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Abstract. Several image mosaicing algorithms claiming to advance the
state of the art have been proposed so far. Though sometimes improve-
ments can be recognised without quantitative evidences, the importance
of a principled methodology to compare different algorithms is essen-
tial as this discipline evolves. Which is the best? What means the best?
How to ascertain the supremacy? To answer such questions, in this pa-
per we propose an evaluation methodology including standard data sets,
ground-truth information and performance metrics. We also compare
three variants of a well-known mosaicing algorithm according to the pro-
posed methodology.

Keywords: Mosaicing, Performance Evaluation, Data Sets, Ground
Truth, Performance Metrics.

1 Introduction

Image mosaicing is a well known application of image registration theory that
aims at composing several partially overlapping views of the same scene matter.
It can be regarded as a special case of scene reconstruction when the images
are spatially related by a planar collineation (homography) or subclasses of this
transformation (affinity, similarity, translation). This assumption holds when
images exhibit no parallax effects, i.e. when the scene is approximately planar
or the camera purely rotates about its optical center. In these circumstances,
knowledge of the planar geometric transformations among images permits to
reconstruct a full view of the scene, known also as mosaic or panorama.

Several mosaicing algorithms aimed at advancing the state-of-the-art have
been proposed in literature. Some innovations such as the topology inference
proposed by Shawney [1], the global geometric consistency proposed by Shum
[2] or the recent automatic panorama recognition presented by Brown [3] clearly
provide sharp improvements over the existing state of the art. However, this
is not always the case and due to the lack of a reference test bed it is often
very difficult, or even impossible, to evaluate and compare different mosaicing
algorithms. Moreover only visual inspections or problem specific metrics have
been used so far for performance assessment. The adoption of metrics based
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on human perception arises from the fact that in the past mosaics have been
mostly used in computer graphic applications aimed to a human audience, such
as publicity, photomontage, special effects.

However, nowadays mosaicing algorithms are employed not only to generate
visually pleasant pictures but also serve as key building blocks of many computer
vision applications, such as e.g. motion detection and tracking [4,5], mosaic-based
localization [6], resolution enhancement [7], augmented reality [8]. In the latter
scenarios, visually similar mosaics can be characterized by different levels of
numerical accuracy and hence have a different impact on the addressed computer
vision application.

We believe that in these settings a proper reference test bed and evaluation
methodology should allow for quantitative performance assessment. Moreover,
algorithms are becoming so accurate that human based perception metrics will
soon be unable to meaningfully distinguish mosaics obtained with different al-
gorithms (as a proof, mosaics on the left column in Fig.1 look identical but they
turned out to be very different in the accuracy of reconstruction of the original
scene).

Inspired by the renowned work of Scharstein [9] and the more recent work
by Baker [10], respectively in the field of stereo matching and optical flow, in
this paper we propose an evaluation methodology for mosaicing algorithms that
will allow for principled quantitative discussion about performances and repre-
sent a useful tool for other researchers. The proposed methodology enables to
rate any mosaicing algorithm based solely on the output yielded on standard
data sets, and therefore irrespectively of any knowledge on its theoretical foun-
dations or implementation. To this purpose, we have conceived a framework
made up of data sets and tools for the their creation, ground-truth information
and performance metrics. We also address as a case study for the application
of the methodology the comparison of three variants of a well-known mosaicing
algorithm that produce very good and visually similar results.

An on-line version of the reported results as well as of the data sets with
ground-truth used in this work can be found at: http://www.vision.deis.
unibo.it/MosPerf. This web page includes also an online form that allows
researchers to download the data sets and then submit their own results for
evaluation.

2 Evaluation Methodology

Quantitative evaluation has been usually achieved by calculating errors statistics
among registered images of the input sequence. This corresponds to the adop-
tion within a mosaicing framework of performance metrics borrowed from image
registration theory. Examples of such performance indicators can be found in
[11,12], that are two well-known and thorough surveys of the literature in the
field of planar image registration. Use of these indicators require a set of corre-
sponding control points to be available, so as to compute error statistics, such as
the mean square distance, between the image data and the predictions yielded
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by the mosaicing algorithm. However, this approach suffers from at least four
major drawbacks:

– comparison among different algorithms is impossible unless the very same
set of control points is used. To the best of our knowledge such a reference
test bed has not been proposed so far.

– an algorithm cannot be evaluated based solely on its output, since the reg-
istration transformations need to be available to compute error statistics.

– any set of control points can be exactly fit using a sufficiently high parame-
terized registration model (overfitting), thus defying these statistics.

– algorithm accuracy and noise affecting the data are coupled, error statistics
can take large values even in case of good fitting only because of noisy
measurements.

Instead, the proposed quantitative evaluation methodology relies on the com-
putation of error statistics obtained by comparing the mosaic yielded by the
algorithm under assessment on a reference data set (i.e. a sequence of images to
be stitched together) to the corresponding ground-truth mosaic (i.e. the mosaic
that would be obtained by exactly stitching together the images of the reference
data set). To the best of our knowledge there exists no work proposing a quan-
titative evaluation methodology for mosaicing algorithms based on comparison
with ground-truth information.

The approach outlined in this section holds the potential to allow for fair and
significant quantitative evaluation of algorithms based solely on their outputs.
This is a very important point: since the comparison is taken to another level
of abstraction, this framework is not requiring the algorithms to use control
points approaches nor homography class registration models. We only assume
that the ”algorithm” accepts several images as input for creating a composite
image from them, no matter whether it be a software running on a laptop, an
hardware implementation or just a skilled photographer. As a matter of fact, a
crucial ingredient in our proposal is the availability of reference data sets with
accurate ground truth. How to obtain such data? The issue is addressed in the
next sub-section.

2.1 Generation of Data Sets with Ground Truth

We focus here on the method used to collect data sets with ground-truth and
defer the selection of specific data sets to Section 3. The data sets generation
problem can be approached from two main directions:

– acquisition of real measurements using alternative methods that ensure a
much higher degree of precision compared to that affordable by the tech-
niques under assessment. For example, authors in [9] used structured-light
to obtain highly reliable ground truth. Indeed, the advantage of this method
is that one is dealing with real data and real challenges, on the other hand
one must ensure that the method used is really accurate and unbiased. More-
over the controllability of the test bed environment remains an important
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issue. Is it manageable to collect several data sets each of them isolating a
single peculiar aspect such as different degree of optical distortion, different
light conditions with everything else roughly constant?

– creation of synthetic data that bear good resemblance with real imagery,
for example by rendering detailed scenes using a computer graphics envi-
ronment. From this vantage point, the computed imagery will always be
somehow synthetic but the controllability is complete. Unfortunately, gen-
eral purpose renderers such as PoV [13] have been mostly conceived for
computer graphics applications and some computer vision aspects are not
easily embeddable in this framework. Are radiosity and photon mapping
algorithms really important if non ideal optical lenses are still to be simu-
lated with a custom postprocessing stage? Not to mention non linear camera
response function or sensor noise.

In the end both approaches are interesting on their own and can be tweaked
to emphasize different challenges that a mosaicing algorithm must be able to
tackle. Nonetheless there is a third intermediate way envisioned by authors in
[10], through which they claimed to obtain ”realistic synthetic imagery” using
image interpolation techniques and computer graphics tools. Much in the same
spirit we developed a software component, called Virtual Camera (VC) that
generates photorealistic synthetic images using a mixture of real and precom-
puted information. Through the exploitation of a geometric peculiarity that is
inherent to the planar reconstruction problem, the VC approach retains both
controllability and realism while being easy to implement and computationally
cheap.

Controllability descends from the fact that VC simulates the geometric image
formation process of today’s imaging devices taking into accounts internal pa-
rameters, pose and position, sensor size and resolution, focal length and sensor
noise. Simplicity comes from the fact that the actual scene is just a plane. This
does not represent a loss of generality since the assumption of lack of parallax
effects typical required to properly apply planar registration techniques is nat-
urally ensured in this way. The realism comes from the fact that a real picture
is used to texture the planar scene framed by the VC. In this way realistic noise
is naturally embedded in the framework and need not to be simulated using
synthetic statistical distributions.

Hence VC is a fully configurable renderer able to generate images of a realistic
virtual scene. Moreover, virtual frames can be easily computed according to the
following geometric framework, whose notation is a slight variation of [14].
Denoting a 2D point as m = [u, v]T and a 3D point as M = [X, Y, Z]T , the
pinhole camera model relates a 3D point M and its projection on the image m
by

sm̃ = A
[

R t
]

˜M with A =

⎡

⎣

α c u0
0 β v0
0 0 1

⎤

⎦ (1)

where m̃ = [u, v, 1]T and ˜M = [X, Y, Z, 1]T are the homogeneous representation
of m and M respectively. In Eq. 1 s is an arbitrary scale factor; (R, t), called
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the extrinsic parameters, is the rotation and translation which relates the world
coordinate system to the camera coordinate system; A is called the camera
intrinsic matrix, with (u0, v0) the coordinates of the principal point, α and β the
scale factors in image u and v axes, c the parameter describing the skewness of
the two image axes.

Under the assumption of planar scene, the relation between a 3D point ˜M and
its projection m̃ simplifies to a linear projective transformation, or homography:

sm̃ = H ˜M with H = A
[

r1 r2 t
]

(2)

Hence, to collect a data sets sequence we firstly choose a reference image (such
as e.g. a satellite or aerial image) and then we computed a list VC parameters,
one for each snapshot. These parameters encode the desired behavior of the
camera, i.e. different positions and orientations have been used to generate the
translation and panning sequences of the actual datasets. Every snapshot of
the sequence is just the projection of the scene onto the virtual camera sensor
according to Eq. 2 and the actual VC parameters.

The ground truth mosaic is simply generated by cutting-and-pasting the por-
tion of the reference image that has been viewed by the VC during the sequence
(i.e. a pixel of the reference image belongs to the ground-truth mosaic if it has
been projected in at least one snapshot of the reference data set). Due to its
simplicity, this approach ensures that the ground truth is completely unbiased
and does not favor any conceivable method.

Several issues must be careful considered in order to generate meaningful data
sets. The most important is the pixelation effect. The pixelation effect is known
in computer graphic as the artifact that causes individual pixel to be visible to
the eye, mostly because the image has a lower resolution than the medium is
being displayed on. In these scenario the pixelation effect can occur because the
camera is too slanted or gets too close to scene so that projection of the texture
requires oversampling. To avoid this undesirable artifact, a minimum distance
and a maximum rotation of the VC with respect to the scene, given the texture
resolution, are estimated beforehand and used as thresholds.

A very similar workaround has been adopted to avoid strongly deformed mo-
saics that would require image oversampling during the reconstruction stage. All
the images comprising a sequence have been taken so that they are compliant
with the aforementioned threshold.

2.2 Data Normalization

Some relevant issues concerning the normalization of the algorithms outputs
must be properly taken into account, in order to be able to compare different
algorithms based solely on their outputs.

Registering a sequence of N views, or images, amounts at finding the N × N
pairwise transformation Hi,j that links each view to another. Using graph theory
this can be seen as a view-graph with images being nodes and transformations
being edges connecting nodes. In this settings, we would end up with a huge
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KN complete graph and a terrific computational cost. However, most of the
transformations are not independent since to be compatible they must fulfill the
condition that a composite transformation computed by concatenation around
any cycle in the view-graph is equal to the identity.

Thus only a subset of (N − 1) transformations touring an arbitrary maximal
cycle is required to completely describe the problem. In addition, since the view
order is unimportant, we can induce an arbitrary order in the sequence and ob-
tain a transformation chain C where the individual transformations are written
in the form Hi−1,i with i ∈ [1..N − 1]. So we can state that two registration al-
gorithms A, A

′
are equivalent if their transformation chains C, C

′
are the same:

Hi−1,i = H
′

i−1,i, i ∈ [1..N − 1] (3)

Once the homography chain C is known, the creation of the mosaic requires
to fix another coordinate frame, refereed to here as the reprojection coordinate
system (RCS), through the choice of a rendering matrix R0 and a reference
frame I0. This does not make the reference frame a peculiar frame within the
sequence, since the same reprojection could be obtained selecting as the reference
frame any other frame Ii in the sequence and computing the rendering matrix
Ri accordingly.

The RCS can be the coordinate system of one image in the sequence (so that
the rendering matrix would be the identity) or, in general, choosen according to
some visually pleasing criterion (i.e minimum global distortion of the panorama,
cropping of the panorama to its maximum extent). The rendering matrix (typ-
ically a translation and a scale change, but even a homography) links the RCS
to an arbitrary reference image of the sequence. Once R0 has been fixed, the
visualization matrix Qi by which every image is reprojected can be computed
by

Qi = R0

i
∏

j=1

Hj−1,j , i ∈ [0..N − 1] (4)

When comparing two panoramas coming from the composition of images
warped according to the homography chain, one can try to compare correspond-
ing pixels of the two images. So we can define that two registration algorithms
A, A

′
produce equivalent mosaics if the corresponding visualization matrices are

all the same

Qi = R0

i
∏

j=1

Hj−1,j = R
′

0

i
∏

j=1

Hj−1,j

′
= Q

′

i, i ∈ [1..N − 1] (5)

Since we cannot expect that the rendering matrices R0, R
′

0 chosen by different
algorithms are the same, the resulting mosaics will exhibit different correspond-
ing pixels even if the homography chains are the same, and thus by definition
the registration algorithms perform equivalently. In other terms, the concept of
equivalent registration does not imply the concept of equivalent visualization
except for the case where R0 = R

′

0
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Therefore, since we want to appraise the registration capabilities of mosaic-
ing algorithms analysing their rendering outcomes, a major issue to be dealt
with before the computation of the performance metrics is the normalization of
panoramas. This means filter out the visualization effects due to different choices
of the rendering matrix R0 so that all panoramas will lay in the same RCS irre-
spectively of their original visualization coordinate system. By doing that, the
remaining discrepancies between the panoramas will be due to registration in-
accuracies (i.e. differences along the homography chains).

This is the reason why an R0 default rendering matrix and a corresponding
reference frame (i.e. the first of the sequence) are specified for every sequence
of our data sets. By imposing these two additional constraints we can be sure
that different algorithms will render in the same RCS as that of the ground-
truth mosaic. Thus, since the ground-truth mosaics and those generated by the
algorithms are normalized, performance metrics based on the comparison of
corresponding pixels become appropriate.

Finally, it is worth pointing out that since the frames making up a reference
data set are generated by the VC software according to known homograpies
(i.e. by Eq. 2), it is also possibile to render a panorama using these known
trasformations and R0, I0. Such an image would not be affected by registration
errors, for the homography chain being exactly known, and hence differ from the
ground truth mosaic only due to the resampling and interpolation process. The
performance metrics associated with the panoramas rendered on the basis of the
known transformation associated with a data set will be reported in Section 3,
as they can be seen as upper bounds on the performance attainable by mosaicing
algorithms.

2.3 Performance Metrics

As mentioned in the previous sub-section, provided that data are properly nor-
malized, we can rate and rank algorithms based on direct pixelwise comparison
between the generated and ground truth mosaics. Denoted as IC and IT re-
spectively the mosaic under evaluation and the ground truth mosaic, we use the
following performance metrics:

1. Average of the intensity distances. It amounts to the MSE over intensities
of corresponding pixels

MSE =
1
M

∑

(x,y)

Dxy =
1
M

∑

(x,y)

(

mC(x, y) − mT (x, y)
)2 (6)

where
(

mC(x, y), mT (x, y)
)

are corresponding pixels in IC , IT and M is the
number of pixel belonging to the region of overlap between the two images.
Pixels not shared by both images are neglected.

2. Average of the geometric distances. It amounts to the MSE of the distances
between corresponding control points in IC , IT

εest =
1
L

∑

i

Di =
1
L

∑

i

∥

∥(xi
C , yi

C) − (xi
T , yi

T )
∥

∥

2
(7)
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where L is the number of correspondences. Corresponding control points
(xi

T , yi
T ) → (xi

C , yi
C) are obtained by extracting L KLT (Kanade-Lucas-

Tomasi) feature points over an approximately regular grid of IT and then
tracking such points in IC .

3. Number of misplaced pixels. It is the sum of missing and redundant pixels
normalized with respect to N

Mis =
1
N

(R + P ) =
1
N

(

∑

(x,y)

(

(x, y) ∈ mC ∧ (x, y) /∈ mT

)

+

∑

(x,y)

(

(x, y) ∈ mT ∧ (x, y) /∈ mC

)

)
(8)

Since Mis is often a very small number, it has been scaled by 103 in tables 1
and 2 of next section.

3 Experimental Results

This section aims at comparing three mosaicing algorithm according to the pro-
posed methodology.

The algorithms are iterative variants of the well known Direct Linear Trans-
form (DLT) registration algorithm [15]. The DLT algorithm estimates the spatial
transformation occurring between two images (pairwise registration) performing
a linear regression on a set of corresponding points. The transformation model is
an over-parameterized 9 dof homography and the system is solved using Singular
Value Decomposition (SVD). Robust estimation is obtained performing outliers
removal with the RANSAC algorithm. The mosaicing algorithm is an iterated
application of this approach along pair of frames of the sequence. The sequential
multiplication of n pairwise registrations amount at finding the transformation
that relates the nth view to the reference one and thus to the RCS.

The three algorithms differ in the features detection and tracking methods em-
ployed to determine the set of corresponding points. The first two algorithms, re-
ferred to as SR-Harris and SR-KLT (SR stands for Sequential Registration), rely
on the Harris and the KLT detector respectively for features extraction. Both al-
gorithms rely on the KLT-based feature tracker. Since this kind of tracker suffers
from large shift, its robustness has been increased with a coarse initial guess by

Table 1. Experimental results on sequences PT, PR and LP

Method PT PR LP
MSE Mis εest Time MSE Mis εest Time MSE Mis εest Time

SR-KLT 226.98 0.092 0.098 1.17 54.71 2.686 0.561 1.49 606.47 1.203 0.238 3.34
SR-Harris 231.67 0.645 0.143 1.14 51.25 1.431 0.471 1.45 756.49 1.975 0.436 3.22
SR-SIFT 279.80 2.395 0.381 26.41 48.71 1.648 0.363 9.72 1106.23 2.982 0.675 54.62
SR-GT 223.62 0 0.093 47.85 0 0.306 536.71 0 0.120
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Table 2. Experimental results on extended sequences PTEx and LPEx

Method PTEx LPEx
MSE Mis εest Time MSE Mis εest Time

SR-KLT 466.43 2.277 0.390 4.99 715.48 1.774 0.378 8.77
SR-Harris 574.55 1.988 0.490 4.84 850.88 3.333 0.538 8.69
SR-SIFT 895.75 7.883 0.791 143.63 1279.22 5.636 0.741 89.86
SR-GT 218.23 0 0.096 520.47 0 0.119

Fig. 1. From top to bottom: SR-KLT, SR-Harris and SR-SIFT generated mosaics (left)
and corresponding SSD maps (right)

means of a phase correlation step. The third algorithm, referred to as SR-SIFT,
uses the SIFT detection and tracking method described in [16]. The three algo-
rithms perform a projection to a planar manifold and use the same simple blending
algorithm that averages color intensities within overlapping areas.

Each sequence used for the experimental results comes with a collection of
views, a rendering matrix and a reference frame to which the supplied rendering
matrix must be applied to identify the rendering coordinate system. According to
the image formation model described in Section 2.1 we focused only on sequences
with spatial misalignments, since the retrieving of spatial misalignments is the
main goal of SR-Harris, SR-KLT and SR-SIFT as well as by most mosaicing
algorithms known in literature.

Each of the 320 × 240 color sequence1 used for experimental results and the
associated ground truth are available at http://www.vision.deis.unibo.it/
MosPerf. The five sequences are:

– Pure Translation (PT): it is composed of 9 frames acquired by translating
on the right keeping the optical axis of the virtual camera orthogonal to the

1 Images used by the virtual camera are courtesy of NASA Earth Observatory [17].

http://www.vision.deis.unibo.it/MosPerf
http://www.vision.deis.unibo.it/MosPerf
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scene plane. Adjacent frames overlap by a 30%−50% of their area and small
vertical misalignments have been added.

– Pure Rotation (PR): it is composed of 9 frames acquired by rotating the
virtual camera around the Y axis (Z pointing toward the observer). Adjacent
frames are spaced by 4 degrees and overlap is about 80%.

– Looping Path (LP): it is composed of 18 frames, acquired by moving the
virtual camera on a loop by means of translation on the X, Y plane parallel
to the scene so that the last frame roughly overlaps the first frame.

– Pure Translation Extended (PTEx) and Looping Path Extended (LPEx) are
longer sequences (36 and 37 frames respectively) that extend PT and PR
performing, respectively, repeated panning and looping.

Two important remarks are worth to be emphasized:

– all the sequences do not feature illumination changes; this is a design choice
taken to focus on the geometrical part of the mosaicing problem by decou-
pling it from photometric aspects.

– some of the sequences exhibit basic camera motions and they might not be
considered as representative of amore complex real world sequence. This is
another design choice taken to dissect possible camera motion into several
primitives and to study the performance of the algorithms on them indepen-
dently.

Table 1 and Table 2 report for each algorithm and for each sequence the
performance metrics MSE, Mis, εest and the execution time. SR-GT, reported
in the last row of each table, refers to a pseudo-algorithm that composes the
mosaic based on the known transformations used by VC to generate the data
set. For each performance metric the best performing algorithm is highlighted
in boldface.

Tables 1 and 2 show clearly that on the whole dataset, with the exception
of sequence PR for which all the algorithms perform very close to SR-GT, SR-
KLT is the best performing algorithm. Tables show also that overall SR-Harris
outperforms SR-SIFT. It is worth pointing out that on the PR sequence SR-SIFT
takes advantage of its rotation invariant features. This clear ranking is impressive
if compared to the similar appearance of the three mosaics depicted in Figure 1.
On the contrary, the SSD (Sum of Squared Differences) maps depicted in Figure 1
(whose average value is the MSE performance metric) allow for appreciating the
local differences between the mosaics.

An interesting remark arises from the pairwise comparison of the performance
of SR-KLT, SR-Harris and SR-SIFT with short and extended sequences (PT vs
PTEx and LP vs LPEx). Even though the framed portion of the scene is sub-
stantially the same with both pairs, all the metrics agree on the fact that the
longer the sequence the worst the mosaic, no matter the algorithm or the se-
quence. Such accumulating drift is known as looping path problem [4] and it is
visually emphasized in looping path sequences (that is, sequence that loops back
so that the head and tail overlap after several frames). However, as pointed out
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by Tables 1 and 2 the drift accumulation is an inherent drawback of sequential
algorithms and independent of the sequence. Conversely, SR-GT exhibits an
opposite behavior since the average of several corresponding pixels corrupted by
resampling noise is a good estimate of the noise-free value. This suggests that
the resampling error is normally distributed.

As a final remark, it is worth to highlight that the most suitable quality indi-
cator when dealing with geometric misalignments only, as it is our case, is εest.
However, this not always applies since generally photometric distortions occur
as well. Under these circumstances, even a perfect spatial alignment (εest = 0)
could yield mosaics showing significant color differences compared to the ground
truth. In general, the MSE measure, which senses both geometric and photo-
metric alignment errors, is a more appropriate choice. These experiments show
that MSE is monotonically related to the “exact” εest estimator, thus empirically
validating the MSE metric as a quality measure of the mosaic.

4 Conclusions

Image mosaicing techniques have a long history, evaluation methodologies for
their comparison have not. Throughout this work a complete evaluation method-
ology including data sets, ground-truth information and performance metrics
have been devised. The proposed data sets comprises 5 synthetic test sequences
created by means of a fully configurable virtual camera. Simple pixelwise per-
formance metrics such as the MSE have been employed to favor fairness and
simplicity. The definition of a default visualization matrix and a reference frame
is a simple procedure aimed at filtering out differences among mosaics visualized
in different rendering coordinates system.

Afterwards, three variants of a known algorithm have been evaluated and
compared according to the proposed methodology. Despite the fact that these
approaches generated very good as well as visually similar results the eval-
uation procedure clearly shows that the KLT-based algorithm performs
better.

In conclusion, we are firmly convinced that a widely accepted quantitative eval-
uation procedure is of utter importance as a branch of a discipline moves from
its pioneering works to maturity. The purpose of this work has been to highlight
this shortage and to propose an evaluation methodology that we hope will al-
low for principled discussion about algorithm performances and represent a useful
tool for other researchers. Further information concerning the proposed evalua-
tion methodology can be found at the web site http://www.vision.deis.unibo.
it/MosPerf.

Future developments directions include the use of a physically based ren-
derer able to handle the data sets creation process in a more principled way
and the investigation of more sophisticated algorithms run on more challenging
datasets.

http://www.vision.deis.unibo.it/MosPerf
http://www.vision.deis.unibo.it/MosPerf
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