
M. Chetty, A. Ngom, and S. Ahmad (Eds.): PRIB 2008, LNBI 5265, pp. 448– 459, 2008.
© Springer-Verlag Berlin Heidelberg 2008

GPU-MEME: Using Graphics Hardware to Accelerate
Motif Finding in DNA Sequences

Chen Chen, Bertil Schmidt, Liu Weiguo, and Wolfgang Müller-Wittig

School of Computer Engineering, Nanyang Technological University, Singapore
{cchen,asbschmidt,liuweiguo,askwmwittig}@ntu.edu.sg

Abstract. Discovery of motifs that are repeated in groups of biological se-
quences is a major task in bioinformatics. Iterative methods such as expectation
maximization (EM) are used as a common approach to find such patterns. How-
ever, corresponding algorithms are highly compute-intensive due to the small
size and degenerate nature of biological motifs. Runtime requirements are likely
to become even more severe due to the rapid growth of available gene transcrip-
tion data. In this paper we present a novel approach to accelerate motif discovery
based on commodity graphics hardware (GPUs). To derive an efficient mapping
onto this type of architecture, we have formulated the compute-intensive parts of
the popular MEME tool as streaming algorithms. Our experimental results show
that a single GPU allows speedups of one order of magnitude with respect to the
sequential MEME implementation. Furthermore, parallelization on a GPU-
cluster even improves the speedup to two orders of magnitude.

1 Introduction

A major challenge in computational genomics nowadays is to find patterns (or motifs)
in a set of sequences. In particular, discovering motifs that are crucial for the regula-
tion of gene transcription in DNA (such as Transcription Factor Binding Sites) are of
growing importance to biological research. With the production of vast quantities of
data, genomic researchers want to perform this analysis on a larger scale, which in
turn leads to massive compute requirements. In this paper we show how modern
streaming architectures can be used to accelerate this highly compute-intensive task
by one to two orders of magnitude.

Algorithmic approaches to motif discovery can be classified into two main catego-
ries: iterative and combinatorial. Iterative methods are based on local stochastic
search techniques such as expectation maximization (EM) [1, 2] or Gibbs sampling
[5], while combinatorial algorithms use deterministic methods like dictionary building
[8] or word enumeration [11]. Iterative methods are often preferred since they are
using PSSMs (Position Specific Scoring Matrices) instead of a simple Hamming dis-
tance to describe the matching between a motif instance and a sequence. Among the
iterative approaches, MEME (Multiple EM for Motif Elicitation) [2, 3] is a popular
and well established method. However, its complexity is O(N2⋅L2), where N is the
number of input sequence and L is the length of each sequence. Therefore, this
approach is time consuming for applications involving large data sets such as whole-
genome motif discovery. Corresponding runtime requirements are likely to become

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 449

even more severe due to the rapid growth in the size of available genomic sequence
and transcription data. An approach to get results in a shorter time is to use high per-
formance computing. Previous approaches to accelerate the motif finding process are
based on expensive compute clusters [3] and specialized hardware [9].

This paper presents a proof-of-concept parallelization of motif discovery with
MEME on commodity graphics hardware (GPUs) to achieve high performance at low
cost. Our software currently supports the OOPS (one occurrence per sequence) and
ZOOPS (zero or one occurrence per sequence) search models for DNA sequences. Our
future work includes integrating the more complex TCM (two-component mixture)
model and making the software available for public use. We are also planning to port
the presented GLSL code to the newly released CUDA programming interface for
GPU programming, which was not was not available at the time of writing the GPU-
MEME code. Our achieved speedups on an NVIDIA GeForce 8800 GTX compared to
the sequential MEME implementation are between 9 (for small data sets) and 12 (for
large data sets). The runtime on a single GPU also compares favourably to the MPI-
based ParaMEME running on a cluster with 12 CPUs. Furthermore, we have combined
the fine-grained GPU parallelization with a coarse-grained parallel approach. This
hybrid approach improves the speedup on a cluster of six GPUs to over 60.

The rest of this paper is organized as follows. In Section 2, we provide necessary
background on motif discovery and general-purpose computing on GPUs. Section 3
presents our parallel streaming algorithm for motif finding. Performance is evaluated
in Section 4. Finally, Section 5 concludes the paper.

2 Background

2.1 Motif Discovery

Iterative methods like EM search for motifs by building statistical motif models. A
motif model is typically represented by a matrix (θ). For a motif of width W and an
alphabet Σ = {x0,…,xA−1} of size A the matrix θ is of size A × (W+1). The value at
position (i,j), for 0 ≤ i ≤ A−1, 0 ≤ j ≤ W, of the matrix is defined as follows:

⎩
⎨
⎧

=
≤≤

=
0 ifmotif theoutside positionsat appearing ofy Probabilit

1 ifmotif theof position at appearing ofy Probabilit
, jx

Wjjx

i

i
jiθ

The overall goal of the EM approach is to find a matrix with maximal posterior
probability given a set of input sequences.

The outline of the MEME (Multiple EM for Motif Elicitation) [2] algorithm is
shown in Figure 1. The search for a motif at each possible motif width W consists of
two phases. Since EM is easily trapped in local minima, the first phase iterates over a
large number of possible starting points to identify a good initial model θ (0). In the
second phase, the algorithm then performs the full EM algorithm until convergence
using θ (0). Profiling of the MEME algorithm (see Table 1) reveals that over 96% of
the overall running time is usually spent on the first phase (called “starting point
search”). We therefore describe the starting point search algorithm in more detail in
the following.

450 C. Chen et al.

procedure MEME(X:set of sequences)
for pass = 1 to num_motifs do

for W = W_min to W_max do
for all starting points (i,j) in X do

estimate score of the initial motif model which includes the
W-length substring starting at position j in sequence i;

end
choose initial model (0) from starting position with maximal
estimated score;
run EM to convergence starting with model (0);

end
print converged model with highest likelihood;
“erase” appearance of discovered shared motif in X;

end
end

Fig. 1. Outline of the MEME algorithm

Given is the input dataset X = {S1, S2,…, Sn} consisting of n sequences over the al-
phabet Σ = {x0,…,xA−1} and the motif width W. Let sequence Si be of length L(i) for

1≤i≤n. Then, the total number of substrings of length W in X is)1()(
1

−⋅−⎟
⎠

⎞
⎜
⎝

⎛∑
=

WNiL
n

i

.

Let Si,j denote the substring of length W starting at position j in sequence Si for all 1 ≤
i ≤ n, 1 ≤ j ≤ L(i), The starting point search algorithm considers all these substrings as
possible starting points using the three steps shown in Figure 2.

for each length-W substring Si,j in X do
[Step 1] Compare Si,j to all other length-W substrings Sk,l to

calculate the score P(Sk,l,Si,j);
[Step 2] For each sequence k determine the substring Sk,maxk where

maxk = argmax1 l<=L(k)-W+1{P(Sk,l,Si,j)};
[Step 3] Sort and align the identified N substrings in Step 2 to

determine the estimated score of starting point (i,j);
end

Fig. 2. Starting point search algorithm

Table 1. Percentage of MEME (version 3.5.4) execution time spent on starting point search for
data sets of various sizes

Dataset Number of
sequences

Average
sequence

length

Runtime using
default

parameters

Percentage spent
on “starting point

search”
Mini-

drosoph
4 124,824 15,642 sec 99.4%

Hs_100 100 5000 16,017 sec 96.3%
Hs_200 200 5000 60,142 sec 97.5%
Hs_400 400 5000 233,228 sec 98.7%

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 451

In practice, W can be considered to be much smaller than the sequence lengths.
Therefore, we assume that W is a constant and determine the time complexities of the
three steps in Figure 2 as shown in Table 2. The score between two substrings of length
W in Step 1 is calculated using Equation (1). In Equation (1) Si[j] denotes the letter
occurring at position j of sequence i and map is a letter frequency matrix of size A×A.

∑
−

=

++=
1

0
,,])[],[(),(

W

r
ikjilk rjSrlSmapSSP (1)

Table 2. Time complexities of the three steps in Figure 2

Step Computational requirement Time complexity
1 Requires an all-against-all comparison of length-W

substrings in X
2

1

)(
n

i

iLO

2 Requires a linear search of all scores computed in
Step 1

2

1

)(
n

i

iLO

3 Only deals with the n maximum scores identified in
Step 2 and therefore has a lower overall complexity

n

i

iLnO
1

)(

2.2 General Purpose Computations on GPUs

In the past few years, the fast increasing power of the GPU (Graphics Processing
Unit) has made it a compelling platform for computationally demanding tasks in a
wide variety of application domains. Currently, the peak performance of state-of-the-
art consumer graphics cards is more than ten times faster than that of comparable
CPUs. Furthermore, GPU performance has been increasing from two to two-and-a-
half times a year. This growth rate is faster than Moore's law as it applies to CPUs,
which corresponds to about one-and-half times a year. The high price/performance
ratio, rapid increase in performance, and widespread availability of GPUs has pro-
pelled them to the forefront of high performance computing.

Recently, NVIDIA has released the multi-threaded CUDA programming interface
for GPU programming. However, CUDA was not available at the time of writing our
GPU-MEME code. Therefore, the presented GPU-MEME algorithm is implemented
using the graphics-based GLSL language [4]. Computation using GLSL on a GPU
follows a fixed order of processing stages, called the graphics pipeline (see Figure 3).
The streaming pipeline consists of three stages: vertex processing, rasterization and
fragment processing. The vertex processing stage transforms three-dimensional vertex
world coordinates into two-dimensional vertex screen coordinates. The rasterizer then
converts the geometric vertex representation into an image fragment representation.
Finally, the fragment processor forms a color for each pixel by reading texels from the
texture memory. In order to meet the ever-increasing performance requirements set by
the gaming industry, modern GPUs support programmability of the vertex and frag-
ment processors using two types of parallelism. Firstly, multiple processors work on
the vertex and fragment processing stage, i.e. they operate on different vertices and
fragments in parallel. Secondly, operations on 4-dimensional vectors (the four channels
Red/Green/Blue/Alpha (RGBA)) are natively supported without performance loss.

452 C. Chen et al.

Fig. 3. Graphics pipeline

3 GPU-Accelerated Motif Discovery

3.1 Parallel Streaming Algorithm

The GPU analog of arrays on the CPU are textures. GPUs treat objects as polygon
meshes, textures can then be attached to the polygon. Each vertex of the polygon
contains texture location information in the form of (x,y) coordinates and the
requested texture is interpolated across the polygon surface. This process is called
texture mapping.

From Step 1 in Figure 2, we can see that for a given length-W substring Si,j the
scores P(Sk,l,Si,j) need to be calculated independently from each other for all 1 ≤ k ≤ n
and 1 ≤ l ≤ L(k)–W +1. Our method takes advantage of the fact that all n⋅(L(k)–W +1)
scores can be computed independent of each other. Therefore, we map the sequence
dataset (X), the letter frequency matrix (map) and the score matrix (i.e. all scores for a
fixed (i,j), denoted as: [P(Sk,l,Si, j)]1≤k≤n,1≤l≤L(k)–W +1) onto the following three textures:

1) Sequence dataset texture (Texseq). We are using one row of the texture memory
to store one sequence. If the sequence length is longer than the row width of the
texture, several rows of texture memory will be used. Since the maximum texture
size of modern GPUs is 4096×4096 and one texture element can store up to four
values (RGBA), a sequence of length L requires ⎡L /16384⎤ rows of texture
memory. In this section, we assume that one sequence fits into one row of texture
memory. The partitioning of a sequence onto multiple rows is discussed in Sec-
tion 3.2.

2) Letter frequency matrix texture (Texfreq). This is a relatively small matrix of
size A×A. The utilized alphabet for DNA sequences in MEME is Σ = {A, C, G, T,
X}, where X represents an unknown nucleotide. Hence, the letter frequency ma-
trix for DNA can be stored in a 5×5 texture.

3) Score texture (Texscore). The output of each rendering pass will be written to
graphics memory directly, which can then be fed back in as a new stream of tex-
ture data for further processing. The dimension of the score matrix texture is
equal to the dimension of Texseq. This allows reusing the coordinates of Texseq to
do lookup operations for Texscore, thus reducing extra coordinate computations. If
multiple sequence dataset textures have to be used, the same number of score tex-
tures is required to store the rendering results.

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 453

Fragment programs are used to implement the arithmetic operations on the above
textures specified by Equation (1). Equation (1) requires W table lookups and W−1
additions to calculate P(Sk,l,Si,j). The number of operations can be reduced to two
lookups and two additions/subtractions by using P(Sk,l,Si,j) to calculate P(Sk,l−1,Si,j+1) as
follows:

])1[],1[(])1[],[(),(),(,1,,, −−−−+++= − lSjSmapWlSWjSmapSSPSSP kikijilkjilk
 (2)

As shown in Equation (2), during each rendering pass the newly computed score
matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 is stored in the texture memory as a texture. The
subsequent rendering pass reads the previous score matrix from the texture memory.
Since the calculation of the score matrix [P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 depends on the
score matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1, two score matrices have to be stored as
separate texture buffers. We are using a cyclic method to swap the buffer function as
follows: First, the score matrix [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 is in the form of a texture
input, and [P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 is the render target. In the subsequent iteration,
[P(Sk,l,Si,j+1)]1≤k≤n,1≤l≤L(k)–W+1 is treated as the input texture and [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1

is the render target.
Once [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 is calculated, the maximum score for each

sequence sample has to be found (Step 2 in Figure 2). In order to collect the
maximum score for each sequence in texture memory, a preprocessing step eliminates
invalid scores in Texscore. These scores will be zeroed in the preprocess step. Thus,
they will not influence the final maximum comparison results. This step requires a
new texture called Texlength, which stores information about the length of each
sequence. After a preprocessing operation, a series of parallel reduction steps are
performed on Texscore. Each parallel reduction step consists of two operations. Firstly,

{p1,p2,p3,p4} Invalid data

0 0 0

{max(p), idx(max(p)), 0, 0}

(a)

p1 p2 p2i-1 p2i

{max(p1,p2),idx(max(p1,p2), 0,0}
(b)

Fig. 4. (a) Preprocessing step; (b) Parallel reduction

454 C. Chen et al.

all elements with odd indices in the score texture will be compared to their
corresponding following elements with even indices. Secondly, an adjustment of
texture coordinates is performed. These two operations iterate until the maximum
score of each is calculated (see Figure 4(b)). Note that the operations in the first
reduction step are slightly different from the following steps. In the first step, each
fragment processor compares the four scores in the R, G, B and A-channels of a single
texture pixel and then outputs the maximum score together with its index into the R
and G channels respectively (see Figure 4(a)). Assuming a maximal sequence length
of Lmax, the number of reduction passes for the maximum computation procedure is
therefore 1+log2⎡Lmax/4⎤.

activate, enable and create texture Texseq and load sequence data into it;
activate, enable and create texture Texfreq and load letter frequency

matrix into it;
activate, enable and create texture Texlength and load sequence length

information into it;
enable and create textures Texscore_j and Texscore_j+1;
create and initialize a render buffer rBuffer;
for each sequence sample i do

for each substring j in sequence i do
set Texscore_j as render buffer and Texscore_j+1 as read buffer;
set texture coordinates Texseq[4], Texfreq[4], Texlength[4];
set vertex coordinates vertex[4];
DrawQuad(Texseq, Texfreq, Texlength, vertex); /*call kernel program */
do parallel reduction operation on the score matrix texture to
get the maximum score for each sequence sample;
change the functions of Texscore_j and Texscore_j+1 in a cyclic way;
Read back the maximum scores to CPU for further processing;

end
end

Fig. 5. Pseudocode of our streaming algorithm for starting point search

As mentioned in Section 2.1, Step (3) in the starting point search algorithm has a
lower time complexity than Steps (1) and (2). Therefore, the produced maximum
scores are read back from texture memory to the CPU. The CPU then performs Step
(3) sequentially. We will show in Section 4 that the runtime for Step (3) on the CPU
is dominated by the runtime for Steps (1) and (2) on the GPU. The pseudocode of our
streaming algorithm for starting point search is shown in Figure 5.

3.2 Partitioning and Implementation

So far, we have assumed that each sequence fits into one row of texture memory. In
practice, the length of the sequences may be larger and the computation must be parti-
tioned onto several rows. This is incorporated into our streaming algorithm as fol-
lows.

1) Multi-row storage in the sequence dataset texture. As mentioned in Section
3.1, we are using one row of texture memory to store one sequence. If the se-
quence length is longer than the row width of the texture, several rows of texture
memory will be used. Since the maximum texture size of modern GPUs is

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 455

4096×4096 and one texture element can store up to four values (RGBA), a se-
quence of length L requires ⎡L /16384⎤ rows of texture memory. Assume Lmax is
the length of the longest sequence in the dataset, in practice we let all long se-
quences take the same Rmax = ⎡Lmax /16384⎤ rows in the texture memory for sim-
plicity. In this case, a texture can contain Nmax = ⎣4096/Rmax⎦ long sequences.
Overall, we need ⎡n/Nmax⎤ textures to store the complete sequence dataset. Corre-
spondingly, ⎡n/Nmax⎤ score textures will be used to store the rendering results.

2) Multi-row indexing for texture lookups. If Lmax > 16384, there exist cases
where the letters Si[j] and Si[j+1] are stored in different texture rows. In order to
handle these cases correctly, we use (i%Nmax + ⎡j/16384⎤, j%16384) instead of (i,
j) to do texture lookups for (i, j+1).

3) Multi-row parallel reduction. According to Section 3.1, 1+log2⎡16384/4⎤
parallel reduction steps are required to get the maximum in each texture row.
Additional log2Rmax passes are required to get the maximum scores for sequences
occupying Rmax texture rows.

In order to make full use of the computing power in a PC, we have designed and im-
plemented a multi-threaded CPU-GPU collaborative architecture for our streaming
algorithm. Figure 6 illustrates the structure of this architecture. It contains three kinds
of threads:

1) Daemon thread: This thread runs in the background and takes care of the execu-
tion of the whole process. It will respond to the data readback operations between
the CPU and GPU threads.

Sequence dataset

Texture mapping

Calculate P(Sk,l,Si,j)

Determine maximum scores
for each sequence sample

Store the maximum scores into one
row of a the texture memory

Readback a batch of scores to CPU
for alignment and generating

starting point operations

D
aem

on thread

Multi-pass
rendering
stream on

GPU thread

CPU thread

Fig. 6. The structure of our multi-threaded collaborative CPU-GPU architecture

456 C. Chen et al.

2) GPU thread: Because of the implicit data-parallelism processing power of the
GPU, it is used to process the compute-intensive calculations. Tasks such as the
calculation of [P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 and parallel reduction operations on
[P(Sk,l,Si,j)]1≤k≤n,1≤l≤L(k)–W+1 are all done by the GPU thread. In order to increase the
readback efficiency, the parallel reduction scores during each rendering pass will
be first stored in one row of a texture Texmax. After a constant number of
rendering passes, a batch of data in Texmax are read back to the CPU for further
processing.

3) CPU thread: Because of the sequential computing characteristics and the lower
time complexity of Step 3 in Figure 2, we let the CPU process this step. When the
CPU gets a batch of rendering data from the GPU, it will do the global maximum
alignment and starting point generation operations on the data sequentially.

According to our experiments (see Section 4), the GPU thread dominates the runtime.
Thus, the runtime of the CPU thread does not influence the overall runtime, since it
runs concurrently to the GPU thread.

4 Performance Evaluation

We have implemented the proposed algorithm using C and the GPU programming
language GLSL (OpenGL Shading Language) [4] and evaluated it on the following
graphics card:

− Nvidia GeForce 8800 GTX: 1.35 GHz engine clock speed, 900 MHz memory
clock speed, 128 stream processors, 768 MB device memory. Tests have been
conducted with this card installed in a PC with an Intel Petium4 3.0GHz, 1
GByte RAM running Fedora Core 6 Linux.

A set of performance evaluation tests have been conducted using different numbers
of DNA sequences to evaluate the processing time of the GPU implementation versus
that of the original MEME implementation. The sequential MEME application is
benchmarked on an Intel Pentium4 3GHz processor with 1 Gbyte RAM running Fe-
dora Core 6 Linux. We have used MEME Version 3.5.4, which is available online at
http://meme.nbcr.net/meme/intro.html for our evaluation.

The evaluated datasets are the largest dataset supplied by MEME (called mini-
drosoph) and three datasets of human promoter regions consisting of 100, 200, and
400 sequences of lengths 5,000 base-pairs each (called HS_5000_100, HS_5000_200,
HS_5000_400). We have used MEME’s default parameters for evaluation. The re-
sults for our experiments are shown in Table 3. The CPU alignment part (rows shaded
in gray) and the computations on the GPU run concurrently. Since the CPU alignment
requires less time, its runtime does not influence the overall runtime. From Table 3
we can see that our GPU implementation achieves speedups of almost fourteen com-
pared to the starting point search stage in MEME and twelve compared to the overall
runtime.

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 457

Table 3. Comparison of runtimes (in seconds) and speedups of MEME running on a single
Pentium4 3GHz to our GPU-accelerated version running on a Pentium4 3GHz with an Nvidia
GeForce 8800 GTX for different datasets. The time and percentage spend on different parts of
the algorithm are also reported.

Dataset Name, Number of sequences
(average length)

HS_5000_100,
100 (5,000)

HS_5000_200,
200 (5,000)

Overall 16017 [100.0%] 60142 [100.0%]
Starting Point Search 15428 [96.3%] 58656 [97.5%]

MEME
(P4, 3GHz)

EM 589 [3.7%] 1486 [2.5%]
Overall 1755 [100.0%] 5894 [100.0%]

Score Comp.
(GPU)

923 [52.6%] 3565 [60.5%]

Parallel Red.
(GPU)

182 [10.4%] 707 [12.0%]

Result Readb.
(GPU)

61 [3.5%] 136 [2.3%]

Starting
Point

Search

Alignment
(CPU)

1042 [59.4%] 2045 [34.7%]

GPU-MEME
(GeForce

8800 GTX)

EM (CPU) 589 [33.6%] 1486 [25.2%]
Overall 9.1 10.2 Speedup

Starting Point Search 13.2 13.3

Dataset Name,
Number of sequences (average length)

HS_5000_400,
400 (5,000)

Mini-drosoph,
4 (124,824)

Overall 233228 [100.0%] 15642 [100.0%]
Starting Point Search 230283 [98.7%] 15545 [99.4%]

MEME
(P4, 3GHz)

EM 2945 [1.3%] 97 [0.6%]
Overall 19895 [100.0%] 1375 [100.0%]

Score Comp.
(GPU)

13818 [69.5%] 1061 [77.2%]

Parallel Red.
(GPU)

2764 [13.9%] 209 [15.2%]

Result Readb.
(GPU)

368 [1.8%] 8 [0.6%]

Starting
Point

Search

Alignment
(CPU)

4067 [20.4%] 244 [17.7%]

GPU-MEME
(GeForce

8800 GTX)

EM 2945 [14.8%] 97 [7.1%]
Overall 11.7 11.4 Speedup

Starting Point Search 13.6 12.6

We have also compared our speedups to the MPI-based ParaMEME implementa-
tion ([3], available online at http://meme.nbcr.net/meme/intro.html) on a CPU cluster.
The utilized cluster is a 6-node Intel Xeon Dual-Processor cluster with a 1GBit/sec
Myrinet switch running Red Hat Linux 3.2.3-24. Table 4 shows a comparison of
speedups achieved with ParaMEME compared to our GPU-MEME implementation.
As can be seen, our implementation on a single GPU is comparable to the MPI ap-
proach on a cluster with 12 CPUs.

458 C. Chen et al.

Table 4. Speedups of GPU-MEME on a single GPU and ParaMEME on a 12-CPU cluster

Dataset Name Speedup GPU-MEME Speedup ParaMEME
Mini-drosoph 11.4 12.6
HS_5000_100 9.1 11.4
HS_5000_200 10.2 11.2
HS_5000_400 11.7 11.1

Table 5. Comparison of the runtime and speedup of MEME running on a P4 3GHz to GPU-
MEME running on a cluster with GeForce 8800 GTX cards. Speedup is compared to the se-
quential MEME code and denoted as “speedup CPU”. Efficiency with respect to the number of
utilized GPUs is denoted as “efficiency GPU”.

Mini-drosoph HS_5000_100
 runtime

(sec.)
speedup

CPU
efficiency

GPU
runtime
(sec.)

speedup
CPU

efficiency
GPU

Seq. MEME 15,642 1.0 N.A. 16,017 1 N.A.
GPU-MEME
(1 8800GTX)

1,375 11.4 100.0% 1,755 9.1 100.0%

GPU-MEME-MPI
(2 8800GTX)

760 20.6 90.5% 1,065 15.0 82.5%

GPU-MEME-MPI
(4 8800GTX)

383 40.8 89.8% 538 29.8 81.5%

GPU-MEME-MPI
(6 8800GTX)

260 60.2 88.2% 368 43.5 79.5%

HS_5000_200 HS_5000_400
 runtime

(sec.)
speedup

CPU
efficiency

GPU
runtime
(sec.)

speedup
CPU

efficiency
GPU

Seq. MEME 60,142 1.0 N.A. 233,228 1 N.A.
GPU-MEME
(1 8800GTX)

5,894 10.2 100.0% 19,895 11.7 100.0%

GPU-MEME-MPI
(2 8800GTX)

3,394 17.7 87.0% 11,107 20.1 89.5%

GPU-MEME-MPI
(4 8800GTX)

1,699 35.4 86.8% 5,521 42.2 90.0%

GPU-MEME-MPI
(6 8800GTX)

1,168 51.5 84.0% 3,817 61.1 86.8%

In order to achieve an even higher speedup, we have extended our GPU-MEME
approach to a GPU cluster using MPI. The coarse-grained MPI parallelization assigns
to each processor an approximately equal number of starting points to be compared to
the input sequence dataset. Table 5 shows a comparison of runtime and speedups of
the GPU-MEME cluster version for up to six GPUs compared to the sequential
MEME implementation and to our GPU-MEME implementation on a single GPU.

5 Conclusion

In this paper, we have introduced a streaming algorithm for motif finding in biologi-
cal sequences that can be efficiently implemented on modern graphics hardware. The

GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences 459

design is based on data-parallel computing characteristics in the motif finding process
and makes full use of the available computing power in a PC. Our implementation
achieves speedups of over an order of magnitude compared to the widely used MEME
tool. At least the same number of CPUs connected by a fast switch is required to
achieve a similar speedup using the MPI-based ParaMEME code. A comparison of
these two parallelization approaches shows that graphics hardware acceleration is
superior in terms of price/performance. The presented GPU software is a proof-of-
concept parallelization and can be used for the OOPS and ZOOPS search models. Our
future work will include integrating the TCM model into our GPU framework and
making the software available for public use. We are also planning to port the pre-
sented GLSL code to the newly released CUDA programming interface for GPU
programming.

Acknowledgement

We thank Geir Kjetil Sandve for the sequence datasets. The work was supported by
the A*Star BMRC research grant No. 04/1/22/19/375.

References

1. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using ex-
pectation maximization. Machine Learning 21, 51–80 (1995)

2. Bailey, T.L., Williams, N., Misleh, C., Li, W.W.: MEME: discovering and analyzing DNA
and protein motifs. Nucleic Acid Research 34, W369–W373 (2006)

3. Grundy, W.N., Bailey, T.L., Elkan, C.P.: ParaMEME: A parallel implementation and a
web interface for a DNA and protein motif discovery tool. Computer Applications in the
Biological Sciences (CABIOS) 12, 303–310 (1996)

4. Kessenich, J., Baldwin, D., Rost, R.: The OpenGL Shading Language, Document Revision
8 (2006), http://www.opengl.org/documentation/glsl/

5. Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A., Wootton, J.: Detecting sub-
tle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–
214 (1993)

6. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Streaming Algorithms for Biological
Sequence Alignment on GPUs. IEEE Transactions on Parallel and Distributed Sys-
tems 18(10), 1270–1281 (2007)

7. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators
for Smith-Waterman sequence alignment. BMC Bioinformatics 9(Suppl. 2), S10 (2008)

8. Sabatti, C., Rohlin, L., Lange, K., Liao, J.C.: Vocabulon: a dictionary model approach for
reconstruction and localization of transcription factor binding sites. Bioinformatics 21(7),
922–931 (2005)

9. Sandve, G.K., Nedland, M., Syrstad, B., Eidsheim, L.A., Abul, O., Drablas, F.: Accelerat-
ing motif discovery: Motif matching on parallel hardware. In: Bücher, P., Moret, B.M.E.
(eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 197–206. Springer, Heidelberg (2006)

10. Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A.: High-throughput sequence align-
ment using Graphics Processing Units. BMC Bioinformatics 8(474) (2007)

11. Sumazin, P., et al.: DWE: Discriminating Word Enumerator. Bioinformatics 21(1), 31038
(2005)

	GPU-MEME: Using Graphics Hardware to Accelerate Motif Finding in DNA Sequences
	Introduction
	Background
	Motif Discovery
	General Purpose Computations on GPUs

	GPU-Accelerated Motif Discovery
	Parallel Streaming Algorithm
	Partitioning and Implementation

	Performance Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

