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Abstract. An iterative camera calibration approach is presented in this paper. 
This approach allows computing the optimal camera parameters for a given set 
of data. If non linear estimation process is done, a risk of reaching a local min-
imum exists. With this method this risk is reduced and a best estimation is 
achieved. By one hand, an iterative improving of the estimated camera parame-
ters is done maximizing a posteriori probability density function (PDF) for a 
given set of data. To resolve it, a Kalman filter is used based on the Bayesian 
standpoint. Each update is carried out starting with a new set of data, its covari-
ance matrix and a previous estimation of the parameters. In this case, a different 
management of the input data is done to extract all its information. By the other 
hand, apart from the calibration algorithm, a method to compute an interval 
which contains camera parameters is presented. It is based on computing the 
covariance matrix of the estimated camera parameters. 
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1   Introduction 

Camera calibration is an important step in 3D computer vision. Accurate calibration 
of the camera should be done in order to compute quantitative measurements, depth 
from stereoscopy, or motion from images. Camera calibration process estimates the 
internal and external camera parameters. They are represented in a pinhole camera 
model. Existing camera calibration techniques can be classified into photogrammetric 
calibration and self-calibration. Photogrammetric calibration is carried out observing 
a well known 3D pattern. The term “well known” means that the spatial coordinates 
of some points in the pattern and their uncertainties are known with very high preci-
sion. Usually, this pattern should contain points in the X, Y, Z planes and therefore, 
two or three planar objects orthogonal to each other are used [2] [6]. Self-calibration 
techniques do not need any special 3D pattern in the scene. Using the rigidity of the 
scene, it provides constrains which should be satisfied by the internal parameters.  

Therefore, just taking different images of the scene with fixed internal parameters 
are sufficient to compute them. Afterwards, external parameters can be recovered 
starting with the intrinsic ones [1] [5]. Another camera calibration technique which 
lies between the photogrammetric calibration and self-calibration is the one based on 
a planar pattern [7] [9]. In this case, it uses 2D metric information rather than 3D and 
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the camera only needs to observe a planar pattern showed at least at three different 
orientations. Compared with classical techniques, this method can be considered more 
flexible and also, it gains significant degree of robustness [6].  

From the point of view of the computation method, calibration algorithms mini-
mize a cost function. The close-form solution is followed by a nonlinear refinement 
based on the minimization of the Euclidean or Mahalanobis distance. In all cases, the 
camera parameters are recovered from a single set of data. This data corresponds to 
the points coordinates in the scene and its correspondences in one or several images 
from one or more camera positions. Since a parameter fitting is done, all camera cali-
bration algorithms are sensitive to observation noise. Moreover, if non linear refine-
ment is done the starting parameter values are important in order to achieve an  
absolute minimum. In some situations these two factors interact with each other. 
Large observation noise might create more local minima which can easily trap itera-
tive optimization methods such as Levenberg-Marquardt or steepest-descendent.  
In this case, in order to achieve the absolute minima a good initial guess of the cali-
bration parameters is needed.  

In this paper, a new camera calibration approach is defined in order to achieve a 
more accurate result. In this case, an optimal filter is applied to the camera calibration 
process. An iterative method is used in which the update rule is derived from the 
Bayesian standpoint. The principle of the maximum a posteriori probability estima-
tion is put into practice assuming the observation noise is Gaussian. The optimal filter 
updates the initial estimation using a new set of data. This set of data can be obtained 
before the calibration algorithm is carried out. From the point of view of number of 
data, all camera calibration algorithms need a minimum number of data to be solv-
able. The improvement of the result is related with the amount of data. If the amount 
of data is bigger, better results are computed. However, if the amount of data is bigger 
than a certain number, the result improvement is less significant. This certain number 
depends on the algorithm and normally it is determined by simulation. Therefore, 
instead of using all data in order to resolve the close form solution followed by a non 
linear refinement, a certain amount of data can be used first to obtain an initial estima-
tion and afterwards the remaining data is used with Kalman filter in order to improve 
the result.  Kalman filter can be put into practice with any photogrammetry or self-
calibration methods. In this case the camera calibration method based on planar pat-
tern [7] [9] has been used. This method has been chosen because new set of data can 
be obtained just by taking a new image of the calibration pattern from a different 
position of the previous ones. In case of photogrammetric methods, an image of an 
over dimensioned calibration object with a lot of interesting points should be used in 
order to obtain a lot of data which will be used in several steps of the Kalman filter. 
From a practical point of view this could be useless. Another solution to use the Kal-
man filter with photogrammetric methods could be to take new images of the same 
calibration object from the same position. This way seems more useful.  

The paper is organized as follow. Section 2 is a brief description of Kalman filter. 
Section 3 describes the Kalman filter applied to the camera calibration method based 
on planar template and section 4 shows experimental results. A comparison with the 
Levenberg-Marquardt non linear optimization method has been done in order to test 
the results of the Kalman filter. Better results have been obtained. 
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2   Kalman Filter 

Kalman filter is based on Bayes' theorem which calculates conditional probabilities. 
In this case the aim is to maximize a posteriori PDF of the camera parameter given a 
set of data. The set of data are points in the scene and its correspondences in the im-
age. Maximizing the PDF, most probable camera parameters will be computed  
according to given data. This index is called maximum a posteriori probability estima-
tion. Kalman filter can be summarized as follow. If aα is a m-vector datum, the aim is 
to estimate an n-vector u of parameters that satisfies the hypothesis f(k)(aα,u)=0.The 
optimal value of the parameter vector uα+1 is computed with an initial estimation of 
the parameter vector uα together with a new set of data. This process is repeated itera-
tively with new data. A covariance matrix of estimated parameter vector is necessary 
to use it in the next iteration. The new value of the parameter vector is given by 
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An exhaustive explanation of Kalman filter can be found for example at [4]. 

3   Camera Calibration Using Kalman Filter 

First a brief description of camera calibration based of planar template is done. 

3.1   Camera Calibration with a Planar Template 

In [7] [9] a novel camera calibration method based on the homographies between a 
calibration pattern and the image of it from several camera positions and orientations 
was presented. The method assume a planar calibration pattern situated at z=0 of the 
world coordinate system. Denoting ri as the ith column of the rotation matrix R and t 
the translation vector of the camera in the scene coordinates, the homography H 
which defines the coordinates of a point p in the image of a point q in the planar cali-
bration pattern is p=Hq where  
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Matrix A contains internal camera parameters. Vector t represent the translation of 
the camera in the scene and matrix R its rotation. Both are the external camera pa-
rameters. Given a homography two constrains arise because r1 and r2 are two or-
thonormal vectors. This constrains affect to the matrix A which contains the internal 
camera parameters. They are 
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Given that A-TA-1 is a symmetric matrix, a 6D vector is defined as b=[ B11, B12, B22, 
B13, B23, B33] where Bij represents the element ij of the symmetric matrix A-TA-1. Using 
vector b, constraints (9) can be written as bvhBh T

ijj
T
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The constraints (9) for a given homography can be rewritten as two homogeneous 
equations in b as follows: 
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If n images of the calibration object are observed, by staking n such equations as 
(10) we have Vb=0 where V is a 2n x 6 matrix. At least 3 images are necessary in 
order to obtain a unique solution. The closed-form solution is given by the eigenvec-
tor of VTV associated with the smallest eigenvalue. Once b is estimated the camera 
internal parameters can be computed. When A is known, the external parameters for 
each image can be computed knowing the corresponding homography. 

3.2   Camera Calibration with Kalman Filter 

The closed-form solution gives an initial estimation of b which can be refined through 
the Kalman filter described above. In this case the a posteriori PDF of the vector b 
given a set of homographies H is wanted to be maximized. Hypotheses to be satisfied 
are given by the equation (10). Homographies are represented by the vector vij. In this 
case the number L of hypotheses are two which are given by: 
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In order to compute the update increment for the parameter vector b, equation (2) 
should be used. This equation has five terms which should be defined in this case. Pu 
is the projection matrix along the domain in which the parameter vector b is defined. 
Since b is a 6D homogeneous vector, Pu is an identity matrix in which the element 
(6,6) is equal to zero. Sα, tα are computed according to the equations (4) and (5). In 
this case W(kl) is computed with the equation (7) and the subscript α refers to the value 
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evaluated with the new set of data and the current estimation of the parameter vector 
b. Terms ∇hf

(1), ∇hf
(2), ∇bf

(1), ∇bf
(2), and ∇hW

(kl) are easily defined using (11) and (12). 

3.3   Covariance Matrix of Initial Parameters Estimation and Homographies  

Terms V(bα) in (2) V(hα) in (7) are not defined yet. It is necessary to define the covari-
ance matrix of the current estimation of the parameter vector b and the covariance 
matrix of the input data which are the elements of the homographies. Term V(bα) can 
be computed with equation (3) for successive iterations. The difficulty is to compute 
it for the first one and also to compute the covariance matrix V(h) for all homo-
graphies which are used as input data. The method of propagating the covariance 
matrix described by Haralick in [3] has been used in this case. Random perturbation 
of points coordinates measurements are represented with a covariance matrix. This 
method allows propagating the covariance matrix of points coordinates through the 
computation of the elements of the homography H and afterwards, the elements of the 
vector b. It just needs that the scalar function has finite second partial derivative and 
that the random perturbation is small enough so that the scalar function evaluated at 
noise input can be approximated sufficiently well by a first order Taylor series. 

First the covariance matrix of each homography will be computed propagating the 
random perturbation of the points coordinates. In this case, point coordinates are ar-
ranged into a vector pT=[x y 1 u v 1] where x,  y are the coordinates of the point in the 
planar patternn calibration an u, v their correspondence in the image. V(p) is a diago-
nal matrix formed with the covariance matrix of the point coordinates of the calibra-
tion pattern and the covariance matrix of the image coordinates. In order to compute 
the homography the following restrictions are assumed.  
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In this case vector h contains the elements of the matrix H arranged in a column. 
Therefore if V(p) is the covariance matrix of the point coordinates, which is propagated 
to the elements of the homography H through the two restrictions (13) and (14) as  
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Likewise, the covariance matrix V(h) is propagated to the elements of vector b 
through the restrictions (11) and (12). Covariance matrix V(b) is defined as follow: 
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3.4   Proposed Calibration Algorithm  

Camera calibration process using the Kalman filter has the following steps: 

1. Take n images of the planar calibration object 
2. Compute the homografy matrix H between each image and the calibration ob-

ject together with the covariance matrix V(h) of its elements. Use equation 
(13), (14) and (15) 
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3. Compute vector b and also the covariance matrix V(b) of its elements with 
equations (10) and (16) 

4. Take a new set of data. In this case a new set of data means a set of homo-
graphies together with its covariance matrices. 

5. Calculate the values of Sα and tα using equations (4) and (5) 
6. Update the initial estimation of vector b using equation (2) 
7. Compute new covariance matrix V(b) with (3) 
8. Go to step 4 

Finally, in order to resolve all details related with the Kalman filter applied to cam-
era calibration with planar pattern, it is necessary to take into account the new set of 
data mentioned in step 4. It is. In this case, the input data of the algorithm for estimat-
ing vector b are homographies between the calibration object and images of it from 
different camera positions. Attending to experimental results of the closed-form solu-
tion (Fig. 2 of [9]), vector b is not significantly improved if more than three homo-
graphies are used in the estimation process. Therefore, an initial estimation of vector b 
can be done just using three homographies and the remaining ones are used as a new 
data in the Kalman filter. Moreover, since just one homography is necessary in order 
to compute an update of vector b, n-3 iterations can be done if n images of the calibra-
tion object have been taken. However, in order to improve the quality of the input 
data in the Kalman filter, several homographies could be used. This allows combining 
n homographies in groups of three and taking the first group to compute an initial 
estimation and the remaining ones to perform several update iterations using the op-
timal filter. The number of improving iterations will be given by the combinations of 
n elements taking 3 by 3. It is n!/3!(n-3)!. So using a small set of images more itera-
tion can be carried out. 

4   Experimental Results 

In order to evaluate this calibration process, simulated and real experiments has been 
done. First, the closed form solution is computed using only 3 homographies followed 
by the Kalman filter with the remaining images. Second, in order to compare the 
results with classical methods, the closed-form solution is computed with all homo-
graphies followed by a nonlinear refinement using Levenberg-Mardquart method. 
Next figures show the result of the internal parameter called principal point (U0,V0) 
only. Similar behaviour has been obtained with the remaining parameters. 

4.1   Simulated Experiments  

The simulated camera has the following properties: α=980, β=980, γ=1, u0=320, 
v0=240. The model plane is a checker with 100 corner points (10x10) of size 20x20 
cm2. The distance of the camera to the origin is always 1 m and the images are taken 
from different angles and orientation of the projection of the optical axis with respect 
to the X axis. Several situations have been simulated.  

Performance w.r.t. the noise level. Gaussian noise level of mean 0 and standard 
deviation σ is added to the coordinates of the image points and calibration pattern 
points. The standard deviation has been changed in order to test how the Kalman filter 
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works depending on the noise of the input data. 100 simulated calibrations have been 
done and the mean of errors are shown in figure 1. Ten images of the planar patter 
have been used. Since real value is known, it is compared with the estimated one. A 
comparison with the result of the Levenberg-Mardquart method is done. Better results 
are computed with kalman filter. 

Performance w.r.t. the number of planes. Figure 2 shows the results changing the 
number of images from 3 to 13. In this case, a constant standard deviation of noise 
level of 1 mm in the pattern points coordinates and 1 pixel in the image points is 
added. Also, a mean of 100 simulated calibrations is shown in the figure. If the num-
ber of images is small, errors are smaller with Levenberg-Mardquart optimization 
because Kalman filter has no new data to iterate. When the number of images in-
creases, the number of iterations with Kalman filter increase and it allows improving 
the result. 

Computing an interval which contains the camera parameter. Since it is possible 
to estimate an interval which contains the camera parameter, several simulations has 
been done to test its behaviour. Figure 3 shows the result of computing the interval of 
camera parameter changing the noise level.  Figure 4 shows the evolution of the inter-
val if the number of homographies increase. Straight line represents the real value. 
Dotted lines represent the interval which contains the parameter. 

 

 

Fig. 1. Errors versus noise level 

 

 

Fig. 2. Errors versus noise level 
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4.2   Experiments with Real Data  

In this case a webcam has been used. Its resolution is 640x480. Two calibration im-
ages are shown in figure 5. It has 63 points. As before, several images have been 
taken approximately from the same positions as simulated experiments, but now the 
distance of the camera to the calibration pattern is 40 cm. Table 1 shows the results. 
First column (CF) is the result of the initial closed form solution for each internal 
camera parameter. Second column (KF) shows the result using Kalman filter and the 
third one is the solution of the Levenberg-Madquart (LM) algorithm. Last row show 
the value RMS. It indicates the root of mean squared distances in pixels between 
detected image points and projected ones. Kalman filter improves this result.  

 

 
Fig. 3. Absolute value with the interval versus noise level 

 

 

Fig. 4. Absolute value with the interval versus number of images 

     

Fig. 5. Two images of planar calibration template for real experiments 
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Table 1. Results with real data 

  5 images  10 images 
 CF KF LM CF KF LM 
α 982.3 990.5 987.4 979.5 985.2 988.6 
β 975.8 992.8 988.4 980.4 982.4 988.4 
u0 309.5 315.7 319.4 315.4 322.7 316.8 
v0 229.7 234.8 238.7  232.7 238.9 242.1 

RMS 0.845 0.554 0.587  0.935 0.425 0.567 

If the number of images is small, the Kalman filter algorithm does not have de-
grees of freedom to iterate. Then improvement is not significant. However, if the 
number of images increase it allows to increase the number of iterations and then 
better results is computed than if we use Levenberg-Madquart optimization algorithm.  

5   Conclusions 

A new approach to camera calibration process has been done. In this case a Kalman 
filter has been used to maximize the probability density function of the camera pa-
rameters for a given set of points coordinates. Moreover, to make the calibration algo-
rithm less sensitive to measurement noise, a different management of the input data is 
done. This allows improving the computed parameters with the information of new 
data which has not participated in the estimation process before. Non linear refine-
ment methods use always the same information and they could fall into a local mini-
mum if starting parameters are not very good. With the Kalman filter new information 
is added to the estimation algorithm and it allows finding optimal values. Further-
more, the covariance matrix of the input data has been taken into account as a meas-
urement of credibility of the input data. This fact allows the algorithm improve the 
estimated parameters depending on the accuracy of the input data. In addition, if the 
input data fits with the current estimated values, the optimal filter decreases the co-
variance matrix of the estimation. 

One disadvantage of this calibration method is the estimation of the non linear 
camera parameters. These are (lens and CCD distortions). If Levenberg-Madquart 
optimization method is used, non linear relations between parameters can be taken 
into account. In this case, only linear relations are estimated. Future work is oriented 
to resolve this task.   
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