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Abstract. The LERS classification system and rule management in
probabilistic rough set models (PRSM) are compared according to the
interpretations of rules, quantitative measures of rules, and rule con-
flict resolution when applying rules to classify new cases. Based on the
notions of positive and boundary regions, probabilistic rules are semanti-
cally interpreted as the positive and boundary rules, respectively. Rules
are associated with different quantitative measures in LERS and PRSM,
reflecting different characteristics of rules. Finally, the rule conflict reso-
lution method used in LERS may be applied to PRSM.

1 Introduction

Rule induction is one of the most important applications of rough set the-
ory [5,6,8,9,11,17]. In the standard rough set model, one typically interprets
rules induced from the positive region (i.e., the lower approximation) of a con-
cept (class) as certain rules and rules induced from the boundary region (i.e.,
the difference of upper approximation and lower approximation) as uncertain or
plausible rules. One may associate quantitative measures to rules. For example,
the precision of a rule, also called accuracy and confidence, is the conditional
probability that a rule correctly indicates the concept given the set of all cases
matching the rule. From the point view of precision, the interpretation of cer-
tain and uncertain rules is reasonable, as the precision of a certain rule is 1 and
precision of a plausible rule is between 0 and 1.

The lack of consideration for the degree of overlap of an equivalence class and
a concept had motivated many authors to consider probabilistic rough set models
(PRSM). Pawlak, Wong, Ziarko [10] proposed to use 0.5 as a threshold to define
probabilistic rough set approximations. Yao and Wong [13,14,15] proposed the
decision-theoretic rough set model (DTRSM) in which a pair of threshold para-
meters for defining probabilistic approximations can be determined based on the
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well established Bayesian decision theory. That is, the probabilistic approxima-
tions defined by the parameters would incur minimal risk in deciding the posi-
tive, boundary and negative regions. Based on intuitive arguments, Ziarko [16]
proposed variable precision rough set model (VPRSM) for probabilistic approx-
imations. Once probabilistic approximations are introduced, one can similarly
derive rules [6,11,12].

There is a semantics difficulty with interpreting probabilistic rules induced
from the probabilistic positive region, since they are also uncertain (i.e., pre-
cision < 1). From the precision point of view, there is no difference between
probabilistic rules induced from probabilistic positive and boundary regions,
except for their levels of precision. However, this important problem has not
received much attention until recently. A solution to the problem is offered by
the decision-theoretic rough set model. Given a class, its positive, boundary and
negative regions represent three different types of decisions. For example, con-
sider classifying a set of patients according to a particular disease. A patient in
the positive region needs “immediately treatment”, a patient in the boundary
requires “further investigation”, and a patient in the negative region does not
require any treatment. With respect to the first two cases, the notions of positive
rules and boundary rules have been introduced [13]. They properly reflect the
semantics interpretations of rules induced in PRSM.

Another important issue that need to be considered in PRSM is rule conflict
resolution when rules are applied to classify new cases. Many studies focus more
on rule induction and pay less attention to rule evaluation where rule conflict reso-
lution must be considered. A solution for rule conflict resolution has been explored
in LERS [2,3,4,5], where bucket brigade algorithm [1,7] is adopted and modified.
In addition, LERS use different quantitative measure to characterize rules.

Based on the above discussion, we present a comparative study of LERS
classification system and rule management in PRSM. This comparison enables
us to pool together advantages of the two approaches in an attempt to obtain
better rule induction algorithms within rough set theory.

2 Rule Induction

First we are going to present LEM2 (Learning from Examples Module, version
2) methodology of rule induction based on attribute-value pair blocks. LEM2 is
one of rule induction modules of the LERS (Learning from Examples based on
Rough Sets) data mining system.

2.1 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, ..., 19}. Independent variables are called
attributes and a dependent variable is called a decision and is denoted by d. The
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Table 1. A complete decision table

Attributes Decision

Case Width Gauge Quality

1 wide heavy good
2 wide heavy good
3 wide heavy good
4 wide medium good
5 wide medium good
6 wide medium bad
7 wide light good
8 wide light good
9 wide light bad
10 wide light bad
11 narrow heavy good
12 narrow heavy good
13 narrow heavy good
14 narrow heavy bad
15 narrow medium good
16 narrow medium good
17 narrow medium bad
18 narrow light bad
19 narrow light bad

set of all attributes will be denoted by A. In Table 1, A = {Width, Gauge}. Any
decision table defines a function ρ that maps the direct product of U and A into
the set of all values. For example, in Table 1, ρ(1, Width) = wide. A decision
table with an incompletely specified function ρ will be called incomplete.

An important tool to analyze complete decision tables is a block of an attribute-
value pair. Let a be an attribute, i.e., a ∈ A and let v be a value of a for some case.
For complete decision tables if t = (a, v) is an attribute-value pair then a block of
t, denoted [t], is a set of all cases from U that for attribute a have value v. Each
attribute-value pair represents one piece of knowledge about a decision table or
a property of cases. These pieces of knowledge and the corresponding blocks will
serve as a basis of rule induction.

For Table 1, we have,
[(Width, wide)] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

[(Width, narrow)] = {11, 12, 13, 14, 15, 16, 17, 18, 19},
[(Gauge, heavy)] = {1, 2, 3, 11, 12, 13, 14},

[(Gauge, medium)] = {4, 5, 6, 15, 16, 17},

[(Gauhe, light)] = {7, 8, 9, 10, 18, 19}.
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Moreover, the two important blocks related with the decision Quality, called
concepts, are:

[(Quality, good)] = {1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16},

[(Quality, bad)] = {6, 9, 10, 14, 17, 18, 19}.

These blocks represent knowledge about the entire decision table. Rule induc-
tion is essential to find relationship between the blocks defined by attributes and
the blocks defined by a decision.

The notion of blocks can be used to explain the basic concepts of the rough
set theory [8,9]. Let B be a nonempty subset of A. The indiscernibility relation
IND(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ IND(B) if and only if ρ(x, a) = ρ(y, a) for all a ∈ B.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B . The
indiscernibility relation IND(B) may be computed using the idea of blocks of
attribute-value pairs. More specifically, the elementary blocks of IND(B) are
intersections of the corresponding blocks of attribute-value pairs, i.e., for any
case x ∈ U ,

[x]B =
⋂

{[(a, v)]|a ∈ B, ρ(x, a) = v}.

In other words, the elementary block containing x is intersection all blocks de-
fined by values of x all attributes in B.

For Table 1, the elementary sets of IND(A) are given by:

[1]A = [(Width, wide)] ∩ [(Gauge, heavy)] = {1, 2, 3} = [2]A = [3]A,

[4]A = [(Width, wide)] ∩ [(Gauge, medium)] = {4, 5, 6} = [5]A = [6]A,

[7]A = [(Width, wide)] ∩ [(Gauge, light)] = {7, 8, 9, 10} = [8]A = [9]A = [10]A,

[11]A = [(Width, narrow)] ∩ [(Gauge, heavy)] = {11, 12, 13, 14} =
[12]A = [13]A = [14]A,

[15]A = [(Width, narrow)] ∩ [(Gauge, medium)] = {15, 16, 17} = [16]A = [17]A,

[18]A = [(Width, narrow)] ∩ [(Gauge, light)] = {18, 19} = [19]A.

It follows that the elementary blocks of IND(A) are {1, 2, 3}, {4, 5, 6}, {7, 8, 9,
10}, {11, 12, 13, 14}, {15, 16, 17} and {18, 19}.

2.2 Rules in LERS

Based on the elementary blocks of the equivalence relation induced by a subset
B of the attribute set A, one can define a pair of lower and upper approximations
for each concept Di ⊆ U . That is,

apr
B

(Di) =
⋃

{[x]B | [x]B ⊆ Di}
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=
⋃

{[x]B | P (Di | [x]B) = 1};

aprB(Di) =
⋃

{[x]B | [x]B ∩ Di �= ∅}

=
⋃

{[x]B | P (Di | [x]B) > 0},

where P (Di | [x]D) = |Di ∩ [x]B |/|[x]B| is the conditional probability and | · | is
the cardinality of a set.

Thus, the lower approximations of the concepts from Table 1 are:

apr
A
([(Quality, good)]) = {1, 2, 3},

apr
A
([(Quality, bad)]) = {18, 19},

And the upper approximations of the concepts from Table 1 are:

aprA([(Quality, good)]) = {1, 2, ..., 17},

aprA([(Quality, bad)]) = {4, 5, ..., 19}.

The LERS data mining system computes lower and upper approximations for
every concept and then induces rules using one of the selected modules. Rules
induced from lower and upper approximations are called certain and possible,
respectively [2].

The LEM2 algorithm search for rules by using a family of blocks such that
their intersection is either a subset of the concept or has an overlap with the
concept [3]. In the LERS format, every rule is associated with three numbers:
the total number of attribute-value pairs on the left-hand side of the rule, the
total number of cases correctly classified by the rule during training, and the
total number of training cases matching the left-hand side of the rule, i.e., the
rule domain size.

For Table 1, the LEM2 module of LERS induces the following rule sets:
the certain rule set:

2, 3, 3
(Gauge, heavy) & (Width, wide) -> (Quality, good),
2, 2, 2
(Gauge, light) & (Width, narrow) -> (Quality, bad),

and the following possible rule set:

1, 7, 10
(Width, wide) -> (Quality, good),
1, 6, 7
(Gauge, heavy) -> (Quality, good),
1, 4, 6
(Gauge, medium) -> (Quality, good),
1, 4, 9
(Width, narrow) -> (Quality, bad),
1, 4, 6
(Gauge, light) -> (Quality, bad),
1, 2, 6
(Gauge, medium) -> (Quality, bad).
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2.3 Rules in PRSM

The set POSB(Di) = apr
B

(Di) is called the positive region of Di, and the
set BNDB(Di) = aprB(Di) − apr

B
(Di) is called the boundary region of Di.

According to the two regions, one can form two types of rules called positive and
boundary rules, respectively [13].

If an elementary block is in the positive region of a decision class, one obtains a
positive rule; if the elementary block is in the boundary region, one obtains one or
several boundary rules. In particular, in the VPRSM format, each rule is associated
with two numbers: the conditional probability and marginal probability [6].

For Table 1, we have the following positive rules:

(P1). (Width, wide) & (Gauge, heavy) −→ (Quality, good), 1.00, 0.158,

(P2). (Width, narrow) & (Gauge, light) −→ (Quality, bad), 1.00, 0.158,

and the boundary rules:

(B1). (Width, wide) & (Gauge, medium) −→ (Quality, good), 0.67, 0.158,

(B2). (Width, wide) & (Gauge, medium) −→ (Quality, bad), 0.33, 0.158,

(B3). (Width, wide) & (Gauge, light) −→ (Quality, good), 0.50, 0.211,

(B4). (Width, wide) & (Gauge, light) −→ (Quality, bad), 0.50, 0.211,

(B5). (Width, narrow) & (Gauge, heavy) −→ (Quality, good), 0.25, 0.211,

(B6). (Width, narrow) & (Gauge, heavy) −→ (Quality, bad), 0.75, 0.211,

(B7). (Width, narrow) & (Gauge, medium) −→ (Quality, good), 0.67, 0.158,

(B8). (Width, narrow) & (Gauge, medium) −→ (Quality, bad), 0.33, 0.158,

The two types of rules lead to two types of different decision. A positive rule
suggests a definite and positive decision regarding the class of a case, and a
boundary rule suggests a tentative and boundary decision regarding the class of
a case. Semantically, these two classes are different [13].

Inprobabilisticapproachestoroughsets, suchasdecision-theoreticmodel [13,14]
and variable precision model [16], we have the parameterized approximations:

apr
B

(Di) =
⋃

{[x]B | P (Di | [x]B) ≥ α},

aprB(Di) =
⋃

{[x]B | P (Di | [x]B) > β},

with α > β. They are referred to as the α-level lower approximation and β-
level upper approximation. Similarly, the α-level positive region and the (α, β)-
level boundary region can be introduced. Again, we have two types of rules
corresponding the the two region.

Suppose α = 0.75 and β = 0.50. For Table 1, rule (B6) becomes a 0.75-
level positive rule, and only rules (B1) and (B7) remain to be (0.75, 0.50)-level
boundary rules. On the other hand, for comparison, the previous rule sets, used
in the VPRSM methodology, presented in the LERS format, are:
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2, 3, 3
(Width, wide) & (Gauge, heavy) -> (Quality, good),
2, 2, 3
(Width, wide) & (Gauge, medium) -> (Quality, good),
2, 1, 3
(Width, wide) & (Gauge, medium) -> (Quality, bad),
2, 2, 4
(Width, wide) & (Gauge, light) -> (Quality, good),
2, 2, 4
(Width, wide) & (Gauge, light) -> (Quality, bad),
2, 3, 4
(Width, narrow) & (Gauge, heavy) -> (Quality, good),
2, 1, 4
(Width, narrow) & (Gauge, heavy) -> (Quality, bad),
2, 2, 3
(Width, narrow) & (Gauge, medium) -> (Quality, good),
2, 1, 3
(Width, narrow) & (Gauge, medium) -> (Quality, bad) and
2, 2, 2
(Width, narrow) & (Gauge, light) -> (Quality, bad).

With the additional information: |U | = 19, rules with the LERS format may
be easily converted into VPRSM format, the converse is not true. The conditional
probability is a ratio of the second LERS number to the third LERS number, the
marginal probability is the ratio of the third LERS number to the cardinality of
the universe. By the way, the cardinality of the universe is the same for all rules
so it does not need to be recorded for a specific rule.

3 Rule Conflict Resolution

The classification system of LERS is a modification of the bucket brigade algo-
rithm [1,7]. The decision to which concept a case belongs is made on the basis
of three factors: specificity factor, strength factor, and support. They are de-
fined as follows: specificity factor is either the specificity, i.e., the total number
of attribute-value pairs on the left-hand side of the rule or may be selected by
the user to be equal to one. Strength factor is either the strength, i.e., total num-
ber of cases correctly classified by the rule during training or rough measure,
i.e., the ratio of the strength to the total number of training cases matching the
left-hand side of the rule. For completely specified data sets the rough measure is
identical with the conditional probability of the concept given the rule domain.
The third factor, support, is defined as the sum of scores of all matching rules
from the concept, where the score of the rule is the product of its strength factor
and specificity factor. The concept C for which the support, i.e., the following
expression

∑

matching rules R describing C

Strength factor(R) ∗ Specificity factor(R)
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is the largest is the winner and the case is classified as being a member of C.
Note that the user may exclude support, i.e., the case might be classified only
on the basis of its scores associated with rules.

In the classification system of LERS, if complete matching is impossible, all
partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any par-
tially matching rule R, the additional factor, called matching factor is computed.
Matching factor (R) is defined as the ratio of the number of matched attribute-
value pairs of R with a case to the total number of attribute-value pairs of R.
Again, the user may choose the matching factor to be equal to one. In partial
matching, the concept C for which the following expression is the largest

∑
partially matching

rules R describing C

Matching factor(R) ∗ Strength factor(R)

∗ Specificity factor(R)

is the winner and the case is classified as being a member of C.
In general the LERS classification system uses four binary parameters: speci-

ficity factor (either equal to specificity or switched to integer one), strength factor
(either the total number of well-classified training cases or the rough measure),
support (either product of scores for each matching rule or each rule participates
on its own), and finally matching factor (either as defined or equal to integer one).
Thus the user of the LERS classification system may apply one of 16 different
strategies [5]. In the VPRSM methodology, classification is based on conditional
probability, one of 16 LERS strategies (in [5] this strategy, based only on the con-
ditional probability, is the strategy # 15). Note that the choice of the classification
strategy is crucial and that the best strategy is based on specificity = 1, strength,
support, and matching factor [5].

4 Conclusions

The LERS system induces rules based on attribute-value pairs. Since LERS
keep three important quantities of rules, namely, the total number of attributes
on the left-hand side of the rule, the total number of cases correctly classified
by the rule, and the total number of cases matching the left-hand side of the
rule, LERS can be easily applied to discover probabilistic rules. Based on two
decision-theoretic rough set model, two types of rules, known as positive rules
and boundary rules, can be introduced. LERS system can easily learn the two
types of rules. In addition, the rule conflict resolution strategy of LERS can be
applied to rule applications and evaluation in probabilistic rough set models.
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