
Embedding of a Real Time Image Stabilization
Algorithm on SoPC Platform,

a Chip Multi-processor Approach

Jean Pierre Dérutin, Lionel Damez, and Alexis Landrault

LASMEA - UMR 6602 du CNRS,
Université Blaise Pascal,

Clermont-Ferrand, France
{derutin,damez,landrault}@lasmea.univ-bpclermont.fr

Abstract. Highly regular multi-processor architecture are suitable for inherently
highly parallelizable applications such as most of the image processing domain.
System on a programmable chip (SoPC) allows hardware designers to tailor every
aspects of the architecture in order to match the specific application needs. These
platforms are now large enough to embed an increasing number of core, allowing
implementation of a multi-processor architecture with an embedded communica-
tion network.

In this paper we present the parallelization and the embedding of a real time
image stabilization algorithm on SoPC platform. Our overall hardware implemen-
tation method is based upon meeting algorithm processing power requirement and
communication needs with refinement of a generic parallel architecture model. Ac-
tual implementation is done by the choice and parameterization of readily available
reconfigurable hardware modules and customizable commercially available IPs.
We present both software and hardware implementation with performance results
on a Xilinx SoPC target.

1 Introduction

In this work, we show with a practical case the embedding of a real time embedded
vision application. Real time embedded vision is useful for example in mobile robotic
field, where the design of intelligent sensors usually requires integration of sophisticated
processing near the transducer. Complex examples would be to embed algorithms that
enable human face recognition with monocular vision or a 3D localization by mono or
stereo vision approaches. A simpler example described in this article is to embed a real
time image stabilization algorithm[1].

In tele-operation or aided-driving systems, parasite motion suffered by a camera
(bumpy ground, vibrations, etc.) may strongly interfere in the visualization process
and understanding of the image sequence. In this case stabilizing an image sequence
consists in eliminating or smoothing unintended motion component, while leaving the
driven motion component intact.

The development of such applications imposes multiple and severe design
constraints, which could be conflicting. More precisely, it is necessary to provide suf-
ficient processing power to run the algorithms at the information flow rate, using a

J. Blanc-Talon et al. (Eds.): ACIVS 2008, LNCS 5259, pp. 157–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

158 J.P. Dérutin, L. Damez, and A. Landrault

system of minimal size that consumes little power. In general, to meet these constraints,
it is necessary to define a specifically dedicated electronic architecture. Today, transis-
tor integration density enables concentration of the main part, or even all, of a com-
plete system on a sole component (System On Chip - SoC). This type of component
is composed of various components, such as standard or specialized microprocessors,
memory, communication systems and various peripherals, available as ’IP’ blocks.

Highly regular multi-processor architectures are known to be efficient in image pro-
cessing application domain because those applications are very compute intensive and
exhibit a high degree of data-level parallelism. The chosen generic architecture model
(Multiple Instruction Multiple Data with distributed memory: MIMD-DM) is suitable
for a homogeneous and regular network comprising communicating processor cores. We
present in this article how this abstract architecture model is derived into a concrete archi-
tecture in order to meet the specific application computation and communication needs.

In section 2 and 3, we discuss several stabilization methods, then we present the sta-
bilization application and the processing steps of the stabilization method. Section 4
describes the generic architecture used in the context of the experimental platform that we
have chosen. Section 5 describes the parallel structure of the algorithm and the choices
made while porting the software application into embedded software. Section 6 provides
a few results concerning resource costs and the performance of the different processor
and communication implementation options. And finally in section 7, we present some
performance results related to the actual implementation on a Xilinx SoPC target.

2 Electronic Image Stabilization

In the last years, several electronic image stabilization methods were proposed. These
methods may be classified into three main families, according to the adopted motion
model: 2D or planar methods [2] and the presented method, 3D methods [3] and 2,5D
methods [4]. In fact, stabilization algorithms are composed of a sequence of processing
blocks, which have different levels of complexity. Generally, three main processing
stages are executed:

– image matching,
– global movement estimation, using a motion model,
– compensation of the unwanted motion, getting as result a stable sequence.

2.1 Image Matching

We aim to calculate the movement in the 2D image plan of a real-world point or re-
gion. This movement is the 2D projection of the object’s 3D motion in the observed
scene. The most current ways to solve this problem are the optical flow extraction [3]
and feature-based approaches [2]. Even if the optical flow extraction method (explained
in [5] and [6]) has already been employed for image stabilization purposes, it is con-
straining because of its mathematical complexity, that may be relatively high. Another
constraint is the assumption that the optical flow field is the 2D projection of the 3D
motion [7]. In this study, to process image matching we use detection and tracking of

Embedding of a Real Time Image Stabilization Algorithm 159

visual features. This method consists of two steps. First, searching in the image i for
regions with strong visual information (e.g. strong luminance contrast, corners, edges,
etc.) called visual features, and then identifying these same regions in image i + 1.

Different tools for visual features detection are known, for instance, the “corner and
edge detector” [8], the Laplacian operator and Harr wavelets (the latter are presented
in the next section). Once the features have been detected, we must be able to find
them in another image. This task is done using a correlation method combined with a
search strategy. Multi-resolution techniques allow a smaller processing time, through
a “coarse-to-fine” approach. Several correlation methods may be employed, from the
simplest ones being SSD (Sum of Squared Differences) and SAD (Sum of Absolute
Differences) [9], to light-changes robustmethods like normalized cross correlation [10].

2.2 Global Movement Estimation

Once image matching has been achieved, we can proceed to the second stage of the
stabilization processing chain, being the estimation of the motion parameters that are
determined by the adopted motion model.

2D models suppose a planar or quasi-planar scene. All points tracked in the preceding
stage must lie in approximately the same distance from the camera. In this case, there
are three parameters to estimate: two translation movements (horizontal and vertical)
and one rotation around the camera optical axis. A fourth parameter may be included,
to take into account scale changes caused by the camera forward/backward motion.

3D models suppose that only rotational parasites are relevant. So, we have to estimate
and correct 3D rotations to stabilize our film. Knowing that camera rotation effects
in images are independent from scene depth, we are able to estimate camera rotation
parameters, using quaternions for instance [2].

The 2,5 model presented in [4] presuppose the availability of preliminary information
about camera motion and allows us to estimate three global motion parameters, plus one
independent depth-related parameter for each analyzed (tracked) point. It allows us to
work with structurally sophisticated scenes, without needing an advanced 3D model.

2.3 Motion Compensation

Finally, after estimating the global motion between images, we’re going to compensate
its unwanted or unintended component. This last processing stage is closely related to
the application framework. The definition of “unwanted motion” depends entirely from
the kind of “stability” required in each application. Several methods can be used: “full
compensation” corresponding to static background scene, low-pass or inertial filtering
[4] or low-order polynomial fitting for 3D rotations [3].

3 Stabilization Method

We have developed and parallelized a stabilization application, and embedded it in the
presented architecture. In [1] a first sequential implementation was done and then par-
allelized on a cluster of workstations.

160 J.P. Dérutin, L. Damez, and A. Landrault

Fig. 1. Stabilization algorithm: Feature detection step (left) and pattern matching step (right)

It comprises several steps such as visual features detection using Harr’s wavelets
and the search of matching points between two successive images, using a SSD oper-
ator, applied to measure the similarity between the searched feature and its potential
matching. Fig. 1 illustrate feature detection and feature matching steps. Once we get
matching points between the two successive images, we can estimate the 2D motion
model parameters (Δx, Δy and Δθ), using the Median Least Squares Method (MLSM).
Finally, the movement parameters are filtered and the obtained unwanted motion com-
ponent is used to warp the respective image, stabilizing the video sequence.

From each image acquired by the camera (coded in 256 gray levels, image size ad-
justed by the user) three intermediary images are produced: one integral image, that will
be used for visual features detection, and two sub-sampled images (1/2 and 1/4 pixels),
used to construct the multi-resolution searching pyramid. The integral image has in its
(X, Y) position the sum of all pixels integrated inside the rectangle delimited by i(0, 0)
and i(X, Y), when i(x, y) is the original image.

Harr’s wavelet processing consists of the convolution between an image region (pat-
tern) and one of the wavelet masks. The obtained value represents the luminance gra-
dient in a given direction. Wavelet processing is strongly accelerated when using the
integral image. In this situation, we can evaluate the sum of all pixels inside a rectangle
of any size performing only 4 memory access and 3 sum operations [11].

Features are detected applying the wavelets over a pre-defined zone. We use a region
of the upper half of the image (size q x r) to search features present in the horizon line.
Normally, these regions are far away from the camera, enough to respect the planarity
constraint of the 2D motion model. The detection zone is divided in n/3 vertical blocks
(size 3q/n x r), n being the desired features number, set by the user (see Fig/ 1). For
example, with an image size HTot × WTot = 1280 × 960 , q = 1024, r = 384 and the
block size = 128 × 384 for n = 24. The three types of wavelets (vertical, horizontal and
diagonal) are applied into each block, and the three regions presenting the biggest values
of vertical, horizontal and diagonal gradients respectively are selected as features.

After the detection stage in image i, we seek the n corresponding features in image
i+1. A “search window” of size 2T ×2T is defined around the position where a feature

Embedding of a Real Time Image Stabilization Algorithm 161

was detected. Then, SSD is calculated between each region inside this window and the
detected feature in image i (see Fig. 1). The region in image i + 1 which minimizes the
SSD is considered to be the match of the respective feature. This operation is repeated
for each one of the n features detected in the preceding stage, giving us n points match-
ing between two successive images. T is the largest displacement of a feature from one
given image to the next one.

To reduce the processing load, the search for matching features is executed in a
multi-resolution approach. We start using a 1/4 sub-sampled image, and looking for a
SSD minimization inside a T/2 x T/2 window. This provides us a first estimation for
the matching point position.

Based on this estimation, a second search process begins, using a 1/2 sub-sampled
image and a 3 × 3 search window, placed around the first estimated position. A second
estimation is thus obtained, more accurate than the first one. Finally, a final search
stage is executed, using the original image and a sub-pixel precision of 1/8 pixel. A
2 × 2 search window is analyzed, and the luminance of regions lying between pixels is
calculated through a bilinear interpolation of the adjacent pixels.

Having found the n point matching between images i and i + 1, we are able to
estimate the 2D model parameters describing the movement from one image to other.
This movement can be modeled by a homogeneous transformation matrix, composed
by vertical and horizontal translation movements and a rotation around the optical axis.
Three matrix parameters, related to each of these movements, must be estimated. The n
point matching are applied to the model, and the error is minimized using the Median
Least Squares Method.

The obtained motion parameters are accumulated to those processed before, in order
to find the total camera displacement since the beginning of the video sequence. The
found values are filtered by first order linear filters. Each parameter has an independent
filter, and all the filters coefficients may be set by the user. This method allows us to
have flexible stabilization intensity, adjustable to the application. We are also able to
have different stabilization levels for translation movements and rotation.

The filtered values are used to get the inverse homogeneous transformation matrix,
which is applied to image i + 1 to stabilize it, bringing it back to a dynamic refer-
ence position. This dynamic reference tries to follow the commanded camera motion,
respecting the passing band determined by the filter coefficients adjusted by the user.

4 Generic Architecture Description

The chosen generic architecture model is type MIMD-DM with processing nodes com-
municating using message passing communication model. We choose this architecture
because of its ability to execute efficiently any parallel scheme. Interconnection network
is a static interconnection network, it has a hypercube-based topology structure because
of its properties: for a number of nodes n = 2D, diameter D and number of links/node
= log(n) and total number of links is n

2 × log(n) . This structure eases routing; which
can be calculated using a simple combinatorial function, and which enables adaptive
routing thanks to several potential paths between two nodes. This topology is also of
great interest in terms of extensibility, as when the number of processors is doubled, the

162 J.P. Dérutin, L. Damez, and A. Landrault

Fig. 2. Network of Communicating soft Processors featuring networked image data input

maximal distance between two processors (diameter) and the number of links per node
only increases by 1.

This architecture is regular and homogeneous, each node is composed the same iden-
tical components: a processor, with local memory for application software and data stor-
age, and some communication device. All components can be chosen inside a library of
available custom components or commercial IP. Depending on the application an archi-
tecture derived from the generic architecture may differ from another through the differ-
ent options and parameters relating to the processors (optional arithmetic units, imple-
mentation options), to the memory (amount of local memory, size of potential buffers)
and to the interconnection network (type of link between processor, number of nodes).

Final hardware architecture can range from a very simple to complex hardware con-
figuration. Fig. 2 shows a full feature configuration with a complex interprocessor on
chip interconnection network involving a packet router and a dedicated video input
communication device able to send parts of input video (Window Of Interest). In this
work architectural choices were focused on Xilinx Microblaze microprocessor config-
urations and on a direct point to point communication link described in section 6.

5 Implementation of the Stabilization Algorithm

5.1 Parallel Implementation

In [1] the characteristics of the different application stages were analyzed in order to
concentrate the parallelization efforts on those stages where the speed gain may be
potentially high. The first four processing stages of the sequential version were im-
plemented in parallel and the two last steps, not presenting an important complexity
(<2%), were implemented in sequential mode. The parallelized processes (feature de-
tection and feature matching) were then implemented for SoPC target.

We can see on Fig. 3 the parallel implementation scheme. It is based on data paral-
lelism (images then lists of points) between the NP available processors.

Embedding of a Real Time Image Stabilization Algorithm 163

Fig. 3. Parallel implementation scheme

Detection is executed by each processor p on a block of the detection zone of image
i. The block size is defined by (q/NP , r), and each processor returns a list of n/NP

primitives which will be tracked in the next stage. Features matching is the most time
consuming stage in sequential version. In its parallel implementation, each processor
does the matching search for each feature it has detected. It means that each processor
is responsible for tracking its part of the desired features number (n/NP).

5.2 Parallel Implementation on SoPC

We ported the parallel processes for our embedded architecture. An embedded hardware
architecture is much more limited than a workstation in term of memory available to
store the software application and the processed data. As a consequence we have made
different implementation choices in the two versions.

In the first implementation of our stabilization application several techniques were
employed in order to reduce processing load and/or to increase precision, some of these
techniques are not used in the embedded version in order to reduce the memory require-
ments of the software application:

– Harr’s wavelets detector is processed over a transformed image (integral image),
which is calculated before the detection step. The storage of this integrated image
requires a very large amount of memory: 4 × memory requirement of the 255
gray level image stored in each processor as each integrated pixel must be stored
using a 32 bit word. In the embedded version it is possible to calculate the wavelets
detector response using directly the input image, thus avoiding the need of storing
the integral image.

164 J.P. Dérutin, L. Damez, and A. Landrault

– The search of matching points is originally done using a multi-resolution pyramidal
strategy, with three resolution levels. It is necessary to store the 1/2 and 1/4 reso-
lution images. In the embedded version template matching is done using a direct
strategy. Patern matching precision is then degraded to the pixel precision instead
of a 1/8 pixel precision.

– Finally, instead of storing both image i and image i − 1 (using a rotating buffer
technique avoiding much data copy), only patterns are stored from an algorithm
iteration to another, adding a pattern capture process inside the pattern matching
step (see Fig. 3).

6 Hardware Implementation Results

In this section we present the effect of processor and communication network config-
uration in terms of SoPC resource consumption. Considering the application compu-
tational and communication needs, this will lead to a specific hardware configuration
choice.

The synthesis results for each type of processor configuration or the chosen com-
munication link are presented. Afterwards, communication performance is presented in
terms of the latency and bandwidth of each solution.

6.1 Processor Configuration

Table 1 shows the implementation costs of a processor in its smallest and largest con-
figuration. On the Virtex-4 architectures, MicroBlaze version V4.00 is used, and on
Virtex-5 architectures, MicroBlaze version V5.00 is used. By comparing tables 1, it can
be seen that if we choose to configure MicroBlaze in such a way that a minimum of
resources is used, MicroBlaze occupies approximately 1% of the largest SoPCs. If the
cost of other elements of the system is not taken into account, we could place up to 94
processors in a Virtex-4 LX200 or 118 in a Virtex-5 LX330. The use of an arithmetic
unit and an FPU are the two most expensive options, as they require more than 7% of
DSP block resources for a Virtex-4 LX200 and 3% of the same resources for a Virtex-
5 LX330. We wanted to make the processor as small as possible, but able to execute
efficient the numerous multiplications involved in the feature tracking step of the sta-
bilization algorithm. As a consequence processor has no other optional arithmetic or
logic unit than a hardware multiplier.

6.2 Point-to-Point Based Network

In order to enable communication between processors, we have also provided the choice
of several communication link type, ranging from a simple FIFO point to point com-
munication, to more complex solutions such as DMA point to point links or a Network
on Chip (NoC) based on a packet router. Only the simplest one (FIFO point to point
link) is presented in this paper as it satisfies the application communication needs for
relatively low implementation costs. We have used the MicroBlaze Fast Simplex Link

Embedding of a Real Time Image Stabilization Algorithm 165

Fig. 4. FSL point to point link

(FSL), illustrated in Fig. 4, that enables data in the registers to be sent from one proces-
sor to a neighboring processor via a FIFO connection. The MicroBlaze processor has
8 output ports and 8 input ports, and it is possible to establish a full-duplex connection
with up to 8 neighboring processors.

We have generated architectures based on FSL point-to-point links, by varying the
number of processors. For this evaluation, we have used the smallest MicroBlaze con-
figuration (no optional units). The following tables show the space and resources used
by the complete system, using one of the FSL (table 2) point-to-point connections. FIFO
depth is configured to 64 elements, and each processor has 16Kb of local memory. A
solution with 32 processors, based on FSL links, easily fits a Virtex-4 LX200. We find
out that this type of link clearly takes advantage of the optimization of Virtex-5 for em-
bedding FIFOs, as the cost of the system is reduced to almost that of the processors and
the memory.

6.3 Communication Performance

In order to access FSL ports, the processor reads and writes in special registers, using
the operations included in its instruction set. With this type of link, data is passed di-
rectly from the registers of one processor to the registers of its neighbor. Several cases
must be studied in order to obtain an accurate assessment of the level of performance
of this type of communication. Performance for a MicroBlaze V5.00 is shown. If we
only consider register to register communication (therefore with very limited amounts
of data), this communication mode enables particularly low latency to be reached: just
one clock is required.

If we change the data in the memory, the reading and writing latency must be taken
into account. Hence, the sending and receiving latency of 32 bit data, situated in an
internal memory block on the processor’s local bus, is 2.Tclk.

Table 1. Left: Available space and resources in Virtex-4 and Virtex-5 targets of higher capacity.
Right: Resources occupied by the MicroBlaze processor in its smallest and largest configuration.

DEVICE SPACE RESOURCES
SLICE FF LUTs DSP48 BRAM

XC4VLX200 89088 178176 178176 96 336

XC5VLX330 207360 207360 207360 192 288

Target MicroBlaze parameters RESOURCES
Shift. Div. Mult. FPU SLICE FF LUTs DSP

Virtex4 0 0 0 0 936 559 1146 0

Virtex4 1 1 1 1 1777 1297 2582 7

Virtex5 0 0 0 0 1753 1058 1212 0

Virtex5 1 1 1 1 3251 1900 2400 7

166 J.P. Dérutin, L. Damez, and A. Landrault

Table 2. SoPC resources used for 4, 8, 16, and 32 processors with FSL point-to-point links for
Virtex4 (Left) and Virtex5 (Right)

Device Nb P SLICE FF LUTs BRAM

XC4VLX200 4 5% 1% 4% 9%

XC4VLX200 8 11% 2% 10% 19%

XC4VLX200 16 26% 4% 24% 38%

XC4VLX200 32 60% 7% 55% 76%

Device Nb P SLICE FF LUTs BRAM

XC5VLX330 4 3% 2% 3% 6%

XC5VLX330 8 6% 5% 6% 11%

XC5VLX330 16 12% 10% 14% 22%

XC5VLX330 32 23% 17% 28% 44%

In addition, if a large amount of data is exchanged, the time taken to execute loop
control instructions, which has a larger influence on the final communication time than
the time actually taken to transfer, must be taken into account. For an unfolded loop
it would take 0.5 × F B.s−1, therefore 70 MB.s−1 for a processor with a frequency
of 140MHz. The use of software optimization techniques enables the rate of transfer
to be increased slightly. We therefore have a type of link that enables very low latency
communication, but for which the bandwidth is limited by processor performance.

7 Software Implementation Results on SoPC Platform

Since this application communication needs are very low and computation needs are
much heavier, we have chosen the simplest hardware communication solution which
uses FSL point to point links in order to fit a larger number of processors. FSL FIFO
were configured to 16 × 32 bit elements deep and processor configuration uses a hard-
ware multiplication which greatly increases performances of template matching (ap-
proximately a factor 3). Processor local memory is configured according to the maxi-
mum device capacity (see table 3).

To evaluate the whole flow of our approach, we have used a Virtex 4 LX 60 platform
[12]. The local image window to be treated by each processor is loaded in correspond-
ing local memory of each processor as the input/output module mechanism will not be
dealt with in this paper (a hardware module for image acquisition and slicing is cur-
rently under development). Benchmark metrics are program size, image data size and
application size for a 1 to 64 processors solutions. Validations for 1 to 16 processors
are obtained from direct measures onto the platform. Systems with 32 and 64 proces-
sors did not fit into the test platform, performance results are obtained by co-simulation
using a processor Instruction Set Simulator mixed with VHDL models. Timing results
enable to evaluate application speed-up from one solution to another (depending on the
number of processors implemented) and run-time of the application.

7.1 System Dimensioning

We can see in table 3 (right) the size of the local image window(HPE × WPE) and the
number of primitives processed by each processor. Table 3 (left) shows the memory re-
quirements of the application depending of the number of processors in the system. The

Embedding of a Real Time Image Stabilization Algorithm 167

Table 3. Left: Application memory requirements versus available local memory per processor for
1 to 64 processors in KB. Right: Application parameters variation with number of processors.

Number of 1 4 8 16 32 64
processors

program size 3.76 4.54 4.71 5.30 5.64 5.74

image data 99 27 15 9 6 4.5
size

Total Application 102.76 31.54 19.71 14.30 11.64 10.24
Size

available memory 256 64 32 16 8
(KB) XV4LX60

available memory (KB) 1024 256 128 64 32 16
XV4FX140 & XV5LX330

Number of 1 4 8 16 32 64
processors

HP E 528 144 80 48 32 24
× × × × × × ×

WP E 192 192 192 192 192 192
Image 1 3,66 6,6 11 16,5 22

division factor
nb of features 64 16 8 4 2 1
per processor

amount of available memory for the software decreases with the number of processors,
which can lead to a too large code size for a given hardware configuration. Application
memory requirements are due to program code and image data. Program code, instead of
reducing with the number of processors, is increasing as communication code require-
ments becomes larger with the number of processors. With the chosen data partitioning
of the parallel application, image data size decreases with number of processor by a factor
shown in table 3. We can see in table 3 that system up to 64 processors with our stabi-
lization application can be embedded in the largest SOPC target such as a Virtex4FX140
or virtex5 LX330 as they have sufficient embedded memory and up to a 16 processors
configuration can fit our test platform which features a Xilinx Virtex4LX60.

7.2 Timing Performances

The timing performances of the stabilization were measured by processing an input im-
age in the size HTot ×WTot = 528× 384 and by configuring the algorithm to search 64
visual primitives at a distance T of 6 pixels. We have tested system up to 16 processors
in a Xilinx XV4LX60 device. Results for 32 and 64 processors are simulation results. A
Microblaze Instruction Set Simulator developed in DEPECA[13] has been used in order
to set up a co-simulation environment and speed-up the simulation process. We can see
in left table 4 that with 16 processors and more the parallel phases of the application
execute in much less than 40ms, leaving time for execution of the whole algorithm (with
the sequential parts) to process 25 images/s. For 32 processors the processing times are

Table 4. Application execution time (ms) and application speed up for 1 to 64 processors

Number of 1 4 8 16 32 64
processors
Detection 217.152 55.919 27.965 13.968 6.928 3.468

time
Tracking 31.787 7.948 3.975 1.988 0.992 0.497

time
Commun- 0.016 0.016 0.016 0.016 0.016

ications time
total 248.939 63.883 31.956 15.972 7.936 3.981
time

Number of 1 4 8 16 32 64
Processors
Detection 1.00 3.88 7.78 15.55 31.34 62.72
Speed up
Tracking 1.00 4.00 8.00 15.99 32.04 63.00
Speed up

Total 1.00 3.90 7.79 15.60 31.36 62.53
Speed Up

168 J.P. Dérutin, L. Damez, and A. Landrault

small enough (8ms) to consider using this algorithm as a preprocessing for higher level
vision algorithms.

Speed up shown in right table 4 are very near to linear for both detection template
matching step. For 32 processors, speed-up are even slightly surlinear for template
matching, which seems due to the approximations from the co-simulation processor
model.

8 Conclusion

This article presents the implementation of a realistic image processing application on
a SoPC target. It shows that an homogeneous network of processor is efficient for em-
bedded image processing. Processing times and application speed-up are very inter-
esting. A very near to linear speed-up and a scalable architecture make possible to
match the processing power with the input video data rate by adjusting the number
of processor. Future works include extension of range of choice regarding processing
elements. For example, we are working on the possibility to integrate and parameter-
ize OpenFire[14] soft processor. Future works also include implementation of more
complex image processing applications. The chosen applications should require more
communication power. It will allow us to show another type of communication device
(a on chip packet-router) which is not presented in this paper. The ultimate goal being
to make the processor and communication system first choice elements for tuning the
architecture to a given application needs.

References

1. Derutin, J.P., et al.: Simd, smp and mimd-dm parallel approaches for real-time 2d image
stabilization. In: CAMP 2005. Computer Architecture for Machine Perception, pp. 73–80.
IEEE Computer Society, Los Alamitos (2005)

2. Morimoto, C.: Electronic Digital Stabilization: Design and Evaluation, with Applications.
Phd thesis, University of Maryland (1997)

3. Duric, Z., et al.: Shooting a smooth video with a shaky camera. Machine Vision and Appli-
cations 13, 303–313 (2003)

4. Zhu, Z., et al.: Camera stabilisation based on 2.5d motion estimation and inertial motion
filtering. In: International Conference on Intelligent Vehicles (1998)

5. Horn, B., et al.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
6. Barron, J., et al.: Performance of optical flow techniques. International Journal of Computer

Vision 12, 43–77 (1994)
7. Verri, A., et al.: Motion field and optical flow: Qualitative properties. IEEE Trans. Pattern

Analysis and Machine Intelligence 11(8), 490–498 (1989)
8. Harris, C., et al.: A combined corner and edge detector. In: Proceeding of the 4th Alvey

Vision Conference, pp. 147–151 (1988)
9. Pourreza, H., et al.: Weighted multiple bit-plane matching, a simple and efficient matching

criterion for electronic digital image stabilizer application. In: 6th International Conference
on Signal Processing, vol. 2, pp. 957–960 (2002)

10. Tsai, D., et al.: The evaluation of normalized cross correlations for defect detection. Pattern
Recognition Letters 24, 2525–2535 (2003)

Embedding of a Real Time Image Stabilization Algorithm 169

11. Viola, P., et al.: Rapid object detection using a boosted cascade of simple features. In: Pro-
ceedings IEEE Conf. on Computer Vision and Pattern Recognition (2001)

12. AVNET: Xilinx virtex-4 lx evaluation kit (ADS-XLX-V4LX-EVL60-G) (2008),
http://www.em.avnet.com

13. Mateos, R., et al.: Hardware/software co-simulation environment for csoc with soft proces-
sors. In: IEEE Internacional Conference on Field-Programmable Technology ICFPT 2004,
pp. 109–114 (2004)

14. Craven, S., et al.: Configurable soft processor arrays using the openfire processor. In: Pro-
ceedings of 2005 MAPLD International Conference, pp. 250–256 (2005)

http://www.em.avnet.com

	Embedding of a Real Time Image Stabilization Algorithm on SoPC Platform, a Chip Multi-processor Approach
	Introduction
	Electronic Image Stabilization
	Image Matching
	Global Movement Estimation
	Motion Compensation

	Stabilization Method
	Generic Architecture Description
	Implementation of the Stabilization Algorithm
	Parallel Implementation
	Parallel Implementation on SoPC

	Hardware Implementation Results
	Processor Configuration
	Point-to-Point Based Network
	Communication Performance

	Software Implementation Results on SoPC Platform
	System Dimensioning
	Timing Performances

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

