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Abstract. In this paper, vector quantizer optimization is accomplished
by a hybrid evolutionary method, which consists of a modified genetic al-
gorithm (GA) with a local optimization module given by an accelerated
version of the K-means algorithm. Simulation results regarding image
compression based on VQ show that the codebooks optimized by the
proposed method lead to reconstructed images with higher peak signal-
to-noise ratio (PSNR) values and that the proposed method requires
fewer GA generations (up to 40%) to achieve the best PSNR results
produced by the conventional GA + standard K-means approach. The
effect of increasing the number of iterations performed by the local op-
timization module within the proposed method is discussed.

1 Introduction

Vector quantization (VQ) is a lossy compression technique which plays an impor-
tant role in many image coding systems, leading to high compression rates [1].
VQ operates according to a minimum distortion rule and can be defined as a
mapping Q from an input vector x ∈ R

k into a finite subset W ⊂ R
k containing

N distinct reproduction vectors. Thus, Q : R
k → W . Codebook W = {wi}N

i=1
is a set of codevectors (reconstruction vectors), k is the dimension of the code-
vectors and N is the codebook size. The mapping Q leads to a partitioning of
R

k in N disjoint regions (also known as Voronoi cells) Si, i = 1, 2, . . . , N ,
in which each region Si is defined as Si = {x : Q(x) = wi} or alternatively,
Si = {x : d(x, wi) ≤ d(x, wj), ∀j �= i}, where d(·,·) is a distortion measure.
Codevector wi is the representative vector of all input vectors belonging to the
corresponding cell Si.
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In the context of image VQ optimization, a genetic algorithm (GA) can be
used to improve the quality of the reconstructed images by performing an evolu-
tionary search for the optimum fixed length set of blocks of pixels which repre-
sents the images to be quantized. For this task, codebooks previously obtained
with a VQ codebook design algorithm are injected into the initial population of
a GA. Seeding a GA’s population with known solutions generally provide useful
information on the structure of the search space [2]. Hence, the initial population
of a GA for image VQ optimization contains reasonable starting codebooks which
are to be optimized by means of successive applications of genetic operators in
an evolutionary process.

The K-means algorithm, also known as Generalized Lloyd Algorithm (GLA)
or Linde-Buzo-Gray (LBG) algorithm [5], is the most used technique for code-
book design. This paper describes a hybrid genetic accelerated K-means algo-
rithm which is applied to optimize codebooks for image VQ previously designed
by two versions of K-means (standard and accelerated). The proposed GA up-
dates the codebooks produced at the end of each generation according to the
method proposed by Lee et al. [6], which corresponds to an accelerated version of
K-means. Also, a partial distance search is integrated on the search for the near-
est neighbors performed by the Lee et al. method within the proposed GA. The
performance of the proposed method is compared to that one of the conventional
methodology, which consists on using GA with standard K-means. Simulation
results concerning image VQ show that the proposed method outperforms the
conventional approach in the sense that it leads to better codebooks, which
restults in reconstructed images with higher peak signal-to-noise ratio (PSNR),
in earlier stages of the evolutionary process.

2 The K-Means Algorithm

Let the iteration of K-means be denoted by n. Given k, N and a distortion
threshold ε > 0, the K-means algorithm [5] consists of the following steps:

Step 1 (initialization). Given an initial codebook W0 and a training set X =
{xm; m = 1, 2, . . . , M}, set n = 0 and D−1 = ∞.
Step 2 (partitioning). Let Wn be the codebook at the n-th iteration and wn

i the
i-th codevector on Wn. Assign each training vector (input vector) in the corre-
sponding class (Voronoi cell) according to the nearest neighbor rule; determine
the distortion

Dn =
N∑

i=1

∑

xm∈Si

d(xm, wn
i ). (1)

Step 3 (convergence test). If (Dn−1 − Dn)/Dn−1 ≤ ε then stop, with Wn repre-
senting the final codebook (designed codebook); else, continue.
Step 4 (codebook updating). Calculate the new codevectors as

wn+1
i = C(V(wn

i )), (2)
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where C(V(wn
i )) is the centroid of the partition V(wn

i ); set Wn+1 ← Wn; set
n ← n + 1 and go to Step 2.

3 The Accelerated K-Means Algorithm

The algorithm proposed by Lee et al. [6] corresponds a modification introduced
in Step 4 of K-means. In this approach, the new codevector will be updated
according to

wn+1
i = wn

i + s(C(V(wn
i )) − wn

i ). (3)

This method may be seen as a look ahead approach aiming at improving
convergence, while reaching a smaller value of average distortion. In the experi-
ments reported in [6], when the value of the scale s is about 1.8, the algorithm
generally achieves good performance. It should be noted that a scale value of
s = 1.0 implements the standard K-means. It is worth to mention that equa-
tion 3 resembles the update formula for a neuron on Kohonen’s competitive
learning scheme [3].

4 Partial Distance Search (PDS)

The partial distance search (PDS), proposed by Bei and Gray in [4], is a method
for reducing the computational complexity of the nearest neighbor search. The
PDS method decides that a codevector is not the nearest neighbor of an input
vector if, for some j < k (k is the dimension of the vector quantizer), the ac-
cumulated distance for the first j samples of the input vector is greater than
the smallest distance previously computed in the search. Then, the computation
is terminated for that codevector and the distance computation for the next
codevector begins. With this approach, the number of multiplications, additions
and subtractions is dramatically reduced in comparison with the full search. Al-
though PDS increases the number of comparisons, the global complexity of the
nearest neighbor search is reduced when compared with the full search.

5 Hybrid Evolutionary Clustering

The K-means algorithm can be regarded as a hill climbing clustering strategy [8].
Hence, it is supposed to achieve local optima, i.e. suboptimal partitions. Stochas-
tic approaches such as GA’s can be used to find a globally optimal partition, as
the search can escape from local optima.

Considering the population of a GA being made up of various codebooks,
Fränti [9] presents three possibilities for integrating K-means as a local search
module on a GA: (i) to apply K-means for the output of GA (GA + K-means);
(ii) to apply GA for the output of K-means (K-means + GA); (iii) to apply
K-means for every codebook in the GA population.
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It is also possible to specify a GA for VQ without using any integrated hill
climbing technique such as K-means, but it has been shown that such GA per-
forms worse than if a clustering algorithm is used jointly [9]. Since K-means al-
gorithm seeks to satisfy the constraints required by VQ optimality conditions [1],
its integration with GA is beneficial [9, 8].

6 The Proposed Method

The method proposed in the present paper follows a GA + K-means strategy,
where an individual is considered to be a codebook composed with N genes,
which corrersponds to N codevectors. However, some differences may be pointed
out when comparing it with those methods described by Fränti [9]: (i) the GA
replacement strategy has been modified to accept all offspring which represents
better solutions than those already known; (ii) with probability 1 − pacc (pacc is
the acceptance probability), the generated solutions which do not obtain gains
over the worse individual present in the population are rejected. When accepted,
an offspring will always replace the worse individual; (iii) the standard K-means
algorithm was replaced by the accelerated version proposed by Lee et al [6]; (iv)
instead of applying the accelerated K-means to the best solution in the GA’s
population at each generation, it is applied to the new offspring.

All modifications introducted by the proposed evolutionary optimizer are ex-
plained in the following: the first one depends on the pacc parameter – for
pacc = 0, this strategy is equivalent to a greedy genetic search [11, 14]; for
pacc = 1, the strategy becomes the one implemented on the canonical GA [7]
(accept all offspring). This parameter gives a fine control of diversity levels in
the GA, while guarantees that good solutions will not be rejected. This im-
provement was benchmarked in Leung et al. [12] and it was used for training
multilayer perceptron neural networks, as reported in that paper.

The second improvement constitutes the main contribution of this paper. It
is expected that this modification will lead to better results in terms of peak
signal-to-noise ratio, as shown in the results’ section.

Finally, the third modification is justified by the sake of maintaining diversity
and as an attempt to achieve better results in earlier stages of the evolutionary
process (when compared with the conventional approach): in any GA scheme,
the common way of controlling diversity is by changing the mutation rate, i.e.
the frequency that mutation will be applied to an offspring. In this sense, the
accelerated K-means integration with GA can be regarded as an additional lo-
cal optimization module, which acts on the newly candidate solution. Hence,
the accelerated K-means module improves the newly offspring. The offspring
is expected to have a higher probability of being better than its parents. Note
that such strategy was successfully utilized in [8] for VQ codebook design. Other
mechanisms of the proposed GA are now explained:

Initialization – The initial population is the set {Wz}psize
z=1 of initial code-

books trained with K-means algorithm with ε = 10−3, in which the size of the
population is denoted by psize and Wz is the z-th input codebook.
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Selection for reproduction – A fitness proportional selection strategy com-
monly referred to as roulette wheel is adopted: the population is ordered by the
individuals’ fitness and two parents are sampled with probability proportional
to their fitness values, within a stochastic simulation scheme.

Genetic operators – For parents’ recombination, a generalized crossover op-
erator [10] is implemented in the following way: first, a random integer segsize
is sampled from the set {1, . . . , N/2}, in which segsize denotes the segment
size. Then, for each block composed of segsize genes, one chooses, with equal
probability, the corresponding block from one of the parents for composing the
genes of the offspring. It can be seen that this algorithm is equivalent to uniform
crossover when segsize = 1 and to one-point crossover when segsize = N/2
with the locus point on the half of the chromosome. For mutation, let μ be a
random variable uniformly distributed on the range [0.8, 1.2]. Then, the scalar
product of μ with a random chosen gene is performed with probability pmut.

7 Results

The coding performance of all optimization methods was evaluated on 256 × 256
pixels, monochrome images, originally encoded at 8 bpp: Boat, Barbara, Clock,
Elaine, Goldhill, Lena, Mandrill, Peppers and Tiffany (Figure 1). In all simula-
tions, for a given image and a fixed N , the same initial codebooks were used. The
distortion threshold ε = 10−3 was assumed for the designing of these codebooks
with both K-means and Lee et al. algorithms.

For each combination of image and codebook size, two distinct populations
composed by 20 codebooks (psize=20) were generated: the first, composed by
codebooks designed with the standard K-means and the second by codebooks
designed with Lee et al. algorithm with a fixed scale of s = 1.8. For the proposed
method (GA + accelerated K-means), pacc was set to 0.1, while the number of
iterations performed by the local optimization module ranged from n = 1 to
n = 3. The common parameters used on both proposed and conventional (GA
+ standard K-means) methods were: mutation rate of 0.2 and a maximum of 500
generations as the stopping criterion. The fitness function is assumed to be the
peak signal-to-noise ratio (PSNR) [1], which is also used to assess the objective
quality of the reconstructed images.

Vector quantization with dimension k=16 was considered, corresponding to
the use of blocks of 4 × 4 pixels. Codebook sizes of N=32, 64, 128, 256 and 512
were considered, corresponding to coding rates of 0.3125, 0.375, 0.4375, 0.5 and
0.5625 bpp.

Fig. 1. Image data set used in the experiments
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Table 1. Average PSNR (dB) for Lena obtained in 50 experiments

N K-means GA + K-means Proposed Method
32 26.59 26.69 26.70
64 27.71 27.91 27.91
128 28.80 29.07 29.11
256 29.90 30.55 30.73
512 31.11 32.33 32.62

Table 1 summarizes the experimental results obtained after 50 runnings of the
GA + standard K-means approach and the proposed method (with s = 1.5) for
Lena. For the results reported in the table, the initial population was designed
with the standard K-means.

From Table 1, it can be noted that the proposed method outperforms the con-
ventional techniques investigated. In addition, as the codebook size (N) raises,
the gain achieved with the proposed GA increases. It should be noted that the
K-means column on Table 1 refers to the PSNR values derived from the popu-
lation (K-means designed codebooks) which fed both GA’s versions.

An experimental study was also conducted for adjusting the scale value (s)
used on the proposed method. For this task, scale values from the set {1.1, 1.2,
. . . , 2.0} were tested for each combination of image and codebook size (N). The
results for the best values and the respective improvements given in terms of
PSNR measure in comparison with the initial codebooks (initial population)
for 0.5625 bpp encoded images are reported on Table 2. The best results for
the proposed method were achieved for Clock, Lena, Peppers, Tiffany, Boat
and Elaine images: in comparison with the best codebook present on the initial
population, the average gains for those images ranged from 1.10 to 1.58 dB, while
in comparison with the average PSNR values obtained with the GA + standard
K-means approach, the average gains ranged from 0.20 to 0.33 dB.

Table 2. Average improvements obtained by the proposed method over both K-means
and GA + K-means for the best scale values (s) on images quantized at 0.5625 bpp

Gain (dB) Gain (%)
Image K-means GA + K-means K-means GA + K-means

Barbara (s = 1.2) 0.62 0.15 1.74 0.50
Boat (s = 1.4) 1.12 0.21 3.85 0.72
Clock (s = 1.1) 1.58 0.33 5.12 1.03
Elaine (s = 1.3) 1.10 0.20 3.36 0.58

Goldhill (s = 1.2) 0.50 0.00 1.62 0.01
Lena (s = 1.5) 1.50 0.29 4.86 0.90

Mandrill (s = 1.1) 0.39 0.05 1.49 0.19
Peppers (s = 1.2) 1.49 0.26 4.82 0.81
Tiffany (s = 1.5) 1.47 0.27 4.39 0.79
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Fig. 2. (a) Average evolution of the PSNR for Lena with N = 512 after 50 trials. (b)
Effect of scale variation in the PSNR for Peppers with N = 512.

Figure 2(a) shows an example of the evolution performed by the proposed
method and by the GA + standard K-means approach for Lena encoded at
0.5625 bpp. It is observed that, at the end of 500 generations, the proposed
method reaches an average PSNR value of 32.62 dB (after 50 runnings) for the
reconstructed image, while the GA + standard K-means method achieved a
32.33 dB average PSNR value. The figure also shows that, after about 257 gen-
erations, the average PSNR value obtained by the GA + standard K-means
method stabilizes. The proposed method, by its turn, requires only 161 genera-
tions to reach the same result (32.33 dB) obtained by the conventional method.
It is observed that the proposed method has achieved an average reduction of
37% regarding the number of necessary generations to reach that PSNR result.

Figure 2(b) shows the effect of varying the scale parameter for Peppers en-
coded at 0.5625 bpp. The results show that the proposed method obtains, for
s ≤ 1.6, PSNR average values better than the ones obtained with the GA + stan-
dard K-means method.

Table 3 shows the average PSNR values for Clock and Tiffany images recon-
structed from 40 codebooks present in two distinct initial populations: the first
one designed with the K-means (Pop I ) and the second one with Lee et al. al-
gorithm (Pop II ). It can be noted that the codebooks belonging to population
Pop II lead to higher average PSNR values for the reconstructed images, when
compared to those of Pop I.

Figure 3(a) shows the effect of initializing the proposed method with both
populations (Pop I and Pop II ) for Clock encoded at 0.5625 bpp, considering
two iterations of Lee et al. performed by the local optimization module at each
GA generation. From Figure 3(a), it is observed that the curve which represents
the average PSNR of the population Pop II starts above the curve of the popu-
lation Pop I. At the course of the evolutionary process, on average, it is observed
that the evolution of the population Pop I produces, at the 125th generation, in-
dividuals with average fitness equivalent to those produced by population Pop II.
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Table 3. Average PSNR (dB) of the initial populations for Clock and Tiffany images
encoded at 0.5625 bpp

Population
Imagem N

Pop I Pop II
256 29.47 29.77

Clock
512 30.90 31.32
256 32.40 32.72

Tiffany
512 33.61 34.15
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Fig. 3. (a) Average evolution for the proposed method using both initial populations
for Clock encoded at 0.5625 bpp. (b) Average evolution of the proposed method varying
the number of iterations of the Lee et al. for Clock encoded at 0.5625 bpp.

Table 4. Average PSNR (dB) obtained for Clock with the proposed method by vary-
ing the number of Lee et al. iterations (n), the codebooks’ size (N) and the initial
population

N = 256 N = 512
Population

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3
Pop I 30.45 30.65 30.71 32.47 32.41 32.45
Pop II 32.46 32.75 32.77 32.25 32.54 32.49

However, it can be noted that, as the number of generations increases, the gain
obtained with the population Pop II grows and ends with a 0.13 dB gain, after
500 generations.

It is observerd in Table 4 that the PSNR values seem to increase with the num-
ber of iterations (n). However, for most cases, the PSNR results obtained with
n = 3 iterations are slightly better than the ones obtained with two iterations.

A study of the effect of increasing the number of Lee et al. iterations within
the proposed method is shown in Figure 3(b) for Clock encoded at 0.5625 bpp.
Based on those results, two applications of the local optimization module are
recommended within the proposed method with the purpose of obtaining better
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codebooks in earlier stages of the evolutionary search. Inasmuch as the GA is not
guaranteed to obtain significant gains in terms of PSNR when more than two
applications of the local optimization module is performed, the usage of more
than two iterations of the Lee et al. method within the proposed method is not
recommended. Besides, the tiny gains for PSNR values obtained with three or
more applications of the local module does not justify the computational cost of
the additional iterations.

Finally, it is observed that the integration of the PDS algorithm with the
proposed method – specifically at Step 2 of the accelerated K-means algorithm
within the local optimization module – has reduced the mean running time ap-
proximately by 15%. As an example, for Tiffany enconded at 0.5 bpp, the method
has spent 233 seconds, in average, when the search for the nearest neighbors was
performed with the full search (FS), while it has spent 204.2 seconds with the
usage of the PDS algorithm, considering all 500 generations.

8 Conclusion

This paper presented a hybrid evolutionary approach for image VQ codebook op-
timization through the usage of Lee et al. iterations instead of standard K-means
as a new local optimization module on a modified GA. Results have shown that
the method is promising in terms of improving the initial codebooks obtained by
standard VQ codebook design algorithms. More specifically, when compared with
conventional GA + standard K-means approach, the proposed method produces,
in earlier stages of the evolutionary search, better codebooks, which lead to recon-
structed images with higher average PSNR values. Moreover, it was observed that
two Lee et al. iterations lead to the best cost-benefit relation considering running
time and performance in terms of PSNR of the reconstructed images. Finally, the
benefits of integrating the partial distance search (PDS) algorithm with the pro-
posed method has been asserted as an approach for reducing the computational
complexity of the optimizer module as a whole, providing a higher eficiency on the
running time required to optimize the input codebooks.

Future studies should consider the investigation of an adequate stop criterion,
based on the convergence rate of the algorithm. Also, auto-adaptive methods,
which could automatically adjust the scale parameter (s), are of great inter-
est. Current works include the investigation of a Terrain-Based Genetic Algo-
rithm (TBGA) [13] for deriving heuristics for the adjustment of the scale pa-
rameter during the evolutionary search.
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