers statically compute tight upper bounds of worst-case execu-
tion times (WCET) of tasks in real-time systems, taking into account the cache
and pipeline behaviour. They operate on binary executables and may take addi-
tional information in the form of user annotations. Through annotations the user
provides information the tool needs to successfully carry out the analysis (e.g.,
loop bounds and recursion bounds that cannot be determined automatically,
targets of computed calls or branches, etc.) or to improve precision.

aiT supports various cores and support is extended constantly. To be applica-
ble in early design phases, the tool will be extended to make the cache and
memory mapping completely parameterizable so that the user can experiment
with different configurations. Furthermore, since performance guarantees at that
stage are not as important as later in the development process, some precision
will be traded against ease of use, speed and reduced resource needs. For ex-
ample, source-code analysis will be integrated to enable certain information like
unknown loop bounds to be determined from the source code, instead of asking
the user for annotations.

Our early-phase code-level analysis will be integrated into the SymTA/S
system-level architecture exploration analysis. The combination of code-level
and system-level architecture exploration will lead to informed decisions with
respect to which architectures are appropriate for an application.

5.4 Work Package 4: Validation and Dissemination

System- and Code-level Validation. The main purpose of the validation
work is to compare and evaluate the different approaches to timing analysis sub-
problems and to develop a methodology for selecting the optimal method and
tool for the work at hand. One important way to validate the methods developed
within ALL-TIMES is to perform case studies together with industrial partners
on selected problems. In this way, the ALL-TIMES methods and tools will be
tested on industrial-strength systems, valuable feed-back from early users will
be conveyed back to the developers, and end-user awareness will be raised early
to solutions in the area of timing analysis.

The “Mälardalen Model”. The main performers of the case studies will
be students on MSc level, supervised by experts at the company and from the
ALL-TIMES project.

During a number of years, Mälardalen University has been performing case
studies to evaluate timing tools in industrial settings. The purposes of the case
studies have been, amongst other things, to evaluate the tools and methods on

458 J. Gustafsson et al.

“real” code to get feedback for research and development. Results and evalu-
ations made in the reports have resulted in research reports [13] and spawned
new research and development activities. An additional advantage of the model
is that it brings timing analysis into education; the M.Sc. students themselves
become proficient with the latest timing analysis technology. It also helps dis-
seminating the technology: both directly, to companies participating in the case
studies, and indirectly by the students bringing their competence into their re-
spective workplaces after graduation.

The time spent by the MSc student is typically used in the following way:

– introduction to timing analysis (university) – one week
– study of state of the art (MSc student) – a few weeks
– education in the used tool(s) (tool vendor) – one week
– introduction to the company and its code (company) – one week
– applying timing analysis to the code (MSc student) – 2–3 months
– writing report and presenting results to the other partners (MSc student) –

one month

The ALL-TIMES project partners have an extensive network of industrial
partners that will be enrolled during the case studies.

Dissemination. Dissemination and exploitation of the results from ALL-TIMES
is aiming at spreading awareness of timing analysis and knowledge of the solu-
tions (tools and methods) proposed by ALL-TIMES. The targets of dissemina-
tion are professionals working in the area of embedded and real-time computer
systems, the research community (including PhD students), undergraduate stu-
dents at universities, and the interested public.

6 Conclusions

The ALL-TIMES project is an ambitious effort to enable interoperability of
timing tools from leading commercial vendors and universities in the EC. The
project will develop tool chains using open tool frameworks and interfaces. These
integrated tool chains will be evaluated using case studies performed towards in-
dustrial end-user companies. The main goal will be a demonstrable improvement
in the design time of embedded systems development.

References

1. ALL-TIMES: Homepage (2008), http://www.all-times.org
2. IBM: News Web page (April 2005),

http://www.ibm.com/news/be/en/2005/05/3102.html
3. ARTIST2: Timing-Analysis Cluster homepage (2008),

http://www.artist-embedded.org/artist
4. INTEREST: INTEREST (2008), http://www.interest-strep.eu/
5. AUTOSAR: Homepage (2008), http://www.autosar.org/

http://www.all-times.org
http://www.ibm.com/news/be/en/2005/05/3102.html
http://www.artist-embedded.org/artist
http://www.interest-strep.eu/
http://www.autosar.org/

ALL-TIMES – A European Project on Integrating Timing Technology 459

6. Mälardalen University: WCET project homepage (2008),
http://www.mrtc.mdh.se/projects/wcet

7. SATIrE: SATIrE homepage (2008),
http://www.complang.tuwien.ac.at/markus/satire

8. AbsInt: aiT tool homepage (2008), http://www.absint.com/ait
9. Gliwa: homepage (2008), http://www.gliwa.com/e/home.html

10. Symtavision: homepage (2008), http://www.symtavision.com/
11. Rapita: RapiTime WCET tool homepage (2006), http://www.rapitasystems.com
12. Prantl, A., Schordan, M., Knoop, J.: TuBound - a conceptually new tool for worst-

case execution time analysis. In: Proceedings of the 8th International Workshop
on Worst-Case Execution Time Analysis (July 2008)

13. Gustafsson, J., Ermedahl, A.: Experiences from applying WCET analysis
in industrial settings. In: Proc. 10th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing (ISORC
2007), Santorini Island, Greece (May 2007)

http://www.mrtc.mdh.se/projects/wcet
http://www.complang.tuwien.ac.at/markus/satire
http://www.absint.com/ait
http://www.gliwa.com/e/home.html
http://www.symtavision.com/
http://www.rapitasystems.com

Weaving a Formal Methods Education with

Problem-Based Learning

J Paul Gibson

Le Département Logiciels-Réseaux, IT-SudParis,
9 rue Charles Fourier, 91011 Évry cedex, France

paul.gibson@it-sudparis.eu
http://www-public.it-sudparis.eu/∼gibson/

Abstract. The idea of weaving formal methods through computing (or
software engineering) degrees is not a new one. However, there has been
little success in developing and implementing such a curriculum. Formal
methods continue to be taught as stand-alone modules and students,
in general, fail to see how fundamental these methods are to the engi-
neering of software. A major problem is one of motivation — how can
the students be expected to enthusiastically embrace a challenging sub-
ject when the learning benefits, beyond passing an exam and achieving
curriculum credits, are not clear? Problem-based learning has gradually
moved from being an innovative pedagogique technique, commonly used
to better-motivate students, to being widely adopted in the teaching of
many different disciplines, including computer science and software en-
gineering. Our experience shows that a good problem can be re-used
throughout a student’s academic life. In fact, the best computing prob-
lems can be used with children (young and old), undergraduates and
postgraduates. In this paper we present a process for weaving formal
methods through a University curriculum that is founded on the appli-
cation of problem-based learning and a library of good software engi-
neering problems, where students learn about formal methods without
sitting a traditional formal methods module. The process of construct-
ing good problems and integrating them into the curriculum is shown
to be analagous to the process of engineering software. This approach
is not intended to replace more traditional formal methods modules: it
will better prepare students for such specialised modules and ensure that
all students have an understanding and appreciation for formal methods
even if they do not go on to specialise in them.

Keywords: Teaching Formal Methods, Computing Curriculum, Math-
ematics of Computer Science, Science of Software Engineering.

1 Introduction

In this paper we consider the problem of teaching formal methods at 3rd level
institutions (universities, colleges, institutes of technology, etc.). We support the
view that the best way to teach formal methods is not to teach the subject as

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 460–472, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www-public.it-sudparis.eu/~gibson/

Weaving a Formal Methods Education with Problem-Based Learning 461

a stand-alone module or set of modules, but to try to integrate (weave) the for-
mality throughout the whole curriculum. We propose a problem-based learning
approach[1] (PBL)as the best way in which to weave the formal methods.

In the remainder of this introduction we review the notion of weaving formal
methods, summarise the learning theory that lies behind problem-based learning
(PBL), review PBL and introduce the core issue of finding good formal methods
problems.

After the introduction, section 2 proposes some formal methods learning ob-
jectives, section 3 proposes a process — much like the software engineering
process — by which formal methods can be woven through a curriculum, section
4 reviews some of the problems that we have found to be successful, and section
5 concludes with some brief observations.

We note that we try — where possible — to bring our own research back into
all our teaching (undergraduate and postgraduate). Thus, much of our source
material originates from our own research publications, which we cite. Of course,
when teaching our students we ensure that they are also made aware of the work
on which our own research is based. In the space of this paper we are unable to
reference all this secondary material, although we do reference the research that
is specific to teaching formal methods, where appropriate.

1.1 Weaving a Formal Methods Thread through a Curriculum: The
Integration Problem

In 2000, Jeanette Wing wrote about weaving formal methods[2]:

“Rather than treat formal methods solely as a separate subject to study,
we should weave their use into the existing infrastructure of an under-
graduate computer science curriculum. In so doing, we would be teaching
formal methods alongside other mathematical, scientific, and engineer-
ing methods already taught. Formal methods would simply be additional
weapons in a computer scientist’s arsenal of ways to think when attack-
ing and solving problems.
My ideal is to get to the point where computer scientists use formal
methods without even thinking about it. Just as we use simple mathe-
matics in our daily life, computer scientists would use formal methods
routinely.”

She then goes on to identify the common core elements that need to be taught:
state machines, invariants, abstract mappings, composition, specification, induc-
tion and verification. She states that tools are critical: model checkers, specifi-
cation checkers and theorem provers. Specific courses where formal methods can
be taught are identified as: introduction to programming, data structures and al-
gorithms, programming principles, programming languages, compilers, software
engineering, computer architecture, operating systems, networking, databases,
and user interfaces. She concludes her paper by stating:

“The biggest obstacle is getting “buy-in” from our colleagues: convincing
co-instructors, curricula committees, and administrators that integrating

462 J.P. Gibson

formal methods unintru- sively is a good thing to do . . . The nitty-gritty
hard future work is in thinking of the examples to use in lectures, in
designing appropriate homework and exam problems, and in making
learning these concepts and tools enjoyable.”

Eight years have passed since this paper was published and not much has
changed. Formal methods continue to be taught in a stand-alone fashion and
little progress has been made in fully integrating them into the computer sci-
ence and software engineering (CS&SE) curricula.

More recently, Kiniry and Zimmerman discuss the use of “secret ninja”
techniques[3] “to integrate applied formal methods into software engineering
courses.”They demonstrate that formal methods can be taught through “stealth”
(without calling them formal methods) in a number of different courses; but
note that this success would not have been possible without good tool suppport.
Their work is founded mostly on applying the design-by-contract paradigm. This
demonstrates that formal methods can and should be used in the teaching of
software design; and this view is supported by other research[4].

We believe that there are many other practitioners of teaching formal meth-
ods by stealth throughout the world. The problem is that each has their own
technique for better integrating formal methods into the specific part of the cur-
riculum in which they teach. There is no consistent approach to this integration.
In this paper we propose that good problems can be used to weave (integrate)
formal methods in a consistent manner. However, before we look at PBL we
review the learning theory upon which our claims are based.

1.2 Learning Theory

There are numerous complementary, and competing, theories of learning. The
review by Hilgard and Bower published over half a century ago[5] is a good intro-
duction to the foundations of learning theory. In this paper, we review the work
of the researchers that have had most influence on our own research into teach-
ing formal methods: Piaget, Bruner, Guildford, Gardner, Papert, Schoenfeld and
Bloom.

Cognitive structure is the concept central to Piaget’s theory. (See the work
by Brainerd[6] for a good overview and analysis of Piaget’s seminal contribu-
tion.) These structures are used to identify patterns underlying certain acts of
intelligence, and Paiget proposes that these correspond to stages of child devel-
opment. Piaget’s most interesting experiments focused on the development of
mathematical and logical concepts. However, his work predates the development
of software engineering as a discipline.

Piaget’s theory is similar to other constructivist perspectives of learning (e.g.,
Bruner [7]), which model learning as an active process where learners construct
new concepts upon their current knowledge and previous experience. As a result
of following this theory, teachers encourage students to discover principles by
themselves: this is the foundation upon which problem-based learning is built.

Similarites can be seen between the constructivist view and the theories of
intelligence such as proposed by Guildford’s structure of intellect (SI) theory [8]

Weaving a Formal Methods Education with Problem-Based Learning 463

and Gardner’s multiple intelligences[9]. Typically, these theories structure the
learning space in terms of practical problem solving skills.

Piaget’s ideas also influenced the seminal work by Seymour Papert in the
specific domain of computers and education[10]. Papert argues that children can
understand concepts best when they are able to explain them algorithmicaly
through writing computer programs.

We were also influenced by the domain of teaching mathematics. In particular,
Alan Schoenfeld argues that understanding and teaching mathematics should be
treated as problem-solving [11]. He identifies four skills that are needed to be
successful in mathematics: proposition and procedural knowledge, strategies and
techniques for problem resolution, decisions about when and what knoweldge
and strategies to use, and a logical world view that motivates an individual’s
approach to solving a particular problem.

To conclude our review we mention Blooms taxonomy[12] of educational ob-
jectives which is a fundamental model of learning, providing a well-accepted
foundation for research and development into the preparation of learning eval-
uation materials. It structures understanding into 6 distinct levels: Knowledge,
Comprehension, Application, Analysis, Synthesis and Evaluation.

1.3 Problem Based Learning

While there is no universal definition of PBL we present definitions from the last
three decades. PBL was defined by Barrows and Tamblyn[13] as “the learning
which results from the process of working towards the understanding of, or res-
olution of, a problem. The problem is encountered first in the learning process”.
Woods defined it[1] as “an approach to learning that uses a problem to drive the
learning rather than a lecture with subject matter which is taught.” Torp and
Sage define it[14] as “Focused, experiential learning (minds-on, hands-on) organ-
ised around the investigation and resolution of messy, real-world problems.”

Thus, the guiding principle behind PBL is that the problem is the driving
force behind the learning. Within the PBL environment the problem acts as the
catalyst that initiates the learning process. It is said that this way of learning
encourages a deeper understanding of the material, rather than surface learning,
because it is the students who are actively doing. As the problem is such a
critical component of the learning process it is imperative that one uses good
problems. In 2001, Duch identified five characteristics of what makes a PBL
problem good[15]:

1. Effective problems should engage the students’ interest and motivate them
to probe for deeper understanding.

2. PBL problems should be designed with multiple stages.
3. The problems should be complex enough that cooperation within a group

will be necessary in order for them to effectively work towards a solution.
4. The problem should be open-ended.
5. The content objectives of the course should be incorporated into the prob-

lems.

464 J.P. Gibson

One of the major obstacles to the implementation of PBL, within any disci-
pline, is the lack of a good set of problems. However, good PBL problems usually
do not appear in textbooks[16]. Clearing houses provide an avenue to allow for
the sharing of problems, but unfortunately there is a lack of CS&SE problems1.

1.4 Good Formal Methods Problems

It is known that the students initial reactions to a subject or topic is critical
to them gaining an interest. The choice of problem is therefore critical. A good
formal methods problem is one in which students will have the computer sci-
ence knowledge necessary to solve the problem but need software engineering
knowledge to learn how to apply the science, or students will identify (through
software engineering knowledge) a possible solution to the problem whose suit-
ability depends on some core computer science that they do not currently have.
The problem should lead both types of student to appreciate the need for formal-
ity and rigour. Consequently, they build their own formal methods bridges that
link the science with the engineering (but just happen to start the construction
on opposite sides of the academic divide).

The high-level objective of helping bridge the gap between the science and
engineering is laudable; however, it is much too abstract. We must refine this
high-level objective into more concrete objectives against which our problems
can be verified.

2 Formal Methods: Learning Objectives

Through our formal methods problems we can verify our high level objective
of helping students to bridge the gap between computer science and software
engineering by checking that the students who work on the problems are then:

– able to build better software,
– better at reasoning about problems that are to be solved using a computer,
– motivated and able to work with abstract models and conceptual tools,
– able to classify, and motivated to use, software development tools,
– knowledgable about the scientific foundations upon which the tools are built,

and
– comfortable working with mathematics such as logic and set theory.

2.1 Improve Software (Development)

Software engineering is all about going from what to how, moving from abstract
problems to concrete solutions. This involves design steps: decisions that are
made in order to move a model away from an open (usually non-deterministic)

1 There is an abundance of CS programming problems available; however, the vast ma-
jority of these problems place emphasis on the learning of a particular programming
concept rather than problem solving.

Weaving a Formal Methods Education with Problem-Based Learning 465

description of requirements to a closed (usually deterministic) description of
the implementation. Software engineering cannot, in practice, be done prescrip-
tively (otherwise we would automatically generate solutions from problems); and
it cannot be done in a purely ad-hoc fashion (otherwise we would not need soft-
ware processes to manage the complexity of the systems and behaviour being
modelled). Software engineering is a unique mix of science, engineering and art:
the best practitioners know that each new problem requires a different balance
between the potential chaos of innovation and the constraints imposed by order
and structure.

Thus, engineering is not about finding the correct solution to a problem;
it is about understanding the engineering compromises involved in choosing a
solution from a large number of possibilities. In such a situation can we judge how
well a software engineer is working by judging the quality of a single project on
which they have worked? In practice, it is very difficult, if not impossible, to fairly
evaluate whether the objective of improving the students’ software development
skills is being met by our PBL approach to teaching formal methods. O’Kelly
and Gibson have discussed the issues that arise when trying to validate PBL
in the context of teaching programming[17], and many of the issues that they
identify are relevant when analysing whether the formal methods problems are
teaching the students how to be better software engineers (i.e. engineer better
software).

Anecdotal evidence suggests that the better students adopt formal engineering
practices (like the specification of invariants) in projects on other courses which
follow their work on the formal methods problems (without being told to do
so). Furthermore, the software that these students produce is better than that
produced by the other students. However, that should be no surprise as these
are the better students!

2.2 Thinking about (Computational/Algorithmic) Thinking

In 2006 Wing discusses the importance of computational thinking in education[18]:

“Computational thinking involves solving problems, designing systems,
and understanding human behavior, by drawing on the concepts funda-
mental to computer science. Computational thinking includes a range of
mental tools that reflect the breadth of the field of computer science.”

She then goes on to discuss the characteristics of such thinking:

1. Conceptualizing, not programming;
2. Fundamental, not rote skill;
3. A way that humans, not computers, think;
4. Complements and combines mathematical and engineering thinking;
5. Ideas, not artifacts;
6. For everyone, everywhere.

Such computational thinking starts from a very early age[19] and should be ex-
ploited in the teaching of computer science (and formal methods) in schools[20].

466 J.P. Gibson

Our experience shows that looking at simple formal methods problems with
school children improves their ability to think computationally. Thus, we believe
that this should also be true for university students.

2.3 Make Friends with Abstraction and Modelling: Conceptual
Tools

One of the biggest problems in teaching software engineering is that students find
it very difficult to work with models at different levels of abstraction. Through
the formal methods problems, the students naturally discover that abstraction
is a critical skill when searching the space of possible solutions. They then pro-
ceed to discover refinement — where they gradually add details to their ab-
stract models in order to move them closer to a concrete solution. Students
learn that nondeterminism is a very powerful mechanism. We first noticed this
when we analysed how best to teach formal specification as part of requirements
engineering[21].

2.4 Make Friends with Software for Software Engineering:
Development Tools

The need for students to be able to use general software development tools is
widely accepted by industry; but the importance of them being able to use formal
methods tools is not. One used to be able to argue that formal methods were
not used in industry because they were not mature enough — and therefore it
would be difficult to motivate students to learn how to use them[22] — but this
is no longer the case.

2.5 Understand the Scientific Foundations

In 2003, Curran discussed the balancing required between Computer Science
(CS) and Software Education (SE) education[23]:

“It is no longer clear whether SE topics reflect current industry needs
or whether they are intended to lead and update industry practices.
But regardless of who leads whom, without some sort of rapid, two-way
communication, we run the risk of producing graduates who are out of
touch, require much re-training, and have trouble competing. Industry
might indicate that they need specific skills and knowledge from their
CS employees, and that the special skills required of software engineers
would be performed by software engineers, not by CS majors.”

He concluded by stating:

“. . . individual departmental goals for a degree in CS and the role of SE
in the curriculum should be clearly understood so that a balance can be
struck between academic topics and skills training.”

Weaving a Formal Methods Education with Problem-Based Learning 467

We believe that PBL offers a natural solution to achieving this required balance
and in using formal methods to bridge the gap between CS and SE.

More recently, Parnas and Soltys address the need for a “Basic Science for
Software Developers”[24], stating:

“The fundamental properties of computers are very important because
they affect what we can and cannot do. Sometimes, an understanding of
these properties is necessary to find the best solution to a problem. In
most cases, those who understand computing fundamentals can antici-
pate problems and adjust their goals so that they can get the real job
done. Those who do not understand these limitations, may waste their
time attempting something impossible or, even worse, produce a prod-
uct with poorly understood or not clearly stated capabilities. Further,
those that understand the fundamental limitations are better equipped
to clearly state the capabilities and limitations of a product that they
produce. Finally, an understanding of these limitations, and the way that
they are proved, often reveals practical solutions to practical problems.
Consequently, “basic science” should be a required component of any
accredited Software Engineering program.”

They then suggest the curriculum for a theoretical computer science that would
cover the required science of software engineering. The main topics proposed are:

1. Finite Automata (finite number of states, and no memory),
2. Regular Expressions,
3. Context-Free Grammars,
4. Pushdown Automata (like finite automata, except they have a stack, with

no limit on how much can be stored in the stack),
5. Turing Machines (simplified model of a general computer, but equivalent to

general computers)
6. Rudimentary Complexity.

We do not directly address the teaching of any of these theoretical computer
science foundational topics in our problem based learning. Most of our problems
can be (and are) extended to introduce the concepts of complexity, computabil-
ity, correctness and common-sense — which we see as the fundamental computer
science boundaries that all software engineers should know about.

2.6 Be Comfortable with Mathematics

Habrias has written about the problems of teaching formal methods when the
students do not have a good understanding of foundational mathematics such
as logic and set theory[25]. Much of the literature on teaching formal meth-
ods directly addresses the need for firm mathematical foundations. We believe
that the problem-based learning approach helps students with the mathematics
because they learn the mathematical concepts in the context of their practical
application.

468 J.P. Gibson

3 A Software Engineering Approach to Constructing a
Formal Methods Curriculum

Parnas makes a strong case that “Software Engineering Programmes are not
Computer Science Programmes”[26]. He discusses the differences between tra-
ditional computer science programmes and most engineering programmes and
argues that we need software engineering programmes that follow the traditional
engineering approach to professional education.

He summarises the issue as follows:

“Just as the scientific basis of electrical engineering is primarily physics,
the scientific basis of software engineering is primarily computer science.
Attempts to distinguish two separate bodies of knowledge will lead to
confusion. . . .Recognising that the two programmes would share much
of their core material will help us to understand the real differences.”

Future scientists will add to our “knowledge base” while future engineers will
design trustworthy products. His position is that: “engineers learn science plus
the methods needed to apply science”.

However, we must now ask where formal methods fit into this pedagogic struc-
ture and whether our approach to teaching formal methods should change de-
pending on our target audience: computer scientists or software engineers.

In our approach we see formal methods as the main bridge between computer
science and software engineering. Without formal methods software engineering
is not a true engineering discipline; and without formal methods computer sci-
ence remains a mainly theoretical subject. Thus, teaching formal methods should
not be seen as a problem to be solved; but it should be viewed as the answer to
the fundamental question of how we can better educate computer scientists and
software engineers.

Our problem based learning approach helps us to better adapt our teaching
to our target audience. Our experience suggests that good problems are not
good for only one type of students (engineering or science, or even arts and
humanities). The best problems can be introduced to any of these students and
through interacting with the problem (and with the guidance of the lecturer) the
problem will dynamically evolve in order for particular learning objectives to be
met. In general, engineering students will learn by trying to build solutions to
the problems whilst science students will learn through trying to analyse them.
Of course, the lecturer will be responsible for making sure that the students
learn that these are complementary approaches and for finding the right balance
for the particular type of student that is being taught.

We propose that each problem should be set up to meet a specific curriculum
objective. Each problem would then have a life-cycle similar to that seen for
software and services, with key stages being specification, design, implementa-
tion, testing and maintenance. Once a problem is meeting a specific objective
then it can be refined to incorporate other objectives. These objectives may be
the responsibility of a single lecturer as part of a single module; but good prob-
lems will evolve to survive across different modules. In our experience this is

Weaving a Formal Methods Education with Problem-Based Learning 469

most likely to happen when a single lecturer is responsible for multiple modules
(where problems can be shared). However, in order to better weave our formal
methods objectives through the curriculum we have to be able to also work with
colleagues who do not teach formal methods but do teach other CS&SE modules.

We propose four complementary approaches to this weaving process. Firstly,
look at the problems that are being used in other modules and incorporate them
into a dedicated formal methods module. Secondly, offer to extend such problems
(to meet the formal methods objectives) as part of the original modules in which
the problems were taught. Thirdly, offer to extend your existing formal methods
problems so that they incorporate learning objectives of colleagues teaching other
modules. Fourthly, invite colleagues to participate in the PBL teaching in your
own formal methods module(s).

We note that this integration should probably be done in an incremental
fashion as we may end up replicating the feature interaction problem[27] at
the level of the requirements (learning objectives). To extend our analogy of
a problem as being a service, with additional learning objectives as features,
we can consider the curriculum to be a system of collaborating services. As
our curriculum evolves we maintain the system by updating our problem set:
adding new problems, removing unsuccessful problems and evolving successful
problems. As with large, complex, software systems the best way to manage this
process is to have a clearly documented set of requirements and procedures in
place to map these requirements through to the final implemented system (via
the design).

We propose that the underlying architecture of the curriculumshouldbe service-
oriented in the sense that the main structure should support the evolution of the
underlying objectives and the problems that are used to meet these objectives. In
the next section we briefly review some of the problems that we have used to meet
particular learning objectives. All these problems have been successfully shared
across different modules (and different years) in the curriculum.

4 Weaving Formal Methods with Problem Based
Learning

In each of the following subsections we briefly review a problem that we have
used to teach formal methods within other parts of the CS&SE curriculum. In
all cases, these problems have been used at different institutions and in different
countries (Ireland, France and USA). Furthermore, they have all been used to
teach students at different stages of their academic lives (school, undergraduate
and postgraduate).

4.1 Example 1: Stacks and Queues

Stacks and queues are normally taught as part of an algorithms and data struc-
tures module. We have found them very useful as a design problem and have used
them to teach formal design techniques[4]. We have also used them in teaching
about testing, fault tolerance and dependable distributed systems.

470 J.P. Gibson

4.2 Example 2: E-Voting

The e-voting case study has already been used in the teaching of formal methods
[28] where they describe how they have developed a single teaching tutorial,
making use of an electronic voting system (EVS), to complement an existing
model checking course.

In our work we have used our published research on using formal methods in
the verification of safety critical properties[29,30,31,32] as the starting point for
problems presented to CS&SE undergraduates (from 1st year to 4th year), and
to postgraduates specialising in software engineering. The problem has been re-
used in teaching the following modules: introduction to programming, object ori-
ented programming, data structures and algorithms, HCI, testing, requirements
and design, rigorous software process, software process improvement.

4.3 Example 3: Sorting and Searching

Sorting and searching are such fundamental computations that it is difficult to
imagine a CS&SE module in which they cannot be used as the foundation for
a good problem. We have used sorting and searching problems to teach about
refinement and correctness-by-construction[22,20] to school children and post-
graduates. We also use them to teach about complexity and parallel program-
ming. Finally, we use them in our teaching of models of computation where we
consider non-standard computers such as optical computers.

4.4 Example 4: Games, Puzzles and Intelligence

Some of the games that we have used in our PBL teaching include TicTacToe[33],
Connect4, and the 15-puzzle. TicTacToe is particularly good when trying to for-
malise the rules of the game and prove that a particular artificial player respects
the rules. We also use it as a simple example of how easy it is for a model checker
to automatically examine all possible states of the game. The 15-puzzle is very
good when reasoning formally about optimizations as refinements. All these ex-
amples have been used in a software process course and all have been used in a
module on object oriented design.

4.5 Example 5: Feature Interactions in Telephones

Everyone (who you could possibly wish to teach formal methods to) has an un-
derstanding of what you can do with a telephone; even if very few know how it
works. It provides an excellent example of modelling and abstraction that can be
used with all students. Even students who have never studied computer science
usually end up drawing a state machine in order to explain their understanding.
For CS&SE students this is a good point at which to introduce features and
feature interactions[34]. With respect to formal methods, we use this problem
to illustrate the limitations of model checking and the use of theorem provers.
We also use it to let students discover the need for models for reasoning about

Weaving a Formal Methods Education with Problem-Based Learning 471

temporal properties such as fairness. This problem has also been used in the
teaching of object oriented programming and in the teaching of HCI.

5 Conclusions

We have had some success in weaving formal methods into our CS&SE curricu-
lum by evolving problems that can be shared between modules and that meet
multiple learning objectives. There is still much work to be done in adopting a
problem-oriented approach to curriculum development. The hardest task is to
convice certain colleagues that this approach works: many of them ask for strong
evidence that is currently impossible to provide.

We believe that the future of software engineering as a discipline is dependent
on students being exposed to formal methods throughout their academic lives.
We propose that PBL is a good teaching approach for achieving this aim.

References

1. Woods, D.R.: Problem-based Learning: how to gain the most from PBL. Water-
down, Ontario (1996)

2. Wing, J.M.: Invited talk: Weaving formal methods into the undergraduate com-
puter science curriculum. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp.
2–9. Springer, Heidelberg (2000)

3. Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J.,
Maibaum, T.S.E., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 214–228. Springer,
Heidelberg (2008)

4. Gibson, J.P., Lallet, E., Raffy, J.L.: How do I know if my design is correct? In:
Formal Methods in Computer Science Education (FORMED), pp. 59–69 (March
2008)

5. Hilgard, E.R., Bower, G.H.: Theories of Learning. Prentice Hall, Englewood Cliffs
(1956)

6. Brainerd, C.: Piaget’s Theory of Intelligence. Prentice Hall, Englewood Cliffs (1978)
7. Bruner, J.S.: Toward a theory of instruction. Belknap Press of Harvard University,

Cambridge (1966)
8. Guilford, J.P.: The Nature of Human Intelligence. McGraw-Hill, New York (1967)
9. Gardner, H.: Frames of mind: the theory of multiple intelligence. Basic Books, New

York (1983)
10. Papert, S., Sculley, J.: Mindstorms: children, computers, and powerful ideas. Basic

Books, New York (1980)
11. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, Orlando (1985)
12. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R.: Taxonomy

of educational objectives Handbook 1: cognitive domain. Longman Group Ltd.,
London (1956)

13. Barrows, H., Tamblyn, R.: Problem-Based Learning: An Approach to Medical Ed-
ucation. Springer Publishing Company, New York (1980)

14. Torp, L., Sage, S.: Problems as Possibilities: Problem-Based Learning for K16 Edu-
cation. Association for Supervision and Curriculum Development (ASCD), Alexan-
dria (2002)

472 J.P. Gibson

15. Duch, B.: Writing Problems for Deeper Understanding, pp. 47–53. Stylus Publish-
ing, Sterling (2001)

16. Tien, C., Chu, S., Lin, Y.: Four phases to construct problem-based learning instruc-
tion materials. In: PBL In Context Bridging work and Education, pp. 117–133.
Tampere University Press (2005)

17. O’Kelly, J., Gibson, J.P.: PBL: Year one analysis — interpretation and validation.
In: PBL In Context — Bridging Work and Education (2005)

18. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
19. Gibson, J.P., O’Kelly, J.: Software engineering as a model of understanding for

learning and problem solving. In: ICER 2005: Proceedings of the 2005 international
workshop on Computing education research, pp. 87–97. ACM, New York (2005)

20. Gibson, J.P.: Formal methods - never too young to start. In: Formal Methods in
Computer Science Education (FORMED), pp. 149–159 (March 2008)

21. Gibson, J.P.: Formal requirements engineering: Learning from the students. In:
Australian Software Engineering Conference, pp. 171–180. IEEE Computer Society,
Los Alamitos (2000)

22. Gibson, J.P., Méry, D.: Teaching formal methods: Lessons to learn. In: Flynn, S.,
Butterfield, A. (eds.) IWFM. Workshops in Computing, BCS (1998)

23. Curran, W.S.: Teaching software engineering in the computer science curriculum.
SIGCSE Bull. 35(4), 72–75 (2003)

24. Parnas, D.L., Soltys, M.: Basic science for software developers. In: Workshop on
Formal Methods in the Teaching Lab (FM-Ed 2006), pp. 9–14 (August 2006)

25. Habrias, H.: Teaching specifications, hands on. In: Formal Methods in Computer
Science Education (FORMED), pp. 5–15 (March 2008)

26. Parnas, D.L.: Software engineering programmes are not computer science pro-
grammes. Ann. Software Eng. 6, 19–37 (1998)

27. Gibson, J.P.: Feature requirements models: Understanding interactions. In: Dini,
P., Boutaba, R., Logrippo, L. (eds.) Feature Interactions in Telecommunications
Networks IV (FIW 1997), pp. 46–60. IOS Press, Amsterdam (1997)

28. Miller, A., Cutts, Q.: The use of an electronic voting system in a formal methods
course. In: Workshop on Formal Methods in the Teaching Lab (FM-Ed 2006), pp.
3–8 (August 2006)

29. Gibson, J.P., McGaley, M.: Verification and maintenance of e-voting systems and
standards. In: 8th European Conference on e-Government, pp. 283–290 (July 2008)

30. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to for-
mal software design for a secure e-voting interface. Electr. Notes Theor. Comput.
Sci. 183, 39–55 (2007)

31. Cansell, D., Gibson, J.P., Méry, D.: Formal verification of tamper-evident storage
for e-voting. In: Software Engineering and Formal Methods (SEFM 2007), pp. 329–
338. IEEE Computer Society, Los Alamitos (2007)

32. Gibson, J.P.: E-voting and the need for rigorous software engineering — the past,
present and future. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, p. 1. Springer, Heidelberg (2006)

33. Gibson, J.P.: A noughts and crosses java applet to teach programming to primary
school children. In: PPPJ 2003: Proceedings of the 2nd international conference
on Principles and practice of programming in Java, pp. 85–88. Computer Science
Press, Inc., New York (2003)

34. Gibson, D.J.P.: Méry,: Formal modelling of services for getting a better under-
standing of the feature interaction problem. In: Bjorner, D., Broy, M., Zamulin,
A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp. 155–179. Springer, Heidelberg (2000)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 473–477, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Encouraging the Uptake of Formal Methods Training
in an Industrial Context

(Extended Abstract)

Michael G. Hinchey

Lero–the Irish Software Engineering Research Centre
University of Limerick

Ireland
mike.hinchey@lero.ie

1 Introduction

I recently had occasion to revisit a collection of papers edited by myself and Jonathan
Bowen published way back in 1995. The collection, Applications of Formal Methods
[1], sprung from the obvious need in the formal methods community for detailed
examples, insights from industrial best practice, and experience reports.

At the time, this was very necessary. As one of the contributors to the collection,
David Lorge Parnas, succinctly pointed out [2]:

Unfortunately, in spite of many years of effort, and hundreds of pa-
pers, industrial applications of formal (mathematical) methods re-
main rather rare. One notices that the same examples of applications
are cited repeatedly. These cases serve as “existence proofs”, proofs
that the methods can work, but, if one visits typical programming
shops, one rarely finds anyone who has used these methods. Exis-
tence proofs are not proofs of practicality.

Birthday books and steam boiler case studies, quite prevalent at the time, were use-
ful to introduce the notations, and, as Parnas pointed out, did serve to demonstrate that
formal methods could be used, but would their usage be practical in an industrial
context? Could practitioners be convinced to use such techniques? And, more impor-
tantly, could practitioners (as opposed to academics) successfully apply such tech-
niques in practice?

Several other articles appeared prior to this collection describing successful formal
methods projects (e.g., [3] and [4]), and others have appeared since, but what was differ-
ent about our collection was that the experiences were described by the practitioners
themselves rather than being a summary of experiences, and that the collection described
actual projects rather than different approaches to the same (often unrealistic) case study.

Notwithstanding, the collection spawned a couple of articles by Jonathan and my-
self, using the examples given in the collection to illuminate advice and guidance for
practical application. The papers, Ten Commandments of Formal Methods [5] and a
follow up to Anthony Hall’s Seven Myths of Formal Methods [6], imaginatively enti-
tled Seven More Myths of Formal Methods [7], are quite widely used in both aca-
demic and industrial formal methods training courses, and it is very gratifying to find
that at least some of the advice given in the papers has been useful to some.

474 M.G. Hinchey

While I have relaxed my stance to some extent over the years (see, for example,
[8]), I am still a fervent believer in the value of formal methods, and indeed in the
necessity of more rigorous approaches when dealing with particular classes of appli-
cation, or in critical domains. Nevertheless, formal methods have not become as popu-
lar as we had once hoped they would, and many successful software developments
have avoided their usage. In the last few years, attempts to champion formal methods
in both government and industry, as well as other technologies related to software
assurance [9], has provided some insights into why there is reluctance to engage in
formal methods training, or why that training has not been so successful.

2 Impediments to Formal Methods Training

Re-reading Parnas’ article [2], I was pleased to see that again he had succinctly hit on
at least part of the problem:

When new methods do not catch on, there are two obvious possible
explanations. Either the methods are not yet good enough, or practi-
tioners are too conservative, unwilling to learn, and resistant to
change. In most cases there is truth in both explanations. The best
known formal methods clearly work, but it is equally clear that they
require a lot of tedious writing of expressions that are difficult to
read. In fact, some of the methods are so tedious that people take
short-cuts and make mistakes.

After more than a quarter of a century of development, and more than a decade
since Parnas’ article, we can hardly describe formal methods as “new methods”, and
we can certainly discount the fact that they are “not yet good enough”, as evidenced
by various success stories. However, it is still certainly true that practitioners are loath
to take them on-board, in part because of exaggerated claims that were erroneously
made by proponents in the past [8] and in part because of misconceptions that they are
difficult to use, etc. [6, 7].

As one would expect, if many (or most) practitioners feel that formal methods are
impractical, or are unlikely to embrace their usage, for whatever reasons, then they are
unlikely to be interested in formal methods training. However, it is only through train-
ing that practitioners will understand what formal methods can do for them, and see
that they are applicable in their particular circumstances. While it must be conceded
that formal methods are not suitable for all, or in all circumstances, there are many
more cases where they would be useful than in which they are currently exploited.
Essentially we have a chicken-and-egg problem: practitioners must truly understand
formal methods and be extensively trained in their usage if they are to adopt them and
exploit them in their work. However, they will often be reluctant to engage in formal
methods training courses because they cannot see their value or fear that they will not
provide sufficient return for the effort of learning the notation and coming to grips
with the concepts.

Personal experience in the transfer of technologies related to software assurance
(including, but not exclusively, formal methods) in a government agency [9] has
helped me highlight four areas that I feel are essential for formal methods training to
be successful:

 Encouraging the Uptake of Formal Methods Training in an Industrial Context 475

1. There must be sufficient evidence that the technology is valid and worth
the effort of learning.

2. The technology must be mature and immediately applicable in the given
context.

3. There must be sufficient support for adoption of the technology, includ-
ing, but not limited to, installation support, training, and tools.

4. There must be sufficient consideration of the people involved, their con-
straints, experience, strengths and deficiencies and of those who need to
be involved.

2.1 Evidence of Successful Use

I have been dismayed at the number of times practitioners of my acquaintance have
refused to consider a particular technology (not just formal methods) that others have
strenuously advised them to consider.

In part, this can be attributed to a reluctance to take on board a new technology
with a substantial learning curve and the risk that the practitioners may take longer to
adapt to the technology than the time available in the project. Often, however, it is
due to a refusal to be convinced that the technology will reduce the level of effort, or
improve the final product, to a level that justifies the investment (both financially and
in terms of time and effort).

What was most convincing for practitioners was evidence that the technology had
previously reduced costs or lead-times, reduced complexity, or substantially improved
the product in their own organization or in a substantially similar organization, or in
developing a substantially similar product.

2.2 Technology Maturity

The maturity of a technology and its readiness for immediate deployment is a signifi-
cant factor. While many of the mainstream formal methods have been around for
quite some time, many have evolved and spawned variants and extensions, often for
good reason, but which means that notations and tools are evolving, and that continu-
ous training and updating is required.

We applied the concept of a Technology Readiness Level (TRL), commonly used in
the organization, to determine how prepared various technologies and tools were for
use within the organization. Contributing to the TRL were such factors as stability of
the approach and solidity of the associated tools, appropriate documentation, avail-
ability of training materials, and experience of previous application. While this is a
rather subjective measure, based on nothing more than our own insights, it was clear
that those technologies that were highest on the scale were those that had the greatest
successes and were most likely to be used again. The difference in experience of those
applying a low-to-mid-TRL technology and those applying a high-TRL technology
was dramatic. In most cases there was a direct correlation between the TRL and the
likelihood of success of the project. From the point of view of training, the technology
(formal methods, or otherwise) needs to be well-established, reasonably fixed in its
notation and approach, and well-supported in order to be feasible.

476 M.G. Hinchey

2.3 Support

Just as successful application of formal methods (or any technology transfer) requires
adequate support, support is vital for formal methods training to be successful.

It is all but pointless attempting to introduce a method that does not have sufficient
tool support and a body of examples, exercises and illustrative case studies relevant to
the environment. Support is required not just for training, but also in installation and
set-up. We have seen too many projects suffer serious delays in getting tools installed
and operational, even to the point where the success of the project was compromised.
This is particularly true of expensive tools that might be customized for a customer or
adapted and used by a small number of customers. More mass-market tools typically
were easier to install and to get hands-on experience with quickly, and greater levels
of support were often available.

Tools are certainly vital to the industrial application of formal methods and the
availability of easy-to-use, easy-to-setup and interactive tools makes formal methods
training a lot easier. Support must also come in the guise of financial support: good
training is often expensive, but the difference between good training and mediocre
training is dramatic and what may seem like fiscal prudence can often be detrimental
to the project.

2.4 People

Rogers holds that any successful technology transfer must match well with the norms
and practices of the receiving organization [10], and that has been our experience [9].
Equally, when planning training, it is essential to consider the characteristics, strengths,
and weaknesses of the personnel, their modes of operation, and how the subject of the
training matches with the individuals within the organization.

More importantly, it is essential to remember that the transfer of any technology
benefits greatly from the participation of a team member who will “champion” that
technology and address many of the issues raised in the previous sections. We found
this to be very true in our software assurance technology transfer [9], and it matches
well with Rogers’ principles [10]. Jim Foley of Georgia Tech says that technology
transfer is a contact sport (by now a phrase that many people have purloined); formal
methods training is technology transfer. There is truly no substitute for having an
enthusiastic member of a development team when transitioning a new technology.
Likewise, having a member of the training group who is enthusiastic about the new
technology, principles, or new principles being presented to them, is invaluable in
ensuring the success of the training program.

3 Conclusion

While those of us working in the field are committed in our belief that formal methods
have much to offer in system development, and that they have advanced to a point
where they are industrially applicable, they are still not well understood and suffer
from misconceptions about how difficult they are to work with. Essential to overcom-
ing these misconceptions is the development of solid training programs within industry
to educate developers and their management about the benefits of these techniques.

 Encouraging the Uptake of Formal Methods Training in an Industrial Context 477

The uptake of formal methods training within industry is predicated on providing
evidence that the techniques do indeed work in real-life complex applications on an
industrial scale, ensuring that the methods we try to train people in are truly mature
with mature supporting tools and materials. And lastly, but not least, we must remem-
ber the human dimension not only in training, but in any system development process,
and exploit that asset to ensure success.

Acknowledgement. This work was supported in part by Science Foundation Ireland
grant 03/CE2/I303_1 to Lero—the Irish Software Engineering Research Centre
(www.lero.ie).

References

1 Hinchey, M.G., Bowen, J.P. (eds.): Applications of Formal Methods. Prentice Hall Interna-
tional Series in Computer Science, Hemel Hempstead (1995)

2 Parnas, D.L.: Using Mathematical Models in the Inspection of Critical Software. In: [1],
pp. 17–31

3 Gerhart, S., Craigen, D., Ralston, T.: Experience with Formal Methods in Critical Systems.
IEEE Software 11(1), 21–28 (1994)

4 Gerhart, S., Craigen, D., Ralston, T.: Regulatory Case Studies. IEEE Software 11(1), 30–39
(1994)

5 Bowen, J.P., Hinchey, M.G.: Ten Commandments of Formal Methods. Computer 28(4),
56–63 (1995)

6 Hall, J.A.: Seven Myths of Formal Methods. IEEE Software 7(5), 11–19 (1990)
7 Bowen, J.P., Hinchey, M.G.: Seven More Myths of Formal Methods. IEEE Software 12(4),

34–41 (1995)
8 Hinchey, M.G.: Confessions of a Formal Methodist. In: Proc. of the 7th Australian Work-

shop on Safety Critical Systems and Software, Adelaide, Australia (2002)
9 Hinchey, M.G., Pressburger, T., Feather, M.S., Markosian, L., Deadrick, W.: Software As-

surance Research Infusion: the NASA Experience. In: Proc. ISoLA 2006, Paphos, Cyprus,
October 2006. IEEE Computer Society Press, Los Alamitos (2006)

10 Rogers, E.M.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 478–489, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Computer-Supported Collaborative
Learning with Mind-Maps*

Dmitrij Koznov1 and Michel Pliskin2

1 Saint-Petersburg State University, Software Engineering Department,
Universiteskij pr. 28, 198504, St. Petersburg, Russia

dkoznov@yandex.ru
2 Comapping, Blaagaardstraede 8FDK-4000, Roskilde, Denmark

pl@tepkom.ru

Abstract. Collaborative learning is a set of various approaches in education that
involve joint intellectual effort by students or students and teachers. It opposed
to the traditional 'direct transmission' model, in which learners are assumed to
be passive, receptive, isolated receivers of knowledge and skills delivered by an
external source. Today Computer-Supported Collaborative Learning (CSCL) is
actively developed to support collaborative learning process with the help of
modern information and communication technologies. Mindmaps is one of
the wide-known learning technique which can be used in CSCL. In this paper
we present new mindmaps Web-based tool Comapping, which provides a wide
variety of ways to organize collaborative processes in education. We also de-
scribe our experiments with applying the CSLC-paradigm using Comapping
while teaching Software Engineering in Saint Petersburg State University.

Keywords: Computer-Supported Collaborative Learning, Collaborative Learn-
ing, Mind maps, SADT, Author/Commenter Cycle Review Process.

1 Introduction

Mind maps [1] are a popular technique having been widely used in the education area
for several decades by now. It is used both on its own and as a part of other method-
ologies like active learning [2] and others. Mind maps are extremely efficient when
working individually on learning material as they emphasize human creative skills,
improve memory and are generally proved useful in all kinds of intellectual activities.
There are a number of software mindmapping solutions on the market now (please
refer to [3] for a complete listing). However, use of a mindmapping in collaborative
learning is not too widely recognized at the moment. At the same time, mind maps are
proved to be a great tool for different kinds of collaborative work between both the
teacher and the student and inside a group of students.

Computer-supported mind maps are efficient in organizing all kinds of collabora-
tive processes in various areas: business, education, science and more. A mind map

* Educational experiments with Comapping tools described in this paper were partially funded

by Hewllett-Packard and RFFI (grant 08-01-08342).

 Computer-Supported Collaborative Learning with Mind-Maps 479

can easily be sent by email to friends and colleagues and revise it later according to
their comments. Some of mindmapping tools: MindMeister, mind42 and others have
lots of extra advanced collaboration features. However, all of them lack the ability to
handle large diagrams efficiently and visually clearly, which is an essential thing for
most educational uses.

This article is focused on how to apply mind maps in Computer-Supported Col-
laborative Learning (CSCL) [4]. We are going to introduce a software application
named Comapping1, being a pure online mindmapping application. Comapping has
numerous advanced collaboration features like real-time collaborative editing, live
indication of other users’ position, and efficient support for large maps. We are also
presenting the results of our experiments to use Comapping-based mind maps to set
up efficient collaborative learning processes in Software Engineering Department of
Mathematics and Mechanics Faculty of Saint-Petersburg State University.

2 Background

2.1 Computer-Supported Collaborative Learning

Briefly, CSCL is focused on how collaborative learning supported by technology can
enhance peer interaction and work in groups, and how collaboration and technology
facilitate sharing and distributing of knowledge and expertise among community
members [4]. Collaborative learning is in an education process when two or more
people learn or attempt to learn something together [5]. There are many interpretation
of this concept and it now mostly seen as a general framework unifying lots of differ-
ent educational methods, approaches and techniques.

It is not easy to decide when and where to start CSCL history. Collaborative learn-
ing is the subject of study in a wide variety of disciplines such as developmental
psychology (e.g., sociocognitive conflict), social psychology (person perception,
motivation, group processes), sociology (status, power and authority), cognitive psy-
chology (how learning occurs, learning outcomes) and sociocultural perspectives
(cultural influence on interaction, mediation of learning) [6].

2.2 Mind Maps

The approach was suggested by Tony Buzan in 1970 as an efficient way to work with
arbitrary information. The idea is to use a very simple diagramming notation: the
central (primary) object is drawn in the middle, and secondary and further objects
clarifying the meaning of the central one are put around it and connected together.
This makes a radial structure suitable to analyze and understand large amounts of
data. The approach is widely used in education, business, psychology and other areas.
There are also a number of software tools implementing the approach. More informa-
tion can be found in [1, 3].

2.3 Mindmapping Tools

In this section we are going to give a brief overview of current online mindmapping
solutions and will try analyze them a bit from collaboration learning perspective. This

1 www.comapping.com

480 D. Koznov and M. Pliskin

overview is not supposed to be 100% comprehensive as there are more and more
applications appearing nearly every day, and it does not seem feasible to cover all of
them, but we are going to cover the basic trends and most often used examples.

First, let us list the features we consider most important for collaboration.
Pure online application in a modern highly-heterogeneous cross-platform world,

the only reasonable way to communicate is to use online applications. Desktop appli-
cations are just not the way to go anymore because the complexity they bring makes
the real learning and communication complicated up to useless.

Live collaboration is the key feature for collaboration. It allows people to edit a
single map simultaneously in real time, to share maps, and therefore to communicate
efficiently.

Export & import to/from other formats allows convert move the data quickly
between applications (both online and desktop), providing easy ways to back up, store
and integrate data.

Automatic intelligent layout of different kinds as shared maps tends to become
large, users need an efficient way to work with these large maps efficiently. As screen
space is always limited, applications need efficient ways to handle the problem, lead-
ing to different kinds of automatic map layout engines.

Smart printing paper copies are still very important in academic world, and intel-
ligent printing seems to be one of key features.

Based on these criteria we can summarize the popular online mindmapping solu-
tions in the Table 1. We consider the following online applications: MindMeister,
Mindomo, Mind422, comparing them with Comapping3.

Table 1. Online mindmapping solutions

Feature/Tools MindMeister Mindomo Mind42 Comapping
Pure online applica-
tion

YES YES YES YES

Live collaboration YES NO YES YES
Export/Import YES YES YES YES
Intelligent auto-
layout

Partial Partial Partial YES

Smart printing NO NO NO YES
�

As we can see, most tools are quite similar in terms of basic functionality. We can
only mention Mindomo not having online collaboration and Comapping’s unique
auto-layout and smart printing features.

2.4 Author/Commenter Cycle Review Process SADT/IDEF

In this section we describe wide-known collaborative technique to elaborate visual
models which we use for collaborative mindmapping development. This is au-
thor/Commenter cycle review process SADT/IDEF [7] in 70s, which was introduced
in SADT and after that formalized in EDEF-standards [8] in 90s.

2

 MindMeister – www.mindmeister.com, Mindomo – www.mindomo.com, Mind42 –
www.mind42.com

3 For more information concerning mindmapping tools we would recommend [3].

 Computer-Supported Collaborative Learning with Mind-Maps 481

SADT (Structural Analysis and Design Technique) method is to perform structural
analysis of a software system allowing to reduce the number of expensive errors by
structuring the knowledge about the system as well as improving the communication
between developers and users or customers. SADT was used in ICAM (Integrated
Computer-Aided Manufacturing) of US AirForce leading to adopting some part of it
as IDEF0 standard and wide adoption of this standard in the US military industry.
SADT is not used in software development now, but it is still in active use for busi-
ness process modeling.

Author/Commenter cycle review process is one of SADT/EDEF. In order to build
a usable description of a system in question, we need to evaluate the models quickly
by experts and future users. The two primary roles here are author and commenter -
the second one being the domain expert. Author is interviewing the commenter to get
the necessary information. He is then fixing commenter’s comments in the model.
The models are thus created in an iterative way until considered ready by the experts.

3 Comapping

3.1 Overview

Comapping (www.comapping.com) is a next-generation collaborative online mind-
mapping application. Its basic purpose is to allow users to create, edit and share mind
maps. Comapping introduces features like easy drag’n’drop, smooth animation, sup-
port for large maps with smart auto-focusing feature, and more. Tree-like notation
(left-to-right mindmapping) is proved better for computer-based mindmapping when

Fig. 1. Example mind map diagram

482 D. Koznov and M. Pliskin

combined with auto-layout algorithm as it is easier to read and understand than the
center-based one, and the intuitive power of the center-based approach goes away
when map is no longer static as it is on paper. An example mind map in Comapping is
presented in Fig. 1.

Comapping has the following extra features to ease collaboration and active learning:

1. Pure online application. This allows users to avoid the hassle of installing the
application locally and taking care of mind maps stored as local files as they are
kept on the server instead. The application also has built-in communication tools
eliminating the need to use external e-mail and/or chat software like Microsoft
Outlook or Skype. Users can also work offline for a while if the connection goes
down as all their data will be automatically copied to server once it is up again.

2. Real-time collaborative map editing. The system allows sharing maps to any
number of users, as well as notifying users about map changes. These changes are
then highlighted on a map with the detailed information about who and when made
each individual change. Other users can they review the changes and leave com-
ments making Comapping a great tool for professors to review their students’ work.

3. Smart, convenient and flexible printing. Allows a professor to print a number
of maps quickly and then review them offline. Multiple printing options (such as
fit to page, fit to multiple pages, print parts of map) makes it possible to review
even large maps and models with just a sheet of paper.

4. User-friendliness and ease of use. People (especially students) do not normally
need a user manual or any other documentation everything is intuitive and self-
explanatory.

5. Export/import features. Ability to insert mind maps into PowerPoint presenta-
tions and interoperability with other popular software is a key thing for collabora-
tion as well4.

3.2 Implementation Details

Technically, Comapping is implemented as an Adobe Flash application on the client
and as a Apache/Neko5 application on the server. The client is built using the Model-
View-Controller design pattern and is coded using haXe6 programming language. Due
to the nature of Flash virtual machine, the client is using functional programming
concepts like high-order functions and pattern-matching pretty extensively, allowing
for simple code performing the complicated tasks. The server is a relatively simple
stateless HTTP request processor (providing therefore an excellent scalability), cou-
pled with a database engine.

3.3 Usage Examples

In this section we present several projects done by students using the Comapping tool.
These projects include:

4 Reader can try Comapping for free to evaluate it herself. The service has an one month free

trial.
5 http://www.nekovm.org
6 http://www.haxe.org

 Computer-Supported Collaborative Learning with Mind-Maps 483

• An UML quiz designed by students
• A plan of an article to be written by PhD student and his supervisor.

As you can see from the screenshots below, the tool helps to structure the problem,
split it into subproblems, and go on with this process for as long as needed. At the
same time, other peers can review/augment/comment the work done, and thus per-
form the task together efficiently.

In case of UML quiz Comapping was used to present a lot of information in a nice
group discussion-friendly way. A high-level overview of the quiz is presented on Fig. 2.
You can see the first level completely and three more levels of the main branch. The
quiz itself appeared to be large and deeply structured, and therefore we needed a tool to
create an outline for it and then navigate, change and review this outline easily.

Fig. 3 shows how Comapping can display large models: you can see one of deep
levels “focused” allowing the user to concentrate on it and its details, and the left grey
area shows the context preventing the reviewer from getting lost in a large diagram.

Fig. 2. UML Usage/experience survey

The second example (see Fig. 4) solves a different task. A student has written an
article which contained all the necessary information, but the structure was not ade-
quate and sometimes it was not focused properly. The supervisor then restructured the
article using a paper-based mind map, and then the student was offered to re-do this
mind map in Comapping. The original paper-based mind map was intentionally not
very accurate, and some parts were even made unreadable. The supervisor wanted to
make the student understand the plan better while converting, actually to make her
own new plan using the original one only as inspiration. The obvious reason is that
student will need to write a new article according to the plan, and working on your
own plan is a lot more efficient compared to working on someone else’s plan. The
result has been reviewed several times and was finally successfully converted to a

484 D. Koznov and M. Pliskin

ultimately published good article. The definite conclusion is that the traditional paper-
based review loop would take a lot more time and effort for the both parties, and es-
pecially for the supervisor, as explaining your position about a heavily detailed and
complicated problem to someone else without the right tool is a very difficult task.

Fig. 3. Details of UML quiz

Fig. 4. Planning an article

 Computer-Supported Collaborative Learning with Mind-Maps 485

Fig. 5 shows the real-time collaboration on the mind map of article along with the
share dialog used to invite more people to collaborate. You can see also how the tool
indicates what other users are doing on a map currently, allowing for even more effi-
cient collaboration and group work (mark «Dmitrij Koznov» near the node «Imple-
mentation documentation»).

Fig. 5. Collaboration on the article plan

4 Education Experiments with Comapping

4.1 Starting Points

The basic purpose of our experiments was to make collaborative learning processes in
Software Engineering Department of Saint-Petersburg State University more efficient
and make students more active, involved and committed. This basically applies to
seminars, lectures and writing papers of all kinds (term papers, Bachelor, Master and
PhD thesis). We realized that the current learning processes are mainly focused on
teachers, while students are mostly playing a passive role.

Having looked deeper on the problem, it is easy to realize that most teaching
courses consist of two levels. The first level is focused on basic concepts, notions and
facts, and requires student mostly to remember some amount of information. The
second level is a next step and is focused on understanding, analyzing and (later)
practical usage of the knowledge given. This essentially means that while the first
level is pretty similar for all students and is perfectly measurable using traditional
tools like tests, exams, and simple assignments. The second level, if passed for a stu-
dent, leads to very student-specific results which are far more difficult to measure
using traditional tools. After passing the second level, student comes with her own

486 D. Koznov and M. Pliskin

understanding and point of view on the area, which might differ significantly from
what was given on the lectures and how the teaches thinks about it. This is an essen-
tial thing for practical application of knowledge given, and thus is especially impor-
tant in highly practical areas like for instance Software Engineering.

The problem we are facing then is how to induce and then evaluate student
achievements on the second level. We found the mind maps in general and Comap-
ping tool in particular are of a great help here.

4.2 Issues and Solutions

Comapping allowed us to organize learning process more efficiently. The following is
a quick summary of the most important things we tried.

1. Get a measurable result quickly. This applies to both understanding the
lectures and talking to the supervisor. It occurred that a mind map created af-
ter a lecture or a talk is a very good measure of what does student actually
understand about the subject. Oral communication which is normally used
often merely creates an illusion of understanding, and the real picture might
reveal only much later. As opposed to that, mind maps created on the spot al-
low teachers to measure the understanding fast and easily and to explain in
detail what exactly is wrong and where to improve. Carefully designed mind
map-based assignments not only need students to remember and reproduce
the information, but they are much more focused on demonstrating how they
understand the material. It is a good practice to focus on relations between
different topics or concepts, preferably the ones that are implied from the
course material but were not explicitly mentioned. Mind maps then allow to
check students on a number of topics much quicker than an oral examination
could take (of course sacrificing the quality compared to oral exam). We use
this approach for regular tests at the beginning of a lecture to check how the
last lecture is understood and in exams. The exam itself worked more like an
intensive seminar in this case and could last for several hours, and the best
thing was to run a group process, when everybody were working on the same
task, but with completely different results.

2. Organize the iterative collaboration between teacher and students. There
are a lot of situations (on seminars, exams, etc.) when teacher and student in-
tensively communicate with each other. And very often this communication
occurs in iterative manner: student gets some information from supervisor
and should think over it. In this case mind maps are a good mean for student
to reflect her current level of understanding of a subject and for supervisor to
check this level and make corrections or comments. Comapping collabora-
tive features allowed us to organize this work into iterations with intermedi-
ate reviews by teacher. We used Author/Commenter cycle review process
SADT/IDEF by adopting the iterative author-commenter collaboration im-
proving the same mind map. Student is normally acting as author, and
teacher is normally a commenter. And thanks to online nature of Comapping
we were able to perform this communication over the Internet easily.

 Computer-Supported Collaborative Learning with Mind-Maps 487

3. Improve paper writing efficiency. Many students experience considerable
difficulties creating there term papers and all kinds of thesis. On the other
hand, it is often a time-consuming work for a supervisor to review the papers
multiple times during their preparation. Comapping allowed to go from itera-
tive reviews to iterative planning: instead of rewriting the real text many
times, a student together with his supervisor is working on a detailed plan of
paper. Tree-like expandable structure of Comapping Mind maps with text
nodes allows focusing and discussing individual aspects or abstraction layers
of a paper while still keeping the overall concept in mind. Online collabora-
tive features allow to use the Internet to share results and notes. As a practi-
cal note, mind map-based plans of articles and other writings work best if
kept small to fit in just 1 page. This allows for viewing them as a whole and
at once without checking the details on different pages. It is similar to One
Page Method [9] which is used business meetings (in project management,
research areas etc.) to focus one a given topic. Ability to the problem as a
whole is a must when dealing with complicated information7.

The best way to apply mind maps and Comapping is not from the very
beginning but when some part of real work is already done and the author
now has to understand its meaning and write the text. At this point, the in-
formation is usually abundant, not scarce, and thus the author needs to real-
ize what she is focusing on and what has to be left aside. Mind maps are of
great help here, but the most important things are not the maps themselves
but the thoughts and understanding they in fact induce.

4. Organize a student groupwork. Someone just creates a map and shares
with everybody including the teacher. Other people are then making changes
(all at once or one-by-one as agreed beforehand). The teacher can easily see
how actively each individual student is working by looking at her changes,
and she can also make her own changes into the shared map. We also use
Author/Commenter cycle review process SADT/IDEF. Students are rotating
as authors, and teacher and other students are commenters. Each next author
has to improve the work of the previous ones, not to start everything from
scratch. In order to achieve that the group aligned itself and developed a
shared vision before make the initial mind map.

5. Make the results of students’ work publicly available. Assignments and
results made in Comapping appear to be a great material for further teaching.
We have the whole libraries of mind maps on different subjects.

4.3 Problems

However, we’ve also met some problems while using mind maps and Comapping.

1. We have found out that we have to teach our students how to make good
maps (not how to use Comapping).

7 Reducing a complicated phenomenon to a compact rule is the basic principle of western sci-

ence. It is also applied in using drawings in construction and engineering, visual modeling,
(SADT [7], UML [10], etc.), in software engineering.

488 D. Koznov and M. Pliskin

2. Sometimes it is more efficient to make maps on paper instead of Comapping.
Moreover, we have also used other diagrams (for instance, UML [10]).
These changes are often necessary to adapt to specific requirements of some
students or courses. For instance, as we are teaching Software Engineering, it
was often making sense to use the classical diagramming notations of this
domain.

3. Another problem we observed sometimes is that students and teachers often
tend to focus on designing and improving the maps themselves (in multiple
review-comment-fix cycles). The problem here is to keep focusing on the
content, not the form. Sometimes we found ourselves spent a great deal of
time making a great map which does not make any sense at all.

5 Conclusions

Our experiments involved about 200 students totally during one academic year. We
taught two courses and several seminars using mind maps with Comapping. There are
about 30 students that used Comapping to create their term papers and Bache-
lors/Masters/PhD thesis. We’ve noticed booming efficiency of collaborative learning
processes and student activity, and the entire education process seems to have become
more creative and interesting. We are going to continue this experiment, and we do
believe that the key thing here is not only to create and facilitate the common approach
to use mind maps in Computer-Supported Collaborative Learning, but to stimulate the
creative work of both students and teachers. Each course, each lecture, each student
can be taught in a highly customized way based on these basic ideas and principles.

We’re also going to improve and develop Comapping further to make it better for
educators. This includes a bunch of new features (like better notes, support for equa-
tions and maths, and many more) as well as co-operating with major educational insti-
tutions and industry leaders to promote Comapping usage actively in education area.

References

1. Buzan, T.: The mind map book, 2nd edn. BBC Books, London (1995)
2. Willis, C.L., Miertschin, S.L.: Mind maps as active learning tools. Journal of Computing

Sciences in Colleges 21(4), 266–272 (2006)
3. http://mindmapping.typepad.com/
4. Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., Muukkonen, H.: Computer-

supported collaborative learning: A review of research and development (The J.H.G.I
Giesbers Reports on Education, 10). University of Nijmegen, Department of Educational
Sciences, Netherlands (1999)

5. Dillenbourg, P.: Introduction: What do you mean by collaborative learning? In: Dillen-
bourg, P. (ed.) Collaborative Learning: Cognitive and computational approaches, pp. 1–19.
Elsevier Science, Amsterdam (1999)

6. O’Donnell, A.M., Hmelo-Silver, C.E., Erkens, G. (eds.): Collaborative learning, reasoning,
and technology. Erlbaum, Mahwah (2006)

7. Marca, D.A., McGowan, C.L.: SADT Structured Analysis and Design Technique.
McGraw-Hill, New York (1988)

 Computer-Supported Collaborative Learning with Mind-Maps 489

8. Integration Definition For Function Modeling (IDEF0). Draft Federal Information Process-
ing Standards Publication 183, 79 p. (1993)

9. Koznov, D.V.: Visual Modeling and Software Project Management. In: Krivulin, N. (ed.)
Proceedings of 2nd International Workshop New Models of Business: Managerial Aspects
and Enabling Technology, Saint-Petersburg, pp. 161–169 (2002)

10. UML 2.0 Infrastructure Specification (September, 2004), http://www.omg.org/

Agile IT: Thinking in User-Centric Models

Tiziana Margaria1 and Bernhard Steffen2

1 Chair Service and Software Engineering, University of Potsdam, Germany
margaria@cs.uni-potsdam.de

2 Chair of Programming Systems, TU Dortmund, Germany
steffen@cs.uni-dortmund.de

Abstract. We advocate a new teaching direction for modern CS cur-
ricula: extreme model-driven development (XMDD), a new development
paradigm designed to continuously involve the customer/application ex-
pert throughout the whole systems life cycle. Based on the ‘One-Thing
Approach’, which works by successively enriching and refining one single
artifact, system development becomes in essence a user-centric orches-
tration of intuitive service functionality. XMDD differs radically from
classical software development, which, in our opinion is no longer ade-
quate for the bulk of application programming – in particular when it
comes to heterogeneous, cross organizational systems which must adapt
to rapidly changing market requirements. Thus there is a need for new
curricula addressing this model-driven, lightweight, and cooperative de-
velopment paradigm that puts the user process in the center of the de-
velopment and the application expert in control of the process evolution.

1 Motivation

Industrial practice is characterized by vaguely defined but urgent IT needs: fol-
lowing pressure, external (by the market or by changed regulations), or internal
(by a merger, or for improvement), it is clear that things (be they products,
applications, or the own IT landscape) must be changed, but how? Answering
this question is typically impossible before major parts of a realization are in
place. This is due to the fact that only concrete artifacts provide a sufficiently
stable ground for a common understanding between the involved stakeholders.
Moreover, only when the customer has a tangible understanding of the options,
he can effectively criticize and decide. One observes over and over again that in
today’s practice this kind of criticism starts only after a first release of a system,
and that it continues during the whole life cycle. This observation makes agility
a if not the central requirement for industrial system design.

During the last decade, we developed an extreme version of model-driven de-
velopment (XMDD) [18], which is designed to continuously involve the customer/
application expert throughout the whole system’s life cycle. Technically, this is
achieved following our ‘One-Thing Approach’ [19,27], which works by enriching
and refining one single artifact: user-level models are successively refined from the
user perspective until a sufficient level of detail is reached, where elementary ser-
vices can be implemented solving application-level tasks. Thus, in essence, system

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 490–502, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agile IT: Thinking in User-Centric Models 491

development becomes user-centric orchestration of intuitive service functionality.
The realization of the individual services should typically be simple, often based
on functionality provided by third-party and standard software systems.

XMDD differs radically from classical software development, which is in our
opinion in fact no longer adequate for the bulk of application programming.
This holds in particular when it comes to heterogeneous, cross organizational
systems which must adapt to rapidly changing market requirements. Accord-
ingly, a need arises for new curricula that address these issues as rigorously and
methodologically as is today the case for classical software development.

The paper addresses cornerstones for such a curriculum while reflecting on our
experience with XMDD. This concerns in particular the following 6 questions:

– How to structure solutions from the application perspective (user-centric
modelling).

– How to validate the application logic (animation-based requirement valida-
tion and model checking).

– How to find an adequate level, where application modelling is handed over
to the implementation of (elementary) services. Essentially this can be seen
as an identification of the domain language.

– How to deploy their complex aggregations and compositions.
– How to monitor solutions at run time.
– How to adapt existing solutions according to new requirements.

The following section structure is meant as a guideline for organizing a cor-
responding course/curriculum. Depending on the level of specialization and the
background of the audience, this can be dealt with in a lecture, in a course, or
in a specialization topic as series of in-depth courses complemented by projects
and seminars.

It starts with a motivation, by pointing at one of the most annoying technical
hurdles in application development (Sec. 2), before it presents XMDD, our new
approach to address, in particular, this issue in Sec. 3. The two subsequent
sections then address in Sec. 4 the three major dimensions important to grasp
XMDD and in Sec. 5 a corresponding development framework. The two final
sections sketch three application scenarios (Sec. 6) and present our conclusions
and perspectives (Sec. 7).

2 Technical Hurdles: Compatibility and Interoperability

Already today’s systems require an unacceptable effort for deployment, which
is typically caused by incompatibilities, feature interactions, and the sometimes
catastrophic behavior of component upgrades, which no longer behave as ex-
pected. This gets even worse when considering heterogeneous, cross organiza-
tional systems, whose components and interfaces typically evolve independently.
Thus it is almost impossible to keep up with the required pace of changing
market requirements.

Responsible for this situation is mainly the level on which systems are tech-
nically composed: even though high level languages and even model driven

492 T. Margaria and B. Steffen

development are used for component development, the system-level point of
view is not yet adequately supported. In fact, in particular the deployment of a
heterogeneous systems is still a matter of assembly-level search for the reasons of
incompatibility, which may be due to minimal version changes, slight hardware
incompatibilities, or simply to hideous bugs, which come to surface only in a
new, collaborative context of application. Integration testing and the quest for
’true’ interoperability are indeed major cost factors and major risks in a system
implementation and deployment.

The hardware industry faced similar problems with even more dramatic con-
sequences already a decade ago: hardware is in fact by nature far more difficult
to patch, making failure of compatibility a real disaster. It is therefore the trend
since the late ’90s to move beyond VLSI towards Systems-on-a-Chip (SoC) in
order to guarantee larger integration in both senses: physically, by compacting
complex systems on a single chip instead of physically wiring them on a board,
but in particular also projectually, i.e. integrating the components well before
the silicon level, namely at the design level. Rather than combining chips (the
classical way), hardware engineers started years ago to combine directly the com-
ponent’s designs and to directly produce (in their terms, synthesize) system-level
solutions which are homogeneous at the silicon level. Interestingly, they solve the
problem of compatibility by moving it to a higher level of abstraction and going
towards more homogeneous final products.

The next section presents XMDD, a paradigm for application development
that is conceptually closely related to the sketched SoC approach.

3 XMDD: Extreme Model-Driven Development

At the larger scale of system development, moving the problem of compatibility
to a higher level of abstraction means moving it to the modelling level (see

Fig. 1. The XMDD Process

Agile IT: Thinking in User-Centric Models 493

Fig. 1): rather than using the models, as usual in today’s Component Based
Development paradigm, just as a means of specification, which

– need to be compiled to become a ‘real thing’ (e.g., a component of a software
library),

– must be updated (but typically are not), whenever the real thing changes
– typically only provide a local view of a portion or an aspect of a system,

models should be put into the center of the design activity, becoming the first
class entities of the global system design process. In such an approach, as shown
on the right side of Fig. 1,

– libraries should be established on the model level: building blocks should be
(elementary) models rather than software components,

– systems should be specified by model combinations (composition, configura-
tion, superposition, conjunction...), viewed as a set of constraints that the
implementation needs to satisfy,

– global model combinations should be compiled (synthesized, e.g. by solving
all the imposed constraints) into a homogeneous solution for a desired envi-
ronment, which of course includes the realization of an adequate technology
mapping,

– system changes (upgrades, customer-specific adaptations, new versions, etc.)
should happen only (or at least primarily) at the model level, with a subse-
quent global recompilation (re-synthesis),

– optimizations should be kept distinct from design issues, in order to maintain
the information on the structure and the design decisions independently of
the considerations that lead to a particular optimized implementation.

With this extreme style of model-driven development (XMDD), which strictly
separates compatibility, migration, and optimization issues from model/function-
ality composition, it would be possible to overcome the problem of incompati-
bility between

– (global) models and (global) implementations, which is guaranteed and later-
on maintained by (semi-) automatic compilation and synthesis, as well as
between

– system components, paradigms, and hardware platforms: a dedicated compi-
lation/synthesis of the considered global functionality for a specific platform
architecture avoids the problems of incompatible design decisions for the
individual components.

In essence, delaying the compilation/synthesis until all parameters are known
(e.g. all compatibility constraints are available), may drastically simplify this
task, as the individual parts can already be compiled/synthesized specifically
for the current global context. In a good setup, this should not only simplify the
integration issue (rather than having to be open for all eventualities, one can
concentrate on precisely given circumstances), but also improve the efficiency of
the compiled/synthesized implementations.

494 T. Margaria and B. Steffen

In fact, XMDD has the potential to drastically reduce the long-term costs
due to version incompatibility, system migration and upgrading, and lower risk
factors like vendor and technology dependency. Thus it helps protecting the
investment in the software infrastructure. We are therefore convinced that this
aggressive style of model-driven development will become the development style
at least for mass customized software in the future.

In particular we believe that XMDD, even though being drastically differ-
ent from state of the art industrial system design, which is very much driven
right from the beginning by the underlying hardware architecture, will change
accordingly: technology moves so fast, and the varieties are so manifold that the
classical platform-focussed development will find its limits very soon.

4 Central Issues to Be Addressed

In order to fully leverage the XMDD potential, a number of issues need to be
addressed:

– design of adequate modelling patterns,
– adaptations of analysis, verification and compilation techniques and tools to

the XMDD setting, and
– realization of automatic deployment procedures.

A lecture should discuss these issues in the context of related technologies.

4.1 Heterogeneous Landscape of Models

One of the major problems in software engineering is that software is multi-
dimensional: it comprises a number of different (loosely related) dimensions,
which typically need to be modelled in different styles in order to be treated
adequately. Important for simplifying the software/application development is
the reduction of the complexity of this multi-dimensional space, by placing it
into some standard scenario. Such reductions are typically application-specific.
Besides simplifying the application development they also provide a handle for
the required automatic compilation and deployment procedures.

Typical among these dimensions, often also called views, are

– the (user) process view, which describes the dynamic behavior of the system.
How does it behave under which circumstance,

– the architectural view, which expresses the static structure of the software
(dependencies like nesting, inheritance, references). This should not be con-
fused with the architectural view of the hardware platform, which may indeed
be drastically different. - The charm of the OO-style was that it claimed to
bridge this gap,

– the exception view, which addresses the system’s behavior under malicious
or even unforeseen circumstances,

– the timing view, addressing real time aspects,
– the various thematic views concerned with roles, specific requirements, and

other aspect-like points of view.

Agile IT: Thinking in User-Centric Models 495

Of course, UML already tries to address all these facets in a unifying way, but
we all know that UML is currently rather a heterogeneous, expressive sample
of languages, which lacks a clear notion of (conceptual) integration like con-
sistency and the idea of global dynamic behavior. Such aspects are currently
dealt with independently, e.g. by means of concepts like contracts [1] (or more
generally, and more complicated, via business-rules oriented programming like
e.g. in [12]). The latter concepts are also not supported by systematic means for
guaranteeing consistency. In contrast, XMDD views these heterogeneous specifi-
cations (consisting of essentially independent models) just as constraints which
must be respected during the compilation/synthesis phase (see also [25]).

Another recently very popular approach is Aspect Oriented Programming
(AOP) [13,2], which sounds convincing at first, but does not seem to scale for
realistic systems. The programmer treats different aspects separately in the code,
but has to understand precisely the weaving mechanism, which often is more
complicated than programming all the system traditionally. In particular, the
claimed modularity is only in the file structure but not on the conceptual side.
In other words, in the good case one can write down the aspects separately,
but understanding their mutual global impact requires a deep understanding of
weaving, and, even worse, of the result of weaving, which very much reminds of
an interleaving expansion of a highly distributed system.

4.2 Formal Methods and Tools

There are numerous formal methods and tools addressing validation, ranging from
methods for correctness-by-construction/rule-based transformation, correctness

Fig. 2. The XMDD Process in the jABC

496 T. Margaria and B. Steffen

calculi, model checkers, and constraint solvers to tools in practical use like
PVS [24], Bandera [6], SLAM [5] to name just a few. On the compiler side
there are complex (optimizing) compiler suites, code generators, and controller
synthesizers, and other methods to support technology mapping. A complete
account of these methods would be far beyond the purpose of this paper. Here it
is sufficient to note that there is already a high potential of technology waiting
to be used.

4.3 Automatic Deployment and Maintenance Support

At the moment, this is the weakest point of the current practice: the deploy-
ment of complex systems on a heterogeneous, distributed platform is typically
a nightmare, the required system-level testing is virtually unsupported, and the
maintenance and upgrading very often turn out to be extremely time consum-
ing and expensive, de facto responsible for the slogan ”never change a running
system”.

Still, also in this area there is a lot of technology one can build upon: the de-
velopment of Java and the JVM or the .net activities are well-accepted means to
help getting models into operation, in particular, when heterogeneous hardware
is concerned. Interoperability can be established using CORBA, RMI, RPC,
Web services, complex middleware etc, and there are tools for testing and ver-
sion management. Unfortunately, using these tools requires a lot of expertise,
time to detect undocumented anomalies and to develop patches, and this for
every application to be deployed.

In order to get a good feeling for the potential of XMDD, a corresponding
curriculum should place the discussion of these three issues in a concrete setting,
allowing extensive hands-on experience on all these aspects and addressing the
6 issues identified in Sect. 1.

The next section sketches the jABC [10,27], a framework designed to support
systematic development according to the XMDD paradigm. jABC provides:

1. a heterogeneous landscape of models, to be able to capture all the particular-
ities necessary for the subsequent adequate product synthesis. This concerns
the system specification itself, the platforms it runs on together with their
communication topology, the required programming style, exceptions, real
time aspects, etc.

2. a rich collection of flexible formal methods and tools, to deal with the het-
erogeneous models, their consistency, and their validation, compilation, and
testing.

3. automatic deployment and maintenance support that are integrated in the
whole process and are able to provide ’intelligent’ feedback in case of late
problems or errors.

5 The jABC as an XMDD Environment

The jABC, developed at METAFrame Technologies in cooperation with the TU
Dortmund is intended to promote the XMDD-style of development in order to

Agile IT: Thinking in User-Centric Models 497

move the responsibility and control of application development for certain classes
of applications towards the application expert. Already in its current version
the jABC supports an agile and cooperative development of service-oriented
systems along the lines of the One-Thing Approach. Technically it comprises in
the following way the three features discussed above (Fig. 2):

1. Heterogeneous landscape of models: the central model structure of the ABC
are hierarchical Service Logic Graphs (SLGs)[17,16]. SLGs are flow chart-
like graphs. They model the application behavior in terms of the intended
process flows, based on coarse granular building blocks called SIBs (Service-
Independent Building blocks) which are intended to be understood directly
by the application experts [17] – independently of the structure of the un-
derlying code, which, in our case, is typically written in Java/C/C++. The
component models (SIBs or hierarchical subservices called GraphSIBs), the
feature-based service models called Feature Logic Graphs (FLGs), and the
Global SLGs modelling applications are all hierarchical SLGs.

Additionally, the jABC supports model specification in terms of
(a) two modal logics, to abstractly and loosely characterize valid behaviors

(see also [11]),
(b) a classification scheme for building blocks and types, and
(c) high level type specifications, used to specify compatibility between the

building blocks of the SLGs.
The granularity of the building blocks is essential here, as it determines the
level of abstraction of the whole reasoning: the verification tools directly con-
sider the SLGs as formal models, the names of the (parameterized) building
blocks as (parameterized) events, and the branching conditions as (atomic)
propositions. Thus the jABC focusses on the level of component composition
rather than on component construction: its compatibility, its type correct-
ness, and its behavioral correctness are under formal methods’ control [16].

2. Formal methods and tools: the ABC comprises a high-level type checker, two
model checkers, a model synthesizer, a compiler for SLGs, an interpreter, and
a view generator. The model synthesizer, the model checkers and the type
checker take care of the consistency and compatibility conditions expressed
by the four kinds of constraints/models mentioned above.

3. Automatic deployment and maintenance support: an automated deployment
process, system-level testing [21], regression testing, version control, and on-
line monitoring [7] support the phases following the first deployment.

In particular the automatic deployment service needs some meta-
modelling in advance. In fact, this has been realized using the jABC itself.
Also the testing services and the online monitoring are themselves strong
formal methods-based [22] and have been realized via the jABC.

The jABC can be regarded as a first framework for XMDD. It is designed to con-
tinuously involve the customer/application expert throughout the whole systems
life cycle according to the ‘One-Thing Approach’ [19].

In order to be effective, it is important that a corresponding course provides
a tangible experience of this approach, which works by enriching and refining

498 T. Margaria and B. Steffen

one single artifact. User-level models are successively refined from the user per-
spective up to a level, where elementary services can be implemented solving
application-level tasks.

Students should see (and appreciate) how, accordingly, the composition and
coordination of components as well as their maintenance and version control
happen in the jABC exclusively at the modelling level, and how the compilation
to running source code (mostly Java and C++) and deployment of the resulting
applications are fully automatic.

6 XMDD Case Studies in jABC

The XMDD paradigm has been successfully used in several contexts, at differ-
ent abstraction levels. The following selection briefly illustrates how the jABC
uniformly supports all the abstraction levels, from the requirements/design with
non-IT experts in Sec. 6.1, to application design in Sec. 6.2, to middleware-level
configurations in Sec. 6.3.

6.1 Requirements and Specification: Supply Chain Management

In [9] we concentrate on the collaborative design of complex embedded sys-
tems in the jABC, that has proven to be effective and adequate for the team
cooperation with non-IT personnel. Concretely, we show how our approach to
model-driven collaborative design was applied to the requirement and specifi-
cation phase of part of IKEA’s P3 Document Management Process (part of a
new Supply Chain Management system), where it complemented the Rational
Unified Process development process already in use. Central contribution of this
approach is two-dimensional support of consistency at the user process level:

– vertical consistency of models, e.g. across abstraction layers, as well as
– horizontal model consistency, which is needed e.g. across organizational bor-

ders within a same abstraction level.

In this particular case we had to bridge between various business process specifi-
cations provided by business analysts on one side and use case/activity diagram
views needed as specifications by the IT designers on the other side. Based on
the One-Thing Approach, horizontal consistency was guaranteed by maintain-
ing the global perspective throughout the refinement process, down to the code
level, and vertical consistency by the simple discipline for refinement.

6.2 Application Construction: The SWSC Mediation Scenario

A case study that demonstrates a wide span of XMDD features, from the design
by modelling to the deployment and test, is our solution with jABC of the
Mediation scenario of the Semantic Web Service Challenge, as described in [14].
There, we show how we solved the Mediation task (a benchmark scenario of the

Agile IT: Thinking in User-Centric Models 499

Challenge, described in [23]) in a model driven, service oriented fashion using
the jABC framework for model driven development and its jETI extension [26]
for seamless integration of remote (Web) services. In particular we illustrate

– how atomic services and orchestrations are modelled in the jABC,
– how legacy services and their proxies are represented within our framework,

and how they are imported into our framework,
– how the mediator arises as orchestrations of the testbed’s remote services

and of local services,
– how vital properties of the Mediator are verified via model checking in the

jABC, and
– how jABC/jETI orchestrated services are exported as Web services.

Besides providing a solution to the mediation problem, this also illustrates the
agility of jABC-based solutions, since in the Challenge each scenario comprises a
set of problems that come in different levels that build onto each other. One of the
central assessments is in fact the ability of a methodology and of the correspond-
ing technologies and tools to leverage on the first-level solutions to accommodate
the changes/extensions required by the subsequent levels with minimal intrusion
(in the solution and platforms) and effort (of a modeller/programmer).

6.3 Middleware Services: MaTRICS

In [4] we present how we realize in jABC the remote configuration and fault toler-
ance of the Online Conference Service (OCS) [15] with our service oriented frame-
work MaTRICS [3]. MaTRICS is our model-based service-oriented platform for
remote intelligent configuration and management of systems and services and
is built on top of the jABC, thus it inherits the XMDD perspective. Providing
with low overhead high-availability mechanisms for complex applications that
run on distributed platforms is one of the central services offered by MaTRICS.
Our solution lets the services untouched and uses the open source cluster man-
agement software heartbeat [8,20] to provide the high availability features. We
showed there how jABC’s XMDD approach supports the management services
at, or close to, the middleware and operating system level, providing a user-
friendly level of service models (implemented as SLGs according to the XMDD
paradigm) for the monitoring (sensing of correct functionality) and the recon-
figuration/service migration (actuating the changes on the cluster by steering
heatbeat functionality). This in contrast with the usual, script-based, heartbeat
working manner, which is strictly code-based.

Reexamining the 6 issues mentioned in Sec. 1, in this case study we

– structure the high-availability solution from the application perspective, for
an application-level definition and management of the high-availability ser-
vices well above the scripting level (user-centric modelling),

– enable the model-level validation of the application logic (animation-based
requirement validation and model checking), opposed to the sole testing
possible in a script-based solution,

500 T. Margaria and B. Steffen

– we find an adequate, higher and more declarative level, where application
modelling is handed over to the implementation of (elementary) services. In
fact, the library of services provided by MaTRICS has been extended by
a new, reusable collection that internally uses heartbeat. This establishes a
higher-level domain-specific language and service library for high-availability
monitoring and enforcement,

– automatically deploy the new services, which are complex aggregations and
enhanced compositions of the middleware services they embed,

– being jABC artifacts, the new high-availability services and test cases are
themselves monitorable at run time,

– they are easily adaptable according to new requirements and to new plat-
forms.

7 Conclusions and Perspectives

We have advocated a new teaching direction for modern CS curricula: extreme
model-driven development (XMDD), a new development paradigm designed to
continuously involve the customer/application expert throughout the whole sys-
tems’ life cycle. XMDD puts the user process in the center of the development
and the application expert in control of the process evolution. It differs radically
from classical software development, which, in our opinion is no longer adequate
for the bulk of application programming – in particular, when it comes to het-
erogeneous, cross organizational systems which must adapt to rapidly changing
market requirements.

Of course, XMDD will never replace genuine software development, as it as-
sumes techniques to be able to solve problems (like synthesis or technology map-
ping) which are undecidable in general and therefore not automatable. On the
other hand, more than 90% of the software development costs that arise world-
wide concern a rather primitive software development level – as during routine
application programming or software updates – where there are no technological
or design challenges. There, the major problem faced is software quantity rather
than achievement of very high quality, and automation should be thus largely
possible. XMDD is intended to address (a significant part of) this 90% ‘niche’,
which is certainly important enough to justify an adequate coverage in future
CS curricula.

Moreover, we are convinced that this expertise will be of growing impor-
tance for most of the interdisciplinary B.Sc. and M.Sc. curricula that focus on
a combination of computer science with another discipline, like bio-informatics,
commercial information technology, and various degrees that bridge manage-
ment/economy and CS. These professional profiles address much less the pro-
duction of code and the algorithmic skills than the capability of abstraction from
IT-specific issues and bridging towards the users’ perspective, mostly for users
with a different background, in their own terms.

Agile IT: Thinking in User-Centric Models 501

References

1. Andrade, L.F., Fiadeiro, J.L.: Architecture Based Evolution of Software Systems,
http://www.atxsoftware.com/publications/SFM.pdf

2. AspectJ Website, http://eclipse.org/aspectj/
3. Bajohr, M., Margaria, T.: MaTRICS: A Service-Based Management Tool for Re-

mote Intelligent Configuration of Systems. Innovations in Systems and Software
Engineering (ISSE) 2(2), 99–111 (2005)

4. Bajohr, M., Margaria, T.: High Service Availability in MaTRICS for the OCS. In:
Proc. ISoLA 2008, 3rd Int. Symp. on Leveraging Applications of Formal Meth-
ods, Verification, and Validation, Chalkidiki (GR), October 2008. CCIS, vol. 17.
Springer, Heidelberg (2008)

5. Ball, T., Cook, B., Das, S., Rajamani, S.: Refining approximations in software
predicate abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 338–340. Springer, Heidelberg (2004)

6. Corbett, J., Dwyer, M., Hatcliff, J., Robby.: Bandera: A Source-level Interface for
Model Checking Java Programs. In: Proc. ICSE 2000, 22nd Int. Conf. on Software
Engineering, pp. 762–765 (2000)

7. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model Generation by Moderated
Regular Extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

8. Heartbeat, Open Source High Availability Software, http://www.linux-ha.org
9. Hörmann, M., Margaria, T., Mender, T., Nagel, R., Steffen, B., Trinh, H.: The

jABC Approach to Rigorous Collaborative Development of SCM Applications. In:
Proc. ISoLA 2008, 3rd Int. Symp. on Leveraging Applications of Formal Meth-
ods, Verification, and Validation, Chalkidiki (GR), October 2008. CCIS, vol. 17.
Springer, Heidelberg (2008)

10. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

11. Jonsson, B., Margaria, T., Naeser, G., Nyström, J., Steffen, B.: Incremental re-
quirement specification for evolving systems. Nordic Journal of Computing 8(1),
65 (2001); In: Proc. of Feature Interactions in Telecommunications and Software
Systems (2000)

12. JRules, ILOG, http://www.ilog.com/
13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier,

J.-M., Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented Mediation with
jABC/jETI. In: Semantic Web Services Challenge Results from the First Year
(Semantic Web and Beyond). Springer, Heidelberg (2008)

15. Margaria, T., Karusseit, M.: Community Usage of the Online Conference Service:
an Experience Report from three CS Conferences, 2nd IFIP Conference on e- com-
merce, e-business, e-government (I3E 2002). In: Towards the Knowledge Society -
eCommerce, eBusiness and eGovernment, Lisboa (P), 7-9 Oct. 2002, pp. 497–511.
Kluwer Academic Publishers, Dordrecht (2002)

16. Margaria, T., Steffen, B.: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach. STTT, Int. Journal on Software Tools for Technology
Transfer (2003)

http://www.atxsoftware.com/publications/SFM.pdf
http://eclipse.org/aspectj/
http://www.linux-ha.org
http://www.ilog.com/

502 T. Margaria and B. Steffen

17. Margaria, T., Steffen, B.: METAFrame in Practice: Design of Intelligent Network
Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 390–415. Springer, Heidelberg (1999)

18. Margaria, T., Steffen, B.: From the How to the What. In: Proc. VSTTE 2005,
Verified Software—Theories, Tools, and Experiments, IFIP Working Conference,
Zurich, October 2005. LNCS, vol. 4171. Springer, Heidelberg (2005)

19. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing
Approach. In: Cardoso, J., van der Aalst, W. (eds.) Handbook of Research on
Business Process Modeling. IGI Global (2009)

20. Marowsky-Bre, L.: A new cluster resource manager for heartbeat. In: UKUUG
LISA/Winter Conf. on High-Availability and Reliability, Bournemouth, UK (2004)

21. Niese, O., Margaria, T., Hagerer, A., Nagelmann, M., Steffen, B., Brune, G., Ide,
H.: An automated testing environment for CTI systems using concepts for speci-
fication and verification of workflows. Annual Review of Communication. In: Int.
Engineering Consortium (IEC), Chicago, USA, vol. 54, pp. 927–936 (2001)

22. Niese, O., Steffen, B., Margaria, T., Hagerer, A., Brune, G., Ide, H.: Library-based
design and consistency checks of system-level industrial test cases. In: Hussmann,
H. (ed.) FASE 2001. LNCS, vol. 2029, pp. 233–248. Springer, Heidelberg (2001)

23. Petrie, C., Zaremba, M., Lausen, H., Komazec, S., Küster, U.: SWS Challenge Sce-
narios. In: Semantic Web Services Challenge Results from the First Year (Semantic
Web and Beyond). Springer, Heidelberg (2008)

24. Shankar, N., Owre, S.: Principles and Pragmatics of Subtyping in PVS. In: Bert,
D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52.
Springer, Heidelberg (2000)

25. Steffen, B.: Unifying models. In: Reischuk, R., Morvan, M. (eds.) STACS 1997.
LNCS, vol. 1200, pp. 1–20. Springer, Heidelberg (1997)

26. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform:
concepts and design. In: [28], pp. 9–30

27. Steffen, B., Narayan, P.: Full Life-Cycle Support for End-to-End Processes. IEEE
Computer 40(11), 64–73 (2007)

28. Special Section on the Electronic Tool Integration Platform. Int. Journal on Soft-
ware Tools for Technology Transfer 1(1+2) (November 1997)

Specialization and Instantiation Aspects of a

Standard Process for Developing
Educational Modules

Ellen Francine Barbosa and José Carlos Maldonado�

University of São Paulo – ICMC/USP
Av. do Trabalhador São-Carlense, 400 – P.O. Box 668

São Carlos (SP) Brazil – 13560-970
{francine,jcmaldon}@icmc.sc.usp.br

Abstract. Educational modules can be seen as relevant mechanisms to
improve the learning processes in general. The goal is to produce quality
educational products, capable of motivating the learners and effectively
contribute to their knowledge construction process. Despite their rele-
vance, none of the initiatives to address the problem of creating educa-
tional modules considers a systematic process for developing them. The
establishment of a well-defined set of guidelines and supporting mecha-
nisms should ease the distributed and cooperative work to create, reuse
and evolve educational modules, taking also into account the impact on
the learning process. In this work we present a standardized process we
have established aiming at creating well-designed, highly flexible and
configurable educational modules. We focus on the aspects of process
specialization and instantiation, illustrating the practical application of
the instantiated process by the development of an educational module
for teaching the fundamentals of software testing. Particularly, the avail-
ability of learning facilities, allied to the development of testing tools,
should facilitate the apprenticeship of specific testing theories and skills,
promoting better dissemination conditions to the practical evaluation
and application of testing strategies, both in academic and industrial
sets. The produced module has been applied and preliminarily evaluated
in terms of the learning effectiveness. The results obtained give us some
evidences on the practical use of the standard process as a supporting
mechanism to the development of effective educational modules.

1 Introduction

Several initiatives on using new computing technologies have been investigated
in order to facilitate the learning process in general [7,12,13,15,19,22]. The chal-
lenge is to provide ways to establish quality educational products, capable of
motivating the students and effectively contribute to their knowledge construc-
tion processes in active learning environments. Also, there is a need for a global
� The authors would like to thank the Brazilian funding agencies (FAPESP, CAPES,

CNPq) and to the QualiPSo Project for their support.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 503–518, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

504 E.F. Barbosa and J.C. Maldonado

education, capable of crossing international, cultural and social borders in order
to prepare the students for the global market [3].

Educational modules, which consist of concise units of study delivered to
students by using technologies and computational resources [3,2,1], can be ex-
plored in this perspective. Basically, they should provide: (1) effective support
to traditional learning approaches; (2) effective support to non-traditional envi-
ronments, motivating the transition from lecture-based to active learning; and
(3) transferability to different institutions and learning environments.

Similar to software products, educational modules require the establishment of
systematic development processes to produce reliable and quality products [3].
Despite its relevance, none of the initiatives to address the problem of creat-
ing educational modules considers a systematic process for developing them. In
short, the development of such modules can involve developers from different do-
mains, working on multi-disciplinary and heterogeneous teams, geographically
dispersed or not. They should cooperate, sharing data and information regard-
ing the project. Furthermore, there is a need for adaptability and reusability -
educational modules should be seen as independent units of study, subject to be
adaptable and reusable in different educational and training scenarios, accord-
ing to parameters such as the learner’s profile, instructor’s preferences, learning
goals and course length, among others.

Motivated by this scenario, we have investigated the establishment of a sys-
tematic process for developing educational modules, aiming at providing a well-
defined set of guidelines and supporting mechanisms to create, reuse and evolve
them. The Standard Process for Developing Educational Modules [3] is based
on ISO/IEC 12207, taking into account issues of content modeling [21,2], prac-
tices from instructional design [11], and aspects of distributed and cooperative
work [20]. As part of the standard, we have also proposed an integrated modeling
approach for developing educational content – IMA-CID (Integrated Modeling
Approach – Conceptual, Instructional and Didactic) [2]. In our research line,
at the very end, we intend to provide a context for “open learning materials”,
which could facilitate the cooperation and use in different institutions and learn-
ing environments and effectively support new learning approaches.

In this paper, we focus on aspects of the standard process specialization and
instantiation. We illustrate the practical application of our instantiated process
by the development of an educational module for teaching the fundamentals of
software testing. We consider the testing area since it is one of the most relevant
activities to guarantee the quality of the software under development [24] but,
at the same time, it is a difficult topic to learn or teach without the appropri-
ate supporting mechanisms [14]. Since our proposed mechanisms are domain-
independent, in short-term we intend to explore them into the development of
educational modules for other testing-related topics, such as formal methods
(involving, for instance, FSM-based testing [25]), and the integrated teaching of
programming and testing [4]. Particularly, the availability of learning facilities,
allied to the development of testing tools, would promote better dissemination
conditions to the practical evaluation and application of testing strategies, both

Specialization and Instantiation Aspects of a Standard Process 505

in academic and industrial contexts. Educational modules for other Software En-
gineering sub-areas (e.g., requirement analysis, maintenance), Computer Science
areas (e.g., databases, distributed systems), and general areas (e.g., mathemat-
ics, physics, biology) can also be produced.

The remainder of this paper is organized as follows. In Section 2 we summarize
the supporting mechanisms we have proposed in the context of educational mod-
ules – a standard process for developing educational modules and an approach
for modeling educational content. Aspects of the standard process specialization
and instantiation are discussed in Section 3. In Section 4 we illustrate the appli-
cation of the instantiated process for developing an educational module for the
software testing domain. We focus on the content modeling activity and on the
results from preliminary evaluations on the effectiveness of the produced mod-
ules we have conducted. Finally, in Section 5 we summarize our contributions
and discuss the perspectives for further work.

2 Developing Educational Modules

Educational modules are concise units of study, composed by theoretical and
practical content which can be delivered to learners by using technological and
computational resources [3,2,1]. For theoretical content, we use books, papers,
web information, slides, class annotations, audio, video, and so on. Practical
content is the instructional activities and associated evaluations, as well as their
resulting artifacts (e.g., executable programs, experimental studies, collaborative
discussions). Theoretical and practical content are integrated in terms of learning
materials. Learning environments, presentation tools and mechanisms to capture
classroom lectures and to support discussion spaces and collaborative work are
examples of the required infrastructure for delivering the learning materials.

2.1 The Standard Process

The Standard Process for Educational Modules is based on the International
Standard ISO/IEC 12207, tailored to the context of educational modules by
including aspects of content modeling [2,21], practices from instructional de-
sign [11], and issues of distributed and cooperative work [20].

Basically, the standard establishes a set of processes that can be employed
to acquire, supply, develop, deliver, operate, and maintain educational modules.
Three categories of processes are defined: (1) the primary processes deal with
the main activities and tasks performed during the life cycle of an educational
module; (2) the supporting processes support other processes and contribute to
the success and quality of the development project, and (3) the organizational
processes are employed by an organization to establish, implement and improve
an underlying structure made up of associated life cycle processes and person-
nel. Figure 1 shows the general structure of the standard. In dashed rectangles
are the processes adapted from the ISO/IEC 12207. In dotted rectangles are
the processes adapted from the standard process for geographically dispersed

506 E.F. Barbosa and J.C. Maldonado

Fig. 1. Main Structure of the Standard Process for Educational Modules

working groups [20]. In white rectangles are the processes specifically developed
to the context of teaching and learning.

In the establishment of the primary processes we have considered the main
principles and practices from instructional design. In short, the goals of instruc-
tional design are achieved by means of five phases: Analysis, Design, Develop-
ment, Implementation, and Evaluation. These phases correspond to the ADDIE
Model, which serves as the basis for the most of the approaches for instruc-
tional design [11]. These practices are spread out through the activities and
tasks related to the primary processes. For instance, the Operation and Deliv-
ery processes address issues of the implementation phase of the ADDIE Model.
Supporting and organizational processes are established in a similar way.

2.2 The IMA-CID Approach

Particularly, in the case of the Development Process, besides the practices of
instructional design, aspects from educational content modeling are also ex-
plored [2,21]. Content modeling plays a fundamental role into the development
process of educational modules. It helps the author to determine the main con-
cepts to be taught, providing a systematic way to structure the relevant parts
of the subject knowledge domain. Also, how the content is structured impacts
on the effectiveness, reusability, evolvability and adaptability of the module.

In spite of its relevance, few approaches are specifically designed for modeling
educational content. Actually, the establishment of models for representing such
content involves several different issues. For instance, we have to consider the
specific characteristics related to the knowledge domain, to define the practical
tasks and the evaluation mechanisms that will be applied to students, and to
establish pedagogical sequences for presenting the modeled information. Since

Specialization and Instantiation Aspects of a Standard Process 507

there is not a set of predefined requirements for content modeling, each model
deals with different perspectives that can be suitable for a given learning scenario
but inadequate for others [2].

In this sense, we have proposed IMA-CID (Integrated Modeling Approach
– Conceptual, Instructional and Didactic) [2,1] – an integrated approach for
modeling educational content. IMA-CID is composed by a set of models, each
one dealing with specific aspects of the development of educational content: (1)
the conceptual model corresponds to a high-level description of the knowledge
domain, representing the main concepts and the relationships among them; (2)
the instructional model characterizes what kind of additional information (e.g.,
facts, principles, procedures, examples, and exercises) can be used to develop
learning materials; and (3) the didactic model characterizes the prerequisites
and sequences of presentation among conceptual and instructional elements.

We have also introduced the idea of open specifications, which provide sup-
port for the definition of dynamic contexts of learning [2]. Depending on aspects
such as audience, learning goals and course length, distinct ways for presenting
and navigating through the same content can be required. An open specification
allows to represent all sequences of presentation in the same didactic model.
So, from a single model, several versions of the same content can be generated
according to different pedagogical aspects. Moreover, when an educational mod-
ule is implemented based on an open specification (open implementation), its
navigation paths can be defined by the user, in “execution time”, based on the
learner’s understanding and feedback, for instance.

3 Standard Process Specialization and Instantiation

The standard process is responsible for the establishment of a unique devel-
opment structure to be adopted and followed by the entire organization [3,1].
However, changes in organizational procedures, educational paradigms and prin-
ciples, learning requirements, development methods and strategies, as well as the
size and complexity of the projects, among other aspects, impact the way an edu-
cational module is produced. To be adopted in particular projects, the processes
should be defined case by case, considering specific features of each project.

Process specialization and instantiation have also been explored in order to
apply the standard process into specific learning environments and organiza-
tions. In short, the definition of a process for developing a given educational
module should consider its adequacy to: (1) the involved technologies, support-
ing mechanisms and budget; (2) the domain of the educational application; (3)
the characteristics of the module; (4) the maturity level of the development
team; and (5) the characteristics of the organization. As a result, processes into
different levels of abstraction are defined. The main aspects of the standard
process instantiation and specialization as well as its application for developing
an educational module for the software testing domain are discussed next.

508 E.F. Barbosa and J.C. Maldonado

3.1 Specializing the Standard Process

In the same line as the CMMI Model for software development, a capability
maturity model for educational modules development – the CMMI/Educational
– has been proposed and used as a supporting mechanism to the standard process
specialization [3,1]. The main goals are to guaranteeing that distributed projects
can be developed with unlike maturity level teams and improve each working
group capability.

The CMMI/Educational is adapted from CMMI for the context of teaching
and learning. A capability maturity model for geographically dispersed software
development [20] is also considered to establishing the tasks and practices related
to the distributed and collaborative creation of the modules. Both continuous
and staged representations are addressed.

Similar to the staged representation of CMMI, CMMI/Educational establishes
five maturity levels. Two new process areas (PAs) are included at Level 2: Dis-
tributed Knowledge Management and Distributed Infrastructure Management.
At Level 3, three new PAs are established: Knowledge Evolution Management,
Domain Experts Interaction and Distributed Monitoring and Management of
Educational Modules Utilization. At Level 4, we include the PA of Quantitative
Management of Educational Modules Utilization. Finally, at Level 5, we define
a new practice – Change Management of Educational Paradigms and Principles
–, included as part of the PA Organizational Innovation and Deployment. For
instance, the PA of Knowledge Evolution Management is responsible for: (1)
identifying, choosing and evaluating the new information related to the subject
knowledge domain; and (2) establishing and maintaining the supporting mech-
anisms to systematically integrate the new information into the module.

By determining the correspondence between the standard process aspects and
the PAs of the capability maturity model, we can identify the process categories
that would require more attention and generate the standard process special-
izations. The specialization of a given maturity level is generated by excluding
the activities of higher levels. So, the specialization of the second level does not
contain the activities of the third, fourth and fifth levels. Instead, it contains
only the activities related to the PAs of Level 2.

3.2 Instantiating the Standard Process

An instance of a process should take in account the development and organi-
zational environment; it may address specific features of a particular project.
Process instantiation consists of the selection and allocation of development
methods and techniques as well as human, technological and computational re-
sources.

In order to illustrate the standard process instantiation we consider its appli-
cation in a specific type of educational projects. Basically, these projects should
be conducted in an academic institution, involving the development of educa-
tional modules to be used in traditional classes. The produced modules can be
applied either as part of an one-semester course, in the academic institution; as

Specialization and Instantiation Aspects of a Standard Process 509

a short-course, a tutorial or an invited talk, in scientific events; or as a training
course, at industrial organizations.

We have defined, among others: (1) the human resources and their roles in
the process; (2) the produced and consumed artifacts; (3) the life cycle model
and development methods and techniques; and (4) the automated tools and
supporting mechanisms for the process. Regarding the human resources and
their roles in the process, the following actors have been defined to compose the
development team:

– Domain expert : Provides support and clears doubts related to the estab-
lishment of components and relevant parts of the educational module. Plays a
fundamental role in content modeling, particularly to constructing the concep-
tual model and to determining the knowledge categories. Also, performs the
instructional validation of the module.

– Project manager : Assigns activities, integrates results, specifies the module’s
metadata, and defines the validation mechanisms to be adopted.

– Team coordinator : Coordinates the development team, fostering the com-
munication between team members and the project manager.

– Version manager : Responsible for maintaining the different versions of the
module.

– Developer : Responsible for the module development. Several different roles
can be assigned to him/her: (1) analyst, responsible for specifying the module
requirements and, also, for its validation; (2) instructional designer, responsible
for modeling the educational content and for designing the module interface; (3)
implementer, responsible for implementing the module, i.e., for editing the con-
tent, for integrating the multimedia components, for verifying and for testing the
module; (4) operator, responsible for providing the operational support for the
module users; and (5) maintainer, responsible for the maintaining the module.

– Technician: Establishes and manages the technological and computational
resources used in the project. Provides technical support to the development and
delivery of the educational module.

– Instructor : Responsible for establishing the instructional needs, for deliv-
ering the module and for monitoring its use. Also, can help on verification and
validation activities.

Figure 2 illustrates the relationship among team members as well as the main
roles assigned to them. Notice that different roles can be assigned to the same
person. On the other hand, several persons can be assigned to the same role.
Produced and consumed artifacts are also illustrated.

As the life cycle model to be adopted through the projects we chose the
ADDIE Model [11]. It is specifically designed for the development of educational
products, establishing mechanisms for the systematic application of practices
and principles of instructional design. For modeling the educational content, we
chose the IMA-CID approach [2].

In terms of technological and computational resources, tools and mechanisms
to automate and support the instantiated process should be selected according
to the roles they would play in the context of each specific project. Two basic

510 E.F. Barbosa and J.C. Maldonado

Fig. 2. Development Team and Assigned Roles

categories of tools should be analyzed. Authoring tools support the creation
of the educational content, taking into account representation, integration and
management aspects of the subject knowledge domain. We consider as authoring
tools: (1) tools for modeling the educational content; (2) tools for knowledge
integration; and (3) tools for editing the content.

Educational tools consist of the required infrastructure for integrating the
learning materials and for delivering/publishing them to the learners. They are
also responsible for providing support to perform practical tasks and evalua-
tions. We consider as educational tools: (1) presentation tools, which support
delivery of learning materials; (2) collaborative tools, which support collabora-
tive work and augment communication and discussion among instructors and
learners; (3) evaluative tools, which support the evaluation of learner’s perfor-
mance; and (4) capture tools, which provide ways to transform the content of a
traditional lecture into browsable, searchable and extensible digital media that
serves both short- and long-term educational goals. One essential activity dur-
ing the instantiation process is the identification and analysis of supporting tools
to the standard process. The results of this activity constitute the alternatives
to instantiating the standard process. Therefore, each instance of the standard
process establishes a specific set of automated tools and supporting mechanisms
to be applied. In our instantiated process, we adopted specific tools – WebCT [15]
and Moodle [22], and generic tools – web and PowerPoint (when the use of edu-
cational tools is not required) as presentation tools. As a collaborative tool, we
adopted CoWeb [12]. As the infrastructure for capturing the classes, we chose

Specialization and Instantiation Aspects of a Standard Process 511

the eClass environment [7]. As a support for authoring the educational content,
we adopted generic editing tools: Word, PowerPoint, FrontPage, Visio, LaTeX.
To support communication between the members of the development team we
chose electronic mail and CoWeb.

Taking into account the supporting tools to the standard process and the
requirements of the project under development (software testing educational
module for traditional classes) we then define the instantiated process to a par-
ticular project, since each project may require itself specific tools and related
mechanisms. Notice that some constraints are to be considered. For instance,
the IMA-CID models had to be manually developed since the existent modeling
tools do not incorporate the extensions required to construct them. Thus, the
development of automated tools for the IMA-CID models is one of the research
lines we intend to further explore.

4 Applying the Instantiated Process

In this section we illustrate the application of the instantiated process for de-
veloping an educational module for the software testing domain. Based on the
instantiated process, we have conducted the following tasks:

– Determination of the current state of learning (Definition Process): This
task consists of identifying the lack of knowledge and skills observed when teach-
ing a certain topic. The main problems are identified based on the previous
experience of the instructor. Considering the testing domain, for instance, we
have identified problems related to the characterization of testing goals and lim-
itations, testing steps and phases, testing requirements, testing criteria, testing
tools, among others.

– Definition of learning goals and related skills (Definition Process): From
the problems and needs previously identified, the main goals to be reached by
using the module can be established. For the testing module, we intended to
provide a broad, deep view on the testing activity, addressing both theoretical
and practical aspects. The idea was to provide a good knowledge on the main
testing techniques, criteria and strategies, as well as skills on their practical
application by using testing tools.

– Definition of the module structure (Planning Process): This task consists
of identifying the materials that have already been developed for the subject
domain as well as other sources of information related to the topic. From this
investigation and from the learning goals previously identified, the module struc-
ture can be established. For software testing, besides the existent material we
had, we took into account the Computing Curricula of ACM [17] and the recom-
mendations of SWEBOK (Software Engineering Body of Knowledge) [16]. The
module was divided in 16 sub-modules, three of them designed for motivating,
illustrating and practicing the concepts addressed into the other sub-modules.
The module structure was defined in terms of a conceptual map. For the sake of
space, this structure is not presented here. Details can be found in [1].

512 E.F. Barbosa and J.C. Maldonado

– Establishment of the development team (Planning Process): The develop-
ment team of the testing module was composed by three members: (1) the
teacher of the testing course, acting as the domain expert as well as the in-
structor of the module; (2) a graduate student, performing the roles of project
manager, version manager, coordinator and developer; and (3) an undergraduate
student, acting as developer and technician.

– Determination of methodologies, standards and tools (Planning Process):
The methodologies, standards and tools adopted into the development of the
module should be in agreement with those established in the instantiated process.
So, as the development methods and techniques we selected ADDIE Model [11]
and IMA-CID approach. As the metadata standard we adopted IEEE LOM
(Learning Object Metadata) [18]. As the automated support, we adopted: Word,
PowerPoint, FrontPage, Visio, LaTeX, WebCT, Moodle, CoWeb, and e-Class.
Additionally to the authoring and educational tools, specific tools for the sub-
ject knowledge domain of the educational module were also considered. For the
testing domain, we chose Proteum [9], and PokeTool [8] as the testing tools to be
adopted. The main goal was to enable the application of basic testing concepts
in realistic situations, fostering training scenarios and promoting exchange of
technology between industry and academia.

– Audience analysis (Development Process): This task consists of determin-
ing the target audience for the module under development. The audience of the
testing module is composed by graduate and undergraduate students, as well as
professionals from industry. Although each group of learners can require different
ways for presenting and navigating through the module, the content is essentially
the same. So, the module should be as flexible as possible in order to be suitable
to different profiles without having to modify its structure significantly. As pre-
requirements for the testing module, the learners should have basic knowledge
on data structures and programming languages, as well as general knowledge on
software development techniques, methodologies and paradigms. Also, the learn-
ers must be motivated for doing practical assignments in cooperation with other
students, for presenting and discussing their ideas using collaborative tools, and
for researching related topics on the web.

– Content modeling (Development Process): This task consists of modeling
the content related to the educational module. In Section 4.1 we specifically
address the content modeling by applying the IMA-CID approach.

– Interface design (Development Process): This task consists of specifying and
designing the module interface. In our project, we adopted the ADV’s (Abstract
Data Views) proposed as part of the OOHDM Model [23]. The dynamic aspects
of the module were specified by means of ADV Charts, representing the trans-
formations at the interface level and their impact on presenting the information
items and instructional elements.

– Implementation, integration and testing (Development Process): The imple-
mentation and integration tasks consist of translating the content models and
the interface previously designed to an implementation environment in order to
construct the educational module. The testing module was developed according

Specialization and Instantiation Aspects of a Standard Process 513

to the characteristics of open specification/implementation [2], by using general
editing tools, as established by the instantiated process. Concepts, facts, prin-
ciples, procedures, examples and exercises were modeled and implemented as a
set of slides, integrated to HTML pages, text documents, learning environments
and testing tools. Regarding the testing task, the module was evaluated accord-
ing to the following perspectives: (1) standard verification, checking the module
against the interface standards established; (2) editorial verification, checking
the module against grammar errors; and (3) functional verification, checking the
module against logical errors through the navigation.

– Delivery (Delivery Process) and Identification of problems and improve-
ments (Delivery Process): These tasks consist of applying and evaluating the
produced module. As a result, it is possible to determine the module strengths
and weaknesses, identifying the needs for further improvements. In Section 4.2
we discuss the preliminary evaluations we have conducted on the testing module.

4.1 Content Modeling

IMA-CID was applied as part of the development of the educational module for
software testing. The IMA-CID models were constructed for each one of the 16
sub-modules that composes the module. For the sake of space, here we focus on
the didactic model, named HMBS/Didactic, developed for a particular subject
of the testing techniques sub-module – the mutation analysis criterion [10].

HMBS/Didactic is based on the HMBS (Hypertext Model Based on State-
charts) Model [26]. In short, HMBS uses the structure and execution semantics
of Statecharts to specify both the structural organization and the browsing se-
mantics of hyperdocuments. Figure 3 illustrates part of the HMBS/Didactic1 . It
corresponds to an open specification, in which all possible sequences of presen-
tation among the modeled objects are represented. Aiming at representing open
specifications, we extended HMBS with the notion of DD (Dynamically Defined)
states. Basically, all OR substates of a DD state (ORDD) are totally connected
to each other, i.e., from any substate of a DD state X, we can reach all other
substates of X. For the sake of legibility, transitions and events are implicitly
represented. We also established an hierarchy of DD -superstates – leaving a DD
state X can active the ORDD states from the hierarchy of DD -superstates of X.

Consider, for instance, the MutationAnalysisDetails state. By exploring
the notion of DD states, the MutationAnalysisDetails substates (ORDD

states) – MutantOperator, MutantGeneral, MutationScore, Application and
ApproachesGeneral – are all connected to each other by implicit transitions,
which are responsible for establishing the navigation paths among them. From
MutantOperator we can get to the states MutantGeneral, MutationScore,
Application and ApproachesGeneral (and vice versa). Similarly, consider the
Mutant state. From Mutant we are able to get to MutantClassification (and
vice versa). Actually, both states are substates of MutantGeneral (DD state)
and, therefore, they are connected to each other by means of implicit transitions.

1 Explanatory and exploratory were not considered.

514 E.F. Barbosa and J.C. Maldonado

Fig. 3. Didactic Model / Slides for Mutation Analysis: Open Specification

We can also explore the idea of an hierarchy of DD -superstates. For in-
stance, consider the sequence (MutantGeneral, MutationAnalysisDetails,
MutationAnalysisGeneral, ErrorBasedTechnique, TestingTechnique, Soft-
wareTesting TheoryPractice) as the hierarchy of DD -superstates of the
Mutant state. According to this hierarchy, from Mutant we can reach all
ORDD states of MutationAnalysisDetails. To define the full set of states
we can reach from Mutant, the same analysis should be carried out for all
states of the hierarchy of DD -superstates of MutantGeneral. Notice that we can-
not get to the states AlternativeApproaches and ApproachesClassification
from the Mutant state. Indeed, ApproachesGeneral does not pertain to the hi-
erarchy of DD -superstates of Mutant.

Besides the open specification, a partially open specification and a close spec-
ification were also considered in order to define the didactic model for mutation
analysis. Basically, in a partially open specification, while some sequences of pre-
sentation can be established in “execution time”, others are previously defined
by the domain expert and/or the instructor during the development of the mod-
ule. Indeed, instead of having just implicit transitions, the idea is to make some
of them be explicitly represented in the didactic model. On the other hand, in
a close specification all sequences are predefined, that is, just a fixed sequence
of presentation is available in the module. In this case, the transitions would be
explicitly represented.

Notice the sequences of presentation derived from partially open specifica-
tions and from close specifications represent subsets of the total set of sequences
established by an open specification. The decision on which kind of specification
to use should be based on the users (learners and instructors) as well as on the
expected characteristics of the module. For instance, one strength of open speci-
fications is the flexibility to navigate the material according to the feedback and
questions of the audience. On the other side, the instructor has to make sure

Specialization and Instantiation Aspects of a Standard Process 515

to achieve the objectives of the lessons in order to keep the learners localized.
Indeed, while for less experienced instructors a close specification (and imple-
mentation) seems to be the better choice, for the most experienced ones, an open
specification would be an adequate alternative too.

4.2 Evaluating the Educational Module for Software Testing

Figure 4 shows the main components of the testing module and their integration.
The module was produced by applying the instance of the standard process we
have defined. The content was modeled according to the IMA-CID approach.

Fig. 4. Educational Module for Software Testing

To provide a preliminary evaluation on the effectiveness of the testing mod-
ule, it was applied as part of a three-hour short-course on software testing for a
group of about 60 undergraduate students with previous knowledge of software
engineering. We focused on theoretical aspects of software testing, providing an
introductory perspective on the subject. Practical aspects were illustrated but,
due to time constraints, there was no direct participation by the audience on
using any of the materials. The effects of our approach were informally evalu-
ated by applying a voluntary survey to the students after they had finished the
course. The survey covered the students’ attitude toward: (1) content, regarding
the concepts, additional information, examples and exercises used in the module;
(2) usability, in terms of the interface of the module; (3) navigational aspects;
and (4) general aspects about the module. In general, we could observe a positive

516 E.F. Barbosa and J.C. Maldonado

attitude toward the flexibility provided by the produced module. Furthermore,
instructor’s responses were also observed by his comments after using the mod-
ule. The possibility of having defined the sequences of navigation through the
module during the “execution time”, based on the learner’s understanding and
feedback, was a significant point highlighted.

We also applied the testing module in two one-semester undergraduate courses
at ICMC/USP. The main goal of both courses were to explore the fundamentals
of V&V. The module was delivered in expositive classes, exploring the theoret-
ical aspects of testing activities and related supporting tools. At the end of each
class, practical exercises were proposed. Aiming at evaluating the module, we have
replicated an extended version of the Basili & Selby experiment [6], originally used
for comparing V&V techniques, now considering the educational context. The ex-
periments in each course involved 36 (9 teams) and 52 (13 teams) students, re-
spectively. The results were mainly analyzed in terms of the students’ ability and
uniformity on: (1)detecting existent faults; (2) generating test cases; and (3) cover-
ing the test requirements. They gave us very preliminary evidences on the learning
effectiveness provided by the module produced. Details can be found in [5].

The results obtained so far provide some evidences on the practical use of
the standard process and the IMA-CID approach as supporting mechanisms to
the development of effective educational modules. However, it is important to
conduct more systematic and controlled experiments to validate our ideas. Such
experiments have already been planned for the next term, involving different
courses on software testing, offered to graduate and undergraduate students at
ICMC/USP as well as to professionals from local industries. Both students and
instructors’ attitudes toward the module should be evaluated.

5 Conclusions and Further Work

The main contribution of this paper is to motivate the use of systematic processes
and modeling mechanisms for creating well-designed, highly flexible and config-
urable educational modules. Such modules would provide: (1) effective support
to traditional learning approaches; (2) effective support to non-traditional envi-
ronments, motivating the transition from lecture-based to active learning; and
(3) transferability to different institutions and learning environments.

Process specialization and instantiation have been explored in order to apply
the standard process we have proposed into specific learning environments and
organizations. Indeed, changes in organizational procedures, educational para-
digms and principles, learning requirements, development methods and strate-
gies, as well as the size and complexity of the projects, among other aspects,
impact the way an educational module should be produced. To be adopted in
particular projects, the process should be defined case by case, considering spe-
cific features of each project. As a result, processes into different levels of ab-
straction are defined. The main aspects of the standard process instantiation and
specialization as well as its application for developing an educational module for
the software testing domain were discussed.

Specialization and Instantiation Aspects of a Standard Process 517

As a further work, we intend to focus on the development of educational
modules to be applied in non-traditional environments, motivating the transition
from lecture-based to active learning. The input of learners in the very early
stages of the module development, similarly to the participative approach in
software development, is another point to be further investigated. Particularly for
the testing domain, the availability of distance learning facilities and testing tools
would promote better learning and dissemination conditions to the practical
evaluation and application of testing strategies, both in academia and industry.

We are also motivated to keep evolving and evaluating the mechanisms we
have proposed in future offerings of testing courses. We are now working on the
development of an educational module for the integrated teaching of testing and
programming foundations in introductory Computer Science courses [4]. The
idea is to gradually introduce the testing fundamentals while the programming
concepts are being taught to the students. Since the proposed mechanisms can
be applied to different domains, we are also interested in using them to develop
and evaluate educational modules for other areas and broader projects.

At the very end, we intend to establish a culture for “open educational mod-
ules” so that the use and evolution of them by a broader community would be
better motivated and become a reality. The existence of a well-defined process
to systematize the development of educational modules and, at the same time,
flexible enough to be adaptable to different knowledge domains and development
teams, is a relevant issue to be addressed in crossing international, cultural and
social borders in order to prepare the learners to be successful in a global market,
with diverse groups of people.

References

1. Barbosa, E.F.: Uma Contribuição ao Processo de Desenvolvimento e Modelagem
de Módulos Educacionais. PhD thesis, ICMC-USP, São Carlos, SP (March 2004)
(in Portuguese)

2. Barbosa, E.F., Maldonado, J.C.: An integrated content modeling approach for edu-
cational modules. In: IFIP 19th World Computer Congress – International Confer-
ence on Education for the 21st Century, Santiago, Chile, pp. 17–26 (August 2006)

3. Barbosa, E.F., Maldonado, J.C.: Towards the establishment of a standard process
for developing educational modules. In: 36th Annual Frontiers in Education Con-
ference (FIE 2006), San Diego, CA, p. 6. CD-ROM (October 2006)

4. Barbosa, E.F., Silva, M.A.G., Corte, C.K.D., Maldonado, J.C.: Integrated teaching
of programming foundations and software testing. In: 38th Annual Frontiers in Edu-
cation Conference (FIE 2008), Saratoga Springs, NY, p. 6 (October 2008) (to appear)

5. Barbosa, E.F., Souza, S.R.S., Maldonado, J.C.: An experience on applying learning
mechanisms for teaching inspection and software testing. In: 21st Conference on
Software Engineering Education and Training (CSEET 2008), Charleston, SC, pp.
189–196 (April 2008)

6. Basili, V., Selby, R.W.: Comparing the Effectiveness of Software Testing Strategies.
IEEE Transactions on Software Engineering SE-13(12), 1278–1296 (1987)

7. Brotherton, J.A., Abowd, G.D.: Lessons learned from eClass: Assessing automated
capture and access in the classroom. ACM Transactions on Computer-Human In-
teraction 11(2), 121–155 (2004)

518 E.F. Barbosa and J.C. Maldonado

8. Chaim, M.L.: PokeTool – Uma ferramenta para suporte ao teste estru-
tural de programas baseado em análise de fluxo de dados. Master’s thesis,
DCA/FEEC/UNICAMP, Campinas, SP (April 1991) (in Portuguse)

9. Delamaro, M.E., Maldonado, J.C., Mathur, A.P.: Interface mutation: An approach
for integration testing. IEEE Transactions on Software Engineering 27(3), 228–247
(2001)

10. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for
the practicing programmer. IEEE Computer 11(4), 34–43 (1978)

11. Dick, W., Carey, L., Carey, J.O.: The Systematic Design of Instruction, 5th edn.
Longman (2001)

12. Dieberger, A., Guzdial, M.: CoWeb – experiences with collaborative web spaces.
In: Lueg, C., Fisher, D. (eds.) From Usenet to CoWebs: Interacting with Social
Information Spaces. Springer, Heidelberg (2003)

13. Downes, S.: Learning objects: Resources for distance education worldwide. Inter-
national Review of Research in Open and Distance Learning 2(1) (July 2001)

14. Edwards, S.H.: Improving student performance by evaluating how well students test
their own programs. Journal on Educational Resources in Computing 3(3), 24 (2003)

15. Goldberg, M.W., Salari, S., Swoboda, P.: World Wide Web - Course Tool: An
environment for building WWW-based courses. Computer Networks and ISDN
Systems 28(7–11), 1219–1231 (1996)

16. IEEE Computer Society. Guide to the Software Engineering Body of Knowledge:
Trial version (1.0) (May 2001), http://www.swebok.org/

17. IEEE Computer Society and Association for Computing Machinery. Computing
Curricula – Computer Science Volume, Final Report (December 2001),
http://www.computer.org/education/cc2001/

18. IEEE Learning Technology Standards Committee. Learning Object Metadata
(LOM) (June 2002)

19. John, W.C., Toto, R., Lim, K.Y.: Introducing Tablet PCs: Initial results from the
classroom. In: 36th Annual Frontiers in Education Conference (FIE 2006), San
Diego, CA, p. 6. CD-ROM (October 2006)

20. Maidantchik, C.L.L., Rocha, A.R.: Managing a worldwide software process. In:
Workshop on Global Software Development – International Conference on Software
Engineering (ICSE 2002), Orlando, FL (May 2002)

21. Mayorga, J.I., Verdejo, M.F., Rodŕıguez-Artacho, M., Calero, M.Y.: Domain mod-
elling to support educational web-based authoring. In: TET 1999 Congress, Norway
(June 1999)

22. Moodle, D.G.: Moodle – a free, open source course management system for online
learning (2006), http://moodle.org/

23. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Communi-
cations of the ACM 38(8), 45–46 (1995)

24. Shepard, T., Lamb, M., Kelly, D.: More testing should be taught. Communications
of the ACM 44(6), 103–108 (2001)

25. Simão, A.S., Ambrósio, A.M., Fabbri, S.C.P.F., Amaral, A.S., Martins, E., Mal-
donado, J.C.: Plavis/FSM: an environment to integrate FSM-based testing tools.
In: XIX Simpósio Brasileiro de Engenharia de Software (SBES 2005) – Sessão de
Ferramentas, Uberlândia, MG, pp. 1–6 (October 2005)

26. Turine, M.A.S., Oliveira, M.C.F., Masiero, P.C.: Designing structured hypertext
with HMBS. In: VIII International ACM Hypertext Conference (Hypertext 1997),
Southampton, UK, pp. 241–256 (April 1997)

http://www.swebok.org/
http://www.computer.org/education/cc2001/
http://moodle.org/

A Formal Framework for Modeling

Context-Aware Behavior in Ubiquitous
Computing

Isabel Cafezeiro1, José Viterbo2, Alexandre Rademaker2,
Edward Hermann Haeusler2, and Markus Endler2

1 Departamento de Ciência da Computação
Universidade Federal Fluminense

Rua Passo da Patria, 156 - Bloco E - 3 andar, Boa Viagem
24210-240 – Niterói – Brasil

2 Departamento de Informática
Pontif́ıcia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente 225, Gávea
22453-900 – Rio de Janeiro – Brasil

Abstract. A formal framework to contextualize ontologies, proposed
in [3], provides several ways of composing ontologies, contexts or both.
The proposed algebra can be used to model applications in which the
meaning of an entity depends on environment constraints or where dy-
namic changes in the environment have to be considered. In this article
we use this algebra to formalize the problem of interpreting context in-
formation in ubiquitous systems, based on a concrete scenario. The main
goal is to verify, on one hand, how the formal approach can contribute
with a better understanding of the fundamental concepts of ubiquitous
computing and, on the other hand, if this formal framework is flexible
and rich enough to adequately express specific characteristics of the con-
crete application domain and scenario.

1 Introduction

In the last years, Ubiquitous Computing has been the focus of much research,
most of which in topics related to system’s development. Despite that, until
now, very few works can be found on formal models for this area, where the
main challenge is to precisely model — and reason about — the interactions
between a system and its environment, and the fact that this environment can
change in unpredictable ways.

In particular, context-awareness, i.e. the ability of applications to detect
changes in their environment and to adapt their behavior accordingly, has soon
become the paramount programming paradigm for such systems. As a conse-
quence, more recently, many researchers have attempted to define, classify or
model the notions of context and context-awareness. Nevertheless, most of these
definitions are informal and thus lack a solid, mathematical foundation. There-
fore, according to several authors [1,5], there is still demand for a comprehensive

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 519–533, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

520 I. Cafezeiro et al.

formal framework for understanding and working with ubiquitous and context-
aware computing.

For such a framework to be useful, however, it should ideally: (a) closely re-
flect the intrinsic characteristics of ubiquitous systems, clearly describing their
relevant issues, and (b) provide means of describing (and solving) concrete appli-
cation problems by allowing a suitable interpretation adaptated from the results
of the underlying theory.

In [3] we have proposed a formal framework to contextualize ontologies, pro-
viding several ways of composing ontologies, contexts or both. This algebra is
suitable for modeling applications in which the meaning of an entity depends on
environment constraints or where dynamic changes in the environment should be
considered. It emphasizes the relationships of contexts with entities — consider-
ing that contexts are essential to assign meaning to entities — and supports new
forms of representing context for applications that consider dynamic changes of
the environment. In this article we use this algebra to formalize the problem of
interpreting context information in ubiquitous computing systems.

Through this experiment we intend to show not only how the formal approach
may contribute with a precise understanding of the concepts and fundamental
problems of a specific application domain, but also, how a concrete applica-
tion domain can be used to assess the flexibility and expressiveness of a formal
language. We believe that this is essential for reducing the gap between the theo-
retical framework and its possible applications, and for validating its mechanisms
in a concrete and complex application domain.

The formal framework considered here is founded in Category Theory [4,8].
Along this article, though, we avoided the use of the categorical terminology,
preseting concepts in an informal way. In [2] and [3] the reader can find the
formalization of the algebra and associations between categorical concepts and
the ontology terminology.

This article is organized as follows. In Section 2 we describe other efforts to
formalize ubiquitous and context-aware systems. In Section 3 we discuss the
algebra of contextualized ontologies. In Section 4 we describe ubiquitous en-
vironments and present a specific scenario. In Section 5 we apply the algebra
to formalize the ontologies discussed in this scenario. Finally, in Section 6 we
present our conclusions.

2 Related Work

In the last few years, some research has been undertaken towards formalizing
ubiquitous and context-aware computing. Roman et al [6,10] have proposed Con-
text UNITY, a dialect of Mobile UNITY with constructs that allow the reasoning
about the manipulation of context, as well as the interaction of systems with the
context. Their goal was to specify applications that use flexible mechanisms for
defining individual contexts, which are transparently maintained as the envi-
ronment evolves. In their approach, context is defined from the perspective of
each component and hence, not every component sees the same context. On one

A Formal Framework for Modeling Context-Aware Behavior 521

hand, the variable-assignment-notation of Context UNITY — used to express
context definitions and resolutions — is quite expressive, but on the other hand,
it is quite complex to be used for larger and more sophisticated context-aware
applications.

A completely different approach is pursued in [15], where the authors present
an extension of the classical action system formalism with the notion of context.
In their formalism it is possible to prove some system properties using standard
action system proof techniques. What the authors call a Context-Aware Action
System is built from a parallel or prioritized composition of simpler action system
components, where the context dependency of each component is expressed as a
collection of relations that constrain when the computation of the component can
take place, and how its internal actions are affected by the context variables. By
applying their formalism in two small — but concrete — context-aware examples
(i.e. a reminding and a messaging service), they show that their formal framework
can be helpful to modularly describe systems and infer some simple context-
aware properties.

Birkedal et al [1] investigated the modeling of context-aware systems using
Bigraphical Reactive System (BRS) Models (i.e. graphical models of mobile com-
putation that emphasize both locality and connectivity and a set of reaction rules
that rewrite bigraphs to bigraphs. According to the authors, the main goals of
the theory of Bigraphical Reactive Systems are to model ubiquitous systems on
one hand, and to be a meta-theory encompassing existing calculi for concurrency
and mobility (such as CCS, π-calculus) on the other hand. Hence, this work tried
to push forward the first goal. Interestingly, however, the main finding was that
naively modeling context-aware systems as BSRs is very complex and awkward.
Instead, they have proposed a model named Plato-graphical model, where the
system’s perceived context and the actual context are represented as distinct but
overlapping BRSs. Using their formalism they described a simple location-aware
printing service, and concluded that the resulting model was very well suited for
modeling the location-aware systems.

Our proposal differs from Context UNITY, but can serve as a model for the
later. In fact, UNITY has a precise Category Theoretic based semantics that
fits quite well in our approach and allows a better comparison between the ap-
proaches. While Context UNITY puts the context information inside the speci-
fication (by means of the context section), our approach maps the specification
into each of the environments listed in this very context section. Therefore, one
can say that our approach is structurally and semantically richer than Context
UNITY. On the other hand, the approach using Context-Aware Action System
is more related to the way current context-aware systems are designed, i.e. in
which some of their actions are triggered, or inhibited, by specific conditions of
the environment. Hence, this approach is much more related to an operational
view of systems (e.g. syncronous composition on sequential processes) than ours,
but which can be adequately interpreted as categorial co-limits induced by the
actions alphabet. Finally, the approach based on Bigraphical Reactive Systems,
as long as it serves as a model for process algebras in a true-concurrency style of

522 I. Cafezeiro et al.

semantics, can be regarded as being at a similar level of abstraction as ours. How-
ever, since the bigraphical representation model seems to lack compositionality,
we believe that our approach is more adequate for modeling complex systems.

3 The Algebra of Contextualized Ontologies

The algebra of contextualized ontologies is designed for applications in which
additional information is required in order to describe an entity. This informa-
tion, that we call context, may be some kind of meta-data or any information
related to — but not particular to — that entity. This is the case of ubiquitous
computing applications [14]. Under this paradigm, information concerning ei-
ther physical or computational environment is a relevant part of the application.
Besides, the overall information available for an application — i.e. the context
where it is imersed — constantly suffers dynamic changes.

This algebra is based on two basic features: (i) a uniform representation of
entities and context and (ii) the emphasis on the relationship. Concerning (i),
we use ontologies for representing both entities and contexts. This enhances the
flexibility of the framework avoiding to determine a priori the role of an ontology:
an ontology may represent an entity, a context or even both an entity and a
context. Concerning (ii), the framework puts the focus on the relationship among
the components of a systems and not on the components themselves. In this way,
the internal constitution of an entity is hidden, and descriptions are built in a
modular and reusable way. The benefits of emphasising relationships are similar
to those well known in systems constructions since the 70’s: Every module (...)
is characterized by its knowledge of a design decision which it hides from all
others. Its interface or definition was chosen to reveal as little as possible about
its inner workings [9]. The combination of (i) and (ii) makes possible the reuse
of descriptions in a wide sense. Also, as it is the relationship that determines, at
any time, the role of an ontology as entity or context the meaning of the subject
being described is given by a net of relationships, what enables more accurate
descriptions.

3.1 Contextualized Ontologies

By ontology we refer to a structure composed by concepts organized in a taxon-
omy, relations that determine non-taxonomical relationships, and logical axioms
that set restrictions among relationships. The axioms are given in some expres-
sive language whose model-theoretic semantics provides meaning.

Contextualized Ontologies are described as structures that persist a link be-
tween two ontologies. The source of the link is the entity and the target is the
context. By structure preserving we mean that the context respects the hierar-
chical structure and the ontological relations of the entity. In other words, the
entity is coherent with respect to its context. Formally, this means that if an
ontology O has a relation f(c1, c2) where c1, c2 are concepts of the ontology.
Then a link F : O → O′ from O to a context O′ is such that F (f(c1, c2)) =
F (f)[F (c1), F (c2)].

A Formal Framework for Modeling Context-Aware Behavior 523

Fig. 1. (A) Entity Integration. (B) Context Integration. (C) Relative Intersection. (D)
Collapsed Union.

In order to avoid violating internal constitution of entities, few constraints
must be stated about links: (i) there is an identity link for any entity or context,
that maps the entity/context to itself. Thus the entity may be viewed as a (non-
informative) context of itself; (ii) an entity is called domain of a link, while a
context is called codomain of a link; (iii) links can be composed in an associative
way if the codomain of the first is the domain of the second. The notation of a
triple (entity, link, context), also represented by e→ c, will be used any time we
want to identify the ontologies that act as entity or context in a contextualized
ontology. We will use the symbol “◦” to denote the associative composition of
contextualized ontologies.

In the sequel we present modular constructs that can be applied to contex-
tualized entities, in order to coherently combine entities, contexts or both. We
divide the operations in three classes: Entity Integration, Context Integration
and Combined Integration. We use the term “component” to refer to concepts
or relations of ontologies1.

Entity Integration. (Fig. 1-A) Operations in this class have the purpose of
integrating entities (E1 and E2) that share the same context:E1 → CMed ←
E2. As entities are coherent with respect to their context, the integration has
the context as mediator. The result is a new entity (E) contextualized by the
original ones (and by transitivity, by the original context CMed). The entity
integration performs the semantic intersection of the entities under the mediation
of the context, that is, the new entity will embody all, and nothing more than,
information of the original entities that is mapped in the same component of the
context.

Context Integration. (Figure 1-B) These operations consider situations where
a single entity EMed has more than one context (C1 and C2) : C1 ← EMed → C2.
The context integration produces a new context C1 → C ← C2 that combines
1 The reader aware of Category Theory will note that in the following discussion one is

considering a category of Ontologies O and the operations just described correspond
to limits and colimits taken in O itself and O→ respectively.

524 I. Cafezeiro et al.

information of the original context preserving the coherence with the entity.
This operation can be used in situations where a single entity can be viewed in
many ways, according to the considered context. The integration performs the
amalgamated union of contexts, collapsing components that are images of the
same component in the original entity.

Combined Integration. This class of operations embodies two subclasses:
relative intersection and collapsed union. They consider the need to integrate the
contextualize ontology as a whole, whithout making distintion between entity or
context.

Relative Intersection. (Figure 1-C) Is the intersection of two contextualized
ontologies mediated by a third contextualized ontology. It produces a new con-
textualized ontology having just the components of the originals that are mapped
in the mediator.

Collapsed Union. (Figure 1-D) Is the amalgamated union of two contextual-
ized ontologies mediated by a third contextualized ontology. It produces a new
contextualized ontology having all components of the original but collapsing
those components of the original that are image of the same component of the
mediator.

4 Ubiquitous Computing

Ubiquitous computing is a particularly interesting and challenging domain for
applying the formal algebra described in Sect. 3. In the vision of ubiquitous
computing, computer systems will seamlessly be incorporated into our every-
day lives, providing services and information anytime and anywhere [14]. Com-
pared to traditional distributed systems, ubiquitous systems feature increased
dynamism and heterogeneity. The underlying ubiquitous computing infrastruc-
tures are more complex and bring into the foreground issues such as user mo-
bility, device disconnections, join and leave of devices, heterogeneous networks,
as well as the need to integrate the physical environment with the computing
infrastructure [7].

As a fundamental requirement, ubiquitous applications must be capable of
responding to dynamic changes in their environments with minimal human in-
terference. Users should be able to take full advantage of the local capabilities
within a given environment and be able to seamlessly roam between several en-
vironments, despite variations of the computing and communication resources’
availability (e.g. available wireless bandwidth, residual energy, location-specific
services, etc). Hence, ubiquitous computing systems strongly rely on context
data, which is used to trigger adaptations at different levels, such as at commu-
nication protocols, middleware services, or the user interface.

In ubiquitous systems, ontology has been widely adopted for representing con-
text information. The use of ontologies has not only the advantage of enabling

A Formal Framework for Modeling Context-Aware Behavior 525

the reuse and sharing of common knowledge among several applications [11],
but also of allowing the use of logic reasoning mechanisms to deduce high-level
contextual information [13]. In the following subsection we describe a simple
scenario, which illustrates the use of context in a ubiquitous environment, and
highlights some concepts such as location-specific context, reasoning, heteroge-
neous contexts and semantic mediation. The numbers in italics between brackets
are used to identify situations that will be further referred in Sect. 5.

4.1 Scenario

We consider two universities in Brazil, for instance, PUC-Rio and UFF, which
are collaborating in some research projects, e.g. the UbiForm Project. Silva is
a professor and researcher who works at the CS Department of PUC-Rio, and
is also participating in the UbiForm Project. Silva carries with him his smart
phone, which host some context-aware applications that respond to different
situations, according to his preferences and to environment conditions.

When he arrives at PUC-Rio, an Ambient Management Service (AMS) regis-
ters his smart phone (SMPSilva) and detects that it belongs to him. The system
verifies that Silva works there as a professor and sets his workspace (1). This
service also informs other members of Silva’s team about Silva’s arrival (2).
A Personal Agenda application running on SMPSilva contacts the context in-
frastructure with a request to be notified about the beginning of each event
involving the whole project team, based on the project schedule and the loca-
tion (3). Another application on SMPSilva, a Configuration Management Service
(CMS), requests to be notified whenever Silva is in a room in which an activity
(e.g. a technical presentation, a brainstorm session) has started, so that it may
set the smart phone to blocked mode, and as soon as the activity ends, switch
it back to the ring mode. But if Silva’s wife sends him a message during the
meeting, the phone should vibrate, so that he can discreetly check the message’s
subject (4).

From this example, we may see that the ubiquitous services described above
rely on a wide variety of context information to trigger their actions. While
the Ambient Management Service and the Personal Agenda must be aware of
the context information that describes Silva’s role and location in the organiza-
tion, the Configuration Management Service also takes into consideration Silva’s
personal preferences. Thus, to be able to apply the rule described, we notice that
the context that fully describes the user Silva comprises not only the context
that describes his role at PUC-Rio (location of Silva and his device in the organi-
zation), or in the UbiForm Project (schedule of activitues), but also the context
that describes Silva’s personal preferences and features (the one calling is Silva’s
wife). When Silva is at home or somewhere else — e.g. at an Airport (5) —,
the Configuration Management Service will be imersed in an different overall
context. In such cases, formalization may help to describe and understand how
different contexts form a specific combined view.

Now supposing that Silva is visiting UFF with several other researchers and,
as usually, he carries with him his smart phone running the same context-aware

526 I. Cafezeiro et al.

services. Their purpose is to have joint workshops about the collaboration
project. When Silva arrives at UFF, the Wi-Fi and GPS enabled SMPSilva

connects to the network, and using the current GPS data, queries a location
service to find out that its owner (Silva) is at UFF (6). It then determines that
this university is a partner institution of PUC-Rio; obtains the IP address of the
AMS at UFF and registers with it, indicating the user’s identity and preferences.
The Ambient Management Service registers SMPSilva and identifies that the de-
vice belongs to Silva, a visiting professor from PUC-Rio. The system verifies that
Silva is involved with the collaboration project and sets a workspace for him (7).
Notice that when the Personal Agenda and the Configuration Management Ser-
vice interact with the Ambient’s local context provider at UFF, although Silva is
identified as a visitor at that institution, he can still be perceived as a professor
from PUC-Rio. Hence, supposing that only professors can have access to printers
at UFF, when setting Silva’s workspace, AMS will recognize this access permis-
sion and configure the printer setup utility at his operating system to use the
locally available printers (8). In addition to this, suppose that AMS would make
available to Professor Silva the publications of UFF which are related to his pro-
duction. For this, AMS should also be aware of Professor Silva’s production, i.e.
list of publications. Once more, we identify that one of the main requirements
of ubiquitous systems is the ability to adapt services/behaviors to the current
context view. Again, formalization may be useful to describe a relation between
different contexts in the form of a resulting aligned view.

5 Formalizing the Application

5.1 High Level Diagrams

In this section, we refer to the numbers that appear in Sect. 4.1 to draw high level
diagrams of the situations described in the scenenario. Consider that Silva, PUC,
UFF, UbiForm Project and Airport are ontologies that, describe, respectively,
personal information about Professor Silva, PUC-Rio and UFF administrative
organization, and information about the UbiForm Project and a given Airport.
These ontologies are not contextualized. Their contexts will appear as we proceed
in the construction of the formal model.

We start at (1), when the Ambient Management Service (AMS) registers
Professor Silva’s smart phone. This process concerns the integration of the on-
tologies Silva and PUC with respect to the smart phone of Professor Silva.
We construct a very simple ontology: SMPSilva to be contextualized in Silva
and PUC. This means that concepts and relations of SMPSilva will be linked
into correspondents of Silva and PUC, respecting the structure of the ontolo-
gies. SMPSilva will act as mediator of Silva and PUC in a context integration
Silva

AMS←− SMPSilva
AMS−→ PUC. The integration will result in a new ontology

that we will name SilvaAtPUC.
It will embody all components of Silva, all components of PUC, and will

have the images of concepts of the mediator SMPSilva collapsed. Operating in

A Formal Framework for Modeling Context-Aware Behavior 527

Fig. 2. Considering the ontologies of Professor Silva and PUC, AMS generates the
ontology SilvaAtPUC

Fig. 3. AMS integrates SMP of Silva with SMP of professors

this integrated context (SilvaAtPUC), AMS will have enough information to
identify the presence of Professor Silva at PUC (Fig. 2). A similar diagram can
be considered for each member of the project that is present at the moment.

Then, in (2), AMS informs other members of Silva’s team about his ar-
rival. Considering that, for any member Profi, a context integration Profi

AMS←−
SMPProfi

AMS−→ PUC hasbeengenerated, the entity integrationof eachSMPProfi

and SMPSilva under the context of PUC will make the connection among the
smart phones of the i professors of PUC and the smart phone of Professor Silva
(Fig. 3). The resulting entity will be composed by the smart phone of each
professor.

In (3), the Personal Agenda (PA) of Silva’s smart phone contacts the UbiForm
Project Agenda to be notified about scheduled activities. The entity integration
SMPSilva

PA−→ UbiFormProject
PA←− SMPProfi embodies the synchronization

of the professors’ agendas with respect to the UbiForm Project agenda. In the
resulting ontology the Personal Agenda can process information about events in
which all professors i and Silva take part (Fig. 4).

In (4) the Configuration Management Service (CMS) (running on SMPSilva)
requests the UbiForm Project Agenda to be notified when any activity is about
to start. AMS is aware of the location of Professor Silva at PUC, and hence of
his presence in a room where a project activity is taking place. It also considers

528 I. Cafezeiro et al.

Fig. 4. Personal Agenda of Silva’s smart phone contacts the UbiForm Project Agenda
to be notified about scheduled activities, and to be synchronized with the other pro-
fessor’s agends

Fig. 5. CMS considers personal information about Silva and his physical position at
the UbiForm

Silva’s personal information in order to properly configure his phone alarm.
This phone configuration could be represented by a rule — involving concepts
associated to different contexts — that would trigger an adaptation for the CMS
application:

Device(SMPSilva) ∧ isLocatedIn(?d,?r) ∧ inActivity(?r) ∧ PersonCalling(?p) ∧
isWife(?p,“Silva”) ⇒ setVibrate(SMPSilva)

A context integration UbiFormProject CMS←− SMPSilva
CMS−→ Silva results in

a context SilvaAtUbiForm which combines personal information about Silva
and the present UbiForm activity in which he is involved (Fig. 5). Similar sit-
uation occurs when Silva is somewhere else, e.g. as at the airport (5). The
context integration Airport CMS←− SMPSilva

CMS−→ Silva results in the context
SilvaAtAirport wherein the CMS can configure his phone alarm according to
his contextual preferences.

Later, Professor Silva is visiting UFF (6), where he is registered as a vis-
itor researcher. Within the context SilvaAtUFF that results from integra-
tion Silva

AMS←− SMPSilva
AMS−→ UFF , AMS can properly set the professor’s

workspace. But some of Silva’s permissions for the use of resources come from
the fact that he is a Professor at PUC (7). Thus, information about Silva’s

A Formal Framework for Modeling Context-Aware Behavior 529

Fig. 6. Each face of the cube shows a context integration. The cube can also be con-
sidered as the collapsed union of the contextualized entities UFF → SilvaAtUFF ,
PUC → SilvaAtPUC mediated by SMPSilva → Silva.

status at PUC must also be taken into account for setting access permissions
properly. The context integration UFF AMS←− SMPSilva

AMS−→ PUC generates a
context where AMS can find information about Silva as a PUC professor and as
a UFF visitor researcher in the joint project UFF/PUC (base square of Fig. 6).
The context integration SilvaAtUFF AMS←− Silva

AMS−→ SilvaAtPUC generates
a context where AMS can find not only information about Silva as a PUC
professor or as a UFF visitor researcher, but also personal information about
Silva (top square of Fig. 6). Note that Fig. 6 also pictures a combined integra-
tion: the collapsed union of the contextualized entities UFF → SilvaAtUFF ,
PUC → SilvaAtPUC mediated by SMPSilva → Silva.

5.2 A Zoom into Ontologies and Morphisms

Since a detailed description of the whole scenario would exceed the space limi-
tation of this paper, we selected only two diagrams of the previous subsection to
illustrate how this framework provides the required information to adapt services
or behaviors according to the context changes. First, we consider a situation in
which information coming one context enables decisions about an entity in a
different context. For instance, (8), Professor Silva is allowed to use the printer
at UFF as a consequence of the fact that, at PUC, he is a professor. AMS also
makes available to Professor Silva the publications of UFF which are related
to his production. The permission to print could be represented as a rule that
would set an access permission in a ubiquitous regulation service, such as in [12]:

Person(?p) ∧ worksAt(?p,“PUC-Rio”) ∧ playsRole(?p,“Professor”) ⇒
hasAccess(?p,“Printer”)

530 I. Cafezeiro et al.

Fig. 7. Alignment of UFF and PUC under the mediation of SMPSilva. The mediator
captures the fact that Silva is a professor and properly map this information in the
ontology of UFF.

Fig. 8. The context integration of the alignment of figure 7: the relation hasAc-
ces(Researcher, Printer) holds for Professor Silva and Printer and information about
Professor Silva’s production is avaiable

A Formal Framework for Modeling Context-Aware Behavior 531

Fig. 9. The alignment of SMP of Professor i and SMP of Professor Silva with respect
to the agenda of the UbiForm Project

Fig. 10. Integration of agendas: Silva and Professor i will be present at Event 2

Considering the base square of Fig. 6, the mediator SMPSilva of the context
integration UFF AMS←− SMPSilva

AMS−→ PUC must capture the fact that Silva is a
professor and properly map this information into the ontology of UFF. Figure 7
depicts the ontology for UFF and PUC and shows this alignment. Note that,
as the concept Professor at PUC is related to Researcher at UFF, the relation
hasAccess(?p,?d) will hold for Professor Silva and Printer in the resulting context
(in Fig. 8). Also, note that, in this resulting context information about Professor
Silva’s production is avaiable to be used by AMS. Secondly, we show how the
integration can filter information in order to affect just a selected set of entities.
We consider the situation (3), where the Personal Agenda of Silva’s smart phone
contacts the UbiForm Project Agenda to be notified about events.

532 I. Cafezeiro et al.

Diagram of Fig. 4 pictures this situation, showing the integration of SMP of
Professor i and SMP of Professor Silva under the context of the UbiForm Project.
Figure 9 shows the alignment of SMP of Professor i and SMP of Professor Silva
with respect to the context of the UbiForm Project. Figure 10 shows the resulting
entity, in which appears only the events that both take part.

6 Conclusions

In this article, we used an algebra of contextualized ontologies to formalize the
problem of interpreting context information in ubiquitous systems based on a
concrete scenario. The main goal was to verify not only the contributions of
this formal approach for better understanding of the fundamental concepts of
ubiquitous computing, but also the adequability, expressiveness and flexibility
of this approach to express specific characteristics of the concrete application
domain and scenario.

Before using a formal model, method or language for a specific problem do-
main, it is worth thinking about the expected benefits versus the required efforts
of this endeavor. In fact, formalization usually helps to develop a better under-
standing of the problem domain and its scope, as well as clearly define the major
concepts involved. Ontologies strongly contributes in this sense, enabling mod-
ular and reusable taxonomical descriptions and enhancing the expressive power
through the use of logic reasoning mechanisms. The algebra of contextualized
ontologies enforce these benefits, having modularity and reuse as fundamental
requirements, over which the operations to compose and decompose ontologies
are defined. In the algebra, the alignment of ontologies is naturally supported as
initial step of integration. As a result, the use of the algebra becomes very close
to the usual way of handling ontologies.

One should also be aware of the limitations and potential risks of applying
formal methods to a concrete problem. When we use a formal model for any
subject we always abstract from some issues or entities which apparently seem
less relevant. In real systems these issues might well have a significant impact on
the real system’s behavior, and should ideally be accounted for. Hence, whenever
we develop a formal model of a system, there is always a trade-off between the
model’s degree of realism, its complexity and its underlying set of applicable ba-
sic results. The possibility of adopting levels of abstraction, however, contributes
to reduce the gap between the formal approach and the real system. High level
diagrams considering just entities and contexts give an abstract view of formal-
izations. Ontologies and mappings come later, in refinement steps introducing
more details gradually.

References

1. Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models
of Context-aware Systems. Technical Report TR-2005-74, The IT University of
Copenhagen (November 2005)

2. Cafezeiro, I., Haeusler, E.H.: Semantic interoperability via category theory. In:
Conferences in Research and Practice in Information Technology, vol. 83 (2006)

A Formal Framework for Modeling Context-Aware Behavior 533

3. Cafezeiro, I., Rademaker, A., Haeusler, E.H.: Ontology and Context. In: Proceed-
ings of CoMoREA 2008, pp. 53–62 (2008)

4. Goldblatt, R.: Topoi: The Categorical Analysis of Logicser. Ser Studies in Logic
and the Foundations of Mathematics. North Holland, Amsterdam (1979)

5. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing ap-
plications: Models and approach. Pervasive and Mobile Computing 2(1), 37–64
(2006)

6. Julien, C., Payton, J., Roman, G.-C.: Reasoning About Context-Awareness in the
Presence of Mobility. In: Proc. of the 2nd Int. Workshop on Foundations of Coordi-
nation Languages and Software Architectures (FOCLASA 2003), Marseille, France
(September 2003)

7. Kindberg, T., Fox, A.: System software for ubiquitous computing. Pervasive Com-
puting Magazine (2002)

8. MacLane, S.: Categories for the Working Matematician. Springer, Berlin (1997)
9. Parnas, D.: On the criteria to be used in decomposing systems into modules. Com-

munications of the ACM (December 1972)
10. Roman, G.-C., Julien, C., Payton, J.: A Formal Treatment of Context Awareness.

In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp.
12–36. Springer, Heidelberg (2004)

11. Shehzad, A., Ngo, H.Q., Pham, K.A., Lee, S.Y.: Formal modeling in context aware
systems. In: Proceedings of the First International Workshop on Modeling and
Retrieval of Context (September 2004)

12. Viterbo, J., Endler, M., Briot, J.-P.: Ubiquitous service regulation based on dy-
namic rules. In: Proceedings of the 13th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS 2008), Belfast, pp. 175–182.
IEEE Computer Society Press, Los Alamitos (2008)

13. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context model-
ing and reasoning using OWL. In: Proc. of 2nd IEEE Conf. Pervasive Computing
and Communications (PerCom 2004), Workshop on Context Modeling and Rea-
soning, Orlando, Florida, March 2004, pp. 18–22. IEEE Computer Society Press,
Los Alamitos (2004)

14. Weiser, M.: The computer for the twenty-first century. Scientific American 265(3),
94–104 (1991)

15. Yan, L., Sere, K.: A Formalism for Context-Aware Mobile Computing. In: Proceed-
ings of the IEEE 3rd International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks (HeteroPar), Cork, Ireland (July
2004)

Contexts and Context Awareness in View of the

Diagram Predicate Framework

Uwe Wolter1 and Zinovy Diskin2

1 Department of Informatics, University of Bergen, Norway
2 Department of Computer Science, University of Toronto, Canada

Abstract. The paper presents a formal model of entities and of con-
texts with entry points, and a formal description of the scenarios an entity
enters a context and an entity works in a context. Our model is defined
within the Diagram Predicate Framework and therefore is automatically
generic since any instantiation of the framework results in a special mod-
eling technique including schema-based, graph-based, object-oriented or
ontology-based techniques.

1 Introduction

Inter-operation and integration of systems (electronic devices, communication
networks, software applications and users) built on different platforms and prin-
ciples is a major problem in ubiquitous context-aware computing. Precise mod-
eling of interfaces and communication protocols of these components, and the
architectures of systems built from the component, is a key to approaching the
problem. Importance of modeling is well recognized by the community, and many
modeling approaches were proposed – see, for example, the survey [SLP04], where
the modeling approaches are classified by the data modeling language used for
specifying contextual information. In more detail, the following groups are dis-
tinguished: Key-value pairs, Markup schemas, Graphical models like UML- or
ER-, or ORM-diagrams, Logic-based models and Ontology-based models. This
heterogeneity of modeling approaches is not accidental and reflects an extreme
heterogeneity of ubiquitous computing. However, a particular modeling language
L that is good and natural for some class of systems and applications can be
”foreign” for another class of systems and applications and hence does not facil-
itate effective design decisions for them. In addition, unfortunate consequences
of the situation when a community speaks different languages are well known for
a (very) long time. The problem calls for generic modeling techniques admitting
many different instantiations, and this is where the present paper is intended to
contribute.

The Diagram Predicate Framework (DPF) is a generic specification format
(still under development) aimed at and providing rigorous and formal foundations
for a variety of modeling techniques used in Software Engineering (SE), particu-
larly, encompassing those ones mentioned above. The underlying mathematical
theory is presented in [DW08], and its applications to conceptual modeling and

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 534–547, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Contexts and Context Awareness in View of the DPF 535

object-oriented design can be found in [DK03, Dis03, DED08] respectively. The
authors of the present paper are newcomers in the area of ubiquitous and context-
aware computing, and well recognize the danger of one more implementation of
the known pattern: “if you have a hammer (DPF in this case), then everything
is a nail”. Still we hope that our first attempt to approach the problems in the
area may be helpful for both sides and may open fruitful communication and
collaboration.

The paper is organized as follows. In section 2 we discuss the quidelines and
requirements for the formal model we need to build; it serves as an informal
motivation for the formalities to follow further. Section 3 combines an infor-
mal discussion and analysis of modeling techniques with a stepwise introduction
of the basic concepts of the DPF. A precise formal model of entities entering
a context is presented in Section 4. The final Section 5 summarizes what we
have gained so far and formulates some open problems and questions for future
research.

2 Entities and Contexts, I: An Informal Discussion

The starting point of our discussion is the following requirement specification
[End05]:

When a user enters a new context, it is desirable that the applications on
his devices be able to adapt to the new situation, and the environment
be able to adapt its services to the presence of the new user.

To make things not too complicated, we will not distinguish between “a user”,
“his devices”, and “an application on his devices”. We will just talk about “en-
tities”. We will also use the term “context” instead of “environment”.

By analyzing the requirement specification we can formulate the following
guidelines and requirements for the development of our formal model:

1. There is a kind of asymmetry: An entity is somehow “smaller” than a context.
Moreover, the context is a service provider for the entities, not the other way
round.

2. A context may be entered by different entities and there may be different
kinds of entities allowed to enter a context.

3. For each kind of entity there is a special package of services offered by the
context, and these services are only available after an entity has entered and
the services have been adapted to this entity.

4. A context is a system for its own, even if no entities have been entered the
context yet. We will refer to this system as the context kernel.

5. There are special points where an entity can enter a context. And for each of
those entry points it should be specified what kinds of entities are admitted
to enter the context at this point.

6. After an entity has successfully entered a context, a new system is established
integrating the context and the entity in a certain way. And this integrated
system offers adapted services for the entity.

536 U. Wolter and Z. Diskin

These considerations are schematically described by an informal diagram in
Fig. 1. In this diagram, nodes (clouds and ovals) denote complex structures
(think of UML- or ER-diagrams or FOL theories), and arrows are directed re-
lationships between them (think about mappings between the correspondign
structures).

Oval A represents the ”admission requirements” specifying what entities are
allowed to enter a context. Cloud C(P) denotes a context structure C with a
designated substructure P considered as a “place” where an entity will be placed
within the context after it got admission. Oval E is an entity and the existence of
an arrow m from A to E indicates that E satisfies the ”admission requirements”.
Cloud C + E with inserted entity structure denotes then the resulting system
”entity E working in context C at place P”.

φφ Context,
Admission,

Entity,

m φφ;m

Contex t with enti ty
placed,

Context,

Place,Place,
Admission,

Entity, Entity,Entity,

Fig. 1. Entities and contexts, informally

The goal of the rest of the paper is to make the diagram precise and formal.
That is, we need to define in a formal way what the structures (nodes) in ques-
tions are, and what the mappings (arrows) between them are. Importantly, we
aim at generic formal definitions of nodes and arrows (which can be instantiated
with different modeling formalisms mentioned above) rather than a particular
formalism. That is, we want to make the diagram in Fig. 1 a formal specifica-
tion pattern, which encompasses modeling formalisms employed in the area of
ubiquitous context-aware computing in a uniform way.

3 The Diagram Predicate Framework

The Diagram Predicate Framework (DPF) is based on Graph Theory and Cate-
gory Theory (CT). It borrows its main ideas from both categorical and first-order
logic, and adapts them to software engineering needs. Actually, it has emerged
as generalization and extension of the sketch formalism invented in CT in the
60s. Therefore we have used the term “generalized sketch framework” in earlier
and more theoretically oriented publications [Dis97, DK03, DW08]. However,

Contexts and Context Awareness in View of the DPF 537

since the term “sketch” is normally associated with an informal drawing rather
than a formal specification, lately we decided to use instead the term “Diagram
Predicate Framework”.

We are going to introduce, step by step, the basic concepts of our frame-
work and give their formal definitions. A few simple illustrating examples, and
additional formal details and results, can be found in [DW08].

3.1 The Syntax

To refer to things like “a UML class diagram”, “an ER-diagram”, “a database
scheme”, “an ontology”, . . . , we will use the term model. Let us start by asking:
What is a model? How can we define the concept of model in a generic formal
way?

The first observation is that all these models are (or at least can be) graphi-
cally presented by one or another kind of “diagram”. The basic components of
those “diagrams” are nodes and arrows. Thus we can formulate our

Observation 1: A model has an underlying “carrier graph” G.
To allow for multiple arrows between nodes we work with the following defi-

nition of graphs:

Definition 1 (Graph). A graph G = (G0, G1, sc, tg) is given by a set G0 of
nodes, a set G1 of arrows, and two maps sc, tg : G1 → G0 assigning to each
arrow its source and target, respectively. We usually write f : x→ y or x

f→ y
to indicate that sc(f) = x and tg(f) = y.

A graph G=(G0, G1, sc
G, tgG) is subgraph of a graph H=(H0, H1, sc

H , tgH),
G � H in symbols, iff G0 ⊆ H0, G1 ⊆ H1, and scG(f) = scH(f), tgG(f) =
tgH(f) for all f ∈ G1. �

The next observation is that nodes in G are usually classified as classes, data
types, entities, relationships or, say, tables. Arrows in G are usually classified as
associations, references, containment’s, attributes or, say, isA-arrows. Moreover,
arrows between certain kinds of nodes are allowed and between other kinds of
nodes they are not allowed. So, each modeling technique puts typing require-
ments on their models, which can be formally expressed in the following way.

Observation 2: Each modeling technique comes along with a type graph T and
the models have to conform to the corresponding typing requirements, that is,
for each model there has to be a graph homomorphism t : G→ T .

Definition 2 (Graph Homomorphism). A graph homomorphism ϕ : G→
H is a pair of maps ϕ0 : G0 → H0 and ϕ1 : G1 → H1 such that for each
arrow f : x → y of G we have ϕ1(f) : ϕ0(x) → ϕ0(y) in H, i.e., we have
srH(ϕ1(f)) = ϕ0(srG(f)) and tgH(ϕ1(f)) = ϕ0(tgG(f)) for all f ∈ G1.

The composition ϕ;ψ : G → K of two graph homomorphisms ϕ : G → H
and ψ : H → K is defined component-wise

ϕ;ψ = (ϕ0, ϕ1); (ψ0, ψ1)
def
= (ϕ0;ψ0, ϕ1;ψ1).

538 U. Wolter and Z. Diskin

Remark 1 (Inclusions). Note, that G � H iff the inclusion maps ini : Gi ↪→ Hi,
i = 0, 1 define a graph homomorphism in = (in0, in1) : G ↪→ H .

Moreover, most modeling techniques allow us to enrich our models with con-
straints, for example, multiplicities or general OCL constraints in UML, key
constraints for relational data schemas, weak entity constraints for ER-diagrams.
Those constraints concern single arrows in G or special configurations of arrows
in G:

Observation 3: Each modeling techniques provides a collection of constraints
where each kind of constraint is defined by a name and by a ”pattern” describing
where in our models constraints of this kind are allowed to appear.

Observations 3 and 1 lead us to the following definitions:

Definition 3 (Signature). A signature Σ = (Π,α) is given by a set Π of
predicate labels (symbols) and a function α assigning to each label P ∈ Π its
arity graph α(P).

Definition 4 (Models). A Σ-model S = (GS ,S(Π)) consists of a graph GS

and a set S(Π) of constraints (P, d) with P ∈ Π a label and d : α(P) → G a
graph homomorphism.1

A Σ-model S = (GS ,S(Π)) is Σ-submodel of a Σ-model T = (GT , T (Π)),
S � T in symbols, iff GS � GT and S(Π) ⊆ T (Π).

Remark 2 (Graphs). All definitions in this paper are based on graphs and graph
homomorphisms, but we can easily vary them in case we need or want to use
other structures than graphs (see [DW08]).

Remark 3 (Meta-modeling). The mechanism of typing, as formulated in Obser-
vation 2, can be naturally integrated into the definition of signatures and models.
We will not treat this aspect here since we don’t want to burden the exposition
too much. It is worth mentioning that the typing mechanism can be extended
within our formalism to a full “meta-modeling mechanism”.

The motivational discussion in Section 2 has shown that we will need morphisms
to formalize the concepts of context and context awareness.

Definition 5 (Model Morphisms). A Σ-model morphism f : S → S′ be-
tween two Σ-models S = (GS ,S(Π)) and S′ = (GS′

,S′(Π)) is a graph ho-
momorphism f : GS → GS′

preserving constraints, i.e., for all constraints
(P, d : α(P) → GS) ∈ S(Π) we have that (P, d; f : α(P) → GS′

) ∈ S′(Π).

α(P)

d;f ����
��

��
��

d �� GS

f

��
GS′

1 In CT those graph homomorphisms are usually called diagrams. But, to avoid po-
tential confusion in this community we decided for another term.

Contexts and Context Awareness in View of the DPF 539

Remark 4 (Submodels). Note, that S � T iff the inclusion graph homomorphism
in : GS ↪→ GT defines a Σ-model morphism in : S ↪→ T .

Later we will need to construct pushouts of model morphisms. The pushout ex-
ists for any span of model morphisms and is obtained by first constructing the
pushout of the corresponding span of graph homomorphisms and then putting
together the constraints from the two target models of the span. In our appli-
cations here, one model morphism will be always an inclusion and in this case
the pushout can be constructed essentially by complements and disjoint unions.
The following definition gives a concret description of such a “combination of
models”.

Definition 6 (Combined Model). Let be given a Σ-model S = (GS ,S(Π)),
two Σ-models L = (GL,L(Π)), R = (GR,R(Π)) such that L � R, and a Σ-
model morphism (match) m : L → S . Then the combination of S and R via
m results in a Σ-model C = (GC , C(Π)) and in a Σ-model morphism m∗ : R→ C
such that S � C and m;�=�;m∗.

L
� ��

m

��

R
m∗

��
S

� �� C

Thereby the underlying graph GC is defined as follows

GC
i

def
= GS

i ∪ {(m,x) | x ∈ GR
i \GL

i } i = 0, 1.

scG
C
(f)

def
=

⎧⎪⎨
⎪⎩

scG
S
(f) , if f ∈ GS

1

m0(scG
R

(g)), if f = (m, g), scG
R

(g) ∈ GL
0

(m, scG
R

(g)), if f = (m, g), scG
R

(g) /∈ GL
0

tgGC
(f)

def
=

⎧⎪⎨
⎪⎩

tgGS
(f) , if f ∈ GS

1

m0(tgGR
(g)), if f = (m, g), tgGR

(g) ∈ GL
0

(m, tgGR
(g)), if f = (m, g), tgGR

(g) /∈ GL
0

The graph homomorphism m∗ : GR → GC is given for i = 0, 1 by

m∗
i (x)

def
=

{
mi(x), if x ∈ GL

i

(m,x), if x ∈ GR
i \GL

i

And further we have C(Π)
def
= S(Π) ∪ {(P, d;m∗) | (P, d) ∈ R(Π) \ L(Π)}.

Note, that m∗ : GR → GC defines indeed a Σ-model morphism m∗ : R → C:
For all (P, d) ∈ L(Π) we have (P, d;m∗) = (P, d;m) due to the definition of m∗

and thus (P, d;m∗) = (P, d;m) ∈ S(Π) ⊆ C(Π) since m : L → S is a Σ-model
morphism. For all (P, d) ∈ R(Π) \ L(Π) we obtain directly (P, d;m∗) ∈ C(Π)
due to the definition of C(Π).

For our later discussions we will use the notation S +m R for the combined
model Σ-model C defined in Definition 6.

540 U. Wolter and Z. Diskin

3.2 The Semantics

This subsection is devoted to things like “an object diagram for a given class
diagram” and “a state of a database”. That is, we address the question: What
is an ”instance” of a model S = (GS ,S(Π))?

The common idea is that a node in GS stands for a set of “objects”, “data”,
“rows”, . . . , and that an arrow in GS represents a (multi valued) map between
those sets. One possibility to formalize this idea is to consider instances as graphs
O together with a graph homomorphism τ : O → GS where a node x in GS

represents the set τ−1(x) ⊆ O0.2 Given an instance τ : O → GS , we have to
check whether the constraints in S are satisfied. This requires that our modeling
technique has a fixed semantics for its constraints, and we are not concerned how
this semantics is defined: by set theory, by first-order logic or by a “validation
procedure”.

Definition 7 (Semantics of Signatures). A semantic interpretation of a
signature Σ = (Π,α) is a mapping [[..]], which assigns to each predicate symbol
P ∈ Π a set [[P]] of graph homomorphisms ι : I → α(P) called the valid
instances of P .

To check if a graph homomorphism τ : O → GS satisfies a constraint d : α(P) →
GS we need only to consider the part of O affected by this constraint. The
restriction of O to this part is described in CT by the so-called “pullback”
construction, which in this case can be seen as a generalization of the inverse
image construction.

The construction of the pullback of a co-span of graph homomorphisms is
based on a componentwise construction of the pullbacks of the corresponding
co-spans of maps between sets of nodes and sets of arrows, respectively (in
analogy to the construction of pushouts in Definition 6). Therefore, it may be
enough to present here a concrete pullback construction for maps:

Definition 8 (Pullback of Maps). The pullback of a co-span A
f→ C

g← B
of maps is given by the following commutative diagram of maps

B|f
f∗

��

g|f
��

B

g

��
A

f �� C

with
B|f

def
= {(b : a) | a ∈ A, b ∈ B, f(a) = g(b)}

and g|f (b : a)
def
= a and f∗(b : a)

def
= b for all (b : a) ∈ B|f .

2 This kind of semantics could be called “fibred” in contrast to “indexed”. The inter-
ested reader may have a look into [WD07] where the relation between both kinds of
semantics is discussed in more detail.

Contexts and Context Awareness in View of the DPF 541

Remark 5 (Pullback). Note, that the notation (b : a) can be read as “ b in the
role a”. In case, f injective non of the b’s can play different role’s. That is, in
this case we could just define B|f as the inverse image g−1(f(A)) ⊆ B thus f∗

becomes an inclusion and g|f (b) will be the unique a such that f(a) = g(b).

Now, we have everything at place to define what an instance of a model is:
Definition 9 (Instances). An instance of a Σ-model S = (GS ,S(Π)) is
given by a graph O and a graph homomorphism τ : O → GS such that τ |d ∈ [[P]]
for all constraints (P, d) in S(Π).

O|d d∗
��

τ |d
��

O

τ

��
α(P) d �� GS

By Inst(S) we denote the set of all instances of the model S.
Following the intuition that a model morphism embeds a “small model” into a
“big model”, it is natural to expect that any instance of the “big model” can be
reduced to an instance of the “small model”. The pullback construction indeed
provides this kind of semantic transformation opposite to the direction of the
syntactic translation:
Proposition 1 (Reduction of Instances). Every Σ-model morphism f : S →
S′ induces a map

[[f]] : Inst(S′) → Inst(S) with [[f]](τ)
def
= τ |f

for all instances τ : O→ GS′
of S′.

O|f
f∗

��

τ |f
��

O

τ

��
GS f �� GS′

In our discussion of entities and contexts in the next section, we will need one
more concept – the concept of a method. A method changes the state of a system
and for our later discussion we don’t need to know how methods are actually
defined or implemented. It will be enough to work with the following abstract
definition:
Definition 10 (Methods). An S-method for a Σ-model S = (GS ,S(Π)) is a
map μ : Inst(S) → Inst(S).
A given modeling technique can be described by defining a corresponding signa-
ture of diagram predicates and a semantic interpretation of the signature. The
DPF also allows us to describe transformations between modeling techniques
and the integration of modeling techniques. However, for our present discussion
of entities and contexts, , we will restrict ourselves to the homogeneous set-
ting. That is, for the rest of the paper we are working with a fixed signature
Σ = (Π,α) and a fixed semantic interpretation [[..]] of Σ.

542 U. Wolter and Z. Diskin

4 Entities and Contexts, II: A Formal Model

Following the guidelines of Section 2, we will develop now, step by step, our
formal model of entities and contexts, and of what it means that an entity
enters a context.

4.1 A Context with an Entry Point

Entities and Context Kernel: An entity is given by a Σ-model E = (GE , E(Π))
and a set OPE of E-methods attached to the entity. In the same way, the context
kernel is given by a Σ-model C = (GC , C(Π)) and a set OPC of C-methods
attached to the context kernel.

Entry Points: An entry point is given by “admission requirements”, that is,
by a Σ-model A = (GA,A(Π)) specifying what kinds of entities are allowed to
enter the context at this point. Moreover, we have a place, that is, a Σ-submodel
P � C together with a Σ-model morphism φ : P → A, thus the span

A P
φ�� � �� C

of Σ-model morphisms describes where an entity will be placed within the con-
text after entering at this point.

The question may arise why we are proposing a span of arrows instead of a
single arrow. Here are two possible answers:

– In case of a single arrow from A to C the admission requirements would be
part of the context kernel, and this seems to be not a good design decision.

– An entity may not have a “fixed place” in the context after entering, and
this can be modeled by choosing P to be the empty model.

Service packages: According to our guidelines each entry point should offer a
special package of services. Services provide the interaction between the context
and an entity that has entered the context at a certain entry point. Therefore it
is quite natural to model the package of services, offered at entry point (A, φ,P),
by a set SERVA of (A+φC)-methods attached to the combined Σ-model A+φC.

Putting the pieces together we obtain a formal model of a system “context
with entry point”. And the configuration of this system can be described by
the following pushout diagram of Σ-models and Σ-model morphisms together
with attached sets of methods:

P
� ��

φ

��

C

φ∗

��

OPC��

A
� �� A+φ C SERVA��

Of course, we can also model a context with arbitrary many entry points, where
the same place may have different admission requirements and/or we may have
different places with the same admission requirements.

Contexts and Context Awareness in View of the DPF 543

4.2 An Entity Enters a Context

How can we describe now the scenario that an entity enters a context at a certain
entry point?

Admission: Only those entities fulfilling the admission requirements A are al-
lowed to enter a context at entry point (A, φ,P). That is, an entity E is admitted
to enter this point if a Σ-model morphism m : A → E can be established. This
involves two steps: First, a matching graph homomorphism m : GA → GE has
to be found. Second, it has to be checked if the constraints in A are translated
by m into constraints (commitments) in E .

The configuration of the system “entity E got admission at entry point
(A, φ,P) via m” can be described by the following diagram:

P
� ��

φ

��

C

φ∗

��

OPC��

OPE �� E Am�� � �� A+φ C SERVA��

Adaption of Services: Due to our requirements the context has “to adapt its
services to the presence of the new entity”. This means that we have to make
out of the set SERVA of “service templates” a set SERV m

A of services adapted
to E , that is, of (E +φ;m C)-methods that will be attached then to the combined
Σ-model E+φ;mC. Note, that due to general properties of pushouts the Σ-models
E +φ;m C and E +m (A+φ C) are equivalent (isomorphic).

In such a way, the configuration of the system “entity E placed in context
C at place P via φ;m” can be described by the following pushout diagram of
Σ-models and Σ-model morphisms together with attached sets of methods:

P
� ��

φ;m

��

C
(φ;m)∗

��

OPC��

OPE �� E
� �� E +φ;m C SERV m

A��

In case, A can provide admission to a set of of places one of these places φi :
Pi → A has to be chosen and the entity will be placed at place Pi via φi;m.

Internal States: We need also to consider the internal states of this system and
of its components. Every component has a “local state” but what is a “global
state”, that is, a state of the whole system?

Our system can only be considered as an integrated whole, if the local states
are related/coordinated in a certain way: A quadruple

(τE , τP , τC , τ) ∈ Inst(E)× Inst(P)× Inst(C)× Inst(E +φ;m C)

544 U. Wolter and Z. Diskin

of local states constitutes a global state if, and only if,

[[(φ;m)∗]](τ) = τC , [[�]](τ) = τE , and [[φ;m]](τE) = [[�]](τC) = τP .

The commutativity of the square of Σ-model morphisms ensures that any
local state τ of the (E+φ;mC)-component represents such a global state, namely,
the state:

([[�]](τ), τP , [[(φ;m)∗]](τ), τ) with τP
def
= [[φ;m]]([[�]](τ))= [[�]]([[(φ;m)∗]](τ)).

Note that, in such a way, the adapted services in SERVm
A are indeed always

changing the global state since they are (E +φ;m C)-methods.
A pair (τE , τC) ∈ Inst(E)× Inst(C) of local states of the E-component and of

the C-component, respectively, will be called P-coordinated if [[φ;m]](τE) =
[[�]](τC). The crucial fact is that any P-coordinated pair (τE , τC) of local states
represents also a global state since τE and τC can be “amalgamated” into a state
τE +φ;m τC of the (E +φ;m C)-component such that

[[(φ;m)∗]](τE +φ;m τC) = τC and [[�]](τE +φ;m τC) = τE .

This is ensured by general results concerning the interplay of pushout and pullback
constructions sometimes referred to as “van-Kampen square” [EEPT06, WD07].

Synchronization: At the moment when the entity enters the context, the present
local states of the entity and of the context will be, in general, not P-coordinated.
We have to synchronize the entity and the context. That is, we have to apply
E-methods from OPE to the present state τE of the entity and/or to apply C-
methods from OPC to the present state τC of the context such that the resulting
states τ ′E and τ ′C are P-coordinated.

After synchronization the entity and the context constitute an integrated
whole and the entity can start to work in the context.

4.3 An Entity Working in a Context

Any method anywhere in an integrated system will change the global state of the
system. As discussed in Subsection 4.2, this is the case for the adapted services
in SERV m

A . But, what about the methods in OPE and OPC attached to the
entity and the context kernel, respectively?

An application of such a method can change the local state of the place and
thus may violate the coordination between the local state of the entity and the
local state of the context kernel. To ensure P-coordination during the time, the
entity is working in the context, we will need additional control mechanisms. We
discuss three possible mechanisms:

1. Avoidance of conflicts beforehand: Before the entity starts to work all
methods in OPE and OPC that can potentially change the local state of P
are made unavailable and can not be applied as long as the entity is working
in the context.

Contexts and Context Awareness in View of the DPF 545

2. Avoidance of conflicts at run time: In case the application of a method
μ ∈ OPE in a present local state τE of the entity E would change the
present local state τP = [[φ;m]](τE) of place P , that is, if [[φ;m]](τE)
=
[[φ;m]](μ(τE)), the entity is not allowed to apply the method. In the same
way the context kernel is not allowed to apply a method if the local state of
the place would be changed. Note, that this mechanism may turn methods
in OPE and OPC into partial methods.

3. Adaptation to changes: If the application of a method μ ∈ OPE in a
present local state τE of the entity E changes the present local state τP =
[[φ;m]](τE) = [[�]](τC) of the place P , the context kernel may be able to
adapt to this change. That is, the change from τP to τ ′P = [[φ;m]](μ(τE))
may trigger a change of the local state of the context kernel into a state τ ′C
such that [[�]](τ ′C) = τ ′P . A change of the local state of the place caused by
a method applied by the context kernel may be adapted by the entity in a
similar way. (A side remark: In case the other component can not adapt to
a change the system runs into a deadlock or falls apart.)

Any of these control mechanisms or any combination of them makes out of
the set OPE of E-methods and the set OPC of C-methods a set OPm

E and a set
OPm

C of (E+φ;mC)-methods. The methods are still attached to the entity and the
context kernel, respectively, but the effect of the methods has been “globalized”.

In such a way, the final running system “entity E working in context C
at place P” can be visualized by the following diagram:

P
� ��

φ;m

��

C

(φ;m)∗

��

OPm
C��

OPm
E �� E

� �� E +φ;m C SERV m
A��

5 Conclusion

We have developed a generic formal model of entities and of contexts with entry
points within the Diagram Predicate Framework (DPF). We have also described
in a precise formal way two important scenarios: an entity enters a context and
an entity works in a context. The model is generic in the sense that it can
be instantiated for different modeling techniques by choosing an appropriate
signature and semantics for this signature. Our overall claim and vision is that, in
principle, all modeling techniques used in Software Engeneering can be described
in this way as instances of the DPF. The latter is especially appropriate for a
natural formalization of object-oriented diagrammatic modeling. On the other
hand, according to [End05], object-oriented and ontology-based models are most
suited for modeling context for ubiquitous computing. Therefore, we hope that
the DPF, being extended and rearranged in a suitable way, can provide an
appropriate formal framework for modeling context-aware systems.

There are, at least, two directions of further work.

546 U. Wolter and Z. Diskin

Development of the DPF. Beside the announced meta-modeling features we are
also working on a generic graph based logic for our framework.

The concept of method used in the present paper is a very abstract one. We
have started to study how those methods can be actually defined and we have to
integrate corresponding definition mechanisms into DPF. Natural candidates for
those mechanisms are the various variants of graph transformations [EEPT06],
and we have to investigate how to adapt and to extend them for use in the DPF.
Those mechanisms should allow us to describe, in a uniform and formal way,

– the “adaption of services” and, especially,
– the idea of a “service template”,
– the “avoidance of conflicts”, and
– the “triggering of changes”.

Context Model. The announced extension of our model by allowing different
entry points should be discussed and worked out in detail. Moreover, it seems
to be a reasonable effort to develop an “algebra of entities and contexts”. Such
an “algebra” would emerge as a generalization and/or adaptation of similar
approaches like the “algebra of modules” in [EM90], the “algebra of architectural
connectors” in [Fia05], and the “algebra of contextual ontologies” in [CHR08].
Acknowledgement. We are very thankful to Edward Hermann Haeusler for
challenging us to investigate if our DPF can contribute to meet the “urgent need
of formal models for modeling context” as it is stated in the Call for Papers.
Critical comments of the anonymous referees were helpful in improving the initial
version of the paper and shaping it to its current form (still far from being what
we would like to have). The first author was partially supported by the Norwegian
NFR project SHIP/VERDIKT, and the second author by Bell Canada through
the Bell University Labs and the Ontario Centres of Excellence.

References

[CHR08] Cafezeiro, I., Haeusler, E.H., Rademaker, A.: Ontology and context. In:
Sixth Annual IEEE International Conference on Pervasive Computing and
Communications (PerCom 2008), Hong Kong, 17-21 March 2008, pp. 417–
422. IEEE Computer Society, Los Alamitos (2008)

[DED08] Diskin, Z., Easterbrook, S., Dingel, J.: Engineering Associations: From
Models to Codeand Back through Semantics. In: Paige, R.F., Meyer, B.
(eds.) 46th International Conference, Tools, Objects, Components, Mod-
els and Patterns EUROPE 2008. LNBIP, vol. 11, pp. 336–355. Springer,
Heidelberg (2008)

[Dis97] Diskin, Z.: Towards algebraic graph-based model theory for computer sci-
ence. Bulletin of Symbolic Logic 3, 144–145 (1997); Presented (by title)
Logic Colloquium 1995

[Dis03] Diskin, Z.: Mathematics of UML: Making the Odysseys of UML less dra-
matic. In: Kilov, H., Baclawski, K. (eds.) Practical Foundations of Busi-
ness System Specifications, pp. 348–381. Kluwer Academic Publishers,
Dordrecht (2003)

Contexts and Context Awareness in View of the DPF 547

[DK03] Diskin, Z., Kadish, B.: Variable set semantics for keyed generalized
sketches: Formal semantics for object identity and abstract syntax for con-
ceptual modeling. Data & Knowledge Engineering 47, 1–59 (2003)

[DW08] Diskin, Z., Wolter, U.: A Diagrammatic Logic for Object-Oriented Visual
Modeling. ENTCS (accepted, 2008)

[EEPT06] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformations. EATCS Monographs on Theoretical Computer
Science. Springer, Berlin (2006)

[EM90] Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints. EATCS Monographs on Theoretical Com-
puter Science, vol. 21. Springer, Berlin (1990)

[End05] Endler, M.: Context awareness (2005) (Summary)
[Fia05] Fiadeiro, J.L.: Categories for Software Engineering. Springer, Berlin (2005)
[SLP04] Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: 1st Int.

Workshop on Advanced Context Modeling, Reasoning and Management
(2004)

[WD07] Wolter, U., Diskin, Z.: From Indexed to Fibred Semantics – The General-
ized Sketch File. Technical Report Report No 361, Department of Infor-
matics, University of Bergen (October 2007)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 548–560, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Use of Adaptive Semantic Hypermedia for
Ubiquitous Collaboration Systems

Patricia Seefelder de Assis1 and Daniel Schwabe2

1 Instituto Politécnico, Campus Regional de Nova Friburgo – Universidade Estadual do Rio
de Janeiro (UERJ) – Caixa Postal 97.282 – 28.610-974 – Friburgo – RJ – Brazil

2 Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio) – Caixa Postal 38.097 – 22.453-900 – Rio de Janeiro – RJ – Brazil

patricia@iprj.uerj.br, dschwabe@inf.puc-rio.br

Abstract. Adaptation techniques often consider applications developed for sin-
gle users and static scenarios. With the evolution of collaborative environments
and the widespread use of mobile technologies, adaptation must take into ac-
count the use of systems at any time, anywhere and in a collaborative way. This
work suggests a way to extend the Adaptive Semantic Hypermedia Design
Model to include these new dimensions.

Keywords: Adaptivity, modeling, group modeling, collaboration, ubiquitous
computing, ubiquitous user modeling.

1 Introduction

The evolution of communication technologies has enabled developing collaborative
computer environments. Collaboration allows participants to exchange information as
well as to produce ideas, simplify problems and resolve tasks. According to [7], the
contribution of the team as a whole could be less than the sum of its parts without
appropriate attention to group process. Hence, group interaction should be improved
so that group performance surpasses the sum of individual performances. Focusing
the group on the core issues and facilitating group interaction can lead to better
collaboration.

In addition, the progress of mobile technologies offers wireless access to informa-
tion (from the World Wide Web or other systems) from virtually anywhere at any
time (ubiquitous computing). Besides the increasing availability of data and comput-
ing resources on portable devices and mobile environments, we are witnessing a new
trend appointed by some as “cloud computing”. One definition for cloud computing is
that it is “a computing paradigm in which tasks are assigned to a combination of con-
nections, software and services accessed over a network”1. The idea that applications
may run somewhere on the “cloud” (whether an internal corporate network or the
public Internet) seems as a way to do “business on the road”.

With computing technology becoming pervasive, not only environmental factors, but
also information access will become increasingly integrated into normal environments.

1 http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci1287881,00.html; last access: May/08.

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 549

A general-purpose architecture for adaptation in hypermedia systems, using the
Adaptive Semantic Hypermedia Design Model (ASHDM), together with the Hyper-
media Development Environment (HyperDE) [15] extended to include adaptation is
presented in [1].

The ASHDM is composed by the following models: Conceptual (Domain) (DM),
Adaptation (AM), Navigation (NM), Interface (Presentation) (IM), Integration2 (to
integrate domains) and Adaptation Context3 (ACM), and provides a framework that
facilitates the analysis of what is adapted, based on what the adaptation occurs (includ-
ing the granularity of time) and how the adaptation is achieved. The ACM generalizes
the idea of User Model and User Context Model. The proposed architecture is
model-driven and ontology-based, so data and model may be handled in the same way.

Roughly speaking, we can say that data from the Adaptation Context Model and
from the Domain Model are used by the Adaptation Model to alter the Navigation and
Presentation Models providing content adaptation, navigation adaptation and presen-
tation adaptation. For more details, see [1].

The original proposal was developed for a single user. In this work the proposal is
reviewed considering the anywhere and any time collaborative use of systems.

2 Adaptive Ubiquitous Collaboration Systems

With respect to adaptation, computer systems should operate differently depending on
the situation they are being used. Whether the user is alone or in a group; the system
architecture; domain; systems approach (e.g. pedagogical, commercial); type of tasks
as well as goals to achieve are examples of what should be taken into account when
providing adaptation.

Adaptation is often based on User Modeling technologies. In order to tailor appli-
cations to a group, a model to represent group characteristics and their evolution is
also necessary. It is important to have in mind that groups are made of individuals.
Adaptivity cannot be based only on a group model. Each user (member) should be
modeled as well. According to [9], mappings from individual models to group models
are not linear and straightforward. One issue appointed by [2] is the compromise
between what should be considered for the user as an individual and as a group
member. People may behave differently when in a group. Besides, conflicts and con-
tradictions may appear when modeling a group. Another issue is how to preserve the
privacy from the members while sharing their information that is useful to the group.

Thus we can say that group adaptation is influenced by the kind of relationship
among the members (group composition; how they happen to work together; if the
group is a virtual community, a workgroup and so on); the available collaboration
resources as well as the duration and quality of interaction (when and how the mem-
bers communicate with each other).

Pervasive systems that can adapt to changing environments and availability of re-
sources must be aware of their context since they sense and react to it. Context
awareness also plays a crucial role for communities since users or groups of users can

2 In fact, the Integration Model is not defined because we consider that integration of domains

can be done through our Navigation Model.
3 By context we mean the situation in which the application is used.

550 P.S. de Assis and D. Schwabe

interact with each other, through interconnected smart devices, to accomplish collabo-
rative tasks. The degree of participation of a single user may dynamically change in
relation to the distance from the place where practices occur and in relation with the
ability of gathering the right information at the right time, and in a proper way.

It is worth to note that context-aware systems must be able to deal with uncertain
context information. A context-aware system senses its context via a network of sen-
sors working together. Sensors are inherently inaccurate, or they could report inaccu-
rately because they come up against a phenomenon for which they have not been
designed. In addition, the resolutions, accuracies and formats of these sensors can
differ from each other and thus the resulting sensed values could have conflicts and
ambiguities. Another source of uncertainty is that high-level context information is
deduced from low-level sensor data and the underlying reasoning systems still have
limitations. There is also a gap of time between context acquisition and use of con-
text. Therefore adaptation should take into account parameters like accuracy, confi-
dence and ambiguity.

Two main aspects that should be considered with regard to mobility are:

− Device: new products are announced nearly every day. The number and variety of
smart devices may lead to an overcharge of complex or irrelevant interaction.
Moreover, this diversity of devices, all differing in fundamental ways (operating
system, CPU, memory, interaction modality and screen size), may hinder adapta-
tion to the various device contexts. Nevertheless, according to [5], the screen size
of the device typically correlates with the computational resources like memory
and processor and the type of wireless connection since the size of the screen de-
termines the available space for the other parts (as the screen size grows there is
more space in the back of the unit for other parts. Consequently small screens lead
to less computational resources and vice versa). Moreover, the size of the screen
determines the types of possible interactions.

− Network: a wireless network is essential for mobile computing. However, the
Quality of Service (QoS) supported by individual networks can vary considerably
and wireless networking may be an unsatisfactory experience when faced with the
reliability and performance of fixed network applications. Strategies of pre-caching
may be used to give the illusion of low latency and high bandwidth.

Considering the dynamic nature of the end-users' situation, the possibility of finding
out a user's status at any given time provides for better adaptation. Though capturing
all aspects of a user's context is impractical, it is feasible to capture the main aspects of
a user's current situation to adapt the behavior of an application appropriately.

To deal with all of this, the Ambient Intelligence (AmI) paradigm seems to be an
interesting line of research. AmI (or “intelligent” pervasive computing [16]) “turns a
networked system of smart devices and sensors into an environment acting as a global
interface between users and information systems” [18]. A key point for AmI envi-
ronments is to provide adaptation thus reducing configuration effort and irrelevant
user solicitation.

Agents, through their collaborative nature, inherent intelligence and awareness of
their environment (and themselves), are particularly suitable for modeling the com-
plex and dynamic situations that frequently arise in mobile computing. Intelligent
agents are an attractive and viable option for realizing AmI applications due to their

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 551

autonomous nature, ability to react to external events, as well as an inherent capability
to be proactive in fulfilling their objectives. The ability to adapt and respond to unex-
pected events is enhanced with a mobility capability and reasoning facilities that more
advanced agents have.

Usually, agents are colligated in a Multi-Agent System (MAS). Not only artificial
agents but human users as well - together with their various types of interaction and
collaboration - are materialized in MAS in a single software system [16]. Each indi-
vidual agent has its own responsibilities but also collaborates with other agents to
achieve complex tasks, An Agent Communications Language (ACL), shared and un-
derstood by all agents, provides for the collaboration between agents and is the basis
for agents’ autonomic behavior. ACL is a high-level semantic language that supports
complex interactions between entities. This is essential then AmI environments deal
with heterogeneous information from physical sensors, services or users preferences

One of the main properties of MAS is that it provides decentralized control, based
on distributed autonomous entities, making it possible to design applications that are
highly flexible, scalable and adaptive. Depending on current conditions, groups of
agents are able to create and reconfigure application dynamically.

MAS can be seen as a society of agents with capacities and roles. This metaphori-
cal system representation, similar to a human society, when interacting with users
facilitates their understanding and control of the system’s behavior.

The incorporation of autonomic principles into the design of Multi-Agent Systems is a
way to overcome the complexity of pervasive environments. Autonomic implies a num-
ber of fundamental features including: self-configuring, self-healing, self-optimizing and
self-protecting [14].

The agent-based and multi-agent system paradigm is an effective approach for
modeling Collaborative Ubiquitous Environments (CUEs) since the relevant entities
in pervasive computing systems are autonomous components capable of establishing
high-level interactions with each other. These entities should be cooperative (i.e., able
to collaborate one with each other according to coordination patterns that define who
is involved in a task and with which role) and context-aware (i.e., able to perceive and
share information about the context in order to adapt themselves).

Next we present an example scenario to give a hint of how adaptation in CUE can
improve the use of systems. Then we review the ASHDM considering these new
dimensions of collaboration and ubiquity.

3 Example Scenario

Larry, Helen, and Paul work together on a budget to present to a client. Larry is the
manager; Helen is responsible for collecting prices in several countries and Paul ana-
lyzes prices, exchange rates, taxes and delivery conditions to find the best offer. It is a
big client and they work according to the any time and anywhere paradigm to get the
most effective proposal. Thus, on her way home, Helen’s mobile notifies her about a
great computer offer. Meanwhile Paul is notified about a significant decrease on the
exchange rate. Larry decides that it is worth updating the proposal. Though working
on the same document, each of them sees a different output, according to their con-
text. Helen cannot see graphics because she is working on a small-screen device. The

552 P.S. de Assis and D. Schwabe

system decides the kind of communication according to the bandwidth: when she
enters a high bandwidth zone, the system shows also a VOIP option. Otherwise, she
may only communicate through textual chat. Paul has a help text besides the docu-
ment because he isn’t familiar with the system.

When they close the proposal, Helen sends a print command to her printer at home
so that everything is ready when she passes by to pick her baggage and leave to meet
the client.

As a manager, Larry has access to high-level information through links shown in a
different color. According to his preferences, when the group works on the same envi-
ronment, using the same screen, the system may hide these links or show them as
disabled. When on the same environment, the help screen is shown because at least
one member of the group is not proficient in using the system. As Paul gets accus-
tomed with the system the help text becomes less and less detailed.

This small example gives only a taste of how a system can adapt itself according,
for example, to individual or group preferences, bandwidth and kind of device. The
parameters are captured at real-time giving more agility to the decisions.

4 ASHDM Reviewed

4.1 Conceptual Model

The Conceptual Model is considered to be any ontology defined for the Semantic
Web that uses concepts and relationships between them to represent the real world.
This representation is supposed to be application-independent, and it may overlap
with the UM (see section 3.4.).

The use of ontologies is appropriate to represent information in pervasive comput-
ing [19].

4.2 Navigation Model

Navigational objects are considered to be views over conceptual objects. These views
are based on user’s tasks and user’s profile. The Navigation Model is specified by an
ontology-based vocabulary that defines navigational classes, links, navigational con-
texts, access structures and landmarks. Views are defined by mapping a conceptual
ontology into this navigational ontology.

The Navigation Model can be understood as an Integration Model in the sense that
navigational views can be constructed over conceptual ontologies defined for differ-
ent domains. We can extend the idea to integrate information from a diverse range of
sources thus concerning pervasive computing that is by nature open and extensible.
However cooperating parties may use different ontologies, which can be ambiguous.
It is necessary to define a mapping disambiguation policy.

4.3 Interface Model

The Interface Model (IM) represents the interaction between users and system
through Abstract and Concrete Widgets Ontologies, and the mapping from abstract to
concrete as proposed by [13]. Essentially, this interaction occurs through events that

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 553

can be “activators” (Button/Link); “exhibitors” (Image/Label) and “capturers” (wid-
gets such as CheckBox, ComboBox, RadioButton or an element composed by Link).

These ontologies were designed to be easily extensible in order to incorporate new
technologies. They will be reviewed to incorporate the many different interaction
interfaces that characterize pervasive computing environments and to account for
entities like agents and mobile technology.

4.4 Adaptation Context Model

This is the core model with respect to adaptation. This section is organized as follows:
first we present our point of view about the correlation between domain, user and
context; then we present a User Model Schema; next we present ideas about group
modeling and, finally, we consider the use in pervasive systems.

Usually, Adaptive Hypermedia Systems (AHSs) are used for domains where the
user exists as an individual and is typically modeled by a class in the domain model.
So the User Model (UM) may contain an overlay model representing the relationship
between the user and the domain concepts. This relationship is in the sense of know-
ing or having a previous experience with the modeled concept (e.g.: in the e-learning
domain, to represent what the user – or student - knows about the subject matter and
in e-commerce domain, this relationship may represent if the user – or customer -
already bought a given product). In these cases, the adaptation depends on the domain
user or simply, user. In the examples above, user is modeled by the “student” or “cus-
tomer” classes in the domain model.

Sometimes, however, there is no need to consider the user as an individual for ad-
aptation purposes. If the adaptation is based on the bandwidth, or on display size, or
on the place where it occurs, and so on, the result of the adaptation is the same for
every adaptation user or meta-user.

We consider that the meta-user is represented by a UM which is a component of a
general adaptation context. A User Representation (UR) is used to model the repre-
sentation of the user in the particular domain (e.g., “student” or “customer”), and may
be related to other domain concepts (overlay model).

To avoid redundancy, we need to unify the data in the UM and in the UR. A simple
way of doing this is by inheritance. In ASHDM the UR is defined as a subclass of the
UM metaclass. Thus the UR may have its own attributes as well as the attributes in-
herited from UM.

The unified user information has to be integrated with other context and domain
data. We use the notion of view to create a virtual context with all needed information.

Figure 1 shows an example of a virtual museum with a class User that has five at-
tributes: ID (identifier), name, address, birthday and favorites (to record the
rooms selected by the user). The ACM contains the attribute display, the UM also
stores ID and name, together with cognitive style and presentation pref-
erences. The overlay attribute history represents rooms already visited by the
user. For adaptation, the Context View has the attributes: age, interest catego-
ries, history and display. The interest category could be inferred from
age, for example.

554 P.S. de Assis and D. Schwabe

ACM

UM UR

DM

NM IM

Adaptation Layer

ID,
name,
address,
birthday,
favorites

ID, name,
cognitive
style,
presentation
preferences

history

display

ACM
DM

NM IM

Adaptation Layer

View

age,
interest
categories,
history,
display

Fig. 1. Example of Adaptation Context View

4.4.1 User Model Schema
Research in user modeling area states that the User Model should be independent
from AHSs, facilitating the tasks of constructing and maintaining the UM and ena-
bling the reuse of the model. Application from the same domain or from similar do-
mains could cooperate using the same part of the UM [12]. The semantics of a UM
must be known, and the identification of which part is domain-independent and which
one is common for all domains must be done in order to share a UM [12].

1. Domain-independent Information
1.1. Static

1.1.1. Contact
Full Name (Family Name, First
Name,Middle Names)
Address (Street, Number, Postal
code,City, State, Country)
Telephone (Home, Office, Mobile,
Fax)
Web (E-mail, Homepage)

1.1.2. Demographics (Gender,
Birthday, Birthplace)

1.1.3. Personality
1.1.4 Disabilities

1.2. Dynamic
1.2.1. Preferences

Preferential Input Device
Preferential Output Device
First Language
Second Language

1.2.2. Emotional State
1.2.3. Physiological State
1.2.4. Mental State
1.2.5. Abilities (Typing skills,

Reading skills, Writing
skills, Speaking skills)

2. Overlay Model

3. Domain-dependent Information

Fig. 2. User Model Structure: Domain-independent Information

The use of ontologies helps to structure the UM, but which information should be
represented in the UM, and which one in the DM is an open question. As far as the
adaptation mechanism is concerned, it actually makes no difference where (UM or
DM) the data is stored, because the adaptation context view joins all this information.
However, structuring user-related data independently from the domain may enable
reuse across domains and applications.

We consider that information useful for any application independently from the
domain-specific semantic, such as preferred input device, should be stored in the UM,
Preferences and data about the user which do not make sense for all domains – such
as performance, preferred musical style, learning style, salary and so on – are classi-
fied as Domain-dependent information and should be stored in the DM. However,
since the domain ontology may be arbitrary, it must be considered that some user
information may be represented in the domain ontology. For example, IMS LIP [10],

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 555

a typical UR used in the DM of educational applications, stores user identification
information, which in principle should be in the UM. On the other hand, it is possible
to obtain domain-dependent data from ontologies like IMS LIP by eliminating all
user-related classes that do not have a “knowledge meaning”. This is possible because
the use of metamodels and ontologies enable the definition of a metarule that queries
the ontology definition e.g., “retrieve all resources whose domain belongs to
user-class and whose property is not ‘knows‘”.

We propose a modular structure for the UM divided in three main categories: Do-
main-independent data; Overlay model, and Domain-dependent data. The general idea
is based on GUMO (General User Model Ontology) [8]. The proposal, presented in
Figure 2, is only a core structure. New information may be added as needed, and
some information may be ignored in some applications.

In the proposed structure, static information is used for customization, as it does
not change during system use. Contact information is mostly used for administrative
tasks. Demographic and Personality are information suitable for most domains, al-
though not all applications have mechanisms to deal with it.

Whereas GUMO models the five senses and the ability to walk and speak, we as-
sume them as default. The absence of one or more of them is modeled as a deficiency.
Information about emotional, physiological and mental states as well as some abilities
is theoretically suited for all domains, although only specific applications deal with it.
Furthermore, such user characteristics are difficult, if not impossible, to extract auto-
matically, making them less likely to be used in most applications. We include them
only for completeness.

In many domains, adaptation is based not only on user and environment character-
istics, but also on relations between the user model and the domain model. The exis-
tence of a relationship between the user model and the domain concepts is usually
represented in an Overlay Model. As we said, this relationship is in the sense of
knowing or having a previous experience with the modeled concept.

This schema proposes a way to organize the UM so that the UM core together with
some modules could be shared between applications of the same kind and same do-
main. This structure also allows the definition of metarules that select rules according
to the model properties. For example, “if the UM has the property nationality, include
news about the user’s country”.

This modular structure satisfies the requirements proposed by [11]: (a) different
views of the UM may be available for each adaptive application, which will define
only the UM components it needs; (b) a user may define which parts of the UM will
be available to which applications; (c) users may want to have their personal data
stored locally and may choose which data will be outside his/her direct control.

We consider the proposed UM as a task ontology that can be integrated with the ap-
plication domain ontology. According to [3], “task ontology” defines a vocabulary for
modeling a structure inherent to problem solutions for all tasks in a domain-independent
way whereas the vocabulary defined for “domain ontology” specifies object classes and
relationships that exist in certain domains.

4.4.2 Group Modeling
When groups are taken into account, before creating the virtual context, a pseudo-user
is modeled to summarize the attributes of the members, according to system’s features

556 P.S. de Assis and D. Schwabe

and group’s characteristics. How this is done depends on the Adaptation Engine being
used. In a homogeneous group, the average value of all elements of the group may be
used. Otherwise, a value of the most dominant element (according to some govern-
ance criteria) can be chosen.

The attributes of the pseudo-user do not overlay the individual ones and can have
different meanings. The knowledge and mistakes of the pseudo-user, for example,
could represent the success or failure of the group in some task, while the values in-
ferred at the individual level remains (in the overlay model, for example). On the
other hand, if a pseudo-user has some skill (or background), it could mean that at least
one group member has it. Attributes such as age or gender may be set considering the
group uniformity level. Preferences can reflect some governance criteria.

In the above example: age could be replaced by an average age (when the mem-
bers of the group have similar ages), by a number that represents a dominant age
(when visiting a museum, the age of each member may differ a lot and a child may
have a stronger influence) or by null indicating that the age should not be taken into
account because of large age disparities between group members; history could
store places visited by at least one member, by the majority of the members or by all
members, according to the governance criteria, for example.

We consider that the pseudo-user is a kind of group modeling. The Group Model
(GM) itself can be used to represent data inherent to the group like the kind of rela-
tionship between members; the nature of interactions among members and so on.
There is a need for an association class between a User and a Group to represent at-
tributes of a user with respect to the group, such as the role played by the user within
the group.

4.4.3 Pervasive Computing
Typical pervasive computing environments are characterized as having large amounts
of continuously changing contextual information. Dynamic adaptation to the changing
environment can be achieved due context reasoning. The use of ontologies (to repre-
sent context data) and ontology reasoning mechanisms makes context reasoning more
powerful and precise.

Typical ontologies for such systems are location, agent (describe actors in a sys-
tem), temporal and activity (to model actions that can be performed by agents). Ac-
cording to [19], “these concepts permeate all of pervasive computing, while common
peripheral or task specific contexts may be introduced for specific applications (such
as music, weather, and settings of the room)”.

Since uncertainty must be taken into account when dealing with pervasive systems,
concepts like accuracy, confidence, uncertainty and provenance should be considered
with respect to context data and represented as part of their ontological description.

4.5 Adaptation Model

The Adaptation Model is inspired by the AHAM reference model [4] and consists of a
set of rules that define how the adaptation must be performed.

AM uses rules following PRML (Personalization Rules Modeling Language) [6],
where <body> may represent an action, or an action associated to a condition:

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 557

When event do
 <body>
endWhen

When event do
 action

endWhen

When event do
 If condition then action
endWhen

In ASHDM, events are interactions between users and systems, represented in the
Interface Model (see 3.3). Actions may adapt the content, navigation or presentation
and may also update the ACM, including the UM. Conditions refer to the parame-
ters for adaptation (based on what the adaptation occurs).

When considering collaborative and pervasive environments, events may also be
interactions between users or triggered by agents. GM, pseudo-user and context on-
tologies will also be updated as a result of Actions.

As we will see in the next section, HyperDE is model-driven and rules may be used
to adapt the models themselves or their instances. Therefore, the use of adaptation
rules together with HyperDE enables the meta-adaptation where the kind of adapta-
tion may also be adapted according to several parameters.

5 Implementation Architecture

The HyperDE environment, extended with adaptation mechanisms was chosen to
implement the ASHDM, since it is a framework and development environment for
hypermedia application, driven by ontologies. Figure 3 shows the general HyperDE
architecture.

Fig. 3. HyperDE General Architecture

HyperDE allows program code to be passed as function parameter (closure). Thus,
hooks may be defined to associate adaptation rules to the control, model or view lay-
ers, according to the desired adaptation type. PRML rules conditions usually test
attribute values according to aspects on which the adaptation is based, whereas ac-
tions alter content, navigation or presentation and may also update the models. The
presentation adaptation as proposed by ASHDM has not yet been implemented, since
HyperDE currently does not use the abstract and concrete ontologies proposed by [13]
(for more details see [1]). Therefore, whereas events from PRML rules are captured
by the IM in the ASHDM Adaptation Model, in HyperDE they are captured by the
control layer.

558 P.S. de Assis and D. Schwabe

When an event is detected, the control layer is activated. Rules are executed, if it
is the case. Then the control layer triggers events at the model layer passing the pa-
rameters needed to instantiate the models, i.e., which metaclass will be instantiated
and with which values. If the metaclass has associated rules, they will be executed
(conditional instantiation) and the result is the adapted application navigation model.
Next, the control layer activates (selects) the view to render the application. This
selection may be conditional and the CSS code associated to the view may change if
existing associated rules alter them. The adapted page is then presented to the user.

As an example we can consider a collaborative task to be done by a group of four
students. When one of them connects to the learning environment, all other members
are warned. The kind of message depends on the connection and device being used.
For example, a student in a desktop receives the name and hour of connection while
other with a cell-phone sees only a sign. Animations may be shown only for students
with a high bandwidth and so on.

6 Conclusions and Future Work

Adaptive Hypermedia techniques have been employed to suit Hypermedia Systems to
individual needs in order to make the use of such systems more efficient. Now, these
techniques should be employed considering groups of users and ubiquitous comput-
ing. Ubiquitous Collaboration Systems poses many challenges. This work highlights
the most important open questions and shows that it is possible to extend the ASHDM
to suit such kind of systems.

The proposed model is a general-purpose one thus being useful to the several do-
mains where adaptation applies. Besides, it defines distinct semantic models and the
interrelationships between them. Adaptation can be done on the models as well as on
their relationships favoring the meta-adaptation. The proposed implementation archi-
tecture is model-driven and adaptation can be directly obtained by altering these mod-
els or their instances through rules defined as part of the Adaptation Model.

The use of ontologies provides a common vocabulary for models and data contrib-
uting to a modular architecture and to the implementation of the meta-adaptation.
According to [17], ontology-based models are a promising context modeling approach
for ubiquitous computing environments. They provide a formal way to model context
into well-structured terminologies, and also support formal reasoning mechanisms.
Moreover, the need for adaptable and reconfigurable applications strongly calls for a
modular design approach [18]. Therefore, ASHDM being ontology-based and driven
by models fits well to CUEs.

Adaptation is not user-centered on ASHDM. The idea is that the UM can be con-
sidered as a component of a general ACM. The introduction of a pseudo-user class to
represent the relevant attributes of the elements of a group - according to a Group
Model and rules defined by an Adaptation Engine - facilitates the mapping from indi-
viduals features to a composed profile.

Context-awareness is an inherent property of the proposed architecture. The notion
of using a view to create a Virtual Context helps to put together what should be con-
sidered in Adaptive Systems.

 The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems 559

It was shown that ASHDM suits the CUEs due its ontology-based and modular na-
ture. On the other hand, the AmI paradigm seems to be a good alternative to deal with
context-awareness and dynamic environments. Further work should be done to show
how to effectively integrate AmI principles into ASHDM.

In the same way, the MAS paradigm as an option to realize AmI applications and
model CUEs needs to be further explored and incorporated into ASHDM.

More example scenarios should be developed and case studies need to be imple-
mented in order to evaluate the proposed ideas.

Additional research should be done in order to show how ASHDM may fit other
projects, involving context-awareness and adaptation, under development.

Acknowledgement. The authors were partially supported by a grant from CNPq.

References

1. Assis, P.S., Schwabe, D., Nunes, D.A.: ASHDM Model Driven Adaptation and Meta Ad-
aptation. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp.
213–222. Springer, Heidelberg (2006)

2. Barra, M.: Distributed Systems for Group Adaptivity on the Web. In: Brusilovsky, P.,
Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 396–402. Springer, Hei-
delberg (2000)

3. Chen, W., Mizoguchi, R.: Learner Model Ontology and Learner Model Agent. In: Kom-
mers, P. (ed.) Cognitive Support for Learning Imagining the Unknown, pp. 189–200. IOS
Press, Amsterdam (2004)

4. De Bra, P., Brusilovsky, P., Houben, G.J.: Adaptive Hypermedia: From Systems to
Framework. ACM Computing Surveys 31(4) (1999), http://www.cs.brown.edu/
memex/ACM_HypertextTestbed/papers/25.html

5. Deters, R.: Pervasive Computing Devices for Education. In: Proceedings of the Workshop
on International Conference on AI and Education, Multi Agent Architectures for Distrib-
uted Learning Environments, San Antonio, Texas, pp. 49–54 (2001)

6. Garrigós, I., Gómez, J., Barna, P., Houben, G.J.: A Reusable Personalization Model in
Web Application Design. In: International Workshop on Web Information Systems Model-
ing (WISM 2005) (Held in conjunction with ICWE 2005), Sydney, Australia (2005)

7. Goodman, B.A., Drury, J., Gaimari, R.D., Kurland, L., Zarrella, J.: Applying User Models
to Improve Team Decision Making. MITRE Sponsored Research Final Report (2006),
http://www.mitre.org/work/tech_papers/tech_papers_07/06_1351/06_1351.pdf

8. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz Moellendorff,
M.: GUMO The General User Model Ontology. In: Proceedings of UM 2005: International
Conference on User Modeling, Edinburgh, UK (2005), http://www.gumo.org

9. Hoppe, U., apud Winter, M., McCalla, G.: An Analysis of Group Performance in Terms of
the Functional Knowledge and Teamwork Skills of Group Members. In: Hoppe, U., Ver-
dejo, F., Kay, J. (eds.) Artificial Intelligence in Education, pp. 261–268. IOS Press, Am-
sterdam (2003)

10. IMS Learner Information Packaging Best Practice & Implementation Guide. Final Specifi-
cation, V. 1.0 (2001),
http://www.imsglobal.org/profiles/lipbest01.html

560 P.S. de Assis and D. Schwabe

11. Kay, J., Kummerfeld, R.J., Lauder, P.: Personis: a server for user models. In: De Bra, P.,
Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 203–212. Springer,
Heidelberg (2002)

12. Kuruc, J.: Sharing a User Model between Several Adaptive Hypermedia Applications, IIT
SRC (2005), http://www.fiit.stuba.sk/iit-src/38-kuruc.pdf

13. Moura, S.S.: Desenvolvimento de interfaces governadas por ontologia para aplicações
hipermídia, Dissertação de Mestrado, PUC Rio (2004)

14. Muldoon, C., O’Hare, G.M.P., O’Grady, M.J.: Collaborative Agent Tuning: Performance
Enhancement on Mobile Devices. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW
2005. LNCS (LNAI), vol. 3963, pp. 241–258. Springer, Heidelberg (2006)

15. Nunes, D.A.: HyperDE um Framework e Ambiente de Desenvolvimento dirigido por On-
tologias para Aplicações Hipermídia. MSc.Dissertation, PUC Rio. HyperDE (2005),
http://server2.tecweb.inf.pucrio.br:8000/projects/hyperde/trac.cgi/wiki

16. Seghrouchni, A.E.F., Breitman, K., Sabouret, N., Endler, M., Charif, Y., Briot, J.P.: Ambi-
ent Intelligence Applications: Introducing the Campus Framework. In: Proc. of the 13th
IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
2008), Belfast, pp. 165–174 (2008) ISBN 0 7695 3139 3

17. Strang, T., Linnhoff Popien, C.: A context modeling survey. In: Proceedings of the Work-
shop on Advanced Context Modelling, Reasoning and Management as part of UbiComp
2004, Nottingham/England (2004)

18. Vallée, M., Ramparany, F., Vercouter, L.: A Multi Agent System for Dynamic Service
Composition in Ambient Intelligence Environments Doctoral Colloquium – Pervasive,
Munich, Germany (2005)

19. Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology based models in pervasive computing
systems. The Knowledge Engineering Review 22(4), 315–347 (2007)

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 561–571, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Use of Formal Ontology to Specify Context in
Ubiquitous Computing

Karin K. Breitman1 and Michael G. Hinchey2

1 PUC-Rio, Computer Science Department
Rua Marquês de São Vicente 225 - 22453-900, Rio de Janeiro, RJ, Brazil

karin@inf.puc-rio.br
2 Lero-the Irish Software Engineering Research Centre

International Science Centre, University of Limerick, Ireland
mike.hinchey@lero.ie

Abstract. Although context-awareness is a central paradigm for the implemen-
tation of ubiquitous systems, it still lacks adequate representation models,
methods and tools that support the development of such systems. Particularly,
in order to secure interoperability and allow device interaction, software appli-
cations are required to provide unambiguous data and device representation
models. In this paper we argue in favor of the use of formal ontology as the tool
to formalize the notion of context, describe the interplay between systems and
environments and, ultimately, enable verification. Ontologies allow machines to
process and integrate devices intelligently, enable quick and accurate search,
facilitate communication between a multitude of heterogeneous devices and en-
able reasoning [22].

1 Introduction

In the last few years emergent technologies, such as 3rd generation mobile phones,
WiFi computers and Bluetooth devices are being combined to create what is known as
ubiquitous computing infrastructures - systems that are accessible from anywhere, at
any time, and with (almost) any electronic device. Ubiquitous computing is leverag-
ing new business models and encouraging new ways of working. Ubiquitous and
mobile collaboration systems are creating a demand for new conceptualizations, mod-
els, methodologies, and support technologies to fully explore its potential.

The methods, tools and technologies required to support these new ways of work-
ing are still under investigation. It is very likely that concepts and technologies from a
variety of related fields, such as workflow systems, software engineering, formal
methods, human computer interaction, semantic web and ontology engineering, will
need to be revisited and made adequate “for consumption” in ubiquitous computing
systems. In this paper we focus in the issue of formalizing the notion of context and
context awareness, i.e., the ability of a system to sense the current environment and
autonomously adapt in order to reach optimal operation, control its general behavior
and provide interface adequately with its users. We argue in favor of the use of formal
ontology. In particular we favor a specific family of representation, those that use the
W3C recommended ontology language, OWL.

562 K.K. Breitman and M.G. Hinchey

The rest of this paper is divided as follows. In section 2 we discuss the use of on-
tologies in computer science, in sections 3 and 4 we discuss ontology implementation
languages RDF and OWL. In section 5 we define the notions of context and context
awareness in ubiquitous computing. In section 6 we revisit some ubiquitous comput-
ing environments and discuss how they acquire and represent context, from an onto-
logical point of view. In section 7 we present our concluding remarks.

2 Ontologies

The word ontology comes from the Greek ontos (being) + logos (word). It was intro-
duced in philosophy in the nineteenth century by German philosophers to distinguish
the study of being as such from the study of various kinds of beings in the natural
sciences. As a philosophical discipline:

The subject of Ontology is the study of the categories of things that exist or may ex-
ist in some domain. The product of such a study, called an ontology, is a catalogue of
the types of things that are assumed to exist in a domain of interest D from the per-
spective of a person who uses a language L for the purpose of talking about D. The
types in the ontology represent the predicates, word senses, or concept and relation
types of the language L when used to discuss topics in the domain D. [21]

In computer science, ontologies were adopted in artificial intelligence to facilitate
knowledge sharing and reuse [7, 4] Today, their use is becoming widespread in areas
such as intelligent information integration, cooperative information systems, agent-
based software engineering and electronic commerce. Ontology is defined in Guarino
[8] as “an artifact, constituted by a specific vocabulary used to describe a certain reality,
plus a set of explicit assumptions regarding the intended meaning of the vocabulary.”
Ontologies are conceptual models that capture and make explicit the vocabulary used in
semantic applications, thereby guaranteeing communication free of ambiguities.

To ensure effective information sharing among devices, ontologies need to be ex-
pressive enough to establish a common terminology that guarantees consistent inter-
pretation. We adopt the ontology structure O proposed by Maedche [12]. According to
the author, an ontology can be described by a 5-tuple consisting of the core elements
of an ontology, i.e., concepts, relations, hierarchy, a function that relates concepts
non-taxonomically and a set of axioms. The elements are defined as follows:

O : = {C, R, HC, rel, AO} consisting of :

 Two disjoint sets, C (concepts) and R (relations)
 A concept hierarchy, HC: HC is a directed relation HC ⊆ C x C which is called

concept hierarchy or taxonomy. HC (C1, C2) means C1 is a subconcept of C2

 A function rel : R → C x C that relates the concepts non taxo-
nomically

 A set of ontology axioms AO, expressed in appropriate logical language.

Each concept in the ontology is represented by two types of description, as opposed to
dictionaries, lexicons, glossaries and thesauri, that provide a monolith description.
The first type is the denotation, the intended meaning, of the ontological concept. The
denotation is equivalent to a description found in a typical dictionary. The second

 The Use of Formal Ontology to Specify Context in Ubiquitous Computing 563

type of description is the connotation of the ontological concept, that is, additional
meaning provided by the composition with other concepts (C) or relations (R) in the
ontology. The connotation of an ontology concept describes how a concept relates to
others in the ontology, composing new meanings. Those are represented using both
taxonomical (hierarchical) relationships of the type HC and non taxonomical ones (rel :
R → C x C). This representation has a parallel in the work of Umberto Eco, in which
he defines a system of codes based on signs, denotations, connotations and a set of
rules (the set of relationships that relate signs to denotations and connotations) [6,1].

Most existing ontology representation languages can be mapped to the structure
discussed above [12]. It is important to note, however, that because first-order logic is
known to be intractable, we restrict to description logic based ontology languages as
the paradigm formal system. Briefly, description logic models the application domain
by defining the relevant concepts of the domain and then using these concepts to
specify properties of objects and individuals occurring in the domain. In the next two
sections we discuss two ontology implementation languages that translate to descrip-
tion logics. It is not our intent to make a lengthy discussion, but rather to highlight the
features that are important to the formalization of context awareness in ubiquitous
computing environments.

3 Ontology Implementation Languages: RDF

The Resource Description Framework (RDF) is a general-purpose language for repre-
senting information in the Web. It is particularly intended for representing metadata
about Web resources, but it can also be used to represent information about objects
that can be identified on the Web, even when they cannot be directly retrieved from
the Web. To some extent, RDF is a lightweight ontology language to support interop-
erability between applications that exchange machine-understandable information on
the Web.

RDF has a very simple and flexible data model, based on the central concept of the
RDF statement. We also consider the concept of vocabulary as part of the RDF data
model, due to its relevance to ontology modeling. RDF offers three equivalent nota-
tions: RDF triples, RDF graphs, and RDF/XML. An RDF statement (or simply a
statement) is a triple (S, P, O), where

• S is a URIref1, called the subject of the statement
• P is a URIref, called the property (also called the predicate) of the statement, that

denotes a binary relationship
• O is either a URIref or a literal, called the object of the statement; if O is a literal,

then O is also called the value of the property P

Let s be the resource identified by the URIref S. We also say that s has a P property
of O, or that s has a P property with value O.

1 A Uniform Resource Identifier (URI) is a character string that identifies an abstract or physi-

cal resource on the Web. A URI reference (URIref) denotes the common usage of a URI, with
an optional fragment identifier attached to it and preceded by the character “#”.

564 K.K. Breitman and M.G. Hinchey

Literals are character strings that represent datatype values. Literals may not be
used as subjects or properties in RDF statements.

A vocabulary is a set of URIrefs and is therefore synonymous with an XML name-
space. Note that, because a vocabulary is a set, each URIref must be unique within a
vocabulary. A vocabulary V is frequently specified in two alternative ways. The first
alternative uses qualified names to define V as follows.

• Select a fixed URIref U and a prefix p for it
• Define a set of qualified names with prefix p
• Define V as the set of URIrefs represented by such qualified names

A set R of RDF statements should be understood as expressing the conjunction of the
statements. The URIrefs used in the RDF statements in R may be taken from native
vocabularies, that is, vocabularies defined exclusively for R, or from imported vo-
cabularies, that is, vocabularies defined elsewhere.

RDF provides an extension that allows for modeling simple ontologies, containing
classes and properties, and hierarchies, known as the RDF Vocabulary Description
Language 1.0: RDF Schema (RDF Schema or RDF-S).

In RDF Schema, a class is any resource having an rdf:type property whose
value is the qualified name rdfs:Class of the RDF Schema vocabulary. A class C is
defined as a subclass of a class D by using the predefined rdfs:subClassOf prop-
erty to relate the two classes. The rdfs:subClassOf property is transitive in RDF
Schema.

A property is any instance of the class rdfs:Property. The rdfs:domain prop-
erty is used to indicate that a particular property applies to a designated class, and the
rdfs:range property is used to indicate that the values of a particular property are
instances of a designated class or, alternatively, are instances (i.e., literals) of an XML
Schema datatype. A comprehensive account of RDF and RDF Schema can be found
in Manola and Miller [13].

RDF however, is criticized as an ontology language because it lacks expressiveness
[10]. In the RDF Schema logical connectives such as negation, disjunction and con-
junction are not provided, thus restricting the expressive power of the ontology.

4 Ontology Implementation Languages: RDF and OWL

The Web Ontology Language (OWL) describes classes, properties, and relations
among these conceptual objects in a way that facilitates machine interpretability of
Web content. OWL is the result of the Web Ontology Working Group (now closed)
and descends from DAML+Oil, which is in turn an amalgamation of DAML and OIL.

OWL is defined as a vocabulary, just as are RDF and RDF Schema, but it has a
richer semantics. Hence, an ontology in OWL is a collection of RDF triples, which
uses such vocabulary. The definition of OWL is organized as three increasingly ex-
pressive sublanguages: OWL Lite (offers hierarchies of classes and properties, and
simple constraints with enough expressive power to model thesauri and simple
ontologies), OWL DL (increases expressiveness and yet retains decidability of the
classification problem) and OWL Full (complete language, without limitations, but it
ignores decidability issues).

 The Use of Formal Ontology to Specify Context in Ubiquitous Computing 565

OWL Full can be viewed as an extension of RDF, whereas OWL Lite and OWL
DL are extensions of restricted forms of RDF.

RDF is more expressive than OWL Lite and OWL DL exactly because the RDF
data model imposes no limitations on how resources (URIrefs) can be related to each
other. For example, in RDF, a class can be an instance of another class, whereas OWL
DL and OWL Lite require that the sets of URIrefs that denote classes, properties, and
individuals be mutually disjoint. Therefore, care must be taken when translating from
RDF to OWL Lite or OWL DL.

OWL DL offer constructs to specify complex class descriptions and to define class
restrictions and axioms, as summarized in Table 1.

Table 1. Class constructors used in OWL

OWL allows the description of a class C to include a restriction R on the individu-
als that may belong to C. The specification of R is always based on some property P
of C and, as such, R is called a property restriction (in the sense of a restriction de-
fined with the help of a property). In set-theoretic notation, this is equivalent to saying
that C is subjected to a restriction of the form C ⊆ {x / R}.

Note that the above set inclusion allows the existence of individuals that satisfy R
and yet are not in C. In other words, R defines a necessary, but not sufficient, condi-
tion for an individual to be in C.

In OWL notation, a class definition with a restriction has the following pattern.

1. <owl:Class rdf:about=C >
2. ...
3. <rdfs:subClassOf>
4. <owl:Restriction>
5. <owl:onProperty rdf:resource=P>
6. ... declaration of restriction R...
7. </owl:Restriction>
8. </rdfs:subClassOf>
9. ...
10. </owl:Class>

566 K.K. Breitman and M.G. Hinchey

Set Theory: C ⊆ {x / R}

Lines 4 to 7 define the (unnamed) class of all things that satisfy R, and line 3 indicates
that C is a subclass of such a (unnamed) class. The pattern in lines 3 to 8 may be re-
peated to define multiple restrictions for the same class.

Restriction declarations may be of three types: quantified restrictions; cardinality
restrictions; and value restrictions (also called filler information).

A quantified restriction may be an existential or a universal restriction, declared
with the help of owl:someValuesFrom and owl:allValuesFrom, respectively. An
existential restriction for C, P, and D requires that every instance c of C must have at
least one occurrence of property P whose value is an instance of D. An existential

restriction therefore corresponds to a description logic inclusion of the form C ⊑ ∃P.D.
A universal restriction for C, P, and D requires that, for every instance c of C, if c

has an occurrence of a property P whose value is d, then d must be an instance of D.
Note that a universal restriction does not require c to have at least one occurrence of
property P. A universal restriction therefore corresponds to a description logic inclu-

sion of the form C ⊑ ∀P.D.
For example, assume that we have two classes, Conf and EuropeanCity, whose

instances represent conferences and cities in Europe, respectively, and a property,
heldIn, which maps conferences into cities. We may then define a new class,
heldInEuropeConf, and restrict it to contain only individuals that are conferences
held at least once in a European city as follows

1. <owl:Class rdf:about=″heldInEuropeConf">
2. <rdfs:subClassOf rdf:resource=″Conf"/>
3. <rdfs:subClassOf>
4. <owl:Restriction>
5. <owl:onProperty rdf:resource=″heldIn"/>
6. <owl:someValuesFrom rdf:resource=″EuropeanCity"/>
7. </owl:Restriction>
8. </rdfs:subClassOf>
9. </owl:Class>

Set Theory: heldInEuropeConf ⊆
 Conf ∩ {x / ∃y(heldIn(x, y) ∧ y ∈ EuropeanCity)}
Description Logic: heldInEuropeConf ⊑ Conf ⊓ ∃heldIn.EuropeanCity

Lines 4 to 7 define the (unnamed) class of all things with at least one occurrence
(there may be more than one) of the heldIn property whose value is an instance of
the EuropeanCity class. Lines 2 and 3 indicate that the heldInEuropeConf class
is a subclass of the intersection of this (unnamed) class and the Conf class. Note that
the OWL fragment in lines 1 to 9 does not guarantee that heldInEuropeConf con-
tains all individuals that are conferences held at least once in a European city (that is,
it is a necessary, but not sufficient condition).

A full account of OWL and its sub languages can be found in Dean and Schreiber
(2004) and in McGuinness and Harmelen (2004).

 The Use of Formal Ontology to Specify Context in Ubiquitous Computing 567

5 Context Awareness

Context can be defined as any information which characterizes the state of a resource
(of a device), of a user or of an environment. In particular, we are interested in han-
dling the following types of context information [2,3]:

• System context: data about the mobile device’s and the network resources, includ-
ing device capabilitie, currently free memory, CPU utilization, battery level, con-
nectivity status, connectivity parameters (such as IP address, mask, current wireless
(Wifi) access point, etc.

• Physical context: data about a device’s or an environment’s symbolic location (as
opposed to its geographic position), city, country, and data collected from sensors,
such as temperature, noise, luminosity, acceleration, etc.

• Time context: information such as hour of the day, day of the week, week of the
year, month, year, etc.

• User context: data that indicate the user’s role, profile, preferences, activity, etc.
Compared to the other types of context information, this is the only kind of informa-
tion which can not be inferred automatically and requires some user intervention.

Finding an adequate, machine processable, conceptual representation for the notion
of concept is fundamental in securing interoperability in ubiquitous computing envi-
ronments. The chosen conceptual model should enable devices to communicate with
each other with users by means of ad-hoc wireless networking, enable users to control
and interact with the environment in natural (voice, gesture) and personalized ways
(preferences, context), thus providing users with an environment that offers services
when and if needed. Of course such representation should be expressive enough as to
help in identifying, choosing and activating such services.

Additionally, the representation should allow for reasoning. Context data in ubiqui-
tous environments is uncertain and, most of the time, imperfect. Reasoning, in this
case, is used to detect possible errors, inconsistencies and verify data. Reasoning is
also fundamental for any kind of context-oriented decision-making, e.g. system adap-
tations according to user-provided or learned decision rules.

Context reasoning in ubiquitous computing is very complex due to the dynamic,
imprecise and ambiguous nature of context data, the need to process large volumes of
data, and the fact that reasoning needs to be performed in a decentralized, cooperative
way amongst several entities. Approaches to context reasoning include ontological,
rule-based, distributed and probabilistic reasoning [22]. In this paper we focus on
ontological reasoning. In the next section we discuss the adoption of formal ontology
in ubiquitous computing environments.

6 Use of Formal Ontology in Ubiquitous Computing
Environmopents

In this section we discuss some ubiquitous computing environments in respect to how
they acquire and formalize context, their use of ontology and reasoning.

The multi agent CoBrA infrastructure provides a framework that supports software
agents, services and device interaction [3]. It is built around a context broker

568 K.K. Breitman and M.G. Hinchey

component, responsible for providing an export schema to represent and mediate
context information and use inference to detect and correct data inconsistencies. Con-
text is acquired using a library of procedures over a set of predefined sensors.

The infrastructure makes use of the CoBrA (COBRA-ONT) and SOUPA ontolo-
gies. The first is used by software agents as the means to exchange context knowledge.
The second, SOUPA, is a standard ontology for supporting pervasive and ubiquitous
computing applications. CoBrA’s context reasoning is backed by the Jena rule engine,
the Java Expert System Shell (JESS) and the Theorist system. The reasoning for inter-
preting context information uses two different rule-based systems. Jena rule-based
reasoners are used for OWL ontology inferences and the JESS rule engine is used for
interpreting context using domain specific rules.

The CHIL project developed a middleware infrastructure capable of acquiring con-
text information using software agents [20]. Context information is obtained from
sensors by software agents and made accessible to other agents of the performed
through special Proxy agents, that are responsible for interfacing with the agent
framework. Mechanisms for modeling composite contextual information and describ-
ing networks of situation states are also available.

A general-purpose vocabulary comprising multi-sensor smart spaces and context-
aware applications is provided via the CHIL ontology [16]. Inference is based on the
notion of a network of situation states. According to this approach, a situation is con-
sidered as a state description of the environment expressed in terms of entities and
their properties. Changes to individual or relative properties of specified entities cor-
respond to events that signal a change in the situation.

The Context-Aware Middleware Ubiquitous Robotic Companion System (CAMUS)
is a context-aware infrastructure for the development and execution of a network-based
intelligent robot system [11]. In CAMUS, a sensor framework processes input data
from various sources such as physical sensors, applications and user commands and
transfers them to the Context Manager component through the event system.

CAMUS implements four different abstraction level ontologies: common, domain,
infrastructure and specific domain ontologies. The common ontology provides the
high-level knowledge description to context-aware applications. The domain ontology
layer is a specialization of the common ontology layer and provides domain specific
knowledge to context-aware applications. The next, more specific layer, is composed
of the infrastructure domain ontology and a set of specific domain ontologies for the
application. The infrastructure domain ontology is the schema of the context model
that is represented and managed in the context-aware system. The specific domain
ontology provides descriptions of specific services, for example, a presentation ser-
vice. Ontology reasoning in CAMUS is done using RACER [9], that offers inference
support to the discovery of subsumption/instance relationships and consistency verifi-
cation of context knowledge base. First order, temporal, higher order, fuzzy logic
reasoners are also available.

The distributed semantic service framework, OWL-SF [15], supports the design of
ubiquitous context-aware systems considering both the distributed nature of context
information and the heterogeneity of devices that provide services and deliver con-
text. It uses OWL to represent high-level context information, that is encapsulated in
Super Distributed Objects (SDOs) [18]. An SDO may be sensors, devices, user's inter-
faces (GUIs) or services.

 The Use of Formal Ontology to Specify Context in Ubiquitous Computing 569

Each functional entity implemented as OWL-SDO has to be described using its
own ontology containing terminological knowledge that enables the automatic classi-
fication of the object into appropriate service categories. Reasoning is achieved using
the RACER OWL-DL reasoner [9].

The Campus framework supports the development of multi- agent, context aware,
pervasive computing applications [19,22]. Campus is designed to provide the neces-
sary infrastructure for ubiquitous computing environments. Based on multi agent
system technology, Campus provides an infrastructure to develop innovative context
aware applications that accommodate an ample spectrum of mobile and fixed devices.
The support for semantic interoperability, offered by the communication and coordi-
nation layer, allows for the discovery, exchange and collaboration among hybrid de-
vices, regardless of proprietary representations of information. Context is acquired
using MoCA (Mobile Collaboration Architecture), a service-oriented architecture that
supports the development of context-aware applications and services for mobile com-
puting [17]. Besides a small and simple set of APIs to build such systems, MoCA
provides efficient services to collect, store and distribute context information associ-
ated with mobile devices

The Campus ontology serves as a knowledge base for the framework implementa-
tion, i.e., provides the necessary semantics to allow high level exchanges, including
brokering, negotiation and coordination amongst software agents. It contains precise
definitions for every relevant concept in the framework e.g, it defines that a service is
described by a tuple containing its name, a parameter list, a capability list, the com-
munication port number, and protocol. Ontology reasoning in Campus, as well as in
CAMUS and OWL-SF is done using the RACER inference mechanism [9].

7 Conclusions

In this paper we argued that formal ontology is most adequate to represent the notion
of context in ubiquitous computing because they are semantically richer, i.e., provide
greater power of expression than more traditional software modeling techniques such
as taxonomies, entity relationships or OO. Also, ontologies organize conceptual
knowledge using a complex and accurate representations that are above and beyond
hierarchical approaches. Moreover, if written using the OWL ontology language dis-
cussed in sections ***, they also present the following advantages

• can be verified/classified with the aid of Inference Mechanisms, e.g. RACER and
FaCT:

• consistency checks
• classification
• new information discovery
• use a XML/RDF syntax that allows them to be automatically manipulated and

understood by most resources on the Internet
• capture and represent finely granulated knowledge
• are modular, reusable and code independent - ontology driven applications are

specified separately from the ontology itself. Changes to the ontology donot impact
the code or vice versa

570 K.K. Breitman and M.G. Hinchey

• can be combined with emerging rule languages, such as the semantic web rule
language (SWRL)

We surveyed a few ubiquitous computing environments, with special regards to
their use of ontology and reasoning mechanisms. We conclude that, at some level,
they support the use of formal ontology to represent important concepts. More impor-
tantly, most make use of inference to aid the classification of new concepts and to
verify overall consistency.

References

1. Carnap, R.: The Methodological Character of Theoretical Concepts. In: Feigl, H., Scriven,
M. (eds.) Minnesota Studies in the Philosophy of Science, vol. I. University of Minnesota
Press, Minneapolis (1956)

2. Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD
thesis, Department of Computer Science, University of Maryland, Baltimore County

3. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing envi-
ronments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering
Review

4. Davies, J., Fensel, D., Harmelen, F.V. (eds.): Towards the Semantic Web: Ontology
Driven Knowledge Management. John Wiley & Sons, New York (2003)

5. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C Recom-
mendation (February 10, 2004), http://www.w3.org/TR/owl-ref/

6. Eco; Umberto - A theory of Semiotics. Indiana University Press, Bloomington (1979)
7. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-

merce. Springer, New York (2001)
8. Guarino, N.: Formal ontology and information systems. In: Proceedings of the First Inter-

national Conference on Formal Ontologies in Information Systems, FOIS 1998, Trento, It-
aly, pp. 3–15 (1998)

9. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083. Springer, Heidelberg (2001)

10. Heflin, J., Hendler, J.: A Portrait of the Semantic Web in Action. IEEE Intelligent Sys-
tems, 54–59 (March/April 2001)

11. Kim, H., Cho, Y., Oh, S.: CAMUS: A Middleware Supporting Context-aware Services for
Networkbased Robots. In: IEEEWorkshop on Advanced Robotics and Social Impacts (2005)

12. Maedche, A.: Ontology Learning for the Sematic Web. Kluwer Academic Publishers,
Dordrecht (2002)

13. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation(February 10, 2004),
http://www.w3.org/TR/rdf-primer/

14. McGuinness, D.L., Harmelen, F.V. (eds.): OWL Web Ontology Language Overview.
W3C Recommendation (February 10, 2004), http://www.w3.org/TR/owl-
features/

15. Mrohs, B., Luther, M., Vaidya, R., Wagner, M., Steglich, S., Kellerer, W., Arbanowski, S.:
OWL-SF – a distributed semantic service framework. In: Proceedings of the Workshop on
Context Awareness for Proactive Systems (CAPS 2005), Helsinki, pp. 67–77 (2005)

16. Pandis, I., Soldatos, J., Paar, A., Reuter, J., Carras, M., Polymenakos, L.: An ontology-based
framework for dynamic resource management in ubiquitous computing environments. In:
Proceeding of the 2nd International Conference on Embedded Software and Systems,
Northwestern Polytechnical University of Xi’an, PR China, pp. 16–18 (December 2005)

 The Use of Formal Ontology to Specify Context in Ubiquitous Computing 571

17. Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.S., Gonçalves, K., Nascimento,
F.N., Bueno, G.: MoCA: A Middleware for Developing Collaborative Applications for
Mobile Users IEEE Distributed Systems Online, vol. 5(10) (October 2004) ISSN 1541-
4922

18. Sameshima, S., Suzuki, J., et al.: Platform Independent Model and Platform Specific
Model for SDOs. Final recommended specification, OMG (2004)

19. Seghrouchni, A.E.F., Breitman, K.K., Sabouret, N., Endler, M., Charif, Y., Briot, J.P.:
Ambient Intelligence Applications: Introducing the Campus Framework. In: Proc. of the
13th IEEE International Conference on Engineering of Complex Computer Systems,
vol. 1, pp. 165–174. IEEE Computer Society Press, Los Alamitos (2008)

20. Soldatos, J., Dimakis, N., Stamatis, K., Polymenakos, L., Crowley, J.L.: A breadboard ar-
chitecture for pervasive context-aware services in smart spaces: middleware components
and prototype applications. Pervasive and Ubiquitous Computing 11, 193–212

21. Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational Foun-
dations. Brooks/Cole, Pacific Grove, CA, USA (1999)

22. Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret, N., Breitman, K.K., Seghrouchni,
A.E.F., Briot, J.P.: Ambient Intelligence: Management of Distributed and Heterogeneous
Context Knowledge. In: Dargie, W. (ed.) Context-Aware Self managing Systems. CRC
Studies in Informatics series. CRC Press, Chapman & Hall

High Service Availability in MaTRICS

for the OCS

Markus Bajohr and Tiziana Margaria

Chair Service and Software Engineering, Universität Potsdam
August Bebel Str. 89, 14482 Potsdam, Germany
{bajohr,margaria}@cs.uni-potsdam.de

Abstract. Internet services are becoming an integral part of our daily
environment. Nobody sees the background of the configuration of the ser-
vices and its backend systems, but it is expected that critical services, like
flight booking systems, online banking, etc. are resilient against server
and service faults. Therefore those services often run in a cluster on sev-
eral machines in an Active/Standby configuration in a clustered mode.

We present how we realize remote configuration and fault tolerance
of the Online Conference Service (OCS) with our service oriented frame-
work MaTRICS. Our solution lets the services untouched and uses the
cluster management software heartbeat to provide high availability.

1 Motivation

Continuous and reliable operation of services is of central importance, yet ser-
vices like web, mail, etc. are still commonly provided by single servers hosting
them. The availability of such services can be increased by redundant installa-
tion on several machines, possibly distributed at different locations. In case of a
service fault of the active machine we need a mechanism for switching a redun-
dancy machine to active. Providing such mechanisms at low overhead is one of
the services offered by MaTRICS [1], our model-based service-oriented platform
for remote intelligent configuration and management of systems and services.

MaTRICS allows remotely connected users (here, service or system admin-
istrators) to test and modify the configuration of any service provided on (ap-
plication) servers, like email-, news- or web-servers. MaTRICS can seamlessly
manage configuration processes on heterogeneous software and hardware plat-
forms, which are performed from a variety of peripherals unmatched in today’s
practice, including lightweight mobile terminals like SMS or PDAs.

In this paper, we describe how a high availability architecture based on heart-
beat [5, 12, 15] enhances MaTRICS with a number of test- and reconfiguration
services ready to be parameterized and executed. We have realized this for our
continuously running instances of the Online Conference Service (OCS) [6,7,8],
a complex collaborative decision support system implemented as an internet ser-
vice. The OCS proactively helps authors, Program Committee chairs, Program
Committee members, and reviewers to cooperate efficiently during the distrib-
uted process of selecting a conference program. The important characteristic is

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 572–586, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

High Service Availability in MaTRICS for the OCS 573

that the service is customizable and flexibly reconfigurable online at any time,
for each role, for each conference, and for each user. The OCS has been suc-
cessfully used for over 100 computer science conferences, mostly with LNCS
proceedings [8]. Springer’s cluster for OCS has thus evident high availability
and high performance requirements: totalling at any time over 2000 users world-
wide, the services are active and used in a 24x7 way, for weeks. Remote access to
and monitoring of the services and of the server cluster at any time, also during
non-working hours are therefore of vital importance. Those operations could be
traditionally carried out only inside the local network, sometimes even only on
the console.

We now manage the installation of new (conference-specific) instances of the
OCS on a high availability cluster and administrative tasks like starting/stopping
or updating the services with MaTRICS. MaTRICS also monitors every service
and in case of a fault, it starts an intelligent reconfiguration process of the back-
end server systems to guarantee the reliable continuous operation of the OCS.
Via the notification management of the MaTRICS framework we can generate
notifications for each communication channel, like SMS, EMail, SIP, etc.

MaTRICS provides a scalable and model-driven solution to the problem of ac-
cessing, stopping, reconfiguring, and restarting application servers, web servers,
databases, memory, and process monitors at any time over a large variety of com-
munication channels. The proposed solution requires limited capabilities and has
a non-invasive footprint in terms of flexibility (e.g., access rights management)
and mobility (e.g., personal communication channels). Every process definition
is modelled at the service logic level in the jABC [11,17], and then verified wrt.
properties with jABC’s integrated model checker GEAR [4]. This game based
model checker allows us to formally verify essential process properties in a flex-
ible what-if scenario.

In the following, we summarize the MaTRICS framework from an architec-
tural point of view (Sect. 2) and the design concept of heartbeat (Sect. 3), then
in Sect. 4 we show its integration in MaTRICS. Sect. 5 shows the server- and
network-architecture of the cluster hosting over 100 parallel running instances
of the OCS. Sect. 6 deals with our model-based service design style to design
availability test services for the OCS, which directly interacts with heartbeat. Fi-
nally, Sect. 7 draws the conclusions and sketches how we may extend the current
capabilities to support also high-availability hardware and middleware solutions.

2 The MaTRICS Framework

As described in [1], MaTRICS is a distributed system for the remote intelligent
configuration of server systems that offers

– an architecture for the platform independent management and platform de-
pendent execution of configuration tasks, which comprise in our vocabulary
installation, update, upgrade, reconfiguration of system and application soft-
ware packages

574 M. Bajohr and T. Margaria

Fig. 1. The High-level Architecture of MaTRICS

– facilities for carrying out these configuration tasks from thin, mobile clients
(like phone, fax, PDAs)

– and an environment for the eXtreme Model Driven Design [10] of all the
configuration tasks, meaning that the models for those tasks are executable
and also amenable to formal analysis and verification.

A physical server system usually provides a number of services, each coming with
an own configuration format that depends on the version number of a service
and the underlying operating system, and is stored in different files distributed
over the file system. Updating a service thus results in an adaptation of the old
configuration to the new one, which requires the execution of a set of activities,
expressible by means of a configuration workflow. Its distributed architecture is
shown in Fig. 1.

– Users access the MaTRICS from their thin terminals via protocol-specialized
agents called ConfigAgents.

– ConfigAgents serve as protocol adapters between the client-specific proto-
cols and the ConfigManager.

– ConfigClients are the servers to be configured. They communicate with the
ConfigManager via standard protocols, like SSH or RSH.

– Any modification of the configuration of a ConfigClient is caused by user
activities (sent to the ConfigManager via the ConfigAgent adaption) that
require the execution of configuration workflows on that client. This is done
by the ConfigManager’s JobFlow-Engine.

2.1 The ConfigManager

The ConfigManager is the heart of MaTRICS. It is conceptually organized in
the following components (see Fig. 2), called layers due to their sequential use
in the lifetime of a request/grant cycle:

– a Communication layer handles the ConfigAgents. It communicates over
the MaTRICSManagerProtocol (MMP) the presentation data for the user clients
in a uniform XML format, realized by the AgentProtocolManager. The
ConfigAgent transforms them for appropriate display on the user’s client.

High Service Availability in MaTRICS for the OCS 575

Fig. 2. The Core of MaTRICS: The ConfigManager

– a Coordination and ServiceLogic layer handles the configuration ser-
vices and contains the basic services. For example, the Cluster Configura-
tion Management service enables the configuration of heartbeat and the
service availability management components. As any (configuration) service
within the MaTRICS, also these are built via ServiceLogicGraphs (SLG).

– a Management- and Business layer contains the core components shared
by all sessions and services. They provide a standardized interface for the
coordination layer and the basic services of the MaTRICS.

– a Persistency layer for backend services, like database, queues, or file
system.

– an Abstract communication layer takes care of the heterogeneity of pro-
tocols and formats for the ConfigClients. The ClientProtocolManager
provides methods for processing jobs from the job flow engine, translating
the jobs into the ConfigClient’s shell language.

– the Notification layer contains a notification management for sending mes-
sages to users on different communication channels, like SMS, EMail or SIP.

2.2 Model Based Design of MaTRICS Services

In MaTRICS, every workflow for a service is accurately defined by an operational
model that contains its business logic, including alternatives, special cases, and
exception handling. This model, expressed as Service Logic Graph (SLG) [9, 17]

576 M. Bajohr and T. Margaria

is formally defined as a deterministic finite state automaton, and it is automat-
ically analyzable via model checking. Configuration workflows are executed in
the ConfigManager, the centralized core component of MaTRICS.

3 Hearbeat

Heartbeat [5,12,15] is a fundamental part of the High-Availability Linux project.
It provides core cluster management services, including membership, communi-
cation, resource monitoring, and management services, IP address takeover etc.
The machines in the cluster communicate with each other by sending ”heartbeat
packets” about twice a second. Heartbeat runs scripts on the primary node to
bring the applications up and shut them down (on the standby nodes). In that
way, it is similar to a multi-machine ”init” process.

Heartbeat provides a generic peer-to-peer solution for high availability by run-
ning availability tests on the services (called resources). If a test fails, heartbeat
starts its failover mechanisms, defined by rules called constraints, to activate
the service on another node. Heartbeat reads its constraint database for every
cluster node and takes the applications from the failed node over to the cluster
node with the highest score. The failed node is marked with a failcount, which
excludes its from the score calculation. For our purpose we have defined three
constraints for every cluster group:

– Applications shall run on the preferred node: Score = 100
– Never run applications on unreachable nodes: Score = -∞
– Run applications on nodes marked standby. For every standby node there is

a constraint with Score = 10

The goal of heartbeat is that the defined services, called resources, can be
run on every defined cluster node and heartbeat takes care to start and stop a
service. Thereby heartbeat guarantees that a service runs only on one node, the
one with the highest score. Sets of services can be arranged by resource groups.
This means that all services of a resource group have to move in its defined order
to another cluster node if any of these services is faulty.

The configuration of resource groups and resources is done by the bundled
manager programs, like cibadmin. This information is stored in the cluster infor-
mation base (CIB), a set of XML-based files for every cluster node. Modifications
of the CIB are done by its manager programs in form of XML-based fragments.
This kind of configuration is very complex and error-prone. Furthermore the
stability of a cluster can be affected by invalid XML snippets.

In this context MaTRICS plays three roles:

1. it is used to configure the cluster with its cluster nodes and resources,
2. it watches over the cluster state and stores all cluster changes in its own

history database,
3. finally, it monitors heartbeat by executing special test models, see Sect. 6.

High Service Availability in MaTRICS for the OCS 577

Fig. 3. The Interaction of Heartbeat and MaTRICS

Accordingly, for the integration there are some problems to solve:

– Executing the heartbeat manager programs for modifying the CIB
– Receiving the actual state of a cluster and its resources
– Monitoring a resource by our test models.

4 Heartbeat Integration in MaTRICS

Fig. 3 shows the high level architecture of the heartbeat integration in MaTRICS.
The constraints and resources with their actions for Service A in heartbeat’s CIB
have to be defined via scripts in OCF- or LSF-format [13]. Similar scripts are
also used for the monitoring and management process of a service.

Instead of using those scripts, we delegate the monitoring process of heartbeat
(1) to the MaTRICS framework. For every service we define a specific testcase
model in the jABC: it describes the test workflow (here for service A) to be
executed for monitoring. The advantage is that the jABC test cases are more
precise than the heartbeat OCF-/LSF-scripts. For example, a fault of service A
can only be detected by heartbeat if the entire service is down. It is also difficult
to design a test case in an OCF-/LSF-script to detect a service fault if only a
component of service A does not work properly.

MaTRICS periodically connects to the service and runs the test cases de-
scribed by the test model (2). The results are validated and returned back to
heartbeat (3). If the test results detect a fault heartbeat runs the actions defined
in the corresponding OCF-script (4), e.g. stop the resource on actual node and
start it on another node. Thereby heartbeat sends a notification about the clus-
ter changes to MaTRICS (4). MaTRICS retrieves the actual cluster state from
one cluster node and updates its cluster history database. At need MaTRICS
can invoke any other action, like notifying the system administrator (5).

578 M. Bajohr and T. Margaria

In this configuration the ConfigManager is the central point of failure, because
if it is itself down the heartbeat daemons cannot get the test results. We solve
this problem by enhancing our own OCF-scripts with a connection that checks
the ConfigManager. If it is unreachable the heartbeat daemons run only a simple
check on the service, defined in its OCF-scripts, like doing a HTTP-request to
the first page of an internet service.

4.1 Enhancing the ConfigManager

Fig. 2 shows the core components of the ConfigManager. The configuration and
monitoring workflows for heartbeat are designed in the Service Logic Layer (gray
components).

The Cluster Configuration Management service, discussed in Sect. 4.3, de-
scribes the configuration process of a heartbeat cluster. It allows dynamic mod-
ifications on existing clusters, like adding or removing resources, groups and
constraints.

The Cluster Notifier WebService is a webservice for receiving notifica-
tions from the heartbeat cluster processes. It is called by the external OCF-
/LSF-scripts from the heartbeat daemons, described in Sect. 4.2. The logic of
this service is specified by its Service Logic Graph, see Fig. 4.

In addition, the service tests invoked by the heartbeat daemons are designed
by Service Logic Graphs, too. In Sect. 6 we present a test model for the OCS,
an internet service for managing scientific conferences.

4.2 Receiving the Actual Cluster State

Notifications from heartbeat can be received in MaTRICS either by adapting
all scripts with transmit statements to MaTRICS, or by delegating the transmit
statements to special virtual primitives. We prefer the second solution because we
want to be independent and not resort to modifying scripts by other providers.
Every primitive of a resource is included in an ordered group with a beginning
virtual primitive VPB and a corresponding ending virtual primitive VPE that no-
tify MaTRICS. The cluster state is only changed after the execution of primitive
P, while VPB and VPE, as virtual primitives, only notify MaTRICS before and
after a change of the cluster. These notifications are used in MaTRICS for up-
dating its cluster history.

To get the current cluster state the service of Fig.4 is executed. The notifica-
tion for MaTRICS is done by a HTTP request, which contains an authentication
and a cluster identifier. VPB and VPE are OCF-scripts, which are directly exe-
cuted from the shell environment of the heartbeat daemons. The generation of
a HTTP request can be done by invoking wget.

The SLG of Fig. 4 is the notifier webservice for MaTRICS, which is accessed
by its URL from external programs, like the OCF-scripts VPB or VPE. This service
is also executed periodically every n minutes by a thread of the ConfigManager:
cluster changes are refreshed automatically without sending a notification from
the scripts. Heartbeat operations are indicated by ”hearts” icons.

High Service Availability in MaTRICS for the OCS 579

Fig. 4. MaTRICS Service Get heartbeat cluster state

The start node ThreadEntry (at the top right) initializes the service and
checks the authorization of the request. It is then checked if the request trans-
mitted a clusterID. If not, the cluster information for all running clusters must be
read by iteration over each cluster. Otherwise it takes the left path to

580 M. Bajohr and T. Margaria

OCSClusterMGR GetClusterByAttribute DC, which gets the Designated Coor-
dinator (DC), the master node of the cluster, from the ClusterManager, the core
component of the Cluster Configuration Management service.

First of all the DC should connected, because this node must be always reach-
able. If the DC was set (CheckNull DC), the connection to the ConfigClient
representing the DC can be established. The connection to the ConfigClient is
done by the CPM Fire CRM sequence. This node is a GraphSIB, which represents
another model: we use hierarchical structures in our models.

The connection method (SSH, RSH, Telnet, etc.) is transparent for the ser-
vice and is handled by the ClientProtocolManager, the core connection library
of the ConfigManager. In the GraphSIB CPM Fire CRM sequence the cluster
monitor tool of heartbeat crm mon is called. The results are handed over to
OCSClusterMGR ImportStates, which parses the input and stores the results
into the MaTRICS cluster history database.

The service is terminated by ThreadEnd if it is called with a valid clusterID
(CheckNull AllClusters). Otherwise the next clusterID is read from the set of
clusters (Iterator Next Clusters) to get the next cluster state.

Two special cases need specific handling: if no valid DC is given and if all
cluster nodes are down.

– If no valid DC can be detected by the ClusterManager, a connection to another
cluster node of the cluster has to be established. Therefore OCSClusterMGR-
GetClusterNodeByAttribute CCs returns all members of the cluster. For
each member the crm mon command has to be executed by the GraphSIB
CPM Fire CRM sequence. If the result could not be parsed or stored into the
database the next ConfigClient is chosen.

– The cluster is offline if the actual cluster state could not be read from any
node of the cluster. Then the cluster history has to be updated to offline by
OCSClusterMGR CreateOfflineHistory.

4.3 Configuring and Managing Heartbeat

With MaTRICS, we want to provide an easy to use interface for the configuration
and management of a heartbeat cluster. The main configuration of heartbeat is
stored in the configuration files ha.cf and authkeys. These files must once be
adapted to the own cluster and network architecture.

The definition of resources, groups and constraints has to be defined into the
Cluster Information Base, an XML file. For modifications of the CIB during
runtime, heartbeat provides a special update mechanism for distributing the
CIB to each cluster node. Therefore a update of the CIB has to be done by
invoking the CIB-admin scripts of the heartbeat package.

The Cluster Configuration Management service of MaTRICS stores the
configuration of the CIB in its own format. We use a relational database de-
sign, which stores the clusternodes, resources, resourcegroups and constraints
in separate tables. The initial CIB XML-File is generated from this database
and all modifications are done by creating XML snippets, which are deployed

High Service Availability in MaTRICS for the OCS 581

Fig. 5. High Level Service Logic Graph for the Cluster Creation Workflow

to the cluster by invoking the CIB-admin scripts. This has the advantage that
the cluster configuration can be done in the database without deploying them
to the cluster, so that every configuration step can be undo. After a successful
configuration and validation it can be deployed to the cluster.

The deployment/configuration process in MaTRICS is carried out by the
MaTRICS JobFlow-Engine. We call one configuration process a task, which
contains a set of jobs, local or remote.

Remote jobs describe a single execution on the destination machine in a high
level job-language. This job-language will be transformed into the machine’s
specific language, for example in bash for Linux/Solaris systems and RPC for
Windows systems.

In contrast, local jobs are executed in the ConfigManager runtime and are
designed by Service Logic Graphs. This has the advantage that the execution of
a task is decoupled from the creation time, so that configurations can be done for
ConfigClients, which are offline. A task begins its execution if all ConfigClients
are in a consistent state and are online. In addition the JobFlow-Engine checks
the execution of every job and starts a rollback for a task, if one job of a task
fails. The undo-operations must be defined for all jobs.

Fig. 5 shows the high level workflow for the initial creation of a heartbeat clus-
ter over a Web interface. NavbarMGR AppendToStatusInfo sets the MaTRICS

582 M. Bajohr and T. Margaria

progress bar. Here we heavily use hierarchy: several GraphSIBs (those with
the green circle) contain a separate SLG that realizes reusable functionality.
The initial cluster creation workflow is designed in a wizard concept, so that
one can switch between the pages (back- and error-edges). On the last page
a summary of all entered values will be displayed (Cluster createSummary)
and if the user confirms, the cluster configuration is stored into the database
(Cluster createSuccess). Then the execution is returned to the upper model.
NOOP home is an end node too, entered if the user interrupts the wizard.

5 Application: High Availability for the OCS Cluster

This technology is now in operative use for the cluster that hosts in Dordrecht
(NL) Springer Verlag’s Online Conference Service. The OCS is implemented
as an internet service running in a Tomcat Servlet-Container. For each confer-
ence there is a separate OCS instance that runs in an own Tomcat container.
This way faults of one servlet container only affect one conference. On the other
hand, it requires more memory and CPU-power for providing the servlet contain-
ers. Every OCS instance stores the conference data in an own database. These
databases are hosted on one or more database servers. The OCS itself has no
high-availability mechanisms at the application level for testing its vitality. For
example, if the connection to the database server fails or the servlet container
dies, the hosted conference is down.

Fig. 6. Architecture of the Cluster for the OCS

High Service Availability in MaTRICS for the OCS 583

Fig. 6 shows the server- and network-architecture of a high-availability cluster
for hosting over 100 parallel running instances of the OCS. To protect the cluster
against hardware faults, we supply the database- and file-servers by a storage
area network (SAN) with multipath hostbus adapters (orange and red wires).
If one component (SW-1, SW-2, red/orange wires) dies, there is already a path
to the SAN-Storage. The same is done for the ethernet network (black/green
wires). For the internal network, we have two different segments connected to
the switches SW-3 and SW-4. This requires two network interface cards for
the servers running in a bounding mode. The OCS instances runs in its Tom-
cat containers on the application servers of the Application server Layer in a
n-Active/m-Standby mode. Therefore one (or more) of these servers runs as
a standby server, ready to assume any Tomcat container of other application
servers. Tomcat containers are defined as resources of heartbeat, and are moni-
tored by MaTRICS. To guarantee a consistent files ystem for every application
server, we use two NFS-servers connected to the SAN. These NFS-servers run in
an Active/Standby configuration and mount the cluster file system GFS, which
permits a concurrent read- and write-access to the file system. In case of a fault,
it is important to migrate the locking information of the active NFS-server to
the standby NFS-server, which is normally stored under /var/lib/nfs. The easiest
way of ensuring this is to use the same GFS filesystem. The failover procedure
is managed by heartbeat.

The HA Database Layer consists of two PostgreSQL database servers serving
the same databases running in a Master/Slave configuration. We use a replication
mechanism provided by Slony-I [16]. Thereby changes of the master database are
propagated to its slave databases. If the master database dies, one of the slave
databases has to become master, and take control of the faulty database server.

Each conference service is accessed via an own URL. To distribute the load of
the web servers we use a load balancing technique implemented in the DNS. The
web servers run in an n-Active configuration and tunnel the HTTP-requests to
the application servers by the AJP-13 protocol.

In this context, MaTRICS runs on a dedicated machine which is connected to
all networks. It manages the configuration of the servers and the OCS instances,
it monitors the OCS instances, and triggers heartbeat for a failover procedure.

6 Defining Availability Test Models

The availability test workflows are provided to the MaTRICS users as abstract
services that we call test models. Normally test models are designed specifically
for a target service (one application, like the OCS). Accordingly they form a
service family, because they are specialized to that service logic. Every test model
is executed by the MaTRICS runtime environment, which provides the designer
of the test models with a huge set of predefined functionalities (called SIBs) for
connecting to a service and defining a test case, like database access, etc.

Login Availability for the OCS. The test model of Fig. 7 checks the avail-
ability of the user login procedure into the OCS. At the end-user level the

584 M. Bajohr and T. Margaria

Fig. 7. Test Model for the OCS: the Login Procedure

functionality is very simple: after a successful login the user logs out. However,
this test case guarantees a working database for the OCS and a working business
logic. Just sending a HTTP request to the first page of the OCS a would not

High Service Availability in MaTRICS for the OCS 585

detect a database fault in the business logic, because the response is answered
correctly without connecting to the database. The middleware-level availability
test model is therefore more complex.

The test model begins with the creation of the HTTP-request to the lo-
gin page of the OCS. All HTTP-interactions are done by the SIBs beginning
with send http request. The HTTP-response sent by send http request con-
tains the frameset for the navigation and the login page. Then a new HTTP-
request for the login page is sent by send http request 1. The HTTP-response
is parsed and a valid OCS username and password are sent by the next re-
quest (send http request 2). We expect to be returned a frameset for the per-
sonalized navbar and content page. send http request 3 sends a request for
the navbar. Upon successful login the navbar shows the username, so search-
string login successful searches for it. If it is found, get link by content
follows the URL or link for the logout. If the logout was successful (send http
request 4) the test is passed and the terminal state TestWWW successEWIS is
reached. In all other cases the test fails and TestWWW failEWIS is entered.

7 Conclusions and Future Work

We have shown that we can exploit the MaTRICS model-driven remote intel-
ligent configuration and management of servers and of services not only for
normal operation, but also to extend by the cluster management software heart-
beat, that we use to provide high availability in an Active/Standby operation
for every service managed by MaTRICS.

The advantages of the model-driven MaTRICS approach are manyfold:
MaTRICS drastically lowers the entrance hurdle for system operators to config-
ure, provide and update server software and services. Since all the necessary fea-
tures are provided as workflows in a platform-independent way, also less skilled
or occasional users can perform (even remotely, from thin clients) complex opera-
tions. In addition, configuration workflows are validated before applying changes
to the running servers, and monitored during execution.

Concerning service availability, we have delegated the generic high availabil-
ity features to the cluster management software heartbeat, and use MaTRICS
as an orchestration framework which enhances heartbeat by fine granular test
processes. Actions, for example start/stop- or failover of resources are controlled
by MaTRICS, so that complex operations like the reconfiguration of systems
can be triggered. We have implemented this for the monitoring process for the
OCS instances hosted on a high availability cluster.

We are going to extend the current MaTRICS to provide high availability in a
n-Active/m-HotStandby scenario, that allows a service switching without losing
any context information. This is done by Checkpoint services, which are integral
part of high availability middleware and platforms, like e.g. Fujitsu-Siemens’
RTP-PRIMECLUSTER solution [2, 3] or the OpenSAF [14] project.

Acknowledgement. We thank Daniel Da Silva Lopes for the help in program-
ming of several components for the heartbeat management service in MaTRICS.

586 M. Bajohr and T. Margaria

References

1. Bajohr, M., Margaria, T.: MaTRICS: A Service-Based Management Tool for Re-
mote Intelligent Configuration of Systems. Innovations in Systems and Software
Engineering (ISSE) 2(2), 99–111 (2005)

2. Fujitsu Siemens Computers: Reliable Telco Platform, http://www.fujitsu-
siemens.fr/products/software/cluster technology/rtp4.html

3. Fujitsu Siemens Computers: PRIMECLUSTER,
http://www.fujitsu-siemens.fr/products/software/cluster technology/
primecluster/

4. GEAR - A Game based Model Checking Tool,
http://jabc.cs.uni-dortmund.de/modelchecking/

5. Heartbeat, Open Source High Availability Software, http://www.linux-ha.org
6. Lindner, B., Margaria, T., Steffen, B.: Ein personalisierter Internetdienst für wis-

senschaftliche Begutachtungsprozesse, GI-VOI-BITKOM-OCG-TeleTrusT Kon-
ferenz Elektronische Geschäftsprozesse (eBusiness Processes), Universität Klagen-
furt (September 2001), http://syssec.uni-klu.ac.at/EBP2001/

7. Margaria, T.: Components, Features, and Agents in the ABC. In: Ryan, M.D.,
Meyer, J.-J.C., Ehrich, H.-D. (eds.) Objects, Agents, and Features. LNCS,
vol. 2975, pp. 154–174. Springer, Heidelberg (2004)

8. Margaria, T., Karusseit, M.: Community Usage of the Online Conference Ser-
vice: an Experience Report from three CS Conferences. In: 2nd IFIP Conf. on e-
commerce, e-business, e-government (I3E 2002), Lisboa (P), pp. 497–511. Kluwer,
Dordrecht (2002)

9. Margaria, T., Steffen, B.: Lightweight Coarse-grained Coordination: A Scalable
System-Level Approach. STTT, Special Section on Formal Methods in Industrial
Critical Systems, of the Int. Journal on Software Tools for Technology Transfer 5(2-
3), 107–123 (2004)

10. Margaria, T., Steffen, B.: From the How to the What. In: VSTTE 2005, IFIP
WG 2.3 Working Conf. on Verified Software: Tools, Techniques, and Experiments,
Zürich (CH), October 2005. LNCS. Springer, Heidelberg (2005)

11. Margaria, T., Steffen, B.: Service Engineering: Linking Business and IT. IEEE
Computer, 53–63 (2006)

12. Marowsky-Brée, L.: A new cluster resource manager for heartbeat. In: UKUUG
LISA/Winter Conf. on High-Availability and Reliability, Bournemouth (UK)
(2004)

13. The Open Cluster Framework (OCF), http://opencf.org
14. OpenSAF, The Open Service Availability Framework, http://www.opensaf.org
15. Robertson, A.: The Evolution of the Linux-HA Project, UKUUG LISA/Winter

Conference High-Availability and Reliability, Bournemouth, UK (2004)
16. Slony-I, Enterprise-level replication system, http://www.slony.info
17. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-

velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

http://www.fujitsu-siemens.fr/products/software/cluster_technology/rtp4.html
http://www.fujitsu-siemens.fr/products/software/cluster_technology/rtp4.html
http://www.fujitsu-siemens.fr/products/software/cluster_technology/primecluster/
http://www.fujitsu-siemens.fr/products/software/cluster_technology/primecluster/
http://jabc.cs.uni-dortmund.de/modelchecking/
http://www.linux-ha.org
http://syssec.uni-klu.ac.at/EBP2001/
http://opencf.org
http://www.opensaf.org
http://www.slony.info

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 587–603, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Requirements Definition and Quality
Assurance in Ubiquitous Software Project

Rodrigo O. Spínola, Felipe C.R. Pinto, and Guilherme H. Travassos

PESC-COPPE/UFRJ
Cx. Postal 68.511, CEP 21945-970, Rio de Janeiro, RJ, Brasil

{ros,felipecrp,ght}@cos.ufrj.br

Abstract. The development of ubiquitous software project demands the use of
specific software technologies to deal with the inherent complexity of this type
of project. Despite the advances in the software engineering field, the building of
ubiquitous software still represents a grand challenge. For instance, secondary
and primary studies indicated the existence of 13 ubiquity characteristics that can
influence ubiquitous software projects. Therefore, in this paper we describe these
ubiquity characteristics organized into a body of knowledge regarding ubiquitous
computing and used to characterize ubiquitous software projects. Besides, an on-
going research concerned with supporting ubiquity requirements definition and
verification (checklist based inspection) activities is also introduced.

Keywords: Ubiquitous Computing, Requirements Engineering, Software Qual-
ity, Experimental Software Engineering.

1 Introduction

The increasing complexity and exposure to new risks can prevent traditional software
technologies to keep their effectiveness when used to develop ubiquitous software
projects. This is due to the different software characteristics involved in the engineer-
ing of such projects that must be considered for assuring the delivering of quality
products [4, 11, 13].

Into this software engineering context, some development challenges such as qual-
ity, time and budget constraints can be made explicit by answering questions such as:
(1) What (new) software technologies are necessary to deal with the software ubiquity
characteristics?; (2) What are the risks associated with ubiquitous software projects?;
(3) What quality characteristics software engineers should have in mind when accom-
plishing ubiquitous software projects? (4) How to support the requirements definition
and quality assurance activities in ubiquitous software projects?

Additionally, answering these questions can represent big challenges because:

• Ubiquitous computing (ubicomp) represents a multidisciplinary and new research
intensive knowledge area [11]. Consequently, we can observe a constant evolu-
tion of ubicomp concepts in software related areas such as computer networks,
signal processing, optimization, and artificial intelligence among others;

588 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

• A small number of papers evidencing the use of software engineering principles
to support the development of ubiquitous software projects can be currently
found in the technical literature, making hard identifying the ubiquity characteris-
tics influence in software projects.

These challenges combined with our experience on dealing with software projects
involving requirements regarding ubiquity motivated us to try to understand what
could be the ubiquity characteristics influence in the software development life cycle.
The difficult on dealing with this new software category requirements have driven us
to think about how to enlarge the usual body of knowledge regarding the development
of conventional software projects to also embrace ubicomp applications.

Sakamura [13] states that the creation of ubiquitous software applications is hard
and can involve several ubiquity characteristics. It was also observed by Spínola et al.
[14], which identified and evaluated 10 relevant characteristics concerned with ubiqui-
tous software, such as service omnipresence, invisibility, context sensitivity, adaptable
behavior, experience capture, service discovery, function composition, spontaneous
interoperability, heterogeneity of devices and fault tolerance by undertaking a system-
atic literature review. In complement, information regarding functional and restrictive
factors concerned with the main issues when developing ubiquitous software projects
have been described. At this point, a functional factor is concerned with the facts or
situations related to functional requirements. A restrictive factor is concerned with the
facts or situations related to non- functional requirements.

This information can be useful when a software engineer is looking for software
technologies to use in the software projects. For instance, some software requirements
technologies can be used to deal with one or other ubiquity characteristic [26, 27, 28,
21, 20, 19, 10, 8, 2]. However, their use in ubiquitous software projects can be limited
due to the lack of knowledge on how to apply them when ubiquity characteristics are
combined into the project.

Aiming at providing support for software developers in characterizing and devel-
oping ubiquitous software projects, this paper describes an on-going research towards
the creation of a framework to support software technologies concerned with the
definition and quality assurance of ubiquity requirements. The first target is repre-
sented by organizing knowledge regarding ubiquitous software projects through sec-
ondary and primary studies and making it available to the practitioners. It is intended
to support development activities concerned with ubiquity requirements specification
and validation (checklist based inspection). So, a set o facilities is going to be avail-
able supporting:

• To choose relevant ubiquity characteristics for the software project (level of rele-
vance can depend on the application domain or project’s requirements);

• To identify the ubiquity requirements (functional) through a list of functional
factors regarding each selected ubiquity characteristic;

• To define the ubiquity requirements, by guiding the software engineer to properly
detail all requirements accordingly the selected ubiquity characteristic; and,

• To assure the ubiquity requirements quality, by providing checklists that can
make the software engineer able to inspect whether all expected ubiquity features
were appropriately captured by the requirements specification.

 Supporting Requirements Definition and Quality Assurance 589

This paper is organized in eight sections, including this Introduction. In the follow-
ing section, the definition of ubicomp and its characteristics are discussed. In se-
quence, the results of a detailed analysis for each ubiquitous characteristic considering
its functional and restrictive factors are presented. Then, we present an approach to
characterize applications considering their ubiquity adherence level. We also present
some results obtained with the use of the characterization approach. In sequence, the
evaluation of the concepts involving ubiquitous computing previous discussed is
presented. After that, some concepts about requirements engineering and related
works are analyzed. In the following section, the proposed framework is explained.
Finally, we summarize the main contributions of this paper and future perspectives of
this research.

2 Ubiquitous Computing Characteristics

Weiser introduced the area of ubiquitous computing and put forth a vision of people
and environments augmented with computational resources providing information
and services when and where desired [17]. Weiser’s vision also described a prolifera-
tion of devices at varying scales, ranging in size from hand-held “inch-scale” personal
devices to “yard-scale” shared devices. That is, the computer is integrated into the
environment in such a way that its use becomes non intrusive. This definition set the
origin of the term Ubiquitous Computing and, although it is important for presenting a
new computing paradigm, we believe it is not currently complete at all. This positive
lack of completeness reflects its importance and innovation at that time, and how fast
technology has evolved.

Therefore, an investigation towards an updated definition of ubiquitous computing
seems to be necessary. So, this section intends to present the reached results of a sys-
tematic review whose goals were the field understanding and describing an up-to-date
ubiquitous computing definition that could support our research: (Q0) What is ubiqui-
tous computing?; (Q1) How ubiquitous computing is currently being presented?; (Q2)
What characteristics do define applications for ubiquitous computing?

To accomplish this systematic review, it was elaborated and accomplished a re-
search protocol. The items below define the main characteristics of this protocol:

• Keywords: ubiquitous computing, pervasive computing, ubiquitous application,
ubiquitous system, ubiquitous software, pervasive application, pervasive system,
pervasive software, feature, requirement, characteristic, definition, characteriza-
tion, and concept.

• Paper sources: IEEE Portal, ACM Digital Library, INSPEC, and EI COMPENDEX.
These digital libraries have been chosen by convenience because they were fully
available to the researchers.

• Example of a search string (Q0 only) for ACM Digital Library:
+"ubiquitous computing" abstract:concept abstract:definition abstract:characteristc
+"pervasive computing" abstract:concept abstract:definition abstract:characteristic

• Inclusion and exclusion criteria: These criteria define statements that must be true
for the paper be included in the selected papers set. They must be available on the
internet, be written in English, provide a ubiquitous definition (Q0 only), report

590 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

current applications regarding ubiquitous computing concepts (Q1 only), report
software application (applications concerned with supporting software are not
considered) and present characteristics associated with ubiquitous systems (Q2
only).

• Preliminary studies selection process: each returned publication must have its
abstract and introduction analyzed by two researchers and, based on the inclusion
and exclusion criteria, they select it or not to a more thorough analysis.

To summarize, following the research protocol 41 papers among 751 were selected
to extract information. These papers supported the identification of an updated ubiqui-
tous computing definition besides a set of concepts characterizing ubiquitous software
projects, as described below.

Ubiquitous computing is present when computational services or facilities become
available to the people in such a way that computer is no longer visible nor needed to
be used as an essential tool to access these services or facilities. The services or facili-
ties can materialize themselves at any time or place, transparently, through the use of
common daily devices. To make it happens it is desired that systems composing this
domain take into consideration the following characteristics (an illustrative scenario
aiming at providing our interpretation is also provided):

• Service Omnipresence (SO): It allows users to move around with the sensation
of carrying computing services with them;
o Scenario: An employee is taking part in a business meeting but needs to

leave it. However, it also needs monitoring the meeting progress to report its
results for the manager. When the employee leaves the meeting’s room, the
distance conference managing software can be activated on the smartphone.
Thus, the employee will have access to the meeting everywhere when it is
moving around.

• Invisibility (IN): The ability of being present in daily use objects, weakening,
from user’s point of view, the sensation of explicit use of a computer and enhanc-
ing the perception that objects or devices can provide services or some kind of
“intelligence”. Thus, it demands natural interfaces to facilitate a richer variety of
communications capabilities among humans and computer systems. The goal of
these natural interfaces is to support common forms of human expressions and
leverage more of our implicit actions in the world [23];
o Scenario: a personal health care system that must be constantly monitoring

some health variables without patients’ intervention.
• Context Sensitivity (CS): Ubiquitous systems should have mechanisms to col-

lect information from the environment where it is being used;
o Scenario: a system to control a refrigerator should be constantly monitoring

the temperature to keep the device in the ideal state for products conservation.
• Adaptable Behavior (AB): The ability of dynamically to adapt itself accordingly

the offered environment services, respecting its limitations;
o Scenario: By identifying the bandwidth reduction to the point of harming the

audio and video transmission, the video conference management software
should reduce the audio and video quality allowing the normal communica-
tion flow between the conference participants.

 Supporting Requirements Definition and Quality Assurance 591

• Experience Capture (EC): Ubiquitous systems should have mechanisms to
support the capturing and registering of experiences for later use;
o Scenario: A software for ambient intelligence can identify common user be-

haviors, for example: when arrives at home, the user turns on the room light,
heats water for coffee, turns on the tub and sets the water temperature to 28 °
C. The software can manage these activities as soon as it identifies the user
arrives at home without repetitive user’s commands.

• Service Discovery (SD): This characteristic states that ubicomp systems should
have mechanisms to support pro-active discovery of services, which should be
according to the environment where it is being used in order to find new services
or information to achieve some desired target;
o Scenario: A smartphone software can identify services provided by a super-

market to support the purchase of products by the customer, such as a map
with promotions and products location.

• Function Composition (FC): To be able to creating a service required by the
user based on available basic services;
o Scenario: A user needs to have a spreadsheet view and generate a PDF file

with the view outcome and these services are not available on the work-
station. The software can identify the necessary services and makes them
available for use.

• Spontaneous Interoperability (SI): The ability to change partners during its
operation and according to its movement;
o Scenario: A person is moving and the software, running on a PDA, is playing

a task-intensive processing. During the moving, the software can interact
with other devices in the environment for temporary allocation of processing.

• Heterogeneity of Devices (HD): It provides application mobility among hetero-
geneous devices. That is, the application could migrate among devices and adjust
itself to each one of them;
o Scenario: A software for stock market monitoring allows the access to all its

functionalities through a workstation at the office. However, in other organ-
izational unit only a PDA is available. In this situation, the software should
migrate part of its features to be accessed by a PDA in a way that a user
could continue to access the necessary information.

• Fault Tolerance (FT): The ability to self adapt when facing environment’s faults
(for example, on-line/off-line availability).
o Scenario: ubiquitous systems are liable to a large number of events that can

cause system failure, such as, sensors with hardware problem, network fail-
ure, among others.

At this point, it is important to notice that the ubicomp definition captures the con-
ditions where we can access computerized resources in a ubiquitous way. Besides,
ubiquitous systems have a well-defined scope, and this scope is influenced by the
ubiquity characteristics set present in the application. We believe it happens because
ubiquity can be considered a system property and it can be also partially achieved.
Thus, a system can implement completely or partially the functionalities associated
with the ubiquity characteristics.

592 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

3 Functional and Restrictive Factors Related to Ubicomp
Characteristics

The ubiquity characteristics previously mentioned are still described in high ab-
straction level, making hard to understand how they could influence the software
functionalities or restrict the software design possibilities. Therefore, it is important to
make explicit functional and restrictive information for each one of the ubiquity char-
acteristics. For this, a complementary systematic literature review was undertaken. Its
goal was to answer the question: what are the functional and restrictive factors associ-
ated with each one of the ubiquitous software characteristics?

The research protocol previously mentioned (section 2) was reused and evolved to
support this study. The items below define the main variations:

• Keywords: ubiquitous computing, pervasive computing, functional requirement,
functionality, feature, characteristic, non-functional requirement, quality re-
quirement, invisibility, context sensitivity, adaptable behavior or task dynamism,
capture of experiences, service discovery, spontaneous interoperability, device
heterogeneity and fault tolerance.

• Paper sources: IEEE Portal and ACM Digital Library. These digital libraries have
been chosen for the sake of simplicity (reduction in the number of search strings)
and full availability to the researchers.

• Example of a search string for the IEEE Portal: (('pervasive computing' <or>
'ubiquitous computing') <in> metadata) <and> ((('functional requirement' <or>
functionality <or> feature <or> characteristic) <or> 'non-functional requirement'
<or> 'quality requirement')) <in>metadata) <and> ('computer everywhere')

• Inclusion and exclusion criteria: the papers must be available on the internet, the
papers must be written in English and the papers must provide information re-
garding functional and/or restrictive factors associated with each ubiquitous char-
acteristic.

• Preliminary studies selection process: each returned publication must have its
abstract and introduction analyzed by one researcher and, based on the inclusion
and exclusion criteria, to be selected or not to a more thorough analysis. Conflicts
will count with a second researcher to help on the inclusion decision.

To summarize, 59 papers among 599 were selected to extract information following
the research protocol. Using the acquired data, it was possible to identify 168 factors
(123 functional and 45 restrictive) (the complete set of functional and restrictive factors
can be found at http://www.cos.ufrj.br/~ros/ubforms.html). Moreover, it was also pos-
sible to group the factors accordingly their meaning and conceptual linkage, associat-
ing each factor to just one group of factors. For example, for the “Context Sensitivity”
characteristic, the factors “Contextualize obtained information” and “Store informa-
tion” can be grouped into the “Context Information Management” factor group.

The grouping made easier the analysis process due to the great number of factors
found by the systematic literature review. Table 1 summarizes quantitatively the
reached results. The first column shows the ubiquity characteristics. The second and
third columns show how many studies were found regarding each characteristic, in
absolute and percentage values respectively considering the set of selected papers for

 Supporting Requirements Definition and Quality Assurance 593

analysis. The fourth and fifth columns show how many functional and restrictive
factors were found for each ubiquity characteristic, respectively. At the last column, it
is presented the percentage distribution of factors per characteristic.

From Table 1 it is possible to observe that, for all ubiquity characteristics but ser-
vice discovery and fault tolerance, the focus is concentrated in the functional factors.
This observation is based on the fact that the number of identified functional factors is
greater than the number of restrictive factors. Besides, it can represent an indication
that more researches on ubicomp have been made with the purpose of investigating
how ubiquitous software projects can be defined in terms of functionalities. However
more investigation is necessary to understand this behavior.

Table 1. Ubiquity Characteristics and correspondingly amount of functional/restrictive factors

Ubiquity Characteristic Presence % of 59 Functional Restrictive % of 168
Service Omnipresence (SO) 28 47,5 9 1 6,0
Invisibility (IN) 26 44,0 8 2 6,0
Context Sensitivity (CS) 56 94,9 22 8 17,9
Adaptable Behavior (AB) 52 88,1 24 8 19,0
Experience Capture (EC) 11 18,6 7 0 4,2
Service Discovery (SD) 28 47,5 13 13 15,5
Function Composition (FC) 19 32,2 18 5 13,7
Spontaneous Interoperability (SI) 21 35,6 10 2 7,1
Heterogeneity of Devices (HD) 18 30,5 9 3 7,1
Fault Tolerance (FT) 11 18,6 3 3 3,6

Total of factors 123 45

4 Characterizing Ubiquitous Software Projects

Ubiquitous software projects can exhibit different levels of adherence to the ubiquity
characteristics and their respective factors (these different levels of adherence can be a
consequence of the application domain and project’s requirements, for instance) [14].
It seems that the comprehension about how these ubiquity characteristics are usually
explored in software projects can be important to support the proposal of new soft-
ware engineering technologies regarding the development of ubiquitous software
projects.

Therefore, taking into account the concepts previously described, we have designed
a checklist and proposed an approach to support the characterization of software pro-
jects accordingly their ubiquity adherence level. Basically, this characterization ap-
proach is composed by three steps: (1) Identifying the presence of the functional and
restrictive factors of each ubiquity characteristic considering the ubiquitous software
project requirements set; (2) Assessing the adherence level of each ubiquity character-
istic for the software project based on the presence/absence of each correspondent
functional and restrictive factor; (3) Representing the ubiquity adherence level for the
system through using the values obtained in the step 2 to generate a graph.

To support the steps 2 and 3, it has been built a spreadsheet-based form to calculate
the adherence level for each ubiquity characteristic. Fig. 1 shows a fragment of the
proposed checklist. Basically, as the user fills in the Status column, the Factor Group
Adherence Level and Characteristic Adherence Level columns can be calculated for

594 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

each group of factors and the ubiquitous computing characteristic, respectively. In the
final step, the evaluated percentage values of the Ubiquity Characteristics Adherence
Level column are used to draw a graph representing the software project ubiquity
adherence level. For instance, Fig. 2 (left graph) represents the obtained graph when
applying this checklist to the ubiquitous application presented in [16]. We can notice
that a real ubiquitous software project can differ from the captured ubiquitous sce-
nario (sections 2 and 3) observing the left and right graph presented on Fig. 2.

Fig. 1. A checklist fragment to characterize ubiquitous software projects

Fig. 2. Example of ubiquity characteristics and their adherence levels

This checklist has also been used to characterize 12 different ubiquitous software
projects [1, 3, 5, 6, 7, 9, 12, 15, 16, 18, 29, 30]. A detailed description of the charac-
terization process and its results can be found in [22]. An interesting behavior could
be observed: if the number of factors identified for each ubiquity characteristic in-
creases or decreases, the same happens with the number of factors implemented in the
software projects. This behavior can indicate: a) there is a natural gap between the
state-of-the-art and state-of-the-practice; b) ubiquitous software projects can capture
those ubicomp characteristics differently. However, an exception to this behavior was
observed regarding the Function Composition characteristic. None of the 12 ubiqui-
tous software projects reported to deal with any of the 23 factors regarding the FC

 Supporting Requirements Definition and Quality Assurance 595

characteristic. This behavior was not expected because this ubiquity characteristic has
been considered required in about 32.2% of the analyzed papers from the second
systematic review (section 3). A possible explanation could be the difficulty to deal
with the inherent complexity regarding the composition of functions in software. As
stated before, more investigation is necessary to also understand this behavior.

An additional observed behavior is regarding the focus on some specific ubiquity
characteristics. It seems that ubiquitous software projects pay more attention to the
invisibility, context sensitive and adaptable behavior characteristics. The other ones
seem to appear as isolated initiatives, even considering the analyzed projects represent
examples in the years’ range 2000-2007, where some technological evolution took
place. We did not found any feasible explanation for this behavior. However, some
questions could be raised:

• Does this behavior represent a natural gap between the state-of-the-art and state-
of-the-practice that deserves further investigation?

• Is there a need to evaluate the set of identified ubiquity characteristics and their
functional and restrictive factors?

Some feasible answers to these two questions could be, respectively:

• The set of identified ubiquity characteristics and their functional and restrictive
factors make sense, and the distance between the state-of-the-art and state-of-the-
practice is natural and relates to the technology evolution;

• There are some adjustments that must be applied to the set of identified ubiquity
characteristics and their correspondingly functional and restrictive factors.

One could consider the answers can make sense. However, further investigation is
necessary, what leads us to consider the ubiquity characteristics and their associated
factors evaluation directly in the field. Therefore, we considered to survey ubicomp
researchers which is described in the next section.

5 Evaluating Ubicomp Concepts through a Survey

The goal of this study was to analyze the previously described ubiquity characteristics,
their factors, and group of factors extracted from the technical literature with the pur-
pose of characterizing with respect to their applicability and scope into the context of
ubiquitous software projects from the point of view of software engineering research-
ers working with the research and development of ubiquitous software projects.

This study was planned to survey ubicomp researchers considering the following
questions regarding the previously described set of ubiquity characteristics and func-
tional and restrictive factors:

• Is there any additional ubiquity characteristic that is not present in the initial set
that should be included?

• Is there any ubiquity characteristic present in the initial set that should be ex-
cluded?

• Is there any additional ubiquity characteristic factor group or factor that is not
present in the initial set that should be included?

596 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

• Is there any ubiquity characteristic factor group or factor present in the initial set
that should be excluded?

• Are the ubiquity characteristics and their associated factors and factor groups
applicable to characterize ubiquitous software projects?

This survey has already been planned and executed, in a first moment, considering
the Brazilian researcher’s population. The choice of the subjects was based on the
CNPq’s (National Council for Scientific and Technological Development) Research
Groups Search Directory considering those ones which list ubicomp as one of their
research interests. The subjects were contacted by e-mail (at total 60 ubicomp re-
searchers have been invited), and the questionnaire was also sent by e-mail. The ques-
tionnaire was organized to be filled in three steps:

1) Characterization of the subjects’ background and skills. In this step the sub-
jects were asked about his/her personal data (name, email), academic degree,
experience level on software project development (in years), and the number
of executed software projects per ubicomp characteristic;

2) Identification of the ubiquity characteristics that should be included/
excluded/kept in the initial set. The subject can confirm which ubiquity charac-
teristics are important to characterize ubiquitous software projects, input
additional characteristics that he/she considers important, or exclude some
characteristics of the initial set;

3) Identification of the ubiquity characteristic factor groups and factors that
should be included/excluded/kept in the initial set. For each factor group and
factor, the subject can confirm their importance, input additional factor groups
or factors not included in the initial set that he/she considers important, or ex-
clude some of them.

At the end, 10 subjects (about 17% of the invited researchers) answered the ques-
tionnaire (8 of them PhDs). Table 2 shows the researchers’ skill level for each ubiq-
uity characteristic where: (1) High: researches and has taken part of more than two
software projects considering the ubiquity characteristic; (2) Medium: researches and
has taken part of one or two software projects considering the ubiquity characteristic.
(3) Low: just researches about the ubiquity characteristic; (4) None: does not research
neither has taken part of a software project with the ubiquity characteristic.

For the analysis stage, each subject had a different weight according to his/her
background and skill level. Researchers with higher experience/skill level had greater
weight. After the weights definition, the answers from all subjects were evaluated for
each evaluated ubicomp characteristic, factor group, and factor. It is important to
notice that, except the fault tolerance characteristic, all others have been evaluated by
at least one researcher with high skill level.

The results allowed us to evolve the initial set of ubiquity characteristics, factors
and their factor groups. Basically, the changes were: (1) Inclusion of three additional
ubiquity characteristics: scalability, quality of service, and privacy and trust; (2) Re-
organization of the ubiquity characteristics considering the two perspectives: func-
tional and restrictive; (3) Exclusion of three functional factors.

 Supporting Requirements Definition and Quality Assurance 597

Table 2. Researchers’ skill level

ID Academic
Degree

SO IN CS AB EC SD FC SI DH FT

R01 M.Sc. H M H M H M M L N L
R02 M.Sc. H H H H M M M M M M
R03 Ph.D. L L M M L M M M N L
R04 Ph.D. H L L L L L L L L L
R05 Ph.D. H M H H L M M L H N
R06 Ph.D. H M H M L L L L H L
R07 Ph.D. M M H H H M L M M L
R08 Ph.D. M M L H H H M M N N
R09 Ph.D. L L H H H N M M M M
R10 Ph.D. H L L H M L H H N N

The initial ubiquity characteristics set organization before and after survey execu-

tion is shown in Fig. 3. Before survey execution, 10 ubiquity characteristics were iden-
tified by the systematic literature reviews (sections 2 and 3). The survey execution
allowed us to observe that those 10 characteristics can also be structured considering
the two different perspectives: functional and restrictive. This new categorization
seems to make sense because there are characteristics that are clearly related with non-
functional software aspects and they can bring some constraints on how the functional
characteristics are implemented. Moreover, 3 new restrictive ubiquity characteristics
were identified: scalability, quality of service, and privacy and trust. Additionally, the
fault tolerance characteristic was included into the ubicomp restrictive characteristics
group.

Fig. 3. Ubicomp characteristics definition before and after survey execution

These findings allowed us to evolve the set of knowledge regarding ubiquitous
software projects and their characteristics. At this point in time, it was able to define a
body of knowledge regarding ubicomp, to provide a conceptual framework to guide
new researchers and practitioners in the ubiquitous software projects development,
and, to evaluate the proposed checklist. Considering the obtained qualitative data,
researchers suggested the importance of supporting software engineering activities
regarding ubiquitous software projects, mainly those related with requirements speci-
fication and project planning.

598 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

6 Ubicomp and Requirements Engineering

The results obtained in our research regarding software development in general in-
creased our interest in the challenges related with ubicomp requirements engineering.
We are particularly interested on software technologies to support activities regarding
requirements definition and quality assurance considering the ubicomp scenario. Well
specified requirements can be considered a success factor to deliver software products
with the expected quality and following the project budget [25]. It should not be dif-
ferent when dealing with ubiquitous software projects.

For this, we accomplished an ad-hoc literature review influenced by the systematic
review principles. The review goal was to identify the existence of approaches sup-
porting requirements definition and verification activities regarding the ubiquity char-
acteristics (section 5). The following sources of information were analyzed: IEEE and
ACM Digital Library, Ubicomp Proceedings and International Requirements Engi-
neering Conference Proceedings. Additionally, one paper [2] analyzing the bibliogra-
phy reference on the selected papers has been identified.

This review resulted in the selection of nine papers [2, 8, 10, 19, 20, 21, 26, 27, 28]
to extract information. All of them presented requirements definition techniques or
examples of requirements definition. Among them, the approach proposed by Chiu et
al. [27] presents a set of steps to support activities regarding requirements elicitation
and specification that could be used in a more general way. However, in the paper it is
limited to the context sensitivity characteristic.

The other proposals have a more limited scope. Two of them just show how the
requirements of a ubiquitous system are defined [21, 28]. In both cases, the require-
ments are only listed and textually detailed in the paper without any elaborated de-
scription about the technique supporting their definition and verification. Finally, it is
important to notice that it was not found any quality assurance technique regarding
ubiquity requirements for ubiquitous software projects.

7 A Framework to Support Definition and Quality Assurance
Activities Regarding Ubiquity Requirements in Software
Projects

Hereafter, we are going to present a framework proposal to support activities regard-
ing the definition of ubiquity requirements and their verification and validation. It
represents an on-going research aiming at the establishment of a software technology
to deal with all nine ubicomp functional characteristics (section 5). We recognize the
importance of non-functional requirements for software development. However, the
decision regarding initially research support for functional requirements about ubiqui-
tous software projects is due to the fact that ubicomp researches currently are more
focused on the functional requirements of software [14].

The proposed framework is composed by a set of facilities associated with ubiquity
requirements definition, verification, and validation activities. Fig. 4 shows the sup-
ported facilities (white boxes), their relationship with requirements activities, and their
respective consumed/produced artifacts (gray boxes). It also shows that framework
facilities are based on the ubicomp body of knowledge previously discussed and ac-
quired through secondary and primary studies (systematic reviews and survey).

 Supporting Requirements Definition and Quality Assurance 599

Fig. 4. Overview of the framework

In the next three subsections, we will present how the framework intends to pro-
vide a complementary set of facilities that is not given by the conventional software
engineering techniques to properly deliver ubiquitous software products in the context
of requirements activities.

7.1 Requirements Elicitation

Requirements elicitation is the practice of obtaining the requirements of a system
from users, customers and other stakeholders [25]. In the context of this work, we are
concerned with ubiquity requirements for software projects. In order to support this
activity, the proposed framework has two facilities:

Identifying ubiquity characteristics. This facility intends to help the requirements
analyst to identify the ubiquity characteristics that should be considered in the software
project. Therefore, for each ubiquity characteristic, a set of questions was defined to
help identifying which one of them should be included in the software. The definition
of these questions was intended to be the system user because these questions are part
of a checklist that guides the user interview activity. As the requirements analyst gets
the answers from users, s/he registers in the checklist if the ubiquity characteristic is
desired or not.

Identifying ubiquity functional factors. Once the software ubiquity characteristics
have been defined, its functional requirements can be identified.

Therefore, a functional factors list associated to the defined ubicomp functional
characteristics (section 5) was used to create a complementary checklist. Again, the
checklist was defined in a way that it could be used for requirements gathering
activities. Thus, based on the identifying ubicomp characteristics step, the checklist is
dynamically organized with specific questions considering the selected ubiquity char-
acteristics. For each corresponding functional factor (section 3), the requirements
analyst identifies if it is or not necessary.

600 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

In the final step, for each selected factor, the requirements analyst is requested to
define the correspondent functional requirement. It is important to notice that a ubiq-
uity functional factor is not necessarily a functional requirement. However, it can
motivate the definition of a specific functional requirement for the software project.

7.2 Requirements Definition

The next step regards supporting the requirements analyst to detail each identified
functional requirement. For this, firstly, the analyst can group the functional require-
ments (because the relationship between the functional requirements and requirements
specification1 is M:N). Next, a set of information to be defined by the analyst is pre-
sented for each requirement that will be detailed.

This information can be different for each ubiquity characteristic and its associated
factors. For each ubiquity characteristic, a conceptual model based on their respective
functional factors was defined in a way that the models could capture their most relevant
concepts and relationships. Based on this information, it was possible to define what
must be captured to define requirements in accordance with the ubicomp characteristics.

7.3 Requirements Verification

This step is provided to assure the specified requirements quality. It is supported by
an additional checklist that guides the reviewer through the reading of the generated
requirements document and helps him to identify possible defects.

For the checklist construction, nine conceptual models (relating to the nine ubicomp
functional characteristics and their corresponding factors) were elaborated to capture
the most relevant concepts and relationships. These models, besides providing a better
way to understand the ubiquity characteristics, allow the definition of what needs to be
specified in the requirements to completely cover the chosen ubiquity characteristic.

For instance, from the conceptual model for context sensitivity ubicomp characteris-
tic it is possible to exemplify questions that will compose the verification checklist,
such as: (1) Do all information have a data source attached to it?; (2) Are the available
devices associated with the context in which they should work?; (3) Is the context
information of each available data source described?; (4) Are all information classified
in one of the four perspectives: physical, infra-structure, system or user information?

At the end of this step, a list of defects can be created and used to improve the re-
quirements specification quality.

8 Conclusions and Further Works

According to Weiser (1991), computers should be embedded into the environment in
such way that their use becomes natural and transparent. This prospective scenario
represents new research challenges in many areas like computer network, signal proc-
essing, optimization, and artificial intelligence. Particularly, from the point of view of
software engineering, these challenges can effectively be observed on the development
of different software technologies, such as methodologies, software processes, testing
approaches, and quality assurance techniques.

1 Requirements and use case descriptions.

 Supporting Requirements Definition and Quality Assurance 601

In this paper we intended to present a framework proposal to support the definition
and quality assurance activities regarding ubiquity requirements on ubiquitous soft-
ware projects. We believe it represents an important step towards the development of
increased quality ubiquitous software projects.

The context sensitivity characteristic was chosen as the first one to be included into
this framework. This decision was based on the fact that this characteristic seems to
be the more investigated by the research community [14].

Moreover, to facilitate the development of this framework, it was important to exe-
cute a comprehensive and systematic literature review. It results allowed us to obtain
a set of ubiquity definitions and characteristics reflecting the concepts of ubicomp
used currently by the scientific community. Thus, this paper also presents contribu-
tions as: (1) an updated definition for ubiquitous computing and ubicomp systems; (2)
a set of ubiquity characteristics to achieve ubicomp on software projects; (3) the iden-
tification of functional and restrictive factors for each ubiquity characteristic; (4) a
checklist to characterize ubiquitous software projects using the ubiquity characteris-
tics as a way to evaluate its ubiquity adherence level, and (5) identifying which ubiq-
uity characteristics have been currently considered on ubicomp software projects. All
these results were reached using the scientific method represented through systematic
literature reviews and knowledge evaluation using surveys.

Finally, it is important to reinforce that the creation of ubiquitous software applica-
tions is a hard task [13]. Based on that, as the identification of ubiquity characteristics
and factors can provide better understanding of ubicomp, this research can represent
an important step to deal with this kind of software and also creating subsidies to
support other project development phases, including planning and design.

This work is still in progress. The next steps include: (1) Replicating the survey
considering a broader audience, which will allow to observe the feasibility of the
initial results; (2) Evolving the definition of the framework to support activities of
definition and quality assurance regarding ubiquity requirements specification for
ubiquitous software projects; (3) Creating an initial version of an infrastructure to
support the framework activities mentioned above; (4) Experimentally evaluate the
infrastructure and improving it according to the experimental study results.

Acknowledgments. The authors would like to thank CAPES, CNPq, FAPERJ for the
financial support to this work and Dr. Karin Breitman for her valuable comments and
motivation. This work has been developed as part of the Experimental Software Engi-
neering and Science in Large Scale CNPq Project (475459/2007-5) and FAPERJ
research activities.

References

1. Ali, J.A., Won-Sik, Y., Jai-Hoon, K., We-Duke, C.: U-kitchen: application scenario. In:
Proc. of the Second IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems 2004, May 11-12, 2004, pp. 169–171 (2004)

2. Cheng, B.H.C., Berry, D.M., Zhang, J.: The four levels of requirements engineering for
and in dynamic adaptive systems. In: 11th Int. Work. on Requirements Engineering Foun-
dations for Software Quality. Co-located with CAiSE 2005, Porto, Portugal (June 2005)

602 R.O. Spínola, F.C.R. Pinto, and G.H. Travassos

3. Bossen, C., Jorgensen, J.B.: Context-descriptive prototypes and their application to medi-
cine administration. In: Proc. of the Conference on Designing interactive systems: proc-
esses, practices, methods, and techniques 2004, pp. 297–306 (2004)

4. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.-C.: Ambient Intelli-
gence: From Vision to Reality. IST Advisory Group Draft Rep., Eur. (2003)

5. Hatala, M., Wakkary, R., Kalantari, L.: Rules and Ontologies in Support of Real-time
Ubiquitous Application. Journal of Web Semantics, 5–22 (2005)

6. Joel, S., Arnott, J.L., Hine, N.A., Ingvarsson, H., Rentoul, R., Schofield, S.: A framework
for analyzing interactivity in a remote access field exploration system. SMC(3), 2669–
2674 (2005)

7. Kientz, J.A., Boring, S., Abowd, G.D., Hayes, G.R.: Abaris: Evaluating Automated Cap-
ture Applied to Structured Autism Interventions. In: Proc. of the 7th Int. Conference on
Ubiquitous Computing, Tokyo, Japan, September 11-14 (2005)

8. Jorgensen, J.B., Bossen, C.: Requirements Engineering for a Pervasive Health Case Sys-
tem. In: 11t IEEE Int. Requirements Engineering Conference 2003, pp. 55–64 (2003)

9. Lee, S.H., Chung, T.C.: System Architecture for Context-Aware Home Application. In:
Proceedings of the Second IEEE Workshop on Software Technologies for Future Embed-
ded and Ubiquitous Systems, May 11-12, 2004, pp. 149–153 (2004)

10. Goldsby, H., Cheng, B.H.C.: Goal-Oriented Modeling of Requirements Engineering for
Dynamically Adaptive Systems. In: 14t IEEE Int. Requirements Engineering Conf., Sep-
tember 11-15, 2006, pp. 345–346 (2006)

11. Niemela, E., Latvakoski, J.: Survey of requirements and solutions for ubiquitous software.
In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia,
pp. 71–78 (2004)

12. O’Neill, E., Kindberg, T., Schieck, A.F., gen, J.T., Penn, A., Fraser, D.S.: Instrumenting
the city: developing methods for observing and understanding the digital cityscape. In:
Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 315–332. Springer,
Heidelberg (2006)

13. Sakamura, K.: Challenges in the Age of Ubiquitous Computing: A Case Study of T-
Engine, An Open Development Platform for Embedded Systems. In: Proceedings of the
28th International Conference on Software Engineering, pp. 713–720 (2006)

14. Spínola, R.O., Silva, J.L.M., Travassos, G.H.: Checklist to Characterize Ubiquitous Soft-
ware Projects. In: XXI Simpósio Brasileiro de Engenharia de Software, João Pessoa. Anais
do XXI Simpósio Brasileiro de Engenharia de Software. Porto Alegre: Sociedade Bra-
sileira de Computação, 2007. vol. 1, pp. 39–55 (2007)

15. Tahti, M., Rauto, V., Arhippainen, L.: Utilizing context-awareness in office-type working
life. In: Proc. of the 3rd Int. Conf. on Mobile and Ubiquitous Multimedia 2004, College
Park, Maryland, pp. 79–84 (2004)

16. Vainio, A.M., Valtonen, M., Vanhala, J.: Learning and adaptive fuzzy control system for
smart home. In: Proc. of the AmI.d 2006, September 20-22, pp. 28–47 (2006)

17. Weiser, M.: The Computer for the 21st Century, pp. 94–104. Scientific American (1991)
18. Zhou, P., Nadeem, T., Kang, P., Borcea, C., Iftode, L.: EZCab: A Cab Booking Applica-

tion Using Short-Range Wireless Communication. In: Third IEEE International Confer-
ence on Pervasive Computing and Communications PerCom 2005, 8-12 March 2005, pp.
27–38 (2005)

19. Hong, D., Chiu, D.K.W., Shen, V.Y.: Requirements Elicitation for the Design of Context-
aware Applications in a Ubiquitous Environment. In: Proceedings of the 7th international
conference on Electronic Commerce, Xi’an, China, pp. 590–596 (2005)

 Supporting Requirements Definition and Quality Assurance 603

20. Xiang, J., Liu, L., Qiao, W., Yang, J.: SREM: A Service Requirements Elicitation Mecha-
nism based on Ontology. In: 31st Annual International Computer Software and Applica-
tions Conference, 2007. COMPSAC 2007, 24-27 July 2007, vol. 1, pp. 196–203 (2007)

21. Cherif, A.R., Hina, M.D., Tadj, C., Levy, N.: Analysis of a New Ubiquitous Multimodal
Multimedia Computing System. In: Proceedings of the 9th IEEE International Symposium
on Multimedia, pp. 161–168 (2007)

22. Spínola, R.O., Silva, J.L.M., Travassos, G.H.: Characterizing Ubicomp Software Projects
through a Checklist. In: WPUC 2007 - I Workshop on Pervasive and Ubiquitous Comput-
ing, 2007, Gramado; Proceedings of WPUC 2007, vol. 1, pp. 1–6. Sociedade Brasileira de
Computação, Porto Alegre (2007)

23. Abowd, G.D., Mynatt, E.D.: Charting Past, Present and Future Research in Ubiquitous
Computing. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1), 29–58
(2000); Special issue on human-computer interaction in the new millennium, Part 1

24. Biolchini, J., Mian, P.G., Natali, A.C.C., Travassos, G.H.: Systematic Review in Software
Engineering. Technical Report ES 679/05. COPPE/UFRJ (2005)

25. Pfleeger, S.: Software Engineering: Theory and Practice, 2nd edn. Prentice Hall, Engle-
wood Cliffs (2007)

26. Bo, C., Xiang-Wu, M., Jun-Liang, C.: An Adaptive User Requirements Elicitation Frame-
work. In: Proceedings of the 31st Annual International Computer Software and Applica-
tions Conference (COMPSAC 2007), vol. 2, pp. 501–502 (2007)

27. Chiu, D., Hong, D., Cheung, S.C., Kafeza, E.: Towards Ubiquitous Government Services
through Adaptations with Context and Views in a Three-Tier Architecture. In: Proc. of the
40th Hawaii Int. Conf. on System Sciences, January 2007, p. 94 (2007)

28. Cheng, J., Goto, Y., Koide, M., Nagahama, K., Someya, M., Utsumi, Y., Sshionoiri, A.:
ENQUETE-BAISE: A General-Purpose E-Questionnaire Server for Ubiquitous Question-
naire. In: IEEE Asia-Pacific Services Computing Conference, 11-14 December, pp. 187–
195 (2007)

29. Kindberg, T., Barton, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frig, M., Krish-
nan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.: People, places, things: Web
presence for the real world. In: Third IEEE Workshop on Mobile Computing Systems and
Applications, pp. 19–28 (2000)

30. Nawyn, J., Intille, S., Larson, K.: Embedding Behavior Modification Strategies into Con-
sumer Electronic Devices: A Case Study. In: Proc. of the 8th Int. Conference on Ubiqui-
tous Computing (2006)

Squeeze All the Power Out of Your Hardware

to Verify Your Software!

Jǐŕı Barnat and Luboš Brim�

Faculty of Informatics, Masaryk University
Brno, Czech Republic

Abstract. The computer industry is undergoing a paradigm shift. Chip
manufacturers are shifting development resources away from single-
processor chips to a new generation of multi-processor chips, huge clus-
ters of multi-core workstations are easily accessible everywhere, external
memory devices, such as hard disks or solid state disks, are getting more
powerful both in terms of capacity and access speed. This fundamental
technological shift in core computing architecture will require a funda-
mental change in how we ensure the quality of software. The key issue
is that verification techniques need to undergo a similarly deep techno-
logical transition to catch up with the complexity of software designed
for the new hardware. In this position paper we would like to advocate
the necessity of fully exploiting the power offered by the new computer
hardware to make the verification techniques capable of handling next-
generation software.

1 Introduction

The computing power of computers has increased by a factor of a million over
the past couple of decades. As a matter of fact, the development effort, both
in industry and in academia, has gone into developing bigger, more powerful
and more complex applications. In the next few decades we may still expect a
similar rate of growth, due to various factors such as continuing miniaturization,
parallel and distributed computing.

With the increase in complexity of computer systems, it becomes even more
important to develop formal methods for ensuring their quality and reliability.
Various techniques for automated and semi-automated analysis and verification
have been successfully applied to real-life computer systems. However, these
techniques are computationally demanding and memory-intensive in general and
their applicability to extremely large and complex systems routinely seen in
practice these days is limited. The major hampering factor is the state space
explosion problem due to which large industrial models cannot be efficiently
handled unless we use more sophisticated and scalable methods and a balance
of the usual trade-off between run-time, memory requirements, and precision of
a method.
� This work has been partially supported by the Grant Agency of Czech Republic

grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 604–618, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Squeeze All the Power Out of Your Hardware to Verify Your Software! 605

A lot of attention has been paid to the development of approaches to battle
the state space explosion problem. Many techniques, such as abstraction, state
compression, state space reduction, symbolic state representation, etc., are used
to reduce the size of the problem to be handled allowing thus a single old-
fashioned single-processor computer to process larger systems. All these methods
can be therefore characterized as “reduction” techniques.

Verification and analysis methods that are tailored to exploit the capabil-
ities of the new hardware architectures are slowly appearing as well. These
“platform-dependent” techniques focus on increasing the amount of available
computational power. These are, for example, techniques to fight memory lim-
its with efficient utilisation of external I/O devices, techniques that introduce
cluster-based algorithms to employ aggregate power of network-interconnected
computers, or techniques to speed-up the verification on multi-core processors.

The idea of exploiting hard disks or parallel computers in verification already
appeared in the very early years of the formal verification era. However, inac-
cessibility of cheap parallel computers with sufficiently fast external memory
together with negative theoretical complexity results excluded these approaches
from the main stream in formal verification. The situation changed dramatically
during the past several years. The computer progress over the past two decades
has measured several orders of magnitude with respect to various physical pa-
rameters such as computing power, memory size at all hierarchy levels from
caches to disk, power consumption, physical size and cost. In particular, the fo-
cus of novel computer architectures in parallel and distributed computing has
shifted away from unique massively parallel systems competing for world records
towards smaller and more cost effective systems built from personal computer
parts. In addition, recent shift in the emphasis of research on parallel algorithms
to pragmatic issues has provided practically efficient algorithms for solving com-
putationally hard problems. As a matter of fact, interest in platform-depended
verification has been revived.

2 Running Example: Enumerative LTL Model-Checking

Model checking is one of the major techniques used in the formal verification [17].
It builds on an automatic procedure that takes a model of the system and decides
whether it satisfies a given property. In case the property is not satisfied, the
procedure gives a counterexample, i.e. a particular behaviour of the model that
violates the verified property.

In order to demonstrate, overview and advocate the advantages we can gain by
exploiting the new hardware possibilities in more technical setting, we consider
one particular verification problem, namely enumerative LTL model checking.
Similar conclusions can be drawn for other verification problems as well.

An efficient procedure to decide LTL model checking problem is based on
automata and was introduced in [41]. The approach exploits the fact that every
set of executions expressible by an LTL formula is an ω-regular set and can be
described by a Büchi automaton. In particular, the approach suggests to express

606 J. Barnat and L. Brim

all system executions by a system automaton and all executions not satisfy-
ing the formula by a property or negative claim automaton. These automata
are combined into their synchronous product in order to check for the pres-
ence of system executions that violate the property expressed by the formula.
The language recognised by the product automaton is empty if and only if no
system execution is invalid.

The language emptiness problem for Büchi automata can be expressed as
an accepting cycle detection problem in a graph. Each Büchi automaton can
be naturally identified with an automaton graph which is a directed graph G =
(V,E, s, A) where V is the set of vertices (n = |V |), E is a set of edges (m = |E|),
s is an initial vertex, and A ⊆ V is a set of accepting vertices. We say that a
cycle in G is accepting if it contains an accepting vertex. Let A be a Büchi
automaton and GA the corresponding automaton graph. Then A recognises a
nonempty language iff GA contains an accepting cycle reachable from s. The
LTL model-checking problem is thus reduced to the accepting cycle detection
problem in the automaton graph.

The optimal sequential algorithms for accepting cycle detection use depth-first
search strategies to detect accepting cycles. The individual algorithms differ in
their space requirements, length of the counter example produced, and other as-
pects. For a recent survey we refer to [40]. The well-known Nested DFS algorithm
is used in many model checkers and is considered to be the best suitable algorithm
for enumerative sequential LTL model checking. The algorithm was proposed by
Courcoubetis et al. [18] and its main idea is to use two interleaved searches to detect
reachable accepting cycles. The first search discovers accepting states while the
second one, the nested one, checks for self-reachability. Severalmodifications of the
algorithm have been suggested to remedy some of its disadvantages [23]. Another
group of optimal algorithms are SCC-based algorithms originating in Tarjan’s al-
gorithm for the decomposition of the graph into strongly connected components
(SCCs) [39]. While Nested DFS is more space efficient, SCC-based algorithms pro-
duce shorter counterexamples in general. For a survey we refer to [21]. The time
complexity of these algorithms is linear in the size of the graph, i.e. O(m + n),
where m is the number of edges and n is the number of vertices.

The effectiveness of the Nested DFS algorithm is achieved due to the particular
order in which the graph is explored and which guarantees that vertices are not re-
visited more than twice. In fact, all the best-known algorithms rely on the same ex-
ploring principle, namely the postorder as computed by the DFS. It is a well-known
fact that thepostorder problem isP-complete and, consequently, e.g.a scalablepar-
allel algorithm which would be directly based on DFS postorder is unlikely to exist.

An additional important criterion for a model checking algorithm is whether it
works on-the-fly. On-the-fly algorithms generate the automaton graph gradually
as they explore vertices of the graph. An accepting cycle can thus be detected
before the complete set of vertices is generated and stored in memory. On-the-
fly algorithms usually assume the graph to be given implicitly by the function
Finit giving the initial vertex and by the function Fsucc which returns immediate
successors of a given vertex.

Squeeze All the Power Out of Your Hardware to Verify Your Software! 607

3 Get New Algorithms!

position statement:

Recent architectural shift means that it is no longer possible to benefit from hard-
ware progress, without introducing algorithmic changes to our tools. New algorithms
have to be designed.

In many cases the algorithms as used traditionally are not appropriate to be
adopted to the new hardware architectures. This can be demonstrated by LTL
model checking algorithms as mention above. All the efficient algorithms build
on depth-first search exploration of the state space. However, there is no known
way to compute DFS postorder when using hard disks or parallel architectures
efficiently. New algorithms, often radically different, have to be invented to re-
place the classical ones.

We will support this argument by presenting two different algorithms for
accepting cycle detection (LTL model checking). Sequential complexity of these
algorithms is worse than those based on DFS, but both allow to solve the LTL
model-checking problem on new hardware architectures much more efficiently as
will be exemplified later in the paper. Here we consider only two such algorithms.
One is the MAP algorithm [13,14], the other one is the enumerative OWCTY
algorithm [15]. For a survey on these and other algorithms we refer to [2].

Algorithm Based on Topological Sort

The main idea behind the OWCTY algorithm comes out from the fact that a
directed graph can be topologically sorted if and only if it is acyclic. The core
of the accepting cycle detection algorithm is thus in application of the standard
linear topological sort algorithm to the input graph. Failure in topologically
sorting the graph means the graph contains a cycle.

The algorithm performs a cycle detection that is based on the recursive elimi-
nation of vertices with zero predecessors. At first, the algorithm computes reachi-
bilty to remove vertices from which no accepting state is reachable (these cannot
belong to any accepting cycle) and computes the number of immediate prede-
cessors for every reachable vertex. Then the algorithm eliminates vertices whose
predecessor count drops to zero. During vertex elimination, the predecessor count
is decreased for all immediate successors of the eliminated vertex.

The algorithm does not work on-the-fly and the entire automaton graph has to
be generated first. Also, the algorithm does not immediately give the accepting
cycle, it only checks for its presence in the graph. However, the counter-example
is easily generated using two additional linear graph traversal, like BFS.

Time complexity of the algorithm is O(h ·m) where h is the height of the cor-
responding quotient graph (the graph of strongly connected components). Here
the factor m comes from the computation of Reachability and Elimination func-
tions and the factor h relates to the number of external iterations. In practice,
the number of external iterations is very small (up to 40-50) even for very large
graphs. This observation is supported by experiments in [22]. Similar results

608 J. Barnat and L. Brim

are communicated in [35] where heights of quotient graphs were measured for
several models. As reported, 70% of the models have heights smaller than 50.

A positive aspect of the algorithm is its extreme effectiveness for weak au-
tomaton graphs. A graph is weak if in each strongly connected component all
the states are accepting or none of them is. For weak graphs only one iteration
of the algorithm is necessary to decide accepting cycles, the algorithm works
in linear time and is thus optimal. The studies of temporal properties [19,16]
reveal that verification of up to 90% of LTL properties leads to weak automaton
graphs.

Maximal Accepting Predecessors Algorithm
The main idea behind the MAP algorithm is based on the fact that each ac-
cepting vertex lying on an accepting cycle is its own predecessor. The algorithm
that would be directly derived from such an idea requires expensive storing of
all proper accepting predecessors for each (accepting) vertex. To remedy this,
the algorithm stores only a single representative accepting predecessor for each
vertex. We presuppose a linear ordering ≺ of vertices (given e.g. by their mem-
ory representation) and choose the maximal accepting predecessor. For a vertex
u we denote its maximal accepting predecessor in
the graph G by mapG(u). Clearly, if an accepting

4 3

1 2

Fig. 1. Undiscovered cycle

vertex is its own maximal accepting predecessor
(mapG(u) = u), it lies on an accepting cycle. Un-
fortunately, the opposite does not hold in general.
It can happen that the maximal accepting prede-
cessor for an accepting vertex on a cycle does not
lie on the cycle. This is exemplified on the graph
given in Fig. 1. The accepting cycle 〈2, 1, 3, 2〉 is not
revealed due to the greater accepting vertex 4 outside the cycle. However, as ver-
tex 4 does not lie on any cycle, it can be safely deleted (marked as non-accepting)
from the set of accepting vertices and the accepting cycle still remains in the re-
sulting graph. This idea is formalised as a deleting transformation. Whenever the
deleting transformation is applied to the automaton graph G with mapG(v)
= v
for all v ∈ V , it shrinks the set of accepting vertices by those vertices that do
not lie on any cycle. As the set of accepting vertices can change after the delet-
ing transformation has been applied, maximal accepting predecessors must be
recomputed. It can happen that even in the graph del(G) the maximal accepting
predecessor function is still not sufficient for cycle detection. However, after a
finite number of iterations consisting of computing maximal accepting predeces-
sors followed by application of the deleting transformation an accepting cycle
is certified. For an automaton graph without accepting cycles the repetitive ap-
plication of the deleting transformation results in an automaton graph with an
empty set of accepting vertices.

Time complexity of the algorithm is O(a2 ·m), where a is the number of ac-
cepting vertices. Here the factor a ·m comes from the computation of the map

Squeeze All the Power Out of Your Hardware to Verify Your Software! 609

function and the factor a relates to the number of iterations. Unlike the OWCTY
algorithm, the MAP algorithm works on-the-fly.

Experimental evaluation of this algorithm demonstrated that accepting cycles
were typically detected in a very small number of iterations. On the other hand,
if there is no accepting cycle in the graph, the number of iterations is typically
very small comparing to the size of the graph (up to 40-50). Thus, the algorithm
exhibits nearly linear performance in practice.

4 Squeeze the Juice Out of Your Hard Disk!

position statement:

External memory devices provide a viable computational alternative in analysing
and verifying very large systems. With special external memory efficient techniques
we can touch verification problems that are far beyond the capabilities of pure RAM
approaches.

Hard disk has traditionally been regarded as a hopelessly slow cousin to RAM.
However, the bandwidth of commodity disks today is on the order of 100MB/s.
Is this enough to consider disk-based computation a way to increase working
memory and achieve results that are not otherwise economical?

For external memory devices, the goal is to develop algorithms that minimize
the number of I/O operations an algorithm has to perform to complete its task.
This is because the access to information stored on an external device is orders
of magnitude slower than the access to information stored in the main memory.
Thus the complexity of I/O efficient algorithms is measured in the number of
I/O operations only.

Using operating system’s virtual memory often slows down the performance
dramatically. A lot of effort has been therefore put into research on special
I/O efficient algorithms, in particular graph algorithms. A distinguished tech-
nique that allows for an I/O efficient implementation of a graph traversal proce-
dures is the so called delayed duplicate detection [31,34,38]. A traversal procedure
has to maintain a set of visited vertices to prevent their re-exploration. Since
the graphs are large, the set cannot be completely kept in the main memory
and must be stored on the external memory device. When a new vertex is gen-
erated it is checked against the set to avoid its re-exploration. The idea of the
delayed duplicate detection technique is to postpone the individual checks and
perform them together in a group for the price of a single scan operation.

Unfortunately, the delayed duplicate detection technique is incompatible with
the depth-first search (DFS) of a graph [20]. Therefore, the first approaches to
I/O efficient LTL model checking have focused on the state space generation
and verification of safety properties only. The very first I/O efficient algorithm
for state space generation has been implemented in Murϕ [38]. Later on, several
heuristics for the state space generation were suggested and implemented in
various verification tools [26,29,32]. The first attempt to verify more than safety
properties has been described in [30]. The approach uses the random search to

610 J. Barnat and L. Brim

find a counterexample to a given property, it is thus incomplete in the sense that
it is not able to prove validity of the property.

A complete I/O efficient LTL model checker was suggested in [20] (we re-
fer to it as IO-EJ) where the problematic DFS-based algorithm was avoided
by the reduction of the accepting cycle detection problem to the reachability
problem [10,37] whose I/O efficient solution was further improved by using the
directed (A∗) search and parallelism. The algorithm works in the on-the-fly man-
ner meaning that only the part of the state space is constructed, which is needed
in order to check the desired property. The reduction transforms the graph so
that the size of the graph after the transformation is asymptotically quadratic
with respect to the original one. As the external memory algorithms are meant
to be applied to large graphs, the quadratic increase in the size of the graph is
significant. This is especially the case when the model is valid and the entire
graph has to be explored to prove the absence of an accepting cycle. The ap-
proach is thus mainly useful for finding counterexamples (falsification) in the
case a standard verification tool fails due to the lack of memory.

Another complete I/O efficient LTL model checking algorithm (IO-OWCTY)
has been proposed in [5]. The algorithm builds on the topological sort algorithm
described in Section 3. Remember that this algorithm does not rely on the DFS
postorder, hence is compatible with the delayed duplicate detection technique.

The algorithm uses BFS to traverse the graph and basically maintains three
data structures: a set of vertices that await processing (open set), a set of ver-
tices that have been processed already (closed set), and a set of candidates, i. e.,
vertices for which the corresponding check against the closed set has been post-
poned. The way in which vertices are manipulated is depicted in Fig. 2(a). A
vertex from the open set is selected and its immediate successors are generated.
The newly generated vertices are checked against the candidate set, to ensure
that information stored in the candidate set is properly updated. Also, if there
is a need for further processing of some vertices, they are inserted back into
the open set along with all necessary information for the processing. As the
check is not done directly against the closed set, this is the point where dupli-
cates might appear.

Candidates are flushed to disk to resolve duplicates using a merge operation
under two different circumstances: either the open set runs empty and the al-
gorithm has to perform a merge to get new vertices into it, or the candidate
set is too large and cannot be kept in memory anymore. The merge operation
performs the duplicate check of candidate vertices against closed vertices, and
inserts those vertices that require further processing into the open set.

A weak point of the IO-OWCTY algorithm is that the merge operation is
performed every time the algorithm empties the set of open vertices, which
happens at least after every BFS level. Often a single BFS level contains a
relatively small number of vertices, in comparison to the full graph. Processing
them means that the merge operation has to traverse a large disk file, which is
costly.

Squeeze All the Power Out of Your Hardware to Verify Your Software! 611

DISK

RAM

(a)

Candidates

(b)

Candidates

O
p
e
n

O
p
e
n

Closed Closed

Fig. 2. Vertex work flow: (a) I/O search algorithm with delayed duplicate detection,
(b) I/O search algorithm with delayed duplicate detection and revisiting

In [6] a different algorithm (IO-MAP) to fight this inefficiency was suggested.
This algorithm builds on the maximal accepting predecessors algorithm as de-
scribed in Section 3. The distinguished feature of the algorithm is that it allows
more BFS levels to be explored at once without destroying the correctness of
the algorithm (the algorithm is termed revisiting resistant). The substantial
modification in the vertex work flow of an I/O efficient algorithm is depicted
in Fig. 2(b). A vertex, when generated, is inserted not only into the set of can-
didates, but also into the open set. This causes some of the vertices stored in the
candidate set to be revisited. I.e., the “visit” procedure is performed repeatedly
for a vertex without properly updating its associated information in the closed set
residing in external memory. Note that some graph algorithms, like topological
sort, may exhibit incorrect behavior in this case. There is another very important
difference between IO-OWCTY and IO-MAP, namely the latter works on-the-fly.

To demonstrate how I/O efficient LTL model checking algorithms compare,
we conclude with some experimental measurements. All the models and their
LTL properties are taken from the BEEM project [36]. The results are listed
in Table 1. We noticed that just before an unsuccessful termination of IO-EJ
due to exhausting the disk space, the BFS level size still tended to grow. This
suggests that the computation would last substantially longer if sufficient disk
space would have been available. For the same input graphs, the algorithms IO-
OWCTY and IO-MAP manage to perform the verification using a few Gigabytes
of disk space only.

Evaluation on models with valid properties demonstrates that IO-MAP is
able to successfully prove their validity, while IO-EJ fails. The IO-MAP with its
revisiting resistant techniques is able to outperform IO-OWCTY in many cases.
We observed that specifically in cases with high hBFS , e.g., Rether(16,8,4),P2,
time savings are substantial. A notable weakness of IO-OWCTY is its slowness on
models with invalid properties. It does not work on-the-fly, and is consequently
outperformed by IO-EJ in the aforementioned class of inputs. The algorithm
IO-MAP does not share IO-OWCTY’s drawbacks, and in fact it outperforms
both, IO-OWCTY and IO-EJ on those inputs. This can be attributed to their
on-the-fly nature (on all our inputs, a counter example, if existing, has been
found during the first iteration).

612 J. Barnat and L. Brim

Table 1. Run times in hh:mm:ss format and memory consumption on a single work-
station for I/O LTL algorithms. “OOS” means “out of space”.

IO-EJ IO-OWCTY IO-MAP

Experiment Time Disk Time Disk Time Disk

Valid Properties

Lamport(5),P4 (OOS) 02:37:17 5.5 GB 02:37:56 8.5 GB
MCS(5),P4 (OOS) 03:27:05 9.8 GB 04:13:21 11 GB
Peterson(5),P4 (OOS) 18:20:03 26 GB 15:24:29 27 GB
Phils(16,1),P3 (OOS) 01:49:41 6.2 GB 02:19:20 8.1 GB
Rether(16,8,4),P2 53:06:44 12 GB 07:22:05 3.2 GB 00:39:07 6.3 GB
Szymanski(5),P4 (OOS) 45:52:25 38 GB 29:09:12 39 GB

Invalid Properties

Anderson(5),P2 00:00:17 50 MB 07:14:23 3.3 GB 00:00:01 4 MB
Bakery(5,5),P3 00:25:59 5.4 GB 68:23:34 38 GB 00:00:23 54 MB
Szymanski(4),P2 00:00:50 203 MB 00:20:07 253 MB 00:00:02 4 MB
Elevator2(7),P5 00:01:02 130 MB 00:00:25 6 MB 00:00:01 3 MB

5 Squeeze the Juice Out of Your Parallel Computer!

position statement:

Forget about old-fashioned desktop computers! Nowadays, there is a powerful per-
sonal parallel supercomputer sitting in front of you. To get as much as possible
from it, your software needs to get parallelized.

Parallel computers in principle come in two flavours. As shared-memory, in
which multiple computing units share a single global large piece of memory, and
as distributed-memory, in which every computing unit is equipped with its own
local (not necessarily small) amount of memory.

Until recently, improvements in hardware architecture have been providing
verification tools with performance increases mostly for free – without any need
for implementational or algorithmic changes in the tools. However, this trend
appears to be diminishing in favour of increasing parallelism in the system –
which is nowadays much cheaper and easier to implement than it is to build
computers with even faster sequential operation. However, this architectural shift
means that it is no longer possible to benefit from hardware progress, without
introducing algorithmic changes to our tools. This is what we are striving for –
providing algorithms able to exploit such parallel architectures and offering an
implementation that can be deployed in practical situations.

To gain the maximum of a parallel computer we have to use suitable parallel
algorithms. Despite rare situations, where the problem is embarrassingly parallel,
we need to do more than just adopt the best sequential algorithm to a parallel
machine. As for LTL model checking, both the Nested DFS and the Tarjan’s
algorithm are inconvenient for parallel systems as they essentially rely on a depth

Squeeze All the Power Out of Your Hardware to Verify Your Software! 613

first search postorder of vertices. Unfortunately, no optimal scalable technique
is known that would allow to compute the postorder while not eliminating the
parallel processing at the same time. As a result, theoretically unoptimal, but
parallel and scalable algorithms are used in practice. This is because despite
the purely theoretical asymptotic worst case complexity, there are many other,
often more practical, aspects that render an algorithm suitable for solving the
LTL model checking problem. For example, both the algorithms presented in
Section 3 can be of use.

While these parallel algorithms perform single parallel computation on a
bunch of computation units that communicate intensively to achieve their com-
mon goal, a different approach might be to decompose the problem into subprob-
lems and solve these subproblems independently combining just the individual
results at the end of parallel computation.

This type of parallel processing was considered also for enumerative LTL
model checking [1]. In the automata-based approach to LTL model checking the
product automaton originates from synchronous product of the property and
system automata. Hence, vertices are ordered pairs. An interesting observation
is that every cycle in a product automaton graph emerges from cycles in the
system and the property automaton graphs. As the property automaton is typ-
ically quite small, it can be pre-analysed. In particular, it is possible to identify
all strongly connected components of the property automaton graph. The de-
composition of the property automaton can be then used to identify independent
subgraphs of the graph to be searched for the presence of an accepting cycle. If
a part of the product automaton graph respects the decomposition of the prop-
erty automaton graph into strongly connected components, no cycle can cross
the boundaries of the part. If every part is processed by a single computation
node only, multiple Nested DFS algorithms localized to individual parts of the
graph may be employed to detect the presence of an accepting cycle in the whole
graph.

Another interesting information can be drawn from the property automaton
graph decomposition. Maximal strongly connected components can be classified
into three categories [33]:

Type F: (Fully Accepting) Any cycle within the component contains at least one
accepting vertex. (There is no non-accepting cycle within the component.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

Realising that a vertex of a product automaton graph is accepting only if the
corresponding vertex in the property automaton graph is accepting it is possible
to characterise types of strongly connected components of product automaton
graph according to types of components in the property automaton graph. Clas-
sification of components into types N , F , and P is useful for parallel processing
as dedicated algorithms may be applied to process parts of the graph of different
types. In [15] it was shown that the OWCTY algorithm is in fact optimal in
the case the graph of property automaton contains only components of type N

614 J. Barnat and L. Brim

and F . Moreover, the same authors claimed that most LTL properties that are
verified in practice are of this type [16].

A different example of dividing the given task into independent subtasks is
nicely demonstrated on the parallel version of the MAP algorithm. It can be
easily seen that an accepting cycle can be formed from vertices with the same
maximal accepting predecessor only. A graph induced by the set of vertices
having the same maximal accepting predecessor is called predecessor subgraph.
It is clear that every strongly connected component (hence every cycle) in the
graph is completely included in one of the predecessor subgraphs. Therefore, after
applying the deleting transformation, the new map function can be computed
separately and independently for every predecessor subgraph. This allows for
speeding up the computation (values are not propagated to vertices in different
subgraphs) and for an efficient parallelisation of the computation.

Shared-Memory LTL Model Checking
Both platforms have been considered in the context of model checking. Much
of the extensive research on the parallelization of model checking algorithms
for followed initially the distributed-memory programming model and the algo-
rithms were parallelized for networks of workstations, largely due to easy access
to networks of workstations. However, it is the shared-memory environment that
is paid more attention in the last several years. This is because multicored CPUs
made it easily available to general public.

It is in principle possible to take a distributed-memory parallel algorithm and
simply run it on a multi-core machine as it is (which is possible, e.g. due to multi-
core implementation of MPI). The result will be disappointing however. In Fig. 3
this is demonstrated on the bad scaling of the OWCTY algorithm. Adaptations
taking into account specifics of the shared-memory architecture must be taken
into account. Of course the very first attempt is to fully exploit the shared-
memory for sharing data among individual threads. It is a little bit surprising
that using shared hash table to avoid contention does not necessarily lead to
better performance. For LTL model-checking on multi-core machines it seems to
be best to use partitioned hash-tables (similarly to distributed-memory) which
give better cache locality and to tune the parallel algorithm using techniques like
efficient concurrent memory allocation and deallocation or lock-free and wait-free
data structures for interactions [7].

The pioneering work is [28], where Holzmann and Bosnacki proposed an ex-
tension of the SPIN model checker for dual-core machines. Proposed algorithms
keep their linear time complexity and the liveness checking algorithm supports
full LTL. The algorithm for checking safety properties is capable of running on an
arbitrary number of CPU cores, whereas the liveness checking algorithm, which
is based on the original SPIN’s nested DFS, is limited to dual-core systems.

The paper [4] was the first one on multi-core LTL model-checking, focused
on bringing distributed-memory algorithms to shared memory. It has discussed
implementation techniques that have allowed to improve scalability of those
algorithms on multi-core machines. In [7] the results have been further extended
in the direction of different hash table and work distribution options.

Squeeze All the Power Out of Your Hardware to Verify Your Software! 615

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of cores

OWCTY

elevator
leader

peterson
rether

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 12 16

T
im

e
(s

ec
on

ds
)

Number of cores

MT-OWCTY

elevator
leader

peterson
rether

Fig. 3. Scalability of “MPI” OWCTY running on a multi-core machine and the tuned
MT-OWCTY version

Distributed Memory LTL Model Checking

The standard parallel platform for distributed-memory computing is a network
of workstations, a cluster for short. Cluster-based algorithms perform their com-
putation simultaneously on multiple computation nodes that are allowed to com-
municate and synchronise themselves by means of message passing. The advan-
tage of this environment is not only the aggregate computation speed achieved
by parallel processing, but also the aggregate amount of memory the platform
can provide. Cluster-based algorithms proved their usefulness in verification of
large-scale systems in many studies. They have been successfully applied to sym-
bolic model checking [24,25], analysis of stochastic [27] and timed [8] systems,
equivalence checking [11] and other related problems [9,12].

616 J. Barnat and L. Brim

6 Conclusion

Platform-dependent verification is a newly emerging field. Extending the tech-
niques as they are known from the sequential world adds significant complica-
tions and often requires entirely new approaches. We need to change our attitude
in designing practical solutions for verification on the new hardware architec-
tures. The key steps for their effective deployment in industry and real applica-
tions is to design appropriate algorithms, use algorithm engineering techniques
and effects of the memory hierarchy, as well as implications of communication
complexity, and heuristics. The new demand for platform-dependent verifica-
tion algorithms that are of practical utility has raised the need to replace the
traditional sequential approach.

Despite significant progress in platform-depended verification that we have
encountered during the last several years, practically useful platform-dependent
verification tools are still to be developed. There are only a few of them, mostly
of academic nature. In the area of LTL model-checking, the parallel distributed-
memory verification tool DiVinE [3] has recently been released in its multi-core
version – slightly ahead of the release of the multi-core version of SPIN. There are
also many open questions and problems that naturally arise when we consider
the new technological platform. An example is the following open problem: Is
there a scalable parallel algorithm for accepting cycle detection whose sequential
complexity is linear and the algorithm works on-the-fly?

References

1. Barnat, J., Brim, L., Černá, I.: Property Driven Distribution of Nested DFS. In:
Proceedings of the 3rd International Workshop on Verification and Computational
Logic (VCL 2002 – held at the PLI 2002 Symposium). University of Southampton,
UK, Technical Report DSSE-TR-2002-5 in DSSE, pp. 1–10 (2002)

2. Barnat, J., Brim, L., Černá, I.: I/O Efficient Accepting Cycle Detection. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Hei-
delberg (2007)

3. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A
Tool for Distributed Verification (Tool Paper). In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 278–281. Springer, Heidelberg (2006)

4. Barnat, J., Brim, L., Ročkai, P.: Scalable Multi-core LTL Model-Checkin. In:
Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187–203.
Springer, Heidelberg (2007)

5. Barnat, J., Brim, L., Šimeček, P.: I/O Efficient Accepting Cycle Detection. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293.
Springer, Heidelberg (2007)

6. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting Resistance Speeds Up I/O-
Efficient LTL Model Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

7. Barnat, J., Ročkai, P.: Shared Hash Tables in Parallel Model Checking.
ENTCS 198(1), 79–91 (2008)

Squeeze All the Power Out of Your Hardware to Verify Your Software! 617

8. Behrmann, G., Hune, T.S., Vaandrager, F.W.: Distributed Timed Model Checking
— How the Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000)

9. Bell, A., Haverkort, B.R.: Sequential and distributed model checking of petri net
specifications. Int. J. Softw. Tools Technol. Transfer 7(1), 43–60 (2005)

10. Biere, A., Artho, C., Schuppan, V.: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2) (2002)

11. Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction
Of State Spaces. Int. J. Softw. Tools Technol. Transfer 7(1), 74–86 (2005)

12. Bollig, B., Leucker, M., Weber, M.: Parallel Model Checking for the Alternation
Free μ-Calculus. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 543–558. Springer, Heidelberg (2001)

13. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better than
Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

14. Brim, L., Černá, I., Moravec, P., Šimša, J.: How to order vertices for distributed ltl
model-checking based on accepting predecessors. Electronic Notes in Theoretical
Computer Science 135(2), 3–18 (2006)

15. Černá, I., Pelánek, R.: Distributed Explicit Fair cycle Detection (Set Based Ap-
proach). In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73.
Springer, Heidelberg (2003)

16. Černá, I., Pelánek, R.: Relating Hierarchy of Temporal Properties to Model Check-
ing. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 318–327.
Springer, Heidelberg (2003)

17. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

18. Courcoubetics, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-State Verification. In: Proc. Workshop on Formal Methods in Software Prac-
tice, pp. 7–15. ACM Press, New York (1998)

20. Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

21. Esparza, J., Schwoon, S.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

22. Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is there a best symbolic
cycle-detection algorithm? In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 420–434. Springer, Heidelberg (2001)

23. Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 205–219. Springer, Heidelberg (2004)

24. Grumberg, O., Heyman, T., Ifergan, N., Schuster, A.: Achieving speedups in dis-
tributed symbolic reachability analysis through asynchronous computation. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 129–145.
Springer, Heidelberg (2005)

25. Grumberg, O., Heyman, T., Schuster, A.: Distributed Model Checking for μ-
calculus. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 350–362. Springer, Heidelberg (2001)

618 J. Barnat and L. Brim

26. Hammer, M., Weber, M.: To Store Or Not To Store Reloaded. In: Brim, L.,
Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006.
LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg (2007)

27. Haverkort, B.R., Bell, A., Bohnenkamp, H.C.: On the Efficient Sequential and
Distributed Generation of Very Large Markov Chains From Stochastic Petri Nets.
In: Proc. 8th Int. Workshop on Petri Net and Performance Models, pp. 12–21.
IEEE Computer Society Press, Los Alamitos (1999)

28. Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the spin model
checker. IEEE Transactions on Software Engineering 33(10), 659–674 (2007)

29. Jabbar, S., Edelkamp, S.: I/O Efficient Directed Model Checking. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 313–329. Springer, Heidelberg (2005)

30. Jones, M., Mercer, E.: Explicit State Model Checking with Hopper. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 146–150. Springer, Heidelberg
(2004)

31. Korf, R.: Best-First Frontier Search with Delayed Duplicate Detection. In: AAAI
2004, pp. 650–657. AAAI Press / The MIT Press (2004)

32. Kristensen, L., Mailund, T.: Efficient Path Finding with the Sweep-Line Method
Using External Storage. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 319–337. Springer, Heidelberg (2003)

33. Lafuente, A.L.: Simplified distributed LTL model checking by localizing cycles.
Technical Report 00176, Institut für Informatik, University Freiburg, Germany
(July 2002)

34. Munagala, K., Ranade, A.: I/O-Complexity of Graph Algorithms. In: SODA 1999,
Philadelphia, PA, USA, pp. 687–694. Society for Industrial and Applied Mathe-
matics (1999)

35. Pelánek, R.: Typical structural properties of state spaces. In: Graf, S., Mounier, L.
(eds.) SPIN 2004. LNCS, vol. 2989, pp. 5–22. Springer, Heidelberg (2004)

36. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

37. Schuppan, V., Biere, A.: Efficient Reduction of Finite State Model Checking to
Reachability Analysis. International Journal on Software Tools for Technology
Transfer (STTT) 5(2–3), 185–204 (2004)

38. Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi
Verifier. In: Vardi, M., Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer,
Heidelberg (1998)

39. Tarjan, R.: Depth First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 146–160 (January 1972)

40. Vardi, M.: Automata-Theoretic Model Checking Revisited. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007)

41. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. IEEE Symposium on Logic in Computer Science, pp. 322–
331. Computer Society Press (1986)

Static Partial-Order Reduction of Concurrent

Systems in Polynomial Time

Robert Mittermayr and Johann Blieberger

Institute of Computer-Aided Automation
Vienna University of Technology

Austria

Abstract. We present an algorithm for attacking the state explosion
problem in analyzing multithreaded programs. Our approach employs
partial-order reduction and static virtual coarsening. It uses information
on shared variables to generate and interleave blocks of statements.

Our algorithm performs polynomially as long as the number of shared
variables is constant.

1 Introduction

With the advent of multi-core processors scientific and industrial interest focuses
on multithreaded applications. Examples like [3] show that writing even small
multithreaded programs can be a tedious task.

For safety-critical systems or robust embedded systems, software has to be
provably correct. So, in order to incorporate concurrently executing threads in
safety-critical systems, these concurrent programs have to be proved to be cor-
rect. Verifying concurrent programs is challenging because the number of thread
interleavings grows exponentially in the number of statements of the program.
All state-of-the-art methods, such as model-checking, suffer from this so-called
state explosion problem.

The main contributions of this paper are a theoretical analysis of interleavings,
an algorithm for the static reduction of interleavings needed to be taken into
account in order to generate the state space, and a worst-case estimation of this
algorithm.

The remainder of the paper is organized as follows. In Section 2 the state explo-
sion problem is discussed theoretically. An algorithm for reducing the
amount of interleavings without losing any computational results is presented in
Section 3. The worst-case behavior of the presented algorithm is presented in Sec-
tion 4. In Section 5 an example shows how the algorithm works. Related work is
discussed in Section 6. Finally, we conclude the paper and outline possible future
work in Section 7.

2 Interleavings and the State Explosion Problem

For the analysis of multithreaded software in general it is very important to
analyze all possible execution sequences. This ensures that each possible state

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 619–633, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

620 R. Mittermayr and J. Blieberger

is reached. In this section we will start with an example which introduces the
problem in practice. The simple example will be followed by a theoretical analysis
of the state explosion problem.

As a motivating example consider

P : (x:=4︸ ︷︷ ︸
a

;x:=x+ 3︸ ︷︷ ︸
b

) ‖ (x:=2︸ ︷︷ ︸
c

;x:=(x ∗ x) + 1︸ ︷︷ ︸
d

) .

Program P may result in six states. All possible final states of program P are
depicted in Table 1. Please note that we define all statements in this paper to
be atomic.

Table 1. Computation results

Order x

a b c d 5
a c b d 26
a c d b 8
c a b d 50
c a d b 20
c d a b 7

For enumerating the number of interleavings for n threads (t1, t2, . . . , tn)
where each ti has ki statements (where 1 ≤ i ≤ n) the multinomial theorem
can be applied. This results in

�k1 + k2 + k3 + · · · + kn

kn

�
. . .

�k1 + k2 + k3

k3

�
·
�k1 + k2

k2

�
=

(k1 + k2 + k3 + · · · + kn)!

k1!k2!k3! . . . kn!

interleavings.

Lemma 1 (Number of Interleavings). Given n threads (t1, t2, . . . , tn) where
each ti has ki statements, the number of interleavings is given by

(
n∑

i=1

ki

)
!

n∏
i=1

ki!
. (1)

�

Lemma 1 shows how simple it is to get astronomically high numbers of interleav-
ings. If we have 20 statements in each of three threads we get (60!

(20!)3 ≈ 5 × 1026

interleavings.
In order to find the maximum of Eq. (1) we have to maximize

k!
n∏

i=1

ki!
(2)

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 621

where k =
∑n

i=1 ki. In the following we use the gamma function Γ (x) (cf. [1]) to
replace the integer factorial by a real-valued function. Note that Γ (m+1) = m!.

In order to find the extreme value of Eq. (2) we employ the logarithmic deriv-
ative of Eq. (2) which simplifies the calculations significantly.

The derivative of

log(k!)−
n∑

i=1

log(Γ (ki + 1)) + λ(
n∑

i=1

ki − k)

with respect to ki is

−Γ
′(ki + 1)
Γ (ki + 1)

+ λ = 0,

where 1 ≤ i ≤ n. This is valid for all ki, in particular for i = s and i = t, i.e.,

Γ ′(ks + 1)
Γ (ks + 1)

=
Γ ′(kt + 1)
Γ (kt + 1)

.

Using the digamma function ψ(x) = Γ ′(x)
Γ (x) (cf. [1]) we can write

ψ(ks + 1) = ψ(kt + 1).

Because ψ(x) is monotonically increasing for x ≥ 0 (cf. e.g. [1]) we get

ks = kt, for all 1 ≤ s, t ≤ n

which implies ki = k/n, provided that n divides k (n|k).
Thus we have proved the following lemma.

Lemma 2. For a given number of statements k, the worst-case number of in-
terleavings appears if all n threads have the same number of statements. In this
case the number of interleavings is given by

k!((
k
n

)
!
)n (3)

where n|k. �

In the following we write k = β · n. If the number of statements per thread
β ≥ 1 is fixed, Formula (3) can be estimated by Stirling’s approximation m! =
(m

e)m
√

2πm(1 + O(1
m)) as m→∞ (cf. e.g. [1]) giving

(β n)!
(β!)n

∼ nβ n+ 1
2 (2πβ)−

n
2 + 1

2 , (n→∞). (4)

For β ∈ {5, 10, 15, 20, 25, 30} the characteristics of this formula are depicted in
Fig. 1. This case describes the practical case when there is e.g. an Ada task type
defining tasks with β statements.

In Fig. 2 the behavior of a variable number of statements per thread 2 ≤ β ≤
200 and a variable number of threads 1 ≤ n ≤ 40 is depicted in logarithmic scale.
Please note that the functions depicted in Fig. 1 and 2 are actually defined for
natural numbers only. The same applies for the figures in Section 4.

622 R. Mittermayr and J. Blieberger

2 4 6 8 10
Threads1. � 10�7

1. � 1044
1. � 1095
1. � 10146
1. � 10197
1. � 10248

Interleavings

Fig. 1. Interleavings for fixed number
of statements per thread

10

20

30

40

Threads

0

50

100

150

200

Β
0

5000

10 000

Interleavings �log�

Fig. 2. Interleavings for a variable
number of threads and statements per
thread

3 Algorithm

In this section we present an algorithm for reducing the amount of interleavings
without losing possible resulting states. We achieve this by building blocks of
statements. We combine a virtual coarsening approach similar to [2,16] with a
partial order relation of blocks of statements. The correctness of virtual coars-
ening has been proved in [2].

We say that a statement accesses a variable v if the statement reads or writes
the variable v. A variable is said to be shared if more than one thread accesses
it. The set of shared variables is denoted by V . We refer to the set of threads
with T .

Definition 1. A block is a list of consecutive statements and contains at most
one statement accessing shared variables. If the number of blocks is minimized,
we call the resulting list of consecutive blocks minimum block list.

We define a strict partial order relation “<” between blocks that is irreflexive,
asymmetric, and transitive. Let bli and blj be blocks. Then bli < blj holds
iff there exists an execution sequence of the underlying program such that bli
preceeds blj .

We distinguish between two kinds of strict partial order relations, intra-thread
and inter-thread orders. Intra-thread orders define orders of blocks within a
thread and inter-thread orders define an ordering between blocks of different
threads.

Both relations can be represented by graphs. We call such graphs partial order
graphs or PO graphs for short.

Let t(bli) = tj when bli is part of thread tj , where 1 ≤ j ≤ n and 1 ≤ i ≤ b.
Let a(vi) = {blj | ∃ statement s in blj which accesses vi}. Let a(vi, tj) =
{blk | ∃ statement s in blk which accesses vi and t(blk)
= tj}. In addition, we
define SV (bli) = {vj | where block bli contains a statement which accesses the
shared variable vj}. Let the number of shared variables be r and further let b(vj)

denote the number of blocks accessing shared variable vj (over all threads).

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 623

The algorithm consists of the following six steps:

Find shared variables. This step fills the set V .

Build minimum block list.

Generate partial orders for the blocks accessing the same shared variables.

Construct PO graphs

Apply topological sorting to each PO graph. This step results in exactly one
order of blocks for any PO graph constructed in the previous step.

Compute the state space of the program by executing the blocks in the or-
ders calculated in the previous step.

The algorithm is presented in more detail below.

Algorithm ()
1 List[] blocks := new List[1..n]
2 List[][] blocks var := new List[1..r][1..n]
3 List[] finalInterThreadOrderedBlocks
4 ListOfListOfPartialOrders combinedInterThreadOrderedBlocks
5 FindSharedVariables()
6 BuildBlocks()
7 GenerateOrders()
8 ConstructPOGraphs()
9 TopologicalSorting()
10 ComputeStateSpace()

GenerateOrders ()
1 GenerateIntraThreadOrders

2 GenerateInterThreadOrders

3 CombineInterThreadOrders

GenerateIntraThreadOrders ()
1 for each thread ti ∈ T do
2 for each pair blj , blj+1 ∈ blocks[i] do
3 Define blj < blj+1

4 endfor
5 endfor

BuildBlocks ()
1 for each thread ti ∈ T do
2 boolean firstBlock := true
3 Block actualBlock := new Block()
4 blocks[i].add(actualBlock)
5 for each statement s ∈ ti do
6 if s accesses v ∈ V then
7 if not firstBlock then
8 actualBlock := new Block()
9 blocks[i].add(actualBlock)
10 else
11 firstBlock := false
12 endif
13 endif
14 append s to actualBlock
15 endfor
16 endfor

624 R. Mittermayr and J. Blieberger

GenerateInterThreadOrders ()
1 int b var k
2 for each thread ti ∈ T do
3 for each blj ∈ blocks[i] do
4 for each vk ∈ SV (blj) do
5 blocks var[k][i].add(blj)
6 endfor
7 endfor
8 endfor
9 for each vk ∈ V do
10 b var k := b(vk)

11 Block[] interThreadOrderedBlocks := new Block[1..b var k]
12 Interleave rec(blocks var[k], interThreadOrderedBlocks , 1, k)
13 endfor

Interleave rec (List[] blks, Block[] interThrdOrdBlks , int block nr, int var nr)
1 for each i ∈ {1 . . . n} do
2 if blks[i].count() > 0 then
3 interThrdOrdBlks [block nr]:=blks[i].getHead()
4 if block nr = b var k then
5 finalInterThreadOrderedBlocks [var nr].add(new List(interThrdOrdBlks))
6 else
7 List[] local blks:=blks.clone()
8 local blks.removeHead()
9 interleave rec(local blks, interThrdOrdBlks , block nr + 1, var nr)
10 endif
11 endif
12 endfor

CombineInterThreadOrders ()
1 GenerateCombinations rec(0,new ListOfPartialOrders())

GenerateCombinations rec (int cur var,ListOfPartialOrders ordersTillNow)
1 for each interThreadOrderedBlocks ∈
2 finalInterThreadOrderedBlocks [cur var] do
3 ListOfPartialOrders ordersToUse := ordersTillNow.clone()
4 for each pair bli, bli+1 ∈
5 finalInterThreadOrderedBlocks [cur var][interThreadOrderedBlocks] do
6 Define bli < bli+1 and add it to ordersToUse
7 endfor
8 if cur var < r then
9 GenerateCombinations rec(cur var+1,ordersToUse)
10 else
11 combinedInterThreadOrderedBlocks .add(ordersToUse)
12 endif
13 endfor

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 625

ConstructPOGraphs ()
1 for each concreteOrders ∈ combinedInterThreadOrderedBlocks do
2 use PO graph generated from intra-thread orders for a new PO graph
3 for each PO(bi, bj) ∈ concreteOrders do
4 add directed edge from nodebi to nodebj

5 endfor
6 add PO graph to the set of resulting PO graphs
7 endfor

Each of the steps (except the first one) uses information generated in the previous
steps. Note that we generate the reduced state space without generating the
original state space as an intermediate result. This is of course important because
if the original state space would be generated it would abandon the achieved
reductions. In addition, note that our approach, in its current version, needs no
human modeling or specification input.

The initial exponential growth of interleavings in terms of the number of
statements can be reduced to an exponential growth in terms of the number
of shared variables. In a lot of cases this approach enables static analysis of
multithreaded programs.

If a statement accesses two or more different shared variables, it may happen
that conflicting partial order relations appear. If e.g. a statement s1 in block
bl1 which is part of thread t1 reads variable x and writes variable y, whereas
statement s2 in block bl2 which is part of thread t2 writes the shared variable x
and reads the variable y then the algorithm generates the following inter-thread
orders (

bl1 < bl2
bl2 < bl1

)
×

(
bl1 < bl2
bl2 < bl1

)
.

This results in a cyclic directed graph1. Topological sorting can detect this and
the algorithm can be aborted for such contradictory partial orders. In the above
example the algorithm aborts two times and only the two orders bl1; bl2 and
bl2; bl1 are being generated.

The presented algorithm acts on the assumption that all threads are running
at the same time. In addition, it is assumed that every statement s1 of a thread
t1 may happen in parallel to every statement s2 of another thread t2 (cf. e.g. [4]).
This assumptions assure the completeness of the approach. On the other hand
this conservative approach may lead to false positives.

Please note that currently we are not handling conditionals, loops, and pro-
cedure calls. This will be future work.

4 Worst-Case Analysis

In this section we assume that each statement only accesses one single shared
variable. Note however that this is no real constraint because statements access-
ing several shared variables can be replaced by simpler statements accessing only
one single shared variable by introducing artificial (local) variables.
1 Note that duplicate partial orders can be ignored during PO graph construction.

626 R. Mittermayr and J. Blieberger

In addition to the definitions in previous sections let b(vj)
i denote the number

of blocks in thread i accessing shared variable vj .
To derive the worst-case complexity of the approach from Section 3, a mul-

tivariate extreme value calculation can be employed. The following expression,
which denotes the number of graphs generated, has to be maximized

r∏
j=1

n∑
i=1

b
(vj)
i

(
b(vj) − b(vj)

i

)
. (5)

In addition, we have the following constraint
n∑

i=1

b
(vj)
i = b(vj).

Differentiating

r∏
j=1

n∑
i=1

b
(vj)
i

(
b(vj) − b(vj)

i

)
+ λ1

(
n∑

i=1

b
(vj)
i − b(vj)

)

with respect to b(vj)
i , we get for all 1 ≤ i ≤ n and 1 ≤ j ≤ r

b(vj) − 2 bi(vj) + λ1 = 0. (6)

Summing up (6) for i = 1, 2, . . . , n, we have n b(vj) − 2 b(vj) + nλ1 = 0, which
implies λ1 = 2−n

n b(vj). Inserting this into (6), we obtain

b
(vj)
i =

b(vj)

n
. (7)

Inserting (7) into (5), we get

r∏
j=1

b(vj)

(
b(vj) − b(vj)

n

)
=

r∏
j=1

[(
b(vj)

)2
(

1− 1
n

)]
=

(
1− 1

n

)r r∏
j=1

(
b(vj)

)2

(8)

which has to be maximized under the constraint
r∑

j=1

b(vj) = b. (9)

Differentiating

(
1− 1

n

)r r∏
j=1

(
b(vj)

)2

+ λ2

⎛
⎝

r∑
j=1

b(vj) − b

⎞
⎠

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 627

with respect to b(vj) we obtain
(

1− 1
n

)r

2 b(vj)
∏

1≤l≤r
l
=j

(
b(vl)

)2

+ λ2 = 0

which implies

λ2 = − 2
b(vj)

(
1− 1

n

)r r∏
l=1

(
b(vl)

)2

. (10)

Now, (10) is valid for all vj , in particular for j = s and j = t, i.e.,

2
b(vs)

(
1− 1

n

)r r∏
l=1

(
b(vl)

)2

=
2
b(vt)

(
1− 1

n

)r r∏
l=1

(
b(vl)

)2

which implies b(vs) = b(vt) for all s, t. By using Eq. (9) we get

b(vj) =
b

r
. (11)

By inserting Eq. (11) into Eq. (8) we have proved the following theorem.

Theorem 1 (Number of PO Graphs). The number of PO graphs with b
nodes for n threads and r shared variables is bounded above by

r∏
j=1

((
b

r

)2 (
1− 1

n

))
=

(
b

r

)2r (
1− 1

n

)r

≤
(
b

r

)2r

. (12)

�

From Theorem 1 we know an upper bound of the number of graphs with b nodes.
Because topological sorting hast to be applied for every graph our algorithm has
the following worst-case behavior

O

(
b

(
b

r

)2r (
1− 1

n

)r
)
. (13)

This shows that if r = O(1) the algorithm behaves polynomially.
A simple computation shows that the extreme value of (13) appears if

r =
b

e

√
1− 1

n
,

where e denotes the base of the natural logarithm.

Corollary 1 (Worst-Case Value of r). For a given pair (n, b), Eq. (12) has
its maximum at r = (b/e) ·

√
1− 1/n. For n→∞ this results in r → b/e. �

628 R. Mittermayr and J. Blieberger

By using Corollary 1 the extreme value of (13) is bounded above by

O

⎛
⎜⎝b

⎛
⎝ e√

1− 1
n

⎞
⎠

2 b
e

√
1− 1

n (
1− 1

n

) b
e

√
1− 1

n

⎞
⎟⎠ =

O

(
b
(
e

2
e

)b
√

1− 1
n

)
= O

(
b
(
e

2
e

)b
)
.

Hence we summarize our results in the following theorem.

Theorem 2. The worst-case timing behavior of the algorithm presented in Sec-
tion 3 is

O

(
b
(
e

2
e

)b
)

where b denotes the number of blocks of the underlying program and e
2
e =

2.087 �

This concludes that our approach from Section 3 behaves exponentially in the
worst-case.

10
20

30
40

Threads

0
50

100
150 200

Β

0

5000

10 000

Complexity �log�

Fig. 3. Comparison

5 10 15 20
Threads

�1200

�1000

�800

�600

�400

�200

Reduction �log�

Fig. 4. Reduction for 50 blocks per
thread

50 100 150 200
Β

�5000

�4000

�3000

�2000

�1000

0
Reduction �log�

Fig. 5. Reduction for 20 threads with
each β blocks

For the remaining part of this section it is assumed that each block consists of
5 statements. In Fig. 3 the curves of Fig. 2 and our worst-case are compared. The
achieved reduction of the complexity is for n = 20 and β = 200 at least 104923.

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 629

Please keep in mind that this is still the worst-case behavior of our algorithm
where r = (b/e) ·

√
1− 1/n, i.e., for practical settings we expect an even higher

reduction.
Large values of n and/or b lead to more reduction. Figure 4 depicts the re-

duction in the worst-case for β = 50 in dependence of n ranging from 1 to 20.
Figure 5 shows the achieved reduction in worst-case settings for n = 20 in de-
pendence of β ranging from 1 to 200.

5 Example

If each of the three threads in Figure 6 has 20 statements then we have β = 20
and n = 3. The possible interleavings on a statement level (cf. Eq. (4)) are
(β n)!
(β!)n = 60!

(20!)3 ≈ 5× 1026.
If only the shown statements access the shared variables e and f we get with

our algorithm one block for each of the first two threads, namely bl1 and bl2,
respectively. Because the third thread accesses both of the two variables two
blocks are being generated, namely bl3 and bl4.

By interleaving these blocks (cf. Lemma 1) we obtain 4!
1!1!2! = 12 different

interleavings. Although this is already an enormous reduction, it can still be
improved. This is due to the fact that only orders of blocks concerning the same
shared variables are relevant. We express this by using the notation of inter-
thread orders.

Only the orders of bl1 and bl3 and, similarly, the orders of bl2 and bl4 are
relevant. To express all possible combinations GenerateInterThreadOrders of
our algorithm generates

(
bl1 < bl3
bl3 < bl1

)
×

(
bl2 < bl4
bl4 < bl2

)
.

The third thread contains an intra-thread order bl3 < bl4. Because of this the
initial PO graph for every concrete interleaving (in this example) looks like the

P : int e := 0;
int f := 0;
thread {

.

.

.
e := 1;

.

.

.
}

thread {
.
.
.

f := 1;
.
.
.

}

thread {
.
.
.

e := 2;
f := 2;

.

.

.
}

Fig. 6. Example with 3 threads

630 R. Mittermayr and J. Blieberger

.

..

..

.
..
.

...

..

.

...
bl4

bl2 bl3bl1

e := 1; f := 1; e := 2;
f := 2;

Fig. 7. Blocks for Example 6

��
��

��
��

��
��

��
�� �

b1

b2 b4

b3

(a) Intra-thread orders

ON inter-tread order

1 bl1 < bl3, bl2 < bl4
2 bl1 < bl3, bl4 < bl2
3 bl3 < bl1, bl2 < bl4
4 bl3 < bl1, bl4 < bl2

(b) Inter-thread orders

Fig. 8. Partial orders

one depicted in Fig. 8(a). In the following this graph is now used as a basis for
every PO graph constructed by our algorithm. For every pair of the above inter-
thread orders, a PO graph is being constructed. Table 8(b) shows the resulting
partial orders with an assigned order number (ON) for ease of reference. By
adding the partial orders of one order number to the PO graph in Fig. 8(a)
results in a new graph. The four different PO graphs shown in Fig. 9 are being
generated if this is done for every line in Table 8(b).

��
��

��
��

��
��
��
��

�

�

�

b1

b2 b4

b3

(a) Order Number 1

��
��

��
��

��
��
��
��

�

�

�

b1

b2 b4

b3

(b) Order Number 2

��
��

��
��

��
��
��
��

�

�

�

b1

b2 b4

b3

(c) Order Number 3

��
��

��
��

��
��
��
��

�

�

�

b1

b2 b4

b3

(d) Order Number 4

Fig. 9. PO Graphs

Sorting the nodes in each PO graph using topological sorting leads to four
computations. Each computation gives a unique result2. This means we get four
interleavings which compute all possible results for the shared variables e and
f. For the PO graphs from Fig. 9(a), 9(b), 9(c), and 9(d) we get bl1; bl3; bl2; bl4,
bl1; bl3; bl4; bl2, bl3; bl1; bl2; bl4, and bl3; bl1; bl4; bl2, respectively. The results are
shown in Table 2. Please note that some orders of blocks depend on how topo-
logical sorting is implemented, in particular, when there are two or more possible
block arrangements3. In this case two or more interleavings build an equivalence
class (cf. [2]). For verification purposes only one exemplar in this equivalence
2 Unless two different computations result in an identical state by chance.
3 Nevertheless, this has no effect on the computed results.

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 631

Table 2. Computation Results

ON Order e f

1 bl1; bl3; bl2; bl4 2 2
2 bl1; bl3; bl4; bl2 2 1
3 bl3; bl1; bl2; bl4 1 2
4 bl3; bl1; bl4; bl2 1 1

class needs to be computed. For example topological sorting of the PO graph
in Fig. 9(a) can also result in bl1; bl2; bl3; bl4. This is due to the fact that the
order of bl2 and bl3 is irrelevant concerning the resulting state of the shared
variables e and f. With our approach exactly one of the possible interleavings
is being computed. This helps to achieve an enormous reduction in the number
of interleavings.

6 Related Work

Early reduction algorithms can be found in [14]. In [18] (Chapters 6 and 7)
Valmari gives a good survey of models and approaches used so far. Due to space
limitations we cite only some fundamental approaches and techniques in the
following.

Virtual Coarsening. The idea is that in a concurrent program only the or-
dering of actions visible to other threads is important. This reduction can
be made without loss of information [2,16].

Stubborn Sets. In [17,18] the theory of stubborn sets, which is based on com-
mutativity, is presented. Two versions, weak and strong, are distinguished.
The weak theory is more complicated and more difficult to implement, but
it leads to better reduction results. This method tries to “save effort by post-
poning the investigation of structural transitions to future states. . . ” [18].

Sleeping and Persistent Sets. In [6,7] sleeping sets and persistent sets are
presented. Sleeping sets capture information of the past of the search. This
information is being used to avoid unnecessary transitions. “. . . sleep sets
avoid the investigation of transitions that have been investigated in the past
states.” [18]. Persistent sets can be seen as an enhancement of stubborn sets.
The semantic model was inspired by Mazurkiewicz’s traces [11].

Ample Sets. Ample sets are persistent sets satisfying additional conditions
sufficient for LTL model checking [15]. Minea [12] uses also ample sets, but
with a less restrictive independence relation.

Symmetric Reduction. A system may contain several identical components
that are coupled to each other. Symmetric reduction tries to find such sym-
metries. Its complexity is proved to be the same as that of the graph iso-
morphism problem [9].

Dynamic Partial-Order Reduction. An approach somehow similar to ours,
but dynamic in its nature, can be found in [8].

632 R. Mittermayr and J. Blieberger

There is a lot of work building on the papers mentioned above. Some combine
several approaches to achieve better results. A short overview of other techniques
e.g. binary decision diagrams (BDDs), unfolding method, data independence,
and Holzmann’s supertrace can be found in [18]. In order to perform a more
precise commutativity analysis a static and dynamic object escape analysis is
being incorporated in [5]. Information about locks is being collected. This ap-
proach improves the performance of partial-order techniques on shared-memory
programs.

CHESS [13], a concurrency unit testing tool, exhaustively explores the thread
schedules of a concurrent program within a budget of c preemptions. Model
checking techniques are being used in order to systematically generate all inter-
leavings for a given scenario.

In [10] it is shown that for unidirectional bitvector problems in analyzing
parallel programs with shared memory it is sufficient to perform a linear scan of
each thread rather than to analyze all possible interleaving sequences.

7 Conclusion

We have presented an algorithm for attacking the state explosion problem in an-
alyzing multithreaded programs. Our approach employs partial-order reduction
and static virtual coarsening. It uses information on shared variables to generate
and interleave blocks of statements. The number of interleavings compared to
the original setting is reduced significantly.

Our algorithm performs polynomially as long as the number of shared vari-
ables is constant. However, its worst-case behavior is exponential.

We have already implemented the algorithm and tested it on hand-crafted
examples. An interface to an existing compiler or parser will be a future step.

We are currently working on an operational semantics which should enable the
justification of our work. Furthermore, we are planning to support conditionals
and loops.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, New York (1964)

2. Ashcroft, E.A., Manna, Z.: Formalization of Properties of Parallel Programs. In:
Meltzer, B., Michie, D. (eds.) Proc. of the Sixth Annual Machine Intelligence Work-
shop 1970, Edinburgh, pp. 17–41. University of Edinburgh Press (1971)

3. Ben-Ari, M., Burns, A.: Extreme Interleavings. IEEE Concurrency 6(3), 90–91
(1998)

4. Burgstaller, B., Blieberger, J., Mittermayr, R.: Static Detection of Access Anom-
alies in Ada95. In: Pinho, L.M., González Harbour, M. (eds.) Ada-Europe 2006.
LNCS, vol. 4006, pp. 40–55. Springer, Heidelberg (2006)

5. Dwyer, M.B., Hatcliff, J., Robby, Ranganath, V.P.: Exploiting Object Escape and
Locking Information in Partial-Order Reductions for Concurrent Object-Oriented
Programs. Formal Methods in System Design 25(2-3), 199–240 (2004)

Static Partial-Order Reduction of Concurrent Systems in Polynomial Time 633

6. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems –
An Approach to the State-Explosion Problem. In: Godefroid, P. (ed.) Partial-Order
Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer,
Heidelberg (1996)

7. Godefroid, P.: On the Costs and Benefits of Using Partial-Order Methods for the
Verification of Concurrent Systems. In: Peled, D.A., Pratt, V.R., Holzmann, G.J.
(eds.) POMIV 1996: Proc. of the DIMACS workshop on Partial Order Methods in
Verification, pp. 289–303. AMS Press, Inc., New York (1997)

8. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian Partial-Order Reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007)

9. Junttila, T.: On The Symmetry Reduction Method For Petri Nets and Similar
Formalisms. PhD thesis, Helsinki University of Technology (2003)

10. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for Free: Efficient and Optimal
Bitvector Analyses for Parallel Programs. ACM Transactions on Programming
Languages and Systems 18(3), 268–299 (1996)

11. Mazurkiewicz, A.: Introduction to Trace Theory. In: Diekert, V., Rozenberg, G.
(eds.) The Book of Traces, pp. 3–41. World Scientific Pub. Co., Inc., Singapore
(1995)

12. Minea, M.: Partial Order Reduction for Verification of Timed Systems. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1999)

13. Musuvathi, M., Qadeer, S.: Iterative Context Bounding for Systematic Testing of
Multithreaded Programs. SIGPLAN Not. 42(6), 446–455 (2007)

14. Overman, W.T.: Verification of Concurrent Systems: Function and Timing. PhD
thesis, University of California, Los Angeles (1981)

15. Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

16. Pnueli, A.: Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: A Survey of Current Trends. In: Rozenberg, G., de Bakker,
J.W., de Roever, W.-P. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp.
510–584. Springer, Heidelberg (1986)

17. Valmari, A.: Eliminating Redundant Interleavings During Concurrent Program
Verification. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS,
vol. 366, pp. 89–103. Springer, Heidelberg (1989)

18. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)

An Extensible Space-Based Coordination

Approach for Modeling Complex Patterns in
Large Systems�,��

Eva Kühn, Richard Mordinyi, and Christian Schreiber

Vienna University of Technology, Institute of Computer Languages,
Space Based Computing Group and Complex Systems Design and Engineering Lab,

Argentinierstr. 8, A-1040 Wien
{eva,richard,cs}@complang.tuwien.ac.at

Abstract. Coordination is frequently associated with shared data spaces
employing Linda coordination. But in practice, communication between
parallel and distributed processes is carried out with message exchange
patterns. What, actually, do shared data spaces contribute beyond these?
In this paper we present a formal representation for a definition of shared
spaces by introducing an “extensible tuple model”, based on existing re-
search on Linda coordination, some Linda extensions, and virtual shared
memory. The main enhancements of the extensible tuple model comprise:
means for structuring of spaces, Internet- compatible addressing of re-
sources, more powerful coordination capabilities, a clear separation of
user data and coordination information, support of symmetric peer ap-
plication architectures, and extensibility through programmable aspects.
The advantages of the extensible tuple model (XTM) are that it allows
for a specification of complex coordination patterns.

1 Introduction

The coordination theory was founded by Malone and Crowston and described
as “managing dependencies between activities”. In [16] it is argued that coordi-
nation makes sense only if tasks are interdependent. Additionally, the theory
suggests that standardized coordination mechanisms can be applied to spe-
cific coordination problems. Ciancarini therefore describes a generic coordina-
tion model [4] as a triple of {E, M, L}. It suggests to have a clear separation
between the specification of the communication entities of a system and the
specification of their interactions or dependencies. In the model, {E} stands for
either physical or logical entities to be coordinated. These can be data (struc-
tures), software processes, services, agents, or even human beings interacting
� We would like to thank Stefan Craß, Geri Joskowicz, Hans Moritsch, Gernot Salzer,

Thomas Scheller, Vesna Sesum-Cavic, and Ralf Westphal for their helpful discussions
on this topic.

�� The project is partly funded by TripCom (IST-4-027324-STP project,
http://www.tripcom.org) and CAPI (project at TU-Vienna) of the Institute
of Computer Languages.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 634–648, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Extensible Space-Based Coordination Approach 635

with computer-based systems. {M} represents the coordination media (i.e. com-
munication channels) serving as a connector between the entities and enables
communication, which is a mandatory prerequisite for direct coordination [26,6].
Such coordination media may be message-passing systems, pipes, tuple spaces
etc. {L} specifies the coordination laws between the entities defining how the
interdependences have to be resolved and therefore, semantically define the co-
ordination mechanisms.

From the point of view of designing a language for distributed systems the
idea of associative communication based on a shared data space is one of the
most interesting paradigms [3]. This is because a shared space allows to clearly
separate the issue of controlling coordinating communication entities from the
issue to control a single entity. A Tuple Space [22] is an example of this kind of
languages. It is a well-known coordination model such as Linda [8], JavaSpaces [7]
and TSpaces [15]. Tuple spaces are flat and unstructured multisets of tuples that
can be accessed via very basic output, read, and input operations.

In the tuple space approach processes communicate with the other entities
in the environment by writing tuples (ordered sequences of data) into the tuple
space. Sharing of data via spaces [2] is not a novel paradigm. It comes from par-
allel processing and was later considered for distributed environments. Due to
its high-level abstraction of communication by simply reading and writing data
from/into a shared space this paradigm fits to growing dynamics and collabora-
tion in the network [29]. The processes interested in retrieving information useful
for coordinating their activities perform blocking rd or in operations specified
via a template. In case several tuples match the template of a data-retrieval
operation, only one of them is selected non-deterministically.

The limitation of current tuple space implementations is that they support
template-matching only. This is problematic if any other form of coordination
is needed, like FIFO. In such cases the coordination entity itself has to manage
ordering of the tuples the right way and agree about it with other entities. Thus,
the implementation of the coordination entity must contain functionalities that
a coordination media should provide. However, queries involving relational com-
parison operators cannot be implemented with template matching. The proposed
approach aims to describe a generic and extensible coordination model based on
tags, upon which any kind of coordination laws can be modeled, starting with
simple ones like FIFO and KEY, to more complex concurrent collection patterns,
and finally also patterns that as e.g. described in [9] also cope with distributon.
The extensible coordination approach is realized by means of the coordination
media XVSM (extensible virtual shared memory) [25], [14] clearly separating the
responsibilities between coordination middleware and entity again. The reason
for adding additional forms of coordination laws to a space coordination medium
are based on our experiences with programming real applications:

– Developers consider Linda template matching as too unstructured in com-
parison to query facilities offered by databases. Being forced to pack coordi-
nation information into tuple content is a drawback [17].

636 E. Kühn, R. Mordinyi, and C. Schreiber

– Autonomous business partners require a programming language and plat-
form neutral API specification that allows coordination across the Internet.
E.g., JavaSpaces [7] exhibits only a Java based API specification.

– For future Web2.0 scenarios, a crucial requirement will be to hide the dif-
ferences between communication within an enterprise and across enterprise
borders.

Experiences gathered with such applications within large systems are e.g.
GONG with near-time database replication [12] using the Corso [11] virtual
shared memory for load-balancing and network bandwidth optimization, the
SVSDM [19], [18] used for the efficient distribution of working packages to
mobile agents of an insurance company and in catastrophic scenarios [14], the
RealSafe project for reliable data distribution and retrievement in the traffic
telematics area, and the project SWIS [24] in cooperation with Frequentis AG1

focusing on efficient and reliable clustering of network nodes and communication
between those. These systems contain complex patterns like replication, notifi-
cation, or fifo coordination. Therefore, this paper details in section 4 the way
how such patterns are implemented with the introduced model.

In the following, the classic “tuple spaces model” referring to Linda and
JavaSpaces is termed “TSM”, and the “extensible tuple model” as proposed
in this paper is called “XTM”.

2 Structuring the Coordination Space

Motivated by numerous works that extend the original TSM, we propose an
extension of the TSM called XTM (extensible tuple model) for modeling data
and coordination in the shared space in a more structured way, and a formal
notation for the XTM. The goal is to define a system with a minimal feature
set that is extensible, can be configured upon request to meet complex collabo-
ration requirements, and has a well-defined semantics. Briefly, the main concept
in XTM is a shared container that manages data items called entries (general-
izing tuples in TSM). Both, container and entry are modeled by means of an
xtuple (extensible tuple). The operations on a container comprise addition, and
(destructive) selection of entries. In this paper we show the query language of
the XTM; the operational semantics are only sketched informally.

2.1 Xtuple and Entry

An xtuple (extensible tuple, or XT for short) is either an n-tuple “〈E1, . . . , En〉”
which is an ordered list of entries Ei (i = 1..n) with the property that its arity
n can change (expand or shrink) through addition and destructive selection of
entries, or empty (“〈〉”). Entries within an xtuple can be accessed using “XT[j]”
where j is the position of the entry. An entry is a multi-set of tags. A tag is a pair
that consists of a name and a value. The value of a tag can be accessed using
1 http://www.frequentis.com

An Extensible Space-Based Coordination Approach 637

“get(name, E)” where name is the name of the tag and E the entry. Each entry
in an xtuple always has one implicit tag representing a unique position number
(“$P”) for access. The numbering within an xtuple starts with 1. However, the
position number is not an immutable part of the entry, it may change if entries
are added to or removed from the xtuple, and it is automatically stripped from
the entry, if the entry is removed from the xtuple. Entries have no identity. The
fact that entry E has a position number with value “i” is denoted as: “$P=i”.

Example 1. (xtuple)

– “〈[payload=hello, $P=1], [payload=space, $P=2], [payload=2008, $P=3]〉”
is an xtuple with 3 entries containing the payloads “hello”, “space”, and
“2008” plus their position number tags.

– “〈〉” is an empty xtuple.
– Let E be [payload=eva], then “get(payload, E)” returns the value of the tag

payload.

2.2 Container and Container Referencing

A container is a pair consisting of (1) a container-name which is a URL [14] that
can be addressed via the Internet, and (2) an xtuple. For a container that is
represented by the pair (C, xtuple), its xtuple can be accessed via “∗C”.

A container-name is used by read, take and write operations to retrieve the
container’s xtuple at the peer site where the container is hosted. A distributed
data space is a collection of such referenceable containers.

2.3 Structuring of Containers

Entries constitute either proxies for structured user data to be processed jointly,
or coordination data for the interaction of processes.

2.4 Entry Addition

When an entry is added to an xtuple XT, it is appended to the end of the XT
and the position number reflects the order in which the entries have been added.

Example 2. (entry addition)

– E1 = “[payload=jens, pin=12, title=prof]”.
XT1 = “〈[payload=chris, $P=1, pin=78, title=ms]〉”.
Adding E1 to XT1 obviously yields “〈[payload=chris, $P=1, pin=78, ti-
tle=ms], [payload=jens, $P=2, pin=12, title=prof]〉”.

2.5 (Destructive) Entry Selection

For (destructive) selection of entries from an xtuple XT using read or take, an
XQ (xtuple query) is introduced. Selected entries are copied into a new xtuple
that represents the result of the (destructive) selection; take is destructive and
also removes the selected entries from XT.

638 E. Kühn, R. Mordinyi, and C. Schreiber

An XQ is a single-XQ (SXQ) or a composition of SXQs using the binary op-
erator “|” which is left-associative and not commutative. A SXQ has the syntax,
where “name” refers to the name of a tag:

– name relational-operator value (relational comparison)
– name ∈ [value1–valuek] (range)
– name ∈ [value1, . . . , valuek] (enumeration)
– name function (name, template) (matching function)

Beyond tag selection using relational comparison operator, range or enumer-
ation definitions, also a match-maker function can be given, which denotes a
user-definable function. Its argument represents a template that is matched with
the value of the name and results into success or fail.

The execution semantics is that each SXQ (from left to right) of an XQ =
SXQ1 | ... | SXQn is applied to each entry in the xtuple XT in entry position
order. If successful, a new xtuple results to which the next SXQ is applied, a.s.o.
The basic idea behind this mechanism is that streaming becomes possible, as
each SXQ can be decided by each single entry. In contrast to databases, no join
and aggregation operators are supported. The SXQs can work concurrently and
can be seen as filters that pump the information from one stage to the other,
comparable with the staged driven architecture (SEDA) approach [28], [27] that
is known to scale well. Figure 1 depicts the execution of an XQ. The first SXQ,
SXQ1, is applied to the input xtuple XT creating an xtuple (XT’) that contains
all entries which fulfil the SXQ. XT’ is then the input for the next SXQ, SXQ2.
This process is repeated for all SXQs of the XQ. After the last SXQn has been
executed the resulting xtuple (RXT) contains all entries which fulfil the XQ.

Fig. 1. Execution semantic of an XQ

An entry fulfills an XQ, if it fulfills all SXQs of the XQ. An entry fulfills a SXQ:

– If the SXQ is a relational comparison, or a range or enumeration query and if
the entry has at least one tag with the given name the value of which fulfills
the SXQ. For a relational comparison, or a range query the result could be
0,1,. . . entries, whereas for an enumeration query at least one entry must be
found for each value contained in the enumeration. Note that $ is used to
denote the arity of the xtuple and can be used in query expressions.

– If the SXQ is a match-maker function and a user-defined match-maker func-
tion exists with same name as the match-maker function name, which applied
to the denoted tag’s value of the entry returns success. This means that the
entry must possess at least such a tag. The parameters of the user defined
match-maker function are the name of the value to which it is to be applied,
and the template.

An Extensible Space-Based Coordination Approach 639

The result of an application of a SXQ contains all entries that fulfill the XQ
and that are currently contained in the xtuple to which it is applied. An XQ is
used by read and take for selection and is executed in one atomic step. If later
on entries are added to the xtuple that would also fulfill the XQ, they are not
considered any more.

Example 3. (fullfillment).

– Entry “[payload=A, a=5]” fulfills the XQ “a∈[1 – 100]”.
– Entry “[payload=B, b=5]” fulfills the XQs “b∈[3, 5]”, and “b=∗”. Note:

with “=” the usage of ∗ as wildcard is allowed.
– Entry “[payload=C, c=1, d=2]” fulfills the XQ “d∈[2 – 4] | c=1”.

If a SXQ cannot be fulfilled, the read or take is delayed (except if there are
contra-dictionary SXQs in which case it fails), and next time will retry from the
beginning, i.e. with the left-most SXQ. E.g. selection from XT = “〈[payload=100,
link=left], [payload=200, link=right]〉” using XQ = “link∈[next]” will delay.

Example 4. (SXQ, XQ)
Selections that could cause a delay are marked with “D”; “n” is the arity of the
XT to which the XQ is applied; column “nres” denotes number of result entries.

XQ: select from XT: nres: delay:

$P ∈ [1,...,10] the first 10 entries 10 D

pin ∈ [1 – 10] all entries with a tag named “pin” with
value between 1 and 10

0, 1, . . . , n

pin ∈ [1,. . . ,10] all entries with a tag named “pin” with
value between 1 and 10; at least one entry
must be found for each given value

10, 11, . . . , n D

payload ∈
linda((chris,*,*))
| pin ≤ 50

all entries that represent students with
name “chris” and that have a pin that is
≤ 50

0, 1, . . . , n

P ∈ [1 – 10] |
label ∈ [4 – 5]

the up to 10 entries in XT, from these select
all that have a label with value “4” or “5”

0, 1, . . . , 10

l1 = green |
l2 = blue |
payload ∈
(ralf,author,∗) |
x ∈ [5,6] |
$P ∈ [1,2]

all entries that have a tag with name l1
and value=“green”, and that have a tag
with name l2 and value=“blue”, and that
have a palyoad tag that is a tuple with
arity=“3” with first arg=“ralf” and sec-
ond arg=“author”, and that have a tag
with name x and value=“5” and one with
value=“6” (note: entries for both keys must
be found), and select two entries in position
order

2 D

P ∈ [1 – $] all, possibly 0 entries 0,1,. . .,n

640 E. Kühn, R. Mordinyi, and C. Schreiber

3 Core Container Functionality

A container exhibits a lean API which is defined by means of an XML protocol
[5]. No connect operation is required as each operation refers to an Internet-
addressable resource. Each peer application runs an embedded space runtime.
Each protocol message also carries a context parameter not shown below, in
which system or user defined parameters can be passed: e.g. security tokens,
execution states etc. In the following, the protocol messages2 defining the basic
core container functionality, and their operational semantics are only informally
described:

i-tx-create (S, ttl): creates a local transaction at the peer’s site denoted by
the URL “S” which refers to the URL of a peer runtime representing a
local space; “i” stands for isolation-level and is either “e” or “c”: An exclu-
sive transaction (“e”) locks every container it accesses exclusively, whereas a
concurrent transaction (“c”) allows concurrent readers and writers using pes-
simistic locking at entry level. The “ttl” parameter sets a time-to-live value
for the entire transaction in seconds; if expired the transaction is automat-
ically rolledback. The answer protocol message contains the newly created
transaction reference (“tx”) which is a URL, too.

tx-commit (tx), tx-rollback (tx): commits or rollbacks a transaction given
by its URL ”tx”. The answer is the termination result of the transaction.

create-container (S, C, tx): creates a container with the name “C” in a
space referenced by its URL “S”, within a transaction.

destroy-container (C, tx): destroys a container with a given name “C” within
a transaction.

read-op (C, XQ, tx, to, AC): (destructively) selects entries from a container
(with URL ”C”) with optional transaction “tx” and timeout “to” parame-
ters; “read-op” stands for either take or read. If tx is null, an implicit tx
is assumed that immediately commits. A timeout > 0 indicates that this
operation might block and retry within the given timeout if no answer is
found. Answer to a take or read message is a write message (see below)
that writes the selected entries into container “AC”. Typically AC will be
located at the requestor’s site and can e.g. be intercepted by a pre-write
aspect (see below) that calls a callback method or wakes up some waiting
thread. “AC” can be null, in this case the result is not written anywhere. A
take operation with “AC” set to null corresponds to a delete operation and
can be used to save network bandwidth. Note that we describe a protocol; a
binding can be provided for any programming language which can use this
protocol to implement a blocking read/take or an asynchronous callback.

write (C, E, tx, to): adds entry E to container C.
bulk-write (C, <E1, E2, ..., Ek>, tx, to): appends k entries E1, E2, ...,

Ek—given by means of an xtuple—to container C in the order of the xtuple.

2 The protocol is implemented in XML which allows the XTM to be used by any
programming language binding.

An Extensible Space-Based Coordination Approach 641

A main concept of the XTM are aspects to extend the space dynamically
through user defined actions, i.e. a script or method call that are injected into
any of the above operations at a certain ipoint (interception point). This is com-
parable to reactions in LIME [20], [21]; the difference is that aspects are called
before (pre) a certain operation is invoked on a container, immediately after-
wards (post), or if the operation is committed (on-commit); whereas reactions
are called when a tuple matching a certain pattern is found in a tuple space.

def-aspect (C, ipoint, priority, program, tx, ttl): creates an aspect and
in the answer message sends a URL (aspect identifier “aid”) to identify it.
Program is an xtuple containing the single lines of the script to be executed.
The ttl parameter specifies its life time.

undef-aspect (aid, tx, to): removes an aspect given by its URL.

The order of aspect action execution is resolved by a priority parameter. Cf.
join points in aspect oriented programming which allow triggering of code before,
after, or instead of method execution [10]. This concept has been proven useful
for collaborative space-based applications at application level [13] and is now
proposed to be integrated into the space core.

With aspects, the behaviour of a container can be changed creating a share-
able “abstract data type” based on a container. Orca [1] showed that “having
users define their own operations has many advantages”. Orca supports shared,
replicated objects that can be read and updated using blocking and non-blocking
read/write operations. However, in Orca no dynamic “programming” of the space
is possible.

Aspects can also be used to implement reactions on state changes [20], [21]:
e.g. if a certain entry is written to, or taken from a container.

An action has access to parameters and relevant data of the original method
it intercepts and depends on its ipoint. E.g. a pre-write action has access to
5 parameters referencable by $0, $1, . . . , $4: with $0=context, $1=C, $2=entry,
$3=tx, and $4=to; a post-write-on-commit action or a post-write action has:
$0=context, $1=C, $2=entry, $3=tx, and $4=to. For the bulk-write ipoints,
$2=xtuple with the written entries. Read ipoints have the following arguments:
$1=C, $2=XQ, $3=tx, $4=to and $5=CA.

The return value of an aspect determines the control flow: “ok” implies nor-
mal continuation; “skip” in a pre-ipoint skips all further pre-actions and the
original method action, continuing with the first post-action, if given; “skip” in
a post-action skips all further post-actions; “fail” causes the entire operation
to fail; “reschedule” causes the operation to be delayed until a corresponding
event occurs upon which it is rescheduled, as long as the timeout condition is
fulfilled; and “remove-me” causes the aspect to be removed. Execution states
are implicitly passed via context parameter.

The main goal was to keep the set of operations of the XTM minimal and
extensible so that higher-level APIs for more advanced data structures and col-
lections can be bootstrapped on top of it. For the extensibility aspects are in-
troduced. The core container functionality like read, write and take is influenced
by the Linda model. All of these support bulk-data to optimize the network

642 E. Kühn, R. Mordinyi, and C. Schreiber

behaviour and to enable the implementation of iterators. Basic transaction func-
tionality is obviously essential and transactions have therefore already been sug-
gested by other spaces like JavaSpaces (pessimistic concurrency control) and
Corso (optimistic concurrency control). The XTM provides pessimistic concur-
rency control.

4 Extending the Functionality

With help of the XTM functionality, more complex coordination laws can be
defined and “injected” into the space without changing the protocol. This can be
for example FIFO selection, or more complex access patterns like a time bounded
cache, notifications and iterators, or other vertical features like replication. Also
more complex coordination laws can be defined this way, like e.g. a container
supporting multiple coordinations simultaneously.

In the following code snippets, “result ← message” stands for: “send message,
execute it, and extract result from the answer message of the protocol”.

4.1 FIFO Coordination

Example 5. (FIFO coordination) Define a new SXQ named FIFO(n) that se-
lects n entries in FIFO order and that can be used by read or take operations:

FIFO(n) ::= $P∈[1,. . . ,n]

4.2 Notification

In this section two realisations of a notification mechanism are shown. At least
two containers are normally involved in a notification in XTM. The container
on which the notification is registered and a container which stores the infor-
mation of the fired notifications (the notification container). A notification is
realized by analysing the operations executed on a container using an aspect.
The aspect decides whether the notification has to be fired or not. For example,
a notification could fire when a template matches newly written entries, a certain
amount of entries has been written, or when entries have been read. In case of
the notification has to be fired, the aspect writes the required information into
the notification container. From this container a user can take the information
for further computation (waking up a thread, calling a callback method, . . .).
The information written to the notification container can be customized for the
needs of an application. For instance, the entry which caused the notification to
fire, a token which indicates that the notification fired or any other information
can be written by the aspect.

Example 6 defines a notification similar to the JavaSpace [7] notification. It
fires when a newly written entry matches a given template. The new entry which
caused the notification to fire is not passed to the application. The application
is only informed that something new has been written.

An Extensible Space-Based Coordination Approach 643

First, a container (TC) is created which stores the template and an aspect is
created which handles the firing of the notification. The aspect simply executes
a read operation on the TC after each (committed) write operation using the
payload of the new entry as template. This is possible because it is assumed
that the used match-maker function (LINDA) can handle the inversion of the
template and the payload. The answer of the read operation is written into the
notification container (in this case the answer of the read operation is always
the template because it is the only entry in the TC).

This example could be extended supporting multiple templates by writing
more then one template into the TC. The user can distinguish which template
caused the notification to fire by analysing the data in the NC.

Example 6. (JavaSpace notification)

create-Notification(site, C, CN, template) :=
create-container(site, TC, null)
write(TC,〈[payload = template]〉, null, 0)
def-aspect(C, post-write-on-commit, priority,
〈 read(TC, LINDA(payload, get(payload, $2), null, 0, NC) 〉,
null, INFINITE)

Example 7 defines another notification flavour which is very similar to the first
one. Instead of informing the application that something happened, the entry
which caused the notification to fire is written to the notification container. To
realize this an aspect is added to the container on which the notification shall
be registered. When a new entry is written, the aspect creates a new container
containing the new entry. Afterwards, a take operation is executed on the new
container using the template passed during creation of the notification. The
result of the take operation is written to the NC (when the take operation
can be fulfilled the entry matches the template and therefore the notification
has to fire). Finally, the container created by the aspect is destroyed to avoid
unnecessary garbage.

Example 7. (Notification which returns the data)

create-Notification(site, C, CN, template) :=
def-aspect(C, post-write-on-commit, priority,
〈 create-container (site, C’, null)
write(C’, 〈$2〉, null, 0)
take(C’, LINDA(payload, template), null, 0, NC)
destroy-container(C’) 〉,
null, INFINITE)

4.3 Read Iterator

Example 8. (iterator) Define an iterator that (1) first reads all existing entries
from a container and then (2) asynchronously copies all prospectively inserted
entries into a container “CN” from which these entries can be collected with

644 E. Kühn, R. Mordinyi, and C. Schreiber

take. (2) is achieved by means of an aspect. The aspect writes all entries written
to C into the answer container CN.

The reading of all data (1) and the aspect definition (2) must be done in one
exclusive tx to avoid data loss.

read-iterator (site, C, CI) ::=
tx ← e-tx-create (site, INFINITE)
read (C, FIFO($), tx, CI)
def-aspect (C, post-write-on-commit, priority,
〈 write (CI, $2, $3, $4) 〉,
tx, to, INFINITE);

tx-commit (tx);

To keep the above examples simple, bulk-operations are not considered. The
required extensions are straight forward and can be done analogously to the
specification of the replication shown in the next section.

4.4 Single Master Replication

Finally we show a pattern for a single master replication. One peer site is the
owner of the master copy of the container (MC), and other sites can create
replica containers RC1,. . .,RCk from M. From each RCi in turn new replicas
RCi1,. . .,RCik can be created a.s.o. as depicted in figure 2.

2

11

3

4

1

12

13

31

32

121

122

Fig. 2. Single Master Replication

Each RC shall be an identical copy of the MC. It represents a cache from which
peers can read in order to reach a scalable system, and to improve availability
and performance. If a peer wants to write to a local RC, then there are two
scenarios in the pattern: (a) this is forbidden, and (b) the writing is allowed
but internally redirected to the container from which the RC was created. If
RC is not a direct ancestor of MC, then the re-direction is done in a cascading

An Extensible Space-Based Coordination Approach 645

way. In the following examples we show the re-direction as a “write-through”
operation that is perfomed synchronoulsy. A variant that calls the aspect in a
fire-and-forget way would allow for an asynchronous behaviour.

The newly defined extended API is termed create-single-master-replica-
container (MC, RC). The name RC must not yet be used. A new container
is created and published under the name RC, all entries contained in MC are
copied into RC (called first sync) and an aspect is injected into MC that listens
on changes and transfers and applies them to RC. For this, an on-change-iterator
is defined that performs the following actions in an atomic step (see figure 9):

1. Create aspects on MC for the post-ipoints of all operations that perform
changes on a container—i.e. write, bulk-write, and take—to report the in-
formation about the change into a container called RSC (see below) that is
passed to the API as argument and that serves to collect the changes for
each peer replica, in the form of a command entry. The command entry has
the form [op=command, changed=entries], and otherwise [op=command, in-
serted=entries], where command is either delete or insert. For the replication
scenario, it is assumed that each entry that is inserted into MC possesses a
unique id with tag-name “guid”. So in order to be a capable MC, it must
possess an aspect that is injected upon container creation and that adds this
tag to each newly written entry.

2. Copy all entries E1,. . .,Ek of MC into RSC as a command entry of the form
[op=bulk-write, inserted=〈E1,. . .,Ek〉].

Example 9. on-change-iterator (MC, RSC, tx) ::=
read (MC, FIFO($), tx, INFINITE, RSC)
def-aspect (MC, post-take, 1, 〈 write (RSC, [cmd=delete, changed= ∗$5],

$3, $4) 〉, tx, INFINITE, INFINITE)
def-aspect (MC, post-write, 1, 〈 write (RSC, [cmd=insert, changed= $2],

$3, $4) 〉, tx, INFINITE, INFINITE)
def-aspect (MC, post-bulk-write, 1, 〈 write (RSC, [cmd=delete, changed=
∗$2], $3, $4) 〉, tx, INFINITE, INFINITE)

We can now implement the replication to perform (see figure 10) the following
steps atomically, where we assume that the RSC shall be created at the site of
the MC:

1. Create a new container termed replication subscription container RSC for
RC. RSC can be located at either the site of MC, or RC, or at any third
site. In the first case, this refers to a “pull” situation, and in the second case
it implements a “push” scenario.

2. Create an on-change-iterator for this new replica on MC.
3. Periodically fetch the changes in SRC and apply them to RC. Note that this

could also lead to variants of the pattern where the fetching is done e.g. at
certain times, at certain events (using an aspect), or taking only a certain
amount of changes in one step etc.

646 E. Kühn, R. Mordinyi, and C. Schreiber

Example 10. create-single-master-replica-container (MC, RC) ::=
tx ← tx-create (MC-site, INFINITE)
create-container (MC-site, RSC, tx)
on-change-iterator (MC, RSC, tx)
tx-commit (tx)
periodically do:

create-container (RC-site, TEMPC)
take (RSC, $P = 1 , tx, INFINITE, TEMPC)
if(get(cmd, *TEMPC[1]) == delete)

take(RC, guid=entry.guid, null, 0, null)
else

write(RC, get(changed, *TEMPC[1]), null, 0)
destroy-container (TEMPC)

For case (a) where updates are forbidden on a RC, upon creation of the
RC pre-aspects must be set on every change operation that simply return an
exception without calling the original operation. For case (b), these aspects are
implemented differently in that they re-direct the operation as is to the direct
ancestor container from which the replica RC was created.

5 Conclusion

Reliable, near-time, on-line collaboration will require a different architectural
style than a “store & forward” oriented one. Bi-directional access to arbitrary
data structures that go beyond fifo queues are needed to ease collaboration.

In this paper we have presented a formal notation called the extensible tuple
model (XTM) that can serve to model the TSM (tuple space model) as well as
essential enhancements of it. XTM allows for a clear specification of complex
coordination patterns. Examples are shown for FIFO coordination, two different
notification patterns, an iterator pattern, and a replication pattern with some
variants. The main proposed extensions are a better structuring of the space,
more powerful coordination capabilities, a clear separation of user data and
coordination information, support of symmetric peer application architectures,
a well- defined semantics of bulk-operations (read/take of multiple entries), and
a protocol that makes it usable in the Internet. The model has been implemented
by the XVSM system and is available as an open source implementation [25].

XTM is extensible with respect to the following three points: (1) The behavior
of a container, which is the core shared data structure in the XTM, can be
programmed dynamically using aspects. This way, arbitrary abstract data types
can be created which resemble shared collections for queues, dictionaries, maps,
trees etc. Using aspects, notifications and iterators in different flavors can be
realized with a well-defined semantics. (2) The possibility to include coordination
tags into an entry can be used to extend the container by other higher-level user
defined selectors, e.g. stack, random access, vector, least recently used, priorities,
role based scheduling etc. (3) The XTM query language can be extended by the
definition of match-maker functions, e.g. for supporting RDF or XML based
query facilities.

An Extensible Space-Based Coordination Approach 647

The described model in this paper has been used to implement the open source
XVSM implementation called MozartSpaces [23]. In our future work we will use
this model for verification and analyzation of space implementations as described
in section 4. Additional future work will also deal with further extensions of the
XTM query language, and a model for the operational semantics of the XTM.

References

1. Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S.: Orca: a language for parallel
programming of distributed systems. IEEE Transactions on Software Engineer-
ing 18(3), 190–205 (1992)

2. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
3. Ciancarini, P.: Distributed programming with logic tuple spaces. New Gen. Com-

put. 12(3), 251–284 (1994)
4. Ciancarini, P.: Coordination models and languages as software integrators. ACM

Comput. Surv. 28(2), 300–302 (1996)
5. Ecker, S.: Communication protocols in XVSM - design and implementation. Mas-

ter’s thesis, Vienna University of Technology, E185/1 (2005)
6. Franklin, S.: Coordination without communication. Technical report, Inst. For In-

telligent Systems, Univ. of Memphis (April 2008)
7. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice.

Addison-Wesley Longman Ltd., Essex (1999)
8. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.

Syst. 7(1), 80–112 (1985)
9. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston (2003)

10. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

11. Kühn, E.: Virtual Shared Memory for Distributed Architecture. Nova Science Pub-
lishers (2001)

12. Kühn, E.: The zero-delay data warehouse: mobilizing heterogeneous database. In:
Proceedings of the 29th international conference on Very large data bases (VLDB
2003), pp. 1035–1040 (2003)

13. Kühn, E., Fessl, G., Schmied, F.: Aspect-oriented programming with runtime-
generated subclass proxies and net dynamic methods. Journal of NET Technolo-
gies 4, 1801–2108 (2006)

14. Kühn, E., Riemer, J., Mordinyi, R., Lechner, L.: Integration of XVSM spaces with
the web to meet the challenging interaction demands in pervasive scenarios. Ubiq-
uitous Computing And Communication Journal (UbiCC), special issue on Coordi-
nation in Pervasive Environments 3 (2008)

15. Lehman, T.J., McLaughry, S.W., Wycko, P.: T-spaces: The next wave. In: HICSS
(1999)

16. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. 26(1), 87–119 (1994)

17. Martin, D., Wutke, D., Scheibler, T., Leymann, F.: An eai pattern-based com-
parison of spaces and messaging. In: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007), Washington,
DC, USA, p. 511. IEEE Computer Society Press, Los Alamitos (2007)

648 E. Kühn, R. Mordinyi, and C. Schreiber

18. Mor, M., Mordinyi, R., Riemer, J.: Using space-based computing for more efficient
group coordination and monitoring in an event-based work management system.
In: The Second International Conference on Availability, Reliability and Security
(ARES 2007), pp. 1116–1123 (April 2007)

19. Mordinyi, R.: Shared virtual space distribution manager - SVSDM - design and
implementation. Master’s thesis, Vienna University of Technology, E185/1 (2005)

20. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination model and
middleware supporting mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol. 15(3), 279–328 (2006)

21. Picco, G.P., Murphy, A.L., Roman, G.-C.: Lime: Linda meets mobility. In: ICSE
1999: Proceedings of the 21st international conference on Software engineering, pp.
368–377. IEEE Computer Society Press, Los Alamitos (1999)

22. Semini, L., Montangero, C.: A refinement calculus for tuple spaces. Science of
Computer Programming 34(2), 79–140 (1999)

23. MozartSpaces WebSite (2008), http://www.mozartspaces.org
24. SWIS WebSite (2008), http://www.isis.tuwien.ac.at/node/4841
25. XVSM WebSite (2008), http://www.xvsm.org
26. Weigand, H., van der Poll, F., de Moor, A.: Coordination through communication.

In: Proc. of the 8th International Working Conference on the Language-Action
Perspective on Communication Modelling (LAP 2003), pp. 1–2 (2003)

27. Welsh, M., Culler, D.: Overload management as a fundamental service design prim-
itive. In: EW10: Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pp. 63–69. ACM Press, New York (2002)

28. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. SIGOPS Oper. Syst. Rev. 35(5), 230–243 (2001)

29. Zhen, L., Parashar, M.: Comet: a scalable coordination space for decentralized
distributed environments. In: Second International Workshop on Hot Topics in
Peer-to-Peer Systems (HOT-P2P 2005), 21 July 2005, pp. 104–111 (2005)

http://www.mozartspaces.org
http://www.isis.tuwien.ac.at/node/4841
http://www.xvsm.org

On the Design of Knowledge Discovery Services

Design Patterns and Their Application in a Use
Case Implementation

Jeroen de Bruin1, Joost N. Kok1, Nada Lavrac2, and Igor Trajkovski3

1 LIACS, Leiden University, Leiden, The Netherlands
2 Jozef Stefan Institute, Ljubljana, Slovenia

3 New York University Skopje, Skopje, Macedonia

Abstract. As service-orientation becomes more and more popular in
the computer science community, more research is done in applying
service-oriented applications in specific fields, including knowledge dis-
covery. In this paper we investigate how the service-oriented paradigm
can benefit knowledge discovery, and how specific services and the knowl-
edge discovery process as a whole should be designed. We propose a
model for the design of a service-oriented knowledge discovery process,
and provide guidelines for the types of functionalities it requires. We
also provide a case design to show the application and benefits of the
proposed model and design pattern in practise.

1 Introduction

Knowledge Discovery (KD) in data can be a very intensive process in terms
of computation and data transport, but also because the construction of a KD
process can be quite difficult and time-consuming. Over time, many have tried to
find ways to improve the quality of KD processes, for example by making them
faster, easier to construct and/or less data intensive. When new technologies
appear, it is interesting to see how they can be applied to improve performance
in these areas.

In this paper we take a look at the Service Orientation (SO) paradigm and
in what ways it can benefit KD. The SO paradigm allows users to design ap-
plications (in this context we will see a KD process as an application) in terms
of individual components than can be connected to each other through stan-
dardized communication. These components can be either locally or remotely
available, and can be found through public lookup facilities. The potential of
the SO paradigm can make KD processes easier, faster, more understandable.

The focus of the SO paradigm has primarily been on bussiness components and
the construction of distributed corporate applications, but SO seems to become
quite predominant in the scientific world as well. In this paper we explore the ben-
efits and drawbacks of the SO paradigm in KD, mainly focussing on the design of
a KD service and process. We support the design theories by a small case study
of two components, which are combined together to form a KD process.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 649–662, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

650 J. de Bruin et al.

This paper is organized as follows: In Section 2 we discuss diverse work related
to service-oriented knowledge discovery, work that we used to generate ideas for
research and that we compared to our own ideas. In Section 3 we discuss SO
technology, thereby discussing standards and potential advantages in a scien-
tific context. In Section 4 we discuss the design of the case study, and provide
guidelines in the design of KD processes and indiviual components. In Section 4
we discuss the case study trial runs and give a few statistics in terms of perfor-
mance compared to other implementations. Finally, in Section 5 we draw some
conclusions on the implications of the use of SO in KD, and discuss some future
work.

2 Related Work

Over the last few years distributed KD has become increasingly more popular,
which generated research incentives in diverse fields of technology. In [DBG+06]
distributed data mining is proposed by using peer-to-peer networks. The authors
sketch a high-level introduction to peer-to-peer data mining and give some point-
ers and requirements for methods, as well as a theoretical example. However, a
comparison with other techniques lacks, as does technological depth or formal
models. The authors of paper [AC06] focus on the area of text mining, and give
criteria and requirements which need to be supported by good text mining tools.
While they focus on their tool being embedded in other applications and address
issues such as security and statelessness, they seem to only brush the topic of
service orientation and web services as part of the tool, and present restrictions
and not solutions. In [CZW+06] the authors take a view quite similar to ours,
but use Business Process Execution Language for Web Services (BPEL4WS) to
achieve stateful long running interactions, and focusses on data security through
gaussian models, while our focus lies on the design principles of web services
itself within service-oriented knowledge discovery. Finally, [GJF06] describes a
framework in which web services are used for knowledge discovery in databases,
and describes the framework indepth, as well as supported algorithms, but not
the web service design and construction methodology, and thus serves as a useful
complement to this paper.

3 Background

In this section we discuss the SO paradigm, and present its benefits with respect
to KD processes. We also discuss current standards in the SO paradigm. These
standards will be used in the design and implementation of the use case, which
will be presented in Section 3 and Section 4.

The SO paradigm is expressed in a Service-Oriented Architecture (SOA)[Gro].
A SOA is a layered architectural style that supports SO, where SO is a way of
thinking in terms of services and service-based development and the outcomes of
services. In practise, SOA is a distributed architecture that allows a user to build
an application by means of composing individual components that potentially

On the Design of Knowledge Discovery Services Design Patterns 651

Fig. 1. SOA Layers

exist across separate (physical or logical) domains. These components are called
web services [HD06] An overview of SOA is shown in Figure 1

Without going into too much detail, there are a few key points in Figure 1 that
we would like to draw attention to. First, notice how in the service provider lay-
ers service components can consist of not only custom software, but also existing
solutions. This is possible because of the standardized messaging and interface
formats that are part of the SOA specification. SOA incorporates a methodology
that is called design by contract [Mey92]. In this methodology, implementation
is decoupled from a program’s interface, whereby and interface is an annotation
of the service’s functionality that serves as a contract between the service user
and the service provider.

A widely used standard for defining web service interfaces is the Web Service
Description Language (WSDL) [W3Cb]. WSDL is an XML-based standard that
describes for each web service how the service handles incoming messages, what
type of service it is, what kind of parameters it supports, and how the service
interface is connected to the underlying implementation. We discuss WSDL in
more detail in the next section.

Another area of interest are the service consumer layers. Notice that applica-
tions are no longer constructed but instead composed by putting together indi-
vidual web services. This composability is partly the merit of the standardized
interfaces, but also because SOA is message-oriented; communication between
individual components proceeds through the use of uniformly defined messsages.
A standard that is often used for web service message transport is the Simple
Object Access Protocol (SOAP)[W3Ca], which is an XLM-based message format
and transport protocol. Using both standardized ways of accessing and messag-
ing makes an application decomposable into distinct, uniformly accessable units
of computation and processing, which allows for remote computing.

Finally, the last point of interest is the middle layer called the services layer.
In this layer the interfaces of the web services are offered to the consumers who

652 J. de Bruin et al.

search for their underlying functionality. For a user it is impossible to know the
location of each service, and similarly for a provider it is impossible to know
the location of all its users. To meet both demands, the Universal Description
Discovery and Integration (UDDI)[Dra] facility was created, which is a registry
for web services offered by service providers containing all WSDL documents
corresponding to interfaces of those services.

With all these protocols, standards and facilities in place, there are a plethora
of advantages to be gained in the KD context. We summarize a few below:

– Easier KD process setup
A scientist usually perceives a KD process as a workflow where data is con-
tinually modified in discrete computational steps. By using SOA and web
service composition, the scientist’s mental model is more closely approached.
Process composition becomes even easier with the use of tools that offer
a GUI like Taverna [MyG]. By offering the scientist an environment that
matches his conceptual model of a KD process, the process becomes easier
to understand and compose.

– Easier KD process modification
Since web service interfaces are decoupled of their implementation, a user
only needs to rely on the interface. If another webservice is available that
adheres to the interface, that service could replace the forementioned one in
a process without the need for any additional modification by the user.

– Increased component availability
When a scientist searches for the solution of a specific step in his KD process,
it might occur that an implementation is hard to find. With the UDDI in
place, a scientist has a central location where specific solutions can be found.
This reduces the time of process setup, and increases the chances of finding
a solution.

– Increased Performance
Since SOA and all related protocols are platform-independent technologies,
each platform can potentially support it. This makes it easier for the ser-
vice provider to use an implementation environment that is best suited for
the web service, perhaps on specialized hardware which normally would not
be available to the users. Moreover, if two services can be executed indepen-
dently and are located on different physical domains, they can be executed
in parallel.

4 Service-Oriented KD Design

In this section we discuss the SO design model and patterns that we used to
create the case study, and examine how these SO principles influence individual
services and KD processes on a whole. First we discuss WSDL a bit more and
explain how the standard influenced the design of the web service. After that,
we discuss a design model for SO KD processes. Finally, we present guiding
principles for individual KD service design, which were also used to design the
use case.

On the Design of Knowledge Discovery Services Design Patterns 653

4.1 WSDL and Design Implications

There are many views on the design of a KD process, ranging from a global
view stating what functionality a service in a process has and what standard to
use to design and implement it, to microdetails such as what message format to
use. Since the use case was designed by using WSDL, this influences our further
design of a web service and a KD process as a whole. In this paper we focus on
the different operation types that are defined in WSDL, and its influence on the
design of KD process and a KD service:

– Request/Response
In this case, the client sends a message to the service, and the service sends a
message to the client in response. This is the message equivalent of a function
call.

– Solicit/Response
This is the reverse case of the Request/Response type. The service sends
a message to the client, and the client sends a message to the service in
response. This is often used when a service needs to poll clients.

– Client messenger
Here, the client sends a message but does not expect a message in return.

– Server notification
Server notification is the exact opposite of the client messenger type. In
this case, the service sends a notification to the client without expecting or
waiting for an answer.

As we shall see in the remainder of this section, operation types have an inpact
on the entire KD process, so selecting the right type of operation is important
in order to obtain a process with optimal performance.

4.2 KD Process Design

A KD process can be seen as a workflow, whereby data flows from one unit of
processing to another. Conceptually we try to map these unists of processing
to web services. How successful this can be done depends on the understanding
of the process and the functional discreteness of individual steps. We see the
design of a KD process as a three-dimensional challenge containing the Logical,
Funtional and Relational views, that al influence each other. We propose the
following KD process design model for SO that incorporates all these views,
which is illustrated in Figure 2 and described below. By applying this model
in the design of an SO KD process, a better understanding of the process is
achieved, which leads to a better design, until both understanding and design
are optimal.

– Logical view
In this view, the entire KD process is being examined to identify all services
and relations in the process. This logical view is not only guided by the
designer’s expertise, but also on the services already available, for example,

654 J. de Bruin et al.

Fig. 2. KD process in SO

services built earlier or services publicly available through a UDDI. Ideally
all services fit together perfectly and are all available, but this is rarely the
case. Therefore, choices have to be made if readily available services should be
used, and how the unavailable process parts should be logically partitioned.
Since different partitionings of a KD process yields different services and
relations, the partitioning will affect the functionalities of each service as
well as the relations among them.

– Functional view
For each service identified all functionalities are recorded. These functinali-
ties will serve as a guideline for interface design and operation type selection,
and will determine the nature of the relations with other functionalities. In
this stage similarities between services and dissimilarities within services can
be uncovered on the basis of functionality, leading to a possible joining or
splitting of services.

– Relational view
In this aspect of design, relations should be identified for each service with
other functionalities in other services. These relations should be annotated in
two dimensions: direction and usage type. The direction indicates if messages
will be flowing from a service or to a service, the usage type indicates if
the relation is used only once, or continually until processing is done. Both
dimensions will influence the functionality of a service, the operation type
of the functionality’s interface, and the content and format of the messages
that will be transported. Similarities and dissimilarities in relations amongst
services might also lead to a revision of the service partitioning.

On the Design of Knowledge Discovery Services Design Patterns 655

– Matching
This dimension is the feedback step of the model, and matches the outcome
of all other phases to one another. It serves as a feedback phase for the design,
and indicates if service partitionings, functionalities or relations should be
modified or adapted in case of a mismatch.

4.3 KD Service Design

In this part we focus on the functionality design of a KD service, and how the
design choices are expressed in the WSDL operation types.

As stated earlier, KD processes can be very time-consuming, especially when
large data volumes are involved. This means that any error may result in the loss
of a great amount of time. Therefore, individual KD services should be designed
for interaction; A scientist should get regular feedback on the progress of the
process, and should at all time be able to interact with the process.

We also mentioned that a KD process is often perceived as a workflow, a
sequence of computational steps whereby data flows from one step to another.
This does not mean, however, that one step should be completed in order for
the next step to begin; the results that come from these actions sometimes can
already be transferred to the next process phase without waiting for the service
to finish processing all the data. To optimize performance as well, KD services
functionality should be designed for streaming data where possible.

Having observed the facts stated above, we divided the functionalities of a KD
service into three categories: Initialization, Feedback and Enactment. This classi-
fication forms a guideline for the design of a service’s functionality using WSDL.

– Initialization
Procedures designed in this class are expected to handle a continuous stream
of messages that initialize this part of the experiment. Client messagers are
usually best suited for these functions, unless initialization requires critical
feedback, in which case Request/Response should be used.

– Feedback
In this category methods need to be designed that provide feedback to the
service client. Both Notification or Solicit/Response method types can be
used here, depending on if the feedback is used purely for informative pur-
poses or if it is used to steer an interactive experiment through client inter-
vention. Feedback is often provided iteratively, sending messages whenever
an event occurs.

– Enactment
This category combines the actual functionalities of the service with the
feedback functionalities that report on the service’s progress. Since an ex-
periment usually is expected to return a result, a Request/Response type
method is usually chosen. However, if one does not need to wait on this
service in order to continue with other processing steps, a combined Client
messager and Server notification procedure could be used to let the service
run asynchronously. Note that enactment can be done both atomically or
iteratively, as we will see in the next section.

656 J. de Bruin et al.

5 Use Case

In this section we present the use case. For our case study we implemented a
KD scenario described in [TZTL06]. In this scenario two classes of leukemia are
compared with each other. The microarray dataset from Golub et al. [GST+99]
is processed to identify differentially expressed genes per class, based on a thresh-
old score computed by the student’s t-test. This set of differentially expressed
genes, together with a selection of their non-differentially expressed counterparts
(both expressed in Entrez id’s [MOPT05]), are then annotated with terms from
the Gene Ontology (GO)[GO]. In the final step these annotations, together with
information about interaction amongst genes, are combined to find subgroups.
We extended this scenario to also include the Kyoto Encyclopedia of Genes and
Genomes (KEGG)[KEG] ontology, and used a tree-like rule miner that induces
rules on the basis of maximal subsets that satisfy the user-defined support con-
straints.

We designed the use case using the model discussed in the previous section and
compared it to the original design. Both implementations are done in C-sharp
that use a C++ .Net back-end, using WSDL as an interface definition language,
and use SOAP as transport protocol. All services and algorithms are performed
on Microsoft Windows XP using an Intel Centrino duo processor 1.66GHz, and
1GB of main memory.

5.1 Use Case Process Design

– Logical view
In the use case we identified two different web services that are used together
to provide one composite service. The first service is the GeneSelector ser-
vice that is used to compute a t-scores for all genes in the microarray data,
and place it either in the differential or non-differential collection. The sec-
ond service is the GeneRuleInducer service which takes the two lists and
produces rules that describe subsets of these lists that share the same terms
in the GO and KEGG ontology, which are also provided in the rule.

– Functional view
Per service we identify functionalities divided in the three forementioned
categories.
• GeneSelector

Initilialization functionalities
∗ Probe mapper : Each row of the microarray data is annotated per

probe and not per gene, so probes need to be mapped to entrez gene
id’s.

∗ Class mapper : Each column of the microarray data is annotated with
a label and not a class, so labels need to be mapped to classes.

∗ Cutoff initializer : Initialises the t-score cutoff value for genes.

On the Design of Knowledge Discovery Services Design Patterns 657

Feedback functionalities
∗ Probe Feedback : When a probe does not match any gene, a message

is sent to inform on this.
∗ Class Feedback : When a label does not match a class, a message is

sent.

Enactment functionalities
∗ T-test calculator : With help of both mappings, t-test value for a gene

per class is computed and compared with the supplied cutoff.

• GeneRuleInducer
Initilialization functionalities
∗ Gene loader : Loads genes and their scores in the ontology tree-

mining structure.
∗ Support constraint initializer : Initilaizes the minimum and maximum

support constraints.
∗ Ontology loader : Loads the ontology in a tree-structure.
∗ Gene to ontology mapper : Loads the data that maps gene id’s to

ontology keys.
∗ Gene interaction mapper : Loads the data that specifies interaction

between genes.

Feedback functionalities
∗ Gene List feedback : When something is wrong with one of the lists,

the user is sent a message that specifies the problem and the per-
formed action.

∗ Rule feedback : Presents periodical feedback on the progress of the
rule miner.

Enactment functionalities
∗ Rule miner : Using the internal tree-structure of the ontologies which

are annoted with differential and non-differential genes, rules are un-
covered that satisfy the minimal differential support constraint and
the maximal non-differential support constraint.

– Relational view
Here we specify relations and if they are iterative or not. Iterative relations
are denoted with *.
Client to GeneSelector relations
• Probe map input : Message containing probe and gene id’s. Only needs

to be supplied once.
• Class map input : Message containing classes and labels. Only needs to

be supplied once as well.
• Cutoff input : Message containing the user-defined t-score cutoff.
• Data input* : Message containing a probe identifier and expressions per

label.

658 J. de Bruin et al.

GeneSelector to Client relations
• Probe map feedback output* : Message that returns a problem with the

probe mapping.
• Class map feedback output* : Message that returns a problem with the

class mapping.

GeneSelector to GeneRuleMiner
• Data return output* : Message that returns the score of the gene and if

it’s in the differential set or not.

Client to GeneRuleMiner
• Differential support input : Message that supplies the cutoff for the min-

imal number of differential genes a rule has to support.
• Non-differential support input : Message that supplies the cutoff for the

maximal number of non-differential genes a rule may to support.

• Enactment input : Message that enacts the mining process.

GeneRuleMiner to Client
• Gene list feedback output* : Message specifying feedback if anything goes

wrong loading the specified lists.
• Rule miner output : Message that returns rules uncovered by the algor-

tihm.

A complete overview of service connectivity and data flow is presented in Fig-
ure 3. Note that only those functionalities that require interaction with the user
or another service are displayed.

Fig. 3. SO KD use case design

On the Design of Knowledge Discovery Services Design Patterns 659

5.2 Use Case Process Comparison

The original process was divided in the same service partitioning as the one that
our model yielded, but processing of individual services was done one by one,
and results did not transfer before processing was completed. Furthermore, in
the original implementation feedback was not supplied upon occurence of the
event, but as a return value after processing, which is a less interactive way. A
complete list of differences per service are listed in Table 1 and Table 2

Table 1. Design differences in GeneSelector service

Category Original process Use case process

Service feedback as return values iterative on occurence of event
Service initialization Supplied as a whole Iterative data supply
Service processing all per element
Service outputs at end of processing continuous outputting per element

Table 2. Design differences in GeneRuleMiner service

Category Original process Use case process

Service feedback as return values iterative on occurence of event
Service initialization Supplied as a whole Iterative data supply
Service processing all all
Service outputs at end of processing at end of processing

Table 3. Benchmarks of the original process

Phase Cutoff 15 Cutoff 10 Cutoff 8

GeneSelector initialization 74 69 73
GeneSelector processing 1331 1291 1328
GeneRuleMiner initialization 3388 7122 13318

Table 4. Benchmarks of the re-designed use case

Phase Cutoff 15 Cutoff 10 Cutoff 8

GeneSelector initialization 73 69 74
GeneSelector processing 1260 1228 1257
GeneRuleMiner initialization 2139 5841 11998

Finally, we took some benchmarks for the performance of the original process
and the re-designed use case. As input for the selector we took respectively cutoffs
of t-score 15, 10 and 8. For the GeneRuleMiner, we took supports of minimally
10% differential genes and maximally 5% non-differential genes. Results of the
original process are displayed in Table 3, and those of the re-designed use case are
in Table 4. Note that the measurements of each phase in the table indicate after
how much time since the process started this phase ended. All measurements

660 J. de Bruin et al.

Fig. 4. Benchmark comparison of t-score 15 cutoff process

are averages over 50 consecutive runs, and are in milliseconds. Since in the
GeneRuleMiner processing is no speedup to be gained due to the return of all
results at once, we only show the benchmarks of the phases preceeding the
GeneRuleMiner processing phase.

To make the difference between the original process and the re-designed use
case more clear, consider Figure 4. Here, the cutoff 15 scenario was worked out
more thoroughly. The top part displays how the original process parts consecu-
tively get processed. The bottom part shows how the re-designed process part
iteratively get processed in parallel where possible.

6 Conclusions and Future Work

In this paper we discussed the design of KD processes in an SO environment.
We discussed the SO technology and related standards, and showed how KD
processes can benefit from SO technology; It makes process setup and modifica-
tion easier, increases component availability, and can have a positive inpact on
performance.

By designing a SOKD process workflow using a design model that combines
logical, functional and relational views, a better understanding of a KD process
can be gained iteratively due to the matching and mismatching of entities in
these views, whereby each iteration yields a better SOKD process design and a
closer match of relations, services and functionality. An important factor that
influences the partioning of services are the services already available, thereby
promoting software reuse.

When designing individual services in KD, interaction and feedback are im-
portants aspects to keep in mind. Interaction and regular feedback are important
for the scientist to steer the KD process in a correct way, for KD processes are
often time-consuming and thus any process incorrectly set up could possibly
result in a considerable loss of time. Another important aspect is performance
through paralellization. Since web services can be distributed across different
logical or physical platforms, their execution could possibly proceed in a parallel
fashion. To support paralellism, streaming data is preferred over monolithic data
transport where possible. By combining these aspects and the functionality types

On the Design of Knowledge Discovery Services Design Patterns 661

in WSDL, we created a guideline for the design of a KD service’s functionality
that is otimized for streaming data where possible and incorporates the need for
feedback.

To illustrate the merits of SO and our developped design model and guide-
lines, we implemented a use case according to our model, and compared it to
a web service implementation using monolithical data transfer and periodical
step-by-step execution. In some cases, processing times for the initialization of
a process were reduced up to 37%, and with 22% on average.

The design principles stated in this paper are but a minor step to incorpo-
rating SO technology in the field of KD. However, by assuring that the design
of a KD process and individual services is optimized for feedback and paralel-
lism, a researcher can enact a process and conclude it successfully with minimal
error and maximal performance. For further research we would need to study
more use cases to ensure the research principles have maximum support in the
KD scientific field. Furthermore, this design needs to be supported by grapical
workflow tools that support iterative relationships instead of just monolithical
data transport.

References

[AC06] Adeva, J.J.G., Calvo, R.A.: Mining text with pimiento. IEEE Internet
Computing 10(4), 27–35 (2006)

[CZW+06] Cheung, W.K., Zhang, X.-F., Wong, H.-F., Liu, J., Luo, Z.-W., Tong,
F.C.H.: Service-oriented distributed data mining. IEEE Internet Comput-
ing 10(4), 44–54 (2006)

[DBG+06] Datta, S., Bhaduri, K., Giannella, C., Wolff, R., Kargupta, H.: Distributed
data mining in peer-to-peer networks. IEEE Internet Computing 10(4),
18–26 (2006)

[Dra] Uddi Open Draft. Uddi version 2.0 api specification
[GJF06] Guedes, D., Meira Jr., W., Ferreira, R.: Anteater: A service-oriented

architecture for high-performance data mining. IEEE Internet Comput-
ing 10(4), 36–43 (2006)

[GO] The gene ontology, http://www.geneontology.org/
[Gro] The Open Group. Definition of soa, version 1.1,

http://opengroup.org/projects/soa/doc.tpl?gdid=10632
[GST+99] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A.,
Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Sci-
ence 286(5439), 531–537 (1999)

[HD06] Hasan, J., Duran, M.: Expert Service-Oriented Architecture in C# 2005,
2nd edn. Apress, Berkely (2006)

[KEG] Kegg: Kyoto encyclopedia of genes and genomes,
http://www.genome.jp/kegg/

[Mey92] Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51
(1992)

[MOPT05] Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-
centered information at ncbi. Nucleic Acids Res. 33 (Database issue) (Jan-
uary 2005)

http://www.geneontology.org/
http://opengroup.org/projects/soa/doc.tpl?gdid=10632
http://www.genome.jp/kegg/

662 J. de Bruin et al.

[MyG] MyGrid. Taverna workbench 1.7, http://taverna.sourceforge.net/
[TZTL06] Trajkovski, I., Zelezný, F., Tolar, J., Lavrac, N.: Relational subgroup dis-

covery for descriptive analysis of microarray data. In: Berthold, M., R.,
Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp.
86–96. Springer, Heidelberg (2006)

[W3Ca] The World Wide Web Consortium W3C. Soap version 1.2 part 0: Primer
(second edn.),
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

[W3Cb] The World Wide Web Consortium W3C. Web services description lan-
guage (wsdl) 1.1, http://www.w3.org/TR/wsdl

http://taverna.sourceforge.net/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/wsdl

The ASK System and the Challenge of

Distributed Knowledge Discovery

Andries Stam

Almende BV, Rotterdam, The Netherlands
andries@almende.org

Abstract. ASK is an industrial software system for connecting people
to each other. The system uses intelligent matching functionality and
learning mechanisms in order to find effective connections between re-
questers and responders in a community. Currently, Almende investigates
ways to connect multiple distributed configurations of ASK to each other
and to different existing systems. Thereby, we face the issue of how to
derive knowledge about connections between people in such distributed
heterogeneous settings. In this paper, we introduce ASK, indicate its
future development and discuss the imposed challenges.

1 Introduction

ASK has been developed by Almende [1], a Dutch research company focusing
on the application of self-organisation techniques in human organisations and
agent-oriented software systems. The system is marketed by ASK Community
Systems [2]. ASK provides mechanisms for matching users requiring information
or services with potential suppliers. Based on information about earlier estab-
lished contacts and feedback of users, the system learns to bring people into
contact with each other in the most effective way. Typical applications for ASK
are workforce planning, customer service, knowledge sharing, social care and
emergency response. Customers of ASK include the European mail distribution
company TNT Post, the cooperative financial services provider Rabobank and
the world’s largest pharmaceutical company Pfizer. The amount of people using
a single ASK configuration varies from several hundreds to several thousands.

Currently, ASK configurations are deployed on a per-customer basis in a cen-
tralized manner. Developments in information and communication services, how-
ever, call for more openness and distribution of the services of ASK. Future
versions of ASK likely include the possibility to connect multiple ASK config-
urations to each other or to different knowledge intensive systems, or even the
creation of personal ASK configurations which maintain personal data and in-
formation about the connectivity with colleagues or clients. These possibilities
inherently imply the distribution of data and put a challenge on the acquisition
of knowledge for single or even multiple overlapping communities.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 663–668, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

664 A. Stam

In this paper, we indicate future developments envisioned for ASK and ex-
pected challenges related to distributed knowledge discovery and management.
We have set up the paper as follows. In Section 2, we provide an overview of the
ASK system. In Section 3, we indicate current research initiatives at Almende
and future development directions regarding ASK, and discuss the challenges
regarding distributed knowledge discovery. We summarize in Section 4.

2 An Overview of the ASK System

The primary goal of the ASK system is to connect people to other people in the
most effective way. The system acts as a mediator in establishing the contacts:
people can contact the system via various media like telephone or email, and the
system itself is also able to contact people via those media. In determining the
effectiveness of contact establishment, multiple aspects play a role. For example,
the rating of human knowledge and skills is important in cases where people
request contact with specialists or service providers. In these cases, the ASK
system is able to ask participants for feedback on the quality of service after the
contact. This feedback can be used for optimization of subsequent requests of
the same kind. A different role is played by time schedules, which indicate when
certain people can be reached for certain purposes. The ASK system differenti-
ates between regular plannings and ad-hoc schedules caused by sudden events
or delays. Different communication media play another role. In most ASK con-
figurations, voice communication (phone, VoIP) is the primary communication
medium used, but different media like email and SMS are supported by ASK as
well. Moreover, people can own various phone numbers and email addresses, for
which they can indicate preferences and time or service dependent usage con-
straints. The ASK system is able to exploit knowledge about the reacheability
of people via specific media, for example in the context of emergency response
systems, where people must be contacted within a certain time window. In gen-
eral, learning from past experiences of all kinds and forecasting based on these
experiences plays a crucial role in ASK.

The software of ASK can be technically divided into three parts: the web
front-end, the database and the contact engine (see Figure 1). The web front-
end acts as a configuration dashboard, via which typical domain data like users,
groups, phone numbers, mail addresses, interactive voice response menus, ser-
vices and scheduled jobs can be created, edited and deleted. This data is stored
in a database, one for each configuration of ASK. The feedback of users and the
knowledge derived from earlier established contacts are also stored in this data-
base. Finally, the contact engine consists of a quintuple of components Reception,
Matcher, Executer, Resource Manager and Scheduler, which handle inbound and
outbound communication with the system and provide the intelligent matching
and scheduling functionality.

The “heartbeat” of the contact engine is the Request loop, indicated with thick
arrows. Requests loop through the system until they are fully completed. The
Reception component determines which steps must be taken by ASK in order

The ASK System and the Challenge of Distributed Knowledge Discovery 665

Contact Engine

Resource
Manager

Reception Matcher Executer Scheduler

phone
connec-

toids

email
connec-

toids

sms
connec-

toids

scheduler
connec-

toids

Domain
Data

file
connec-

toids

Web
Front-end

Fig. 1. ASK System Overview

to fulfil (part of) a request. The Matcher component searches for appropriate
participants for a request. The Executer component determines the best way
in which the participants can be connected. ASK clearly separates the medium
and resource independent request loop from the level of media-specific resources
needed for fulfilling the request, called connectoids (e.g., a connected phone line, a
sound file being played, an email being written, an SMS message to be sent). The
Resource Manager component acts as a bridge between these two levels. Finally,
a separate Scheduler component schedules requests based on job descriptions in
the database. In the next paragraphs, we discuss in more detail those components
which create and exploit knowledge in ASK: the Reception, the Matcher and the
Scheduler component.

666 A. Stam

Reception. The major role of the Reception component is to determine which
action should be taken by the ASK system based on a request. To give an
example, if a request is received containing an incoming call event from a certain
telephone number, the Reception component can decide to present a specific
interactive voice response (IVR) menu to the caller, depending on the current
date and time, number of the caller and the number being called. The caller
is then able to provide information about the request, by selecting submenus
or actions via dual-tone multi-frequency (DTMF) dial tones. A request could
also originate from the scheduler, for example if the ASK system calls a user in
order to ask for feedback or for availability as an ASK responder for a certain
time period. The reception component is responsible for performing updates to
the contents of the database in terms of adding previously unknown telephone
numbers, adding feedback from users or changing schedules of responders.

Matcher. The Matcher component tries to find matching users for a request. For
example, a person calling the ASK system could ask for a connection with a spe-
cialist on a certain topic. Matching can be complicated, since the preferences and
time schedules of the requester and candidate responders must be taken into ac-
count, as well as feedback about earlier contacts. The Matcher tries to find several
candidate responders and selects between them using one of four possible methods:

1. Round Robin: the Matcher randomly selects a responder from the set of
candidates available.

2. Last Spoken: the Matcher selects the responder that was selected previously.
3. Rating: the Matcher uses feedback provided by the requester about potential

responders and selects the one with the highest rating.
4. Friendly Rating: the Matcher again selects based on the received ratings,

but occasionally randomly selects a different responder in order to provide
them with the opportunity to improve their rating.

Scheduler. The Scheduler component realizes the execution of various types
of scheduled jobs. Typical jobs are: contacting requesters and responders to
obtain feedback about earlier connections, or contacting potential responders
for availability. In executing these jobs, the Scheduler component keeps track of
the time schedules and preferences of users. The Scheduler itself does not take
part in the request loop: its messages enter the request loop as if they come
from outside the system. Jobs for the Scheduler can be put into the database
manually via the web front-end, or automatically, as the result of the execution
of requests in the contact engine.

3 The Future of ASK

As we indicated in the introduction, future customers will require increasing
agility with regard to the integration of new communication technologies, cus-
tomer specific extensions and existing information systems in ASK. Another re-
quirement is that of autonomic run-time scalability: the ability of the software to

The ASK System and the Challenge of Distributed Knowledge Discovery 667

adapt its configuration by distribution and replication, as to achieve better load
balancing without human intervention. Almende aims at even more dynamism
in future configurations of ASK. Matching and scheduling functionality can be
diversified and provided by multiple distributed interacting components, acting
upon several distributed data sources. Matching can then be performed not only
within a single community, but also across various indirectly related communi-
ties. In addition to the existing customer-specific configurations of ASK, personal
contact managers can be set up to maintain personal data and knowledge about
the connectivity with colleagues, clients, or service providers.

As a consequence, the current ASK system will be changed and extended con-
siderably in the near future. Such changes can be realized in a more reliable way
when combined with the use of formal methods for the modeling, analysis and
testing of software. Currently, Almende is involved in the EU FP6 project Credo:
Modeling and analysis of evolutionary structures for distributed services (IST-
33826). In the context of this project, several formal methods and techniques are
applied to the ASK system, in its current shape and with various extensions. For
example, we use the modeling language Creol [5] to model the functionality of
the ASK system, at a high level of abstraction, for analysis and verification pur-
poses. Communication within and between ASK components is reorganized into
communication via REO Circuits [3], as a means to achieve better composition-
ality through exogenous coordination and to enable dynamic reconfiguration.
The mechanism of dynamic reconfiguration has been promoted by Almende in
earlier research on the Common Hybrid Agent Platform (CHAP) [6]. Further-
more, we apply Task Automata [4] for the verification of timing and scheduling
issues, like the completion of requests and the execution of scheduler jobs in the
system.

The future scenarios we envision, and for which we are now taking the first
steps, also pose high requirements on the capabilities of the ASK system to
derive knowledge from inherently distributed data:

– How can efficient matching be performed in a distributed setting? Efficiency
is especially important in the case of phone communication.

– How can we cope with conflicts, redundancy or dependencies in time sched-
ules and availability data stored in different databases at different places?

– How can we exploit the updated contents from one database in the context of
another database? In particular, how can we use customer feedback provided
in one context to improve matching in another context?

– How can we enable cross-community knowledge discovery and at the same
time keep personal contact information private and secure?

4 Summary

In this paper, we presented the ASK system, a system for effectively connecting
people to each other. The system implements an intelligent matching mecha-
nism which uses knowledge derived from past experiences. Our aim is to evolve
ASK into a system in which this knowledge will be inherently distributed over

668 A. Stam

various community-wide and personal databases. Formal methods play a crucial
role in the modeling and verification of such an evolving system. In addition,
future configurations of the ASK system certainly need to incorporate efficient
techniques for distributed knowledge discovery.

References

[1] Almende website, http://www.almende.com
[2] ASK community systems website, http://www.ask-cs.com
[3] Arbab, F.: Reo: a channel-based coordination model for component composition.

Mathematical. Structures in Comp. Sci. 14(3), 329–366 (2004)
[4] Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, de-

cidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)
[5] Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed

concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)
[6] Valk, J., Larsen, J.P., van Tooren, P., ter Mors, A.: Channel-based architecture for

dynamically reconfigurable networks. In: BNAIC, pp. 246–253 (2005)

http://www.almende.com
http://www.ask-cs.com

A Scenario Implementation in R for

SubtypeDiscovery Examplified on
Chemoinformatics Data

Fabrice Colas1, Ingrid Meulenbelt2, Jeanine J. Houwing-Duistermaat3,
Margreet Kloppenburg4, Iain Watt5, Stephanie M. van Rooden6,

Martine Visser6, Johan Marinus6, Edward O. Cannon7, Andreas Bender8,
Jacobus J. van Hilten6, P. Eline Slagboom2, and Joost N. Kok1,2

1 LIACS, Leiden University, The Netherlands
{fcolas,joost}@liacs.nl

2 MOLEPI, LUMC, The Netherlands
{I.Meulenbelt,P.Slagboom@}lumc.nl

3 MEDSTATS, LUMC, The Netherlands
J.J.Houwing@lumc.nl

4 Rheumatology dept., LUMC, The Netherlands
G.Kloppenburg@lumc.nl

5 Radiology dept., LUMC, The Netherlands
I.Watt@lumc.nl

6 Neurology dept., LUMC, The Netherlands
{S.M.van Rooden,M.Visser,J.Marinus,J.J.van Hilten}@lumc.nl

7 UCMSI, University of Cambridge, United Kingdom
Eoc21@cam.ac.uk

8 LACDR, Leiden University, The Netherlands
bendera@lacdr.leidenuniv.nl

Abstract. We developed a methodology that both facilitates and en-
hances the search for homogeneous subtypes in data. We applied this
methodology to medical research on Osteoarthritis and Parkinson’s Dis-
ease and to chemoinformatics research on the chemical structure of mol-
ecule profiles. We release this methodology as the R SubtypeDiscovery
package to enable reproducibility of our analyses. In this paper, we
present the package implementation and we illustrate its output on mole-
cular data from chemoinformatics. Our methodology includes different
techniques to process the data, a computational approach repeating data
modelling to select for a number of subtypes or a type of model, and ad-
ditional methods to characterize, compare and evaluate the top ranking
models. Therefore, this methodology does not solely cluster data but it
also produces a complete set of results to conduct a subtype discovery
analysis.

1 Introduction

In medical research, it is of interest to identify subtypes of diseases like Os-
teoarthritis (OA) and Parkinson’s Disease (PD) that present clinical hetero-
geneity; we can do so by searching for homogeneous clusters in values of markers

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 669–683, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

670 F. Colas et al.

that reflect the severity of the disease. In chemoinformatics, various databases
list and classify molecules, therefore, it is of interest to search for character-
istic subgroups of molecules that exhibit particular features on the molecule’s
chemical structures.

To this aim, we developed a methodology mimicking a cluster analysis process:
from data preparation to cluster evaluation. In particular, it implements vari-
ous data preparation techniques to facilitate the analysis given different data
processing [1]. It also features a computational approach that repeats data mod-
elling in order to select for a number of subtypes or a type of model. Additionally,
it defines a selection of methods to characterize, compare and evaluate the top
ranking models.

The outline of the rest of the paper is as follows. We first describe the three
studies on which we carried a SubtypeDiscovery analysis. Second, we detail data
preparation issues with methods to answer them, as well as our preferred clus-
tering approach. Third, we report additional methods to select, characterize,
compare and evaluate cluster results. Finally, as the search for subtypes appears
in many areas, we abstract from the application we have done up to now and
make it available as the R SubtypeDiscovery package, which we discus in the last
section. Illustrations of our methodology throughout this paper are from medical
research on OA and PD (somewhat restricted due to confidentiality) and to a
public chemoinformatics data set embedded in our package.

2 Experimental Data

Osteoarthritis. OA is a disabling common late onset disease of the joints char-
acterized by cartilage degradation and the formation of new bone. These inves-
tigations will assess whether the spread of the disease across different joint sites
is stochastic or follows a particular pattern depending on the underlying disease
aetiology. At joint locations like the hands, hips, knees, and the spine, Radi-
ographic characteristics of OA (ROA) was assessed by physicians who graded
OA severity on a 4-points scale {0, 1, 2, 3, 4}, which is referred to as the Kellgren
and Lawrence scale, see [2,3] for an account of previous research. Such ROA was
ascertained at 45 locations. We carried our cluster analysis on 422 participants
who issue from 211 families. We dropped out 13 participants either because they
missed ROA scores or because the family sibship already involved two members.

Parkinson’s Disease. PD is a progressive neurological disorder that is character-
ized by problems with movement: stiffness, slowness of movement, and trembling.
However, patients have also several other problems not related to movement.
Among the PD patients, there is marked heterogeneity, both in presence and
severity of different impairments and in other variables like age at onset or fam-
ily history. Better knowledge of different subtypes of PD will help to understand
and facilitate the search for the aetiology of PD and to characterize patients with
different progression profiles. The severity of PD is assessed on scales developed
specifically for PD [4]. Participants are evaluated on 17 scores reflecting cog-
nitive, autonomic, motor problems and some additional aspects of the disease.

A Scenario Implementation in R for SubtypeDiscovery 671

The participants have a baseline measurement and are followed-up over 3 years
with an interval of a year. Here, we do not consider the longitudinal aspect of
the data and we proceed to our analysis on 1152 profiles from the 4 years.

Chemoinformatics public data set (wada2008). Originally generated by Edward
O. Cannon, the data set is composed of substances taken from the 2008 WADA
(World Anti-Doping Agency) Prohibited List together with molecules having
similar biological activity and chemical structure from the MDL Drug Data
Report database. Those molecules may belong to ten different activity classes:
the β blockers, anabolic agents, hormones and related substances, β-2 agonists,
hormone antagonists and modulators, diuretics and other masking agents, stim-
ulants, narcotics, cannabinoids and glucocorticosteroids. This list of molecules
was imported into Molecular Operating Environment (MOE) from which all 184
two dimensional descriptors were calculated. The wada2008 data set is similar
to the wada2005 which was previously published in [5].

3 Data Preparation and Clustering

We aim to identify homogeneous and reliable subtypes. Hence, cluster results
should be reproducible and the clusters should characterize true underlying pat-
terns, not the incidental ones. We discuss in this section the removal of the time
dimension in OA and PD data sets, the reliability and validity of cluster results
and we recall the main ideas behind model based clustering.

Data preparation. As data preparation can influence largely the result of data
analyses, our methodology includes various methods to transform and process
data, e.g. computing the z-scores of variables to obtain scale-invariant quan-
tities, normalizing according to L2, L1,max and centering with respect to the
mean,median,min. Alternatively, we may want to remove the time dimension
in the data because we do not want to model clusters only characterized by the
time, e.g. see Fig. 1. Indeed, in the overal severity of OA and PD, respectively
age or disease duration which we further refer to as the time, are known to play
a major role. Therefore, to model for clusters without the time dimension, we
first perform regressions on the time for each variable and next, we search for
clusters on the residual variance. If we denote by α and β the estimated intercept
and coefficient vectors of the regression, by X the OA and PD data where xij

refers to measurement j of observation i then, we express the regression as

xij(ti) = αj + βjg(ti) + εij , (1)

εij = xij(ti)− αj − βjg(ti). (2)

The εij refers to the residual variation and g(t) ∈
{
log(t),

√
t, t, t2, exp(t)

}
be-

cause the time effect is not necessarily linear. Additionally, residuals εij should
distribute normally around zero for each variable j as illustrate Fig. 2. In previ-
ous experiments [1], we assessed the reliability of cluster results for the different
adjustments. We found that cluster results were most stable for a logartihmic
age effect in OA and a square root disease duration in PD.

672 F. Colas et al.

-1 0.5 2

CSF67
CSF56
CSF45
CSF34
CSF23
CSF12

1 (143)
2 (40)
3 (73)
4 (85)
5 (64)
6 (17)

LSF56
LSF45
LSF34
LSF23
LSF12

CSF67
CSF56
CSF45
CSF34
CSF23
CSF12

0 1 2 3

(a) original scores (b) time adjusted scores

Spine facet factor (OA), (VEV,6) cluster result

LSF56
LSF45
LSF34
LSF23
LSF12

Fig. 1. For OA, we report result extracts of two cluster analyses on the spine facets
factor with a VEV model having six mixtures. In (a), the modeling is on the original
ROA scores, i.e. between [0, 4] and in (b), on the time adjusted scores, i.e. z-scores.
This illustrates how the time can influence the cluster result when its dimension is not
removed in the data. Additionally, we also remark the variable ordering which mimicks
the disposition of the cervical and lumbar vertebrae, from top to bottom.

The reliability and validity of a cluster result. Targeting our analysis to medical
research, hierarchical clustering or k-means [6] do not match our expectation
in terms of reliability and validity. First, in terms of reliability, cluster results
should be consistent when we repeat the analysis. However, as we repeat twice k-
means for instance, solutions may differ because of the different starting values.
Second, both algorithms depend on distance measures which do not mimic the
data distribution of the clusters. To be valid, clusters should be understandable,
which is not evident with distance-based defined clusters, and especially non-
euclidean distances. They should also be distinguishable, which becomes an issue
as the modeling proceeds in high dimensions because distance-based algorithms
are sensitive to the curse of dimensionality [7]. Another aspect that hampers
especially hierarchical clustering concerns the numerous parameters that can
only be set subjectively [8].

To be fair, reliability issues also exist for clustering by mixture of Gaussians
because it relies on the EM-algorithm (Expectation Maximization) which iter-
atively optimizes the model likelihood. As a matter of fact, different starting
values for EM may lead to different cluster results. Therefore, an important is-
sue concerns the sensibility to different starting values of the mixture modelling.
Fraley and Raftery systematically initiate their EM-algorithm by a model based
hierarchical clustering [9]. This choice ensures the reproducibility of the cluster
results because two repeats of the mixture modelling will initiate EM equally.
Regarding the validity issue, mixture modelling not only reports the estimated
center of each mixture but also estimates its covariance structure. Therefore, it
also yields certainty and uncertainty estimates of the cluster membership.

In our experiments, we use the model based clustering framework developed
by Fraley and Raftery [9,10,11,12]. As shown in [13], the framework relies on the

A Scenario Implementation in R for SubtypeDiscovery 673

0 2 4
0

100

200

300

0

100

200

300

0 2.5-2.5

0 20 40
0

50

100

150

0 2 4
0

20

40

60

(a) ‘BECK’ variable (PD),
original scores

(b) ‘BECK’ variable (PD),
time adjusted scores

(c) ‘DIP5_L’ variable (OA),
original scores

(d) ‘DIP5_L’ variable (OA),
time adjusted scores

Fig. 2. These four figures illustrate the original and the time-adjusted data distribu-
tions of variables DIP5 L and beck, which respectively pertain to OA and PD analyses.
Such histograms are obtained when plotting a data set class (cdata) of the R Subtype-
Discovery package. To be valid, the residuals εij of the regression on the time should
distribute normally around zero for each variable j.

Fig. 3. On the left, we illustrate a simple modelling with three mixtures in two di-
mensions which are defined by their center μk and their geometry Σk, k = 1, 2, 3. On
the right, we illustrate two mixtures on a single dimension. The gray is most likely
and determines the cluster membership. The black is less likely and informs on the
clustering uncertainty.

concept of reparameterization of the covariance matrix which enables to select
and adapt the level of complexity of the covariance by controlling its geometry
as Fig. 3 illustrate on an elementary example.

For instance, a particular model may conjecture an equal data distribution for
all mixtures, while another may simply neglect the estimation of the covariates

674 F. Colas et al.

in the model. Hence, the analysis offers a range of models that involve varying
number of parameters to estimate.

Clustering by mixture of Gaussians. We describe clustering by mixture mod-
elling, which is also illustrated in Fig. 3. We start by defining the likelihood
function of a mixture of Gaussians by

LMIX(θ, τ |x) =
N∏

i=1

G∑
k=1

τkφk(xi|μk, Σk), (3)

where xi represents the ith of N observations, G is the number of components
and τk the probability that an observation belongs to the kth component so that
τk ≥ 0 and ΣG

k=1τk = 1. Then, the likelihood of an observation xi to belong to
the kth component takes the form

φk(xi|μk, Σk) =
exp{− 1

2 (xi − μk)TΣ−1
k (xi − μk)}√

det(2πΣk)
. (4)

The reparameterization proceeds by eigenvalue decomposition ofΣk = DkΛkD
T
k .

It depends on the eigenvector matrix Dk which determines the orientation of the
principal components, and on the diagonal matrix Λk of the eigenvalues. Further,
the matrix Λk is rewritten Λk = λkAk with Ak the geometrical shape and λk the
largest eigenvalue. In practice, Fraley and Raftery control Σk’s structure using
the three parameters λk, Ak and Dk with values in I, E, V, standing respectively
for identical, equal and variable. In words, λk refers to the relative size or the scale
of the kth mixture which may be equal for all mixtures (E) or vary (V). While
Ak specifies the geometrical shape which may limit the mixtures to spherical
shapes (I), to equally elongated shapes for all mixtures (E), or to varying ones
(V). Dk characterizes the principal orientations of the covariance which may
simply coordinate along the axes (I) and therefore neglect estimation of the
covariates. But when considering covariates, we may select an equal orientation
for all mixtures (E) or a different one (V).

For a given number of mixtures and a covariance model, the EM-algorithm
is used to estimate the model parameters. It alternates iteratively between Ex-
pectation to estimate for each observation its cluster membership likelihood,
and Maximization to optimize the model parameters that maximize the likeli-
hood. Then the iterative process stops as likelihood improvements become very
small. Moreover, an important concern with EM relates to the starting point of
the algorithm. Fraley and Raftery propose to initialize EM with a model based
hierarchical clustering, though another common strategy consists to start EM
from several random points and to observe the sensibility of the cluster results
to these changes. In our analyses we repeat model estimation given different
starting points and then, we use the starting point that leads to the most likely
model.

A Scenario Implementation in R for SubtypeDiscovery 675

4 Methods to Select, Characterize, Compare and
Evaluate Cluster Results

As we cluster data by models that use different spatial-shapes, we need a method
that, first, helps select the most likely cluster results. Second, we need to report
their essential characteristics to compare them. Further, as we analyse data
from medical research, we also consider the clinical relevance of the clusters as
an important feature. In this section we discus these different aspects.

BIC analysis. The larger the number of parameters, the more likely it is that
our model may overfit the data which restricts its generality and comprehen-
siveness. To select the most likely model, Kass and Raftery [14] prefer the
Bayesian Information Criterion (BIC) to the Akaike Information Criterion (AIC)
because it approximates the Bayes Factor; we use the BIC in our analyses,
BIC = −2 logLMIX + log (N × �params). We further approach computation-
ally by repeating the data modeling, the problem of selecting a number of clusters
and a type of model. Thus, our BIC score analysis reports in first place a BIC ta-
ble aggregating the best scores given all repeats, several rankings on: the models,
the number of clusters and the starting values and last, tables reporting regular
statistics on the BIC score like the mean, standard deviation, median, 2.5 and
97.5% quantiles.

Characterizing clusters using visual-aids. To check the effect of changing experi-
mental settings of cluster model (complexity / number of clusters) in OA and PD
analysis having 45 and 17 variables, we need efficient visualization tools to see
the prominent characteristics of the cluster results under different viewpoints.
So, influenced by Tukey [15] and Tufte [16,17] for scientific data visualization
and by Brewer’s suggestions for color selection in geography [18], we selected
three visual-aids, heatmaps [19], parallel coordinates [20] and dendrograms [8].

Micro array analysis commonly uses heatmaps to display and cluster data.
However, by depending on hierarchical clustering, heatmaps require to set many
parameters rather subjectively. As it works on distance measures, the variables
should be scale-free and comparable, which may be awkward with non scale-
homogeneous variables. On top of that, calculating distances on correlated vari-
ables mostly reveals patterns on the principal dimensions. We can illustrate this
on the OA data by considering a large joint factor that consists of hips and knees
and another one that consists of the spine joints. Simply because there are only
four variables in the first factor and about 20 in the second, the spine weigh
more than the large joints in the distance. So, simple distances lack sensitivity
to manifest changes in the small principal dimensions. We propose instead to
use the heatmaps to illustrate only the cluster centers, see Fig. 6.

In fact, as hip left and right pertain to the hips in OA or, in PD, as both
urinary and cardiovascular problems reflect autonomic symptoms, we can often
group variables into main factors. Reasonably, we may expect variables to cor-
relate in each factor. Standard heat maps do not exploit the grouping of the
variables which impairs the potential comprehesion of the cluster results.

676 F. Colas et al.

Table 1. For each sum score l, we consider a middle value δl such as the data set
mean or median. For cells A and B, we use it to count how many observations i in the
cluster Sk have a sum score above and below its value. For cells C and D, we proceed
to a similar count but on the rest of the observations i ∈ {S − Sk}.

xi < δl xi ≥ δl

i ∈ Sk A B
i ∈ {S − Sk} C D

In parallel coordinates, we can use this information to arrange and order
variables accordingly, e.g. see Fig. 1. We use a different color for each cluster
and we characterize its center (μk) by connected lines between the variable-axis
as is illustrated for OA in Fig. 1. In particular, we remark that a disposition is
used of the cervical and lumbar spinal joints which mimicks the natural ordering
of these joints from top to bottom. Also note that the differences between the
cluster results in the left and in the right illustrate particularly well the effect
of adjusting for a time effect in OA. It calls attention to how much the time
influences the modelling when we do not adjust for it. Finally, besides the center
of each cluster, we could report additional statistics such as the 2.5% and 97.5%
quantiles or the median.

In spite of the many disadvantages of hierarchical clustering, yet, we find
it a useful complement to the color images and parallel coordinates because
we like to report dendrograms that illustrate the similarity between the center
profiles and between the variables. While a dendrogram on the cluster centers
may help order the clusters by pattern similarity, dendrogram on the variables
may provide a rudimentary factor analysis. In fact, both dendrograms provide
additional comprehension for the cluster result.

Characterizing and comparing cluster results by table-charts. In complement to
visual-aids, we use table-charts that report the main cluster characteristics using
the log of the odds and that allow cross-comparison between cluster results us-
ing regular association tables. From these tables, the χ2-statistic is calculated to
draw a single association measure in terms of the Cramer’s V nominal associa-
tion coefficient. Then, as a way to assess the reproducibility of cluster results, we
also report the generalization estimates of common machine learning algorithms
which we train on the clustered data.

So, to identify the cluster characteristics, we rely on the log of the odds that
we compute on factors summing variables of a main group, e.g. spine for OA,
autonomic disorders for PD, or atom and bond counts in chemoinformatics.
Thus for OA, we group variables by main joint site such as spine facets, spine
lumbars, hips, knees, distal and proximal interphalengeal joints, for PD, by im-
pairment domain such as cognitive, motricity and autonomic disorders and by
class of molecular descriptors in chemoinformatics. Then, on these main factors,
we compute the odd of a cluster data distribution as compared to the one of the
data set. In practice, people might refer to the log of the odds as the cross-product
because we calculate it from tables similar to Table 1.

A Scenario Implementation in R for SubtypeDiscovery 677

cresult

function(cmodel)
fun_plot

function(cmodel)
fun_stats

function(cmodel)
fun_pattern

nbr_top_models

cfun_params
G, modelName, rseed

rinfo

ranking
bicanalysis

prefix

fun_bic_pattern

cdata

tdata

prefix
“2008-12-12_prefix”

transf.

cmodel

model
G
modelName
mu_k
sigma_k
...

pattern
mu_k
median_k
2.5%_k
97.5%_k
...

dendro_var dendro_cluster

cluster_colors

stats

function(cmodel)

cfun_settings
G, modelName, rseed

data set settings

original
data set

Fig. 4. We illustrate the main three classes of our package: the data cdata, the cluster
model cmodel and the set of cluster results cresult. In particular, the data set prepa-
ration (cdata) uses set cdata() which takes as input the raw data and the settings
that describe the data transformation.

And as a result, we express the log of the odds of a cluster k on a factor l as

logoddskl = log
A×D
B × C . (5)

Concerning association tables, they are useful to illustrate the joint distribu-
tion of two variables. Here, we use them to compare cluster membership between
two cluster results. When the table exhibits many empty cells, then the cluster
results associate particularly. However, an even joint distribution on all cells
would illustrate two cluster results which relate little. Next, as a single number
summary of these association tables, we report the Cramer’s V symmetric co-
efficient of nominal association which is defined by

V =

√
χ2

n×m, (6)

where n is the sample size and m = min(rows, columns) − 1. Therefore, the
Cramer’s V derives fromχ2 statistics and it takes values in [0, 1]. The outcome, one
stands for completely correlated variables and zero for stochastically independent
ones. The more unequal the marginals, the more V will be less than one. Finally,
Cramer’s V can be regarded as a percentage of the maximum possible variation

678 F. Colas et al.

library(SubtypeDiscovery)

data(wada2008)

data(wada2008_settings)

CDATA

cdata1 <- set_cdata(data=wada2008

 , prefix="WADA2008_Sample_Analysis"

 , settings=wada2008_settings)

cdata2 <- get_cdata_princomp(cdata1)

CRESULT

x <- set_cresult(cdata=cdata2, nbr_top_models=5, cfun=fun_mbc_em,

 fun_plot=list(plot_parcoord=get_plot_fun(type="plot_parcoord"),

 plot_legend=get_plot_fun(type="plot_legend"),

 plot_image=get_plot_fun(type="plot_image"),

 plot_dendro_cluster=get_plot_fun(type="plot_dendro_cluster")),

 fun_pattern=list(mean=patternMean),

 fun_stats=list(oddratios=get_fun_stats(fun_name="oddratios",

 fun_midthreshold=mean), auuc=get_fun_stats(fun_name="auuc")),

 cfun_settings=list(modelName=c("EII","VII","EEI","VEI",

 "EVI","VVI"), G=3:6, rseed=6013:6023))

MODELLING, BIC ANALYSIS, PLOT, PRINT, WRITE MODELS

x <- analysis(x)

Fig. 5. Sample analysis on the package public chemoinformatics data: wada2008

between two variables. In Table 2, we illustrate our table-charts which embeds in
the top left an association table and the Cramer’s V coefficient in its lowest row.

We perform unsupervised cluster analyses, therefore, it is important to know
whether the cluster result generalizes, e.g. in the case of medical research to the
total patient population. Therefore, we assess the cluster result learnability using
naive Bayes, linear Support Vector Machines or one nearest neighbor as a base-
line. To evaluate these algorithms, we rely on the classifier accuracy estimated
by repeating ten times on a training-test split with 70% of the observations in
the training set and 30% in the test set. In particular, we discard the variabil-
ity depending on the cluster membership probability by preserving the cluster
proportions of the original sample in every training and test set. This stratified
sampling is coherent with the practice in machine learning because we primar-
ily aim to compare algorithms but, e.g. in medical research, we might prefer to
include the variability inherent to the cluster proportions.

Evaluating the clinical relevance of clusters. Finally, when conducting a subtype
discovery analysis, a key concern is the cluster evaluation. For that purpose, we
implemented a simple mechanism to add study-specific evaluation procedures of
the clusters. In OA for instance, as the study involves siblings pairs, we defined
two statistical tests that assess the level of familial aggregation in each subtype
and its significance. Our first test relies on a risk ratio which we refer to as
the λsibs, whereas the second test makes use of a χ2-test of goodness of fit. In
chemoinformatics, we simply rely on a regular χ2-test of independence between
the human-affected molecule ”class” and the cluster result.

A Scenario Implementation in R for SubtypeDiscovery 679

Table 2. Given all repeats, we report tables with the best BIC scores, the starting
values leading the most likely model, the ranking of the models given a number of
clusters and vice versa and the cross comparison of cluster results (VVI, 6, 6022) and
(VVI, 6, 6016). Then, on factor A/d, A/B, C.1, C.2, KHK, Q, Pha., Phys., numbers
above 1 and below -1 illustrate high odd ratios especially characterizing a subtype,
whereas the association table and the Cramer’s V measure (65%) illustrate the level
of association between the results.

EII VII EEI VEI EVI VVI
3 -172857.6 -137398.7 -173010.0 -120257.3 -133262.9 -109035.2
4 -173025.8 -131224.6 -173178.1 -114099.2 -129299.2 -104159.8
5 -173194.1 -127733.5 -173346.4 -109503.1 -126058.9 -99545.5
6 -173362.1 -124697.7 -173514.5 -105724.1 -122780.8 -93887.8

EII VII EEI VEI EVI VVI
3 6013 6013 6013 6022 6017 6014
4 6013 6013 6013 6023 6017 6017
5 6016 6019 6016 6018 6020 6017
6 6016 6022 6016 6016 6024 6022

EII VII EEI VEI EVI VVI
3 1 4 1 4 4 4
4 2 3 2 3 3 3
5 3 1.9 3 2 2 2
6 4 1.1 4 1 1 1

3 4 5 6
EII 5 5 5 5
VII 3.7 3.8 3.9 4
EEI 6 6 6 6
EVI 3.3 3.3 3.1 3
VEI 1.8 2 2 2
VVI 1.3 1 1 1

1 2 4 6 3 5 A/d A/B C.1 C.2 KHK Q Pha. Phy.
2 824 227 - .4 - .8 .93 Inf -1.3 -2.6 -1.6 -1.4
5 15 13 7 42 494 446 .8 1.5 -1.5 .5 1.7 0.5 1.5 1.4
1 193 243 - .3 - .9 .8 Inf - .9 -3.3 - .8 .0
3 177 55 -3.8 -Inf Inf - .5 -Inf -Inf -Inf -Inf
4 5 156 60 27 .9 1.6 -1.3 -2.3 1.5 2.1 2.0 2.1
6 53 -Inf -Inf Inf -Inf -Inf Inf -Inf -Inf

A/d - .9 - .6 .4 1.4 - .0 .6
A/B -1.5 - .6 1.2 1.1 1.4 .1

log of the odds

C.1 1.5 .7 - .8 -1.3 -1.2 - .2
C.2 1.2 Inf - .7 -7.8 Inf 2.7

KHK -1.9 - .9 1.0 1.4 1.5 .2
Q -3.7 -1.5 .8 5.5 - .0 - .7

Pha. -2.2 - .6 1.2 1.4 1.5 .0
Phys. -2.1 -1.1 1.8 1.1 1.4 .5

χ2 0
V 65%

680 F. Colas et al.

3 6 1 5 2 4

Color image of
each cluster

average

Adjacency, dist. mat.,
 K/H, Kappa indices

1.5

0

-1.5

Atom and
bond counts (2)

1.5

0

-1.5

Atom and
bond counts (1)

1.5

0

-1.5

Physical properties and
pharmacophore descriptors

1.5

0

-1.5

Partial charge

1.5

0

-1.5

Principal components
(z-scores)

0

-1.5

-3

1234567891011121314151617181920

4 (248)

2 (1051)

5 (1017)

1 (436)
6 (53)
3 (232)

Fig. 6. This Figure exhibits a color image illustrating the six average pattern of (VVI, 6,
6022). It also characteristizes the different subtypes on all variables which we grouped
by factor. The plot-scale refers to the z-scores with 95% of the values that should
fit within [−2, 2]. In this Figure, the yellow subtype with (248) molecules displays
an especially high profile on most descriptors. In the contrary, the blue (53) and red
(232) subtypes show comparatively low profiles. These two subtypes differentiate on
the Partial charge factor where we may account the blue zigzag pattern to the type of
the variables which are scores.

A Scenario Implementation in R for SubtypeDiscovery 681

For the λsibs risk ratio, we characterize each individual as proband or sibling
depending on whether this individual was the first sibling involved in the study
or not. This test quantifies the risk increases of the second sibling given the
characteristics of the proband. For instance, a λsibs = 1 means that the risk does
not increase and that the cluster membership of the proband does not influence
the one of his sibling. On the other hand, if λsibs = 2, then the risk increases
two-fold. Finally, a λsibs shows significant as its 95% confidence interval exceeds
1. In the following, we describe formally the λsibs and we derive its confidence
interval analytically by the delta method. Defining two siblings as s1 and s2 with
s1 the proband, considering the probability of a sibling to belong to a group Sk

as P (si ∈ Sk) with i ∈ {1, 2}, or for short P (si), then, the conditional probability
that the second sibling is in Sk provided that the first sibling is also in Sk is
referred to as P (s2|s1). The λsibs expresses as

λsibs(Sk) =
P (s2|s1)
P (s2)

=
P (s1, s2)
P (s1)P (s2)

=
P (s1, s2)
P (s)2

. (7)

Further, as we consider the population infinite with P (s1) = P (s2) = P (s),
we derive the confidence interval by the delta method on λsibs = α̂/β̂ with
α̂ = P (s1, s2), β̂ = P (s) and the hat denoting quantities estimated from the
data. The variances and covariance of α̂, β̂ have the form σ2

α = α̂(1− α̂)/ni, with
ni the sibship size, σ2

β = β̂(1 − β̂)/N , with N the number of observations and
cov(α̂, β̂) = α̂(1 − β̂)/N . To obtain the final form of the variance of λsibs, we
take the first order Taylor approximation of λsibs, move its zeroth derivative to
the left and raise both members to the square so that

σ2
λ =

1
β̂4

(
σ2

α − 4cov(α̂, β̂)β̂λ+ 4σ2
βλ

)
. (8)

We also implemented a simple χ2 test of goodness of fit to assess for familial
aggregation. This test counts the pairs of siblings in each group and compares
them to the ones expected when cluster membership would be random. Defining
N as the number of individuals, S being a random draw of size |S|, then, the
probability of an individual i to belong to S is P (i ∈ S) = |S|/N . Considering
a second individual j independent of i, the joint probability that both i and
j belong to S expresses as P (i, j ∈ S) = P (i ∈ S)P (j ∈ S) = (|S|/N)2.
Denoting by E(i, j ∈ S) the expected number of sibling pairs under random
cluster membership which relies onN/2 (the total number of pairs), then E(i, j ∈
S) = P (i, j ∈ S)2N/2. Finally, we report the Grand Total of the χ2 test as

GrandTotal =
G∑

k=1

(O(i, j ∈ Sk)− E(i, j ∈ Sk))2

E(i, j ∈ Sk)
=

G∑
k=1

χ2
k, (9)

where k indices over the different clusters and χ2
k refers to the separate χ2

statistics of each cluster. The number of degrees of freedom is df = G− 1, G the
number of clusters.

682 F. Colas et al.

5 The Package, Its Implementation and a Sample
Analysis

Package design. The implementation articulates around three main classes:
the data set cdata, the cluster model cmodel and the set of cluster results
cresult. Their entity-relationship cardinalities is as follows: a cresult describes
a SubtypeDiscovery analysis, it holds a data set cdata and it holds several cluster
models cmodel. In Fig. 4, we illustrate cdata requiring an input data set and a
description of how it should be interpreted into settings. We also describe the
relation between cdata, cmodel and cresult.

Plotting a cdata class gives for each variable its boxplot, histogram and in-
formation like, e.g. its empirical mean or standard deviation. Regards cresult,
plotting can be restricted to a queried cmodel or, by default, it plots all of them.
We illustrate such plot for the top-ranking model (VVI, 6, 6022) in Fig. 6. Fi-
nally, a print on a cresult generates a report that includes the different table
charts from the BIC analysis and those focusing on the top-ranking cluster re-
sults characterististics, two-by-two comparison, and evaluation. We report some
of the most important table-charts in Table 2.

6 Concluding Remarks

We developed a methodology that facilitates and enhances the search for more
homogeneous subtypes with application to medical research and chemoinfor-
matics. This methodology involves techniques to prepare data, a computational
approach repeating data modelling to select for a number of clusters or a par-
ticular model, as well as other methods to characterize, compare and evaluate
the most likely models. Therefore, our methodology does not solely cluster data
but it also produces a complete set of results to conduct a subtype discovery
analysis: from data preparation to cluster evaluation. In this context, to enable
reproducibility of our analyses, we release and documented this methodology as
the R SubtypeDiscovery package. We presented its implementation in this paper
and we illustrated its application with examples from OA and PD research as
well as chemoinformatics.

Acknowledgements. This work has been supported by the Netherlands Bioinfor-
matics Centre (NBIC) through its research program BioRange, the Michael J
Fox Foundation, PD-subtypes program. The Leiden University Medical Centre,
the Dutch Arthritis Association and Pfizer Inc. and Groton, CT, USA support
the GARP study (OA).

References

1. Colas, F., Meulenbelt, I., Houwing-Duistermaat, J., van Rooden, S., Visser, M.,
Marinus, H., van Hilten, B., Slagboom, P.E., Kok, J.N.: Stability of clusters for
different time adjustments in complex disease research. In: 30th Annual Inter-
national IEEE EMBS Conference (EMBC 2008), Vancouver, British Columbia,
Canada (August 2008)

A Scenario Implementation in R for SubtypeDiscovery 683

2. Meulenbelt, I.: Genetic predisposing factors of osteoarthritis. PhD thesis, Univer-
siteit van Leiden (1997)

3. Riyazi, N.: Familial osteoarthritis, risk factors and determinants of outcome. PhD
thesis, Universiteit van Leiden (2006)

4. Neurology Department: SCales for Outcomes in PArkinson’s Disease-PROfiling
PARKinson’s Disease. Leiden University Medical Center, Leiden, The Netherlands

5. Cannon, E.O., Nigsch, F., Mitchell, J.B.O.: A novel hybrid ultrafast shape descrip-
tor method for use in virtual screening. Chemistry Central Journal 2 (2008)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning,
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer,
Heidelberg (2001)

7. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

8. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy, The Principles and Practice of
Numerical Classification. Books in Biology. W. H. Freeman and Company, New
York (1973)

9. Fraley, C., Raftery, A.E.: MCLUST: Software for model-based cluster analysis.
Journal of Classification 16, 297–306 (1999)

10. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density
estimation. Journal of the American Statistical Association 97, 611–631 (2002)

11. Fraley, C., Raftery, A.E.: Enhanced software for model-based clustering, density
estimation, and discriminant analysis: MCLUST. Journal of Classification 20, 263–
286 (2003)

12. Fraley, C., Raftery, A.E.: MCLUST version 3 for R: Normal mixture modeling and
model-based clustering. Technical Report 504, University of Washington, Depart-
ment of Statistics (September 2006)

13. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering.
Biometrics 49, 803–821 (1993)

14. Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statistical As-
sociation 90(430) (1995)

15. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
16. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press,

Cheshire (1983)
17. Tufte, E.R.: Envisioning Information. Graphics Press, Cheshire (1990)
18. Brewer, C.A.: 7. In: Color Use Guidelines for Mapping and Visualization, pp. 123–

147. Elsevier Science, Tarrytown (1994)
19. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and dis-

play of genome-wide expression patterns. Proceedings of National Academy of Sci-
ence USA 95, 11863–14868 (1998)

20. Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1(2),
69–91 (1985)

21. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008) ISBN
3-900051-07-0

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 684–692, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Requirements for Ontology Based Design Project
Assessment

Axel Hahn1, Stephan große Austing1, Stefan Häusler2, and Matthias Reinelt1

1 University of Oldenburg
26111 Oldenburg, Germany

{hahn,austing,reinelt}@wi-ol.de
2 OFFIS – Institute for Information Technology

26121 Oldenburg, Germany
haeusler@offis.de

Abstract. Ontologies are formal knowledge representation. Looking at ontolo-
gies in more detail can offer concealed details on the ontology or the conceptu-
alized domain. This requires technologies for ontology analysis. By analysing
the use case of R&D management this paper identifies typical metrics on on-
tologies and evaluates metric calculation mechanisms.

Keywords: Ontology Analysis, Business Metrics.

1 Introduction

“An ontology is a […] conceptualization of a domain” This is the usual definition
from Gruber referenced in academic publications [1]. While an ontology represents
the domain, analysing the ontology helps to analyse the domain itself. This is the
main hypothesis e.g. in conceptual metrics [2], ontology based business intelligence
[3], knowledge assessment and last but not least the authors work on R&D manage-
ment. This requires suitable tools for ontology analysis e.g. by metrics.

To confirm the hypothesis and to contribute to the day by day challenge of R&D
project management in industry, the use case of R&D output measurement is used in
this paper to derive requirements on analysing ontologies and their contained domain
knowledge. R&D projects are lacking conclusive methods to measure output to
evaluate progress and productivity [4]. Ontology can be used to describe the output of
R&D projects independent from data models used by the design tools to store their
results and from the different engineering disciplines.

This paper starts with examples of ontology based analysis followed by the use
case product design project performance assessment.

By studying this use case, technical requirements for ontology analysis are identi-
fied followed by an evaluation of existing approaches for ontology or graph analysis
regarding these requirements. This paper closes with a summary.

2 Using Ontologies for Domain Assessment

Ontologies conceptualize a domain of interest [1]. Most Ontology languages like
OWL implement descriptive logics like SHIQ [5]. A formal representation of domain

 Requirements for Ontology Based Design Project Assessment 685

knowledge allows answering questions using the knowledge base the ontology pro-
vides. By assuming the formal representation covers all relevant aspects of the do-
main of interest, an analysis of the ontology can help to understand the domain itself.

In literature numerous examples are found to use conceptual analysis with and
without formal ontologies. This is done by numerical analysis and/or reasoning.

One example not using formal ontologies but modelling technologies is conceptual
software metrics, [2]. But metrics like counting the lines of code proved weak soon
[6]. Measuring the amount of “conceptual” artefacts showed more realistic in evalua-
tion of the software system regarding complexity or in estimating the development
effort. This evaluated and counted artefacts can be use cases or requirements in the
early design phases, functions (function point analysis) or model entities in object
oriented design [7].

These methods analyse models that represent the software system under develop-
ment. Ontologies can be used to analyse the suitability and expressiveness of the
modelling techniques. The work of Fettke and Loos describes the modelling technol-
ogy and the area of interest (e.g. process models for enterprise modelling) with BWW
ontologies [8] and count the concepts and mismatch of both domains [9]. Opdahl and
Henderson-Sellers apply the same approach on UML models [10]. Typical metrics are
the comparison of the ontology which describes the concepts of the subject of interest
and the ontology which covers the concepts of the modelling technology by counting
of similar concepts versus different concepts to conclude about the similarity.

While the mentioned examples cover the analysis of models and their capabilities,
ontologies can be used to analyse the domain of interest directly, too. In [3] numerous
applications in business systems analysis are described. They use Bunge-Wand-
Weber (BWW) ontologies to describe business systems as proposed by Wand and
Weber in [11]. The used metrics include simple counting of concepts, properties or
statements or simple further processing (like (number of BWW – events) divided by
(BWW states) in [12]).

Another application of the usage of metrics on ontologies is quality assessment of
the ontologies themselves. Gomez-Peres and Locano-Tello do an analysis of ontolo-
gies to measure the suitability of an ontology [13]. These researchers adopt the idea of
weighted decisions trees (Analytic Hierarchy Processes) [14]. So they use a more
complex analysis that uses weighted criteria while counting ontology entities for cal-
culation of metrics.

While there is no general or formal prove on the conclusiveness of metrics on on-
tologies the examples show that this approach is followed in a number of domains to
analyse complex and non formalized systems to detect new knowledge. None of the
cited publications stress the required methods and tools to perform the ontological
analysis technically.

As introduced in the next chapter, the approach of ontology based investigation can
be applied on R&D projects e.g. in product design.

3 Analysis of Engineering Projects

The development of modern products is a challenging task that requires the coopera-
tion of domain experts from programmer to project manager. Each of these groups
contributes with their specific expertise to the project by externalizing their knowledge

686 A. Hahn et al.

and thus creating an integrated product model. This model consists of partial models
from different domains on different levels of abstraction. Ontologies enable us to de-
scribe these models in a common language. Furthermore relations between partial
models can be stated without loss of semantics. The knowledge intensive process of
product development can become tangible on the basis of ontologies and thus measur-
able. With a holistic description of product development at hand, the question is for
metrics that will provide a knowledge gain regarding the business goals.

In our use case the GQM method by Basili et al. [15] (see figure 1 below) is used
to substantiate the business goal of product development performance improvement
into related questions. Then metrics are defined that give quantified answers to these
question so that progress towards the business goal becomes measurable. These met-
rics depend on the domain and the company or even the department.

G
oal

Q
uestion

M
etric

Fig. 1. GQM Tree for "Product Development Performance Improvement"

To achieve the business goal of product development performance improvement, it
is needed to measure the actual performance and find weak parts of the process where
optimization is needed. This procedure of process optimization is based on the Capa-
bility Maturity Model Integration (CMMI) [16] where companies with CMMI Level 4
have quantitative control of their processes and companies with CMMI Level 5 use
the results to optimize their process.

Productivity and performance respectively is defined as the ratio between effort
and result. That is why there are three main questions that must be considered in
product development performance measurement shown in figure 1:

What Is My Development Effort?
The effort put into a product development is the accumulation of all resources that
were spent on the project. These resources like personnel, licences, tools and equip-
ment have to be evaluated in monetary terms and then summed up into a single cost
value. The project management model provides the basis for these calculations.

 Requirements for Ontology Based Design Project Assessment 687

How Is the Design Complexity of My Product?
A simple approach to quantify the product is to measure product model properties like
lines of code. As mentioned before metrics on a conceptual level e.g. number of pro-
gram classes or geometric features proved more valuable for this task. However these
metrics are often influenced by the individual modelling preferences of the developer.
In some cases a large product model may even be an indicator for bad modelling. To
overcome these issues we evaluate the knowledge that is externalized in the product
models instead. Ontologies give us a formal description of the concepts and relations
in the specific domain and therefore a model for automatic analysis.

Similar to conceptual metrics concepts provides the basis for complexity evalua-
tion. An artefact can belong to an arbitrary number of concepts with different weight-
ings and the basic complexity is given as the sum of these weightings. Furthermore
relations can add to an artefact complexity. In some cases the amount of relations like
dependency and inheritance can be the most important complexity factor in develop-
ment. In [17] we presented an ontology-based framework which is able to capture
these relations.

To estimate the knowledge necessary to create the artefacts we will have to take a
second look at the relation graph. A larger model may be caused by the multiplication
of sub-components that are placed into the model without or with little modifications.
To evaluate the extent of reuse similar patterns in a product model graph have to be
detected. The complexity of similar artefacts has to be lowered accordingly. On the
other hand certain patterns like a cycle can add to the artefacts that are part of these
patterns. An analysis must be able to detect these and increase the complexity value
accordingly. Finally the complexity of the product must be calculated by aggregating
the complexity values from the artefacts to the level of the product.

How Is the Quality of My Product?
One factor to quantify the output (the result) of one or more process steps is the qual-
ity of the product. A widely accepted definition of quality is the degree to which the
product conforms to its requirements (see e.g. [18][19] or ISO 9000-2005).

In figure 1 we distinguish between three different requirement types that must be
taken into account in product quality estimation.

Firstly, the design has to be functionally correct. Therefore, the fulfilment degree
of each functional requirement based on the current verification status is an input
factor for quality. The estimation of the current verification status is based on measur-
able metrics that must be defined for the specific domain. For that reason we just
show the aggregated fulfilment degrees in figure 1. Secondly, the overall quality may
suffer from failing physical design constraints as e.g. area, power or timing in inte-
grated circuit development. Thus, physical constraints have to be considered in a
quality evaluation as well, if the product under development is a physical one. Finally,
non-functional quality requirements have to be evaluated. Some examples are e.g.
maintainability or reusability. The assessment of these quality requirements is based
on measurable product characteristics, as it is done in various works on software qual-
ity (see e.g. [20][21][22]).

688 A. Hahn et al.

In [23] the authors proposed a method for development accompanied quality moni-
toring that describes the quality assessment process and the modelling of requirements
and quality characteristics using ontologies in detail. For the analysis of requirement
fulfilment degrees there are two steps needed. Firstly, it is needed to calculate the
actual value for the quality characteristic under consideration, secondly a require-
ments fulfilment degree must be assessed based on the actual value, a given target
value and optional tolerance limits. Resulting requirement fulfilment degrees are
aggregated to quality values.

4 Requirements

In this section six requirements for ontology based project assessment are stated:

1. Descriptions of aggregation operators and conditional querying. Operators like
sum, average or count as well as the possibility to formulate conditions (as in
SQL for relational databases) are required. This is needed to count instances of a
certain concept with specific relations and properties. Furthermore, it is often
needed to form the average or the sum of product properties on component level
to the product level.

2. Description of mathematical operators and functions. Mathematical operators
are needed to describe quality models and metrics to calculate an actual value.
This value is used in an assessment function to calculate a requirement fulfilment
degree.

3. Description of non-continuous functions. To assess a requirement fulfilment de-
gree, a comparison of the calculated actual value, the target value and given toler-
ance limits is needed.

Fig. 2 demonstrates an example for a non-continuous assessment function. The ful-
filment value is 1 if quality is over an upper limit and respectively 0 if the quality is
below a lower limit. Between these limits the quality is defined by a linear function.

100%

0%

Decreasing
Quality (Tolerance)

Fulfilment 0%

Maximal
Target value

Fulfilment 0%

Fig. 2. Example for a linear requirement fulfillment assessment function

 Requirements for Ontology Based Design Project Assessment 689

4. (Fuzzy-) Classification for non-functional requirement fulfilment. In some use
cases qualify qualification of requirement fulfilment degrees is needed. Especially
for (quality-) requirements a percentage value has less expressiveness. To give
managers a quick overview about the development status and current quality of a
product, it would be better to state that the maintainability of the product is ‘aver-
age’ or ‘good’ instead of 77%. Both crisp as well as fuzzy classification mecha-
nisms are thinkable.

5. Detection of graph patterns and similar patterns. To fully analyse a graph
known patterns must be recognized as they may play an important role like in the
complexity analysis. Similar patterns can be evaluated by defining a distance met-
ric on two artefacts depending on the comparison of their graph neighbourhoods.
Not a requirement derived from the use case but important to other application is
the detection of unknown pattern in sense of data-mining. Since this is a complex
and wide field we will not further regard this kind of analysis.

6. To ensure that every user is able to perform such analyses some kind of “semantic
graph Excel” is needed if a single query would become too complex. Usability is
the keyword to allow flexible definition of functional calculations by non experts.

5 Ontology Analysis and Metrics

To see how the aforementioned requirements can be realized we took a look at current
developments in this area.

Tools like Protégé [24] are able to retrieve information out of an ontology using a
query language. The official W3C Recommendation for querying an ontology (=RDF
graph) is SPARQL [25]. With SPARQL querying graph patterns along with their
conjunctions and disjunctions is possible. It also supports extensible value testing and
constraining queries by source RDF graph. The following figure shows the SPARQL
query tab of Protégé.

Fig. 3. Protégé 3.4 SPARQL query tab

Aggregate functions (COUNT, SUM, MIN, MAX, …), associated machinery
(GROUP BY, HAVING, …) or an update language are currently not part of the rec-
ommendation. Nevertheless, current SPARQL processors like Jena’s ARQ [26] go
beyond SPARQL syntax and support these features (req. 1+2).

Thanks to ontology evolution and analysis a lot of graph metrics have been deter-
mined. While Protégé together with the visualization plug-in Jambalaya [27] only
support basic metrics (see figure 3) tools like OntoQA [28] (measurement of ontology
quality), AKTiveRank [29] (ontology ranking) or OntoCAT [30] (ontology evaluation
for re-usage) offer a wider range of graph-based metrics. These can be used for the
detection of graph and similar patterns (req. 5).

690 A. Hahn et al.

Fig. 4. Protégé 3.4 and Jambalaya metrics view

The main problem of all these query languages und metric tools is that they work
isolated and only for their purposes. This means that e.g. it is neither possible to re-
use results of a graph metric in a SPARQL query, nor combine several queries to an
aggregated function. The lack of generality of the current solutions requires an en-
hanced user-friendly (req. 6) query engine to fulfil these requirements. Especially
requirements 3 and 4 depend on this.

6 Summary

Ontologies formally represent a specific part of the world. Can we gain knowledge on
the world from analysing an ontology? At least this is an approach followed by nu-
merous researchers. A quantitative analysis of ontologies requires tools to both query
and to calculate metrics on graphs. This paper collects a number of requirements for
ontology based analysis of R&D projects. It turned out that at least popular tools and
techniques like Protégé incl. plug-ins and SPARQL do not provide a proper basis to
fulfil all requirements mentioned in section 4. Therefore the set of requirements form
the basis for the development of an analyse engine for ontologies.

References

[1] Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In: Guarino, N., Poli, R. (hrsg.) Formal Ontology in Conceptual Analysis and
Knowledge Representation. Kluwer Academic Publishers, Deventer (1993), http://
citeseer.ist.psu.edu/gruber93toward.html

[2] Genero, M., Piattini, M., Calero, C.: Metrics for Software Conceptual Models. Imperial
College Press, London (2005)

[3] Green, P., Rosemann, M.: Business Systems Analysis with Ontologies. Idea Group Pub-
lishing, Hershey (2005)

 Requirements for Ontology Based Design Project Assessment 691

[4] Ellis, L.: Evaluation of R&D Processes: Effectiveness Through Measurements. Artech
House, Boston (1997)

[5] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL:
The making of a webontology language. Journal of Web Semanitcs 1 (2003)

[6] Anselmo, D., Ledgarf, H.: Measuring Productivity in the Software Industry. Communica-
tions of the ACM 46 (2003)

[7] Zuse, H.: Object-oriented Software Measures. In: Proceedings of the Third International
Software Metrics Symposium. IEEE Computer Society Press, Los Alamitos (1996)

[8] Kayed, A., Colomb, R.M.: Using BWW model to evaluate building ontologies in CGs
formalism. Information Systems 30, S.379–S.398 (2005)

[9] Fettke, P., Loos, P.: Ontological Evaluation of Scheer’s Reference Model for Production
Planning and Control Systems - Outline. Modellierung, S.317–S.318 (2004)

[10] Opdal, L., Henderson-Sellers, B.: Ontological Evaluation of the UML using the Bunge-
Wand-Weber Model. Softw. Syst. Model, 43–47 (2006)

[11] Wand, Y., Weber, R.: Mario Bunges’s ontology as a formal foundation for information
system concepts. In: Studies on Mario Bunge’s Treatise, Rodopi, Atlanta (1990)

[12] Fettke, P., Loos, P.: Ontological Analysis of Reference Models. In: Business Systems
Analysis with Ontologies. Idea Group Publishing, Hershey (2005)

[13] Gomez-Perez, A., Lozano-Tello, A.: Applying the ONTOMETRIC Method to Measure
the suitability of Ontologies. In: Bsuiness Systems Analysis with Ontologies. Idea Group
Publishing, Hershey (2005)

[14] Saaty, T.: How to Make a Decision: The Analytic Hierarchy Process. European Journal
of Operational Research 48 (1990)

[15] Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Approach. In: Ency-
clopedia of Software Engineering, pp. S.528–S.532. John Wiley & Sons, Chichester
(1994)

[16] CMMI Product Team, CMMI for Development (2006)
[17] Hahn, A., große Austing, S., Strickmann, J.: Metrics - The Business Intelligence Side of

PLM. In: Garetti u.a., M. (ed.) Product Lifecycle Management: Assessing the industrial
relevance, pp. S.11–S.20. Inderscience Enterprises Limited (2007)

[18] Crosby, P.: Quality is Free. Reissue Edition, Signet, Stuttgart
[19] Gilmore, H.: Product Conformance Cost. Quality Progress, S. 16–S.19 (1974)
[20] Deutsch, M., Willis, R.: Software Quality Engineering. Prentice-Hall, Englewood Cliffs

(1988)
[21] Nance, R.: Software Quality Indicators: An Holistic Approach to Measurement. In: Proc.

4th Annual Software Quality Workshop. Alexandria Bay, New York (1992)
[22] Boehm u.a., B.: Characteristics of Software Quality. a Characteristics of Software Qual-

ity. North-Holland, New York (1978)
[23] Häusler, S., Hahn, A., Poppen, F.: Real-Time Quality Estimation to Enable Process

Evaluation in Integrated Circuit Development. In: Proceedings of the First International
Engineering Management Conference in Europe. IEEE, Los Alamitos (2008)

[24] The Protégé Ontology Editor and Knowledge Acquisition System,
http://protege.stanford.edu/

[25] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-
query/

[26] ARQ - A SPARQL Processor for Jena, http://jena.sourceforge.net/ARQ/
[27] Jambalaya | The CHISEL Group, University of Victoria,

http://www.thechiselgroup.org/jambalaya

692 A. Hahn et al.

[28] Tartir u.a., S.: OntoQA: Metric-Based Ontology Quality Analysis. In: Proceedings of
IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semanti-
cally Heterogeneous Data and Knowledge Sources (2005)

[29] Alani, H., Brewster, C., Shadbolt, N.: Ranking Ontologies with AKTiveRank. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273. Springer, Heidelberg (2006)

[30] Cross, V.V., Pal, A.: OntoCAT: An Ontology Consumer Analysis Tool and Its Use on
Product Services Categorization Standards. In: Hepp, M., Tempich, C. (hrsg.) SEBIZ,
E.P.B. Simperl (2006), http://CEUR-WS.org

[31] http://dblp.uni-trier.de/db/conf/semweb/sebiz2006.html#CrossP06

Organizing the World’s

Machine Learning Information

Joaquin Vanschoren1, Hendrik Blockeel1, Bernhard Pfahringer2,
and Geoff Holmes2

1 Computer Science Dept., K.U. Leuven, Leuven, Belgium
2 Computer Science Dept., University of Waikato, Hamilton, New Zealand

Abstract. All around the globe, thousands of learning experiments are
being executed on a daily basis, only to be discarded after interpretation.
Yet, the information contained in these experiments might have uses be-
yond their original intent and, if properly stored, could be of great use to
future research. In this paper, we hope to stimulate the development of
such learning experiment repositories by providing a bird’s-eye view of
how they can be created and used in practice, bringing together existing
approaches and new ideas. We draw parallels between how experiments
are being curated in other sciences, and consecutively discuss how both
the empirical and theoretical details of learning experiments can be ex-
pressed, organized and made universally accessible. Finally, we discuss a
range of possible services such a resource can offer, either used directly
or integrated into data mining tools.

1 Introduction

Research in machine learning and exploratory data analysis are, to a large ex-
tent, guided by the collection and interpretation of performance evaluations of
machine learning algorithms. As such, studies in this area comprise extensive ex-
perimental evaluations, analyzing the performance of many algorithms on many
datasets, or many preprocessed versions of the same dataset. Unfortunately, the
results of these experiments are usually interpreted with a single focus of interest,
and their details are usually lost after publication or not publicly accessible.

Sharing this information with the world would greatly benefit research in
these fields, fostering the reuse of previously obtained results for additional and
possibly much broader investigation. To realize this in practice, we examine how
to collect learning experiments in public repositories and, more importantly, how
to organize all this information so that it is both easily accessible and useful. The
former implies that the repository should be searchable, allowing easy retrieval of
specific results. To achieve the latter, results should be kept in context, relating
them to known theoretical properties of the included methods and datasets.

One could envisage many creative uses of such a resource. In machine learning
research, pooling the results of many studies would significantly increase the
amount of available experimental data, enabling much larger studies aimed at
finding fundamental insights into the dynamics of learning processes and offering

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 693–708, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

694 J. Vanschoren et al.

well-founded answers to open questions. Furthermore, meta-level information
about algorithms and datasets available in the repository puts those results in
context, bringing all information together in one platform for meta-analysis. For
instance, one could investigate how different data properties affect algorithm
performance, making it easier to study how algorithms could be improved, or
conversely, which preprocessing steps or parameter settings might be advisable
on certain types of data. Furthermore, it offers a forum for negative results,
creating a comprehensive map of learning approaches showing what has have
been tried before and what was achieved. Finally, in algorithm development,
empirical evaluations often use the same benchmark datasets. This means many
experiments are needlessly repeated, while the cost of setting up and running
them often limits the range of datasets, algorithms and parameter settings that
can be explored. Reusing prior experiments would free up resources better used
to test a wider range of conditions, thus yielding more generalizable results.

Conversely, in exploratory data analysis, practitioners faced with a specific
problem will try different preprocessing and modeling techniques to gain a deeper
understanding of the data at hand. In this case, even though each dataset is
unique, a searchable repository of previous experiments could be used to gain
from previous experience. For instance, one might check whether logistic regres-
sion is feasible on data with many attributes, and thus whether a feature selection
step might be useful. Furthermore, one could search for similar datasets and the
methods that were particularly successful on it, or automatically mine for meta-
rules describing the usability of a particular method. Last but not least, the
formalized description of experimental results and theoretical knowledge would
allow integration into larger data mining assistance tools and web services.

The concept of experiment repositories has been introduced earlier [3,4]. In
this paper, we aim to provide a bird’s-eye view of their possibilities and the chal-
lenges that need to be addressed before their full potential can be exploited. For
those challenges that have been discussed before, we offer pointers to the avail-
able literature and suggest improvements. For those that are new, we propose
solutions, but also point out directions for further research.

In Section 2 of this paper, we first look at existing approaches towards building
experiment repositories in various scientific disciplines. Next, in Section 3, we
propose a language to describe and share learning experiments, and in Section 4,
we discuss how to automatically organize all this information in a searchable
database. Finally, Section 5 uses the resulting repository to show how it can assist
the development and application of learning algorithms, either used directly as
an online service, or integrated into data mining tools. Section 6 concludes.

2 Previous Work

Many scientific disciplines store experimental data as a means of collaboration
between different research groups or to make sure experiments are not needlessly
repeated, most notably in fields like high-energy physics where experiments are
expensive. Still, most fields lack common standards for experiment description.

Organizing the World’s Machine Learning Information 695

2.1 Bioinformatics

Bioinformatics has led the way in describing and collecting experimental data
[5]. Probably the best known application can be found in the emergence of mi-
croarray databases1 [14]. The need for reproducibility, as well as recognition of
the potential value of microarray results beyond the summarized descriptions
found in most papers, have led to the creation of public repositories of microar-
ray data [6]. Submitting experimental data in these repositories has become a
condition for publication in several journals [2].

In establishing common standards for describing microarray data, significant
progress has been made to ensure that such data can be properly managed and
shared. In particular, a set of guidelines was drawn up regarding the required
Minimal Information About a Microarray Experiment (MIAME [5]), a MicroAr-
ray Gene Expression Markup Language (MAGE-ML [14]) was conceived so that
data could be uniformly described and shared between projects, and an ontology
(MO [14]) was designed to provide common descriptors required by MIAME for
capturing core information about microarray experiments.

Other, more specific projects go even further. The Robot Scientist [13], a fully
automated scientific discovery system, expresses all physical aspects of experi-
ment execution and even describes the hypotheses that are under investigation
and what has been learned from past experiments.

2.2 Machine Learning

Creating experiment repositories for machine learning inevitably calls for the
development of common standards to describe and share learning experiments,
and many lessons may be learned from the bioinformatics community. First,
similar to the MIAME guidelines, learning experiment descriptions should at
least contain the information needed to reproduce the experiment. Such a set of
guidelines is described in [4], covering what should minimally be known about the
algorithms, datasets and experimental procedures. It also proposes a database
schema to store classification experiments, which we shall develop further in
Sect. 4.1 to, in addition, capture preprocessing steps and to allow for a more
flexible description of different learning tasks besides classification.

3 A Language for Sharing Machine Learning Information

To enable a free exchange of experimental results, it would be useful to have a
common description language. As such, learning experiments could be described
in a unified way, without having to know how they are physically stored, while
allowing them to be automatically verified, uploaded to, retrieved from, and
transfered between any existing experiment repository, even if these reposito-
ries are implemented differently or distributed geographically. However, as new
learning approaches are being developed at a constant rate and new learning
1 A microarray records the expression levels of thousands of genes.

696 J. Vanschoren et al.

tasks often put new twists on classical problems, such a format should easily
extend to capture new types of learning experiments.

To further the development of such standards, we propose an XML-based
markup language, dubbed ExpML, that can be used to describe most classi-
fication and regression experiments2. An important benefit of XML is that it
is hierarchical and extensible. It adapts to experiments of various complexities
by extending the description of any aspect of a learning experiment as much as
needed. In this section, we first provide a formal definition of this language, after
which we will illustrate it with an example.

3.1 ExpML Definition

The XML Schema Definition (XSD) below creates an XML vocabulary for de-
scribing machine learning experiments and governs which elements should ap-
pear, in what order, and the information they should contain. It ensures that
experiments are uniquely defined, and that each of its elements (algorithms, ker-
nels, (preprocessed) datasets, evaluation metrics, etc.) are described in sufficient
detail. To capture both (theoretical) meta-information about the experiments
and the (empirical) settings and results, it distinguishes between element defin-
itions and element instantiations. Definitions make sure the element is uniquely
defined and can hold known properties and descriptions, while instantiations
declare a specific configuration, e.g. including specific parameter settings.

Main Structure. We highlight the most important parts of the language defi-
nition3, full definitions are available online at http://expdb.cs.kuleuven.be/.
As the following excerpt shows, each description starts with an arbitrary number
of definitions.
<xs : element name=" expml ">

<xs : complexType>
<xs : sequence>

<xs : element name=" definition " nobounds>
<xs : complexType>

<xs : choice>
<xs : element name=" algorithm " type=" algorithmFull "/>
<xs : element name=" kernel" type=" algorithmFull "/>
<xs : element name=" dataset " type=" datasetFull "/>
<xs : element name=" preprocessor " type=" algorithmFull "/>
<xs : element name=" evalmethod " type=" algorithmFull "/>
<xs : element name=" metric" type=" metricFull "/>
<xs : element name=" environment " type=" environmentFull "/>

</xs : choice>
</xs : complexType>

</xs : element>

Next, an arbitrary number of experiments may be defined, starting with the exact
setup, i.e. which instantiations of algorithms, datasets and evaluation procedures
are used. Next, we state the results of the evaluation, the predictions generated
by the model for each target variable and the used computational environment4.
Finally, experiments can be labeled to provide additional information.
2 This language was used in practice to upload all experiments mentioned in Sect. 4.2.
3 We use ‘nobounds’ as a shorthand for ‘minOccurs=“0” maxOccurs=“unbounded”’.
4 Although model description formats exist [8], they are not yet included here.

Organizing the World’s Machine Learning Information 697

<xs : element name=" experiment " nobounds>

<xs : complexType>
<xs : sequence>

<xs : element name=" setting ">
<xs : complexType>

<xs : al l>

<xs : element name=" algorithm " type=" algorithmInst "/>

<xs : element name=" dataset " type=" dataInst "/>

<xs : element name=" evalmethod " type=" evalMethodInst "/>

</xs : al l>

</xs : complexType>
</xs : element>

<xs : element name=" evaluation " type=" evaluationType "/>

<xs : element name=" prediction " type=" predictionType " maxOccurs=" unbounded "/>

<xs : element name=" environment " type=" xs : string"/>

<xs : element name=" label " type=" nameValue " nobounds/>

</xs : sequence>

</xs : complexType>
</xs : element>

</xs : sequence>

</xs : complexType>
</xs : element>

Definitions. The definitions for new elements should allow them to be properly
used and easily retrieved. This includes descriptions of an algorithm’s parame-
ters, whether and how a dataset was preprocessed, how an evaluation metric
is calculated and details about the environment used. Most elements can also
be annotated further using properties, such as dataset and algorithm character-
izations or computational benchmarks. Moreover, the required attributes of the
elements state the minimal information needed to ensure reproducibility, and
whether the definition updates a previous one.
<xs : complexType name=" algorithmFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" parameterFull " nobounds/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attributeGroup r e f=" algoInfoFull "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" parameterFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" description " type=" xs : string"/>
<xs : element name=" default" type=" xs : string"/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attribute name=" name " type=" xs : string" use=" required "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" datasetFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" preprocessor " type=" preprocInst " nobounds/>
<xs : element name=" classindex " type=" xs : integer" minOccurs="0"/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attributeGroup r e f=" dataInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" metricFull ">

<xs : complexContent>
<xs : al l>

<xs : element name=" name " type=" xs : string"/>
<xs : element name=" formula" type=" xs : string"/>

698 J. Vanschoren et al.

<xs : element name=" description " type=" xs : string"/>
</xs : al l>

<xs : attribute name=" isUpdate " type=" xs : boolean"/>
</xs : complexContent>

</xs : complexType>
<xs : complexType name=" environmentFull ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" cpu " type=" xs : string"/>
<xs : element name=" memory" type=" xs : string"/>
<xs : element name=" property " type=" propertyType " nobounds/>

</xs : sequence>
<xs : attribute name=" name " type=" xs : string" use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean "/>

</xs : complexContent>
</xs : complexType>
<xs : attributeGroup name=" algoInfo ">

<xs : attribute name=" name " type=" xs : string" use=" required "/>
<xs : attribute name=" libname " type=" xs : string"/>

</xs : attributeGroup>
<xs : attributeGroup name=" algoInfoFull ">

<xs : attributeGroup r e f=" algoInfo "/>
<xs : attribute name=" version " type=" xs : string" use=" required "/>
<xs : attribute name=" libversion " type=" xs : string"/>
<xs : attribute name=" url " type=" xs : anyURI" use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean"/>

</xs : attributeGroup>
<xs : attributeGroup name=" dataInfo ">

<xs : attribute name=" name " type=" xs : string" use=" required "/>
<xs : attribute name=" url " type=" xs : anyURI" use=" required "/>
<xs : attribute name=" isUpdate " type=" xs : boolean"/>

</xs : attributeGroup>

Instantiations. Inside an experiment, instantiations describe a specific ap-
plication of the defined elements. While their attributes point to the general
definition, they additionally define the element’s individual configuration. For
algorithms, this includes setting parameters or meta-parameters, encapsulating
other algorithms (base-learners) or kernels. Datasets, on the other hand, can be
instantiated by a number of nested preprocessing steps, which in turn may have
parameter settings as well, as does the evaluation method.
<xs : complexType name=" algorithmInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" metaParInst " nobounds/>
</xs : sequence>
<xs : attributeGroup r e f=" algoInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" dataInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" preprocessor " type=" preprocInst " nobounds/>
<xs : element name=" classindex " type=" xs : integer" minOccurs="0"/>

</xs : sequence>
<xs : attributeGroup r e f=" dataInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" preprocInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" metaParInst " nobounds/>
</xs : sequence>
<xs : attributeGroup r e f=" algoInfo "/>

Organizing the World’s Machine Learning Information 699

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" evalMethodInst ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" parameter " type=" nameValue " nobounds/>
</xs : sequence>
<xs : attributeGroup r e f=" algoInfo "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" nameValue ">

<xs : complexContent>
<xs : attribute name=" name " type=" xs : string" use=" required "/>
<xs : attribute name=" value " type=" xs : string" use=" required "/>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" metaParInst ">

<xs : complexContent>
<xs : extension base=" nameValue ">

<xs : sequence minOccurs="0">
<xs : element name=" algorithm " type=" algorithmInst " minOccurs="0"/>
<xs : element name=" kernel" type=" algorithmInst " minOccurs="0"/>

</xs : sequence>
</xs : extension>

</xs : complexContent>
</xs : complexType>

Results. The result of an experiment encompasses the outcomes of an arbitrary
selection of evaluations metrics (depending on the task), and predictions for
each data instance. In the case of classification tasks, the latter may also hold
probabilities for each class.

<xs : complexType name=" evaluationType ">
<xs : complexContent>

<xs : sequence>

<xs : element name=" metric" maxOccurs=" unbounded ">

<xs : complexType>
<xs : attribute name=" name " type=" xs : string" use=" required "/>

<xs : attribute name=" value " type=" xs : string " use=" required "/>

</xs : complexType>
</xs : element>

</xs : sequence>

</xs : complexContent>
</xs : complexType>
<xs : complexType name=" predictions ">

<xs : complexContent>
<xs : sequence>

<xs : element name=" instance " maxOccurs=" unbounded ">

<xs : complexType>
<xs : sequence>

<xs : element name=" prob " maxOccurs=" unbounded ">
<xs : complexType>

<xs : attribute name=" prediction " type=" xs : string" use=" required "/>

<xs : attribute name=" value " type=" xs : string" use=" required "/>

</xs : complexType>
</xs : element>

</xs : sequence>

<xs : attribute name=" nr " type=" xs : integer " use=" required "/>

<xs : attribute name=" prediction " type=" xs : string" use=" required "/>

</xs : complexType>
</xs : element>

</xs : sequence>

<xs : attribute name=" target" type=" xs : string"/>

<xs : complexContent>
</xs : complexType>

700 J. Vanschoren et al.

3.2 An Example Description

As an illustration, we could use this language to define a new algorithm, run it
on a preprocessed classification problem, and store the generated results:

<algorithm name=" Bagging " version=" 1.31.2.2 " libname=" weka "

libversion=" 3.4.8 " url=" http :// www . cs . waikato . ac . nz / ml / weka /"
classpath=" weka . classifiers . meta . Bagging ">

<parameter name="P">
<description>S i z e o f each bag as percentage o f data se t s i z e </description >

<default>100</default>

<property name=" suggested_min " value=" 20 "/>

. . .
</parameter>
. . .

<property name=" class " value=" ensemble ">
<property name=" handles_classification " value=" true ">
. . .

</algorithm>

. . .
<experiment>

<setting>

<algorithm name=" Bagging" version=" 1.31.2.2 " libname=" weka ">
<parameter name="P" value=" 90 "/>

<parameter name="O" value=" false "/>

<parameter name="I" value=" 40 "/>

<parameter name="W" value=" algorithm ">

<algorithm name=" NaiveBayes " version=" 1.16 " libname=" weka "/>

</parameter>
</algorithm>

<dataset name=" pendigits -90% ">
<preprocessor name=" RemovePercentage " version=" 1.3 " libname=" weka ">

<parameter name="P" value=" 10 "/>

<dataset name=" pendigits " url=" http :// archive. ics . uci . edu / ml /">

<classIndex >−1</classIndex>

</dataset>

</preprocessor>

<classIndex >−1</classIndex>

</dataset>

<evalmethod name=" CrossValidation " version=" 1.53 " libname=" weka "
libversion=" 3.4.8 ">

<parameter name=" nbfolds " value=" 10 "/>

<parameter name=" randomseed " value="1"/>

</evalmethod>

</setting>

<evaluation>

<metric name=" build_cputime " value=" 5.67 "/>

<metric name=" build_memory " value=" 17929416 "/>

<metric name=" mean_absolute_error " value=" 0.030570337062541805 "/>

<metric name=" root_mean_squared_error " value=" 0.15960607792291556 "/>

<metric name=" predictive_accuracy " value=" 0.8570778748180494 "/>

<metric name=" kappa " value=" 0.8411692914743762 "/>

<metric name=" confusion_matrix " value="

[[0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,[1021 ,0 ,0 ,0 ,2 ,0 ,3 ,0 ,51 ,4] ,[1 ,883 ,...] ,...]] "/>

. . .
</evaluation>

<predictions target="0">
<instance nr=" 00000 " prediction="8">

<prob prediction="0" value=" 1.8761967426234115 E -5 "/>

. . .
<prob prediction="8" value=" 0.9991914442703987 "/>

<prob prediction="9" value=" 3.2190267582597184 E -31 "/>

</instance>

. . .
</predictions>

<environment>machine14</environment>
<label spec=" type " value=" classification "/>

</experiment>

In this case, we first added the ‘Bagging’ algorithm with all the necessary
information, descriptions of its parameters and some basic properties. Next, we

Organizing the World’s Machine Learning Information 701

added an experiment using an instantiation of this algorithm with specific pa-
rameter values. Since this is an ensemble algorithm, one of these parameters
encapsulates another (parameterless) algorithm, viz. ‘NaiveBayes’. The dataset
we investigate is ‘pendigits’, preprocessed by feeding it into the ‘RemovePercent-
age’ preprocessor with the stated parameters. The generated model is evaluated
using the 10-fold cross-validation technique. The results of this evaluation are
stated next, using several evaluation metrics, and are followed by predictions for
all the instances, including the probabilities for each class.

3.3 Future Work

While this language is designed to capture a large variety of contemporary clas-
sification and regression experiments, it will still need to be developed further.
First of all, learning algorithms definitions are still quite limited. It would be
instrumental to develop an ontology that models various learning techniques and
their relationships. Also, learning tasks in machine learning, such as clustering,
link discovery and mining relational data are very different, and might require
different ‘flavours’ of this basic language to suit their needs. Alternatively, an
ontology of machine learning techniques could be envisaged to work towards a
unified format. Interesting approaches towards building such an ontology can be
found in [10] and [1]. Finally, although the language allows the description of
sequences of preprocessing steps, more work is needed to capture more complex
data mining workflows.

4 Organizing Experimental Data

For all this information to be accessible and useful, it still needs to be stored
in an organized fashion. Inserting it into a database seems a good solution [3],
allowing powerful query possibilities (SQL) and easy integration into software
tools. Ideally, such databases would evolve with the description language to be
able to capture future extensions. There may be several interconnected data-
bases, using the common language to transfer stored experiments, or conversely,
some databases may be set up locally for sensitive, or preliminary data.

In this section, we focus on designing a database conforming to the structure
of the language described previously, thus capturing the basic organization of
machine learning experiments. This leads to the schema shown in Fig. 1.

4.1 Anatomy of an Experiment Database

Basically, an Experiment consists of a Learner run on a Dataset using a cer-
tain Machine, and the resulting Model is evaluated with a certain Evaluation
Method. These are depicted in Fig. 1 by the dashed lines. Each of these compo-
nents can be defined and instantiated over several other tables. An Experiment
is stored as a specific combination of component instances.

702 J. Vanschoren et al.

More specifically, a learner instance points to a learning algorithm (Learner),
which can be characterized by any number of features, and its specific parameter
settings. For Ensemble learners, parameters can point to other learner instances,
and additional records are kept to facilitate querying. A dataset instance is
defined by the original dataset and a number of preprocessing steps, which can in
turn be described further, including all the involved parameters. The evaluation
method (e.g. cross-validation) can also be instantiated. Finally, the evaluation
results of each experiment are stored for each employed evaluation metric, and
for predictive models, the (non-zero probability) predictions returned for each
data instance are recorded as well.

This database is publicly accessible at http://expdb.cs.kuleuven.be/. The
website also hosts ExpML definitions, the available tools for uploading experi-
ments, a gallery of SQL queries (including the ones used in the next section), and
a query interface including visualization tools for displaying returned results.

Fig. 1. A (simplified) schema for an experiment database

Organizing the World’s Machine Learning Information 703

4.2 Populating the Database

To fill this database with experiments, we focused on supervised classification.
We extended the WEKA platform[16] to output experiments in the format de-
scribed above, and developed an interface to the database to automatically in-
terpret and store the experiments.

The repository currently holds about 500,000 experiments, using 54 well-
known classification algorithms (from WEKA), 86 commonly used classification
datasets taken from the UCI repository, and 2 preprocessing methods (also from
WEKA). We ran all algorithms, with default parameter settings, on all datasets.
Furthermore, the algorithms SMO (an SVM trainer), MultilayerPerceptron, J48
(C4.5), OneR, Random Forests, Bagging and Boosting were varied over their
most important parameter settings5. For all randomized algorithms, each exper-
iment was repeated 20 times with different random seeds. All experiments were
evaluated with 10-fold cross-validation, using the same folds on each dataset,
and a large subset was additionally evaluated with a bias-variance analysis.

5 Services of Experiment Repositories

The principled way of annotating algorithms, data, and entire experiments pro-
vides a much needed formal grounds for the development of data mining “web
services” which allow on-demand retrieval of theoretical and empirical data
about learning techniques, and which could then be automatically orchestrated
into real data mining processes. In this section, we illustrate some of the possi-
ble services offered by an experiment database, either by directly querying the
database, or by integrating it in larger data mining tools.

5.1 Public Database Access

All information stored in an experiment database can be accessed directly by
writing the right database query (e.g. in SQL), providing a very versatile means
to investigate a large number of experimental results, both under very specific
and very general conditions. To further facilitate access to this information, a
graphical query interface could hide the complexity of SQL queries. We focus
here on the different services allowed by querying, a wider range of interesting
queries is discussed in [15].

Experiment Reuse. As mentioned earlier, when evaluating a new algorithm,
one could use the repository to retrieve previously stored results. For instance,
to query for the results of all previous algorithms on a specific dataset, we simply
ask for all experiments on that dataset and select the algorithm used and the
performance recorded. Fig. 2 shows the result on dataset “letter”. It is imme-
diately clear how previous algorithms performed, how much variation is caused
by parameter tuning, and what the effect is of various ensemble techniques.
5 For the ensemble methods, all non-ensemble learners were used as possible base-

learners, each with default parameter settings.

704 J. Vanschoren et al.

Fig. 2. Performance of all algorithms on dataset ‘letter’, with base-learners and kernels

Hypothesis Testing. Writing queries also provides a fast way to explore the
stored data and check hypotheses about any aspect of learning performance. For
instance, to see if the variation in the SMO-RBF data from the previous query
is caused by a specific parameter, we can ‘zoom in’ the SMO-RBF data (adding
a constraint) and include the value of the ‘gamma’ parameter (selecting an extra
field), yielding Fig. 3. When expanding the query towards several datasets, one
can see that the optimal value of that parameter depends heavily on the dataset
used, and more specifically on its number of attributes (indicated in brackets)6.

When analyzing a dataset, one might be interested in how the dataset size af-
fects the performance of an algorithm. Asking for the performance of algorithms
on various downsampled versions of a dataset yields the learning curves shown
in Fig. 4. Such queries may be useful to decide which algorithm to use based on
the amount of available data or, conversely, how much data to collect.

Finding Fundamental Insights. Pooling data from different sources enables
us to perform studies that would be impossible, or very expensive to setup from
scratch, but that may bring very general insights into learning performance. For
instance, one could perform a general comparison of all algorithms (selecting
optimal parameter settings) on the UCI datasets. Following a technique used
by [7], we compare over a range of different evaluation metrics, using SQL ag-
gregation functions to normalize each performance value between baseline and
optimal performance, yielding Fig. 5 as the result of a single query. Note that
this query can simply be rerun as new algorithms are introduced over time. A
complete discussion of the results can be found in [15].

Ranking. It is also possible to rank algorithms by writing a query. For instance,
to investigate whether some algorithms consistently rank high over various
6 As discussed in [15], this reveals that on data with many attributes, it is better to

use small gamma values, suggesting ways to improve the algorithm implementation.

Organizing the World’s Machine Learning Information 705

Fig. 3. The effect of parameter gamma
of the RBF-kernel in SVMs

Fig. 4. Learning curves on dataset ‘letter’

Fig. 5. Ranking of algorithms over all datasets and over different performance metrics.
Similar algorithms are compacted in groups, indicated with an asterix (*).

problems, we can query for their average rank (based on optimal parameter
settings) over all datasets. Using the Friedman ranking and the Nemenyi test
to find the critical difference (the minimal rank gap for algorithms to perform
significantly different)[9], we yield Fig. 6 for learning approaches in general, and
Fig. 7 for algorithms with specific base-learners and kernels. This shows that
indeed, some algorithms rank significantly higher on average than others on the
UCI datasets.

Other Uses. There are many more uses that can be thought of. For instance,
much more could be studied when looking at the stored predictions: we could
investigate which instances of a dataset are significantly hard to predict for
most algorithms (and why), whether specific combinations of classifiers perform
very well, or whether a vote over every single algorithm would result in good

706 J. Vanschoren et al.

Fig. 6. Average rank, general algorithms Fig. 7. Average rank, specific algorithms

performance. Given the large amount of experiments, it could also be very inter-
esting to mine the repository and look for patterns in algorithm performance.

5.2 Integration in Data Mining Tools

Besides being queried directly, an experiment database could also be a valuable
resource when integrated in a variety of data mining tools. One application
would be to avoid unnecessary computation. When performing a large set of
experiments, the tool could automatically consult the experiment database to
see if some experiments can be reused. Furthermore, one could parallelize the
execution of experiments by uploading unfinished experiments to the database
and have several computers checking for unfinished experiments to run.

The tool could also automatically export experiments into a local or global ex-
periment repository. Local repositories could typically be used for studies where
datasets are not (yet) publicly available or where algorithms are still under de-
velopment, offering a means to automatically organize all experiments for easier
analysis. The experiments (or a selection thereof) could still be shared at a later
point in time by transferring them to global repositories.

Finally, one could integrate experiment databases and inductive databases
[11], creating repositories with much more powerful querying capabilities [3].

6 Conclusions

Sharing machine learning experiments and organizing them into experiment
repositories opens up many opportunities for machine learning research and ex-
ploratory data analysis. While such repositories have been used in other sciences,
most notably in bio-informatics, they have only recently been introduced into
machine learning. To stimulate the future development of these repositories, we
have discussed how they can be created and used in practice, and what chal-
lenges remain to be addressed to realize their full potential. To allow the free

Organizing the World’s Machine Learning Information 707

exchange of learning experiments, we have proposed an XML-based description
language capturing a wide range of experiments. Next, we have used the same in-
herent structure to implement a database to capture and automatically organize
learning experiments, improving upon earlier suggestions. Finally, we gave an
overview of possible services that such a resource could offer, either by querying
it to retrieve relevant information, or by integrating it into data mining tools. It
is likely that many more creative uses remain to be discovered.

Acknowledgements

Hendrik Blockeel is Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (Belgium) (F.W.O.-Vlaanderen), and this research is further supported
by GOA 2003/08 “Inductive Knowledge Bases”.

References

1. Allison, L.: Models for machine learning and data mining in functional program-
ming. Journal of Functional Programming 15(1), 15–32 (2005)

2. Ball, C.A., Brazma, A., Causton, H., Chervitz, S., Edgar, R., et al.: Submission of
Microarray Data to Public Repositories. PLoS Biol. 2(9), e317 (2004)

3. Blockeel, H.: Experiment databases: A novel methodology for experimental re-
search. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
72–85. Springer, Heidelberg (2006)

4. Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved exper-
imental methodology in machine learning. In: Kok, J.N., Koronacki, J., López de
Mántaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS
(LNAI), vol. 4702, pp. 6–17. Springer, Heidelberg (2007)

5. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., et al.: Minimum informa-
tion about a microarray experiment (MIAME): toward standards for microarray
data. Nature Genetics 29, 365–371 (2001)

6. Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., et al.: ArrayExpress–a
public repository for microarray gene expression data at the EBI. Nucleic Acids
Research 31(1), 68–71 (2003)

7. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning
algorithms. In: Airoldi, E.M., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing,
E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 161–168. Springer,
Heidelberg (2007)

8. The Data Mining Group: The Predictive Model Markup Language (PMML), ver-
sion 3.2, http://www.dmg.org/pmml-v3-2.html

9. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal
of Machine Learning Research 7, 1–30 (2006)

10. Džeroski, S.: Towards a General Framework for Data Mining. In: Džeroski, S.,
Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg
(2007)

11. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

12. Perlich, C., Provost, F., Siminoff, J.: Tree induction vs. logistic regression: A learn-
ing curve analysis. Journal of Machine Learning Research 4, 211–255 (2003)

http://www.dmg.org/pmml-v3-2.html

708 J. Vanschoren et al.

13. Soldatova, L.N., Clare, A., Sparkes, A., King, R.D.: An ontology for a Robot Sci-
entist. Bioinformatics 22(14), 464–471 (2006)

14. Stoeckert, C., Causton, H., Ball, C.: Microarray databases: standards and ontolo-
gies. Nature Genetics 32, 469–473 (2002)

15. Vanschoren, J., Pfahringer, B., Holmes, G.: Learning From The Past with Exper-
iment Databases. Working Paper Series 08/2008, Computer Science Department,
University of Waikato (2008)

16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

Workflow Testing

R. Breu1, A. Lechner2, M. Willburger1,2, and B. Katt1

1 Research Group “Quality Engineering”, Universität Innsbruck
Institut für Informatik, A-6020 Innsbruck, Austria

2 world-direct/eBusiness Solutions GmbH, A-6073 Sistrans/Innsbruck
ruth.breu@uibk.ac.at, alexander.lechner@world-direct.at,

mathias.willburger@student.uibk.ac.at, basel.katt@uibk.ac.at

Abstract. The increased use of workflow management systems and or-
chestrated services has created the need for frameworks supporting the
quality assurance of workflows. In this paper we present WorkflowInspec-
tor, a prototype of a workflow test framework for the Windows Workflow
Foundation.

1 Introduction

Business processes are part of every company. Workflow management systems
like the Windows Workflow Foundation provide new techniques to model these
processes as workflows. Typical usage scenarios are ordering systems, payroll or
hiring applications.

What is still missing are applications to monitor and test these workflows. So
far all workflow applications have to be tested manually. In fact, the developer
has to test all application features according to a test script.

The main intention for developing the WorkflowInspector in a cooperation of
the research group Quality Engineering and world-direct was to enable develop-
ers to perform automated test suites of arbitrary Windows Workflow Foundation
workflows. The test runs, as well as the related data, are stored in a test data-
base. Hence, the workflow execution may be reviewed in detail afterwards. The
graphical visualization possibilities of the application enable also other usage
scenarios. For instance, they allow an early involvement of the software when
communicating with the customer. It is possible to demonstrate basic applica-
tion flows without the need to create input forms even if user input is required.
The integrated graph view can be used to present workflows without utilization
of any third-party software.

2 Windows Workflow Foundation

The Windows Workflow Foundation (WF) was launched by Microsoft as early
beta at the end of 2005. It combines a programming model, engine and tools to
build workflow enabled applications [1]. As part of the .NET 3.0 framework it is
free of charge. With the introduction of this technology Microsoft aims for the
following targets [2]:

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 709–723, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

710 R. Breu et al.

– Build up a common workflow platform for all windows applications.
– Support for multiple workflow types (e.g. sequential workflows, state ma-

chines).
– A model driven development of workflows.
– Introducing reusable workflow elements and extensibility points.

2.1 Architecture and Features

The Windows Workflow Foundation framework comprises a Base Activity Library,
a Runtime Engine, several Runtime Services and a Visual Designer. As it is not
a standalone application it is executed inside a Host Process. A host can be any
type of .NET software, such as console applications, web applications, web ser-
vices or the Sharepoint Portal Server. They all provide a variety of different ser-
vices to workflow applications [3] like for example: workflow management (e.g.
creation/distruction), scalling of workflows (e.g. the usage of multiple CPUs in
cluster) or security management. The Workflow Foundation introduces two differ-
ent workflow models: sequential workflows and event driven state mailmachines.
They are described in the following (for further details please refer to [4]):

2.2 The Sequential Workflow Model

A sequential workflow executes a set of consecutive activities. It does not move
on to the next activity until the prior one is executed completely. The tasks
can be processed with little or no user interaction. Even though the workflow
may include branches, loops and external events, its steps are predictable in the
majority of cases [4]. Sequential workflows are ideal to model business processes.
If data needs to be read from a source, processed and written into another data
sink this workflow type fits best. A typical example for a sequential workflow
can be seen in Figure 1. The workflow includes basic elements like branching
(ifElseActivity) and looping (whileActivity). Furthermore several code activities
are included (codeActivity1, codeActivity2 and codeActivity3).

2.3 The State Machine Workflow Model

State machine workflows are useful if the workflow includes a lot of user interac-
tion. The important choices of the application flow are made outside the system.
This enables the user to gain more control over the workflow. In fact, state
machines have a single starting point (initial state) and a set of end points (ac-
cepting states or terminal states). The states in between are controlled by events
to occur while the machine is in a specific state. A change from one state into
another is called transition. In contrast to sequential workflows state machines
in the most cases are non-deterministic.

State machine workflows consist of State activities which basically act as con-
tainers for sequential workflows. Figure 2 shows an example for a state machine
which models an ordering process. The internal activities and performed steps
cannot be seen in this type of illustration.

Workflow Testing 711

Fig. 1. Sequential workflow

3 Workflow Testing

There exist several approaches for testing traditional source code, e.g. unit testing.
Some of thesemethods candirectlybemapped toworkflow tests. Like in traditional
testing workflow tests are used to measure the quality of the developed process.

3.1 Test Considerations

Usually regular source code testing requires the generation of drivers and stubs
[5]. A similar approach has to be taken into account when testing workflows. A
simulation of interaction partners is mandatory. According to [6] this is due to
the following reasons:

1. Some of the dependent partner processes may still be under development,
e.g. GUI components.

2. Some processes may be developed by third-party companies. Because of this
it is difficult to obtain the source code of the process. Moreover, also the
specific application environment for the process would have to be simulated.

3. Sometimes simulated processes are preferred due to less effort of
implementation.

For WorkflowInspector a test architecture that implements of the following fea-
tures was derived:

– An implementation of several test algorithms which can be applied to work-
flow executions.

– A generic way to interact with workflows, i.e. simulating interaction partners.

712 R. Breu et al.

Fig. 2. Ordering state machine workflow

3.2 Test Types

Basically there exist two test approaches: blackbox and whitebox tests. The
difference lies in location of the Point of Observation (PoO) and the Point of
Control (PoC). On one hand, Blackbox testing assumes an external view of
the test object, i.e. the software under test. So there is no information about
the internal structure of the executed code or workflow. One can only see the
behavior from outside. Additionaly to PoO, PoC is also outside. The tester has
no possibility to change parameters of the execution except the definition of
input values. On the other hand the whitebox test can be seen as a “glass box”.
It is a structural test method because the internal structure (e.g. source code,
data flow, control flow) can be seen by the tester. Both, PoC and PoO, are inside
the object under test

A fundamental requirement for the development of a test environment for
Windows workflows was to not alter existing workflow definitions. WorkflowIn-
spector therefor is developed as external application which does not interfere
with the source code. This on the other hand brings also a disadvantage. The
source code of the workflow is not accessible for the application. This is because
it is encapsulated inside an assembly. Hence, there is no possibility to check
which statement in the source code is actually executed. On the other hand it
is possible to use a tracking service to track the execution. However, only the
actually executed activity and not the nested code is visible. A work-around
for this problem is to track also the error stack trace of the .NET runtime. It
provides the complete error history once the workflow fails.

Concluding, WorkflowInspector’s test method can be seen as “gray-box” test.

In the following the coverage test types are described which are implemented to
give some metrics about the workflow executions.

– Activity Converage A full activity coverage is reached if all activities in
the workflow are executed at least once. This may already happen if only
one TestRun was executed. Never covered activities are hints for uncovered
source code.

Workflow Testing 713

– Branch Coverage To obtain full branch coverage all edges of the workflow’s
control flow graph of the workflow have to be covered at least once. The
branch coverage test includes the activity coverage test.

– Path Coverage If the workflow contains loops the tests described so far are
not sufficient. A path coverage covers all possible paths through the whole
workflow. This may get complex as every integrated loop, i.e. while, increases
the amount of paths depending on its exit condition. Within complex work-
flows or state machines it is nearly impossible to reach 100% path coverage.
Therefor a boundary interior test is introduced. This means only a selected
amount of loops is performed.

3.3 Test Structure

Workflow tests as used within WorkflowInspector consist of two parts: A TestRun
describes a single workflow execution. All related data (i.e. execution steps, user
input, application output) is stored into a database for later use. A TestRun can
also be seen as one test case. However, there may exist more TestRuns which
represent the same test case. The user input has actually to be provided man-
ually during the TestRun. A TestSuite is a set of TestRuns including also the
information about the workflow itself. In fact, the workflow assembly name and
all referenced assemblies are stored. Furthermore, some preconditions and/or
postconditions may be set. They enable the developer to define some basic pa-
rameters which have to be fulfilled before and after the workflow execution,
respectively.

3.4 Test Execution

A Windows Workflow Foundation workflow is always part of an executable appli-
cation, i.e. the workflow host. It cannot be executed by itself. Therefor the whole
application has to be deployed and executed in order to test it. Two concepts
were taken into account [7]:

1. Simulated testing: The workflow may use some kind of debug API to interact
with the other components. For instance, the API should be able to intercept
calls to Web services and handle them locally. Furthermore, it should be able
to send data back to the workflow under test.

2. Real-life testing: All service partners are replaced by mocks. In other words,
they are replaced by own web service implementation simulating the behavior
of the original ones. This also means that the workflow under test has to be
altered. In fact, all references to external services are changed to references
to the local mocks.

As the second approach brings the disadvantage that the workflow has to be
altered, WorkflowInspector implements a mixture of both. First, it provides an
integrated runtime to the workflow. This means that the workflow may be tested
independently of the application where it is included. Thus, the execution flow

714 R. Breu et al.

can be tracked without any changes to the source code . Second, WorkflowInspec-
tor intercepts the communication with external services. Once a user interaction
or input is required it displays an input form on the screen. On the one hand
this is an advantage because workflows do not have to be altered for testing
purposes. However the tester has to have certain technical knowledge about the
systems the workflow is interacting with.

3.5 Test Results

WorkflowInspector provides detailed information about the TestSuite to the user.
At first all recorded data is displayed. Hence, the user may review the exact
workflow executions. Moreover, all points of failure are displayed with time and
cause of the error.

If additionally a coverage test is applied, the test results are given in per-
centage values. For example activity coverage of 100% indicates each workflow
activity has been executed at least once.

4 Workflow Inspector

4.1 Software Features

In this section the main features of our tool are described. To get an overview
of the capabilities of WorkflowInspector a summary of all components is given.

– Testing of State Machine Workflows WorkflowInspector is basically designed
to test state machine workflows. However, as state machines always include
nested sequential workflows, these may automatically be tested, too. How-
ever, extracting sub-workflows might cause errors because of the possible
non-determinism of the state machines, hence it is not supported.

– Workflow Tracking WorkflowInspector supports the recording of all workflow
execution data. It includes a generic configuration of the Microsoft tracking
service. Hence, no workflow needs to be altered for testing purposes. Once
it is loaded into the application it can be used with the tracking service. So
the assemblies may directly be deployed as soon as the testing is complete.

– Implemented Test Types The prototype version supports activity, branch
and path coverage tests which can be executed individually. The latter one
is implemented as boundary interior test to avoid infinite looping.
The test results enable detailed insight in the covered actions and executed
paths to support an optimization of the workflow. They speed up the error
finding process, too.

– Manual Input of Test Data WorkflowInspector provides a generic way to
interact with all kinds of workflows. Usually a custom user interface or input
form for each workflow has to be created. It enables the user to input data
and manipulate the flow of the application. This step can be omitted using
WorkflowInspector in the following way.

Workflow Testing 715

Whenever external data is required to resume the workflow execution,
WorkflowInspector deals with the form creation. It produces an input form
which is displayed on-screen. The form contains all parameters which are
needed to continue. It should be noted that this feature allows to use Work-
flowInspector not only for testing purposes. Presentations of the basic work-
flow functionality become manageable already at specification time. Work-
flows which barely contain the mandatory execution steps may be executed.
No time has to be spent on the creation of user interfaces until the latest
possible moment in the project progress. Thus, the development can com-
pletely be focused on creating a stable application core and clear workflow
definitions.

– Data and Workflow Display via a Win32 GUI WorkflowInspector inherits
the full graphical notion of the designer used by Visual Studio. This enables
developers to continue their work without having to be familiar with new
notions.

– Graph Visualization The application additionally provides a new view of
the workflow not used within Visual Studio. It includes a graph conversion
algorithm which generates directed graphs using Windows Workflow Foun-
dation workflow assemblies. On the one hand this is useful for the developer.
It provides a better overview of the whole system, even if nested activities
are used. On the other hand the graph representation can be used for pre-
sentation purposes. Workflows can be displayed on an abstraction level not
showing any specific implementation information.

– Error Reconstruction A challenge when testing software in general is the
communication of error reasons between testers and developers. Testers have
to provide a full documentation of execution steps to provoke a designated
error. WorkflowInspector supports this communication by saving the com-
plete execution history, as well as all user inputs. Furthermore the error stack
trace is stored.

– Pre- and Postcondition Validation To verify that TestRuns fulfill specified
basic conditions WorkflowInspector provides a simple validation mechanism.
By use of boolean operations constraints for all public workflow parameters
may be defined. They can be verified after the TestRun execution.

4.2 System Integration

Figure 3 illustrates the integration of WorkflowInspector into the development
infrastructure of our industrial partner. The designed workflows are being exe-
cuted on an application server which is used as a web server at the same time
(1). Physically it does not matter if the two servers are installed on the same
or on different computers. To simplify matters they are shown as one object.
The workflow runtime in which the workflows live is installed on the applica-
tion server. Additionally, a Windows service is installed. It acts as host for the
runtime. It is also responsible for workflow management, e.g. correct workflow
instantiation and termination. In contrast a user interface is installed on the web
server. It can be accessed via network, i.e. intranet or Internet. In the current

716 R. Breu et al.

3: Tester’s PC

Application
Database

2: MSSQL Database Server

Workflow Runtime

Windows Service
for managing and

instantiating workflows
Communication via
routing and defined

port numbers WF1 WF2 WF3 WF4

Workflow Runtime
WF1 WF2 WF3 Backend

Frontend

C#C#

WIN32

W
or

kf
lo

w
In

sp
ec

to
r

Assemblies (shared)

executes

1: Webserver / Application Server

Tracking
Service

Workflow- & Test-Preferences

Tracked Data

ASPX Web-Frontend

WowkflowInspector
Database

Fig. 3. Involved system components

illustration it is represented by an ASPX1 website. However, it may also be a
Win32 GUI on a remote PC depending on the customer’s needs. The next com-
ponent involved is the database server (2). It stores the individual application
objects, e.g. order items. therefor Microsoft SQL 2005 server is used.

The elements described so far are completely independent from WorkflowIn-
spector or the tested workflows. Hence, there is no interference of the approved
and already deployed workflows.

The WorkflowInspector database is located on the same server as the database
of the application. It comprises information about workflow executions and test
management. It must be pointed out that two independent databases have to be
used to avoid interference.

Finally the tester’s PC is the one where WorkflowInspector is installed (3).
Like almost every Win32 application it consists of graphical frontend and logical
backend components. Furthermore, WorkflowInspector hosts its own workflow
runtime. This enables the tester to execute workflows independent from the
application server within some kind of sandbox, i.e. in a secure environment.

The only components shared between the application server and the tester’s
PC are the workflow assemblies. However, they are never used by both parties
at the same time. The slashed line in Figure 3 only indicates that the assemblies
can directly be deployed on the application sever once the testing is complete.

4.3 Integration of WorkflowInspector in the Development Process
Model

WorkflowInspector emphasizes on designing and testing workflows in early stages
of application development cycle to allow small iterations in the application
development. Indeed, the software also supports developers in bringing their
1 ASPX is the file format for ASP.NET Web applications (cf. [8]).

Workflow Testing 717

development process to agile methods. The main focus lies on the introduction
of automated test phases to reduce testing and maintenance time.

Figure 4 shows an optimized timeline for projects using WorkflowInspector.
The illustration is generally speaking still designed according to the waterfall
model. However, there are major modifications to support an iterative and in-
cremental development which are described in the following.

short iterations

Specification

Design

Early stage

Implementation

GUIWorkflow

Final Testing

Installation

Logic

Maintenence

Workflow GUI

WorkflowInspector is used possible return to a previous stage

Fig. 4. Improved project timeline with usage of WorkflowInspector

WorkflowInspector is basically designed for developers and testers. Though, its
clear graphical presentations also enable customers to understand the processes
without complete knowledge of the technical background. Therefore WorkflowIn-
spector may already be introduced at specification time. Workflow examples can
be created to demonstrate the Windows Workflow Foundation abilities to the
customer. Moreover, also basic processes without business logic of the final ap-
plication may be executed. Different scenarios can also be discussed with the
client. The big advantage of it is that the core framework is used, which also
will come into operation in the final application. Thus, specification, design and
implementation are partially merged. In other words, the communication with
the customer is improved and early workflow prototypes may be reused without
loss of development time.

Next, the main implementation starts in arbitrary many iterations. There is
still no need to create a user interface yet. Due to the capabilities of WorkflowIn-
spector to provide generic input forms, the final interface may be created as late
as possible. This also reduces maintenance time.

In every iteration the changed workflow can be tested immediately. Work-
flow errors or unused paths due to changes in the system may be discovered
at once. However, the business logic has to be tested using conventional testing
frameworks for source code such as for example NUnit (cf. [9]).

The final task shown in Figure 4 is maintenance. Even by improving the
development process some servicing tasks may still be necessary. However,

718 R. Breu et al.

WorkflowInspector reduces the time of correcting errors or implementing new
features. This is again because every change can be tested immediately.

4.4 Logical Application Architecture

Figure 5 shows the interaction of the single components used within WorkflowIn-
spector.

Once the application has been initialized and the GUI is loaded (1-3) there
are three main parts of the application which can be used:

1. Workflow Loading and Execution A workflow is loaded or executed by use
of the Workflow Manager. It initiates and manages all workflows executed
by the Workflow Runtime. The Workflow Manager is also able to perform
some finalization tasks after a workflow was executed or terminated. These
tasks may involve for example application notification or database clearance.
Moreover, the manager has a built-in monitoring component. The monitor
knows about the exact execution status of each workflow. This is useful if
the workflow needs user interaction or waits for some external application
event. The monitor then automatically informs all observing parties about
the actual workflow status. Finally, the Workflow Runtime is connected to
the Tracking Service to write data into the database.

User Interface Components

P
re

se
nt

at
io

n
Ti

er

A
pp

lic
at

io
n

Ti
er

D
at

a
Ti

er

W
or

kf
lo

w
 L

oa
di

ng
an

d
E

xe
cu

tio
n

D
at

a
A

na
ly

si
s

Te
st

 E
xe

cu
tio

n
an

d
Ev

al
ua

tio
n

Tracking Service

Test
Framework

Workflow Manager

Workflow RuntimeInitialization

Settings Reader

Hard Disk Drive

Database Service

Database

(1)
(2)

(3)

initialization operation request data / call methods receive data

Fig. 5. Logical components diagram

Workflow Testing 719

Fig. 6. WorkflowInspector workbench

2. Data Analysis One of the main features of WorkflowInspector is the possibil-
ity to display tracked data in a user friendly way and as detailed as possible.
This is done by extensive use of graphical features such as graph or tree
representations.

The section called Data Analysis shows the communication between the
GUI and the Tracking Service. There are no additional components of the
application tier involved in this process as the main challenge is to prepare
all tracked data for visualization purposes. This is done by the user interface
components directly.

3. Test Execution and Evaluation The last part deals with test execution and
evaluation. The Test Framework queries all data about existing workflow
executions using the Tracking Service. After applying tests and preparing
the data for graphical display the values can be processed by the GUI. The
test results are saved back to the database.

4.5 Usage Example

After WorkflowInspector is started, the main screen is displayed (cf. Figure 6).
The window is divided in two main sections: 1) TestSuite Overview shows all
actual workflows under test (WUT). They are represented by a unique workflow
name and an arbitrary TestSuite name. If there have been applied some tests
the percentage of the test coverage is shown in the form of progress bars beside
the test name. 2) Graphical Representation of the workflow as it was defined by
the developer. In fact, even the arrangement of the single workflow components
is equal in case a layout file is provided with the workflow assembly.

Adding a New TestSuite. When a new TestSuite is added, several preferences
may be set. First, a workflow assembly has to be selected. If there are some

720 R. Breu et al.

Fig. 7. Detailed TestRuns view

additional assemblies needed more file explorer windows will be displayed. Next,
some pre- and postconditions for the test can be set.

Detailed TestRuns View. Once the TestSuite is saved a detailed TestRuns
view can be accessed. It shows all details about the single workflow executions.
The window is partitioned into several sections (cf. Figure 7). 1) Workflow Under
Test (WUT) contains the full workflow name to avoid misunderstandings. 2)
TestRuns shows all TestRuns executed. A green play button indicates that the
TestRun is actually running. If a green check mark shows up the TestRun was
completed successfully. In contrast a red cross indicates a failure and terminated
workflow. 3) Activity Properties and Tracked Data shows the properties of each
activity of the workflow. These can either be predefined values by the Windows
Workflow Foundation or custom parameters like for example looping conditions.
To review the execution process and to find possible errors the single execution
steps and its properties are displayed. 4) Activities enable the user to see every
single step of the workflow execution ordered by execution time. If an error
occurs while the workflow is executed the activities are marked with Failure and
so is the parent workflow. 5) User Input used every time a user interaction is
needed, the application generates a user form depending on the required input
data. This enables developers to execute workflows without having to code a
user interface. 6) Design View is the center part of the TestRuns View which
is used to display the workflow graphical representation already known from
the Main Screen or the window to add a new TestRun. And finally the Graph
View provides a complete new graphical representation. Here the workflow is

Workflow Testing 721

Fig. 8. Activity coverage test result window

shown as directed graph. For sequential workflows this simply means a different
formatting of the single components. However, with state machine workflows,
the nested activities are converted into a “flat” sequential representation. This
enables developers, testers and also end users to get a better overview of the
whole system and its complexity by use of a single picture.

WorkflowInspector has a built-in algorithm that transforms all types of work-
flows into directed graphs (cf. Figure 8).

4.6 Perform Coverage Tests

A coverage test may be applied to a TestSuite which contains at least one
TestRun. As representative example the activity coverage test result window
is shown (cf. Figure 8).

The center of the window shows the Graph View of the workflow. All ex-
ecuted activities are marked in blue. The transitions are represented by black
arrows which connect the single activities. Not executed activities and transitions
are displayed in gray color. The result window is divided into several sections
which itemize the test results. TestRuns shows all workflow executions and their
activity coverage using a progress bar. The graph view changes when select-
ing a different TestRun. Covered in the selected run shows all activities which
were executed in the TestRun which is selected in the TestRuns section. Not
covered in the selected run shows all activities not covered during the selected
TestRun. At least once covered shows the activities which were at least once ex-
ecuted during all workflow executions of this TestSuite. Never covered shows all

722 R. Breu et al.

activities which were never executed during all workflow executions of this Test-
Suite. RESULT shows the overall activity coverage calculated from the At least
once covered and Never covered values. The test execution leads also to a change
of the progress bar percentage value in the Main Screen.

5 Conclusion

In this paper a new approach to test Windows Workflow Foundation based work-
flows was presented. At the moment WorkflowInspector is the only application
available providing the presented functionality. It enhances the overall develop-
ment process as described in the following. The arguments are adapted from
iterative development models, e.g. V-Model XT (cf. [10]), and conventional unit
testing techniques (cf. [11]).

5.1 Advantages

1. Increased Project Quality WorkflowInspector increases the quality of soft-
ware. It allows the developer to perform automated tests of the application
core (i.e. the workflow) as often as possible. Errors may be detected immedi-
ately after changes in the workflow definition have been made. Even though
software bugs may not be fully eliminated, their amount can be reduced
noticeably. Hence, WorkflowInspector is a useful extension of conventional
source code testing methods.

2. Tests Allow to check Refactoring By using workflow tests it is possible to
change parts of the workflow throughout the lifetime of the application. This
refers for example to the readability of the workflow definition, documenta-
tion or naming conventions for activities and events. Once some changes
have been performed, WorkflowInspector may be used to check immediately
if the behavior of the workflow is still identical.

3. Shifting Focus The focus of the application development is shifted from main-
tenance to specification, design and implementation. Hence, the appearance
of bugs is reduced.

4. Improvement of the Communication Between All Involved Parties The visu-
alization capabilities are one of the major advancements all involved parties
benefit from. The workflow developer, head of development, head of testing,
testers and users are able to discuss on the basis of the same illustrations.
The possibility of executing rudimentary workflows allows to demonstrate
application flows even at specification time. This for example supports the
customers’ understanding of the Windows Workflow Foundation application
design. Thus, specific needs may be expressed more precisely. In addition,
customers are able to track the whole workflow and application development
in every iteration.

5.2 Benefits of the Usage of WorkflowInspector at World-Direct

Workflow Inspector has been developed in the context of a research coopera-
tion between the University of Innsbruck and world-direct. The tool is used in

Workflow Testing 723

development projects of world-direct for testing and evaluating workflows and is
extended continuously. Currently, world-direct is developing plug-ins for a deeper
integration of the software in the development framework.

References

1. Microsoft: Microsoft. NET Framework 3.0 (2007) (Accessed on 2007-03-01) ,
http://www.netfx3.com/

2. Aschenbrenner, K.: Windows Workflow Foundation - Designer für effektive Work-
flows. dotnetpro 1, 78–85 (2006)

3. Kanjilal, J.: An Introduction to Windows Workflow Foundation (2006) (Accessed
on 2008-01-21), http://aspalliance.com/1074 An Introduction to Windows
Workflow Foundation

4. Allen, S.: Windows Workflow Foundation - Practical WF Techniques and Examples
using XAML and C#. Packt Publishing (2006)

5. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 6th edn.
McGraw-Hill Higher Education, New York (2004)

6. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: BPEL4WS Unit Testing: Framework and
Implementation. In: Proceedings of the IEEE International Conference on Web
Services (ICWS 2005), vol. 1, pp. 103–110. IBM China Research Lab (2005)

7. Mayer, P., Lübke, D.: Towards a BPEL unit testing framework. In: Proceedings
of the 2006 workshop on Testing, analysis, and verification of web services and
applications, Portland, Maine, University of Hannover, FG Software Engineering,
pp. 33–42. ACM Press, New York (2006)

8. Microsoft: The Official Microsoft ASP.NET Site (2008) (Accessed on 2008-01-29),
http://www.asp.net/

9. NUnit.org: NUnit (2007) (Accessed on 2008-01-21), http://www.nunit.org
10. Koordinierung und Beratungsstelle der Bundesregierung für Informationstechnik

in der Bundesverwaltung: V-Modell XT 1.2.1 Dokumentation. Technical report,
Bundesminsterium des Innern (2007)

11. Burke, E.M., Coyner, B.M.: Java Extreme Programming Cookbook, 1st edn.
O’Reilly, Sebastopol (2003)

http://www.netfx3.com/
http://aspalliance.com/1074_An_Introduction_to_Windows_Workflow_Foundation
http://aspalliance.com/1074_An_Introduction_to_Windows_Workflow_Foundation
http://www.asp.net/
http://www.nunit.org

The jABC Approach to Rigorous Collaborative

Development of SCM Applications

Martina Hörmann1, Tiziana Margaria2, Thomas Mender1, Ralf Nagel3,
Bernhard Steffen3, and Hong Trinh1

1 IKEA IT Germany GmbH, Werne, Germany
2 Chair of Service and Software Engineering, Institute for Informatics,

University of Potsdam, Germany
margaria@cs.uni-potsdam.de

3 Chair of Programming Systems, University of Dortmund, Germany
{ralf.nagel,steffen}@cs.uni-dortmund.de

Abstract. Our approach to the model-driven collaborative design of
IKEA’s P3 Delivery Management Process uses the jABC [9] for model
driven mediation and choreography to complement a RUP-based (Ra-
tional Unified Process) development process. jABC is a framework for
service development based on Lightweight Process Coordination. Users
(product developers and system/software designers) easily develop ser-
vices and applications by composing reusable building-blocks into (flow-)
graph structures that can be animated, analyzed, simulated, verified, ex-
ecuted, and compiled. This way of handling the collaborative design of
complex embedded systems has proven to be effective and adequate for
the cooperation of non-programmers and non-technical people, which is
the focus of this contribution, and it is now being rolled out in the op-
erative practice.

1 The Setting: The P3 Challenge

Shipping goods beyond country boundaries using various means of transporta-
tion requires an enormous organizational effort. IKEA is currently redesigning
the whole IT lansdscape around its world-wide delivery management process.
This ongoing project involves a major effort by teams distributed world-wide
and spanning various corporations.

This paper addresses the design of an integrated document management sys-
tem for this process, provided by IKEA IT Germany. In this system,

– the document management system sits in the background, essentially as a
controller/executor serving the overall delivery process.

– its reliability is business critical. In particular this requires the integration
of flexible mechanisms for fault tolerance.

– it is realized as a network of platforms, ranging from pure data management
to systems steering the loading and unloading of vehicles or monitoring the
progress of a shipment.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 724–737, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The jABC Approach to Rigorous Collaborative Development 725

Fig. 1. The IKEA IT working method within P3: RUP workflow

In this paper, we show how our approach to the model-driven collaborative de-
sign of IKEA’s P3 Document Management Process uses the jABC [9] for model
driven mediation and choreography to complement a RUP-based (Rational Uni-
fied Process) development process.

As shown in Fig. 1, the development process in use at IKEA is the state-of-the-
art Rational Unified Process (RUP). Requirement modelling tools are Microsoft
Word for a large number of requirement documents produced by non-technical
project members, together with Rational products (Rose) for Use cases and for
the subsequent analysis and design model. The development modelling language
is UML (Unified Modelling Language).

Although a widely recognized development best practice, RUP with UML
turned out not to adequately cover the needs of P3: while the whole project
addresses processes, most of the models support primarily a static view instead
of a behavioral description. This leads to a number of deficiencies:
– Vertically, it fails to consistently connect the different levels of abstraction.

E.g., there is no clear connection between the Use cases, which are the entry
point to UML, and the Business Process Specifications provided by the busi-
ness analysts (which, in our case, are spread in 59 word documents describing
18 processes).

– Horizontally, it fails to consistently connect the different models at the same
level. E.g., the mutual dependencies between the many Use case are not
addressed.

As an obvious consequence, the impact of changes to an individual process model
remains totally undetected.

We introduced the jABC-based process modelling approach to P3 in order to
complement the RUP modelling in a way that compensates for the mentioned
deficiencies. In particular, this made it possible to check consistency vertically,
horizontally, and over changes.

726 M. Hörmann et al.

Addressing non-IT users
There are three large areas of related work, which, in fact, can be seen as the
three main facets of our approach: model-driven design, service oriented com-
puting, and business process modelling. The main differences to our jABC-based
approach can be sketched quite easily: the first two areas view the world from the
technological/IT perspective. They do not (directly) address the applications ex-
perts. Business process modelling, in contrast, supports the business expert, but
leaves the classical bunsines/IT gap when it comes to the realization. The fol-
lowing elaboration is not comprehensive, but addresses the main characteristics
of these three areas, which

Numerous techniques, models, and diagrams have been proposed by the UML-
community to capture different kinds of requirements, and there have been at-
tempts to address the mutual consistency between these artefacts. Examples
of such approaches are GMT [5] and Fujaba [7]. However, these attempts are
technically involved, requiring knowledge of technical modelling, UML, and pro-
gramming, and typically address only very specific aspects. Thus they are not
yet ready for a wider systematic use in practice, and require significant computer
science knowledge. In particular, they are inadequate for a use by non-IT people,
like business analysts because they are tied to the IT perspective. Rather than
reflecting the user process, these models specify IT-based solutions. This is true
e.g. for the whole Rational suite, also at the platform independent modelling
levels.

Service-oriented computing virtualizes platforms and functionality and estab-
lishes a new kind of reuse. In particular in combination with standards like e.g.
in Web Services, this is rather promising. Still, the methodology is not yet at a
level accessible by application experts. The required knowledge about the syn-
tax is awkward, the provided frameworks and tools are still quite unreliable, due
to too many layers that must work together perfectly, and are outside of the
responsibility of the user and of the developer, and still require too much knowl-
edge about e.g., middleware and interface specification, including formalism like
WSDL. This is an agreed result from the experience of two years of Semantic
Web Service Challenge: lessons learned that explicitely address this point are
summarized in a specific Chapter of the book [22] and in [15].

Finally, there exist also many approaches to business process modelling and
workflow management, typically supported for analysis by techniques like sim-
ulation. However, they lack (intuitive) verification techniques for end-to-end
processes, and they are not adequately linked to the realization process: the
known cultural gap between business and IT remains unresolved. The BPEL [3]
approach might look like an exception here, as it comes with dedicated execu-
tion engines which support the execution of the process models themselves - and
indeed, this approach is the most similar to ours. However, BPEL engines typi-
cally fail in practice (in particular, when cross platform/organizational processes
are concerned), as they are focussed on Web Services, and largely proprietary.
The focus on the sole Web service technology, e.g. excludes their application in
business scenarios comprising the processing of high data volumes, or (legacy)

The jABC Approach to Rigorous Collaborative Development 727

functionality not available as Web Services. Moreover, BPEL (like BPNM) can
not really be regarded as a language for non IT people.

Putting non-IT experts in the center means that in particular, roles and rights,
or permissions can be controlled (defined, modified, monitored) by the business
expert without requiring any IT support, on easily understandable models. These
models are then successively refined in our jABC-based approach up to a level
where the basic functionalities can be implemented as simple services. The code
for these services is typically rather small, just combining results of some calls
to APIs or Web Services, and can be semi-automatically generated to a large
extent. The quality of these services has to be guaranteed by the providers,
according to some service-level agreement. Thus typical implementation issues,
like e.g., connecting to data bases or executing a transaction on an ERP sys-
tem, are virtualized for the jABC, i.e., not in the focus here, and delegated to
other parties. Moreover concerns like e.g. high availability, roll back, and the
management of session and long running transactions do also not belong to
the top-level modelling framework. They are captured by our execution engine,
which also comprises the functionality of the popular BPEL engines like Active
BPEL [1].

This radically service-oriented approach puts the emphasis on the business
process and hands the control over to the IT only at the level of elementary
services. Thus the business side is and remains process owner much longer than
in usual model-driven approaches. Thus changing requirements at the business
side can mostly be treated in the business process model, typically without
requiring IT support. On the other hand, platform migration may happen simply
by exchanging the service implementations, and therefore transparent to the
business user.

We call this approach ‘One-Thing Approach’ (OTA, [26]), as there is in fact
only one artefact during the whole systems’ life cycle. This artefact is successively
refined in various dimensions in order to add details concerning roles, rights,
permissions, performance constraints, simulation code (to animate the models),
productive code, pre/post conditions, etc.., with the effect that all stakeholders,
including the application expert, can follow the progress from their perspective
(view): initially, application experts may e.g. only browse the documentation and
annotate the models, but as soon as some simulation code is available, they may
start playing with the system in order to check and enforce an adequate user
experience. The user experience gets the more realistic the further the develop-
ment progresses. This continuous involvement of the application expert allows
one to control the harm of the classical business/IT gap, because misconceptions
and misunderstandings become immediately apparent.

In the following we will briefly sketch the basic concepts of the jABC Mod-
elling framework (Sect. 2), before we enter the main part of the paper, the
presentation of our document management process (Sect. 3), which focusses on
the consistency and the execution-oriented features of the jABC. Finally we give
some conclusions.

728 M. Hörmann et al.

2 Basic Concepts of the jABC Modelling Framework

jABC [9,10] is a framework for service-oriented model driven development based
on Lightweight Process Coordination [17]. Predecessors of jABC have been used
since 1995 to design, among others, industrial telecommunication services [20],
Web-based distributed decision support systems [11], and test automation envi-
ronments for Computer-Telephony integrated systems [8].

jABC allows users to easily develop services and applications by composing
reusable building-blocks into (flow-)graph structures. This development process
is supported by an extensible set of plugins that provide additional functionality
in order to adequately support all the activities needed along the development
lifecycle like e.g. animation, rapid prototyping, formal verification, debugging,
code generation, and evolution. It does not substitute but rather enhance other
modelling practices like the UML-based RUP (Rational Unified Process, [24]),
which are in fact used in our process to design the single components.

Lightweight Process Coordination offers a number of advantages that play a
particular role when integrating off-the-shelf, possibly remote functionalities.

– Simplicity. jABC focuses on application experts, who are typically non-
programmers. The basic ideas of our modelling process have been explained
in past projects to new participants in less than one hour.

– Agility. We expect requirements, models, and artefacts to change over time,
therefore the process supports evolution as a normal process phase.

– Customizability. The building blocks which form the model can be freely
renamed or restructured to fit the habits of the application experts.

– Consistency. The same modelling paradigm underlies the whole process,
from the very first steps of prototyping up to the final execution, guarantee-
ing traceability and semantic consistency.

– Verification. With techniques like model checking and local checks we sup-
port the user to keep the models consistent throughout their evolution mod-
ify his model. The basic idea is to define local or global properties that the
model must satisfy and to provide automatic checking mechanisms.

– Service orientation. Existing or external features, applications, or services
can be easily integrated into a model by wrapping the existing functionality
into building blocks that can be used inside the models.

– Executability. The model can have different kinds of execution code. These
can be as abstract as textual descriptions (e.g. in the first animations during
requirement capture), and as concrete as the final runtime implementation.

– Universality. Thanks to Java as platform-independent, object-oriented im-
plementation language, jABC can be easily adopted in a large variety of
technical contexts and of application domains.

The central advantage of this approach is that it is intuitive and expressive
enough to enable all the stakeholders (business experts, process modelers, design-
ers, software developers, quality assurer, and the like) to participate throughout
the whole system life cycle, and each at the own level of expertise. For this the

The jABC Approach to Rigorous Collaborative Development 729

basic modelling in terms of hierarchical flow graphs (SLGs, see Sect. 3) can be
enriched on demand in a consistent fashion to comprise concurrency, roles and
rights, permissions, exception handling, etc.. The control for all these enrich-
ments stays with the responsible expert:

– roles and rights or permissions are under the full control of the business
expert,

– exception handling has more flavors, like e.g.:
• the application side, like dealing with disease and replacement of per-

sonnel. This has to be explicitly modelled as a process within the jABC
by the application expert.

• the technical side, like dealing with a broken server. This is a matter of
implementation, but may also be taken care of by the platform by means
of technology for high availability. In fact, we have also realized a process-
based high availability solution within the jABC for this purpose, which
needs to be set up by the platform expert.

• transaction safety. This is typically under the responsibility of the service
providers. In cases where a whole subprocess needs to be rolled back,
the corresponding roll back process needs to be modelled in a similar
fashion as the high availability process. However, in contrast to the high
availability case, where a certain safe state has to be reestablished, roll
back requires application knowledge, as it is typically not possible to
simply undo executed process steps. - This is quite similar as e.g. in
solutions for BPEL.

– Validation and monitoring are quite complex, and in the hands of more than
one stakeholder, as they involve application knowledge, as well a different
kinds of technical knowledge about logics, tools, etc.. Still, also their impact
can be viewed in a stake holder-specific fashion in order for the stakehold-
ers to be able to check whether their understanding and intention is still
maintained.

The (application) process-specific part of all these facets is kept in one single
model, the reason for us to call our approach ‘One-Thing-Approach’ [14,26]. This
makes it possible for all the stakeholders to be able to check at any time the
progress of development from their view point. In particular, it is possible that
partially implemented processes can be executed in mixed mode: some parts
might still be navigated just by documentation browsing, others animated in
simulation mode, and even other really run using productive code. Such hetero-
geneous situations appear dominantly in later phases of the process life cycle,
where the impact of modifications must be investigated. The one-thing-approach
serves in these cases for early, realistic experimental feedback.

The model is a Service Logic Graph, initially very coarse and successively
refined in our jABC-based approach to a level where the basic functionalities
can be implemented as simple services. It is important that this refinement
is done from the application point of view: all the models are meant to reflect
(sub) processes supporting concrete users of the system under development. This
reduces the business/IT gap, moves it to a later phase of the conception/design,

730 M. Hörmann et al.

Fig. 2. The One Model Approach in the jABC

and gives a maximum of freedom for business process evolution. It also lowers
the dependency from standard software, as the required elementary services are
typically supported by many providers.

This radically service-oriented approach makes changing requirements at the
business side a business process modelling activity, typically not requiring any
IT support. On the other hand, platform migration may happen simply by ex-
changing the service implementations, and therefore it becomes transparent to
the business user.

We now illustrate some of the impact of the One-Thing-Approach along the
concrete Document Management Process case study.

3 Designing the Document Management Process

A central requirement to the jABC process-oriented models was the capability to
bridge the gap between the high-level descriptions of the whole project, typically
produced by business analysts with no UML or technical background, and the
detailed models usable by programmers and engineers at implementation time.

As shown in Fig. 1, we had a set of 114 distinct yet interrelated documents
that described the high-level requirements and specifications for the new system.
In the course of the projects, these documents were condensed into a single,
hierarchical jABC model (see Fig. 2), which was annotated with the essential
parts of the original documents, and which was immediately animatable and
executable. This was done internally at IKEA, with consultancy by the jABC
team.

In jABC, every functionality used within an application or service is encapsu-
lated within a Service-Independent Building Block (SIB). In fact, we use SIBs to

The jABC Approach to Rigorous Collaborative Development 731

Fig. 3. The P3 Business Process Overview designed within the jABC

form the workflow of the P3 within a Service Logic Graph (SLG), jABC’s way
of defining processes. A SIB could contain a single functionality, or also whole
subgraphs (another SLG), thus serving as a macro that hides more detailed and
basic steps.

3.1 The Global Workflow

Using graph SIBs we are able to model the big picture workflow exactly as
described by the business analysts: the process flow at the bottom of Fig. 3 shows
the top-level phases of the supply chain process as modelled by business experts
and as familiar to managers. Each phase is composed of specific processes, which
are here drawn vertically on top of it. In particular, to the Execute Delivery phase
are associated the processes Delivery Management, which describes the transport
of goods, as well as Warehouse Management, and Store Goods Flow for the in-store
logistics and warehousing. The Delivery Management process is already refined,
as indicated by the graph SIB icon. Its refinement is the SLG on the left side of
Fig. 4.

3.2 The Delivery Management Workflow

In Fig. 4 we see the top-level flow of the Delivery Management process. The Deliv-
ery Management SLG shows the typical structure of these processes, which makes
explicit their embedded system character. On the left we see a high-level process
for the shipment of the ordered goods, and on the right separate functionality for
the associated document management, with an event driven communication that
is highly deadline-sensitive. The document management runs on an own platform
(hardware and software). In fact it is under the responsibility of a distinct group

732 M. Hörmann et al.

Fig. 4. The Delivery Management Workflow designed within the jABC

of designers and of a distinct operation team. The document management process
executes in parallel with the shipment process, but additionally to producing its
own deliverables (the shipment documents), it monitors and controls the shipment
process. As such, the shipment process de facto behaves like a business and time
critical controlled system, and the document manager as its controller.

3.3 The Document Management Workflow

The Document Management process shown in Fig. 5(left), which refines the SIB
at the tip of the arrow in Fig. 4, is the basis for the successive implementation of
the event driven embedded document management system. It contains function-
ality to set up and administer the lists of shipment documents associated with
each shipment order, it manages the deadlines and the human-in-the-loop func-
tionality and exceptions, and it contains a dedicated event manager, the Execute
Event SIB, that runs in parallel to the document management functionality.

The Execute Event SIB, shown in Fig. 5(right), is itself still hierarchical: it
has a subgraph Create Document List for creating the document list, and several
occurrences of the Handle Document document handler. These more detailed
processes are hidden in this subgraph, and can be expanded at need to the
required level of detail.

At this stage of development, most SIBs just contain the calls to animation
and simulation code. This is sufficient to animate the specifications and to show

The jABC Approach to Rigorous Collaborative Development 733

Fig. 5. The Document Management and the Execute-Event SLGs

the interplay of the different functionalities, in particular concerning the interop-
erability and cooperation of the shipment and document delivery subprocesses,
which are under the responsibility of different teams.

Later on these SIBs will be further refined and finally implemented by soft-
ware components, like Java classes or external web services provided by external
systems and applications.

3.4 Workflow Granularity

The top-level worklow designed within the jABC shown in Fig. 3 is rather sim-
ple: it is for instance cycle free. The loops needed by the detailed tasks can be
modelled in different ways, mostly depending on the desired abstraction of the
workflow:

– they can be modelled within the implementation code of the specific SIBs,
e.g., as iterations over variables. This is desirable, if there is no need to reason
(or prove anything) about that behaviour at the modelling level, which is
considered an implementation issue.

– if we are interested in the loop behaviour, we can refine the SLG of the
workflow and model the (relevant) loops at the workflow level, either for
the whole process, or just inside specific graph SIBs if that portion of the
workflow needs specific attention.

– In principle, workflows can be refined up to the detail of single statements,
if is desired.

Successive analysis of the code can help also in cases where the workflow has
not been refined to the very end.

734 M. Hörmann et al.

In this case, we ended with a successive refinement of the processes in 5 levels1.
The overall business logic contained in the many documents was captured and
expressed, without one line of code, resulting in the individuation of several
shared subprocesses, that were isolated and capsuled in devoted models and
reused several times.

The models, even at intermediate stages of design, were immediately exe-
cutable as animated traces in the jABC, via the Tracer plugin.

3.5 Workflow Execution

After designing the workflow, by means of the tracer plugin we are able to
animate, simulate or interpret it (depending on the kind of executable code
associated with the SIBs: mock code, simulation code, or real implementation).

In this concrete case, the execution of the first design phase stepped through
the processes and displayed the original document passages where these steps
were described. Already this proved to be very valuable in the light of consistency
checking, since multiple sources provided by different author teams could be ex-
amined next to each other and in the business logic context. Several imprecisions
were this way unveiled.

Further levels of execution concerned simulation code and real implementation
code.

3.6 Workflow Validation and Verification

Our approach also supports model checking-based [4,23] verification of compli-
ance to business rules at the process level, to guarantee the satisfaction of certain
properties. That way we are able to build certified business processes. A knowl-
edge base of such properties or constraints greatly improves the overall quality
and reliability of the processes.

SLGs are semantically interpreted as Kripke Transition Systems (KTS), a
generalization of both Kripke structures and labelled transition systems [21]
that allows labels both on nodes and edges. Nodes in the SLG represent activities
(or services, or components, depending on the application domain). The edges
directly correspond to the SIB branches: they describe how to continue the
execution depending on the result of the previous activity. More formally, a
KTS is defined as follows:

A KTS (V,AP,Act,→) consists of a set of nodes V and a set of atomic propo-
sitions AP describing basic properties for a node. The interpretation function
I : V → 2AP specifies which propositions hold at which node. A set of action
labels Act is used to designate the edges. The possible transitions between nodes
are given through the relation → ⊆ V ×Act× V [21,2].

Model checking [4,23] is a powerful approach to automatic verification of mod-
els, as it provides an effective way to determine whether a given system model
is consistent with a specified property. The jABC framework incorporates this

1 We are not allowed to expose here more detail on the real concrete processes.

The jABC Approach to Rigorous Collaborative Development 735

technique via a core plugin called GEAR [2]. Intuitively, any system modelled as
SLG can be verified with this plugin: SLGs can be seen as KTS including atomic
propositions and actions. Specifications of a model can be defined using appro-
priate formalisms, in the case of GEAR these are temporal logics, for example
CTL (Computation Tree Logic) or the modal μ-calculus [12].

An example of such business rule is the following:

A truckload can only depart if the Bill of Consignment and the Load
Approval are ready. If it is a Non-EU delivery additionally the Custom
Documents must be available:

¬Departure U (BillOfConsignment ∧ LoadApproval

∧ (NonEUDelivery ⇒ CustomDocuments))

In these formulas, Departure, BillOfConsignment, etc are atomic propositions that
hold in particular nodes of the model, while U is the until operator. These
atomic propositions can be gained in different ways. In the simplest case they
are annotated to the nodes manually by the user.

3.7 Code Generation

We can also generate source code for the SLGs by invoking one of the jABC code
generators, offered by the Genesys plugin. Genesys is itself a service-oriented
framework for the high-level construction of certified code generators. They differ
in the structure and efficiency of the generated code, but all of them allow getting
a running application that is independent of the jABC. In this case, the target
platform is Java, for which we have a number of code generators (from the
extruder to pure Java) that allow to fine-tune the degree of independence of
the final code from jABC’s structure and environment. The two extremes are
the Extruders, that use the execution engine of our framework that provides
features like thread and event handling, and Pure Generators, that fall back
to the most basic engine provided by a platform, like e.g. the Java Runtime
Environment (JRE).

3.8 Workflow Evolution

The whole process of designing the solution to the P3 redesign challenge can be
solved with little initial coding effort by instantiating existing template SIBs (like
the SYS SIB used here) and graphically designing and configuring the workflows
at the SLGs level. In fact, this is already also sufficient to support a flexible
change management, an important requirement for the second project phase.

4 Conclusions and Perspective

In this paper, we have shown how our approach to model-driven collaborative
design was used for IKEA’s P3 Document Management Process, where it comple-
ments the Rational Unified Process development process already in use. Central

736 M. Hörmann et al.

contribution is the support of the vertical consistency of models, e.g. across ab-
straction layers, as well as of the horizontal model consistency, which is needed
e.g. across organizational borders within a same abstraction level. In this partic-
ular case we had to bridge e.g., between various business process specifications
provided by business analysts and Use case/activity diagram views needed by the
designers, keeping adequate track of the dependencies. With our techniques we
were able to immediately detect so many of these dependencies which had been
overseen before that it was decided to restart the modelling in our framework in
order to avoid these problems by design.

Scenarios like this are ideal candidates for applying the one-thing-approach
for end-to-end processes as described in [26]. There, horizontal consistency is
guaranteed by maintaining the global perspective throughout the refinement
process down to the code level, and vertical consistency by the simple disci-
pline for refinement. Thus this holistic approach goes beyond state of the art
approaches, as e.g. represented by IDEs like Eclipse and NetBeans [27], which
do not support the business process level, as well as beyond process modelling
tools like ARIS [6], which fail to capture the later phases of development. Also
combinations of these techniques are not sufficient, as they introduce gaps when
moving from one technique to the other. In contrast, in our one-thing-approach,
changes at the business process level are immediately done on the ’one thing’,
and therefore immediately executable, as long as no new functionality is added
that requires coding.

References

1. Active BPEL execution engine,
http://www.activevos.com/community-open-source.php

2. Bakera, M., Renner, C.: GEAR - A Model Checking Plugin for the jABC framework
(2007),
http://www.jabc.de/modelchecking/

3. BPEL specifications website,
http://www.ibm.com/developerworks/library/specification/ws-bpel/

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

5. Davis, J.: GME: Generic Modeling Environment, Demonstration session. In: OOP-
SLA, Anaheim, CA, pp. 82–83. ACM, New York (2003)

6. Davis, R.: ARIS Design Platform: Advanced Process Modelling and Administra-
tion. Springer, Heidelberg (2008)

7. Fujaba homepage, http://wwwcs.uni-paderborn.de/cs/fujaba/index.html

8. Hungar, H., Margaria, T., Steffen, B.: Test-Based Model Generation for Legacy
Systems. In: IEEE International Test Conference (ITC), Charlotte, NC, September
30 - October 2 (2003)

9. jABC Website, http://www.jabc.de

10. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383. Springer, Heidelberg (2007)

http://www.activevos.com/community-open-source.php
http://www.jabc.de/modelchecking/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://wwwcs.uni-paderborn.de/cs/fujaba/index.html
http://www.jabc.de

The jABC Approach to Rigorous Collaborative Development 737

11. Karusseit, M., Margaria, T.: Feature-based Modelling of a Complex, Online-
Reconfigurable Decision Support Service. In: WWV 2005. 1st Int’l Workshop on
Automated Specification and Verification of Web Sites, Valencia, Spain, March
14-15 (2005); Post Workshop Proc. appear in ENTCS

12. Kozen, D.: Results on the Propositional mu-Calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

13. Margaria, T.: Web Services-Based Tool-Integration in the ETI Platform. SoSyM,
Int. Journal on Software and System Modelling 4(2), 141–156 (2005)

14. Margaria, T.: Service Is in the Eyes of the Beholder. IEEE Computer 40(11), 33–37
(2007)

15. Margaria, T.: The Semantic Web Services Challenge: Tackling Complexity at the
Orchestration Level. In: ICECCS 2008, 13th IEEE Intern. Conf. on Engineering
of Complex Computer Systems, Belfast, UK, April 2008, pp. 183–189. IEEE CS
Press, Los Alamitos (2008)

16. Margaria, T., Nagel, R., Steffen, B.: Remote Integration and Coordination of Ver-
ification Tools in jETI. In: Proc. ECBS 2005, 12th IEEE Int. Conf. on the En-
gineering of Computer Based Systems, Greenbelt, USA, April 2005, pp. 431–436.
IEEE Computer Soc. Press, Los Alamitos (2005)

17. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable
system-level approach. STTT 5(2–3), 107–123 (2004)

18. Margaria, T., Steffen, B.: From the How to the What. In: Proc. VSTTE 2005,
Verified Software—Theories, Tools, and Experiments, IFIP Working Conference,
Zurich. LNCS, vol. 4171. Springer, Heidelberg (2005)

19. Margaria, T., Steffen, B.: Service Engineering: Linking Business and IT. In: IEEE
Computer, issue 60th anniv. of the Computer Society, pp. 53–63. IEEE Press, Los
Alamitos (2006)

20. Margaria, T., Steffen, B., Reitenspieß, M.: Service-Oriented Design: The Roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.
450–464. Springer, Heidelberg (2005)

21. Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-Checking: A Tutorial Intro-
duction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354.
Springer, Heidelberg (1999)

22. Petrie, C., Lausen, H., Zaremba, M., Margaria, T. (eds.): Semantic Web Services
Challenge: Results from the First Year (Semantic Web and Beyond). Springer,
Heidelberg (to appear, November 2008)

23. Queille, J.-P., Sifakis, J.: Specification and verification of concurrent systems in
CESAR. In: Proc. 5th Colloquium on International Symposium on Programming,
pp. 337–351. Springer, London (1982)

24. Rational Unified Process, http://www-306.ibm.com/software/awdtools/rup/
25. Semantic Web Services Challenge: Challenge on Automating Web Services Media-

tion, Choreography and Discovery, http://www.sws-challenge.org/
26. Steffen, B., Narayan, P.: Full Life-Cycle Support for End-to-End Processes. IEEE

Computer 40(11), 64–73 (2007)
27. SUN Microsystems’s NetBeans IDE, www.netbeans.org

http://www-306.ibm.com/software/awdtools/rup/
http://www.sws-challenge.org/
www.netbeans.org

Gesper: Support to Capitalize on Experience in

a Network of SMEs�

Maura Cerioli1, Giovanni Lagorio1, Enrico Morten2, and Gianna Reggio1

1 DISI–Dipartimento di Informatica e Scienze dell’Informazione,
Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

{cerioli,lagorio,reggio}@disi.unige.it
2 Softeco Sismat S.p.A.

WTC Tower - Via De Marini 1, 16149 Genova, Italy
enrico.morten@softeco.it

Abstract. Small and medium enterprises (SMEs) are the most affected
by the exponentially increasing complexity of the average software sys-
tem: not losing the grip on the new technologies may turn out to be
an unsustainable drain on productive effort, as their developers need to
devote a substantial part of their time to learning instead of producing.

In order to support continuous education and gathering/reusing solu-
tions, SMEs need a tool supported management of experience and knowl-
edge, providing problem-driven searches.

We describe the experience gained in designing and developing Gesper,
a tool for knowledge sharing that provides semantic searches based on
ontologies. This tool has been tailored to the needs of SMEs and a pro-
totype implementation has been built using free and open source tools.

Introduction

The complexity of the average software system is increasing each year, mak-
ing production and maintenance more and more difficult. Indeed, such a fast
growth may be sustained only thanks to the constantly improved technologies
and methodologies for software development. Therefore, it is mandatory for soft-
ware producers to keep their personnel and processes always updated.

Unfortunately, not losing the grip on the new technologies may turn out to be
an unsustainable drain on the productive effort, requiring developers to devote
a substantial part of their time to learning instead of producing. This is partic-
ularly true for small and medium enterprises (SMEs in the following), where the
(human) resources are scant and the budget small.

Thus, many SMEs give up on a well planned effort. But, in order to keep in
contact with the evolution of tools, methodologies and technologies, they rely
on a plethora of ill assorted knowledge gathering efforts, like individual learning
initiative, endeavors by team members to somehow cope with the new tools and

� This research has been supported by the Parco Scientifico e Tecnologico della Liguria
s.c.p.a. - POS. N. 23 Avv. 2/2006.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 738–752, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gesper: Support to Capitalize on Experience in a Network of SMEs 739

technologies required by challenging projects, and acquisitions of new personnel,
with a different cultural background. Then, the bits and pieces of knowledge so
randomly acquired and the information about the availability of reusable assets
produced by a team are expected to spontaneously spread through the person-
nel. But, relying on this person-to-person schema of knowledge dissemination
has two main flaws. First of all, the person having the crucial bit of informa-
tion for one project may be currently tied up into another one and hence not
assignable to the lacking team. Thus, the knowledge cannot be accessed and
shared at the required moment, even if it is available inside the SME. More-
over, the availability of the expertise (reusable resource) may be unknown to
the people needing it, because they are not sufficiently familiar with the expert
(the team that produced it). The obvious solution to these problems is to have a
more formalized management of experience, knowledge, and resources available
within the SME 1 allowing the needed information to be found without having to
rely on the social network. However, any formal process has its costs and to keep
them as low as possible, the best solution is to support the required activities
by a tool. Though some approaches and software systems support knowledge
management and collaborative working (see e.g., [3,14]), none of them is sat-
isfactory for the management of the enterprise knowledge and experience in a
SME. Indeed, in most cases those systems are specialized for a restricted kind
of experience or documents in a particular phase of the development, like, for
instance, the tools for code management (see, e.g., Eclipse [7]). The more general
systems are usually expensive and complex, being designed for the application
in large companies, and they require a difficult and time-consuming tailoring.
Moreover, quite often such tools are capable of supporting only a specific process
model and are difficult, or altogether impossible, to adapt to those in use in a
given SME. To the best of our knowledge, ViSEK [8] is the tool whose aim is
closest to ours. However, ViSEK is a wide-spectrum portal targeting a public
sharing of knowledge and resources on software engineering. Instead, we need to
model a more sophisticated mechanism, where resources are owned by individual
SMEs, which can decide to keep some of them private, share some others with
their partners, and even publish a few, possibly in a restricted version. There-
fore, a fine-grained visibility policy has to be provided. Thus, the production
of a new system appears to be the only viable solution to the problem. In this
paper we describe a prototype of such a system, called Gesper, from GEStione
dell’ESPERienza (Experience Management), which is currently under develop-
ment by a group of SMEs and the Department of Computer Science (DISI) of
the University of Genova.

The requirements and the design of the resources managed by Gesper are
discussed in Section 1. Section 2 is devoted to the architecture and a sketch
of the implementation. At the end we briefly discuss our results and further
work.

1 Public information can quite easily found on the internet by using tools like Google.
The challenging problem is how to search data, which the SME wants to keep private.

740 M. Cerioli et al.

1 Experience Management in a Network of SMEs

Designing a tool for managing experiences and knowledge for a cluster of coop-
erating SMEs has been more challenging from the viewpoint of its integration in
the productive process and policies than technically. In the following subsections
we discuss Gesper requirements and the part of design that is implied by them.

1.1 High-Level Requirements of Gesper

In order to help the SMEs to keep up with the ever-evolving challenges of software
production, we have identified a few strategic points to be tackled.

First of all, the tool shall manage easy to access information, resources and
experiences, making them immediately expendable assets of the enterprise. No-
tice that experiences, being memorized in the system (as opposed to inside the
head of the person who actually made them) will be available independently of
the career choices of the experience originators. Ideally, people will access the
system to solve a specific problem and will get the correct resources, which could
be references to experts, hints or carefully documented explanations of the solu-
tion(s) found by other people in previous projects, tutorials, web references and
so forth. In Subsection 1.2 we will illustrate the conceptual model of managed re-
sources. It is worth noting, however, that the main requirements are parametric
on this model, being more concerned with searches and resource lifecycle, which
are independent from the structure of the managed resources. Thus, most part
of the requirement analysis and design of the tool discussed here, also applies to
other contextes where the resources are differently modelled.

As we argued, the resources to be hoarded and searched should have not only
a structure making immediate to extract knowledge from them, but also a clear
connection to the problems they refer to, so that the search can be problem-
driven, avoiding most false positives. To support this semantic search, resources
should be indexed using a common dictionary including the most relevant terms
of the problem domain. Thus, technically we need an ontology describing the
problem domain, so that the resources may be indexed by keywords chosen
from this ontology. Notice that the ontology is a configuration parameter of the
system and, though Gesper is based on an ontology for software development,
discussed in Subsection 2.1, it could be adapted to a different application domain
to support the management of experience for another market.

A second important point is the integration of the managed resources into the
company organization. This, on the one hand, means that they need to have a
well-defined lifecycle. That is, newly inserted resources have to get an approval in
order to become visible to users other than who has inserted them. In this way, for
instance, a practitioner writes the first draft and submits it while a person more
expert in company policies checks that the form agrees with the documentation
standards and that security concerns about private data disclosures are met.
This two-steps process also helps junior or newly hired staff to learn the company
practices by comparing their original draft to the published version. Moreover,
the resource will be updated or declared obsolete by an analogous review process,

Gesper: Support to Capitalize on Experience in a Network of SMEs 741

so that the repository will not be cluttered by useless information. On the other
hand, the integration requires the resources to have different levels of visibility,
so that the results of a query will depend on who is performing it, possibly
granting more privileges to employees of the SME owning the system than to
those working for partner companies, and limiting guest access to public data.

Finally, the efforts to document the development process required, for in-
stance, by a quality plan should not be duplicated in order to capitalize on the
experience gained during the development. Therefore, the information that can
be retrieved from project documents, people curricula, etc should be automati-
cally acquired, pending the check and approval of a human supervisor, of course.
Even in the cases when structured knowledge cannot be (semi)automatically ex-
tracted from existing documents, it may still be convenient to integrate them
in Gesper, to make them searchable in a problem-driven fashion and have their
lifecycle managed by the tool. Indeed, such documents may provide a solution,
albeit indirect, for some problem missing better answers by structured resources,
and they have almost no extra production costs.

So far, we have discussed the requirements of Gesper from the viewpoint of
an individual SME. However, the tool should also address the needs of a cluster
of SMEs, supporting their cooperation. To this aim, the main requirement is
the capability of sharing resources in a limited and controlled form, providing
different levels of visibility, in order to let each company have full control of its
own resources. Gesper is actually designed as a federation of instances. Thus,
each company in the cluster owns an instance, installed on some local server,
containing its own resources. On such server, internal and external users may
perform queries with the assigned privileges. The cluster also owns an instance,
which is populated with the resources, suitably restricted, of all the individual
SMEs, in order to provide a centralized search point. To guarantee that no un-
wanted disclosures take place, the instance of each company exports a restricted
view of its resources to the global instance.

1.2 Conceptual Model of Experience

A central point of the system design is the choice of which resources will be
managed by the system, that is, which kinds of resource will possibly be the
results of problem-driven searches. Indeed, modelling this aspect captures one
of the tailoring needs for the system to be usable by a specific SME.

Figure 1 shows the fragment of UML [16] class diagram describing the re-
sources at a high abstraction level. The root of the conceptual model is the
class Resource, representing any kind of managed resource. All the results of a
search in the system will be of a type extending Resource. Its attributes and
relationships, hence, are those needed by the system to represent resources with
a realistic lifecycle in the context of a cluster of companies and to use them for
problem-driven searches. Indeed, resources are tagged by keywords described by
the ontology, so that the semantic search is possible. The results of a search are
briefly presented by just showing their name and a short description, for the
user to decide if a closer examination is worthwhile. Depending on the role of

742 M. Cerioli et al.

Fig. 1. Conceptual model of resources

the user, who can be an employee of the company owning the resource, or of
a partner company, or just any guest, the level of visibility of the resource can
be full (that is, the user can see all the details), or restricted (that is, only the
name and the short description are shown), or none at all, corresponding to an
exclusion of that resource from the search results. For the owning company, the
visibility level is always full. However, not everybody in the company staff has
the complete control of the resource. In particular, two (possibly coinciding) roles
are identified for those entitled to editing: the employee who has submitted the
draft of the resource and the manager for approval of the resource. Indeed, each
resource has a status, which can be draft, automatically inserted (hence more
prone to contain errors), approved, and obsolete. The last value is automatically
set by the system when the resource has passed its expiring date and can be
reset by the approver, who is responsible for all aspects of the resource lifecycle.

Resources are specialized in order to capture different kinds of elements some-
how representing knowledge.

The class Person has a flag for distinguishing experts, who can appear as
results of a query if their expertise matches the search parameters. Persons who
are not flagged as experts may still be represented within Gesper, because they
are related to some other resource, for instance they work for the company or are
involved in some project, yet, they will not be yielded as results of any query. It is
interesting to note that during the requirement elicitation the SMEs involved as
clients refused to have the keywords and the expert flag automatically extracted
from the curricula of a person. Indeed, our clients want to keep the full control
on who should be contacted as expert on a given topic. Thus, Gesper allows
an employee to have a deep knowledge of some area, as recorded in his/her
curriculum, and yet not appear as an expert of that topic so that (s)he will not
be bothered with requests for help from his/her colleagues.

Gesper: Support to Capitalize on Experience in a Network of SMEs 743

Fig. 2. Conceptual model of resources representing experience

The class Project classifies not only the projects that involves, or involved, the
SME owning this installation of Gesper, but also those of partner companies and
those which some known expert participated in. Projects are valuable resources,
for instance, for solving problems in the area of locating prospective partners in
future projects or support of people experienced in the bureaucracy of a specific
form of funding. Moreover, projects are a natural source of implicit knowledge
in the form of the produced documents, which can be managed as elements of a
special subclass of ExperienceUnit.

The class Company has as elements the SME owning this installation of Ges-
per, owning all the resources inserted by its employees, and the other companies
in the SME cluster, the partners in some project, and so on.

The most interesting specialization of Resource is the class ExperienceUnit,
which captures the knowledge, both in implicit and explicit forms, accumulated
through the experience of the SME, its employees and partners. In Figure 2 we
detail the descendants of ExperienceUnit.

The first level of specialization distinguishes the experience units in categories,
accordingly to how the user can put the experience to practical use. Indeed, we
have Procedure, representing resources that directly describe a procedure to solve
a problem, like, for instance, hints and solution for specific problems formalized
as problem frames (see, e.g., [4]), ReusableUnit, whose instances are reusable
assets to be directly imported and used in the software development, like, for
instance, models, code or design patterns [9], and Document, which indirectly
provide knowledge, like, for instance, files managed by Gesper itself, or external
files, or even physical documents, e.g. books, CDs and DVDs.

744 M. Cerioli et al.

The deeper levels of specializations have been only partially worked out and
should be extended in a commercial tool. While a large part of the specialization
tree having Resource as root could be reused in the model of another system of
experience management for SME in different areas, the design of the categories
of reusable units and procedures is mostly specific of SMEs in the ICT field and
should be reworked for a different application.

1.3 Main Usage Scenarios

Let us briefly describe the usage scenarios concerning the core business of Gesper.
As they are quite intuitive, we here summarize them mostly in natural language.
However, they were all fully developed as use cases and we propose one of them
in full details to let the reader get the gist of Gesper documentation.

Fig. 3. Screenshot of the Wizard

When appropriate, the use cases are complemented by sketches of the corre-
sponding GUI, to give the clients a better understanding of the expected inter-
actions with the system.

In general, the user interface shall be as simple and intuitive as possible. It
will show a graphical view and a tree representation of the ontology, to allow
selecting keywords for resource searching and indexing, together with a research
panel and, possibly, several editing/creating resource forms in separate tabs. The
capability of inserting and/or editing multiple resources at the same time will be
extremely useful when, while editing a resource, say the person Phil (as in the
example shown in the screenshot in Figure 3), the user notices that the resource
should be linked to another that has not been entered yet. Suppose, for instance,

Gesper: Support to Capitalize on Experience in a Network of SMEs 745

that the resource the user is inserting is owned by ACME, a firm which is not in
the repository. Since the firm is not yet present, its name does not show up in
the combo box corresponding to the relation owned by. Thanks to the tab-based
interface, the user can open another tab to create the new firm, say ACME, and
save it in the repository. Because the combo boxes are automatically updated,
the user can then go back to editing the resource he/she was inserting, choose
ACME from the combo box and seamlessly continue his/her work.

Resource insertion use case

Name Resource insertion
Primary actors Internal User (IU)
Supporting actors None
Description IU adds a new resource to the system
Triggers None
Pre-conditions IU is logged in the system
Normal flow Course of actions

1. IU chooses to create a new resource (specifying its kind).
2. Gesper creates an empty edit tab for the new resource.
3. IU correctly fills in the fields with the resource data:

– selecting keywords from the ontology using indifferently the graphic
view or the tree representation

– choosing values from lists for enumeration types and resources.
4. IU saves the resource
5. Gesper automatically provides the values draft for the status, IU for

the inserter, and the current date for the creation date; then it saves the
new resource in the repository.

Post-conditions The repository contains the new resource
Additional requirements None
Notes and issues Data editing and creation will be supported by the GUI using:

– Combo boxes for fields admitting a finite (and reasonably small) set of
values (see, e.g., the visibility tags in Figure 3).

– Combo boxes for enumerating resources that could be linked with the
one the user is inserting or editing. Furthermore, these combo boxes
will be views on the repository, automatically updated when something
changes (see, e.g., the owned by field in Figure 3).

– Instant field validation, warning the users by means of not obtrusive
hints and forbidding to save inconsistent data (see, e.g., near the e-mail
field in Figure 3).

– The graphical and tree representations of the ontology for selecting the
keywords for the resource (not present in the fragment in Figure 3).

Automatic insertion of a documental resource. Logged users can choose
to insert a document using the Automatic-Input , to have the ontology keywords
automatically extracted by the tool.

746 M. Cerioli et al.

Users select a document file in their (local) system specifying the template2

it adheres to; for instance, that for meeting minutes. Then, the tool parses the
document, searching for ontology keywords to be associated with the resource.
Gesper completes the other data automatically as for manual insertion and saves
the new resource with state automatically inserted.

Edit and approval of a resource. Managers can review, edit and approve
resources. Gesper provides, to logged managers, a list of draft resources to be
reviewed. When one of these resource is selected by a manager, Gesper opens an
edit tab where the resource can be edited and, optionally, approved.

Searching. From the search page, users can insert a search string, choose which
kinds of resources they are interested in, and start the search. Gesper shows the
list of the matching resources and allows to refine the search string manually or
using input from either (or both) representations of the ontology.

When the search string contains one keyword from the ontology, the graphic
view of the ontology is centered on that (and the same one is selected on the tree
representation). Otherwise, if more keywords are present, then the user is asked
to choose the one to use as centering point of the ontology representations.

2 Gesper Architecture and Implementation

In this section we sketches Gesper architecture and briefly discuss the most
interesting implementation details.

It is interesting to note that a large part of the architecture has been almost
completely fixed by the decision, at the level of requirements, of using already
available open-source and freeware software. Thus, the design phase has focused
mainly on the definition of the ontology, discussed in Subsection 2.1.

2.1 Ontology

The choice of the ontology is an important part of the customization of Gesper.
Indeed, the ontology plays the role of dictionary for the keywords used to tag
the resources and hence to direct the searches. Thus, changing the ontology
effectively changes the applicative domain (within the limits imposed by the
modelled resources).

An acceptable ontology for Gesper should encompass not only the concepts
used in software development, covering both the technologies and the processes,
but also those specific of the applicative domains targeted by the SMEs using
the system. Clearly, if all the aspects are fully developed, the ontology risks
growing too much, becoming unmanageable. Therefore, we needed a carefully
designed ontology that, on the one hand, spreads on different domains, from
software engineering to, say, national healthcare organizations and industrial
2 Gesper has to be customized for the templates defined in a particular SME, for

instance by its QA plan. In the prototype we used templates of one of the client
SMEs.

Gesper: Support to Capitalize on Experience in a Network of SMEs 747

automation, and on the other hand, cut down to only those terms actually used
by the interested SME. For instance, cutting down the software engineering
terminology to those development processes actually used. Thus, we did not find
a satisfactory ontology among the plethora of those somehow related to software
development (see e.g., [1,15,13,20,19] and [5] for further references), as they were
missing the domain specific parts. Moreover, we were not able to combine several
ontologies on different domains to get what we needed, as merging the interesting
ontologies would have produced a too large result and required careful work to
avoid duplicates of concepts on the overlapping areas.

Therefore, we designed the ontology provided with the prototype in a col-
laborative way with the help of software developers working in several different
SMEs, in particular those playing the role of Gesper clients. The current ver-
sion is still incomplete, with only the major areas fully developed and should be
improved in a realistic tool.

The design process of the ontology consisted of two steps.
First we discussed the categories with the aid of a visual model of the ontology,

realized in UML, describing the infrastructure of the ontology. The model cap-
tures the classes used to categorize the concepts and their relationships, including
subtyping, in an immediate way, very easy to understand. Thus, it provided an
invaluable support to the several brainstorming meetings needed to finalize its
structure. By design, all classes of the ontology contain either individual ele-
ments, that is, are leaves of the hierarchy, or only subclasses. In this phase, we
also decided which part of the ontology to detail and use to index the resources
in the prototype.

The second step of the process was the selection of the individual instances
of the leaf classes and the links among those individuals, that is the instances
of the relations between classes. This further analysis has been conducted in an
asynchronous and concurrent way, starting from a textual file generated from the
model and containing the structure of the ontology, that is the list of the classes
and their relationships. Then each group involved in the design added to its
own copy of the file the interesting instances and their links in fixed format and
positions, so that the result could be automatically processed. The resulting files
were merged and the complete file was used, on the one hand, to automatically
import the ontology into Protégé (see, e.g., [18]), by a Protégé plug-in we have
developed for this purpose, and, on the other hand, to update the UML model,
by adding the class instances to it.

Finally, the Protégé project was exported in OWL [17] format to be used as a
configuration parameter of Gesper. While in the current prototype the ontology
is a fixed resource of the tool, an industrial strong tool should allow users to
update and extend the ontology as needed. This aim could be easily achieved,
for instance, by integrating the Protégé editor within Gesper.

The root level of the ontology is depicted in Figure 4. Notice that classes at this
level describe the standard concepts of any software development process and
are quite stable in time. On the contrary, the elements of the class Applicative
Domain have been produced by analyzing the current projects of the involved

748 M. Cerioli et al.

Fig. 4. Ontology: the Root View

SMEs. Thus, they are specific of the prototype and should be changed for a
different productive district. Moreover, even for the same group of users they
will change when the client portfolio of the SMEs evolves.

To give just the intuition of the complexity of the final ontology, Figure 5
depicts the fragment of diagram related to the applicative domain and the GIS.

Fig. 5. Ontology: the Applicative Domain View

2.2 Gesper Architecture

The architecture of Gesper consists of several independent modules, detailed
below, that work on the content repository, providing services like data input,
searches and analysis. Figure 6 contains a schematic view of the whole Gesper

Gesper: Support to Capitalize on Experience in a Network of SMEs 749

Fig. 6. Gesper architecture

architecture. The box on the left, GUI, represents a generic client, which, in
the current prototype, is a graphical user interface hosted inside a web browser.
The big rounded box represents an instance of a Gesper server, that is, a single
node of a federation, owned by a SME, that hosts a resource repository and its
services. Finally, the box on the bottom right, Shop, represents the central node
of the federation, which gathers (summarized) data from all the other nodes of
the federation and presents a view of this data to the public.

The implementation of Gesper relies on free tools and platforms; at its core
we find Alfresco [2], a Java-based open source ECM (Enterprise Content Man-
agement) providing document management and search facilities. Alfresco offers
its functionalities via Web Services and the Java Content Repository API. More-
over, Alfresco includes a web application allowing users to manage the document
repository through any web browser. This web application has been customized
and enriched to seamlessly work with the Gesper modules interacting with users.

At the moment there are eight modules: Wizard and Automatic-Input handle
data input, Ontology-Tree and Ontology-Graph allow to navigate the ontology,
Search, as the name implies, performs searches and Shop aggregates some data
to showcase the public results and resources of a Gesper federation. Finally, Ob-
jectifierWS and ShopWS are two auxiliary modules providing simple interfaces
to Alfresco; the former maps Java objects to and from the Alfresco repository
and the latter allow Shop to perform predefined queries.

Some modules run only on clients (for instance, Ontology-Tree) or on the
server (e.g., ObjectifierWS), but most of them consists of a client part, which is
a GUI for the users, and a server part, which interacts with the repository.

Let us detail the tasks of each module.
Although both Wizard and Automatic-Input handle data input, the former

presents the users a user-friendly interface to input/edit resources and handle
their lifecycles, while the latter performs offline batch acquisitions of (electronic)
documents, inferring their metadata by scanning their contents.

Wizard exploits AJAX technology using the GWT (Google Web Toolkit) [10]
that makes it easier to write high-performance AJAX applications. Using GWT,

750 M. Cerioli et al.

web applications can be developed in the Java programming language, using
full-featured Java integrated development environments, and then compiled into
highly optimized JavaScript.

Automatic-Input relies on the Java library DUO [6], a wrapper for UNO [21],
to read Word .doc and Open Office .odt documents. As mentioned before,
Automatic-Input needs to read the document contents in order to extract their
metadata. The module searches for keywords, belonging to the ontology, and
other information in fixed, but customizable, positions. For instance, the module
can extract the participant list from the minutes of a meeting. This is achieved
by using document templates, specifying the locations, inside documents, where
important metadata can be found and extracted. The prototype handles two
templates, one for meeting minutes and the other for development quality plans.

Ontology-Tree and Ontology-Graph allow the users to navigate through the
ontology. The former presents the entire (linearized) hierarchy of classes and
their instances in a tree-based way; the hierarchy has to be linearized because
every class can have any number of parents in the ontology. The view offered
by Ontology-Tree is best suited when the user is an expert, knows the relations
between the concepts, and, basically, knows “what to look for” (that is, where are
the exact keywords (s)he is looking for in the logical hierarchy). In these cases
the tree view offers the quickest access to any part of the ontology. However,
when the user is not an expert or needs advice on what entities are related
to what is current looking for, the tree based view is not particularly helpful,
because it does not represent any relationship but inheritance: in these cases the
Ontology-Graph kicks in. The Ontology-Graph offers a graph view where nodes
represent classes and instances, and edges represent relations among those. The
view is initially centered on a particular node and, to avoid cluttering the display,
only the selected node (the one the view is centered on) and its directly related
nodes are shown. Users can navigate the ontology by re-centering the view on
another area simply by clicking on the node they want to center the view on.
The use of this module is best suited for exploratory queries and for navigating
through the ontology, in order to gather ideas. Both ontology modules consists
of a server-side part, written in Java, and a client-side part written in Javascript.
The server components rely on Jena [11] for reading the ontology, stored as an
OWL [17] file. Ontology-Graph uses jsViz [12] to render the graphs.

The Search enriches the built-in search capabilities of Alfresco with semantic
searches, exploiting Ontology-Tree and Ontology-Graph on the client side, and a
small layer of custom code, on top of Alfresco search module, on the server side.

The Shop provides the users nicely formatted reports summarizing the pub-
lic data of all nodes inside a federation. Shop uses its server side counterpart,
ShopWS , to query the Alfresco repository. This latter module has been explicitly
designed with information security in mind, so it allows to run only queries that
have been previously checked and approved. This avoid any leak of sensitive in-
formation that could be, innocently or maliciously, gathered by running generic
queries run on the repository.

Gesper: Support to Capitalize on Experience in a Network of SMEs 751

3 Conclusions and Further Work

We have presented the insight gained by our experience of design and develop-
ment of a tool for managing experiences and knowledge in a small network of
SMEs. In order to contain the development costs, the use of open-source and free
software was required from the very beginning. This choice has greatly influenced
the design and the architecture of Gesper.

The most original features of Gesper are, on the one hand, the presentation of
knowledge in a problem-driven style supported by a semantic search based on an
ad-hoc ontology and, on the other hand, the management of resources directly
representing knowledge, as opposed to documents from which the knowledge
may be extracted, as it is in most cases.

Being a prototype, Gesper could be improved on a number of aspects, besides
a better implementation of the current features.

First, the role of administrator should be supported by tools to manage the
ontology, the users, and the templates to be used in the automatic acquisition of
documents. The former two activities are currently performed by functionalities
of respectively Protégé and Alfresco, which could be integrated in Gesper, pos-
sibly making this improvement not much expensive. The ontology maintanance
is prioritary, because of the quick changes of the applicative domain, requiring
the users to update constantly the terminology used to tag the resources.

A second aspect needing improvement is the management of the Gesper feder-
ation and, in particular, how to avoid resource duplications. Indeed, currently if
two SMEs share a resource, for instance a document of a joint project, two totally
independent instances of the resource exist, in the content management system
of each company. Though a better approach to sharing is obviously needed (and
solutions could be probably borrowed from the peer-to-peer field), privacy poli-
cies and dynamic aspects (for instance employees changing the company they
work for) make modelling the federative aspects quite challenging.

An extremely challenging add-in to Gesper, would be to automatically extract
knowledge from experience while it takes place, by means of a small wizard help-
ing the users to take notes of the relevant points during their normal workflow,
or of watchers, able to record the principal steps taken during procedures, or to
compute the resources used for some activity, to help future estimates.

Last, but not least, we need to analyze the user feedback to understand the
acceptance of the tool and see how to prioritize its improvements.

References

1. Garc̀ıa, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., Genero,
M.: Towards a consistent terminology for software measurement. Information &
Software Technology 48(8), 631–644 (2006)

2. Alfresco, http://www.alfresco.com/
3. Basili, V., McGarry, F.: The Experience Factory: How to Build and Run One. In:

Proceedings of the 1997 (19th) International Conference on Software Engineering.
IEEE publishing, Los Alamitos (1997)

http://www.alfresco.com/

752 M. Cerioli et al.

4. Choppy, C., Reggio, G.: A UML-based approach for problem frame oriented soft-
ware development. Information and Software Technology 47(14), 929–954 (2005)

5. Calero, C., Ruiz, F., Piattini, M.: Ontologies for Software Engineering and Software
Technology. Springer, Berlin (2006)

6. OpenOffice.org UNO/Java wrapper,
http://sourceforge.net/projects/duo-wrapper

7. Eclipse - an open development platform, http://www.eclipse.org/
8. Feldmann, R.L., Pizka, M.: An on-line software engineering repository for Ger-

many’s SME - an experience report. In: Henninger, S., Maurer, F. (eds.) LSO
2003. LNCS, vol. 2640, pp. 34–43. Springer, Heidelberg (2003)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

10. Google Web Toolkit, http://code.google.com/webtoolkit/
11. Jena – a semantic web framework for Java, http://jena.sourceforge.net/
12. jsViz, http://code.google.com/p/jsviz/
13. OpenCyc, http://www.opencyc.org/
14. Kim, G., Lee, M., Lee, J., Lee, K.: Design of SPICE experience factory model for

accumulation and utilization of process assessment experience. In: Proceedings of
Third ACIS International Conference on Software Engineering Research, Manage-
ment and Applications. IEEE publishing, Los Alamitos (2005)

15. Mendes, O., Abran, A.: Issues in the development of an ontology for a emerging
engineering discipline. In: Chu, W.C., Juristo Juzgado, N., Wong, W.E. (eds.)
Proceedings of the 17th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2005), Taipei, Taiwan, Republic of China, July
14-16, 2005, pp. 139–144 (2005)

16. OMG. UML superstructure specification v. 2.1.2 (2007),
http://www.omg.org/spec/UML/2.1.2/

17. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
18. Protégé, http://protege.stanford.edu/
19. Lin, S.S., Liu, F.H, Loe, S.F.: Building a knowledge base of IEEE/EAI 12207 and

CMMI with ontology. In: Proceedings of Sixth International Protégé Workshop,
Manchester, England, July 7–9 (2003)

20. Tansalarak, N., Claypool, K.T.: XCM: A component ontology. In: Proceedings of
Workshop on Ontologies as Software Engineering Artifacts (OOPSLA), October
24–28 (2004)

21. Open Office UNO - Universal Network Objects, http://udk.openoffice.org/

http://sourceforge.net/projects/duo-wrapper
http://www.eclipse.org/
http://code.google.com/webtoolkit/
http://jena.sourceforge.net/
http://code.google.com/p/jsviz/
http://www.opencyc.org/
http://www.omg.org/spec/UML/2.1.2/
http://www.w3.org/TR/owl-features/
http://protege.stanford.edu/
http://udk.openoffice.org/

Directed Generation of Test Data

for Static Semantics Checker

M.V. Arkhipova and S.V. Zelenov

Institute for System Programming of the Russian Academy of Sciences
{maryn,zelenov}@ispras.ru
http://www.unitesk.com

Abstract. We present an automatic method, named SemaTESK1, for
generation of test sets for a translator front end. We focus on the validation
and verification of static semantics checker. Most the know methods for
semantics test generation produce test suites by filtering a pre-generated
set of random texts in the target language. In contrast, SemaTESK al-
lows to generate tests for context conditions directly. It significantly re-
duces generation time and allows reaching completeness criteria defined
in the paper. The presented method to specify static semantics allows to
formalize informal requirements described in normative documents (e.g.
standard). The method includes SRL notation for compact formal speci-
fication of context conditions and STG tool for efficient generation of test
suite from SRL specification.

The SemaTESK method has been used in a number of projects, in-
cluding testing static semantics checkers of C and Java.

Keywords: Automated test data generation, context condition, gram-
mar, specification based testing, static semantics.

1 Introduction

Formal languages are widely used in many areas of IT: Programming languages
are the main instruments in software development; query languages are used to
manage databases; markup languages are used in various document processing
systems (e.g. browsers, text processors), etc. Translator is a program that con-
verts text written in a formal language into some appropriate form. For example,
a compiler translates a program into an executable form, a DBMS translates a
query written in a high level query language (e.g. SQL) into sequence of low
level operations on DB, a browser translates an information page into drawing
commands, etc. Defects in a translator break entities resulting from translation:
their properties differs from what is specified in the language specification. For
example, defects in executable entities induced by erroneous compiler are hard to
detect and find a workaround, thus correctness of executables obtained from an
incorrect compiler is always a doubt. Validation and verification of a translator
is an important activity for dissemination of the translator in industry.
1 SemaTESK stands for “Semantics Testing Kit”.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 753–768, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

754 M.V. Arkhipova and S.V. Zelenov

Validation and verification of translators is always complicated. The main
source of difficulties is complexity of input and output: the input is a document
with a furcated syntax structure and rich set of context constraints imposed by
the language specification, the output is written in machine or intermediate lan-
guage and possesses similar or even higher degree of complexity. The usual way
to cope with complications of translator validation and verification is decom-
position the validation and verification task into several subtasks that in total
cover the whole functionality of the translator. Typical translator includes the
following set of functions:

1. analysis of syntax correctness and parsing of input text;
2. checking static semantics2 of the input;
3. generation of the output.

In this paper, we focus on the task of validation and verification of static
semantics checker. We treat static semantics as a synonym to context conditions.
Within this paper a static semantics checker is a boolean function of the form
f : S(L) → B, where S(L) is a set of syntactically correct strings in the given
formal language L, and B = {true, false}. f(s) takes a value of true if string s
satisfies all context conditions of language L and takes a value of false if string
s violates at least one of the context conditions of the language L.

We use testing [1] based on formal specifications and models [2] as the primary
tool for validation and verification. In the course of testing, one checks a software
under test for quality on some specially created test input data. There is the
following problem: The set of test data should be representative, so that results
of the testing do reflect real quality of a software under test. Another problem is:
Usually, there are too many situations that should be tested. So, it is practically
impossible to create tests by hand. Usage of formal description of a software
under test allows both formulating appropriate test completeness criteria and
generating tests automatically.

1.1 Related Approaches

The most traditional way to specify language properties uses grammar of some
appropriate kind.

In order to generate semantically correct tests, the approaches presented in
works [3,4,5] use grammars in the form of extended BNF supplied with special
code fragments that incorporate semantics-related information: actions contain
some calculations, guards are used to check conditions that allow generating cor-
responding part of test. However, such form of a grammar3 is not a specification
of a language. It rather seems like a program for generating tests.

2 Given a formal language, a static semantics describes properties of the language
that may be checked at compile-time (such as scoping and static typing constraints),
whereas a dynamic semantics describes run-time properties of the language (“mean-
ing” of language constructs).

3 Sirer and Bershad in [5] call it a production grammar.

Directed Generation of Test Data for Static Semantics Checker 755

Boyapati et al. [6] presents the Korat test data generator. This generator uses a
specification of desired test data in the form of Java-method that checks correct-
ness of data structure, and parameters that restrict the set of all possible test data
to some finite set. Khurshid and Marinov [7] presents the TestEra framework for
specification-based testing of Java programs. Specifications are first-order logic
formulae written in Alloy declarative language [8]. TestEra also requires a bound
that limits the size of the test cases to be generated. Unfortunately, both Korat and
TestEra can not be provided with a domain-specific completeness criteria. They
generate all non-isomorphic structures that match given restrictions. Besides, in
the case of semantics checker testing, it is practically impossible to have a (either
reference or “under test”) checker written in Java.

Daniel et al. [9] present a method for automated testing of refactoring engines.
In order to generate tests for some refactoring, one should develop corresponding
generator on the basis of specific ASTGen library. The main disadvantage of this
approach is that test data generators are developed manually.

Harm and Lämmel [10,11] present approaches to automated test data gener-
ation for static semantics checker based on usage specification of semantics in
the form of attribute grammars (AG) [12]. Kalinov et al. [13] suggest another
approach to this task that uses specification in the form of Gurevich’s ASM [14].
The authors of these approaches consider various test coverage criteria for static
semantics checker testing and suggest corresponding automated test generators
that work as follows: First, the generator creates a set of syntactically correct
sentences; Next, the generator checks semantical correctness of every generated
sentence with the help of appropriate interpreter of AG or ASM specification of
semantics; All semantically incorrect sentences are rejected.

Thus, in those approaches, specification of semantics is used only for the follow-
ing purposes: To formulate coverage criteria and to check semantical correctness of
generated sentences. Tests generation is syntax-directed. In other words, specifica-
tion of semantics is not used to generate semantically correct sentences directly. In
general case, the generation process is very time-consuming: Generator has to cre-
ate millions of syntactically correct sentences in order to obtain several hundreds
of semantically correct tests. In papers [11,15], the authors of these approaches
suggest some optimizations of generation process: They try to reveal semantic in-
correctness of subsentences of generated sentences “as soon as possible”.

Here we proceed with discussion of AG-related approaches. Similar arguments
are also applicable to approaches based on ASM. AG is suitable for developing
checkers, but it seems not suitable for directed generation of tests. One can treat
an AG specification of language semantics as a predicate P over abstract syntax
trees. In order to create semantically correct test, one should find a tree t such
that P (t) = true. To do this, the AG-related approaches construct syntactically
correct trees t and check value P (t) for every t.

We believe that more effective way to generate semantically correct tests is to
use an algorithm that directly creates some solutions of the equation P (t) = true.
The form of classical AG is the main obstacle to solve this equation. AG is a

756 M.V. Arkhipova and S.V. Zelenov

very powerful tool. However, it has several essential weaknesses that are shown
in the following example.

Example 1. Let us consider some procedural programming language that re-
quires separate statements for variable declarations and assignments. There are
two context conditions:

1. All names of variables declared in one procedure must be different;
2. Name of an assigned variable must be declared in the same procedure.

In the classical AG approach, the corresponding part of attribute grammar
for this language looks as follows:

1: Procedure ::= (Stmt)*
2: { attribute SymbolTable vars;
3: attribute Boolean ok; };
4: Stmt ::= VarDecl | Assignment | ... ;
5: VarDecl ::= ‘‘var’’ <name:ID>
6: { Procedure.ok &= !Procedure.vars.has(name);
7: Procedure.vars.add(name); };
8: Assignment ::= <name:ID> ‘‘=’’ ...
9: { Procedure.ok &= Procedure.vars.has(name); };

In this grammar, there is the symbol table vars declared in the Procedure rule
that collects information about names of variables declared in one procedure. The
table is updated in the VarDecl rule and checked in the VarDecl and Assignment
rules. The checking results are stored in the boolean attribute ok declared in the
Procedure rule.

This example uncovers the following weaknesses of classical AG:

– The attributes declared in the Procedure rule are sort of global variables,
which yields well known problems in maintenance of a grammar.

– In order to formalize a context condition, one has to write many lines of code
in several different parts of a grammar: For example, the second context
condition (see above) is formalized in four lines (2, 3, 7, and 9) that relate
to three different rules. This yields very weak traceability.

We suppose that the weaknesses stated above do not allow creating semantically
correct tests directly on the basis of a language semantics description in AG
form. Indeed, a generator must be very intelligent to understand what it should
do in order to resolve a context condition.

In this paper, we present the SemaTESK method aimed at automated gener-
ation of tests for static semantics checkers. The SemaTESK method is based on
UniTESK approach [16,17] that belongs to the family of specification-based ap-
proaches to testing. The SemaTESK method includes an appropriate language
called SRL4. The purpose of SRL is to write formal specifications of static seman-
tics in a form that is suitable for directed generation of tests. The SemaTESK
method is supported by a test case generator called STG5 that allows automated
generating of tests on the basis of static semantics specifications written in SRL.
4 SRL stands for “Semantics Relation Language”.
5 STG stands for “Semantic Tests Generator”.

Directed Generation of Test Data for Static Semantics Checker 757

The remainder of the paper is organized as follows. In Section 2 we present
the SRL language. In Section 3 we formulate completeness criteria. In Section 4
we describe the STG generator. In Section 5 we show several application exam-
ples and discuss benefits of the SemaTESK method. Section 6 contains some
discussion. In Section 7 the paper is concluded.

2 Semantics Relation Language

2.1 Peculiarities of SRL

We start with the following example:

Example 2. The context condition “Name of an assigned variable must be de-
clared in the same procedure” from Example 1 written in SRL looks as follows:
one-to-many relation DeclareAssignedVarName {

ordered equal
target Assignment {name}
source VarDecl {name}
context: same Procedure }

One can read this context condition descriptor as follows: If there is an oc-
currence of Assignment in a sentence, then there must exist an occurrence of
VarDecl in the same Procedure such that the attribute name of the VarDecl
is equal to the attribute name of the Assignment, the Assignment must be in
succession to the VarDecl (i.e. the Assignment and VarDecl must be ordered),
and the name declared in one VarDecl may be used in many Assignments (cf.
one-to-many keyword).

This example shows the following peculiarities of SRL:

– The static semantics of a language are formalized as context condition de-
scriptors over an attributed context-free grammar. We do not relate a con-
text condition descriptor to a particular grammar production rule, as in AG,
since in many cases it is difficult to choose pertinent production rule (e.g. in
Example 2, do the context condition relates to Assignment? or to VarDecl?
or to Procedure? As Example 1 shows, in the AG-related approach, different
parts of code of this context condition relate to all those three rules!).

– One context condition from a language specification expressed in a natural
language corresponds to one block of code (i.e. context condition descriptor)
written in SRL. This yields efficient traceability.

– Context condition descriptors have a form of “item declaration — item us-
age” relations6. The core of a context condition descriptor is a pair of con-
structions started with keywords target and source. Generally speaking,
for any occurrence of target (i.e. an item usage), there must exist an appro-
priate occurrence of source (i.e. an item declaration) that meets the context
condition.

6 The practice shows, that in the majority of cases, context conditions are managed to
be specified in such manner but, when it is necessary, context condition specification
can be appended by Java code.

758 M.V. Arkhipova and S.V. Zelenov

At present, both the SRL language and the STG generator are still evolving.
Every new application of the STG generator uncovers new ways the generator
could be improved “if only SRL had this new feature”. Nevertheless, the underly-
ing principle of SRL remains firm, and this is the subject of the rest of this section.

2.2 The Form of Underlying Grammar

In order to formalize a context-free grammar, we use the TreeDL7 language [18].
The purpose of TreeDL is to describe structure of abstract syntax trees. TreeDL
allows describing structure of tree nodes that includes specification of children
nodes and additional attributes.

Example 3. The context-free part of the grammar presented in Example 1 may
be described in TreeDL as follows:

node Procedure { child Stmt* statements; }
abstract node Stmt {}
node VarDecl : Stmt { child ID name; }
node Assignment : Stmt { child ID name; ... }
node ID { attribute string value; }

The TreeDL form of a grammar has the following advantages over BNF:

– All children and attributes in one node are named; So, each child or attribute
can be unambiguously addressed.

– One can add some additional (e.g. semantics related) attributes into nodes.

2.3 Context Condition Descriptor

The main atomic object of a language semantics description written in SRL is
a context condition descriptor (CCD). Every CCD specifies a relation between
two nodes called source and target in the following sense: A structure of a target
node depends on a structure of a source node. In most cases, one can treat target
node as a usage of an item and a source node as a declaration of that item. In
Example 2, source and target nodes are described by their types:

target Assignment {...}
source VarDecl {...}

This description means that for the CCD under consideration, any node of
type Assignment may be a target and any node of type VarDecl may be a
source. In general case, source and target nodes may be described more accurate
(see Subsection 2.4). In fact, a CCD specifies a relation between some subtrees
of source and target nodes. Those subtrees are described in braces that follows
node descriptions. In Example 2, the CCD specifies a relation between the field
name of a source node and the field name of a target node:

target Assignment {name}
source VarDecl {name}

7 TreeDL stands for “Tree Description Language”.

Directed Generation of Test Data for Static Semantics Checker 759

One can treat such subtrees as arguments of a CCD. Dependency between the
arguments is specified by means of describing an appropriate dependency kind.
SRL provides several keywords to specify dependency between source and ter-
get. Those keywords cover almost all context conditions of typical programming
languages (see Subsection 2.5). In Example 2, the keyword equal is used in the
CCD in order to specify that the arguments must be equal.

In some cases, a context condition is restricted to have source and target in
some specific context. For instance, in Example 2, both assignment and variable
declaration must be in the same procedure. A context is specified in CCD by
means of context keyword. There are two variants of a context specification.

– If both source and target should be located in the same subtree with the
root node of type <RootNodeType>, then the following construction is used:

context: same <RootNodeType>

– If source and target must be in different subtrees with roots of (possibly)
different types, then the following construction is used:

context: differ source_context <SourceRootNodeType>
target_context <TargetRootNodeType>

If a source node of a CCD must precede the target node, then the CCD should
be marked by ordered keyword (cf. Example 2). Otherwise, it should be marked
by unordered keyword.

In order to specify, how many nodes may relate to each other by a depen-
dency imposed by a CCD, one should describe a relation type of the CCD (see
Subsection 2.6). In Example 2, the relation type is specified by the keyword
one-to-many that means that a name declared in one VarDecl may be used in
many Assignments.

Here we proceed with detailed description of some SRL constructions used in
CCDs.

2.4 Node Description

Source and target nodes are specified by paths over an abstract syntax tree. Such
a path has a form of chain e1. · · · .en of path elements ei separated by dots. Each
path matches a corresponding set of nodes. Such a set is defined inductively as
follows. Let S0 be an empty set, and Sk (k = 1, . . . , n) be a set of nodes that
match a path e1. · · · .ek. The set Sk (k = 1, . . . , n) depends on Sk−1 and the kind
of the element ek.

There are the following kinds of path elements:

– <NodeType> — if k = 1, then such an element matches all nodes N such
that type of N is <NodeType>; If k > 1, then it matches all nodes N such
that N is a child of type <NodeType> some node from Sk−1.

– <fieldName> — matches all nodes N such that N is a value of a child or an
attribute named <fieldName> in some node from Sk−1.

760 M.V. Arkhipova and S.V. Zelenov

– parent — matches all nodes N such that N is the parent of some node from
Sk−1.

– ^<ParentNodeType> — matches all nodes N such that N is the nearest
parent node of type <ParentNodeType> for some node from Sk−1.

– target — matches the target of the current CCD (valid only in path that
specifies a source node).

– context — matches the context of the current CCD (valid only if context
has the “same” form).

– source context and target context — match context of the source and
the target nodes of the current CCD correspondingly (valid only if context
has the “differ” form).

Example 4. For trees described in Example 3, the node description Assign-
ment.name specifies all names of all assignments, the node description Assign-
ment.^Procedure.VarDecl specifies all variable declarations contained in pro-
cedures that contain an assignment.

2.5 Dependency Kind

SRL provides the following keywords for specifying a kind of dependency between
arguments of a CCD:

– equal — means that values of the arguments of the CCD must be equal
(more precisely, subtrees that have the arguments of the CCD as roots must
be isomorphic).

– unequal — means that values of the arguments of the CCD must be different
(more precisely, subtrees that have the arguments of the CCD as roots must
not be isomorphic).

– present — means that if the source-related argument of the CCD exists,
then the target-related argument of the CCD must exist as well.

– absent — means that if the source-related argument of the CCD exists,
then the target-related argument of the CCD must not exist.

– compatible — means that the source-related argument of the CCD must
be compatible (in a sense of type compatibility in programming languages,
see Subsection 2.7) with the target-related argument of the CCD (in this
case, the arguments of the CCD must describe types; see Example 6 below).

We understand that in some cases, a dependency imposed by some context
condition may have a kind that differs from the kinds listed above. In such a
case, one should use the keyword custom and provide some additional program
code that implements processing the CCD in the test generator (this subject is
beyond the scope of this paper, see [19] for details). Practice shows that in a
such complex language as Java, there are only two context conditions (of about
300) that requires usage of the custom keyword8.

8 Those context conditions relates to semantics of method signature.

Directed Generation of Test Data for Static Semantics Checker 761

2.6 Relation Type

Relation type of a CCD specifies, how many nodes may relate to each other by
a dependency imposed by the CCD. SRL provides the following keywords for
specifying a relation type:

– The keyword one-to-many means that one source node may correspond
to many target nodes, such that for any occurrence of a target node, there
must exist an appropriate occurrence of a source node that meets the context
condition (see Example 2).

– The keyword many-to-many means that many source nodes may correspond
to many target nodes, such that any occurrence of a target node and any
occurrence of a source node (that differs from the occurrence of the target
node) must meet the context condition.

– The keyword one-node means that a context condition is imposed on one
node (more precisely, it is imposed on a subtree that has this node as the
root). Such a node is specified as a target node, and location of a source
node is addressed relatively to the target node (i.e. source construction of
a CCD starts with target).

Example 5. The context condition “All names of variables declared in one pro-
cedure must be different” from Example 1 written in SRL looks as follows:

many-to-many relation DifferentVarNames {
unordered unequal
target VarDecl {name}
source VarDecl {name}
context: same Procedure }

Example 6. Let the Assignment statement from Example 1 has an Expression
in its RHS. Let us consider the following corresponding TreeDL description:

node Assignment : Stmt { child ID name; child Expression rhs; attribute Type lhs_type; }
abstract node Expression { attribute Type type; }

In order to describe semantics of types, we add the attribute lhs type to the
Assignment node and the attribute type to the Expression node. Thus, the
context condition “A variable of one type can store only a value of a compatible
type” written in SRL looks as follows:

one-node relation AsgnTypes {
unordered compatible
target Assignment {rhs.type}
source target {lhs_type} }

2.7 Type Compatibility

Given a programming language, the semantics of the language usually has a
significant part that relates to semantics of types. Semantics of types is generally
reduced to conditions of type compatibility in different contexts.

In SRL, compatible types are specified as follows. Given a language under
consideration, one should specify a partially ordered set of types of the language

762 M.V. Arkhipova and S.V. Zelenov

imposed by the compatibility relation. Such a set should be specified by means
of chains of linearly ordered subsets. In order to specify a chain of types that
are compatible from left to right, one should enumerate the types of the chain
in an SRL typeset construction.

Example 7. Let us consider a language that contains the following types: short,
int, and long. For this language, type compatibility may be specified by the
following chain of types:

typeset PrimitiveTypes { PrimitiveType.SHORT, PrimitiveType.INT, PrimitiveType.LONG }

In this example, constructions PrimitiveType.SHORT and the others are the
possible values of node attributes that describe types of expressions (cf. the
attributes lhs type and type in Example 6).

The SRL language also allows describing compatibility of user-defined types.
This requires usage of some features of SRL that are beyond the scope of this
paper (see [19] for details).

3 Completeness Criteria

3.1 Semantically Correct Tests

Given an SRL specifications, one can formulate the following naive completeness
criterion for semantically correct tests: All CCDs from the specification must be
covered with respect to the following definition:

Definition 1. A CCD is considered covered iff a test set contains a sentence,
such that the corresponding abstract syntax tree contains two nodes that match
a pair of the source and the target of the CCD.

Example 8. Suppose that the language from Example 1 allows using nested
blocks in a procedure. A compiler developer will say that the following situ-
ations are different for a static semantics checker, whereas they cover the same
context condition:

{
{ var A;
var A; {
A = 1; A = 1;

} }
}

Thus, the criterion “All CCDs” is not sufficient for good testing, and one
can improve it by the following way: All CCDs from the specification must be
covered with all possible environments of source and target nodes with respect
to the following definition:

Definition 2. An environment of a node in an abstract syntax tree is a chain
of nodes on the path from the node under consideration to the root of the tree.

Directed Generation of Test Data for Static Semantics Checker 763

3.2 Semantically Incorrect Tests

Another important task in testing static semantics checkers is to test that a checker
rejects incorrect sentences. Given a test that violates some context conditions, one
may expect that a static semantics checker rejects this test and provides some ap-
propriate diagnostics. If the test violates several different context conditions, then
in general case it is difficult to predict the corresponding diagnostics since a checker
under test may exit immediately after detecting only one violated context condi-
tion. Thus, we suggest generating such tests that each test violates only one context
condition. Suppose that we can generate tests that do meet static semantics. In or-
der to generate tests that violates some context condition, we suggest to generate
tests that meet negation of this context condition.

Definition 3. Given a CCD R, a negation R̃ of R is a CCD such that the
following condition holds: if a sentence meets R̃, then the sentence violates R.

Example 9. An example of negation for the CCD “Name of an assigned variable
must be declared in the same procedure” from Example 2 looks as follows:

many-to-many relation DeclareAssignedVarName_neg {
ordered unequal
target Assignment {name}
source VarDecl {name}
context: same Procedure }

Let S be a specification of a language semantics written in SRL, and R ∈ S.
Let us consider the following R-negation of the specification: S̃(R) = {R̃} ∪
S\{R}. One can summarize the above discussion by the following completeness
criterion for semantically incorrect tests: For each CCD R, all negations R̃ must
be covered in S̃(R) with all possible environments of source and target nodes.

4 Semantic Tests Generator

The purpose of SRL is to describe a language semantics in a form that is suitable
for automated generation of tests for static semantics checker. In the method Se-
maTESK we present in this paper, the test case generator STG generates test
sets that meet the completeness criteria formulated above (see Section 3). STG
takes a corresponding language grammar in TreeDL and a context conditions
specification in SRL. The core of STG is the engine that builds syntax trees
according to the grammar and the context conditions. Text builder maps gener-
ated trees to concrete documents in the given language. Text builder traverses
syntax tree and creates textual elements that correspond to generated syntax
nodes. Before we briefly formulate the algorithm of test generation used in STG
engine (see [19] for details), let us give the following definitions.

Definition 4. A subtree of an abstract syntax tree is called a syntactically com-
plete tree if it corresponds to some syntactically correct sentence.

764 M.V. Arkhipova and S.V. Zelenov

Definition 5. A context condition corresponding to some target node and de-
scribed in some CCD over an abstract syntax tree is resolved if the tree contains
all necessary elements (nodes and attributes) in required contexts such that the
tree with this target node match the CCD.

Definition 6. An abstract syntax tree is called semantically complete if it cor-
responds to some semantically correct sentence.

Definition 7. Given a CCD, a subtree of an abstract syntax tree is called a
prime tree if it contains nodes that match specifications of source and target
nodes of the CCD.

One can treat a prime tree for some CCD as a tree that contains only the source
node and the target node with their environments. All context conditions in any
semantically complete tree are resolved.

The STG generator applies the following algorithm to each CCD from the
specification of a language semantics:

1. Given a CCD, the generator creates a set of all possible prime trees9 (with
respect to the given value of the recursion depth).

2. For each prime tree tprime, the generator creates a minimal10 syntactically
complete tree t that contains tprime as a subtree.

3. Given a syntactically complete tree t, the generator tries to create the cor-
responding semantically complete tree t̄ (see below).

4. If the generator successfully creates the tree t̄, then it prints its text in the
formal language under consideration.

The STG generator uses both attribute dependency graph and syntax tree for
stepwise directed creation of tests that meet context conditions. Given a syntax
tree obtained at the previous step, the generator searches the tree for unresolved
context conditions and, in order to resolve them, creates additional subtrees in
the tree. Given a syntactically complete tree t, the STG generator tries to create
the corresponding semantically complete tree by the following algorithm:

1. The generator searches the tree t for unresolved CCDs; If all CCDs are
resolved, then t is semantically complete.

2. In order to resolve the CCDs found on the previous step, the generator tries
to modify the tree by the following rules:
a) the prime subtree tprime is always invariant;
b) if for some one-to-many CCD, there is no a source node in the tree, then

the generator walks the tree and tries to add new subtree containing a
node that match the specification of a source node in the CCD;

9 This set consists of prime trees that contain source nodes and target nodes (w.r.t.
the CCD) in all various possible combinations of environments.

10 All lists are instantiated with minimal possible size; alternatives are instantiated to
the simples variant, e.g. empty or terminal, etc.

Directed Generation of Test Data for Static Semantics Checker 765

c) if a dependency kind of some CCD requires that the tree must contain
some specific node that currently does not exists in the tree, then the
generator tries to add new such node (like in rule 2.b).

3. If the generator could not resolve the previously found unresolved CCDs,
then the tree is rejected; Otherwise, go to the step 1 of this algorithm, since
the tree has been changed in the step 2 and may contain new unresolved
CCDs.

5 Case Studies

The SemaTESK method has been approved in the following projects:

– testing IPMP-21 message header processors [20];
– testing the C front-end of the GCC compiler;
– testing the CTESK translator [21] developed in ISP RAS.
– testing the JavaTESK translator [22] developed in ISP RAS.

Some properties of the languages under test are presented in Table 1.

Table 1. Properties of languages under test

Language Number of CCDs Size of specification Tests generated

IPMP-21 XML 4 28 lines 54

C 85 1019 lines about 10000

Java 278 3350 lines about 32000

The main purpose of the pilot project on testing IPMP-21 was to demon-
strate feasibility of SemaTESK approach to static semantics formalization for
the generation of semantically correct XML documents. The purpose of the pilot
project on testing GCC was to demonstrate feasibility of SemaTESK approach
to static semantics formalization of a complex programming language.

The SemaTESK method has been successfully approved in specifying seman-
tics of C for testing the CTESK translator [21] and in specifying semantics of
Java for testing the JavaTESK translator [22]: several bugs have been found in
the semantics checkers of translators that had been thoroughly tested before by
means of manually developed tests.

We consider a static semantics checker as a boolean function. In SemaTESK,
we use an automatic test oracle to run generated semantically correct tests. The
oracle considers a test run successful if a semantics checker under test returns
true for the given test input. In practice, the true value means that work of the
semantics checker completes without any error messages about context condi-
tions violations. To run generated semantically incorrect tests we also use the
automatic test oracle that considers a test run successful if a semantics checker
under test returns false for the given test input. In practice, the false value means
that the semantics checker completes with error messages about some context
conditions violations.

766 M.V. Arkhipova and S.V. Zelenov

Let us estimate benefits from using the SemaTESK method. Suppose that
one test for a static semantics checker contains about 10–30 lines of code. Here
are the approximate numbers of lines that should be manually written in order
to create 10 tests by means of different methods (the estimations are based on
the Table 1 and the assumption stated above):

– Manual development – about 100–300 of manually written lines per 10 tests.
– The SemaTESK method – about 1–2 of manually written lines per 10 tests.

Thus, the effort for development of tests by means of the SemaTESK method is
about hundred times less than the effort for manual test development.

6 Discussion

We have developed the SemaTESK method just for directed generation of test
data for static semantics checkers of formal languages. We doubt whether the
presented ideas can be used for generation of efficient static semantics checkers.

We have applied SemaTESK to testing checkers of programming languages
most of all. At present, the method is still evolving. Every new application of
it may require to improve both SRL and STG. We believe that the method is
applicable to testing checkers of formal documents content, telecommunications
messages, DB queries, etc as well.

It is of interest to note that the most promising way of SemaTESK use is a
generation of tests sets for language dialects under development. Because it is
rather simple to change specifications of language dialects and thus the amount
of handwork required to make language specification matching current state is
reduced. On the other hand, if some context conditions change, then it is much
easier to modify several CCDs in a corresponding SRL specifications than to
revise all manually written tests that concern the changed context conditions.

7 Conclusions

This paper presents the SemaTESK method that implements specification-based
testing approach for static semantics checker testing. The SemaTESK method
provides the SRL language for writing formal specifications of static semantics
in the form that yields efficient traceability and is suitable for semantics-directed
automated generation of tests. The SemaTESK method is supplied by the cor-
responding test case generator STG that allows generating test sets that meet
appropriate completeness criteria formulated on the basis of SRL specifications
of a language under test. The STG generator takes SRL specifications as an
input and automatically produces both semantically correct and semantically
incorrect (with unambiguously stated kind of an incorrectness) tests.

The SemaTESK method has been used in several case studies including testing
static semantics checker of such a complex programming languages as C and
Java. Obtained practical results prove effectiveness of the SemaTESK method.

Directed Generation of Test Data for Static Semantics Checker 767

References

1. Beizer, B.: Software Testing Techniques, 2nd edn. van Nostrand Reinhold (1990)
2. Petrenko, A.: Specification based testing: Towards practice. In: Bjørner, D., Broy,

M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 287–300. Springer, Hei-
delberg (2001)

3. Duncan, A., Hutchison, J.: Using attributed grammars to test designs and imple-
mentation. In: Proceedings of the 5th international conference on Software engi-
neering, pp. 170–178 (1981)

4. Guilmette, R.F.: TGGS: A flexible system for generating efficient test case gener-
ators (1995)

5. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In:
Second Conference on Domain-Specific Languages, pp. 1–13 (1999)

6. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. In: Proc. of International Symposium on Software Testing and Analysis
(ISSTA) (2002)

7. Khurshid, S., Marinov, D.: Testera: Specification-based testing of java programs
using sat. Automated Software Engineering Journal 11(4), 403–434 (2004)

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

9. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: ESEC/FSE, pp. 185–194 (2007)

10. Harm, J.: Automatic test program generation from formal language specifications.
Rostocker Informatik-Berishte 20, 33–56 (1997)

11. Harm, J., Lämmel, R.: Two-dimensional approximation coverage. Informat-
ica 24(3) (2000)

12. Paakki, J.: Attribute grammar paradigms – a high-level methodology in language
implementation. ACM Computing Surveys 27(2), 196–255 (1995)

13. Kalinov, A., Kossatchev, A., Posypkin, M., Shishkov, V.: Using ASM specification
for automatic test suite generation for mpC parallel programming language com-
piler. In: Proceedings of Fourth International Workshop on Action Semantic, AS
2002, BRICS note series NS-02-8, pp. 99–109 (2002)

14. Gurevich, Y.: Abstract state machines: An overview of the project. In: Seipel,
D., Turull-Torres, J.M.a. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 6–13. Springer,
Heidelberg (2004)

15. Kossatchev, A., Kutter, P., Posypkin, M.: Automated generation of strictly con-
forming tests based on formal specification of dynamic semantics of the program-
ming language. Programming and Computing Software 30(4), 218–229 (2004)

16. Bourdonov, I., Kossatchev, A., Kuliamin, V., Petrenko, A.: Unitesk test suite ar-
chitecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391,
pp. 77–88. Springer, Heidelberg (2002)

17. ISP RAS: UniTESK Technology Web-site, http://www.unitesk.com/
18. Demakov, A.V.: TreeDL: Tree Description Language,

http://treedl.sourceforge.net/treedl/treedl en.html
19. Arkhipova, M.V.: Automated Generation of Tests for Semantics Analysers in

Translators. PhD thesis, Moscow, Russia (in Russian) (2006)

http://www.unitesk.com/
http://treedl.sourceforge.net/treedl/treedl_en.html

768 M.V. Arkhipova and S.V. Zelenov

20. ISO/IEC JTC1/SC29/WG11: IPMP: Intellectual Property Management and Pro-
tection in MPEG Standards,
http://www.chiariglione.org/mpeg/standards/ipmp/

21. ISP RAS: CTESK: toolkit for testing applications developed in C,
http://www.unitesk.com/content/category/7/14/33/

22. ISP RAS: JavaTESK: Toolkit for testing applications developed in Java,
http://www.unitesk.com/content/category/7/28/74/

http://www.chiariglione.org/mpeg/standards/ipmp/
http://www.unitesk.com/content/category/7/14/33/
http://www.unitesk.com/content/category/7/28/74/

Event-Based Approach to Modelling Dynamic

Architecture:
Application to Mobile Ad-Hoc Network

Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

Christian.Attiogbe@univ-nantes.fr

Abstract. We describe an event-based approach to specifiy systems
with dynamically evolving architecture; the study is illustrated with the
structuring and routing in Mobile Ad-hoc Network. The resulting spec-
ification is augmented with desired properties and then analysed using
theorem proving and model checking tools.

Keywords: Specification, Verification, Dynamic Architecture, Event B.

1 Introduction

Distributed systems modelling, design, analysis and implementation are difficult
engineering tasks. They still pose challenging specification and analysis difficul-
ties. To master them one needs specific languages, methods and tools.

The general motivation of our work is the need for practical methods, tech-
niques and tools to help the developers in specifying and analysing asynchronous
systems with dynamically evolving architecture. They are systems composed of
several processes (multi-process) but their number and their structure may be
varying in the time. In this article we focus on the systematic specification and
analysis of these multi-process systems with evolving structure. We use Mobile
Ad-hoc Networks (MANET) as application domain. The expression dynamic
architecture refers to the evolving structure of such systems.

The contribution of this work is twofold: i) an event-based method to guide
the specification and analysis of multi-process systems that have dynamic archi-
tecture; ii) a proof of concept on mobile ad-hoc network modelling and analysis.

The remainder of the article is organised as follows: in the section 2 we describe
the main features of dynamic architectures and we present our specification
method. Section 3 provides an overview of the used tools (Event B and Pro
B). Section 4 presents the modelling and analysis of MANET. Finally Section 5
concludes the article.

2 Modelling Dynamic Architecture

In many specification contexts, one has to deal with dynamic configuration of the
systemarchitecture : an example is the growingnumber of client processes that par-
ticipate in a resource allocation system and that interact with the resource server.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 769–781, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

770 C. Attiogbé

2.1 Features of Multi-process Systems

Two main features characterise systems with dynamic architecture: structuring
and interaction.

The structure of a classical centralised software system is based on the compo-
sition of several sub-systems or processes. They are often parallely composed to
enable synchronisation and communication. Unlikely, decentralised systems with
dynamically evolving architecture have unfixed but varying structure. They can-
not be structuredwith parallel operators that compose a fixed number of processes;
they have an ad-hoc structure related to the number of involved processes.

Interaction is supported by communication and synchronisation between a
group of processes currently involved in the cooperation to achieve given goals
(the ones defined at the global system level). A group communication is then
needed for systems with dynamic architecture. But the structure of the group,
hence the architecture of the system, is varying; processes may join or leave
the group at any time. The interaction among the processes that compose the
system is based on message passing. A process of a group may send/receive
messages to/from other processes of the group. Regarding approaches such as
finite state automata, multi-process systems are often dealt with by considering
the composition or reasoning on an arbitrary high number of processes. However,
it is a biased solution to the problem of dynamic architecture.

2.2 Related Specification Approaches

State Transitions or FSM Approach. Capturing a process behaviour is intuitive
but state transition systems lack high level structures for complex processes.
Handling an undefined, variable number of processes is not tractable; dealing
with several instances of the same processes is not possible; synchronisation of
processes should be made explicit.

Process algebras. (such as CCS [16], CSP[18], LOTOS[15]) generalise state tran-
sition approaches and are widely used to model interacting processes; herein the
behaviours of elementary processes are described and then the parallel compo-
sition operators are used to combine the processes. Therefore the architecture
of a system is also a static composition of a finite number of processes. The
π−calculus [17] permits the description of evolving structures of processes but
new processes are generated from existing ones with the name passing mecha-
nisms; the π−calculus is also not yet well supported by tools.

Handling dynamic behaviour of processes and their architecture is not well
treated with the above classical approaches. Event-based approaches provide so-
lutions, they do not consider a specific configuration of communicating processes.
Events may be guarded and their occurrence may impact on any process of the
current system architecture.

B System Approach. The Event B approach is an event-based one where commu-
nicating asynchronous systems are modelled with the interleaved composition of
their behaviours viewed as event occurrences. A difficult concern is that of the

Event-Based Approach to Modelling Dynamic Architecture 771

completeness with respect to event ordering (liveness concerns): did the speci-
fication cover all the possible evolution (event sequences) expressed in the re-
quirement? Indeed one can have a consistent system (with respect to the stated
invariant) which does not meet the desired behavioural requirements. This is
particularly challenging for dynamically evolving systems.

Therefore rigorous guidelines are needed to help in discovering and expressing
the desired behaviours of a system with dynamic architecture; liveness properties
help to cover the related completeness aspect. The approach [5] that is used here
combines a process-oriented view (at low level) and an event-based one (at global
level); it copes with the specification of the dynamically interacting processes and
deals with the limitations described above. As an experimental framework we
use the Event-B method.

2.3 The Specification Method: Overview

The used specification method is summarised as follows.

– Structuring aspects: each identified type of process Pi that may participate
in the global system model is specified by considering its space state Si and
the events Ei with their description Evti that leads its behaviour and the
events to join and leave the system. Note that some events are common to
several processes; they handle interaction ans sharing aspects.

Pi =̂ 〈Si ,Ei ,Evti〉

At this low level, a process-oriented view is consider to discover the needed
events for a process behaviour.

– Interaction aspects: as far as communication is concerned we use guarded
events, message passing and ordering event occurrences; the processes syn-
chronise and communicate through the enabling/disabling of the guards of
their events. An event is used to model a process which is waiting for a
data; it may be blocked until the availability of the data (enabling the event
guard), which is the effect produced by another process event. Consider for
example the case of processes exchanging messages, one process waits for
the message and the other process sends the message. An abstract channel
modelled as a set, is used to wait for a message or to deposit it. Hence the
interaction between the processes are handled using common abstract chan-
nels. By the way, the communication is achieved in a completely decoupled
way to favour dynamic structuring.

– All the described processes are combined by a fusion operation that merges
state spaces and the events of the processes into a single global system S .

S =̂
⊎
i

〈Si ,Ei ,Evti〉

In the following the method is illustrated with the MANET system using B
abstract system.

772 C. Attiogbé

3 Overview of the Used Materials

In this study we use the Event B method as the practical framework of our spec-
ification method of the MANETs. Prior to the formal specification we provide
an overview of the Event B method[2,4] and the related Pro B tool[13].

3.1 Overview of Event B

Within the Event B framework, asynchronous systems may be developed and
structured using abstract systems [2,4]. Abstract systems are the basic structures
of the so-called event-driven B, and they replace the abstract machines which are
the basic structures of the earlier operation-driven approach of the B method[1].
An abstract system [2,4] describes a mathematical model of a system behav-
iour1. It is made mainly of a state description (constants, properties, variables
and invariant) and several event descriptions. Abstract systems are comparable
to Action Systems [7]; they describe a nondeterministic evolution of a system
through guarded actions. Dynamic constraints can be expressed within abstract
systems to specify various liveness properties [4,10]. The state of an abstract
system is described by variables and constants linked by an invariant. Variables
and constants represent the data space of the system being formalised. Abstract
systems may be refined like abstract machines [10,3].

Data of an Abstract System. At a higher level an abstract system models
and contains the data of an entire system, be it distributed or not. Abstract
systems have been used to formalise the behaviour of various (including distrib-
uted) systems [2,9,10,3]. Considering a global vision, the data that are formalised
within the abstract system may correspond to all the elements of the distributed
system.

Events of an Abstract System. Within B, an event is considered as the
observation of a system transition. Events are spontaneous and show the way a
system evolves. An event e is modelled as a guarded substitution: e =̂ eG =⇒ eB
where eG is the event guard and eB the event body or action.

An event may occur or may be observed only when its guard holds. The ac-
tion of an event describes, with generalised substitutions, how the system state
evolves when this event occurs. Several events may have their guards held simul-
taneously; in this case, only one of them occurs. The system makes internally
a nondeterministic choice. If no guard is true the abstract system is blocking
(deadlock).

An event has one of the general forms (Fig. 1) where gcv denotes the global
constants and variables of the abstract system containing the event; bv denotes
the bound variables (variables bound to any). P(bv ,gcv) denotes a predicate
P expressed with the variables bv and gcv ; in the same way GS(bv ,gcv) is a
generalised substitution S which models the event action using the variables bv
1 A system behaviour is the set of its possible transitions from state to state beginning

from an initial state.

Event-Based Approach to Modelling Dynamic Architecture 773

eventName �=
select P(gcv)

then GS(gcv)

end

(SELECT Form)

eventName �=
any bv where P(bv,gcv)

then GS(bv,gcv)

end

(ANY Form)

Fig. 1. General forms of events

and gcv . The select form is a particular case of the any form. The guard of
an event with the select form is P(gcv). The guard of an event with the any

form is ∃(bv).P(bv ,gcv).

Semantics and Consistency. The semantics of a B model described as an
abstract system relies on its invariant and is guaranteed by proof obligations
(POs). The consistency of the model is established by such proof obligations:

i) the initialisation U should establish the invariant I : [U]I ;
ii) each event of the given abstract system should preserve the invariant of the
model.

The proof obligation of an event with the any form (Fig. 1) is:

I(gcv) ∧ P(bv ,gcv) ∧ term(GS(bv ,gcv)) ⇒ [GS(bv ,gcv)]I(gcv)

where I(gcv) stands for the invariant of the abstract system.
The predicate term(GS(bv ,gcv)) expresses that the event should terminate. The

deadlock-freeness should be established for an abstract system: the disjunction
of the event guards should be true. The event-based semantics of an abstract
system A is the event traces of A (traces(A)); the set of finite event sequences
generated by the evolution of A. The B method is supported by the theorem
provers Atelier-B [12] and B-Toolkit [6] which are industrial tools. Public domain
tools such as B4free2 and ProB3 are available.

3.2 Overview of ProB

The ProB tool [13,14] is an animator and a model checker for B specifications.
It provides functionalities to display graphical view of automata. It supports
automated consistency checking of B specifications (an abstract machine or a
refinement with its state space, its initialisation and its operations). The con-
sistency checking is performed on all the reachable states of the machine. The
ProB also provides a constraint-based checking; with this approach ProB does
not explore the state space from the initialisation, it checks whether applying
one of the operation can result in an invariant violation independently from the
initialisation.

The ProB offers many functionalities. The main ones are organised within
three categories: Animation, Verification and Analysis. Several functionalities
2 B4free is one of the tool dedicated to Event B: www.B4free.fr
3 ProB www.stups.uni-duesseldorf.de/ProB/, is a free model checker for B.

774 C. Attiogbé

are provided for each category but here, we just list a few of them which are
used in this article.

In the Verification category, the following functionalities are available:
Temporal Model Checking: starting from a set of initialisation states (initial nodes),
it systematically explores the state space of the current B specification.
LTL Model Checking: this functionality enables one to check the specification
against a given LTL property.

In the Analysis category we consider the following functionality:
Compute Coverage: the state space (the nodes) and the transitions of the current
specification are checked, some statistics are given on deadlocked states, live
states4, covered and uncovered operations.

The ProB tool is used in our study to help in discharging consistency proof
obligations (invariant violation) and to check liveness properties.

4 Modelling the MANET System

The study of MANET (Mobile Ad-hoc Network)[11] is an active and challenging
field as this type of network is rapidly growing and supporting small and medium
size applications such as mobile services sharing, wireless peer-to-peer systems,
etc. We chose the field of MANET for this work because it is a challenging field
in the frontier of computer networks and software engineering. Especially, com-
munication protocols, which are specific software systems, should be correct to
ensure the (quality of) services deployed on networks. From the software sys-
tem point of view, the MANET system is a typical asynchronous system with
dynamically evolving architecture, it is decentralised. Moreover, its properties
(dynamicity, mobility, correctness, etc) need a combined use of several verifica-
tion techniques (namely a multifacet analysis).

4.1 Overview of Mobile Ad-Hoc Network

A mobile ad-hoc network [11] is a network formed by wireless mobile nodes
(called ad-hoc nodes) which are the users equipments or devices. A MANET
has no dedicated network infrastructure, but each node serves as a part of the
network and acts a router to forward messages or packets since there is no router
dedicated to that task.

A mobile ad-hoc network is formed only when a group of users put together
their resources to enable and perform communications; hence a mobile ad-hoc
network is dynamically created and may also desappear quickly.

In a MANET, the nodes communicate either by exchanging directly or via
intermediate nodes. Technically they use ISM band5 and more generally Wireless
LAN technologies. Each node is equipped with one or more radio interfaces
with specific transmission features. The transmission range of a node is the
transmission area accessible from this node. All the nodes in this range are
4 The already computed states.
5 They are radio system frequency initially dedicated to industrial, scientific and med-

ical usage.

Event-Based Approach to Modelling Dynamic Architecture 775

accessible directly (one hop); they are called the neighbours. To address a known
node which is not in its transmission range, the sender node sends its packet to
one of the neighbour nodes which is closer to the destination node (according
to the transmission ranges). Each node may communicates directly or indirectly
using relay nodes (multi-hop), with other nodes that are outside the sender range.

Dynamic Aspect. One of the main features of a MANET is its dynamic aspect:
the structure or topology of the network is frequently changing. A node may
join or leave the net at any time, changing the net topology. The structure or
topology of the net is then highly dynamic.

Mobility Aspect. The ad-hoc nodes may move at any time and very frequently
due to their mobile nature; consequently this impacts not only on the net topol-
ogy but also on its quality; there may be route changes, information loss, parti-
tions of the network into different networks, etc. As far as routing is concerned,
in classical infrastructure-based network, there are one or several nodes called
routers that are in charge of routing packets between nodes. For this purpose
the routers and the nodes are equipped with a routing table where there is the
information about how to join a given destination node or a network identified
with an Internet Address (IP address).

In the scope of MANET, efficient routing protocols development is a chal-
lenging concern. A message or packet sent to a node reaches it unless the net
is partitionned. The destination node of a packet is either in the range of the
sender node or it is in the range of an intermediate node that is closer to the des-
tination node or that is itself the destination. Concerning the time, it is assumed
to be discrete and divided into frames. A node has a set of neighbour nodes
during a frame. During a frame a node may be iddle, it also may send messages,
receive messages, forward the received messages. Before sending a message to a
destination, a source node sn which does not have the destination node address,
sends a route request to get this destination address. The request travels through
the net possibly with multi-hop and reaches the destination which sends back it
address. When the address is received by sn the latter can send its message to
the right destination address.

4.2 Formal Specification of MANET

In our study, a MANET is viewed as an evolving global system. Formally, it is
a set of nodes with a connection relationship: a configuration. The evolution of
the MANET is viewed as the combined evolution of the nodes, hence a sequence
of configurations; going from a configuration to another is observed as an event
and it depends on the actions performed by the net nodes.

Specifying Node Processes. A node is modelled as a process using Event B.
Each node has some features: an identifier, a location, an IP address, a connection
relation that indicates its neighbours, etc. Accordingly we have the Si part of
the node. A set of events (Ei) with the associated behaviours (Evti) defines the
process behaviour which leads the evolution of the system. Any node may initiate
a message for a given destination, send a message, receive a message, forward a

776 C. Attiogbé

message, leave a net (a transmission range). The behaviour described by these
events is observed only when a net exists; that means the net structuring events
are related to those needed for the routing. Also we deal with the creation of
a network by nodes which have a given range, other nodes may join or leave
this range. Therefore, in the B model, we link the range of a node with a given
abstract network.

Event B Specification of MANETs. The MANET is formed by the nodes
(already defined with Si ,Ei ,Evti). The formal specification of a MANET is a
set of possible sequence of configurations of the considered nodes. Concerning
the structuring aspect, we describe the configuration by state variables (hence a
state space) resulting from the fusion of the node state variables; the sequence of
configurations is modelled through the enabling of events which possibly modify
the state space. Concerning the evolution of the entire MANET system, we
consider the events of the nodes and also the common events related to the entire
system network (ie the management of ranges). All the network is dynamic, the
nodes leave and join it at any time, new ranges appear, others disappear, etc.

Moreover, from the methodological point of view, we have considered two
aspects in the Event B specification of MANET: the structuring of the networks
(the configuration related to the net topology) and the routing in the networks.

As far as routing is concerned we consider one of the widely studied routing
protocol of MANET: Ad-hoc On demand Distance Vector (AODV) [11].

Therefore a part of our B specification is related to the structuring and another
part is about the routing protocol.

Specifying the MANET Structure. The structuring of a MANET is achieved
using a set of state variables and an invariant that describes the nodes and their
current configurations:

invariant

nodes ⊆ NODE ∧ ranges ⊆ RANGE ∧ messages ⊆ MSG
∧ rangNodes ∈ ranges ↔ nodes ∧ reqMsg ∈ nodes ↔ messages
∧ inReqMsg , inRspMsg ∈ nodes ↔ messages
∧ waitReqMsg ∈ nodes ↔ messages
∧ · · ·

The evolution of the system depends on the set of events that define the nodes
and the specific system events: the observation of a net creation (newRange); an
existing net may disappear if there is no more connected nodes (rmvRange). The
other events considered for the network structuring are summarised in the table
Tab. 1;

The combination of the two categories of events forms an abstract MANET
specification which is the reference model for the specification. It describes a sys-
tem composed of node processes and abstract MANET networks. The evolving
of the system architecture is based on the fact that the event guards depends on
the variables nodes ,messages , · · · which in turn depend on current event. This
is illustrated by the non-deterministic form of the event specifications:

event =̂ ANY sn WHERE sn ∈ nodes THEN ... END

Event-Based Approach to Modelling Dynamic Architecture 777

Table 1. Network structuring events

Event Description

newRange A new network range appears
joinRange A node joins a range
leaveRange A node leaves a net range
newNode A new node appears
newMsg A node initiate a message

Specifying the AODV Routing Protocol. Within the Ad-hoc On demand
Distant Vector (AODV) protocol, each node acts as a router, contributes to
construct routes and forward messages to other nodes. There are two phases of
the protocol: route discovery and route maintenance. Route discovery is achieved
by exchanging Route Request (RREQ) and Route Response (RREP) messages.
The algorithm of the nodes is as follows: when a node desires to set up a route to
a destination node, it broadcasts a RREQ message to its neighbours (the nodes
in its range). The RREQ/RREP messages have the following main parameters:
the source node Id, the destination node Id, the number of hop.

When a node nd receives a RREQ message, i) either nd is itself a destina-
tion and nd responds with a RREP or nd is an active route to the searched
destination node then nd responds with a route information using the RREP
message; ii) otherwise nd broadcasts the RREQ further with the hop count of
RREQ increased by 1. When a node nd receives a duplicate RREQ, it drops the
message. The routing of message is symmetric when a node receives a RREP
message. The Event B specification comprises the events related to the routing
protocol described above. These events are listed in the table Tab. 2.

Table 2. Routing events

Event Description

sndRREQ Route Request sending
fwdRREQ Route Request forwarding
rcvRREQ Route Request receiving
sndRREP Route Response sending
fwdRREP Route Response forwarding
rcvRREP Route Response receiving

The B specification of a MANET is then an abstract system equipped with
these events (see Fig. 2).

We give in the following (see Fig. 3) the specification of the sndRREQ event
to illustrate the specification principle. Here, any node (sn) may send a message
(msg) that it has already prepared (msg ∈ reqMsg[{sn}]) to all the nodes in its
range (otherNodesInRange). Exchanged messages are modelled using abstract
channels (inRepMsg,repMsg).

The other events are specified in quite the same way. Therefore the complete
specification enables us to model the dynamic evolution of the MANET (as

778 C. Attiogbé

system MANET
sets NODE, RANGE, MSG /* abstract sets */
variables

nodes, ranges, messages, · · · /* state variables*/
invariant /* state space predicate

nodes ⊆ NODE ∧ ranges ⊆ RANGE
∧ messages ⊆ MSG ∧ rangNodes ∈ ranges ↔ nodes
∧ · · ·
initialisation

nodes, ranges, messages, rangNodes := ∅, ∅, ∅, ∅
‖ · · ·

events

newNODE �= · · ·
; newRANGE �= · · ·
; joinRange �= · · ·
; leaveRange �= · · ·
; newMsg �= · · ·
; sndRREQ �= · · ·
; rcvRREQ �= · · ·
; fwdRREQ �= · · ·
; newRespMsg �= · · ·
; sndRREP �= · · ·
; rcvRREP �= · · ·
end

Fig. 2. Structure of the abstract system

sndRREQ �= /* route request from sn to dn */
ANY sn,msg WHERE

sn ∈ nodes /* source */
∧ msg ∈ MSG ∧ msg ∈ messages
∧ msg ∈ reqMsg [{sn}] /* a msg initiated by nd */

THEN

LET otherNodesInRange
BE otherNodesInRange = {ndi | ndi ∈ nodes
∧ ndi
= sn ∧ rangNodes−1(sn) = rangNodes−1(ndi)}
IN inReqMsg :=

inReqMsg ∪ (otherNodesInRange ∗ {msg})
‖ reqMsg := reqMsg − {(sn !→ msg)}

END

END

Fig. 3. Specification of the sndRREQ event

Fig. 4. Evolution and various dynamic interactions

illustrated in Fig. 4) and the routing protocol via dynamically interacting vari-
able number of node processes.

4.3 Analysis of the Specified MANET System

A multifacet analysis with a reference abstract model is performed on the MANET
system. For this purpose two different tools are used but they cover different facets

Event-Based Approach to Modelling Dynamic Architecture 779

of the analysis: B4free and ProB [13]. Both tools use one common input specifica-
tion: the B reference model previously specified; this ensures consistency of veri-
fication and feedbacks.

Consistency and Refinement of System. The previously described abstract
system is proved consistent (see Sect.3.1) using the B4free tool. Then it is re-
fined; more details are added to the state space and the event specifications;
for instance we consider the management of the IP addresses of the nodes and
exchanged messages. Unlike in the abstract system where a packet destination
is nondeterministically selected, in the refinement the nodes and the messages
have IP addresses, therefore, the receiver node is checked against the destination
IP address. The resulting refined system is also proved correct with respect to
consistency using the B4free tool. However to accomplish the proofs, we com-
bine the use of B4free and ProB. That is, when a proof obligation is not dis-
charged by B4free, we model-check the specification and discover possible errors
by displaying and analysing the displayed error state. Accordingly the feedback
is propagated in the reference model and we iterate. This multifacet analysis
approach helps here to make precise the correct ordering of the events: the sim-
ulation functionalities and the listing of uncovered operations help to correct the
B abstract system. This aspect is very important because, an abstract system
proved correct, may have an incomplete or even a wrong behaviour if for example
we have an event which is never enabled. Using the multifacet approach, helps us
to get a complete analysis. The ab. 3 shows a ProB experiment result where one
deadlock is detected after the exploration of 31257 nodes and 1168 transitions ;
all operations (the B events) are covered, with the indicated occurrences.

Table 3. Analysis results

NODES
invariant violated : 0
deadlocked : 1
live : 2521
explored transitions : 1168
open : 28735
total : 31257
TOTAL OPERATIONS
44110

COVERED OPERATIONS
initialise machine : 1
newRANGE : 225
rcvRREP : 14
sndRREP : 29
newRespMsg : 300
sndRREQ : 1829
rcvRREQ : 1697
newNODE : 10487
joinRange : 7411
leaveRange : 9721
newMsg : 11042
fwdRREQ : 1354
UNCOVERED OPERATIONS

The state corresponding to the deadlock is carefully analysed. We discover
that it corresponds to a situation (net partitioning) where there are nodes with
some packets to be transmitted but no node in the current net range. This

780 C. Attiogbé

corresponds to a real-life situation which is due to the dynamic aspect of the
MANET and the mobility of nodes. A feedback is then propagated in the Event
B specification. To confirm that, the model is corrected by strengthening the
guard of message initiation by the hypothesis of non-emptiness of the net range.
Thus the analysis of the model runs without errors6. In the real-life situation,
this corresponds to the fact that after a while the net may be reconstituted with
other nodes.

Liveness Properties Analysis. Many properties of the MANET routing pro-
tocol are well-expressed using LTL formula which is not supported by the B4free
tool. We express these liveness properties with the ProB LTL formalism. Then
we extend the Event B abstract system with these LTL properties; the resulting
specification is model-checked.

The following are illustrations of some checked properties.
P1. A route request is always followed by a response:
G(e(sndRREQ)⇒ F (e(sndRREP))) false
P2. A route request may be followed by a response:
e(sndRREQ)⇒ F (e(sndRREP)) true
P3. A route request may be finally received:
F (e(sndRREQ)⇒ X (e(rcvRREQ))) true

We come to the conclusion that our model of the MANET extended with the
stated properties, is correct with respect to these properties.

5 Conclusion

We presented the main features of decentralised system with dynamically evolv-
ing architecture; we showed that these features are not well handled with classical
state-oriented approaches and accordingly we presented a method that deals with
them using event-based approach. The composition of processes used to model
the system components is completely decoupled to favour the evolving of the sys-
tem architecture. The method which combines a process-oriented view (at low
level) and an event-based one (at global level) was illustrated with the specifica-
tion and the analysis of a MANET system. The proof is given that the specified
system with dynamic architecture may be studied with respect to safety and live-
ness properties. For this purpose the Event B tools are used. There are several
works on dynamic and self-managing component architectures, [8] presents a sur-
vey; most of them use a process-algebra oriented approach, focus on the changes
on defined architectures and define rules to perform reconfiguration. Compared
with these works our event-based approach adds distribution and mobility of
processes and no predefined reconfiguration rules are needed, instead we con-
sider the behaviour of process types. Ongoing works are about the scalability of
our approach; we consider precisely two aspects, one is the analysis of Mobile
Linux codes (drivers) for embedded systems by considering their abstractions,
the other one is the strengthening of message passing aspects and the refinement
of our specifications into executable codes for physical devices.
6 The experiment result tables, not displayed here, show 0 deadlocked states for hun-

dreds of explored states and transitions.

Event-Based Approach to Modelling Dynamic Architecture 781

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Extending B without Changing it (for developping distributed sys-

tems). In: Habrias, H. (ed.) Proc. of the 1st Conf. on the B method, France, pp.
169–190 (1996)

3. Abrial, J.-R., Cansell, D., Mery, D.: Formal Derivation of Spanning Trees Algo-
rithms. In: Bert, D., et al. (eds.) ZB 2003. LNCS, vol. 2651, pp. 457–476. Springer,
Heidelberg (2003)

4. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

5. Attiogbé, C.: Multi-process Systems Analysis using Event B: Application to Group
Communication Systems. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 660–677. Springer, Heidelberg (2006)

6. B-Core. B-Toolkit, UK (consulted, 2007), www.b-core.com
7. Back, R., Kurki-Suonio, R.: Decentralisation of Process Nets with Centralised Con-

trol. In: Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distrib-
uted Computing, pp. 131–142 (1983)

8. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: WOSS 2004: Pro-
ceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, pp. 28–33.
ACM, New York (2004)

9. Butler, M., Walden, M.: Distributed System Development in B. In: Habrias, H.
(ed.) Proc. of the 1st Conference on the B method, France, pp. 155–168 (1996)

10. Cansell, D., Gopalakrishnan, G., Jones, M., Mery, D.: Incremental Proof of the
Producer/Consumer Property for the PCI Protocol. In: Bert, D., P. Bowen, J., C.
Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 22–41.
Springer, Heidelberg (2002)

11. Chlamtac, I., Conti, M., Liu, J.: Mobile Ad hoc Networking: Imperatives and Chal-
lenges. Ad Hoc Networks 1(1), 13–64 (2003)

12. ClearSy. Atelier B V3.6. Steria, Aix-en-Provence, France, (consulted, 2007),
www.clearsy.com

13. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

14. Leuschel, M., Turner, E.: Visualizing Larger State Spaces in ProB. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
6–23. Springer, Heidelberg (2005)

15. Lotos, I.: A Formal Description Technique Based on The Temporal Ordering of
Observational Behaviour. In: IOS - OSI, Geneva (1988); International Standard
8807

16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

17. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Journal of
Information and Computation 100 (1992)

18. Roscoe, A.: The Theory and Practice of concurrency. Prentice-Hall, Englewood
Cliffs (1998)

www.b-core.com
www.clearsy.com

Trusted Theorem Proving: A Case Study in

SLD-Resolution

Konstantine Arkoudas and Olin Shivers

MIT Computer Science and Artificial Intelligence Lab
Northeastern University College of Computer and Information Science

arkoudas@csail.mit.edu, shivers@ccs.neu.edu

Abstract. Prolog’s implementation of SLD-resolution furnishes an effi-
cient theorem-proving technique for the Horn-clause subset of first-order
logic, and makes for a powerful addition to any automatic or semi-
automatic verification system. However, due to the complexity of SLD-
resolution, a naive incorporation of a Prolog engine into such a system
would inordinately increase the overall trusted base. In this paper we
show how to integrate this procedure in a disciplined, trusted manner,
by making the Prolog engine justify its results with very simple nat-
ural deduction reasoning. In effect, instead of taking SLD-resolution as
a primitive inference rule, we express it as a derived inference rule in
terms of much simpler rules such as conditional elimination.

This reduction is an example of a general methodology for building
highly reliable software systems called certified computation, whereby a
program not only produces a result r for a given input x but also proves
that r is correct for x. Such a proof can be viewed as a certificate for the
result r, and can significantly enhance the latter’s credibility: if we trust
the axioms and inference rules used in the proof, we can trust the result.
We present a complete implementation of a certifying Prolog interpreter
that relies only on three exceptionally simple inference rules: conditional
elimination, universal specialization, and conjunction introduction.

1 Introduction

The key concern in formal verification is trust. The trusted base of a digital
system S, or TB(S) for short, can be understood roughly as the totality of
propositions whose truth must be taken for granted if we are to be justified in
accepting the correctness of S. This base consists of two main parts: a body of
theoretical principles subserving the operation of S; and a set of software and
hardware components whose operation must be assumed to be correct if we are
to be justified in believing that the operation of S is correct. For example, if S
is an implementation of the simplex algorithm, then TB(S) includes a body of
mathematical theory (the theory of linear programming), as well as assumptions
about the actual software and hardware involved in the implementation. In par-
ticular, we must assume the soundness of the theory on which the algorithm is
based (and the soundness of the algorithm itself); and we must also assume that

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 782–796, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trusted Theorem Proving: A Case Study in SLD-Resolution 783

the particular program which we are using is a correct implementation of that
algorithm. In addition, the trusted base recursively includes the trusted bases of
all the software and hardware components mediating the implementation, most
notably the compiler of the language in which the algorithm is implemented, the
underlying operating system, and the actual hardware on which the implemen-
tation runs. However, since they tend to be invariant over many different pieces
of software, in practice these recursive inclusions of nested trusted bases tend to
be disregarded.

Now suppose we use a verification technology V (involving, e.g., theorem
proving, model checking, proof checking, or any combination thereof) to verify
that some system S has some desired property. What reason do we have for
believing the result of the verification? In particular, why should we believe the
verification of S any more than S itself? Indeed, it is often overlooked that
V itself has a trusted base, TB(V). The trusted base of V includes both a
body of theory and a set of software and hardware systems which rely on that
theory. Now, if the trusted base of V is larger than the trusted base of the
system S whose correctness we are trying to verify, then the verification exercise
will not buy us anything. This can happen if the theory on which V rests is
inordinately complicated or insufficiently understood; or if the implementation of
V contains bugs; or both. Typically the theoretical concerns are minimal because
the logics on which these verification systems rest (e.g. first-order or higher-order
logic) have been extensively investigated over long periods of time. The practical
concerns about implementation bugs, however, are more serious. Clearly, the
larger the code base of a verification system, the higher the probability that it
contains errors.

For instance, if we are using a theorem prover T written in 50,000 lines of
C code to verify a string-matching algorithm M written in 200 lines of code,
something is clearly amiss. Of course, one could argue that the prover T has
been successfully used in many other projects before, and hence our confidence
in it is considerably larger than our confidence in M . But that is mere inductive
evidence. All it says is that the prover T has been well-tested. So why not do
the same for M , instead of verifying it formally? That is, why not simply test
M thoroughly until our confidence in it becomes just as solid as our confidence
in T ? That would certainly be a lot easier than formal verification. The answer,
of course, is that we are looking for some sort of assurance that is qualitatively
more compelling than the type of inductive evidence we can get from testing
and experience. And such assurance will not be forthcoming if the best we can
do is point out that T has been extensively tested in the past. A more promising
possibility suggests itself: Perhaps the theorem prover T itself has been formally
verified! But then the same questions arise anew. What system T ′ was used to
verify T ? What theory did T ′ rely on? How large was the code base implementing
T ′? And so on.

One way to avoid the regress is to engineer T so that it provably relies on a
very simple and well-understood logic L, comprising a small number of inference
rules and axioms, in such a way that any computation of T that results in a

784 K. Arkoudas and O. Shivers

theorem p is guaranteed to correspond to a proof of p in L. Perhaps the most
common way of achieving this is to endow the system with a metalanguage, so
that any computation of T consists essentially of two stages, the first analytic and
the second synthetic: (a) a proof search in L, encoded in the said metalanguage;
and, assuming that a proof is found, (b) the execution or evaluation of that
proof. The main feature of this approach, which was pioneered by LCF [5] and
later HOL [6], is that the user can write arbitrarily complicated tactics, and yet
the system is structured in such a way that it can never go wrong, i.e., it can
never result in a false theorem, because ultimately all outputs of type “theorem”
are obtained by putting together a proof in L during stage (b) above.

However, this guarantee is theoretical: It only tells us that the theoretical
commitments of T are fairly minimal, i.e., those of L. In practice we still have to
trust that the particular implementation of T which we are using is free of errors.
This is non-trivial, since the metalanguage of T is likely to include sophisticated
computational mechanisms for proof search. But we can do better here. We
can avoid trusting the implementation of T by decoupling its general (total)
correctness from the correctness of its specific results, by having T output the
proof that was put together during the synthetic stage (b) above. That proof can
then be checked independently by a proof checker for L, which will presumably
be much smaller and simpler than T .

An interesting variation of this idea is the notion of certified computation [2],
whereby instead of verifying a digital system S in a trusted theorem prover T ,
we directly implement S in T . An implementation of this sort not only produces
a result r for a given input x, but also proves that r is correct for x. Such a
proof can be viewed as a certificate for the result r, and can greatly enhance the
latter’s credibility: If we trust the axioms and inference rules used in the proof,
we can trust the result.

In what follows we will illustrate this methodology by developing a certified
implementation of SLD-resolution. Prolog’s implementation [13] of the SLD-
resolution technique of logic programming [9] furnishes an efficient theorem-
proving tool for the Horn-clause subset of predicate logic, and makes for a
powerful addition to any general-purpose theorem prover. But Prolog’s execution
model is too complex to be used as a trusted primitive. A naive incorporation
of a Prolog engine into a theorem prover would greatly increase the prover’s
trusted base: We would need to trust the engine’s implementation of unification,
backtracking, substitution operations, and a good deal of other non-trivial code.
Here we show how to implement this technique in a trusted manner, by making
the Prolog engine justify its results using extremely simple reasoning. In effect,
instead of taking SLD-resolution as a primitive inference rule, we show how to
express it as a derived inference rule in terms of much simpler rules such as
modus ponens.

Strictly speaking, it is not necessary to use a provably sound programmable
logical framework for certified computation. In principle, the proof search could
be performed in any language whatsoever, as long as every output is ultimately
backed up by a proof (certificate) in L. However, our discussion will demonstrate

Trusted Theorem Proving: A Case Study in SLD-Resolution 785

that the use of a rich logical framework can greatly facilitate both the analytic
stage of proof search and the generation of the proof. In fact, as we will see, the
second stage does not have to be explicitly programmed at all. In the type of
logical framework we will be considering, the generation of the proof is automatic,
i.e., stage (b) is always followed by the successful conclusion of stage (a).

The particular logical framework that we use is Athena [1], a programmable
theorem-proving system in the tradition of HOL, i.e., in which every proof search
is guaranteed to result in a valid theorem. However, unlike HOL-like systems,
Athena is based on a much more intuitive block-structured Fitch-style system
of natural deduction, instead of a sequent calculus. This style of proof is known
to have the closest resemblance to informal mathematical reasoning [11]. More-
over, unlike the Isar front end for Isabelle [15], Athena’s block-structured style
of natural deduction is not just a veneer for a sequent calculus, but is instead
reflected in the native syntax and semantics of the system. In particular, a block-
structured natural deduction format is used not only for writing proofs, but also
for writing tactics—or methods, in Athena’s terminology. Methods in this style
are considerably easier to write; complicated proof-search algorithms can be ex-
pressed succinctly and fluidly. As a result, methods are widely used in Athena
(see, e.g., [3,12]). Our implementation was also facilitated by several high-level
features offered by Athena, such as sophisticated pattern matching, built-in back-
tracking mechanisms, first-class proof continuations, anonymous methods, and
a combination of state with lexical scoping and higher-order methods and func-
tions. We also leveraged Athena’s built-in support for terms and propositions,
including substitutions and unification. As a result, the entire implementation
takes less than one page of code, even though it achieves a dramatic trust reduc-
tion. Specifically, it expresses SLD-resolution in terms of only three exceptionally
simple inference rules: modus ponens, conjunction introduction, and universal
specialization.

2 SLD Trees

In what follows Horn clauses will be called rules (or sometimes axioms), and will
be represented by Athena propositions of the form

(∀x1) · · · (∀xn) [P1(x1, . . . , xn) ∧ · · · ∧ Pk(x1, . . . , xn)⇒R(x1, . . . , xn)] (1)

for n ≥ 0, k ≥ 1, whereR(x1, . . . , xn) and each Pi(x1, . . . , xn) are atomic proposi-
tions that may have free occurrences of x1, . . . , xn; no variables outside x1, . . . , xn

may occur in these atoms. We will refer to the atoms

P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn) (2)

as the antecedents of the rule, and to the atom R(x1, . . . , xn) as its conclusion.
The conjunction of the antecedents, P1(x1, . . . , xn) ∧ · · · ∧ Pk(x1, . . . , xn), will
be called the body of the rule. By a fact we will mean a rule whose antecedent is
the sole atom true. A query is simply an atomic proposition. For any rule R of

786 K. Arkoudas and O. Shivers

the form (1), we define Ant(R) as the list of its antecedents (given in the order
of (2)). It is convenient to stipulate that Ant(R) = [] whenever R is a fact. The
symbol ⊕ will denote the binary operation of list concatenation.

We can now give a partial formulation of the problem as follows (a more
precise problem statement will be given shortly): Define a binary tactic solve

that takes a list of rules [R1, . . . ,Rn] and a list of queries [Q1, . . . , Qm] and
produces a theorem of the form Q′

1 ∧ · · · ∧Q′
m that is a ground instance of the

proposition Q1 ∧ · · · ∧Qm; in other words, such that

θ(Q1 ∧ · · · ∧Qm) = Q′
1 ∧ · · · ∧Q′

m

for some substitution θ that maps the free variables of Q1, . . . , Qm to ground
terms. (Of course solve may also fail or get into an infinite loop.) Thus the second
argument to solve represents our queries and the first argument represents the
“logic program”—a list of rules [R1, . . . ,Rn] of the form described above. These
rules should be in the assumption base at the time when solve is invoked. The
order in which the rules appear in the given list is important. The rules should
be given in the order in which they would be listed in a Prolog program. This
might affect termination. Further, solve should not use any axioms other than
the given rules and no primitive methods other than simple introduction and
elimination rules for the propositional connectives and quantifiers.

By a computation rule we will understand any unary computable function
C that takes an arbitrary non-empty list of queries L and produces a triple
〈L1, G, L2〉 consisting of a query list L1, a single query G, and another query list
L2 such that L1 ⊕ [G]⊕ L2 = L. Hence, the triple 〈L1, G, L2〉 represents a de-
composition of L into a prefix L1, a selected goal G, and a suffix L2. Every deter-
ministic interpreter of logic programs must fix a computation rule. Prolog makes
a particularly simple choice: the selected goal is always the first element of the
given query list. Therefore, using our definitions, for any given L = [G1, . . . , Gk],
k > 0, Prolog’s computation rule returns the triple 〈[], G1, [G2, . . . , Gk]〉.

For the remainder of this section fix a set of function symbols F and a disjoint
set of relation symbols R, with each f ∈ F and p ∈ R having a unique non-
negative arity, and a countably infinite set of variables V, disjoint from F and
R. We assume that V is totally ordered by some computable binary relation
≺, and we will use v as a metavariable ranging over V . The Herbrand universe
Terms(F ,V) of terms built over F and V is defined as usual. A substitution θ
is defined as any function from V to Terms(F ,V) that is the identity almost
everywhere, except for some finite subset of V known as the “support” of θ. A
substitution with support {x1, . . . , xn} that maps each xi to ti is often written
as {x1 #→ t1, . . . , xn #→ tn}. Every substitution θ : V → Terms(F ,V) has a
unique homomorphic extension θ : Terms(F ,V)→ Terms(F ,V). For a list of
terms L = [t1, . . . , tn], we define θ(L) = [θ(t1), . . . , θ(tn)]. A binary composition
operation ◦ on substitutions is defined as

σ ◦ θ = λ v ∈ V . σ(θ(v)).

It is well-known that the set of all substitutions forms a monoid under ◦ [14].

Trusted Theorem Proving: A Case Study in SLD-Resolution 787

We say that n terms t1, . . . , tn are unifiable iff there is a substitution θ such
that θ(t1) = · · · = θ(tn). There are efficient unification algorithms [8] that take
any finite number of terms and produce the most general possible substitution
that unifies them, if the terms are unifiable at all. The substitutions returned by
such algorithms are called mgus (“most general unifiers”) and have a number of
nice properties such as idempotence.

With variables, terms, and relation symbols at our disposal, propositions are
defined as usual—we have atoms, propositional combinations, and quantifica-
tions. The application of a substitution θ = {x1 #→ t1, . . . , xn #→ tn} to a propo-
sition P , which we will denote simply as θ P , is also defined as usual: every
free occurrence of xi within P is replaced by ti.1 If L is a list of propositions
[P1, . . . , Pn], we write θ(L) to denote [θP1, . . . , θPn]. Finally, let V ′ be a finite sub-
set of V and let P be a proposition of the form (∀x1) · · · (∀xk)Q, k ≥ 0, where
Q contains no variables outside x1, . . . , xk. Setting θ = {x1 #→ z1, . . . , xk #→ zk},
where zi is the least variable (according to the ordering ≺) outside the set
{x1, . . . , xk} ∪ V ′ ∪ {z1, . . . , zi−1}, for i = 1, . . . , k, we define the V ′-instance
of P as the proposition (∀ z1) · · · (∀ zk) θ Q. Thus the V ′-instance of P is simply
a (uniquely defined) freshly renamed copy of P , with the fresh variables being
taken outside V ′ and of course also outside the variables that occur in P .

Furthermore, fix a computation rule C and let a logic program P be given as
a list of n > 0 rules R1, . . . ,Rn, let VP be the set of all and only those variables
that occur in some rule Ri, and consider a list of goals L. We define the SLD-tree
of L, denoted SLDT(L), as explained below. The nodes of the tree will be lists
of goals, with L at the root. Every edge in the tree will be decorated with a pair
of the form 〈R̂i, θ〉, comprising an instance R̂i of Ri, for some i ∈ {1, . . . , n},
and a substitution θ. For any node M in the tree, we will write Var(M) for the
set of all and only those variables that occur in the unique path leading from
the root to M .2 More precisely, SLDT(L) is defined as follows:

1. The root of SLDT(L) is L.
2. Suppose that a node of SLDT(L) is a list of goalsM . IfM is empty, then the

node is a leaf—there are no children. Otherwise, let C(M) = 〈M1, G,M2〉,
and suppose that there is an i ∈ {1, . . . , n} such that the selected goal G
unifies with the conclusion of R̂i under some mgu θ, where R̂i is the (VP ∪
Var(M))-instance of Ri. Then M has a child M ′ = θ(M1 ⊕Ant(R̂i)⊕M2),
joined to M by an edge labeled with the pair 〈R̂i, θ〉. We refer to R̂i and θ
as the resolving rule and substitution of M ′; i is called the index of M ′.

We will assume that the children of every node are totally ordered in accordance
with their indices: A node L1 precedes one of its siblings L2 iff the index of L1

is strictly smaller than that of L2. Since an index i indicates that the child was
obtained by resolving the selected goal of its parent list with an instance of the ith

1 In general we might first have to rename P via alphabetic conversion to avoid variable
capture, but this will not be an issue here.

2 Where a variable is understood to occur in a path if it occurs either in a node (a list
of goals) on the path, or in one of the objects attached to an edge along the path.

788 K. Arkoudas and O. Shivers

rule in the program, this ordering entails that a depth-first traversal of SLDT(L)
examines the given rules from top to bottom. In tandem with a computation rule
that always selects the first goal in a list of queries, this means that a depth-first
search of SLDT(L) gives us the operational semantics of Prolog.

There are two kinds of finite branches in a SLD-tree: success branches , ending
in leaves that contain the empty list of goals; and failure branches , ending in
leaves that contain non-empty goal lists whose selected goal cannot be resolved
with any rule. There may be infinite branches as well.

Given a list of queries L, a Prolog interpreter performs a depth-first search
of SLDT(L). If the search does not diverge, there are two possibilities. If there
is a success branch, the result is the composition of all the resolving substitu-
tions found along the edges of the leftmost success branch, with the composition
proceeding from top to bottom. If there is no success branch, then failure is
reported. Of course the search might diverge if there is an infinite path to the
left of the leftmost success branch.

A precise formulation of the problem can now be given thus: Define a binary
method solve that takes a logic program P (represented as a list of Horn clauses
in the manner described earlier) and a list of goals L = [G1, . . . , Gk] (represented
as a list of atoms, as discussed earlier), and behaves as follows. If a depth-
first search of SLDT(L) diverges before discovering any success branches, solve
should also diverge. Otherwise, if there is a success branch, then the theorem
produced by solve should be θ (G1 ∧ · · · ∧Gk), where θ is the composition of
all substitutions found along the leftmost success branch; else if there are no
success branches, solve should fail.

3 Proof Construction

Suppose that our initial list of queries is L = [G1, . . . , Gk], and that a depth-
first search on the SLD-tree of this list eventually discovers a success branch
that yields a substitution θ as the final result. Since SLD-resolution is sound,
this means that the conjunction θ (G1 ∧ · · ·Gk) follows logically from the given
Horn clauses—provided our implementation is correct.

How can we prove that the result θ (G1 ∧ · · ·Gk) follows from the program’s
axioms using simple natural deduction reasoning only? The answer becomes
straightforward once we study the structure of SLD-trees. We will traverse the
success branch backwards, visiting every edge along the way from the leaf to
the root. Writing [US], [MP], and [∧-I] as respective abbreviations for uni-
versal specialization, conditional elimination (modus ponens), and conjunction
introduction, here is what we do for each such edge connecting a parent M to
a child N :

1. Invariant: every atom in the list θ(N) has already been proven.
2. Let R = (∀ v1) · · · (∀ vm)P , m ≥ 0, be the resolving rule attached to the

current edge. Perform m successive applications of [US] on R, instantiating
v1 with θ(v1), . . . , vm with θ(vm). The resulting theorem will be either of the
form true ⇒B or of the form

Trusted Theorem Proving: A Case Study in SLD-Resolution 789

Program:

1. true ⇒ p(f(a))

2. (∀x) [p(x)⇒ q(x)]

3. (∀x) [p(x) ∧ q(x)⇒ r(x)]

4. (∀x) [r(f(x))⇒ r(g(x))]

Computed substitution:

θ = {z !→ a, x1 !→ a, x2 !→ f(a), x3 !→ f(a)}

[r(g(z))]

(∀x1) [p(x1) ∧ q(x1)⇒ r(x1)]

θ1 = {x1 !→ g(z)}

�
�

�
�

��
[p(g(z)), q(g(z))]

�
�

�
�

��

(∀x1) [r(f(x1))⇒ r(g(x1))]

θ1 = {z !→ x1}

[r(f(x1))]

�

(∀ x2) [p(x2) ∧ q(x2)⇒ r(x2)]

θ2 = {x2 !→ f(x1)}

[p(f(x1)), q(f(x1))]

�

true ⇒ p(f(a))

θ3 = {x1 !→ a}

[q(f(a))]

�

(∀ x3) [p(x3)⇒ q(x3)]

θ4 = {x3 !→ f(a)}

[p(f(a))]

�

true ⇒ p(f(a))

θ5 = {}

[]

Fig. 1. The SLD-tree of the query r(g(z)), for the program shown on the left

A1 ∧ · · · ∧Al ⇒B. (3)

In the first case, apply [MP] on true ⇒B and true to obtain B. In the
second case we claim that, inductively, the atoms A1, . . . , Al have already
been proven previously. This follows from the foregoing invariant because,
by the way SLD-trees are constructed, the atoms A1, . . . , Al are members of
θ(N). Accordingly, use [∧-I] to obtain the conjunction A1 ∧ · · · ∧Al, and
then use [MP] on (3) and the said conjunction to obtain B.

3. Invariant: every atom in the list θ(M) has now been proven.
4. Continue with the next edge, if there is one.

The second invariant follows from the first, because, with the exception of B,
every goal Hi in θ(M) is also in θ(N), so the first invariant guarantees that Hi

has already been proven. Hence, once we also establish B via modus ponens, we
will have proven every member of θ(M). Graphically:

790 K. Arkoudas and O. Shivers

(∀x) [p(x)⇒ q(x)]

p(f(a))⇒ q(f(a))[US]

							
p(f(a))

q(f(a))[MP]

�

��

p(f(a)) ∧ q(f(a)) [∧-I]

p(f(a))
(∀x) [p(x) ∧ q(x)⇒ r(x)]

p(f(a)) ∧ q(f(a))⇒ r(f(a)) [US]

r(f(a))[MP]
�

�
�

��

�
�

�
��

(∀x) r(f(x))⇒ r(g(x))

r(f(a))⇒ r(g(a)) [US]

r(g(a)) [MP]
������

�
�

�
�

�

Fig. 2. A conventional proof tree deriving the atom r(g(a))

θ(M) = [B, H1, . . . , Hp]

�
θ(N) = [A1, . . . , Al, H1, . . . , Hp]

Specialized resolving rule: A1 ∧ · · · ∧Al⇒B

To start things off, the top invariant is vacuously true at the beginning of the
algorithm. Upon conclusion, the bottom invariant guarantees that every atom in
θ(L) = [θG1, . . . , θGk] has been deduced, so at that point we can simply use con-
junction introduction to infer the desired θG1 ∧ · · · ∧ θGk = θ (G1 ∧ · · · ∧Gk).

As an example, suppose that our first-order language comprises two unary
function symbols f and g, one constant symbol a, and three unary relation
symbols p, q, and r. Further, suppose that our set of variables is V = {x, y, z, x1,
x2, x3, x4, . . .}, ordered as listed. Now consider the following logic program:

1. true ⇒ p(f(a))
2. (∀x) [p(x)⇒ q(x)]
3. (∀x) [p(x) ∧ q(x)⇒ r(x)]
4. (∀x) [r(f(x))⇒ r(g(x))]

Assuming Prolog’s computation rule, the SLD-tree of the query r(g(z)) is shown
in Figure 1. The leftmost branch is a failure branch, while the second branch is a
success branch, resulting in the theorem r(g(a)), obtained by applying the com-
puted substitution to the original goal r(g(z)). Using the foregoing algorithm,

Trusted Theorem Proving: A Case Study in SLD-Resolution 791

we can prove this result as shown in Figure 2. The deduction of Figure 2 is
depicted in classic proof-tree style, where a leaf represents a premise and an in-
terior node represents an intermediate lemma, obtained through the application
of some n-ary inference rule to the n children of the node. The proposition at
the root represents the conclusion of the entire deduction. Note that the leaves
of the tree in Figure 2 consist only of program axioms, while the only inference
rules used at interior nodes are [US], [MP], and [∧-I].3

4 Implementation

We will now use the algorithm of the preceding section to implement the method
solve that was specified earlier. The implementation appears in its entirety in
Figure 3. (The reader who is unfamiliar with the details of the language can
consult Arvizo (2002) for a brief presentation of its syntax and semantics.) The
main method in Figure 3 is solve, as specified earlier, aided by two auxiliary
methods try-matches and resolve, and two functions, match-conclusion-of and
get-matches.

The function match-conclusion-of tries to match an atomic goal G with the
conclusion of some rule (“axiom”) P . First a freshly renamed version P ′ of P is
obtained, and then the conclusion of P ′ is unified with the goal G. If the unifi-
cation successfully produces some mgu θ, then the pair [P ′, θ] is returned. Thus
the result of match-conclusion-of comprises the two pieces of data that appear
on an SLD-tree edge: a resolving rule and a resolving substitution. We will refer
to the pair [P ′, θ] as a match. If the unification fails, then match-conclusion-of

returns false. The function get-matches returns a list of all the matches between
an atomic goal and a list of rules, as determined by match-conclusion-of. This
list could be empty if the goal does not match the conclusion of any of the rules,
which would cause the prover to fail. If the rule list constitutes a logic program,
then the left-to-right processing ensures that we examine the rules in the given
order.

The method try-matches takes a list of matches of the form [[P1, θ1], . . .,
[Pn, θn]] and a binary method process-match, which we will refer to as a match
handler, and sequentially applies process-match to Pi and θi, for i = 1, . . . , n,
until such an application succeeds or until there are no more matches, in which
case a failure occurs.

The core of solve is the internal method prove, which performs the analysis
(search) of the SLD-tree. This can be thought of as the method that we invoke at
a given node M of the SLD-tree in order to expand the search one level deeper.
It takes three arguments:

1. the goal list of M ;
2. the current substitution θ (this is the composition of all the substitutions

above M , i.e., all the substitutions that can be found on the path leading
from the root of the SLD-tree to M); and

3 To save space, the axiom true ⇒ p(f(a)) was written simply as p(f(a)).

792 K. Arkoudas and O. Shivers

(define (match-conclusion-of axiom goal)
(let ((renamed-axiom (rename axiom)))

(match renamed-axiom
((forall (some-list vars) (if _ concl))

(match (unify goal concl)
((some-sub theta) [renamed-axiom theta])
(_ false)))

(_ false))))

(define (get-matches goal axioms)
(letrec ((search (function (axioms results)

(match axioms
([] (rev results))
((list-of axiom more)

(let ((res (match-conclusion-of axiom goal)))
(match res
(false (search more results))
(_ (search more (add res results))))))))))

(search axioms [])))

(define (try-matches matches process-match)
(dmatch matches

((list-of [axiom unifying-sub] rest-matches)
(try (!process-match axiom unifying-sub)

(!try-matches rest-matches process-match)))))

(define (resolve P usub goals prove theta M)
(dmatch P

((forall (some-list vars) (if (and (some-list ants)) _))
(dlet ((new-goals (usub (join ants goals))))

(!prove new-goals (compose-subs usub theta)
(method (sub) (dbegin (!mp (!uspec-list P (sub vars)) (!conj-intro (sub ants)))

(!M sub))))))))

(define (solve axioms queries)
(dletrec ((prove (method (goals theta M)

(dmatch goals
([] (!M theta))
((list-of goal more-goals)

(!try-matches (get-matches goal axioms)
(method (P usub)

(!resolve P usub more-goals prove theta M))))))))
(!prove queries {} (method (theta) (!conj-intro (theta queries))))))

Fig. 3. Athena implementation of a trusted Prolog interpreter

3. a proof continuation, represented as a unary method M, that will be used
for the synthetic task of putting the proof together. This continuation is
increasingly stacked as we move down the tree, and is finally unwound once
we reach a successful leaf node (i.e., an empty goal list), at which point it is
invoked with the final substitution as its argument.

If the first argument given to prove is the empty goal list, then we have reached
the end of a success branch and we simply invoke the proof continuation with the
current substitution, which, at this point, is the final computed substitution—
the composition of all the substitutions along the path from the root to the
present leaf. Otherwise we select the first goal goal from the list (in accordance
with Prolog’s computation rule), and we call try-matches on (a) all the matches
between goal and the various program rules, and (b) a match handler, expressed

Trusted Theorem Proving: A Case Study in SLD-Resolution 793

as an anonymous method, that takes a resolving rule P and a resolving substitu-
tion usub and calls resolve on P, usub, and the rest of the goals more-goals, as
well as the method prove itself, the current substitution theta, and the current
continuation M. The method resolve will then recursively call prove with:

1. a new goal list, obtained by prepending the antecedents of the resolving rule
P to more-goals and applying the resolving substitution usub to the resulting
list;

2. a new current substitution, obtained by composing the resolving substitution
usub with theta, and

3. a new anonymous proof continuation, obtained by stacking the necessary
applications of mp, uspec-list, etc. (as described in Section 3) to M. Observe
the form of the new continuation:
(method (sub) (dbegin (!mp (!uspec-list P (sub vars))

(!conj-intro (sub ants)))
(!M sub)))

The key point here is that the new continuation invokes M in the tail position
of the dbegin, which ensures that the assumption base is threaded linearly—
so that the conclusion of the modus ponens will be available throughout the
evaluation of (!M sub).

5 Extensions and Improvements

5.1 Obtaining the Final Substitution

Clients of solve might wish to be given access to the final substitution θ that
is computed internally during a successful call to solve. Although a client could
easily obtain the values of θ for the query variables by matching the theorem
produced by solve against the conjunction of the queries, it would be easier
and more efficient if solve itself somehow passed θ out, so that anyone who was
interested in it could immediately get it. But methods can only produce proposi-
tions, so solve cannot directly return a substitution along with its theorem. We
can easily get around this through a judicious use of side effects. We can supply
solve with a third argument, a cell, which can then be assigned to contain the
final substitution:

(define (solve axioms queries sub-cell)
(dletrec ((prove (method (goals theta M)

(dmatch goals
([] (!M theta))
((list-of goal more-goals)

(!try-matches (get-matches goal axioms)
(method (P usub)
(!resolve P usub more-goals

prove theta M))))))))
(!prove queries {} (method (theta)

(dbegin (set! sub-cell theta)
(!conj-intro (theta queries)))))))

The rest of the code is unaffected by this change.

794 K. Arkoudas and O. Shivers

5.2 Multiple Solutions

Prolog engines are capable of discovering not just one success branch but all
of them, by performing a potentially exhaustive depth-first search of the SLD-
tree. In practice this is usually implemented as follows: first, the substitution
determined by the leftmost success branch is displayed, and then every time the
user presses the “enter” key the substitution determined by the next success
branch is computed and displayed, until the entire tree has been scanned. This
is a powerful feature of logic programming, and it is natural to ask whether we
can simulate it in our framework.

It turns out we can implement this quite succinctly owing to the powerful
combination of higher-order methods, lexical scoping, and state. We will supply
solve with an extra argument, a cell that will be assigned to contain a method
of zero arguments (a “proof thunk”). After solve returns, every time we invoke
the contents of that cell we will obtain the theorem determined by the next
success branch, until there are no more solutions. As a very simple sample use
of this new version of solve, consider a program consisting of the three facts
(p a), (p b), and (p c), listed in that order. The query (p ?X) should give rise
to three theorems, obtained by consecutively instantiating ?X with a, b, and
c. Supposing that tc is a cell, the initial call (!solve axioms [(p ?X)] tc) will
derive the theorem (p a), and also, as a side effect, put an appropriate thunk in
tc. Then invoking that thunk with the method call (!(ref tc)) will produce the
theorem (p b). (Because a phrase such as (!(ref tc)) is, syntactically speaking,
a deduction, the soundness theorem of Athena guarantees that its result will be
a logical consequence of the assumption base.) One more invocation (!(ref tc))

will derive (p c), and any additional invocations after that point will fail.
The thunk cell supplied to solve will be passed on to try-matches, which will

be responsible for modifying it appropriately:

(define (solve axioms queries thunk-cell)
(dletrec ((prove (method (goals theta M)

(dmatch goals
([] (!M theta))
((list-of goal more-goals)

(!try-matches (get-matches goal axioms)
(method (P msub)
(!resolve P msub more-goals

prove theta M))
thunk-cell))))))

(!prove queries {} (method (theta) (!conj-intro (theta queries))))))

All try-matches now has to do is form a thunk containing its own recursive
call on the remaining matches and put that thunk into the given cell. The second
arm of the try now becomes a simple invocation of the thunk:

(define (try-matches matches process-match thunk-cell)
(dmatch matches

((list-of [axiom unifying-sub] rest)
(dlet ((thunk (method ()

Trusted Theorem Proving: A Case Study in SLD-Resolution 795

(!try-matches rest process-match thunk-cell)))
(_ (set! thunk-cell thunk)))

(try (!process-match axiom unifying-sub)
(!thunk))))))

Observe that the same thunk-cell is passed as an argument to the recursive
call to try-matches in the body of the thunk. This is crucial in order for the cell
to be appropriately updated every time its contents are called. The rest of the
code is unaffected.

6 Conclusions

We have shown how to define Prolog’s implementation of SLD-resolution in
terms of a very small number of very simple inference rules. More precisely, we
have extended the usual execution model of SLD-resolution to make it justify its
operation by producing formal proofs of correctness using only one introduction
and two elimination rules for natural deduction. Such proofs can be verified by
exceptionally simple proof checkers.

In particular, we presented a complete implementation of SLD-resolution as a
trusted Athena method. We are not aware of any other published implementations
of SLD-resolution engines as trusted theorem-proving tactics4. We discussed our
implementation in detail, and demonstrated that Athena’s proof-search mecha-
nisms allow for concise and fluid definitions of complex inference strategies.

The present work can be regarded as an application of certified computation
[2], a general methodology for producing reliable software. This technique is
different from conventional program verification. Program verification is static
and total: we prove once and for all that an algorithm will always give correct
results, no matter what input we supply to it. In the case of SLD-resolution,
for instance, this has been done in the Calculus of Constructions (Coq) [7].
Certified computation, by contrast, is dynamic and partial: The correctness proof
is performed at runtime, and pertains only to a particular result obtained for
a particular input; no claims are made about other inputs and outputs. Thus
certified computation provides a weaker guarantee than program verification.
However, it is still a very useful guarantee—if and when we get a result, we can
be assured that it is a correct result. That is particularly important in theorem-
proving applications.

Moreover, total verification usually demands a much greater effort than certi-
fied computation. For instance, more than 600 lemmas had to be formulated and
proved for the aforementioned correctness proof of SLD-resolution in Coq. By con-
trast, our certifying implementation fits in one page of code. Another important
difference is that static proofs such as the one in Coq usually verify an abstract
model of a software system, not actual code; whereas in certified computation the
produced theorem refers to the actual result obtained in real time.
4 Isabelle has a built-in notion of resolution which is used to perform Prolog-style

derivations in Section 14 of “Introduction to Isabelle” [10]. However, no actual im-
plementation of SLD-resolution in terms of simpler rules is given.

796 K. Arkoudas and O. Shivers

References

1. Arkoudas, K.: Athena, http://www.pac.csail.mit.edu/athena
2. Arkoudas, K., Rinard, M.: Deductive runtime certification. Electronic Notes on

Theoretical Computer Science (ENTCS) 113(3), 45–63 (2005); 2004 Workshop on
Runtime Verification, Barcelona, Spain

3. Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: Verifying a file system implementa-
tion. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308,
pp. 373–390. Springer, Heidelberg (2004)

4. Arvizo, T.: A virtual machine for a type-ω denotational proof language. MS thesis,
MIT (2002),
ftp://publications.ai.mit.edu/ai-publications/2002/AITR-2002-204.pdf

5. Gordon, M.J., Miller, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

6. Gordon, M.J.C., Melham, T.F.: Introduction to HOL, a theorem proving environ-
ment for higher-order logic. Cambridge University Press, Cambridge (1993)

7. Jaume, M.: A full formalization of SLD-resolution in the calculus of inductive
constructions. Journal of Automated Reasoning 23(3-4), 347–371 (1999)

8. Knight, K.: Unification: A multidisciplinary survey. ACM Computing Sur-
veys 21(1), 93–124 (1989)

9. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1984)
10. Paulson, L.C.: Introduction to Isabelle. Technical Report 280, CUCL (1993)
11. Pelletier, F.J.: A Brief History of Natural Deduction. History and Philosophy of

Logic 20, 1–31 (1999)
12. Salcianu, A., Arkoudas, K.: Machine-checkable correctness proofs for intra-

procedural dataflow analyses. Electronic Notes on Theoretical Computer Science
(ENTCS) 141(2), 53–68 (2005); Fourth International Workshop on Compiler Op-
timization Meets Compiler Verification (COCV), Edinburgh, Scotland

13. Sterling, L., Shapiro, E.: The Art of Prolog, 2nd edn. MIT Press, Cambridge (1994)
14. Wechler, W.: Universal Algebra for Computer Scientists. Springer, Heidelberg

(1992)
15. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof

documents. In: Proceedings of the 1999 conference on theorem proving in higher-
order logic, pp. 167–183 (1999)

http://www.pac.csail.mit.edu/athena
ftp://publications.ai.mit.edu/ai-publications/2002/AITR-2002-204.pdf

High Level Analysis, Design and Validation of

Distributed Mobile Systems with CoreASM

R. Farahbod, U. Glässer, P.J. Jackson, and M. Vajihollahi

Software Technology Lab
School of Computing Science

Simon Fraser University
B.C., Canada

{roozbehf,glaesser,pjj,monav}@cs.sfu.ca

Abstract. System design is a creative activity calling for abstract mod-
els that facilitate reasoning about the key system attributes (desired
requirements and resulting properties) so as to ensure these attributes
are properly established prior to actually building a system. We explore
here the practical side of using the abstract state machine (ASM) for-
malism in combination with the CoreASM open source tool environment
for high-level design and experimental validation of complex distributed
systems. Emphasizing the early phases of the design process, a guiding
principle is to support freedom of experimentation by minimizing the
need for encoding. CoreASM has been developed and tested building on
a broad scope of applications, spanning computational criminology, mar-
itime surveillance and situation analysis. We critically reexamine here the
CoreASM project in light of three different application scenarios.

1 Introduction

In this paper, we explore the practical side of using the abstract state machine
(ASM) formalism [1] combined with the CoreASM modeling suite [2] for high-
level design and experimental validation of distributed mobile systems. Design is
a creative activity calling for abstract models that facilitate the use of analytical
means for reasoning about the key system attributes so as to ensure that these
attributes are well understood and properly established prior to actually building
a system. More specifically, computational modeling of behavioral aspects in the
early phases of the development lifecycle is meaningful not only for analyzing
complex functional requirements and resulting dynamic properties but also for
exploring design alternatives and for validating design decisions. The systems we
consider here are characterized by their decentralized control structures, their
intricate interaction patterns and their concurrent and reactive behavior that
is best described in terms of discrete mathematics and computational logic.
Mathematical precision in the early design phases is essential to uncover and
eliminate design flaws and weaknesses that often go unnoticed otherwise.

The ASM formalism and underlying abstraction principles are known for
their versatility in semantic modeling of algorithms, architectures, languages,

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 797–814, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

798 R. Farahbod et al.

protocols and apply to virtually all kinds of sequential, parallel and distributed
systems. Widely recognized applications include semantic foundations of popular
programming languages, like JAVA [3], C# [4] and Prolog [5], industrial system
design languages, like SDL [6], VHDL [7] and SystemC [8], embedded control
systems [9], Web services [10], network architectures [11], wireless networks [12],
among others (see also the ASM Research Center at www.asmcenter.org). A
driving factor in many of these applications is the desire to systematically re-
veal abstract architectural and behavioral concepts inevitably present in every
system design, however hidden they may be, so that the underlying blueprint of
the functional system requirements becomes clearly visible and can be checked
and examined by analytical means based on human expertise.

Emphasizing the early phases of the development lifecycle, a guiding principle
is to support freedom of experimentation by minimizing the need for encoding.
CoreASM is an Open Source project for the development of a succinct, extensible
and executable ASM language with supporting tool environment (implemented
in Java and readily available at www.coreasm.org) that supports the evolution-
ary nature of design as a product of creativity. To minimize encoding in map-
ping the problem space to a formal model, it allows writing highly abstract and
concise specifications—starting with mathematically-oriented, abstract and un-
typed models, gradually refining them down to more concrete versions with a
degree of detail and precision as needed. It supports interactive development of
sequential, synchronous parallel and distributed (asynchronous) ASM computa-
tion models, making them executable on real machines. The CoreASM engine,
the heart of the CoreASM tool suite, is based on an extensible architecture sup-
porting various kinds of extensions (as will be explained in Section 3.2) through
plug-ins [13].

CoreASM has been developed and tested for several years, building on a broad
scope of applications in the private and public sector spanning computational
criminology1, maritime surveillance and situation analysis. We reexamine here
the practicability of using CoreASM for requirements analysis, design specifica-
tion and rapid prototyping (experimental validation) of high-level executable
models in light of three systems engineering projects that have been carried
out at SFU’s Software Technology Lab in close collaboration with industrial
partners, Defence R&D Canada, SFU’s Institute for Canadian Urban Research
Studies and the Royal Canadian Mounted Police. One may argue that many of
the aspects addressed here likely carry over to an even broader scope of systems.

Section 2 outlines the core ASM concepts prior to the CoreASM language
and tool architecture being introduced in Section 3. Next, three application case
studies, each of which using CoreASM in a major role but in a diverse context,
are presented in Section 4. Based on the resulting work, Section 5 summarizes
lessons learned from the practical experience with CoreASM in terms of what
works best and what is missing. Section 6 concludes the paper.

1 Computational criminology is a rapidly growing field that explores the use of com-
puter science methods in different stages of studying complex criminal phenomena.

www.asmcenter.org

High Level Analysis, Design and Validation of Distributed Mobile Systems 799

2 Abstract State Machines

This section briefly outlines the basic concepts for modeling behavioral aspects
of distributed systems as abstract machine runs performed by a distributed
ASM. The underlying notions of concurrency, reactivity and time are described
using common abstractions and structures from computational logic and discrete
mathematics. For further details, we refer to [1,14,15].

A distributed ASM, or DASM, defines the concurrent and reactive behavior of
a collection of autonomously operating computational agents that cooperatively
perform distributed computations. Intuitively, every computation step of the
DASM involves one or more agents, each performing a single computation step
according to their local view of a globally shared machine state. The underlying
semantic model regulates interactions between agents so that potential conflicts
are resolved according to the definition of partially ordered runs [11].

A DASM M is defined over a given vocabulary V by its program PM and a
non-empty set IM of initial states. V consists of some finite collection of symbols
for denoting the mathematical objects and their relation in the formal representa-
tion of M , where we distinguish domain symbols, function symbols and predicate
symbols. Symbols that have a fixed interpretation regardless of the state of M
are called static; those that may have different interpretations in different states
of M are called dynamic. A state S of M results from a valid interpretation of
all the symbols in V and constitutes a variant of a first-order structure, one in
which all relations are formally represented as Boolean-valued functions.

Concurrent control threads in an execution of PM are modeled by a dynamic
set AGENT of computational agents. This set may change dynamically over runs
ofM , as required to model a varying number of computational resources. Agents
interact with one another, and typically also with the operational environment
of M , by reading and writing shared locations of a global machine state.
PM consists of a statically defined collection of agent programs PM1 , ..., PMk

,
k ≥ 1, each of which defines the behavior of a certain type of agent in terms of
state transition rules. The canonical rule consists of a basic update instruction
of the form

f(t1, t2, ..., tn) := t0,

where f is an n-ary dynamic function symbol and each ti (0 ≤ i ≤ n) a term.
Intuitively, one can perceive a dynamic function as a finite function table where
each row associates a sequence of argument values with a function value. An
update instruction specifies a pointwise function update: an operation that re-
places a function value for specified arguments by a new value to be associated
with the same arguments. In general, rules are inductively defined by a number
of well defined rule constructors, allowing the composition of complex rules for
describing sophisticated behavioral patterns.

A computation of M , starting with a given initial state S0 from IM , results
in a finite or infinite sequence of consecutive state transitions of the form

S0
ΔS0−→ S1

ΔS1−→ S2
ΔS2−→ · · · ,

800 R. Farahbod et al.

such that Si+1 is obtained from Si, for i ≥ 0, by firing ΔSi on Si, where ΔSi

denotes a finite set of updates computed by evaluating PM over Si. Firing an
update set means that all the updates in the set are fired simultaneously in one
atomic step. The result of firing an update set is defined if and only if the set
does not contain any conflicting (inconsistent) updates.
M interacts with its operational environment—the part of the external world

visible to M—through actions/events observable at external interfaces, formally
represented by externally controlled functions. Intuitively, such functions are
manipulated by the external world rather than agents of M . Of particular in-
terest are monitored functions. Such functions change their values dynamically
over runs of M , although they cannot be updated internally by agents of M . A
typical example is the abstract representation of global system time. In a given
state S of M , the global time (as measured by some external clock) is given by
a monitored nullary function now taking values in a linearly ordered domain
TIME ⊆ REAL. Values of now increase monotonically over runs of M .

3 The CoreASM Project

CoreASM is an open source project2 focussing on design and development of an
extensible executable specification language based on abstract state machines
together with a surrounding tool environment that supports high-level design
in application-domain terms, and rapid prototyping of executable abstract spec-
ifications. The CoreASM environment consists of a 1) platform-independent ex-
tensible engine for executing the language, 2) various plugins that extend the
language and the behavior of the engine, and 3) a set of applications that utilize
the engine, such as an IDE for interactive visualization and control of simulation
runs (see Fig. 1). The engine comes with a sophisticated and well defined inter-
face, called Control API, thereby enabling future development and integration
of complementary tools, e.g., for model checking and automated test generation.

The design of CoreASM is novel and the underlying design principles are un-
precedented among the existing executable ASM languages, including the most
advanced ones: Asmeta [16], AsmL [17], the ASM Workbench [18], XASM [19],
and AsmGofer [20]. In contrast to CoreASM, all the above languages build on
predefined type concepts rather than the untyped language underlying the the-
oretical model of ASMs; none of these languages comes with a run-time system
supporting the execution of distributed ASM models; only Xasm is designed for
systematic language extensions and in that respect is similar to our approach;
however, the Xasm language itself diverts from the original definition of ASMs
and seems closer to a programming language. In addition, CoreASM is the only
one that is entirely specified in ASM terms.

The rest of this section provides an overview of the CoreASM project. An
in-depth introduction to the architecture of the CoreASM engine and its exten-
sibility mechanisms is provided in [2,13].

2 CoreASM is available at http://www.coreasm.org

http://www.coreasm.org

High Level Analysis, Design and Validation of Distributed Mobile Systems 801

Plotter
+

Set
+

Number
+

List
+

CSDe

Custom
Application

Editor

Engine Plugins Applications

Mastermind
+

JASMine
+

CoreASM
Engine

...

...

S
ta

n
d
a
rd

 P
lu

g
in

s
C

u
st

o
m

 P
lu

g
in

s

Fig. 1. CoreASM engine extended by plugins and custom applications

3.1 The CoreASM Engine

The CoreASM engine consists of four basic components: a parser, an interpreter,
a scheduler, and an abstract storage. The interpreter, the scheduler, and the
abstract storage work together to simulate an ASM run. The engine interacts
with the environment through a single interface, called the control API, which
provides various operations such as loading a CoreASM specification, starting an
ASM run, or performing a single step.

The parser reads a CoreASM specification and provides the interpreter with
an annotated parse tree for each program (in the case of multiple agent types).
The interpreter then evaluates the programs by examining the rules, generating
update sets. The abstract storage maintains the data model of the abstract state.
In addition to the current state of the simulated machine, it also keeps a history
of its previous states. To evaluate a program, the interpreter interacts with the
abstract storage in order to obtain values from the current state and generates
updates for the next state. The role of the scheduler is to orchestrate the whole
execution process. For distributed ASMs, it selects the set of agents that will
contribute to the next computation step and coordinates the execution of those
agents. The scheduler also handles cases of inconsistency of update sets.

3.2 Engine Plugins

The design of CoreASM is streamlined towards flexible extensibility of the lan-
guage definition and its underlying execution engine. In principle, there are three
basic dimensions being considered for extending and altering CoreASM through
the use of plugins, respectively related to: (i) data structures, (ii) control struc-
tures, and (iii) the execution model3. The possibility of conveniently extending
data structures as needed is the most prominent one, extensively discussed in the
theoretical ASM literature, e.g. in [21]. Control structures can be extended with

3 The execution model refers to the dynamic features of the CoreASM engine, including
the simulation process, scheduling policies, and exception handling.

802 R. Farahbod et al.

respect to new syntactic constructs that either provide new semantics or only
add syntactic sugar (i.e., the semantics of which can be expressed by means of in-
language transformations). Finally, the need for altering or extending the execu-
tion model is justified by pragmatic considerations such as debugging purposes,
analyzing program execution, or introducing additional scheduling policies.

Most of the functionality of the engine is implemented through plugins to a
minimal kernel. This kernel contains only the bare essentials, that is, all that is
needed to execute only the most basic ASM:

– the concepts of functions and universes are native to the kernel, as they are
needed to define the state of an ASM;

– universes are represented through their characteristic functions, hence
booleans are also included in the kernel;

– the special value undef is contained in the kernel;
– an ASM program is defined by a finite number of rules, hence the domain of

rules is included in the kernel as well.

It should be noted that the kernel includes the above mentioned domains, but not
all of the ‘expected’ backgrounds. While, for example, the domain of booleans
(that is, true and false) is in the kernel, boolean algebra (∧, ∨, ¬, etc.) is not,
and is instead provided through a background plugin. In the same vein, while
universes are represented in the kernel through set characteristic functions, the
background of finite sets is implemented in a plugin, which provides expression
syntax for defining them, as well as an implicit representation for storing sets in
the abstract state, and implementations of the various set theoretic operations
(e.g., ∈) that work on such an implicit representation.

The kernel includes only the most basic control structures (transition rules),
such as assignment. This particular choice is motivated by the fact that without
updates established by assignments there would be no way of specifying how
the state should evolve. All other rule forms (e.g., if, choose, forall), as well as
sub-machine calls and macros, are implemented as plugins which, when needed,
can be loaded separately or together in form of a standard library.

Finally, there is a single scheduling policy implemented in the kernel—the
pseudo-random selection of an arbitrary subset of agents—which is sufficient for
multi-agent ASMs where no assumptions are made on the scheduling policy.

3.3 CoreASM in Eclipse

The CoreASM engine in its current implementation is a Java component and
requires a user interface to interact with the engine, e.g., to pass specification
files to the engine and to control its simulation run by manipulating parame-
ters. There are two user interfaces available for the engine: a powerful yet simple
command-line tool called Carma, and a graphical interactive development envi-
ronment in the Eclipse platform4, known as the CoreASM Eclipse Plugin. The
CoreASM plugin for Eclipse extends the Eclipse platform to support dynamic
syntax highlighting and interactive execution of CoreASM specifications.
4 http://www.eclipse.org

http://www.eclipse.org

High Level Analysis, Design and Validation of Distributed Mobile Systems 803

3.4 Control State Diagrams

One practical class of abstract state machines are Control State ASMs. These
ASMs can be represented as a directed graph, where nodes consist of control
states interspersed optionally with conditions and/or rules. Conditions direct
the flow of execution; rules denote actions taken as part of state transitions. The
expressive flexibility of this type of ASM is demonstrated by their capacity for
representing many classical automata such as various extensions of finite state
machines [1]. Since, by definition, they can be depicted graphically, they are a
sound foundation for the visual modeling of this particular class of ASMs.

The Control State Diagram editor (CSDe) is a software tool for creating and
modifying Control State ASMs. It is distributed as a plugin for the Eclipse
software development suite. The plugin allows the user to work with Control
State Diagrams (CSDs) using a point-and-click schema. Both the simplicity of
CSDs and the intuitiveness of the graphical interface work together to allow users
to confidently contribute to the design, regardless of their technical background.
For the purpose of increase expressiveness, we permit multiple conditions and
rules between control states as well as the turbo ASM mechanism [1] of sequential
behavior within a rule block, in addition to the usual parallelism.

Fig. 2. CSDe: A Control State Diagram editor plugin for the Eclipse development
environment, with automatic translation to CoreASM code

The plugin is also capable of automatically transforming diagrams into Core-
ASM code. Since a CSD may not include the initial system state or other infor-
mation required to run as program, it is possible that the CoreASM file generated
is not directly executable. However, the resulting code acts as a foundation for
further development of the structure under consideration. This automated trans-
lation from a diagram into code improves the ease of transition from high-level
design towards subsequent stages of development.

804 R. Farahbod et al.

The versatility of CSDe offers an efficient way to perform the early phases of
design and validation in a manner that is non-technical yet still fundamentally
formal. In most projects, domain experts and technical specialists must work
together to come up with a valid design. However, the specialized knowledge that
makes such a collaboration so useful also acts as an obstacle to communication,
since they may not share a common vocabulary. CSDe circumvents these issues
by providing a clear and precise method for working with ideas at a high-level.
By describing concepts in a straightforward, visual manner, all project members
should be able to participate fully, regardless of their background.

3.5 Model Checking CoreASM Specifications

The CoreASM engine facilitates experimental validation of ASM models first and
foremost by allowing to explore behavioral aspects with computational means in
an interactive fashion. However, experimental validation without model checking
cannot formally verify the correctness of a system with respect to all of its
possible behaviors. In order to provide model checking support for CoreASM, we
developed a tool called CoreASM2Promela that utilizes the CoreASM engine to
translate CoreASM models into equivalent Promela models which can be verified
using the Spin model checker.5 From a high level perspective, the steps in the
translation and verification process are as follows: (i) a CoreASM specification is
loaded and parsed by the CoreASM engine, producing an abstract syntax tree;
(ii) the tree is translated into Promela; (iii) Spin is invoked to generate a verifier
of the Promela model, producing C code; (iv) the C code is compiled, generating
a custom verifier of the CoreASM specification; (v) the verifier is run, producing
a counter example if the property being checked does not hold.

In order to properly translate CoreASM specifications into Promela models,
we needed to extend the CoreASM language by two new plug-ins, namely the
Signature Plugin and the Property Plugin, to support declaration of function
signatures and specification of LTL properties as part of CoreASM specifications.
A comprehensive specification of these plug-ins is provided in [23].

We have successfully used CoreASM2Promela to model check several non-
trivial ASM specifications; the details of the case studies and a comprehensive
discussion of the results are presented in [23]. However, there are certain limita-
tions in model checking abstract ASM specifications using Spin. For example, as
Spin can only check finite models, the translation scheme is limited to CoreASM
specifications which have finite states. Thus, the translation supports only static
universes and enumerated backgrounds.

3.6 A Simple CoreASM Example

This section borrows the Railroad Crossing example of [1] to illustrate the syntax
of CoreASM and its application in modeling industrial systems. Due to the space
limitations, a simplified version of the example and the model are presented.
5 Spin is a widely used automata based model checker that has been used extensively

in the design of asynchronous distributed systems [22].

High Level Analysis, Design and Validation of Distributed Mobile Systems 805

A system controls a gate at a railroad crossing. There are multiple tracks on
which trains can travel in both directions. There are sensors on the tracks that
can detect if a train is coming or if it is currently crossing. The gate is controlled
by two signals open and close. We want the gate to be closed if a train is crossing
(safety), and to be open otherwise (liveness).

When a train is detected as coming, it takes at least dmin seconds for it to
arrive at the crossing. The gate takes dclose seconds to be closed and dopen to
get opened. Thus we have WaitTime = dmin−dclose seconds to start closing the
gate. Hence, we maintain a deadline for every track t to indicate the maximum
allowable time we have before we safely close the gate with regard to t.

Based on this view, we define the following domains and functions in the
signature section of our CoreASM specification of the controller:

The track control program (TrackControl below) is then a parallel execution
of two main rules: 1) for all tracks, calculating the deadlines, sending a closed
signal if needed, and clearing passed deadlines; 2) keeping the gate open if it is
safe to do so. The detailed definitions of the rules SetDeadline and SignalOpen

together with the predicate safeToOpen are provided on the right hand side:

4 Case Studies

This section presents three case studies from three diverse application contexts
to reexamine the practicability of using CoreASM for requirements analysis, de-
sign specification and rapid prototyping of abstract system models in the early
design phases. The particular choice made here is meant to illustrate by example
the wide scope of application domains for CoreASM above and beyond classical
software system design problems, like the design of Web service architectures
[10]. The three examples presented here result from projects that have been car-
ried out at SFU’s Software Technology Lab in close collaboration with industrial
partners, Defence R&D Canada, SFU’s Institute for Canadian Urban Research
Studies and the Royal Canadian Mounted Police.

4.1 The Mastermind Project

Mastermind is a pioneering project in computational criminology, employing
formal modeling and simulation as tools to investigate offender behavior in an

806 R. Farahbod et al.

urban environment. The project aims at developing computational models of
criminal activity patterns, with a special focus on spatiotemporal characteristics
of crime, potentially involving multiple offenders and multiple targets. The Mas-
termind project utilizes the ASM method and the CoreASM tool suite to address
the specific requirements of developing computational models and analysis tools
for the study of crime in a collaborative research environment.

Crime is understood to be comprised of four main elements: the law, the of-
fender, the target and the location [24]. We construct a multi-dimensional model
of crime in order to study the interaction of these elements. Our focus is on the
concepts of environmental criminology, which argues that in spite of their com-
plexity, criminal events can be understood in the context of people’s movements
in the course of everyday routines [24]. Through movement within a given envi-
ronment, possible offenders, characterized as agents, develop mental maps of the
places they know (awareness space) and the places they regularly visit (activity
space). At its core, Mastermind captures the essence of the Crime Pattern the-
ory, i.e. crime occurs when a motivated individual encounters a suitable target
[24]. Figure 2 captures this behavior in terms of a Control State ASM.

The main building block of Mastermind is a robust ASM ground model [25] de-
veloped through several iterations required for checking the validity of the model
with respect to the understanding of domain experts. The process of establishing
the key properties, determining the right level of abstraction, and ensuring the
validity of the model was greatly facilitated using the simple graphical notation
provided by CSDe and the ability to run experiments on abstract models in early
stages of design using the CoreASM engine.

The ground model has been further refined into more concrete models with
specific details systematically added, an example of which is the simulation model
of Mastermind implemented in Java. The Java version provides a responsive user
interface and a simulation environment based on real-world Geographical Infor-
mation System (GIS) data and captures the navigation behavior of offenders
with a high degree of detail and complexity. We have also refined the Core-
ASM executable ground model to run more controlled experiments, which al-
lows for a structured analysis of theories in a hypothetical world. These simple
and comprehensible models provides domain experts with full control over the
variables under study and their interdependence. Both versions also provide vi-
sualization features which are a priority for criminology publications. Figure 3
shows snapshots of both implementations of Mastermind. The visualizations
show agents’ movement between activity nodes, the formation of their activity
spaces and the effects on crime hotspots. The CoreASM model is meant to study
concepts at a higher level of abstraction, using a simple grid structure in the ex-
ample. In contrast, the Java version runs on the real road network of downtown
Vancouver, including Stanley Park, and captures a finer degree of detail and
complexity.

It is important to emphasize the role of the CoreASM tool environment in fac-
ing the challenges of two major phases of our project, namely formalization and
validation. In an interdisciplinary research project, the communication problem is

High Level Analysis, Design and Validation of Distributed Mobile Systems 807

Fig. 3. The CoreASM & Java implementations of Mastermind. The Java version (in
front) aims at using computational power to simulate the dynamic interaction of a
variety of factors, including a street network based on real world data. The CoreASM
version (behind) is more abstract, focusing exclusively on specific elements.

intensified, imposing serious challenges in ensuring a correct transformation from
domain knowledge to computational artifacts. This difficulty is compounded due
to differences between academic disciplines in terms of approach and underlying
assumptions, not to mention the fact that real-life events, such as crime events, are
not usually thought of in a discrete, mathematical manner. To this end, diagrams
created by CSDe greatly facilitate an interactive design process where domain ex-
perts are able to directly check and correct a design.

Secondly, it is important to compare the utility of the full-fledged Mastermind
simulation model in Java with the simpler, more abstract CoreASM model. The
complexity of the Java version and the fact that it is considered as a black-box
by domain experts introduces limitations on its academic usage. On the other
hand, the CoreASM program code is easier for non-programmers to read, and is
well-suited for designing controlled experiments. Taking advantage of the highly
flexible plugin architecture offered by CoreASM, we were able to rapidly develop
the Mastermind Plugin to address the specific needs of criminologists, especially
with respect to visualizing the results. In other words, the Mastermind Plugin
encapsulates the mathematical structure of the ASM model in a comprehensible
and familiar format for domain experts. This greatly facilitates communication
with domain experts and analysis of the results for validation purposes.

808 R. Farahbod et al.

The results of our work on the Mastermind project have been well-received
both by the researchers in academia and law enforcement officials. For more
details on the project and the results, we refer to our publications [26,27], and
also the project website at www.stl.sfu.ca/projects/mastermind

4.2 Dynamic Resource Configuration & Management Architecture

Dynamic Resource Configuration & Management Architecture (DRCMA) is a
highly adaptive and auto-configurable multi-layer network architecture for dis-
tributed information fusion. The primary goal of DRCMA is to address large
volume surveillance challenges, assuming a wide range of different sensor types
operating on multiple mobile platforms for intelligence, surveillance and recon-
naissance. The focus is on network enabled operations to efficiently manage
and improve employment of heterogeneous sets of surveillance and patrolling
resources, their information fusion engines and their networking capabilities un-
der dynamically changing and essentially unpredictable conditions. We build on
realistic application scenarios adopted from the design and development of the
CanCoastWatch system [28,29].

The overall design objective of DRCMA is a highly robust and scalable net-
work architecture that supports reconfigurable applications and self-organizing
structures, flexibly adapting to dynamically changing resource requirements as
well as changes in the availability of resources. Global mission goals are to be
operationalized into local tasks performed by semi-autonomously operating re-
source units that can handle basic adjustments and realignments of resources
automatically. The architectural design emphasizes a hierarchical command and
control structure.

Missions injected into the system are complex tasks, each of which needs to be
transformed into a collection of constituent elementary tasks, so as to map these
tasks onto the available resources. Complex tasks therefore are decomposed in
one or more steps into simpler ones until all of the resulting tasks are of ele-
mentary type, meaning that each of them can directly be assigned to a physical
resource capable of performing the task. Physical resources refer to individual
resource entities that exist in the physical environment. Depending on the level
of abstraction, a physical resource may either identify a group of sensor plat-
forms or a single sensor platform or even an individual sensor unit on a sensor
platform.

Logical resources represent clusters of resources formed by aggregating two or
more physical and/or logical resources, each with a certain range of capabilities,
into a higher level resource with a greater capacity for performing complex oper-
ations. Resource clusters operate semi-autonomously to increase robustness and
to reduce control and communication overhead by making local decisions regard-
ing the realignment and reorganization of resources within the cluster. Dynamic
reconfiguration of clusters is performed in an ad hoc manner using ‘plug and
play’ mechanisms. Resources may join or be removed from a cluster on demand
and depending on their capabilities, geographic location, cost aspects and other
characteristics.

www.stl.sfu.ca/projects/mastermind

High Level Analysis, Design and Validation of Distributed Mobile Systems 809

(a) Hierarchical structure of logical
and physical nodes in DRCMA

(b) Snapshot of a search & rescue scenario
using the DRCMA model in CoreASM

Fig. 4. Dynamic Resource Configuration & Management Architecture

The DRCMA model is described in abstract functional and operational terms
in form of an executable distributed abstract state machine specification, using
the CoreASM modeling environment [2,30]. This description of the underlying
design concepts provides a concise yet precise blueprint for reasoning about key
system attributes at an intuitive level of understanding, supporting requirements
specification, design analysis, validation and, where appropriate, formal verifica-
tion of system properties prior to actually building the system. A basic graphical
user interface (see Fig. 4) has also been developed in Java to provide a live view
of the resource network and its command and control hierarchy during the sim-
ulation of scenarios, using the JASMine plugin6 of CoreASM [31].

Building an abstract yet executable model of DRCMA in CoreASM enabled
us to experiment with the model and validate design decisions at a fairly high
level of abstraction. In subsequent steps, we will extend and further refine the
DRCMA model into a comprehensive architecture for adaptive distributed infor-
mation fusion. The result will be a prototype for testing, experimental validation
and machine-assisted verification of the key system attributes prior to actually
building the system. In conclusion, the proposed design approach facilitates a
seamless transition across the three dimensions of modeling discrete dynamic
systems: conceptual, mathematical and computational.

4.3 Decision Support for Situation Analysis

Situation Awareness is essential for conducting decision-making activities. It is
the perception of elements in the environment, comprehension of their meaning,
and projection of their status in the near future [32]. Agents develop an under-
standing of a situation based on a discrete perception and evaluation of events
6 JASMine is a CoreASM plugin that provides the means to access Java objects and

classes from inside an ASM specification.

810 R. Farahbod et al.

as they unfold over time and forecast their anticipated evolution in the future.
Situation Analysis (SA) is defined as a process, the examination of a situation,
its elements, and their relations, to provide and maintain a state of situation
awareness for the decision maker [33].

The rationale for establishing a formal semantic foundation for the design of
situation analysis and decision support systems is discussed in detail in [34]. In-
spired by recent work at Defence R&D Canada at Valcartier that proposes the
use of Interpreted Systems for Situation Analysis [35,36], a systematic approach
combining Abstract State Machines and Interpreted Systems seems appealing,
as each of the two semantic modeling frameworks has its particular focus and
strength, complementing each other in several respects. They both share common
abstraction principles for describing distributed system behavior based on an ab-
stract operational view of multiagent systems. Additionally, pragmatic consider-
ations regarding practical needs for system design and development are relevant
to support the systematic refinement of abstract specifications into executable
models serving as a basis for rapid prototyping and experimental validation of
decision support systems.

In a preliminary study [37], we illustrated the similarities between the two
frameworks using a simple surveillance scenario originally presented in [36]. In
order to put the abstract model into practice and to realize what is practically
feasible, we used the CoreASM modeling suite to produce an executable model
of the scenario through refinement of the abstract rules and functions of the
model. Such a refinement, with the goal of producing an executable model, is
interesting in two aspects: a) it helps in finding ambiguities, missing pieces and
loose-ends of the model and forces the system analyst/modeler to think clearly
about the main concepts and their definitions, and b) it supports experimental
validation through execution (simulation).

Our work demonstrates how one can benefit from using ASMs, and in partic-
ular CoreASM, to model a multiagent system while still being able to apply and
extend the Interpreted Systems approach of [36] for situation analysis. For exam-
ple, by combining Interpreted Systems and multiagent ASMs, situation analysis
queries can not only be analyzed using the proposed methods in [36], but they
can also be examined either by explicitly encoding the queries as computable
functions in the model and running the executable model, or by applying the
available model checking techniques for ASM [23,38].

5 Lessons Learned

Arguably, there is something appealing about the ASM approach to modeling
behavioral aspects of distributed and mobile systems in abstract mathematical
terms making this formal framework a sensible choice for interactive design and
validation of concurrent and reactive behavior. In light of practical needs, two
natural questions come to mind: what works best and what is missing?

Comprehensive answers to these questions exceed the scope of this paper;
rather we highlight here certain aspects that turned out to be most relevant in the
ASM applications described in Section 4, where we also draw from our previous

High Level Analysis, Design and Validation of Distributed Mobile Systems 811

experience in other application contexts, specifically semantic foundations for
industrial specification and design languages, such as BPEL [10], SDL [6] and
VHDL [7], and distributed network architectures [12,11].

Starting from the general observation that abstract machine models neatly re-
flect a systems engineering view by building on common abstraction principles,
we feel that there is much more to it than just the machine concept. A typical
challenge in the early phases of architectural design is lack of a thorough under-
standing of the functional requirements, resulting in vague descriptions and fuzzy
architectural concepts. Striving for more clarity and regularity while exploring
the design space and comparing competing design alternatives, any encoding
should not only be minimal but also be as direct and intuitive as possible, so as
to not add extra weight to the overall problem scope. Serving practical needs, the
relatively simple semantic foundation of the ASM framework contributes a great
deal to the ease of using this approach as a precise analytical means for commu-
nicating ideas and for reasoning about design decisions and their consequences.
Viewing states as first-order structures, or simply as abstract mathematical data
structures, being manipulated by concurrently operating computational agents
greatly simplifies things when complexity kicks in. Also, a virtually minimal
instruction set for describing state transition behavior based on an untyped lan-
guage, combined with flexible refinement techniques [25], naturally facilitates
experimentation by supporting design for change. Finally, the ability to freely
choose and mix common modeling styles, e.g. declarative, functional and opera-
tional, depending on what appears most suitable in a given application context,
is invaluable. In short, the ASM formalism offers much of the freedom that comes
with using pseudocode as a design language—just that pseudocode does usually
not have a precise (unambiguous) meaning and thus is not executable.

CoreASM aims at preserving the very idea of ASM modeling, as outlined
above, so that the salient features carry over to an executable ASM language
for rapid prototyping of distributed system models. We argue that this goal has
widely been accomplished, not only pertaining to desirable characteristics of ab-
stract mathematical models, such as conciseness, simplicity and intelligibility,
but also with regard to methodological guidelines and best practices for ASM
modeling [25] that directly apply to CoreASM as well. Virtually, there is no differ-
ence between the core of an abstract state machine model and its executable ver-
sion in CoreASM. However, to make a ‘pure’ abstract model machine-executable,
one often has to add some minor details. CoreASM aims to shorten the gap by
providing a comprehensive set of abstract data structures and by facilitating
the development of application-specific plugins that provide abstract concepts,
domain-specific data structures, and whatever standard means are expected to
be available in a given application context.

Finally, not everything is perfect. Some open issues have not been sufficiently
addressed by the CoreASM project primarily focusing on mathematical model-
ing, especially requirements and design specification, and experimental valida-
tion, rather than formal verification. A proper formal specification, such that the
validity of the initial formalization step can be established, is a prerequisite for

812 R. Farahbod et al.

any meaningful approach to formal verification. On the other hand, machine-
assisted verification is supported by the current implementation of CoreASM
only in the form of rudimentary model checking [23]. More sophisticated inter-
faces to existing model checking tools are needed to fully exploit the potential
that leading model checkers provide. Likewise, there is currently no support for
automatic code generation from CoreASM models. The CoreASM engine is rea-
sonably fast and efficient for interactive modeling & experimental validation;
nonetheless, there is room for improving performance by generating Java or
C++ code. Automatic text case generation for conformance testing, comparable
to Spec Explorer [39] is a work in progress, but not yet available. No doubt, more
work needs to be done to close these gaps in the future. Having more sophis-
ticated data structures, as well as debugging tools and state space visualizers
would greatly assist the modeling and design process, especially when dealing
with complex control flows. Also, further improvements to the CoreASM IDE to
provide enhanced coding assistance features, such as easy navigation between
different layers of abstraction and refinements, would be of real value in building
complex models. In order to add to the convenience and utility of the CoreASM
tool set, we consider these improvements as subjects of our future work.

6 Concluding Remarks

CoreASM has been developed and tested at SFU’s Software Technology Lab in
collaboration with international partners, especially at the University of Pisa,
over the past three years. Among all the existing ASM tool environments (see
[2] for an overview and further discussion), it stands out as being closest to
the spirit of abstract state machines in the aforementioned sense and the only
one that directly supports distributed ASM computation models, making such
models directly executable on real machines. Based on solid experience gained
through the practical use of CoreASM in a number of diverse application domains,
we feel that the current implementation works well, serving practical needs of
high-level system modeling and rapid prototyping, including reverse engineering
applications. So far, there have been several hundred downloads of the tool suite.
We are always seeking critical feedback from external users and are grateful for
the many comments we received.

References

1. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

2. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, 71–103 (2007)

3. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

4. Börger, E., Fruja, N.G., Gervasi, V., Stärk, R.F.: A High-level Modular Definition
of the Semantics of C#. Theoretical Computer Science 336, 235–284 (2005)

High Level Analysis, Design and Validation of Distributed Mobile Systems 813

5. Börger, E.: A Logical Operational Semantics for Full Prolog. Part I: Selection Core
and Control. In: Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1989.
LNCS, vol. 440, pp. 36–64. Springer, Heidelberg (1990)

6. Glässer, U., Gotzhein, R., Prinz, A.: The Formal Semantics of SDL-2000: Status
and Perspectives. Comput. Networks 42, 343–358 (2003)

7. Börger, E., Glässer, U., Müller, W.: Formal Definition of an Abstract VHDL 1993
Simulator by EA-Machines. In: Delgado Kloos, C., Breuer, P.T. (eds.) Formal
Semantics for VHDL, pp. 107–139. Kluwer Academic Publishers, Dordrecht (1995)

8. Müller, W., Ruf, J., Rosenstiel, W.: An ASM Based SystemC Simulation Semantics.
In: Müller, W., et al. (eds.) SystemC - Methodologies and Applications. Kluwer
Academic Publishers, Dordrecht (2003)

9. Börger, E., Riccobene, E., Schmid, J.: Capturing Requirements by Abstract State
Machines: The Light Control Case Study. Journal of Universal Computer Science 6,
597–620 (2000)

10. Farahbod, R., Glässer, U., Vajihollahi, M.: An Abstract Machine Architecture for
Web Service Based Business Process Management. Intl. Journal of Business Process
Integration and Management 1, 279–291 (2007)

11. Glässer, U., Gurevich, Y., Veanes, M.: Abstract Communication Model for Dis-
tributed Systems. IEEE Trans. on Soft. Eng. 30, 458–472 (2004)

12. Glässer, U., Gu, Q.P.: Formal Description and Analysis of a Distributed Location
Service for Mobile Ad Hoc Networks. Theoretical Comp. Sci. 336, 285–309 (2005)

13. Farahbod, R., Gervasi, V., Glässer, U., Ma, G.: CoreASM plug-in architecture.
In: Proceedings of the Dagstuhl Seminar on Rigorous Methods for Software Con-
struction and Analysis (LNCS Festschrift). Springer, Heidelberg (to be published,
2008)

14. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifi-
cation and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

15. Farahbod, R., Glässer, U.: Semantic Blueprints of Discrete Dynamic Systems: Chal-
lenges and Needs in Computational Modeling of Complex Behavior. In: New Trends
in Parallel and Distributed Computing, Proc. 6th Intl. Heinz Nixdorf Symposium,
January 2006, pp. 81–95. Heinz Nixdorf Institute (2006)

16. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Simulator for
ASMs. In: Proc. of the 14th Intl. Abstract State Machines Workshop (2007)

17. Microsoft FSE Group: The Abstract State Machine Language (2003) (Last visited
June 2003), http://research.microsoft.com/fse/asml/

18. Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Ma-
chines. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp.
311–325. Springer, Heidelberg (1999)

19. Anlauff, M.: XASM – An Extensible, Component-Based Abstract State Machines
Language. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM
2000. LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)

20. Schmid, J.: Executing ASM Specitications with AsmGofer (Last visited September
2005) (2005), http://www.tydo.de/AsmGofer/

21. Blass, A., Gurevich, Y.: Background, Reserve, and Gandy Machines. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer,
Heidelberg (2000)

22. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. Software Eng. 23, 279–295
(1997)

23. Ma, G.Z.: Model Checking Support for CoreASM: Model Checking Distributed
Abstract State Machines Using Spin. Master’s thesis, Simon Fraser University,
Canada (2007)

http://research.microsoft.com/fse/asml/
http://www.tydo.de/AsmGofer/

814 R. Farahbod et al.

24. Brantingham, P.J., Brantingham, P.L.: Patterns in Crime. Macmillan Publishing
Company, New York (1984)

25. Börger, E.: Construction and Analysis of Ground Models and their Refinements
as a Foundation for Validating Computer Based Systems. Formal Aspects of Com-
puting 19, 225–241 (2007)

26. Brantingham, P.L., Kinney, B., Glässer, U., Jackson, P., Vajihollahi, M.: Mas-
termind: Computational Modeling and Simulation of Spatiotemporal Aspects of
Crime in Urban Environments. In: Liu, L., Eck, J. (eds.) Artificial Crime Analy-
sis Systems: Using Computer Simulations and Geographic Information Systems,
Information Science Reference (2008)

27. Brantingham, P.L., Glässer, U., Kinney, B., Singh, K., Vajihollahi, M.: A Compu-
tational Model for Simulating Spatial Aspects of Crime in Urban Environments.
In: Jamshidi, M. (ed.) Proc. of 2005 IEEE Intl. Conf. on Systems, Man and Cy-
bernetics, pp. 3667–3674 (2005)

28. Wehn, H., et al.: A Distributed Information Fusion Testbed for Coastal Surveil-
lance. In: Proc. of the 10th Intl. Conf. on Information Fusion (2007)

29. Farahbod, R., Glässer, U., Wehn, H.: CanCoastWatch Dynamic Configuration
Manager. In: Proc. of the 14th Intl. Abstract State Machines Workshop (2007)

30. Farahbod, R., Glässer, U.: Dynamic Resource Management for Adaptive Distrib-
uted Information Fusion in Large Volume Surveillance—Phase One. Technical Re-
port SFU-CMPT-TR-2008-08, Simon Fraser University (2008)

31. Farahbod, R., Gervasi, V.: JASMine: Accessing Java Code from CoreASM. In: Pro-
ceedings of the Dagstuhl Seminar on Rigorous Methods for Software Construction
and Analysis (LNCS Festschrift) (to be published, 2008)

32. Endsley, M.R.: Theoretical Underpinnings of Situation Awareness: A Critical Re-
view. In: Endsley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and
Measurement, LEA (2000)

33. Bossé, É., Roy, J., Ward, S.: Models and Tools for Information Fusion (2007)
34. Bossé, É., Jousselme, A.L., Maupin, P.: Situation Analysis for Decision Support:

A Formal Approach. In: Proc. of the 10th Intl. Conf. on Information Fusion (2007)
35. Maupin, P., Jousselme, A.L.: A General Algebraic Framework for Situation Analy-

sis. In: Proc. of the 8th Intl. Conf. on Information Fusion, Philadelphia, PA (2005)
36. Maupin, P., Jousselme, A.L.: Interpreted Systems for Situation Analysis. In:

Proc. of the 10th Intl. Conf. on Information Fusion, Quebec city, Canada (2007)
37. Farahbod, R., Glässer, U., Bossé, E., Guitouni, A.: Integrating Abstract State

Machines and Interpreted Systems for Situation Analysis Decision Support Design.
In: Proc. of the 11th Intl Conf. on Information Fusion (Fusion 2008) (2008)

38. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to Generate Tests from
ASM Specifications. In: Abstract State Machines 2003, pp. 263–277. Springer, Hei-
delberg (2003)

39. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer.
In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949,
pp. 39–76. Springer, Heidelberg (2008)

Optimizing the System Observability Level for
Diagnosability�

Laura Brandán Briones, Alexander Lazovik, and Philippe Dague

LRI, Univ.Paris-Sud, CNRS, Parc Club Orsay Université,
4 rue Jacques Monod, bât G, Orsay, F-91893, France

{laura.brandan,alexander.lazovik,philippe.dague}@lri.fr

Abstract. A system model is diagnosable when every fault can be unambigu-
ously detected from its observable events. Diagnosability is a desirable system
property, enabling large and complex systems to be designed with automatic fault
detection and isolation mechanisms.

In this paper we study the relation between a system’s level of observability
and its diagnosability. We provide both necessary and sufficient conditions on
the observable events maintained by the system in order to be diagnosable. We
concentrate on two problems: First, we show how to transform a diagnosable
system into another one which is still diagnosable but also has a minimal level of
observability. Second, we show how to transform a non-diagnosable system into
a diagnosable by subsequently increasing the level of observability.

Finally, we expand our framework with several extensions, dealing with dis-
tinguishability, predictability and extended fault models.

1 Introduction

The design of automatic fault detection mechanisms for systems is an important task,
and has been studied for several years. Due to the increasing reliability requirements
imposed on autonomous systems, particularly mission-critical ones, many sophisticated
methods have been proposed. These methods enable the accurate analysis of faults, and,
in particular, their diagnosability.

A system model is diagnosable when every fault can be unambiguously detected
from its observable events within a predefined (finite) amount of steps. Typically, the
detection of faults is performed by systematically monitoring the system, e.g., by re-
ceiving information from sensors, or by inspecting the system logs.

However, when a system is being set up, a problem appears, as it is unclear how
much observability is necessary in order to keep the system diagnosable. In practice, this
problem is made evident by doubts of the form “how many sensors should be installed?”
or “how many events should be monitored?”.

In particular, when trying enhance an existing legacy system so that it becomes diag-
nosable, one may ask “How many new sensors or monitors should be installed in order
to provide diagnosability?”. Conversely, and more sublty, if the legacy system is al-
ready diagnosable one may wonder if “Are there too many sensors or monitors, making
unnecessary and redundant the collected information?”.

� This research has been funded by the EU through the FP6 IST project 516933 WS-Diamond
and the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 815–830, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

816 L. Brandán Briones, A. Lazovik, and P. Dague

This paper gives the most efficient system observability (list of observable events)
that keeps the system diagnosable. We build on top of the work of Lin [10], which shows
that the most efficient system observability is not unique. Our contribution is twofold:
First, we give an algorithm that keeps a system diagnosable but with a minimal set
of observable events. Second, we present an algorithm that builds the optimal set of
observable events to ensure diagnosability in a given system.

In practice, it is often the case (e.g., in already existing legacy systems) that one is
not allowed to modify the running system in any way except the level and intensity of
the observations (e.g., sensors or logs of the system). Accordingly, all algorithms in this
paper are allowed to only transform the degree of observability of the system, but not
change anything else in the considered system; its structure (i.e., its transitions, events
and states) remain untouched.

In order to deal with faults in an uniform and generic way, we adapt a notion of sig-
nature from Continuous Systems (CS) that accounts, intuitively, with all the situations
when faults occur.

In Continuous Systems, the diagnosis of systems is often performed on a snapshot
of observables, i.e., an evaluation of observable variables at a given moment of time.
In the case that the observation implies a fault occurrence the observation is called a
signature.

However, for the discrete event systems (DES) we consider, the diagnosis of systems
is made typically in a more dynamic fashion, i.e., with different observations being
recorded for a period of time. Therefore, we redefine and adapt the concept of signature
in this setting.

We propose a definition of signatures for DES, which allows us to deal with different
fault situations in a uniform way, and enables us to provide:

1. An efficient method for reducing and expanding the observability of a given system.
2. An extra layer between the actual fault model and the algorithms, which makes

possible to develop algorithms independent from the actual nature of the faults.

Using signatures we build a general framework perfectly suited to our purpose of
reducing and expanding observability. Moreover, it’s easily extensible to a wide range
of problems:

• Distinguishability, where it is important to differentiate types of faults.
• Predictability, where the fault is predicted rather than detected a posteriori.
• Extended fault model, where a fault is formed by a specific faulty sequence of

events, (but each event in isolation is not a fault).

We focus on defining and developing the foundational concepts of our theory, as
opposed to considering issues related to the practical application of the proposed tech-
niques, which we leave for future work (e.g., the application of our framework to real
cases [16]).

1.1 Organization of the Paper

The next section provides basic definitions, e.g., label transition system and diagnos-
ability. Section 3 introduces the notion of signatures and correct behaviours. The frame-
work for reducing and expanding observability is presented in Section 4. Section 5

Optimizing the System Observability Level for Diagnosability 817

describes briefly a prototype implementation tool. Extensions of the framework are
provided in Section 6; and Section 7 overviews the related work. Finally, we draw con-
clusions in Section 8.

2 Discrete Event Systems

Preliminaries. Let L be any set. Then with L∗ we denote the set of all finite sequences
over L, with L∞ we denote the set of all infinite sequences over L and with Lω we
denote the set of all finite and infinite sequences overL. The empty sequence is denoted
by ε. For σ, ρ ∈ Lω, we say that σ is a prefix of ρ and write σ � ρ, if ρ = σσ′ for some
σ′ ∈ Lω (then σ′ = ρ−σ). If σ is a prefix of ρ, then ρ is a continuation of σ. We call σ
a proper prefix of ρ and ρ a proper continuation of σ if σ � ρ, but σ
= ρ. We denote by
P(L) the power set of L. Given L′ ⊆ L and σ a sequence over Lω we denote by σL′

the restriction of σ over L′.

2.1 Labelled Transition Systems

Definition 1 (LTS). A labelled transition system, LTS, is a tuple A = 〈Q, q0, L, T 〉
where

• Q is a finite set of states.
• q0 ∈ Q is the initial state.
• L is a finite set of events.
• T ⊆ Q× L×Q is a finite branching transition relation.

We denote the components of A by QA, q0A, LA, and TA. We omit the subscript A if it
is clear from the context.

In Figure 1-(A) we represent A = 〈Q, q0, L, T 〉 a LTS where Q = {q0, · · · , q5}, q0 =
q0, L = {a, b, c, d, f} and T = {(q0, a, q1), (q1, f, q3), · · · , (q5, c, q4)}.

��q0 �a �q1

�
b

�f

�q2 �d�
�
a

�q3 �b

�q4

�
	���

�� a

�q5

�
c

(A)

��q0 �
a

�q1 �
f

�q3 �
b

�q6

�
	���

�� a

(B)

Fig. 1. LTSs

Definition 2 (path, trace, |σ|, q σ→ q′, cycle, σ̌k). Let A = 〈Q, q0, L, T 〉 be a LTS,
then

• A path inA is a sequence π = q0a0q1 . . . such that for all i we have (qi, ai, qi+1) ∈
T . We denote with paths(q) the set of paths starting in q. We use paths(A) for
paths(q0). We denote with paths(q, q′) the set of paths starting in q and ending in
q′. We write q → q′, if paths(q, q′) is not empty and q →, if there exists a state q′

such that q → q′.

818 L. Brandán Briones, A. Lazovik, and P. Dague

• The trace σ of a path π, denoted trace(π), is the sequence σ = a0a1 . . . of events
in L occurring in π. We write traces(A) = {trace(π)

∣∣ π ∈ paths(A)} for the set
of traces in A, particularly we write traces∞(A) to denote the set of infinite traces
in A. In case σ is finite, with |σ| we denote the length of the trace σ and we define
by last(σ) the last event of σ.

• We write q
σ→ q′ if the state q′ can be reached from the state q via the trace σ, i.e.,

if there is a path π ∈ paths(q, q′) such that trace(π) = σ.
• A cycle is a non empty element in paths(q, q) for some state q. We denote by

cycle(A) all the cycles in A.
• Given a trace σ ∈ traces(A), we denote by σ̌ its postlanguage, i.e., σ̌ = {ρ ∈

traces(A)
∣∣ σ � ρ}. Moreover, for a given natural number k ∈ N we denote by

σ̌k its postlanguage with words with length equal or longer than |σ| + k, i.e.,
σ̌k = {ρ ∈ σ̌

∣∣ k ≤ |ρ−σ|}.

We say that a LTS A is live if for all states there exists a transition initiated in that state,
i.e.,

A = 〈Q, q0, L, T 〉 is live if and only if ∀ q ∈ Q : q → (1)

Example, the LTSs from Figure 1-(A) (on the left) and 1-(B) (on the right) are live.

2.2 Observable LTSs with Faults

An observable labelled transition system with faults is a LTS that has its set of events
subdivided into observable events (Lo) and unobservable events (Lu). Moreover, there
exists a subset of Lu that represents fault events (Lf).

Definition 3 (observable LTS(Lf)). An observable labelled transition system with
faults, denoted LTS(Lf), is a tuple A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 where 〈Q, q0, L, T 〉
is a LTS and

• The set of events L is partitioned into a set of observable events, Lo, and a set of
unobservable events, Lu, with L = Lo ∪ Lu and Lo ∩ Lu = ∅.

• There is a subset of the unobservable events, called the fault events, denoted Lf .

An observable LTS(Lf) is about hiding the faults and some other events. From now on,
we refer to LTS(Lf) as to observable LTS(Lf) unless we state the opposite.

For example, Figure 1-(A) also represents a LTS(Lf) with: Lu ={f} and Lf ={f}.

Definition 4 (observable trace, tracesf , tracesf,k, f ∈ σ). LetA(Lu) = 〈Q, q0, L, T,
Lu, Lf〉 be a LTS(Lf), then:

• The observable trace of a trace σ, denoted σLo , is the sequence a0a1 . . . of events
in Lo occurring in σ.

• We denote by tracesf (A) the set of traces inA that end with a fault, i.e., tracesf (A)
= {σ ∈ traces(A)

∣∣ σ ∈ L∗Lf}.
• Given a natural number k ∈ N we denote by tracesf,k(A), the set of traces σ such

that there exists another trace ρ that ends in a fault and σ extends ρ with k or more
events, i.e., tracesf,k(A) = {σ ∈ traces(A)

∣∣ ∃ ρ ∈ tracesf (A) ∧ σ ∈ ρ̌k}.
• Given a trace σ, we write f ∈ σ to denote that σ has a fault, i.e., σ ∈ L∗LfL

ω.

Optimizing the System Observability Level for Diagnosability 819

We say that a LTS(Lf) A is convergent if it does not have cycles with non-observable
events, i.e.,

A is convergent if and only if ∀ π ∈ cycle(A) : ∃ a ∈ Lo : a ∈ π (2)

2.3 Diagnosability

The diagnosability of a system means that its model, supposed to be a LTS(Lf), can be
unambiguously diagnosable, where a diagnosable LTS(Lf) is defined as being able to
detect a fault occurrence within a finite number of steps based only on the observable
traces.

Definition 5 (diagnosability). Let A = 〈Q, q0, L, T, Lu, Lf〉 be an observable
LTS(Lf), then A is diagnosable if the following holds; ∃ n ∈ N : ∀ ρ ∈ tracesf,n(A) :

if α ∈ traces(A) : ρLo = αLo then f ∈ α.

The previous definition is a reformulation of the known Sampath [14] diagnosability
definition, for the case with only one type of fault1. For example, the LTS(Lf) from
Figure 1-(A), with Lu = {f} is convergent and diagnosable.

Property 1. Let A = 〈Q, q0, L, T, Lu, Lf 〉 be an observable LTS(Lf), then A is diag-
nosable if the following holds; ∃ n ∈ N : ∀ ρ ∈ tracesf,n(A) : if α ∈ traces(A) :
ρLo = αLo then ∀ α′ ∈ traces∞(A) : α � α′ : f ∈ α′.(Its proof can be found in [4].)

Remark 1: For a given Lu, if the LTS(Lf)A(Lu) is diagnosable, then ∀ L′
u : Lf ⊆

L′
u ⊆ Lu, the LTS(Lf) A(L′

u) is diagnosable. Moreover, a LTS(Lf)A(L) is never
diagnosable (from the moment it has at least one correct trace and one faulty trace).

3 Observability and Signatures

3.1 Observability

Some systems can be non diagnosable even when all events, except fault events, are
observable. We denote such systems necessarily non diagnosable. A more interesting
situation is when a system is diagnosable with faults being the only unobservable events.
We denote such systems possibly diagnosable. To distinguish if there exists an observ-
ability degree, for a particular system, that makes it diagnosable, we propose thus the
following definition.

Definition 6 (necessarily non/possibly diagnosable). A LTS(Lf) A is called:

• Necessarily non diagnosable if the LTS(Lf) A(Lf) is not diagnosable.
• Possibly diagnosable if the LTS(Lf) A(Lf) is diagnosable.

Assumptions. From now on, we assume that all LTS(Lf) A, that we work with, are
live, convergent and possibly diagnosable.

1 In Section 6.1 we extend our approach to several types of faults.

820 L. Brandán Briones, A. Lazovik, and P. Dague

3.2 Signatures in DES

In this section we introduce the notion of signatures that originally comes from contin-
uous systems [15]. In this work we adopt signatures to represent faults executions for
DES. A signature is a regular expression that denotes the set of traces with faults.

The observable correct behaviour, denoted c, is defined by the regular expression
(with only observable events) that denotes all correct infinite traces, i.e., infinite traces
that do not have faults.

Definition 7 (observable correct behaviour). Given a LTS(Lf) A we define its ob-
servable correct behaviour as

c = {σ ∈ Lω
o

∣∣ σ ∈ traces∞(A) : f
∈ σ}
In contrast with the observable correct behaviour, the observable signature is the regular
expression that denotes all observable prefixes of faulty traces that are not prefix of an
element of the observable correct behaviour.

To define observable signatures we use tracesz to denote the set of all traces with
exactly z events after the first occurrence of a fault. In [12] it is shown, that for an
exhaustive diagnosability check, it is necessary to check traces of a maximal length
|Q|2−|Q|

2 (and, therefore we can choose z ≤ |Q|2−|Q|
2), what is often impractically

high. In practice, to build a correct signature, one is sometimes forced to set an upper
bound for the length of faulty traces.

Definition 8 (observable signature). Given a diagnosable LTS(Lf)A= 〈Q, q0, L, T,
Lu, Lf〉, its observable signature is defined as

r={σ ∈ L∗
o

∣∣ ∃ α ∈ tracesz(A) : σ�αLo : � σ′∈ c : σ�σ′}
Note that the observable correct behaviour is not the complement of the observable
signature: there exist traces that do not belong to either class.

Remark 2: A consequence of the diagnosability definition (Definition 5) is thatA being
diagnosable ensures that r is not empty (from the momentA contains at least one fault)

with a z = |Q|2−|Q|
2 .

Following the example from Figure 1-(A), with Lu = {f}we find c = a(ba)∗bda∞,
and with z = 4, we have tracesz = {a(ba)∗fbca2}. Thus, we obtain the observable
signature r = a(ba)∗bc+ a(ba)∗bca+ a(ba)∗bca2.

In particular, we let observable signatures represent traces that do not have faults,
but are prefixes of faulty traces. In Figure 1-(B) we represent a diagnosable system that
is bound to have a fault with Lu = Lf = {f}. We obtain c = ∅ because there is no
infinite trace without fault. In addition, with z = 4, we have tracesz = {afbaaa} then
we have r = a+ ab+ aba+ aba2 + aba3.

4 Reducing and Expanding Observability

4.1 Reducing the Observability

In this section we find a minimal set of observable events that still keeps the system
diagnosable. We do it by reducing the set of observable events as much as possible still
maintaining the diagnosability property.

Optimizing the System Observability Level for Diagnosability 821

The observable signature defined in Definition 8 describes the observable part of
traces with faults or traces that certainly will produce a fault. Although, for the follow-
ing proofs we use a more restricted version of signature, called long signature, denoted
lr. Long signatures do not contain traces that are prefix of another one, i.e.,

lr = {σ ∈ L∗
o

∣∣ σ ∈ r ∧ � σ′ ∈ r : σ
 σ′} (3)

For example, our previous signature r = a(ba)∗bc + a(ba)∗bca + a(ba)∗bca2 is
converted to the long signature lr = a(ba)∗bca2.

Moreover, for a trace σ we abuse the notation: σ ∈ r, σ ∈ lr, and σ ∈ c to denote
that the observable trace of σ (i.e., σLo) is in r or c respectively.

Structural differences, written A
≡ B, relate two sets of traces that do not have any
trace in common, nor any prefix of a trace that belongs to the other set, except of the ε
trace. Formally, structural differences are defined as follows.

Definition 9 (structural differences (
≡)). Let A and B be sets of traces, then

A
≡ B means (∀ σ ∈ A :∀ σ � σ′ :σ′
∈ B)∧(∀ σ ∈ B : ∀ σ � σ′ : σ′
∈ A)

Lemma 1. Let A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 be a diagnosable LTS(Lf), then if a ∈
Lo : lrLo\{a}
≡ cLo\{a} and A(L′

u) = 〈Q, q0, L, T, L′
u, Lf〉, with L′

u = Lu ∪ {a} is
convergent then A(L′

u) is diagnosable, and not diagnosable otherwise.

The proof of this lemma can be found in an extended version of this paper in [1].
In the example from Figure 1-(A) with long signature: lr = a(ba)∗bca2 and correct

behaviour: c = a(ba)∗bda∞; using Lemma 1, we may drop the event c from the observ-
able events, and the system remains diagnosable for Lu = {f, c} and Lo = {a, b, d}.

We can easily convert back long signature into signature allowing any prefix of
a trace in a long signature that is not a subtrace of a correct behaviour. For exam-
ple, starting from the long signature lr = a(ba)∗bca2 from the system A(Lu) with
Lu = {f}, Lo = {a, b, c, d}, and correct behaviour c = a(ba)∗bda∞ we obtain
r = a(ba)∗bc+ a(ba)∗bca+ a(ba)∗bca2.

Theorem 1. Let A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 be a diagnosable LTS(Lf), then we
obtain a minimal set of observable events by repeatedly applying Lemma 1, L′

o ⊆ Lo

such that A(L′
u) = 〈Q, q0, L, T, L′

u, Lf〉 is diagnosable, with L′
u =L\L′

o.

The proof for Theorem 1 is as follows. First, we derive the signature and correct be-
haviour from the diagnosable system A. Second, we obtain the long signature from the
signature of the system. Third, we repeatedly apply Lemma 1 for all observable events
until there does not exist any events in the observable events that can be converted to
unobservable. Finally, we obtain back the signature from the last long signature that we
obtained.

The above procedure can be performed according to different orders, depending on
which observable events we choose to turn into unobservable ones. Note, that there
always exists a minimal order w.r.t. the amount of observable events. The algorithm
itself for reducing the observability is shown in Algorithm 1. It provides an algorithmic
view for Lemma 1 and Theorem 1. Given a system, its observable events and observ-
able signature, the algorithm returns a minimal set of observable events. It works in

822 L. Brandán Briones, A. Lazovik, and P. Dague

the following way. In line 3, it reduces the observable signature according with (3). In
line 5-7, the algorithm chooses the set S with maximal cardinality, which is built by
functions checkUnObSet and checkUnObserve. The functions form the set S by it-
eratively reducing the set of observable events as far as observable signature for lr and
observable correct behavior c are still distinguishable, in the same way as it was defined
by Lemma 1.

In the following example we show how we obtain the minimal set of observable
events for the systemA from Figure 1-(A). Starting fromA(Lu) = 〈Q, q0, L, T, Lu, Lf〉
with Lu = {f}, Lo = {a, b, c, d}, r = a(ba)∗bc + a(ba)∗bca + a(ba)∗bca2 and
c = a(ba)∗bda∞. Then, (i) we obtain lr = a(ba)∗bca2; (ii) we convert d into unobserv-
able, having lr = a(ba)∗bca2 and c = a(ba)∗ba∞; (iii) we convert b into unobservable,
having lr = aa∗ca2 and c = aa∗a∞ = a∞; and (iv) we reconstruct the signature as
r′ = aa∗c+aa∗ca+aa∗ca2. It is easy to note thatA(L′

u) = 〈Q, q0, L, T, L′
u, Lf〉with

L′
u = {f, d, b}, Lo = {a, c} is diagnosable.

Algorithm 1. Reducing the observability Algorithm 2. Expanding the observability
1: Input: System A, obs. events Lo, obs. cor-

rect behavior c, obs. signature r
2: Output: Minimal set of obs. events L′

o

3: lr = reduceToLongSignature(r)
4: Smax = ∅
5: for all S ⊆ Lo do
6: if checkUnObSet(A,S, c, lr)

∧ |Smax| < |S| then
7: Smax = S
8: end if
9: end for

10: return Lo\Smax

11: function checkUnObSet(A, S, c, lr)
12: with a ∈ S do
13: if isConvergent(A, Lo\a) ∧

checkUnObserve(c, lr, a) then
14: return checkUnObSet(A, S\a,

c−{a}, lr− {a})
15: end if
16: return S = ∅

17: function checkUnObserve(c, lr, a)
18: for all σ ∈ (c− {a}) do
19: for all σ′ ∈ prefix(σ)∧

(|σ′| ≤ |lr|) do
20: if σ′ ∈ (lr− {a}) then
21: return false
22: end if
23: end for
24: end for
25: return true

1: Input: System A, obs. events Lo

2: Output: Minimal set of obs. events L′
o

3: for all σ ∈ tracesf,n ∧ |σ| ≤ z do
4: for all α ∈ traces(A) :

αLo = σLo ∧ f
∈ α do
5: Sσα ={O σLo∪O
=αLo∪O∧f
∈O}
6: end for
7: end for
8: S = ∅
9: for all Sσα do

10: S = {B′ ∪ B′′ (B′, B′′) ∈ S×Sσα}
11: for all Bi, Bj ∈ S, Bi ⊆ Bj do
12: S = S −Bj

13: end for
14: end for
15: return Lo ∪Bmin, where

Bmin ∈ S ∧ |Bmin| = min|B|, B ∈ S

Optimizing the System Observability Level for Diagnosability 823

4.2 Expanding the Observability

In this section we present the algorithm to transform a non-diagnosable system into a
diagnosable one, expanding its set of observable events.

We assume that the system is possibly diagnosable (Definition 6). Thus, if we con-
sider the system with all events as observable, except faults, then the system is diag-
nosable. We define Sσα as a set of sets of events that distinguish traces σ and α. So,
in a possibly diagnosable system with two traces σ and α with the same observability
such that one has a fault, and afterwards it has at least n events, and the latter one with-
out a fault, we define Sσα as a set of sets of events (not from Lf) that makes σ and α
distinguishable.

Definition 10 (Sσα). Let A(Lu) be a possibly diagnosable LTS(Lf), then ∀ σ, α ∈
traces(A) : σ ∈ tracesf,n(A) ∧ f
∈ α : σLo = αLo , we define

Sσα = {O ∈ Lo\Lf

∣∣ σLo∪O
= αLo∪O}
where n is the bound, given by the diagnosability definition, for the system A(Lu).

Considering the system presented in Figure 1-(A), with Lo = {a, b}, Lu = {c, d, f};
σ = afbca and α = aba (so σLo = aba and αLo = aba) we have Sσα = {{c}, {c, d}}.
Now, with σ′ = abafbca and α′ = ababda, we obtain Sσ′α′ = {{c}, {d}, {c, d}}.

A minimal distinguishable set, denoted by S, represents a set that includes at least
one set for all Sσα.

Definition 11 (S). S is a minimal distinguishable set, if it has minimal cardinality and
for all Sσα with σ, α ∈ traces(A) : σ ∈ tracesf,n(A) ∧ f
∈ α : σLo = αLo , there
exists B ∈ Sσα : B ⊆ S.

For the example shown in Figure 1-(A) we have S = {c}.

Theorem 2. Let A(Lu) = 〈Q, q0, L, T, Lu, Lf 〉 be a possible diagnosable but non-
diagnosable LTS(Lf), and let S defined as in Definition 11, thenA(L′

u) = 〈Q, q0, L, T,
L′

u, Lf〉 is diagnosable, with L′
u = Lu\S.

The proof of this theorem can be found in an extended version of this paper in [1].
The algorithm is provided in Algorithm 2. It transforms the system into a diagnos-

able one without changing its structure (set of transitions, events or states) and only by
expanding its observability. Moreover, the algorithm finds a minimal set of events that
should be added to the initial set of observable events. The algorithm itself is based on
the definitions and the theorem above: lines 3-5 refer to Definition 10, lines 9-12 refer to
Definition 11 and Theorem 2. Note, that in line 3 we use z to limit the maximum length

of σ. For an exhaustive search z has to be equal to |Q|2−|Q|
2 . In practice it is often pos-

sible to provide a better bound (e.g., [12]). Note that, depending on the initial Lo, L′
o is

not necessarily a minimal set of observable events that makes the system diagnosable.
However, the minimality can always be reached by applying the algorithm presented in
Section 4.1 from Lo = L\Lf .

In our example from Figure 1-(A) starting with Lo = {a, b}, following Algorithm 2
we obtain S = {c}. Thus, we obtain A(L′

u) = 〈Q, q0, L, T, L′
u, Lf 〉 with L′

o =
{a, b, c}. In contrast, as we already pointed out in Section 4.1, the minimal set of ob-
servable events for this diagnosable system is Lmin

o = {a, c} .

824 L. Brandán Briones, A. Lazovik, and P. Dague

5 Implementation

We implemement the Algorithms, presented in Section 4, using constraint satisfaction
techniques. The idea behind the implementation are the following.

LTS signature and correct behaviour are represented as set of constraints over vari-
ables representing states and labelles. Additional constraints are also added to repre-
sent the structural difference relation between signature and correct behavior. A valid
assignment represents a trace in the LTS, which is modeled by both, signature and
correct behavior. Wich makes signature and correct behavior to be not structually dif-
ferent. Therefore, having a solution to the generated constraint problem means that with
that given level of observability the system is not diagnosable. The described encoding
represents an efficient implementation of the checkUnObserve function from Algo-
rithm 1, and the condition at line 4 from Algorithm 2.

Our implementation uses as a constraint solver Choco [2]. Choco is a Java library for
constraint satisfaction problems (CSP), constraint programming (CP) and explanation-
based constraint solving (e-CP). In the scenarios that we are interested, users may wish
to know why certain solutions are preferred to others. Explanation-based constraint pro-
gramming is a viable approach to solve such problems. This is one of the reasons that
lead us to Choco, as Palm is an explanation-based constraint system built on top of it.

The initial evaluation of the implementation, based on the examples available in [16],
showed that the system finds an optimal observability level for diagnosable systems
with up to 2000 states. However, these are just preliminary results, and more considerate
and careful evaluation is planned to be done in future work.

The implementation itself, together with evaluation tests, can be fund in http://
www.dit.unitn.it/∼lazovik/pmwiki/index.php?n=Research.Diag.

6 Extended Models

In this section we introduce various extensions to the diagnosability model that we
presented in Section 2.3. Within the framework defined in Section 3, it is possible to
reuse algorithms from Theorem 1 and Theorem 2, and, in the same time, take into
account several extensions: distinguishability, predictability, and extended fault models.
In the following sections we show what has to be modified in the proposed model and
algorithms to deal with each particular case.

6.1 Distinguishability

The problem of distinguishability arises when we are interested in distinguishing dif-
ferent types of faults rather than in a simple indication whether a fault occurred or not.

In this section we partition the set of faults (subset of the unobservable events) into
classes of faults, i.e.,Πf = {Lf1 , · · · , Lfm}, where Lfi represents faults with type fi.

Definition 12 (observable LTS(Πf)). An observable labelled transition system
LTS(Πf) with fault types, denoted by Πf , A(Lu) = 〈Q, q0, L, T, Lu, Πf 〉 is a
LTS(Lf), where the set of fault events (Lf) is partitioned intoΠf = {Lf1 , · · · , Lfm},
i.e., Lf ⊆ Lu, Lf = Lf1 ∪ · · · ∪ Lfm and ∀ i
= j : Lfi ∩ Lfj = ∅.

http://www.dit.unitn.it/~lazovik/pmwiki/index.php?n=Research.Diag
http://www.dit.unitn.it/~lazovik/pmwiki/index.php?n=Research.Diag

Optimizing the System Observability Level for Diagnosability 825

So an observable LTS(Πf) is a normal LTS with a clear distinction between observable
and unobservable events and inside the unobservable events there is a subset of fault
events subdivided into classes.

Definition 13 (tracesfi, tracesfi,k, fi ∈ σ). Let A = 〈Q, q0, L, T, Lu, Πf〉 be a
LTS(Πf), then:

• Given a type of fault fi, we denote by tracesfi(A) the set of traces in A that end
with a fault of type fi, i.e., tracesfi(A) = {σ ∈ traces(A)

∣∣ σ ∈ L∗Lfi}.
• Given a type of fault fi and a natural number k ∈ N we denote by tracesfi,k(A),

the set of traces σ such that there exists another trace ρ that ends in a fault of type
fi and σ extends ρ with length longer or equal to k, i.e., tracesfi,k(A) = {σ ∈
traces(A)

∣∣ ∃ ρ ∈ tracesfi(A) ∧ σ ∈ ρ̌k}.
• Given a trace σ, we write fi ∈ σ to denote that σ has a fault of type fi, i.e.,
σ ∈ L∗LfiL

ω.

As follows, we re-define diagnosability and observable signatures for LTS(Πf).

Definition 14 (diagnosability in LTS(Πf)). Let A(Lu) = 〈Q, q0, L, T, Lu, Πf〉 be a
LTS(Πf), then the set traces(A) is diagnosable if the following holds;

∀ 1≤ i≤m : ∃ ni∈N : ∀ ρ∈ tracesfi,ni(A) : if α∈ traces(A) : ρLo=αLo then fi∈α.

Definition 15 (ri). Given a diagnosable LTS(Πf) A and fi a fault type; ri is the ob-
servable signature of fi if it observable prefixes of traces contans a fault of type fi that
are not prefix of a correct trace.

ri = {σ ∈ L∗
o

∣∣ ∃ α ∈ tracesfi,ni(A) : σ � αLo : � σ′′ ∈ c : σ � σ′′}
Definition 16 (signature in LTS(Πf)). Given a LTS(Πf) A and r1, · · · , rm the set of
observable signatures for fault types f1 · · · fm, we define the observable signature ofA:

r = r1 + · · ·+ rm

Now we can reformulated Lemma 1 with respect to different faults.

Lemma 2. Let A(Lu) = 〈Q, q0, L, T, Lu, Πf 〉 be a diagnosable LTS(Πf), then if a ∈
Lo : rLo\{a}
≡ cLo\{a} and ∀ i
= j : ri

Lo\{a}
≡ rj
Lo\{a} thenA(L′

u)=〈Q, q0, L, T,
L′

u, Πf 〉, with L′
u = Lu ∪ {a}, is diagnosable.

With this new lemma, Theorem 1 remains true. Moreover, if we redefine Definition 10
and Definition 11 as follows, also Theorem 2 remains true.

Definition 17 (Sσα, S in LTS(Πf)). Let A(Lu) be a possibly diagnosable LTS(Πf),
then ∀ 1 ≤ i ≤ m : ∀ σ, α ∈ traces(A) : σ ∈ tracesfi,ni(A) ∧ fi
∈ α : σLo = αLo ,
we define

• Sσα = {B ⊆ Lu\Lf

∣∣ σLo∪B
= αLo∪B}.
• S is a minimal cardinality set, such that ∀ Sσα : ∃ B ∈ Sσα : B ⊆ S.

6.2 Predictability

In some cases, e.g., in mission critical scenarios, it is important to achive the predic-
tion of a possible fault situation rather than a post-fault detection. For such scenarios

826 L. Brandán Briones, A. Lazovik, and P. Dague

we have to ensure that the fault is predictable, and we come to the problem of pre-
dictability. Predictability study is not new, it was first introduced in [4]. However, in [4]
authors investigate only case of strongly predictable systems, ignoring the notion of
safe predictability.

However, since predictability is about future, and future is non-deterministic, we
have two types of predictability: safe predictability and strong predictability. Safe pre-
dictability refers to an observation of a sequence of events that may potentially end in a
fault; while strong predictability refers to cases that will end in a fault (when the fault
is unavoidable).

Definition 18 (Safe predictability). A LTS(Lf) A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 is
safely predictable if the following holds; ∀ σ ∈ tracesf (A) if ∃ α ∈ traces(A) :
f
∈ α ∧ σLo = αLo then ∃ α′ ∈ traces(A) : α
 α′ ∧ f ∈ α′.

Definition 19 (Strong predictability). A LTS(Lf) A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 is
strongly predictable if the following holds; ∀ σ ∈ tracesf (A) if ∃ α ∈ traces(A) : f
∈
α ∧ σLo = αLo then ∀ α′ ∈ traces∞(A) : α
 α′ ∧ f ∈ α′.

In our example, from Figure 1-(A), let assume we have Lo = {a, b}. Then, the system
is safely predictable, since whenever we observe events a we know that we have the
possibility to have a fault in the future. However, the system is not strongly predictable,
since there is no sequence of observable events that unambiguously predicts f occur-
rence. On the other hand, the example from Figure 1-(B) is clearly strongly predictable
with a list of observable events like Lo = {a}.

Within the defined framework, as in [4,5] where similar results are presented, strong
predictability implies diagnosability and safe predictability.

Property 2. Strong predictability implies diagnosability. It follows immediately from
Property 1.

Property 3. Strong predictability implies safe predictability.

A predictability signature is defined as a set of observable events that, if occurred,
always or potentially (depends on the type of predictability) bring the execution to a
fault event.

Definition 20 (safe/strong predictable signatures). Given a A(Lu) = 〈Q, q0, L, T,
Lu, Lf〉 ∈ LTS(Lf), then:

• If A is safe predictable then its observable-safe-predictable-signatures (safe pr) is

safe pr = {σ ∈ L∗
o

∣∣ ∃ σ′ ∈ tracesf (A) : σLo � σ′Lo
}

• If A is strong predictable then its observable-strong-predictable-signatures
(strong pr) is

strong pr = {σ ∈ L∗
o

∣∣ ∀ σ′ ∈ traces∞(A) : σLo � σ′Lo
: f ∈ σ′}

We can apply the previous algorithms directly for strong predictable systems.

Property 4. Given a strong predictable system A(Lu) = 〈Q, q0, L, T, Lu, Lf〉 ∈
LTS(Lf) with c as its correct behaviour (Definition 7) and strong pr as its strong-
predictable-signatures (Definition 20), then:

Optimizing the System Observability Level for Diagnosability 827

(i) The algorithm presented in Theorem 1 reduces the set of observable events correctly,
keeping the system strong predictable.
(ii) The algorithm presented in Theorem 2 expands the set of observable events cor-
rectly, keeping the system strong predictable.

We also can apply the algorithms for safe predictable systems, but it is necessary to
adapt the notion of observable correct behaviour.
Definition 21 (secure correct behaviour). Given a system A(Lu) ∈ LTS(Lf) we de-
fine the observable secure correct behaviour as

sc = {σ ∈ Lω
o

∣∣ σ ∈ traces∞(A) : f
∈ σ ∧ (∀ α � σ : � α � α′ : f ∈ α′)}
This definition is an adaptation of that of observable correct behaviour (Definition 7 in
Section 3.2). The idea is analogous to the previous one; the main novelty here is that
subtraces of correct traces can never be part of observable-safe-predictable-signatures.
In this way we still keep the structural difference between correct behaviours and sig-
natures.

Property 5. Given a safe predictable systemA(Lu) = 〈Q, q0, L, T, Lu, Lf 〉∈ LTS(Lf)
with scas its secure correct behaviour (Definition 21) and safe pras its safe-predictable-
signatures (Definition 20), then:

(i) The algorithm presented in Theorem 1 reduces the set of observable events cor-
rectly, keeping the system safe predictable.
(ii) The algorithm presented in Theorem 2 expands the set of observable events cor-
rectly, keeping the system safe predictable.

We leave the properties in this section without proofs, since the proofs are analogous
to Theorem 1 and Theorem 2.

6.3 Extended Fault Model

In this section we define an extended fault model, where a fault is formed by a spe-
cific fault sequence of events, that are not faults by themselves. Consider an example
of driving a vehicle, where driving having doors open is a fault, while in most other
situations it is an absolutely legal and expected action. In this case, the fault is defined
not by a faulty event but rather by a sequence of events that forms a fault. Furthermore,
a fault sequence can contain any arbitrary events that do not contribute to the fault. For
the vehicle example, we may have something occurred between opening the door and
driving, and still, if the door is open, we shoul not drive. We define this problem as
diagnosability problem in an extended fault model.

In the extended fault model the fault is defined as a sequence of events. The fault is
considered to be occurred when the last event of the sequence occurs. Besides, events
in the sequence are not required to occur one after another one, we may have other
events happening in the meantime. An extended fault is defined by a sequence of events,
denoted ρf . The set of fault executions is then defined as {σ

∣∣ ρf ⊆ σ}, where ρf ⊆ σ
means that the events from ρf happened in σ in order but not necessarily consecutively.
So, if ρf = ab then the trace σ = cacbe is ⊆ with respect to ρf . We denote by ρl

f the
last event of the fault sequence ρf , i.e., ρl

f = last(ρf).

828 L. Brandán Briones, A. Lazovik, and P. Dague

Definition 22 (Diagnosability with an extended fault model). An extended fault
model system A is called diagnosable with respect to to a fault sequence ρf and a set of

observable events Lo if ∃ n∈N : ∀ σ ∈ tracesρl
f ,z(A) if α ∈ traces(A) : σLo = αLo

then ρf ∈ α.

A signature of an extended fault, in a diagnosable system A, is defined by a set of
observable traces that contain the extended fault, i.e., r = {σLo

∣∣ ρf ∈ tracesρl
f ,n(A)}.

Theorem 1 and Theorem 2 remain true also for diagnosability with extended fault
model, since definitions, theorems and proofs, obtained in Section 4, work at the level
of signatures, without representing the nature of signatures explicitly.

In our example we can assume that an extended fault of the system is ρf = fb,
meaning that the system execution a fault if a b event is performed after a f event. It
is easy to see that the system is diagnosable for the following set of observable events:
Lo = {a, c, d}. Applying Theorem 1, we may reduce the set to Lo = {a, c}. From the
other side, from a set of observable events Lo = {a, b} (which makes the system not
diagnosable), we may expand it to a set Lo = {a, b, c} using Theorem 2.

7 Related Work

Diagnosability study for DES is not new, of course. In [14] diagnosability is precisely
defined and an algorithm for checking it is provided. The literature contains many other
treatments of diagnosablity. We will not attempt to survey that work here.

The diagnosability problem treated in this paper is slightly related to the problem of
model checking. However, there is an important difference. Model checking algorithms
verify if the (possibly infinite) executions of a system satisfy a given property. Merely,
it checks if there is a fault in the system, while diagnosability verifies if the existing
faults are detectable. However, there is some work, that shows how diagnosability can
be represented as a model checking problem [3].

In this paper we go beyond diagnosability checking, we discuss different levels of
observability for diagnosable in DES. There are different styles of representing lavels of
observability in DES (see, for instance [11]), where the attention is limited to investigate
how the system observability level affects its diagnosability. In contrast, in [8] optimal
sensor selection is addressed. Moreover, in [17] it is proven that finding the optimal
(minimal) set of sensors (in our case observable events) for a diagnosable system is a NP
problem. We improve those works introducing the notion of signature to abstract from
the underlying failure model. Signatures originally come from continuous systems [15].
We adopt them to represent fault executions in DES.

In active diagnosis [13], the controller is designed to take into account the issues
of diagnosability. Similar problems are also tackled in planning, where a planner can
decide on the most appropriate actions to deal with faults (e.g., [9]). However, our ap-
proach makes no assumption on whether the system has control over its events, making
the system being “passively” diagnosable. Furthermore, in [10] to diagnose a fault is to
be able to identify in which state or set of states the system is. In contrast, we do not
require information about states, we require only to be certain that a fault has occurred.

Our notions of predictability are closely related to the work in [4,5], where the prob-
lem of predicting occurrences of a fault is addressed. We expand those works with

Optimizing the System Observability Level for Diagnosability 829

definitions of safe predictability and strong predictability. Additionally, we define the
signature concept for these two definitions and show how our framework can be applied
to predictability.

More broadly, this paper is partly a contribution to the formal study of extending the
fault models (Section 6). There are two related paper on this topic. One of them is [7]
where faults are described as a formula in linear temporal logic. The other is [6] where
a notion of a supervision pattern is introduced to allow more complicated pattern-based
models of failures.

8 Conclusion and Future Work

In is paper we discussed different levels of observability for diagnosable DES. We
mainly studied two approaches: first, we transform a diagnosable system into one with
minimal observability and still diagnosable. Second, we transform a non-diagnosable
system into diagnosable by increasing its observability. We present two algorithms that
implement our approaches and we illustrat our propositions with an intuitive example
through all the paper. We describe briefly a prototype implementation tool. Also, we
provided several extensions to the problem of reducing and expanding the observabil-
ity. Furthermore, the provid a framework that deals with both classical faults and an
extended fault model, as well as with other extensions in a uniform way.

In future work we plan to further investigate various extensions to the diagnosability
problem and see if our framework can be extended to deal with new types of problems.
Also, we plan to evaluate the proposed algorithms against some real cases within the
WS-Diamond project [16] and extend our framework to go distributed making it faster
and more efficient.

The important issue of fault isolation and control is ignored within the framework
presented in the paper. In the future we plan to extend the proposed approach with con-
trollable actions that allow us to isolate faults or, at least, perform some compensation
activities to repair the system from the occurred faults.

References

1. Brandán-Briones, L., Lazovik, A., Dague, P.: Optimal observability for diagnosability. In:
DX 2008 (2008)

2. Choco. Constraint programming system, http://choco.sourceforge.net/
3. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via symbolic

model checking. In: IJCAI, pp. 363–369 (2003)
4. Genc, S., Lafortune, S.: Predictability in discrete-event systems under partial observation. In:

IFAC, Beijing, China (August 2006)
5. Jéron, T., Marchand, H., Genc, S., Lafortune, S.: Predictability of sequence patterns in dis-

crete event systems. In: IFAC World Congress, Seoul, Korea (July 2008)
6. Jéron, T., Marchand, H., Pinchinat, S., Cordier, M.-O.: Supervision patterns in discrete event

systems diagnosis, pp. 262–268 (2006)
7. Jiang, S., Kumar, R.: Failure diagnosis of discrete-event systems with linear-time temporal

logic specifications. IEEE Trans. on Automatic Control 49(6), 934–945 (2004)
8. Jiang, S., Kumar, R., Garcia, H.: Optimal sensor selection for discrete-event systems with

partial observation, pp. 369–381

http://choco.sourceforge.net/

830 L. Brandán Briones, A. Lazovik, and P. Dague

9. Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution of web
service requests. Journal on Digital Libraries (2005)

10. Lin, F.: Diagnosability of discrete event systems and its applications. Discrete Event Dy-
namic Systems: Theory and Applications 4(2), 197–212 (1994)

11. Nau, D., Ghallab, M., Traverso, P.: Automated task planning. Theory and practice. Morgan
Kaufmann, San Francisco (2004)

12. Rintanen, J.: Diagnosers and diagnosability of succinct transition systems. In: IJCAI, pp.
538–544 (2007)

13. Sampath, M., Lafortune, S., Teneketzis, D.: Active diagnosis of discrete-event systems. IEEE
Trans. on Automatic Control 40, 908–929 (1998)

14. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability
of discrete-event systems. IEEE Trans. on Automatic Control 9(40), 1555–1575 (1995)

15. Travé-Massuyés, L., Cordier, M.-O., Pucel, X.: Comparing diagnosability in cs and des. In:
17th Int. W-p on Principles of Diagnosis (DX 2006), pp. 55–60 (2006)

16. WS-Diamond. Web services - DIAgnosability, MONitoring and Diagnosis project,
http://wsdiamond.di.unito.it/

17. Yoo, T., Lafortune, S.: Np-completeness of sensor selection problems arising in partially
observed discrete-event systems, pp. 1495–1499

http://wsdiamond.di.unito.it/

Weaving Authentication and Authorization

Requirements into the Functional Model of a
System Using Z Promotion

Ali Nasrat Haidar and Ali E. Abdallah

E-Security Research Centre
London South Bank University

103 Borough Road
London SE1 0AA, UK

{ali.haidar,a.abdallah}@lsbu.ac.uk

Abstract. The use of Z in software development has focused on spec-
ifying the functionality of a system. However, when developing secure
system, it is important to address fundamental security aspects, such as
authentication, authorization, and auditing. In this paper, we show an
approach for building systems from generic and modular security compo-
nents using promotion technique in Z. The approach focuses on weaving
security component into the functionality of a system using promotion
technique in Z. For each component, Z notation is used to construct its
state-based model and the relevant operations. Once a component is in-
troduced, the defined local operations are promoted to work on the global
state. We illustrate this approach on the development of a “secure” model
for a conference management system. With this approach, it is possible
to specify the core functionalities of a system independently from the
security mechanisms. Authentication and authorization are viewed as
components which are carefully integrated with the functional system.

Keywords: Z specification, Security Requirements, Authentication, Au-
thorization, Weaving Security into Functional Models, Z Promotion.

1 Introduction

The use of formal specification Z [15] in software development has focused on
specifying the functionality of a system [16,7,4,10]. However, when developing
secure systems, it is important to address fundamental security aspects, such as
authentication and authorization [3]. The construction of complex distributed
applications is often done by integrating previously-existing software components
[13]. This raises an important question: how to integrate security requirements
into software design. Although, it is well documented that security needs to
be integrated into the software design process, few are able to describe an ap-
proach to achieve this goal [11].Current methodologies fail to provide evidence
of integrating successfully security concerns throughout the whole development
process [6].

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 831–846, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

832 A.N. Haidar and A.E. Abdallah

The primary aim of this paper is to show an approach for building systems
from generic and modular security components using promotion technique in
Z [15,8]. The main emphasis of this approach is on “weaving” security com-
ponents (authentication and authorization) into the functionality of a system
using promotion technique in Z. The approach consists of two phases. In the
first phase, the global system is divided into a number of modular components.
For each component, Z notation is used to construct its state-based model and
the relevant operations. Once a component is introduced, the defined local op-
erations are promoted to work on the global state. As a result, a more complex
system is constructed by appropriate composition of the states of the constituent
components, but addresses all security requirements needed by the system. This
approach is illustrated by a case study of a Web-based Conference Management
System. The global system is divided into several components namely: the func-
tional conference component without any security features, the authentication
component, and the authorization component which is based on the parameter-
ized Role Based Access Control (RBAC) model [2].

The remainder of the paper is organized as follows. Section 2 gives an overview
of a conference management system and a state based model of it. Section 3
briefly presents a formal model for a simple authentication component by show-
ing: a state based model of the component and some basic operations on it. Sec-
tion 4 describes the authorization component and the RBAC mechanism and
shows a state based model in Z. Section 5 introduces promotion and shows how
the security components are integrated with the conference system. Section 6
is the conclusion.

2 Conference Management System

A Web-based conference management component allows authors to electroni-
cally submit conference papers and abstracts using the Web. Authors wishing
to submit papers need to register their personal details and acquire credentials
(username/password). We assume that this is done by the “submitter” of the pa-
per. The submitter uploads the papers, enters the co-authors details (if any) and
indicates useful keywords. When the submission deadline of papers is reached,
the chair of the conference assigns the submitted papers to reviewers accord-
ing to a set of constraints and preferences. For instance, papers can be assigned
based on the reviewers’ topic preferences. Constraints include cases where a con-
flict of interest would arise such as a paper is assigned to be reviewed by its own
author. The papers, authors and reviewers’ details, papers reviews’ reports and
decisions are the main assets that should be protected in this system. A brief
outline of the main informal requirements of the system is as follows.

– Authors can submit/withdraw their own paper online; read own paper review
report.

– Reviewers can view paper(s) and submit review reports for the paper(s)
assigned to them respectively.

Weaving Authentication and Authorization Requirements 833

– Chair can view all submitted papers; assign paper(s) to reviewers according
to a set of constraints; view all paper reviews reports; notify authors whether
their paper was accepted or rejected.

2.1 State-Based Model of the Conference Component

Let UserID, PaperID, Review, Topic, Title, Name, Email, File be abstract types
for denoting the set of all usernames, papers’ identifiers, review reports, papers’
topics, papers’ titles, users’ and organizations’ names, email addresses, and pa-
pers’ files respectively.

[UserID ,PaperID ,Topic,Review ,Title,Name,Email ,File]

A new data type, denoted User Details , maintains useful information about
users which may consist of entities such as name, organization, and email. This
type can be described in Z as follows:

User Details
name : Name
organization : Name
email : Email

Conference reviewers can be modeled as follows:

ConfReviewer
user : UserID #→ User Details
reviewers : P UserID

reviewers ⊂ dom user

The Paper Details data type captures relevant information about submitted
papers. This may typically consists of a title, a set of authors, a set keywords,
and a file.

Paper Details
paperTitle : Title
authors : PUser Details
keywords : PTopic
file : File

Each conference has at least one chair and can also have several chairs. This
is modeled as a schema ConfChair .

ConfChair
user : UserID #→ User Details
chairs : PUserID

chairs ⊂ dom user

834 A.N. Haidar and A.E. Abdallah

The core functionality of a conference component is to maintain a set of
registered users who can be submitters, reviewers or chairs; a set of submitted
papers; and some mechanisms for associating papers with authors, reviewers and
reviewers’ reports. Users and papers can be dynamically added and removed. The
abstract state of a conference consists of the following components:

– paper , a partial function that associates each submitted paper with its cor-
responding details.

– user , a partial function that associates each registered user with the corre-
sponding details.

– submitter , a partial function that associates each paper with a unique author
for the purpose of correspondence.

– assigned reviewers , a relation that associates papers with their allocated
reviewers.

– paper reviews , associates each paper with the review reports submitted by
its assigned reviewers.

The core conference component is divided into two components namely: Con-
fSubmission that deals with papers’ submission and ConfReview that deals with
paper reviews:

ConfSubmission
paper : PaperID #→ Paper Details
user : UserID #→ User Details
submitter : PaperID #→ UserID

dom paper = dom submitter ∧ ran submitter ⊆ dom user

The invariant ensures that the set of submitted papers is the same as the set
of papers stored on the system, and that all submitters are registered users of
the system.

ConfReview
reviewers : P UserID
paper : PaperID #→ Paper Details
assigned reviewers : PaperID ↔ UserID
paper reviews : PaperID → (UserID #→ Review)

dom assigned reviewers ⊆ dom paper
ran assigned reviewers ⊆ reviewers
∀ p : PaperID • dom(paper reviews(p)) ⊆ assigned reviewers(| {p} |)

The invariant states that the papers are only assigned to reviewers, and review-
ers can only submit reports on the papers assigned to them. The conference com-
ponent can then be described as a conjunction of the above components as follows.

Conf =̂ ConfSubmission ∧ ConfReview ∧ ConfReviewer ∧ ConfChair

When a conference is initialized, it contains no papers or authors. The con-
ference system will have a chair(s) and reviewers.

Weaving Authentication and Authorization Requirements 835

ConfInit
Conf ′

users ′ = {john, ali ,mark , denise} ∧
chairs ′ = {john} ∧ reviewers ′ = {ali ,mark , denise} ∧
paper ′ =∅ ∧ submitter ′=∅ ∧ assigned reviewers ′ =∅ ∧ paper reviews ′=∅

2.2 Conference Component Operations

We consider three operations on the conference component namely: SubmitPaper ,
View and Withdraw paper.

A successful SubmitPaper operation requires that the paper id is not in the
domain of paper relation:

SubmitPaper0
ΔConf
uname? : UserID
fullpaper? : Paper Details
paper id ! : PaperID

paper id ! /∈ dom paper
paper ′ = paper ⊕ {paper id ! #→ fullpaper?}
submitter ′ = submitter ⊕ {paper id ! #→ uname?}
assigned reviewers ′ = assigned reviewers
paper reviews ′ = paper reviews

A successful View paper operation requires an existing paper id as input and
provides the corresponding paper as output:

View0
ΞConf
paper id? : PaperID
fullpaper ! : Paper Details

paper id? ∈ dom paper ∧ fullpaper ! = paper(paper id?)

A successful withdraw operation requires only that the paper id in question
exists:

Withdraw0
ΔConf
paper id? : PaperID

paper id? ∈ dom paper
paper ′ = {paper id?} −� paper
submitter ′ = {paper id?} −� submitter
assigned reviewers ′ = {paper id?} −� assigned reviewers
paper reviews ′ = {paper id?} −� paper reviews

836 A.N. Haidar and A.E. Abdallah

Moreoperations canbedescribedsuchasSubmitReview andAssignReviewer op-
erations. Because of space restriction the details couldnot be included in this paper.

Let Report be a data type, the values of which are messages indicating whether
an operation has been successful or has failed.

Report ::= Success | Failure | Access Granted | Access Denied

A failed operation upon the conference state will produce a report as output.

InvalidPaperId
ΞConf
paper id? : PaperID
r ! : Report

An error may arise because the paper id doesn’t exist,

PaperIdNotInUse
InvalidPaperId

paper id? /∈ dom paper ∧ r ! = Failure

or because the specified paper id is in use:

PaperIdInUse
InvalidPaperId

paper id? ∈ dom paper ∧ r ! = Failure

A successful operation will always produce a report with the same value:

Op Success
r ! : Report

r ! = Success

The conference operations will then be modelled as follows:

SubmitPaper =̂ (SubmitPaper0 ∧ Op Success) ∨ PaperIdInUse
View =̂ (View0 ∧ Op Success) ∨ PaperIdNotInUse
Withdraw =̂ (Withdraw0 ∧ Op Success) ∨ PaperIdNotInUse

3 Authentication Component

Authentication is required for a large class of distributed applications, such as
e-banking, e-commerce, and e-government. Authentication aims at verifying the
identity of an entity [3]: a human user or an application acting on behalf of
a user. Several mechanisms for authentication exist: username/password pairs,
digital certificates, and IP-based authentication [3]. Here we consider the user-
name/password authentication mechanism since it is widely used. We assume
that passwords are stored in encrypted form in an authentication table. To be
authenticated, any users must show knowledge of a valid username/password
pair that matches an entry in the authentication table.

Weaving Authentication and Authorization Requirements 837

3.1 Formal Specification of the Authentication Component

Let UserID, Data be abstract types for denoting the set of all usernames, pass-
words, and encrypted passwords respectively.

[UserID ,Data]

The state of the authentication server comprises: a set of registered users; a
partial function at that associates each userID with one encrypted password; and
a partial function encrypt that is used to encrypt/hash clear text passwords. The
invariant ensures that every registered user must have a password. The model
can be described in Z as follows:

AuthenticationCredential
registered users : P UserID
at : UserID #→ Data
encrypt : Data #→ Data

registered users = dom at

3.2 Authentication Component Operations

We consider the following operations on the AuthenticationCredential system
namely: Login, ChangePassword, AddCredential, RemoveCredential and Logout.

A successful Login operation requires a username and a password as inputs,
then checks whether the pair matches an entry in the authentication table:

Login0
ΞAuthenticationCredential
username? : UserID
pwd? : Data

encrypt(pwd?) = at(username?)

A successful ChangePassword operation replaces the old password for the
specified username with a new password after checking that the old password
supplied by a user matches an entry in the authentication table:

ChangePassword0
ΔAuthenticationCredential
username? : UserID
oldpwd? : Data
newpwd? : Data

encrypt(oldpwd?) = at(username?) ∧ at ′ = at ⊕ {username? #→ encrypt(newpwd?)}

A successful AddCredential operation allows a new user to acquire new cre-
dentials: username and password by adding a new record to the authentication
table. The operation has a precondition that is the chosen username? most not
be in the domain of authentication table at .

838 A.N. Haidar and A.E. Abdallah

AddCredential0
ΔAuthenticationCredential
username? : UserID
pwd? : Data

username? /∈ dom at ∧ at ′ = at ∪ {username? #→ encrypt(pwd?)}

RemoveCredential operation takes a username as an input and removes this
identity from the set of registered users. This operation only succeeds if the
username exists in the domain of the authentication table.

RemoveCredential0
ΔAuthenticationCredential
username? : UserID

username? ∈ dom at ∧ at ′ = {username?} −� at ∧
registered users ′ = registered users ′ \ {username?}

A failed operation upon the state of the state of the Authentication component
state will produce a report as output.

InvalidUserId
ΞAuthenticationCredential
username? : UserID
r ! : Report

An error may arise because the username doesn’t exist,

UserIDNotInUse
InvalidUserId

username? /∈ dom at ∧ r ! = Failure

or because the specified username is in use,

UserIDInUse
InvalidUserId

username? ∈ dom at ∧ r ! = Failure

or the combination of username and password is wrong:

InvalidCredential
ΞAuthenticationCredential
username? : UserID
pwd? : Data
oldpwd? : Data
r ! : Report

¬ (encrypt(oldpwd?) = at(username?)) ∧ r ! = Failure

Weaving Authentication and Authorization Requirements 839

The authentication component operations will then be modelled as follows:

Login =̂ (Login0 ∧ Op Success) ∨ InvalidCredential

ChangePassword =̂ (ChangePassword0 ∧ Op Success) ∨ UserIDNotInUse

AddCredential =̂ (Withdraw0 ∧ Op Success) ∨ UserIDInUse

RemoveCredential =̂ (RemoveCredential0 ∧ Op Success) ∨ UserIDNotInUse

It is assumed here that the committee members and the chairs are registered
users. The initial state of the authentication component is described as follows:

AuthenticationCredentialInit
AuthenticationCredential ′

registered users ′ = {ali ,mark , john, denise}
at ′ = {(ali , pwdx), (mark ,mrk3000), (john,wnd1980), (denise, dnz2000)}

4 Authorization Component

Authorization determines whether or not a user is allowed to perform a given ac-
tion on a resource, for example viewing or withdrawing a paper. There are several
mechanisms for enforcing access control such as Access Control Lists (ACL) and
Role Based Access Control (RBAC) [3]. RBAC focuses on the roles that users per-
form within an organization. Permissions are assigned to roles rather than given
directly to users and users of the system are allocated to roles.

4.1 A Simple Formal RBAC Model

The model assumes the existence of the following given types:

[ROLE ,PRINCIPAL,OPERATION ,OBJECT ,TASK]

to denote the set of all possible roles, usernames (also known as principal in
RBAC), operations, and objects, and tasks respectively.

The state of the core RBAC model comprises a set of known principals,
Principals , a set of recognized roles, Roles , and a set of valid tasks, Tasks . The
core RBAC model is characterised by two relations: PrincipalRoles , that assigns
roles to each principal; and RolePermissions, that relates permitted tasks to
each role. The whole model can be described in Z using the following scheme.
For full details of this model the reader is referred to [2].

840 A.N. Haidar and A.E. Abdallah

Core RBAC
Roles : P ROLE
Principals : P PRINCIPAL
Tasks : PTASK
PrincipalRoles : PRINCIPAL ↔ ROLE
RolePermissions : ROLE ↔ TASK

Principals ⊆ domPrincipalRoles
ranPrincipalRoles ⊆ Roles
Roles ⊆ domRolePermissions
ranRolePermissions ⊆ Tasks

One important property that needs to be considered in this system is Conflict
of interest - where a principal is not allowed to assume simultaneously two specific
roles that are considered to have conflicting interests to the organization [2].
This is called the principle of separation of duties [14]. To clarify this principle,
consider a user u with the role submitter(u, p). This user should not be able to
review his/her own paper, in other words, the user should not also hold the role
of reviewer(u, p).

SoD RBAC
Core RBAC
ConflictRoles : ROLE ↔ ROLE

∀ u : Principals • (PrincipalRoles(| {u} |)× PrincipalRoles(| {u} |)) ∩ ConflictRoles = ∅

The major strength of this RBAC model is in the simplicity of its authoriza-
tion semantics. A request initiated by a principal u to perform a task t is granted
by the access monitor if and only if:

(u?, t?) ∈ (PrincipalRoles o
9 RolePermissions)

The whole access monitor can be captured as follows:

SoD RBAC AccessMonitor
ΞSoD RBAC
u? : PRINCIPAL
t? : TASK
rep! : REPORT

(u?, t?) /∈ (PrincipalRoles o
9 RolePermissions) ⇒ rep! = Access Denied

(u?, t?) ∈ (PrincipalRoles o
9 RolePermissions) ⇒ rep! = Access Granted

One of the main benefits of RBAC is consistency; two users (UserID) with
the same roles must have exactly the same permissions. However, this is not
desirable because some tasks needs to be performed on objects related to the

Weaving Authentication and Authorization Requirements 841

UserID only and not on other objects. Consider the case where two users occupy
the same role Submitter in the conference component. Submitters can withdraw
their own paper(s) and only read review report of a paper(s) they submitted. In
order to accurately express authorization requirements we use a parameterized
RBAC model as described in [1]. The authorization space in the core RBAC
model is enlarged as desired by adding parameters to roles, objects and/or per-
missions, as appropriate. In our case, the parameter needed to provide a fine
grained access control to the assets is the UserID . Therefore, finer roles can be
introduced such as Submitter(u), where u denotes a user drawn from UserID . An
Authenticated user u holding the role Submitter(u) can perform the operations
view and withdraw only on papers submitted by u.

4.2 Initialising RBAC

In the conference system, the set principals is the same as the set of registered
users, which has an initial value, registered users ′. Hence,

Principals ′ = {ali ,mark , john, denise}

We show in the following sections how this component can be combined with
the conference component in order to have the same set of usernames in both
component.

The right hand side of each initialization refers to variable in the state of the
conference system Conf . The set of identified roles is initialised as follows:

Roles ′ = {Chair(u) | u : Conf .chairs} ∪ {Submitter(u, p) | (p, u) : Conf .submitter}∪
{Reviewer(u, p) | (p, u) : Conf .assigned reviewers}∪
{Authenticated(u) | u : dom(Conf .user)} ∪ {Unauthenticated}

The set of relevant tasks is:

Tasks ′ = {Login,ChangePassword(u),View(p),Withdraw(p),
AddCredential ,SubmitPaper ,ReadReview(p),Assign review ,Notify(u, p)}

The role Unauthenticated is the only role allocated to a user who is not suc-
cessfully authenticated (anonymous users).

anonymous ∈ UserID • (anonymous , {Unauthenticated}) ∈ PrincipalRoles ′

The roles allocated to an authenticated user u can be calculated as follows:

PrincipalRoles ′(u) = {Chair(u) | c : Conf .chairs ∧ c = u}∪
{Submitter(u, p) | p : Conf .submitter−1(u)}∪
{Reviewer(u, p) | p : Conf .assigned reviewers−1(u)} ∪ {Authenticated(u)}

With regards to permissions, the only tasks that are permitted to the
Unauthenticated role are to register (add user credential and details) or to login.

842 A.N. Haidar and A.E. Abdallah

Please note that the role Reviewer(u, p) involves submitting a review report for
a particular paper p.

Permission is the authorization for a role to perform a set of tasks according
to a security policy. The set of permissions for each role is calculated as follows:

RolePermissions ′ = {(Unauthenticated #→ {Login,AddCredential}),
(Authenticated(u) #→ {ChangePassword(u),SubmitPaper ,Logout}),
(Submitter(u, p) #→ {View(p),Withdraw(p),ReadReview(p)}),
(Reviewer(u, p) #→ {View(p),SubmitReview(p),ReadReview(p)}),
(Chair(u) #→ {View(p),ReadReview(p),AssignReviewer(r , p),AddReviewer ,Notify(u, p)}
| u ∈ UserID , r ∈ reviewers ∧ p ∈ PaperID}

The set of roles that can cause conflict of interest can be defined as follows.
The submitter of a paper p cannot review p:

ConflictRole ′ =
{(Submitter(u, p) #→ Reviewer(u, p) | u ∈ reviewers ∧ p : PaperID),
(Submitter(u, p) #→ Chair(u) | u ∈ chairs ∧ p : PaperID)}

Another conflict would occur when the chair submits a paper to the confer-
ence. The chair should not be able to assign the paper to a reviewer because the
reviewer should always remain anonymous to the author of the paper. There are
other conflicts that can occur, such as a reviewer should not be able to review a
paper submitted by an author(s) from the same institution.

For this initialisation to be valid a healthiness condition on this initialisation
is to ensure that the invariant of the state holds.

5 Promotion

Promotion [15] is a technique used in Z to compose specifications. It enables
integrating a local state with a global state, when the local state is treated as a
data type in the global state. In our case, the data type AuthenticationCredential
is used in defining the state of a conference Conf . This data type is used in con-
junction with its operations: Login, ChangePassword and AddCredential. Given
any particular username/password, these local operations only affect the state of
AuthenticationCredential, which is independent from the conference component.

5.1 Promoting Authentication

The conference component can be integrated with the authentication component
by conjunction of the two schemas, as shown below. The result is a new schema
denoted “A Conf ” that means conference with authentication mechanism.

A Conf
Conf
AuthenticationCredential

dom users ⊆ registered users

Weaving Authentication and Authorization Requirements 843

The invariant ensures that all conference users must be registered users. The
local state is described by AuthenticationCredential , the global state is described
by A Conf , and the promotion is characterised by the schema:

PromoteCredential
ΔA Conf
ΔAuthenticationCredential

θAuthenticationCredential = 〈|registered users � registered users, at � at |〉
θAuthenticationCredential ′ = 〈|registered users � registered users ′, at � at ′|〉

which explains the relationship between local and global states. The operations
on the global state can now be defined using this promotion:

PromoteLogIn =̂ ∃AuthenticationCredential • Login ∧ PromoteCredential
PromoteChangePwd =̂ ∃ΔAuthenticationCredential •

ChangePassword ∧ PromoteCredential
PromoteAddCred =̂ ∃ΔAuthenticationCredential •

AddCredential ∧ PromoteCredential
PromoteRemoveCred =̂ ∃ΔAuthenticationCredential •

RemoveCredential ∧ PromoteCredential

5.2 Promoting Authorization

We stipulate that a request by a user u to perform a task on the global system
will have the following form: request =< u, op name, inputbindings >, where
u ∈ UserID , op name is an operation on the conference system with its inputs.

In the SoD RBAC authorisation model, tasks are calculated and defined on
the system. These tasks are static. However, new tasks can be generated and
revoked dynamically during the lifetime of the system. For example, consider
the SubmitPaper operation. After successful execution of this operation by a
user u, new tasks are generated, such as < View , pid >, < Withdraw , pid >,
and < SubmitReview , pid > where pid is the identity of the newly submitted
paper.

According to the SoD RBAC model, any task of the form < op name,
inputbindings > will be accepted by the system. For example, < View , 1000 > is
a valid task if the paperid = 1000 may not exist on the conference system. Given
an initial state of the conference system, a model can be generated that only
allows valid tasks to be accepted by linking the input binding to the state. If
the conference system has the following papers paperid = {100, 101, 102}, then a
valid operation would be < View , 100 >, < View , 1001 >, or < View , 102 >. A
user requesting to perform the task < View , 108 > will not be accepted because
the paper 108 is not in the system.

The conference with authentication can now be integrated with the autho-
rization component by conjunction of the two schemas, which results in the new

844 A.N. Haidar and A.E. Abdallah

“A A Conf ” that means conference with authorization mechanism. The invari-
ant ensures that all users of the conference system will be assigned to role(s) in
the authorisation component.

A A Conf
A Conf
SoD RBAC

dom(PrincipalRoles −� {reviewer(u, p) | u ∈ UserID ∧ p ∈ PaperID}) ⊆ reviewers
∧ dom(PrincipalRoles −� {submitter(u, p) | u ∈ UserID ∧ p ∈ PaperID}) ⊆ domusers
∧ dom(PrincipalRoles −� {chair(u, p) | u ∈ UserID ∧ p ∈ PaperID}) ⊆ chairs

Tasks ′ = {Login,AddCredential ,SubmitPaper ,Assign reviewer}∪⋃
p∈dompaper ,u∈domuser{Changepassword(u),View(p),Withdraw(p),Notify(p)}

Two types of requests are considered:

1. requests by an authenticated user;
2. and, requests by an unauthenticated user.

In the first case the user u will be allocated the role “Unauthenticated”, as
shown in the RBAC initialisation. The only operations permitted are: Login and
AddCredential . Any other operation will be denied.

In case the user is authenticated, the request is first evaluated by the access
monitor. Depending on the access monitor decision, if the decision is grant then
operation is then forwarded to the conference component part. The task will
only be performed if the precondition pre (op) is satisfied. Otherwise, the task
will fail and error report is returned (i.e. incorrect input). If the decision is deny,
then the the task will fail and the operation op will not be forwarded to the
conference system.

6 Related Work

As stated in the introduction, very little work has been done on integrating se-
curity requirements into the design process of a complex system. However, the
literature provides some approaches towards this goal. In [5], the authors present
an approach based on using the notion of minimal refinement as a method for
the stepwise addition of requirement in a model. Other approaches are based on
extending the semi-formal Unified Modelling Language (UML) to include secu-
rity requirements. In [9], the author proposes an extension of UML, UMLsec, to
include modelling of security features namely:confidentiality and access control.
The authors in [12] propose an approach based on SecureUML for modelling ac-
cess control policies and how these policies can be integrated into a model-driven
software development process. In [11] the authors propose an informal way for
integrating security into the software life cycle.

Weaving Authentication and Authorization Requirements 845

7 Conclusion

In this paper we have introduced a rigorous formal approach using promotion
technique in Z for weaving security into the functionality of a system. We have
shown how authentication and role-based authorization can be viewed as inde-
pendent components which could be integrated with a functional system. The
strength of this approach lies in its attempts to separate functional requirements
from the requirements of certain security aspects. A simple example illustrating
this approach to integrate authentication, authorization, and functional opera-
tions within a conference system was illustrated.

References

1. Abdallah, A.E., Khayat, E.J.: A Fornal Model for Parameterized Role Based Access
Control. In: Martinelli, F. (ed.) Formal Aspects in Security and Trust, pp. 233–247.
Kluwer, Dordrecht (2004)

2. Abdallah, A.E., Khayat, E.J.: Formal Z Specifications of Several Flat Role-Based
Access Control Models. SEW 0, 282–292 (2006)

3. Gollmann, D.: Computer Security, 2nd edn. Wiley, Chichester (2005)
4. Evans, A.: Specifying & verifying concurrent systems using z. In: Naftalin, M.,

Bertrán, M., Denvir, T. (eds.) FME 1994. LNCS, vol. 873, pp. 366–380. Springer,
Heidelberg (1994)

5. Gorogiannis, N., Ryan, M.: Minimal refinements of specifications in model and
termporal logics. Form. Asp. Comput. 19(1), 35–62 (2007)

6. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems En-
gineering: Towards the Modelling of Secure Information Systems. In: Eder, J.,
Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 63–78. Springer, Heidelberg
(2003)

7. Heiner, M., Heisel, M.: Modeling safety-critical systems with z and petri nets. In:
Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698,
pp. 361–374. Springer, Heidelberg (1999)

8. Houston, I.S.C., Josephs, M.B.: Specifying distributed CICS in Z: accessing local
and remote resources. Formal Aspects of Computing 6(5), 569–579 (1994)

9. Jürjens, J.: Umlsec: Extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002)

10. Knight, J.C., Kienzle, D.M.: Preliminary experience using z to specify a safety-
critical system. In: Proceedings of the Z User Workshop, London, UK, pp. 109–118.
Springer, Heidelberg (1992)

11. Futcher, L., von Solms, R.: SecSDM: A Model for Integrating Security into the Soft-
ware Development Life Cycle. In: Fifth World Conference on Information Security
Education. IFIP International Federation for Information Processing, vol. 237, pp.
41–48. Springer, Heidelberg (2007)

12. Lodderstedt, T., Basin, D.A., Doser, J.: Secureuml: A UML-based modeling lan-
guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

13. Nissanke, N.: Component security - issues and an approach. COMPSAC (2), 152–
155 (2005)

846 A.N. Haidar and A.E. Abdallah

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

15. Woodcock, J., Davies, J.: Using Z Specification, Refinement, and Proof. C.A.R
Hoare series editor. Prentice Hall International, Englewood Cliffs (1996)

16. Zafar, N.A.: Modeling and formal specification of automated train control system
using z notation. In: Multitopic Conference, 2006. INMIC 2006, December 23-24,
2006, pp. 438–443. IEEE, Los Alamitos (2006)

Simple Gedanken Experiments in

Leveraging Applications of Formal Methods

Raymond Boute

INTEC — Ghent University, Belgium
boute@intec.UGent.be
http://www.funmath.be

Abstract. As experience in established engineering disciplines shows,
the most (maybe only) effective way for leveraging formal methods (FM)
into daily practice is by developing mathematical modeling abilities. Lay-
ing a solid theoretical basis early is best assisted by simple example
problems with minimal technical content. It is shown how simplicity still
allows covering all practical aspects of FM and even finding new insights
because, as in basic science, simple problems lead to a variety of gedanken
experiments. Of the wide realm of opportunities, three are illustrated:
(a) microsemantics in algorithmic problem solving and reasoning about
invariants, (b) experimenting with data abstractions to capture informal
statements faithfully, (c) expressing puzzles involving procedures, pos-
sibly with nondeterminism and multiple loops, by simple mathematics.
The proper rôle of software tools in leveraging FM is discussed alongside.

1 Introduction

Wider context and motivation. “Professional engineers can often be distinguished
from other designers by the engineers’ ability to use mathematical models to de-
scribe and analyze their products” is a characterization by Parnas [20] considered
evident since many centuries in established engineering disciplines.

In software “engineering”, this basic characteristic is still too often neglected.
Worse, the growth of software design into a mature discipline is hampered by
mathphobic trends in CS education and in design support tools.

The educational study by Kelemen et al. [16,22] uses American data, yet
reflects the European situation equally well. Some engineering schools make
their CS curriculum a refuge for mathphobic students to increase student count.
Instead of devoting the scarce teaching resources to solid fundamentals [19], they
are wasted on trendy topics that students can equally well pick up on their own.

Design support tools often advertise with “hiding the math”, tacitly imply-
ing that software problems are easy and mathematics renders things difficult. In
reality, the difficulty is in the problems, and mathematics evolved to facilitate
problem solving. Yet, the illusion of an easier shortcut is kept alive by the pe-
riodic appearance of yet another acronymic “method”, delaying the maturity of
software engineering by “hiding” the most powerful intellectual tool available.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 847–861, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

848 R. Boute

The reason why this stagnation seems to entail little penalty is that IT and
computing have created a huge amount of useful, well-paid but mainly routine
tasks requiring little or no reasoning and design skills. Of course, catering for
these needs does not satisfy the needs at the engineering level.

Rationale. Reconciling the crucial role of mathematics in engineering with the
given background of students and professionals is possible only by lowering the
threshold without compromising the level. As observed by Parnas [19] and Lam-
port [18], a viable approach is focusing on mathematics that is not specialistic
(particular to CS) but widely applicable throughout engineering.

Computing Science has given formal logic a more prominent role, but practi-
cally useful formal logic [15] emerged only recently by the calculational style [13].
This style has proven its wider applicability in discrete math [14] and in general
engineering mathematics [5]. As intimated by many researchers [18,20], predicate
calculus is the pivotal element. Enabling engineers to calculate with quantifiers
as fluently as they were taught to do with derivatives and integrals opens the
gate to unification [4,5,6]. However, this is already the second step.

Indeed, in leveraging formal methods as well as in curriculum design, foun-
dations must be laid first. Making the abstraction threshold passable requires a
variety of conceptual and application problems and illustrations. To also learn
taking advantage of abstraction, the initial application domains are best chosen
in non-technical areas to avoid distraction by domain-specific issues.

An aside about software tools. For the same reason, mathematics should come
before software tools, both in order of importance and in time. Indeed, software
tools are always limited by implementation restrictions imposed by the current
state of the art. For instance, there is huge gap in application domains and,
more importantly, styles between tools used in software design and those in
“classical” engineering (e.g., MATLAB/Simulink). This indicates that a general
software tool covering all of engineering mathematics is still a far-away ideal.

Hence using a tool as an initiation vehicle imparts a very narrow perspective.
A better approach is starting with unifying mathematical foundations, in which
variety of tools can be embedded as needed. In such a setting, tools based on
a language close to mathematics1, such as TLA+ [17], are readily suited for
illustration purposes without wasting valuable time on “learning the tool”.

The power of simple example problems. Suitable foundations and predicate
calculus as a unifying factor are covered sufficiently elsewhere [14,4,5,6]. Here
we concentrate on the rôle of simple example problems, rather than domain-
dependent “engineering” problems, for conceptualization and illustration. As
observed in [7], both the professional and recreational mathematics literature
abounds with a wide variety of “puzzles” that are ideal for that purpose.

That simple problems are indeed suited for illustrating the many issues that
may arise in formal methods is not evident. This is because the typical solutions
1 Some advocate (imperative) programming notation, claiming that “the average pro-

grammer thinks in language X ”. Given that X is not suited for thinking (without
formal semantics), this reflects poorly on the thinking of the average programmer.

Simple Gedanken Experiments in Leveraging Applications of FM 849

presented in the literature just “forge ahead” towards the solution in a “look how
clever” attitude, whereas the opportunities for leveraging applications of formal
methods reside in the process, namely systematic formulation and reasoning.

This paper demonstrates such opportunities by some selected simple gedanken
experiments, discovering useful new insights along the way.

Gedanken experiments and the FM issues raised. (as considered in this paper)

a. Simple mathematical modeling for procedures: The wider context [4,5] is
mathematical and (hence) declarative. Yet, many puzzles are stated procedurally
while asking for an essentially declarative solution. This is the reverse of program
design (which goes from specification to procedure), and therefore particularly
instructive as it contributes to the diversity of views. Here is an example [9].

A school has 1000 students and an array of 1000 lockers, all initially closed.
All students walk along the row one after the other, and the k th student inverts
the state of every k th locker, that is: opens the locker if it was closed and vice
versa. How many lockers are open in the end?

Classical mathematics has no formalism for procedures, which partly explains
why typical solutions make a large jump from the informal procedural state-
ment to the mathematical equations from which the final solution is derived.
Programming languages, however, can express procedures, and hence formalize
the procedure stated verbally in a puzzle. Such a formalization for the preceding
example, assuming K students and an array L of N lockers, is

for k in 1..K
do (for n in 1..N do if (k divides n) then inv (L n) fi od) od

Still, this reduces only the gap between informal and formal problem state-
ments as procedures, but the gap between procedures and mathematical equa-
tions leading to the desired final solution is thereby made all the more visible.

The bridge from programs to equations is mathematical semantics or any
formalism to derive, from a program text, mathematical equations expressing
the program’s behavior. This view on mathematically modeling a procedure is
analogous to an electronics engineer modeling a circuit by deriving, from the
circuit diagram, mathematical equations expressing the circuit’s behaviour.

To be suitable at an elementary level, the formalism should be lightweight,
matching the perceived simplicity of the puzzles. We choose microsemantics [7],
extended in this paper with state expressions and reasoning about invariants.

b. Expressing procedures mathematically by relations in a genuine specification
language: This opens a refreshing view for students raised in the tradition of
C++ or Java [21]. We choose the language TLA+ and the tool TLC [17].

Although TLA+/TLC is designed for different purposes (specification, model
checking), the closeness to mathematics is appealing qua style and especially ed-
ucational for students to counterbalance the restrictiveness of program notation.
Additionally, it is instructive to use tools beside their design goals, as borne out

850 R. Boute

by very favorable experience with LabVIEW, meant for instrumentation and
measurement [2], but neat for illustrating topics in discrete mathematics [4].

c. Data abstraction and style experiments: We experiment with TLA+/TLC (i)
at the transition between informal and formal statements, trying to make the
renderings as faithful as possible [7], (ii) at the implementation level, bringing
the formulas within the automatic handling capabilities of TLC while preserving
declarative elegance. It was instructive finding that some TLA+ definitions in [17]
were not accepted by TLC and designing replacements (presented in this paper).

Educational observations. Students like computer tools, some because they feel
relieved from thinking, some because they like seeing things “happen” on a screen
(the video game syndrome). Style exercises provide an antidote against superfi-
ciality by requiring to formalize and prove relationships between specifications.
Also, TLC checks invariants, which helps students early on to gain confidence
with thinking in such terms.

Using a diversity of formalisms is found a bit taxing by some students. How-
ever, having diverse forms of expression is helpful in linking informal and formal
statements. Second, diversity is a fact of life to which students should be accus-
tomed from the start. Of course, this must be done gradually and gently, and
the earlier the start, the smoother the slope can be made. For both aspects, a
unifying formalism in which this diversity can be embedded is invaluable [5,6].

Overview. Section 2 recalls microsemantics [8] and extends it with state expres-
sions and reasoning about invariants. Section 3 starts from a simple puzzle with
a nondeterministic procedure to explore ways of formulating it in TLA+ with
minimal prerequisites and via different abstractions. Section 4 shows how Fun-
math [3,5] extends the palette of expressiveness, showing its use in reasoning
about TLA+ specifications and matching them to TLC. In section 5 the earlier
locker puzzle is used to show how nested loops can be expressed in TLA+.

This is much material for one paper, so the sections are not ready-to-use
modules. Yet, they provide enough information for FM-aware lecturers to embed
such experiments in introductory courses preparing for “heavier” FM.

2 Microsemantics, State Expressions and Invariants

This lightweight formalism uses only the most basic concept in formal mathe-
matics, namely substitution, as in [14, Chapter 1]. Nothing more is assumed.

2.1 Refreshing the Principles [8]

Substitution. Substituting expression d for variable v in expression e is written
e[vd . Generalizing v and d to tuples is obvious, e.g., using s= for syntactic equality,

(x + 3 · y)[x , y
a·y, z+1

s= a · y + 3 · (z + 1) .

Multiple substitution differs from successive substitution, as seen by elaborating
(x + 3 · y)[xa·y [yz+1. Clearly, e[vc [wd stands for (e[vc)[wd as e([vc [wd) makes no sense.

Simple Gedanken Experiments in Leveraging Applications of FM 851

Program equations. The state is the tuple matching the program variables, each
with its declared type. We let s be the tuple of the variable names themselves.

A command c is modeled as a function from states to states, defined by an
axiom of the form c s = e, as usual for functions in mathematics. Such an axiom
is instantiated [14] as (c s = e)[sd

s= c d = e[sd .
Basic commands are assignment (v := e), composition (c ; c′), selection

(if b then c else c′ fi), for commands c and c′ and boolean expression b.

(v := e) s = s [ve (1)
(c ; c′) s = c′ (c s) (2)

(if b then c else c′ fi) s = b ? c s c′s . (3)

We used a conditional expression of the form b ? e1 e0, read as “if b then e1

else e0” and formalized by the axiom (b ? e1 e0) = eb where b is 0 or 1.
The following are derived commands, definable via the basic ones.

skip = (v := v) (as a basic command, skip s = s) (4)
(if b then c fi) = (if b then c else skip fi) (5)

(while b do c od) = (if b then (c ; while b do c od) fi) (6)

Microsemantics is minimalist, using just a program notation and substitution.
The full machinery of semantics can be presented at a more advanced stage.

A note on assignment. This is an excerpt from the guidelines in [8]. It concerns
only assignment, in view of a substitution issue that seems puzzling at first.

Consider an example with variables x and y, so the state s is (x , y). For the
assignment x := x + y, clearly (x := x + y) (x , y) = (x +y, y) . Instantiating
this result yields (x := x + y) (2, 3) = (5, 3), as one would expect.

Generally, instantiating c s = e by [sd yields c d = e[sd . Hence, for Axiom (1),

(v := e) d = (s [ve)[sd . (7)

Warning: it is tempting to shortcut (s [ve)[sd as d [ve . For (x := x + y) (2, 3) this
would amount to (2, 3)[xx+y , which is clearly incorrect.

Microsemantics in bootstrapping FM. In [8] it is shown how microsemantics can
be used to bootstrap FM concepts such as (a) syntax, axiomatics, semantics,
pragmatics; (b) equational reasoning; (c) lambda calculus; (d) propositional and
predicate logic; (e) induction; (f) relations; (g) specification and design.

2.2 State Expressions and Invariants in Microsemantics

Motivation. In Algorithmic Problem Solving, Backhouse presents a collection of
puzzles, including the following “Chocolate Bar Problem” [1, page 5].

A rectangular chocolate bar is divided into squares by horizontal and vertical
grooves, in the usual way. It is to be cut into individual squares. A cut is made by
taking a single piece and cutting along one of the grooves. (Thus each cut splits

852 R. Boute

one piece into two pieces.). How many cuts in total are needed to completely cut
the chocolate into all its pieces?

Observing that each cut increases the number of cuts by one and the number
of pieces by one, the effect of making a cut is captured by the assignment

p, c := p + 1, c + 1. (8)

To calculate the effect of an assignment ls := rs on an expression E , [1] suggests
E [ls := rs], the expression obtained by replacing all occurrences of the variables
in E listed in ls by the corresponding expression in the list of expressions in rs ,
and illustrates this by expressing the effect of (8) on p − c as

(p − c) [p, c := p + 1, c + 1] = (p + 1)− (c + 1) = p − c. (9)

This happens to be correct. However, it may tempt some students into making
incorrect generalizations, for instance when successive assignments are involved.
The simplest example is x := y ; y := x with the following erroneous cal-
culation of the effect on the expression x .

x [x := y ; y := x] = 〈Composition〉 (x [x := y]) [y := x]
= 〈Substitution〉 y [y := x]
= 〈Substitution〉 x . (10)

This is clearly wrong, but some students may be confused as to why substitution
gave a correct result in example (9) but not in (10). The central question is how
to do such calculations correctly in general. This is shown next, noting that for
substitution we usually write [ve rather than [v := e] to save horizontal space.
State expressions in microsemantics. A state expression is an expression with
state variables. The expansion of a state expression g in a state d (tuple of state
expressions) is g[sd , written X g d when convenient. The state after executing
command c with initial state s is c s , for which the expansion of g is X g (c s).

If c is the assignment v := e, then c s = s [ve and hence

X g (c s) = g[sc s = g[ss[ve = g[ve ,

which explains why (9) happens to be correct. However, writing c s assumes that
the state before executing c is s . If the state before executing c is an arbitrary
state d , for instance as the result of a preceding assignment, then we must
calculate X g (c d), which equals X g (s [ve [sd) and does not simplify to g[ve .

A correct version of the calculation (10) is the following.

X x ((x := y ; y := x) (x , y))
= 〈Composition〉 X x ((y := x) ((x := y) (x , y)))
= 〈Assignment〉 X x ((y := x) (y, y))
= 〈Assignment〉 X x ((x , y)[yx [x ,y

y,y)
= 〈Substitution〉 X x (y, y)
= 〈Expansion〉 x [x ,y

y,y

= 〈Substitution〉 y

Simple Gedanken Experiments in Leveraging Applications of FM 853

Invariants in microsemantics. The rôle of state expressions in [1] is their use as
invariants. We say that a state expression g is invariant under a command c iff
X g (c d) = X g d for any arbitrary state d . For this, it is necessary and sufficient
that X g (c s) = g, based on purely syntactic arguments.

However, X g (c s) = g need not be seen as a purely syntactic equality, since
this would be too strict for practical use. Mathematical equality also allows using
domain-dependent calculation rules, e.g., arihmetic2. An illustration:

X (p − c) ((p, c := p + 1, c + 1) (p, c))
= 〈Assignment〉 X (p − c) (p + 1, c + 1)
= 〈Exp., subst.〉 (p + 1)− (c + 1)
= 〈Arithmetic〉 p − c .

For an iteration of the form while b do c od, we may define g to be a loop
invariant iff b ⇒ X g (c s) = g.

3 Analyzing Procedural Puzzles in TLA+ anf TLC

3.1 Rôle of Procedural Puzzles

An example: the coffee bean puzzle. At various places on the web, one finds the
following puzzle, most likely originating from David Gries.

Consider a coffee can which contains an unknown number of brown beans and
an unknown number of white beans. Repeat the following process until exactly
one bean remains. Select two beans from the can at random. If they are both
the same color, throw them both out, but insert another brown bean. If they are
different colors, throw the brown one away, but return the white one. What can
you deduce about the color of the last bean as a function of the initial number of
black and white beans? Hint: find a useful invariant maintained by the process.

Here is the usual informal solution: the obvious invariant is the parity (i.e.,
being even or odd) of the number of white beans, so the one remaining bean is
white iff the original number of white beans was odd.

End of story? Far from it: for making such puzzles relevant to formal methods,
one must dig considerably deeper.

Procedural puzzles as a preamble to formal methods. As argued in [7], the value
of such puzzles as a preamble to formal methods is not in finding “quickie”
informal solutions, but in the careful formalization of the informal statement
and the systematic derivation of solutions.

For puzzles stated as procedures, the steps are: (a) translating the informal
description into a formal language, (b) analyzing the result mathematically.

Step (a) includes making the statement more precise. For instance, the task
stated in the example starts by taking beans. How about an empty can?
2 The extent to which the distinction between ‘=’ and ‘

s
=’ should be kept explicit is a

matter of educational optimization. Since ‘
s
=’ is the stronger, replacing it by ‘=’ is

safe, but loses information.

854 R. Boute

Equally important, and more challenging, is aiming at a close rendering of
the informal text.

Faithful renderings: the inversion criterion. How faithfully an informal text is
formalized is to some extent a matter of taste. However, there is a reasonable
working criterion: how well can the informal statement be reconstructed from
the formalized one? For obvious reasons, we call this the inversion criterion.

The essence of faithful renderings is in using proper abstractions. Here “proper
abstraction” does not mean: away from the problem (to the contrary), but: away
from the restrictions due to the specification language or its implementation.

Hence the crucial limiting factor is the expressiveness of the language. For
instance, the statement of the bean problem indicates that nondeterministic
choice must be supported. However, as we shall see, more is needed.

3.2 Formal Renderings of the Coffee Bean Puzzle

This section is derived from a set of exam questions, recast here in a form suited
for an article. The interested lecturer can easily do the inverse recasting.

Formalization in the Guarded Command Language. Here is a possible rendering
in Dijkstra’s Guarded Command Language [10,12].

do w + b > 1 -> if w >= 2 -> w := w - 2 ; b := b + 1
[] b >= 2 -> b := b - 1
[] w >= 1 and b >= 1 -> b := b - 1 fi od

It deserves at least two relevant criticisms.
First, since this language supports nondeterminism only via an if-statement,

the random choice in the problem statement had to be “forced” into this shape.
Second, this rendering starts directly with numbers, which is coding-oriented

and hence not a proper abstraction: the inversion criterion is far from being met.
Still, this program provides a nice and simple exercise for proving termination

and invariants in a short classroom session or in an exam. For this purpose, we
recommend the “checklist” given in [14] and proven in detail in [6].

Low-level formalization in TLA+. Figure 1 is formalizes the beans puzzle in
TLA+ [17] in a low-level representation, that is: using numbers.

The central definition in this module is CBnxt . The example shows how to
express procedural specifications by relations. Even before becoming proficient
in formal calculation with relations, beginning students soon get some feeling
for this different style of expression as compared to C++ or Java.

On the other hand, here is some style criticism. Note how the “meaningful
identifiers” (SlctAnyTwo etc.) create the illusion of a faithful rendering [11], but
the real test by the inversion criterion is after replacing these identifiers with
their definitions a few lines earlier. All that remains then is some mumbo-jumbo
with numbers, far removed from the problem statements. This is where data
abstraction enters the picture, as illustrated in the following paragraph.

Simple Gedanken Experiments in Leveraging Applications of FM 855

module Nob
extends Naturals, TLC

variables w , b, ws
s Δ

= 〈w , b, ws〉
constants defined in the module to avoid updating the config file.
Initial contents, modeled by number W of white and B of brown beans.

W Δ
= 5 Parameter value example

B Δ
= 3 Parameter value example

CBini Δ
= ∧ w = W ∧ b = B ∧ w ≥ 0 ∧ b ≥ 0 ∧ w + b > 0
∧ Print(〈“Initial number of white beans”, w〉, true)
∧ Print(〈“Initial number of brown beans”, b〉, true)
∧ ws = 0

CBinv Δ
= ∧ w%2 = W %2 ∧ w ≥ 0 ∧ b ≥ 0 ∧ w + b > 0

SlctAnyTwo Δ
= w + b ≥ 2 ∧ ws ′ = choose k ∈ 0 . . w : k ≤ 2 ∧ 2− k ≤ b

Note: ws = number of white beans in the sample; bs = 2− ws is implicit.
AllSame Δ

= ¬(ws ′ = 1)
brown Δ

= 0 Possible value for r in Rplcby(r)
white Δ

= 1 Possible value for r in Rplcby(r)
Rplcby(r)

Δ
= ∧ w ′ = w − ws ′ + r ∧ b′ = b − (2− ws ′) + (1− r)

JstOneLft Δ
= w + b = 1

CBfin Δ
= ∧ unchanged s
∧ Print(〈“Final number of white beans”, w〉, true)
∧ Print(〈“Final number of brown beans”, b〉, true)

CBnxt Δ
= ∨ (SlctAnyTwo ∧ if AllSame then Rplcby(brown) else Rplcby(white))
∨ (JstOneLft ∧ CBfin)

CB Δ
= CBini ∧�[CBnxt]s

theorem CB =⇒ �CBinv

Fig. 1. Numbers of beans

Formalization in TLA+using bags. Figure 2 uses the data structure Bags to
model both the contents of the can c and the bean sample bs .

The central definition CBnxt is unchanged w.r.t. figure 1 mainly for educa-
tional reasons: emphasizing what is different, without possibly distracting other
changes. However, replacing the “meaningful identifiers” with their definitions
a few lines earlier now results in a procedure specification meeting the inver-
sion criterion. The only difference is that the generic data abstraction is called
a “bag” whereas the problem statement talks about a “can”. For instance,

bs ′ = choose p ∈ SubBag(c) : size(p) = 2

reads as: “[the sample] bs ′ comes from choosing any subbag from c of size 2”.

856 R. Boute

module Bob
extends Naturals, FiniteSets, Bags, TLC
Some auxiliary operators

size(B)
Δ
= BagCardinality(B)

IsBag(B)
Δ
= B ∈ [domain B → {n ∈ Nat : n > 0}]

SingBag(e)
Δ
= [x ∈ {e} !→ 1]

IsBagOf (B , S)
Δ
= IsBag(B) ∧ domain B ⊆ S

Homog(B)
Δ
= IsBag(B) ∧ Cardinality(domain B) ≤ 1

variables c, bs
s Δ

= 〈c, bs〉
constant defined in the module to avoid updating the config file.
Initial contents of the can, modeled as a bag.

C Δ
= [wt !→ 53, br !→ 35] Parameter value example

white Δ
= “wt”

brown Δ
= “br”

Beans Δ
= {white, brown}

CBini Δ
= ∧ c = C ∧ IsBagOf (c, Beans) ∧ c
= EmptyBag
∧ Print(〈“Initial number of white beans”, CopiesIn(white, c)〉, true)
∧ Print(〈“Initial number of brown beans”, CopiesIn(brown, c)〉, true)
∧ bs = EmptyBag

CBinv Δ
= ∧ CopiesIn(white, c)%2 = CopiesIn(white, C)%2
∧ IsBagOf (c, Beans) ∧ c
= EmptyBag

SlctAnyTwo Δ
= size(c) ≥ 2 ∧ bs ′ = choose p ∈ SubBag(c) : size(p) = 2

AllSame Δ
= Homog(bs ′)

Rplcby(r)
Δ
= c′ = c � bs ′ ⊕ SingBag(r)

JstOneLft Δ
= size(c) = 1

CBfin Δ
= ∧ unchanged s
∧ Print(〈“Final number of white beans”, CopiesIn(white, c)〉, true)
∧ Print(〈“Final number of brown beans”, CopiesIn(brown, c)〉, true)

CBnxt Δ
= ∨ (SlctAnyTwo ∧ (if AllSame then Rplcby(brown) else Rplcby(white)))
∨ (JstOneLft ∧ CBfin)

CB Δ
= CBini ∧�[CBnxt]s

theorem CB =⇒ �CBinv

Fig. 2. Bag of beans

4 Intermezzo: More Experimenting with Styles

In experimenting with TLA+, Funmath [3,5] turns out to be a very good formal-
ism for reasoning about TLA+ function definitions. Here we illustrate two issues:
styles of definition for matching informal description, and styles of definition for

Simple Gedanken Experiments in Leveraging Applications of FM 857

making definitions acceptable to TLC while preserving elegance and clarity. We
start with the latter for the sake of continuity with the preceding section.

4.1 Defining Functions on Abstract Data Structures

Whereas TLA+ as a language imposes no restrictions beyond its syntax, TLC
accepts only definitions that do not require exploring infinite structures.

module SBagsC
local instance Naturals
IsABag(B)

Δ
= B ∈ [domain B → {n ∈ Nat : n > 0}]

SetToBag(S)
Δ
= [e ∈ S !→ 1]

BagIn(e, B)
Δ
= e ∈ domain B

EmptyBag Δ
= SetToBag({})

CopiesIn(e, B)
Δ
= if BagIn(e, B) then B [e] else 0

B1⊕ B2
Δ
= [e ∈ (domain B1) ∪ (domain B2) !→ CopiesIn(e, B1) + CopiesIn(e, B2)]

B1� B2
Δ
= let B Δ

= [e ∈ domain B1 !→ CopiesIn(e, B1)− CopiesIn(e, B2)]
in [e ∈ {d ∈ domain B : B [d] > 0} !→ B [e]]

local Sum(f)
Δ
= let DSum[S ∈ subset domain f]

Δ
=

let elt Δ
= choose e ∈ S : true

in if S = {} then 0 else f [elt] + DSum[S \ {elt}]
in DSum[domain f]

B1 � B2
Δ
= (domain B1) ⊆ (domain B2) ∧ ∀ e ∈ domain B1 : B1[e] ≤ B2[e]

SubBag(B)
Δ
= let AllBagsOfSubset Δ

=
union {[SB → {n ∈ Nat : n > 0}] : SB ∈ subset domain B}

in {SB ∈ AllBagsOfSubset : ∀ e ∈ domain SB : SB [e] ≤ B [e]}
BagCardinality(B)

Δ
= Sum(B)

Fig. 3. The Bags module from Specifying Systems compressed

For instance, figure 3 shows the basic Bags module from [17, page 343]. A
pleasant feature of TLA+ is using mathematical rather than programming nota-
tion. Hence readers with a minimal general mathematical background (no spe-
cialist familiarity with some programming language) should be able to under-
stand these definitions with a little bit of study.

Consider, however, the definition of SubBag in figure 3, a function used in the
Bob module (fig. 2). When model checking BoB using TLC, an error message
indicated that the definition in figure 3 leads TLC to exploring the natural
numbers. Leslie Lamport was so kind to send a replacement module.

Meanwhile, as an exercise, the author independently developed his own vari-
ant using the concepts of Funmath, in particular the Generalized Functional
Cartesian Product [4,5], which is our “workhorse” for function typing. Omitting
the design considerations, here is the definition. For any set-valued function T ,

×T = {f : DT →
⋃

T | ∀ x : DT ∩ D f . f x ∈ T x} . (11)

As an example, T may be a tuple of sets, as in A × B × C =×(A,B ,C), or
be denoted by (function) abstractions, as in×T =×x : DT . T x .

858 R. Boute

The set of subbags of a given bag B is built as follows. The domain of any
subbag of B is a subset of DB , say S . A little reflection shows that the set of
subbags of B with domain S is×s : S . 1 ..B s and hence the set of all subbags
of B is the union of these sets as S ranges over all subsets of B , that is:

SubBag B =
⋃

S : P (DB) .×s : S . 1 ..B s (12)

where P X is the powerset of set X . Expanding×s : S . 1 ..B s ,

×(s : S . 1 ..B s)
= 〈Def.×(11)〉 {b : S →

⋃
(s : S . 1 ..B s) | ∀ s : S . b s ∈ 1 ..B s}

= 〈Calculations〉 {b : S → 1 ..nlub (B s | s : S) | b � B}

where nlub is the l.u.b. operator for N under ≤. We omit detail in “calculations”.
Substituting in (12) and translating the result into TLA+ yields the following
replacement for SubBag in fig. 3, bringing it within the capabilities of TLC.

snlub(Snat) Δ= if Snat = {} then 0
else choose n ∈ Snat : ∀m ∈ Snat : n ≥ m

SubBag(B) Δ= union {{b ∈ [S → 1 . . snlub({B [s] : s ∈ S})] : b � B}
: S ∈ subset domain B}

4.2 Defining TLA+ Functions at a More Abstract Level

Once more we address faithful formalization of informal statements, recalling an
example from [7], and showing an interesting improvement.

Here is the informal statement: Given a sequence of symbols, replace suc-
cessive appearances of the same symbol (aptly called stuttering in the context
of [17]) by a single appearance of that symbol.

It is informative letting students formalize this as a homework assignment.
Lamport’s formal specification [17] is not evident and covers infinite sequences

only. A formula that reflects the intuitive simplicity of the specification is de-
signed in [7]. An even simpler formula is the following: for any sequence β,

!.β = ++n : D β . (n > 0 ∧ β (n − 1) = β n) ? ε τ (β n) , (13)

where ++ is the concatenation operator, ε the empty sequence and τ e the
sequence of length one containing just the element e.

5 Handling Nested Loops in TLA+ and TLC

This is another experiment using a tool outside its normal application range.
Recalling the locker puzzle from the introduction, the procedural description

is translated into TLA+ as shown in figure 4. Observe how the control part
for k and n is concentrated in one conjunction. This was straightforward (and
possible) because the specification requires no other state changes in between.

Simple Gedanken Experiments in Leveraging Applications of FM 859

module SalC
extends Naturals, TLC

variables k , n, a
s Δ

= 〈k , n, a〉
constants defined in the module to avoid updating the config file.
Initial contents, modeled by number K of students and N of lockers.

K Δ
= 20 Parameter value example

N Δ
= 16 Parameter value example

A Δ
= [i ∈ 1 . . N !→ 0] Initial array of lockers, all initially closed

local sum(f)
Δ
= let asum[S ∈ subset domain f]

Δ
=

let e Δ
= choose x ∈ S : true

in if S = {} then 0 else f [e] + asum[S \ {e}]
in asum[domain f]

local Divides(j , m)
Δ
= j
= 0 ∧ ∃ i ∈ 1 . . m : m = i ∗ j

SLini Δ
= ∧ k = 1 ∧ n = 1 ∧ a = A
∧ Print(〈“Number of students”, K 〉, true)
∧ Print(〈“Number of lockers”, N 〉, true)

SLfin Δ
= ∧ unchanged s
∧ Print(〈“Number of open lockers”, sum(a)〉, true)

Invert(f , i) Δ
= [f except ![i] = 1−@]

SLnxt Δ
= if k ∈ 1 . . K then ∧ a ′ = (if Divides(k , n) then Invert(a, n) else a)

∧ if n < N then n ′ = n + 1 ∧ k ′ = k
else n ′ = 1 ∧ k ′ = k + 1

else SLfin
SL Δ

= SLini ∧ �[SLnxt]s

Fig. 4. The locker procedure in TLA+

Since this is rather restrictive, we also considered a more general situation,
and developed a general template module. Although the normal limits for a
paper prevent its description here, full details are available from the author. We
hope that others will find this an interesting playground.

Here is a final note on TLA+ and TLC. As mentioned, one of the most valuable
features is the difference in style from languages like C++ or Java [21]. On the
other hand, students weaned on speed rather than thought will be disappointed
by the “execution” time TLC may take. It should be made clear that model
checking is quite different from the usual notion of execution, but on the other
hand allows a more thorough verification in many ways.

6 Conclusions

We have argued that domain-independent problems provide a better starting
point for leveraging applications of FM than embarking directly on domain-
specific “engineering” problems where the technicalities make separation of

860 R. Boute

concerns more difficult. Not only does walking come before running in the learn-
ing process, but even the more advanced or more ambitious designers may gain
by some reflection: reculer pour mieux sauter.

We also demonstrated how, contrary to first intuition, very simple problems
provide sufficiently rich ramifications to illustrate all conceptual aspects of FM.

At the same time, we explored a diversity of style exercises aimed at capturing
informal statements or specifications elegantly and faithfully in a formal setting.
As an antidote against the superficiality of a purely tool-oriented initiation to
formal methods, we indicated along the way numerous handles to more advanced
topics and proof obligations appropriate for later stages in the familiarization
with FM. We refer to Parnas [19,20] and Spolsky [21] for some valuable insights
about the topics and attitudes to be found in a genuine CS education.

References

1. Backhouse, R.: Algorithmic Problem Solving. Lecture Notes, University of Not-
tingham (2007), http://www.cs.nott.ac.uk/∼rcb/G51APS/aps.ps

2. Bishop, R.: LabVIEW 8 Student Edn. Prentice-Hall, Englewood Cliffs (2006)
3. Boute, R.: Functional Mathematics: a Unifying Declarative and Calculational Ap-

proach to Systems, Circuits and Programs — Part I. Course notes, Ghent Univer-
sity (2002), http://www.funmath.be/

4. Boute, R.: Concrete Generic Functionals: Principles, Design and Applications. In:
Gibbons, J., Jeuring, J. (eds.) Generic Programming, pp. 89–119. Kluwer, Dor-
drecht (2003)

5. Boute, R.: Functional declarative language design and predicate calculus: a prac-
tical approach. ACM Trans. Prog. Lang. Syst. 27(5), 988–1047 (2005)

6. Boute, R.: Calculational semantics: deriving programming theories from equations
by functional predicate calculus. ACM Trans. Prog. Lang. Syst. 28(4), 747–793
(2006)

7. Boute, R.: Using Domain-Independent Problems for Introducing Formal Methods.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
316–331. Springer, Heidelberg (2006)

8. Boute, R.: Microsemantics as a Bootstrap in Teaching Formal Methods. In: Boca,
P., Duce, D. (eds.) Teaching Formal Methods: Practice and Experience (December
2006)

9. Dahlke, K.: Fun and Challenging Math Problems for the Young, and Young At
Heart, http://www.eklhad.net/funmath.html

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

11. Dijkstra, E.W.: To hell with meaningful identifiers, EWD 1044. University of Texas
at Austin, Web (February 1989),
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1044.PDF

12. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1990)

13. Dijkstra, E.W.: How Computing Science created a new mathematical style, EWD
1073. University of Texas at Austin, (March 1990),
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1073.PDF

14. Gries, D., Schneider, F.: A Logical Approach to Discrete Math. Springer, Heidel-
berg (1993)

http://www.cs.nott.ac.uk/~rcb/G51APS/aps.ps
http://www.funmath.be/
http://www.eklhad.net/funmath.html
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1044.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1073.PDF

Simple Gedanken Experiments in Leveraging Applications of FM 861

15. Gries, D.: The need for education in useful formal logic. IEEE Computer 29, 29–30
(1996)

16. Kelemen, C., Tucker, A., Henderson, P., Bruce, K., Astrachan, O.: Has our Cur-
riculum Become Math-Phobic (an American Perspective). In: 5th Ann. Conf. on
Innovation and Technology in Computer Science Education (July 2000),
http://citeseer.ist.psu.edu/kelemen00has.html

17. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002),
http://research.microsoft.com/users/lamport/tla/book.html

18. Lamport, L.: All I really need to know I learned in high school. In: 2004
CoLogNET/FME Symposium on Teaching Formal Methods, Ghent (November
2004)

19. Parnas, D.L.: Education for computing professionals. IEEE Computer 23(1), 17–22
(1990)

20. Parnas, D.L.: Predicate Logic for Software Engineering. IEEE Trans. SWE 19(9),
856–862 (1993)

21. Spolsky, J.: The Perils of Java Schools. In: Joel on Software (December 2005),
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html

22. Tucker, A.B., Kelemen, C.F., Bruce, K.B.: Our Curriculum Has Become Math-
Phobic. ACM SIGCSEB, SIGCSE Bulletin 33 (2001),
http://citeseer.ist.psu.edu/tucker01our.html

http://citeseer.ist.psu.edu/kelemen00has.html
http://research.microsoft.com/users/lamport/tla/book.html
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://citeseer.ist.psu.edu/tucker01our.html

Composition of Web Services Using Wrappers

Ali Nasrat Haidar and Ali E. Abdallah

E-Security Research Centre
London South Bank University

103 Borough Road
London SE1 0AA, UK

{Ali.Haidar,A.Abdallah}@lsbu.ac.uk

Abstract. Web services (WSs) compositions deal with specifying how
to assemble a complex WS system from elementary services. These ser-
vices can be provided on the Web by third parties as WSs, COTS, or
bespoke components. Wrappers are becoming the norm for customising
existing components in order to integrate them into larger WS systems.
In many cases, using a component “as-is” is very unlikely to occur. A
component has to be customized because of, for example, incompatibili-
ties between the interfaces of components that need to communicate with
one another, need for extra security features, or, blocking unneeded func-
tionality. This paper presents an approach for modeling several wrapping
techniques that can be used for composing WS application using Hoare’s
CSP process algebra.

1 Introduction

A Web Service (WS) is a communicating system that is specifically designed to
support interoperable machine to machine interactions over the Internet. The
ultimate objective of WSs is to enable the construction of complex distributed
applications by discovering and composing small, modular and reusable services
available throughout the Internet [6]. A WS component’s interface is described
in the Web Service Description Language (WSDL) [6], and communication with
other components is performed using standard SOAP [6] messages. WSs compo-
sitions deal with specifying how to assemble (integrate) a complex WS system
from elementary services in order to provide new and more sophisticated func-
tionality [1]. A typical example of WS composition is encountered when buy-
ing a holiday package from an online travel agency such as Expedia.co.uk [5].
This service can involve different elementary services combined together, such
as various airlines flight searching services, online booking services, payment
WSs offered and developed by various providers on the Web in different pro-
gramming languages. There are several proposals for expressing orchestration of
WSs compositions, such as Business Process Execution Language (WS-BPEL)
[7], and Web Services Choreography Description Language (WS-CDL) [9]. These
standards assume that the components to be composed already have standard
WSDL interfaces, which is not the general case. This is because WSs can also

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 862–865, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Composition of Web Services Using Wrappers 863

be built by reusing pre-existing components such as bespoke components which
are developed inhouse, or Component-off-the-shelf (COTS) [8] provided by third
parties, such as shopping carts.

When a designer identifies the various components of a complex system, the
next step is to compose these components in order to construct the global system.
Ideally, the intention is to use each of the identified components “as it is”. How-
ever, it is well documented in the literature [2,3] that “as-is” reuse is very unlikely
to occur, and in many cases, a reused component has to be customized in some way
to match the global application’s requirements. Customization can be needed due
to, for example, incompatibilities between the interfaces of components that need
to communicate with one another, need for extra security features, or, blocking
unneeded functionality provided by the component. Components are usually spec-
ified as black boxes, so that components consumers can use them without knowing
their internal details. The interface of a component is the only information avail-
able to the designer on how a component can be connected with other components.
Thus, they are crucial for components composition.

One of the most currently used component customization technique is wrap-
pers [1]. A wrapper is a specialized component inserted between a component
and its environment to deal with requests coming to and/or replies from the
wrapped component [1]. Components are placed within a wrapper and all inter-
actions with the component are done through the wrapper. The wrapper hides
the details of the interface of the component from external clients and acts as an
interface between its caller and the wrapped component. It enables a component
to have a new interface so that it can interact with a new component.

There are several wrapping techniques that can be used to customise com-
ponents in order to compose them into a complex WS system. Because of page
restriction, only a simple conversion wrapper is presented and modeled in CSP
notation [4]. CSP offers constructs to compose components in various ways in
terms of sequential, parallel, and conditional combinations, which can lead to
composing complex WSs. This approach makes it easier to reason about the
specified WS systems built from communicating components.

2 Simple Conversion Wrapper Example

A known problem when reusing a component is that the protocols and data
format used by a component do not match the protocols and data format used
by the global system [10]. For example, a component can be designed to be used
with RPC protocol, whereas the global system is intended to use SOAP protocol.
A wrapper can be used in this case to intercept incoming messages, which can
be SOAP requests, and convert them to RPC calls. Outgoing messages from the
component are also intercepted and converted to SOAP replies.

Consider a component described by the process COMP that has the follow-
ing interface: αCOMP = {a, b, c, d} as shown in Figure 1. The process COMP
receives requests on interfaces a and b and outputs replies on interfaces c and d
respectively. Let V and W denote the processes corresponding to the conversion

864 A.N. Haidar and A.E. Abdallah

COMP

a

b

c

d

V W
req toa rep

tob

fromc

fromd

Fig. 1. Component and Converters

components respectively. Process V is used for converting messages coming from
the environment to messages that can be interpreted by the component to be
wrapped. Process W is used for converting messages coming from the compo-
nent to messages that can be interpreted by the environment. The alphabets of
processes V and W are: αV = {req, toa, tob} and αW = {fromc, fromd , rep}.

On channel req the process V receives the incoming requests from the environ-
ment in one format, then, parses the request and transmits it in a new format to
the appropriate component’s interface. In this case, the request is transmitted to
either a (or b) on channels toa (and tob respectively). On channel fromc (fromd
respectively) the process W receives outputs from the component’s channel c
(d respectively), and on channel rep it outputs messages coming from the com-
ponent to the environment. The conversion wrapper can now be defined as the
CSP process WRAPPER that is a parallel composition of processes V and W ,
by renaming their interfaces as follows:

WRAPPER = V [in/req, a′/toa, b′/tob] ‖ W [out/rep, c′/fromc, d ′/fromd]

Where in, out are the external interface of the wrapper, and a′, b′, c′, d ′ are the
names on the internal wrapper interface that will be connected with the compo-
nent. As a result, the interface of the wrapper is: αWRAPPER = {in, out , a′, b′,
c′, d ′}. V [in/req, a′/toa, b′/tob] means that the old channel req is renamed as in,
toa is renamed as a′, and tob is renamed as b′. This is known as renaming in CSP,
which enables connecting two processes by renaming events from both processes
to a common name. By renaming the internal interface of the wrapper to that of
the component, the two becomes connected as follows: WRAPPER[a/a′, b/b′,
c/c′, d/d ′] ‖ COMP .

The newly wrapped component is then modeled by the CSP process
WRAPPED COMP, where the internal interface of the wrapper is hidden form
the environment:

WRAPPED COMP = (COMP ‖ WRAPPER) \ {αCOMP}.

WRAPPER

a’

b’

c’

d’

in out
V W COMP

WRAPPED_COMP

a

b

c

d

in out
V W

Fig. 2. Conversion Wrapper and a Wrapped component

Composition of Web Services Using Wrappers 865

3 Conclusion and Future Work

This paper presents a CSP approach that can be used to model wrapping tech-
niques for composing complex WSs from reusable components. This approach
can help in designing complex WSs compositions with rigor and precision. In
the future several models for large class of used wrappers can be devised, such
wrapping asynchronous components. A robust WS system can be designed by
wrapping the functional part with an authorisation wrapper, and then, by adding
authentication wrapper around it.

References

1. Alamri, A., Eid, M., El Saddik, A.: Classification of the state-of-the-art dynamic
web services composition techniques. International Journal of Web and Grid Ser-
vices 6(6), 148–166 (2006)

2. Srivastava, B., Koehler, J.: Web Service Composition — current solutions and open
problems. In: ICAPS 2003 (2003)

3. Brant, J., Foote, B., Johnson, R.E., Roberts, D.: Wrappers to the rescue. In: EC-
COP 1998 Proceedings of the 12th European Conference on Object-Oriented Pro-
gramming, London, UK, pp. 396–417. Springer, Heidelberg (1998)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

5. Expedia Corporation, http://www.expedia.co.uk
6. Kuno, H., Mchiraju, V., Alonso, G., Casati, F.: Web Services: Concepts, Architec-

tures and Applications. Springer, Heidelberg (2004)
7. OASIS. Business Process Execution Language for Web Services Version 2.0. OASIS

Standard (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

8. Semancik, S.K., Conger, A.M.: The standard autonomous file server, a customized,
off-the-shelf success story. In: Dean, J., Gravel, A. (eds.) ICCBSS 2002. LNCS,
vol. 2255, pp. 234–244. Springer, Heidelberg (2002)

9. W3C. Web Services Choreography Description Language Version 1.0. Working
draft (May 2004), http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

10. Nakano, Y., Yamato, Y., Takemoto, M., Sunaga, H.: Method of creating web ser-
vices from web applications. In: SOCA 2007: Proceedings of the IEEE Interna-
tional Conference on Service-Oriented Computing and Applications, Washington,
DC, USA, pp. 65–71. IEEE Computer Society, Los Alamitos (2007)

http://www.expedia.co.uk
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

Author Index

Abdallah, Ali E. 831, 862
Acciai, Lucia 170
Ait-Ameur, Yamine 37
Ait-Sadoune, Idir 37
Arbab, Farhad 108
Argent-Katwala, Ashok 191
Arkhipova, M.V. 753
Arkoudas, Konstantine 782
Attiogbé, Christian 769

Bajohr, Markus 572
Banti, Federico 170
Barbosa, Ellen Francine 503
Barnat, Jǐŕı 604
Beckschulze, Eva 82
Bender, Andreas 669
Bernat, Guillem 445
Bertolino, Antonia 206
Blieberger, Johann 619
Blockeel, Hendrik 693
Bocchi, Laura 155
Boute, Raymond 847
Brandán Briones, Laura 815
Breitman, Karin K. 561
Breu, R. 709
Brim, Luboš 604
Broy, Manfred 1

Cafezeiro, Isabel 519
Cannon, Edward O. 669
Cerioli, Maura 738
Clark, Allan 170, 191
Colas, Fabrice 669

Dague, Philippe 815
De Angelis, Guglielmo 206
de Bruin, Jeroen 649
Di Marco, Antinisca 206
Diskin, Zinovy 534
Dong, Jin Song 307
Dong, Wei 252

Endler, Markus 519

Fantechi, Alessandro 170
Farahbod, R. 797

Ferdinand, Christian 93, 445
Fiadeiro, José Luiz 155
Foster, Howard 191
Franz, Florian 415

Georgakopoulos, Dimitrios 14
Gibson, J Paul 460
Gilmore, Stephen 170, 191
Glässer, U. 797
Gliwa, Peter 445
Gnesi, Stefania 170
Gönczy, László 170
Greci, Paolo 221
große Austing, Stephan 684
Guo, Liang 292
Gustafsson, Jan 445

Haberl, Wolfgang 385, 400
Haeusler, Edward Hermann 519
Hahn, Axel 684
Haidar, Ali Nasrat 831, 862
Häusler, Stefan 684
He, Jifeng 15
Heckmann, Reinhold 93
Herkersdorf, Andreas 385
Heuvel, Willem-Jan v/d 124
Hinchey, Michael G. 473, 561
Holmes, Geoff 693
Hölzl, Matthias 170
Hörmann, Martina 724
Houwing-Duistermaat, Jeanine J. 669

Inverardi, Paola 206

Jackson, P.J. 797
Jersak, Marek 93, 445
Jin, Naiyong 237
Jung, Georg 139

Kästner, Daniel 93
Katt, B. 709
Khoroshilov, Alexey V. 56
Kirner, Raimund 430
Kloppenburg, Margreet 669
Koch, Nora 170

868 Author Index

Kok, Joost N. 649, 669
Kokash, Natallia 108
Kowalewski, Stefan 82
Koznov, Dmitrij 478
Kugele, Stefan 400
Kühn, Eva 634

Lagorio, Giovanni 738
Langer, Boris 354
Lapadula, Alessandro 170
Lavrac, Nada 649
Lazovik, Alexander 815
Lechner, A. 709
Li, Xuandong 262
Linzhang, Wang 262
Lisper, Björn 445
Liu, Yang 307
Liu, Zhiming 323, 339
Lopes, Antónia 155

Ma, Xiaodong 252
Maldonado, José Carlos 503
Margaria, Tiziana 139, 490, 572, 724
Marinus, Johan 669
Martinelli, Fabio 221
Matteucci, Ilaria 221
Mayer, Philip 170, 191
Mazzanti, Franco 170
Mender, Thomas 724
Meng, Sun 108
Meulenbelt, Ingrid 669
Mittermayr, Robert 619
Mordinyi, Richard 634
Morisset, Charles 339
Morten, Enrico 738

Nagel, Ralf 139, 724

Orriens, Bart 124

Papazoglou, Mike 124
Paulitsch, Michael 369
Pfahringer, Bernhard 693
Pinto, Felipe C.R. 587
Pister, Markus 93
Pliskin, Michel 478
Polle, Torsten 71
Pugliese, Rosario 170
Puschner, Peter 430

Quan, Long 323

Rademaker, Alexandre 519
Reggio, Gianna 738
Reinelt, Matthias 684
Richter, Kai 93
Rieder, Bernhard 430
Roychoudhury, Abhik 292
Rubanov, Vladimir V. 56
Ruess, Harald 369

Sabetta, Antonino 206
Salewski, Falk 82
Schlickling, Marc 93
Schordan, Markus 445
Schreiber, Christian 634
Schroeder, Andreas 170
Schubert, Wolfgang 139
Schwabe, Daniel 548
Seefelder de Assis, Patricia 548
Shatokhin, Eugene A. 56
Shivers, Olin 782
Siegbert, Thomas 82
Slagboom, P. Eline 669
Sorea, Maria 369
Sṕınola, Rodrigo O. 587
Stam, Andries 663
Steffen, Bernhard 139, 490, 724
Stolz, Volker 339
Sun, Jun 307

Tautschnig, Michael 354, 400
Tiezzi, Francesco 170
Tivoli, Massimo 206
Trajkovski, Igor 649
Travassos, Guilherme H. 587
Tribastone, Mirco 170, 191
Trinh, Hong 724

Uelschen, Michael 71

Vajihollahi, M. 797
van Hilten, Jacobus J. 669
van Rooden, Stephanie M. 669
Vanschoren, Joaquin 693
Varró, Dániel 170
Visser, Martine 669
Viterbo, José 519
Voigt, Horst 139

Wang, Ji 252
Wang, Zhonglei 385
Watt, Iain 669

Author Index 869

Wechs, Martin 385, 400
Wenzel, Ingomar 430
Wilhelm, Reinhard 93
Willburger, M. 709
Wirsing, Martin 170
Wolter, Uwe 534

Xia, Bican 277

Yang, Lu 277

Zelenov, S.V. 753

Zhan, Naijun 277

Zhao, Jianhua 262

Zhu, Huibiao 237

Zongyan, Qiu 323

	Title Page
	Preface
	Organization
	Table of Contents
	Architecture Based Specification and Verification of Embedded Software Systems
	Introduction
	Seamless Model-Based Development
	Comprehensive System Architectures
	The Logical View
	The Technical Architecture

	Modeling Systems and Their Architectures
	A Universal System Model
	Implementation

	Specification and Verification Driven System Evolution
	Requirements Engineering: Specifying the System Functionality
	Specifying and Verifying the Architecture
	Implementing the Components
	Integration and Verification
	Overall System Verification
	Conclusion

	Concluding Remarks
	References

	Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action
	Modelling Coordination and Compensation
	Introduction
	An Enriched Design Model
	Exception Handling
	Rollback

	Programs
	Primitive Commands
	Nondeterministic Choice and Sequential Composition
	Assignment
	Conditional
	Exception Handling

	Normal Form
	Link with the Original Design Model
	Conclusion
	References

	Animating Event B Models by Formal Data Models
	Introduction
	Formal Techniques Implementations
	Event B Method
	The EXPRESS Data Modeling Language
	Graphical Representation

	Validation by Animation
	From Event B Models to EXPRESS Data Models
	An Example

	Processing Higher Order Objects
	The B2EXPRESS Tool
	Triggering Events
	Tracing Process Algebra Expressions
	B2EXPRESS as a Monitoring System

	Comparison with Related Work
	Conclusion: Combining Proof and Animation
	References

	Automated Formal Testing of C API Using T2C Framework
	Introduction
	Technologies and Tools for the Development of Basic Functionality Tests for Program Interfaces
	MANUAL
	Check
	CUnit
	TET (Test Environment Toolkit)
	Automation of TET-Compliant Test Development in GTK+-2.0 Verification Test Suite (GTKVTS)
	Comparison of Existing Approaches

	T2C (”Template-to-Code”) System
	General Information
	Test Development with T2C Tools: The Workflow

	Applying T2C to Test Development for LSB Desktop
	Conclusion
	References

	Tailoring and Optimising Software for Automotive Multicore Systems
	Introduction
	Use-Cases for Automotive Multicore Systems
	Use-Case 1: Deployment of New Functions
	Use-Case 2: Redundant Systems
	Use-Case 3: Concentrating of Functions
	Use-Case 4: Convergence of Domains
	Use-Case 5: Architecture Harmonization
	Use-Case 6: Parallel Algorithms

	Scheduling
	Symmetric Multiprocessing
	Asymmetric Multiprocessing
	Hybrid Multiprocessing

	Application Binding
	Design Patterns
	Parallel Design
	Efficient Implementations

	Conclusion
	References

	Fault Handling Approaches on Dual-Core Microcontrollers in Safety-Critical Automotive Applications
	Introduction
	Requirements for ASIL C Application
	Safety Architectures with Dual-Core Microcontrollers
	Function Monitoring Architectures
	Generic Architectures
	Comparison of Effects on Reliability
	Common Problems

	Evaluation of Application Example
	Conclusion
	References

	Timing Validation of Automotive Software
	Introduction
	The System Level: Schedulability Analysis
	The Code Level: Static Timing Analysis
	The Interaction between SymTA/S and aiT
	Hardware and Predictability
	Pipelines
	Caches
	Buses
	Multi-core Architectures

	Conclusion
	References

	Towards Using Reo for Compliance-Aware Business Process Modeling
	Introduction
	Overview
	Business Process Modeling Notation (BPMN)
	Reo
	Mapping BPMN to Reo
	Basic Objects: Tasks, Events, Gateways and Message Flow
	Sub-processes and Exception Handling

	Reo Perspectives in Compliance Rule Modeling
	Conclusions and Future Work
	References

	On the Risk Management and Auditing of SOA Based Business Processes
	Introduction
	Risk Management and Auditing for SOAs
	Service-Enabled Process Compliance Methodology (SCM)
	Modeling Compliance Enriched Business Processes
	Defining Compliance Rules and Policies

	Related Work
	Conclusions
	References

	SCA and jABC: Bringing a Service-Oriented Paradigm to Web-Service Construction
	Introduction
	The Meta-model of SCA
	TheMeta-modelof jABC
	Comparison with Component-Orientation
	Characteristics of Component Flavored Assembly
	Complex, Fixed, Layer-Structures and the Service Concept
	Perspective, Location, and Entry-Point: Topology vs. Coordination

	Evaluation
	Scalability
	Participation
	Agility

	Related Work
	Conclusions
	References

	A Use-Case Driven Approach to Formal Service-Oriented Modelling
	Introduction
	Service-Overlay Computers
	The SENSORIA Reference Modelling Language
	From Use-Case Diagrams to SRML
	Use-Case Diagrams for Service-Oriented Applications
	Deriving the Structure of SRML Modules

	Using Statecharts for SRML Orchestration
	Concluding Remarks and Further Work
	References

	SENSORIA Patterns: Augmenting Service Engineering with Formal Analysis, Transformation and Dynamicity
	Introduction
	The \SENSORIA Project
	The \SENSORIA Approach
	A Pattern-Based Approach to Service Engineering

	Service Modelling
	Service Specification and Analysis
	Functional Service Verification
	Sensitivity Analysis
	Scalability Analysis
	Declarative Orchestration
	Declarative Service Selection
	Model-Driven Deployment
	RelatedWork
	Conclusions and Further Work
	References

	Safety and Response-Time Analysis of an Automotive Accident Assistance Service
	Introduction
	ServiceDesign
	Safety Analysis of the Assistance Service
	FSP, LTS and Behaviour Models
	Translation of Service Design to FSP
	Analysis Using LTSA

	Response-Time Analysis of the Assistance Service
	PEPA, CTMCs and Response Time
	Analysis Using \texttt{ipclib}

	\SENSORIA Development Environment
	SDE Features
	Orchestrating Tools with the SDE

	Related Work
	Conclusions
	References

	A Framework for Analyzing and Testing the Performance of Software Services
	Introduction
	Development Process
	Application Scenario: The eHealth Service
	Performance Model Generation and Analysis
	The Used Analysis Approach and Tools
	Performance Analysis of the alarmManagement

	Performance Testing
	\PUPPET
	Performance Testing of the eHealth Service

	Conclusion
	References

	A Framework for Contract-Policy Matching Based on Symbolic Simulations for Securing Mobile Device Application
	Introduction
	Background
	Contracts, Policies and Their Specification Language ConSpec
	Symbolic Transition System

	Contract-Policy Matching
	From ConSpec Language to Process Algebra
	Contract-PolicyMatching as Simulation Checking

	A Tool for Simulation Checking on Mobile Device
	Architecture of the Tool
	Performance

	Some Examples
	Conclusion and Future Work
	References

	\ASERE: Assuring the Satisfiability of SequentialExtended Regular Expressions∗
	Introduction
	SERE: Syntax and Semantics
	A Review of Alternating Automata
	Representing SEREs by IAFA
	The Implementation and Optimization
	Experiments and Analysis
	Future Works
	References

	Computing Must and May Alias to Detect Null Pointer Dereference
	Introduction
	Points-toGraph
	Computing Must Alias
	Must Alias Data Flow Fact
	Must Alias Analysis

	Null Pointer Dereference Detection
	Experiment
	Related Work and Conclusions
	References

	A Partial Order Reduction Technique for Parallel Timed Automaton Model Checking
	Introduction
	Background
	Parallel Timed Automata
	Symbolic States and the Symbolic Successors w.r.t. Paths

	Independent Transitions and Partial Order paths
	Compute Symbolic Successors w.r.t. POPs
	Difference Bound Matrixes and the Basic Successor Algorithm
	An Incremental Algorithm to Compute Successors w.r.t. POPs

	A Reachability Analysis Algorithm Using Partial Order Path
	A Rule to Avoid Exhaustive Exploration
	Case Studies
	Conclusions
	References

	Program Verification by Reduction to Semi-algebraic Systems Solving
	Introduction
	Related Work
	Basic Notions

	Discoverer
	Invariants and Ranking Functions
	Invariants
	Ranking Functions

	Generating Polynomial Invariants
	Example

	Discovering Non-linear Ranking Functions
	Discussions: Generating Invariants vs. Discovering Ranking Functions

	Complexity Analysis
	Beyond Semi-Algebraic Transition Systems
	More Expressive Invariants and Ranking Functions
	Conclusions
	References

	Debugging Statecharts Via Model-Code Traceability
	Introduction
	State-of-the-Art in Statechart Compilation
	Overall Methodology
	Code Generation
	Mapping Code-Level Bug Reports to Statechart-Level
	Experimental Setup
	Experimental Results
	Code Generation
	Dynamic Slicing

	Discussion
	References

	Model Checking CSP Revisited: Introducing a Process Analysis Toolkit
	Introduction
	Communicating Sequential Processes with Extensions
	FDR and Refinement Checking
	Verification
	On-the-Fly Refinement Checking Algorithm
	Partial Order Reduction
	Refinement Checking Experiments
	Temporal Logic Based Verification

	Conclusion and Future Works
	References

	Formal Use of Design Patterns and Refactoring
	Introduction
	BasicsofrCOS
	Refactoring Rules in rCOS
	Pattern-Directed Refactoring Rules
	The Proofs
	Class Refinement Laws
	System Refinement Laws

	A Case Study
	Conclusions and Future Work
	References

	A Component-Based Access Control Monitor
	Introduction
	Defining Access Control Models
	Access Control Policy
	Access Control Model

	Models and Their Refinement and Composition
	Access Control Component
	Conclusion
	References

	Navigating the Requirements Jungle
	Introduction
	Requirements in the Design Process
	Hierarchy of Requirements
	Assessment of Requirements

	Categorizing Requirements
	Towards a Taxonomy
	Non-functional Requirements
	Design constraints

	Conclusions
	References

	Non-functional Avionics Requirements
	Introduction
	Related Work
	Background: The Evolution of Avionics Platforms
	Non-functional Avionics Requirements
	Security
	Maintenance
	Safety, Availability, and Integrity
	Temporal Performance Aspects
	Testing and Diagnosis
	Obsolescence
	Schedulability

	Exemplary Formal Requirements Capture and Analysis
	Dependability
	Dependability of the Development Process and Robustness of MBD
	Quantitative Dependability and Timing Assessment
	Schedulability

	Summary and Conclusions
	References

	A Simulation Approach for Performance Validation during Embedded Systems Design
	Introduction
	Overview of SystemC
	A Model Driven Development Process
	An Overview of the Proposed Approach
	Organization

	TheCOLA-BasedMDDProcess
	Modeling Concepts of COLA
	Development Process

	Simulation Environment
	Software Simulation Model Generation
	C Code Generation
	Timing Estimation

	Simulator Construction
	Conclusion
	References

	Optimizing Automatic Deployment Using Non-functional Requirement Annotations
	Introduction
	Related Work
	Organization

	COLA—The Component Language
	Non-functional Requirements
	Essential Non-functional Requirements
	Auxiliary Non-functional Requirements

	Requirements and Capabilities Meta-models
	Deployment Process
	Allocation
	Scheduling
	Platform Configuration and Execution

	Conclusions
	References

	Experiences with Evolutionary Timing Test of Automotive Software Components
	Introduction
	Related Work
	Evolutionary Test of the WCET
	Runtime Test of AUTOSAR SWCs

	Adaptation of ET Concept for Test of State-Based Systems
	State-Based Timing Test with Test Sequences
	Data Structure for Optimizing Test Sequences

	Evolutionary Test of AUTOSAR SWCs
	Runnable Execution Pattern
	Test Environment for AUTOSAR SWCs
	Benefits of AUTOSAR for Evolutionary Timing Test

	Evaluation of Genetic Optimization Concept
	Tested SWCs
	Results of Genetic Optimization
	Quantification of Genetic Testability
	Concept Refinement for Flat Fitness Profiles

	Conclusion
	References

	Measurement-Based Timing Analysis
	Introduction
	Basic Concepts
	Static Program Representation
	Execution Path Representation

	The Principle of Measurement-Based Timing Analysis
	Parameterizable Program Partitioning for MBTA
	Path-Bounded Partitioning Algorithm
	Example of Path-Bounded Program Partitioning

	Automated Test-Data Generation
	Problem Statement
	Test-Data Generation Hierarchy
	Test-Data Generation Using Model Checking
	Example Application for Test-Data Generation
	Complexity Reduction

	The Execution-Time Model of MBTA
	Enforcing Predictable Hardware States
	Execution-Time Composition

	Experiments
	Experiment with Model Checking for Automated Test-Data Generation
	Experiments with Automated Complexity Reduction
	Experiments with MBTA

	Conclusion
	References

	ALL-TIMES – A European Project on Integrating Timing Technology
	Introduction
	Concept, and General Objectives
	Timing Analysis
	The Problem

	Main Project Objectives
	Expected Results
	Partners, Their Tools, and Their Roles
	M$\"{a}lardalen University
	Vienna University of Technology
	AbsInt Angewandte Informatik GmbH
	Gliwa GmbH
	Symtavision GmbH
	Rapita Systems Ltd
	Possible Tool Integrations

	Work Packages
	Work Package 1: Requirements
	Work Package 2: System-Level Integration
	Work Package 3: Code-Level Tool Integration
	Work Package 4: Validation and Dissemination

	Conclusions
	References

	Weaving a Formal Methods Education with Problem-Based Learning
	Introduction
	Weaving a Formal Methods Thread through a Curriculum: The Integration Problem
	Learning Theory
	Problem Based Learning
	Good Formal Methods Problems

	Formal Methods: Learning Objectives
	Improve Software (Development)
	Thinking about (Computational/Algorithmic) Thinking
	Make Friends with Abstraction and Modelling: Conceptual Tools
	Make Friends with Software for Software Engineering: Development Tools
	Understand the Scientific Foundations
	Be Comfortable with Mathematics

	A Software Engineering Approach to Constructing a Formal Methods Curriculum
	Weaving Formal Methods with Problem Based Learning
	Example 1: Stacks and Queues
	Example 2: E-Voting
	Example 3: Sorting and Searching
	Example 4: Games, Puzzles and Intelligence
	Example 5: Feature Interactions in Telephones

	Conclusions
	References

	Encouraging the Uptake of Formal Methods Training in an Industrial Context
	Introduction
	Impediments to Formal Methods Training
	Evidence of Successful Use
	Technology Maturity
	Support
	People

	Conclusion
	References

	Computer-Supported Collaborative Learning with Mind-Maps
	Introduction
	Background
	Computer-Supported Collaborative Learning
	Mind Maps
	Mindmapping Tools
	Author/Commenter Cycle Review Process SADT/IDEF

	Comapping
	Overview
	Implementation Details
	Usage Examples

	Education Experiments with Comapping
	Starting Points
	Issues and Solutions
	Problems

	Conclusions
	References

	Agile IT: Thinking in User-Centric Models
	Motivation
	Technical Hurdles: Compatibility and Interoperability
	XMDD: Extreme Model-Driven Development
	Central Issues to Be Addressed
	Heterogeneous Landscape of Models
	Formal Methods and Tools
	Automatic Deployment and Maintenance Support

	The jABC as an XMDD Environment
	XMDD Case Studies in jABC
	Requirements and Specification: Supply Chain Management
	Application Construction: The SWSC Mediation Scenario
	Middleware Services: MaTRICS

	Conclusions and Perspectives
	References

	Specialization and Instantiation Aspects of a Standard Process for Developing Educational Modules
	Introduction
	Developing Educational Modules
	The Standard Process
	The $\IMA-CID$ Approach

	Standard Process Specialization and Instantiation
	Specializing the Standard Process
	Instantiating the Standard Process

	Applying the Instantiated Process
	Content Modeling
	Evaluating the Educational Module for Software Testing

	Conclusions and Further Work
	References

	A Formal Framework for Modeling Context-Aware Behavior in Ubiquitous Computing
	Introduction
	Related Work
	The Algebra of Contextualized Ontologies
	Contextualized Ontologies

	Ubiquitous Computing
	Scenario

	Formalizing the Application
	High Level Diagrams
	A Zoom into Ontologies and Morphisms

	Conclusions
	References

	Contexts and Context Awareness in View of the Diagram Predicate Framework
	Introduction
	Entities and Contexts, I: An Informal Discussion
	The Diagram Predicate Framework
	The Syntax
	The Semantics

	Entities and Contexts, II: A Formal Model
	A Context with an Entry Point
	An Entity Enters a Context
	An Entity Working in a Context

	Conclusion
	References

	The Use of Adaptive Semantic Hypermedia for Ubiquitous Collaboration Systems
	Introduction
	Adaptive Ubiquitous Collaboration Systems
	Example Scenario
	ASHDM Reviewed
	Conceptual Model
	Navigation Model
	Interface Model
	Adaptation Context Model
	Adaptation Model

	Implementation Architecture
	Conclusions and Future Work
	References

	The Use of Formal Ontology to Specify Context in Ubiquitous Computing
	Introduction
	Ontologies
	Ontology Implementation Languages: RDF
	Ontology Implementation Languages: RDF and OWL
	Context Awareness
	Use of Formal Ontology in Ubiquitous Computing Environmopents
	Conclusions
	References

	High Service Availability in MaTRICS for the OCS
	Motivation
	The MaTRICS Framework
	The ConfigManager
	Model Based Design of MaTRICS Services

	Hearbeat
	Heartbeat Integration in MaTRICS
	Enhancing the ConfigManager
	Receiving the Actual Cluster State
	Configuring and Managing Heartbeat

	Application: High Availability for the OCS Cluster
	Defining Availability Test Models
	Conclusions and Future Work
	References

	Supporting Requirements Definition and Quality Assurance in Ubiquitous Software Project
	Introduction
	Ubiquitous Computing Characteristics
	Functional and Restrictive Factors Related to Ubicomp Characteristics
	Characterizing Ubiquitous Software Projects
	Evaluating Ubicomp Concepts through a Survey
	Ubicomp and Requirements Engineering
	A Framework to Support Definition and Quality Assurance Activities Regarding Ubiquity Requirements in Software Projects
	Requirements Elicitation
	Requirements Definition
	Requirements Verification

	Conclusions and Further Works
	References

	Squeeze All the Power Out of Your Hardware to Verify Your Software!
	Introduction
	Running Example: Enumerative LTL Model-Checking
	Get New Algorithms!
	Squeeze the Juice Out of Your Hard Disk!
	Squeeze the Juice Out of Your Parallel Computer!
	Conclusion
	References

	Static Partial-Order Reduction of Concurrent Systems in Polynomial Time
	Introduction
	Interleavings and the State Explosion Problem
	Algorithm
	Worst-Case Analysis
	Example
	Related Work
	Conclusion
	References

	An Extensible Space-Based Coordination Approach for Modeling Complex Patterns in Large Systems
	Introduction
	Structuring the Coordination Space
	Xtuple and Entry
	Container and Container Referencing
	Structuring of Containers
	Entry Addition
	(Destructive) Entry Selection

	Core Container Functionality
	Extending the Functionality
	FIFO Coordination
	Notification
	Read Iterator
	Single Master Replication

	Conclusion
	References

	On the Design of Knowledge Discovery Services Design Patterns and Their Application in a Use Case Implementation
	Introduction
	Related Work
	Background
	Service-Oriented KD Design
	WSDL and Design Implications
	KD Process Design
	KD Service Design

	Use Case
	Use Case Process Design
	Use Case Process Comparison

	Conclusions and Future Work
	References

	The ASK System and the Challenge of Distributed Knowledge Discovery
	Introduction
	AnOverviewoftheASKSystem
	TheFutureofASK
	Summary
	References

	A Scenario Implementation in R for \Subtype Discovery Examplified on Chemoinformatics Data
	Introduction
	Experimental Data
	Data Preparation and Clustering
	Methods to Select, Characterize, Compare and Evaluate Cluster Results
	The Package, Its Implementation and a Sample Analysis
	Concluding Remarks
	References

	Requirements for Ontology Based Design Project Assessment
	Introduction
	Using Ontologies for Domain Assessment
	Analysis of Engineering Projects
	Requirements
	Ontology Analysis and Metrics
	Summary
	References

	Organizing the World’s Machine Learning Information
	Introduction
	Previous Work
	Bioinformatics
	Machine Learning

	A Language for Sharing Machine Learning Information
	ExpML Definition
	An Example Description
	Future Work

	Organizing Experimental Data
	Anatomy of an Experiment Database
	Populating the Database

	Services of Experiment Repositories
	Public Database Access
	Integration in Data Mining Tools

	Conclusions
	References

	Workflow Testing
	Introduction
	Windows Workflow Foundation
	Architecture and Features
	The Sequential Workflow Model
	The State Machine Workflow Model

	WorkflowTesting
	Test Considerations
	Test Types
	Test Structure
	Test Execution
	Test Results

	WorkflowInspector
	Software Features
	System Integration
	Integration of WorkflowInspector in the Development Process Model
	Logical Application Architecture
	Usage Example
	Perform Coverage Tests

	Conclusion
	Advantages
	Benefits of the Usage of WorkflowInspector at World-Direct

	References

	The jABC Approach to Rigorous Collaborative Development of SCM Applications
	The Setting: The P3 Challenge
	Basic Concepts of the jABC Modelling Framework
	Designing the Document Management Process
	The Global Workflow
	The Delivery Management Workflow
	The Document Management Workflow
	Workflow Granularity
	Workflow Execution
	Workflow Validation and Verification
	Code Generation
	Workflow Evolution

	Conclusions and Perspective
	References

	Gesper: Support to Capitalize on Experience in a Network of SMEs
	Experience Management in a Network of SMEs
	High-Level Requirements of Gesper
	Conceptual Model of Experience
	Main Usage Scenarios

	Gesper Architecture and Implementation
	Ontology
	Gesper Architecture

	Conclusions and Further Work
	References

	Directed Generation of Test Data for Static Semantics Checker
	Introduction
	Related Approaches

	Semantics Relation Language
	Peculiarities of SRL
	The Form of Underlying Grammar
	Context Condition Descriptor
	Node Description
	Dependency Kind
	Relation Type
	Type Compatibility

	Completeness Criteria
	Semantically Correct Tests
	Semantically Incorrect Tests

	Semantic Tests Generator
	Case Studies
	Discussion
	Conclusions
	References

	Event-Based Approach to Modelling Dynamic Architecture: Application to Mobile Ad-Hoc Network
	Introduction
	Modelling Dynamic Architecture
	Features of Multi-process Systems
	Related Specification Approaches
	The Specification Method: Overview

	Overview of the Used Materials
	Overview of Event B
	Overview of ProB

	Modelling the MANET System
	Overview of Mobile Ad-Hoc Network
	Formal Specification of MANET
	Analysis of the Specified MANET System

	Conclusion
	References

	Trusted Theorem Proving: A Case Study in SLD-Resolution
	Introduction
	SLD Trees
	Proof Construction
	Implementation
	Extensions and Improvements
	Obtaining the Final Substitution
	Multiple Solutions

	Conclusions
	References

	High Level Analysis, Design and Validation ofDistributed Mobile Systems with \CoreASM
	Introduction
	Abstract State Machines
	The \CoreASM Project
	The \CoreASM Engine
	Engine Plugins
	\CoreASM in Eclipse
	Control State Diagrams
	Model Checking \CoreASM Specifications
	A Simple \CoreASM Example

	Case Studies
	The Mastermind Project
	Dynamic Resource Configuration & Management Architecture
	Decision Support for Situation Analysis

	Lessons Learned
	Concluding Remarks
	References

	Optimizing the System Observability Level for Diagnosability
	Introduction
	Organization of the Paper

	Discrete Event Systems
	Labelled Transition Systems
	Observable LTSs with Faults
	Diagnosability

	Observability and Signatures
	Observability
	Signatures in DES

	Reducing and Expanding Observability
	Reducing the Observability
	Expanding the Observability

	Implementation
	Extended Models
	Distinguishability
	Predictability
	Extended Fault Model

	Related Work
	Conclusion and Future Work
	References

	Weaving Authentication and Authorization Requirements into the Functional Model of a System Using Z Promotion
	Introduction
	Conference Management System
	State-Based Model of the Conference Component
	Conference Component Operations

	Authentication Component
	Formal Specification of the Authentication Component
	Authentication Component Operations

	Authorization Component
	A Simple Formal RBAC Model
	Initialising RBAC

	Promotion
	Promoting Authentication
	Promoting Authorization

	Related Work
	Conclusion
	References

	Simple Gedanken Experiments in Leveraging Applications of Formal Methods
	Introduction
	Microsemantics, State Expressions and Invariants
	Refreshing the Principles [8]
	State Expressions and Invariants in Microsemantics

	Analyzing Procedural Puzzles in TLA+ anf TLC
	R$\^{o}le of Procedural Puzzles
	Formal Renderings of the Coffee Bean Puzzle

	Intermezzo: More Experimenting with Styles
	Defining Functions on Abstract Data Structures
	Defining TLA+ Functions at a More Abstract Level

	Handling Nested Loops in TLA$\+$ and TLC
	Conclusions
	References

	Composition of Web Services Using Wrappers
	Introduction
	Simple Conversion Wrapper Example
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

