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Abstract. Research in video surveillance is nowadays mainly directed
towards improving reliability and gaining deeper levels of scene under-
standing. On the contrary, we take a different route and investigate a
novel, unusual approach to a very simple surveillance task – activity
detection – in scenarios where computational and energy resources are
extremely limited, such as Camera Sensor Networks.

Our proposal is based on shooting long-exposure frames, each covering
a long period of time, thus enabling the use of frame rates even one or-
der of magnitude slower than usual – which reduces computational costs
by a comparable factor; however, as exposure time is increased, moving
objects appear more and more transparent, and eventually become invis-
ible in longer exposures. We investigate the consequent tradeoff, related
algorithms and their experimental results with actual long-exposure im-
ages. Finally we discuss advantages (such as its intrinsic ability to deal
with low-light conditions) and disadvantages of this approach.

1 Introduction

In this paper we introduce a novel low-level technique for implementing basic
video surveillance functionality, whose main advantage is the minimal amount of
computational effort required; this is achieved through the use of long-exposure
frames and their analysis through basic image processing techniques.

The main application scenario is Wireless Sensor Networks and comparable
systems, which are recently receiving much attention as an innovative computing
platform enabling novel, powerful applications, many of which are related to
video surveillance. In wireless sensor networks, individual sensors are designed
to be as simple, tiny and cheap as possible and have minimal computing and
communication capabilities [3]; moreover, power consumption is usually a critical
factor, as each sensor is powered by a battery which must last as long as possible
(as replacement is usually unpractical, and often not even foreseen); therefore,
attention to avoiding unnecessary computational operations is compulsory, and
directly affects a critical parameter such as the lifetime of the system.

Cameras are usually problematic in wireless sensor networks as they generate
huge amounts of data when compared to temperature, light, humidity, and mag-
netism sensors, which are currently mainstream in the field. On the other hand,
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Fig. 1. Simulated long exposure images in a typical surveillance environment (crops of
larger images, contrast-stretched). As the exposure time increases (from left to right: 1,
2 and 3 seconds), the moving subject appears more and more blurred and transparent.

Fig. 2. Nodes of wireless sensor networks and wireless camera networks, battery pow-
ered. Only a very careful use of their limited computational and communication re-
sources can allow them to reach a years-long lifetime.

cameras have several important advantages w.r.t. simpler sensors especially in
surveillance and scene understanding applications, as they yield a much higher
informational content. Moreover, as basic image sensors become cheaper, the
total cost of an embedded camera can be very tolerable nowadays1.

Therefore, a fair amount of research is recently being devoted to camera-
equipped wireless sensor networks, named camera sensor networks2; these sys-
tems are employed not only for surveillance [13] but also other applications, such
as structural health monitoring of buildings [2], human behavior recognition [12],
people and object tracking [6,5]. One shared challenge in these systems is the
need to reduce the amount of data to be transmitted, which implies local pro-
cessing/storage of images [7,10]. Several papers have also challenged the problem
of calibration of cameras in camera sensor networks [11], in order to recover their
relative position.

1 For surveillance applications, cost and size may be further reduced by exploiting
pinhole cameras which do not even need optics: one disadvantage of pinhole cameras
is that they allow minimal amounts of light to reach the sensor; this is not a prob-
lem in our setting as we deal with long-exposure images. Moreover, in our scenario
electronics do not need to support fast acquisition rates.

2 Not to be confused with wireless camera networks, which usually indicate networks
of bigger and more powerful cameras whose main goal is to wirelessly transmit their
data to a central collection point.
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In this paper, we describe our low-level technique in the context of a typical
camera sensor network, which is introduced in the next section; we then describe
the main motivations of our approach. In Section 3 we recall the image forma-
tion model for long-exposure frames, then show how activity can be detected
from them (Section 4). Section 5 presents implementation notes and Section 6
summarizes our experimental results. The main advantages, disadvantages and
possible improvements of our technique are finally discussed in Section 7.

2 A Straightforward Surveillance System Based on a
Camera Sensor Network

In the following, we will refer to a straightforward surveillance system based on
a simple camera sensor network; the network has two operation modes:

– an “idle” mode, which is expected to dominate the great majority of the
network’s lifetime, in which each sensor is only required to detect any ongoing
activity with the least possible expense of resources;

– when any activity is detected, a message is propagated through the network
which switches it to an “alert” mode, where more resources and sophisti-
cated processing and decision making can be employed in order to assess the
occurring event with better precision, possibly saving or transmitting images
of the scene for documentation purposes or further processing.

In this paper we focus of the first mode, and provide a technique for determining
activity with minimal consumption of resources.

We point out that in this phase, processing the images on the sensor itself is
a strict requirement. In fact, regularly transmitting acquired frames to a more
powerful computational entity (base station) is prohibitive due to the power con-
sumption implied by the amount of data to send; in a realistic setting, a sensor
may not be able to transmit more than several hundreds of frames before drain-
ing its batteries. Even when considering compression, which has a significant
computational cost in this platform, it is unrealistic to assume a sensor operat-
ing continuously for more than several days or weeks. As this may be viable for
the “alert” mode, which is rarely triggered for short amounts of time, it is not
for the phase we are considering.

2.1 Frame Differencing for Activity Detection

A naive approach to detect activity during the system’s “idle” mode, apparently
rather simple from the computational point of view, implies acquiring frames
continuously and using frame differencing to detect movement [8]. Frame dif-
ferencing itself requires a number of operations for each frame which is linear
with the number of pixels; therefore, two factors directly influence computational
complexity:

– camera resolution;
– frame rate.
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The camera resolution, especially when used for a simple activity detection
phase, is rarely critical and can be often reduced significantly; some sensors can
be configured to return a downsampled image (binning); or, alternatively, the
software can process only a subset of the available pixels.

Frame rates routinely for this task used range from 20 down to about 1 frames
per second. Faster frame rates are obviously useless (or even counter-productive)
in this setting; slower frame rates, on the other hand, leave holes in the temporal
coverage of the scene which can negatively affect detection rate, if they are longer
than the expected duration of the visible activity.

Fig. 3. A simplified representation of our approach: gray boxes represent the camera
exposure time; lines 1 and 2 show how decreasing the frame rate causes larger holes in
temporal coverage, which may prevent event detection. Line 3 shows a frame rate as low
as line 2, but with a longer exposure time, which decreases the size of coverage holes.

We propose to shoot long-exposure frames to compensate the loss in temporal
coverage due to a slower framerate, which allows us to reach very slow frame rates
without compromising the detection probability. Unfortunately, moving objects
(such as cars or people) in long-exposure images degrade to semitransparent
motion smears, which makes them practically invisible in exposures of excessive
length[4]. In the following section, we recall an image formation model which
explains this phenomenon.

3 A Model for Motion Smears

A motion blurred image is obtained when the scene projection on the image plane
changes during the camera exposure period [t′, t′′]. The resulting image C is the
integration of an infinite number of sharp images, each exposed for an infinitesi-
mal portion of [t′, t′′]. In an equivalent interpretation (Figure 4), we can consider
the motion blurred image as the temporal average of infinite sharp images It, each
taken with the same exposure time t′′ − t′ but representing the scene frozen at a
different instant t ∈ [t′, t′′]. This technique is implemented in many 3D rendering
packages for accurate (but computationally expensive) synthesis of motion blurred
images; we also exploit this property in our experiments (see Section 6 for simu-
lating long-exposure images with public video datasets, such as [1].

If the camera is static and a single object is moving in the scene, the static
background in the final image is sharp since its pixels are of constant intensity
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Fig. 4. Original image (C), background (B), transparency (α, rescaled for display
purposes), foreground map (o). The image C of the motion blurred object can be
interpreted as the temporal average over the exposure time of an infinite number of
still images It (top). The blurred smear can be interpreted as a semitransparent layer,
whose alpha matte (transparency) we analyze in the following.

in each It; conversely, the image pixels which are affected by the moving object,
possibly only in some of the It images, belong to the motion-blurred image
(smear) of the object.

For a pixel p, define i(p) ⊆ [t′, t′′] the set of time instants during which p
belongs to the object image. We finally define α(p) as the fraction of [t′, t′′]
during which the object projects to p:

α(p) = ||i(p)||/(t′′ − t′). (1)

Let B(p) be the intensity of the background at p. Since C is the temporal average
of all the It images, C(p) = α(p)o(p) + (1 − α(p))B(p). o(p) is the temporal
average over i(p) of the intensity of image pixel C(p):

o(p) =
1

||i(p)||
∫

t∈i(p)

It(p) dt. (2)

To sum up, the intensity of a pixel p in the motion blurred image C can be
interpreted as the convex linear combination of two factors: the ”object” inten-
sity o(p), weighted α(p), and the background intensity. The resulting equation
is the well-known Porter-Duff alpha compositing equation [9] for a pixel with
transparency α(p) and intensity o(p) over the background pixel B(p).

The object intensity o(p) can be interpreted as the intensity that p would have
in the motion blurred image over a black background, rescaled by a 1

α(p) factor.
o(p) is meaningless if p is not affected by the object image during the exposure.

4 Detecting Moving Objects with Long-Exposure Frame
Differencing

The model introduced in the previous section clearly shows in (1) that in general
the opacity (alpha) values associated to the image of a moving object decrease
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as the exposure time is increased; this causes the object to become invisible to
the naked eye in longer exposures. This phenomenon is sometimes exploited by
experienced photographers for making rain invisible by increasing exposure time;
in our situation, however, it reduces the visibility of moving objects, which may
remain undetected.

As an example, we can consider a typical surveillance scenario and compute
the theoretical transparency of the image of a person walking with constant
speed in a direction parallel to the image plane. Depending on the setting and
with some exceptions we will highlight later, the image of the person projects
to a pixel for approximately 1/5 of a second. The alpha value of the person’s
image will be, in average, about α = 0.2

[t′′−t′] ; in this case, if the exposure time is 4
seconds, the person’s image will have a very limited opacity of α = 1/20; whether
it is actually visible depends on the contrast between the person’s (sharp) image
and the background. Considering an 8 bit image in the [0 255] range, and the
maximum contrast between object and background, the person’s smear will differ
from the background by only 10-15 intensity values3.

On the other hand, the image of the person extends to a bigger area than the
area it would cover in a short-exposure image.

In general, ordinary frame differencing works rather well with long-exposure
images for identifying changes between one frame and the following, when setting
low detection thresholds.

Fig. 5. A person running with a white jacket is almost invisible to the naked eye in
a 4 seconds exposure (left); however, it is easily detected by naive frame differencing.
Center: difference to previous frame. Right: after thresholding. Note the visible pattern
of the running oscillations.

Some problems with this approach may arise due to slow global luminance
changes in the whole scene; such events are very frequent especially in outdoor
environments or scenes lit through windows, due to the low detection threshold
and the significant inter-frame time; then even the natural motion of the sun
may cause false triggers; a straightforward solution is computing the median
ratio between corresponding pixels in the two images, and correcting the second
3 Note that these considerations would not apply if the object would be over-exposed

if still: then, its actual intensity would be higher than the sensor dynamic range;
this is the reason why objects very bright with respect to their surroundings, such
as stars or light sources at night, can leave highly visible streaks in exposures even
some hours long.
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image by means of this ratio. It can be efficiently implemented by computing
the correction factor on a subset of the image pixels uniformly sampled over the
whole image.

When using longer exposures requiring very low thresholds for detection, the
reliability of the system can be improved by applying some processing to the
computed deviations before the threshold is applied; efficiency constraints may
instead suggest to apply it after thresholding on the obtained binary image; our
experiments did not show any of these possibilities to be significantly better.

Finally, the proposed process looks as follows:

for each new frame Ci do
compute correction factor h← median(Ci−1(p)/Ci(p)) with p ⊆ all pixels
compute differences image as D ← h · Ci − Ci−1

apply spatial median filtering to D
threshold D to T
if T has more than a preset number of white pixels then

trigger alert state
end if

end for

In our experiments, the threshold is global to the whole image, static, and
automatically derived from the measured noise. However, many sophisticated
approaches to foreground extraction are proposed in literature, which may fur-
ther improve our results; they provide techniques for building and maintaining
accurate background models, and setting adaptive thresholds for different parts
of the image. We are currently evaluating whether they provide a sensible per-
formance improvement in this context, and if the increased computational effort
they require is justified.

5 Implementation Notes

In many cases, taking long exposures in daylight environments with ordinary
customer equipment is not immediate as overexposure is sometimes unavoidable,
because such sensors are not designed for long exposures in well-lit environments.
Using an aperture as small as possible and if needed ND (Neutral Density) filters
for reducing the amount of light reaching the sensor is viable solution to this
problem.

Due to the very small sensor amplification required, sensor noise (ISO noise)
is dramatically reduced, and allows meaningful comparisons involving even the
least significant bits of every pixel’s intensity value (assuming 8 bits per pixel).
Therefore, choosing a threshold of 2 or 3 intensity values out if 255 works well
even with small cheap sensors. On the other hand, long-exposure noise does not
affect frame differencing as it creates artifacts not changing from frame to frame.
In some cases, using a 12-bit dynamic range can help in identifying fainter smears
for exposures longer than 30 seconds.
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6 Experimental Results

In this section we provide experimental results on:

– actual long-exposure images taken with a number of different consumer dig-
ital cameras (figures 7, 10 and 8);

– simulated long-exposure images synthesized from publicly-available datasets
such as [1] (figures 6 and 9). As anticipated in Section 3, the synthesized
images are created by averaging many frames of an ordinary video shot at
20 frames per seconds.

They are a representative part of the whole set of experiments, which is composed
by exposures ranging from 1 to 60 seconds, shot in 7 different scenarios, involving
both people and cars.

Fig. 6. A person walking in a public building (synthesized from video): 4 seconds
exposure. Note that feet are highly visible in the difference image as they are fixed
for longer periods of time. Also note that patterns in the background influence the
difference image as they affect contrast to foreground.

Fig. 7. A person walking in an outdoor setting. First row: 4 seconds exposure time;
Second row: 6 seconds.
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Fig. 8. 20 seconds exposure

Fig. 9. Up: 15 seconds exposure; note path of person and its clear silhouette where
he stood still; his image is also visible, semitransparent, in the long-exposure frame.
Down:5 seconds exposure; note path of car while parking, and trace of nearby motion.
Images syntesized from public videos[1].

In all tested scenarios, exposures up to 6 seconds allowed safe and very re-
liable detection of any activity without false positives, when using thresholds
automatically derived from the measured image variance. In most scenarios,
however, exposure times up to 15-25 seconds can be reached while keeping very
reliable operation, provided that the background has a sufficient contrast with
the subject.
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(a) subject with a white jacket (higher
contrast with the background)

(b) subject with a black jacket (lower
contrast with the background)

Fig. 10. The detection is harder when the subject has a low contrast with the back-
ground, and when the subject moves in a direction parallel to the image plane, as its
image overlaps with a given pixel for a shorter time

7 Discussion, Future Works and Conclusions

We demonstrated that using long-exposure frames allows a surveillance system
to greatly reduce its frame rate without compromising surveillance ability; this
is a very important achievement for e.g. wireless sensor network systems, which
are based on nodes with minimal computing power and limited energy resources.
Although blurred smears of moving objects are often invisible to the naked eye
even for exposures shorter than 2-3 seconds, ordinary frame differencing makes
practical detection of a walking person possible in exposures up to 15-25 seconds,
depending on the scenario; if implemented correctly, this simple approach may
lead to power and computational requirements even one order of magnitude
lower than with traditional methods.

The approach is technically practical because the long exposure requires very
low sensor amplification, which translates to very clean and noise-free images:
this allows low detection thresholds to be set; spatial filtering can also be em-
ployed to improve detection of faint smears, at the expense of an increased
computational effort, which may often be very problematic in the considered
scenario.

Other than our main motivation, i.e. greatly reduced computational and power
requirements, our technique also has some other advantages over using ordinary
short-exposure frames:

– it naturally works in low light, which is a very significant advantage in surveil-
lance applications;

– it is rather robust to false-alarms triggered in ordinary systems by rapidly
changing pixels, due to periodically moving objects as fans and trees in
the wind, or their shadows; in fact, these intensity variations are inherently
averaged over time in a long-exposure image, and often cause negligible dif-
ferences between frames. Although we noted some hints of this interesting
property in our experiments, we still have to determine whether the practical
implications can be beneficial in practice.

On the other hand, an ineliminable disadvantage of our approach is its reaction
time, as the detection is deferred to the end of the exposure.

Activity detection, which is the simple task we deal with in this work, may
also be easily solved using different, simpler sensors. However, our approach
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has the advantage of exploiting the same camera which can be used for more
sophisticated purposes in the “alert” mode of the system.

Moreover, as the feasibility and utility of the approach is now demonstrated,
we now plan to extract some additional information contained in the blurred
image which should be accessible by means of relatively simple image processing
techniques.

– The path of the object is a very summarized information which may be
easily transmitted to other sensors for information integration; it can be
easily extracted as the centerline of the smear.

– as shown in figures 6 and 7, walking people leave visible gait patterns, which
may be exploited to discern people from other moving objects.
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