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Abstract. Within a camera network, the contribution of a camera to
the observations of a scene depends on its viewpoint and on the scene
configuration. This is a dynamic property, as the scene content is subject
to change over time. An automatic selection of a subset of cameras that
significantly contributes to the desired observation of a scene can be of
great value for the reduction of the amount of transmitted and stored
image data. We propose a greedy algorithm for camera selection in prac-
tical vision networks where the selection decision has to be taken in real
time. The selection criterion is based on the information from each cam-
era sensor’s observations of persons in a scene, and only low data rate
information is required to be sent over wireless channels since the image
frames are first locally processed by each sensor node before transmis-
sion. Experimental results show that the performance of the proposed
greedy algorithm is close to the performance of the optimal selection
algorithm. In addition, we propose communication protocols for such
camera networks, and through experiments, we show the proposed pro-
tocols improve latency and observation frequency without deteriorating
the performance.

1 Introduction

In many applications, the deployment of a camera network provides substantial
advantages over a single fixed viewpoint camera. For example, in scene monitor-
ing, camera networks can alleviate occlusion problems; in gesture recognition,
cues coming from different viewpoints can lead to a more robust decision; in
free viewpoint television, the quality of the rendered intermediate views benefits
from a larger number of cameras.

Camera networks provide rich observation data for all kinds of applications,
but observations among cameras are usually highly correlated when the cameras’
views are overlapping, which results in redundant data during signal processing.
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It is therefore beneficial, and from a practical point of view often necessary, to
have a system that can fully exploit the information available in the network,
while simultaneously keeping the redundancy under control. A possible way of
achieving this is by selecting a limited number of cameras or views and trans-
mitting and storing information only from them. Thus the amount of data that
requires transmission, processing, and storage is greatly reduced and resources
are saved. The recent introduction of “smart cameras” with on-board image
processing and communication hardware allows for a distributed implementa-
tion of such a selection algorithm, hereby reducing the required communication
bandwidth and spreading the computational burden. This is beneficial to the
scalability of the system and can even allow the cameras to exchange informa-
tion via wireless channels.

A selection algorithm for practical camera networks has to deal with com-
putational, latency and bandwidth constraints. In [1], information-driven sensor
querying and constrained anisotropic diffusion routing are proposed to select a
subset of sensors from a general network. However, as shown in [2], in the case
of camera networks, devising the necessary sensor and target models is far from
straightforward. In [3], Yang et al. consider bandwidth and computational issues
when tasking cameras in vision networks that determine the occupied area in an
observed scene. In [4], the authors investigate the selection of cameras for the
synthesis of intermediate views when observing a planar scene while consider-
ing the limited lifetime of battery-powered nodes in a wireless network. Also, a
related topic is treated in [5], where real-time allocation of tasks in networks of
smart cameras is studied.

As our interest lies in the observation of persons in a 3D scene, we focus
on selecting a limited number of cameras from a network such that this subset
constitutes the most complete view of the scene possible for the given number of
selected cameras. In [6], we have proposed to use the occupancy area as a criterion
for camera selection to provide an efficient representation of the observed scene.
However, the proposed method involves a full search through all viable subsets,
and is therefore not scalable to larger networks nor applicable at high frame rates.
In this paper, we propose a greedy algorithm for camera selection and further
discuss the practical issues to operate such a network including the network
communication protocol.

The remainder of the paper is organized as follows: In Section 2 we describe
system setup and assumptions. The algorithm is introduced in Section 3. Section 4
contains the performance evaluation and finally Section 5 concludes the paper.

2 System Setup

The system consists of multiple smart camera sensors that observe a room with
one or more persons inside. The camera sensors are battery powered and can
communicate with each other through wireless channels. The cameras’ positions
and orientations are fixed and calibrated. A base station is deployed to receive
the observations from camera sensors and is responsible for coordinating all
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sensors in the network. We assume that in the network there are N camera
sensors denoted by Ci for i = 1, . . . , N . The complete collection of cameras is
the set C = {C1, . . . , CN} where |C| = N .

We assume that all cameras can exchange information with the base station.
During the operations, each camera first processes the observed images locally,
and then sends its processed information to the base station. The base station
runs the camera selection algorithm based on the received data, and selects a
subset of cameras denoted as S ⊆ C where |S| = n ≤ N . The selection result
is then broadcasted to all the camera sensors, and only the selected cameras
will later send their images to the base station. These images should comprise
the most complete view of the scene possible for the given number of selected
cameras. The subset S contains two types of cameras:

– The key camera: the camera with the view that contributes most to the
desired observation of a scene at a certain time instant. The key camera is
indicated by K.

– The helper cameras: cameras with views that complement the selected key
view, such that the total selected view subset constitutes a significantly more
efficient scene representation than the totality of the available views. The
n − 1 helper cameras are indicated by Wk where k = 1, . . . , n − 1.

Note that S = {K} ∪ {W1, . . . , Wn−1}, and the remaining N − n cameras do
not send any image data.

3 Camera Selection Algorithms

We discuss the details of the key camera and helper camera selection algorithms.
The system diagram is depicted in Fig. 1.

Fig. 1. Block diagram for camera selection



Sub-optimal Camera Selection in Practical Vision Networks 269

3.1 Key Camera Selection

To assign the role of key camera K in the camera network, we run the following
algorithms on each of the smart cameras Ci in the network. The image captured
by the i-th camera at a certain time instant t is denoted by Xi(t). In a first
step, we segment the foreground Fi(t) and the background Bi(t) of the frames
Xi(t) using the method of [7]. Then, we detect the frontal faces in the foreground
regions of the frame with the object detector that was initially proposed by Viola
et al [8] and then improved by Lienhart et al [9]. At each time instant t, the face
detector returns the following values: fi(t) and Ql

i(t) (l = 1, . . . , fi(t)). fi(t) is
the number of faces detected in the frame Xi(t). Ql

i(t) is a measure of the quality
of the lth detected face. The lower this measure, the less certain the detection.
In our implementation, we assume that the number of windows that have passed
all classification stages and that constitute a detected face is such a measure.

To deal with spurious face detections and to obtain smoothness over time, the
decision on the key camera for time instant t not only depends on the current
face detection output, but also on the previous observations. For each camera
Ci, this temporal filtering is implemented as an exponentially weighted moving
average (for t ≥ 2):

Qs
i (t) = α

fi(t)∑

l=1

Ql
i(t) + (1 − α)

fi(t)∑

l=1

Qs
i (t − 1) (1)

where Qs
i (t) is the smoothed face detection output of camera Ci at time instant t

and α is a constant between 0 and 1 that determines the importance of previous
observations. Then, the key camera at time instants t ≥ 2 is

K(t) = argmax
Ci

Qs
i (t) (2)

In the remainder of this paper, we will leave out the time variable t, in order not
to overload the notations.

3.2 Greedy Helper Camera Selection

We present a greedy algorithm that selects among the remaining N − 1 cameras
those w = n − 1 helper cameras {W1, . . . , Wn−1} that add most information to
the image data coming from the already selected key camera.

In [6], we showed that scan-lines can be effective information for camera selec-
tion. At each camera the scan-line is extracted from the silhouettes in the scene.
This scan-line is the projection of the 2D-foreground silhouettes Fi to a 1D-line
(see Fig. 2b). All the cameras send their (run-length coded) scan-lines to the
base station. At the base station, the scan-line information from each camera
is extended in a column-wise manner to a 2D image, such that we get a rough
approximation of the original background Bi and foreground Fi extracted at the
sensor nodes (see Fig. 2c). These approximations are denoted by Bi,sc and Fi,sc.
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(a) (b) (c)

Fig. 2. Example of (a) Background/foreground segmentation (Bi and Fi), (b) scan-
line, and (c) column-wise extended scan-line (Bi,sc and Fi,sc)

We can calculate the occupancy map, which is a 2D raster image, uniformly
distributed in a plane P 2 horizontal to the ground floor of our observed 3D scene:

P 2 = [X1, X2) × [Y1, Y2) ⊂ N
2 and Z = c. (3)

The occupancy map is obtained by intersecting the visual hull reconstructed
from the column-wise extended scan-lines Bi,sc with the plane Z = c [10].

We consider that the occupancy maps are a (very crude) shape approximations
of the objects in the scene. The subset that yields the minimal occupied area is
assumed to provide the most complete view on the scene. Therefore the size of the
occupied area is considered the selection criterion in our algorithm and is denoted
by A(S) where S implies this area is constructed based on the information Bi,sc
for ∀Ci ∈ S.

Let us now assume that the currently activated cameras form the set S. The
algorithm then first combines the key camera along with all currently active
cameras to form a new set S′ = S ∪ K. During the selection processing, we
assume the algorithm has to reevaluate the activity status of at least u cameras.

The proposed greedy selection algorithm has two parts. The first part of the
algorithm greedily removes r cameras one at a time from the set S′, and creates
a new set S′′ which includes the remaining selected cameras. Given the number
u, the number of cameras that will be first removed from the set S′ is

r =
{

u, if |S′| ≤ w,
min (|S′| − w + u, N) , if |S′| > w. (4)

The second part of algorithm then greedily adds w − |S′′| cameras one at a
time to S′′ if w > |S′′|, and we denote the final selection solution as Ŝ. The
pseudo-code of the algorithms are summarized in Algorithm 1 and 2.

Initially, we can start the algorithm with all cameras activated, which means
that S is equal to C. The complexity of the optimal selection is

(
N−1
n−1

)
, and for

the greedy algorithm, the complexity is reduced to O (rN).

3.3 Operation Time Frame

The basic operation time frame is shown in Fig. 3 where different colors indicate
operations on different image frames (i.e., captured at different time instances).
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Algorithm 1. Greedy Selection Algorithm - Removing
Input: S′ (a set of currently selected cameras)
Output: S′′ (a set of cameras after removing)
1: for m = 1 to r do
2: Amin ← inf
3: for each camera Ci in S′ do
4: if Ci �= K then
5: S′ ← S′\{Ci}
6: A ← A(S′), the size of occupancy area given cameras S′

7: if A < Amin then
8: S′′ ← S′

9: Amin ← A
10: end if
11: S′ ← S′ ∪ {Ci}
12: end if
13: end for
14: S′ ← S′′

15: end for
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Fig. 3. The time frame of the basic operation scheme

The sensor nodes first make observations and process the images locally. The
main operations this processing encompasses are background subtraction and
face detection. Then, each node sends its scan-line to the base station. After
receiving the scan-line from all nodes, the base station runs the greedy selection
algorithm and broadcasts the result. Finally, the selected nodes transmit their
images to the base station, after which the nodes start making new observations
for the next frame and a new cycle starts.

From Fig. 3, it can be observed that both the base station and camera nodes
have idle time slots, which increases the interval between observations. In order to
increase the observation frequency, we propose an interleaving scheme as shown
in Fig. 4. In this scheme, the operations on different image frames are interleaved
to minimize the idle time. While the nodes are making observations for Frame 1
(marked by orange in Fig. 4), the base station decides on the camera selection
based on the observations of a previous frame (Frame 0, marked by yellow).
After the selection is completed, each node receives the broadcast from the base
station and the selected ones transmit their image frames (Frame 0), and once
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Algorithm 2. Greedy Selection Algorithm - Adding
Input: S′′ (a set of cameras after removing)
Output: Ŝ (a set of new selected cameras)
1: Ŝ ← S′′

2: for m = 1 to w − |S′′| do
3: Amin ← inf
4: for each camera Ci in C do
5: if n /∈ S′′ then
6: S′′ ← S′′ ∪ {Ci}
7: A ← A(S′′), the size of occupancy area given cameras S′′

8: if A < Amin then
9: Ŝ ← S′′

10: Amin ← A
11: end if
12: S′′ ← S′′\{Ci}
13: end if
14: end for
15: S′′ ← Ŝ
16: end for
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Fig. 4. The time frame of the interleaving operation scheme
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Fig. 5. The time frame of the advance operation scheme

the image frames (Frame 0) are sent, each node starts sending the scan-line of
frame (Frame 1).

Although the interleaving operation scheme improves the observation fre-
quency, it increases the delay between the observation of a frame and the same
frame received at the base station. To decrease this delay, we propose the ad-
vance operation scheme shown in Fig. 5. In this scheme, the camera nodes receive
selection results from Frame 0 (marked by yellow in Fig. 5) right after making
the observations for frame (Frame 1, marked by orange). Instead of sending the
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image frames (Frame 0) as in the interleaving scheme, the selected nodes now
transmit image frame (Frame 1). In other words, we assume that the difference
between successive observations is small. Under this assumption, the base sta-
tion can select the current camera set based on the previous observation. This
scheme is useful when the scene changes in the room are not fast, resulting in
similar selection results between successive observations.

4 Performance Evaluation

We evaluated the performance of the proposed greedy camera selection algorithm
in Section 3.2 by comparing it to its full search counterpart, and assessed how the
application of the advance operation scheme proposed in Section 3.3 influences
the accuracy of the system.

Experimental data to test the methods on was recorded using the whole set C
of N = 10 cameras. Five of these were Logitech QuickCam Pro 5000 cameras and
the five others were Logitech QuickCam Sphere MP. The cameras were calibrated
using the method for multi-camera self calibration [11]. Sequences were recorded
at 5 frames per second and at a resolution of 352×288. Only the starting points of
the recordings were synchronized. The parameters of the background/foreground
segmentation and the face detection are summarized in Table 1. We allowed
the background/foreground segmentation algorithm to build up its background
model during 30 frames at the start of each sequence. These first 30 frames of
each sequence are not considered in the experiments in this section. The voxel
volume for visual hull reconstruction was [0, 200)× [0, 100)× [0, 50) ⊂ N

3 where
each voxel is a cube with edges of 0.04 meter. The plane P 2 is the plane in
the voxel volume at Z = 1.29 meter. Four scenarios were considered in our
experiments, with number of people from one to four.

Table 1. Parameters for background/foreground segmentation and face detection

Parameters Background/Foreground Segmentation

L (color comp.) 128 L (color co-occ.) 64
N1 (color comp.) 15 N1 (color co-occ.) 25
N2 (color comp.) 25 N2 (color co-occ.) 40
α1 0.1 α2 0.005
α3 0.1 T 0.9
δ 2 MINAREA 15.0
UPDATE TRESH 0.5

Parameters Face Detection

scale factor 1.10
min. number (−1) of neighbors 2
min. window size 5 × 5
classifier training window size 20 × 20
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Fig. 6. Example of the selection of 6 out of 10 cameras for a 2-person scene. The views
of the 10 cameras (C1, . . . , C10) are shown. In the bottom-right corner, we depicted a
top view of the scene which shows its geometry and the positions of the cameras and
persons. The selected key camera is marked by a magenta bounding box. The helper
cameras are marked by the cyan bounding boxs.

Fig. 6 shows a visual example of the selection of n = 6 cameras from 10 for a
2-person scene. We display the views of all the cameras C1, . . . , C10. To give an
insight into the system setup, we depicted in the bottom-right corner a top view
of the scene, which indicates the relative positions of the ten cameras and the
persons in the scene. The selected key camera is marked by a magenta bounding
box. The detected face is indicated by a red circle. Due to the current and previ-
ous face detections, this camera was chosen to be the key camera (according to
Eq. (2)). The helper cameras are marked by a cyan bounding box. We can ob-
serve from the displayed views that the selected subset gives us a complete view
of the persons, and that the non-selected cameras add redundant information.

4.1 Accuracy Evaluation

We evaluated the accuracy of the proposed greedy algorithm. We first recon-
structed the 3D visual hull H(Ŝ) based on the foregrounds Fi from the cameras
in the greedy solution set Ŝ such that ∀Ci ∈ Ŝ. We also reconstructed the 3D
visual hull H(C) based on the foreground Fi from all cameras Ci ∈ C. The
visual hull H(C) is considered the correct shape of the objects, and is served
as a performance baseline. Finally, we reconstructed the 3D visual hull H(Ŝopt)
based on the foreground Fi from the cameras in the optimal solution set Ŝopt,
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Table 2. Mean voxel difference for the optimal and greedy selection methods for four
different scenarios. The average voxel volume of H(C) is shown in the third column.

Scenario # frames average voxel volume d̂optimal d̂greedy

1 person 1527 653.66 786.42 748.21
2 persons 2100 2530.20 830.03 859.85
3 persons 789 4799.33 1887.43 1792.36
4 persons 266 8806.56 1754.52 1639.69

where the optimal solution selects n − 1 helper cameras which give the minimal
occupancy area.

Given the reconstructed visual hulls at each time instance, we calculated the
number of different voxels, denoted dgreedy(H(Ŝ),H(C)), which are the differ-
ences between the greedy solution visual hull H(Ŝ) and the benchmark visual
hull H(C). For the optimal solution, we also calculated the number of different
voxels and denote it by doptimal(H(Ŝopt),H(C)).

In Table 2, we compare for the greedy and optimal methods the mean value
of the number of different voxels, denoted by d̂greedy and d̂optimal, over all frames
of the sequences with a certain scenario. The lower this number, the higher the
quality of the observation with the selected camera subset. The number of frames
available per scenario is indicated in the second column, and the average voxel
volume of H(C) in the third column. In these experiments, n = 6 cameras were
selected among 10 cameras, and in each time frame at least u = 2 cameras were
updated.

We observe that the optimal and greedy methods yield similar results. In some
cases, the greedy method even outperforms the optimal one, despite its smaller
computational complexity. This is possible because the occupied area is only
an approximation of the shape of the people present in the scene. The subset
of cameras that minimizes the occupancy area does not necessarily lead to the
solution that gives the best visual hull.

4.2 Reduction of Delay

When the advance operation scheme (Fig. 5) is applied, the selection decision
at time instant t is based on observations of the previous time instant t − 1.
In order to evaluate the impact of this shift on the accuracy, we process the
observations in a similar way as in the previous section. Only now, at time instant
t the foreground silhouettes Fi from which the visual hull was reconstructed for
accuracy evaluation were selected based on the selection of the previous time
instant t − 1.

The experimental results are shown in Table 3 where n = 6 cameras were
selected among 10 cameras, and in each time frame at least u = 2 cameras were
updated. Comparing Tables 2 and 3, the accuracy is comparable in both cases.
Therefore, the introduced delay has almost no impact on the performance.
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Table 3. Mean voxel difference for the optimal and greedy selection methods with one
frame delay. The average voxel volume of H(C) is shown in the third column.

Scenario # frames average voxel volume d̂optimal d̂greedy

1 person 1517 654.12 759.24 727.67
2 persons 2090 2533.76 811.79 842.98
3 persons 785 4811.50 1775.05 1694.33
4 persons 265 8822.06 1644.16 1534.66
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Fig. 7. Mean voxel difference d for the optimal and greedy selection methods for four
different scenarios as a function of the delay k between the observation and the selection
decision

We also investigated the delay impact on the performance when the delay k be-
tween observation and selection decision is more than one frame. The performance
over different delays k is plotted in Fig. 7. The figure shows that a delay has a sim-
ilar impact on the optimal and the greedy methods. It can also be observed that
except for the four persons scenario, delays of up to 5 frames result in only a minor
drop in quality. Therefore, we can further reduce the data transmission by trans-
mitting the scan-lines every k frames instead of all frames. In other words, we can
use the same selection results for every k frames for small k.

5 Conclusions

A greedy camera selection algorithm was proposed for real time network opera-
tion. The selection is based on the scan-line information that requires low data
rate transmission, and therefore the algorithm is suitable for wireless networks.
We used 3D shape reconstruction to compare the proposed greedy algorithm and
optimal selection algorithm. Experimental results showed that the proposed algo-
rithm provides a performance very close to the optimal results. Also, two different
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network operation protocols were proposed. The first scheme aims to improve the
sensor observation frequency and the second scheme improves the delay latency
between view observation and image transmission. Experimental results also veri-
fied that the proposed protocols improve observation frequency and latency with-
out degrading much the performance of the 3D shape reconstruction.
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