
Chapter 7
Braneworld Black Holes

R. Gregory

Abstract In this article, I give an introduction to and overview of braneworlds
and black holes in the context of warped compactifications. I first describe the gen-
eral paradigm of braneworlds and introduce the Randall–Sundrum model. I discuss
braneworld gravity, both using perturbation theory and also nonperturbative results.
I then discuss black holes on the brane, the obstructions to finding exact solutions,
and ways of tackling these difficulties. I describe some known solutions and con-
clude with some open questions and controversies.

7.1 Introduction

Nearly a century ago, Kaluza and Klein theorized that by adding an extra dimension
to space, you could unify electromagnetism with gravity. Thus our first “unified
theory” was born – at the price of an extra unseen dimension. Nowadays, extra
dimensions are an integral part of fundamental theoretical physics, and the conse-
quences of devising consistent means of hiding these extra dimension have led to an
explosion of activity in recent years in string theory, cosmology, and phenomenol-
ogy. Braneworlds are just part of this general story and represent a particular way of
dealing with the extra dimensions that is empirical, but precise and calculable. They
have proved indispensable for developing ideas and methods which have then been
used in more esoteric but fundamentally grounded models in string theory. These
lectures are about braneworlds and deal with the deeply interesting, but thorny issue
of how to describe braneworld black holes.

Simply put, a braneworld is a slice through spacetime on which we live. We
cannot (easily) see the extra dimensions perpendicular to our slice, as all of our stan-
dard physics is confined. We can, however, deduce those extra dimensions by care-
fully monitoring the behaviour of gravity. Confinement to a brane may at first sound
counter-intuitive; however, it is in fact a common occurrence. The first braneworld
scenarios [1–3] used topological defects to model the braneworld, with condensates
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and zero modes producing confinement. In string theory, D-branes have “confined”
gauge theories on their worldvolumes [4, 5] and heterotic M-theory has a natural
domain wall structure [6, 7].

The new phenomenology of braneworld scenarios is primarily located in the
gravitational sector, with a particularly nice geometric resolution of the hierarchy
problem [8–10]. The scenario has however far outgrown these initial particle phe-
nomenology motivations and has proved a fertile testbed for new possibilities in cos-
mology, astrophysics, and quantum gravity. One of the most popular models with
warped extra dimensions is that of Randall and Sundrum (RS) [11, 12], which con-
sists of a domain wall universe living in 5D anti-de Sitter (adS) spacetime, and will
be the setting for these lectures. Interestingly, although the RS model is an empirical
braneworld set-up it can be related to, or motivated by, string theory in several ways.
First of all, it is notionally similar to the heterotic M-theory set-up, in that the initial
RS model had two walls at the end of an interval. However, this similarity is no-
tional only, and calculationally, the gravitational spectrum of GR in five dimensions
is very different from the spectrum of low-energy heterotic M-theory [6, 7]. A more
fruitful and robust parallel occurs with type IIB string theory, where the RS model
can (in some rough sense) be associated with the near horizon limit of a stack of
D3-branes. Viewed in this context, the RS model provides an excellent opportunity
to use and test ideas from the gauge/gravity or adS/CFT correspondence [13, 14].

The RS model is however particularly valuable as a concrete and explicit cal-
culational testbed for any theory with extra dimensions in which gravity is able to
probe and modify these hidden directions. One of the problems with having extra
dimensions is that we have to hide evidence of their existence. We not only have
to reproduce gravitational and standard model physics on the requisite scales, but
also have to ensure that we do not create any additional unwanted physics. With RS,
the gravitational physics is self-consistent and calculable. We can therefore compute
the cosmological and astrophysical consequences of the extra dimension in a wide
variety of physically interesting cases.

Black holes are perhaps the most interesting physical object to explore within
the braneworld framework of extra dimensions. From the Kaluza–Klein point of
view, extra dimensions show up as extra charges black holes can carry from the 4D
point of view [15–18]; however, in these solutions the black hole is “smeared” along
the extra dimension rather than localized. Braneworld scenarios are the antithesis
of KK compactifications, consisting of highly localized and strongly warped extra
dimensions, and therefore the implications of this strongly localized and gravitating
brane for black hole physics are of particular physical and theoretical interest. We
now have compelling evidence of the existence of black holes in nature, from stellar-
sized black holes in binary systems, observed via X-ray emission from accretion
discs [19], to supermassive black holes at the centre of galaxies [20, 21], which in
the case of our own Milky Way can be seen quite clearly from stellar orbits [22].
As observational evidence accrues and becomes more robust, the bounds on the
innermost stable orbit of the black hole (obtained from iron emission lines [23, 24])
may eventually start to confront the theoretical limit from the 4D Kerr metric, and
possibly provide signatures of extra dimensions, for which the bounds can be quite
different [25].
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Turning to the small scale, and taking seriously the possibility that braneworlds
can provide a resolution of the hierarchy problem via a geometric renormalization
of the Newton constant [8–10], raises the possibility that mini black holes can be
produced in particle collisions [26, 27]. Understanding the formation and decay of
these highly energetic black holes will then allow us to predict signatures for black
hole formation at the LHC [28–31] and is the topic of a companion set of lectures
at this school [32].

Finally, there is also a compelling theoretical reason for studying braneworld
black hole solutions, and that is the parallel between the RS model and the adS/CFT
conjecture [33–37]. As we explore more concretely in Sect. 7.4, by taking the near
horizon limit of a stack of D3-branes, the RS model can be thought of as cutting off
the spacetime outside the D-branes; the adS curvature of the RS bulk is therefore
given rather precisely in terms of the D3-brane charge and the string scale. Thus, we
might expect a parallel between classical braneworld gravity and quantum correc-
tions on the brane. The possibility of finding a calculational handle for computing
the backreaction of Hawking radiation [38–40] is extremely attractive, and of course
can potentially feed back into the issue of mini black holes at the LHC.

In these lectures, we will review the current status of black hole solutions in
the Randall–Sundrum model, first reviewing the framework in some detail, con-
centrating on gravitational issues, and the link with adS/CFT and holography. We
will see why it is so difficult to find an exact solution, before covering approximate
methods and solutions for brane black holes. Finally, we describe objections to the
holographic picture and some recent developments in the closely related Karch–
Randall [41] set-up.

7.2 Some Randall–Sundrum Essentials

The Randall–Sundrum model has one (or two) domain walls situated as minimal
submanifolds in adS spacetime. In its usual form, the spacetime is

ds2 = e−2k|z| [dt2 −dx2]−dz2 , (7.1)

where k = L−1 is the inverse curvature radius of the negatively curved 5D adS space-
time. Here, the spacetime is constructed so that there are 4D flat slices stacked along
the fifth z-dimension, which have a z-dependent conformal prefactor known as the
warp factor. Since this warp factor has a cusp at z = 0, this indicates the presence
of a domain wall – the braneworld – which represents an exactly flat Minkowski
universe. The reason for choosing this particular slicing of adS spacetime is to have
a flat Minkowski metric on the brane, i.e. to choose the “standard vacuum”.

The RS spacetime is an example of a codimension 1 braneworld, where we have
one extra dimension. In this case, there is a well-defined prescription for finding
gravitational solutions with an infinitesimally thin brane: the Israel equations [42],
which are essentially a physicist’s tool extracted from the Gauss–Codazzi formalism
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for the differential geometry of submanifolds. Since this formalism is so widely
used, it is worth reviewing it briefly here (see also [43–45]).

In the Israel prescription, we rewrite our 5D spacetime as a 4D base space, with
coordinates xμ , plus a normal distance, z, from the “wall”. The 4D coordinates re-
main constant along geodesics normal to the wall, thus giving a 5D coordinate sys-
tem {xμ ,z}. This coordinate system is valid within the radius of curvature of the
wall, and splits the tangent space naturally into parallel and normal components,
and the metric in general has the form

ds2 = γμν(x,z)dxμdxν −dz2 . (7.2)

Choosing the coordinates in this way results in the nontrivial content of the geometry
being located in the 4D metric γμν , and the fifth metric component is always unity
because z is the proper distance from the brane. na = δ a

z is the normal to the brane,
and γμν |z=0 is the intrinsic metric on the brane. Note that γμν lies in the tangent
bundle of the brane as a manifold (i.e. is a 4D tensor) and has a 5D counterpart, the
first fundamental form which we denote as

γ̂ab = gab +nanb = diag(γμν ,0) . (7.3)

γ̂ab is a 5D tensor, but acts as a projection, wiping out any components orthogonal
to the brane. γ and γ̂ contain the same physical information; the distinction is purely
mathematical; however we will keep it for the purposes of this technical discussion.
This particular coordinate or gauge choice is called the Gaussian normal (GN) gauge
and is the space-like equivalent of the ADM synchronous gauge.

Surfaces can curve in the ambient manifold, whether or not that is itself curved
(see Fig. 7.1). This is measured by the extrinsic curvature or second fundamental
form and is defined via

Kab = γ̂ c
a γ̂ d

c ∇bnd . (7.4)

We can use the Riemann identity ∇c∇dna −∇d∇cna = Ra
bcdnd to get the Gauss–

Codazzi relations:

(4)Ra
bcd = γ̂ a

e γ̂
f

b γ̂
g
c γ̂ i

dRe
f gi +Ka

d Kbc −Ka
c Kbd (7.5)

⇒ (4)Rbd = γ̂ a
b γ̂

c
d

(
Rac +Raec f nen f )+KadKa

b −KKbd . (7.6)

n

z=0

z=1

Fig. 7.1 An illustration of the curved brane and the Gaussian normal coordinate system. The brane
is the solid line at z = 0; moving out a uniform distance from the brane gives a new surface at z = 1.
The normal to the brane n = ∂/∂ z is indicated. As we move from z = 0 to z = 1, distances along
the brane will change in general. This is reflected in the extrinsic curvature (7.4)
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In this last relation, we have the 5D Ricci tensor, which we can replace with the
energy momentum tensor via Einstein’s equations; we also have a term which a
second use of the Riemann identity allows us to write as a Lie derivative of the
extrinsic curvature across the brane:

Raec f nen f = −nb∇bKac −Kd
c Kad = −LnKac +Kd

a Kcd , (7.7)

thus allowing us to rewrite the Gauss–Codazzi equations in terms of the extrinsic
curvature and the energy momentum tensor:

LnKab = γ̂ c
a γ̂ d

b Tcd − 1
3 T γ̂ab +2Kc

aKbc −KKab − (4)Rab . (7.8)

Therefore, if we imagine our brane to be infinitesimally thin, having a distributional
energy momentum, Tab δ (z), then we see that the extrinsic curvature must have a
jump across the brane. Integrating this out, we get the Israel equations:

ΔKab = Kab(z = 0+)−Kab(z = 0−) = 8πG5
(
Tab − 1

3 T γ̂ab
)

. (7.9)

Returning to the Randall–Sundrum metric, (7.1), we see that

Kμν = −Γ z
μνnz = ∓ke−2k|z|ημν (7.10)

(where we are now dropping the distinction between the brane tangent space and
the bulk tangent space, as the situation is physically clear). Using (7.9) we see that
the brane has an energy momentum tensor proportional to the metric on the brane:

Tμν = ERSημν =
6k

8πG5
ημν . (7.11)

Notice the very precise form of this energy momentum. First, because it is pro-
portional to the intrinsic metric, this means that the brane has tension (rather than
pressure) and this tension is exactly equal to its energy, E = T . Thus the brane
energy momentum has exactly the same form as a cosmological constant term on
the brane. Second, the actual value of this tension is precisely related to the bulk
cosmological constant:

Λ = −6k2 = − (8πG5ERS)2

6
. (7.12)

This is sometimes referred to as the fine-tuned or critical RS brane. As we will see
later, this relation can be relaxed, leading to de Sitter or anti-de Sitter RS branes (the
latter of which are also known as Karch–Randall (KR) branes [41]).

7.3 Gravity in the Randall–Sundrum Model

Obviously the RS model can only describe our real universe if it correctly repro-
duces gravitational physics at experimentally tested scales. This means we have
to be able to reproduce Einstein gravity in our solar system, and the standard
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cosmological model for our universe. While the Israel equations give us the gen-
eral formalism for getting our braneworld metric, finding actual solutions can be
a far trickier matter, as indeed finding a general solution of Einstein’s equations
is a tricky matter! We therefore resort, as with standard gravity, to two main
approaches:

• Local physics, or perturbation theory, and
• “Big Picture” or geometry, finding exact solutions assuming symmetries.

In either case, we have to accept that gravity on the brane is a projection of the full
higher dimensional nature of gravity, and is therefore a derived quantity.

7.3.1 Perturbation Theory

In general relativity (GR), classical perturbation theory involves perturbing the
metric

gab → gab +hab (7.13)

around a given background solution. There are three main issues to bear in mind:

1. hab is a perturbation and should therefore be “small”. What does this mean? In
practice we have to be careful about our coordinate system and always look at
h in a regular system. For the Schwarzschild solution, for example, this means
using Kruskal coordinates.

2. Gauge freedom: GR has a large gauge group – physics is invariant under gen-
eral coordinate transformations (GCT’s), and there are many gauge degrees of
freedom in hab. For example, in 4D, hab has 10 independent components, but the
graviton has only 2 physical degrees of freedom. Under a GCT

Xa → Xa +ξ a , gab → gab +Lξgab , (7.14)

hence
δgab = ξa;b +ξb;a (7.15)

and we can use this to make a choice of gauge. A common choice for relativists
is the harmonic gauge

h̄a
b;a = ha

b;a − 1
2 ha

a;b = 0 , (7.16)

and in vacuo we can also choose ha
a = 0: the transverse tracefree (TTF) gauge.

Note that this does not uniquely specify the gauge, e.g. ξ a
;a = 0 = ∇2ξ a gives an

allowed gauge transformation.
3. Finally, we need the perturbation of the Ricci tensor:

δRab = − 1
2∇

2hab −Racbdhcd +Rc
(ahb)c +∇(a∇chb)c = − 1

2ΔLhab (7.17)

often called the Lichnerowicz operator.
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The simplest way to perturb the brane system is to take a GN system, in which
the brane stays at z = 0:

gzz = −1 gzμ = 0 . (7.18)

The remaining gauge freedom allowed is

ξ z = f (xμ) , ξ μ =
∫

a−2 f,νημν +ζ μ(xμ) . (7.19)

We can now input the purely 4D perturbation into the Lichnerowicz operator, and
after some algebra, the perturbation equations reduce to

a−2
[

a2
(

a−2hλλ

)′
]′

= −16πG5

3
δ (z)a−2T λ

λ , (7.20)

[
a−2

(
hλλ ,μ −hλμ,λ

)]′
= 0, (7.21)

a−2∂ 2hμν −a−2
[
a4 (

a−2hμν
)′]′ − 2a−2h̄λ(μ,ν)λ ,

−aa′ημν
(

a−2hλλ

)′
= −16πG5δ (z)

[
Tμν − 1

3T λ
λ ημν

]
, (7.22)

where brane indices are raised and lowered with ημν , and we allow for a matter
perturbation confined to the brane:

Tμν =
6k

8πG5
+Tμν . (7.23)

It is easy to see that the RS gauge is only consistent for vacuum perturbations
and that the zero modes have the behaviour ∼ a2 (the graviton [11, 46, 47]) and
∼a2 ∫

a−4 (the radion [48]).
A complete set of solutions to the free equations is readily found to be hμν ∝

eip·xum(z) with

um(z) =
√

m
2k

J1(m
k )N2(mζ )−N1(m

k )J2(mζ )√
J1(m

k )2 +N1(m
k )2

, (7.24)

where ζ = ekz/k, from which we can construct the Green’s function:

GR(x,x′) = −
∫

d4 p
(2π)4 eip·(x−x′)

[
ka2(z)a2(z′)

p2 − (ω+ iε)2 +
∫ ∞

0
dm

um(z)um(z′)
m2 +p2 − (ω+ iε)2

]
.

(7.25)

This has the structure of a zero mode (the part proportional to a2), and a con-
tinuum of KK states. This is seen more clearly by looking at the restriction to a
perturbation in the brane induced by a particle on the brane, for which
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GR(x,0,x′,0) = kD0(x− x′)+
∫ ∞

0
dm um(0)2Dm(x− x′) . (7.26)

However, we have to remember that the RS gauge is only consistent in the absence
of sources; in the presence of sources we have to fix the trace of the perturbation
to satisfy the Lichnerowicz equation. Strictly speaking, we take the general metric
perturbation, hμν , and decompose it into its irreducible components with respect to
the 4D Lorentz group (see [49]). This allows for a tensor (TTF) mode, a vector, and
two scalars in general:

hμν = hTTμν +Aν ,μ +Aμ,ν +φ,μν −
1
4
ημν∂ 2φ +

h
4
ημν . (7.27)

On shell, it can be shown that this reduces (up to purely 4D gauge transformations)
to the following expression:

hμν = hTTμν −
1
k

f,μν +2ka2 fημν , (7.28)

which physically corresponds to the TTF 4D tensor hTT, and a scalar, f (xμ), which
can be interpreted as a bending of the brane with respect to an observer at infinity
[50] (see Fig. 7.2a). This brane bending term couples to the trace of the energy
momentum perturbation on the brane via (7.20), which implies a 4D equation for f :

∂ 2 f =
8πG5T

λ
λ

6
⇒ f = 8πG5

∫
D0(x− x′)

T λ
λ (x′)

6
. (7.29)

Solving (7.22), and pulling all this information together, we can now write the
solution on the brane:

hμν = −16πG5

∫
GR(x,0;x′,0)[Tμν − 1

3T ημν ]+2kημν
∫

D0(x− x′)
8πG5T

λ
λ

6
.

(7.30)

At mid-to-long-range scales on the brane, the zero mode dominates the integral and
so we get

hμν = −16πG5k
∫

D0(x− x′)[Tμν − 1
2T ημν ] . (7.31)

Thus, if we identify GN = G5k as the 4D Newton constant, we have precisely 4D
perturbative Einstein gravity with the correct tensor structure.

The effect of the massive KK modes on the Newtonian potential is also easily
extracted using asymptotics of Bessel functions:

um(0) =
√

m
2k

J1
(

m
k

)
N2

(
m
k

)
− J2

(
m
k

)
N1

(
m
k

)
[
J2

1

(
m
k

)
+N2

1

(
m
k

)]1/2
∼ −

√
m
2k

m/k � 1 . (7.32)

To see how these feed into corrections to Einstein gravity, consider the effect of a
point mass source T00 ∼ Mδ (z)δ (3)(r):
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Fig. 7.2 An illustration of
the effects of RS gravity.
On the left, the brane bends
in response to matter, and
on the right, a figurative
representation of the lines of
force for RS gravity

M
f

hμν = −16πGN

∫ (
D0(x− x′)[Tμν − 1

2T ημν ]

+
∫ ∞

0

mdm
2k2 Dm(x− x′)[Tμν − 1

3T ημν ]
)

, (7.33)

giving

htt = −2GNM
r

(
1+

2
3k2r2

)
, hi j = −2GNM

r

(
1+

1
3k2r2

)
δi j . (7.34)

Note this is in homogeneous gauge; transforming to the area gauge (where the area
of 2-spheres is 4πr2) we have to leading order in GNM

ds2 =
(

1− 2GNM
r̂

− 4GNM
3k2r̂3

)
dt2 − dr̂2(

1− 2GN M
r̂ − 2GN M

k2 r̂3

) − r̂2dΩ 2 . (7.35)

We can visualize RS gravity as lines of force spreading out from the brane, but being
“pushed back” by the negative bulk curvature. At small scales, the lines of force
leave the brane and gravity is 5D and weaker. At larger scales, the bulk curvature
bends the lines of force back onto the brane, and so gravity returns to being a 4D
force law (see Fig. 7.2b).

This is weak gravity, but what about strong gravity, such as black holes or
cosmology?
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7.3.2 Cosmology

For a cosmological brane, we have to ask whether there are surfaces of lower di-
mensionality which have the interpretation of an expanding universe. Recall that in
standard cosmology, homogeneity and isotropy give a simple model of the universe
in which everything depends on a single scale factor a(t)k:

ds2 = dt2 −a2(t)dx2
κ (7.36)

where the spatial metric dx2
κ is a surface of constant curvature κ = 0,±1, and in

which a(t) satisfies a simple first-order Friedman equation:

(
ȧ
a

)2

+
κ
a2 =

8πGN

3
ρ (7.37)

where ρ is the energy density of the universe, typically modelled by a perfect fluid
with some equation of state p = wρ .

For the cosmological braneworld, homogeneity and isotropy will still imply a
constant curvature spatial universe, but now our “scale factor” must depend not only
on time but on the distance into the bulk. The remaining part of the metric in the
t,z directions can be made conformally flat (any 2D metric can always be written
in a conformally flat form) and so we may write the overall geometry as [51]

ds2 = e2ν(t,z)(B(t,z))−2/3(dt2 −dz2)−B2/3
[

dχ2

1−κχ2 +χ2dΩ 2
II

]
. (7.38)

The rationale for this specific way of writing the scale factor becomes apparent once
the Einstein equations are analysed. Here, z is representing the bulk coordinate away
from the brane, though it no longer corresponds to proper distance. The brane sits at
z= 0, which can always be chosen to be the location of the brane. (The conformal
transformation t′ ±z′ = t±z± ζ (t±z) maintains the form of the metric while
taking an arbitrary wall trajectory z′ = ζ (t′) to z= 0.)

In addition, the presence of a cosmological fluid will alter the usual brane relation
E = T by adding additional energy, ρ , to E and subtracting pressure, p, from the
tension T . Thus our brane energy momentum will now be

T a
b = δ (z)diag (E +ρ, E − p, E − p, E − p,0) . (7.39)

If we now compute the bulk Einstein equations, the reason for writing the
metric in the slightly unusual form (7.38) becomes apparent. Using the lightcone
coordinates

x− =
t−z

2
, x+ =

t+z

2
. (7.40)

the bulk equations are
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B,+− =
(

2ΛB1/3 −6κB−1/3
)

e2ν , (7.41)

ν,+− =
(
Λ
3

B−2/3 +κB−4/3
)

e2ν , (7.42)

B,± [ln(B,±)],± = 2ν,±B,± . (7.43)

This system is completely integrable, giving, after a change of coordinates, the bulk
solution1

ds2 =
(
κ− Λ

6
r2 − μ

r2

)
dt2 −

(
κ− Λ

6
r2 − μ

r2

)−1

dr2 − r2dx2
κ (7.44)

which is clearly a black hole solution. The parameter μ is related to the mass of the
bulk black hole via [54]

M = 3πμ/8G5 . (7.45)

The change of coordinates results in a shift of the brane to

r = R(τ), (7.46)

where τ is the proper time of a brane observer.
Thus our cosmological brane is a slice of a black hole spacetime [33, 51, 55–61].

We can think of our brane as moving in the bulk, and as it moves through a warped
background, the brane will experience contraction or expansion as the surrounding
geometry contracts or expands. The Israel equations give the dynamical equations
for the brane trajectory R, which can be massaged into the familiar Friedman form:

(
Ṙ
R

)2

+
κ
R2 =

[8πG5(E +ρ)]2 +Λ
36

+
μ
R4 (7.47)

(see [51] for details). For a critical RS brane, which has E = 6k/8πG5, Λ = −6k2,
this gives (

Ṙ
R

)2

+
κ
R2 =

8πGNρ
3

+
(8πG5ρ)2

36
+

μ
R4 . (7.48)

As might have been expected from the calculation of linearized gravity, the dom-
inant form of this equation for small ρ is indeed the standard Friedman equation.
The effect of the brane shows up in the ρ2 corrections, dubbed the non-conventional
cosmology of the brane [58–61]. But most interesting from the point of view of
these lectures is the presence of the last term, which is directly a result of the bulk
black hole. This term, proportional to the mass parameter, takes the same functional
form as a radiation source on the brane. Of course, the presence of the bulk black
hole induces a periodicity in time in the Euclidean section, or, a finite temperature
for any quantum field theory in the spacetime. Computing the background Hawking
temperature of the black hole gives

1 Although note that there is a special case B = 1, 2Λ = 6κ , which is a near horizon limit of a black
hole metric and a critical point of the Einstein equations [52, 53].



270 R. Gregory

TH =

√
κ2 +4μk2

2πrh
, (7.49)

where rh is the location of the event horizon given by

k2r2
h =

1
2

[√
1+4μk2 −1

]
. (7.50)

For the case of the RS model, for which κ = 0, this gives

μ
R4 =

(πTH)4

k6R4 =
(πT )4

k2 , (7.51)

where T is now the comoving temperature on the brane. That this is suggestive of
the Stefan law, ρ ∝ T 4, is not a coincidence and is a theme we will pursue in the
next section.

7.4 Black Holes and Holography

Both the linearized gravity result for an isolated mass and the brane cosmology
metric suggest a somewhat deeper importance to braneworlds and black holes. The
corrections to the Newtonian potential (7.33) in fact coincide precisely with the 1-
loop corrections to the graviton propagator [36, 37, 62], and the cosmological dark
radiation term in the brane Friedman equation corresponds (up to a factor) to the
energy density of a conformal field theory at the Hawking temperature of the black
hole [33]. These clues, and analogies with lower dimensional branes, have led to
the black hole holographic conjecture of Emparan et al. [63] which states, loosely
speaking, that if we have a classical solution to the RS model then we can interpret
the braneworld as a quantum-corrected 4D spacetime. In the case of the black hole,
this would mean that we have a quantum-corrected black hole.

The reason for putting forward such a conjecture is based on the adS/CFT con-
jecture [13, 14] of string theory. In string theory, D-branes arise as the physical man-
ifestation of open-string Dirichlet boundary conditions. These D-branes are tangible
objects carrying mass, Ramond–Ramond charge, and with worldvolume gauge the-
ories to support the string endpoints [4, 5]. Furthermore, the supergravity solutions
which correspond to the mass and charge of a particular type of D-brane must de-
scribe the same objects. The metric for a stack of N coincident D3-branes is given by

ds2 =
(

1+
4πgNα ′2

r4

)−1/2

dx2
|| −

(
1+

4πgNα ′2

r4

)1/2

dx2
⊥, (7.52)

where g is the string coupling and α ′ = l2
s the string length scale. dx2

|| and dx2
⊥ are

the cartesian metrics of the spaces, respectively, parallel and perpendicular to the
brane and r is the radial coordinate in this latter space. We trust this supergravity
solution in regions where the spacetime curvature is small, i.e. L2 � α ′, where L



7 Braneworld Black Holes 271

is the ambient spacetime curvature. Obviously, this will be true at large r in (7.52);
however, at large r the effect of the branes is negligible. In order to trust the super-
gravity solution in regions where it is nontrivial, i.e. where r ∼ (4πgNα ′2)1/4, we
require gN � 1. In this case, we can effectively ignore the “1” in the prefactor, and
(7.52) is approximately

ds2 = α ′
[

(r/α ′)2
√

4πgN
dx2

|| −
√

4πgN
r2 dr2 −

√
4πgNdΩ 2

V

]
. (7.53)

This metric is adS5 ×S5. Thus, if we integrate over the S5, and identify

L = k−1 = (4πgN)1/4ls (7.54)

as the adS length scale, we can directly relate the near horizon régime of a stack of
D3-branes with the RS model. Furthermore, the 5D Newton constant will be given
in terms of the 10D Newton constant and the volume of the 5-sphere by

h̄G5 =
h̄G10

V5
=

g2α ′4(2π)7

16π4L5 =
πL3

2N2 . (7.55)

Thus we can relate finite and classical quantities in our 5D Einstein theory, such as
the adS curvature scale, L, and the gravitational constant, G5, to quantum mechani-
cal quantities such as h̄, and N, the number of D-branes. Indeed, we can potentially
take a classical limit, h̄ → 0, keeping our adS scale finite by simply simultaneously
taking N →∞. On the other hand, this stack of N D3-branes has a low-energy U(N)
worldvolume conformal field theory, and taking N → ∞ corresponds to the t’Hooft
limit of the gauge theory. Since we have set h̄ → 0, on the string side α ′ → 0 ensures
that only this low-energy sector remains. This is the essence of the adS/CFT corre-
spondence that certain strongly coupled conformal field theories are dual to string
theory on certain anti-de Sitter spacetimes.

What does this mean for the RS model? As Gubser first noted [33], brane cos-
mology with a black hole in the bulk has the appearance of a radiation cosmology
from the brane perspective. From the Hawking temperature of the bulk black hole,
the dark radiation term has the form (7.51), (πT )4L2. On the other hand, calculating
the energy of a CFT at finite temperature (at weak coupling) gives

ρ = 2π2cT 4, (7.56)

where c = h̄(N2 −1)/4 is the coefficient for the trace anomaly in super Yang–Mills
theory. Thus as N → ∞,

8πGNρCFT

3
=

4
3

GNL
2G5

(πT )4L2 . (7.57)

Clearly, if we identify GN = 2G5/L, then we see that the classical bulk black hole
has the effect on the brane of a thermal CFT at the comoving Hawking temperature
of the black hole up to the conventional strong/weak coupling factor of 4/3. Note
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that the factor of 2 in the definition of the 4D Newton’s constant is due to the fact that
in adS/CFT we have a bulk on only one side of the boundary, whereas in physical
braneworlds, we have bulk on each side of the brane. This effectively halves the
brane tension, which is the key factor in the relation between the brane and bulk
gravitational constants.

This rather physical picture of the interplay between the RS model and the
adS/CFT conjecture is further fleshed out by the work of Duff and Liu [36, 37],
who note that the linearized corrections to the graviton propagator, calculated in
(7.34), precisely agree with the 1-loop linearized corrections to flat space for a cen-
tral mass [62]. These results are extremely suggestive that a fully nonlinear classical
brane/bulk black hole solution would, from the brane point of view, correspond to
a quantum-corrected black hole. Indeed, it was this perspective that first led Tanaka
to conjecture that a braneworld black hole must therefore be time dependent, to
agree with the thermal Hawking radiation from a Schwarzschild black hole [64].
Emparan, Fabbri, and Kaloper then pointed out that the issue of time dependence is
linked to the choice of quantum vacuum and gave a comprehensive analysis of 3D
brane black holes, together with options for the RS black hole.

Roughly, the picture is as follows. If we consider a closed universe with a bulk
black hole, then the brane is precisely equidistant from the bulk black hole, and the
radiation on the brane is precisely thermal. However, we could imagine displacing
the brane slightly, which would introduce an inhomogeneity in the dark radiation on
the brane. Moving one side of the brane even closer to the bulk black hole would
then increase this distortion and would (hopefully!) correspond to a collapsing shell
of warm radiation on the brane. This could then form its own black hole, which from
the bulk perspective would correspond to the brane actually touching the black hole.
The brane would remain glued to the black hole for a while, but eventually would
separate, the process corresponding to black hole radiation (see Fig. 7.3).

BULK
BRANE

Fig. 7.3 A cartoon of the time-dependent radiating black hole from both the brane and the bulk
perspectives. A bulk black hole moves towards the brane, touches, then eventually recoils back into
the bulk. From the brane perspective this corresponds to anisotropic radiation steadily accreting
around a central point which finally forms a black hole, persists for a while radiating, then finally
evaporates
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On the other hand, it is always possible that there does exist a static black hole
solution, which asymptotically has the form of (7.35). Such a black hole would,
according to EFK, necessarily have a singular horizon. This classical solution would
be a 5D version of the C-metric [65], which is a solution representing two black
holes accelerating away from each other. The black holes are being accelerated by
two cosmic strings, one for each hole, which pull the black hole out to infinity. The
exact purely gravitational solution has a conical deficit which can be smoothed out
by a U(1) vortex [66–69], rendering the spacetime nonsingular apart from the central
singularities of the black holes. It is then straightforward to slice this spacetime
with a brane [70–72], thus producing a 3D braneworld with a black hole. A positive
tension brane retains the bulk without the cosmic string; hence these braneworld
black holes do not need any further regularization. It may seem strange that a static
black hole on the brane is accelerating, but it is no more unusual than the fact that
we are in an accelerating frame on the surface of the Earth. Geodesics in the RS
bulk actually curve away from the brane:

2kz(t) ∼ ln(1+ k2t2). (7.58)

Thus any observer glued to the brane is necessarily in an accelerating frame.
Moving up one dimension however changes the picture completely. The math-

ematics of the pure gravitational equations is now no longer amenable to analytic
study, and no known C-metric exists. Even higher dimensional “cosmic strings”
now have codimension three and are strongly gravitating [73, 74] with potentially
singular geometries. We will now look at this problem in more detail.

7.5 Black Hole Metric

The first attempt to find a black hole on an RS brane was that of Chamblin, Hawking,
and Reall (CHR) [75], in which they replaced the Minkowski metric in (7.1) by
the Schwarzschild metric (indeed, we can replace η in (7.1) by any 4D Ricci-flat
metric):

ds2 = a2(z)

[(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ 2
II

]
−dz2 . (7.59)

This is the only known exact solution looking like a black hole from the brane
point of view. Unfortunately, it does not correspond to what we would expect for
a brane black hole. If matter is confined to our brane, we would expect that any
gravitational effect is localized near the brane. For a collapsed star, we would also
intuitively expect that while the horizon might well extend out into the bulk, it too
should be localized near the brane, and the singularity should not extend out into
the bulk. The problem with the CHR black string, (7.59), is that it extends all the
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way out to the adS horizon; moreover, at this surface the black hole horizon actually
becomes singular!

There is however another, more serious, problem with the CHR black string, and
that is that it suffers from a classical instability [76]. Black string instabilities were
first discovered in vacuum, [77, 78], for the Kaluza–Klein black string:

ds2 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ 2
II −dz2 . (7.60)

This has a cylindrical event horizon, with entropy 4πGNM2. On the other hand,
assuming a KK compactification scale of LKK , a 5D black hole of the same mass as
the string (7.60) has an entropy of 8

√
2πLKKGN M3/2/3

√
3. Thus, for small enough

masses relative to the compactification scale (GNM ≤ 2LKK/27π) a standard 5D
black hole has higher entropy than the string, and thus the string should be either
perturbatively or nonperturbatively unstable.

The existence of the instability can be confirmed by solving the Lichnerowicz
equation:

∇2hab +2Ra b
c dhcd = 0 . (7.61)

There is a subtlety involving the initial data surface, which must be taken to touch
the future event horizon (the black hole generically forms from gravitational col-
lapse); however, there is an unstable s-mode with the form

hab = eiμzeΩ t

⎡
⎢⎢⎢⎢⎣

Htt(h) h(r) 0 0 0
h Hrr(h) 0 0 0
0 0 K(h) 0 0
0 0 0 K/sin2 θ 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (7.62)

(Note: this is written in Schwarzschild coordinates for convenience, but to check h
is small, use Kruskals.) This mode is physical, since any gauge degree of freedom
would have to be purely 4D, thus satisfying a massless 4D Lichnerowicz equation,
whereas this mode satisfies a massive 4D Lichnerowicz equation. The effect of the
instability is to cause the horizon to ripple.

For the CHR black string, the presence of the bulk cosmological constant might
be supposed to change the technicalities of this analysis; however, the crucial feature
of the black string instability is that it is a purely 4D (massive) tensor TTF mode –
i.e. it satisfies the RS gauge! If we work out the perturbation equations for the CHR
black string background they have the particularly simple form:

(
(∇(4))2hμν +2R(4)

μλνρhλρ
)
−

[
a4 (

a−2hμν
)′]′

= 0 . (7.63)

This means we can simply take the standard KK instability and substitute the ap-
propriate massive z-dependent eigenfunction: hμν = χμνum(z), so that χμν satisfies
the equation of motion:
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Fig. 7.4 The CHR black string horizon after the instability has set in. The brane is located at the
central cusp

(
Δ (4)

L +m2
)
χμν = 0, (7.64)

where Δ (4)
L is the 4D Schwarzschild Lichnerowicz operator. In other words, we

have the same 4D form for the instability, but a different z-dependence appropri-
ate to the RS background. Figure 7.4 shows the effect of the instability on the black
string horizon, which now ripples with ever-increasing frequency towards the adS
horizon.

It is tempting to link the existence of this instability to the thermodynamic insta-
bility of black holes to Hawking evaporation; however, the timescales have rather
different behaviour. Not only that, but the instability is a dynamical process, and the
amplitude of the instability, A , is essentially arbitrary. The thermal radiation from
a black hole, however, is a quantum process with a well-defined amplitude. To see
the difference, note that for a black hole emitting radiation into O(N2) states

dM
dt

∝
h̄N2

(GNM)2 =
L3

2G5(GNM)2 =
1

GN

(
L

GNM

)2

. (7.65)

For the unstable black string, the mass function on the future horizon is given by an
integral over the KK modes [79]:

M(v) = M0 +
∫ mmax

0

dm
k

M0(2GNM0Ω −1/2)eΩvum(0), (7.66)
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where v is the ingoing Eddington Finkelstein coordinate and Ω the half-life of the
instability at m, which is well approximated by Ω(m) = m2/M−m/2 (see the plots
of Ω vs. μ in [77, 78]). Given this approximation, we can compare the rate of mass
loss of the black hole to that by evaporation, by simply taking dM/dv|v=0:

dM
dv

=
∫ 1

2GN M

0

dm
2k

√
m
2k

(2m2−mM− 1
2 )(2m2−mM)∝ 1

GN

(
L

GN M

)3/2
+ · · · (7.67)

which clearly has a different dependence on L and M
It seems therefore that the holographic principle is not so straightforward to ei-

ther confirm or implement and reinforces the need for an exact solution. A natural
method to try would be to take a similar approach as in cosmology: use the sym-
metries of the spacetime and construct the most general metric. Clearly we have
spherical symmetry around the black hole, but we also have a time translation sym-
metry (assuming a static solution). This introduces an additional degree of freedom
into the system, which can be parametrized as follows [80]:

ds2 = e2φ/
√

3dt2 − e−φ/
√

3
{
α−1/2e2χ(dr2 +dz2)+αdΩ 2

II

}
. (7.68)

The equations of motion then take the form

Δα = −2Λα1/2e2χ−φ/
√

3 +2α1/2e2χ , (7.69)

Δφ +∇φ · ∇α
α

= −2Λα−1/2e2χ−φ/
√

3
√

3
, (7.70)

Δχ+
1
4
(∇φ)2 = −Λα

−1/2e2χ−φ/
√

3

2
− α−1/2e2χ

2
, (7.71)

∂ 2
±α
α

+ 1
2 (∂±φ)2 −2∂±χ

∂±α
α

= 0, (7.72)

where 2∂± = ∂/∂ (r± iz). This is clearly a fairly involved elliptic system, but unlike
the cosmological equations, it is not integrable. What rendered the cosmological
equations integrable was (7.43), of which (7.72) is the counterpart in this set of
equations. The presence of the (∂±φ)2 in (7.72) means that we can no longer use
this to integrate up the other equations. It is possible to classify the separable an-
alytic solutions, [80]; however, none of these have the form expected of a brane
black hole metric. The system can of course be integrated numerically; however, the
typical method appropriate for elliptic systems (relaxation) is apparently extremely
sensitive and has difficulty dealing with radically different scales for the black hole
mass and the adS bulk length scales. The consensus seems to be that nonsingular
solutions representing static braneworld black holes exist for horizon radii of up to
a few adS lengths [81] (see also [82–84]). However, there is no convincing demon-
stration of the existence of nonsingular static astrophysical brane black holes.
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7.6 Approximate Methods and Solutions for Brane Black Holes

Since we lack an exact solution, it is natural to attempt approximate methods to
gain understanding of the system. There are two main approaches: One is to confine
analysis to the brane and to try to find a self-consistent 4D solution. This has the ad-
vantage of only dealing with one variable (the radius), thereby reducing the problem
to a set of ODEs. However, it has the clear disadvantage that it does not take into ac-
count the bulk spacetime, and therefore will not be closed as a system of equations
– inevitably there will be some guesswork or approximation involved with terms
that encode the bulk behaviour. The other main approach is to take a known bulk,
such as the Schwarzschild–adS solution, and to explore what possible branes can
exist. Within this method, the branes can be taken either as probe branes, i.e. branes
which do not gravitationally backreact on the bulk black hole, or as fully gravitating
solutions to the Israel equations, which will therefore have restricted trajectories.

Other approaches not reviewed here include allowing for more general bulk mat-
ter [85, 86], which moves beyond the RS model being considered here. Also, the
extension of brane solutions into the bulk has been explored perturbatively [87],
and numerically [88].

7.6.1 Brane Approach

The brane approach is based on the formalism of Shiromizu, Maeda, and Sasaki
(SMS) [89], who showed how to project the 5D Einstein–Israel equations down to
a 4D brane system. The SMS method uses the fact that the RS braneworld has Z2-
symmetry and writes (7.6) at z = 0+ using the bulk Einstein equations Rab = 4k2gab

to replace the 5D Ricci tensor and the Israel equations (7.9) to replace the extrinsic
curvature:

Kab(0+) = −kγab +4πG5(Tab − 1
3T γab) (7.73)

using (7.23) to define Tab. The only term that cannot be substituted by known quan-
tities is the contraction of the Riemann tensor. Instead, SMS define an (unknown)
Weyl term:

Eab = Cacbdncnd = Racbdncnd − R
12
γab +

1
3
(Rcdγc

aγd
b − γabRnn) = Racbdncnd + k2γab,

(7.74)
which is tracefree.

Using these substitutions, one arrives at a brane “Einstein” equation:

(4)Rab − 1
2

(4)Rγab = 8πGNTab +
(8πGN)2

24k2 Qab +Eab, (7.75)

where the tensor Qab is quadratic in Tab:

Qab = 6TacT
c

b −2T Tab −3T 2
cdγab +T 2γab . (7.76)
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Clearly these equations have an attractive simplicity, particularly if solving for an
empty brane; however, it is important to note that the Weyl term (7.74) is a complete
unknown and depends on the details of the bulk solution.

For the case of the black hole, however, one can use a method similar to that in
brane cosmology [90] to decompose the Weyl term into two independent pieces:

Eμν = U
(
uμuν − 1

3 hμν
)
+Π

(
rμrν + 1

3 hμν
)
, (7.77)

where uμ is a unit time vector, rμ a unit radial vector, and hμν = γμν − uμuν is
here the purely spatial part of the braneworld metric. This renders the vacuum
brane equations (7.75) rather similar to the Einstein equations with a gravitating
perfect fluid: the Tolman Oppenheimer Volkoff (TOV) equations. Of course, U
and Π are complete unknowns and do not necessarily satisfy any conventional en-
ergy conditions; however, this notional similarity is very useful in understanding
the physical system and in fact allows us to derive useful insight into braneworlds
stars [91, 92], such as the fact that the exterior of a collapsing star is not, in fact,
static and Schwarzschild.

The vacuum equations have been solved in many special cases, for example,
Dadhich et al. [93] showed that there was an exact solution with Π = −2U having
the form of a (zero mass) Reissner–Nordstrom metric on the brane. Other analytic
solutions can be found by assuming a given form for the time or radial part of the
metric [94–97]. However, a useful approach to solving these equations is to take
an arbitrary spherically symmetric metric, in which we allow for a general area
functional for the 2-spheres, then apply an equation of state between U and Π [98]:

Π = wU . (7.78)

The Einstein equations reduce to a 2D dynamical system from which it is relatively
easy to extract general information about the system. Obviously, we do not expect
that this unknown tensor will have such a simple equation of state as (7.78); how-
ever, just as in cosmology we approximate the energy momentum of the universe
by various eras with fixed equations of state, it seems reasonable to approximate the
near and far horizon behaviours by a fixed w.

At large r, we might expect the linearized solution (7.35) on the brane, which
corresponds to w =−5/4. Closer to the horizon, however, it is possible that w could
become very large and negative. There is in fact an exact solution for w→−∞which
displays features which are generic to solutions with w < −2 (the tidal Reissner–
Nordstrom solution):

ds2 =

[
(1+ ε)

√
1− 2GM

R
− ε

]2

dt2 − dR2

1− 2GM
R

−R2dΩ 2
II . (7.79)

This solution has a null singularity at r = r1, the relic of an horizon, but also note
that it actually has a “wormhole”, i.e. the area of 2-spheres surrounding the origin
actually has a minimum value outside the horizon (for r0 > r1) and is increasing
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Fig. 7.5 A sketch of the
constant time surfaces of the
metric (7.79)

as the horizon is approached. A sketch of a constant time surface is shown in
Fig. 7.5. It is tempting to conjecture that in fact any such static solution is singu-
lar, but while suggestive, these general arguments are not a proof, and investigations
to determine the nature of the braneworld black hole horizon have been inconclusive
[99, 100].

7.6.2 Bulk Approach

The other main approach which can yield insight into brane solutions is to simplify
the problem by taking a known bulk and exploring the possibilities for a brane so-
lution with internal spherical symmetry. With this approach the bulk is now known
(although rather rigidly fixed) and therefore the system has no “unknowns”. The
first work in this area took the brane to be non-gravitating – a probe brane – and
determined the general trajectories and dynamics of the brane [101–104]. Although
this work is not gravitationally self-consistent, it is important in particular because
it gives insight into highly time-dependent and complicated processes and is to date
the only available study of the process of a black hole leaving the brane. This has
relevance for LHC black holes, as the main alternative to decay via Hawking evap-
oration is black hole recoil into the bulk, although the holographic point of view
would argue these are indistinguishable [105].

In these lectures, we are mostly concerned with the gravitational properties of
brane black holes and so want to keep the brane at finite tension and have a con-
sistent backreaction. This is a far more complicated and restrictive problem; how-
ever it is possible to obtain a linearized metric for a black hole that has left the
brane [106]. This has the form of a shock wave of spherically symmetric outgoing
radiation on the brane. For a full nonlinear analysis, we have to look for spheri-
cally symmetric branes embedded in a 5D Schwarzschild–adS spacetime using the
Israel formalism. This leads to some interesting solutions, although the price to be
paid is that the brane is no longer empty: we require energy momentum on the
brane to source the gravitational field. This presentation is based on [107], but see
also [108, 109].

The basic idea is to use the Israel equations with a bulk metric of the general
Schwarzschild–adS form. The brane is spherically symmetric, with additional mat-
ter content corresponding to a homogeneous and isotropic fluid, in other words a
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braneworld TOV system. Note however that here there is an actual energy momen-
tum source on the brane, in addition to the Weyl term (7.74) which is now specified
from the brane embedding in the bulk metric:

ds2 = U(r)dτ2 − 1
U(r)

dr2 − r2(dχ2 + sin2 χ dΩ 2
II
) , (7.80)

For the brane trajectory, consistent with the SO(3) symmetry, we take a general
axisymmetric slice χ(r). Finally, for the energy momentum tensor of the brane we
take a general isotropic fluid source:

Tμν = [E(r)− T(r)] uμuν + T(r)hμν . (7.81)

It turns out to be convenient to write the Israel equations in terms of α = cosχ ,

Urα ′ +α =
8πG5Er

6

√
[r2Uα ′2 +1−α2], (7.82)

r2Uα ′′ +
r2U ′

2
α ′ +2rUα ′ +

r2Uα ′2

1−α2

(
rUα ′ +α

)

=
8πG5Er
6(1−α2)

[
r2Uα ′2 +1−α2]3/2

, (7.83)

together with a conservation equation which determines T .
These equations can be completely integrated in terms of a modified radial vari-

able

r̃ =
∫

dr

r
√

U
(7.84)

giving

cosχ = aer̃ +be−r̃, (7.85)

E(r) =
6

8πG5r
√

1−4ab

[√
U

(
aer̃ −be−r̃)+aer̃ +be−r̃

]
, (7.86)

T(r) =
2
3
E(r)+

U ′

8πG5
√

(1−4ab)U

(
aer̃ −be−r̃) . (7.87)

Finally the induced metric on the brane is

ds2 = Udτ2 − (1−4ab)dr2

U(1−α2)
− r2(1−α2)dΩ 2 . (7.88)

So far, this is a completely general (implicit) exact solution which depends on
an integral of the bulk Newtonian potential U(r). Although this is an exact solution,
the actual properties of the brane depend on the specifics of the relation between r̃
and r. Once this is determined, we have a solution describing a static, spherically
symmetric distribution of an isotropic perfect fluid on the brane, i.e. a solution to the
brane-TOV system, and therefore a candidate for a brane “star”. The extent to which
this is a physically realistic solution will depend on the energy and pressure profiles.
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Note that the profiles E(r) and T(r) represent the full brane energy momentum and
include the background brane tension. The relevant physical energy and pressure
will be defined by

ρ = E − E∞, p = E∞− T , (7.89)

where E∞ is an appropriate background brane energy, which has to be identified on
a case-by-case basis.

For a 5D adS bulk, U(r) = 1+ k2r2, and the brane satisfies

r cosχ(r) = A
(√

U −1
)

+B
(√

U +1
)

, (7.90)

E =
6k2(A−B)

8πG5
√

1−4k2AB
, (7.91)

T(r) = E − 2k2(A+B)2

8πG5

√
(1−4k2AB)U

, (7.92)

where A = a/k and B = b/k in terms of the parameters in (7.85). These brane tra-
jectories are conic sections classified by |A + B|. For |A + B| = k−1, the brane is
a paraboloid with critical RS tension ERS (7.12). For |A + B| > (<)k−1, the brane
is an ellipsoid (hyperboloid) with super- (sub-) critical tension. A = −B is a spe-
cial case, corresponding to a sub-critical Karch–Randall brane and is a straight line.
Figure 7.6 shows sample brane configurations for various values of the integration
parameters A and B.

Notice that the energy density is constant and requires A > B to be positive.
The tension on the other hand is clearly not constant unless A = −B. For the gen-
eral brane we have a gravitating source composed purely of pressure! These branes
clearly do not asymptote exact Randall–Sundrum or Karch–Randall branes. How-
ever, if |kA| and |kB| are large enough, the metric can be flat (or asymptotically
(a)dS) over many orders of magnitude before the effect of the pressure kicks in.

It is also interesting also to look at a pure Schwarzschild bulk, U(r) = 1−μ/r2,
for which

cosχ = r
[
A

(√
U −1

)
+B

(√
U +1

)]
, (7.93)

E(r) =
6

8πG5
√

1+4μAB

[
(B−A)(1+U)+2(B+A)

√
U

]
, (7.94)

T(r) =
2

8πG5
√

1+4μAB

[
(B−A)(3+U)+(B+A)(1+3U)/

√
U

]
, (7.95)

where now A = −b/
√μ and B = a/

√μ in terms of the general solution (7.85).
Note that by construction, these trajectories are strictly only valid outside the event
horizon of the black hole, since the definition of the r̃ coordinate involves a branch
cut there. In contrast to the adS case, E is not constant for these branes. For our
solution to correspond to a brane star or black hole, we require E to be positive, and
to increase towards the centre of the brane.
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Fig. 7.6 A selection of branes
of varying coefficient A, for
the case B = 0,k = 1 in a 5D
anti-de Sitter bulk
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Looking at the large r behaviour of (7.93), we see that the brane can only reach
large r if B = 0, otherwise the brane is either a bubble (enclosing the horizon or not,
depending on A and B) or an arc touching the horizon. In general, the brane touches
the horizon at a tangent, and the pressure diverges; however, for one special case
A = −B, the brane slices through the horizon passing on to the singularity. Some
sample closed trajectories are shown in Fig. 7.7.

The most physically interesting Schwarzschild trajectories are those which tend
to infinity, for which B = 0, see Fig. 7.8. For these branes E∞ = 0, and thus

ρ = E(r) =
−6A
8πG5

(√
U −1

)2
, p = −T = −ρ

3
(
√

U −1)√
U

. (7.96)

For A < 0, these branes have positive energy and pressure, uniformly decreasing
as 1/r4 and 1/r6, respectively. If |A| > 1/

√μ , the brane never touches the horizon
and the pressure remains everywhere finite. Thus these correspond to asymptoti-
cally empty branes with positive mass sources. Plotting the energy and pressure
for the brane shows that this does indeed correspond to a localized matter source,
with the peak energy density dependent on the minimal distance from the horizon
(see Fig. 7.9). The central energy and pressure can be readily calculated from this
minimal radius, rm = μ |A|/2+1/2|A|:
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Fig. 7.7 A selection of branes (solid lines) for the case (a) AB > 0 and (b) AB < 0 in a 5D
Schwarzschild bulk of fixed mass parameter μ = 0.03. The dashed line denotes the corresponding
horizon radius

Fig. 7.8 A selection of branes
for the case AB = 0 in a 5D
Schwarzschild bulk of fixed
mass parameter μ = 0.03. The
case A = 0,B = 1 is shown
together with a set of branes
with B = 0 and variable A.
The dashed line denotes again
the event horizon
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Fig. 7.9 The energy (dark line) and pressure (grey line) of brane stars with a pure Schwarzschild
bulk as a function of the brane radial coordinate r̂. The black hole mass is fixed at μ = 1, and the
distance of closest approach to the horizon increases across the plots

ρc =
24|A|

8πG5(1+μA2)2 , pc =
16|A|

8πG5(μA2 −1)(1+μA2)2 , (7.97)

which shows that the central pressure diverges as μA2 → 1. This is analogous to
the divergence of central pressure in the 4D TOV system, which is indicative of the
existence of a Chandrasekhar limit for the mass of the star.

In these spacetimes, there is no actual black hole in the bulk, since it is the bulk
to the right of the brane that is retained. Rather, it is the combination of the bulk
Weyl curvature and the brane bending which produces the fully coupled gravita-
tional solution. As the brane moves away from the horizon, the brane matter source
spreads out, but the total mass changes very little, and is determined by the bulk
black hole mass. The limit on mass is therefore not a true Chandrasekhar limit, but
more a statement about an upper bound on the concentration of matter. The real rea-
son there is no absolute upper bound is because, unlike the RS system with an adS
bulk, gravity on the braneworld is not localized, nor is it four dimensional. Comput-
ing the induced metric on the brane in fact shows that it is the projection of the 5D
Schwarzschild metric on the brane.

7.6.2.1 Braneworld Stars: A Schwarzschild–adS Bulk

For the true braneworld star, the appropriate bulk is expected to be Sch–adS bulk:
U(r) = 1+ k2r2 − μ

r2 . Here r̃ has an exact analytic expression:

r̃(r) =
1

krh
EllipticF

[
Arcsin

(
r

r−

)
,

r2
−

r2
h

]
, (7.98)

with rh the black hole horizon, (7.50), and r− is defined as

r2
− =

−1−
√

1+4k2μ
2k2 . (7.99)

Since the Randall–Sundrum model is a brane in adS spacetime, we expect that any
consistent brane trajectories in Sch–adS will potentially correspond to brane stars or
black holes. It is worth stressing that these solutions will not just be brane solutions,
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but full brane and bulk solutions, since the full Israel equations for the brane have
been solved in a known bulk background.

From (7.86) the background brane tension is defined as

E∞ =
6k(a−b)

8πG5
√

1−4ab
. (7.100)

For large enough r, the geometry is dominated by the cosmological constant, there-
fore the pure adS solutions will be good approximations to any trajectories for large
r. Also, if μk2 � 1, i.e. if the black hole is much smaller than the adS scale, we
expect that in the vicinity of the horizon the Schwarzschild solutions will be good
approximations for the brane; therefore for small-mass black holes, we might expect
brane trajectories to be well approximated by some combination of Schwarzschild
and adS branes. Because the r̃-coordinate has been zeroed at infinity (for easy com-
parison with the pure adS limit) the range of r̃ in Sch–adS is finite and decreases
sharply with increasing μ . This suggests that trajectories in large-mass Sch–adS
black hole spacetimes are more finely tuned, and possibly more restricted than in
small-mass black hole spacetimes.

Like adS spacetime, the Sch–adS trajectories can be classified according to
whether they asymptote the adS boundary at nonzero χ , at χ = 0, or do not reach
the boundary at all, i.e. are closed bubbles. These correspond to sub-critical, critical,
or super-critical branes (a+b < 1, a+b = 1, and a+b > 1), respectively. A sample
of brane trajectories is shown in Fig. 7.10.

The super-critical branes are qualitatively similar to the pure Schwarzschild case;
however, it is interesting to note that in each case there exists a purely empty spher-
ical brane, equidistant from the horizon. This corresponds to the Einstein static uni-
verse [52], which from the brane perspective is a closed universe stabilized by a
combination of the cosmological constant (the brane is super-critical) and the CFT
dark radiation term. Using the holographic intuition, we might expect that by dis-
placing this universe slightly we could mock up the start of gravitational collapse;
however, a quick computation shows that displacing the brane relative to the black
hole slightly sets up an energy deficit on the part of the brane closer to the black
hole!

In the case of critical branes, a + b = 1, which means that the brane trajecto-
ries asymptote the adS boundary at exactly χ = 0. The branes are thus open and
may or may not touch the black hole horizon depending on the exact values of the
parameters a and b. If

a−b < | tanh r̃+/2| , (7.101)

the trajectory remains away from the horizon, otherwise it will touch the horizon
and have a pressure singularity. A sample of critical trajectories in a Sch–adS back-
ground is shown in Fig. 7.11(left plot).

For branes that avoid the horizon the energy density is positive, peaking at the
centre, and dropping rapidly to the background value, undershooting it very slightly
to form an underdense region at very large r. The pressure also reaches its maxi-
mum value at the centre, but is uniformly decreasing with r, at a much slower rate,
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Fig. 7.10 A mixture of
brane trajectories in a 5D
Schwarzschild-anti-de Sitter
background of fixed parame-
ters k = 1 and μ = 0.03. Note
how these are deformed from
those of Fig. 7.6 by the black
hole horizon
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consistent with the pressure excess observed for the pure adS branes. Apart from
this pressure excess, the other main difference with pure Schwarzschild trajectories
is that the brane matter can no longer universally satisfy the dominant energy condi-
tion (DEC) (ρ ≥ |p|). In pure Schwarzschild, the DEC is satisfied except for branes
which skirt extremely close to the horizon, where the local Weyl curvature causes
the pressure to diverge. This phenomenon is also observed for the Sch–adS branes
skimming close to the horizon; however, as we increase b the central energy dom-
inates the pressure for only a finite range of b before once again dropping below
the pressure. This is because the further we move away from the horizon the adS
curvature becomes more important, and for pure adS branes, the effect of the adS
curvature is to induce a pressure excess. In Fig. 7.11(right plots), the energy density
and pressure of the matter on the brane are shown for a sequence of critical branes
in a Sch–adS background displaced by an increasing distance from the horizon.

Sub-critical branes are largely similar to critical branes, and correspond to open
trajectories that asymptote the adS boundary, although at nonzero χ in this case.
The same bound as before, i.e. whether |cosχ| � |aer̃h +be−r̃h | ≤ 1, will determine
whether the brane terminates on the event horizon or remains on the RHS of it. The
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Fig. 7.11 (a) A sample of critical brane trajectories with a + b = 1 in a 5D Schwarzschild-anti-
de Sitter background of fixed parameters k = 1 and μ = 0.03. The dashed line denotes again the
horizon. (b) A set of plots of the brane energy (black line) and pressure (grey line) for a sequence
of critical branes moving away from the horizon

energy density and pressure profiles in this case are again similar to the ones found
for critical branes. Once again, for a large family of parameters a and b, solutions
with a positive energy excess at the centre of the brane may be easily found.

One special sub-critical trajectory found in the pure adS case was the Karch–
Randall trajectory, a+b = 0. We can extend this to Sch–adS obtaining

cosχ = 2asinh r̃. (7.102)

However, since a > 0 for a positive energy trajectory, this has (cosχ)′ > 0, and
hence the energy density is always increasing with r. Thus, whether or not these tra-
jectories terminate on the horizon, they always correspond to energy deficits on the
brane, and hence negative mass sources from the point of view of a brane observer.

To sum up: we can get static solutions to the brane-TOV equations, and hence
static brane stars. Unfortunately, the restricted form of the bulk leads to unphysical
asymptotic behaviour away from the star in the form of a pressure excess. One
possible way of removing this would be to perturb the bulk slightly at large r to
remove this excess. However, another interesting route to explore is to make the
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trajectory time dependent. In [91, 92] it was argued that the spacetime surrounding
a collapsing brane star would be time dependent even though it was vacuum. In fact,
the RS trajectory is time dependent when written in global adS coordinates, which
of course are the coordinates used for the Schwarzschild–adS metric:√

1+ k2r2 coskt − kr cosχ = e−kz = 1 . (7.103)

The RS wall is oscillatory because the spherical coordinates are the universal cover-
ing space of adS, and so the “wall” is actually an infinite family of walls, each in the
local patch covered by the horospherical coordinates. Since r = 0 is a geodesic of
the spherical adS spacetime, the image of r = 0 in the Randall–Sundrum spacetime,
which is a hyperbola, will be a geodesic in the RS spacetime. Therefore, if we put
a black hole at r = 0, it should look like a particle in the RS spacetime, at least to a
first approximation.

We can generalize the brane trajectory to χ(r, t), compute the corresponding
time-dependent versions of (7.82) and (7.83), and then find the energy momen-
tum source required on the brane. The idea is that a time-dependent brane solution
would describe a black hole forming from the collapse of radiation, and its subse-
quent evaporation; thus it is not clear whether we should expect a pure brane energy
momentum solution; rather, a solution corresponding to the collapse of matter on
the brane is perhaps more physically realistic. The energy momentum of a surface
slicing the Sch–adS spacetime is given by the Israel junction conditions as

Tμν =
2

8πG5

(
Kμν −Khμν

)
+

6k
8πG5

hμν . (7.104)

Clearly, since the trajectory is time dependent, the energy momentum will also be
time dependent; however, since the largest effect of the bulk black hole will be
represented by the t = 0 slice of the braneworld – the point of closest proximity –
we evaluate the energy momentum at t = 0. For a pure RS trajectory, the black hole
causes the energy of the brane to decrease from its critical value, whereas both the
radial tension and azimuthal tension increase; thus the brane matter violates all the
energy conditions! However, this was not unexpected as the RS trajectory was not
modified, and the main feature of the static brane solutions was that they responded
to the bulk black hole by bending. Indeed, in a definitive brane gravity paper [50],
Garriga and Tanaka showed that a crucial part of obtaining 4D Einstein gravity (i.e.
with the correct tensor structure) was what could be interpreted as a brane bending
term. As shown in Sect. 7.3, the effect of matter on the brane is to “shift” the brane
with respect to the acceleration horizon in the bulk (7.29). Clearly then, if a black
hole forms on the brane, we would expect the brane to respond to this matter by
bending.

A shift in the position of the brane corresponds to kz → 1+kδ z, and trying a test
function

cosχ(t,r) � 1
r

(√
1+ r2 cosτ− 1

1− q
rp

)
(7.105)
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Fig. 7.12 A selection of plots of brane energy momentum with brane bending included for a range
of amplitudes and powers of r. The brane energy is shown in units where ERS = 3 and the radial
brane distance in units of L. The solid black line is the energy, the dashed line the radial pressure,
and the gray line the angular pressures

gives the behaviour shown in Fig. 7.12 for a range of p and q. (The brane bending
of 1/|x| corresponds approximately to p = 1/2.)

The brane energy momentum in Fig. 7.12 satisfies the WEC, however, not the
DEC. If the brane is bent instead towards the black hole the brane WEC is violated.
The excess of angular pressure is somewhat similar to the pressure excesses in the
static brane trajectory; however, unlike the static trajectories, here the black hole
actually is in the bulk, hence these are true candidates for black hole recoil into the
bulk.

7.6.2.2 The Interaction of Black Holes and Branes

The main motivating factors for obtaining a time-dependent braneworld black hole
are to gain insight into the backreaction of Hawking radiation on a quantum cor-
rected 4D black hole and to understand the process of black hole recoil from a
braneworld. Presumably the time-dependent process will be some perturbed version
of a time-dependent brane trajectory in 5D Sch–adS spacetime. By allowing the
brane to intersect the bulk black hole horizon, this would appear to describe black
hole formation and evaporation via transport of a bulk black hole to the brane, and
subsequent departure back into the bulk. When the brane hits the black hole, we
might expect some part of it will be captured by the black hole, and will therefore
remain behind the event horizon even when the black hole has left the brane, effec-
tively having been chopped off from the rest of the brane. This feature is seen in
the probe brane calculations of [103, 104], and we expect this to hold in the case of
a fully gravitating brane. In support of this, we can appeal to the case of a cosmic
string interacting with a black hole, where early work indicated that strings would
be captured [110], and via self-intersection would leave some part behind in the
black hole. Gravitational calculations of the fully coupled string/black hole system
show explicitly how this ties in with the thermodynamic process of string capture
and black hole entropy [111, 112].

The basic idea is that once part of a brane has fallen into the event horizon of
a black hole, it can no longer leave. Thus, if the brane has enough kinetic energy
to subsequently pull away from the black hole, the price it must pay is to leave
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BULK BULK

Fig. 7.13 An illustration of brane capture by a black hole. On the left, the black hole is on the brane,
with the brane moving upwards. On the right, the brane has left the black hole by self-intersecting
and cutting off a bubble which falls into the black hole

behind the part that has already been captured, see Fig. 7.13 [103, 104]. However,
RS braneworlds are not probe branes, but are strongly gravitating objects, and there-
fore any dynamic process must also be gravitationally consistent. From the gravi-
tational point of view, when the black hole captures part of the brane and excises
it from the whole, the black hole must increase in mass. This interplay is seen par-
ticularly clearly in the related case of the cosmic string [111, 112], where a cosmic
string piercing a black hole alters the thermodynamic relations between mass, en-
tropy, and temperature. In that case, the (static) results are entirely consistent with
the black hole having captured a length 4GNM of cosmic string, thus increasing its
mass. Just as in the cosmic string case, the capture of the codimension 1 RS brane
by the black hole will turn out to be important in establishing the thermodynamic
viability of the black hole recoil process.

At a first pass, it seems that in fact black hole recoil cannot occur in RS
braneworlds due to a simple entropy argument [113]. In five dimensions, entropy
is proportional to M3/2; hence two black holes of mass M/2 have less entropy than
a single black hole of mass M. However, this argument is both incorrect in the evalu-
ation of the entropy and misses additional contributory factors such as brane bending
and brane capture by the black hole.

To get a better estimate, first note that entropy is proportional to horizon area/
volume, which for Sch–adS is not simply related to the mass, but also to the adS
scale:

S ∝ 2π2r3
h =

π2
√

2k3

(√
1+

32G5Mk2

3π
−1

)3/2

. (7.106)

Note that if GNM ≥ 3.35L, then the entropy of two black holes of mass M/2 will
in fact be greater than that of a single black hole of mass M. Therefore, at least
from this rather approximate entropic argument, black hole recoil would seem to be
problematic only for small black holes. On the other hand, in any dynamic process,
we must take into account the capture of part of the brane by the black hole. Consider
the idealized situation where we have a black hole intersecting the brane along its
equator; in this case, a volume of 4πr3

h/3 of brane has been captured by the black
hole, with a corresponding mass of
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δM =
6k

8πG5

4
3
πr3

h =
1

2
√

2GN

[√
1+4μk2 −1

]3/2
. (7.107)

Adding this mass to the recoiled black holes results in an order of magnitude im-
provement to the bound on M coming from the entropy: for GNM ≥ 0.35L, the
entropy of the recoiled black holes becomes greater than that of the black hole on
the brane.

Finally, however, the most crucial factor is the brane bending. For a mass on the
brane, the brane bends away from the acceleration horizon, and (as we have seen)
the brane tends to bend away from the black hole. This effect will be most marked
for the smallest black holes. We therefore have to correct the entropy argument to
allow for the fact that more than half of the black hole horizon is sticking out into the
bulk (see Fig. 7.13). Ignoring the effect of the captured brane increasing the mass, a
quick calculation shows that the effective mass of the intermediate black hole stuck
on the brane is

Mint =
2πM

2χ0 − sin2χ0
, (7.108)

where χ0 > π/2 is the minimal angle at which the brane touches the event horizon
(assuming the black hole approaches from χ = π). For χ0 > 17π/30, a rather modest
amount of brane bending, the entropy of the recoiled black holes is always greater.

It is important to note that these arguments use the standard entropy of the iso-
lated Sch–adS black hole. In other words, they assume a static solution with an event
horizon at rh. Clearly in the time-dependent spacetime there is some question about
whether this approximation is valid, and entropy arguments should be used with
caution, nonetheless, for small black holes, where we might expect them to be more
reliable, taking into account brane bending and fragmentation shows that it is by no
means entropically preferred for a black hole to stick to the brane.

7.7 Outlook

As we have seen, the problem of braneworld black hole solutions is rather com-
plex, and extremely interesting. The holographic principle puts forward the tanta-
lizing prospect that if we can find a classical brane black hole solution (be it time
dependent or static) then this gives us invaluable information about the quantum-
corrected black hole. The failure to find a classical solution so far can therefore be
reinterpreted as the difficulty of consistently quantizing gravity. Yet the picture is
not quite so clear. There have been several attempts to solve the brane black hole
system numerically [82–84], but as yet no unequivocal result. As we have seen,
finding classical solutions directly is extremely difficult, and the only progress that
has been made is partial, either by ignoring the bulk or by relaxing the restrictions
on the brane.

One interesting possibility, discussed in [114], is that the holographic principle
is in fact not applicable to the RS model and that the lack of an exact solution
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is unrelated to any problem of quantum gravity. Fitzpatrick, Randall, and Wiseman
(FRW) suggest that it is not appropriate to use the adS/CFT conjecture, as this refers
to a quantum field theory at strong coupling, and the relation between the classical
bulk solution and the quantum-corrected brane solution requires the relation (7.55)
where the classical effect is related to the full N2 degrees of freedom of the field
theory. Since the field theory is strongly coupled, it is not obvious that we will
indeed have access to all the N2 states in all cases. For example, we do not see
quarks or gluons outside the nucleus, so why should we expect to access the full
range of states far away from a black hole?

Without an exact solution, there is no way of exploring which of these insights,
the holographic picture of EFK discussed in Sect. 7.4, or the gluon analogy of
FRW, is correct. FRW are of the opinion that there does exist a nonsingular, static
braneworld black hole solution and proposed the CHR black string as a counterex-
ample to the holographic conjecture. The main problem with this solution is that
to render it stable a second brane is required in the bulk. This corresponds to an
infrared cut-off in the CFT, and it is by no means clear how this additional compli-
cation affects the holographic argument.

There is however another option for exploring the physics of braneworld black
holes, and that is to move to the Karch–Randall set-up [41]. The KR brane is slightly
detuned from the critical RS value, and is sub-critical, with an effective negative
cosmological constant residing on the brane. KR branes are thus adS slicings of
adS. From the holographic point of view, this complicates the picture, as we are no
longer in the near horizon limit of a stack of D3-branes; however, the KR brane
can possibly be related to a defect CFT dual to the intersection of a probe D5-brane
with a stack of D3-branes [115, 116]. The advantage of considering this slightly
detuned situation is that black holes in adS can be thermodynamically stable [117],
and therefore the backreaction due to Hawking radiation can, in principle, be com-
puted. On the other hand, the adS black string in adS becomes stable once the mass
is sufficiently high [118], which has been argued to be dual to the Hawking–Page
transition [119]. Thus, for large–mass black holes on the KR brane, we can perform
a direct comparison between the strong coupling holographic backreaction and the
weak coupling Hawking radiation backreaction.

Such a comparison was made in [120] using Page’s heat kernel method [40] for
approximating the radiation back reaction. The physical set-up is that we have two
KR branes stretching through the bulk, each with positive tension, and each cutting
off the boundary of adS, hence each providing a UV cut-off CFT. The black string
stretches between the two branes, and for large enough mass is stable (see Fig. 7.14):

ds2 =
L2

cos2 θ

⎡
⎣(

1+ k2
4r2 − 2GNM

r

)
dt2 − dr2(

1+ k2
4r2 − 2GN M

r

) − r2dΩ 2
II −dθ 2

⎤
⎦ ,

(7.109)

where k4 = k cosθ0, with ±θ0 being the location of the KR branes, is the 4D adS
curvature scale.
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Fig. 7.14 A sketch of the KR
black string. The black circle
is the adS boundary, which is
excised from the braneworld
spacetime. The string goes
through the adS bulk between
the two KR branes. Because
the string has finite proper
length relative to its mass, it
can be stable for sufficiently
large mass

Restricting ourselves to a single brane, the geometry is that of 4D Sch–adS, and
we can perform a standard weak coupling computation of the energy momentum
tensor of the Hawking radiation. Figure 7.15 shows the energy and pressure of the
thermal bath produced by the black hole (see [120] for details). Notice how at large
r the energy and pressures asymptote the form of a cosmological constant.

On the other hand, we have a full brane+bulk classical solution, and we can
directly compute the effective stress tensor on the brane. It is clear before starting,
however, that this will not have the form of Fig. 7.15, as these varying energies
and stresses will backreact on the spacetime to give a modification of the Sch–
adS solution, whereas the classical solution is pure Sch–adS. On the other hand,
although this is the classical brane solution, that does not mean that there is no
backreaction on the brane energy momentum. In fact, the correction to the brane
energy momentum is interpreted via the conventional 4D Einstein equation. From
the brane point of view, we are unaware of the extra dimension, and therefore we
interpret any deviation from the standard Einstein equation as additional energy
momentum. Thus, while our KR brane energy momentum must have the form of

Fig. 7.15 The backreacted
energy momentum tensor at
weak coupling. The solid
black line is the energy, the
dashed line the radial tension,
and the dotted line the angular
tension
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a cosmological constant, it is possible that this is renormalized from the expected
bare value.

To see how this works, let the tension of the KR brane be

E =
6k

8πG5
+λ =

6k sinθ0

8πG5
, (7.110)

where λ < 0 is the bare tension on the brane. On the other hand, the actual 4D
cosmological constant is given by

Λ4 = −3k2
4 = 8πG4λeff . (7.111)

Note that in this case, the 4D gravitational constant is not labelled as GN , since the
relation between the brane and bulk gravitational constant is dependent on the brane
tension, not the background adS curvature [121–123], and is altered from the critical
RS relation:

G4 =
4πG5

3
EG5 . (7.112)

From the definition of k4 and (7.110) and (7.112), the value of the bare tension is

λ =
3

4πG4

(
k2 − k2

4 − k
√

k2 − k2
4

)
. (7.113)

Therefore, since the “expected” value of the cosmological constant is 8πG4λ , we
can compute the correction to the brane energy momentum as

〈T μ
ν 〉 =

8πG4λ −3k2
4

8πG4
δ μν =

3(2k2 − k2
4 −2k

√
k2 − k2

4)

8πG5

√
k2 − k2

4

δ μν . (7.114)

This is the precise (classical) braneworld result. We can obtain the holographic
renormalization result [124] by taking the limit as the brane approaches the bound-
ary or by approaching the critical RS limit λ → 0. As k4 → 0, we get

〈T μ
ν 〉 =

3k4
4

32πG5
(7.115)

which agrees with the strong coupling holographic result [120], up to the expected
factor of two which arises from the braneworld set-up having two copies of the bulk,
one on each side of the brane.

It is intriguing that the black hole apparently does not radiate in the strong cou-
pling picture. This is a direct consequence of the fact that the bulk spacetime is
foliated by conformal copies of the Schwarzschild–adS black hole. This “transla-
tion invariance” means that the classical KK graviton modes are not excited in the
background solution, and geometrically the only possibility is renormalization of
the cosmological constant. It is possible that the black string solution is not the cor-
rect black hole metric candidate; however, one might expect that for brane black
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holes with rh > L, there is a unique stable regular black hole geometry, which this
solution is.

Thus, the KR black string provides a counterexample to the expectation that a
classical braneworld black hole corresponds to a quantum-corrected 4D black hole.
There are of course many caveats to this claim. Clearly the KR brane is not the
near horizon limit of a stack of pure D3-branes, and therefore we do not expect the
CFT to be a simple SYM. However, the fact that the renormalization of the stress
tensor is proportional to N2, yet vanishes in the critical RS limit, is supportive of
the arguments of [114]. Obviously this debate is far from over! (See [125–128] for
some recent work.)

Hopefully these lectures have given an insight into the complex and fascinating
topic of braneworld black holes. However as the field develops over the next few
years, there are sufficient puzzles and unanswered questions to ensure that it will
continue to be an active and exciting area.
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