
J. Blanc-Talon et al. (Eds.): ACIVS 2008, LNCS 5259, pp. 254–265, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Real-Time Hough Transform on 1-D SIMD Processors:
Implementation and Architecture Exploration

Yifan He1,2, Zoran Zivkovic1, Richard Kleihorst1,
Alexander Danilin1, Henk Corporaal2, and Bart Mesman2

1 NXP Semiconductors, the Netherlands
{yifan.he,zoran.zivkovic}@nxp.com

2 Technische Universiteit Eindhoven, the Netherlands
y.he.1@student.tue.nl, h.corporaal@tue.nl

Abstract. In the first part of this paper, an improved slope-intercept like represen-
tation is proposed for implementation of Standard Hough Transform (SHT) on
SIMD (Single-Instruction, Multiple-Data) architectures with no local indirect ad-
dressing support. The real-time implementation is realized with high accuracy on
our Wireless Smart Camera (WiCa) platform. The processing time of this ap-
proach is independent of the number of edge points or the number of detected
lines. In the second part, we focus on analyzing the differences between the SHT
implementations on 1-D SIMD architectures with and without local indirect ad-
dressing. Three aspects are compared: total operation number, memory ac-
cess/energy consumption, and memory area cost. When local indirect addressing
is supported, the results show a considerable amount of reduction in total opera-
tions and energy consumption at the cost of extra chip area. The results also show
that the focuses for further optimization of these two architectures are different.

1 Introduction

The Hough Transform (HT) [1, 2] is a well-established and robust algorithm to locate
straight lines in images in presence of noise and occlusion. In general, two sets of pa-
rametric representation are used for Standard Hough Transform (SHT): slope-intercept
based [1], and (ρ, θ) based [3]. The main difference of the first representation with re-
spect to the second is its unbounded parameter space.

The Hough Transform can cope with noise, gaps in outlines and partial occlusion,
even in complicated backgrounds. However, the implementation of SHT requires
massive computation, large memory space and high bandwidth. Without parallel
processing on a proper platform, it can be hardly implemented in real-time, especially
with high accuracy on high-resolution images. Fortunately, the SIMD architecture fits
all the requirements. The intrinsic parallelism due to the pure pixel-based feature of
the HT makes it extremely suitable for this kind of architecture.

In the first part of this paper, an improved slope-intercept like representation for SHT
is proposed, which is a very efficient way to implement SHT on 1-D SIMD architec-
tures with no Local Indirect Addressing (LIA) mode (i.e. all processor elements access
the same memory row at one time). The real-time implementation is realized with high
accuracy on our Wireless Smart Camera (WiCa) platform [4], which is a powerful im-
age/video processing platform, containing Xetal [5] (a 1-D SIMD processor) as the

 Real-Time Hough Transform on 1-D SIMD Processors 255

main component (see Fig. 1 and 2). The processing time of this approach is independent
of the number of edge points or the number of detected lines. With the proposed novel
Hough Space (HS) structures and the efficient image “rotation” mechanism, all lines can
be detected in real time with VGA format (30 fps) as input.

After that, the proper SIMD architectures for SHT are exploited. We focus on
comparing the differences between SHT implementations on 1-D SIMD architectures
with and without LIA. Total operation number, memory access/energy consumption,
and area cost are elaborated in detail. The results show that when the LIA is sup-
ported, a considerable amount of reduction in total operations and energy consump-
tion is achieved at the cost of extra chip area (see Section 3.4). We also show that the
further optimization focuses for these two architectures are different. The architecture
without LIA benefits a lot from parallel processing of the processing array and control
processor, while the architecture with LIA requires extra logic (see Section 3.5) to re-
duce the overhead for preparing the edge points.

2 The Efficient SHT Implementation

The complete HT for line detection can be divided into a set of subtasks: a) edge de-
tection; b) voting; c) Hough Space post-processing; d) detected line displaying. The
Canny operator [6] is used in our implementation for edge detection. As this step is
not the focus of this paper, only steps b) ~ d) are discussed.

2.1 Basic Implementation

Proposed Equation: b = x + y*m for 1-D SIMD Processors without LIA
We propose the b = x + y*m, −1.0 ≤ m ≤ +1.0 representation according to the character-
istics of the 1-D SIMD architecture. Note that, here m-b does not have the same meaning
as the standard slope-intercept representation mentioned in Section 1. Comparing with
Li’s method [7], one obvious improvement in this representation is that only a one-cycle
MAC (Multiple-Accumulate) instruction is required instead of multiple cycles due to
the removal of the tgθ calculation. The calculation accuracy is also improved (Note
numbers are represented by limited number of bits in hardware. More calculation on the
same data means more accuracy loss. This is especially visible in an embedded processor.)

 Fig. 1. The WiCa Platform Fig. 2. Block Diagram of the Xetal-II Architecture

256 Y. He et al.

In our method, a line-based fashion is adopted instead of a multi-pass processing on
the same image like Li did [7]. HS is stored in the line memory of the SIMD processor,
and each line memory in the HS stands for a “Hough Line”, which has the same m value
but different b values in each cell. The voting procedure is done as follows: When an
input video line is received (after edge detection step, the pixel value is either 0 or 1),
we start from m = 0, which merely adds the video line to the corresponding Hough Line
(since b = x). This process costs only 1 cycle in the Xetal processor. After that m is in-
creased by ∆m (say 0.02, roughly 1°), and new shifting amount (h-y)*m is calculated.
Here h is the image height, and y is the index of current row. We call it a “hitting the
bottom” method, as all the edge points on the same line will vote to the cell, whose x
coordinate is the same as that of the cross point where the line hits the image bottom
(See Fig. 3). (Note that we can also use y*m. Then the physical meaning becomes “hit-
ting the top” instead of “hitting the bottom”). The same video line is shifted to the right
(for m > 1), and a copy is shifted to the left (for m < 0). Votes (the shifted video line) are
added to the corresponding Hough Line. This process is continued till m reaches the last
value (1.0). Then a new video line is read in, and the current video line is sent to the
LCD screen for displaying, or stored for other following processing.

After processing the last video line, the whole HS is built in the line memory, and
post-processing can be applied on it. As we only process a limited number of m val-
ues with step ∆m, a practical line could fall in between two processed m values with
its voting spreading among several neighboring cells instead of concentrating into
one. These lines can still be captured by adding the votes of cells in HS to their
neighboring ones. With local peak detection and a global threshold, target lines are
detected. The final step is to display the detected line on the LCD screen. An inversed
process of the voting procedure is used. Instead of shifting the input video lines, Hough
Lines are shifted to reproduce the detected lines. With this method, lines can be dis-
played on the screen efficiently, independent of the number of total detected lines.

im

m

b

() *b x h y m= + −

* ih m

α β

Fig. 3. Proposed implementation method on
an SIMD processor

Fig. 4. Some lines are “missing” if we only ap-
ply the basic approach

2.2 Capture All Lines in Every Half Plane

By applying the basic implementation on a frame and its 90°-rotated version (Twin
HT [8]), all lines are expected to be detected. The precondition is that every pass must

 Real-Time Hough Transform on 1-D SIMD Processors 257

be able to capture all of the lines in its half-plane (i.e. [-45°, +45°] for the original
pass, and the other half for the rotated pass). However, this precondition does not hold
true if we only apply the basic method introduced in Section 2.1. Fig. 4 gives an ex-
ample: Two lines, which are within the range of [-45°, +45°], are “missing” as they
can not “hit” the image bottom.

In order to solve this problem, a property of lines in the half-plane is exploited: for
any line between -45° and +45° in an image of size N×N, it will either “hit” the top or
the bottom border, or “hit” both. Thus, a “hitting the top” concept is also introduced
together with the “hitting the bottom” concept. For every pass, Dual Hough Spaces
are built, which are called “Top HS” and “Bottom HS” respectively. Fig. 5 depicts
this idea. Using this approach, the problem described in Fig. 4 can be solved. Another
solution we proposed is Interleaved Hough Space, refer to [9] for details.

2.3 Twin Hough Transform with Efficient Image “Rotation”

In order to implement the full-plane HT, only one extra pass on the 90°-rotated image
is required. However, rotation of a whole image usually costs too much time, which
makes it a main bottleneck in the twin HT concept. In our implementation, a very ef-
ficient “rotation” approach is proposed. The WiCa platform, as well as many other
embedded systems, contains an off-chip memory to supply extra data storage. An ef-
ficient image rotation can be achieved with the help of this off-chip memory. During
processing the first pass on the input frame, the video lines are stored into this memory
with a normal write mode (store the frame from left to right, and top to bottom). This is
done in parallel by the control processor, so the transfer time is hidden to the HT.
When processing the other pass on the 90°-rotated image, image data is read back with
a different mode (from bottom to top, and left to right). Thus, the rotated image data is
acquired without really rotating the whole image in the memory. This “rotation”
mechanism is very efficient, as the transfer time for reading is also done in parallel
with the remaining part of the program. In [9], more information about the full im-
plementation and applications are discussed.

im

m

b

m

b

im

Fig. 5. Using both “hitting the top”
and “hitting the bottom” methods

Fig. 6. These are the snapshots from the real-time
demos. Detected lines are overlaid with green color on
the (white) edge image.

258 Y. He et al.

Thus, the full implementation of SHT is realized on the WiCa platform. Fig. 6 pre-
sents some snapshots from the real-time demos on our WiCa platform. The proposed
implementation has the following features: 1) One instruction to generate the vote; 2)
LIA is NOT required (to support local indirect addressing, both area and complexity
of the SIMD processor increases due to the extra logic); 3) Content Independent
(processing time are independent of the number of edge points or detected lines); 4)
Efficient Shifting and Image “Rotation”; 5) Efficient Line Displaying, which is inde-
pendent of the number of total detected lines.

3 1-D SIMD Architecture: Global or Local Indirect Addressing

As a follow up research of [9], we focus on exploring the proper 1-D SIMD architec-
ture for SHT in this paper. For an SIMD processor, it is a fundamental design choice
whether to support LIA or not. When the LIA is supported, different PEs can access
different memory rows at one time, which means more data-access freedom. How-
ever, the hardware requirement is that every PE needs its own memory bank and ad-
dress generator (AG), which increases the chip area (see Section 3.4). If LIA is not
supported (Global Indirect Addressing, GIA), then only one AG and a single big
memory bank are required. All PEs can only access the same memory row at one
time, which is sufficient enough for many low-level image processing algorithms (e.g.
filter), but could be less flexible for others. Fig. 7 depicts the two architectures.

Hough Transform can be implemented on both architectures based on their differ-
ent characteristics. In this section, we will analyze the differences between the two
SHT implementations on them. Three aspects are compared: total operation number,
memory access/energy consumption, and memory area. Optimization focuses are also
proposed based on the comparison results.

 (a) (b)

Fig. 7. (a) Local Indirect Addressing; (b) Global Indirect Addressing

3.1 SHT on 1-D SIMD with LIA

In this section, we will briefly introduce the implementation method when LIA is
supported. As only the edge/feature points contribute to the HT, we can broadcast the

 Real-Time Hough Transform on 1-D SIMD Processors 259

coordinates of the edge points one by one to each PE, then apply the HT (either <b,
m> or <ρ, θ> space), schematically shown in Fig. 8. Suppose <ρ, θ> space is used, the
procedure is shown as follow: At the initial step, each PE is assigned a different θ value,
say θj. The calculated (cosθj, sinθj) pair is sent and stored in the local registers of each
PE. After that, the HT step starts. The coordinates of the edge point i (xi, yi) are broad-
casted to each PE. ρi is calculated according to the formula ρi = xi *cosθj + yi*sinθj.
Then the value ρi is mapped to the row address, where the corresponding Hough Cell
is kept. The final step is to update the Hough Cell by adding 1.

A similar method (<ρ, θ> space) is used in [10] to map SHT onto IMAP. Here, we
show that with LIA, no matter what kind of parameter space is chosen (<b, m>, <ρ,
θ>, or any other), the SHT implementation are identical. They can be considered as
the derivation from the general formula given below, in which f and g are two func-
tions of one parameter, and h is the other parameter. The only difference in the im-
plementation code is the initial step: For <ρ, θ> space, different (cosθj, sinθj) pairs are
stored, while for <b, m> space, 1 or different mi are stored.

 General Formula: h = x * f + y * g

 <ρ, θ> space: h = ρi, f = cosθi, g = sinθi

 <b, m> space: h = bi, f = 1 (half of the PEs), mi (others),
 g = mi (half of the PEs), 1 (others)

Before comparing and analyzing the two different implementations and architec-
tures, some assumptions are made, which are listed below:

 · Pixel values of input image is either 0 or 1 (after edge detection)
 · Same size of HS (same overall granularity)
 · Comparison is based on Basic Operations
 · Hardware Loop is used in the control processor
 · Delay Slot caused by instructions like jump, load, etc. can always be filled
 · Read and write access to the memory dissipates the same amount of energy

Edge detection is considered as a preprocessing step. Here the bit width of the pixel
is irrelevant. The second assumption is also valid. The comparison should be based on
the same overall accuracy. Though we have Xetal architecture and instruction set as
our reference, the comparison on basic operations (ALU, Load/Store, Branch, etc.)

Fig. 8. SHT Implementation (LIA Supported)

260 Y. He et al.

is still preferred. Otherwise, different ideas about possible combination and optimiza-
tion would complicate the analysis, which leaves the results less convincing. Hard-
ware-Loop is widely used in the modern DSP processors [11]. Xetal-II also supports
hardware loop. With this technique, a constant-iteration loop has zero overhead. The
fifth assumption does not always hold, as there are not always enough independent in-
structions to be filled in the delay slot. However, we still consider it valid for simplic-
ity. In practice, memory read and write consume different amounts of energy. But for
high-level estimation, they are usually not differentiated, especially when they appear
in pairs (as in our case).

The symbols used in the following sections are listed here.

· N: Number of processing elements (PE)
· M: Number of different m values
· P: Percentage of the edge points in an image

Comparison and analysis below start with the image resolution of N×N (N is the
same as the number of PEs). Both algorithms scale equally for higher resolutions. Sup-
pose the high resolution is kN × kN (k is an integer), and the same detection accuracy is
required. For the first implementation (GIA), the image can be firstly divided into k2 N×N
same parts, then processed one by one. So both the operations and memory accesses be-
come k2 times. For the second implementation (LIA), the total operation count and
memory accesses also increase k2 times, as they depend on the total number of pixels.

3.2 Number of Operations Comparison

Xetal-II is used as the reference architecture in the following comparison. The total
number of PEs is 320 (N = 320), data is 16-bit wide, and frame memory has 2048 lines.
Fig. 9 presents the main code of SHT implementation (basic Hough Space) when only
GIA is supported. Operations with prefix ‘G_’ are Global Control Processor (GCP, sca-
lar processor) operations; the others are Linear Processor Array (LPA, vector processor)
operations. The outermost loop repeats for every image line. The second loop is for dif-
ferent values of parameter m. The innermost (Label_1) is the shifting loop. For a spe-
cific |m| value, the shifting distance (dist) is calculated. Then two copies of the input im-
age line either shift to the right (-m) or to the left (+m) until the destination is reached
(shift = dist). On average, the total shifting distance per input image line equals to N/2.

The full implementation requires two passes of Dual-HS together with image “rota-
tion”. The image “rotation” is negligible (see Section 2.3). Thus, the total operation
number for a whole image is given by equation (1). When M = 160 (the same HS granu-
larity as the other implementation) and N = 320, the total operation count is 2,201,600.

OpGIA = (15M + 14N) * N (1)

When LIA is supported, the approach introduced in Section 3.1 is chosen, which
broadcasts the coordinates of the edge points. Fig.10 depicts the processing for the
edge points, which is the general code (the practical code could be slightly different).

So, for every edge point, there are only 9 operations. However, this does no include
the selection of edge points and maintaining the coordinates. We will show later that
these non-HT parts even dominate the total number of the operations. Fig. 11 presents

 Real-Time Hough Transform on 1-D SIMD Processors 261

Fig. 9. Main code of SHT when only GIA is supported

Fig. 10. Main code of SHT when LIA is supported (edge-point part)

the whole piece of the code. According to it, the overhead is 7 operations. The total
number of operations for a whole image is given by equation (2). When N = 320, OpLIA
is 716,800 + 921,600*P.

OpLIA = 16*P*N2 + 7*(1-P)*N2 (2)

Fig. 12 depicts the comparison of the operation number between these two imple-
mentations (GIA and LIA). It shows that when LIA is supported, the total amount of
operations is reduced significantly, even when all pixels are edge points (P = 100%).
This is mainly because when only GIA is supported, an extra loop is required to cover
all different m values. And the innermost shifting loop costs many operations too (Note
that LIA is independent of the number of m or ρ values). When P = 5% (a typical case),

262 Y. He et al.

Fig. 11. Main code of SHT when LIA is supported (whole)

0 10 20 30 40 50 60 70 80 90 100
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

6 Operations

P (%): Percentage of Edge Points

N
um

be
r

of
 O

pe
ra

tio
ns

M = 100

M = 160

Fig. 12. Number of operations for both implementations

OpGIA is 2.9 times of OpLIA. Another important result is that in the implementation with
LIA, more than 80% of the operations are consumed by the non-HT part.

3.3 Memory Access and Energy Consumption Comparison

Both methods need to read the input image, this is a negligible part compared to the
total memory energy consumption. So we focus on the memory energy consumption
cost by the HT part. According to Fig. 9 and 10, the number of memory accesses of
the first implementation (GIA, N*16bit read or write) is defined by equation (3),
while the number of memory access of the second implementation (LIA, 16bit read or
write) is defined by equation (4).

MAGIA (N*16bit read/write) = 8*N2 + 8*M*N (3)

MALIA (16bit read/write) = 2*N*P*N2 (4)

The depth of memory bank is set to 2048, the same as we have in Xetal-II. The mem-
ory energy consumption for LIA (single-port SRAM, under CMOS90LP technique and

Local Indirect Addressing

Global Indirect Addressing

 Real-Time Hough Transform on 1-D SIMD Processors 263

84MHz) is 40.1pJ/access (16bit read/write). As memory with word-width of 5120
(320*16bit) has to be custom-designed, and the energy consumption depends on the
process, here we choose the practical solution used in Xetal-II as a comparison. In
Xetal-II, every 8 PEs are assigned a memory bank. So a total of 40 memory banks with
word-width of 128bits are used. The energy consumption of a 128bit×2048 memory
bank is 179.2pJ/Access under the same condition. So when access the same amount of
data, 44% of energy is saved. If we also take the energy consumption on AGs and many
address wires of LIA into consideration, the number is even bigger (Less energy con-
sumption per unit access is an important merit of GIA). We can save more energy/unit-
access when wider word-width is used. However, the speed for further reduction slows
down rapidly according to the data we have. This is also one of the reasons that we use
128bits memory bank in Xetal-II.

Though GIA consumes less energy/unit-access, the implementation of SHT on it still
consumes more total energy. This is because the total amount of memory accesses of the
implementation on GIA depends on the number of different m values, while the imple-
mentation on LIA does not. The total energy consumption of both implementations is
given in the following equations. The comparison is depicted in Fig. 13 (N = 320). When
P = 5% and M = 160, the implementation with GIA consumes 66 times more energy.

EGIA (word-width = 128 bits) = 179.2*N/8*(8*N2 + 8*M*N) pJ (5)

ELIA (word-width = 16 bits) = 80.2*P*N3 pJ (6)

3.4 Memory Area Comparison

Under CMOS90LP technique, 84MHz frequency, and N = 320, the total frame mem-
ory areas of these two architectures are: 25.92 mm2 (LIA, word-width = 16 bits), and
18.68 mm2 (GIA, word-width = 128 bits). The architecture with only GIA costs less
memory area (28% less in this case). If the area of AGs and wiring is also taken into
consideration, GIA can save even much more.

3.5 Optimization Focuses

From the analysis above, we found that when LIA is supported, the implementation
requires fewer operations and consumes less energy. However, the area increases no-
ticeably, as its memory layout (1 memory-bank/PE) costs more area, and the frame
memory occupies a large percentage of the total chip area. Another interesting result
we found is that the optimization focuses for the two implementations are different.

LPA/GCP in Parallel: Architectures with only GIA can benefit from parallel proc-
essing of Linear Processor Array (LPA) and Global Control Processor (GCP). This is
because both LPA and GCP operations are required during processing HT. By analyz-
ing the code in Fig. 9, a 34% reduction of processing time is seen when GCP and LPA
are in parallel (when M =160). However, for SHT, architectures with LIA can hardly
benefit from parallel processing of LPA and GCP, especially when P is small. This is
because only edge points require LPA operations, and they usually account for a very
small part. When P = 5%, only a 4.7% reduction is reached (refer to Fig. 10 and 11).

Optimization for Non-HT Part: We notice that when P is small, more than 80% of the
operations for mapping SHT onto the SIMD processors with LIA are due to non-HT proc-
essing (picking up the edge points, and maintaining the x and y coordinates, see Fig. 11).

264 Y. He et al.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9
Energy Consumption

P (%): Percentage of Edge Points

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

M = 160

M = 100

Fig. 13. Energy consumption for both implementations

So optimization should focus on reducing these non-HT operations. Techniques like
automatic address increment can be used. Fig. 14 shows the ASIC logic for automatically
increasing the load address, and for maintaining the pixel coordinates. With this extra
logic, more than 60% of the processing time can be saved (P = 5%). Table 1 presents the
overall comparison results. The final design choice depends on the target applications.

Fig. 14. Logics for maintaining the pixel coordinates and address

Table 1. Comparisons between global indirect addressing and local indirect addressing for SHT

 Pros Cons

Global Indirect
Addressing

(b = x + m · y)

1) independent of No. of edge points
(constant processing time)
2) less area cost
3) less memory energy consumption per
unit-access
4) fewer line memories for HS (same granu-
larity)
5) operations considerably reduced when
LPA/GCP in parallel processing

1) less data access freedom
2) dependent on No. of dif-
ferent m values
3) more operations required
4) more total memory energy
consumption

Local Indirect
Addressing

(h = x · f + y · g)

1) more data access freedom
2) fewer operations required
3) less total memory energy consumption
4) operations dramatically reduced when
non-HT part is optimized

1) dependent on the No. of
edge points (non-constant
processing time)
2) more memory area cost
3) more memory energy con-
sumption per unit-access

Global Indirect Addressing

Local Indirect Addressing

 Real-Time Hough Transform on 1-D SIMD Processors 265

4 Conclusions

In the first part of this paper, an improved slope-intercept like representation is pro-
posed for implementing SHT onto SIMD architectures with no LIA support. The real-
time implementation is realized with high accuracy on the WiCa platform, which is a
powerful image/video processing platform developed by NXP Semiconductors. The
processing time of this approach is independent of the number of edge points or the
number of detected lines.

In the second part, we focused on comparing the design choice, GIA or LIA, from
three aspects: total operation number, memory energy consumption, and memory area
cost. GIA and LIA require different frame memory architectures. When the total mem-
ory size is the same, GIA occupies less area, and consumes less energy per unit-access.
However, LIA provides more freedom for data accessing. For the comparison of map-
ping SHT, when LIA is supported, the results show a considerable amount of reduction
in total operations and energy consumption, at the cost of extra chip area which is
mainly due to larger frame memory. Moreover, the results also show that the focuses for
further optimization for these two architectures are different. Architectures with only
GIA can benefit a lot from parallel processing of LPA and GCP. But it does not help too
much for LIA. Mapping SHT onto the SIMD processor with LIA can improve consid-
erably if extra logic is used to reduce the non-HT operations. In this paper, we also
showed that with LIA, no matter what kind of parameter space is chosen (<b, m>, <ρ,
θ>, or any other), the SHT implementation is identical.

References

1. Hough, P.: Method and Means for Recognizing Complex Patterns. U.S. Patent No. 3, 069,
654 (1962)

2. Illingworth, J., Kittler, J.: A Survey of the Hough Transform. Computer Vision, Graphics,
and Image Processing 44, 87–116 (1988)

3. Duda, R., Hart, P.: Use of the Hough Transformation to Detect Lines and Curves in Pic-
tures. Communications of the ACM 15, 11–15 (1972)

4. Kleihorst, R., Schueler, B., et al.: Architecture and Applications of Wireless Smart Cam-
eras (Networks). In: IEEE Inter. Conf. on Acoustics, Speech and Signal Processing (2007)

5. Abbo, A., Kleihorst, R., et al.: Xetal-II: A 107 GOPS, 600mW Massively-Parallel Processor
for Video Scene Analysis. In: International Solid-State Circuits Conference, pp. 192–201
(2008)

6. Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 8, 679–698 (1986)

7. Li, Z., Tong, F., et al.: Parallel Algorithms for Line Detection on a 1xN Array Processor.
In: International Conference on Robotics and Automation (1991)

8. Risse, T.: Hough Transform for Line Recognition: Complexity of Evidence Accumulation and
Cluster Detection. Computer Vision, Graphics, and Image Processing 46, 327–345 (1989)

9. He, Y., Zivkovic, Z., et al.: Real-Time Implementations of Hough Transform on SIMD
Architecture. In: International Conference on Distributed Smart Cameras (2008)

10. Yamashita, N., Fujita, Y., et al.: An Integrated Memory Array Processor with a Synchronous-
DRAM Interface for Real-Time Vision Applications. Pattern Recognition 4, 575–580 (1996)

11. Uh, G., Wang, Y., et al.: Effective Exploitation of a Zero Overhead Loop Buffer. In: ACM
SIGPLAN workshop on Languages, compilers, and tools for embedded systems (1999)

	Real-Time Hough Transform on 1-D SIMD Processors: Implementation and Architecture Exploration
	Introduction
	The Efficient SHT Implementation
	Basic Implementation
	Capture All Lines in Every Half Plane
	Twin Hough Transform with Efficient Image “Rotation”

	1-D SIMD Architecture: Global or Local Indirect Addressing
	SHT on 1-D SIMD with LIA
	Number of Operations Comparison
	Memory Access and Energy Consumption Comparison
	Memory Area Comparison
	Optimization Focuses

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

