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Abstract. In this paper a system is presented for real time recognition of the 
traffic signs. Sign detection is done by a method of adaptively growing window. 
Classification is based on matching of the modulo-shifted phase histograms. 
These are built from the stick component of the structural tensor rather than 
from an edge detector. To cope with inherent rotations of signs a novel measure 
is proposed for matching of the modulo-shifted histograms that also boosts re-
sponses of highly probable values. The method is tolerant of small translations, 
rotations and symmetrical changes of scale. It works also well under different 
lighting conditions and tolerates noise and small occlusions. 

1   Introduction 

Main goals of the Driver Assisting Systems (DAS) are to increase driving safety and 
comfort [7]. Automatic recognition of traffic signs (TSs) belongs to one of the major 
objectives of DAS. Much research has been done to develop real-time and accurate 
systems for this purpose. The works [8][11][15][4] and cited there references report 
advances in this area. 

TSs are planar rigid objects of different shape and colour. These features are used 
in shape detectors [4][6]. However, images of signs can be diverted from the fronto-
parallel view due to the inherent tilt and rotation, projective transformation of the 
camera system. They can be also affected by noise, dirt, weather and other factors. 
From these rotations are very cumbersome in classification of the circular signs, since 
our detectors cannot account for rotations of circular shapes. The proposed method 
can cope with this and other deformations. It is also able to classify all types of TSs. 

The novelty of this paper comes from the fact of using the precise structural tensor 
(ST) for both, finding of image areas with sufficient structure and then computation of 
the phase of local orientations. Thanks to the matched filters, these parameters are 
obtained with sufficient accuracy. Classification is done by matching of the modulo 
shifted phase histograms. This allows detection and computation of the internal rota-
tions of signs. Thanks to these features, the proposed method of TSs recognition is 
invariant to translation, rotation, proportional change of scale, as well as to the differ-
ent lighting conditions (day and night) and small occlusions. Additionally, the method 
is fairly accurate and works in real time, i.e. it allows analysis of about ten or more 
frames per second which is sufficient for real applications.  
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2   Architecture of the Traffic Signs Recognition System 

The proposed system, presented in Fig. 1, consists of two main modules: a detector of 
characteristic shapes and a sign classifier. In this paper we focus mostly on the latter.  

TSs are detected solely based on their colour distributions. This is possible mostly 
due to the very pronounced colours of TSs and allows fast execution at the same time. 
Shape could be also used, however this requires additional computation time. 
A developed detector for triangular, rectangular and diamond shapes is presented in 
[6]. These, however, can be registered, so the internal rotation is cancelled. In conse-
quence a classifier operating on a group of deformable prototypes is feasible [4]. 
However a real challenge are circular signs for which the internal rotation cannot be 
amended by the detector. 

 

Fig. 1. The system consists of two modules: shape detection and sign classification 

The main idea of detection of the circular TSs is to expand a rectangular window 
W in all eight direction around a place with high probability of existence of an object 
(see Fig. 2). Moreover, we do not assume that the tracked signal follows assumptions 
of the probability field. The only requirement is that the tracked region is described by 
a nonnegative “mass” function μ for which it is assumed that the higher its value, the 
strongest belief that a pixel belongs to an object. Thus, μ follows rather rules of a 
fuzzy membership function, although it can be a probability field as well. Hence, the 
versatility of the method.   

Expansion in a given direction is possible iff there is a nonnegative increase in 
density of a new region. This is computed as a ratio of an object “mass” function 
divided by a number of pixels in a growing pane. In effect, starting from an initial size 
W0 a final window WF is reached which encompasses tightly an object. In practice it is 
sufficient to set a minimal thresholds on a “mass” update in all direction of expansion 
to avoid divisions. That is, a stop criteria in a direction k is expressed as follows: 

k kμ τΔ < . (1) 

where τk denotes an expansion threshold. In our experiments, in which μ was a fuzzy 
membership function conveying degree of a match of colour, τk is in order of 0.1-10. 
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Fig. 2. Region growing technique for fast shape detection – an initial window grows in all eight 
directions until a stopping criteria are reached 

The algorithm is guaranteed to stop either when condition (1) is fulfilled for all k, 
i.e. in all directions, or when borders of an image are reached. For more details see [4]. 

The first stage of the classification module in Fig. 1 is responsible for computation 
of the local orientations. The idea behind local orientations is to associate an orienta-
tion vector to each ‘sufficiently’ small region in an image, called a local neighbour-
hood of pixels. The orientation vectors are computed by means of the structural tensor 
[1][2]. Components of this tensor provide information on local phase, magnitude, and 
coherence values characteristic to the associated region [12]. Based on this, the phase 
histograms are created for each reference and test patterns. The idea of the orientation 
histograms for pattern matching was already proposed by many authors [13][10]. 
However, in our work we propose to use a precise structural tensor and compute 
phase histograms from structural places which correspond to the stick component of 
the structural tensor – presented in the next section (3). The histograms of the refer-
ence patterns are stored in a data base (DB). Then, classification is done by matching 
an input pattern with the data base. The matching is done with different measures and 
on modulo-shifted histograms, as presented in the section (4). In consequence the 
inherent rotation of an input pattern can be detected and measured. 

The classification process is done solely in the monochrome representation of a de-
tected sign, although local orientations can be easily computed from colour represen-
tations as well. However, this entails additional computation time with no significant 
improvement to the classification. 

3   Phase Histograms from the Structural Tensor 

Classification based on the orientation histograms has been proposed for recognition 
of different shapes [13][10]. We also follow this strategy, however with many modifi-
cations. The first one relies on a precise computation of the tensor components. 

The idea behind the structural tensor is to describe each local neighbourhood LN of 
pixels with a single and dominating orientation, denoted by a vector w in Fig. 3a. 
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a b 

Fig. 3. The idea behind the structural tensor is to represent a local neighbourhood LN with a 
single orientation vector w, which is accurate if most of the gradients in LN coincide with w 
(a). This can be checked by minimizing a cumulative sum of the residual vectors s in LN (b). 

Finding such w is possible if the LN shows some regularity of its intensity signal. 
This can be measured by gradient vectors, computed for each point of the LN. If the 
gradient vectors are more less oriented in the direction of w, then we can say that w 
represents well the given LN. A fit measure can be defined as an average of the 
squared modules of vectors s which are perpendicular projections of the gradients gi 
onto the sought orientation vector w. From Fig. 3b we find that 

/= − = −s g r g w r w . (2) 

Based on the above, the error function can be defined as follows [2]: 

( ) ( ) ( ) ( )0 0 0( , ) Te = = −x x s g x w x g x w x , where 1T =w w . (3) 

The total error E is obtained integrating the square of e(x,x0) over all possible loca-
tions x in the neighbourhood LN, using a Gaussian soft averaging filter Gσ,: 

( )2
0 0 0

LN

( ) ( , ) ,E e G dσ= ∫x x x x x x . (4) 

Gσ can be substituted for a robust function [2] which results in filtering dependant on 
a local structure. This makes the orientation vector w well adapted to each local struc-
ture. However, a solution to this problem is iterative which appears to be too slow for 
our purposes. Continuing, by inserting (3) to (4) and expanding we obtain 

( ) ( )0 0

LN LN

, ,T T TE G d G dσ σ

⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
∫ ∫g g x x x w g g x x x w , (5) 

Now, to find w we have to solve the following optimization problem  

min E
w

, (6) 

subject to the constraint 1T =w w . Substituting (5) into (6) we obtain 

( ) ( )0 0

LN LN

min min , ,T T TE G d G dσ σ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

∫ ∫w w
g g x x x w g g x x x w . (7) 
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Since gTg≥0, then solution to (7) is equivalent to  

( )0

LN 1

min max ,
T

T TE G dσ

=

⎧ ⎫⎛ ⎞⎪ ⎪= ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

∫w w
w w

w g g x x x w , (8) 

where the expression 

( )0

LN

,T G dσ= ∫T g g x x x  (9) 

is the structural tensor. Using the method of Lagrange multipliers we find that the best 
orientation w is an eigenvector of T corresponding to its largest eigenvalue. This way, 
after simple computations, we obtain w, as follows [12]: 

[ ]11 22 122
T

T T T= −w , (10) 

where Tij are components of T. Finally, phase ϕ of a local structure represented by w 
is given by the following formula: 

( ) ( )12 11 222 ,ATAN2 T T Tϕ = −w , (11) 

where ATAN2 is an arcus-tangent function of a quotient of its two arguments, which is 
also defined when its second argument approaches zero (result is ±π/2 based on a sign 
of the first argument). Values of phase ϕ are taken to the phase histograms. The last 
question is in what places of an image ϕ should be actually computed.  

As alluded to previously, a dominating orientation vector is well justified for image 
areas with ‘strong’ regularity. Computation of orientation histograms in edge points 
was already proposed by Freeman [10]. However, for relatively small objects, such as 
are pictograms of the TSs, these do not provide sufficient support for reliable match-
ing of their histograms. Therefore we propose to extend the structural places to the 
ones defined by so called stick tensor components which represent linear component 
of the structural tensor. The tensor T is positive definite and therefore it can be de-
composed as follows [14]: 

( ) ( )1 2 1 1 2 1 1 2 2
T T Tλ λ λ= − + +

S B

T w w w w w w , 
(12) 

where S and B are the stick and the ball base tensors respectively, 1w  and 2w  are 

normalized eigenvectors, and λ1,2 are real eigenvalues of T for which λ1≥λ2≥0. These 
can be computed from the following formula (λ1 takes ‘+’):  

( ) ( )21 2
1,2 11 22 11 22 122
λ 4T T T T T⎡ ⎤= + ± − +⎢ ⎥⎣ ⎦

. (13) 

From the above formulas it is evident that areas that correspond only to the stick ten-
sor component poses high value of λ1 with small λ2 at the same time. Therefore our 
criteria for areas of interest can be formulated as follows: 

2

1

λ
λ

κ≤ , (14) 
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where κ is a threshold value, which in the experiments was less than 0.1. Inserting 
(13) into (14) we obtain 

1

1
p

κ
κ

−≥
+

, (15) 

where  

( )2 2
11 22 12

11 22

4T T T
p

T T

− +
=

+
, for 11 22 0T T+ ≠ . (16) 

Thus, our algorithm for computation of the phase histograms in image areas with high 
stick-like structures is given as follows: 
 
1.Set threshold κ (in practice ≤0.1) and initialize 
data structure for the histogram. 

2.For each pixel position do 
3.Compute T from discrete version of (9). 
4.Compute trace m=T11+T22. 
5.If m>0 then 

6.Compute p from (16). 
7.If p≥(1-κ)/(1+κ) then  
8.Compute ϕ from (11) and add it to the histo-
gram. 

 
Let us observe that trace value m, computed in step 4 of the above algorithm, de-

notes an averaged squared magnitude of a signal gradient, since 

( ) ( ) ( ) ( ) 22 2
11 22

LN LN LN

x ym Tr T T I d I d I d= = + = ∇ + ∇ = ∇∫ ∫ ∫T x x x . (17) 

Thus m can be thought of as a kind of an edge detector. However it is different than 
detectors proposed in [10] since m denotes an averaged gradient in a neighbourhood. 
Therefore it is more resistant to noise. In some applications, step 5 can be more re-
strictive to suppress noise. In such a case we replace 0 with a positive threshold. 

Features are acquired only from the internal part of a detected sign, since we are in-
terested in its pictogram. For this purpose a centre of a sign is found and the minimal 
perpendicular distance to the borders is assumed to be a starting radius. Then, the 
features are taken only from points which are distant no more than 70-85% of the 
found radius. This parameter is selected by a user. Thus, a circular region is cropped 
from the input image. This strategy is acceptable for all types of signs since recogni-
tion in a particular group of signs is based solely on their pictograms (Fig. 4). 

Implementation of the ST is very simple and can be realized by a number of con-
volutions with different filter masks. However, very important is use of the precise 
directional filters for computation of the image derivatives. Their accuracy directly 
influences quality of the stored phases of LNs. In our realization the matched filters 
proposed by Farid et al. have shown sufficient precision for this purpose [9]. 
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4   Recognition Based on the Phase Histograms 

All information about the classified patterns comes in the form of binary phase histo-
grams. Number of their bins #B is set by a user. Thus, the quantization factor is 
360°/#B. To find the best prototype, a histogram b of an input image is checked 
against all S reference histograms as, which were precomputed and stored in the data 
base. However, since the signs can be rotated, we need to match all modulo shifted 
versions of the input histogram b. Thus, our recognition process can be stated as the 
following minimization problem: 

( )(.)
1

arg min , %s
s S

r r r

D r
≤ ≤

−Δ ≤ ≤+Δ

a b , 
(18) 

where D(.) is a match measure, b%r is an r-modulo shift of a histogram, r is in ±Δr. 
When thinking of histogram matching we can go two ways depending on how we 

treat these structures. If we look at histograms simply as vectors of data, we can apply 
any method of vector matching. However, the more appropriate is the probabilistic 
approach. In this case, we can treat each entry of the histogram as a discrete value of a 
probabilistic density function. Thus, matching two histograms is equivalent to match-
ing two probabilistic densities [16]. 
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Fig. 4. Comparison of rotated versions of a sign and their phase histograms. Rotation of a sign 
denotes horizontal modulo-shift of its phase histogram (each containing 360 bins). 

Let us assume that we have two histograms, represented as vectors a and b, each 
consisting of N data, i.e. a={ai}1≤i≤N and b={bi}1≤i≤N. The two probabilities associated 
with a and b can be approximated respectively as follows: 
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( )
1

/ /
N

i i k i
k

P a a a a A
=

≈ =∑ , and ( )
1

/ /
N

i i k i
k

P b b b b B
=

≈ =∑ . (19) 

The first tested was the Minkowsky measure which takes on the following form: 

( ) ( ) ( )
1

,
1

,
N rr

M r i i
i

D P a P b
=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑a b . (20) 

Further, the Kullback measure DK was tested, which is defined as follows [3]: 

( ) ( ) ( )
( )1 1

1
, log log log

N N
i i

K i i
i ii i

P a aB
D P a a

P b A A b= =
= = +∑ ∑a b  (21) 

where A and B are defined in (19). It is also assumed that for all i: P(ai)≠0, P(bi)≠0. 
The other distance that was tested in our experiments is based on an approximation 

of the χ2 distribution. It is given as follows: 

( ) ( ) ( )
( ) ( )2

2

1

,
N

i i

i i i

P a P b
D

P a P bχ
=

−⎡ ⎤⎣ ⎦=
+∑a b , assuming P(ai)+P(bi) ≠0. (22) 

Dχ2 has a nice feature of boosting response (i.e. lowering value of Dχ2, in effect) ob-
tained for relatively larger values of P(ai) and P(bi). This is very desirable since, intui-
tively, larger probabilities convey more important information. 

However, during experiments we noticed a necessity to support highly probable 
phase orientation with simultaneous suppression of improbable values, which are 
mostly due to noise and some local orientation with minimal support. For this purpose 
we propose a modification of (22) in which the denominator is also squared 

( ) ( ) ( )
( ) ( )

2

1

,
N

i i
H

i i i

P a P b
D

P a P b=

⎡ ⎤−
= ⎢ ⎥+⎣ ⎦
∑a b , for all P(ai)+P(bi) ≠0. (23) 

Due to its properties DH was used in the presented experiments. 

5   Experimental Results 

The code was written in C++ in Microsoft Visual 6.0. Experiments were performed 
on the IBM PC with Pentium IV 3.4GHz, 2GB RAM. The two data bases were used: 
The patterns in the first DB, depicted in Fig. 7a, were cropped from the real scene 
examples. The second DB was created from a drawings in a formal specification of 
TSs [17]. These are depicted in Fig. 7b. 

Fig. 5 presents experimental results of detection and classification of two road 
signs in a real image. Shapes detected by the window growing technique are visible in 
Fig. 5b; Areas of the stick tensor of the pictograms are visualized in Fig. 5c,d. 
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Fig. 5. Experimental results of detection and classification of the two road signs in an image 
(a). Detected shapes by the window growing technique (b). Areas of the stick tensor of the 
pictograms (c,d). Matched histograms of the top sign (e,f) and bottom sign (g,h). An observed 
sign and a corresponding sign found in the data-base (from real examples) (i,j) and (k,l).  

   
a b c 

 
    

d e f 

Fig. 6. Recognition results of a prohibition sign “No right turn” (a). Histograms of the test sign 
and a corresponding sign in a data base (b,c). A map of the stick tensor (d). Test pattern from 
the input image (e), and system response from the data base (f) – let’s notice the differences.  
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Matched histograms of the top sign are presented in Fig. 5e,f, and of the bottom 
sign in Fig. 5g,h. The sign of a scene and a sign found in the data base (containing 
prototypes from real examples) are in Fig. 5i,j and in Fig. 5k,l, respectively. 

Fig. 6 depicts results of recognition of a prohibition sign “No right turn”. Histo-
grams of the test sign and a corresponding sign in the data base are in Fig. 6b,c. A 
map of the stick tensor in Fig. 6d. Test pattern from the input image are shown in Fig. 
6e, and system response from the data base in Fig. 6f.  

 

 a  b 

Fig. 7. Two data bases used in our experiments. The DB from (a) is constructed from proto-
types cropped from real traffic scenes. The DB in (b) is created from the formal specification of 
the road signs, given in [17]. 

Parameters of the detector with adaptive window are discussed in [4]. Here we re-
port only results of the recognition with the phase histograms. Two groups of circular 
signs were used: the prohibition signs (group “B”) and obligation signs (“C”). Quality 
is measured with the rate of true positives, which are presented in Table 1. The tests 
were obtained from approximately two hundreds of real traffic scenes. 

It is interesting to compare quality of the proposed method with the similar method 
of orientation histograms which is based on simple edge detection [13][10]. Addition-
ally we tested a modified edge-based method in which edges were morphologically 
dilated to increase their support in histograms. The comparison shows better results of 
the proposed method operating in the tensor field (Table 1).  

Table 1. Accuracy of recognition (rate of true positives) for different methods and two groups 
of signs, prohibition “B”, and obligation “C”, at daily conditions 

Method/Group Prohibition signs Obligation signs 
ST based (this paper) 0.88 0.91 

Dilated Edge 0.84 0.85 
Edge 0.73 0.70 

 
As alluded to previously, the proposed method incorporates some kind of edge de-

tection (step 4 in the algorithm). However, it is an average gradient which is less 
prone to noise. The main difference then is that classification is done on phases of the 
stick components of the ST rather than on phases of noisy edges. 
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The obtained results show relatively high precision of the system. Nevertheless the 
systems that utilize neural committee machines operating with deformable models 
shows better quality [4][5]. However, the presented system operates faster (up to 10 
frames per second) and requires much less memory, especially for circular signs. The 
group of obligation signs is smaller than the group of prohibition signs and therefore 
the classification parameters are slightly better for the former (see Table 1). 

6   Conclusions 

The presented method for traffic signs recognition is very fast and accurate. It is also 
highly tolerant to the small occlusions, translations, rotations, and symmetrical change 
of scale. This feature is very important due to imprecision of the detection module. 
When matching phase histograms it is important to gather statistically sufficient evi-
dence of features. This means that the prototype images, as well as the matched ones, 
have to be large enough. This does not affect much the computation time, since the 
number of bins in the histograms is set separately. In our experiments we noticed that 
size of the matched images should be no less than 100×100 pixels for reliable matching. 
Number of the histogram bins controls resolution of the acquired orientation levels. This 
should not exceed the precision of the ST phase detector. Our experiments show that a 
sufficient number of bins is in the range of 180-360, i.e. the resolution from 2-1°. The 
method works fine with different lighting conditions such as day, night or rain condi-
tions. Small occlusions are also tolerable, especially if they do not occlude significant 
area of a pictogram. The other main conclusions are summarized below: 

1. It is not necessary to register test images. However, a slightly better results are 
obtained if they are registered. 

2. The method is more precise than orientation histograms from edge detectors 
(However, it was compared only for the TSs classification problem). 

3. Invariance to translation, rotation, and scale is necessary due to inaccuracy of the 
detection module (here the window growing technique is proposed for detection). 

4. The method is not as precise as the deformable models. However, it requires much 
less memory and is faster (especially for rotation). 

5. Four histogram matching measures were tested. The proposed new chi-square-
square-based measure (23)  performs the best. This is caused by promotion of the 
matches of the more numerous bins, i.e. the more probable features. To cope with 
potential rotations of the signs, the modulo shifted matching method was 
implemented. This means that modulo shifted versions of the prototype histograms 
are compared, and the best one is reported as a winner. Thus, as a side product we 
obtain a value of rotation of the recognized sign. 

6. One threshold value is necessary. However, it is not very sensitive. 
7. Sufficient number of bins should be in the range of 180-360. 
8. Good results are obtained with the Farid 3x3 tap filters [9]. For these, hardware 

implementation is relatively cheap. 
9. Good results are obtained for images of size 100x100 or higher. In such images 

the evidence is statistically sufficient for reliable classification. This can be 
obtained from smaller images in the registration process by affine scaling. Two 
data-bases were tested: one, created from the formal specification of the TS, the 
second, created from the ten examples of real signs. 
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10. The simplicity of the classification stage has a great influence on the total 
response time of the system (i.e. detection and classification), which is in the order 
of 90 ms per sign (resolution: 320×240). This is a very good result especially 
when compared with other similar systems [5]. 

Nevertheless, the method is not free from some problems. It requires setting of a 
threshold value for the structural places. Although, these is not a very sensitive pa-
rameter, it influences a quality of recognition – if not correctly set, then not all impor-
tant areas can be taken for classification. 
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