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Preface

The articles in this volume were selected for presentation at the Sixth Interna-
tional Conference on Rough Sets and Current Trends in Computing (RSCTC
2008), which took place on October 23–25 in Akron, Ohio, USA.

The conference is a premier event for researchers and industrial professionals
interested in the theory and applications of rough sets and related methodolo-
gies. Since its introduction over 25 years ago by Zdzislaw Pawlak, the theory of
rough sets has grown internationally and matured, leading to novel applications
and theoretical works in areas such as data mining and knowledge discovery,
machine learning, neural nets, granular and soft computing, Web intelligence,
pattern recognition and control. The proceedings of the conferences in this se-
ries, as well as in Rough Sets and Knowledge Technology (RSKT), and the
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC)
series report a variety of innovative applications of rough set theory and of its
extensions. Since its inception, the mathematical rough set theory was closely
connected to application fields of computer science and to other areas, such as
medicine, which provided additional motivation for its further development and
tested its real-life value. Consequently, rough set conferences emphasize the in-
teractions and interconnections with related research areas, providing forums for
exchanging ideas and mutual learning. The latter aspect is particularly impor-
tant since the development of rough set-related applications usually requires a
combination of often diverse expertise in rough sets and an application field.
This conference was not different in that respect, as it includes a comprehen-
sive collection of research subjects in the areas of rough set theory, rough set
applications as well as many articles from the research and application fields
which benefit from the results of rough set theory. To be more specific, major
topics of the papers presented at RSCTC 2008 included theoretical aspects of
rough set theory, rough set methodology enhanced by probability theory, fuzzy
set theory, rough mereology, rule induction, rough set approaches to incomplete
data, dominance-based rough set approaches, rough clustering, evolutionary al-
gorithms, granular computing and applications of rough set theory to analysis
of real-world data sets.

We would like to express our gratitude to Lotfi Zadeh, Lakhmi Jain and
Janusz Kacprzyk for accepting our request to present keynote talks.

This conference was partially supported by the University of Akron, espe-
cially the Office of the Vice President for Research, the Buchtel College of
Arts and Sciences, and the Department of Computer Science. The conference
Web hosting was provided by the Computer Science Department of the Univer-
sity of Akron. The submissions, reviews, and conference proceedings were made
through the EasyChair Conference System (http://www.easychair.org). The In-
fobright Inc. and ZL Technologies Inc. provided support for industrial speakers.
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The International Rough Set Society provided technical and publicity support.
We express our thanks to these organizations and the EasyChair system devel-
opment team.

We would like to express our gratitude to Alfred Hofmann, Editor at Springer,
and to Ursula Barth, Anna Kramer, and Brigitte Apfel, all from Springer.

Finally, our special thanks go to George R. Newkome, Ronald F. Levant,
Wolfgang Pelz, Kathy J. Liszka, Timothy W. O’Neil, Peggy Speck, and Anthony
W. Serpette for their help in organizing the conference and registration.

October 2008 Chien-Chung Chan
Jerzy W. Grzymala-Busse

Wojciech Ziarko
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Neuroeconomics: Yet Another Field Where

Rough Sets Can Be Useful?

Janusz Kacprzyk�

Systems Research Institute, Polish Academy of Sciences
ul. Newelska 6, 01–447 Warsaw, Poland

kacprzyk@ibspan.waw.pl
www.ibspan.waw.pl/kacprzyk

Google: kacprzyk

Abstract. We deal with neuroeconomics which may be viewed as a
new emerging field of research at the crossroads of economics, or de-
cision making, and brain research. Neuroeconomics is basically about
neural mechanisms involved in decision making and their economic re-
lations and connotations. We briefly review first the traditional formal
approach to decision making, then discuss some experiments of real life
decision making processes and point our when and where the results pre-
scribed by the traditional formal models are not confirmed. We deal with
both decision analytic and game theoretic type models. Then, we discuss
results of brain investigations which indicate which parts of the brain
are activated while performing some decision making related courses of
action and provide some explanation about possible causes of discrepan-
cies between the results of formal models and experiments. We point out
the role of brain segmentation techniques to determine the activation of
particular parts of the brain, and point out that the use of some rough
sets approaches to brain segmentation, notably by Hassanien, Ślȩzak and
their collaborators, can provide useful and effective tool.

1 Introduction

First, we wish to briefly introduce the concept of neuroeconomics which is emerg-
ing as a new field of science at the crossroads of economics, or maybe more
generally decision making, and brain research.

The first question is: what is economics? For our purposes the following classic
definition by Robbins [18] should be appropriate:

“ . . . economics is the science which studies human behavior as a re-
lationship between ends and scarce means which have alternative uses
. . . ”

We can see at the first glance that in that classic definition of economics deci-
sion making plays a central and pivotal role. The definition, which emphasizes
� Fellow of IEEE.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Kacprzyk

the decision making aspect, has expressed what people have always been aware
of, i.e. of the importance of acting rationally. This crucial problem has clearly
become a subject of interest of thinkers, scholars and scientists for many cen-
turies, and even millennia. Basically, the developments of science have always
been motivated to a decisive extent by practical needs. A natural consequence
of this interest has finally been attempts at some formal analyzes which should
provide the analysts and decision makers with more objective tools and tech-
niques. Mathematics has been considered crucial in this respect. This trend has
gained momentum in the period between World War I and World War II, and
in particular after World War II.

In this paper we will often speak about decision making but our analysis will
apply to a large extent to broadly perceived economics since for our purposes
the very essence of decision making and economics is to choose a choice of action
that would make the best use of some scarce means or resources that can be used
in various ways leading to different outcomes.

Basically, the point of departure for virtually all decision making models in
the formal direction is simple:

– There is a set of options, X = x1, x2, . . . , xn, which represent possible (nor-
mally all) choices of a course of action like.

– There is some preference structure over the above set of options which can be
given in different ways exemplified by: (1) preferences over pairs of options,
for instance: x1 � x2, x2 = x3, x3 � x4, etc. (2) a preference ordering
exemplified by x1 ≥ x3 ≥ . . . xk, or (3) a utility function f : X −→ R (R is
the real line but may be some other set which is naturally ordered.

– a natural rationality is assumed which in the context of the utility function
is to find an optimal option x∗ ∈ X such that f(x∗) = maxx∈X f(x).

An agent operating according to such simple and intuitively appealing rules
has been named a homo economicus, and virtually all traditional approaches to
decision making and economics are in fact about various forms of behavior of a
homo economicus. These simple conditions have been considered so natural and
obvious that only a few reserachers have been considering tricky issues related
to what can happen if they do not hold.

This simple model has been a point of departure of a plethora of models
accounting for: multiple criteria, multiple decision makers, dynamics, etc. On the
other hand, it has triggered the emergence of many distinct areas as: optimization
and mathematical programming, optimal control, mathematical game theory,
etc. which have shown their strength in so many areas and applications.

Unfortunately, these successes of mathematical models of decision making
have mostly happened in inanimate systems in which a human being is not
a key element like in missile control. The situation changes drastically when
a human perception or valuation becomes essential, when we cannot neglect
human characteristics like inconsistency and variability of judgments, imprecise
preferences, etc. as in in virtually all animate systems. Economics is clearly
concerned with such systems.
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Let us now mention two classes of decision making problems, viewed from the
perspective of rational choice theory, which will crucial for us: decision theory
(analysis) and game theory. They provide formal tools for determining optimal
decisions in the context of individual and multiperson decision making; the for-
mer concerns situation with individuals (agents) and/or their groups operating
without interaction, and the latter concerns in which there are at least two agents
involved but operating with an interaction like, for instance, a sequence of pro-
posals and responses, i.e. decision making is the selection of a strategy meant
as a set of rules that govern the possible actions (options) together with their
related payoffs to all participating agents.

For example, in the famous prisoners dilemma (cf. Poundstone [16]), two in-
dividuals, A and B, are criminals suspected of having jointly committed a crime
but there is not enough evidence to convict them. They are into two separate
cells in prison, and the police offer each of them the following deal: the one who
implicates the other one will be freed. If none of them agrees, they are seen as
cooperating and both will get a small sentence due to a lack of evidence so that
they both gain in some sense. However, if one of them implicates the other one
by confessing, the defector will gain more, since he or she is freed, while the
one who remained silent will receive a longer sentence for not helping the police,
and there is enough evidence now because of the testimony of the defector. If
both betray, both will be punished, but get a smaller sentence. Each individual
(agent) has two options but cannot make a good decision without knowing what
the other one will do.

If we employed traditional game theoretic tools to find the optimal strategy,
we would find that the players would never cooperate as the traditionally rational
decision making means that an agent makes decision which is best for him/her
without taking into account what the other agents may choose.

So far we have discussed decision making in the sense of what is obviously
rational which boils down to the maximization of some utility function. This
rationality is clearly a wishful thinking, probablytoo primitive for real life, but
results in solvable models in both the analytic and computational sense. This
important aspect is clearly reflected in all mathematical models that should be
a compromise between complexity, and adequacy and tractability.

However, the formal mathematical direction in decision making (economics) is
not the only one, and many other directions have appeared with roots in psychol-
ogy, sociology, cognitive sciences, and recently brain research. An example can be
experimental and behavioral economics, and recently neuroeconomics. Basically,
as opposed to approaches of the rational choice type mentioned above which
focus on normative or prescriptive issues, virtually all those social and brain
science related approaches to decision making are rather concerned with the
descriptive aspects. They study how subjects make decisions, and which mech-
anisms they employ. For instance, well known works of Tversky and Kahneman
and their collaborators (Tversky and Kahneman, 1991; Kahneman and Tversky,
2003, Kahneman, Slovic and Tversky, 1982) showed that decision makers judg-
ments and behavior deviate to a large extent from results derived by normative
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theories as agents tend to make decisions due to their so called “framing” of a
decision situation (the way they represent the situation as, e.g., a gain or a loss),
and often exhibit “strange” loss aversion, risk aversion, and ambiguity aversion.
So, their choices do not follow “obvious” results of traditional normative theories.

Moreover, many psychological studies have also showed that people are not
as selfish and greedy as the solutions obtained using tools of rational choice
approaches may suggest. For instance, subjects cooperate massively in prisoners
dilemma and in other similar games.

The ultimatum game concerns a one move bargaining (cf. Gŭth W., Schmit-
tberger R. and Schwarze B. [4]. There is a proposer, A, who makes an offer to a
responder, B, who can either accept it or not. Suppose that A is to propose to
split some amount of money between himself or herself and B. If B accepts the
offer of A, B keeps the amount offered and A keeps the rest. If B rejects it, both
A and B receive nothing. According to game theory, rational agents should: A
should offer the smallest possible amount, and B should accept any amount just
to have anything which is clearly better than nothing. Unfortunately, this is not
the solution adopted by human agents in real life. Basically, most experiments
show that a purely rational game theoretic strategy is rarely played and people
tend to make more just and fair offers. In general, proposers tend to offer about
50% of the amount, and responders tend to accept these offers, rejecting most
of the unfair offers, experimentally shown to be less than about 20%. So, agents
seem to have a tendency to cooperate and to value fairness as opposed to some
greedy behavior of traditional game theoretic approaches.

In the trust game, A has an initial amount of money he or she could either keep
or transfer to B. If A transfers it to B, the amount is tripled. B could keep this
amount, or transfer it (partially or totally) to A. Following the solutions given by
game theory, A should keep everything, or if A transfers any amount to B, then
B should keep all without transferring it back to A. Once again, unfortunately,
experimental studies have shown that agents tend to transfer about 50% of their
money and get more or less what they invest (cf. Camerer [1]), and this tendency
towards fairness and cooperation holds for all cultures, sexes, etc.

To summarize, experimental approaches to rationality and how decisions are
really made can thus be informative for the theory of decision making as they
clearly indicate that our practical reasoning does not fully obey the axioms of
either decision theory or game theory, and that the traditional approaches which
somehow neglect morality, fairness and consideration for other people might be
inadequate. Thus, we can argue that specific features of a human being should
be taken into account in decision analytic and game theoretic models in order to
obtain solutions that would be human consistent and hence would be presumably
easier acceptable and implementable.

In recent years, however, there is another big boost to such deeper analyses
of decision making in various context, both strategic and not, and this comes
from brain research. In the next section we will discuss how brain research can
contribute to the development of economics. This new field, still at its infancy, is
called neuroeconomics and seems to be able to open new perspectives and vistas.
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2 Towards Neuroeconomics

Both the descriptive and prescriptive approach to decision making and economics
may be viewed from the point of view of what is being observed and mimicked or
what is being rationalized or even optimized as they both concern the behavior
of an agent(s) in the sense of “externally visible” choices, courses of action, etc.
However, it is quite obvious that this externally visible behavior is just an im-
plication or consequence of some more general mental processes that happen in
the brain. One can therefore argue that what really matters is what happens in
the brain not what is externally visible as a resulting behavior or resulting testi-
monies. It should therefore make much sense to look deeply into brain processes
while investigating decision making and economics. Clearly, this concerns both
the decision analytic and game theoretic aspects. This is basically the motiva-
tion the very essence of neuroeconomics that has been initiated in the beginning
of the 2000s, cf. Glimcher [3], McCabe [12] or Zak![27] for some pioneering works,
cf. also Kenning and Plassmann [11].

First: what is actually neuroeconomics? An often cited definition, which is ob-
viously related to Robbins’ [18] definition of economics cited before, is attributed
to Ross [19]:

“. . . neuroeconomics . . . is the program for understanding the neural basis
of the behavioral response to scarcity . . . ”.

In neuroeconomics one can briefly outline the methodology employed as follows:

– Choosing a formal model of decision making and its related rationality,
whether in a decision analytic or a game theoretic form, and then deducing
what decisions the rational agents should make;

– Testing the model behaviorally, i.e. with respect to externally visible char-
acteristics, to see if agents follow those courses of actions determined in the
first stage;

– Identifying the brain areas and neural mechanisms that underlie the partic-
ular choice behavior;

– Explaining why agents follow or not the normative courses of actions
mentioned.

Neuroeconomics proceeds therefore basically by comparing formal models with
behavioral data, and by identifying neural structures causally involved in (maybe
underlying) economic, or decision making related behavior.

In neuroeconomics attempts are made to explain decision making as an im-
plication or consequence of brain processes which occur in the representation,
anticipation, valuation, selection, and implementation of courses of action (op-
tions). It breaks down the whole process of decision making into separate com-
ponents which are related to specific brain areas. Namely, certain brain areas
may perform (or maybe just decisively contribute to?) the representation of the
value of an outcome of a course of action before decision, other brain areas may
perform the representation of the value of a course of action chosen, and yet



6 J. Kacprzyk

other brain areas may perform the representation of these values at the time
when a decision is determined and is to be implemented.

The remarks given above are valid both for the decision analytic type and
game theoretic type decision processes and we will now consider the consecutively
from the neuroeconomic perspective.

Another class of tools needed by neuroeconomics is related to being able to
discover what is happening in specific areas of the brain while an activity is being
performed. This includes the tools and techniques for: brain imaging, single-
neuron measurement, electrical brain stimulation, psychopathology and brain
damage in humans, psychophysical measurements, diffusion tensor imaging, etc.

Brain imaging is currently the most popular neuroscientific tool. Basically,
the main procedure is to obtain and then compare two brain images: when an
agent performs a specific task or not. The difference detected can indicate that a
specific area of the brain is activated during the performance of that particular
task. There are many methods for brain imaging, but the following three are
basic:

– the electro-encephalogram (or EEG), which is the oldest, boils down to the
attachment of some electrodes to the scalp and then to the measuring of
induced electrical currents after some stimulus,

– the positron emission topography (PET) scanning, an old technique but still
useful, which measures blood flow in the brain which can be considered as
an equivalent to neural activities,

– the functional magnetic resonance imaging (fMRI), the newest and most
often used, which measures blood flow in the brain using changes in magnetic
properties due to blood oxygenation.

but though fMRI is the most popular and often considered to be the best, each of
those methods has some pros and cons, cf. Camerer, Loewenstein and Prelec [2].

Clearly, brain imaging mentioned above does not allow to see what is happen-
ing at the level of single neurons but this will not be considered here. Moreover,
we will not study what happens when some part of the brain is damaged or an
individual suffers from a mental disease (e.g. schizophrenia) or a developmental
disorder (e.g., autism) though by observing differences between healthy and ill
people one can draw many interesting conclusions relevant in our context.

2.1 Decision Analysis and Neuroeconomics

The division of the decision making process into stages (set of options, a prefer-
ence structure and it related utility, and a rational choice) is quite convincing as
it is related to some results obtained in the studies of the very essence of ratio-
nal behavior. For instance, Kahneman, Wakker and Sarin [10] have advocated
that the utility should be divided into: (1) decision utility which is maybe the
most important, and refers to expected gains and losses, or cost and benefits,
(2) experienced utility which has to do with the pleasant or unpleasant, or even a
hedonic aspect implied by a decision, (3) predicted utility which is related to the
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anticipation of experienced utility, and (4) remembered utility which boils down
to how experienced utility is remembered after a decision, like regretting or re-
joicing. Such a distributed utility has relations to some structures and processes
in the brain, and plays a very important role in the field of neuroeconomics. For
instance, the distributed perspective of utility can help explain more precisely
why human agents exhibit loss aversion. To be more specific, agents usually pay
much more attention to a loss of EUR 10 than to a gain of EUR 10, and Tversky
and Kahneman [23] attribute this loss aversion to a bias in the representation of
the values of gain and loss.

On the other hand, neuroeconomics explains loss aversion as an interaction
of neural structures in the brain which are involved in the anticipation, regis-
tration and computation of the hedonic affect of a risky decision. To be more
specific, the amygdalae which are are almond shaped groups of neurons located
deep within the medial temporal lobes of the brain play a primary role in the
processing and memorizing of emotional reactions, and are involved in fear, emo-
tional learning and memory modulation. The amygdalae register the emotional
impact of the loss. The ventromedial prefrontal cortex, which is a part of the
prefrontal cortex, is usually associated with the processing of risk and fear. In
our context, the ventromedial prefrontal cortex predicts that a loss will result
in a given affective impact. The midbrain dopaminergic neurons compute the
probability and magnitude of the loss, etc.

Agents are therefore loss averse because they have a negative response to
losses (experienced utility). When they expect a loss to occur (decision utility),
they anticipate their affective reaction (predicted utility). They might be also
attempting to minimize their post decision feeling of regret (remembered utility).
They anticipate their affective reaction (predicted utility). They might be also
attempting to minimize their post-decision feeling of regret (remembered utility).

One may say that the midbrain dopaminergic systems are where the human
natural rationality resides, or at least one of its major component. These systems
compute utility, stimulate motivation and attention, send reward prediction error
signals, learn from these signals and devise behavioral policies.

Similar investigations have referred to other phenomena as the ambiguity aver-
sion, i.e. that the human agents exhibit a strong preference for risky prospects,
whose whose occurrence is uncertain but probabilities of occurrence are known,
over ambiguous prospects, that is those for which the probabilities of occurrence
are not known or are very imprecisely known.

And, if we continue, we can see that one of the most robust finding in neu-
roeconomics concerns the decision utility which is related to the calculation of
cost and benefits (or gains and losses). Results of many investigations strongly
suggest that this process is realized by dopaminergic systems. They refer to
neurons that make and release a neurotransmitter called the dopamine. The
dopaminergic system is involved in the pleasure response, motivation and valua-
tion. The dopaminergic neurons respond in a selective way to prediction errors,
either the presence of unexpected rewards or the absence of expected rewards.
Therefore they detect the discrepancy between the predicted and experienced
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utility. Moreover, dopaminergic neurons learn from own mistakes: they learn to
predict future rewarding events from prediction errors, and the product of this
learning process can then be a bias in the process of choosing a course of action;
these learning processes can be modeled using temporal difference reinforcement
learning algorithms (cf. Sutton and Barto [22]).

So far, the main contribution of neuroeconomics to decision theory may be
viewed as giving justifications to the fact that decision makers are adaptive
and affective agents, i.e. a homo neuroeconomicus is a fast decision maker who
relies less on logic and more on a complex collection of flexible neural circuits
associated with affective responses. The utility maximization in real life and
by human agents is more about feelings and emotions and less about careful
deliberations. This is in a sharp contrast to a highly deliberative, cold blooded
and greedy type process of traditional, formal decision analysis.

2.2 Game Theory and Neuroeconomics

Now, in the game theoretic decision making context, we will basically be con-
cerned with the strategic rationality. And again, the paradigm of neuroeconomics
mentioned in the previous section clearly suggest that strategic decision making
is again a highly affection centered activity.

For instance, brain scans of human agents playing the ultimatum game in-
dicate that unfair offers by A trigger in the brain of B a “moral disgust”. To
be more specific, the anterior insula, which is associated with emotional experi-
ence, including anger, fear, disgust, happiness and sadness, is activated in such
situations of a moral disgust resulting from an unfair offer. What is interesting
is that such activation is proportional to the degree of unfairness and correlated
with the decision to reject unfair offers.

In the ultimatum game not only the anterior insula is involved but also two
other areas of the brain. First, this is the dorsolateral prefrontal cortex which
serves as the highest cortical area responsible for motor planning, organization
and regulation and plays an important role in the integration of sensory and
mnemonic information and the regulation of intellectual function, goal mainte-
nance and action. It should however be noticed that the dorsolateral prefrontal
cortex is not exclusively responsible for the executive functions because virtually
all complex mental activities require additional cortical and subcortical circuits
which it is connected with. Second, it is the anterior cingulate cortex which is the
frontal part of the cingular cortex that relays neural signals between the right
and left cerebral hemispheres of the brain. The anterior cingulate cortex seems
to play a role in a wide variety of autonomic functions (for instance, regulation of
blood pressure or heart beat) as well as some rational cognitive functions exem-
plified by reward anticipation, decision making, conflict recognition and empathy
and emotions. In our context, when an offer is fair, it seems normal to accept
it: there is a monetary gain and no aversive feelings. When the offer is unfair,
however, the brain faces a dilemma: punish the unfair proposer, or get a little
money? The final decision depends on whether the dorsolateral prefrontal cor-
tex or the anterior cingulate cortex dominates. It has been found that anterior
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cingulate cortex is more active in rejections, while the dorsolateral prefrontal
cortex is more active in acceptance. Thus, the anterior cingulate cortex, which
is more active itself when an offer is unfair, behaves as a moderator between the
cognitive goal (to have more money) and the emotional goal (punishing).

Some other strange types of behavior can be observed in strategic games
when cooperation is really needed, and occurs in real life, but is not taken into
account. For instance, in the prisoners dilemma, players who initiate and play-
ers who experience mutual cooperation display activation in nucleus accumbens
(accumbens nucleus or nucleus accumbens septi) which are a collection of neu-
rons within the forebrain and are thought to play an important role in reward,
laughter, pleasure, addiction and fear. Some other reward related areas of the
brain are also strongly activated.

On the other hand, in the trust game, where cooperation is common but again
not prescribed by game theory, players are ready to lose money for punishing un-
trustworthy players or cheaters. And here again, both the punishing of cheaters
and even anticipating such a punishment activate the nucleus accumbens sug-
gesting that a revenge implies some pleasure.

To put it simply, all these results suggest that fairness, trust and cooperation
are common because they have some generally accepted values. This is well
reflected by activations of some specific areas of the brain but is beyond the
scope of the traditional game theoretic approaches.

3 Some Remarks on a Possible Usefulness of Rough Sets
Theory for Neuroeconomics

In this section, duen to lack of space, we will only point out so,e potential
contributions of rough sets theory to the development of neuroeconomics. One
should however notice that this is the view of the author only and has a very
general form, of an ad hoc type.

Basically, looking at what proponents of neuroeconomics advocate and how
they proceed one can notice that emphasis is on relating brain functions. maybe
areas, to some courses of actions or behaviors of human decision makers.
However, to discover those brain areas and functions brain imaging should be
performed to discover them. Brain imaging is currently the most popular neuro-
scientific tool and the main procedure is to obtain and then compare two brain
images: when an agent performs a specific task or not or exhibiting a special
behavior or nor. The difference detected can indicate that a specific area of the
brain is activated during the performance of that particular task. The functional
magnetic resonance imaging (fMRI) can notably be employed.

The data obtained through fMRI undergoes some processing, for instance
segmentation which is a process of assigning proper labels to pixels (in 2D) or
voxels (in 3D) given in various modalities to distinuish different tissues: white
matter, grey matter, cerebrospinal fluid, fat, skin, bones, etc. This information
can help properly differentiate parts of the brain responsible for brain functions
that are relevant to neuroeconomics.
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It is quite obvious that the analysis of fMRI images is difficult as it is plagued
by various uncertainties, noise, subjective human judgment, etc. It is quite nat-
ural that the use of many computational intelligence tools has been proposed
(cf. Ramirez, Durde and Raso [17]. However, it seems that a new impetus in this
respect can be given, and new vistas can be opened by using rough sets which
would make possible to provide much insight and, for instance, to reduce the
attribute set by using a reduct based analysis.

It seems that a proper approach would be to proceed along the lines of Hassia-
nen and Ślȩzak [7], and Hassianen [6], and also Widz, Revett and Ślȩzak [24], [25],
and Widz and Ślȩzak [26]. In fact, some concluding remarks and future research
directions. For our purposes the most interesting seem to be analyses related
to comparisons of various brain images, notably for a healthy and ill person. In
our context more importatnt would be the comparison of brain images with and
without some behavior, activity or emotion. Moreover, their intended extension
to unsupervised classification should be very relevant too. Yet another issue they
intend to tackle, an extension towards more complex structure of dependencies
(multi-attribute ones), and then the reformulation of the segmentation problem
in terms of tissue distributions instead of tissue labels should give more strength.

In general, it seems that rough sets can provide very much for brain imaging
as needed for neuroeconomic purposes. The papers cited above seem to provide
a very good point of departure.

4 Conclusions

We have presented a very brief account of a new nascent field of neuroeconomics,
mainly from the perspective of decision making. Then, we have presented results
of some experiments with the real human decision makers and shown how these
results deviate from those prescribed by the traditional formal decision making
and game theoretic models. Finally, we have presented some results obtained by
brain researchers which have shown relations between a stronger activation of
some parts of the brain in real situations in agents participating in the decision
making and games considered. One could clearly see that some effects which
have not been prescribed by traditional formal models but can clearly be viewed
as results of human features imply the activation of corresponding parts of the
brain involved in or maybe responsible for the particular cognitive, emotional,
etc. activities. Finally, we have briefly mentioned that rough sets theory can be
useful by providing new insights and richer tools for brain imaging needed in
neuroeconomic analyses.
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Abstract. The ongoing success of the Knowledge-Based Intelligent Information
and Engineering Systems (KES) Centre has been stimulated via collaborated with
industry and academia for many years. This Centre currently has adjunct per-
sonnel and advisors that mentor or collaborate with its students and staff from
Defence Science and Technology Organisation (DSTO), BAE Systems (BAE),
Boeing Australia Limited (BAL), Ratheon, Tenix, the University of Brighton,
University of the West of Scotland, Loyola College in Maryland, University of
Milano, Oxford University, Old Dominion University and University of Science
Malaysia. Much of our research remains unpublished in the public domain due to
these links and intellectual property rights. The list provided is non-exclusive and
due to the diverse selection of research activities, only those relating to Intelligent
Agent developments are presented.

Keywords: Computational Intelligence, Intelligent Agents, Multi-Agent Systems.

1 Introduction

The KES Centre held its first conference in 1997. This marked a new beginning in
Knowledge-Based Engineering Systems, as this conference brought together
researchers from around the world to discuss topics relating to this new and emerg-
ing area of engineering. Due to its great success the KES conference has now attained
full international status. A full history of the KES International Conferences can be
found on our web site1. The research directions of the KES are focused on modelling,
analysis and design in the areas of Intelligent Information Systems, Physiological Sci-
ences Systems, Electronic commerce and Service Engineering. The KES Centre aims
to provide applied research support to the Information, Defence and Health Industries.
The overall goal will be to synergies contributions from researchers in the diverse dis-
ciplines of Engineering, Information Technology, Science, Health, Commerce and Se-
curity Engineering. The research projects undertaken in the Centre include adaptive
mobile robots, aircraft landing support, learning paradigms and teaming in Multi-Agent
System (MAS).

Compare this with the 1st recorded conference relating to the science of Intelligent
Agent (IA) itself, which dates back to Dartmouth in 1958. This is 39 years prior to

1 http://www.unisa.edu.au/kes/International conference/default.
asp

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 13–20, 2008.
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KES, although microcomputers only started to appear on desktops in the mid-eighties
which is when KES was founded. Most of this research involved the progressive use of
technology in science to collect and interpret data, prior to representing this as knowl-
edge using “folk law” or “symbology”. The wealth of data became unwieldy, forcing
researchers to explore data-mining, warehousing and Knowledge Based System (KBS),
however the key research domains remained focused on problem solving using for-
mal/structured or reasoning systems [1]. This era was accompanied with an expansion
in research into a variety of intelligent decision support systems that where created to
derive greater confidence in the decision being generated [2]. The growing density of
data had an overall effect on the efficiency of these systems. Conversely a series of mea-
sures where created to report on the performance of Decision Support System (DSS).
Factors such as; accuracy, response time and explain-ability were raised as constraints
to be considered before specifying courses of action [3]. Since the eighties Artificial
Intelligence (AI) applications have concentrated on problem solving, machine vision,
speech, natural language processing/translation, common-sense reasoning and robot
control [4]. In the nineties there was a flurry of activity using “firmware” solutions
to overcome speed and compiler complexities, however around the turn of the century,
a return to distributed computing techniques has prevailed. Given his time over, John
McCarthy would have labelled AI as “Computational Intelligence” [5]. Today the Win-
dows/Mouse interface currently still dominates as the predominant Human Computer
Interface (HCI), although it is acknowledged as being impractical for use with many
mainstream AI applications.

2 Research Projects

Several of the projects undertaken by the KES Centre involved the use of intelligent
paradigms as below:

– Coordination and Cooperation of Unmanned Air Vehicle Swarms in Hostile Envi-
ronment,

– Communication and Learning in Multi-Agent Systems,
– Simulation of Pulsed Signals above 100 MHz in a Knowledge-Based Environment,
– Using Artificial Intelligence and Fusion Techniques in Target Detection,
– Intelligent decision support feedback using MAS in a Defence maintenance envi-

ronment, and
– Improving Agent Communication in a Distributed Application Environment.

2.1 Coordination and Cooperation of Unmanned Air Vehicle Swarms in Hostile
Environment

The aim of this research is to integrate coordination abilities into agent technology using
the concepts of cooperation, collaboration and communication [6]. An example could
include the coordination of a swarm of Unmanned Air Vehicles (UAVs) in a hostile
environment. There has been substantial research conducted in this area, however the
coordination aspect that have been implemented are either specific to an application or
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difficult to implement. As a result, a rigid and complex architecture is required. Imple-
menting the concepts of cooperation, collaboration and communication in coordination
may enhance performance; reduce complexity, and assist in applying coordination in a
simple manner. The link between agent coordination and cooperation has been estab-
lished and two principles have been developed from this link: Coordinative Cooperation
and Cooperative Coordination. An architecture, known as the Agent Coordination and
Cooperation Cognitive Model (AC3M), is being developed which incorporates these
principles into a MAS. It uses the concepts of Coordinative and Cooperative “events”
to allow for each to be realized as a cognitive loop. The next approach is to incorpo-
rate the Beliefs, Desires, Intentions (BDI) at a physical level for control and link this
to the Observe Orient Decide and Act (OODA) loop at a cognitive level for situation
awareness and cooperation [7, 8].

2.2 Communication and Learning in Multi-agent Systems

This research involves encompassing communication and learning in multi-agent sys-
tems [9]. Firstly, we develop a hybrid agent teaming framework and analyze how to
adapt the simulation system for investigating agent team architecture, learning abili-
ties, and other specific behaviors. Secondly, we adopt the reinforcement learning algo-
rithms to verify goal-oriented agents’ competitive and cooperative learning abilities for
decision-making. In doing so, a simulation test-bed is applied to test the learning al-
gorithms in the specified scenarios. In addition, the function approximation technique,
known as Tile Coding (TC), is used to generate value functions, which can avoid the
value function growing exponentially with the number of the state values. Thirdly,
Bayesian parameter learning algorithms in conjunction with reinforcement learning
techniques are proposed for inferencing and reasoning in the cooperative learning. Fi-
nally, we will integrate the learning techniques with an agent teaming architecture with
the abilities of coordination, cooperation, and dynamic role assignment. The ultimate
goal of our research is to investigate the convergence and efficiency of the learning
algorithms and then develop a hybrid agent teaming architecture.

2.3 Multiple UAV Communication in an Intelligent Environment

This research concentrates on using coordination and collaboration within UAV teams
to accomplish better communication amongst UAV entities [10]. As the UAVs have
limited sensor capabilities, cooperative control relies heavily on communication with
appropriate neighbors. The advantages of coordinating and collaborating UAV teams
include accomplishing the missions in a shorter period and successfully completing
many goals simultaneously. This problem is of interest in UAV applications, as com-
munication is often required between nodes that would not otherwise be able to com-
municate for instance because of range constraints or line-of-site obstructions. Efficient,
reliable, low latency communication is required to fully realize and utilize the benefits
of multi-vehicle teams. Achieving the leashing goal for instance in a more optimal way
by knowledge sharing is one of the research goals. The design and development of an in-
telligent communication routing protocol for UAV applications that use heterogeneous
networks is another goal of this research. The medium access layer will be modified for
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accessing the medium and for sensor scheduling. The intelligent routing protocol will
be modified to accommodate the network layer. Reinforcement learning will be applied
in order to add intelligence to the electronic leashing.

2.4 Simulation of Pulsed Signals Above 100 MHz in a Knowledge-Based
Environment

The determination of the nature and identity of a pulsed electromagnetic radiation
source has been a evolving for some decades [11]. To date the use of Knowledge Based
techniques has not been examined to the same extent as in some other aspects. This re-
search topic, considers the feasibility of the use of Artificial Intelligence techniques as
support to the traditional techniques for extraction of data. To achieve this, analysis is
performed of the nature of pulsed radiation sources and receiving system characteristics.
The model used for traditional simulation is examined and used to generate selected key
performance indicators. A more precise, temporal based model, which is considered
more applicable to AI techniques evaluation, is generated and the same performance
indicators are generated and subsequently compared with the traditional model, thus
enabling conclusions to be drawn as to their respective merits. Finally, changes to the
respective models, if appropriate, are examined and evaluated. Once a model has been
developed, AI techniques will be used to assess the suitability of the model in the future
evaluation of AI algorithms as a supplement, and as an alternative, to the traditional
DSP methods. Techniques currently considered as suitable for this assessment include
Fuzzy Logic, Neural Networks, Expert Systems and Evolutionary Computing.

2.5 Using Artificial Intelligence and Fusion Techniques in Target Detection

Automatic Target Recognition (ATR) is a problem which involves extraction of critical
information from complex and uncertain data for which the traditional approaches of
signal processing, pattern recognition, and rule based artificial intelligence (AI) tech-
niques have been unable to provide adequate solutions. Target recognition of fixed sig-
natures in stationary backgrounds is a straightforward task for which numerous effective
techniques have been developed [12, 13]. If the target signatures and the background are
variable in either a limited or known manner, more complex techniques such as using
rule-based AI (i.e., expert systems) methods can be effective.

However, rule based AI systems exhibit brittle than robust behavior (i.e., there is
great sensitivity to the specific assumptions and environments). When the target sig-
natures or backgrounds vary in an unlimited or unknown manner, the traditional ap-
proaches have not been able to furnish appropriate solutions.

The aim of this project is to employ multiple sensors concurrently for detection
and recognition using a suitable neural network paradigms. The data is fused in this
processing scheme to exploit the spectral and geometric differences and arrive at a
more reliable decision. However, there are any instances for multi-sensor fusion such
as method for correlating non-simultaneous data from multiple, independent sensors
and determination of correct classification of targets when there are conflicting reports.
Fusion techniques are be used to improve the detection of man-made/artificial targets
in multi-spectral or SAR images (taken on two different platforms with different view
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Fig. 1. Example of Agent Communications Demonstrator

angles), using spectral signature, shape/texture, a priori information, and surrounding
geography.

2.6 Agent Communication in a Distributed Application Environment

As technology advances, humans are increasingly introducing delays and errors by the
lack of response within system time limits. Human intervention must be minimized
to avoid system conflicts while enabling the operators avoid repetitive, dull or danger-
ous tasks. Automation has become necessary in various applications. Since agents are
not generally intelligent, they need to posses a capability to interoperate. They also
need to interact, communicate, and share knowledge in order to successfully achieve
their goal(s). We have found the dynamic nature of the Interface Description Lan-
guage (IDL), invoked by Simple Object Access Protocol (SOAP) at run time, enables
the application to adaptively configure its functionality in real time making the devel-
opment of intelligent agent applications easier [14, 15]. This research aims to develop
improved communication between distributed systems as shown in Figure 1.

This concept demonstrator is developed using Java to simulate this scenario and
investigate the interaction, communication, and knowledge-sharing activities among
agents within MASs. With the introduction of distributed computing, the problem of
inter system communicated created a wide range of solution. The relationship between
Web-Services Description Language (WSDL) and OWL-Services (OWL-S) is implied.
Both languages are NOT covered in the same domain, however the overlap is obvious.
The “service descriptions provide a powerful way of assembling information resources
in contexts [16]”. Threads, Agents and Distributed computing and reconfigurable sil-
icon designs have attracted serious attention, forcing both industry and developers to
reflect on existing paradigms in order to rethink the future. SOA makes it easier to
product functional designs with limited functionality. The research conducted so far by
KES has developed a blackboard design upon which segregated functions can be inte-
grated into an application of aimed at achieving this goal. More research is required to
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Fig. 2. Example of the Agent Communications Demonstrator

enable agents to communicate and cooperate and self organize in order to maximize the
efficiency of any MAS.

2.7 Intelligent Decision Support Feedback Using MAS in a Defence Maintenance
Environment

Safety and airworthiness of airborne platforms rest heavily on maintainability and reli-
ability to maximize availability and reduce logistics down time. Maintenance data from
test results rely heavily on paper trails and generally fail to provide preventive analy-
sis. An expert system using intelligent agents could be employed to create an expert
system in the form of an Information Management Systems (IMS). This concept would
develop into an Intelligent Decision Support System (IDSS) that extrapolates forecasts
and warnings as shown in Figure 2.

An Intelligent Decision Support System (IDSS) is required to provide adaptive au-
tomated responses for provisioning and maintenance of an increasing number of De-
fence platforms. Many are now emerging to support an increasing number of long-term
maintenance contracts from within the private sector. Traditional methods of repair are
already being modified to include automated testing although legacy platforms which
still rely heavily on manual maintenance techniques. The conceptual development of a
multi-agent expert system; referred to above as an IDSS. This system should be able
to provide cognitive feedback to support reliability predictions and informed decision
making to proactively minimize the issues of logistics down time, obsolescence and any
associated risks [17, 18].
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3 Future

The KES Centre has entered a new era fuelled by technology that has surpassed a mile-
stone that has enabled renewed vigor into research activities that had previously stalled.
It is widely acknowledged that current computer architectures have limited the wide
spread implementation of many large scale, commercial quality applications in the arti-
ficial intelligence arena. The terms: automation, dynamic reconfiguration, learning, in-
ference and self directed (intelligent) team behavior are all approaching a maturity level
upon which large scaled, distributed applications, will become interoperable, spurred on
by the technology leap required to surpass the barriers currently being experienced in
many of these fields.
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Abstract. The maximal consistent extension Ext(S) of a given infor-
mation system S consists of all objects corresponding to attribute values
from S which are consistent with all true and realizable rules extracted
from the original information system S. An irreducible descriptive set
for the considered information system S is a minimal (relative to the
inclusion) set B of attributes which defines exactly the set Ext(S) by
means of true and realizable rules constructed over attributes from the
considered set B. We show that there exists only one irreducible descrip-
tive set of attributes. We also present a polynomial algorithm for this
set construction. The obtained results will be useful for the design of
concurrent data models from experimental data.

Keywords: rough sets, information systems, maximal consistent exten-
sions, irreducible descriptive sets.

1 Introduction

Let S = (U,A) be an information system [11], where U is a finite set of objects
and A is a finite set of attributes defined on U . We identify objects and tuples
of values of attributes on these objects. The information system S can be con-
sidered as a representation of a concurrent system: attributes are interpreted as
local processes of the concurrent system, values of attributes – as states of local
processes, and objects – as global states of the considered concurrent system.
This idea is due to Pawlak [10].

Let Rul(S) be the set of all true realizable rules in S of the kind

a1(x) = b1 ∧ . . . ∧ at−1(x) = bt−1 ⇒ at(x) = bt ,

where a1, . . . , at ∈ A and b1, . . . , bt are values of attributes a1, . . . , at. True means
that the rule is true for any object from U . Realizable means that the left hand
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side of the rule is true for at least one object from U . Let V (S) be the Cartesian
product of ranges of attributes from A.

The knowledge encoded in a given information system S can be represented
by means of rules from Rul(S). Besides “explicit” global states, corresponding
to objects from U , the concurrent system generated by the considered informa-
tion system can also have “hidden” global states, i.e., tuples of attribute values
from V (S) not belonging to U but consistent with all rules from Rul(S). Such
“hidden” states can also be considered as realizable global states. This was a
motivation for introducing in [15] the maximal consistent extensions of informa-
tion systems with both “explicit” and “hidden” global states. More exactly, the
maximal consistent extension of U is the set Ext(S) of all objects from V (S)
for which each rule from Rul(S) is true. The maximal consistent extensions of
information systems were considered in [1,14,15,20,21].

In this paper, we study the problem of construction of an irreducible descrip-
tive set of attributes. A set of attributes B ⊆ A is called a descriptive set for
S if there exists a set of rules Q ⊆ Rul(S) constructed over the attributes from
B only such that Ext(S) coincides with the set of all objects from V (S) for
which all rules from Q are true. A descriptive set B for S is called irreducible
if each proper subset of B is not a descriptive set for S. We prove that there
exists only one irreducible descriptive set of attributes for S, and we present a
polynomial in time algorithm for construction of this set. Let us recall that there
is no polynomial in time algorithm for constructing the set Ext(S) from a given
information system S [5].

The obtained results will be useful for study of concurrent systems, generated
by information systems [8,16,19,22].

For other issues on information systems and dependencies in information sys-
tems the reader is referred to, e.g., [2,3,7,9,12,13,17].

The paper consists of seven sections. Irreducible descriptive sets of attributes
are considered in Sects. 2–6. Sect. 7 contains short conclusions.

2 Maximal Consistent Extensions

Let S = (U,A) be an information system [11], where U = {u1, . . . , un} is a
set of objects and A = {a1, . . . , am} is a set of attributes (functions defined on
U). For simplicity of reasoning, we assume that for any two different numbers
i1, i2 ∈ {1, . . . , n} tuples (a1(ui1), . . . , am(ui1)) and (a1(ui2), . . . , am(ui2)) are
different. Hence, for i = 1, . . . , n we identify object ui ∈ U and corresponding
tuple (a1(ui), . . . , am(ui)).

For j = 1, . . . ,m let Vaj = {aj(ui) : ui ∈ U}. We assume that
∣∣Vaj

∣∣ ≥ 2 for
j = 1, . . . ,m.

We consider the set V (S) = Va1× . . .×Vam as the universe of objects and study
extensions U∗ of the set U such that U ⊆ U∗ ⊆ V (S). We assume that for any
aj ∈ A and any u ∈ V (S) the value aj(u) is equal to the j-th component of u.
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Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt−1(x) = bt−1 ⇒ ajt(x) = bt , (1)

where t ≥ 1, aj1 , . . . , ajt ∈ A, b1 ∈ Vaj1
, . . . , bt ∈ Vajt

, and numbers j1, . . . , jt
are pairwise different. The rule (1) is called true for an object u ∈ V (S) if there
exists l ∈ {1, . . . , t − 1} such that ajl

(u) 
= bl, or ajt(u) = bt. The rule (1) is
called true if it is true for any object from U . The rule (1) is called realizable if
there exists an object ui ∈ U such that aj1(ui) = b1, . . . , ajt−1(ui) = bt−1.

By Rul(S) we denote the set of all rules each of which is true and realizable.
By Ext(S) we denote the set of all objects from V (S) for which each rule from
Rul(S) is true. The set Ext(S) is called the maximal consistent extension of U
relative to the set of rules Rul(S).

3 On Membership to Ext(S)

First, we recall a polynomial algorithm B1 from [4] which for a given information
system S = (U,A) and an element u ∈ V (S) recognizes if this element belongs
to Ext(S) or not. Let U = {u1, . . . , un} and A = {a1, . . . , am}.

Algorithm 1. Algorithm B1

Input : Information system S = (U,A),
where U = {u1, . . . , un}, A = {a1, . . . , am}, and u ∈ V (S).

Output: Return Y es if u ∈ Ext(S), and No, otherwise.
for i = 1, . . . , n do

Mi(u) ← {j ∈ {1, . . . , m} : aj(u) = aj(ui)};
end
for i ∈ {1, . . . , n} and j ∈ {1, . . . , m} \ Mi(u) do

P j
i (u) ← {aj(ut) : ut ∈ U and al(ut) = al(u) for each l ∈ Mi(u)};

end
if |P j

i (u)| ≥ 2 for any i ∈ {1, . . . , n} and j ∈ {1, . . . , m} \ Mi(u) then
return “Yes”;

else
return “No”;

end

Let us observe that using the indiscernibility relation IND(Ai(u)) [11], where
Ai(u) = {al : l ∈ Mi(u)}, we obtain that P j

i (u) = aj([u]IND(Ai(u)), i.e., P j
i (u)

is equal to the image under aj of the Ai(u)-indiscernibility class [u]IND(Ai(u))

defined by u.
The considered algorithm is based on the following criterion.

Proposition 1. [4] The relation u ∈ Ext(S) holds if and only if |P j
i (u)| ≥ 2

for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} \Mi(u).
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4 Separating Sets of Attributes

A set of attributes B ⊆ A is called a separating set for Ext(S) if for any two
objects u ∈ Ext(S) and v ∈ V (S)\Ext(S) there exists an attribute aj ∈ B such
that aj(u) 
= aj(v) or, which is the same, tuples u and v are different in the j-th
component. A separating set for Ext(S) is called irreducible if each its proper
subset is not a separating set for Ext(S).

It is clear that the set of irreducible separating sets for Ext(S) coincides with
the set of decision reducts for the decision system D = (V (S), A, d), where for
any u ∈ V (S)

d(u) =
{

1, if u ∈ Ext(S) ,
0, if u /∈ Ext(S) .

Let us show that the core for this decision system is a reduct. It means that
D has exactly one reduct coinciding with the core. We denote by C(Ext(S))
the set of attributes aj ∈ A such that there exist two objects u ∈ Ext(S) and
v ∈ V (S) \ Ext(S) which are different only in the j-th component. It is clear
that C(Ext(S)) is the core for D, and C(Ext(S)) is a subset of each reduct for
D.

Proposition 2. The set C(Ext(S)) is a reduct for the decision system D =
(V (S), A, d).

Proof. Let us consider two objects u ∈ Ext(S) and v ∈ V (S) \ Ext(S). Let us
show that these objects are different on an attribute from C(Ext(S)). Let u and v
be different in p components j1, . . . , jp. Then there exists a sequence u1, . . . , up+1

of objects from V (S) such that u = u1, v = up+1, and for i = 1, . . . , p the
objects ui and ui+1 are different only in the component with the number ji.
Since u1 ∈ Ext(S) and up+1 ∈ V (S) \ Ext(S), there exists i ∈ {1, . . . , p} such
that ui ∈ Ext(S) and ui+1 ∈ V (S) \ Ext(S). Therefore, aji ∈ C(Ext(S)). It is
clear that u and v are different on the attribute aji . Thus, C(Ext(S)) is a reduct
for D. ��

From Proposition 2 it follows that C(Ext(S)) is the unique reduct for the de-
cision system D. Thus, a set B ⊆ A is a separating set for Ext(S) if and
only if C(Ext(S)) ⊆ B. One can show that C(Ext(S)) 
= ∅ if and only if
Ext(S) 
= V (S).

5 On Construction of C(Ext(S))

In this section, we present a polynomial in time algorithm for construction of
C(Ext(S)). First, we define an auxiliary set N(Ext(S)). Next, we present a
polynomial in time algorithm for constructing this set and finally we show that
this auxiliary set N(Ext(S)) is equal to C(Ext(S)).

Let us define the set N(Ext(S)). An attribute aj ∈ A belongs to N(Ext(S))
if and only if there exist objects u ∈ U and v ∈ V (S)\Ext(S) such that u and v
are different only in the j-th component. Notice that the only difference in the
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definition of N(Ext(S)) in comparison with the definition of C(Ext(S)) is that
the first condition for u. In the former case we require u ∈ U and in the latter
case u ∈ Ext(S).

We now describe a polynomial algorithmB2 for the setN(Ext(S)) construction.

Algorithm 2. Algorithm B2

Input : Information system S = (U,A), where A = {a1, . . . , am}.
Output: Set N(Ext(S)).
N(Ext(S)) = ∅;
for u ∈ U do

for j ∈ {1, . . . , m} and b ∈ Vaj \ {bj}, where u = (b1, . . . , bm) do
v ← (b1, . . . , bj−1, b, bj+1, . . . , bm);
Apply algorithm B1 to v;
if algorithm B1 returns “No” then

N(Ext(S)) ← N(Ext(S)) ∪ {aj};
end

end
end

Theorem 1. C(Ext(S)) = N(Ext(S)).

Proof. Let ar ∈ A. It is clear that if ar ∈ N(Ext(S)) then ar ∈ C(Ext(S)).
We now show that if ar /∈ N(Ext(S)) then ar /∈ C(Ext(S)). To this end we
must prove that for any two objects u and v from V (S), if u ∈ Ext(S) and v is
different from u only in the r-th component then v ∈ Ext(S).

Let us assume that u ∈ Ext(S) and v ∈ V (S) is different from u only in the
r-th component. We now show that v ∈ Ext(S).

Taking into account that u ∈ Ext(S) and using Proposition 1 we conclude
that |P j

i (u)| ≥ 2 for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} \Mi(u).
We now show that |P j

i (v)| ≥ 2 for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} \Mi(v).
Let us consider four cases.

1. Let r /∈ Mi(u) and ar(v) = ar(ui). Then Mi(v) = Mi(u) ∪ {r} and j 
= r.
Since |P j

i (u)| ≥ 2, there exists an object ut ∈ U such that al(ut) = al(u)
for each l ∈ Mi(u) and aj(ut) 
= aj(ui). If ar(v) = ar(ut) then |P j

i (v)| ≥ 2.
Let ar(v) 
= ar(ut). We denote by w an object from V (S) which is different
from ut only in the r-th component and for which ar(w) = ar(v). Since
ar /∈ N(Ext(S)), we have w ∈ Ext(S). Let us assume that

Ki = {s ∈ {1, . . . ,m} : as(w) = as(ui)} .

It is clear that Mi(v) ⊆ Ki and j /∈ Ki. Taking into account that w ∈ Ext(S)
and using Proposition 1 we conclude that there exists an object up ∈ U such
that al(up) = al(ui) for each l ∈ Ki and aj(up) 
= aj(ui). Since Mi(v) ⊆ Ki,
we obtain |P j

i (v)| ≥ 2.
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2. Let r /∈Mi(u) and ar(v) 
= ar(ui). Then Mi(v) = Mi(u). Since |P j
i (u)| ≥ 2,

there exists an object ut ∈ U such that al(ut) = al(u) for each l ∈ Mi(u)
and aj(ut) 
= aj(ui). Taking into account that Mi(v) = Mi(u) and al(ut) =
al(v) for each l ∈Mi(u) we obtain |P j

i (v)| ≥ 2.
3. Let r ∈ Mi(u) and r 
= j. Then Mi(v) = Mi(u) \ {r}. Since |P j

i (u)| ≥ 2,
there exists an object ut ∈ U such that al(ut) = al(u) for each l ∈ Mi(u)
and aj(ut) 
= aj(ui). It is clear that al(ut) = al(v) for each l ∈ Mi(v) and
aj(ut) 
= aj(ui). Therefore, |P j

i (v)| ≥ 2.
4. Let r ∈ Mi(u) and r = j. Then Mi(v) = Mi(u) \ {r}. By w we denote an

object from V (S) which is different from ui only in the r-th component.
Since ar /∈ N(Ext(S)), we have w ∈ Ext(S). Using Proposition 1, one can
show that there exists an object up ∈ U which is different from ui only in
the r-th component. It is clear that al(up) = al(v) for each l ∈ Mi(v), and
ar(up) 
= ar(ui). Therefore, |P j

i (v)| ≥ 2.

Using Proposition 1, we obtain v ∈ Ext(S). Thus, ar /∈ C(Ext(S)). ��

6 Descriptive Sets of Attributes

In this section, we show that the maximal consistent extension Ext(S) of a given
information system S cannot be defined by any system of true and realizable
rules in S constructed over a set of attributes not including C(Ext(S)).

Proposition 3. Let Q be a set of true realizable rules in S such that the set of
objects from V (S), for which any rule from Q is true, coincides with Ext(S),
and let B be the set of attributes from A occurring in rules from Q. Then
C(Ext(S)) ⊆ B.

Proof. Let us assume the contrary, i.e., aj /∈ B for some attribute aj ∈
C(Ext(S)). Since aj ∈ C(Ext(S)), there exist objects u ∈ Ext(S) and v ∈
V (S) \ Ext(S) which are different only in the component with the number j.
Let us consider a rule from Q which is not true for the object v. Since this rule
does not contain the attribute aj, the considered rule is not true for u which is
impossible. ��

Now, we will show that using true realizable rules in S with attributes from
C(Ext(S)) only it is possible to describe exactly the set Ext(S).

Proposition 4. There exists a set Q of true realizable rules in S such that
the set of objects from V (S), for which any rule from Q it true, coincides with
Ext(S), and rules from Q use only attributes from C(Ext(S)).

Proof. Let us consider an arbitrary rule from the set Rul(S). Let, for the defi-
niteness, this will be the rule

a1(x) = b1 ∧ . . . ∧ at−1(x) = bt−1 ⇒ at(x) = bt . (2)
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We show that at ∈ C(Ext(S)). Let us assume the contrary, i.e., at /∈ C(Ext(S)).
Since (2) is realizable, there exists an object ui ∈ U such that

a1(ui) = b1, . . . , at−1(ui) = bt−1 .

Since (2) is true, at(ui) = bt. Using Theorem 1, we conclude that at /∈ N(Ext(S)).
Let w be an object from V (S) which is different from ui only in the component
with the number t. Since at /∈ N(Ext(S)), we have w ∈ Ext(S). Using Propo-
sition 1, we conclude that there exists an object up ∈ U which is different from
ui only in the component with the number t. It is clear that the rule (2) is not
true for up which is impossible. Thus, at ∈ C(Ext(S)).

Let us assume that there exists j ∈ {1, . . . , t− 1} such that aj /∈ C(Ext(S)).
Now, we consider the rule∧

l∈{1,...,t−1}\{j}
al(x) = bl ⇒ at(x) = bt . (3)

We show that this rule belongs to Rul(S). Since (2) is realizable, (3) is realizable
too. We now show that (3) is true. Let us assume the contrary, i.e., there exists
object ui ∈ U for which (3) is not true. It means that al(ui) = bl for any
l ∈ {1, . . . , t − 1} \ {j}, and at(ui) 
= bt. Since (2) is true, aj(ui) 
= bj. Let us
consider the object w ∈ V (S) such that w is different from ui only in the j-th
component, and aj(w) = bj . Taking into account that aj /∈ C(Ext(S)) we obtain
w ∈ Ext(S), but this is impossible. Since (2) is true, (2) must be true for any
object from Ext(S). However, (2) is not true for w.

Thus, if we remove from the left hand side of a rule from Rul(S) all conditions
with attributes from A \ C(Ext(S)) we obtain a rule from Rul(S) which uses
only attributes from C(Ext(S)). We denote by Rul∗(S) the set of all rules from
Rul(S) which use only attributes from C(Ext(S)).

It is clear that the set of objects from V (S), for which each rule from Rul∗(S)
is true, contains all objects from Ext(S). Let u ∈ V (S) \ Ext(S). Then there
exists a rule from Rul(S) which is not true for u. If we remove from the left hand
side of this rule all conditions with attributes from A \ C(Ext(S)) we obtain a
rule from Rul∗(S) which is not true for u. Therefore, the set of objects from
V (S), for which each rule from Rul∗(S) is true, coincides with Ext(S). Thus, as
the set Q we can take the set of rules Rul∗(S). ��

We will say that a subset of attributes B ⊆ A is a descriptive set for S if there
exists a set of rules Q ⊆ Rul(S) that uses only attributes from B, and the set of
objects from V (S), for which each rule from Q is true, coincides with Ext(S).
A descriptive set B will be called irreducible if each proper subset of B is not
a descriptive set for S. Next statement follows immediately from Propositions 3
and 4.

Theorem 2. The set C(Ext(S)) is the unique irreducible descriptive set for S.

From Theorem 1 it follows that C(Ext(S)) = N(Ext(S)). The algorithm B2

allows us to construct the set N(Ext(S)) in polynomial time.
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7 Descriptions of Ext(S) and Rul(S)

In this section, we outline some problems of more compact description of sets
Ext(S) and Rul(S) which we would like to investigate in our further study.

Let us start from a proposal for (approximate) description of maximal
extensions.

We consider an extension of the language of boolean combinations of descrip-
tors [13] of a given information system by taking instead of descriptors of the
form a = v over a given information system S = (U,A), where a ∈ A, v ∈ Va,
and Va is the set of values of a, their generalization to a ∈ W where W is a non-
empty subset of Va. Such new descriptors are called generalized descriptors. The
semantics of the generalized descriptor a ∈ W relative to a given information
system S = (U,A) is defined by the set ‖a ∈ W‖V (S) = {u ∈ V (S) : a(u) ∈ W}
or by ‖a ∈ W‖S ∩ U , if one would like to restrict attention to the set U only.
This semantics can be extended, in the standard way, on boolean combination
of descriptors defined by classical propositional connectives, i.e., conjunction,
disjunction, and negation. Let us consider boolean combinations of generalized
descriptors defined by conjunctions of generalized descriptors only. We call them
as templates. Now, we define decision systems with conditional attributes defined
by generalized descriptors. Let us consider a sample U ′ of objects from V (S)\U
and the set GD of all binary attributes a ∈ W such that (a ∈ W )(u) = 1 if
and only if a(u) ∈ W , where u ∈ V (S). Next, we consider decision systems of
the form DSB = (U ∪ U ′, B, d), where B ⊆ GD and d(u) = 1 if and only if
u ∈ Ext(S). Using such decision systems one can construct classifiers for the set
Ext(S). The problem is to search for classifiers with the high quality of classifica-
tion. Searching for such classifiers can be based on the minimal length principle.
For example, for any DSB one can measure the size of classifier by the size of the
generated set of decision rules. The size of a set of decision rules can be defined
as the sum of sizes of the left hand sides of decision rules from the set. Observe
that the left hand sides of the considered decision rules are templates, i.e., con-
junctions of generalized descriptors. In this way, some approximate but compact
descriptions of Ext(S) by classifiers can be obtained. Another possibility is to
use lazy classifiers for Ext(S) based on DSB decision systems.

Dealing with all rules of a given kind, e.g., all realizable and true deterministic
rules [6], one may face problems related to the large size of the set of such rules
in a given information system. Hence, it is necessary to look for more compact
description of such sets of rules. It is worthwhile mentioning that this problem
is of great importance in data and knowledge visualization.

A language which can help to describe the rule set Rul(S) in a more compact
way can be defined by dependencies, i.e., expressions of the form B −→ C,
where B,C ⊆ A (see, e.g., [13]). A dependency B −→ C is true in S, in symbols
B −→S C = 1, if and only if there is a functional dependency between B and C in
S what can be expressed using the positive region by POSB(C) = U . Certainly,
each true in S dependency B −→ C in S is representing a set of deterministic,
realizable and true decision rules in S. The aim is to select dependencies true
in S which are representing as many as possible rules from the given rule set
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Rul(S). For example, in investigating decompositions of information systems
[16,19,20] some special dependencies in a given information system called as
components were used. One could also use dependencies called as association
reducts [18]. The remaining rules from Rul(S) set which are not represented by
the chosen functional dependencies can be added as links between components.
They are interpreted in [16,19,20] as constraints or interactions between modules
defined by components. The selected dependencies and links create a covering
of Rul(S). Assuming that a quality measure for such coverings was fixed, one
can consider the minimal exact (or approximate) covering problem for Rul(S)
set by functional dependencies from the selected set of dependencies and some
rules from Rul(S).

Yet another possibility is to search for minimal subsets of a given Rul(S) from
which Rul(S) can be generated using, e.g., some derivation rules.

8 Conclusions

We proved that for any information system S there exists only one irreducible
descriptive set of attributes, and we proposed a polynomial in time algorithm
for this set construction. We plan to use the obtained results in applications of
information systems to analysis and design of concurrent systems.
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Abstract. We take into consideration Dominance-based Rough Set Ap-
proach and its recently proposed algebraic modeling in terms of bipolar
de Morgan Brower-Zadeh distributive lattice. On this basis we introduce
the concept of bipolar approximation space and we show how it can be
induced from a bipolar quasi Brower-Zadeh lattice.

1 Introduction

In order to handle monotonic relationships between premises and conclusions,
such as “the greater the mass and the smaller the distance, the greater the grav-
ity”, “the more a tomato is red, the more it is ripe” or “the better the school
marks of a pupil, the better his overall classification”, Greco, Matarazzo and
S�lowiński [3,4,5,6,7] have proposed the Dominance-based Rough Set Approach
(DRSA), where dominance relation is used instead of indiscernibility relation
originally proposed for the classical rough set approach [9,10]. Recently, an al-
gebraic model of DRSA in terms of bipolar de Morgan Brower-Zadeh distrib-
utive lattice has been proposed in [8]. It is a generalization of the de Morgan
Brower-Zadeh distributive lattice [2], proposed to characterize the classical rough
set approach in [1]. In this paper, we go further in this direction, introducing
the concept of bipolar approximation space being for DRSA the counterpart
of the approximation space proposed for the classical rough set approach [1].
We prove that a bipolar approximation space can be induced from any bipolar
quasi Brower-Zadeh lattice of which we investigate the properties. The paper is
organized as follows. The next section presents the DRSA approximations. The
third section recalls the de Morgan Brower-Zadeh distributive lattice and the
modeling of the classical rough set approach in its terms. The fourth section
introduces the bipolar approximation space and shows how it can be induced
from a bipolar quasi Brower-Zadeh lattice. The last section contains conclusions.

2 Dominance-Based Rough Set Approach

In this section, we recall the Dominance-based Rough Set Approach [4], taking
into account, without loss of generality, the case of rough approximation of fuzzy
sets [7].

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 31–40, 2008.
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A fuzzy information base is the 3-tuple B =< U,F, ϕ >, where U is a fi-
nite set of objects (universe), F={f1,f2,...,fm} is a finite set of properties, and
ϕ : U × F → [0, 1] is a function such that ϕ(x, fh) ∈ [0, 1] expresses the degree
in which object x has property fh. Therefore, each object x from U is described
by a vector

DesF (x) = [ϕ(x, f1), . . . , ϕ(x, fm)]

called description of x in terms of the evaluations of the properties from F ; it
represents the available information about x. Obviously, x ∈ U can be described
in terms of any non-empty subset G ⊆ F , and in this case we have

DesG(x) = [ϕ(x, fh), fh ∈ G].

Let us remark that the concept of fuzzy information base can be considered
as a generalization of the concept of property system [11]. Indeed, in a prop-
erty system an object may either possess a property or not, while in the fuzzy
information base an object may possess a property in some degree between 0
and 1.

With respect to any G ⊆ F , we can define the dominance relation DG as
follows: for any x,y ∈ U , x dominates y with respect to G (denoted as xDGy) if,
for any fh ∈ G,

ϕ(x, fh) ≥ ϕ(y, fh).

For any x ∈ U and for each non-empty G ⊆ F , let

D+
G (x) = {y ∈ U : yDGx}, D−

G (x) = {y ∈ U : xDGy}.

Given G ⊆ F , for any X ⊆ U , we can define its upward lower approximation
G(>)(X) and its upward upper approximation G

(>)
(X) as:

G(>)(X) =
{
x ∈ U : D+

G(x) ⊆ X
}
,

G
(>)

(X) =
{
x ∈ U : D−

G(x) ∩X 
= ∅
}
.

Analogously, given G ⊆ F , for any X ⊆ U , we can define its downward lower
approximation G(<)(X) and its downward upper approximation G

(<)
(X) as:

G(<)(X) =
{
x ∈ U : D−

G(x) ⊆ X
}
,

G
(<)

(X) =
{
x ∈ U : D+

G(x) ∩X 
= ∅
}
.

Let us observe that in the above definition of rough approximations G(>)(X),
G

(>)
(X), G(<)(X), G

(<)
(X), the elementary sets, which in the classical rough

set theory are equivalence classes of the indiscernibility relation, are the sets
D+

G(x) and D−
G(x), x ∈ U .

The rough approximationsG(>)(X), G
(>)

(X), G(<)(X), G
(<)

(X) can be used
to analyze data relative to gradual membership of objects to some concepts
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representing properties of objects and their assignment to decision classes. This
analysis takes into account the following monotonicity principle: “the greater the
degree to which an object has properties from G ⊆ F , the greater its degree of
membership to a considered class”. This principle can be formalized as follows.
Let us consider a fuzzy set X in U , characterized by the membership function
µX : U → [0, 1]. This fuzzy set represents a class of interest, such that function
µ specifies a graded membership of objects from U to considered class X . For
each cutting level α ∈ [0, 1], we can consider the following sets

– weak upward cut of fuzzy set X :

X≥α = {x ∈ U : µ(x) ≥ α} ,

– strict upward cut of fuzzy set X :

X>α = {x ∈ U : µ(x) > α} ,

– weak downward cut of fuzzy set X :

X≤α = {x ∈ U : µ(x) ≤ α} ,

– strict upward cut of fuzzy set X :

X<α = {x ∈ U : µ(x) < α} .

Let us remark that, for any fuzzy set X and for any α ∈ [0, 1], we have that

U −X≥α = X<α, U −X≤α = X>α,

U −X>α = X≤α, U −X<α = X≥α.

Given a family of fuzzy sets X = {X1, X2, ...., Xp} on U , whose respective mem-
bership functions are µ1, µ2, ..., µp, let P>(X) be the set of all the sets obtained
through unions and intersections of weak and strict upward cuts of fuzzy sets
from X. Analogously, let P<(X) be the set of all the sets obtained through
unions and intersections of weak and strict downward cuts of fuzzy sets from X.
P>(X) and P<(X) are closed under set union and set intersection operations,

i.e. for all Y1, Y2 ∈ P>(X), Y1 ∪ Y2 and Y1 ∩ Y2 belong to P>(X), as well as
for all W1,W2 ∈ P<(X), W1 ∪W2 and W1 ∩W2 belong to P<(X). Observe,
moreover, that the universe U and the empty set ∅ belong both to P>(X) and
to P<(X) because, for any fuzzy set Xi ∈ X,

U = X≥0
i = X≤1

i

and
∅ = X>1

i = X<0
i .
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3 Bipolar de Morgan Brower-Zadeh Distributive Lattices

A system 〈Σ,Σ+, Σ−,∧,∨,′+ ,′− ,∼+ ,∼− , 0, 1〉 is a bipolar quasi Brower-Zadeh
distributive lattice if the following properties (1b)-(4b) hold:

(1b) Σ is a distributive lattice with respect to the join and the meet operations
∨ and ∧

(1b’) Σ+, Σ− ⊆ Σ are distributive lattices with respect to the join and the
meet operations ∨ and ∧. Σ is bounded by the least element 0 and the
greatest element 1, which implies that also Σ+ and Σ− are bounded.

(2b) The unary operations ′+ : Σ+ → Σ− and ′− : Σ− → Σ+ are Kleene
(also Zadeh or fuzzy) bipolar complementation, that is, for arbitrary
a, b ∈ Σ+ and c, d ∈ Σ−,

(K1b) a′+′− = a, c′−′+ = c,
(K2b) (a ∨ b)′+ = a′+ ∧ b′+, (c ∨ d)′− = c′− ∧ d′−,
(K3b) a ∧ a′+ ≤ b ∨ b′+, c ∧ c′− ≤ d ∨ d′−.

(3b) The unary operations ∼+
: Σ+ → Σ− and ∼−

: Σ− → Σ+ are Brower (or
intuitionistic) bipolar complementations, that is, for arbitrary a, b ∈ Σ+

and c, d ∈ Σ−,
(B1b) a ∧ a∼+∼−

= a, c ∧ c∼−∼+
= c

(B2b) (a ∨ b)∼+
= a∼

+ ∧ b∼+
, (c ∨ d)∼

−
= c∼

− ∧ d∼−
,

(B3b) a ∧ a∼+
= 0, c ∧ c∼−

= 0.
(4b) Complementation ′+ and complementation ∼+

on one hand, and com-
plementation ′− and complementation ∼−

on the other hand, are linked
by the interconnection rule, that is, for arbitrary a ∈ Σ+ and arbitrary
b ∈ Σ−:
(in-b) a∼

+ ≤ a′+, b∼
− ≤ b′−.

A structure 〈Σ,Σ+, Σ−,∧,∨,′+ ,′− ,∼+ ,∼− , 0, 1〉 is a bipolar Brower-Zadeh dis-
tributive lattice if it is a bipolar quasi Brower-Zadeh distributive lattice satisfying
the stronger interconnection rule, that is, for arbitrary a ∈ Σ+ and arbitrary
b ∈ Σ−:

(s-in-b) a∼
+∼−

= a∼
+′− , b∼

−∼+
= b∼

−′+ .

A bipolar Brower-Zadeh distributive lattice is abipolar de Morgan Brower-Zadeh
distributive lattice, if it satisfies also the ∨ de Morgan property, that is, for ar-
bitrary a, b ∈ Σ+ and c, d ∈ Σ−:

(B2a-b) (a ∧ b)∼+ = a∼+ ∨ b∼+, (c ∧ d)∼− = c∼− ∨ d∼−.

The bipolar de Morgan Brower-Zadeh distributive lattice is an algebraic struc-
ture which can be given to the collection of all rough approximations within the
Dominance-based Rough Set Approach as follows. Fixed G ⊆ F , for any X ⊆ U ,
let us consider the pairs

〈
G(≤)(X), U −G(≤)

(X)
〉

and
〈
G(≥)(X), U−G(≥)

(X)
〉

,
and the sets

B = {(I, E) : I, E ⊆ U such that I ∩ E = ∅},
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B− =
{

(I, E) : ∃X ⊆ U for which I = G(≤)(X) and E = U −G(≤)
(X)

}
,

B+ =
{

(I, E) : ∃X ⊆ U for which I = G(≥)(X) and E = U −G(≥)
(X)

}
.

The following result holds.

Theorem 1 [8]. The structure 〈B,B+, B−,�,�,−− ,−+ ,≈− ,≈+ , 〈∅, U〉 , 〈U, ∅〉〉,
where for any 〈I1, E1〉 , 〈I2, E2〉 ∈ B, 〈I3, E3〉 ∈ B−,〈I4, E4〉 ∈ B+,

〈I1, E1〉 � 〈I2, E2〉 := 〈I1 ∩ I2, E1 ∪E2〉,

〈I1, E1〉 � 〈I2, E2〉 := 〈I1 ∪ I2, E1 ∩E2〉,

〈I3, E3〉−− := 〈E3, I3〉, 〈I4, E4〉−+ = 〈E4, I4〉,

〈I3, E3〉≈− := 〈E3, U − E3〉, 〈I4, E4〉≈+ = 〈E4, U − E4〉,

is a bipolar de Morgan Brower-Zadeh distributive lattice. ��

4 Bipolar Approximation Space Induced from Bipolar
Quasi Brower-Zadeh Lattice

Generalizing to the context of DRSA the concept of an abstract generalized
approximation space [1], we introduce the concept of bipolar generalized approx-
imation space as a structure〈

Σ,≤, Σ+, Σ−,O+(±+),O−(±−), C+(±+), C−(±−), i+, i−, o+, o−〉
,

where

1. 〈Σ,≤, 0, 1〉 is an abstract lattice with respect to the partial order relation ≤,
bounded by the first (or minimum) element 0 (∀x ∈ Σ, 0 ≤ x) and the last
(maximum) element 1 (∀x ∈ Σ, x ≤ 1).

2. Σ+, Σ− ⊆ Σ such that 0, 1 ∈ Σ+ and 0, 1 ∈ Σ−, 〈Σ+,≤, 0,1〉 and 〈Σ−,≤, 0,1〉
are abstract lattices with respect to the partial order relation ≤.

3. O+(±+) is a sublattice of Σ+ consisting of all available open (also, inner)
definable elements of Σ+. Analogously, O−(±−) is a sublattice of Σ− con-
sisting of all available open (also, inner) definable elements of Σ−.

4. C+(±+) is a sublattice of Σ+ consisting of all available closed (also, outer)
definable elements of Σ+. Analogously, C−(±−) is a sublattice of Σ− con-
sisting of all available closed (also, outer) definable elements of Σ−.

5. i+ : Σ+ → O+(±+) is the upward inner approximation mapping associating
to any approximable elements x ∈ Σ+ the lower (or inner) approximation
i+(x) ∈ O+(±+), i.e. an upward open definable element such that

i+(x) ≤ x,

∀α ∈ O+(±+), (α ≤ x ⇒ α ≤ i+(x)),
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i.e.,
i+(x) := max

{
α ∈ O+(±+) : α ≤ x

}
.

Analogously, i− : Σ− → O−(±−) is the downward inner approximation map-
ping associating to any approximable elements x ∈ Σ− the lower (or inner)
approximation i−(x) ∈ O−(±−), i.e. a downward open definable element
such that

i−(x) ≤ x,

∀α ∈ O−(±−), (α ≤ x ⇒ α ≤ i−(x )),

i.e.,
i−(x) := max

{
α ∈ O−(±−) : α ≤ x

}
.

6. o+ : Σ+ → C+(±+) is the upward outer approximation mapping associating
to any approximable elements x ∈ Σ+ the upper (or outer) approximation
o+(x) ∈ C+(±+), i.e. an upward open definable element such that

x ≤ o+(x),

∀γ ∈ C+(±+), (x ≤ γ ⇒ o+(x) ≤ γ),

i.e.,
o+(x) := min

{
γ ∈ C+(±+) : x ≤ γ

}
.

Analogously, o− : Σ− → C−(±−) is the downward outer approximation
mapping associating to any approximable elements x ∈ Σ− the upper (or
outer) approximation o−(x) ∈ C−(±−), i.e. a downward closed definable
element such that

x ≤ o−(x),

∀γ ∈ C−(±−), (x ≤ γ ⇒ o−(x ) ≤ γ),

i.e.,
o−(x) := min

{
γ ∈ C−(±−) : x ≤ γ

}
.

The rough approximation of any x ∈ Σ+ is the pair r+(x) := (i+(x), o+(x)) while
the rough approximation of any y ∈ Σ− is the pair r−(y) := (i−(y), o−(y)). An
equivalent way to define a rough approximation is to consider, instead of the
interior-closure pair, the interior-exterior pair such that, for all x ∈ Σ+, the
rough approximation is defined as

re(x) := (i+(x), e+(x)) = (i+(x), o+(x)′+),

while, for all y ∈ Σ−, the rough approximation is defined as

r−e (y) := (i−(y), e−(y)) = (i−(y), o−(y)′−).

Let us stress that in the above definitions it is not required that the sets of open
and closed definable elements must be the same, and, in general, O+(Σ+) 
=
C+(Σ+) and O−(Σ−) 
= C−(Σ−). We denote by CO+(±+) = C+(±+)∩O+(±+)
the set of all upward clopen (simultaneously closed and open) definable elements.
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Analogously, we denote by CO−(±−) = C−(±−) ∩ O−(±−) the set of all down-
ward clopen definable elements. Only in some particular cases, for instance in
case of the basic DRSA based on criteria giving partial or complete preorder
on the universe U presented in the above section 2, these two open and closed
approximation environments coincide.

The bipolar generalized approximation space is an abstraction of the standard
way to deal with roughness within DRSA. Now, we show how a structure of this
type can be induced from any bipolar quasi Brower-Zadeh lattice. Making use of
the Kleene complementations ′+ and ′−, and of the two Brower complementations
∼+ and ∼−, it is possible to define the mappings

�+ : a ∈ Σ+ �→ a�+ := a′+∼−′+ ∈ Σ−

and
�− : a ∈ Σ− �→ a�− := a′−∼+′− ∈ Σ+,

which are anticomplementations, i.e. for any a, b ∈ Σ+ and c, d ∈ Σ−:

a�+�− ≤ a, c�−�+ ≤ c,

a ≤ b implies b�+ ≤ a�+, c ≤ d implies d�− ≤ c�−,

a ∨ a�+ = 1, c ∨ c�− = 1.

For any a ∈ Σ+ and any b ∈ Σ−, we have

a∼+ ≤ a′+ ≤ a�+, b∼− ≤ b′− ≤ b�−.

The following statements are equivalent for a fixed element a ∈ Σ+:

a∼+ = a′+, a = a′+∼−, a∼+∼− = a′+∼−, a = a∼+′−.

Moreover, the following logical implication holds for a fixed element a ∈ Σ+:

a∼+ = a′+ ⇒ [a = a�+�− = a∼+∼−].

Analogously, for a fixed element b ∈ Σ−, the following statements are equivalent:

b∼− = b′−, b = b′−∼+, b∼−∼+ = b′−∼+, b = b∼−′+,

and the following logical implication holds

b∼− = b′− ⇒ [b = b�−�+ = b∼−∼+].

We can introduce the following sets:

– the set of all upward (downward) exact elements

Σ+
e :=

{
f ∈ Σ+ : f ′+ = f∼+

}
(Σ−

e :=
{
f ∈ Σ− : f ′− = f∼−}

),
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– the set of all upward (downward) open elements

Σ+
o :=

{
f ∈ Σ+ : f = f �+�−

}
(Σ−

o :=
{
f ∈ Σ− : f = f �−�+

}
),

– the set of all upward (downward) closed elements

Σ+
c :=

{
f ∈ Σ+ : f = f∼+∼−}

(Σ−
c :=

{
f ∈ Σ− : f = f∼−∼+

}
),

– the set of all upward (downward) clopen elements

Σ+
co = Σ+

c ∩Σ+
o (Σ−

co = Σ−
c ∩Σ+

o ).

We also have

Σ+
e ⊆ Σ+

co, Σ
−
e ⊆ Σ−

co,

Σ+
o =

{
f ∈ Σ+ : f ′+ ∈ Σ−

c

}
, Σ−

o =
{
f ∈ Σ− : f ′− ∈ Σ+

c

}
,

Σ+
c =

{
f ∈ Σ+ : f ′+ ∈ Σ−

o

}
, Σ−

c =
{
f ∈ Σ− : f ′− ∈ Σ+

o

}
.

Observe that in any bipolar quasi Brower-Zadeh lattice we have that, for any
a ∈ Σ+ and for any b ∈ Σ−: a′+∼−, a∼+∼− ∈ Σ+

c , a�+�−, a∼+′− ∈ Σ+
o ,

b′−∼+, b∼−∼+ ∈ Σ−
c , and b�−�+, a∼−′+ ∈ Σ−

o . On the basis of these results,
eight further unary operators can be introduced:

ν+ : a ∈ Σ+ �→ ν+(a) := a′+∼− ∈ Σ+
c , (upward necessity)

ν− : a ∈ Σ− �→ ν−(a) := a′−∼+ ∈ Σ−
c , (downward necessity)

I+ : a ∈ Σ+ �→ I+(a) := a�+�− ∈ Σ+
o , (upward interior)

I− : a ∈ Σ− �→ I−(a) := a�−�+ ∈ Σ−
o , (downward interior)

C+ : a ∈ Σ+ �→ C+(a) := a∼+∼− ∈ Σ+
c , (upward closure)

C− : a ∈ Σ− �→ C−(a) := a∼−∼+ ∈ Σ−
c , (downward closure)

µ+ : a ∈ Σ+ �→ µ+(a) := a∼+′− ∈ Σ+
o , (upward possibility)

µ− : a ∈ Σ− �→ µ−(a) := a∼−′+ ∈ Σ−
o . (downward possibility)

According to the above definitions, the complementations ∼+, ∼−, �+ and �−

can be interpreted as follows: a∼+ = µ+(a)′+ (upward impossibility), a∼− =
µ−(a)′− (downward impossibility), a�+ = ν+(a)′+ (upward contingency) and
a�− = ν−(a)′− (downward contingency).

In any bipolar quasi Brower-Zadeh lattice, the mappings

I+ : ±+ → ±+
o , a �→ I+(a) = a�+�−

and
I− : ±− → ±−

o , a �→ I−(a) = a�−�+
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are interior operator since they are normalized, decreasing, idempotent and sub-
multiplicative, i.e. the following hold:

1 = I+(1), 1 = I−(1),

∀a ∈ Σ+, I+(a) ≤ a, ∀b ∈ ±−, I−(b) ≤ b,

∀a ∈ Σ+, I+(a) = I+(I+(a)), ∀b ∈ ±−, I−(b) = I−(I−(b)),

∀a, b ∈ Σ+, I+(a ∧ b) ≤ I+(a) ∧ I+(b), ∀a, b ∈ Σ−, I−(a ∧ b) ≤ I−(a) ∧ I−(b),

such that for all a ∈ Σ+ and for all b ∈ Σ−:

I+(a) = ∨
{

f ∈ ±+
o : f ≤ a

}
, I−(b) = ∨

{
f ∈ ±−

o : f ≤ b
}
.

In any bipolar quasi Brower-Zadeh lattice, the mappings

C+ : ±+ → ±+
c , a �→ C+(a) = a∼+∼−

and
C− : ±− → ±−

c , a �→ C−(a) = a∼−∼+

are closure operators since they are normalized, increasing, idempotent and sub-
additive, i.e. the following hold:

0 = C+(0), 0 = C−(0),

∀a ∈ Σ+, a ≤ C+(a), ∀b ∈ ±−, b ≤ C−(b),

∀a ∈ Σ+, C+(a) = C+(C+(a)), ∀b ∈ ±−, C−(b) = C−(C−(b)),

∀a, b ∈ Σ+, C+(a) ∨ C+(b) ≤ C+(a ∨ b), ∀a, b ∈ Σ−, C−(a) ∨ C−(b) ≤ C−(a ∨ b)
such that for all a ∈ Σ+ and for all b ∈ Σ−:

C+(a) = ∧
{

f ∈ ±+
c : a ≤ f

}
, C−(b) = ∧

{
f ∈ ±−

c : b ≤ f
}
.

Let 〈Σ,Σ+, Σ−,∧,∨,′+ ,′− ,∼+ ,∼− , 0, 1〉 be a bipolar quasi Brower-Zadeh dis-
tributive lattice. Then, the structure〈

Σ,≤, Σ+, Σ−, Σ+
o , Σ

−
o , Σ

+
c , Σ

−
c , I+, I−, C+, C−

〉
is a bipolar approximation space with respect to: the set of upward open de-
finable elements O+(±+)= Σ+

c ; the set of downward open definable elements
O−(±−)= Σ−

c ; the set of upward closed definable elements C+(±+)= Σ+
c ; the

set of downward closed definable elements C−(±−)= Σ−
c ; the upward inner

approximation mapping i+(a) = I+(a) = a�+�−; the downward inner approx-
imation mapping i−(a) = I−(a) = a�−�+; the upward outer approximation
mapping o+(a) = C+(a) = a∼+∼−; the downward outer approximation mapping
o−(a) = C−(a) = a∼−∼+. Observe that for all a ∈ Σ+, I+(a) = (C−(a′+))′−,
and for all b ∈ Σ−, I−(b) = (C+(b′−))′+.

In any bipolar quasi Brower-Zadeh lattice, the following chains of inclusions
hold, for all a ∈ Σ+ and b ∈ Σ−:
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ν+(a) ≤ I+(a)≤ a ≤ C+(a)≤ µ+(a),
ν−(b) ≤ I−(b)≤ b ≤ C−(b)≤ µ−(b).

In case of a bipolar Brower-Zadeh lattice for all a ∈ Σ+ and b ∈ Σ−,

I+(a)=ν+(a), I−(b)=ν−(b),
C+(a)=µ+(a), C−(b)=µ−(b).

Let us observe that, for Theorem 1, this is the case of basic DRSA as described
in the above section 2.

5 Conclusions

In this paper, we introduced a bipolar approximation space as a general model
for DRSA, and we showed that it can be induced from a bipolar quasi Brower-
Zadeh lattice. Future research will be devoted to model DRSA in terms of other
abstract algebras and their comparison with the bipolar quasi Brower-Zadeh
lattice.
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Abstract. This paper presents a language for defining four-valued rough sets and
to reason about them. Our framework brings together two major fields: rough sets
and paraconsistent logic programming. On the one hand it provides a paraconsis-
tent approach, based on four-valued rough sets, for integrating knowledge from
different sources and reasoning in the presence of inconsistencies. On the other
hand, it also caters for a specific type of uncertainty that originates from the fact
that an agent may perceive different objects of the universe as being indiscernible.
This paper extends the ideas presented in [9]. Our language allows the user to
define similarity relations and use the approximations induced by them in the de-
finition of other four-valued sets. A positive aspect is that it allows users to tune
the level of uncertainty or the source of uncertainty that best suits applications.

1 Introduction

We present a language for defining four-valued rough sets and to reason about them.
Our framework relates and brings together two major fields: rough sets [8] and para-
consistent logic programming [3]. On the one hand the work discussed here provides
a paraconsistent approach, based on four-valued rough sets, for integrating knowledge
from different sources and reasoning with possible inconsistent knowledge resulting
from this integration. On the other hand, it also caters for a specific type of uncertainty
that originates from the fact that an agent may perceive different objects of the universe
as being indiscernible. This type of uncertainty has been widely studied in the rough set
field. To this end, the proposed language allows the user to define similarity relations
modeling indiscernibility and use the similarity-based approximations in definitions of
new four-valued sets.

The language discussed in this paper is based on ideas of our previous work [9]
that presents a four-valued framework for rough sets. In this approach membership
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function, set containment and set operations are four-valued, where logical values are t
(true), f (false), i (inconsistent) and u (unknown). Moreover, the similarity relations used
to define approximations of a set are also four-valued. Consequently, we also define
four-value notions of upper and lower approximations that extend the usual notion of
approximations in rough set theory [8].

In contrast to the standard rough set framework, our framework allows different types
of boundary cases to be identified and, consequently, different degrees of uncertainty.

We now briefly compare our work with some of the work in the field of paraconsis-
tent logic programming1. From a syntactic perspective, the logic programs introduced
in Section 3.1 correspond to Fitting programs [5] which do not involve ⊗ and ∀ in
the right-hand side (body) of the rules. Although both frameworks are intended to deal
with inconsistencies and use a four-valued logic, there are some major differences at
the semantic level. First, the Belnap’s logic underlies the semantics of Fitting programs
(see [5], Def. 18). This contrasts with our approach since we use a different truth order-
ing. Second, the semantics of Fittings programs allows to derive conclusions from false
premises. For instance, rule danger :– hot. can be used to derive that there is no danger,
i.e. danger is f, if hot is f. In contrast to our framework, a rule of a Fitting program is
satisfied if and only if the truth values assigned to the head and to the body are equal.

Paper [1] describes a paraconsistent approach, called P-Datalog, for knowledge base
integration based on a four-valued logic and the total order of the four logical values
presented there coincides with our truth ordering. However, there are several important
differences. First, in contrast to [1], we do not follow the closed-world assumption, i.e.
a formula ¬p(d) is t only if some agent states it explicitly and no agent claims that
p(d) is t. Second, our language allows explicit negation in the head and bodies of the
rules while P-Datalog programs only allow negation by default ∼ in the rule’s bodies.
Consequently, knowledge ordering is used in our framework as a more natural way
to combine knowledge from different sources while P-Datalog uses the truth ordering
presented in Section 2.1. Third, the rules are interpreted differently. In our language a
rule is interpreted as the implication→k defined in Table 1, while the implication →
underlying the rules of P-Datalog is another. For example, in P-Datalog, the truth-value
of t → i is f while in our framework t →k i is t. Finally, the language we propose
allows disjunction ∨t (join under truth ordering) to be used in the body of a rule.

The paper is organized as follows. Section 2 summarizes the main results of [9].
Section 3 gives a formal definition of the language. Section 4 sketches an implementa-
tion proposal. Finally, Section 5 summarizes the paper.

2 The Four-Valued Framework

2.1 Logics Reflecting Truth Ordering and Knowledge Ordering

To construct the language we use two orderings on truth vales, namely the truth or-
dering and knowledge ordering. Truth ordering is used for calculations within a single
information source while knowledge ordering is used for gathering knowledge from
different sources. This approach has been considered in [2] and in the framework of

1 A detailed comparison is outside of the scope of this paper.
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bilattices, in [4,6]. The truth ordering≤t and the knowledge ordering≤k are defined as
the smallest reflexive and transitive relations satisfying f ≤t u ≤t i ≤t t, u ≤k f ≤k i,
and u ≤k t ≤k i. The knowledge ordering above coincides with Belnap’s knowledge
ordering [2]. However, our truth ordering is different from the Belnap’s truth ordering.
This change is motivated by the fact that Belnap’s truth ordering can give counterintu-
itive results when used for reasoning, as shown in [7].

Having two orderings on truth values, we also have two logics: Lt based on truth
ordering and Lk based on knowledge ordering. We denote by ∧t, ∨t and→t the con-
nectives of Lt and by ∧k, ∨k and →k the corresponding connectives in Lk. Nega-
tion, denoted as ¬, in both logics has the same semantics. Let GLBt (GLBk) and LUBt

(LUBk) denote the greatest lower bound and the least upper bound of a set of logi-
cal values w.r.t truth (knowledge) ordering, respectively. Then, (a ∧t b) = GLBt{a, b}
((a ∧k b) = GLBk{a, b}) and (a ∨t b) = LUBt{a, b} ((a ∨k b) = LUBk{a, b}), where
a and b are two logical values. Table 1 provides the semantics for implication in both
logics, Lt and Lk. Observe that the implication→t, introduced in [9], is a four-valued
extension of the usual logical implication, suitable for determining set containment and
approximations in the case of four-valued sets.

Table 1. Truth tables for →t, →k, and ¬

→t f u i t →k f u i t ¬
f t t t t f t t t t t
u u u i t u t t t t u
i i i i t i f f t f i
t f u i t t f f t t f

The semantics of quantifier ∀ and ∃ is given below.

∀x[P (x)] def= GLB
x∈U

t{P (x)} and ∃x[P (x)] def= LUB
x∈U

t{P (x)} .

Intuitively, P (x) denotes whether an element x has a property P (i.e. membership of x
in a four-valued set P ) and it is evaluated to one of the four logical values.

We have the following important propositions.

Proposition 1. The disjunction ∨t is monotonic w.r.t. the knowledge ordering. �

Proposition 2. The conjunction ∧t is not monotonic w.r.t. the knowledge ordering. �

This is because (f ∧t u) = f but (i ∧t u) = u. This shows the lack of monotonicity, since
f <k i and f >k u. However, we have the following proposition.

Proposition 3. Let p and q be truth values such that (p ∧t q) ≥t i. If p′ ≥k p then
(p′ ∧t q) ≥k (p ∧t q). If q′ ≥k q then (p ∧t q

′) ≥k (p ∧t q). �

Thus, the conjunction is monotonic w.r.t. knowledge ordering for arguments greater or
equal than i.
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2.2 Operations on Four-Valued Sets

Let us now formalize the notion of four-valued sets. Given a universe U , we introduce

a new set, disjoint with U , denoted by ¬U and defined by ¬U def= {¬x | x ∈ U},
where ¬x denotes elements in ¬U . A four-valued set A on U is any subset of U ∪ ¬U .
Intuitively, x∈A represents the fact that there is an evidence that x is in A and (¬x)∈A
represents the fact that there is an evidence that x is not in A.

In our framework, set membership is four-valued and it extends the usual two-valued
membership. We assume that ¬(¬x) is equal to x.

Set membership, denoted as ε : U × 2U∪¬U → {f, u, i, t}, is defined by

x ε A =

⎧⎪⎪⎨
⎪⎪⎩

t if x ∈ A and (¬x) 
∈ A
i if x ∈ A and (¬x) ∈ A
u if x 
∈ A and (¬x) 
∈ A
f if x 
∈ A and (¬x) ∈ A .

(1)

The complement ¬A of a four-valued set A, is defined by ¬A def= {¬x | x ε A} and the
four-valued set inclusion is defined by X � Y

def= ∀x ∈ U [x ε X →t x ε Y ].
The four-valued operations of intersection and union, defined as

x ε (X � Y ) def= (x ε X) ∧t (x ε Y ) and x ε (X � Y ) def= (x ε X) ∨t (x ε Y ),
generalize the respective standard set operations.

A four-valued extension of rough sets is then defined by four-valued set approxi-
mations as follows (cf. [9]). Note that (four-valued) relations are (four-valued) sets of
tuples.

Definition 1. A four-valued similarity relation σ is any four-valued binary relation on
a universe U , satisfying the reflexivity condition, i.e., for any element x of the universe
(x, x) ε σ = t. The neighborhood of element x ∈ U w.r.t. σ, is the four-valued set σ(x)
such that y ε σ(x) def= (x, y) ε σ. �

Definition 2. Let A be a four-valued set. Then, the lower and upper approximations of

A w.r.t. σ, denoted by A+
σ and A⊕

σ , respectively, are defined by (x ε A+
σ ) def= σ(x) � A

and (x ε A⊕
σ ) def= ∃y ∈ U [y ε (σ(x) �A)]. �

Note that approximations are also four-valued. For example, let U = {o1, o2}, the
set A = {o1,¬o2}, and σ(o1, o2) = u. Then, we have that membership of o1 in A+

σ

is unknown (u). It might later appear that σ(o1, o2) is f and we then conclude that
(o1 ε A+

σ ) = t. Or, it might appear that σ(o1, o2) is t and we then get that (o1 ε A+
σ )= f.

3 A Rule Language for Defining Four-Valued Sets

Our aim is to present a rule language for defining four-valued sets. A rule consists of
an head and a body. The head and the body are formulae of the four-valued logic of
Section 2. Thus, each of them gets one of the four truth values, under a given interpre-
tation. A rule is satisfied in a given interpretation iff whenever the body is t or i then
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the truth value of the head is greater or equal than the truth value of the body, w.r.t.
≤k. Thus, rules reflect the semantics of implication →k as provided in Table 1. This
choice corresponds to the intuition that a rule is to be used for increasing knowledge
by drawing conclusions. No conclusions are drawn from false or unknown premises
(bodies).

3.1 The Syntax

The rules are constructed from:

– literals of the form P (d̄), ¬P (d̄), where P is a relation symbol and d̄ is a tuple of
terms (variables or constants denoting objects of the universe).

– truth symbols : false, unknown, incons, true.

Rules are of the form

head :– l11, . . . , l1k1 ; l21, . . . , l2k2 ; . . . ; lm1, . . . , lmkm . (2)

where m, ki ≥ 1, for 1 ≤ i ≤ m, head and each lij (1 ≤ j ≤ ki) are literals or truth
symbols.

A rule of the form head :– true. , called a fact, is abbreviated as head. . A program
is a finite set of rules. A ground instance of a rule is obtained by replacing each variable
of the rule by a selected constant occurring in the program.

Example 1. Consider two robots, r1 and r2, recognizing similarities between objects on
the basis of their shape. Assume that the only shapes are round, rectangular, square and
oval. Due to perceptual limitations r1 does not recognize the difference between round
and oval, and r2 does not recognize the difference between rectangular and square. The
following rules can be used to express (partially) the similarities between objects, as
perceived by the robot r1.

sim(x, y) :– shape(x, round), shape(y, oval) ;
shape(x, oval), shape(y, round).

¬sim(x, y) :– shape(x, square), shape(y, rectangular) ;
shape(x, square), shape(y, round).

For the robot r2 one can consider, e.g., the following rule.

sim(x, y) :– shape(x, square), shape(y, rectangular) ;
shape(x, rectangular), shape(y, square).

As a similarity relation is required to be reflexive (cf. Definition 2), the program also
includes the fact sim(x, x). �

3.2 The Declarative Semantics

Let P be a program and L be the set of all constant symbols occurring in P . Then,
the Herbrand base HP is the set of all literals whose relation symbols occur in P and
whose arguments belong to L.
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A four-valued interpretation I of a program P is any subset of HP . It associates

each ground literal l with a truth value such that I(l) def= (l ε I) (ε is defined in (1)).
An interpretation I1 is smaller or equal than an interpretation I2, denoted by I1 �

I2, iff I1 is a (classical) subset of I2. Observe that if I1 � I2 then, for every literal l of
the Herbrand base, I1(l) ≤k I2(l). The interpretation ∅, called the empty interpretation,
is the least interpretation in this ordering. It assigns u to every literal inHP .

The notion of interpretation is extended to rules of the form (2) by interpreting ‘,’ as
conjunction∧t, ‘;’ is interpreted as the disjunction∨t, and a ruleH :– B. is interpreted
as B →k H , with the semantics provided in Table 1. The truth symbols are interpreted
as f, u, i and t. Thus, a given four-valued interpretation determines the truth values of
the head and of the body of each rule. If several rules have the same literal H in their
head, then H takes the truth value being the disjunction ∨k of the values assigned to
each body’s rule. More precisely, if H :– B1. , . . ., H :– Bm. are all rules with the
head H then the value of H is obtained from (B1 ∨k . . . ∨k Bm). Note that different
rules with the same literal H in their head gather knowledge about H according to
knowledge ordering, using ∨k . On the other hand, one often needs to define cases using
truth ordering and this motivates the need of ; in the bodies of the rules.

Definition 3. An interpretation I satisfies a rule H :– B. if the implication
(B →k H) is t in I. An interpretation is said to be a four-valued Herbrand model
of a program P iff it satisfies each rule of P . �

Theorem 1. The (classical) intersection of four-valued Herbrand models of a program
P is a four-valued Herbrand model.

Proof. Assume the theorem does not hold and letM be the intersection of the Herbrand
modelsM1 andM2 ofP . Then, there is a ruleH :– B.∈P such thatM(H)<kM(B)
andM(B) ∈ {i, t}. IfM(B) = i then the truth value of B must have been i both in
M1 and in M2. Hence, the truth values of the head must also have been i in both
M1 and inM2, and consequently, inM. IfM(B) = t then the body is t in one of the
models, assumeM1, and t or i in the other,M2. Thus,M1(H) ≥k t andM2(H) ≥k t.
Consequently,H must be t or i inM. We can then conclude that there is no case under
whichM(H) <k M(B). This implies thatM must be a model of P . �

Corollary 1. For every programP there exists the least (w.r.t.�) four-valued model. �

We denote this model byMP and consider it the declarative semantics of the program.

3.3 The Fixpoint Semantics

We now define the semantics of a program P as a fixpoint of an operator on interpreta-
tions. We consider here variable-free programsP . If the program has variables then we
consider instead all ground instances of its rules. The operator will be denoted TP and
it is a four-valued extension of the classical TP operator used in logic programming.
The operator formalizes the intuition of drawing conclusions with rules.

TP(I) = {l | l :– B. ∈ P and I(B) = t} ∪ {l,¬l | l :– B. ∈ P and I(B) = i} .
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Thus, the operator collects all the heads of the ground rules whose bodies are t in a given
interpretation I. In addition, it takes the heads and the negations of the heads of the rules
whose bodies are inconsistent in I.

The following theorem shows that the operator TP is monotonic w.r.t. ≤k. It follows
from Propositions 1 and 3, as TP uses only the rules for which the body is t or i.

Theorem 2. Given a program P and two four-valued interpretations I1 and I2,
if I1 � I2 then TP(I1) � TP(I2). �

Corollary 2. TP has the least fixpoint, denoted LFP(TP), which can be computed by
iterating TP starting from the empty interpretation. �

It can be shown that the least fixpoint of TP is the least model of the program, wr.t.≤k.

Example 2. Consider the rules of Example 1 and a database with five objects: o1 and
o2 are oval, o2 is also considered to be round, o3 is square, o4 is rectangular, and o5
has unknown shape. Note that object o2 is associated with different shapes, perhaps,
because different robots perceive it differently. The successive iterations of TP are given
below. Note that I2 = TP(I2).

I1 = ∅
I2 = TP(I1) = {sim(o1, o1), sim(o2, o2), sim(o3, o3), sim(o4, o4), sim(o5, o5),

sim(o1, o2), sim(o2, o1),¬sim(o3, o2),
¬sim(o3, o4), sim(o3, o4), sim(o4, o3)}.

According to the definition of four-valued interpretation, we have that both sim(o1, o2)
and sim(o2, o1), as well as for any sim(x, x), receive the value t; sim(o3, o2) receives
the value f but sim(o2, o3) is u; sim(o3, o4) receives the value i but sim(o4, o3) is t;
for all the remaining pairs (x, y), the value of sim(x, y) is u. �

3.4 Using Approximations

A Hierarchy of Uncertainty. In our framework, lower and upper approximations are
also four-valued sets. Figure 1 shows the truth ordering of pairs (o ε A+

σ , o ε A
⊕
σ ). Note

that (t1, t2) ≤t (t3, t4) iff (t1 ≤t t3) and (t2 ≤t t4). In the figure this is indicated by an
edge from pair (t1, t2) to (t3, t4). Moreover, not all pairs of logical values are allowed
because (o ε A+

σ ) ≤t (o ε A⊕
σ ) [9], for any object o ∈ U .

The pair (t, t) corresponds to the case where an object o certainly belongs to a given
set A, while (f, f) indicates that o certainly does not belong to A. The remaining pairs
of logical values in Figure 1 correspond to boundary cases where the object may belong
to A. In the standard rough set framework [8], boundary cases correspond to the pair
(f, t) since approximations are two-valued sets. In contrast to the standard rough set
framework, our framework allows different types of boundary cases to be identified
and different degrees of uncertainty. For instance, the pair (i, t) indicates that we can
be more certain that object o has a property A than the pair (f, i), although both pairs
indicate that there is a possibility of object o having propertyA. Note that (f, i) <t (i, t).
However, as Figure 1 shows, not all pairs are comparable, e.g., pairs (f, t) and (i, i). But,
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(f,f)

(f,u)

(f,i) (u,u)

(f,t) (u,i)

(u,t) (i,i)

(i,t)

(t,t)

�

��� ���
��� ��� ���

��� ��� ���

��� ���

�

Fig. 1. Truth ordering for (o ε A+
σ , o ε A⊕

σ )

these pairs point then to different sources (types) of uncertainty. For example, the pair
(f, t) indicates that there is at least one object similar to o that does not have property
A, i.e. (o ε A+

σ ) = f (see the case (1) of Lemma 1 in Section 4), but there is another
object similar to o that has property A, i.e. (o ε A⊕

σ ) = t (see the case (5) of Lemma 1
in Section 4). Therefore, in the neighborhood of o there are objects that have property
A and others that do not have property A. The pair (i, i) points to a different source of
uncertainty, e.g., for all objects in the neighborhood of o there is contradictory evidence
about their membership in A (see cases (3) and (6) of Lemma 1 in Section 4).

The informal ideas presented above are reflected in our rule language. Thus, the
language allows the user to choose the level of uncertainty or the type of uncertainty
that best suits his application.

Extending the Language with Approximations. The rule language makes it possible
to define four-valued relations. A defined relation can then be used to specify approx-
imations of another four-valued relation, as discussed in [9] and in Section 2. Such an
approximation is itself a four-valued relation. The rule language can thus be extended
by allowing approximations of a rough relation (set) to appear in rule bodies. To this
end, we need to extend the language with a notation for such symbols. In this paper, the
lower approximation (upper approximation) of a relation A w.r.t. a similarity relation
σ is denoted A+

σ (A⊕
σ ). Such approximation symbols can only be used in a program

including rules defining A and σ. Programs must also not use recursion through ap-
proximations. Intuitively, the relations are not to be defined by referring to their own
approximations. Such programs are considered well-formed.

Example 3. Consider the rules of Example 1 and the database of objects in Example 2.
Based on the accessible knowledge, the robots may be given the task to remove from
a given place all round and square objects. Let us introduce an additional unary relation
rsq (standing for “round or square”) defined as follows.

¬shape(x, y) :– shape(x, z), y 
= z.
rsq(x) :– shape(x, round) ; shape(x, square).
¬rsq(x) :– ¬shape(x, round),¬shape(x, square).
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Observe that rsq(o2) is i, in the declarative semantics of the program, because o2 is
associated with both shapes round and oval.

The required rule expressing the task to be done may be expressed in various non-
equivalent ways, according to the intended meaning.

1. remove(x) :– rsq(x). – a traditional formulation where neighborhoods are not
taken into account.

2. remove(x) :– (rsq(x)+sim = true). – x is to be removed only when it surely is
round or square.

3. remove(x) :– (rsq(x)⊕sim = true), rsq(x)+sim . – x is to be removed if
(x ε rsq(x)+sim, x ε rsq(x)⊕sim) ≥t (i, t).

4. remove(x) :– rsq(x)⊕sim. – x is to be removed if there is a possibility that it might
be round or square.

From the first rule above, we conclude that the truth value of remove(o2) is i, remove
(o3) is t, and u for all other objects.

The reader can verify2 that the membership in rsq(x)+sim is f for o1, o2 and o4 and it
is u for o3 and o5. The membership in rsq(x)⊕sim is i for o1 and o2, t for o3 and o4, but
u for o5. Note that (o2 ε rsq(x)+sim) = f because (o1 ε sim(o2)) = t but rsq(o1) = f,
i.e. there is an object similar to o2 that is neither round nor square, although there is also
information indicating that o2 is round. Consequently, it is not possible to conclude with
certainty that o2 is round (or square).

Using the second rule instead, the truth value of remove(x), is u for all objects since
for no object in the database it can be proved that it is surely round or square. Note that
there is no object o in the database such that (o ε rsq+sim) = t.

The third rule imposes that there must be a quite high believe that an object is round
or square in order to remove it, although some uncertainty is acceptable. The rule forces
that (x ε rsq⊕sim) = t. Thus, there must be an object similar to x that is round or square
and (x ε rsq+sim) ≥t i. Remember that no conclusions are drawn from rules with bodies
evaluated to false or unknown. If (x ε rsq+sim) <t i then the rule does not fire, since the
whole body becomes evaluated to f or u. Consequently with this rule, the truth value of
remove(x) is u, for all objects x in the database.

With the fourth rule, remove(o1) and remove(o2) are i, remove(o5) is u, and t for
all remaining objects. In particular, remove(o1) is i because (o1 ε rsq(x)⊕sim) = i. In
contrast with the first rule, if this rule is used then o4 is removed. �

4 Implementation

For a program not using approximations the least model can be computed by iterating
the TP operator, as illustrated in Example 2.

The following lemma, which follows from the definition of approximations, shows
how to compute the truth value of an approximation literal under a given interpretation,
by consecutive check of simple conditions.

Lemma 1. Let A be a four-valued set on a universe U , σ be a four-valued similarity
relation, and x ∈ U .

2 Detailed calculation for the lower and upper approximations are not shown for space reasons.
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1. x ε A+
σ = f iff (y ε σ(x) = t and y ε A = f), for some y ∈ U .

2. x ε A+
σ = u iff (1) does not hold and

(a) (y ε σ(x) = u and y ε A ≤t u), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = u), for some y ∈ U .

3. x ε A+
σ = i iff 1. and 2. does not hold and

(a) (y ε σ(x) = i and y ε A ≤t i), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = i), for some y ∈ U .

4. x ε A+
σ = t iff y ε A = t, for all y ∈ U such that σ(x, y) ≥t u.

Moreover,

5. x ε A⊕
σ = t iff (y ε σ(x) = t and y ε A = t), for some y ∈ U .

6. x ε A⊕
σ = i iff (1) does not hold and

(a) (y ε σ(x) = i and y ε A ≥t i), for some y ∈ U , or
(b) (y ε σ(x) = t and y ε A = i), for some y ∈ U .

7. x ε A⊕
σ = u iff 1. and 2. does not hold and

(a) (y ε σ(x) = u and y ε A ≥t u), for some y ∈ U , or
(b) (y ε σ(x) ≥t i and y ε A = u), for some y ∈ U .

8. x ε A⊕
σ = f iff y ε A = f or y ε σ(x) = f, for all y ∈ U . �

Observe that any well-formed program has a least model which can be computed by
a combined use of the TP operator and Lemma 1.

5 Conclusions

In the current paper, we proposed a rule language for defining four-valued rough sets.
The language allows us to work with four-valued approximations which appear fre-
quently in practice. The techniques discussed in the paper open the space for imple-
mentation as well as for a pragmatic use of the language. The language is suitable for
applications where some information might be unknown or inconsistent, in particular
for databases or expert systems.
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is an extension of set theory and can be seen as a new mathematical approach
to deal with uncertainty, vagueness and incomplete information [21,22]. The
successful application of rough set theory in a variety of real life problems has
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this paper. We explain rough set upper approximation as a linear mapping from
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Let U be a non-empty set of objects called the universal set. U can be an
infinite set, i.e., we do not restrict the universal set to a finite one.

This paper is organized as follows. In Section 2, we present the basic concepts
of binary relation and properties of rough sets and give another representation
of upper approximation operator. The main objective of Section 3 is to discuss
linear properties of the upper approximation operators. We show that each upper
approximation operator coincides with a linear mapping. In Section 4, we study
the composition of upper approximation operators. Finally, Section 5 concludes
the paper.

2 Preliminaries

Let us recall some definitions and properties of binary relations. Let U be a
universal set, and P (U) be the power set of U . If X is a subset of U , the
characteristic function of X , still denoted by X , is defined for each x ∈ U as
follows [4,5,6,7]:

X(x) =
{

1, x ∈ X
0, x /∈ X.

Let U and V be two universal sets and R be a binary relation from U to V .
i.e., R is a subset of U × V . Recall that the standard composition of relation R
and subset Y ⊆ V , which is denoted by R ◦ Y , produces a subset of U defined
by (R ◦ Y )(x) = ∨y∈U (R(x, y) ∧ Y (y)) for all x ∈ U , where R(x, y) denotes the
membership function with value 1 at xRy and 0 otherwise, where ∧ and ∨ denote
the minimum and maximum, respectively. This composition is often referred to
as the max-min composition.

Let U, V andW be three distinct but related universal sets, R a binary relation
from U to V , and S a binary relation from V to W . The composition [1] of R
and S is the relation consisting of ordered pairs (x, z), where x ∈ U, z ∈ W , and
for which there exists an intermediate element y ∈ V such that xRy and ySz.
We denote the composition of R and S by R ◦ S. Consequently, x(R ◦ S)z ⇔
∃y(xRy ∧ ySz) or (R ◦ S)(x, z) = ∨y∈V (R(x, y) ∧ S(y, z)). A different type of
operation on a relation R from U to V is the formation of inverse, usually written
R−1. The relation R−1 [1] is a relation from V to U defined by yR−1x⇔ xRy.

With respect to R, we define right neighborhood r(x) of an element x in U ,
the R-related set of x in U , to be the set of y in V with the property that
x is R-related to y. Thus, in symbols, r(x) = {y ∈ V |xRy}. Similarly, the left
neighborhood l(y) of an element y in V is l(y) = {x ∈ U |xRy}. By using concept
of right neighborhoods, we define the lower and upper approximation operators
R,R : P (V )→ P (U) as follows [2,3,13,18,19,20]:

RY = {x ∈ U |r(x) ⊆ Y }, and RY = {x ∈ U |r(x) ∩ Y 
= ∅},
respectively. The pair RY = (RY,RY ) is referred to as the rough set of Y ∈
P (V ). Similarly, by using left neighborhoods, we can also define another pair of
the lower and upper approximation operators Rl, Rl : P (U)→ P (V ) as follows:

RlX = {y ∈ V |l(y) ⊆ X}, and RlX = {y ∈ V |l(y) ∩X 
= ∅},
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respectively. It is easy to verify that RlX = R−1X and RlX = R−1X . Because
of these results, we only study the lower and upper approximation operators
induced by right neighborhoods.

Proposition 2.1. Let U, V be two universal sets and R be an arbitrary bi-
nary relation from U to V . Then RY = R ◦ Y for all Y ∈ P (V ).

Proof. We only need to show that RY (x) = 1 if and only if (R ◦ Y )(x) = 1.
Suppose that (RY )(x) = 1, then x ∈ RY , by the definition of the upper ap-
proximation, r(x) ∩ Y 
= ∅, this means that there exists some y ∈ V such
that R(x, y) = Y (y) = 1, hence ∨y∈V (R(x, y) ∧ Y (y)) = 1. In other words,
(R ◦ Y )(x) = 1.

Conversely, if (R ◦Y )(x) = 1, then ∃y ∈ V such that R(x, y) = Y (y) = 1, this
means that y ∈ r(x)∩Y , thus r(x)∩Y 
= ∅ and x ∈ RY . We obtain RY (x) = 1.
This shows that RY (x) = 1 if and only if (R ◦ Y )(x) = 1. �
Proposition 2.1, in fact, gives an equivalent definition of rough set upper
approximation.

If universal sets U and V are finite. How many the lower and upper approxi-
mations are there?

Proposition 2.2. Let U and V be two finite universal sets with |U | = m and
|V | = n. Then there are 2mn different upper approximations and 2mn different
lower approximations.

Proof. Note that if R 
= S, then there exists at least one Y ⊆ V such that
R ◦Y 
= S ◦Y . Thus R 
= S implies RY 
= SY and RY 
= SY . In addition, there
are 2mn different binary relations from U to V . �
Proposition 2.1 illustrates that RY = R ◦ Y can be seen as an equivalent de-
finition of the upper approximation operation. As for the lower approximation
operation, we use formula RY = (R(Y C))C , where Y C denotes the complement
of Y in V .

3 Properties of Rough Sets

By using the properties of binary relation, we can obtain corresponding proper-
ties of rough sets. We define the linear mapping as follows:

Definition 3.1. Let U and V be two universal sets. A mapping f : P (V ) →
P (U) is called to be linear if it satisfies the following conditions:

(1) f(∅) = ∅;
(2) For any given index set I and Yi ∈ P (V ), i ∈ I, f(∪i∈IYi) = ∪i∈If(Yi).

Proposition 3.1. Let U and V be two universal sets, if f : P (V ) → P (U)
is a linear mapping, then there is a unique binary relation from U to V such
that f(Y ) = RY for all Y ∈ P (V ).
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Proof. By using the mapping f , we construct a binary relation from U to V as
follows:

l(y) = f({y}), y ∈ V.
Then R∅ = ∅ = f(∅), and for ∅ 
= Y ∈ P (V )

RY = ∪y∈Y l(y) = ∪y∈Y f({y})

= f(∪y∈Y {y}) = f(Y ).

Thus RY = f(Y ) for all Y ∈ P (V ). If there exists another binary relation S
such that f(Y ) = RY = SY , then R ◦ Y = S ◦ Y , hence R = S. �
Let Ω(P (V ), P (U)) denote the set of all linear mappings from P (V ) to P (U).
We consider the mapping

α : P (U × V )→ Ω(P (V ), P (U)), α(R) = R, (1)

for all binary relations R from U to V . We will show that α is a bijection between
P (U × V ) and Ω(P (V ), P (U)).

Proposition 3.2. Let α as in (1) above, then α is a bijection between P (U×V )
and Ω(P (V ), P (U)).

Proof. Suppose that α(R) = α(S), then R = S and R ◦ Y = S ◦ Y for all
subsets Y ⊆ V , this means that R = S and α is an injection. Proposition 3.1
guarantee that α is a surjection. Hence α is a bijection between P (U × V ) and
Ω(P (V ), P (U)). �
For any given index set I, assume that Ri(i ∈ I) are binary relations from U
to V . Recall that the union ∪i∈IRi and the intersection ∩i∈IRi are defined by
∪i∈IRi = {(x, y)|∃i ∈ I, (x, y) ∈ Ri} and ∩i∈IRi = {(x, y)|(x, y) ∈ Ri, ∀i ∈ I},
respectively.

Proposition 3.3. Let U and V be two universal sets. For any given index
set I, Ri(i ∈ I) are binary relations from U to V . Then

(H1) ∅Y = ∅;
(H2) (∪i∈IRi)Y = ∪i∈IRiY ;
(H3) If R and S are binary relations from U to V , then RY ⊆ SY for all

Y ⊆ V if and only if R ⊆ S;
(H4) If R and S are binary relations from U to V , then RY = SY for all

Y ⊆ V if and only if R = S;
(L1) ∅Y = U ;
(L2) (∪i∈IRi)Y = ∩i∈IRiY ;
(L3) If R and S are binary relations from U to V , then RY ⊆ SY for all

Y ⊆ V if and only if S ⊆ R;
(L4) If R and S are binary relations from U to V , then RY = SY for all

Y ⊆ V if and only if R = S.
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Proof. (H1) ∅Y = ∅ ◦ Y = ∅.
(H2) (∪i∈IRi)Y = (∪i∈IRi) ◦ Y = ∪i∈IRi ◦ Y = ∪i∈IRiY .
(H3) If RY ⊆ SY , then R ◦ Y ⊆ S ◦ Y for all Y ⊆ V , thus R ⊆ S and vice

versa.
(H4) If RY = SY , then R ◦ Y = S ◦ Y for all Y ⊆ V , thus R = S and vice

versa.
Using duality, (L1),(L2), (L3) and (L4) can be proved in a similar way. �
In general, (R ∩ S) ◦ Y 
= R ◦ Y ∩ S ◦ Y , therefore, we do not guarantee that
(R ∩ S)Y = RY ∩ SY . This can be seen from the following counter example.

Example 3.1. Let U = V = {1, 2, 3, 4}, R = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 3),
(3, 3), (3, 4), (4, 2), (4, 4)}, S = {(1, 1), (2, 2), (2, 3), (3, 1), (3, 3), (3, 4), (4, 3)} and
X = {1, 3, 4}. Then (R ∩ S)X = {1, 2, 3} 
= RX ∩ SX .

If U = V , much more can be said. Let U be a universal set and R be a binary
relation on U . The diagonal relation on U is denoted by �= {(x, x)|x ∈ U}. R is
called reflexive if �⊆ R; R is called symmetric if R−1 ⊆ R; R is called transitive
if R2 ⊆ R; R is called idempotent if R2 = R; R is called nilpotent if Rm = 0
for some positive integer m; R is called an equivalence relation if R is reflexive,
symmetric and transitive. The powers of the lower and upper approximations
are inductively defined as follows:
R

1
Y = RY,R

2
Y = R(RY ), · · · , Rr+1

Y = R
r
(RY ), and

R1Y = RY, (R)2Y = R(RY ), · · · , (R)r+1Y = (R)r(RY ) for all positive
integer r.

Proposition 3.4. Let U be a universal set and R be a binary relation on U .
(1) �X = X for all X ⊆ U , i.e., � is an identity mapping;
(2) R is reflexive if and only if X ⊆ RX for all X ⊆ U ;
(3) R is symmetric if and only if R−1X ⊆ RX for all X ⊆ U ;
(4) R is transitive if and only if RnX ⊆ RX for all X ⊆ U and for n = 1, 2, · · ·;
(5) R is idempotent if and only if R(RX) = RX for all X ⊆ U ;
(6) R is nilpotent if and only if there exists some positive integer m such that

R
n
X = ∅ for all integer n ≥ m and for all X ⊆ U .

Proof. The proof of (1) is straightforward.
(2) R is reflexive ⇔�⊆ R⇔ �X ⊆ RX ⇔ X ⊆ RX .
(3) R is symmetric ⇔ R−1 ⊆ R⇔ R−1X ⊆ RX .
(4) It is well-known that R is transitive if and only Rn ⊆ R if for n = 1, 2, · · ·.
(5) R is idempotent ⇔ R2 = R⇔ R(RY ) = RY .
(6) R is nilpotent if and only if there exists some positive integer m such that

Rm = ∅, if and only if R
n
Y = ∅ for all integer n ≥ m.

For the lower approximation, we have the similar results and omit it. �
Here, we give counting upper approximations induced by binary relations.
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Proposition 3.5. Let U be a universal set with n elements, then
(1) There are 2n2

different upper approximations induced by binary relations
on U .

(2) There are 2n(n−1) different upper approximations induced by reflexive
binary relations on U .

(3) There are 2
1
2 n(n+1) different upper approximations induced by symmetric

binary relations on U .
(4) Let p(n) denote the number of different upper approximations induced

by equivalence relations on U , then p(n) satisfies the recurrence relation p(n) =∑n−1
j=0 C(n− 1, j)p(n− j − 1) and the initial condition p(0) = 1.

Proof. (1) The number of relations on U with n elements is 2n2
.

(2) The number of reflexive relations on U with n elements is 2n(n−1).
(3) The number of symmetric relations on U with n elements is 2

1
2n(n+1).

(4) The number p(n) of equivalence relations on U with n elements satisfies
the recurrence relation p(n) =

∑n−1
j=0 C(n − 1, j)p(n − j − 1) and the initial

condition p(0) = 1. Where C(n− 1, j) is the binomial coefficient. �
However, since there is no known general formula for the number of transitive
relations on universal set U with n elements, therefore there is no known general
formula for the number of upper approximations induced by transitive relations
on U with n elements.

Let U be an arbitrary universal set and R be a binary relation from U to V .
Consider the following two sets:

K = {Y |Y ∈ P (V ), RY = ∅}
and L = {X |X ∈ P (U), X = RY, for some Y ∈ P (V )}.
Proposition 3.6. Let U, V,R,K and L be as above, then

(1) K is a completely distributive lattice;
(2) For any given index set I, if Xi ∈ L(i ∈ I), then ∪i∈IXi ∈ L;
(3) If U = V and R ⊆ R2, then K ∩ L = ∅.

Proof. (1) Since R◦∅ = ∅, we have ∅ ∈ K and K 
= ∅. For any given index set
I, if Yi ∈ K(i ∈ I), then R◦(∪i∈IYi) = ∪i∈IR◦Yi = ∅ and R◦(∩i∈IYi) ⊆ R◦Yi =
∅. Hence ∪i∈IYi,∩i∈IYi ∈ K. Distributivity is trivial. So K is a completely
distributive lattice.

(2) For every i ∈ I,Xi ∈ L, there exists some Yi ∈ P (V ) such that Xi = RYi,
thus ∪i∈IXi = ∪i∈IR ◦ Yi = R ◦ (∪i∈IYi) ∈ L.

(3) Suppose that X ∈ K∩L, then there exists some Y ∈ P (U) such that X =
RY = R ◦Y . It is noted that X ∈ L implies ∅ = RX = R ◦X = R2 ◦Y ⊇ R ◦Y .
This means that X = RY = R ◦ Y = ∅. �

4 Composition of Approximation Operations

This section will discuss the composition of approximation operations. Let U, V
andW be three distinct but related universal sets. Also let R be a binary relation
from U to V , and S be a binary relation from V to W .



58 G. Liu and J.K. Huang

Proposition 4.1. Let U, V,W,R and S be as above, then
(1) R(SZ) = R ◦ SZ for all Z ∈ P (W );
(2) R ◦ (∪i∈ISi)Z = ∪i∈IR ◦ SiZ for any given index set I, Si ∈ P (V ×W ),

i ∈ I and Z ∈ P (W );
(3) (∪i∈IRi) ◦ SZ = ∪i∈IRi ◦ SZ for any given index set I, Ri ∈ P (U × V ),

i ∈ I and Z ∈ P (W );
(4) (R ◦ S)Z = R(SZ);
(5) R ◦ (∪i∈ISi)Z = ∩i∈IR ◦ SiZ for any given index set I, Si ∈ P (V ×W ),

i ∈ I and Z ∈ P (W );
(6) (∪i∈IRi) ◦ SZ = ∩i∈IRi ◦ SZ , for any given index set I, Ri ∈ P (U × V )

and Z ∈ P (W ).

Proof. (1) R(SZ) = (R ◦ S) ◦ Z = (R ◦ S) ◦ Z = R ◦ SZ for all Z ∈ P (W ).
(2) follows from R ◦ (∪i∈ISi) = ∪i∈IR ◦ Si.
(3) follows from (∪i∈IRi) ◦ S = ∪i∈IRi ◦ S.
By duality, the proof of parts (4)-(6) is analogous to that of parts (1)-(3). �

Proposition 4.2. Let U and V be two universal sets and R be a binary re-
lation from U to V , then

(1) RR−1X ⊆ X ⊆ RR−1X for all X ∈ P (U).
(2) R−1RY ⊆ Y ⊆ R−1RY for all Y ∈ P (V ).

Proof. (1) Since
RR−1X(x) = ∨xRyR

−1X(y)

= ∨xRy(∧yR−1zX(z))

= ∨xRy(∧zRyX(z))

≤ ∨xRyX(x) = X(x)

and
RR−1X(x) = ∧xRyR−1X(y)

= ∧xRy(∨yR−1zX(z))

= ∧xRy(∨zRyX(z))

≥ ∧xRyX(x) = X(x),

we have RR−1X ⊆ X ⊆ RR−1X for all X ∈ P (U). The proof of part (2) is
analogous to the proof of part (1) and we omit it. �

Corollary 4.1. Let U be a universal set and R be a symmetric relation on
U , then RRX ⊆ X ⊆ RRX for all X ∈ P (U).
Proof. If R is symmetric, then R−1 = R. Part (1) follows RRX ⊆ X ⊆ RRX
for all X ∈ P (U). �
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5 Conclusion

This paper systematically discussed rough sets via viewpoint of linear mappings.
Many interesting linear properties have been derived. As we know, the upper
approximation of rough sets is first explained as a linear mappings. The method
of linear mappings hopefully will be useful to theoretical and applied researches
of rough sets.
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Abstract. This paper considers two groups of studies on attribute re-
duction in the decision-theoretic rough set model. Attribute reduction
can be interpreted based on either decision preservation or region preser-
vation. According to the fact that probabilistic regions are non-monotonic
with respect to set inclusion of attributes, attribute reduction for region
preservation is different from the classical interpretation of reducts.

1 Introduction

Attribute reduction is an important problem of rough set theory. For classifica-
tion tasks, we consider two possible interpretations of the concept of a reduct.
The first interpretation views a reduct as a minimal subset of attributes that
has the same classification power as the entire set of condition attributes [11].
The second interpretation views a reduct as a minimal subset of attributes that
produces positive and boundary decision rules with precision over certain toler-
ance levels [19,22]. Studies on attribute reduction can therefore be divided into
two groups.

One group concentrates on the decision class or classes to which an equiva-
lence class belongs. An equivalence class leads to one decision class in consistent
decision tables, and possibly more than one decision class in inconsistent decision
tables. In the latter case, for each equivalence class Skowron [13] suggests a gen-
eralized decision consisting of the set of decision classes to which the equivalence
class belongs. Similarly, Slezak [16] proposes the notion of majority decision that
uses a binary vector for each equivalence class to indicate the decision classes
to which it belongs. In general, a membership distribution function over decision
classes may be used to indicate the degree to which an equivalence class be-
longs [15]. Zhang et al. [8,23] propose the maximum distribution criterion based
on the membership distribution function. A reduct is a minimal subset of at-
tributes that has the same classification power in terms of generalized decision,
majority decision, decision distribution, or maximum distribution for all objects
in the universe.

The other group concentrates on positive, boundary and negative regions of
decision classes to which an equivalence class belongs. In the Pawlak rough set
model [10], each equivalence class may belong to one of the two regions. The
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positive region is the union of equivalence classes that induce certain classifica-
tion rules. The boundary region is the union of equivalence classes that induce
uncertain classification rules. The negative region is in fact the empty set. In
the decision-theoretic rough set model [19,20,21], a probabilistic generalization
of Pawlak rough sets, probabilistic regions are defined by two threshold values
that, in turn, are determined systematically from a loss function by using the
Bayesian decision procedure. In this case, the probabilistic negative region may
not be the empty set. It represents the fact that we do not want to make any pos-
itive or boundary decision for some equivalence classes [19,22]. The positive and
boundary regions induce two different types of decision rules called the positive
rules and boundary rules [19,22]. Although both types of rules may be proba-
bilistic and uncertain, they have very different semantics. While a positive rule
lead to a definite decision, a boundary rule leads to a “wait-and-see” decision.

Attribute reduction in the decision-theoretic rough set model is based on these
types of probabilistic rules. Reduct construction may be viewed as the search
of a minimal subset of attributes that produces positive and boundary decision
rules satisfying certain tolerance levels of precision.

2 The Decision-Theoretic Rough Set Model

In many data analysis applications, objects are only perceived, observed, or
measured by using a finite number of attributes, and are represented as an
information table [10].

Definition 1. An information table is the following tuple:

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values of a ∈ At, and Ia : U → Va is an
information function that maps an object in U to exactly one value in Va.

For classification problems, we consider an information table of the form S =
(U,At = C∪{D}, {Va}, {Ia}), where C is a set of condition attributes describing
the objects, and D is a decision attribute that indicates the classes of objects.

Let πD = {D1, D2, . . . , Dm} be a partition of the universe U defined by the
decision attribute D. Each equivalence class Di ∈ πD is called a decision class.
Given another partition πA of U defined by a condition attribute set A ⊆ C,
each equivalence class is defined as [x]A = {y ∈ U | ∀a ∈ A(Ia(x) = Ia(y))}. The
precision of an equivalence class [x]A ∈ πA for predicting a decision class Di is
defined as:

p(Di|[x]A) =
|[x]A ∩Di|
|[x]A|

,

where |·| denotes the cardinality of a set. The precision is the ratio of the number
of objects in [x]A that are correctly classified into the decision class Di and the
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number of objects in [x]A. The decision-theoretic rough set model utilizes ideas
from Bayesian decision theory and computes two thresholds based on the notion
of expected loss (conditional risk). For a detailed description, please refer to
papers [19,20,21,22].

In the decision-theoretic rough set model, we can introduce tolerance thresh-
olds for defining probabilistic positive, boundary and negative regions of a deci-
sion class and the partition formed by all decision classes. By using the thresh-
olds, one can divide the universe U into three regions of a decision partition πD

based on two thresholds 0 ≤ β < α ≤ 1:

POS(α,β)(πD|πA) = {x ∈ U | p(Dmax([x]A)|[x]A) ≥ α},
BND(α,β)(πD|πA) = {x ∈ U | β < p(Dmax([x]A)|[x]A) < α},
NEG(α,β)(πD|πA) = {x ∈ U | p(Dmax([x]A)|[x]A) ≤ β}, (1)

where Dmax([x]A) ∈ πD is a dominant decision class of the objects in [x]A, i.e.,
Dmax([x]A) = arg maxDi∈πD{

|[x]A∩Di|
|[x]A| }. The Pawlak model, as a special case,

can be derived by setting a loss function that produces α = 1 and β = 0 [12]. We
can also derive the 0.50 probabilistic model [12], the symmetric variable precision
rough set model [24], and the asymmetric variable precision rough set model [6].

The three regions are pairwise disjoint, and the union is a covering of U . In the
Pawlak rough set model, we can easily prove POS(πD|πA) ∪ BND(πD|πA) = U
and NEG(πD|πA) = ∅. In the decision-theoretic model, it may happen that
POS(α,β)(πD|πA)∪BND(α,β)(πD|πA) 
= U and NEG(α,β)(πD|πA) 
= ∅. The union
of the probabilistic positive and boundary regions is called a probabilistic non-
negative region.

2.1 Decision Making

Skowron proposes a generalized decision δ as the set of all decision classes an
equivalence class takes [13]. For an equivalence class [x]A ∈ πA the generalized
decision is denoted as:

δ([x]A) = {ID(x) | x ∈ [x]A}
= {Di ∈ πD | p(Di|[x]A) > 0}.

By introducing precision thresholds, we can separate the Skowron’s generalized
decision into three parts. The part of positive decisions is the set of decision
classes with the precision higher than or equal to α. A positive decision may
lead to a definite and immediate action. The part of boundary decisions is the
set of decision classes with the precision lower than α but higher than β. A
boundary decision may lead to a “wait-and-see” action. A decision with the
precision lower than or equal to β is not strong enough to support any further
action. The union of positive decisions and boundary decisions can be called
the set of general decisions that support actual decision making. Let DPOS(α,β) ,
DBND(α,β) and DGEN(α,β) denote the positive, boundary and general decision
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sets, respectively. For an equivalence class [x]A ∈ πA,

DPOS(α,β)([x]A) = {Di ∈ πD | p(Di|[x]A) ≥ α},
DBND(α,β)([x]A) = {Di ∈ πD | β < p(Di|[x]A) < α},
DGEN(α,β)([x]A) = DPOS(α,β)([x]A) ∪DBND(α,β)([x]A). (2)

In the rest of this paper, we only focus on positive and general decision making,
and the corresponding positive and non-negative regions. For other rough set
regions, one can refer to Inuiguchi’s study [4].

Example 1. Consider a simple information table S = (U,At = C ∪ {D}, {Va},
{Ia}) shown in Table 1. The condition attribute set C partitions the universe
into six equivalence classes: [o1]C, [o2]C, [o3]C, [o4]C, [o5]C and [o7]C. Suppose
α = 0.75 and β = 0.60, we can reformat the table by including DPOS(α,β) ,
DBND(α,β) and DGEN(α,β) for all equivalence classes defined by C.

Table 1. An information table and its reformation

C D C DPOS(α,β) DBND(α,β) DGEN(α,β)

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5 c6

o1 1 1 1 1 1 1 M [o1]C 1 1 1 1 1 1 {M} ∅ {M}
o2 1 0 1 0 1 1 M [o2]C 1 0 1 0 1 1 ∅ {F} {F}
o3 0 1 1 1 0 0 Q [o3]C 0 1 1 1 0 0 {Q} ∅ {Q}
o4 1 1 1 0 0 1 Q [o4]C 1 1 1 0 0 1 {Q} ∅ {Q}
o5 0 0 1 1 0 1 Q [o5]C 0 0 1 1 0 1 ∅ ∅ ∅
o6 1 0 1 0 1 1 F [o7]C 0 0 0 1 1 0 {F} ∅ {F}
o7 0 0 0 1 1 0 F
o8 1 0 1 0 1 1 F
o9 0 0 1 1 0 1 F

2.2 Monotocity Property of the Regions

By considering the two thresholds separately, we obtain the following observa-
tions. For a partition πA, the decrease of the precision threshold α can result an
increase of the probabilistic positive region POS(α,β)(πD|πA). Thus, we can make
positive decisions for more objects. The decrease of the precision threshold β can
result an increase of the probabilistic non-negative region ¬NEG(α,β)(πD|πA),
thus we can make general decision for more objects.

Consider any two subsets of attributes A,B ⊆ C with A ⊆ B. For any x ∈ U ,
we have [x]B ⊆ [x]A. In the Pawlak model, if [x]A ∈ POS(πD|πA), then its
subset [x]B also is in the positive region, i.e., [x]B ∈ POS(πD|πB). At the same
time, if [x]A ∈ BND(πD|πA), its subset [x]B may be in the positive region or the
boundary region. If [x]A ∈ NEG(πD|πA), its subset [x]B may also belong to the
positive region or the boundary region. We immediately obtain the monotonic
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property of the Pawlak positive and non-negative regions with respect to set
inclusion of attributes:

A ⊆ B =⇒ POS(πD|πA) ⊆ POS(πD|πB);
A ⊆ B =⇒ ¬NEG(πD|πA) ⊆ ¬NEG(πD|πB).

That is, a larger subset of C induces a larger positive region and a larger non-
negative region. The entire condition attribute set C induces the largest positive
and non-negative regions.

The quality of classification, or the degree of dependency of D, is defined
as [11]:

γ(πD|πA) =
|POS(πD|πA)|

|U | , (3)

which is equal to the generality of the positive region. Based on the monotocity
of the Pawlak positive region, we can obtain the monotocity of the γ measure.
That is, A ⊆ B =⇒ γ(πD|πA) ≤ γ(πD|πB).

In the decision-theoretic model, for a subset [x]B of an equivalence class [x]A,
no matter to which region [x]A belongs, we do not know to which region [x]B be-
longs. Therefore, we cannot obtain the monotocity of the probabilistic regions with
respect to set inclusion of attributes. The probabilistic positive and non-negative
regions are monotonically increasing with respect to the decreasing of the α and β
thresholds, respectively, but are non-monotonic with respect to the set inclusion
of attributes. Intuitively, the largest condition attribute set C may not be able to
induce the largest positive and non-negative regions.

In the decision-theoretic model, the quantitative γ measure can be extended
to indicate the quality of a probabilistic classification. A straightforward trans-
formation of the γ measure is denoted as follows [24]:

γ(α,β)(πD|πA) =
|POS(α,β)(πD|πA)|

|U | . (4)

Since the probabilistic positive region is non-monotonic, the γ(α,β) measure is
also non-monotonic with respect to the set inclusion of attributes.

3 Definitions and Interpretations of Attribute Reduction

A reduct R ⊆ C for positive decision preservation can be defined by requiring
that the positive decisions of all objects are unchanged.

Definition 2. Given an information table S = (U,At = C ∪ {D}, {Va | a ∈
At}, {Ia | a ∈ At}), an attribute set R ⊆ C is a reduct of C with respect to the
certain decisions of all objects if it satisfies the following two conditions:

(i) ∀x ∈ U(DPOS(α,β)([x]R) = DPOS(α,β)([x]C));
(ii) for any R′ ⊂ R the condition (i) does not hold.

The definition for general decision preservation can be similarly defined by having
the condition (i) stated as: ∀x ∈ U(DGEN(α,β)([x]R) = DGEN(α,β)([x]C)).
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A reduct R ⊆ C for positive region preservation can be defined by requiring
that the induced positive region is the maximum.

Definition 3. An attribute set R ⊆ C is a reduct of C with respect to the
positive region of πD if R = argmaxA⊆C{POS(α,β)(πD|πA)}. It can be stated
loosely as,

(i) POS(α,β)(πD|πR) ⊇ POS(α,β)(πD|πC);
(ii) for any R′ ⊂ R, POS(α,β)(πD|πR′) ⊂ POS(α,β)(πD|πC).

That is, a reduct R is the global maximum regarding all subsets of C; it is also
the local maximum regarding all its own subsets.

The definition for non-negative region preservation can be similarly defined
as R = arg maxA⊆C{¬NEG(α,β)(πD|πA)}.

For simplicity, the qualitative measure can be replaced by the quantitative
measure. For example, the set-theoretic measure of a region can be replaced by
the cardinality of the region [10,18], or the entropy of the region [9,15,18].

3.1 An Interpretation of Region Preservation in the Pawlak Model

Pawlak defines a reduct as an attribute set satisfying the following two
conditions.

Definition 4. [10]

(i) POS(πD|πR) = POS(πD|πC);
(ii) for any attribute a ∈ R, POS(πD|πR−{a}) 
= POS(πD|πR).

Based on the fact that the Pawlak positive region is monotonic with respect to
set inclusion of attributes, the attribute set C must produce the largest positive
region. A reduct R produces a positive region as big as what C does, and all
proper subsets of R cannot produce a bigger positive region than R does. Thus,
only all proper subsets R − {a} for all a ∈ R need to be checked.

Many authors [1,3,10,18] use an equivalent quantitative definition of a Pawlak
reduct, i.e., γ(πD|πR) = γ(πD|πC). In other words, R and C induce the same
quantitative measurement of the Pawlak positive region.

In the Pawlak model, for a reduct R ⊆ C we have POS(πD|πR)∩BND(πD|πR)
= ∅, and POS(πD|πR) ∪ BND(πD|πR) = U . The condition POS(πD|πR) =
POS(πD|πC) is equivalent to BND(πD|πR) = BND(πD|πC). The requirement
of the same boundary region is implied in the definition of a Pawlak reduct. It
is sufficient to consider only the positive region in the Pawlak model.

3.2 Difficulties with the Interpretations of Region Preservation in
Probabilistic Models

Parallel to Pawlak’s definition, an attribute reduct in a probabilistic model can
be defined by requiring that the probabilistic positive region of πD is unchanged.
Such a definition has been proposed by Kryszkiewicz as a β-reduct [7], and by
Inuiguchi as a β-low approximation reduct [4,5] for the variable precision rough
set model. A typical definition is defined as follows.
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Definition 5. [7]

(i) POS(α,β)(πD|πR) = POS(α,β)(πD|πC);
(ii) for any attribute a ∈ R, POS(α,β)(πD|πR−{a}) 
= POS(α,β)(πD|πC).

In probabilistic models, many proposals have been made to extend the Pawlak at-
tribute reduction by using the extended and generalized measure γ(α,β). Accord-
ingly, the condition (i) of the definition can be re-expressed as γ(α,β)(πD|πR) =
γ(α,β)(πD|πC). Although the definition, especially the definition based on the
extended γ(α,β) measure, is adopted by many researchers [2,3,7,17,24], the defi-
nition itself is inappropriate for attribute reduction in probabilistic models. We
can make the following three observations.

Table 2. Probabilistic positive and non-negative regions defined by some attribute sets

A ⊆ C POS(α,β)(πD|πA) ¬NEG(α,β)(πD|πA)

C {o1, o3, o4, o7} {o1, o2, o3, o4, o6, o7, o8}
{c1, c2, c5} {o1, o3, o4, o7} {o1, o2, o3, o4, o6, o7, o8}
{c1, c2} {o3} {o2, o3, o5, o6, o7, o8, o9}
{c1, c5} {o4, o7} {o3, o4, o5, o7, o9}
{c2, c5} {o1, o2, o3, o4, o6, o7, o8} {o1, o2, o3, o4, o6, o7, o8}
{c1} ∅ ∅
{c2} ∅ U
{c5} {o3, o4, o5, o9} {o3, o4, o5, o9}

Problem 1. In probabilistic models, the probabilistic positive region is non-
monotonic regarding set inclusion of attributes. The equality relation in condi-
tion (i) is not enough for verifying a reduct, and may miss some reducts. At the
same time, the condition (ii) should consider all subsets of a reduct R, not only
the subsets R− {a} for all a ∈ R.

Example 2. Suppose α = 0.75 and β = 0.60 for Table 1. Compare the prob-
abilistic positive regions defined by C and all subsets of {c1, c2, c5} listed in
Table 2. It is clear that POS(α,β)(πD|πC) = POS(α,β)(πD|π{c1,c2,c5}), and none
of the subset of {c1, c2, c5} keeps the same positive region. Though, according
to the non-monotocity of the probabilistic positive region, we can verify that
POS(α,β)(πD|π{c2,c5}) is a superset of POS(α,β)(πD|πC), and thus support posi-
tive decision for more objects. We can verify that {c2, c5} is a reduct regarding
the positive region preservation, and {c1, c2, c5} is not.

Problem 2. In probabilistic models, both the probabilistic positive region and
the probabilistic boundary region, i.e., the probabilistic non-negative region,
need to be considered for general decision making. The definition only reflects
the probabilistic positive region and does not evaluate the probabilistic bound-
ary region. Inuiguchi’s definition for a β-upper approximation reduct also con-
siders the general decision making. However, the equality relation used may be
inappropriate [4].
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Example 3. We use the same Table 1 to demonstrate this problem. Suppose
α = 0.75 and β = 0.60. Compare the probabilistic non-negative regions defined
by C and all subsets of {c1, c2, c5} listed in Table 2. The probabilistic non-
negative regions are equal regarding the attribute sets {c1, c2, c5}, {c2, c5} and
C. Furthermore, ¬NEG(α,β)(πD|π{c2}) = U is a superset of ¬NEG(α,β)(πD|πC),
and thus supports general decision for more objects. Therefore, {c2} is a reduct
regarding the non-negative region preservation, and none of its superset is.

Problem 3. Based on the condition γ(α,β)(πD|πR) = γ(α,β)(πD|πC), we can
obtain |POS(α,β)(πD|πR)| = |POS(α,β)(πD|πC)|, but not POS(α,β)(πD|πR) =
POS(α,β)(πD|πC). This means that the quantitative equivalence of the proba-
bilistic positive regions does not imply the qualitative equivalence of the proba-
bilistic positive regions.

Example 4. Quantitatively, |POS(α,β)(πD|π{c5})| = |POS(α,β)(πD|πC)| indicates
γ(α,β)(πD|π{c5}) = γ(α,β)(πD|πC). Qualitatively, they indicate two different sets
of objects. The positive decision will be made for the two different sets of objects.
Similarly, the quantitative equivalence of two regions ¬NEG(α,β)(πD|π{c1,c2})
and ¬NEG(α,β)(πD|πC) does not imply the qualitative equivalence of them. They
lead to general decision for two different sets of objects.

3.3 Constructing Reducts in the Decision-Theoretic Model

Constructing a reduct for decision preservation can apply the traditional meth-
ods, for example, the methods based on the discernibility matrix [14]. Both the
rows and columns of the matrix correspond to the equivalence classes defined
by C. An element of the matrix is the set of all attributes that distinguish the
corresponding pair of equivalence classes. Namely, the matrix element consists of
all attributes on which the corresponding two equivalence classes have distinct
values and distinct decision making. A discernibility matrix is symmetric. The
elements of a positive decision-based discernibility matrix MPOS and a general
decision-based discernibility matrix MGEN are defined as follows. For any two
equivalence classes [x]C and [y]C,

MPOS([x]C, [y]C) = {a ∈ C | Ia(x) �= Ia(y) ∧ DPOS(α,β)([x]C) �= DPOS(α,β)([y]C)};

MGEN([x]C, [y]C) = {a ∈ C | Ia(x) �= Ia(y) ∧ DGEN(α,β)([x]C) �= DGEN(α,β) ([y]C)}.

Skowron and Rauszer showed that the set of attribute reducts are in fact the
set of prime implicants of the reduced disjunctive form of the discernibility func-
tion [14]. Thus, a certain decision reduct is a prime implicant of the reduced
disjunctive form of the discernibility function∧

{
∨

(MPOS([x]C, [y]C))|∀x, y ∈ U (MPOS([x]C, [y]C) 
= ∅)}. (5)

A general decision reduct is a prime implicant of the reduced disjunctive form
of the discernibility function∧

{
∨

(MGEN([x]C, [y]C))|∀x, y ∈ U (MGEN([x]C, [y]C) 
= ∅)}. (6)
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Based on the non-monotocity of the regions, the construction for region-based
reduct is not trivial. One needs to exhaustively search all subsets of C in order to
find the global optimal attribute set that induces the largest positive region or the
largest non-negative region.

For local optimization, we know that if the positive decisions are equivalent re-
garding two attribute setsA and C for all objects in the universe, then the positive
regions are also equivalent regardingA and C. That is,

∀x ∈ U ([DPOS(α,β)([x]A) = DPOS(α,β)([x]C)]) =⇒
[POS(α,β)(πD|πA) = POS(α,β)(πD|πC)].

The revised relation may not be true. It means the set of positive decision reducts is
actually the set of attribute sets that can keep the sameprobabilistic positive region
as C does. According to the above property, for each positive decision reduct R,
there exists a subset ofRwhich is a local optimal positive region reduct. Therefore,
if we can construct a positive decision reduct, which is a decision problem, then
we can check all its subsets for a local optimal positive region reduct, which is an
optimization problem. This method can save time for checking all subsets of C.
Similarly, for each general decision reduct R, there exists a subset of R which is a
local optimal non-negative region reduct.

For our running example, {c1, c2, c5} is a positive decision reduct and {c2, c5} is
a local optimal positive region reduct; {c2, c5} is a general decision reduct and {c2}
is a local optimal non-negative region reduct.

4 Conclusion

Definitions of attribute reduction in the decision-theoretic rough set model are ex-
amined in this paper, regarding both decision preservation and region preservation.
While attribute construction for decision preservation can explore the monotonic-
ity, attribute construction for region preservation cannot be done in a similar man-
ner. Decision-based reducts can be constructed by the traditional approaches such
as the ones based on the discernibility matrix, while region-based reducts require
exhaustive searchmethods for reduct construction. Heuristics and algorithms need
to be studied for constructing global and local optimal region-based reducts.
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Abstract. A general type of belief structure and its inducing dual pair
of belief and plausibility functions on infinite universes of discourse are
first defined. Relationship between belief and plausibility functions in
Dempser-Shafer theory of evidence and the lower and upper approxi-
mations in rough set theory is then established. It is shown that the
probabilities of lower and upper approximations induced by an approxi-
mation space yield a dual pair of belief and plausibility functions. And for
any belief structure there must exist a probability approximation space
such that the belief and plausibility functions defined by the given belief
structure are just respectively the lower and upper probabilities induced
by the approximation space. Finally, essential properties of the belief and
plausibility functions are examined. The belief and plausibility functions
are respective a monotone Choquet capacity and an alternating Choquet
capacity of infinite order.

Keywords: Approximation operators, Belief functions, Belief structures,
Rough sets.

1 Introduction

As a generalization of Bayesian theory of subjective judgment, the Dempster-
Shafer theory of evidence (also called the theory of belief function) is a method
used to model and manipulate uncertainty, imprecise, incomplete, and even
vague information. It was originated by Dempster’s concepts of lower and upper
probabilities [2], and extended by Shafer [10] as a theory. The basic representa-
tional structure in this theory is a belief structure, which consists of a family of
subsets called focal elements, with associated individual positive weights sum-
ming to one. The primitive numeric measures derived from the belief structure
are a dual pair of belief and plausibility functions. With more than forty years’
development, evidential reasoning has been emerging as a powerful method-
ology for pattern recognition, image analysis, diagnosis, knowledge discovery,
information fusion, and decision making.
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The original concepts of belief and plausibility functions in Dempster-Shafer
theory of evidence come from the lower and upper probabilities induced by a
multi-valued mapping carrying a probability measure defined over subsets of the
domain of the mapping [10], such a multi-valued mapping is in fact a random
set [8]. The belief (resp. plausibility) function is a monotone Choquet capacity
of infinite order (resp. alternating Choquet capacity of infinite order) [1] sat-
isfying the sub-additive (resp. super-additive) property at any order [10]. The
sub-additive and super-additive at any order form the essential properties of
belief and plausibility functions respectively.

Another important method used to deal with uncertainty in intelligent sys-
tems characterized by insufficient and incomplete information is the theory of
rough sets originated by Pawlak [9]. The basic structure of rough set theory is an
approximation space consisting of a universe of discourse and a binary relation
imposed on it. Using the concepts of lower and upper approximations in rough
set theory, knowledge hidden in information systems may be unravelled and ex-
pressed in the form of decision rules. The belief and plausibility functions in the
Dempster-Shafer theory of evidence seem to have some natural correspondences
with the lower and upper approximations in rough set theory. The relationships
between the Dempster-Shafer theory of evidence and rough set theory have re-
ceived wide attention in the research community [3,4,6,11,12,13,15,19]. In finite
universes of discourse, it has been demonstrated that different types of belief
structures are associated with various rough approximation spaces such that
different dual pairs of lower and upper approximation operators induced by the
rough approximation spaces may be used to interpret the corresponding dual
pairs of belief and plausibility functions derived by the belief structures [15,19].
It can be observed that the belief and plausibility functions in the Dempster-
Shafer theory of evidence and lower and upper approximations in rough set
theory capture the mechanisms of numeric and non-numeric aspects of uncer-
tain knowledge respectively. The Dempster-Shafer theory of evidence may be
used to deal with knowledge acquisition in information systems [7,14,16,20].

The purpose of this paper is to develop a general framework of belief and
plausibility functions on infinite universes of discourse under the interpretation
of theory of rough sets. By using an arbitrary belief structure, we introduce a
dual pair of generalized belief and plausibility functions. We then establish the
relationship between belief and plausibility functions in Dempster-Shafer theory
of evidence and lower and upper approximations of rough set theory. We will also
examine properties of belief functions and prove that the belief and plausibility
functions respectively satisfy the essential properties of sub-additive and super-
additive at any order.

2 Generalized Rough Set Models in Infinite Universes

Let X be a nonempty set called the universe of discourse. The class of all subsets
of X will be denoted by P(X). For any A ∈ P(X), we denote by ∼ A the
complement of A.
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Let U andW be two nonempty universes of discourse. A subset R ∈ P(U×W )
is referred to as a binary relation from U to W . The relation R is referred to
as serial if for any x ∈ U there exists y ∈ W such that (x, y) ∈ R. If U = W ,
R ∈ P(U × U) is called a binary relation on U , R ∈ P(U × U) is referred to as
reflexive if (x, x) ∈ R for all x ∈ U ; R is referred to as symmetric if (x, y) ∈ R
implies (y, x) ∈ R for all x, y ∈ U ; R is referred to as transitive if for any
x, y, z ∈ U, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R; R is referred to as an
equivalence relation if R is reflexive, symmetric and transitive.

Assume that R is an arbitrary binary relation from U to W . We can define a
set-valued function Rs : U → P(W ) by:

Rs(x) = {y ∈W : (x, y) ∈ R}, x ∈ U.

Rs(x) is called the successor neighborhood of x with respect to R. Obviously,
any set-valued function F from U to W defines a binary relation from U to W
by setting R = {(x, y) ∈ U ×W : y ∈ F (x)}. From the set-valued function Rs,
we can define a basic set assignment [17,18] j : P(W )→ P(U),

j(A) = {u ∈ U : Rs(u) = A}, A ∈ P(W ).

It is easy to verify that j satisfies the properties (J1) and (J2):

(J1) A 
= B =⇒ j(A) ∩ j(B) = ∅, (J2)
⋃

A∈P(W )

j(A) = U.

If R is an arbitrary relation from U to W , then the triple (U,W,R) is referred to
as a generalized approximation space. For any set A ⊆ W , a pair of lower and
upper approximations, R(A) and R(A), are defined by

R(A) = {x ∈ U : Rs(x) ⊆ A}, R(A) = {x ∈ U : Rs(x) ∩A 
= ∅}. (1)

The pair (R(A), R(A)) is referred to as a generalized crisp rough set, and R and
R : P(W ) → P(U) are called the lower and upper generalized approximation
operators respectively.

From the definitions of approximation operators, the following theorem can
be easily derived [5,9,17]:

Theorem 1. For a given approximation space (U,W,R), the lower and upper
approximation operators defined by Eq. (1) satisfy the following properties: for
all A,B,Ai ∈ P(W ), i ∈ J, J is an index set,

(LD) R(A) =∼ R(∼ A), (UD) R(A) =∼ R(∼ A);
(L1) R(W ) = U, (U1) R(∅) = ∅;
(L2) R(

⋂
i∈J

Ai) =
⋂

i∈J

R(Ai), (U2) R(
⋃

i∈J

Ai) =
⋃

i∈J

R(Ai);

(L3) A ⊆ B =⇒ R(A) ⊆ R(B), (U3) A ⊆ B =⇒ R(A) ⊆ R(B);
(L4) R(

⋃
i∈J

Ai) ⊇
⋃

i∈J

R(Ai), (U4) R(
⋂

i∈J

Ai) ⊆
⋂

i∈J

R(Ai).
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Properties (LD) and (UD) show that R and R are dual approximation operators.
Properties with the same number may be considered as dual properties. It can be
easily checked that property (L2) implies properties (L3) and (L4), and dually,
property (U2) yields properties (U3) and (U4).

By property (U2) we observe that R(X) =
⋃

x∈X

R({x}). If we set

h(x) = R({x}), x ∈W,

then it is easy to verify that

h(x) = {u ∈ U : x ∈ Rs(u)}, x ∈W.

Conversely,
Rs(u) = {y ∈ W : u ∈ h(y)}, u ∈ U.

Obviously,
R(X) =

⋃
x∈X

h(x), X ∈ P(W ).

Hence h is called the upper approximation distributive function [18]. The rela-
tionships between the basic set assignment j of R and the approximation oper-
ators can be concluded as follows:

(JL) R(X) =
⋃

Y ⊆X

j(Y ), X ⊆W ;

(JU) R(X) =
⋃

Y ∩X =∅
j(Y ), X ⊆W ;

(LJ) j(X) = R(X) \
⋃

Y ⊂X

R(Y ), X ⊆W.

With respect to certain special types, say, serial, reflexive, symmetric, and tran-
sitive binary relations, the approximation operators have additional properties
[5,9,17,18].

Theorem 2. Let R be an arbitrary crisp binary relation from U to W , and R
and R the lower and upper generalized crisp approximation operators defined by
Eq. (1). Then

(1) R is serial
⇐⇒ (L0) R(∅) = ∅,
⇐⇒ (U0) R(W ) = U,
⇐⇒ (LU0) R(A) ⊆ R(A), ∀A ∈ P(W ).

If R is a binary relation on U , then
(2) R is reflexive

⇐⇒ (L5) R(A) ⊆ A, ∀A ∈ P(U),
⇐⇒ (U5) A ⊆ R(A), ∀A ∈ P(U).

(3) R is symmetric
⇐⇒ (L6) R(R(A)) ⊆ A, ∀A ∈ P(U),
⇐⇒ (U6) A ⊆ R(R(A)), ∀A ∈ P(U).

(4) R is transitive
⇐⇒ (L7) R(A) ⊆ R(R(A)), ∀A ∈ P(U),
⇐⇒ (U7) R(R(A)) ⊆ R(A), ∀A ∈ P(U).
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If R is an equivalence relation on U , then the pair (U,R) is a Pawlak approxi-
mation space and more interesting properties of lower and upper approximation
operators can be derived [9].

3 Belief Structures and Belief Functions on Infinite
Universes

Definition 1. Let W be a nonempty universe of discourse which may be infinite.
A set function m : P(W )→ [0, 1] is referred to as a basic probability assignment
or mass distribution if

(M1) m(∅) = 0, (M2)
∑

X⊆W

m(X) = 1.

A set X ∈ P(W ) with m(X) > 0 is referred to as a focal element of m. We
denote by M the family of all focal elements of m. The pair (M,m) is called a
belief structure.

Associated with the belief structure (M,m), a pair of belief and plausibility
functions can be derived.

Definition 2. Let (M,m) be a belief structure on W . A set function Bel :
P(W )→ [0, 1] is referred to as a belief function on W if

Bel(X) =
∑

M⊆X

m(M), ∀X ∈ P(W ). (2)

A set function Pl : P(W )→ [0, 1] is referred to as a plausibility function on W
if

Pl(X) =
∑

M∩X =∅
m(M), ∀X ∈ P(W ). (3)

Lemma 1. Let (M,m) be a belief structure on W , then the focal elements of
m constitute a countable set.

Proof. For every n ∈ N (where N is the set of positive integer numbers), denote
Dn = {A ∈ P(W ) : m(A) > 1/n}. Since the sum of the masses of all focal
element is 1, Dn is finite for every n ∈ N and therefore the set of the focal
elements, that coincides with

⋃∞
n=1Dn, is countable.

4 Relationship between Belief Functions and Rough Sets
on Infinite Universes

The following theorem shows that any belief structure can associate with a
probability approximation space such that the probabilities of lower and up-
per approximations induced from the approximation space yield respectively
the corresponding belief and plausibility functions derived from the given belief
structure.
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Theorem 3. Let (M,m) be a belief structure on W which may be infinite. If
Bel : P(W ) → [0, 1] and Pl : P(W ) → [0, 1] are respectively the belief and
plausibility functions defined in Definition 2, then there exists a countable set U ,
a serial relation R from U to W , and a probability measure P on U such that

Bel(X) = P (R(X)), Pl(X) = P (R(X)), ∀X ∈ P(W ). (4)

Proof. Since
∑

A∈P(W )

m(A)=1, by Lemma 1 we know that the focal elements of

m constitute a countable set, with no loss of generality, we assume thatM has
infinite countable elements and we denote

M = {Ai ∈ P(W ) : i ∈ N},

where
∑

i∈N
m(Ai) = 1. Let U = {ui : i ∈ N} be a set having infinite countable

elements, we define a set function P : P(U)→ [0, 1] as follows:

P ({ui}) = m(Ai), i ∈ N,

P (X) =
∑
u∈X

P ({u}), X ∈ P(U).

Obviously, P is a probability measure on U .
We further define a binary relation R from U to W as follows:

(ui, w) ∈ R⇐⇒ w ∈ Ai, i ∈ N, w ∈W.

From R we can obtain a mapping j : P(W )→ P(U) as follows:

j(A) = {u ∈ U : Rs(u) = A}, A ∈ P(W ).

It is easy to see that j(A) = {ui} for A = Ai and ∅ otherwise. Consequently,
m(A) = P (j(A)) > 0 for A ∈M and 0 otherwise. Note that j(A)∩ j(B) = ∅ for
A 
= B and

⋃
A∈P(W ) j(A) = U. Then, by property (JL), we can conclude that

for any X ∈ P(W ),

P (R(X)) = P (
⋃

A⊆X

j(A)) =
∑

A⊆X

P (j(A)) =
∑

A⊆X

m(A) = Bel(X).

On the other hand, by property (JU), we have

P (R(X)) = P (
⋃

A∩X =∅
j(A)) =

∑
A∩X =∅

P (j(A)) =
∑

A∩X =∅
m(A) = Pl(X).

Theorem 4. Assume that (U,W,R) is a serial approximation space, U is a
countable set, and (U,P(U), P ) is a probability space. For X ∈ P(W ), define

m(X) = P (j(X)), Bel(X) = P (R(X)), Pl(X) = P (R(X)). (5)

Then m : P(W ) → [0, 1] is a basic probability assignment on W and Bel :
P(W )→ [0, 1] and Pl : P(W )→ [0, 1] are respectively the belief and plausibility
functions on W .
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Proof. Let
j(A) = {x ∈ U : Rs(x) = A}, A ∈ P(W ).

It can be easily checked that j satisfies properties (J1) and (J2), i.e.,
(J1) A 
= B =⇒ j(A) ∩ j(B) = ∅, (J2)

⋃
A∈P(W )

j(A) = U.

Since R is serial, we can observe that j(∅) = ∅, consequently,

m(∅) = P (j(∅)) = P (∅) = 0

and ∑
A∈P(W )

m(A) =
∑

A∈P(W )

P (j(A)) = P (
⋃

A∈P(W )

j(A)) = P (U) = 1.

Hence m is a basic probability assignment on W . And for any X ∈ P(W ),
according to properties (JL) and (J1) we have

Bel(X) = P (R(X)) = P (
⋃

A⊆X

j(A)) =
∑

A⊆X

P (j(A)) =
∑

A⊆X

m(A).

Therefore, we have proved that Bel is a belief function. Similarly, by properties
(JU) and (J1) we can conclude that

Pl(X) = P (R(X)) = P (
⋃

A∩X =∅
j(A)) =

∑
A∩X =∅

P (j(A)) =
∑

A∩X =∅
m(A).

Therefore, Pl is a plausibility function.

5 Properties of Belief and Plausibility Functions on
Infinite Universes

The following theorem presents the properties of belief and plausibility functions.

Theorem 5. Let W be a nonempty set which may be infinite and (M,m) a
belief structure on W . If Bel,Pl : P(W ) → [0, 1] are respectively the belief and
plausibility functions induced from the belief structure (M,m). Then

(1) Pl(X) = 1− Bel(∼ X), X ∈ P(W ),
(2) Bel(X) ≤ Pl(X), X ∈ P(W ),
(3) Bel(X) + Bel(∼ X) ≤ 1, X ∈ P(W ),
(4) Bel : P(W ) → [0, 1] is a monotone Choquet capacity of infinite order on

W , i.e., it satisfies the axioms (MC1)–(MC3) as follows:
(MC1) Bel(∅) = 0,
(MC2) Bel(W ) = 1.
(MC3) For any n ∈ N and ∀Xi ∈ P(W ), i = 1, 2, . . . , n,

Bel(
n⋃

i=1

Xi) ≥
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1Bel(

⋂
j∈J

Xj).
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(5) Pl : P(W )→ [0, 1] is an alternating Choquet capacity of infinite order on
W , i.e., it satisfies the axioms (AC1)–(AC3) as follows:

(AC1) Pl(∅) = 0,
(AC2) Pl(W ) = 1,
(AC3) For any n ∈ N and ∀Xi ∈ F(W ), i = 1, 2, . . . , n,

Pl(
n⋂

i=1

Xi) ≤
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1Pl(

⋃
j∈J

Xj).

Proof. By Theorem 3, there exists a countable set U , a serial relation R from U
to W , and a probability measure P on U such that

Bel(X) = P (R(X)), Pl(X) = P (R(X)), ∀X ∈ P(W ).

Then for any X ∈ P(W ), by the dual property (UD) in Theorem 1, we have

Pl(X) = P (R(X)) = P (∼ R(∼ X)) = 1− P (R(∼ X)) = 1− Bel(∼ X).

Thus property (1) holds.
(2) Notice that R is serial, then, according to property (LU0) in Theorem 2,

we have
Bel(X) = P (R(X)) ≤ P (R(X)) = Pl(X).

(3) follows immediately from (1) and (2).
(4) By property (L0) in Theorem 2, we have

Bel(∅) = P (R(∅)) = P (∅) = 0,

that is, (MC1) holds. On the other hand, by property (L1) in Theorem 1, we
have

Bel(W ) = P (R(W )) = P (U) = 1,

thus (MC2) holds.
For any n ∈ N and ∀Xi ∈ P(W ), i = 1, 2, . . . , n, by properties (L4) and (L2)

in Theorem 1, we have

Bel(
n⋃

i=1

Xi) = P (R(
n⋃

i=1

Xi)) ≥ P (
n⋃

i=1

R(Xi))

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1P (

⋂
j∈J

R(Xj)

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1P (R(

⋂
j∈J

Xj))

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1Bel(

⋂
j∈J

Xj).

Thus (MC3) holds. Therefore, we have proved that Bel is a monotone Choquet
capacity of infinite order on W .

(5) Similar to (4), by Theorems 1 and 2, we have
(AC1) Pl(∅) = P (R(∅)) = P (∅) = 0.
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(AC2) Pl(W ) = P (R(W )) = P (U) = 1.
(AC3) For any n ∈ N and ∀Xi ∈ F(W ), i = 1, 2, . . . , n, by properties (U4)
and (U2), we have

Pl(
n⋂

i=1

Xi) = P (R(
n⋂

i=1

Xi)) ≤ P (
n⋂

i=1

R(Xi))

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1P (

⋃
j∈J

R(Xj))

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1P (R(

⋃
j∈J

Xj))

=
∑

∅=J⊆{1,2,...,n}
(−1)|J|+1Pl(

⋃
j∈J

Xj).

Thus we have concluded that Pl is an alternating Choquet capacity of infinite
order on W .

From Theorem 5 we can see that semantics of the original Dempster-Shafer
theory of evidence is still maintained.

6 Conclusion

We have investigated a general type of belief and plausibility functions on infinite
universes of discourse. We have obtained the relationship between Dempster-
Shafer theory of evidence and rough set theory on infinite universes of discourse.
We have shown that the belief and plausibility functions defined by a belief struc-
ture on an infinite universe can be represented as lower and upper probabilities
in a countable set induced by an approximation space. We have also examined
properties of the belief and plausibility functions. The essential properties are
that the belief and plausibility functions are respectively the monotone Choquet
capacity and alternating Choquet capacity of infinite order.
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Abstract. When a non-numerical ranking is created using Pairwise Comparisons
paradigm, its first estimation is a binary relation which may not even be a partial
order. In the paper four different partial order approximations of an arbirary bi-
nary relation are introduced and discussed.

1 Introduction and Motivation

While ranking the importance of several objects is often problematic (as the “perfect
ranking” often does not exists [1]), it is often much easier when to do restricted to two
objects. The problem is then reduced to constructing a global ranking from the set of
partially ordered pairs. The method could be traced to the Marquis de Condorcet’s 1795
paper (see [1]). At present the numerical version of pairwise comparisons based rank-
ing is practically identified with the controversial Saaty’s Analytic Hierarchy Process
(AHP, [10]). On one hand AHP has respected practical applications, on the other hand it
is still considered by many (see [2]) as a flawed procedure that produces arbitrary rank-
ings. We believe that most of the problems with AHP stem mainly from the following
two sources:

1. The final outcome is always expected to be totally ordered (i.e. for all a,b, either
a < b or b > a),

2. Numbers are used to calculate the final outcome.

An alternative, non-numerical method was proposed in [7] and refined in [5,6]. It is
based on the concept of partial order and the concept of partial order approximation of
an arbitrary binary relation. In [6] the non-numerical approach has been formalised as
follows.

A ranking is just a partial order Rank = (X ,<rank), where X is the set of objects to
be ranked and <rank is a ranking relation. We assume that <rank is a weak or total order.
The ranking relation<rank is unknown and the ranking problem is to construct<rank on
the basis of ranking data.

A pairwise comparisons ranking data is a tuple PCRD = (X ,R0,R1, ...,Rk),
where k ≥ 1, and Ri’s are relations satisfying R0 ∪ R1 ∪ ... ∪ Rk = X × X and
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Rk ⊆ Rk−1 ⊆ ... ⊆ R1. The relation R0, interpreted as indifference, is symmetric and
reflexive, the relations R1, ...,Rk, interpreted as preferences, are asymmetric and irreflex-
ive. In [5] the case PCRD = (X ,≈,�,⊂,<,≺), with the following interpretation a≈ b
: a and b are indifferent, a � b : slightly in favour of b, a ⊂ b : in favour of b, a < b:
b is strongly better, a ≺ b : b is extremely better, was considered in some details. The
list �, ⊂, <, ≺ may be shorter or longer, but not empty and not much longer (due to
limitations of the human mind [7,10]).

We may now state the ranking problem more precisely as follows: “derive the rank-
ing relation <rank from a given pairwise comparison ranking data PCRD”. Note that in
a general case, none of the relations Ri, i = 1, ...,k, could be even a partial order. The
problem is that X is believed to be partially or weakly ordered by the ranking relation
<rank but the data acquisition process may be so influenced by informational noise, im-
precision, randomness, or expert ignorance that the collected data R1,R2, ...,Rk are only
some relations on X . We may say that they give a fuzzy picture of ranking, and to focus
it, we must do some pruning and/or extending.

The methods of finding <rank presented in [6,7] are in principle based on the follow-
ing three concepts

• partial order approximation<R of an arbitrary relation R,
• partial order approximation <(R,�) of a pair of relations R and �, where R is an

arbitrary relation, � is a partial order included in R, and �⊆<(R,�) (the relation �
represents the part of R that already is a precise ranking),
• weak order approximation of a given partial order.

Approximations of relations (sets, numbers, etc.) are usually defined as follows, a rela-
tion Rup is an (upper) approximation of R if Rup has a desired property and R ⊆ Rup,
or, a relation Rlow is an (lower) approximation of R if Rlow has a desired property
and Rlow ⊆ R. This idea is behind many closures definitions [9] and Pawlak’s Rough
Sets [8]. Weak order approximations of partial orders follow this scheme [3], but partial
order approximations of arbitrary relations do not have to. It appears that for partial
order approximations of arbitrary relations the concepts “least” and “greatest” approx-
imations are of limited use and we may have several different approximations, each of
them could be considered as “the best” in some circumstances.

The approximation of R proposed in [6,7], denoted (R+)• in this paper, can be de-
scribed as follows: “compute first the transitive closure of R, and next remove all cycles
from it”. The technique could be traced to E. Schröder’s 1895 paper [11]. It seems to
work nicely in many cases [5,6,7], but not always.

Consider the following example. Suppose we have four objects a, b, c, d, each of
them is characterised by a vector of real numbers (x1, ...,x4), so a = (xa

1,x
a
2,x

a
3,x

a
4), etc.

Suppose that the measurements have errors so each xi is only an estimation. We define
the relation <(1) on real numbers as follows x <(1) y ⇐⇒ y− x≥ 1. The relation <(1)
is a partial order, in fact it is a semi-order [3] (semi-orders are often used to model cases
when errors of data are taken into account). We now define:

(x1,x2,x3,x4)← (y1,y2,y3,y4) ⇐⇒ (∃i. xi <(1) yi)∧ (∀i. ¬(yi <(1) xi)).
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In other words, if either xi <(1) yi or xi and yi are incomparable w.r.t. <(1) and at least
for one j, x j <(1) y j. This looks like a reasonable way of comparing two objects. Let

a = (1.0,0.5,0.5,0.1), b = (0,1.0,0.5,0.5), c = (0.5,0,1.0,0.5), d = (0.9,0.5,0,0.5).

We now have: d ← c← b← a , but the relation ← is not transitive, as we have
¬(c← a), ¬(d← a), ¬(d ← b). Using the technique of [5,7] we obtain the following
totally ordered ranking: d <rank c <rank b <rank a. The same result we will get by
using AHP [10]. However, since all numerical values are only estimates and we can
say that one is bigger than another only if the difference between them is greater or
equal 1, the rank <rank= /0, i.e. a, b, c and d are incomparable, is what we would
intuitively expect! In this paper we will propose a solution to this problem. Note that
for d = (0.5,0.5,0,1.1) and the same a, b, c, we have a← d← c← b← a , so the
technique of [5,7] produces <rank= /0, as expected (but AHP does not!).

In this paper we will introduce and analyse four different kinds of partial order ap-
proximations denoted R⊂∧• , (R•)⊂ , (R•)+, (R+)•, respectively.

2 Relations and Partial Orders

In this section we recall some fairly known concepts and results that will be used in the
following sections [3,9].

Let X be a finite set, fixed for the rest of this paper. For every relation R⊆ X×X , let
R+ =

�∞
i=1 Ri, denote the transitive closure of R, id = {(x,x) | x∈X} denote the identity

relation, and let R◦ = R∪ id denote the reflexive closure of R (see [9] for details).
For each relation R and each a ∈ X we define:

Ra = {x | xRa} aR = {x | aRx}.

A relation < ∈ X ×X is a (sharp) partial order if it ir irreflexive and transitive, i.e. if
¬(a < a) and a < b < c =⇒ a < c, for all a,b,c ∈ X .

We write a∼< b if ¬(a< b)∧¬(b< a), that is if a and b are either distinctly incom-
parable (w.r.t. <) or identical elements. We also write

a≡< b ⇐⇒ ({x | a < x}= {x | b < x} ∧ {x | x< a}= {x | x < b}).

The relation≡< is an equivalence relation (i.e. it ir reflexive, symmetric and transitive)
and it is called the equivalence with respect to <, since if a≡< b, there is nothing in <
that can distinguish between a and b (see [3] for details). We always have a≡< b =⇒
a∼< b.

A partial order is

– total or linear, if ∼< is empty, i.e., for all a,b ∈ X . a 
= b =⇒ (a < b∨b< a).
– weak or stratified, if a∼< b∼< c =⇒ a∼< c, i.e. if∼< is an equivalence relation.

If a partial order < is weak than a≡< b ⇐⇒ a∼< b (see [3]).
The sets R◦a and aR◦ allow some characterisation of relations in terms of set theory

inclusion. We have two folklore results.
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Lemma 1. For every relation R:

1. bR◦ ⊂ aR◦ =⇒ aRb,
2. R◦a⊂ R◦b =⇒ aRb.

Proof. (1) Let bR◦ ⊂ aR◦. Since b ∈ bR◦, then b ∈ aR◦, i.e. aRb∨ a = b. But a = b
implies bR◦ = aR◦, so aRb.

(2) Dually to (1). �
Lemma 2. If R is a partial order then the following three statements are equivalent:

1. aRb,
2. bR◦ ⊂ aR◦,
3. R◦a⊂ R◦b.

Proof. (2) =⇒ (1) and (3) =⇒ (1) follow from Lemma 1.
(1) =⇒ (2): Let aRb and x ∈ bR◦. If x = b then aRb implies b ∈ aR◦. If x 
= b then aRb
and bRx, which implies aRx, i.e. x∈ aR◦. Hence bR◦ ⊆ aR◦. But aRb =⇒ a 
= b∧¬bRa,
so a /∈ bR◦, which means bR◦ ⊂ aR◦.
(1) =⇒ (3): Similarly to (1) =⇒ (2). �
Lemma 2 simply says that “a is smaller that b if and only the set of all elements smaller
than a is included in the set of all elements smaller than b, and if and only if the set of
all element bigger that b is included in the set of all elements bigger than a”.

We will call the properties (2) and (3) of Lemma 2 inclusion properties, and say that
the relation R has inclusion properties if it satisfies bR◦ ⊂ aR◦ ∧R◦a ⊂ R◦b. Lemma 2
just says that R has inclusion properties if and only if it is a partial order.

A relation R is acyclic if and only if ¬xR+x for all x ∈ X .

For every relation R, define the relations Rcyc, Rcyc
id and R• as

– aRcycb ⇐⇒ aR+b∧bR+a,
– aRcyc

id b ⇐⇒ aRcycb∨a = b,
– aR•b ⇐⇒ aRb∧¬(aRcycb),

We will call R• an acyclic refinement of R. If aRcycb we will say that a and b belong to
some cycle(s).

Corollary 1
1. Rcyc

id is an equivalence relation and R is acyclic if and only if Rcyc = /0,
2. R• ⊆ R, R• is acyclic (i.e. also irreflexive), and aR•b ⇐⇒ aRb∧¬(bR+a),
3. if R is a partial order then R = R+ = R•. �

In this paper expressions like (R•)+ are interpreted as (R•)+ = Q+ where Q = R•. Also
for each equivalence relation E ⊆ X ×X , [x]E will denote the equivalence class of E
containing x and X/E will donote the set of all equivalence classes of E .

Lemma 3 (Schröder [11]). For every relation R ⊆ X × X, let ≺R ⊆ (X/Rcyc
id )

× (X/Rcyc
id ) be the following relation:

[x]Rcyc
id
≺R [y]Rcyc

id
⇐⇒ xR+y∧¬yR+x.

The relation ≺R is a partial order on X/Rcyc
id . �
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Fig. 1. An example of R such that aR⊂ b∧ aRcycb for some a and b. We have R◦a = {a,c} ⊂
{a,b,c} = R◦b and bR◦ = {b,e} ⊂ {a,b,c} = aR◦, so aR⊂ b and clearly aRcycb.

3 Inclusion Property and Equivalence w.r.t. a Given Relation

In this section two concepts initially introduced for partial orders will be extended to
arbitrary relations. The first one is inclusion property.

For every relation R, define the relation R⊂ as follows :

• aR⊂b ⇐⇒ bR◦ ⊂ aR◦ ∧R◦a⊂ R◦b.

We will call R⊂ the inclusion property kernel of R.

Corollary 2. 1. R⊂ ⊆ R and R⊂ is a partial order.
2. If R is a partial order then R = R⊂ . �

It may however happen that aR⊂b∧aRcycb, see Figure 1, hence R⊂ alone can hardly be
considered as a ranking derived from R. However it can be used as one of the tools that
could be used for such a derivation.

The second concept is the relation ≡< which can easily be extended to an arbitrary
relation R.

For every relation R, define the relation ≡R as follows :

• a≡R b ⇐⇒ aR = bR∧Ra = Rb.

The relation ≡R is an equivalence relation (i.e. it ir reflexive, symmetric and transitive)
and it is called the equivalence with respect to R, since if a ≡R b, there is nothing in R
that can distinguish between a and b. Note also that:

a≡R b ⇐⇒ ∀x. (xRa ⇐⇒ xRb)∧ (aRx ⇐⇒ bRx).

Lemma 4. For every two relations R and Q: a≡R b∧a≡Q b =⇒ a≡R∩Q b.

Proof. a≡R b∧a≡Q b =⇒ aR = bR∧Ra = Rb∧aQ = bQ∧Qa = Qb =⇒ a(R∩Q) =
b(R∩Q)∧ (R∩Q)a = (R∩Q)b ⇐⇒ a≡R∩Q b. �

It turns out that such operations as transitive closure, acyclic refinement and inclusion
property kernel, preserve the equivalence with respect to R.

Lemma 5. For every relation R we have:
1. a≡R b =⇒ a≡R+ b,
2. a≡R b =⇒ a≡R• b,
3. a≡R b =⇒ a≡R⊂ b.
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Proof. (1) xR+a ⇐⇒ xRx1R...RxnRa. But a≡R b =⇒ (xnRa⇔ xnRb), so xR+a ⇐⇒
xRx1R...RxnRb ⇐⇒ xR+b. Similarly we show aR+x ⇐⇒ bR+x, hence a≡R+ b.

(2) Since xR•a ⇐⇒ xRa∧¬aR+x and xRa ⇐⇒ xRb, then xR•a =⇒ xRb. Suppose
bR+x, i.e. bRx1R...xkRx. But bRx1 ⇐⇒ aRx1, so bR+x ⇐⇒ aR+x, a contradiction
as xR•a =⇒ ¬aR+x. Hence xR•a =⇒ xR•b. By replacing a with b, we immediately
get xR•b =⇒ xR•a, i.e. xR•a ⇐⇒ xR•b. In an almost identical manner we show
aR•x ⇐⇒ bR•x, so a≡R• b.

(3) Note that if a = b then clearly a≡R⊂ b, so assume a 
= b.

First we show that a≡R b implies ∀x. R◦x⊂ R◦a ⇐⇒ R◦x⊂ R◦b. Suppose R◦x⊂ R◦a,
i.e. Rx∪{x} ⊂ Ra∪{a}. Since Ra = Rb, then R◦x = Rx∪{x} ⊆ Rb∪{a}.

We now have to consider two cases:

Case 1: a ∈ Rb. Since Ra = Rb then a ∈ Ra, so we have R◦x⊂ R◦a∪{a}= Ra = Rb⊆
Rb∪{b}= R◦b, so R◦x⊂ R◦b.

Case 2: a /∈Rb. First we show that a∈ Rx =⇒ a∈ Rb. We have a∈ Rx ⇐⇒ aRx ⇐⇒
bRx ⇐⇒ b ∈ Rx and b ∈ Rx⊆ R◦x⊂ Ra∪{a} =⇒ bRa∨a = b. Since a 
= b then
bRa. Because a≡R b the we have Ra = Rb and aR = bR, so bRa∧Ra = Rb =⇒ bRb,
while bRb∧aR = bR =⇒ aRb, i.e. a∈ Rb. This means a /∈ Rb implies a /∈ Rb∧a /∈ Rx.
Hence we have: R◦a = R◦a\{a}⊂ (Rb∪{a})\{a}= Rb⊆ R◦b, so R◦x⊂ R◦b. In this
way we have proved ∀x. R◦x ⊂ R◦a =⇒ R◦x ⊂ R◦b. Similarly we prove that a ≡R b
implies ∀x. xR◦ ⊂ aR◦ =⇒ xR◦ ⊂ bR◦, which means that a≡R b implies
∀x. (R◦x⊂ R◦a∧ xR◦ ⊂ aR◦) =⇒ (R◦x⊂ R◦b∧ xR◦ ⊂ bR◦).

By replacing a with b we get an inverse inclusion, so in fact we proved:
∀x. (R◦x⊂ R◦a∧ xR◦ ⊂ aR◦) ⇐⇒ (R◦x⊂ R◦b∧ xR◦ ⊂ bR◦),

i.e. ∀x. (xR⊂a ⇐⇒ xR⊂b). In almost identical way we can prove ∀x. (aR⊂ x ⇐⇒
bR⊂ x). Hence a≡R⊂ b. �

4 Approximating Relations by Partial Orders

We will start with a formal definition of a partial order approximation of a relation R.

Definition 1. A partial order <⊆ X ×X is a partial order approximation of a relation
R⊆ X×X if it satisfies the following three conditions:

1. a < b =⇒ aR+b,
2. a < b =⇒ ¬aRcycb (or, equivalently a < b =⇒ ¬bR+a),
3. aR⊂b∧aR•b =⇒ a < b,
4. a≡R b =⇒ a≡< b. �

Since R+ is the smallest transitive relation containing R (see [9]), and due to infor-
mational noise, imprecision, randomness, etc., some parts of R might be missing, it is
reasonable to assume that R+ is the upper bound of <.

If R is interpreted as an estimation of a ranking, then aRcycb is interpreted that as
far as ranking is concerned, a and b are indifferent, so aRcycb =⇒ (¬a < b∧¬b< a),
which is expressed by (2) of the above definition. When a< b =⇒ aR+b, then ¬aRcycb
can be replaced by ¬bR+a.
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The condition (3) defines the lower bound. Note that the greatest partial order in-
cluded in R often does not exist, however if R is interpreted as an estimation of a rank-
ing, it is reasonable to assume that the inclusion property refinement in included in the
ranking order. However, as Figure 1 shows, it may happen that aR⊂b and aRcycb so we
need to add aR•b to avoid a contradiction.

The condition (4) ensures preservation of the equivalence with respect to R.
Since R is constructed on the basis of pairwise comparisons paradigm, it may happen

that aRb makes sense only locally, when the domain is restricted to {a,b}, and it needs
to be pruned in global setting (as the relation← from Section 1). In such cases we may
require a <rank b =⇒ aRb, which leads to the following definition.

Definition 2. A partial order <⊆ X ×X is an inner partial order approximation of a
relation R⊆ X×X, if it is a partial order approximation of R, and satisfies:

a < b =⇒ aRb. �
Every partial order is transitive, acyclic and equal to its inclusion property kernel. An
arbitrary relation R may not have these properties but we may try to refine R using
transive closure, acyslic refinement and finding inclusion property kernel, in various
orders or simultaneously (i.e. using set theory intersection). We will show that there are
exactly four partial order approximations that can be derived in this way.

Let us first define the relation R⊂∧• as follows:

aR⊂∧•b ⇐⇒ aR⊂b∧aR•b.

We can now formulate the main result of this paper.

Theorem 1

1. The relations R⊂∧• , (R•)⊂ , (R•)+, (R+)• are partial order approximations of R.
2. The relations R⊂∧• and (R•)⊂ are inner partial order approximations of R.
3. R⊂∧• ⊆ (R•)⊂ ⊆ (R•)+ ⊆ (R+)•.
4. If R is transitive, i.e. R = R+, then R⊂∧• = (R•)⊂ = (R•)+ = (R+)•.
5. If R is a partial order, then R = R⊂∧• = (R•)⊂ = (R•)+ = (R+)•.
6. If R is acyclic, i.e. R = R•, then R⊂ = R⊂∧• = (R•)⊂ and (R•)+ = (R+)•.
7. A partial order < is a partial order approximation of R if and only if

aR⊂∧•b =⇒ a < b =⇒ a(R+)•b.
8. aRcycb =⇒ a≡(R+)• b.
9. The realtions R⊂∧• , (R•)⊂ , (R•)+, (R+)• are the only partial order approximations

of R that can be derived from R by using operations ‘∩’, ‘⊂ ’, ‘+’ and ‘•’. �
With an exception of (8), the above theorem is practically self-explained. The
assertion (8) says that if a and b belong to a cycle in R then they are equivalent with
respect to (R+)•. This indicate that if we have a reason to believe that all cycles result
from errors, informational noise, etc., and all elements of a cycle should be interpreted
as indifferent, then (R+)• is most likely the best partial order approximation of R.

Proof of Theorem 1. First we show that the relations R⊂∧• , (R•)⊂ , (R•)+, (R+)• are
partial orders. Consider R⊂∧• . Clearly aR⊂∧•b ⇐⇒ aR⊂b∧aR•b ⇐⇒ aR⊂b∧¬bR+a.
By Corollary 1(2) the relation R⊂∧• is irreflexive so we need only to prove its transitiv-
ity. Suppose that aR⊂∧•b and bR⊂∧• c. This means aR⊂b, bR⊂ c, ¬bR+a and ¬cR+b. By
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Corollary 1(3), R⊂ is transitive, so aR⊂ c, and by Lemma 1, aRb, bRc and aRc. Hence
we only need to show that ¬cR+a. Suppose cR+a. Then cR+a and aRb implies cR+b,
a contradition as aR⊂∧• c implies ¬cR+b. Therefore R⊂∧• is a partial order.

Consider (R•)⊂ . From Corollary 1(3) it immediately follows that the relation (R•)⊂

is a partial order.
Consider (R•)+. By Corollary 1(2), we have aR•b ⇐⇒ aRb∧¬(bR+a). The rela-

tion (R•)+ is clearly transitive, we need only to show ¬(a(R•)+a) for all a ∈ X . Since
aRb∧¬(bR+a) =⇒ a 
= b, then ¬aR•a. Suppose a(R•)+a. Since ¬aR•a, this means
aR•b(R•)+a, for some b 
= a. But aR•b =⇒ aRb and b(R•)+a =⇒ bR+a, so we have
aRb∧bR+a, contradicting aR•b. Hence ¬(a(R•)+a), i.e. (R•)+ is a partial order.

Consider (R+)•. Notice that a(R+)•b ⇐⇒ aR+b∧¬bR+a ⇐⇒ [x]Rcyc
id
≺R [y]Rcyc

id
,

where ≺R is the relation from Lemma 3. Hence, by Lemma 3, the relation (R+)• is a
partial order.

We will now prove (3), i.e. R⊂∧• ⊆ (R•)⊂ ⊆ (R•)+ ⊆ (R+)•.
Suppose aR⊂∧•b, i.e. aR⊂b∧¬bR+a. Then aRb and ¬bR+a, so a ∈ (R•)◦a ∩ (R•)◦b.
Assume that x ∈ R•a and x /∈ R•b. Since aR⊂∧•b =⇒ aR⊂b, then we have Ra ⊂ Rb.
But R•a ⊆ Ra, so x ∈ Rb. We now have x ∈ Rb and x /∈ R•b, i.e. bR+x. Since x ∈ R•a
means xRa, then bR+ax and xRa give us bR+a, a contradiction as, aR⊂∧•b =⇒ ¬bR+a.
Hence R•a⊆ R•b. Since a 
= b then R•a 
= R•b, so (R•)◦a⊂ (R•)◦b. Similarly we show
b(R•)◦ ⊂ a(R•)◦, hence a(R•)⊂ b. Therefore R⊂∧• ⊆ (R•)⊂ .

By Lemma 1 we have (R•)⊂ ⊆ R•, and clearly R• ⊆ (R•)+, hence (R•)⊂ ⊆ (R•)+.
Suppose a(R•)+b. Recall that x(R+)•y ⇐⇒ xR+y∧¬yR+x. By Corollary 1(2), we
have R• ⊂ R. Hence a(R•)+ + b =⇒ aR+b. Suppose bR+a. Then aRcycb, i.e. ¬aR•b,
a contradiction. Hence a(R+)•b, i.e. (R•)+ ⊆ (R+)•. Therefore we have proved the
assertion (3).

Note that (3) together with the fact that all R⊂∧• , (R•)⊂ , (R•)+, (R+)• are partial
orders imply that R⊂∧• , (R•)⊂ , (R•)+, (R+)• satisfy (1),(2) and (3) of Definition 1. By
Lemma 5, (R•)+ and (R+)• satisfy (4) of Definition 1; and by Lemmas 5 and 4, R⊂∧•

and (R•)⊂ satisfy satisfy (4) of Definition 1. Therefore the assertion (1) of the above
theorem does hold.

The assertion (1) and Corollary 2(2) yield the assertion (2).
Hence (1), (2) and (3) hold. We will now prove (4). It suffices to show that if R = R+

then (R+)• ⊆ R⊂∧• . Note that in this case a(R+)•b ⇐⇒ aRb∧¬bRa. If R = R+ then
(R+)• = R•, so we only need to show (R+)• ⊆ R⊂ . Let a(R+)•b. This means a 
= b
and ¬bRa. Furthermore ¬bRa implies a /∈ bR∧b /∈ Ra. Assume x ∈ bR◦. If x = b then
aRb implies b ∈ aR, i.e. x ∈ aR◦. If x 
= b then x ∈ bR◦ =⇒ bRx. Since R is transitive
aRb∧ bRx =⇒ aRx =⇒ x ∈ Ra =⇒ x ∈ R◦a. Hence bR◦ ⊆ aR◦. Since a 
= b and
a /∈ bR, then a /∈ bR◦, which means bR◦ ⊂ aR◦. Dually we show R◦a⊂ R◦b, i.e. aR⊂b,
so we have proved (4).

The assertion (5) follows from (4) and Lemma 2.
If R = R• then clearly (R•)⊂ = R⊂ . We also heve R⊂∧• = R⊂ ∩R• = R⊂ ∩R = R⊂

as, by Lemma 1, R⊂ ⊆ R. From (3) it follows (R•)+ ⊆ (R+)•. If R = R•, then (R+)• ⊆
R+ = (R•)+, i.e. (R•)+ = (R+)•, so we have proved (6).

The assertion (7) follows from (1), (3) and Definition 1.
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Fig. 2. An example of a relation R, its partial order approximations R⊂∧• , (R•)⊂ , (R•)+, (R+)•,
and its relation ≺R from Lemma 3. Dotted lines in (R•)+ and (R+)• indicate the ralationship that
is not in R and was added by transitivity operation. For the relation ≺R, [x] denotes [x]Rcyc

id
for

x ∈ {a,b,c,d,e, f ,g}, and [a] = {a}, [b] = {b}, [c] = {c,d,e}, [ f ] = { f }, [g] = {g}.

The assertion (8) is a consequence of Lemma 3. Recall that we have
a≡(R+)• b ⇐⇒ {x | x(R+)•a}= {x | x(R+)•b} ∧ {x | a(R+)•x}= {x | b(R+)•x}.
If aRcycb then [a]Rcyc

id
= [b]Rcyc

id
. Hence we have

x(R+)•a ⇐⇒ [x]Rcyc
id
≺(R+)• [a]Rcyc

id
⇐⇒ [x]Rcyc

id
≺(R+)• [b]Rcyc

id
⇐⇒ x(R+)•b,

which means {x | x(R+)•a} = {x | x(R+)•b}. Similarly we can prove {x | a(R+)•x} =
{x | b(R+)•x}. Thus the assertion (8) does hold as well.

To show (9) first notice that, (R⊂ )• = (R⊂ )+ = R⊂ (as R⊂ is a partial order), R+∩
R• = (R+)• (from the definition of acyclic refinement), and R+∩R⊂ = R⊂ (since R⊂ ⊆
R⊆ R+). Since R+ = (R+)+, from (4) we have (R+)• = ((R+)+)• = ((R+)• = (R+)•.
From (1), (3) and (5) it follows that additional applications of ‘∩’, ‘⊂ ’, ‘+’ and ‘•’ do
not produce new realtions. �

5 Approximation with Partially Ordered Kernel

Even if R may in general be imprecise, in most cases some parts of R describe the
precise ranking. For instance if R is the result of expert voting, if all experts agree that
aRb, then we may assume that a <rank b (see Pereto’s principle [4]). In this section we
will formally treat such case.

Let R be a relation and let � be a partial order satisfying � ⊆ R. We are looking
for a partial order approximation of R that includes �. The relation � will be called a
partially ordered kernel of R. In general it may happen that � is not included in any
partial order approximation discussed in the previous section (Figure 1 in [7] shows the
case of a�b and ¬a(R+)•b). In general the union of partial orders may not be a partial
order at all, however we may use the following lemma.
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Lemma 6. Let R be a relation, <1 and <2 be partial orders satisfying:

1. a <1 b =⇒ aR+b, and
2. a <2 b =⇒ aR+b∧¬(bR+a).

Then (<1 ∪<2)+ is the smallest partial order containing <1 ∪<2.

Proof. (<1 ∪ <2)+ is evidently the smallest transitive relation containing <1 ∪ <2. It
suffices to show that (<1 ∪ <2)+ is irreflexive. Suppose it is not irreflexive, i.e. there
exoists x0 such that x0(<1 ∪<2)+x0. This means x0Q1x1Q2x2...xn−1Qnxn, with xn = x0,
where Qi is either <1 or <2. Since <1 and <2 are sharp partial orders, then at least one
of Qi’s, sat Qk, must be equal to <2. Since <1⊆ R+ and <2⊆ R+, then for each i, j ≤ n,
we have xiR+x j ∧ x jR+xi. In particular xkR+xk−1, a contradiction as xk−1 <2 xk =⇒
¬xk−1R+xk. Hence (<1 ∪<2)+ is irreflexive. �

Corollary 3. For each <∈ {R⊂∧• ,(R•)⊂ ,(R•)+,(R+)•}, and each partial order
� ⊆ R, (� ∪<)+ is the smallest partial order containing � ∪<. �

The special case of Corollary 3 was used in the ranking algorithms proposed in [6,7].

6 Final Comment

A systematic approach to finding partial order approximations of arbitrary relations has
been proposed. It is usually assumed that ranking is a weak order [4], and none of the
relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+ and (R+)• guarantees it, so they must eventually be
extended to appropriate weak orders using one of the method proposed in [3]. This
process is not discussed in this paper, an interested reader is referred to [6,7]. By mod-
ifying an example from the Introduction one may show that each of the four partial
order approximations of R is better than the others in given circumstances, however
some experiments made to justify some claims of [5] indicate that often (R+)• could be
interpreted as the “best” partial order approximation. This appears to be especially true
when cycles of R are naturally interpreted as indifference (see Theorem 1(8)). The solu-
tion presented in this paper uses classical relational calculus [9]. The problem of partial
order approximation of R does not seem to fit well to standard “lower/upper bound”
approach, which poses an interesting question “Can we apply Rough Sets paradigm [8]
to solve this problem?”.
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Abstract. The different types of rough equalities [4,5,6] of sets deal
with approximate equalities of sets which may not be equal in the usual
sense of classical set theory. In this article, we make further study of the
properties of rough equalities. A more general kind of equality of sets
(we call it rough equivalence) shall be introduced, which captures equal-
ities of sets at a higher level than rough equalities. Many properties of
this new notion and its comparison with rough equalities shall be dealt
with. We shall make use of the concepts of rough inclusions of sets in
this sequel.

Keywords: bottom R-equal, top R-equal, R-equal, bottom R-equivalent,
top R-equivalent and R-equivalent.

1 Introduction

The notion of rough sets was introduces by Pawlak [7] as an extension of the
concept of crisp sets and to capture impreciseness. Imprecision in this approach
is expressed by a boundary region of a set. In fact, the idea of rough set is
based upon approximation of a set by a pair of sets, called the lower and upper
approximations of the set [9,10,11].

Let U be a universe of discourse and R be an equivalence relation over U. By
U/R we denote the family of all equivalence classes of R, referred to as categories
or concepts of R and the equivalence class of an element x ∈ U is denoted by
[x]R. By a knowledge base we understand a relational system K=(U,R), where
U is as above and R is a family of equivalence relations over U.

For any subset P(
= φ) ⊆ R, the intersection of all equivalence relations in
P is denoted by IND(P) and is called the indiscernilibity relation over P. By
IND(K) we denote the family of all equivalence relations defined in K, that is
IND(K) = {IND(P ) : P ⊆ R, P 
= φ}.

Given any X ⊆ U and R ∈ IND(K), we associate two subsets, RX =
⋃
{Y ∈

U/R : Y ⊆ X} and R̄X =
⋃
{Y ∈ U/R : Y ∩X 
= φ}, called the R-lower and
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R-upper approximations of X respectively. The R-boundary of X is denoted by
BNR(X) and is given by BNR(X) = R̄X −RX . The elements of RX are those
elements of U which can certainly be classified as elements of X and elements
of R̄X are those elements of U which can possibly be classified as elements of
X, employing the knowledge of R. We say that X is rough with respect to R if
and only if RX 
= R̄X , equivalently BNR(X) 
= φ. X is said to be R-definable
if and only if RX = R̄X , or BNR(X) = φ.

2 Rough Equality of Sets

Extending the idea of equality of sets in crisp set theory, where two sets are said
to be equal if and only if they have the same elements, three types of rough or
approximate equalities have been introduced by Novotny and Pawlak [4,5,6]. We
state these definitions.

2.1 Definitions

Definition 1. Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈ IND(K).
We say that
(i) Two sets X and Y are bottom R-equal (X=BY ) if RX = RY ;
(ii) Two sets X and Y are top R-equal (X=T Y ) if R̄X = R̄Y ;
(iii) Two sets X and Y are R-equal (X=Y ) if (X=BY ) and (X=T Y ).
Equivalently, RX = RY and R̄X = R̄Y .

For simplicity, we drop the suffix R in the above notations. It can be easily veri-
fied that the relations bottom R-equal, top R-equal and R-equal are equivalence
relations over P (U), the power set of U . The concept of approximate equality of
sets refers to the topological structure of the compared sets but not the elements
they consist of. Thus sets having significantly different elements may be rough
equal. In fact, if X =B Y then RX = RY and as X ⊇ RX, Y ⊇ RY , X and Y
can differ only in elements of X −RX and Y −RY . However, it is easy to check
that two sets X and Y may be R-equal in spite of X ∩ Y = φ.

As noted by Pawlak ([8], p.26 ), rough equality of sets is of relative character,
that is things are equal or not equal from our point of view depending on what
we know about them. So, in a sense the definition of rough equality refers to our
knowledge about the universe. Some more related work on rough equalities can
be found in [1,2,3].

2.2 Properties

The following properties of rough equalities are well known (see for instance [8]):
The following properties of rough equalities are well known [8].

(1) X=BY if and only if X ∩ Y =BX and X ∩ Y =BY.
(2) X=T Y if and only if X ∩ Y =T X and X ∩ Y =T Y.
(3) If X=T X ′ and Y =T Y ′ then X ∪ Y =T X ′ ∪ Y ′.
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(4) If X=BX ′ and Y =BY ′ then X ∩ Y =BX ′ ∩ Y ′.
(5) If X=T Y then X ∪−Y =T U.
(6) If X=BY then X ∩ −Y =Bφ.
(7) If X ⊆ Y and Y =T φ then X=T φ.
(8) If X ⊆ Y and X=T U then Y =T U.
(9) X=T Y if and only if −X=B − Y.
(10) If X=Bφ or Y =BU then X ∩ Y =Bφ.
(11) If X=T U or Y =T U then X ∪ Y =T U.

In the following two properties of lower and upper approximations of rough sets,
we find that inclusions hold and equalities do not hold true in general:

(12) RX ∪RY ⊆ R(X ∪ Y ) and
(13) R̄(X ∩ Y ) ⊆ R̄X ∩ R̄Y .

The following results [12] provide necessary and sufficient conditions for equation
to hold in (12) and (13). In these results we take {E1, E2, ..., En} as a partition
of the universe U with respect to an equivalence relation R and {X1, X2, ..., Xm}
are subsets of U .

Theorem 1. We have
(14)

⋃m
i=1 R(Xi) ⊂ R(

⋃m
i=1 Xi)

if and only if there exists at least one Ej such that Xi ∩ Ej ⊂ Ej , for i =
1, 2, ..., m and

⋃m
i=1 Xi ⊇ Ej .

Corollary 1. Equality holds in (14) if and only if there exist no Ej such that
Xi ∩ Ej ⊂ Ej , i = 1, 2, ..., m and

⋃m
i=1 Xi ⊇ Ej .

Theorem 2. We have
(15) R̄(

⋂m
i=1 Xi) ⊂

⋂m
i=1 R̄(Xi)

if and only if there exists at least one Ej such that
Xi ∩ Ej 
= φ for i = 1, 2, ..., m and(

⋂m
i=1 Xi) ∩ Ej = φ.

Corollary 2. Equality holds in (14) if and only if there exist no Ej such that
Xi ∩ Ej 
= φ, i = 1, 2, ..., m. and (

⋂m
i=1 Xi) ∩ Ej = φ.

It has been noted that (see for instance [8]) the properties (1) to (11) fail to hold
if =B is replaced by =T or vice versa. However, we have the following observations
with regards to their interchange. We omit the proofs to accommodate space.

(i) The properties (7) to (11) hold true under the interchange.
(ii) The properties (5) and (6) holds true under interchange if BNR(Y ) = φ.
(iii) (A) The properties (1) and (4) hold under interchange if conditions of
Corollary 2 hold with m = 2.

(B) The properties (2) and (3) hold if conditions of Corollary 1 hold with
m = 2.

3 Rough Equivalence of Sets

In this section we introduce three concepts of rough equivalence of sets.



On Rough Equalities and Rough Equivalences of Sets 95

3.1 Definitions

(i) We say that two sets X and Y are bottom R-equivalent if and only if both
RX and RY are φ or not φ together (we write, X is b eqv. to Y ). We put the
restriction here that for bottom R-equivalence of X and Y either both RX and
RY are equal to U or none of them is equal to U .

(ii) We say that two sets X and Y are top R-equivalent if and only if both
R̄X and R̄Y are U or not U together (we write, X is t eqv. to Y ). We put the
restriction here that for top R-equivalence of X and Y either both R̄X and R̄Y
are equal to φ or none of them is equal to φ.

(iii) We say that two sets X and Y are R-equivalent if and only if X and Y are
bottom R-equivalent and top R-equivalent (we write, X is eqv. to Y ). We would
like to note here that when two sets X and Y are R-equivalent, the restrictions
in (i) and (ii) become redundant.

For example, in case (i), if one of RX and RY is equal to U then the correspond-
ing upper approximation must be U and for rough equivalence it is necessary that
the other upper approximation must also be U . Similarly, the other case.

3.2 Elementary Properties

(i) It is clear from the definitions above that in all cases (bottom,top,total)
R-equality implies R-equivalence and the converses are not true.
(ii) Bottom R-equivalence, top R-equivalence and R-equivalence are equivalence
relations on P(U).
(iii) If two sets are roughly equivalent then by using our present knowledge, we
may not be able to say whether two sets are approximately equal as described
above, but, we can say that they are approximately equivalent. That is both the
sets have or not have positive elements with respect to R and both the sets have
or not have negative elements with respect to R.

3.3 Example

Let us consider all the cattle in a locality as our universal set C. We define a
relation R over C by xRy if and only if x and y are cattle of the same kind.
Suppose for example, this equivalence relation decomposes the universe into
disjoint equivalence classes as given below.

C = {Cow, Buffalo, Goat, Sheep, Bullock}.
Let P1 and P2 be two persons in the locality having their set of cattle repre-

sented by X and Y .
We cannot talk about the equality of X and Y in the usual sense as the cattle

can not be owned by two different people.
Similarly we can not talk about the rough equality of X and Y except the

trivial case when both the persons do not own any cattle.
We find that rough equivalence is a better concept which can be used to decide

the equality of the sets X and Y in a very approximate and real sense.
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There are four different cases in which we can talk about equivalence of P1

and P2.
Case I.R̄X, R̄Y are not U and RX, RY are φ. That is P1 and P2 both have
some kind of cattle but do not have all cattle of any kind in the locality. So, they
are equivalent.
Case II.R̄X, R̄Y are not U and RX, RY are not φ. That is P1 and P2 both
have some kind of cattle and also have all cattle of some kind in the locality. So,
they are equivalent.
Case III.R̄X, R̄Y are U and RX, RY are φ. That is P1 and P2 both have all
kinds of cattle but do not have all cattle of any kind in the locality. So, they are
equivalent.
Case IV.R̄X, R̄Y are U and RX, RY are not φ. That is P1 and P2 both have
all kinds of cattle and also have all cattle of some kind in the locality. So, they
are equivalent.

There are two different cases under which we can talk about the non - equiv-
alence of P1 and P2.
Case V. One of R̄X and R̄Y is U and the other one is not. Then, out of P1

and P2 one has cattle of all kinds and other one dose not have so. So, they are
not equivalent. Here the structures of RX and RY are unimportant.
Case VI. Out of RX and RY one is φ and other one is not. Then, one of P1

and P2 does not have all cattle of any kind, whereas the other one has all cattle
of some kind. So, they are not equivalent. Here the structures of R̄X and R̄Y
are unimportant.

It may be noted that we have put the restriction for top rough equivalence that
in the case when R̄X and R̄Y are not equal to U , it should be the case that both
are φ or not φ together. It will remove the cases when one set is φ and the other
has elements from all but one of the equivalence classes but does not have all the
elements of any class completely being rough equivalent. Taking the example into
consideration it removes cases like when a person has no cattle being rough equiv-
alent to a person, who has some cattle of every kind except one.

Similarly, for bottom rough equivalence we have put the restriction that when
RX and RY are not equal to φ, it should be the case that both are U or not U
together.

3.4 General Properties

In this section we establish some properties of rough equivalences of sets. These
properties are similar to those for rough equalities. Some of these properties
which do not hold in full force, sufficient conditions have been obtained. Also,
we shall verify the necessity of such conditions. We need the concepts of different
rough inclusions [8] and rough comparisons, which are introduced below.

Definition 2
Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈ IND(K). Then
(i)We say that X is bottom R-included in Y (X�BRY ) if and only if RX ⊆ RY .
(ii)We say that X is top R-included in Y (X�TRY ) if and only if R̄X ⊆ R̄Y .
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(iii)We say that X is R-included in Y (X �R Y ) if and only if X�BRY and
X�TRY .

We shall drop the suffixes R from the notations above in their use of make them
simpler.

Definition 3
(i) We say X , Y ⊆ U are bottom rough comparable if and only if X�BY or

Y�BX holds.
(ii) We say X , Y ⊆ U are top rough comparable if and only if X�T Y or

Y�T X holds.
(iii)We say X , Y ⊆ U are rough comparable if and only if X and Y are both

top rough comparable and bottom rough comparable.

Property 1

(i) If X ∩ Y is b eqv to X and X ∩ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii)The converse is true if in addition X and Y are bottom rough comparable.
(iv)The condition in (iii) is not necessary.

Proof

(i) The proof is trivial.
(ii) The cases when RX and RY are both not φ but R(X ∩Y ) = φ the converse

is not true.
(iii)We have R(X ∩ Y ) = RX ∩ RY = RX or RY , as the case may be, since

X and Y are bottom rough comparable.
So,X ∩ Y is b eqv to X and X ∩ Y is b eq to Y .

(iv) We provide an example to show that this condition is not necessary. Let
us take U = {x1, x2, .., x8} and the partition induced by an equivalence
relation R be {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}.

Now, for X = {x1, x2, x3, x4} and Y = {x3, x4, x5, x6}, we have RX = X 
=
φ, RY = Y 
= φ, X ∩ Y = {x3, x4} and R(X ∩ Y ) = {x3, x4} 
= φ. So, X ∩ Y is
b eqv to both X and Y . But X and Y are not bottom rough comparable.

Property 2

(i) If X ∪ Y is t eqv to X and X ∪ Y is t eqv to Y then X is t eqv to Y .
(ii) The converse of (i) may not be true.
(iii) A sufficient condition for the converse of (i) to be true is that X and Y

are top rough comparable.
(iv) The condition in (iii) is not necessary.

Proof. The proof is similar to that of property 1 and hence omitted.

Property 3

(i) If X is t eqv to X ′ and Y is t eqv to Y ′ then it may or may not be true that
X ∪ Y is t eqv to X ′ ∪ Y ′.
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(ii) A sufficient condition for the result in (i) to be true is that X and Y are
top rough comparable and X ′ and Y ′ are top rough comparable.

(iii) The condition in (ii) is not necessary for result in (i) to be true.
Proof

(i) The result fails to be true when all of R̄(X), R̄(X ′) ,R̄(Y ) and R̄(Y ′) are
not U and exactly one of X ∪ Y and X ′ ∪ Y ′ is U .

(ii) We have R̄(X) 
= U , R̄(X ′) 
= U , R̄(Y ) 
= U and R̄(Y ′) 
= U . So, under the
hypothesis,R̄(X ∪ Y ) = R̄X ∪ R̄Y = R̄(X) or R̄(Y ), which is not equal to
U . Similarly, R̄(X ′ ∪ Y ′) 
= U . Hence, X ∪ Y is t eqv to X ′ ∪ Y ′.

(iii) Continuing with the same example, taking X = {x1, x2, x3}, X ′ = {x1, x2,
x4} , Y = {x4, x5, x6} and Y ′ = {x3, x5, x6}, we find that R̄X = {x1, x2, x3,
x4} = R̄X ′ 
= U and R̄Y = {x3, x4, x5, x6} = R̄Y ′ 
= U . So, X and Y
are not top rough comparable. X ′ and Y ′ are not top rough comparable.
But, R̄(X ∪ Y ) = {x1, x2, x3, x4, x5, x6} = R̄(X ′ ∪ Y ′). So, X ∪ Y is top
equivalent to X ′ ∪ Y ′ .

Property 4

(i) X is b eqv to X ′ and Y is b eqv to Y ′ may or may not imply that X ∩ Y
is b eqv to X ′ ∩ Y ′.

(ii) A sufficient condition for the result in (i) to be true is that X and Y are
bottom rough comparable and X ′ and Y ′ are bottom rough comparable.

(iii) The condition in (ii) is not necessary for result in (i) to be true.
Proof. The proof is similar to that of property 3 and hence omitted.

Property 5

(i) X is t eqv to Y may or may not imply that X ∪ (−Y ) is t eqv to U .
(ii) A sufficient condition for result in (i) to hold is that X=BY .
(iii)The condition in (ii) is not necessary for the result in (i) to hold.

Proof

(i) The result fails to hold true when R̄(X) 
= U , R̄(Y ) 
= U and still R̄(X ∪
(−Y )) = U .

(ii) As X=BY , we have RX = RY . So, −RX = −RY . Equivalently, R̄(−X) =
R̄(−Y ). Now, R̄(X ∪ −Y ) = R̄(X) ∪ R̄(−Y ) = R̄(X) ∪ R̄(−X) = R̄(X ∪
−X) = R̄(U) = U . So, X ∪ −Y is t eqv to U .

(iii) Continuing with the same example and taking X = {x1, x2, x3}, Y =
{x2, x3, x4} we get −Y = {x1, x5, x6, x7, x8}. So that RX = {x1, x2}
and RY = {x3, x4}. Hence, it is not true that X=BY . But, X ∪ −Y =
{x1, x2, x3, x5, x6, x7, x8}. So, R̄(X ∪ −Y ) = U . That is, X ∪ −Y
t eqv to U .

Property 6

(i) X is b eqv to Y may or may not imply that X ∩ (−Y ) is b eqv to φ.
(ii) A sufficient condition for the result in (i) to hold true is that X=T Y .
(iii) The condition in (ii) is not necessary for the result in (i) to hold true.
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Proof. The proof is similar to that of property 5 and hence omitted.

Property 7. If X ⊆ Y and Y is b eqv to φ then X is b eqv to φ .
Proof. As Y is b eqv to φ, we have R(Y ) = φ. So, if X ⊆ Y , R(X) ⊆ R(Y ) = φ.

Property 8. If X ⊆ Y and X is t eqv to U then Y is t eqv to U .

Proof. The proof is similar to that of Property 7.

Property 9. X is t eqv to Y if and only if −X is b eqv to −Y .

Proof. The proof follows from the property, R(−X) = −R̄(X).

Property 10. X is b eqv to φ, Y is b eqv to φ ⇒ X ∩ Y is b eqv to φ.

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R(X) = R(Y ) = φ.

Property 11. If X is t eqv to U or Y is t eqv to U then X ∪ Y is t eqv to U .

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R̄(X) = R̄(Y ) = U .

3.5 Properties with Interchanges

Like the case of rough equalities, it is curious to know the result of replacing
bottom rough equivalence with top rough equivalence and vice versa, in the
properties established in the previous section. In this section we shall establish
such properties whenever these are valid. Whenever the properties do not hold,
we shall provide sufficient conditions under which it can be true. In addition, we
shall test if such conditions are necessary also for the validity of the properties.
Invariably, it has been found that such conditions are not necessary. We shall
show it by providing suitable examples.

Property 12

(i) If X ∩ Y is t eqv to X and X ∩ Y is t eqv to Y then X is t eqv Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that conditions

of corollary 2 hold with m = 2.
(iv) The condition in (iii) is not necessary.

Proof

(i) The proof is trivial.
(ii) The result fails when R̄X and R̄(X) = UR̄(Y ) and R̄(X ∩ Y ) 
= U .
(iii) Under the hypothesis, we have R̄(X ∩ Y ) = R̄(X) ∩ R̄(Y ) . If X is t eqv

to Y then both R̄X and R̄Y are equal to U or not equal to U together. So,
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accordingly we get R̄(X ∩ Y ) equal to U or not equal to U . Hence the
conclusion follows.

(iv) We see that the sufficient condition for the equality to hold when m = 2
in Corollary 2 is that there is no Ej such that X ∩ Ej 
= φ, Y ∩ Ej 
= φ
and X ∩ Y ∩ Ej = φ.

Let us take U and the relation as above. Now, taking X = {x1, x3, x6} , Y =
{x3, x5, x6}. The above sufficiency conditions are not satisfied as {x5, x6}∩X 
=
φ, {x5, x6}∩Y 
= φ and {x5, x6}∩X∩Y = φ. However, R̄X = {x1, x2, x3, x4, x5,
x6} 
= U .

Property 13

(i) X ∪ Y is b eqv to X and X ∪ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that the

condition of corollary 1 holds for m = 2.
(iv) The condition in (iii) is not necessary.

Proof

(i) The proof is trivial.
(ii) The converse is not true when RX = φ = RY but R(X ∪ Y ) 
= φ.
(iii) Suppose X is b eqv to Y . Then RX and RY are φ or not φ together. If

the conditions are satisfied then R(X ∪ Y ) = RX ∪ RY . So, if both RX
and RY are φ or not φ together then R(X ∪ Y ) is φ or not φ accordingly
and the conclusion holds.

(iv) Let us take U as above. The classification corresponding to the
equivalence relation be given by {{x1, x2}, {x3, x4, x5}, {x6}, {x7, x8}}. Let
X = {x1, x3, x6}, Y = {x2, x5, x6}. Then R(X) 
= φ , R(Y ) 
= φ and
R(X ∪Y ) 
= φ. The condition in (iii) is not satisfied as taking E = {x1, x2}
we see that X ∩ E ⊂ E, Y ∩ E ⊂ E and X ∪ Y ⊇ E.

Property 14

(i) X is b eqv to X ′ and Y is b eqv to Y ′ may not imply X ∪ Y is b eqv to
X ′ ∪ Y ′.

(ii) A sufficient condition for the conclusion of (i) to hold is that the
conditions of corollary 2 are satisfied for both X , Y and X ′ , Y ′ separately
with m = 2.

(iii) The condition in (ii) is not necessary for the conclusion in (i) to be true

Proof

(i) When RX , RY ,RX ′, RY ′ are all φ and out of X ∪ Y and X ′ ∪ Y ′ one is φ
but the other one is not φ, the result fails to be true.

(ii) Under the additional hypothesis, we have R(X ∪ Y ) = RX ∪RY and R(X ′ ∪
Y ′) = RX ′ ∪ RY ′. Here both RX and RX ′ are φ or not φ together and both
RY and RY ′ are φ or not φ together. If all are φ then both R(X ∪ Y ) and
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R(X ′ ∪ Y ′) are φ. So, they are b eqv. On the other hand, if at least one pair is
not φ then we get both R(X ∪ Y ) and R(X ′ ∪ Y ′) are not φ and so they are
b eqv.

(iii) The condition is not satisfied means there is Ei with X∩Ei ⊂ Ei, Y ∩Ei ⊂ Ei

and X ∪ Y ⊇ Ei; there exists Ej ( not necessarily different from Ei) such that
X ′ ∩Ej ⊂ Ej , Y ′ ∩ Ej ⊂ Ej and X ′ ∪ Y ′ ⊇ Ej .

Let us consider the example, U = x1, x2, ..., x8 and the partition induced by an
equivalence relation R be {{x1, x2}, {x3, x4}, {x5, x6}{x7, x8}}. X = {x1, x5} ,
Y = {x3, x6} , X ′ = {x1, x4} and Y ′ = {x3, x7}. Then RX = RX ′ = RY =
RY ′ = φ. Also, R(X ∪ Y ) 
= φ, R(X ′ ∪ Y ′) 
= φ. So, X is b eqv to X ′, Y is
b eqv to Y ′ and X ∪ Y is b eqv to X ′ ∪ Y ′. However, X ′ ∩ {x3, x4} ⊂ {x3, x4},
Y ′∩{x3, x4} ⊂ {x3, x4} and X ′∪Y ′ ⊇ {x3, x4}. So, the condition are not satisfied.

Property 15

(i) X is t eqv to X ′ and Y is t eqv to Y ′ may not necessarily imply that X ∩ Y
is t eqv to X ′ ∩ Y ′.

(ii) A sufficient condition for the conclusion in (i) to hold is the conditions of
corollary 1 are satisfied for both X , Y and X ′ , Y ′ separately with m = 2.

(iii) The condition in (ii) is not necessary for the conclusion in (i) to hold.

Proof

(i) When R̄X = R̄X ′ = R̄Y = R̄Y ′ = U and out of R̄(X ∩ Y ), R̄(X ′ ∩ Y ′) one
is U whereas the other one is not U the result fails to be true.

(ii) If the conditions of corollary 1 are satisfied for X, Y and X’ , Y’ separately
then the case when R̄X = R̄X ′ = R̄Y = R̄Y ′ = U , we have R̄(X ′ ∩ Y ′) =
R̄X ′ ∩ R̄Y ′ = U and R̄(X ∩ Y ) = R̄X ∩ R̄Y = U . In other cases, if R̄X and
R̄X ′ not U or R̄Y and R̄Y ′ not U then as R̄(X ′∩Y ′) 
= U and R̄(X∩Y ) 
= U .
So, in any case X ∩ Y and X ′ ∩ Y ′ are t eqv to each other.

(iii)We continue with the same example. The conditions are not satisfied means
there is no Ej such that X ∩ Ej 
= φ, Y ∩ Ej 
= φ and X ∩ Y ∩ Ej = φ
or X ′ ∩ Ej 
= φ, Y ′ ∩ Ej 
= φ and X ′ ∩ Y ′ ∩ Ej = φ. Taking X = {x1, x5},
Y = {x3, x5}, X ′ = {x1, x4} and Y ′ = {x2, x4} we have X ∩ {x5, x6} 
=
φ,Y ′ ∩ {x5, x6} 
= φ and X ∩ Y ∩ {x5, x6} = φ .X ′ ∩ {x3, x4}, Y ′ ∩ {x3, x4}

= φ and X ′ ∩ Y ′ ∩ {x3, x4} . So, the conditions are violated. But R̄X 
=
U , R̄X ′ 
= U , R̄Y 
= U , R̄Y ′ 
= U . So, X is t eqv and Y is t eqv Y’. Also,

R̄(X ∩ Y ) 
= U and R̄(X ′ ∩ Y ′) 
= U . Hence, X ∩ Y is t eqv to X ′ ∩ Y ′ .

Property 16. X is b eqv to Y may or may not imply that X∪−Y is b eqv to U .

We note that all the properties from 7 to 11 hold true under the replacement of
t eqv by b eqv and vice versa.

4 Conclusions

In this article, study on the concept of rough equalities is carried out further
and the validity of their properties are checked when t eqv. and b eqv. are
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interchanged. Some of them are found to hold good under the changes, while
sufficient conditions are provided for other cases. A new concept of rough equiv-
alence has been introduced and many properties which are parallel to those of
rough equality are established. These results include both direct properties and
those obtained after interchange of the symbols of bottom rough equivalence
and top rough equivalence. An example is provided to show better applicabil-
ity of rough equivalence over rough equality in representation of approximate
knowledge.
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Abstract. This paper focuses on statistical independence of three vari-
ables from the viewpoint of linear algebra. While information granules
of statistical independence of two variables can be viewed as determi-
nants of 2 × 2- submatrices, those of three variables consist of linear
combination of odds ratios.

1 Introduction

Statistical independence between two attributes is a very important concept in
data mining and statistics. The definition P (A,B) = P (A)P (B) show that the
joint probability of A and B is the product of both probabilities. This gives sev-
eral useful formula, such as P (A|B) = P (A), P (B|A) = P (B). In a data mining
context, these formulae show that these two attributes may not be correlated
with each other. Thus, when A or B is a classification target, the other attribute
may not play an important role in its classification.

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes.

In this paper, a statistical independence in a contingency table is focused on
from the viewpoint of granular computing.

The first important observation is that a contingency table compares two
attributes with respect to information granularity. It is shown from the definition
that statistifcal independence in a contingency table is a special form of linear
depedence of two attributes. Especially, when the table is viewed as a matrix,
the above discussion shows that the rank of the matrix is equal to 1.0. Also, the
results also show that partial statistical independence can be observed.

The second important observation is that matrix algebra is a key point of
analysis of this table. A contingency table can be viewed as a matrix and several
operations and ideas of matrix theory are introduced into the analysis of the
contingency table.

The paper is organized as follows: Section 2 discusses the characteristics of
contingency tables. Section 3 shows the conditions on statistical independence
for a 2 × 2 table. Section 4 gives those for a 2 × n table. Section 5 extends

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 103–112, 2008.
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these results into a multi-way contingency table. Section 6 discusses statisti-
cal independence from matrix theory. Section 7 and 8 show pseudo statistical
independence. Finally, Section 9 concludes this paper.

2 Contingency Matrix

Definition 1. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables T (R1, R2) is a table
of a set of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj ∧R2 = Bi]A|, |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m). This table
is arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =

∑m
i=1 x1i =

x·j, |[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj∧R2 = Bi]A| = xij , |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · ,m).

Table 1. Contingency Table (m × n)

A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Definition 2. A contigency matrix MR1,R2(m,n,N) is defined as a matrix,
which is composed of xij = |[R1 = Aj ∧ R2 = Bi]A|, extracted from a conti-
gency table defined in definition 1.

That is,

MR1,R2(m,n,N) =

⎛
⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn

⎞
⎟⎟⎟⎠ .

��

For simplicity, if we do not need to specify R1 and R2, we use M(m,n,N) as a
contingency matrix with m rows, n columns and N samples.

One of the important observations from granular computing is that a con-
tingency table shows the relations between two attributes with respect to inter-
section of their supporting sets. When two attributes have different number of
equivalence classes, the situation may be a little complicated. But, in this case,
due to knowledge about linear algebra, we only have to consider the attribute
which has a smaller number of equivalence classes. and the surplus number of
equivalence classes of the attributes with larger number of equivalnce classes can
be projected into other partitions. In other words, a m×n matrix or contingency
table includes a projection from one attributes to the other one.
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3 Statistical Independence in 2 × 2 Contingency Table

Let us consider a contingency table shown in Table 1 (m = n = 2). Statistical
independence between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0])× P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0])× P ([R2 = 1])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1])× P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1])× P ([R2 = 1])

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=
x11 + x12

N
× x11 + x21

N
x12

N
=
x11 + x12

N
× x12 + x22

N
x21

N
=
x21 + x22

N
× x11 + x21

N
x22

N
=
x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will be obtained from these four
formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,

Theorem 1. If two attributes in a contingency table shown in a 2 × 2 contin-
gency table are statistical indepedent, the following equation holds:

x11x22 − x12x21 = 0 (1)

��

It is notable that the above equation corresponds to the fact that the determinant
of a matrix corresponding to this table is equal to 0. Also, when these four values
are not equal to 0, the equation 1 can be transformed into:

x11

x21
=
x12

x22
.

Let us assume that the above ratio is equal to C(constant). Then, since x11 =
Cx21 and x12 = Cx22, the following equation is obtained.

x11 + x12

x21 + x22
=
C(x21 + x22)
x21 + x22

= C =
x11

x21
=
x12

x22
. (2)

It is also notable that this equation is the same as the equation on collinearity
of projective geometry [1].
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4 Statistical Independence in m × n Contingency Table

Let us consider a m×n contingency table shown in Table 1. Statistical indepen-
dence of R1 and R2 gives the following formulae:

P ([R1 = Ai, R2 = Bj ]) = P ([R1 = Ai])P ([R2 = Bj ])
(i = 1, · · · ,m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (3)

Thus, we have obtained:

xij =
∑n

k=1 xik ×
∑m

l=1 xlj

N
. (4)

Thus, for a fixed j,
xiaj

xibj
=

∑n
k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb

Since this relation will hold for any j, the following equation is obtained:

xia1

xib1
=
xia2

xib2
· · · = xian

xibn
=

∑n
k=1 xiak∑n
k=1 xibk

. (5)

Since the right hand side of the above equation will be constant, thus all the
ratios are constant. Thus,

Theorem 2. If two attributes in a contingency table shown in Table 1 are sta-
tistical indepedent, the following equations hold:

xia1

xib1
=
xia2

xib2
· · · = xian

xibn
= const. (6)

for all rows: ia and ib (ia, ib = 1, 2, · · · ,m).

��

4.1 Three-Way Table

Let “•” denote as the sum over the row or column of a contingency matrix. That
is ,

xi• =
n∑

j=1

xij (7)

x•j =
m∑

i=1

xij , (8)
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where (7) and (8) shows marginal column and row sums. Then, it is easy to see
that

x•• = N,

where N denotes the sample size.
Then, Equation (4) is reformulated as:

xij

x••
=
xi•
x••
× x•j

x••
(9)

That is,

xij =
xi• × x•j

x••
Or

xijx•• = xi•x•j

Thus, statistical independence can be viewed as the specific relations between
assignments of i,j and “·”. By use of the above relation, Equation (6) can be
rewritten as:

xi1j

xi2j
=
xi1•
xi2•

,

where the right hand side gives the ratio of marginal column sums.
Equation (9) can be extended into multivariate cases. Let us consider a three

attribute case.
Statistical independence with three attributes is defined as:

xijk

x•••
=
xi••
x•••

× x•j•
x•••

× x••k

x•••
, (10)

Thus,
xijkx

2
••• = xi••x•j•x••k, (11)

which corresponds to:

P (A = a,B = b, C = c) = P (A = a)P (B = b)P (C = c), (12)

where A,B,C correspond to the names of attributes for i,j,k, respectively.
In statistical context, statistical independence requires hiearchical model. That

is, statistical independence of three attributes requires that all the two pairs of
three attributes should satisfy the equations of statistical independence. Thus,
for Equation (12), the following equations should satisfy:

P (A = a,B = b) = P (A = a)P (B = b),
P (B = b, C = c) = P (B = b)P (C = c), and
P (A = a, C = c) = P (A = a)P (C = c).

Thus,

xij•x••• = xi••x•j• (13)
xi•kx••• = xi••x••k (14)
x•jkx••• = x•j•x••k (15)
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From Equation (11) and Equation (13),

xijkx••• = xij•x••k,

Therefore,
xijk

xij•
=
x••k

x•••
(16)

In the same way, the following equations are obtained:

xijk

xi•k
=
x•j•
x•••

(17)

xijk

x•jk
=
xi••
x•••

(18)

In summary, the following theorem is obtained.

Theorem 3. If a three-way contingency table satisfy statistical independence,
then the following three equations should be satisfied:

xijk

xij•
=
x••k

x•••
xijk

xi•k
=
x•j•
x•••

xijk

x•jk
=
xi••
x•••

��

Thus, the equations corresponding to Theorem 2 are obtained as follows.

Corollary 1. If three attributes in a contingency table shown in Table 1 are
statistical indepedent, the following equations hold:

xijka

xijkb

=
x••ka

x••kb

xijak

xijbk
=
x•ja•
x•jb•

xiajk

xibjk
=
xia••
xib••

for all i,j, and k.

��

4.2 Multi-way Table

The above discussion can be easily extedned into a multi-way contingency table.
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Theorem 4. If a m-way contingency table satisfy statistical independence, then
the following equation should be satisfied for any k-th attribute ik and jk (k =
1, 2, · · · , n) where n is the number of attributes.

xi1i2···ik···in

xi1i2···jk···in

=
x••···ik···•
x••···jk···•

Also, the following equation should be satisfied for any ik:

xi1i2···in × xn−1
••···•

= xi1•···•x•i2···• × · · · × x••···ik···• × · · · × x••···•in

��

5 Information Granule for Contingency Matrix

5.1 Residual of Contingency Matrix

Tsumoto and Hirano [2] discusses the meaning of pearson residuals from the
viewpoint of linear algebra.

The residual is defined as a difference between an observed value for each cell
in a contingency matrix and an expected value:

σij = xij −
xi• × x•j

x••
.

And simple calculation leads to the following theorem.

Theorem 5. The residual of MR1,R2(m,n,N) is obtained as:

σij =
1
x••
{xijx•• − xi• × x•j}

=
1
x••

⎧⎨
⎩xij

∑
k =i

∑
l =j

xkl −

⎛
⎝∑

l =j

xil

⎞
⎠

⎛
⎝∑

k =i

xkj

⎞
⎠
⎫⎬
⎭

=
1
x••

∑
k =i
l =j

(xijxkl − xkjxil)

=
1
x••

∑
k =i
l =j

∆i,k
j,l ,

where ∆i,k
j,l is the determinant of a 2 × 2 submatrix of MR1,R2(m,n,N) with

selection of i and k rows and j and l columns. ��
Thus, a 2× 2 submatrix in a contingency table can be viewed as a information
granule for statistical (in)dependence.

Can we generalize this results into statistical independence of three variables ?
This is our main question to be partially answered in this paper.
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5.2 Information Granule for 2 × 2 × 2 Data Cube

Let us get back to Equation (11), (13), (14) and (15).
From Equation (11), the residual for xijk is obtained as:

σijk = xijk −
xi•• × x•j• × x••k

x2•••
.

For simplicity, let us confine to 2 × 2-data cube. Then, the above residual for
x111 will be:

σ111 = x111 −
x1•• × x•1• × x••1

x2•••

=
1

x2•••

{
x111

(
x2
••• − x•1•x••1

}}
−

∑
k =i or

l =j

x1jkx•1•x••1}

=
1

x2•••
{x•1•(x111x••2 − x112x••1) + x••1(x111x•2• − x121x•1•)

+x111x•2•x••2 − x122x•1•x••1}

x111x••2 − x112x••1 and x111x•2• − x121x•1• are related with Equations (13),
(14) because:

∆111 = x111x
2
••• − x1••x•1•x••1

= x•••(x111x••• − x11•x••1)
= x•••{x111x••• − (x111 + x112)x••1}
= x•••(x111x••2 − x112x••1)

and in similar way,

∆111 = x111x
2
••• − x1••x•1•x••1

= x•••(x111x••• − x1•1x•1•)
= x•••(x111x•2• − x121x•1•)

Thus, when Equations (13), (14) and (15) holds, x111x••2 − x112x••1 = 0 and
x111x•2• − x121x•1• = 0.

Then, let us proceed to the calculation of the third part: δ111 = x111x•2•x••2−
x122x•1•x••1.

Since the following equations satisfies:

x111x••• − x1••x•11 = x111x2•• − x211x1••
x122x••• − x1••x•22 = x122x2•• − x222x1••,
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the former and latter part of δ111 is simplified to:

x111x•2•x••2 =
1

x•••
{(x111x2•• − x211x1••) + x1••x•11}x•2•x••2

x122x•1•x••1 =
1

x•••
{(x122x2•• − x222x1••)

+x1••x•22}x•1•x••1 (19)

When Equation (15) satisfies, x111x••2 − x112x••1 and x122x••1 − x121x••2
become 0. Then, the remaining part is given as:

x1•x•11x•2•x••2 − x1••x•22x•1•x••1
= x1••(x•11x•2•x••2 − x•22x•1•x••1)

Since:

x•11x••• − x•1•x••1 =
∑

k =1 or
l =1

(x•11x•kl − x•1lx•k1)

x•22x••• − x•2•x••2 =
∑

k =2 or
l =2

(x•22x•2l − x•2lx•k2),

these values are given as 2×2 subderminants of matrices generated from a 2×2
data cube.

Theorem 6. The residual sigma111 of 2× 2× 2-data cube is obtained as:

σ111x
2
••• = x•1•(x111x••2 − x112x••1)

+x••1(x111x•2• − x121x•1•)

+
1

x•••
(x111x2•• − x211x1••)

+
1

x•••
(x122x2•• − x222x1••)

+
x1••
x2•••

∑
k =1 or

l =1

(x•11x•kl − x•1lx•k1)

+
x1••
x2•••

∑
k =2 or

l =2

(x•22x•2l − x•2lx•k2). (20)

��

The above formula shows that even in the context of three variables, the concept
of 2 × 2 subdeterminants of the matrices generated from a data cube play an
central role in measuring statistical (in)dependence. It is notable that this equa-
tion will become 0 when Equation (13), (14) and (15) are satisfied. However, the
converse is not trivial.
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5.3 Information Granule for l × m × n Data Cube

The above results can be generalized, although the results are rather
complicated.

Theorem 7. The residual σijk of l ×m× n-data cube is obtained as:

σijkx
2
••• = x•j•(xijk

∑
n=k

x••n −
∑
n=k

xijnx••1)

+x••k(xijk

∑
m =j

x•m• −
∑
m =j

ximkx•j•)

+
1

x•••
(xijk

∑
l =i

xl•• −
∑
l =i

xljkxi••)

+
1

x•••
(

∑
m =j and

n=k

ximn

∑
l =i

xl•• −
∑

l =i and
m =j and

n=k

xlmnxi••)

+
xi••
x2•••

l,m∑
i,j=1

∑
p=i or

q =j

(x•ijx•pq − x•ipx•qj)

(21)

��

As shown in this formula, alternative sum is very important concept for statis-
tical independence of three variables.

6 Conclusion

This paper focuses on statistical independence of three variables from the view-
point of linear algebra. While information granules of statistical independence
of two variables can be viewed as determinants of 2 × 2- submatrices, those of
three variables consist of several combination s of odds ratios from a data cube,
although the formula is rather complicated. Thus, in the case of three attributes,
odds ratios play an important role in measuring the degree of statistical indepen-
dence. It will be our future work to search for the corresponding determinants
for 2× 2× 2-data cube.
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Abstract. In this work, we pursue the theme of applications of rough
mereology, presenting a scheme for classifier construction by voting of
training objects, exhaustive set of rules, and granules of training objects
according to weights assigned by residual rough inclusions. The results
show a high effectiveness of this approach as witnessed by the reported
tests with some well–known data sets from UCI repository whose results
are compared against the standard rough set exhaustive classifier.

Keywords: granulation of knowledge, rough inclusions, residual impli-
cations, granular decision systems.

1 Introduction

We formalize data sets as decision systems of the form of a triple (U,A, d), where
U is a set of objects, A is a set of attributes, and d /∈ A is the decision.

For a pair of objects u, v, we define sets DIS(u, v) = {a ∈ A : a(u) 
= a(v)}
and IND(u, v) = {a ∈ A : a(u) = a(v)}, and their variants for a given ε,
i.e., DISε(u, v) = {a ∈ A : ||a(u) − a(v)|| ≥ ε} and INDε(u, v) = {a ∈ A :
||a(u)−a(v)|| < ε}, where the standard metric ||x−y|| in the real line is applied,
i.e., we assume from now on that attributes are real–valued.

We apply in this work an approach to granulation proposed in [5], [7], [8],
consisting in using rough inclusions; see [1], [2] for some earlier results.

A rough inclusion is a relation µ ⊆ U×U× [0, 1] see, e. g., [9], where µ(u, v, r)
means that u is similar to v to a degree of r.

One can look at rough inclusions as measures of similarity between objects.
To understand the nature of rough inclusions, a few lines of introduction can
be followed. One of them, probably intuitively most appealing, goes back to the
idea of Henri Poincaré of a similarity relation not being an equivalence: consider
points in the real line or plane along with a metric ρ bounded by 1, e.g., the
Euclidean metric bounded by 1, i.e. ρ(x, y) = min{||x − y||, 1}, where ||x − y||
denotes this time the Euclidean metric in the Euclidean space Rk with a finite
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dimension k. Given a parameter δ > 0, a small positive real number, one says
that points x, y are similar in case ρ(x, y) ≤ δ, in symbols simδ(x, y). Then,
clearly, simδ is a tolerance relation which is not any equivalence.

A step further consists in introducing a graded counterpart to simδ by letting,
for a parameter’s r value in the interval [0, 1],

simδ(x, y, r) iff ρ(x, y) ≤ 1− r.

Properties of simδ(x, y, r) follow easily from properties of ρ, and among them
one finds,

(MON) If simδ(x, y, 1) then for each z, from simδ(z, x, r) it follows that simδ

(z, y, r).

(ID) simδ(x, x, 1) for each x.

(EXT) If simδ(x, y, r) and s ≤ r then simδ(x, y, s).

Properties (MON), (ID), (EXT) can be taken as generic properties of any simi-
larity. In particular each rough inclusion is required to satisfy them.

A standard rough inclusion is the one induced by the �Lukasiewicz t–norm,
or, equivalently, by the the Hamming distance on objects in a decision system,
see [5], [7], [8], given as

µ(v, u, r) iff
|IND(u, v)|
|A| ≥ r. (1)

Any continuous t–norm does induce a rough inclusion by means of its residual
implication, see [5]; the residual implication x⇒t y of a t–norm t, is defined as

x⇒t y ≥ z iff t(x, z) ≤ y. (2)

In [5], it is shown that ⇒t does induce a rough inclusion on the interval [0, 1]:

µ⇒t(u, v, r) iff x⇒t y ≥ r. (3)

We use three basic t–norms: the minimum min, the product P (x, y) = x ·y, and
the �Lukasiewicz L(x, y) = max{0, x+ y − 1}.

In case x > y, these t–norms induce implications given by:

(MIN) x⇒min y = y,
(P) x⇒P y = y

x , and
(L) x⇒L y = min{1, 1− x+ y} (when x ≤ y the value is always 1).

For a given rough inclusion µ and a radius r ∈ [0, 1], the granule gµ(u, r) is the
set of those v for which µ(v, u, r) holds, see [5].
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2 Voting by Training Objects

We apply to data sets the CV-5 cross–validation and as a data set we use Wis-
consin Diagnostic Breast Cancer [11].

For each test object u, and a training object v, for each attribute a, the factor
qa(u, v)= ||a(u)−a(v)||

diam a is computed where diam a is the length of the interval
T (a) = [m(a),M(a)], where : m(a) is the minimal value of a on the training set,
and M(a) is the maximal value of a on the training set. In case the test value
a(u) lies outside T (a) it is projected into T (a) by the mapping fa : x → ma

when x < ma, x→Ma when x > Ma, x→ x, otherwise.
In case qa(u, v) ≥ ε, a is included into DISε(u, v), otherwise a is included

into INDε(u, v), and these sets yield quotients disε(u, v) = |DISε(u,v)|
|A| and

indε(u, v) = |INDε(u,v)|
|A| .

The weight wu(v, t) = disε(u, v) →t indε(u, v) is then computed according
to (3) with respect to a chosen t–norm t.

Fig. 1. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 5 v1. Granules of train-
ing objects. t=min; Best result for ε = 0.07: accuracy=0.936283, coverage=1.0.
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Fig. 2. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 6 v1. Granules of train-
ing objects. t=P; Best result for ε = 0.07: accuracy=0.922124, coverage=1.0.

For each decision category c, the factor selu(c, t)
=
�

v in training set wu(v,t)

size c in training set is computed and the test object u is assigned the cat-
egory with maximal selu(c).

The values of the parameter ε are taken every one hundreth, i.e. from 0.0
through 0.01, 0.02, to 0.99, 1.0.

Performance of this classifier was judged against the exhaustive classifier (see,
e.g., [10] for a public domain exhaustive classifier).

We show results for Wisconsin data set in which case the exhaustive classifier
gave accuracy of 0.6846, and coverage of 0.9928. Fig. 1 shows results in case of
the t–norm t = min, for Wisconsin data set.

Analogously, Fig.2 shows results in case t = P , and Fig. 3 in case t = L.

3 Voting by Exhaustive Set of Rules

In this case, rules induced from the training set voted in the manner simi-
lar to that in sect. 2 with the difference that instead of the value a(v) the
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Fig. 3. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 7 v1. Granules of train-
ing objects. t=L; Best result for ε = 0.01: accuracy=0.916814 , coverage=1.0.

value a(r) assigned to the attribute a in the premise of rule r was inserted.
Weights wu(r, t) took part in voting according to the factor selu(c, t)
=
�

rules pointing to c wu(r,t)·support r

size c in training set computed for each category c, and c∗ with
selu(c∗, t) = maxcselu(c, t) was assigned to u.

Figs. 4, 5, give results for, respectively, t = min, P .

4 Granules of Granular Reflections of Training Objects

The idea of a granulated data set was proposed in [8]: given a granulation radius
r, the set G(r, µ) of all granules of the radius r is formed. From this set, a
covering C(r, µ,G) of the set of objects U is chosen by means of a strategy G,
which is usually a random choice of granules with irreducibility checking.

Given the covering C(r, µ,G), attributes in the set A are factored through
granules to make a new attribute set. For an attribute a ∈ A, and a granule g,
the new attribute aG is defined as

aG(g) = S({a(v) : v ∈ g}), (4)
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Fig. 4. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 5 v2. Granules of rules.
t=min; Best result for ε = 0.23: accuracy=0.943363, coverage=1.0.

Table 1. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 5 v3. Granu-
lar objects. t=min; r gran=granulation radius, optimal eps=best optimal epsilon,
acc=accuracy, cov=coverage, trn=training set. Best result for r = 0.1, ε = 0.07: accu-
racy=0.938053, coverage=1.0.

r gran optimal eps acc cov trn

nil nil 0.6846 0.9928 456
0.0 0.05 0.631716 0.99469 1.0

0.0333333 0.09 0.782301 1.0 170.0
0.0666667 0.07 0.934513 1.0 438.6

0.1 0.07 0.938053 1.0 446.6
0.133333 0.07 0.938053 1.0 446.6
0.166667 0.07 0.938053 1.0 446.6

0.2 0.07 0.938053 1.0 446.6
0.233333 0.07 0.936283 1.0 455.4
0.266667 0.07 0.936283 1.0 456.0
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Fig. 5. CV-5; Wisconsin Diagnostic Breast Cancer; Algorithm 6 v2. Granules of rules.
t=P; Best result for ε = 0.23: accuracy=0.943363, coverage=1.0.

where S is a strategy for choosing the value of aG, and a new information system
is formed: (UG = C(r, µ,G), AG = {aG : a ∈ A}) called a granular reflection of
the given information system [8],[5]. The new granular object g = g(u, r) with
values aG(g) of attributes a is called the granular reflection of the object u.

In experiments in this case, a granular reflection of the training set is formed,
with the strategy S as majority voting by objects in the granule with random
tie resolution. Then the procedure of sect. 2 is repeated with granular reflec-
tions of training objects. Parameters are granulation radius r and ε. Results in
Table 1 are given for each granulation radius in terms of the optimal ε – the
value of ε at which the highest accuracy of classification is obtained. Tests were
performed with Wisconsin data set and CV–5 cross–validation was applied.

5 Conclusions

Results of experiments along with the ones reported earlier [1], [2] witness the
high effectiveness of this approach: quality of classification is much higher than
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with standard exhaustive classifier. We observe that optimal classifier obtained
with the general radius r and t = min gives better accuracy than the classifier
on training objects with r = 1 which means that weighting heuristics slightly
improve the quality of classification. The best result is obtained with rules and
r = 1 which implies that passing to rules reduces slightly the noise in data.
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Abstract. In this paper, we treat information tables with imprecise
decisions, for short, imprecise decision tables. In the imprecise decision
tables, decision attribute values are specified imprecisely. Under such
decision tables, lower and upper object sets for a set of decision attribute
values are defined. Their properties are shown. Concepts of reducts of
imprecise decision tables are studied. Discernibility matrix methods are
investigated for calculations of all reducts.

1 Introduction

Rough set approach proposed by Pawlak [9] provides useful tools for reasoning
from data. It is applied to various fields such as medicine, engineering, man-
agement and so on. In order to extend the applicability, rough sets have been
generalized in various ways [2,3,11,12,13]. Some [6] of them treats imprecise data
in decision tables. Nevertheless, decision attribute values have been assumed to
be precise, so far. Indeed, precise decision attribute values are usually obtained.
In data mining and knowledge discovery, precise data are preferable. On the
other hand, imprecise data were treated in incomplete information databases [7]
as well as in nondeterministic information systems [8].

In the real world, we come across cases when we only obtain data with impre-
cise decision attribute values. For example, evaluation of the economic situation
would be difficult to tell precisely. Failure diagnosis of complex systems would
start from the expert hunch or conjecture. The conjectured source of failure
is a decision attribute value and it would be imprecise. Consider a forecast, it
would be difficult to be exact and precise. Some tolerance would be necessary.
Moreover, evaluations by humans are often imprecise. Even data with imprecise
decision attribute values would be useful to induce rough knowledge or to find
the condition attributes possibly to effect on the decision attribute value. It is
much more informative than ignorance. Utilization and analyzing such data is
valuable if a sufficient number of precise data are not available.

Decision tables with imprecise decision attribute values have not yet discussed
considerably. In this paper, we study the rough set approach to decision tables

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 121–130, 2008.
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Table 1. The imprecise decision table

Object c1 c2 · · · cm d

u1 c1(u1) c2(u1) · · · c1(u1) F (u1)
u2 c1(u2) c2(u2) · · · c2(u2) F (u2)
...

...
...

...
...

...
un c1(un) c2(un) · · · cm(un) F (un)

with imprecise decision attribute values. The decision tables are called imprecise
decision tables. Because decision attribute values are imprecise, decision classes
are often empty. Then we use sets of decision attribute values instead of decision
classes. We define upper and lower object sets to a given set of decision attribute
values. In this occasion, we combine all information about decision attribute val-
ues of objects having common condition attribute values. We also define a set
of conflicting objects and sets of boundary objects. The properties of upper and
lower object sets as well as a set of conflicting objects and sets of boundary
objects are investigated. Using upper and lower object sets, sets of conflicting
and boundary objects, condition attribute reduction is discussed. Various kinds
of structure preserving reducts [4] are defined and their relationships are shown.
As the result, they are consolidated into three kinds of reducts. In order to cal-
culate all reducts, three kinds of discernibility matrices are successfully obtained
corresponding is to three kinds of reducts.

This paper organized as follows. In next section, imprecise decision tables are
introduced and upper and lower object sets as well as a set of conflicting objects
and sets of boundary objects are defined. Their properties are investigated. In
Section 3, condition attribute reduction is studied. Various kind of structure
preserving reducts [4] are defined and consolidated into three kinds of reducts.
Then discernibility matrices corresponding to the three kinds of reducts are
shown and all reducts are obtained as prime implicants of three kinds of Boolean
functions. In Section 4, concluding remarks are given.

2 Rough Sets Under Imprecise Decision Tables

2.1 Information Tables with Imprecise Decision Values

In this paper, we treat information tables with imprecise decision values shown
in Table 1. The information table is a decision table represented by a quadruple
I = (U,C ∪ {d}, F, V ). U is a finite set of objects, U = {u1, u2, . . . , un}. C is a
finite set of condition attributes, C = {c1, c2, . . . , cm}. Each attribute ci can be
seen as a function from U to Vci , where Vci is the domain of condition attribute
ci. The function value ci(uj) indicates the attribute value of uj. d is a decision
attribute to which each object uj takes a unique value d(uj). F is a set-valued
function from U to 2Vd , where 2Vd is a power set of Vd and Vd is the domain of
decision attribute d. F (uj) indicates a set of possible decision attribute values
of uj . Finally, V =

⋃
c∈C Vc ∪ Vd.
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In Table 1, decision attribute values are allowed to take set-values, while in
the conventional decision tables, decision attribute values should be singletons,
i.e., single values. Each set-value of decision attribute shows possible decision
attribute values of the object. Such set-value may be obtained when decision
attribute values are not specified precisely. For example, when our knowledge is
not complete but partial, we may specify the decision value such as “not d1”.
Moreover, when the decision maker hesitates his/her classification of an objects,
he/she may specify “d1 or d2”. In those cases, decision attribute values can be
treated as imprecise values. Even imprecise decision values would be more useful
than no information and a number of imprecise decision values may collaborate
to obtain precise values and useful results. Imprecise decision attribute values
can be also regarded as values by conjecture. Then allowing imprecise decision
attribute values enables us to analyze data by conjectures.

Information tables with imprecise decisions are called imprecise decision tables
in this paper. We propose a rough set approach to imprecise decision tables.

2.2 Rough Sets Under Imprecise Decision Tables

Considering the imprecise nature of decision attribute values of imprecise deci-
sion tables, we define generalized decision values δP (uj) and aggregated decision
values F̂P (uj) under a given condition attribute set P ⊆ C as follows:

δP (uj) = {F (u) | u ∈ U, ci(u) = ci(uj), ∀ci ∈ P}, (1)

F̂P (uj) =
{⋂

δP (uj), if
⋂
δP (uj) 
= ∅,⋃

δP (uj), otherwise. (2)

We note that δP (uj) is a family of sets of decision attribute values while F̂P (uj) is
a set of decision attribute values. δP (uj) collects imprecise decision values F (u) of
all objects u taking same condition attribute values with respect to P ⊆ C as uj

takes. Since we assume the true decision attribute value of uj is in F (uj) and the
same decision attribute value would be assigned for all objects which share same
condition attribute values, we may obtain a smaller possible range for decision
attribute value of uj by intersecting F (u)’s of all such objects u. However, if
the given data is not totally consistent, the intersection can be empty. If the
intersection is empty, some of F (u) in the given table would be wrong or some
condition attribute would be missing. In this case, the union would show the
possible range. Based on these ideas, F̂P (uj) is defined. Taking union when the
intersection is empty intersection is similar to Dubois and Prade’s combination
rule [1] in Dempster-Shafer theory of evidence.

We define the following object sets for a given condition attribute set P ⊆ C:

ConfP =
{
u ∈ U |

⋂
δP (u) = ∅

}
, (3)

P∗(X) = {u ∈ U | F̂P (u) ⊆ X}, (4)
P ∗(X) = {u ∈ U | F̂P (u) ∩X 
= ∅}, (5)

BnP (X) = P ∗(X)− P∗(X), (6)
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Table 2. A table of failure conjectures by users

conjecture (case,user) func.1 func.2 func.3 func.4 func.5 cause F̂C

u1 (P1,E1) yes yes no no yes {B, C} {B, C}
u2 (P1,E2) yes yes no no yes {A, B, C} {B, C}
u3 (P2,E1) yes yes no yes yes {A, B} {A, B}
u4 (P3,E2) yes yes yes yes yes {A} {A, C}
u5 (P4,E1) yes yes no no no {C} {C}
u6 (P3,E1) yes yes yes yes yes {C} {A, C}
u7 (P5,E2) no yes yes yes yes {A, C} {A, C}
u8 (P6,E2) yes no no yes no {B} {B}

whereX ⊆ Vd. ConfP is a set of conflicting objects. P∗(X) is a lower object set of
X and P ∗(X) is an upper object set of X . BnP (X) is a set of boundary objects.
If u ∈ P∗(X), the decision attribute value of u is in X with no conflict with given
data. In other words, if u ∈ P∗(X), the decision attribute value of u is surely in X
as far as the given decision table is correct. On the other hand, if u ∈ P ∗(X), the
decision attribute value of u ∈ X is at least possible. Moreover, if u ∈ BnP (X),
the decision attribute value of u ∈ X is only possible. If u 
∈ P ∗(X), the decision
attribute value of u would never take in X . When F (uj), j = 1, 2, . . . , n are
singletons, P∗(X) and P ∗(X) are coincide with lower approximation P (O(X))
and upper approximation P (O(X)) of the classical rough sets [9], respectively,
where O(X) = {u ∈ U | F (u) ⊆ X}. Then P∗(X) and P ∗(X) can be seen as
extensions of lower and upper approximations of the classical rough sets. Then
the pair (P∗(X), P ∗(X)) is called rough sets with respect to decision attribute
value set X under imprecise decision table I.

Example 1. Consider Table 2 showing conjectures u1, u2, . . . , u8 by two users
E1 and E2 about failure causes of 6 cases P1, P2, . . . , P6 in a complex system
from 5 functions func.1, func.2, . . . , func.5. There are three possible causes A,
B and C. In this table, U = {ui | i = 1, 2, . . . , 8}, C = {func.1(f1), func.2(f2),
func.3(f3), func.4(f4), func.5(f5)}, Va = {yes, no} for a = f1, . . . , f5 and Vcause =
{A,B,C}. Then V = {yes, no,A,B,C}. The second column of Table 2 shows a
pair (Pi,Ei) of case Pi and user Ei. The pair shows that the failure cause of Pi

is conjectured by Ei and the result is shown in the column of “cause”. For each
conjecture ui, F̂C(ui) is shown in the rightmost column of Table 2. The set of
conflicting objects and some lower and upper object sets are obtained as

ConfP = {u4, u6}, C∗({B,C}) = {u1, u2, u5, u8},
C∗({B,C}) = {u1, u2, . . . , u8}, BnP ({B,C}) = {u3, u4, u6, u7},
C∗({A,C}) = {u4, u5, u6, u7}, C∗({A,C}) = {u1, u2, . . . , u7},
BnP ({A,C}) = {u1, u2, u3}, C∗({B}) = {u8},
C∗({B}) = {u3, u4, u6, u8}, BnP ({B}) = {u3, u4, u6}.

Remark 1. We may have the different definitions of lower and upper object sets:

P (X) =
{
u ∈ U |

⋃
δP (u) ⊆ X

}
, P (X) =

{
u ∈ U |

⋃
δP (u) ∩X 
= ∅

}
.
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These definitions are based on a passive approach while definitions (4) and (5)
are based on an active approach. In the passive approach, we do not trust very
much in the imprecise information so that we take a union of imprecise decision
attribute values to estimate the range. On the other hand, in the active approach,
we trust imprecise information to some extent so that we take an intersection of
the imprecise decision attribute values as far as it is non-empty.

2.3 Properties of Rough Sets Under Imprecise Decision Tables

LetX,Y ⊆ Vd and P ⊆ C. For lower and upper object sets, we have the following
properties:

P∗(Vd) = P ∗(Vd) = U, P∗(∅) = P ∗(∅) = ∅, (7)
P∗(X ∩ Y ) = P∗(X) ∩ P∗(Y ), P ∗(X ∪ Y ) = P ∗(X) ∪ P ∗(Y ), (8)

X ⊆ Y ⇒ P∗(X) ⊆ P∗(Y ), P ∗(X) ⊆ P ∗(Y ), (9)
P∗(X ∪ Y ) ⊇ P∗(X) ∪ P∗(Y ), P ∗(X ∩ Y ) ⊆ P ∗(X) ∩ P ∗(Y ), (10)
P∗(Vd −X) = U − P ∗(X), P ∗(Vd −X) = U − P∗(X), (11)

P∗(X) = P∗
(⋃

F̂P (P∗(X))
)
, (12)

where F̂P (O) = {F̂P (u) | u ∈ O} for an object set O ⊆ U . Note that we do
not always have X ⊆

⋃
F̂P (P ∗(X)) but

⋃
F̂P (P∗(X)) ⊆ X . Moreover, none

of P∗(X) = P ∗
(⋃

F̂P (P∗(X))
)

, P ∗(X) = P ∗
(⋃

F̂P (P ∗(X))
)

and P ∗(X) =

P∗
(⋃

F̂P (P ∗(X))
)

holds. However, we have P∗(X) ⊆ P ∗
(⋃

F̂P (P∗(X))
)

,

P ∗(X) ⊇ P ∗
(⋃

F̂P (P ∗(X))
)

and P ∗(X) ⊆ P∗
(⋃

F̂P (P ∗(X))
)

.
We have

⋂
δP (X) ⊆

⋂
δQ(X) but

⋃
δP (X) ⊇

⋃
δQ(X) for P ⊆ Q ⊆ C.

Therefore, neither P∗(X) ⊆ Q∗(X) nor P ∗(X) ⊇ Q∗(X) always hold for P ⊆
Q ⊆ C. On the contrary, we always have ConfP ⊇ ConfQ and δP (u) ⊆ δQ(u)
for P ⊆ Q ⊆ C and u ∈ U .

3 Attribute Reduction of Imprecise Decision Tables

3.1 Structure-Preserving Reducts

By the definitions of the set of conflicting objects, lower and upper object sets and
the set of boundary objects, we may induce many structures on U . Structure we
stands for in this paper is a subfamily F of {ConfC , C∗(Sd), C∗(Sd), BnC(Sd) |
Sd ⊆ Vd}. Structure-preserving reducts have been proposed in the framework
of variable precision rough sets by Inuiguchi [4]. In this subsection, we in-
troduce structure-preserving reducts into rough sets under imprecise decision
tables.

Given a structure F , any elementary set in F is a set of objects depending on
attribute set C since it is one of the set of conflicting objects, lower object set,
upper object set and the set of boundary objects. Then let us denote a generic
elementary set in F by F (C). A F -preserving reduct is defined as follows.
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Definition 1. Attribute set P is called an F-preserving reduct if and only if

(F1) F (P ) = F (C) for all F (C) ∈ F , and
(F2) There is no Q ⊂ P such that F (Q) = F (C) for all F (C) ∈ F .

We consider the following structures in this paper: C = {ConfC}, L = {C∗(Sd) |
Sd ⊆ Vd}, U = {C∗(Sd) | Sd ⊆ Vd}, B = {BnC(Sd) | Sd ⊆ Vd}, Lk = {C∗(Sd) |
Sd ⊆ Vd, |Sd| = k}, Uk = {C∗(Sd) | Sd ⊆ Vd, |Sd| = k} and Bk = {BnC(Sd) |
Sd ⊆ Vd, |Sd| = k}, where k ∈ [1, q−1] is an integer and q is a number of decision
attribute values, i.e., q = |Vd|, where |A| shows a cardinality of set A.

We have the following theorem.

Theorem 1. The following assertions are valid:

(a) The concepts of U-preserving reduct, L-preserving reduct, B-preserving
reduct, U1-preserving reduct, Lq−1-preserving reduct and B1-preserving
reduct are equivalent.

(b) The concept of Uk-preserving reduct is equivalent to that of Lq−k-preserving
reduct for any k ∈ [1, q − 1].

(c) A Uk-preserving reduct satisfies (Ul1) and (Lq−l1) for all l ≥ k.
(d) If k ≤ q/2, the concept of Bk-preserving reduct is equivalent to that of Uk-

preserving reduct. Otherwise, the concept of Bk-preserving reduct is equiva-
lent to that of Lk-preserving reduct.

Proof. We show (a) and (d) because (b) and (c) can be proven in the same way
as (a). From (11), the equivalence between U1- and Lq−1-preserving reducts can
be easily shown. For (a) and (d), it suffices to prove that (i) a U1-preserving
reduct P satisfies (U1) and (L1) and (ii) a Bk-preserving reduct Q satisfies
(Uk1) and (Lk1). First let us prove (i). Since P is a U1-preserving reduct, P
satisfies (U11), i.e., P ∗({vd}) = C∗({vd}) for all vd ∈ Vd. From (8), P ∗(Sd) =⋃

vd∈Sd
P ∗({vd}) =

⋃
vd∈Sd

C∗({vd}) = C∗(Sd) for any Sd ⊆ Vd. Then P satisfies
(U1). Moreover, from (11) and (U1), we have P∗(Sd) = U − P ∗(Vd − Sd) = U −
C∗(Vd−Sd) = C∗(Sd) for any Sd ⊆ Vd. Then P satisfies (L1). Thus (i) is shown.
Now, let us prove (ii). Suppose Q∗(Vd) 
= C∗(Vd) for some Vd such that |Vd| = k.
Then there exists u ∈ U such that u ∈ C∗(Vd)−Q∗(Vd) or u ∈ Q∗(Vd)−C∗(Vd).
When

⋂
δQ(u) 
= ∅, Q∗(Vd) ⊇ C∗(Vd) because F̂Q(u) ⊆ F̂C(u). This implies

u ∈ C∗(Vd)−Q∗(Vd). Let Z = C∗(Vd)−Q∗(Vd). Z is not empty because u ∈ Z.
We have C∗(Vd) = Q∗(Vd) ∪ Z and Z ∩Q∗(Vd) = ∅. Since Q is a Bk-preserving
reduct, we have Q∗(Vd) − Q∗(Vd) = C∗(Vd) − C∗(Vd). From this, we should
have C∗(Vd) = Q∗(Vd) ∪ Z. On the contrary, we have C∗(Vd) ⊆ Q∗(Vd) due
to F̂Q(u) ⊆ F̂C(u). A contradiction. The case when

⋂
δQ(u) = ∅, we have

Q∗(Vd) ⊆ C∗(Vd) because F̂Q(u) ⊇ F̂C(u). We obtain a contradiction in this
case, too, in the same way as we did in the other case but with replacements
of Q∗(Vd) and Q∗(Vd) by C∗(Vd) and C∗(Vd), respectively. Therefore, we have
(Uk1), i.e., Q∗(Vd) = C∗(Vd) for any Vd such that |Vd| = k. The proof for (Lk1)
can be done in the same way. ��
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Fig. 1. Strong-weak relations among three kinds of reducts

From Theorem 1(c), we know that the smaller k is, the stronger the required
preservation in the Uk-preserving reduct is. From Theorem 1, we need to con-
sider only C-preserving reducts and Uk-preserving reducts for k ∈ [1, q − 2]. C-
preserving reducts are minimal sets of condition attributes which do not expand
the inconsistency. Uk-preserving reducts are minimal sets of condition attributes
which preserve all certain objects of Sd ⊂ Vd for all |Sd| ≤ q − k.

As demonstrated in Example 2 shown later, for any k ∈ [1, q − 1], no Uk-
preserving reduct can always preserve (C1). Conversely, no C-preserving reduct
can always preserve (Uk1) for any k ∈ [1, q − 1]. Then, we may define C ∪ Uk-
preserving reduct for any k ∈ [1, q − 1]. The strong-weak relations among those
reducts are depicted in Fig. 1. C ∪ U1-preserving reducts are the strongest so
that the number of condition attributes composing a C ∪U1-preserving reduct is
minimal. The larger k is, the weaker C∪Uk-preserving reducts and Uk-preserving
reducts are.

3.2 Indiscernibility Matrices

To enumerate all reducts, the indiscernibility matrix method [10] is useful. In
this paper, we extend the conventional indiscernibility matrix to cases of C-, Uk-
and C ∪ Uk-preserving reducts for k ∈ [1, q − 1].

To apply the indiscernibility matrix method, the condition preserving the
structure should be decomposable to conditions obtained from the pair-wise com-
parisons. Fortunately, all reducts we are discussing can satisfy this requirement.
By the pair-wise comparisons, we should first consider whether the unification of
two objects is allowed or not, where “unification of two objects” stands for the
identification of two objects by reducing condition attributes. If it is not allowed,
we collect condition attributes which differ between two objects.

At the beginning, let us discuss C-preserving reducts. Let P be a condition
attribute set. We express condition that P satisfies (C1) as a Boolean function.
If two objects ui and uj are both in ConfC , they can be unified. If one object
is in ConfC and the other is not, they cannot be unified and the following set
of statements, Mij is calculated:

Mij = {a ∈ C | a(ui) 
= a(uj), a ∈ C}. (13)

the condition corresponding to Mij means that at least one of the statements
in Mij should be satisfied. If none of two objects ui and uj are in ConfC , we
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should check the intersection of δC(ui) and δC(uj). If
⋂

(δC(ui) ∪ δC(uj)) = ∅,
they cannot be unified and Mij of (13) is calculated. If

⋂
(δC(ui) ∪ δC(uj)) 
= ∅,

the following set of statements, M̂ij is calculated:

M̂ij =
{
d(ui) ∈

⋂
(δC(ui) ∪ δC(uj)) ∧ d(uj) ∈

⋂
(δC(ui) ∪ δC(uj))

}
∪Mij ,

(14)
where d(u) shows the decision value of u and ∧ is a conjunction operation. M̂ij

is an extension of Mij and the first term of the union in the right-hand side
of (14) is extended term. This term is required because the unification of ui

and uj implies that F̂P (ui) = F̂P (uj) ⊆
⋂

(δC(ui)∪ δC(uj)). Then the condition
corresponding to M̂ij can be described as if none of statements in Mij is satisfied,
both of d(ui) ∈

⋂
(δC(ui) ∪ δC(uj)) and d(uj) ∈

⋂
(δC(ui) ∪ δC(uj)) should be

satisfied.
From the discussion above, the (i, j)-component of the discernibility matrix

MC for C-preserving reducts is defined as follows:

MC
ij =

⎧⎨
⎩

C, if {ui, uj} ⊆ ConfC ,
Mij , if {ui, uj} 
⊆ ConfC and

⋂
(δC(ui) ∪ δC(uj)) = ∅,

M̂ij , if {ui, uj} 
⊆ ConfC and
⋂

(δC(ui) ∪ δC(uj)) 
= ∅.
(15)

All C-preserving reducts are obtained as prime implicants of a Boolean function,

fC =
∧

i,j:ui,uj∈U

∨
MC

ij . (16)

If a prime implicant is represented as a1 ∈ P ∧ a2 ∈ P ∧ a3 ∈ P , the corre-
sponding C-preserving reduct candidate is {a1, a2, a3}. If a prime implicant is
represented as d(u4) ∈ Z4 
= ∅ ∧ d(u5) ∈ Z5 
= ∅ ∧ a6 ∈ P ∧ a7 ∈ P , the cor-
responding C-preserving reduct candidate is {a6, a7}. In such a way, we obtain
C-preserving reduct candidates corresponding to all prime implicants. The C-
preserving reducts are all minimal set among all C-preserving reduct candidates.

Now let us describe a discernibility matrix with respect to Uk-preserving
reducts for k ∈ [1, q − 1]. By a similar discussion, taking care of objects u ∈ U
such that |F̂C(u)| ≤ q − k, we define a discernibility matrix MUk whose (i, j)-
component MUk

ij is defined by

MUk
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C, if {ui, uj} ∩ ConfC 
= ∅, |F̂C(ui)| ≤ q − k and
F̂C(ui) = F̂C(uj) =

⋃
(δC(ui) ∪ δC(uj)),

C, if {ui, uj} ∩ ConfC 
= ∅, |F̂C(ui)| > q − k and
|F̂C(uj)| > q − k,

C, if {ui, uj} ∩ ConfC = ∅, |F̂C(ui)| ≤ q − k and
F̂C(ui) = F̂C(uj),

C, if {ui, uj} ∩ ConfC = ∅, |F̂C(ui)| > q − k, |F̂C(uj)| > q − k
and |

⋂
(δC(ui) ∪ δC(uj))| > q − k,

Mij , otherwise.
(17)
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All Uk-preserving reducts are obtained as prime implicants of a Boolean function,

fUk =
∧

i,j:ui,uj∈U

∨
MUk

ij . (18)

Finally, we describe the discernibility matrix with respect to C∪Uk-preserving
reducts for k ∈ [1, q−1]. By a similar discussion, we define a discernibility matrix
MCUk whose (i, j)-component MCUk

ij is defined by

MCUk

ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C, if {ui, uj} ⊆ ConfC and F̂C(ui) = F̂C(uj),
C, if {ui, uj} ⊆ ConfC , F̂C(ui) 
= F̂C(uj), |F̂C(ui)| > q − k

and |F̂C(uj)| > q − k,
C, if {ui, uj} ∩ ConfC = ∅ and F̂C(ui) = F̂C(uj),
C, if {ui, uj} ∩ ConfC = ∅, F̂C(ui) 
= F̂C(uj),

and
∣∣∣F̂C(ui) ∩ F̂C(uj)

∣∣∣ > q − k,
Mij , otherwise.

(19)

C∪Uk-preserving reducts are obtained as prime implicants of a Boolean function,

fCUk =
∧

i,j:ui,uj∈U

∨
MCUk

ij . (20)

Example 2. Consider the imprecise decision table given in Table 2. Due to lim-
ited space, we cannot write all components of discernibility matrix MC . Then we
show some of them, MC

13 = {d(u1) ∈ {B}∧d(u3) ∈ {B}, f4 ∈ P}, MC
34 = {f3 ∈ P}

and MC
47 = {f1 ∈ P, f2 ∈ P}. Calculating all other components, we obtain the

following Boolean function F C :

FU = (d(u1) ∈ {B} ∧ d(u2) ∈ {B} ∧ d(u3) ∈ {B} ∧ f1 ∈ P ∧ f3 ∈ P ∧ f5 ∈ P )
∨ (d(u1) ∈ {C} ∧ d(u2) ∈ {C} ∧ d(u5) ∈ {C} ∧ f1 ∈ P ∧ f3 ∈ P ∧ f4 ∈ P )
∨ (d(u1) ∈ {B,C} ∧ d(u2) ∈ {B,C} ∧ f1 ∈ P ∧ f3 ∈ P ∧ f4 ∈ P ∧ f5 ∈ P ).

Then {f1, f3, f5}, {f1, f3, f4} and {f1, f3, f4, f5} are candidates. Taking minimal
sets, we obtain two C-preserving reducts, {f1, f3, f5} and {f1, f3, f4}. Then we
understand condition attributes f1 and f3 are very important not to expand
the inconsistency. However they are not sufficient to avoid the expansion of the
inconsistency and at least one of condition attributes f5 and f4 should be added.

Similarly, based on discernibility matrices MUk and MCUk for k = 1, 2,
we obtain {f3, f4, f5} as a unique U1-preserving reduct, {f2, f5} and {f4, f5} as
U2-preserving reducts, {f1, f3, f4, f5} as a unique C ∪ U1-preserving reduct and
{f1, f2, f5} and {f1, f4, f5} as U2-preserving reducts. Note that, for U1-preserving
reduct {f3, f4, f5}, U2-preserving reducts {f2, f5} and {f4, f5}, u7 becomes incon-
sistent as well as u4 and u6. Thus those reducts do not preserve (C1).

4 Conclusions

In this paper, we have proposed a rough set approach to imprecise decision ta-
bles. Based on an active approach, rough sets have been defined under imprecise
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decision tables. Three kinds of reducts have been proposed and investigated.
Discernibility matrices corresponding to those kinds of reducts have been pro-
posed to compute all reducts. The computational complexity is same as the
conventional discernibility matrix method [10]. By the proposed approach, we
can analyze attribute importance even by imprecise data.

Many other approaches would be conceivable. For example, we may introduce
structure enhancing reducts [5] and information source-wise approaches. More-
over, we may discuss rule induction based on the proposed rough sets. Those are
future topics in rough set approach to imprecise decision tables.
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Abstract. This paper introduces a mechanism for computing approxi-
mations of Dominance-Based Rough Sets (DBRS) by bit-vector encod-
ings. DBRS was introduced by Greco et al. as an extension of Pawlak’s
classical rough sets theory by using dominance relations in place of equiv-
alence relations for approximating sets of preference ordered decision
classes. Our formulation of dominance-based approximation spaces is
based on the concept of indexed blocks introduced by Chan and Tzeng.
Indexed blocks are sets of objects indexed by pairs of decision values
where approximations of sets of decision classes are defined in terms of
exclusive neighborhoods of indexed blocks. In this work, we introduced
an algorithm for updating indexed blocks incrementally, and we show
that the computing of dominance-based approximations can be accom-
plished more intuitively and efficiently by encoding indexed blocks as
bit-vectors. In addition, bit-vector encodings can simplify the definitions
of lower and upper approximations greatly. Examples are given to illus-
trate presented concepts.

Keywords: Rough sets, Dominance-based rough sets, Multiple criteria
decision analysis (MCDA), Approximate reasoning.

1 Introduction

Dominance-based rough sets (DBRS) introduced by Greco et al. [1, 2, 3] extend
Pawlak’s classical rough sets (CRS) [8, 9, 10] by considering attributes, called
criteria, with preference-ordered domains and by substituting the indiscernibility
relation in CRS with a dominance relation that is reflexive and transitive. It
is also assumed that decision classes are ordered by some preference ordering.
A consistent preference model is taken to be one that respects the dominance
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principle when assigning actions (objects) to the preference ordered decision
classes. The dominance principle requires that if action x dominates action y,
then x should be assigned to a class not worse than y. Given a total ordering
on decision classes, in DBRS, the sets to be approximated are called the upward
union and downward union of decision classes [5].

In [13], a dominance-based approximation space for quantitative and totally
ordered multiple criteria decision tables are represented by a family of indexed
blocks, which are sets of objects indexed by pairs of decision values. The basic
idea is to use a binary relation on decision values as indices for grouping objects
based on dominance principle. Inconsistency is defined as a result of violating
the dominance principle. A set of ordered pairs is derived from objects violating
dominance principle involving a pair of decision values, which is used as the
index for the set of ordered pairs. For example, objects that are consistently
assigned to decision class i form a set of ordered pairs with decision index (i, i).
A set of ordered pairs with decision index (i, j), i 
= j, corresponds to objects
that violate dominance principle involving decision values i and j. Each indexed
set of ordered pairs induces a set of objects called a block that is indexed by the
same pair of decision values. These blocks are called indexed blocks, which are
granules of a dominance-based approximation space. Rules were introduced for
computing the reduction of inconsistency when criteria are aggregated one by
one incrementally. Approximations of any union of sets of decision classes in a
dominance-based approximation space represented by indexed blocks are based
on the concept of neighborhoods of indexed blocks [13].

Following the indexed blocks approach, this paper introduces a mechanism for
computing indexed blocks from indexed ordered sets when criteria are combined
incrementally. In addition, we introduce a bit-vector representation for indexed
block granules to facilitate the computing of approximations. New definitions of
approximations are given in terms of bit-vector encodings.

The remainder of this paper is organized as follows. In Section 2, related
concepts of rough sets, dominance-based rough sets, and indexed blocks are
reviewed. In Section 3, we introduce an algorithm for updating indexed blocks
when criteria are combined incrementally. In Section 4, we introduce bit-vector
encoding of indexed blocks. Definitions of approximations based on bit-vectors
are given here. Then, we show how to compute those approximations. Finally,
conclusion is given in Section 5.

2 Related Concepts

2.1 Information Systems and Rough Sets

In rough sets theory [8, 9, 10], information of objects in a domain is represented
by an information system IS = (U,A, V, f), where U is a finite set of objects, A
is a finite set of attributes, V = ∪q∈AVq and Vq is the domain of attribute q, and
f : U×A→ V is a total information function such that f(x, q) ∈ Vq for every q ∈
A and x ∈ U. In many applications, we use a special case of information systems
called decision tables to represent data sets. In a decision table (U,C∪D = {d}),
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there is a designated attribute {d} called decision attribute and attributes in C
are called condition attributes. Each attribute q in C ∪D is associated with an
equivalence relation Rq on the set of objects of U such that for each x and y ∈ U ,
xRqy means f(x, q) = f(y, q). For each x and y ∈ U , we say that x and y are
indiscernible on attributes P ⊆ C if and only if xRqy for all q ∈ P .

2.2 Dominance-Based Rough Sets

In dominance-based rough sets attributes with totally ordered domains are called
criteria. More precisely, each criterion q in C is associated with an outranking
relation [11] Sq on the set of objects of U such that for each x and y ∈ U, xSqy
means f(x, q) ≥ f(y, q). For each x and y ∈ U, we say that x dominates y
on criteria P ⊆ C if and only if xSqy for all q ∈ P. The dominance relations
are taken to be total pre-ordered, i.e., strongly complete and transitive binary
relations [5].

Dominance-based rough sets approach is capable of dealing with inconsisten-
cies in MCDA problems based on the principle of dominance, namely: given
two objects x and y, if x dominates y, then x should be assigned to a class not
worse than y. Assignments of objects to decision classes are inconsistent if the
dominance principle is violated. The sets of decision classes to be approximated
are considered to have upward union and downward union properties. More pre-
cisely, let Cl = {Clt|t ∈ T }, T = {1, 2, ..., n}, be a set of decision classes such
that for each x ∈ U , x belongs to one and only one Cl t ∈ Cl and for all r, s in
T , if r > s, the decision from Clr is preferred to the decision from Cls. Based on
this total ordering of decision classes, the upward union and downward union of
decision classes are defined respectively as:

Cl≥t = ∪s≥tCls, Cl≤t = ∪s≤tCls, t = 1, 2, ..., n.

An object x is in Cl≥t means that x at least belongs to class Cl t, andx is in Cl≤t
means that x at most belongs to class Cl t.

2.3 Indexed Blocks as Granules

In [13], the concept of indexed blocks was used to represent approximation spaces
derived from decision tables with multiple criteria. Indexed blocks are sets of
objects indexed by pairs of decision values.

Let (U,C ∪ D = {d}) be a multi-criteria decision table where condition at-
tributes in C are criteria and decision attribute d is associated with a total
preference ordering. For each condition criterion q and a decision value di of d
let minq(di) denote the minimum value of q among objects with decision value
di, and maxq(di) denote the maximum value.

For each condition criterion q, the mapping Iq(i, j) : D×D→℘(Vq) is defined
as

Iq(i, j) = {f(x, q) = v|v ≥ min
q

(dj) and v ≤ max
q

(di), for i < j; i, j = 1, ..., VD},
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Iq(i, j) = Iq(j, i) if i > j, and Iq(i, i) = {f(x, q)|f(x, d) = i and f(x, q) /∈
∪i<jIq(i, j)}, where ℘(Vq) denotes the power set of Vq For simplicity, the set of
values Iq(i, j) is denoted as [minq(j),maxq(i)] or simply as [minj ,maxi] for a
decision value pair i and j with i < j.

Intuitively, the set Iq(i, i) denotes the values of criterion q where objects can
be consistently labeled with decision value i. For i < j, values in Iq(i, j) are
conflicting or inconsistent in the sense that objects with higher values of criterion
q are assigned to a lower decision class or vice versa, namely, the dominance
principle is violated.

For each Iq(i, j) and i 
= j, the corresponding set of ordered pairs [Iq(i, j)]:
D×D → ℘(U×U) is defined as [Iq(i, j)] = {(x, y) ∈ U×U |f(x, d) = i, f(y, d) =
j such that f(x, q) ≥ f(y, q) for f(x, q), f(y, q) ∈ Iq(i, j)}. For each set [Iq(i, j)]
of ordered pairs, the restrictions of [Iq(i, j)] to i and j are defined as:

[Iq(i, j)]i = {x ∈ U | there exists y ∈ U such that (x, y) ∈ [Iq(i, j)]} and
[Iq(i, j)]j = {y ∈ U | there exists x ∈ U such that (x, y) ∈ [Iq(i, j)]}
The corresponding indexed block Bq(i, j) ⊆ U of [Iq(i, j)] is defined as

Bq(i, j) = [Iq(i, j)]i ∪ [Iq(i, j)]j .

Example 1. For convenience, we will use the multiple criteria decision table taken
from [6], which is shown in Table 1. The inconsistent intervals for each criterion
q1, q2, and q3 are shown in Tables 2, 3, and 4.

Table 1. A multi-criteria decision table

U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

q1 1.5 1.7 0.5 0.7 3 1 1 2.3 1 1.7 2.5 0.5 1.2 2 1.9 2.3 2.7

q2 3 5 2 0.5 4.3 2 1.2 3.3 3 2.8 4 3 1 2.4 4.3 4 5.5

q3 12 9.5 2.5 1.5 9 4.5 8 9 5 3.5 11 6 7 6 14 13 15

d 2 2 1 1 3 2 1 3 1 2 2 2 2 1 2 3 3

Table 2. Inconsistent intervals Iq1(i, j)

D×D 1 2 3
1 [ ] [0.5, 2] [ ]

2 [ ] [2.3, 2.5]

3 [2.7, 3.0]

Table 3. Inconsistent intervals Iq2(i, j)

D×D 1 2 3
1 [0.5, 0.5] [1, 3] [ ]

2 [ ] [3.3, 5]

3 [5.5, 5.5]
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Table 4. Inconsistent intervals Iq3(i, j)

D×D 1 2 3
1 [1.5, 2.5] [3.5, 8] [ ]

2 [ ] [9, 14]

3 [15, 15]

From the intervals in the above tables, we can derive the following sets of
ordered pairs.

The sets of ordered pairs for criterion q1 are:
[Iq1(1, 1)] = [Iq1(2, 2)] = Ø,
[Iq1(1, 2)] = {(4, 12), (3, 12), (7, 12), (7, 6), (9, 12), (9, 6), (14, 12), (14, 6),

(14, 13), (14, 1), (14, 2), (14, 10), (14, 15)},
[Iq1(1, 3)] = Ø,
[Iq1(2, 3)] = {(11, 8), (11, 16)},
[Iq1(3, 3)] = {(17, 17), (5, 5)}.

The sets of ordered pairs for criterion q2 are:
[Iq2(1, 1)] = {(4, 4)},
[Iq2(2, 2)] = Ø,
[Iq2(1, 2)] = {(7, 13), (3, 13), (3, 6), (14, 13), (14, 6), (9, 13), (9, 6), (9, 10),

(9, 1), (9, 12)},
[Iq2(1, 3)] = Ø,
[Iq2(2, 3)] = {(11, 8), (11, 16), (15, 8), (15, 16), (15, 5), (2, 8), (2, 16), (2, 5)},
[Iq2(3, 3)] = {(17, 17)}.

The sets of ordered pairs for criterion q3 are:
[Iq3(1, 1)] = {(4, 4), (3, 3)},
[Iq3(2, 2)] = Ø,
[Iq3(1, 2)] = {(9, 10), (9, 6), (14, 10), (14, 6), (14, 12), (7, 10), (7, 6), (7, 12),

(7, 13)},
[Iq3(1, 3)] = Ø,
[Iq3(2, 3)] = {(2, 5), (2, 8), (11, 5), (11, 8), (1, 5), (1, 8), (15, 5), (15, 8),

(15, 16)},
[Iq3(3, 3)] = {(17, 17)}.

From the above sets of ordered pairs, we can derive their corresponding in-
dexed blocks for criteria q1, q2, and q3 as shown in Tables 5, 6, and 7. Three rules
for updating indexed blocks by combining criteria incrementally were introduced
in [13]. In Section 3, we will provide an algorithm for updating indexed blocks.
The set of indexed blocks after combining q1, q2, and q3 is shown in Table 8. It
represents the dominance-based approximation space with each indexed block as
a granule generated by the criteria {q1, q2q3} from the multiple criteria decision
table shown in Table 1.

2.4 Approximating Sets of Decision Classes

Typical approximated decision classes considered are sets of decision classes
satisfying upward and downward union properties [1, 2, 3, 6]. Using indexed
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Table 5. Indexed blocks Bq1(i, j)

D×D 1 2 3
1 Ø {1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15} Ø

2 Ø {8, 11, 16}
3 {5, 17}

Table 6. Indexed blocks Bq2(i, j)

D×D 1 2 3
1 {4} {1, 3, 6, 7, 9, 10, 12, 13, 14, } Ø

2 Ø {2, 5, 8, 11, 15, 16}
3 {17}

Table 7. Indexed blocks Bq3(i, j).

D×D 1 2 3
1 {3, 4} {6, 7, 9, 10, 12, 13,14} Ø

2 Ø {1, 2, 5, 8, 11, 15, 16}
3 {17}

Table 8. Indexed blocks B{q1,q2,q3}(i, j)

D×D 1 2 3
1 {3, 4, 7} {6, 9, 14} Ø

2 {1, 2, 10, 12, 13, 15} {8, 11}
3 {5, 16, 17}

blocks as granules, approximations to any combination of decision classes can
be computed. This kind of approximations is formulated by using the concept of
neighborhoods of indexed blocks introduced in [13]. For a criterionq and for each
decision value i ∈ Vd,and for each indexed block Bq(i, i)of [Iq(i, i)], the exclusive
neighborhood of Bq(i, i) is defined as

ENB(Bq(i, i)) = {Bq(k, i)|k ≥ 1 and k < i} ∪ {Bq(i, k)|k ≥ 1 and k > i}.

The exclusive neighborhood of Bq(i, i) corresponds to sets of objects which have
inconsistent decision class assignments associated with decision i. It is clear that
neighborhood ofBq(i, i) can be defined as the union of {Bq(i, i)} and its exclusive
neighborhood.

Let (U,C ∪D = {d})be a multiple criteria decision table. The lower approxi-
mation of a decision class in a dominance-based approximation space generated
by C is the indexed block BC(i, i), and the boundary set of the decision class is
the exclusive neighborhood of BC(i, i), ENB(BC(i, i)). The upper approxima-
tion is the union of lower approximation and boundary set, i.e., the neighbor-
hood of BC(i, i) The above definitions are applicable to approximations of sets of
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decision classes. However, the complication involved is how to update the exclu-
sive neighborhood for a set of decision classes. One formulation was given in
[13]. In this paper, we will show in Section 4 that it is easier to use bit-vector
encodings of the neighborhoods of indexed blocks.

3 Updating Indexed Blocks by Combination of Criteria

In the following, we will give a computational procedure for realizing the three
rules introduced in [13] when combining two criteria to update indexed blocks
incrementally.

Procedure for updating indexed blocks by two criteria q1 and q2:

Step 1. For each decision class i, update B{q1,q2}(i, i) = [Iq1(i, i)]i ∪ [Iq2(i, i)]i.
Step 2. For each decision pairs (i, j) and i < j :

Step 2.1 Compute [I{q1,q2}(i, j)] = [Iq1 (i, j)] ∩ [Iq2 (i, j)];
Step 2.2 Compute the indexed block:
B{q1,q2}(i, j)= [I{q1,q2}(i, j)]i ∪ [I{q1,q2}(i, j)]j ;
Step 2.3 Compute [[Iq1 (i, j)]− [I{q1,q2}(i, j)]]iand [[Iq1(i, j)]− [I{q1,q2}(i, j)]]j ;
Step 2.4 Compute [[Iq2 (i, j)]− [I{q1,q2}(i, j)]]iand [[Iq2(i, j)]− [I{q1,q2}(i, j)]]j ;
Step 2.5 Compute
Bi = [[Iq1(i, j)]− [I{q1,q2}(i, j)]]i ∪ [[Iq2 (i, j)]− [I{q1,q2}(i, j)]]i,
then update B{q1,q2}(i, i) = B{q1,q2}(i, i) ∪Bi -B{q1,q2}(i, j);
Step 2.6 Compute
Bj = [[Iq1 (i, j)]− [I{q1,q2}(i, j)]]j ∪ [[Iq2(i, j)]− [I{q1,q2}(i, j)]]j ,
then update B{q1,q2}(j, j) = B{q1,q2}(j, j) ∪Bj −B{q1,q2}(i, j).

Example 2. Consider combining criteria q1 and q2 in the multiple criteria de-
cision table given in Table 1 for updating decision pair (1, 2). The inconsistent
intervals of criteria q1 and q2 are shown in Tables 2 and 3.

Step 1. For each decision class i, update B{q1,q2}(i, i) = [Iq1(i, i)]i ∪ [Iq2(i, i)]i:
[Iq1(1, 1)] = Ø and [Iq2(1, 1)] = {(4, 4)} [Iq2(1, 1)]1 = {4},
so B{q1,q2}(1, 1)= Ø ∪ {4} = {4}.
[Iq1(2, 2)] = Ø and [Iq2(2, 2)] = Ø, so B{q1,q2}(2, 2) = Ø.

Step 2. For each decision pairs (ij) and i < j :

Step 2.1 Compute [I{q1,q2}(i, j)] = [Iq1 (i, j)] ∩ [Iq2 (i, j)]:
[Iq1(1, 2)] = {(4, 12), (3, 12), (7, 12), (7, 6), (9, 12), (9, 6), (14, 12), (14, 6),
(14, 13), (14, 1), (14, 2), (14, 10), (14, 15)} and
[Iq2(1, 2)] = {(7, 13), (3, 13), (3, 6), (9, 13), (9, 10), (9, 1)}.
[I{q1,q2}(1, 2)] = [Iq1(1, 2)] ∩ [Iq2 (1, 2)] = {(9, 12), (9, 6), (14, 6), (14, 13)}.
Step 2.2 Compute the indexed block:
B{q1,q2}(i, j)= [I{q1,q2}(i, j)]i ∪ [I{q1,q2}(i, j)]j :
[I{q1,q2}(1, 2)]1 = {9, 14} and [I{q1,q2}(1, 2)]2= {6, 12, 13},
so B{q1,q2}(1, 2)= {6, 9, 12, 13, 14}.
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Step 2.3 Compute [[Iq1 (i, j)]− [I{q1,q2}(i, j)]]iand [[Iq1(i, j)]− [I{q1,q2}(i, j)]]j :
[Iq1 (1, 2)]− [I{q1,q2}(1, 2)] = {(4, 12), (3, 12), (7, 12), (7, 6), (14, 12), (14, 1),
(14, 2), (14, 10), (14, 15)}
[[Iq1 (1, 2)]− [I{q1,q2}(1, 2)]]1 = {3, 4, 7, 14} and
[[Iq1 (1, 2)]− [I{q1,q2}(1, 2)]]2 = {1, 2, 6, 10, 12, 15}.
Step 2.4 Compute [[Iq2 (i, j)]− [I{q1,q2}(i, j)]]iand [[Iq2(i, j)]− [I{q1,q2}(i, j)]]j :
[Iq2 (1, 2)]− [I{q1,q2}(1, 2)] = {(7, 13), (3, 13), (3, 6), (9, 13), (9, 10), (9, 1)}.
[[Iq2 (1, 2)]− [I{q1,q2}(1, 2)]]1 = {3, 7, 9} and
[[Iq2 (1, 2)]− [I{q1,q2}(1, 2)]]2 = {1, 6, 10, 13}.
Step 2.5 Compute
Bi = [[Iq1(i, j)]− [I{q1,q2}(i, j)]]i ∪ [[Iq2 (i, j)]− [I{q1,q2}(i, j)]]i,
then update B{q1,q2}(i, i) = B{q1,q2}(i, i) ∪Bi -B{q1,q2}(i, j):
B1 = [[Iq1 (1, 2)]− [I{q1,q2}(1, 2)]]1 ∪ [[Iq2 (1, 2)]− [I{q1,q2}(1, 2)]]1
= {3, 4, 7, 14} ∪ {3, 7, 9} = {3, 4, 7, 9, 14}.
B{q1,q2}(1, 1) = B{q1,q2}(1, 1) ∪B1 −B{q1,q2}(1, 2)
= {4} ∪ {3, 4, 7, 9, 14} - {6, 9, 12, 13, 14} = {3, 4, 7}.
Step 2.6 Compute
Bj = [[Iq1 (i, j)]− [I{q1,q2}(i, j)]]j ∪ [[Iq2(i, j)]− [I{q1,q2}(i, j)]]j ,
then update B{q1,q2}(j, j) = B{q1,q2}(j, j) ∪Bj −B{q1,q2}(i, j):
B2 = [[Iq1 (1, 2)]− [I{q1,q2}(1, 2)]]2 ∪ [[Iq2 (1, 2)]− [I{q1,q2}(1, 2)]]2
= {1, 2, 6, 10, 12, 15} ∪ {1, 6, 10, 13} = {1, 2, 6, 10, 12, 13, 15}.
B{q1,q2}(2, 2) = B{q1,q2}(2, 2) ∪B2 −B{q1,q2}(1, 2)
= ∅ ∪ {1, 2, 6, 10, 12, 13, 15} - {6, 9, 12, 13, 14} = {1, 2, 10, 15}.

4 Bit-Vector Encodings of Indexed Blocks

In the following, we consider encoding indexed blocks as bit-vectors. For a mul-
tiple criteria decision table with N objects and K decision values, each object
is encoded as a bit-vector of K bits. The encoding of a decision table can be
represented by an N×K Boolean matrix generated from the table of indexed
blocks as follows. Each indexed block is encoded by a vector of N bits where 1
means an object is in the block. The encoding for decision class i is computed
by taking a logical OR of indexed blocks in the i-th row and i-th column of the
indexed block table.

Let each decision class be encoded as a vector v of K bits where the i-th bit
is set to 1 for a decision class with decision value i. A vector of all zero bits is
called a NULL vector, denoted by 0. Two bit-vectors v1 and v2 are compatible,
if the logical AND of v1 and v2 is not an NULL vector, i.e., v1 ∧ v2 
= 0.
Two compatible vectors v1 and v2 are equal if they have exactly the same bit
patterns, i.e., v1 ∧ v2 = v1 = v2. A bit-vector v1is a subvector of v2, v1 ⊆ v2,if
v1[i] = 1 then v2[i] = 1 for all bit i = 1, . . . , K.

Let (U,C ∪ D = {d})be a multiple criteria decision table. Let E(x) denote
the decision bit-vector encoding of object x ∈ U . Then, the lower approximation
Cv and upper approximation Cv for an encoded decision class v are defined as
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Table 9. Bit-vector encoding for objects in indexed block (1, 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1

Table 10. Bit-vector encoding for objects in indexed block (1, 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1

Table 11. Logical OR of objects in indexed blocks (1, 1) and (1, 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 1 1

Table 12. Bit-vector encoding of indexed blocks of Table 8

U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0

d2 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0

d3 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1

Cv = {x| E(x) ⊆ v} and
Cv ={x|E(x) ∧ v 
= 0}.
The boundary set of v is BN(v) = Cv − Cv.

Example 3. Consider the indexed blocks in Table 8. The set of objects in the
indexed block (1, 1) is {3, 4, 7}, and the objects of indexed block (1, 2) is {6, 9,
14} . Their bit-vector encodings are shown in Table 9 and Table 10, respectively.
The result of taking a logical OR of the above two vectors is shown in Table 11.

Applying the procedure to all indexed blocks of Table 8, the resulted encoding
for all three decision values {1, 2, 3} is shown in Table 12.

Example 4. Consider the encodings in Table 12.
The bit-vector of decision class 1 is the vector v{1}= (1, 0, 0). Thus,
Cv{1} = {3, 4, 7},
Cv{1} = {3, 4, 6, 7, 9, 14}, and
BN(v{1}) = {6, 9, 14}.
The bit-vector of decision class 2 is the vector v{2}= (0, 1, 0). Thus,
Cv{2} = {1, 2, 10, 12, 13, 15},
Cv{2} = {1, 2, 6, 8, 9, 10, 11, 12, 13, 14, 15}, and
BN(v{2}) = {6, 8, 9, 11, 14}.
The bit-vector of decision classes {1, 2} is the vector v{1,2}= (1, 1, 0). Thus,
Cv{1,2} = {1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15},
Cv{1,2} = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, and
BN(v{1,2}) = {8, 11}.
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5 Conclusion

In this paper we introduced an algorithm for updating indexed blocks by combin-
ing criteria incrementally. The algorithm can be used to generate indexed blocks
representation of dominance-based approximation spaces. Then, a bit-vector en-
codings of indexed blocks as a representation of dominance- based approximation
spaces was considered. It simplifies the definitions of lower and upper approx-
imations of sets of decision classes greatly. We believe that it provides a solid
foundation for designing efficient computations of approximations, and it pro-
vides new ways for understanding and studying dominance-based rough sets.
One of our future works is to develop rule induction algorithms based on the
bit-vector encodings.
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Abstract. Problems of multiagent mobile robotics concern teams of
mobile robots organized to perform an ordained task. Dynamic prob-
lems of navigation in multiagent environment require a theory of spatial
reasoning. We propose here a spatial theory based on rough mereology
along with an implementation in the software system Player/Stage. The
proposed theoretical–software system provides a platform for analysis of
tasks of multiagent mobile robotics.

Keywords: mobile robotics, spatial reasoning, rough mereology,
player/stage software system.

1 Introduction

Qualitative Spatial Reasoning is a basic ingredient in a variety of problems in
mobile robotics, see, e.g., [1], [4]. Spatial reasoning which deals with objects like
solids, regions etc., by necessity refers to and relies on mereological theories of
concepts based on the opposition part–whole [3]. Mereological ideas have been
early applied toward axiomatization of geometry of solids, see [6], [11].

Mereological theories rely either on the notion of a part [7] or on the notion
of objects being connected [3]. Our approach to spatial reasoning is developed
within the paradigm of rough mereology, see sect. 2. Rough mereology is based
on the predicate of being a part to a degree and thus it is a natural extension of
mereology based on part relation.

2 Rough Mereology

Rough mereology, see, e.g., [9] begins with the notion of a rough inclusion which
is a parameterized relation µr such that for any pair of objects u, v the formula
u is µr v means that u is a part of v to a degree r where r ∈ [0, 1].

The following is the list of basic postulates for rough inclusions; el is the
element (ingredient) relation of a mereology system based on a part relation, see
[7]; informally, it is a partial ordering on the given class of objects defined from
the strict order set by part relation.
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RM1. u is µ1 v ⇐⇒ u is el v (a part in degree 1 is equivalent to an element).
RM2. u is µ1 v =⇒ for all w (w is µr u =⇒ w is µr v) (monotonicity of µ).
RM3. u is µr v ∧ s ≤ r =⇒ u is µs v (assuring the meaning ”a part to degree at
least r”).

In our applications to spatial reasoning, objects will be regions in Euclidean
spaces, notably 2D space, like rectangles, squares, discs, and the rough inclusion
applied will predominantly be the one defined by the equation,

u is µ0
r v iff

|u ∩ v|
|u| ≥ r, (1)

where |u| is the area of the region u. A variant in which area is replaced with
cardinality is also used in some contexts, notably grid objects.

3 Mereogeometry

We are interested in introducing into the mereological world defined by µ0 a
geometry in whose terms it will be possible to express spatial relations among
objects; a usage for this geometry will be found in navigation and control tasks
of multiagent mobile robotics, cf. [1], [4].

We first introduce a notion of distance κ in our rough mereological universe
by letting,

κ(u, v) = min{max u,max w : u is µu v, v is µw u}. (2)

Observe that mereological distance differs essentially from the standard distance:
the closer are objects, the greater is the value of κ.

We now introduce the notion of betweenness T (u, v),

z is T (u, v)⇐⇒ for all w κ(z, w) ∈ [κ(u,w), κ(v, w)]. (3)

Here, [, ] means the non–oriented interval. We check that T satisfies the axioms
of Tarski [12] for betweenness.

Proposition 1. 1. z is T (u, u) =⇒ z = u (identity).
2. v is T (u,w) and z is T (v, w) =⇒ v is T (u, z) (transitivity).
3. v is T (u, z) and v is T (u,w) and u 
= v =⇒ z is T (u,w)or w is T (u, z)

(connectivity).

Proof. By means of κ, the properties of betweenness in our context are translated
into properties of betweenness in the real line which hold by the Tarski theorem
[12], Theorem 1.

3.1 Nearness

We apply κ to define in our context the functor N of nearness proposed in van
Benthem [2],

w is N(u, v) ⇐⇒ (κ(w, u) = r, κ(u, v) = s =⇒ s < r). (4)

Here, nearness means that w is closer to u than v is to u.
Then the following hold, i.e., N does satisfy all axioms for nearness in [2],
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Proposition 2. 1. z is N(u, v) and v is N(u,w) =⇒ z is N(u,w) (transitivity).
2. z is N(u, v) and u is N(v, z) =⇒ u is N(z, v) (triangle inequality).
3. non(z is N(u, z)) (irreflexivity).
4. z = u or z is N(z, u) (selfishness).
5. z is N(u, v) =⇒ z is N(u,w) or w is N(u, v) (connectedness).

We now may introduce the notion of equidistance as a functor Eq(X,Y ) defined
as follows,

z is Eq(u, v)⇐⇒ κ(z, u) = κ(z, v). (5)

3.2 Betweenness

In addition to betweenness T , we make use of a betweenness functor TB [2],

z is TB(u, v)⇐⇒ [for all w (Z is w or z is N(u,w) or z is N(v, w))]. (6)

Proposition 3. The functor TB of betweenness does satisfy the Tarski axioms.

3.3 Examples

We give some examples of specific contexts in which functors defined above can
be useful.

Example 1. We adopt as objects topologically connected unions of finitely many
cubes in the unit grid on the space Rd (topological connectedness will be defined
recursively: (1). a single cube is connected; (2) given a connected union C and
a cube c, the union C ∪ c is connected if c is adjacent by the edge or a vertex
to a cube in C). We adopt as the rough inclusion the function µ1(C,D, r) iff
n(C∩D)

n(C) ≥ r, where n(C) is the number of cubes in C. One checks that: the
connected union E is between (in the sense of TB) disjoint cubes c, d whenever
E contains C and D and E consists of a minimal number of cubes for E being
connected.

Example 2. We consider a context in which objects are rectangles positioned
regularly, i.e., having edges parallel to axes in R2. The measure µ is µ0 of (1).
In this setting, given two disjoint rectangles C, D, the only object between C
and D is the extent ext(C,D) of C,D, , i.e., the minimal rectangle containing
the union C ∪ D. To see this, one can consider two squares C,D of identical
size centered on the axis x = 0, and solve the problem analytically by showing
that there is no other rectangle nearer to C and D than ext(C,D) (this requires
solving a set of linear inequalities); then, the general case follows by observing
that linear shrinking or stretching of an edge does not change the area relations.

A line segment may be defined via the auxiliary notion of a pattern; we in-
troduce this notion as a functor Pt.

We let

Pt(u, v, z)⇐⇒ zis TB(u, v) or u is TB(z, v) or v is TB(u, z).

We will say that a finite sequence u1, u2, ..., un of objects belong in a line segment
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whenever Pt(ui, ui+1, ui+2) for i = 1, , ..., n−2; formally, we introduce the functor
Line of finite arity defined via

Line(u1, u2, ..., un)⇐⇒ for all i < n− 1.P t(ui, ui+1, ui+2).

Example 3. With reference to Example 2, rectangles C,D and their extent
ext(C,D) form a line segment.

3.4 Extensions in the Robotic Context

We can model robots in a team by means of their extents (understood as safety
regions about robots). Then for robots a, b, c, we say that b is TB(a, c) (robot
b is between robots a, c) in case the rectangle ext(b) is contained in the extent
of rectangles ext(a), ext(c). This allows for a partial betweenness which models
in a more precise manner the relations between a, b, c: b is TB(a, c, r) in case
ext(b) is µ0

r(ext[ext(a), ext(c)]).

4 Implementation in Player/Stage Software System

Player/Stage is an Open-Source software system designed for many UNIX-compa-
tible platforms, widely used in robotics laboratories [8]. Main two parts are Player
– message passing server (with bunch of drivers for many robotics devices, extend-
able by plug–ins) and Stage – a plug–in for Player’s bunch of drivers which sim-
ulates existence of real robotics devices that operate in the simulated 2D world.
Player/Stage offers client–server architecture. Many clients can connect to one
Player server, where clients are programs (robot controllers) written by a roboti-
cist who can use Player client-side API. Player itself uses drivers to communicate
with devices, in this activity it does not make distinction between real and simu-
lated hardware. It gives roboticist means for testing programmed robot controller
in both real and simulated world.

Among all Player drivers that communicate with devices (real or simulated),
there are drivers not intended for controlling hardware, instead those drivers
offer many facilities for sensor data manipulation, for example, camera image
compression, retro–reflective detection of cylindrical markers in laser scans, path
planning. One of the new features added to Player version 2.1 is the PostGIS
driver: it connects to PostgreSQL database in order to obtain and/or update
stored vector map layers.

PostGIS itself is an extension to the PostgreSQL object–relationaldatabase sys-
tem which allows GIS (Geographics Information Systems) objects to be stored in
thedatabase [10]. It also offersnew SQL functions for spatial reasoning. Mapswhich
to be stored in SQL database can be created and edited by graphical tools like uDig
or by C/C++ programs written using GEOS library of GIS functions. PostGIS,
uDig and GEOS library are projects maintained by Refractions Research.

A map can have many named layers, and for each layer a table in SQL data-
base is created. We can assume that layer named obstacles consists of objects
which a robot cannot walk through. Other layers can be created in which we
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Fig. 1. Stage simulator in use - two iRobot Roomba robots inside simulated world

Fig. 2. uDig application in use - modification of obstacles layer

can divide robot’s workspace into areas with an assigned attribute which for
example tells whether a given area is occupied by an obstacle or not. During
our experimentations, we have created a plug–in for Players bunch of drivers
which constantly tracks changes of position of every robot and updates obstacles
layer so robots are marked as obstacles. As a result, the map stored in SQL
database is kept always up to date. This feature is also useful in multi–agent
environments: at any time a robot controller can send a query to SQL database
server regarding every other robot position.

A roboticist can write a robot controller using Player client-side API which
obtains information about current situation through the vectormap interface.
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Additionally, to write such a program, PostgreSQL client–side API can be used
in order to open direct connection to the database server on which our mereoge-
ometry SQL functions are stored together with map database. These functions
can be called using this connection, results are sent back to the calling program.
This gives robot controller program ability to perform spatial reasoning based
on rough mereology.

Using PostGIS SQL extensions we have created our mereogeometry SQL func-
tions [5]. Rough mereological distance is defined as such:

CREATE FUNCTION meredist(object1 geometry, object2 geometry)
RETURNS DOUBLE PRECISION AS
$$

SELECT min(degrees.degree) FROM
((SELECT

ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($1))
AS degree)

UNION (SELECT
ST Area(ST Intersection(extent($1), extent($2)))
/ ST Area(extent($2))
AS degree))

AS degrees;

$$ LANGUAGE SQL STABLE;

Having mereological distance function we can derive nearness predicate:
CREATE FUNCTION merenear(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT meredist($1, $2) > meredist($3, $2)
$$ LANGUAGE SQL STABLE;
The equi-distance can be derived as such:
CREATE FUNCTION mereequ(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT (NOT merenear($1, $2, $3))
AND (NOT merenear($1, $3, $2));

$$ LANGUAGE SQL STABLE;

Our implementation of the betweenness predicate makes use of a function
that produces an object which is an extent of given two objects:

CREATE FUNCTION mereextent(object1 geometry, object2 geometry)
RETURNS geometry AS
$$

SELECT GeomFromWKB(AsBinary(extent(objects.geom))) FROM
((SELECT $1 AS geom)
UNION (SELECT $2 AS geom))
AS objects;

$$ LANGUAGE SQL STABLE;

The betweenness predicate is defined as follows:
CREATE FUNCTION merebetb(obj geometry, o1 geometry, o2 geometry)
RETURNS BOOLEAN AS
$$

SELECT
meredist($1, $2) = 1
OR meredist($1, $3) = 1
OR

(meredist($1, $2) > 0
AND meredist($1, $3) > 0
AND meredist(mereextent($2, $3),

mereextent(mereextent($1, $2), $3)) = 1);

$$ LANGUAGE SQL STABLE;

Using the betweenness predicate we can check if three objects form a pattern:
CREATE FUNCTION merepattern

(object1 geometry, object2 geometry, object3 geometry)
RETURNS BOOLEAN AS
$$

SELECT merebetb($3, $2, $1)
OR merebetb($1, $3, $2)
OR merebetb($2, $1, $3);

$$ LANGUAGE SQL STABLE;
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Fig. 3. Playernav - a Player client-side application used to set a goal points for server-
side planner driver

Fig. 4. Show trails is a nice option in Stage which can be used to track robot trajectory.
Here we see two Roomba robots avoiding obstacles and each other. The robot controller
program was using meredist function in order to choose free space area as a local target.
This method of navigation suffers from local optima problem: a robot can start to spin
around one place between obstacles.

Also having pattern predicate we can check if four objects form a line:

CREATE FUNCTION mereisline4
(obj1 geometry, obj2 geometry, obj3 geometry, obj4 geometry)

RETURNS BOOLEAN AS
$$

SELECT merepattern($1, $2, $3) AND merepattern($2, $3, $4);

$$ LANGUAGE SQL STABLE;

Those predicates can be used in global navigation tasks. We can create an
additional map layer for navigational markers. Whenever the target is set, a
robot planner should form a path across markers. The path itself can be a group
of objects representing areas free of obstacles and forming a mereological line. A
robot should follow this path by going from one area centroid to another until
the goal is reached. If the changes in the world are expected (e.g. in multi–robot
environments) a planner should update the path.
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Abstract. In data sets/decision systems, written down as pairs (U, A∪
{d}) with objects U , attributes A, and a decision d, objects are described
in terms of attribute–value formulas. This representation gives rise to a
calculus in terms of descriptors which we call a natural computing. In
some recent papers, the idea of L. Polkowski of computing with gran-
ules induced from similarity measures called rough inclusions have been
tested. In this work, we pursue this topic and we study granular struc-
tures resulting from rough inclusions with classification problem in focus.
Our results show that classifiers obtained from granular structures give
better quality of classification than natural exhaustive classifiers.

Keywords: rough inclusions, granular computing, classification of data.

1 Introduction

Heuristics for data classification augmenting standard rough set based classifiers
have been studied by this author recently in a series of papers, see, e.g., [1], [2].
Those heuristics have been based on idea of L. Polkowski to apply granulation of
knowledge by means of rough inclusions to preprocessing of training sets in order
to reduce noise and uncertainty in data, see, e.g., [6], [7], [8]. Granulation pro-
ceeds according to a formal model proposed in Polkowski, opera.cit. Former pa-
pers on this subject explored granulation based on rough inclusions induced from
the �Lukasiewicz t–norm and variants of rough inclusions based on residual impli-
cations of t–norms, see, e.g., [1], [2], [6]. Rough inclusions are similarity measures
introduced in [10] in the framework of rough mereology, see, e.g., [9]. The impact
which granulation of knowledge has on information content of a given data set has
been evaluated by the quality of the exhaustive rough set classifier expressed by
accuracy and coverage, see, e.g., [11] for these parameters definitions.

Granular structures have been introduced into data sets by means of the process
consisting in: computing granules of a given radius by means of chosen rough in-
clusion µ [7,8] as sets of the form {v ∈ U : µ(v, u, r)}, where u ∈ U runs over
objects in the given training data set. Randomly chosen from those granules cov-
ering of the training set was subject to some strategy of attribute factoring, see,
e.g., [7], [8]. The decision system obtained in this way was used as the new train-
ing set to induce exhaustive classification rules which were then applied to the

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 150–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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test part of data and compared to results of classification by the exhaustive clas-
sifier induced from the original, non–granulated training set.That strategy was
exploited in former papers and it is pursued in this paper. In this paper, we study
a new version of granulation by means of a variant of weak rough inclusion, see,
e.g., [5], [6], see the formula (2) in what follows, which relies on a parameter called
a catch radius. To give a comparison with former approaches, we include results
of tests with formerly studied granulation of training objects, and granulation of
rules from training objects. All experiments presented in this paper, have been
carried out with Heart Disease and Pima Indians Diabetes data sets from UCI
Repository [12]. Voting by granules goes on lines described e.g., in [3].

2 Rough Inclusions Applied in the Tests. Granulation of
Data

Data sets are formally described as decision systems, see [4]. Rough inclusions
which are used in this paper belong in a class of rough inclusions defined by
metrics see [5], [6], [7], [8]. The basic rough inclusion is µL, induced from the
�Lukasiewicz t–norm [5]

µL(u, v, r) if and only if
|IND(u, v)|
|A| ≥ r, (1)

where IND(u, v) = {a ∈ A : a(u) = a(v)}.
A modification of this rough inclusion takes into account the value distribution

of attributes, [5], and for a given value of ε, we let,

µε
L(v, u, r) iff |{a ∈ A : ||a(v)− a(u)|| < ε}| ≥ r · |A|, (2)

where ||x− y|| is the metric in the real line.
Given a rough inclusion, or its variant, µ, a granule about the object u and

of the radius r, is the set {v : µ(v, u, r)}.
The idea of a granulated data set was proposed in [8]: given a granulation

radius r, the set G(r, µ) of all granules of the radius r is formed. From this set,
a covering Cov(r, µ,G) of the set of objects U is chosen by means of a strategy
G, which is usually a random choice of granules with irreducibility checking.

Given the covering Cov(r, µ,G), attributes in the set A are factored through
granules to make a new attribute set. For an attribute a ∈ A, and a granule g,
the new attribute aG is defined as

aG(g) = S({a(v) : v ∈ g}), (3)

where the strategy S applied here is majority voting with random tie resolution.
A new information system: (UG = C(r, µ,G), AG = {aG : a ∈ A}) is called a
granular reflection of the given information system [5], [8]. A number of tests, see
[1], [2], have witnessed effectiveness of granular approach in classification prob-
lems. Results of tests with granulated structures are compared to the results
given by the exhaustive classifier (see, e.g., [11] for a public domain exhaus-
tive classifier): for Heart Disease data, accuracy=0.804, coverage=1.0, for Pima
Indians Diabetes data set, accuracy=0.6528, coverage=0.9972.
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3 Tests with Granules of Training Objects

Granules were computed here according to (2) with r = 1, i.e., a granule gε(u) =
{v : ||a(u) − a(v)|| < ε for each a ∈ A}. Objects in the granule g = gε(u)
vote for decision class assignment at u (see [3] for voting scheme discussion) by
computing for each class c of the factor p(c) = |{training objects in g in c}|

size c in training set , and
the class assigned to u is the one with the largest value of p. Fig. 1 shows results
for Heart Disease data set, and Fig. 2 for Pima Indians Diabetes data set [12]
by means of CV-5 cross–validation.

Fig. 1. CV-5; Heart Disease; Algorithm 1 v1; Best result for ε = 0.88, accu-
racy=0.790172, coverage = 0.97037

Fig. 2. CV-5; Pima Indians Diabetes; Algorithm 1 v1; Best result for ε = 0.3, accu-
racy=0.742736, coverage = 0.99085
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4 Tests with Granules of Exhaustive Set of Training
Rules

A parallel test have been carried out with rules obtained from the training set
by exhaustive algorithm. In case of a rule r, the symbol a(r) stands for the value
of a in the premise of the rule r. Thus, rules are treated similarly to objects,
except for voting procedure: rules in the granule g = gε(u), vote by computing

for each class c of the factor q(c) = sum of supports of rules in g pointing to c
size c in training set

and assigned is a class with the largest q.

Fig. 3. CV-5; Heart Disease; Algorithm 3 v1; Best result for ε = 0.15, accu-
racy=0.844444, coverage = 1.0

Fig. 4. CV-5; Pima Indians Diabetes; Algorithm 3 v1; Best result for ε = 0.06, accu-
racy=0.738562, coverage = 1.0

Figs. 3,4 show results obtained by means of CV-5 cross–validation with Heart
Disease and Pima Indians Diabetes data sets.
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5 Tests with Granules of Granular Reflections

In this approach, the training data set is granulated, and for each granule g in
the chosen covering Cov(r, µ,G) of U , its granular reflection i.e., the granular
object o(g) = {(aG, aG(g)) : a ∈ A} is formed. The set {o(g) : g ∈ Cov(r, µ,G)}
of granular reflection is treated as a training set for classification exactly on lines
of sect.3. Parameters here are a granulation radius r and ε.

Table 1. CV-5; Heart Disease; Algorithm 2 v1; r gran=granulation radius, opti-
mal eps=best optimal epsilon, acc=accuracy, cov=coverage, trn=training set. Best re-
sults for r = 0.769231, ε = 0.88: accuracy=0.790172, coverage=0.97037.

r gran optimal eps acc cov trn

nil nil 0.804 1.0 216
0.0 1.0 0.551852 1.0 1.0

0.0769231 1.0 0.551852 1.0 1.8
0.153846 1.0 0.551852 1.0 2.2
0.230769 1.0 0.551852 1.0 3.2
0.307692 1.0 0.551852 1.0 6.2
0.384615 1.0 0.529629 1.0 12.2
0.461538 0.99 0.789828 0.692593 24.8
0.538462 0.78 0.776477 0.944444 113.6
0.615385 0.99 0.758454 0.951852 116.0
0.692308 0.88 0.778198 0.966666 178.2
0.769231 0.88 0.790172 0.97037 209.8
0.846154 0.88 0.790172 0.97037 216.0
0.923077 0.88 0.790172 0.97037 216.0

1.0 0.88 0.790172 0.97037 216.0

Table 2. CV-5; Pima Indians Diabetes; Algorithm 2 v1; r gran=granulation radius,
optimal eps=best optimal epsilon, acc=accuracy, cov=coverage, trn=training set. Best
results for r = 0.625, ε = 0.29: accuracy=0.744864, coverage=0.989542.

r gran optimal eps acc cov trn

nil nil 0.6528 0.9972 615
0.0 1.0 0.649673 1.0 1.0

0.125 1.0 0.649673 1.0 19.4
0.25 0.47 0.663576 0.994771 114.4
0.375 0.31 0.711504 0.983006 328.2
0.5 0.3 0.729724 0.986928 520.4

0.625 0.29 0.744864 0.989542 607.6
0.75 0.3 0.742736 0.99085 614.8
0.875 0.3 0.742736 0.99085 614.8
1.0 0.3 0.742736 0.99085 614.8
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Tables 1,2 show results obtained with CV-5 cross–validation for Heart Disease
and Pima Indians Diabetes, respectively.

6 Tests with Graded Granules of Training Objects

In this case granulation goes according to (2) with the general radius r. Thus,
a granule g(u, r, µε

δ) consists of objects v such that at least r · 100 percent of
attributes a satisfy ||a(u)− a(v)|| ≤ ε. The parameter r is called here the catch
radius. Voting goes like in sect. 3.

Tables 3,4 show results obtained with CV-5 cross–validation for Heart Disease
and Pima Indians Diabetes, respectively.

Table 3. CV-5; Heart Disease; Algorithm 1 v2. r catch=catch radius, εopt=optimal
epsilon, acc=accuracy, cov=coverage. Best result for rcatch = 0.307692, εopt = 0.04:
accuracy=0.859259, coverage=1.0.

r catch εopt acc cov

nil nil 0.804 1.0
0.153846 0.0 0.777778 1.0
0.230769 0.06 0.82963 1.0
0.307692 0.04 0.859259 1.0
0.384615 0.07 0.855555 1.0
0.461538 0.09 0.844445 1.0
0.538462 0.1 0.848148 1.0
0.615385 0.11 0.840741 1.0
0.692308 0.19 0.844445 1.0
0.769231 0.33 0.837037 1.0
0.846154 0.36 0.839483 0.992592
0.923077 0.53 0.829141 0.996296

1.0 0.88 0.790172 0.97037

Table 4. CV-5; Pima Indians Diabetes; Algorithm 1 v2. r catch=catch radius,
εopt=optimal epsilon, acc=accuracy, cov=coverage. Best result for rcatch = 0.5,
εopt = 0.09: accuracy=0.747712, coverage=1.0.

r catch εopt acc cov

nil nil 0.6528 0.9972
0.25 0.09 0.730719 1.0
0.375 0.11 0.745098 1.0
0.5 0.09 0.747712 1.0

0.625 0.15 0.745098 1.0
0.75 0.31 0.747712 1.0
0.875 0.3 0.73464 1.0
1.0 0.3 0.742736 0.99085
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7 Tests with Graded Granules of Exhaustive Set of Rules
from Training Set

In this case, granulation proceeds as in sect. 6 and voting according to sect. 4.
Tables 5,6 show results obtained with CV-5 cross–validation for Heart Disease
and Pima Indians Diabetes, respectively.

Table 5. CV-5; Heart Disease; Algorithm 3 v2. r catch=catch radius, εopt=optimal
epsilon, acc=accuracy, cov=coverage. Best result for rcatch = 0.153846, εopt = 0: accu-
racy=0.840741, coverage=1.0.

r catch optimal eps acc cov

nil nil 0.804 1.0
0.0 0.0 0.448148 1.0

0.0769231 0.0 0.833333 1.0
0.153846 0.0 0.840741 1.0
0.230769 0.06 0.837037 1.0
0.307692 0.14 0.798672 0.992592
0.384615 0.74 0.724598 0.996296
0.461538 1.0 0.470371 1.0

Table 6. CV-5; Pima Indians Diabetes; Algorithm 3 v2. r catch=catch radius,
εopt=optimal epsilon, acc=accuracy, cov=coverage. Best result for rcatch = 0.25,
εopt = 0.14: accuracy=0.637909, coverage=1.0.

r catch optimal eps acc cov

nil nil 0.6528 0.9972
0.0 0.0 0.350327 1.0

0.125 0.06 0.601307 1.0
0.25 0.14 0.637909 1.0
0.375 0.09 0.431988 0.971242
0.5 0.96 0.201307 0.6

8 Tests with Graded Granules of Granular Reflections

In this last case, parallel to sect. 5, granular reflections are formed in accor-
dance with 1 and then {o(g) : g ∈ Cov(r, µ,G)} is granulated according to (2).
Voting goes as in sect. 3. In this case there are two granulation radii: the ra-
dius of the starting granulation procedure by means of (1) and the radius of
the second granulation procedure on granular reflections according to general
(2); the second radius is called the catch radius. Results are given in Tables
7, 8 for Heart Disease and Pima Indians Diabetes, respectively, obtained with
CV-5 cross–validation. Results are given against granulation radii in terms of
the optimal catch radii at which the best accuracy of classification has been
obtained.
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Table 7. CV-5; Heart Disease; Algorithm 2 v2. r gran=granulation radius, opti-
mal r catch=optimal catch radius, εopt=optimal epsilon, acc=accuracy, cov=coverage,
trn=training set. Best result for rgran = 0.846154, optimal rcatch = 0.307692,
εopt = 0.04: accuracy=0.859259, coverage=1.0.

r gran optimal r catch optimal eps acc cov trn

nil nil nil 0.804 1.0 216
0.0769231 0.538462 0.3 0.592104 0.933333 1.4
0.153846 0.538462 0.29 0.583084 0.948148 2.6
0.230769 0.307692 0.01 0.618408 0.981481 3.2
0.307692 0.615385 0.17 0.769323 0.914815 5.4
0.384615 0.384615 0.01 0.785059 0.981481 10.8
0.461538 0.384615 0.02 0.835755 0.992593 26.2
0.538462 0.461538 0.04 0.848148 1.0 115.0
0.615385 0.461538 0.04 0.855556 1.0 114.6
0.692308 0.692308 0.19 0.844444 1.0 177.8
0.769231 0.384615 0.08 0.855556 1.0 210.0
0.846154 0.307692 0.04 0.859259 1.0 216.0
0.923077 0.307692 0.04 0.859259 1.0 216.0

1.0 0.307692 0.04 0.859259 1.0 216.0

Table 8. CV-5; Pima Indians Diabetes; Algorithm 2 v2. r gran=granulation ra-
dius, optimal r catch=optimal catch radius, εopt=optimal epsilon, acc=accuracy,
cov=coverage, trn=training set. Best result for rgran = 0.625, optimal rcatch = 0.375,
εopt = 0.1: accuracy=0.74902, coverage=1.0.

r gran optimal r catch optimal eps acc cov trn

nil nil nill 0.6528 0.9972 615
0.0 0.625 0.44 0.650559 0.998693 1.0

0.125 0.5 0.14 0.667585 0.983006 20.2
0.25 0.75 0.16 0.698365 0.992157 118.0
0.375 0.625 0.1 0.734641 1.0 329.0
0.5 0.375 0.05 0.741176 1.0 521.6

0.625 0.375 0.1 0.74902 1.0 607.6
0.75 0.5 0.09 0.747712 1.0 614.8
0.875 0.5 0.09 0.747712 1.0 614.8
1.0 0.5 0.09 0.747712 1.0 614.8

9 Conclusions

In this paper we have presented results of our study on inducing classifiers from
granulated data sets. Procedures of granulation are to a large extent randomized,
e.g., in choice of a granular covering as well as in choice of values of factored
attributes on granules. Therefore, a strict analysis of this heuristic is difficult
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and the main estimate of the quality of this method is in results of classifica-
tion on test data sets. We have chosen here as a similarity measure applied in
granulation process, the rough inclusion µL obtained from the �Lukasiewicz t–
norm, and its graded variant µε

L in which the Euclidean standard distance in the
real line is applied. Granulation mechanism is applied here in few cases: with µL

to training objects (sect. 3), to rules induced from the training set by an exhaus-
tive classifier (sect.4); with µε

L (r=1) (see formula (2)) to granules of granulated
objects (granular reflections) (sect. 5); with general µε

L of formula (2) to granules
of training objects (sect. 6); finally with general µε

L of formula (2) to granules
of rules induced from granulated data set by an exhaustive classifier (sect. 7).
As exemplary data sets Heart Disease and Pima Indians Diabetes from UCI
Repository were chosen. Results show a substantial improvement in quality of
classification in comparison with the classical exhaustive classifier, e.g., for Pima
Indians Diabetes, the exhaustive classifier accuracy was 0.6528, and in sect. 2
accuracy was 0. 7427 (Fig.2), similar results were obtained in other cases. The
results show that the method promises to give good results and further study is
oriented toward additional heuristics which may further improve the classifiers
based on granulation.
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Abstract. Our main objective was to verify the following hypothesis:
for some complete (i.e., without missing attribute vales) data sets it is
possible to induce better rule sets (in terms of an error rate) by increasing
incompleteness (i.e., removing some existing attribute values) of the orig-
inal data sets. In this paper we present detailed results of experiments on
one data set, showing that some rule sets induced from incomplete data
sets are significantly better than the rule set induced from the original
data set, with the significance level of 5%, two-tailed test. Additionally,
we discuss criteria for inducing better rules by increasing incompleteness
and present graphs for some well-known data sets.

1 Introduction

In this paper we show that by increasing incompleteness of data sets (i.e., by
removing attribute values in a data set) we may improve quality of the rule sets
induced from such modified data sets. In our experiments we replaced randomly
existing attribute values in the original data sets by symbols that were recognized
by the rule induction module as missing attribute values. In other words, the
rule sets were induced from data sets in which some values were erased using a
Monte Carlo method. The process of such replacements was done incrementally,
with an increment equal to 5% of the total number of attribute values of a given
data set.

We distinguish three different kinds of missing attribute values: lost values
(the values that were recorded but currently are unavailable) [1,2,3,4], attribute-
concept values (these missing attribute values may be replaced by any attribute
value limited to the same concept) [5], and ”do not care” conditions (the original
values were irrelevant) [4,6,7,8]. A concept (class) is a set of all cases classified
(or diagnosed) the same way.

We assumed that for each case at least one attribute value was specified,
i.e., they are not missing. Such an assumption limits the percentage of missing
attribute values used for experiments; for example, for the wine data set, starting
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Table 1. Data sets used for experiments

Data set Number of

cases attributes concepts

Bankruptcy 66 5 2

Breast cancer - Slovenia 277 9 2

Hepatitis 155 19 2

Image segmentation 210 19 7

Iris 150 4 3

Lymphography 148 18 4

Wine 178 12 3

from 70% of randomly assigned missing attribute values, this assumption was
violated. Additionally, we assumed that all decision values were specified.

For rule induction from incomplete data we used the MLEM2 data mining
algorithm, for details see [9]. We used rough set methodology [10,11], i.e., for a
given interpretation of missing attribute vales, lower and upper approximations
were computed for all concepts and then rule sets were induced, certain rules
from lower approximations and possible rules from upper approximations. Note
that for incomplete data there is a few possible ways to define approximations,
we used concept approximations [4,5].

As follows from our experiments, some of the rule sets induced from such
incomplete data are better than the rule sets induced form original, complete
data sets. More precisely, the error rate, a result of ten-fold cross validation, is
significantly lower, with the significance level of 5%, than the error rate for rule
sets induced from the original data.

2 Experiments

In our experiments seven typical data sets were used, see Table 1. All of these
data sets are available from the UCI ML Repository, with the exception of the
bankruptcy data set. These data sets were completely specified (all attribute
values were completely specified), with the exception of breast cancer - Slovenia
data set, which originally contained 11 cases (out of 286) with missing attribute
values. These 11 cases were removed.

In two data sets: bankruptcy and iris all attributes were numerical. These
data sets were processed as numerical (i.e., discretization was done during rule
induction by MLEM2). The image segmentation data set was converted into
symbolic using a discretization method based on agglomerative cluster analysis
(this method was described, e.g., in [12]).

Preliminary results [13] show that, for some data sets by increasing incom-
pleteness we may improve rule sets. Therefore we decided to conduct extensive
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Table 2. Wine data set. Certain rule sets.

Percentage of Average Standard Z score

lost values error rate deviation

0 7.66 1.32

5 7.17 1.74 1.22

10 7.13 2.00 1.20

15 8.76 1.85 −2.66

20 7.06 1.38 1.72

25 7.27 1.55 1.06

30 6.20 1.39 4.17
35 6.55 1.16 3.43
40 6.8 1.28 2.56
45 7.73 1.48 −0.21

50 7.21 0.82 1.58

55 8.01 1.29 −1.05

60 7.30 1.00 1.00

65 8.41 0.98 0.98

Table 3. Wine data set. Possible rule sets.

Percentage of Average Standard Z score

lost values error rate deviation

0 7.66 1.32

5 7.21 1.92 1.06

10 7.32 1.34 0.98

15 8.46 1.75 −2.01

20 7.17 1.72 1.23

25 7.64 1.63 0.05

30 6.33 1.15 4.15
35 6.57 1.12 3.44
40 6.22 1.29 4.27
45 7.79 1.30 −0.39

50 7.12 0.68 2.00
55 7.68 0.98 −0.06

60 6.89 0.78 2.74
65 8.31 1.17 −2.04
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Table 4. Wine data set. Size of rule sets.

Percentage of Certain rule set Possible rule set

lost values Number of Number of

lost values rules conditions rules conditions

0 20 65 20 65

10 25 89 21 73

20 34 108 28 90

30 38 117 46 149

40 47 140 54 166

50 62 246 70 204

60 59 156 61 148

Fig. 1. Bankruptcy data set. Difference between error rates for testing with complete
data sets and data sets with missing attribute values.

experiments, repeating 30 times the ten-fold cross validation experiment (chang-
ing the random case ordering in data sets) for every percentage of lost values
and then computing the Z score using the well-known formula

Z =
X1 −X2√

s2
1+s2

2
30

,
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Fig. 2. Breast cancer - Slovenia data set. Difference between error rates for testing
with complete data sets and data sets with missing attribute values.

Fig. 3. Hepatitis data set. Difference between error rates for testing with complete
data sets and data sets with missing attribute values.



Inducing Better Rule Sets by Adding Missing Attribute Values 165

Fig. 4. Image segmentation data set. Difference between error rates for testing with
complete data sets and data sets with missing attribute values.

Fig. 5. Iris data set. Difference between error rates for testing with complete data sets
and data sets with missing attribute values.

where X1 is the mean of 30 ten-fold cross validation experiments for the original
data set, X2 is the mean of 30 ten-fold cross validation experiments for the data
set with given percentage of lost values, s1 and s2 are sample standard deviations
for original and incomplete data sets, respectively.
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Fig. 6. Lymphography data set. Difference between error rates for testing with com-
plete data sets and data sets with missing attribute values.

Fig. 7. Wine data set. Difference between error rates for testing with complete data
sets and data sets with missing attribute values.

Note that though rule sets were induced from incomplete data, for testing such
rule sets the original, complete data were used so that the results for incomplete
data are fully comparable with results for the original data sets. Obviously, if
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Fig. 8. Wine data set. Testing on complete and incomplete data sets, all missing at-
tribute values are interpreted as lost.

the Z score is larger than 1.96, the rule set induced from the data set with given
percentage of lost values is significantly better than the corresponding rules set
induced from the original data set, with the significance level of 5%, two-tailed
test. As follows from Tables 2 and 3, there are three and five rules sets better than
the rule sets induced from the original data sets, for certain and possible rule
sets, respectively. In Tables 2 and 3, the corresponding Z scores are presented in
bold font. Additionally, in only one case for certain rule sets and for two cases
for possible rule sets the rule sets induced from incomplete data are worse than
the rule sets induced from the original data.

The problem is how to recognize a data set that is a good candidate for
improving rule sets by increasing incompleteness. One possible criterion is a
large difference between two error rates: one induced from incomplete data and
tested on incomplete data and the other induced from incomplete data and tested
on the original data set. The corresponding differences of these error rates are
presented on Figures 1–7.

Another criterion of potential usefulness of inducing rules from incomplete
data is the graph of an error rate for rule sets induced from incomplete data
and tested on original, complete data. Such graphs were presented in [13]. In
this paper we present these graphs, restricted to the wine data set and to lost
values on Figure 8. A good candidate is characterized by the flat graph, roughly
speaking, parallel to the percentage of missing attribute values axis. It is clear
that the wine data set satisfies both criteria. Note that all graphs, presented in
Figures 1–8, were plotted for single experiments of ten-fold cross validation.
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Because of the space limitation, we cannot present more experimental results
in this paper, but it is clear that the main objective of this paper is proven: for
some data sets it is possible to improve the quality of rule sets by increasing
incompleteness of data sets (or replacing existing attribute values by symbols of
missing attribute values).

The question is why sometimes we may improve the quality of rule sets by
increasing incompleteness of the original data set. As follows from Table 4, the
size of the induced rule sets form incomplete data, both in terms of the number of
rules and the total number of conditions, is larger for incomplete data. This fact
follows from the MLEM2 algorithm: MLEM2 is less likely to induce simpler rules
if the search space is smaller. A possible explanation for occasional improvement
of the quality of rule sets is redundancy of information in some data sets, such as
wine data set, so that it is still possible to induce not only good but sometimes
even better rule sets than the rule set induced from the original data set.

3 Conclusions

As follows form our experiments, there are some cases of the rule sets, induced
from incomplete data sets, with an error rate (result of ten-fold cross validation)
significantly smaller (with a significance level of 5%, two-tailed test) than the er-
ror rate for the rule set induced from the original data set. Thus, we proved that
there exists an additional technique for improving rule sets, based on increas-
ing incompleteness of the original data set (by replacing some existing attribute
values by symbols of missing attribute values). Note that this technique is not
always successful. A possible criterion for success are based on large difference
between the error rate for rule sets induced from incomplete data and tested
on original data and on incomplete data. As follows from Figures 1–7, image
segmentation, iris and lymphography data sets are also, potentially, good candi-
dates for improving rule sets based on increasing incompleteness of the original
data sets. Another criterion is a flat graph for an error rate versus percentage
of missing attribute vales for rule sets induced from incomplete data and tested
on original, complete data.
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Abstract. In this paper we propose the hybridisation of the rough set
concepts and statistical learning theory. We introduce new estimators
for rule accuracy and coverage, which base on the assumptions of the
statistical learning theory. Then we construct classifier which uses these
estimators for rule induction. These estimators allow us to select rules
describing statistically significant dependencies in data. We test our clas-
sifier on benchmark datasets and show its applications for KDD.
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1 Introduction

Rough set theory [7] and statistical learning theory [11] provide two different
methodologies for reasoning from data.

The rough set concept theory is a theoretical framework for describing and
inferring knowledge. Examined knowledge is imperfect. It is imprecise due to
vague concepts involved in knowledge representation and it is based on incom-
plete data. The central point of the theory is the idea of concept approximation
by the sets of objects that certainly belongs to the concept and the set of those
which may belong to the concept on the basis of possessed data.

The main goal of statistical learning theory is to provide a framework for
studying the problem of inference. For this purpose, there are introduced statis-
tical assumptions about the way the data is generated. A probabilistic model of
data generation process, which is the core of the theory, establishes the formali-
sation of relationships between past and future observations.

While rough set theory provides an intuitive description of relationships in
data, stereotypes that express general yet imprecise truths, statistical learning
theory measures the significance and correctness of discovered dependencies.

The combination of both approaches provides us tools for building simple,
human understandable classifiers, whose quality will be guaranteed by the sta-
tistical assumptions.

In this paper we propose the hybridisation of the rough set approach and
statistical learning theory. We define the probabilistic model of data generation
process. We recall rough set concepts in this new setting. Then we show how to
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extend set approximations from a sample to the set of all objects. Our attitude
is similar to the idea of inductive extensions of approximation spaces presented,
for example, in [8,9].

We introduce measures of approximation quality: accuracy and coverage. Tak-
ing advantage of the underlying probabilistic model we estimate values of the
above indices on the set of all objects using a sample. We propose two estima-
tors: one based on Hoeffding inequality [6], and second based on the optimal
probability bound presented in [4,5].

The statistical nature of estimators leads us to the index, the measure called
a significance. The significance measures how often sample-based accuracy and
coverage estimations are correct. The trade-off relation between these three mea-
sures allow us to balance the approximation between fitting to the sample and
generalisation.

The properties of accuracy and coverage were thoroughly studied in [10]. The
author proposed the probabilistic definition of the indices, yet he neither defined
an underlying probability model nor showed the trade-off between accuracy or
coverage and significance. Quality measures are also examined from the statis-
tical point of view in [3], but without placing them in the rough set context.

Gediga and Düntsch propose in [2] an application of statistical techniques in
rough set data analysis, yet they did not incorporate the assumptions on the
data generating process required by these techniques into the presented model.

In order to show how the estimators behave in practice we developed a simple
rule based classifier. Estimated indices guarantee the quality of each rule, decide
how accurate rules are acceptable and how many objects have to match the
rule in order to make it significant. We test the classifier on benchmark datasets
obtained from [1].

Test results revealed that the obtained classifier generates highly relevant
rules. Each rule is assigned with its accuracy and coverage estimations. Rules
cover only that part of universe for which it is possible to predict decision with
high accuracy. As a consequence the classifier is able to judge whether it has
enough knowledge to classify a certain object.

2 Probabilistic Model

We propose the following definition of the problem of induction. We are given a
domain organised in terms of objects possessing attributes. Depending on the na-
ture of domain, objects are interpreted as, e.g. cases, states, processes, patients,
observations. Attributes are interpreted as features, variables, characteristics,
conditions, etc.

Let U be a finite set of objects for a given domain. We denote U as universe.
Let A be a non-empty finite set of attributes such that a : U → Va for every
a ∈ A and let d 
∈ A such that d : U→ Vd be a decision attribute. We introduce
a probability measure P# on 2U according to the following formula:

∀X⊆U P#(X) =
|X |
|U| ,

where | · | denotes the number of elements in a set.
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Statistical learning theory [11] assumes that the phenomena underlying gen-
erated data have statistical nature and the observed objects are independent,
identically distributed random variables.

Formally we introduce a probability space (Ω, 2Ω, P ). Observed objects
u1, u2, . . . , ui, . . . are values of independent random variables U1, U2, . . . , Ui, . . ..
Each Ui is a function Ui : Ω → U. The distribution of Ui is identical to P#, i.e.:

∀i∀X⊆UP#(X) = P ({ω ∈ Ω | Ui(ω) ∈ X}) = P (U−1
i (X))

Let U ⊆ U be a non-empty, finite set of observed objects called a sample. U ,
together with the values of attributes for elements of U , is our knowledge about
the domain. We denote elements of U by u1, . . . , un, where ui is a realisation (or
value) of the random variable Ui. We represent this knowledge in terms of the
triple A = (U,A, d), usually denoted as a decision system.

3 Set Approximations

Classification is the task of finding the dependence between the attribute values
and the value of decision. The rough set theory [7] provides tools and method-
ology for performing classification.

The basic concept of rough set theory is the indiscernibility relation. Let
A = (U,A, d) be a decision system and B ⊆ A.

INDA(B) = {(u, u′) ∈ U2|∀a ∈ B a(u) = a(u′)}

is called the B-indiscernibility relation. The B-indiscernibility is an equivalence
relation. We will denote its equivalence class generated by object u as [u]B.

The notion of indiscernibility is used to define set approximations. A given set
X ⊆ U may be approximated using only the information contained in B ⊂ A by
constructing theB-lower andB-upper approximations ofX , denotedBX andBX
respectively, where BX =

⋃
{[u]B|[u]B ⊆ X} and BX =

⋃
{[u]B|[u]B ∩X 
= ∅}.

In the case of classification, we approximate sets of objects that possess a
given decision. Let Xv = {u ∈ U |d(u) = v}. The objects in BXv can be with
certainty classified as members of decision class v on the basis of knowledge
represented by B, while the objects in U \ BXv definitely are not members of
decision class v on the basis of knowledge represented by B.

For a given set of attributes B, formulae of the form a = v, where a ∈ B
and v ∈ Va are called descriptors over B. The set of conditional formulae over
B is defined as the least set containing all descriptors over B and closed with
respect to the propositional connectives ∧ (conjunction), ∨ (disjunction) and ¬
(negation).

Let ϕ be a conditional formula over B. ||ϕ||A denotes the meaning of ϕ in
the decision system A, which is the set of all objects in U with the property ϕ.
These sets are defined as follows:

1. if ϕ is of the form a = v, then ||ϕ||A = {x ∈ U |a(x) = v};
2. ||ϕ∧ϕ′||A = ||ϕ||A∩||ϕ′||A; ||ϕ∨ϕ′||A = ||ϕ||A∪||ϕ||A; ||¬ϕ||A = U \ ||ϕ||A.
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Every indiscernibility class can be represented by means of conditional for-
mulae composed out of conjunction of descriptors. Let B = {a1, . . . , an}, u ∈ U
and let v1, . . . , vn be such that ai(u) = vi. In such a case

[u]B = {u′ ∈ U |∀a ∈ B a(u) = a(u′)} = ||a1 = v1 ∧ · · · ∧ an = vn||A.

We express the lower approximation by means of a conditional formula BX =
||ϕ1 ∨ · · · ∨ϕk||A, such that ϕ1, . . . , ϕk are formulae representing indiscernibility
classes that compose BX . Similarly, there exist ψ1, . . . , ψl such that BX =
||ψ1 ∨ · · · ∨ ψl||A.

A decision rule for A is any expression of the form ϕ → d = v, where ϕ is a
conditional formula, v ∈ Vd and ||ϕ||A 
= ∅. A decision rule ϕ→ d = v is true in
A if, and only if, ||ϕ||A ⊆ ||d = v||A. A decision rule describes the dependence
between a decision class and its approximation.

4 Extended Approximations

In the above section we considered set approximations that described the de-
pendence between the attribute values and the value of decision for objects in
U . Now, we extend set approximations on the whole universe U. The extended
approximations of all decision classes will compose a classifier.

The assumption that past and future observations are both sampled inde-
pendently from the same distribution provide us with tools for extending the
approximations. However, the extension will be correct only with some
probability.

We represented approximations by means of conditional formulae which are
interpreted in the decision system. For a given set of attributes B, extended
approximations are represented by means of conditional formulae over B inter-
preted in the universe U. Let ϕ be a conditional formula over B and let ||ϕ||U
denote its meaning in the universe of all objects. The meaning is defined as
follows:

1. if ϕ is of the form a = v then ||ϕ||U = {u ∈ U|a(u) = v};
2. ||ϕ ∧ ϕ′||U = ||ϕ||U ∩ ||ϕ′||U; ||ϕ ∨ ϕ′||U = ||ϕ||U ∪ ||ϕ||U; ||¬ϕ||U = U \ ||ϕ||U;

For every Ui we obtain from its definition1

P#(||a = v||U) = P#({u ∈ U|a(u) = v}) =

= P ({ω ∈ Ω|a(Ui(ω)) = v}) = P (a(Ui) = v).

This correspondence may be easily extended on all conditional formulae.
Now, we define extended approximations using conditional formulae inter-

preted in the universe U:

1 The latter equality introduces a standard probabilistic notation in which ’ω’, ’{’
and ’}’ are omitted in expressions with random variables.
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Definition 1. Let X ⊆ U and B be a set of attributes and let Y ⊆ U be such
that

Y = ||ϕ||U,
where ϕ is a conditional formula over B. The set Y ⊆ U is called B-α-κ-
approximation of Xwhen

P#(X | Y ) ≥ α and P#(Y | X) ≥ κ.

We denote α as the approximation accuracy and we denote κ as the approxima-
tion coverage.

On the contrary to the standard approximations defined in a decision system
this definition does not construct a set Y , it only states whether a given set
possesses a property of being an α-κ-approximation.

Accuracy and coverage are indices of the approximation quality. Accuracy
measures the probability that an object belonging to the approximation belongs
also to the approximated set. Coverage measures the percent of objects in a
set that are included in its approximation. When the approximation accuracy is
equal to 1 and the coverage is maximised the approximation may be considered
as lower and when the approximation coverage is equal to 1 and the accuracy is
maximised the approximation may be considered as upper.

Accuracy and coverage are defined by means of the underlying probabil-
ity distribution, according to which the sample is drawn. Since we are given
only a sample and we do not know the probability distribution, we must esti-
mate values of the indices using the sample and probabilistic inequalities of the
form

P
(
P#(X | Y ) ≥ fn(U1, . . . , Un)

)
≥ γn.

The above inequality may be interpreted in the following way: if we draw
{(ui

1, u
i
2, . . . , u

i
n)}∞i=1, an infinite sequence of n-element samples, then according

to the law of large numbers

P
(
P#(X | Y ) ≥ fn(U1, . . . , Un)

)
=

= lim
k→∞

1
k
· |{i ≤ k | P#(X | Y ) ≥ fn(ui

1, . . . , u
i
n)}|.

Hence γn describes how frequent it is true that P#(X | Y ) ≥ fn(ui
1, . . . , u

i
n)

or, in other words how likely P#(X | Y ) ≥ fn(ui
1, . . . , u

i
n) is to happen in one

occurrence. γn is a measure called significance.
We propose two methods of deriving estimators of the accuracy and the cov-

erage on the basis of sample. The first bases on the Hoeffding inequality [6]:

Theorem 1. Let Z1, . . . , Zn be identically distributed independent random vari-
ables. Assume that each Zi ∈ [0, 1]. Then, for every ε > 0, the following inequal-
ity takes place:

P (EZ1 ≤
1
n

n∑
i=1

Zi + ε) ≥ 1− e−2nε2
. (1)
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Assume that Y is an α-κ-approximation for the set X . Let U be a sample and
let {U1, . . . , Un} = U ∩ Y . For the purpose of accuracy estimation we declare
that

Zi =
{

0, when Ui ∈ X
1, when Ui 
∈ X

.

Since
EZ1 = P (Z1 = 1) = P (U1 
∈ X | U1 ∈ Y ) = 1− P#(X | Y ),

we obtain the following inequality

P ((1− P#(X | Y )) ≤ 1
n

n∑
i=1

Zi + ε) ≥ 1− e−2nε2

Now, we take the advantage of the law of large numbers and the fact that we
know the realisation of the sample U . We calculate a realisation for each Zi in
the following way

zi =
{

0, when ui ∈ X
1, when ui 
∈ X

,

where ui is i-th uk such that uk ∈ Y . The statement

(1− P#(X | Y ))− 1
n

n∑
i=1

zi ≤ ε

is likely to happen with significance 1− e−2nε2
.

n denotes the number of variables Zi. It is equal from the definition to the
number of elements in the sample that belong to Y . On the other hand Zi = 1 if
and only if the corresponding Ui does not belong to X . Since Ui have to belong
to U and Y we obtain

n = |U ∩ Y | and
1
n

n∑
i=1

zi =
|(U ∩ Y ) \X |
|U ∩ Y | = 1− |U ∩ Y ∩X ||U ∩ Y | .

If we assume that significance is equal to γ we obtain

ε =

√
ln(1− γ)
−2|U ∩ Y |

and the approximation accuracy is estimated from (1) with the significance γ
according to the formula

P#(X | Y ) ≥ |U ∩ Y ∩X ||U ∩ Y | −

√
ln(1− γ)
−2|U ∩ Y | .

The coverage estimator is developed in the analogous way from (1), and the
following estimator is obtained

P#(Y | X) ≥ |U ∩ Y ∩X ||U ∩X | −

√
ln(1− γ)
−2|U ∩X | .
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Table 1. Exemplary decision system

a d

u0 1 1
u1 0 0
u2 0 0
...

...
...

u100 0 0

We illustrate the trade-off between these three numerical factors using the
following example. Consider decision system presented in Table 1. We obtain
the following lower approximation for the objects in the system:

{a}||d = 0||A = ||a = 0||A, {a}||d = 1||A = ||a = 1||A.

Yet we cannot state that ||a = 0||U is an approximation of ||d = 0||U with a 100%
accuracy, since there may exist an object u101 in U \ U such that a(u101) = 0
and d(u101) = 1. The given decision system suggests that such an occurrence is
unlikely, yet still it is possible.

We estimate the approximation accuracy with significance 95%:

P#(||d = 0||U | ||a = 0||U) ≥ | ||d = 0 ∧ a = 0||A|
| ||a = 0||A|

−

√
ln(1− 0.95)
−2| ||a = 0||A|

=

=
100
100
−

√
ln(0.05)
−200

= 0.88.

Hence, the accuracy of the approximation of the set ||d = 0||U by means of
||a = 0||U is greater than 88% with significance 95%. On the other hand, for
the approximation {a}||d = 1||U = ||a = 1||U, we do not obtain any significant
accuracy estimation.

Hoeffding inequality provides us with a simple analytic formula for the ap-
proximation accuracy, yet the obtained estimator is not optimal. That is why
we propose the second estimator based on the bound proposed in [4]. It results
in an optimal estimator.

Theorem 2. Let Z1, . . . , Zn be identically distributed independent random vari-
ables such that Zi ∈ {0, 1}, i = 1, . . . , n. Then, the following inequality takes
place:

P

(
EZ1 > gn,γ(

1
n

n∑
i=1

Zi)
)
< γ,

where, for a given k < n, gn,γ satisfies the equation

k∑
i=0

(n
i

)
gn,γ(

k

n
)i(1− gn,γ(

k

n
))n−i = γ

and gn,γ(1) = 1. gn,γ provides the optimal (most sharp) bound of EZ1.
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The second estimator does not provide any analytic formula for an estimator
value, yet gn,γ( k

m ) may be calculated using an algorithm proposed in [4].
According to the second estimator the accuracy of the approximation of the

set ||d = 0||U by means of ||a = 0||U is greater than 97% with significance 95%.

5 Rule Induction Algorithm

Extended approximations of all decision classes compose a classifier. Unfortu-
nately an extended approximation for a given set is not uniquely defined. Many
algorithms for calculating approximations were developed. Often the approxi-
mations are represented by means of decision rules.

In order to illustrate the link of theory with practical results we propose a
simple algorithm for rule induction. The algorithm generates a classifier cal-
culating extended approximations for all decision classes. Each approximation
is represented as a set of decision rules whose predecessors are conjunctions of
descriptors. For each rule, the accuracy, the coverage and the significance are
calculated. The algorithm is parametrised by minimal levels of significance and
accuracy and it induces all the rules that satisfy these minimal levels of indices.
As a consequence induced rules do not cover all objects, and the classifier has not
enough knowledge to recognise some objects. On the other hand all the classified
objects are certified to be classified correctly with a very high probability.

The algorithm works as follows: In the k-th step the algorithm tries to induce
rules whose predecessors possess k descriptors In the 0th step it checks using
the estimator whether there is a decision value v such that the rule with empty
predecessor and decision value v would have the desired accuracy and signifi-
cance. If the answer is positive, then the rule is generated and the rule induction
process ends. Otherwise, all the possible rule predecessors with one selector are
generated and checked using the estimator. Then the second selector is added,
and so on.

The algorithm uses two heuristics that speed it up: it does not try to generate
a rule that is more specific than any existing rule and it checks whether there is
enough objects matching to the rule predecessor to make it significant.

The algorithm ends when no more rules may be created.
In the case when during classification several rules may be applied to a given

object, we choose the rule with the greatest accuracy.
Many more effective algorithms for rule generation that the one described

above were developed (for example, in RSES system). However, our objective
was to illustrate the theory with a practical application and to show the link
between set approximations and induced rules only.

6 Tests

To evaluate the performance of the algorithm, 3 benchmark data sets were se-
lected: chess, nursery, census94. The data sets are obtained from the repository
of University of California at Irvine [1].
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Each data set is split into a training and a test set. For census94 data sets the
original partition available in the repository was used in the experiments. The
remaining data sets (chess and nursery) ware randomly split into a training and
a test part with the split ratio 2 to 1.

All the selected sets are the data sets from UCI repository that have data
objects represented as vectors of attributes values and have the size between a
few thousand and several tens thousand of objects.

Chess and nursery have only nominal attributes. Census94 possess both nom-
inal and numeric attributes. The numeric attributes were discretised.

Table 2 presents test results obtained using the estimator based on Thm. 1.
Table 3 presents test results obtained using the estimator based on Thm. 2. In
both cases rules were induced with significance 95%.

The tests results show that the algorithm generates a small number of highly
relevant rules which makes it useful for knowledge discovery. The fact that it
estimates accuracy and coverage for each rule provide us with an insight into

Table 2. Test results obtained using the estimator based on Thm. 1

dataset min accuracy number of rules classifier accuracy classifier coverage
nursery 0.900000 42 0.985617 0.778395
chess 0.900000 80 0.952963 0.954944
census94 0.950000 32 0.951100 0.502610
census94 0.900000 83 0.899346 0.758307
census94 0.800000 107 0.812987 0.998894

Table 3. Test results obtained using the estimator based on Thm. 2

dataset min accuracy number of rules classifier accuracy classifier coverage
nursery 0.900000 112 0.989269 0.884722
chess 0.900000 310 0.957419 0.968085
census94 0.950000 92 0.951274 0.590873

Table 4. Part of 53 rules induced from census94 dataset with significance 0.95 and
minimal accuracy 0.85

Accuracy Coverage Rule
0.874541 0.388500 sex=Female → class=<=50K
0.938863 0.417531 marital-status=Never-married → class=<=50K
0.883111 0.310253 relationship=Not-in-family → class=<=50K
0.958077 0.198552 relationship=Own-child → class=<=50K
0.967552 0.195818 age=17-23 → class=<=50K
0.893863 0.143788 age=24-28 → class=<=50K
0.899943 0.064978 hours-per-week=18-24 → class=<=50K
0.940021 0.168487 capital-gain=7000-99999 → class=>50K
0.843932 0.050181 occupation=Machine-op-inspct, hours-per-week=40 → class=<=50K
0.879734 0.052272 occupation=Handlers-cleaners → class=<=50K
0.827732 0.040772 occupation=Adm-clerical, education=Some-college → class=<=50K
0.901273 0.048653 education=11th → class=<=50K
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the internal structure of data. Table 4 illustrates the above statements presenting
a part of rules induced from census94 dataset.

7 Conclusions

The hybridisation of roughs sets and statistical learning theory resulted in the
concept of extended approximation and statistical estimators for rule accuracy
and coverage.

These estimators may be used with any rule induction algorithm. They guar-
antee the relevance of induced rules.

Extended approximations create a theoretical background for the classifica-
tion. They indicate the connection between lower and upper approximations and
rules induced from sample.

The theory and algorithms may be further developed to make them suitable
for handling missing values, numerical attributes and other types of data.
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Abstract. Action rules describe possible transitions of objects from one state to
another with respect to a distinguished attribute. Previous research on action rule
discovery usually requires the extraction of classification rules before construct-
ing any action rule. In this paper, we present a new algorithm that discovers action
rules directly from a decision system. It is a bottom-up strategy which has some
similarity to systems ERID and LERS. Finally, it is shown how to manipulate the
music score using action rules.

1 Introduction

An action rule is a rule extracted from a decision system that describes a possible transi-
tion of objects from one state to another with respect to a distinguished attribute called
a decision attribute [13]. We assume that attributes used to describe objects in a deci-
sion system are partitioned into stable and flexible. Values of flexible attributes can be
changed. This change can be influenced and controlled by users. Action rules mining
initially was based on comparing profiles of two groups of targeted objects - those that
are desirable and those that are undesirable [13]. An action rule is formed as a term
[(ω) ∧ (α → β)] ⇒ (φ → ψ), where ω is a conjunction of fixed condition features
shared by both groups, (α → β) represents proposed changes in values of flexible
features, and (φ → ψ) is a desired effect of the action. The discovered knowledge
provides an insight of how relationships should be managed so the undesirable objects
can be changed to desirable. For example, in society, one would like to find a way to
improve his or her salary from a low-income to a high-income. Another example in
business area is when an owner would like to improve his or her company’s profits by
going from a high-cost, low-income business to a low-cost, high-income business.

Action rules introduced in [13] has been further investigated in [15][12][14]. Paper
[5] was probably the first attempt towards formally introducing the problem of mining
action rules without pre-existing classification rules. Authors explicitly formulated it
as a search problem in a support-confidence-cost framework. The proposed algorithm
is similar to Apriori [1]. Their definition of an action rule allows changes on stable
attributes. Changing the value of an attribute, either stable or flexible, is linked with a
cost [16]. In order to rule out action rules with undesired changes on stable attributes,
authors have assigned very high cost to such changes. However, that way, the cost of

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 181–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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action rules discovery is getting unnecessarily increased. Also, they did not take into
account the dependencies between attribute values which are naturally linked with the
cost of rules used either to accept or reject a rule. Algorithm ARED, presented in [6], is
based on Pawlak′s model of an information system S [9]. The goal is to identify certain
relationships between granules defined by the indiscernibility relation on its objects.
Some of these relationships uniquely define action rules for S.

This paper presents a new strategy for discovering action rules directly from the
decision system. Action rules are built from atomic expressions following a strategy
similar to ERID [2].

2 Background and Objectives

In this section we introduce the notion of an information system, a decision system,
stable attribute, flexible attribute, and give some examples.

By an information system [9] we mean a triple S = (X,A, V ), where:

1. X is a nonempty, finite set of objects
2. A is a nonempty, finite set of attributes, i.e.

a : U −→ Va is a function for any a ∈ A, where Va is called the domain of a
3. V =

⋃
{Va : a ∈ A}.

For example, Table 1 shows an information system S with a set of objects X =
{x1, x2, x3, x4, x5, x6, x7, x8}, a set of attributes A = {a, b, c, d}, and a set of their
values V = {a1, a2, b1, b2, b3, c1, c2, d1, d2, d3}.

Table 1. Decision Table S

a b c d

x1 a1 b1 c1 d1

x2 a2 b1 c2 d1

x3 a2 b2 c2 d1

x4 a2 b1 c1 d1

x5 a2 b3 c2 d1

x6 a1 b1 c2 d2

x7 a1 b2 c2 d1

x8 a1 b2 c1 d3

An information system S = (X,A, V ) is called a decision system, if A = ASt ∪
AFl ∪ {d}, where d is a distinguished attribute called the decision. Attributes in ASt

are called stable and attributes in AFl are called flexible. They jointly form the set of
conditional attributes. “Date of birth” is an example of a stable attribute. “Interest rate"
for each customer account is an example of a flexible attribute.

In earlier works in [13][15][12][14], action rules are constructed from classification
rules. This means that we use pre-existing classification rules or generate them using
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a rule discovery algorithm, such as LERS [4] or ERID [2], then, construct action rules
either from certain pairs of these rules or from a single classification rule. For instance,
algorithm ARAS [14] generates sets of terms (built from values of attributes) around
classification rules and constructs action rules directly from them. In this study, we
propose a different approach to achieve the following objectives:

1. Extract action rules directly from a decision system without using pre-existing clas-
sification rules.

2. Extract action rules that have minimal attribute involvement.

To meet these two goals, we introduce the notion of atomic action terms and show how
to build action rules from them.

3 Action Rules

In this section we give a definition of action terms, action rules, and we propose their
interpretation which we call standard.

Let S = (X,A ∪ {d}, V ) be a decision system, where V =
⋃
{Va : a ∈ A}. First,

we introduce the notion of an action term.
By an atomic action term we mean an expression (a, a1 → a2), where a is an at-

tribute and a1, a2 ∈ Va. If a1 = a2, then a is called stable on a1.
By a set of action terms we mean a smallest set such that:

1. If t is an atomic action term, then t is an action term.
2. If t1, t2 are action terms, then t1 � t2 is an action term.
3. If t is an action term containing (a, a1 → a2), (b, b1 → b2) as its sub-terms, then

a 
= b.

By the domain of an action term t, denoted by Dom(t), we mean the set of all
attribute names listed in t.

By an action rule we mean an expression r = [t1 ⇒ t2], where t1 is an action term
and t2 is an atomic action term. Additionally, we assume that Dom(t2) = {d} and
Dom(t1) ⊆ A. The domain of action rule r is defined as Dom(t1) ∪Dom(t2).

Now, let us give an example of action rules assuming that the decision system S is
represented by Table 1, a is stable and b, c are flexible attributes. Expressions (a, a2 →
a2), (b, b1 → b3), (c, c2 → c2), (d, d1 → d2) are examples of atomic action terms.
Expression (b, b1 → b3) means that the value of attribute b is changed from b1 to b3.
Expression (c, c2 → c2) means that the value c2 of attribute c remains unchanged.
Expression r = [[(a, a2 → a2) � (b, b1 → b3)] ⇒ (d, d1 → d2)] is an example of an
action rule. The rule says that if value a2 remains unchanged and value b will change
from b1 to b3, then it is expected that the value d will change from d1 to d2. Clearly,
Dom(r) = {a, b, d}.

Standard interpretation NS of action terms in S = (X,A, V ) is defined as follow:

1. If (a, a1 → a2) is an atomic action term, then
NS((a, a1 → a2)) = [{x ∈ X : a(x) = a1}, {x ∈ X : a(x) = a2}].
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2. If t1 = (a, a1 → a2) � t and NS(t) = [Y1, Y2], then
NS(t1) = [Y1 ∩ {x ∈ X : a(x) = a1}, Y2 ∩ {x ∈ X : a(x) = a2}].

Now, let us define [Y1, Y2]∩ [Z1, Z2] as [Y1∩Z1, Y2∩Z2] and assume thatNS(t1) =
[Y1, Y2] and NS(t2) = [Z1, Z2]. Then, NS(t1 � t2) = NS(t1) ∩NS(t2).

Let r = [t1 → t2] be an action rule, where NS(t1) = [Y1, Y2], NS(t2) = [Z1, Z2].
Support and confidence of r are defined as follow:

1. sup(r) = card(Y1 ∩ Z1).
2. conf(r) = [ card(Y1∩Z1)

card(Y1)
] · [ card(Y2∩Z2)

card(Y2)
].

The definition of a confidence should be interpreted as an optimistic confidence. It
requires that card(Y1) 
= 0, card(Y2) 
= 0, card(Y1∩Z1) 
= 0, and card(Y2∩Z2) 
= 0.
Otherwise, the confidence of action rule is zero.

Coming back to the example of S given in Table 1, we can find many action rules
associated with S. Let us take r = [[(a, a2 → a2) � (b, b1 → b2)] ⇒ (d, d1 → d2)] as
an example of the action rule. Then,

NS((a, a2 → a2)) = [{x2, x3, x4, x5}, {x2, x3, x4, x5}],
NS((b, b1 → b2)) = [{x1, x2, x4, x6}, {x3, x7, x8}],
NS((d, d1 → d2)) = [{x1, x2, x3, x4, x5, x7}, {x6}],
NS((a, a2 → a2) � (b, b1 → b2)) = [{x2, x4}, {x3}].

Clearly, sup(r) = 2 and conf(r) = 1 · 0 = 0.

Assume that L([Y, Z]) = Y and R([Y, Z]) = Z . The new algorithm ARD for con-
structing action rules is similar to ERID [2] and LERS [4]. So, to present this algorithm,
it is sufficient to outline the strategy for assigning marks to atomic action terms and
show how terms of length greater than one are built. Only positive marks yield action
rules. Action terms of length k are built from unmarked action terms of length k−1 and
unmarked atomic action terms of length one. Marking strategy for terms of any length
is the same as for action terms of length one.

Now, let us assume that S = (X,A∪{d}, V ) is a decision system and λ1, λ1 denote
minimum support and confidence, respectively. Each a ∈ A uniquely defines the set
CS(a) = {NS(ta) : ta is an atomic action term built from elements in Va}. By td we
mean an atomic action term built from elements in Vd.

Marking strategy for atomic action terms

For each NS(ta) ∈ CS(a) do

if L(NS(ta)) = ∅ or R(NS(ta)) = ∅ or L(NS(ta � td)) = ∅ or R(NS(ta � td)) = ∅,
then ta is marked negative.

if L(NS(ta)) = R(NS(ta)) then ta stays unmarked

if card(L(NS(ta � td)) < λ1 then ta is marked negative

if card(L(NS(ta � td)) ≥ λ1 and conf(ta → td) < λ2 then ta stays unmarked
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if card(L(NS(ta � td)) ≥ λ1 and conf(ta → td) ≥ λ2 then ta is marked positive
and the action rule [ta → td] is printed.

Now, to clarify ARD (Action Rules Discovery) strategy for constructing action rules,
we go back to our example with S defined by Table 1 and with ASt = {b}, AFl =
{a, c, d}. We are interested in action rules which may reclassify objects from the deci-
sion class d1 to d2. Additionally, we assume that λ1 = 2, λ2 = 1/4.

All atomic action terms for S are listed below:
For Decision Attribute in S:

NS(t12) = [{x1, x2, x3, x4, x5, x7}, {x6}]

For Classification Attributes in S:

t1 = (b, b1 → b1), t2 = (b, b2 → b2), t3 = (b, b3 → b3), t4 = (a, a1 → a2),
t5 = (a, a1 → a1), t6 = (a, a2 → a2), t7 = (a, a2 → a1), t8 = (c, c1 → c2),
t9 = (c, c2 → c1), t10 = (c, c1 → c1), t11 = (c, c2 → c2), t12 = (d, d1 → d2).

Following the first loop of ARD algorithm we get:

NS(t1) = [{x1, x2, x4, x6}, {x1, x2, x4, x6}] Not Marked /Y1 = Y2/

NS(t2) = [{x3, x7, x8}, {x3, x7, x8}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t3) = [{x5}, {x5}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t4) = [{x1, x6, x7, x8}, {x2, x3, x4, x5}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t5) = [{x1, x6, x7, x8}, {x1, x6, x7, x8}] Not Marked /Y1 = Y2/

NS(t6) = [{x2, x3, x4, x5}, {x2, x3, x4, x5}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t7) = [{x2, x3, x4, x5}, {x1, x6, x7, x8}] Marked "+"
/rule r1 = [t7 ⇒ t12] has conf = 1/2 ≥ λ2, sup = 2 ≥ λ1/

NS(t8) = [{x1, x4, x8}, {x2, x3, x5, x6, x7}] Not Marked
/rule r1 = [t8 ⇒ t12] has conf = [2/3] · [1/5] < λ2, sup = 2 ≥ λ1/

NS(t9) = [{x2, x3, x5, x6, x7}, {x1, x4, x8}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t10) = [{x1, x4, x8}, {x1, x4, x8}] Marked "-" /card(Y2 ∩ Z2) = 0/

NS(t11) = [{x2, x3, x5, x6, x7}, {x2, x3, x5, x6, x7}] Not Marked /Y1 = Y2/

Now, we build action terms of length two from unmarked action terms of length one.

NS(t1 � t5) = [{x1, x6}, {x1, x6}] Not Marked /Y1 = Y2/

NS(t1 � t8) = [{x1, x4}, {x2, x6}] Marked "+"
/rule r1 = [[t1 � t8]⇒ t12] has conf = 1/2 ≥ λ2, sup = 2 ≥ λ1/

NS(t1 � t11) = [{x2, x6}, {x2, x6}] Not Marked /Y1 = Y2/

NS(t5 � t8) = [{x1, x8}, {x6, x7}] Marked "-"
/rule r1 = [[t5 � t8]⇒ t12] has conf = 1/2 ≥ λ2, sup = 1 < λ1/

NS(t5 � t11) = [{x6, x7}, {x6, x7}] Not Marked /Y1 = Y2/

NS(t8 � t11) = [∅, {x2, x3, x5, x6, x7}] Marked "-" /card(Y1) = 0/

Finally (there are only 3 classification attributes in S), we build action terms of length
three from unmarked action terms of length one and length two.
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Fig. 1. Example score of a Pentatonic Minor Scale played in the key of C

Fig. 2. Representation of a Pentatonic Minor Scale

Only, the term t1 � t5 � t8 can be built. It is an extension of t5 � t8 which is already
marked as negative. So, the algorithm ARD stops and two action rules are constructed:
[[(b, b1 → b1) � (c, c1 → c2)] ⇒ (d, d1 → d2)], [(a, a2 → a1) ⇒ (d, d1 → d2)].
Following the notation used in previous papers on action rules mining (see [6], [14],
[13], [12]), the first of the above two action rules will be presented as [[(b, b1)�(c, c1 →
c2)]⇒ (d, d1 → d2)].

4 Application Domain and Experiment

Music Information Retrieval (MIR) is chosen as the application area for our research.
In [11], authors present the system MIRAI for automatic indexing of music by instru-
ments and emotions. When MIRAI receives a musical waveform, it divides that wave-
form into segments of equal size and then its classifiers identify the most dominating
musical instruments and emotions associated with each segment and finally with the
musical waveform. In [7], [8] authors follow another approach and present a Basic
Score Classification Database (BSCD) which describes associations between different
scales, regions, genres, and jumps. This database is used to automatically index a piece
of music by emotions. In this section, we show how to use action rules extracted from
BSCD assuming that we need to change the emotion either from the retrieved or sub-
mitted piece of music by minimally changing its score. By a score, in MIR area, we
mean a written form of a musical composition.

To introduce the problem, let’s start with Figure 1 showing an example of a score
of a Pentatonic Minor Scale played in the key of C on a piano. As we can see, 8 notes
are played: A�,G,A�, F,D�,G,C and C. The ordered sequence of the same notes
without repetitions [A�, C, D�, F , G] uniquely represents that score. Now, we explain
the process of computing its numeric representation [2, 3, 2, 2]. The score is played in
the key of A� which becomes the root. Its second note C is 2 tones up from A�. The
third note D� is three tones up fromC. The fourth note F is two tones up fromD�, and
finally G is two tones up from F . This is how the sequence of jumps [2, 3, 2, 2] with
root A� is generated.

Essentially any combination of notes A�,C,D�, F,G can be played while still re-
maining within the constraints of a C Pentatonic Minor Scale on a piano. This scale is
illustrated in Figure 2. Accordingly one plays the root, plays 3 tones up, then 2 tones
up then 2 tones up, and then 3 tones up (m means mode). The first note, or in musical
terms, the "Root" is a C note. It means that the remaining four notes are all in the key
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Table 2. Basic Score Classification Database

J1 J2 J3 J4 J5 Scale Region Genre Emotion sma

2 2 3 2 Pentatonic Major Western Blues melancholy s

3 2 1 1 2 Blues Major Western Blues depressive s

3 2 2 3 Pentatonic Minor Western Jazz melancholy s

3 2 1 1 3 Blues Minor Western Blues dramatic s

3 1 3 1 3 Augmented Western Jazz feel-good s

2 2 2 2 2 Whole Tone Western Jazz push-pull s

1 2 4 1 Balinese Balinese ethnic neutral s

2 2 3 2 Chinese Chinese ethnic neutral s

2 3 2 3 Egyptian Egyptian ethnic neutral s

1 4 1 4 Iwato Iwato ethnic neutral s

1 4 2 1 Japanese Japanese Asian neutral s

2 1 4 1 Hirajoshi Hirajoshi ethnic neutral s

1 4 2 1 Kumoi Japanese Asian neutral s

2 2 3 2 Mongolian Mongolian ethnic neutral s

1 2 4 3 Pelog Western neutral neutral s

2 2 3 2 Pentatonic Majeur Western neutral happy m

2 3 2 3 Pentatonic 2 Western neutral neutral m

3 2 3 2 Pentatonic 3 Western neutral neutral m

2 3 2 2 Pentatonic 4 Western neutral neutral m

2 2 3 3 Pentatonic Dominant Western neutral neutral m

3 2 2 3 Pentatonic Minor Western neutral sonorous m

1 3 3 2 Altered Pentatonic Western neutral neutral m

3 2 1 1 2 Blues Western Blues depressive m

4 3 Major neutral neutral sonorous a

3 4 Minor neutral neutral sonorous a

4 3 4 Major 7th Major neutral neutral happy a

4 3 3 Major 7th Minor neutral neutral not happy a

3 4 4 Minor 7th Major neutral neutral happy a

3 4 3 Minor 7th Minor neutral neutral not happy a

2 2 3 3 Major 9th neutral neutral happy a

2 1 4 3 Minor 9th neutral neutral not happy a

2 2 1 2 3 Major 11th neutral neutral happy a

2 1 2 2 3 Minor 11th neutral neutral not happy a

4 4 Augmented neutral neutral happy a

3 3 3 Diminished neutral neutral not happy a

of C Pentatonic Minor Scale on a piano. However, from the score itself, we have no
idea about its key or scale. We can only discern the jumps between the notes and the
repeated notes.

To tackle the above problem, authors in [7] built a Basic Score Classification Data-
base (BSCD) which describes associations between different scales, regions, genres,
and jumps (see Table 2). The attribute Ji means i-th jump. When a music piece is sub-
mitted to QAS associated with BSCD, each note one by one, is drawn into the array
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Table 3. Possible Representative Jump Sequences for the Input Sequence

Root J1 J2 J3 J4

A� 2 3 2 2

G 3 2 3 2

F 2 3 2 3

D� 2 2 3 2

C 3 2 2 3

Fig. 3. Example of a Music Score

of incoming signals. Assuming that the score is represented by Figure 1, QAS will
generate five optional sequences:

[A�, C, D�, F , G], [G, A�, C, D�, F ], [F , G, A�, C, D�], [D�, F , G, A�, C], or
[C, D�, F , G, A�].

In the first caseA� is the root, in the secondG is the root, in the third F , in the fourth
D�, and in the fifth C is the root. Clearly, at this point, QAS has no idea which note is
the root and the same which sequence out of the 5 is a representative one for the input
sequence of notes A�,G,A�, F,D�,G,C and C. Table 3 gives numeric representation
of these five sequences.

Paper [8] presents a heuristic strategy for identifying which sequence out of these
five sequences is a representative one for the input score. The same, on the basis of
associations between sequences of jumps and emotions which can be extracted from
BSCD, we can identify the emotion which invokes in most of us the above input score.

What about changes to the input score so the scale associated with that score will
change the way user wants. Action rules extracted from BSCD can be used for that
purpose and they guarantee the smallest number of changes needed to achieve the goal.
Example of an action rule extracted from BSCD is given below:

[(J1, 3→ 2) � (J2, 2→ 3)]⇒ (Scale, PentatonicMinor→ Egyptian).

For instance, this rule can be applied to a music score represented by a sequence of 25
notes (Figure 3). They are [A�,G,A�, C,C,D�,D,C,C, F,C,A�, C,A�,G,A,G,G,
D�,G,C,D�,A�, C,C].

The ordered sequence of the same 25 notes without repetitions [A�,C,D,D�, F,G]
uniquely represents that score. Assume now, that the score is played in the key of G.
So, [3, 2, 2, 1, 2] is its numeric representation.
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The classifier trained on Table 1, based on Levenshtein’s distance [8], identified
the sequence [3, 2, 2, 3] as the closest one to [3, 2, 2, 1, 2]. Action rule [(J1, 3 → 2) �
(J2, 2 → 3)] ⇒ (Scale, PentatonicMinor → Egyptian)], extracted from Table 1,
converts that score to [A�,G,A,C,C,D�,D,C,C, F,C,A,C,A�,G,A,G,G,D�,G,
C,D�,A,C,C].
Please notice that A� is changing to A only if the note C follows it in the input score.

This example shows how to use action rules to manipulate the music score. Following
the same approach, we can manipulate music emotions, genre, and region.

5 Conclusion and Future Work

We presented an algorithm that discovers action rules from a decision table. The pro-
posed algorithm generates a complete set of shortest action rules without using pre-
existing classification rules. During the experiment with several data sets, we noticed
that the flexibility of attributes are not equal. For example, the social condition was most
likely less flexible than the health condition in one of the data set used in our experi-
ment, and this may have to be considered. Future work shall address this issue as well
as further analysis of the algorithm with more real world data sets.
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Abstract. We discuss the hierarchical learning approach applied to the
recognition of structured objects. Learning algorithms for such objects
usually display high complexity and typically require a priori assump-
tions on the subject domain. Hierarchical learning is designed to alleviate
many problems associated with structured object recognition. It helps
steer searches for solutions toward more promising paths in the other-
wise computationally prohibitive search spaces by breaking the original
task into simpler, more manageable subtasks. It provides for an effective
interactive mechanism to transfer the additional domain knowledge ex-
pressed by external human experts into low level operators. The design
and the implementation of hierarchical learning and domain knowledge
elicitation, based on approximate reasoning and rough mereology consti-
tute an excellent example of Granular Computing at work.

Keywords: Rough mereology, concept approximation, machine learn-
ing, hierarchical learning, handwritten digit recognition.

1 Introduction

Machine learning can be broadly understood as a process in which a machine
(a computer system) changes its structure, its programs, or its data so that
its expected future performance improves. The changes may involve existing
components, or ab initio the synthesis of entirely new ones [5].

From a bit more technical point of view, the principal task of machine learning
is to reconstruct a decision function f that associates input data with their
outputs, by way of assuming a hypothesis about the function f in the form of
another function h, selected from a known class H of functions. Ideally, h should
return the same output values as f for the same inputs. In practice, we try to
approach that agreement in output values as close as possible.

The choice of a particular hypothesis class H implicitly defines a hypothesis
space that a system can ever represent and therefore can ever learn. The con-
struction of the desired h can then be viewed as a search through that space
for optimal candidate hypotheses. An immediate consequence is that learning
complex tasks where the hypothesis spaces are usually very large may entail
prohibitive computational costs.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 191–201, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In pattern recognition, searching through huge potential solution spaces poses
challenging problems in all stages, from feature selection through classifiers con-
struction to classification of novel samples. The most popular methods to alle-
viate the complexity problem is to employ heuristic search strategies as well as
to approximate intermediate or partial solutions.

To make the matters worse, machine learning tasks are a good example of
inverse problems, where an attempt is made to establish some causal factors or
subsurface structures from the available observation data. Inverse problems are
known to be ill-posed [13], with small deviations in data leading to amplified
aberrations in solutions.

It is widely acknowledged that good feature selection would not be possi-
ble without knowledge on the domain of interest [2]. Domain (or background)
knowledge can serve as additional search control tools. Usually fast and efficient
greedy searches have limits in the patterns they can discover, while complex and
more elaborated, more exhaustive strategies typically display high computational
costs.

Pattern recognition in general benefits from a vast gamut of popular ap-
proaches such as discriminant analysis, statistical learning, decision trees, neural
networks or genetic algorithms, commonly referred to as inductive learning
methods, i.e. methods that generalize from observed training examples by finding
features that empirically distinguish positive from negative training examples.
Though these methods allow for highly effective learning systems, there often
exist proven bounds on the performance of the classifiers they can construct,
especially when the samples involved exhibit complex internal structures, such
as optical characters, facial images or time series data. Such samples contain
substantial structural or relational information that sometimes might prove im-
possible to quantify in feature vector forms, and it is believed that analytical
learning methods based on structural analysis of training examples are more
suitable in dealing with such samples. These methods, however, can only be
efficiently employed using many a priori assumptions on the sample domain [5].

As an attempt to tackle all the above mentioned problems, in this paper, we
present a scheme for incorporating domain knowledge about structured samples
into the learning process. The knowledge is provided by a hypothetical expert
that will interact with the classification system during a later phase of the learn-
ing process, providing certain ‘guidance’ to the difficult task of adaptive searching
for correct classifiers. The main underlying assumption is that when the feature
space is as large as in the case of structured samples, algorithms seeking to
approximate human reasoning will perform better when equipped with domain
knowledge provided by a human expert. This external knowledge will be used to
steer the search process to more promising areas more quickly or to fine tune the
construction of component patterns that would be difficult to find greedily (See
Fig.1). Learning from external domain knowledge sources constitutes an integral
part of the intensively pursued research over Knowledge-rich Data Mining, as
stipulated in, e.g. [1].
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Fig. 1. A priori vs. explanation based learning

In distinction to most popular domain knowledge based approaches widely
used in recognition systems, ours concentrates on specific difficult, error-prone
samples encountered during the learning phase. The expert will pass the cor-
rect classification of such cases to the system along with his explanation on how
he arrived at his decision on the class identity of the sample. The system then
attempts to translate this knowledge into its own descriptive language and prim-
itives, to rebuild its classifiers. The novel element here is that these explanations
will not be passed as predefined, but rather will be provided by the expert in a
two way dialog along with the evolution of the learning system.

In many aspects, our approach resemble the explanation-based learning (EBL)
approach. EBL allows a solution to a sample problem to be generalized into a
form that later could be used to solve conceptually similar problems [10]. The
generalization process is driven by the explanation why the solution worked. In
Pattern Recognition, EBL typically is used to produce more general classification
rules by analyzing the classification of a sample object [5]. The main advantage
of EBL is that to learn a concept, it requires a much smaller number of sample
objects than other approaches. However, our method goes beyond the typical
EBL schemes with the introduction of a multi layer approximate reasoning hi-
erarchy that will help to transfer the domain knowledge to the learning process
in a much more natural and efficient form.

It is noteworthy to observe that our approach, based on approximate rea-
soning scheme and granular computing, though developed independently, has
much in common with theories and methods of Cognitive Science. For exam-
ple, one of the most fundamental assumption of Unified Theory of Cognition [6]
stipulates that human perception is inherently hierarchical and theories on such
perception should be deliberately approximate. Most, if not all, cognitive archi-
tectures such as SOAR, ACT-R, Prodigy or recently developed ICARUS [4] are
based on knowledge and data chunking, which follows the hierarchical structure
of human perception. Chunking resembles in many ways the layered reasoning
paradigm.
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On the other hand, cognitive architectures seem not to incorporate the ap-
proximation of internal predicates or goal seeking strategies to a large extent,
while the approximation of concepts and their binding relations is at the core of
our approach.

We describe the process of transferring the expert’s reasoning scheme into the
recognition system, based on the rough mereology approach to concept approx-
imation [9],[12].

2 Hierarchical Learning

The main assumption of the hierarchical learning approach posits that effective
classification of complex structured samples should be conducted in subsequent
steps rather than in a single all-out, wrap-up attempt. This postulate has several
profound motivations.

2.1 Divide and Conquer

First, the internal relational structures of the subject samples naturally call for
the need of breaking the learning process into respective simpler sub-problems
and trying to compute local solutions before combining them into a larger one
for the original task. This divide and conquer paradigm proved to be effective in
reducing the complexity of problems involving searches through huge potential
solution spaces (See Fig.2).

Fig. 2. All-out approach versus decomposition
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2.2 Dealing with Ill-posed Problems

As pointed out in [13], inverse problems, concerned of finding a solution f to a
functional equation

A(f) = d

where A can be understood as a model for a phenomenon, f ∈ F represents a
function of some causal factors of the model, chosen from a class F of candidate
functions, and d denotes some actual observation data pertaining to the phe-
nomenon, are generally ill-posed, which means the solution f might not exist,
might not be unique, and most importantly, might not be stable. Namely, with
a small deviation δ in the output data dδ, we have

Rδ(f) = ‖A(f)− dδ‖

not tending to zero even if δ tends to zero, where ‖ · ‖ is any divergence metrics
appropriate for f , meaning arbitrarily small deviations in data may cause large
deviations in solutions.

In particular, fundamental pattern recognition problems such as class prob-
ability density function estimation from a wide set of potential densities, or
parametric estimation of optimal feature subsets, are ill-posed.

On the other hand, if the model A can be decomposed into a combination
of simpler sub-models Ai, e.g. those involving search spaces with lower Vapnik-
Chervonenkis (VC) dimensions, or those for which respective stable sub-solutions
fi can be found inexpensively, chances are that we will be able to assemble a
solution f from sub-solutions fi, which will be better than a solution computed
in an all-out attempt for the original problem. However, the challenge in this
approach is that there is no known automatic method for the computation of
effective decompositions of A.

In the hierarchical learning approach, we assume that the decomposition
scheme will be provided by an external human expert in an interactive process.
Knowledge acquired from human expert will serve as guidance to break the
original model A into simpler, more manageable sub-models Ai, organized in a
lattice-like hierarchy. They would correspond to subsequent levels of abstractions
in the hierarchy of perception and reasoning of the human expert.

2.3 Narrowing the Potential Search Space

As stated in [13], the problem of estimating f from a large set F of possible
candidate solutions is ill-posed. One way to alleviate this problem is to employ
the so-called Structural Risk Minimization (SRM) technique. The technique, in
short, is based on a theorem on the risk bounds, which essentially states that

R(α) ≤ Remp(α) + CI(α)

which means the risk functional R(α), expressing how far we are from the desired
solution for a parameter α from a general parameter set S, is bounded by the
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Fig. 3. Actual risk bounds across search spaces (Vapnik, The Nature of Statistical
Learning Theory, Springer-Verlag, 1999)

sum of the empirical risk Remp(α) and a confidence interval CI(α) containing
the Vapnik-Chervonenkiss dimension of the function space S. This dependency
is shown on Fig.3.

Instead of optimizing α over an arbitrary set of possible parameters S, we
use the bounds to find a set S∗ for which the risk bound is minimal, and then
perform the search for the solution α∗ within S∗. For more details, see [13].

The hierarchical learning approach, by reducing the complexity of the original
learning problem by decomposing it into simpler ones, tries to optimize the
corresponding search spaces on subsequent levels of the learning hierarchy, and
is similar in function to the SRM technique.

2.4 Granular Computing

The hierarchical learning approach takes advantage of additional domain knowl-
edge provided by human experts. In order to best employ this knowledge, it
relies on the observation that human thinking and perception in general, and
their reasoning while performing classification tasks in particular, can:

– inherently comprise different levels of abstraction,
– display a natural ability to switch focus from one level to another,
– operate on several levels simultaneously.

Such processes are natural subjects for the Granular Computing paradigm, which
encompasses theories, methods, techniques and tools for such fields as problem
solving, information processing, human perception evaluation, analysis of com-
plex systems and many others. It is built around the concept of information
granule, which can be understood as a collection of “values that are drawn to-
gether by indistinguishability, equivalence, similarity, or proximity” [14]. Granu-
lar Computing follows the human ability to perceive things at different levels of
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abstraction (granularity), to concentrate on a particular level of interest while
preserving the ability to instantly switch to another level in case of need. This
allows to obtain different levels of knowledge and, which is important, a better
understanding of the inherent structure of this knowledge.

The concept of information granule is closely related to the imprecise nature
of human reasoning and perception. Granular Computing therefore provides ex-
cellent tools and methodologies for problems involving flexible operations on
imprecise or approximated concepts expressed in natural language.

2.5 Ontology Matching

The knowledge on training samples that comes from an expert obviously reflects
his perception about the samples. The language used to describe this knowl-
edge is a component of the expert’s ontology which is an integral part of his
perception. In a broad view, an ontology consists of a vocabulary, a set of con-
cepts organized in some kind of structure, and a set of binding relations amongst
those concepts [3]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or
a lattice, of concepts. A concept on a higher level will be synthesized from its
children concepts and their binding relations. The reasoning thus proceeds from
the most primitive notions at the lowest levels and work bottom-up towards
more complex concepts at higher levels.

Hierarchical learning, together with the transfer of knowledge expressed in
natural languages from external experts to low-level computer operators, con-
stitutes an excellent illustration of Granular Computing in action.

3 Implementation

We present in brief an implementation of the discussed hierarchical learning
approach. For more details, see [7].

We assume an architecture that allows a learning system to consult a human
expert for advices on how to analyze a particular sample or a set of samples.
Typically this is done in an iterative process, with the system subsequently
incorporating knowledge elicited on samples that could not be properly classified
in previous attempts.

The ontology matching aims to translate the components of the expert’s ontol-
ogy, such as single concepts and binding relations, expressed in natural language,
which may have the form of, e.g.

“A Six is a digit that has a closed belly below a slanted neck.”

or, in a more formal fashion:

[CLASS(u) =‘6’] ≡ a, b are parts of u; “Below”(b,a); “SNeck”(a);“CBelly”(b)

into low-level operators such as pixel counts, formulas of pixel coordinates, dis-
tances, etc.
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3.1 Approximation of Concepts

A foreign concept C is approximated by a domestic pattern (or a set of patterns)
p in term of a rough inclusion measure Match(p, C) ∈ [0, 1]. Such measures take
root in the theory of rough mereology [9], and are designed to deal with the
notion of inclusion to a degree. An example of concept inclusion measures would
be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}|

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, to find sets of patterns
Pat, Pat1,...,Patn and a relation %d so as to satisfy the following quality re-
quirement :

if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = %d(Pat1, ..., Patn))
then Quality(Pat) > α

where pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such
as support, coverage, or confidence [10].

In other words, we seek to translate the expert’s knowledge into the domestic
language so that to generalize the expert’s reasoning to the largest possible num-
ber of training samples. More refined versions of the inclusion measures would
involve additional coefficients attached to, e.g., Found and Fit test functions.
Adjustment of these coefficients based on feedback from actual data may help
optimize the approximation quality.

For example, let us consider a handwritten digit recognition task.
When explaining his perception of a particular digit image sample, the expert

may employ concepts such as ‘Circle’, ‘Vertical Strokes’ or ‘West Open Belly’.
The expert will explain what he means when he says, e.g. ‘Circle’, by providing
a decision table (U, d) with reference samples, where d is the expert decision to
which degree he considers that ‘Circle’ appears in samples u∈U . The samples in
U may be provided by the expert, or may be picked up by him among samples
explicitly submitted by the system, e.g. those that had been misclassified in
previous attempts.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. A stroke at 85 degree to the horizontal in a sample image can
still be regarded as a vertical stroke, though obviously not a ‘pure’ one. Instead
of just answering in a ‘Y es/No’ fashion, the expert may express his degrees of
belief using such natural language terms as ‘Strong’, ‘Fair’, or ‘Weak’.
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Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

DPat Circle

u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair

The expert’s feedback will come in the form of a decision table (See Table 1.):
The translation process attempts to find domestic feature(s)/pattern(s) that

approximate these degrees of belief (See Tab. 2). Domestic patterns satisfying
the defined quality requirement can be quickly found, taking into account that
sample tables submitted to experts are usually not very large. Since this is
essentially a rather simple supervised learning task that involves feature selec-
tion, many strategies can be employed. In [8], genetic algorithms equipped with
greedy heuristics are reported successful for a similar problem. Neural networks
also prove suitable for effective implementation.

Similarly, we can approximate the expert’s perception on relations between
parts of a sample (See Tab. 3.). The corresponding low- level feature may be
expressed by, for instance, Sy < By, which tells whether the median center of
the stroke is placed closer to the upper edge of the image than the median center
of the belly. (See Tab. 4)

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

The expert’s perception ”A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’” is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with appropriate topological features, and Sy < By concerns
the centers of gravity of the two collections.

We compared the performances gained by a standard learning approach with
and without the aid of the domain knowledge. The additional knowledge, passed
by a human expert on popular classes as well as some atypical samples allowed to
reduce the time needed by the learning phase from 205 minutes to 168 minutes,
which means an improvement of about 22 percent without loss in classification
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quality. In case of screening classifiers, i.e. those that decide a sample does not
belong to given classes, the improvement is around 40 percent. The represen-
tational samples found are also slightly simpler than those computed without
using the background knowledge.

4 Conclusion

A conceptual description as well as details on the implementation of the hierar-
chical learning approach are laid out. Hierarchical learning together with knowl-
edge elicitation techniques, supported by experiment results, show the combined
strength of approximate reasoning, granular computing and rough mereology at
work. A discussion aimed at positioning the approach among well established
methods in related fields is also presented.
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Abstract. The LERS classification system and rule management in
probabilistic rough set models (PRSM) are compared according to the
interpretations of rules, quantitative measures of rules, and rule con-
flict resolution when applying rules to classify new cases. Based on the
notions of positive and boundary regions, probabilistic rules are semanti-
cally interpreted as the positive and boundary rules, respectively. Rules
are associated with different quantitative measures in LERS and PRSM,
reflecting different characteristics of rules. Finally, the rule conflict reso-
lution method used in LERS may be applied to PRSM.

1 Introduction

Rule induction is one of the most important applications of rough set the-
ory [5,6,8,9,11,17]. In the standard rough set model, one typically interprets
rules induced from the positive region (i.e., the lower approximation) of a con-
cept (class) as certain rules and rules induced from the boundary region (i.e.,
the difference of upper approximation and lower approximation) as uncertain or
plausible rules. One may associate quantitative measures to rules. For example,
the precision of a rule, also called accuracy and confidence, is the conditional
probability that a rule correctly indicates the concept given the set of all cases
matching the rule. From the point view of precision, the interpretation of cer-
tain and uncertain rules is reasonable, as the precision of a certain rule is 1 and
precision of a plausible rule is between 0 and 1.

The lack of consideration for the degree of overlap of an equivalence class and
a concept had motivated many authors to consider probabilistic rough set models
(PRSM). Pawlak, Wong, Ziarko [10] proposed to use 0.5 as a threshold to define
probabilistic rough set approximations. Yao and Wong [13,14,15] proposed the
decision-theoretic rough set model (DTRSM) in which a pair of threshold para-
meters for defining probabilistic approximations can be determined based on the
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well established Bayesian decision theory. That is, the probabilistic approxima-
tions defined by the parameters would incur minimal risk in deciding the posi-
tive, boundary and negative regions. Based on intuitive arguments, Ziarko [16]
proposed variable precision rough set model (VPRSM) for probabilistic approx-
imations. Once probabilistic approximations are introduced, one can similarly
derive rules [6,11,12].

There is a semantics difficulty with interpreting probabilistic rules induced
from the probabilistic positive region, since they are also uncertain (i.e., pre-
cision < 1). From the precision point of view, there is no difference between
probabilistic rules induced from probabilistic positive and boundary regions,
except for their levels of precision. However, this important problem has not
received much attention until recently. A solution to the problem is offered by
the decision-theoretic rough set model. Given a class, its positive, boundary and
negative regions represent three different types of decisions. For example, con-
sider classifying a set of patients according to a particular disease. A patient in
the positive region needs “immediately treatment”, a patient in the boundary
requires “further investigation”, and a patient in the negative region does not
require any treatment. With respect to the first two cases, the notions of positive
rules and boundary rules have been introduced [13]. They properly reflect the
semantics interpretations of rules induced in PRSM.

Another important issue that need to be considered in PRSM is rule conflict
resolution when rules are applied to classify new cases. Many studies focus more
on rule induction and pay less attention to rule evaluation where rule conflict reso-
lution must be considered. A solution for rule conflict resolution has been explored
in LERS [2,3,4,5], where bucket brigade algorithm [1,7] is adopted and modified.
In addition, LERS use different quantitative measure to characterize rules.

Based on the above discussion, we present a comparative study of LERS
classification system and rule management in PRSM. This comparison enables
us to pool together advantages of the two approaches in an attempt to obtain
better rule induction algorithms within rough set theory.

2 Rule Induction

First we are going to present LEM2 (Learning from Examples Module, version
2) methodology of rule induction based on attribute-value pair blocks. LEM2 is
one of rule induction modules of the LERS (Learning from Examples based on
Rough Sets) data mining system.

2.1 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 1, U = {1, 2, ..., 19}. Independent variables are called
attributes and a dependent variable is called a decision and is denoted by d. The
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Table 1. A complete decision table

Attributes Decision

Case Width Gauge Quality

1 wide heavy good

2 wide heavy good

3 wide heavy good

4 wide medium good

5 wide medium good

6 wide medium bad

7 wide light good

8 wide light good

9 wide light bad

10 wide light bad

11 narrow heavy good

12 narrow heavy good

13 narrow heavy good

14 narrow heavy bad

15 narrow medium good

16 narrow medium good

17 narrow medium bad

18 narrow light bad

19 narrow light bad

set of all attributes will be denoted by A. In Table 1, A = {Width, Gauge}. Any
decision table defines a function ρ that maps the direct product of U and A into
the set of all values. For example, in Table 1, ρ(1,Width) = wide. A decision
table with an incompletely specified function ρ will be called incomplete.

An important tool to analyze complete decision tables is a block of an attribute-
value pair. Let a be an attribute, i.e., a ∈ A and let v be a value of a for some case.
For complete decision tables if t = (a, v) is an attribute-value pair then a block of
t, denoted [t], is a set of all cases from U that for attribute a have value v. Each
attribute-value pair represents one piece of knowledge about a decision table or
a property of cases. These pieces of knowledge and the corresponding blocks will
serve as a basis of rule induction.

For Table 1, we have,
[(Width, wide)] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

[(Width, narrow)] = {11, 12, 13, 14, 15, 16, 17, 18, 19},
[(Gauge, heavy)] = {1, 2, 3, 11, 12, 13, 14},

[(Gauge,medium)] = {4, 5, 6, 15, 16, 17},
[(Gauhe, light)] = {7, 8, 9, 10, 18, 19}.
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Moreover, the two important blocks related with the decision Quality, called
concepts, are:

[(Quality, good)] = {1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 15, 16},
[(Quality, bad)] = {6, 9, 10, 14, 17, 18, 19}.

These blocks represent knowledge about the entire decision table. Rule induc-
tion is essential to find relationship between the blocks defined by attributes and
the blocks defined by a decision.

The notion of blocks can be used to explain the basic concepts of the rough
set theory [8,9]. Let B be a nonempty subset of A. The indiscernibility relation
IND(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ IND(B) if and only if ρ(x, a) = ρ(y, a) for all a ∈ B.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B . The
indiscernibility relation IND(B) may be computed using the idea of blocks of
attribute-value pairs. More specifically, the elementary blocks of IND(B) are
intersections of the corresponding blocks of attribute-value pairs, i.e., for any
case x ∈ U ,

[x]B =
⋂
{[(a, v)]|a ∈ B, ρ(x, a) = v}.

In other words, the elementary block containing x is intersection all blocks de-
fined by values of x all attributes in B.

For Table 1, the elementary sets of IND(A) are given by:

[1]A = [(Width, wide)] ∩ [(Gauge, heavy)] = {1, 2, 3} = [2]A = [3]A,
[4]A = [(Width, wide)] ∩ [(Gauge,medium)] = {4, 5, 6} = [5]A = [6]A,
[7]A = [(Width, wide)] ∩ [(Gauge, light)] = {7, 8, 9, 10} = [8]A = [9]A = [10]A,

[11]A = [(Width, narrow)] ∩ [(Gauge, heavy)] = {11, 12, 13, 14}=
[12]A = [13]A = [14]A,

[15]A = [(Width, narrow)] ∩ [(Gauge,medium)] = {15, 16, 17} = [16]A = [17]A,
[18]A = [(Width, narrow)] ∩ [(Gauge, light)] = {18, 19} = [19]A.

It follows that the elementary blocks of IND(A) are {1, 2, 3}, {4, 5, 6}, {7, 8, 9,
10}, {11, 12, 13, 14}, {15, 16, 17} and {18, 19}.

2.2 Rules in LERS

Based on the elementary blocks of the equivalence relation induced by a subset
B of the attribute set A, one can define a pair of lower and upper approximations
for each concept Di ⊆ U . That is,

apr
B

(Di) =
⋃
{[x]B | [x]B ⊆ Di}
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=
⋃
{[x]B | P (Di | [x]B) = 1};

aprB(Di) =
⋃
{[x]B | [x]B ∩Di 
= ∅}

=
⋃
{[x]B | P (Di | [x]B) > 0},

where P (Di | [x]D) = |Di ∩ [x]B |/|[x]B| is the conditional probability and | · | is
the cardinality of a set.

Thus, the lower approximations of the concepts from Table 1 are:

apr
A

([(Quality, good)]) = {1, 2, 3},
apr

A
([(Quality, bad)]) = {18, 19},

And the upper approximations of the concepts from Table 1 are:

aprA([(Quality, good)]) = {1, 2, ..., 17},
aprA([(Quality, bad)]) = {4, 5, ..., 19}.

The LERS data mining system computes lower and upper approximations for
every concept and then induces rules using one of the selected modules. Rules
induced from lower and upper approximations are called certain and possible,
respectively [2].

The LEM2 algorithm search for rules by using a family of blocks such that
their intersection is either a subset of the concept or has an overlap with the
concept [3]. In the LERS format, every rule is associated with three numbers:
the total number of attribute-value pairs on the left-hand side of the rule, the
total number of cases correctly classified by the rule during training, and the
total number of training cases matching the left-hand side of the rule, i.e., the
rule domain size.

For Table 1, the LEM2 module of LERS induces the following rule sets:
the certain rule set:

2, 3, 3
(Gauge, heavy) & (Width, wide) -> (Quality, good),
2, 2, 2
(Gauge, light) & (Width, narrow) -> (Quality, bad),

and the following possible rule set:

1, 7, 10
(Width, wide) -> (Quality, good),
1, 6, 7
(Gauge, heavy) -> (Quality, good),
1, 4, 6
(Gauge, medium) -> (Quality, good),
1, 4, 9
(Width, narrow) -> (Quality, bad),
1, 4, 6
(Gauge, light) -> (Quality, bad),
1, 2, 6
(Gauge, medium) -> (Quality, bad).
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2.3 Rules in PRSM

The set POSB(Di) = apr
B

(Di) is called the positive region of Di, and the
set BNDB(Di) = aprB(Di) − apr

B
(Di) is called the boundary region of Di.

According to the two regions, one can form two types of rules called positive and
boundary rules, respectively [13].

If an elementary block is in the positive region of a decision class, one obtains a
positive rule; if the elementary block is in the boundary region, one obtains one or
severalboundary rules. In particular, in the VPRSM format, each rule is associated
with two numbers: the conditional probability and marginal probability [6].

For Table 1, we have the following positive rules:

(P1). (Width, wide) & (Gauge, heavy) −→ (Quality, good), 1.00, 0.158,
(P2). (Width, narrow) & (Gauge, light) −→ (Quality, bad), 1.00, 0.158,

and the boundary rules:

(B1). (Width, wide) & (Gauge,medium) −→ (Quality, good), 0.67, 0.158,
(B2). (Width, wide) & (Gauge,medium) −→ (Quality, bad), 0.33, 0.158,
(B3). (Width, wide) & (Gauge, light) −→ (Quality, good), 0.50, 0.211,
(B4). (Width, wide) & (Gauge, light) −→ (Quality, bad), 0.50, 0.211,
(B5). (Width, narrow) & (Gauge, heavy) −→ (Quality, good), 0.25, 0.211,
(B6). (Width, narrow) & (Gauge, heavy) −→ (Quality, bad), 0.75, 0.211,
(B7). (Width, narrow) & (Gauge,medium) −→ (Quality, good), 0.67, 0.158,
(B8). (Width, narrow) & (Gauge,medium) −→ (Quality, bad), 0.33, 0.158,

The two types of rules lead to two types of different decision. A positive rule
suggests a definite and positive decision regarding the class of a case, and a
boundary rule suggests a tentative and boundary decision regarding the class of
a case. Semantically, these two classes are different [13].

Inprobabilisticapproachesto roughsets, suchasdecision-theoreticmodel [13,14]
and variable precision model [16], we have the parameterized approximations:

apr
B

(Di) =
⋃
{[x]B | P (Di | [x]B) ≥ α},

aprB(Di) =
⋃
{[x]B | P (Di | [x]B) > β},

with α > β. They are referred to as the α-level lower approximation and β-
level upper approximation. Similarly, the α-level positive region and the (α, β)-
level boundary region can be introduced. Again, we have two types of rules
corresponding the the two region.

Suppose α = 0.75 and β = 0.50. For Table 1, rule (B6) becomes a 0.75-
level positive rule, and only rules (B1) and (B7) remain to be (0.75, 0.50)-level
boundary rules. On the other hand, for comparison, the previous rule sets, used
in the VPRSM methodology, presented in the LERS format, are:
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2, 3, 3
(Width, wide) & (Gauge, heavy) -> (Quality, good),
2, 2, 3
(Width, wide) & (Gauge, medium) -> (Quality, good),
2, 1, 3
(Width, wide) & (Gauge, medium) -> (Quality, bad),
2, 2, 4
(Width, wide) & (Gauge, light) -> (Quality, good),
2, 2, 4
(Width, wide) & (Gauge, light) -> (Quality, bad),
2, 3, 4
(Width, narrow) & (Gauge, heavy) -> (Quality, good),
2, 1, 4
(Width, narrow) & (Gauge, heavy) -> (Quality, bad),
2, 2, 3
(Width, narrow) & (Gauge, medium) -> (Quality, good),
2, 1, 3
(Width, narrow) & (Gauge, medium) -> (Quality, bad) and
2, 2, 2
(Width, narrow) & (Gauge, light) -> (Quality, bad).

With the additional information: |U | = 19, rules with the LERS format may
be easily converted into VPRSM format, the converse is not true. The conditional
probability is a ratio of the second LERS number to the third LERS number, the
marginal probability is the ratio of the third LERS number to the cardinality of
the universe. By the way, the cardinality of the universe is the same for all rules
so it does not need to be recorded for a specific rule.

3 Rule Conflict Resolution

The classification system of LERS is a modification of the bucket brigade algo-
rithm [1,7]. The decision to which concept a case belongs is made on the basis
of three factors: specificity factor, strength factor, and support. They are de-
fined as follows: specificity factor is either the specificity, i.e., the total number
of attribute-value pairs on the left-hand side of the rule or may be selected by
the user to be equal to one. Strength factor is either the strength, i.e., total num-
ber of cases correctly classified by the rule during training or rough measure,
i.e., the ratio of the strength to the total number of training cases matching the
left-hand side of the rule. For completely specified data sets the rough measure is
identical with the conditional probability of the concept given the rule domain.
The third factor, support, is defined as the sum of scores of all matching rules
from the concept, where the score of the rule is the product of its strength factor
and specificity factor. The concept C for which the support, i.e., the following
expression ∑

matching rules R describing C

Strength factor(R) ∗ Specificity factor(R)
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is the largest is the winner and the case is classified as being a member of C.
Note that the user may exclude support, i.e., the case might be classified only
on the basis of its scores associated with rules.

In the classification system of LERS, if complete matching is impossible, all
partially matching rules are identified. These are rules with at least one attribute-
value pair matching the corresponding attribute-value pair of a case. For any par-
tially matching rule R, the additional factor, called matching factor is computed.
Matching factor (R) is defined as the ratio of the number of matched attribute-
value pairs of R with a case to the total number of attribute-value pairs of R.
Again, the user may choose the matching factor to be equal to one. In partial
matching, the concept C for which the following expression is the largest∑

partially matching
rules R describing C

Matching factor(R) ∗ Strength factor(R)

∗ Specificity factor(R)

is the winner and the case is classified as being a member of C.
In general the LERS classification system uses four binary parameters: speci-

ficity factor (either equal to specificity or switched to integer one), strength factor
(either the total number of well-classified training cases or the rough measure),
support (either product of scores for each matching rule or each rule participates
on its own), and finally matching factor (either as defined or equal to integer one).
Thus the user of the LERS classification system may apply one of 16 different
strategies [5]. In the VPRSM methodology, classification is based on conditional
probability, one of 16 LERS strategies (in [5] this strategy, based only on the con-
ditional probability, is the strategy # 15). Note that the choice of the classification
strategy is crucial and that the best strategy is based on specificity = 1, strength,
support, and matching factor [5].

4 Conclusions

The LERS system induces rules based on attribute-value pairs. Since LERS
keep three important quantities of rules, namely, the total number of attributes
on the left-hand side of the rule, the total number of cases correctly classified
by the rule, and the total number of cases matching the left-hand side of the
rule, LERS can be easily applied to discover probabilistic rules. Based on two
decision-theoretic rough set model, two types of rules, known as positive rules
and boundary rules, can be introduced. LERS system can easily learn the two
types of rules. In addition, the rule conflict resolution strategy of LERS can be
applied to rule applications and evaluation in probabilistic rough set models.
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Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI),
vol. 4481, pp. 1–12. Springer, Heidelberg (2007)

14. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. International Journal of Man-machine Studies 37, 793–809 (1992)

15. Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In:
Proceedings of the 5th Symposium on Methodologies for Intelligent Systems, pp.
17–24 (1990)

16. Ziarko, W.: Variable precision rough sets model. Journal of Computer and Systems
Sciences 46, 39–59 (1993)

17. Ziarko, W.: Optimal decision making with data-acquired decision tables. In: Pro-
ceedings of the Intelligent Information Systems Symposium, pp. 75–85 (2000)



Similarity Relation in Classification Problems�

Andrzej Janusz

Warsaw University, Faculty of Mathematics, Informatics and Mechanics,
ul. Banacha 2, 02-097 Warszawa, Poland

janusza@mimuw.edu.pl

Abstract. This paper presents a methodology of constructing robust
classifiers based on a concept called a Hierarchic Similarity Model (HSM).
The hierarchic similarity is interpreted as a relation between pairs of com-
plex objects. This relation can be derived from an information system by
examining the domain related aspects of similarity. In the paper, global
similarity is decomposed into many local similarities by analogy with the
process of perceiving similar objects. For the purpose of estimating local
relations some well-known rough sets methods are used, as well as con-
text knowledge provided by a domain expert. Then the rules modeling
interactions between local similarities are constructed and used to assess
the degree of a global similarity of complex objects. The obtained relation
can be used to construct classifiers which may successfully compete with
other popular methods like boosted decision trees or k-NN algorithm.
An implementation of the proposed models in the R script language is
provided together with an empirical evaluation of the similarity based
classification accuracy for some common datasets. This paper is a con-
tinuation of the research started in [1].

1 Introduction

The notion of similarity has been in the scope of interest of researchers for many
years ([2], [3], [4]). Knowing how to discriminate similar cases or objects from
those which are dissimilar in a context of a decision class would enable us to
conduct an accurate classification and to detect unusual situations or behaviors.
Although human mind is capable of learning this relation from examples, math-
ematicians, computer scientists, philosophers and psychologist have not come up
with a single methodology of building similarity models appropriate for a wide
range of complex object classes or domains.

A variety of methods were used in order to construct such models and de-
fine a relation which would combine an intuitive structure with good predictive

� The author would like to thank professor Andrzej Skowron for the inspiration and
the useful remarks and also Aleksandra Janusz-Ochab and Marcin Szczuka for their
support in writing and editing this paper. This research was supported by the grant
N N516 368334 from Ministry of Science and Higher Education of the Republic of
Poland and by the Innovative Economy Operational Programme 2007-2013 (Priority
Axis 1. Research and development of new technologies).

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 211–222, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



212 A. Janusz

power. Among those a huge share was based on some distance measures. In that
approach, objects are treated as points in a metric space of their attributes and
the similarity is a decreasing function of the distance between them. Objects
are regarded as similar if they are close enough in this space. Such models may
be generalized by introducing a list of parameters to the similarity function,
e.g. weights of attributes. Tuning them results in the relation better fitting to
a dataset. Algorithms for computationally efficient optimization of parameters
for common similarity measures in the context of information systems were de-
scribed in [5].

One may argue that the relation of this kind is very intuitive because objects
which have many similar values of attributes are likely to be similar. However,
researchers like Amos Twersky ([2], [6]) proved empirically that in some contexts,
similarity does not necessarily have features like symmetry or subadditivity im-
plied by distance measures. This situation occurs particularly often when we
compare objects of great complexity. The explanation for this may lie in the fact
that complex objects can be similar in some aspects and dissimilar in others. A
dependency between local and global similarities may be highly nonlinear and
in order to model it we need to learn this dependency from the data relying on
the domain knowledge provided by an expert.

Attempts to construct such models of a similarity have been made by re-
searchers such as Andrzej Skowron, Hung Son Nguyen or Jan Bazan ([7], [8]).
In their models, aspects of local similarity were extracted from a similarity on-
tology provided by a domain expert and the Case-Based Reasoning approach
was used in order to find the most similar object. In this paper a slightly dif-
ferent approach of modeling a similarity, called the Hierarchic Similarity Model,
is presented. It aims at encapsulating natural features of similarity argued by
Amos Twersky and the ability of learning dependencies between local and global
similarities from the data.

In the following section some necessary formal definitions are introduced and
then, in Section 3 the proposed methodology of constructing similarity mod-
els is described. Section 4 describes experiments conducted on three well-known
datasets and compares the similarity based classification accuracy with other
common classification methods. Finally, the last section presents some conclu-
sions and plans for future work.

2 Preliminaries

Construction of the Hierarchic Similarity Model (HSM) involves working on im-
precise concepts described within information systems and as such may be well-
handled in a framework provided by the rough set theory proposed by Zdzis�law
Pawlak in 1982 [9].

2.1 Basic Notation

In the rough set theory, an information system I = (U,A) may be seen as a
tabular representation of knowledge about a considered universe. Every row of
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the information system corresponds to a single object and is called an instance.
The set of all instances from the information system is marked as U . Every
column of I corresponds to an attribute. The set of all attributes is labeled by A.

A decision table T = (U,A, d) is an information system with one distinguished
attribute d called a decision.

Similarity may be seen as a relation defined over U × U . Its features vary
and depend on a domain of instances from an information system. This relation
itself may very often have a subjective nature and as such, may be impossible to
model directly from the data. For that reason, similarity needs to be considered
in a specific context. We can formulate the following definition:

Definition 1. Let T = (U,A, d) be a decision table and τ denote a similarity
relation over the set U × U . We will say that τ is a similarity relation in the
context of the decision d if

∀u1,u2∈U (u1, u2) ∈ τ ⇒ d(u1) = d(u2)

In other words, τ is a similarity relation in the context of the decision attribute d
if it is consistent with an equivalence relation determined by the decomposition
of U into decision classes.

2.2 Similarity Based Classification

Having defined the concept of similarity τ in the context of a decision attribute
we can construct a similarity function ϕτ which describes a degree of likeness
between every pair of instances (u1, u2) ∈ U × U . Such a function exists as we
can always take:

ϕτ (u1, u2) =
{

1 for (u1, u2) ∈ τ
0 otherwise

We will say that (u1, u2) is in relation of the highest similarity τ̂ if the inequal-
ity ϕτ (u1, u2) ≥ ϕτ (u1, ú2) holds for all ú2 ∈ U . Let us assume that we have
a similarity function ϕτ at our disposal and u is an instance with an unknown
decision value d(u). Now we can construct a simple classification rule:(

(u, ú) ∈ τ̂ ∧ d(ú) = di

)
⇒ d(u) = di (1)

As we can see, the problem of classifying instances with regard to similarity in
the context of a decision can be reduced to estimating the function ϕτ .

However, it is possible to define a similarity based classification rule without
using concepts of the similarity function and the relation of the highest similarity.
Such a rule may be derived from an intuition that two instances are more likely
to be from the same decision class when there are many instances which were
recognized as similar to the first instance and which had a decision value equal
to the decision of the second instance from the pair. As an example of such a
type of classification rule for the pair

(
u, ú

)
one may give:(

card
(
{w ∈ U : d(w) = d(ú) ∧ (u,w) ∈ τ}

)
is maximal

)
⇒ d(u) = d(ú) (2)

where card
(
X
)

is a cardinality of the set X .



214 A. Janusz

This approach however, has a drawback. When the examined instance does
not have any similar instances within the decision table or has only a few, the
prediction based on such a rule may be unreliable. In that case, such instances
should be left unclassified or prediction should be made based on the decision
values of the not-dissimilar instances. In practice, some instance-weighting tech-
niques may also be used.

In the conducted experiments both types of presented classification rules were
used. The comparison of the obtained results can be found in Section 4.

2.3 Domain Knowledge Representation

Studying human intuitive perception of similarity one may notice that people,
when explaining why they consider two complex objects to be alike, frequently
use rough concepts. For example, asked why we think that the presented cars
are similar, we might answer that both have a similar size or comparable driving
parameters. Both, size and driving parameters are different contexts for the sim-
ilarity of cars. If we are interested in classifying cars regarding their type, we
may want to examine those concepts and learn how they affect similarity in the
context of the type of cars.

One of convenient ways of representing important concepts and relations be-
tween them is a domain ontology. In the similarity setting this ontology can be
formed in a tree-like structure, with a global similarity in the context of the
decision attribute placed in the root node and likeness in single non-decision
attributes at leaves. We will call this type of a domain knowledge representation
a similarity ontology (see also [10], pages 721-723). The difference between this
structure and a classic tree is that in the similarity ontology a child node may
have many parent nodes at different levels of the hierarchy. Branches of this struc-
ture correspond to the relation of children having impact on the parent. Every
level of the similarity ontology may be interpreted as a different abstraction level
of the considered similarity and every node may be treated as a different aspect
of similarity in the context of the decision attribute. Those aspects are often
called local similarities (compare to local relations in [10]). Concepts which are
lower in the hierarchy are less complex than those above them and as such are
easier to learn from the data. Figure 1 presents an exemplary similarity ontology
of cars.

Domain knowledge may also be used to assess local similarities between pairs
of instances. Experts may use it to define a priori local similarity functions or
to reinforce learning of these functions by labeling some part of available data.
This process will be detailed in the next section.

3 Hierarchic Similarity Model

The Hierarchic Similarity Model is a methodology of constructing similarities in a
context of a decision attribute. Its motivation derives from works of philosophers
such as Edmund Husserl [11] or Alfred Schütz [12] and psychologists such as
Amos Tversky [6]. By using domain knowledge represented in a form of similarity
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Fig. 1. A simple similarity ontology of cars in the context of their type

ontology it is possible to incorporate desired features to the created model and
to avoid those unwanted. This flexibility allows to employ the HSM in solving
the classification problem in a wide range of domains.

3.1 Assessing Local Similarities

The first step in the construction of the model is to decide which aspects of
similarity are important in the context of the decision attribute and to create a
similarity ontology. In the case when our domain knowledge is not sufficient for
this purpose, an expert’s supervision is needed.

After selecting concepts, assessment of local similarities is conducted. Starting
from leaves and following the ‘have impact ’ relation coded in branches, we assign
a degree of the local similarity to every pair of instances. This approach differs
from the standard Case-Based Reasoning approach ([13], [8]) where single in-
stances are checked for belonging to each of concepts from the domain ontology
and the similarity assessment is done only for the decision concept in the root.

There are a few strategies to carry out the assessment of local similarities
process and the choice should depend on the availability of a domain knowledge.
Three of them are listed below:

1. Experts label a part of pairs and assess their degree of local similarities. This
subset of data is used to build classifiers for each concept in the similarity
ontology with the exception of the global similarity at the root. Unlabeled
pairs need to be classified in consistency with the decision attribute. To
achieve this one may use the decisions as regular attributes. In this case,
new instances with an unknown decision should be treated as if their decision
class was a missing value. This approach is analogical to the method used
for learning hierarchic concepts in [7].
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2. Experts help in defining a priori local similarity functions ϕτ |αi,dj
, where

αi corresponds to the i-th node of the similarity ontology and dj = d(u2) is
the decision attribute value of the instance u2. This function measures the
degree of similarity to instances from the decision class di in a context of
the concept αi. Function ϕτ |αi,dj

takes as arguments values of only those
attributes which are children of the concept αi. Constructing separate func-
tions within every decision class makes local similarities more consistent with
the decision attribute and is a simple way of avoiding an unwanted symme-
try among the instances with different decision values. To compute the value
of any local similarity function only the information about the decision of
the second instance from each pair is needed. It allows to assess directly the
local similarity between the new instance and the training examples from
the decision table.

3. Local similarity functions are constructed through a semi-supervised group-
ing method like constraint-based clustering [14]. First, for each local similar-
ity concept from the ontology, pairs of instances from the decision table are
clustered. Grouping is done separately for the instances from different deci-
sion classes to avoid transitivity of the local similarity relations. Then, the
local similarity degree between two instances may be defined as a function
of some cluster distance measure or experts may define it after examination
of cluster representatives. In this case, new instances have to be assigned
to a specific cluster before the computation of their local similarity degree.
There are many ways of finding that cluster, e.g. the nearest cluster accord-
ing to some distance measure may be chosen or the one for which adding the
considered instance would have a minimal negative impact at the silhouette
information value.

Constructing a model of similarity, one may combine any of those strategies
in order to grant desired features to the global relation.

3.2 Constructing the Global Model

When local similarities are computed, the construction of the global model may
begin. The idea is to select all children of the global similarity concept placed
at the root and to create the second decision table S = (U × U,A′, d′), called
a similarity table. As instances of this table we take all pairs of objects from
the initial decision table T . A set A′ = {αi : the i-th node is a child of the root}
consists of concepts from the nodes of the the children of the root, whereas the
decision d′ tells whether the both instances are from the same decision class.

The initial global similarity model ∆ = (Θ,Θ′) has a form of a pair of certain1

decision rule sets:

Θ =
{( p∧

i=1

αi(u1, u2) = yi

)
⇒

(
d′(u1, u2) = TRUE

)
: (u1, u2) ∈ U2, αi ∈ A′

}

1 A rule is considered to be certain if its confidence factor is equal to 1.
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called a positive rule set and

Θ′=
{( p∧

j=1

αj(u1, u2) = yj

)
⇒

(
d′(u1, u2) = FALSE

)
: (u1, u2) ∈ U2, αi ∈ A′

}

called a negative rule set. Instances u1, u2 are considered to be similar if they
match at least one rule from the set Θ and do not match any rule from the
set Θ′. The similarity function ϕτ

(
α1(u1, u2), . . . , αp(u1, u2), d(u2)

)
should be

defined as a non-decreasing function of cardinality and quality of the set {θ ∈ Θ :
θ match (u1, u2)}, as well as non-increasing function of cardinality and quality
of the set {θ′ ∈ Θ′ : θ′ match (u1, u2)}. As an example of such a function one
may give

ϕτ (u1, u2) =
∑

θ match (u1,u2)

Supp(θ) −
∑

θ′match (u1,u2)

Supp(θ′) (3)

where Supp(θ) is a support factor of a rule θ. In the case the pair (u1, u2) does
not fit to any rule of the model, the similarity function value may depend on the
maximal number of true propositions of rules from rule sets of the model.

Those conditions result from the intuitive way of perceiving the similarity.
Researchers seem to agree that people’s similarity judgment depends on common
and differing features of objects and is biased by the class of the objects with
which they compare the examined object ([3], [4], [15]).

3.3 Examining Dependencies within the Model

Having constructed the initial global model ∆ it is necessary to learn the higher
abstraction level dependencies between local similarities. Rules from sets Θ and
Θ′ describe how individual aspects of similarity contribute to the global model.
Although both sets consist of certain rules, during the evaluation of resemblance
of a new, yet unseen instance to the known instance from the table T , one may
find many matching but contradicting rules. This may occur because some of
the local similarities can turn out to be irrelevant or their estimation is im-
proper. Another reason for that may be the unusual nature of the examined
instance.

In order to diagnose the relevance of local similarities, one needs to construct
partial models ∆i defined as a pair of sets (Θi, Θ

′
i), where Θi and Θ′

i are corre-
spondingly positive and negative rule sets, created without the use of informa-
tion about local similarity αi ∈ A′. Depending on the algorithm used for rule
selection, partial models should be computed independently of the initial global
model or should become subsets of this model, created by subtracting all rules
which have the similarity αi in propositions.

The initial global model ∆ and partial models ∆i can be used to classify in-
stances from the validation set V using one of the classification rules described
in the Subsection 2.2. The decision values of those instances are known but they
were not used during the learning process. Knowledge about the predicted and
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actual classes of instances from V can be used to identify situations in which
the model ∆ is likely to be unreliable. Intuitively, if the initial model classifies
the instance correctly and the partial model ∆i is incorrect, then there is a big
chance that the local similarity αi is relevant in the context of the decision class
of the examined instance. Alternatively, if the model ∆ classifies the instance
incorrectly, whereas ∆i predicts the true decision class of the instance, the simi-
larity aspect αi may not be important for the global relation. Dependencies like
these may be seen as meta-rules telling us which combinations of predictions
made by the partial models should be trusted and as such can be extracted us-
ing rule mining algorithms such as the Apriori algorithm [16]. For that purpose,
a new decision table W = (V,A′′, d) has to be created, where V is the vali-
dation set and the set of attributes A′′ consists of predicted decision values of
instances v ∈ V , made by the initial model ∆ and the successive partial models
∆i. Decision attribute d is the information about the actual decision class of the
instances. The final hierarchic model Ω consists of the initial global similarity,
all partial models and the set of validation rules Φ consisting of the decision
rules extracted from the table W .

Conducted experiments show that the set Φ improves the estimation of sim-
ilarity relation in the context of decision class by elimination of unnecessary or
false rules from the initial model ∆. As shown in Section 4, using validation rules
not only improves classification accuracy, but it also makes it possible to iden-
tify unusual instances. This feature makes applications of the HSM very useful
in domains like medicine or finance, where the identification of the patients who
need special treatment or unusual market behavior may be crucial.

3.4 Classifying New Instances

One of the methods of measuring the quality of a similarity model is the esti-
mation of the classification accuracy. The decision class of instances from a test
set should be predicted using the decision rule described in the Subsection 2.2.

The assessment of local similarities should be conducted in consistency with
the strategy chosen during the model construction. Pairs of instances with com-
puted local similarity degrees should be tried to match the rules from the initial
global model ∆ and partial models ∆i. If all models agree on the decision value
of the test instance, the instance chosen by the initial model ∆ should be taken
as the most similar in the context of the decision class. In case of a disagreement
between models from Ω, a new instance should be created analogically to the
instances from the validation set W and validation rules from the set Φ should
be applied. The most similar instance is chosen from the decision class pointed
by the validation rules, according to the similarity degree computed using the
initial global model.

Additionally, the test instance can be identified as unusual or unique if the
degree of similarity to the most similar instance from the decision table T does
not exceed a certain level or there are many contrary validation rules matching
the instance.
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4 Experimental Evaluation

Some experiments were carried out in order to assess the similarity based classi-
fication accuracy. Models were built for three datasets of different size and type.
Two of those sets (Pendigits and Nursery) were taken from the UCI Machine
Learning Repository2. The first one consists of 10992 instances from 10 deci-
sion classes, each of instances is described by 16 numeric attributes. The second
dataset has 12960 instances from 5 decision classes, 8 nominal attributes. Be-
cause there were only 2 instances from the fifth decision class (‘recommend’),
they were removed from the set. The third dataset (Cars93 ) is a part of the
MASS standard R library. It consists of 93 instances with a mixture of numeric
and nominal attributes from 6 decision classes. As an environment of the exper-
iment the R system was chosen.

The similarity ontology for datasets from the UCI repository was derived
directly from the data description available with the datasets. For the set Cars93
a domain expert was asked to build a hierarchy of concepts shown in Figure 1.
Simple distance based similarity functions were used to assess local similarity
degrees. The ‘0−1’ distance measure was deployed to handle nominal attributes.
For the Cars93 dataset the Manhattan and the weighted Manhattan measures
were tried. Weights were defined separately for each of decision classes by the
domain expert. The local similarity degrees were discretized using the maximum
discernibility method described in [17]. The rules for the initial global models
and partial models were induced using the Apriori algorithm implemented in the
arules library. For each dataset, the minimal support factor of induced rules was
set to 10 instances and the confidence factor was set to 1.0 in order to produce
only certain rules. The Apriori algorithm was also used for the computation
of validation rules from the set Φ, but in this case the confidence factor was
lowered to 0.80. The similarity function was defined as in (3). Both decision
rules proposed in Subsection 2.2 were tried.

Pendigits dataset was provided with separate train and test sets. Nursery
dataset was randomly divided into two subsets. 4319 instances (1/3 of the set)
were used as a test set and the rest (8639 instances) served as a training set.
Models were built for 5 independent splits and results were averaged. For the
Cars93 table, the classification accuracy was estimated using the leave-one-out
cross-validation test. The HSM classification results were compared with the
C4.5 decision tree, the k-NN algorithm and the AdaBoost3 boosting method
implemented in the Weka system. Default parameter values were used. The
obtained results are shown in Table 1. As we can see, classification score of the
HSM was among the best results for the examined datasets. Worth mentioning
is the fact that the similarity model proved to be a robust tool for classification
regardless of the data type and the structure. None of the tried decision rules
turned out to be significantly better, although the models which were using the
first rule achieved higher accuracy.

2 http://archive.ics.uci.edu/ml/
3 The C4.5 decision tree was used as the base classifier in boosting.
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Table 1. Comparison of the classification accuracy. Θ denotes the initial model and Ω
denotes the final HSM. The percentage accuracy is given.

Method\Dataset: Cars93 Nursery Pendigits
C4.5 84.95 95.97 92.05

k-NN 63.44 78.35 97.26

AdaBoost+C4.5 90.32 99.49 97.28

HSM+rule1 Θ 87.10 98.86 96.77

HSM+rule1 Ω 91.40 99.14 97.63
HSM+rule2 Θ 90.32 98.21 95.22

HSM+rule2 Ω 90.32 99.01 97.14

A big advantage of the HSM over the rest of classification methods was the
ability of recognizing unusual instances. The instance from a test set was marked
as unusual if it was labeled with different decision classes by the initial model
and non-trivial4 partial models. Otherwise, the instance was marked as usual.
This feature helps in better understanding of the concept of similarity in the
given domain and may increase the classification accuracy of the model as some
dedicated classifiers can be used for instances identified as unusual. Experimen-
tal results seem to support this thesis, e.g. for the Pendigits dataset, 232 test
instances (about 6.70%) was marked as unusual using (1) as a decision rule. A
prediction of the decision class among instances marked as usual was made with
99.55% accuracy, thus using a dedicated classifier to unusual instances would
almost certainly have a positive impact on the overall performance of the model.

Using the information about the similarity of pairs of instances increases the
complexity of the Hierarchic Similarity Model and makes the construction time
and the memory requirements much higher than in the case of other methods.
The construction time of the HSM was an order of magnitude higher than the
construction time of C4.5 decision tree. This drawback makes application of
the HSM for large datasets very awkward and enforces usage of data sampling
techniques. Fortunately, this problem can be partially overcome by the use of
the parallel computing as the initial model and all the partial models can be
constructed independently.

5 Conclusions

In the paper, the problem of learning a similarity relation from data for the
classification purpose was brought up. A methodology of constructing classifiers
which are based on such a relation, called the Hierarchic Similarity Model, has
been proposed. The model aims at incorporating the natural features of similarity
in a specific context of a decision attribute. In the model, a similarity between
pairs of instances is examined at different levels of the hierarchy derived from the
similarity ontology provided by a domain expert. Then, the initial model and the
4 A model is regarded as non-trivial if it consists of at least one positive rule and is

not completely biased by one decision class.
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partial models consisting of the positive and the negative rule sets are induced.
Finally, the dependencies between local similarities are learned with the use of
the validation set.

The conducted experiments show that combining the HSM with one of the
decision rules described in the Subsection 2.2 leads to the construction of robust
classifiers and additionally, in some cases, makes it possible to identify unusual
instances. Although the computation cost of the model is very high, the ca-
pability of using the parallel computing makes it a promising method for the
classification tasks.

The HSM may also be useful in the prediction of behaviors of complex objects
dynamically changing over time. Examining the similarity models fixed in a series
of time points may allow the identification of rules governing the process of the
change and eventually may lead to better understanding of the process. If we
are able to construct a reliable global similarity model for a financial market or
hospitalized patients, the ability of recognizing similar states will enable us to
successfully plan our investment or a patient’s treatment. All of those reasons
are the motivation for the author to continue further studies on the concept of
similarity and its applications in solving classification problems.
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Abstract. We present a semi–parametric approach to evaluate the reliability of
rules obtained from a rough set information system by replacing strict determi-
nacy by predicting a random variable which is a mixture of latent probabilities
obtained from repeated measurements of the decision variable. It is demonstrated
that the algorithm may be successfully used for unsupervised learning.

1 Introduction

A simple and widely used form of data operationalization is the

OBJECT �→ ATTRIBUTE VALUES

relationship, where each object is described by its values with respect to properties
chosen from a defined set Ω of features, and which is usually represented as a data
table.

Rough set data analysis (RSDA), introduced in the early 1980s [1] uses the simple
observation that each occurring feature vector determines a unique sets of objects –
namely, all those objects which have these features – to construct rule systems on the
basis of the granularity given by observed data; furthermore, feature reduction – a major
issue in data analysis – can be achieved within these systems.

Although RSDA uses a only few parameters which need simple statistical estimation
procedures, its results should be controlled using statistical testing procedures, in par-
ticular, when the method is used for modeling and prediction of events. If the claim of
RSDA to be a fully fledged instrument for data analysis and prediction is to hold, the
following issues must be addressed:

1. Significance of rules,
2. Model selection in case of competing rules,
3. Unreliability of measurements.

In earlier work, we have developed a procedure to determine the statistical signifi-
cance of rough set rules based on randomization methods, and a method of model
selection which combines the principle of indifference with the maximum entropy
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principle [2,3]. The results support the view that a rule based method of data analysis
does not, in principle, perform worse than traditional numerical methods, even on con-
tinuous data. Indeed, the direct comparison of linear discriminant analysis with RSDA
based procedures by [4] on the Iris data [5] shows that the classification capability of
non–parametric RSDA is as good as the parametric statistical method.

Traditionally, RSDA has concentrated on finding deterministic rules for the descrip-
tion of dependencies among attributes based on the nominal scale assumption: Once a
deterministic rule has been found from a data set, it is tacitly assumed to hold without
any error. Thus, in some sense, the theory is driven by the empirical data. However, if a
measurement error is assumed to be an immeasurable part of the data, the pure RSDA
approach may produce inaccurate results. On the one hand, even deterministic rules
may be due to chance, and thus may not be reproducible; on the other hand, indeter-
ministic information may be due to inaccurate measurement or the idiosyncrasies of a
particular data set, thus possibly masking a theoretically deterministic situation.

In order to capture the uncertainty arising from measurement errors in a statistically
sound way, we have proposed some 10 years ago the concept of probabilistic informa-
tion systems [6], which may be viewed as an extension of the variable precision system
of [7]. In the present contribution we take the opportunity to re–iterate this approach
and extend it using well known procedures of classical test theory of psychometrics.

2 Definitions and Notation

We assume familiarity with the basic notions of RSDA and will just briefly recall the
necessary concepts. A decision system is a tuple I = 〈U,y,Vy,Ω ,(Vx)x∈Ω 〉, where

1. U = {a1, . . . ,aN} is a finite set of objects.
2. Ω = {x1, . . . ,xT} is a finite set of mappings x : U → Vx. Each xi is called an (inde-

pendent) attribute.
3. y is a mapping from U to Vy, called the decision attribute.
4. The functional dependency Ω ⇒ y holds, i.e.

If x(a) = x(b) for all x ∈Ω , then y(a) = y(b).

This condition guarantees that the system is consistent.

If /0 
= X ⊆Ω , we interpret X as a mapping U →∏x∈X Vx which assigns to each object
a ∈U its feature vector X(a) = xX(a) with respect to the attributes in X ; we will call
X(a) an X–granule; if X = Ω , we will simply speak of a granule.

Each X – granule X(a) can be understood as a piece of information about a set of
objects in U given by the features in X , namely all those b ∈U for which X(b) = X(a).
The equivalence relation on U induced by this condition is denoted by ψX , i.e. for
a,b ∈U ,

a≡ψX b⇐⇒ X(a) = X(b). (2.1)

Objects which are in the same class – and which are said to belong to the same granule
– cannot be distinguished with the knowledge given by X .
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Similarly, we define ψy on U by

a≡ψy b iff y(a) = y(b),

which gives us our target classification.
Suppose that /0 
= X ⊆ Ω . If a class M of ψX is contained totally within a class L of

ψy, then X(a) determines y(b) for all a,b∈M. Such an M is called a deterministic class
of ψX , and

If a,b ∈M, then y(a) = y(b) (2.2)

is called a deterministic X – rule. Otherwise, M intersects exactly the classes L1, . . . ,Lk

of ψy with associated values l1, . . . , lk in Vy, and we call

If a ∈M, then y(a) = l1 or . . . or y(a) = lk (2.3)

an indeterministic X – rule. The collection of all X – rules is denoted by X → y, and
– with some abuse of language – will sometimes be called a rule (of the information
system).

The statistic

γ(X → y) =
|⋃{M : M is a deterministic class of X}|

|U | (2.4)

is called the approximation quality of X (with respect to y); it is the main indicator for
the quality of feature reduction in RSDA [8]. It may be worthy of mention that this γ
is only one of a whole family of such indicators, each of which may serve as useful
approximation quality [9].

For our further discussion, we fix the following parameters:

– U = {a1, . . . ,aN} is the set of objects.
– Ω = {x1, . . . ,xT} is the set of attributes.
– G = {g1, . . . ,gM} is the set of granules. and Ti is the class of ψΩ associated with gi,

and ν(gi) := |Ti|.
– y is the decision attribute, Vy = {r1, . . . ,rD} its set of values, and Mj is the class of

ψy associated with r j .
– For all 1≤ i≤M, and 1≤ j ≤ D, ξ (i, j) := |Ti∩Mj|.

3 Probabilistic Decision Systems

In (deterministic) rule based systems a rule is either true or false, and a condition which
holds for almost all cases will not contribute to the RSDA approximation quality. In
the context of RSDA various remedies have been proposed which, instead of predicting
hard decision values or intervals, regard the decision attribute as a random variable. For
example, in standard rough set inclusion, deterministic rules for an indiscernibility class
S and a decision class M are replaced by conditional probabilities which in the simplest
case take the form

p(M|S) =
|M∩S|
|M| , (3.1)
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Table 1. A decision system

Ω y = r1 y = r2gi x1 x2 ξ (i,1) ξ (i,2)
ν(gi)

g1 0 1 5 1 6
g2 1 0 2 8 10

Σ 7 9 16

These considerations lead to probabilistic decision systems, sometimes called Bayesian
rough set models, as structures of the from 〈I ,Y 〉, where I is a classical RSDA in-
formation system, and Y : G×Vy → [0,1] is a random variable; such structures have
recently been an object of investigation, see e.g. [10,11,12]. Probabilistic rules have the
form x→ Yj(x) which are pairs 〈x,Yj(x)〉 where x ∈ G, and Yj(x) is the probability that
x belongs to the decision class associated with r j. Rough membership functions may be
used to produce probabilistic decision systems such as the one shown in Table 1. There,
we have |U | = 16, Ω = {x1,x2}, and Vy = {r1,r2}, and both independent attributes
are binary. Note that – up to indiscernibility – there are two granules, g1,g2. The rule
system provided by the rough inclusion of (3.1) is obtained as

〈0,1〉 → {〈1, 5
6 〉,〈2,

1
6 〉},

〈1,0〉 → {〈1, 2
10 〉,〈2,

8
10 〉}.

Statistics such as rough inclusion are to some extent useful, however in principle they
are subject to the same restrictions that the original problem poses, namely, that possible
errors are not modeled within the system. In this sense, the problems persists, albeit with
different, yet still “hard”, boundaries for rule accuracy.

Computing the a–posteriori probabilityY that a data element is assignable to a certain
class requires distributional assumptions about the a priori distributions; estimation of
priors is an inherent problem of Bayesian analysis. In most applications, however, it is
not possible to observe the a priori distributions, and

“A statistical problem is how to accurate are ‘estimations’ . . . with regards to
the true regions” [12].

If the observed rules are stable, then they should be the same for a different population.
However, rules obtained from a second instance of a decision system may look quite
different from the original one, even if the underlying structure is unchanged.

The well known test–retest paradigm of psychometrics offers a solution to the prob-
lem by using a distributional family such as a mixture of normal distributions or a
mixture of triangle distributions, and a parameter fitting procedure given a learning data
set. Since the true classification variable Y is principally unknown, we suppose that it is
a mixture

Y = ∑
1≤r≤R

ωrYr, (3.2)

of i.i.d. realizations Yr based on an index R of unknown size and with unknown weights
ω i

r, for which ∑r ω i
r = 1. It is safe to regard the Yr as repeated measurements of the
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Table 2. Rule finding algorithm

R := 0, ∆ (AIC) = 1.
while R � M and ∆ (AIC) � 0 do

R := R + 1
Compute the best mapping g : {1, . . . ,M}→{1, . . . ,R} in terms
of the product of the maximum likelihood of the Y replicas.
Compute the number of parameters.
Compute AICR for LR(max).
if R = 1 then

∆ (AIC) := AIC1
else

∆ (AIC) := AICR−1−AICR
end if

end while

decision variable. In this way, the effects of an immeasurable measurement error are
controlled and thus, the reliability of the rules can be tested in a statistically sound way.

The tasks now are

1. To estimate the best number R of replicas.
2. To estimate the parameters ωr for each 1≤ r ≤ R.

If we use the granules g j to predict Y , the maximal number R of basic distributions
is bounded by the number M of granules; equality occurs just when each granule g j

determines its own Yj. In general, this need not to be the case, and it may happen that
the same Yj can be used to predict the class value of more than one granule; this will be
indicated by a function

g : {1, ...,M}� {1, ...,R},

which maps the (set of indices of) the granules onto a set of (indices of) mixture com-
ponents of Y .

In any estimation procedure, numerous models are produced, and one needs to decide
which of these offers the best description of the data. Two standard procedures for
model selection based on the size of the empirical data set and the number of parameters
are the Akaike Information Criterion AIC [13] and Schwarz’s Bayesian Information
Criterion BIC [14]

AIC = 2 · (P− ln(L(max)))

BIC = 2 ·
(

ln(K)
2
·P− ln(L(max))

)
.

Here, L(max) is the maximum likelihood of the data which may be obtained by op-
timizing the relevant binomial distribution by hill–climbing methods such as the EM
algorithm [15]. The lower AIC (and BIC respectively), the better the model. AIC and
BIC are similar, but the penalty for parameters is higher in BIC then in AIC.
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An algorithm to find the most appropriate model in our context using the AIC was
first described in [6]. It starts by searching for the optimal granule mapping based on a
set Ω of (mutually) predicting attributes and a set Y of replicated decision attributes.

Finding the best mapping g is a combinatorial optimization problem, which can be
approximated by hill-climbing methods, whereas the computation of the maximum
likelihood estimators, given a fixed mapping g, is straightforward: One computes the
multinomial parameters π̂t(ik) of the samples i defined by g for every replication yt of
Y and every value rk ∈ {r1, . . . ,rY}, and computes the mean value

π̂(ik) = ∑s
t=1 π̂t(ik)

s
, (3.3)

from which the likelihood can be found (Table 2).

4 Unsupervised Learning and Semi–parametric Distribution
Estimates

In [6] we have shown that the AIC search algorithm may be used as a procedure for
unsupervised learning. We have exemplified the procedure with Fisher’s iris data [5]
resulting in a classification quality of 85% which is quite acceptable for an unsuper-
vised learning procedure. In the analysis, we have assumed that the attributes measure
the same variable up to some scaling constants and that therefore the z – transformed
attributes may be used as a basis for the analysis. Upon closer inspection, it turns out
the estimation of the mixture distributions is not a pure non–parametric procedure, be-
cause the standardization to z–values is, of course, a form of parametrization before
the clustering procedure has started: The assumption “the attributes measure the same
variables up to a some scaling constants” generates new variables which are assumed
to be comparable on a standard scale.
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To adjust the situation we may use the measureables to transform the data as sug-
gested by the classical test theory of psychometrics: A test X may be retested or be used
in a parallel form X ′ to estimate the reliability of the test, and the z–transformations of
test and retest should be used to computed the reliability. Our original approach shows
that a two–group representation combined with a non–parametric mixture of the distri-
bution of the test values can be performed, and that there are no extra costs in terms of
additional assumptions or parameters; in other words, it’s simply for free. If the test–
retest-paradigm is enhanced by further retesting, or if the test can be split additionally
(e.g. by summing up odd and even items within the test to form test-values), it is easy
to estimate more latent classes and their distribution estimates.

We shall illustrate the procedure with a typical example. An intelligence test applied
to 331 subjects was tested and retested two weeks later using a parallel form of the
test items (same solving principle, but different layout). Figure 1 shows the mean item
solving probabilities of the subjects.

This procedure is routine part of the standardization of a psychometric test. Fur-
thermore, test and retest are assumed to be identical in their expectation and variance.
If these assumptions hold, the assumptions for searching the best-AIC-mapping to a
decision attribute with two values (“solvers” and “non–solvers”) holds as well.

Applying the algorithm we observe a clear cut optimum with two groups.
Group 1 consists of 52,6% of the subsects showing a joint test–retest distribution given
in Figure 2. This group of subjects shows a high probability to solve the test items
(“solvers”). The group is rather homogeneous, because the correlation of test and retest
value is very low.

Group 2 consists of 47,4% of the subjects showing a joint test–retest distribution
given in figure 3. This group has a much lower probability to solve the test items than the
subjects in group 1 (“non–solvers”). Because the test–retest correlation is substantial,
we have to argue that this group is not the final representation; owing to the restriction of
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Fig. 4. Cumulative distributions of test values

only two measurements, the best-AIC-mapping cannot squeeze out more groups from
the data.

The cumulative distributions of the test values in the groups can now be used to
classify the subjects (Figure 4).

One can see, for example, that a subject showing a score of 0.6 is very likely to be a
member of group 2, whereas a subject showing a score of 0.9 is member of group 1.

5 Conclusion and Outlook

We have proposed a mixture model which enables traditional RSDA to handle possible
measurement errors in the decision variable. The method makes only mild distributional
assumptions which makes it well suited for the non–invasive approach of RSDA. In fu-
ture work, we will extend the approach to predict unseen cases from partially known
information and investigate estimations of semi–parametric mixture distributions and
re–classification of latent groups in the context of RSDA. We will also apply our ap-
proach to estimate the reliability of data discretization procedures.
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Abstract. This paper presents a connection of two techniques applied in Artifi-
cial Intelligence to solve problems of restoration of electrical power substations. 
The techniques are: Case-based Reasoning – CBR and the Four-Valued Anno-
tated Paraconsistent Logic – 4vAPL. This linking process happens in the ma-
nipulation of the functions of belief, disbelief, expertise and temporality of the 
4vAPL for the recovery of cases to determine process diagnostics of a CBR. 
The domain of CBR is applied in the restoration of an electrical power substa-
tion. The 4vAPL is the support applied to the problems that present inconsis-
tent, partial, undefined information. Thus, it approaches the system under study 
to real situations.  

Keywords: Intelligent System, Decision Support System, Paraconsistent Logic, 
CBR, Case-based Reasoning, Restoration of Electrical Power Substations. 

1   Introduction 

In the restoration of an electrical substation, the aim is to reintegrate it to the electrical 
power system, readjusting it effectively and quickly, as closely as possible, to the 
configuration prior to the failure [1]. Along the recovery of the substation, each resto-
ration procedure is evaluated as well as the influence of the operation conditions in 
the system, so as to validate what has been accomplished and released for the next 
execution. The operation of a substation is complex due to the number of variables 
that must be manipulated. The operator has to be able to manipulate several kinds of 
data and information in order to respond to a variety of requirements concerning the 
supervision and control. 

Digital technology introduced in substations and the application of Artificial Intel-
ligence (AI) techniques, have made the automation process possible, as well as the 
enhancement of the operation quality [2, 3]. An automatic substation restoration sys-
tem aims to normalize the operations in a substation after its components being 
switched off partially or totally, reintegrating it to the system in a stable fashion. AI 
may also be feasible in the switching automation or in the components restoration 
following manual or forced outages [1]. The restoration of the substation normal op-
eration configuration after an incident is structured in pre-established criteria of engi-
neering studies which includes the reasoning to identify the actions for restoration, to 
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validate the measurements and diagnostics, and to structure the switching plan. All 
these decision-based functions may be automatized through the use of Artificial Intel-
ligence techniques [1- 4]. 

The AI techniques applied to automation are varied due to the increasing techno-
logical advances and the large number of research which have been accomplished. 
This work presents the link of the two techniques applied in Artificial Intelligence to 
solve the electrical substation restoration problems. These techniques are the Four-
Valued Annotated Paraconsistent Logic – 4vAPL and Case-based Reasoning– CBR. 
In the following section the functions used in 4vAPL will be presented, these will 
later be incorporated by a CBR system. This linking procedure will be applied to the 
restoration of a substation, whose configuration is used in the Minas Gerais State 
Power Company – CEMIG, in Brazil. 

2   Considerations of Four-Valued Annotated Paraconsistent Logic 
– 4vAPL 

In [5-8], the interpretations of 3vAPL, starting from the Unitary Square on Cartesian 
Plan – USCP are presented. The values of the Degree of Expertise vary in the closed 
real interval [0,1], as the Degrees of Belief µ1 and Disbelief µ2, in this way, one may  
interpret a point obtained from a triple (µ1,µ2,e) that is located in the Analyzer Unit 
Cube, shown in Fig 1. The lattice regions in Fig 1 represent well defined regions, 
since they interpret the expert opinion deciding for a diagnostics referring to axis x, 
Dx, or for a diagnostics referring to axis y, Dy, or still, opting for Inconsistent (I) or 
Paracomplete (⊥) Regions, which represent problematic regions, once they have 
points that allow the interpretation of inconsistencies or contradictions. 
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Fig. 1. Representation of Diagnostic Regions and Inconsistent – Paracomplete Regions 

The regions that are located inside the Unitary Cube and involved by the regions 
mentioned above are named unstable regions and they behave in different ways  
according to the Degree of Expertise. These regions are named [5]: 

• ⊥→q¬Dx , ⊥→q¬Dy – Paracomplete tending to almost not Dx (Dy) 
• I→qDx , I→qDy – Inconsistent tending to almost Dx (Dy) 

 



234 H.G. Martins et al. 

µ1 
q¬Dy 

qDx 

qDy

q¬Dx 

µ2 

Dx→q ¬D y ⊥→q¬D y 

⊥→q¬D x 
Dx→qD x 

D y→q¬Dx 

D y→qD y T→qD y 

T→qDx 
U 

D x

T Dy 

⊥  
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Fig. 3. Temporality on the Unitary Cube of 4vAPL 

• Dx→qDx – Dx tending to almost Dx, and Dy→qDy – Dy tending to almost Dy 
• Dx→q¬Dy – Dx tending to almost not Dy, and Dy→q¬Dx – Dy tending to al-

most not Dx. 

Observing the behaviors in Expert Systems, based in 3vAPL, the algorithm  
constructed by the description of the Unitary Cube enables the design of a computer 
program for practical applications and simulations of different situations. 

The Unitary Cube Regions for a particular Degree of Expertise e = 0.5 are shown 
in Fig 2, according to [5], and expanded to all the other degrees in the closed  
interval [0,1]. A point may be analyzed by moving along the Unitary Analyzer Cube, 
as shown in Fig 3, according to [7]. At time t1 the point is found on position s1, at time 
t2 the point is found on position s2, in such a way that as time flows, the point de-
scribes a curve C in the interior of the Unitary Analyzer Cube. This behavior allows 
the introduction of  one more variable, time t, to the Three-valued Annotated Paracon-
sistent Logic- 3vAPL; thus extending it to Four-valued Annotated Paraconsistent 
Logic- 4vAPL. 

In 4vAPL, the point in the Unitary Cube is represented by a quadruple (µ1,µ2,e,t). 
The intention of introducing one more annotated variable to represent the point is, to 
able to analyze the behavioral evolution of the Experts. 

Hence, a Neophyte (Expert of degree e=0), facing its inexperience, will acquire 
experience as the time variable flows. The Degree of Expertise is expected to increase 
in order to define between two diagnostics Dx or Dy. The Degree of Expertise has the 
behavior of a classical case when found at the top of the Unitary Cube, roughly 
speaking. This analysis may be done for any level of expertise. The essence of the 
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fourth dimension time is to visualize the behavior of the Experts in decision making 
of a specific system. 

3   Implementation of Algorithm “CBR Para-Expert” from 3vAPL 

To implement the "Para-Expert" algorithm in a CBR, whose domain is restoration of 
electrical power substations, a model, that suggests control actions restricted only to 
the cases of the knowledge base, is proposed. The New Matching Degree is calculated 
according to the equation (1): 
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For: i = 1,...m (descriptions); k = 1,...r (previous cases); 
e ≡ Degree of Expertise of 3vAPL which describes the degree of pertinence in relation 
to Dx; 
ωi

n , ωi
p

k ≡ weight of ith description on weight vector from new and previous cases; 
xi , yi = value of description in new and previous cases; 
Ri = extension value of the description scale. 
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yx denotes the similarity in the ith description between of new case and 

previous case. 

The denominator terms of equation above normalize the vectors weight by the de-
terminations of its Euclidian lengths. The similarity function is based in the pertinence 
(weight) of description values for the diagnostic. The similarity between the value of 
the present description from the new case and the value of same present description in 
the previous case of memory is taken as being the difference between the unit and a 
rate between the weights that each one of these values have for the diagnostic of the 
case in memory, with the extension value of the description scale. 

The architecture projected to implement the model is seen in Fig 4. In the first 
module, the inputs of a new case and the memory cases are accomplished through 
similarities. In the second module, the New Matching Degree is calculated. The New 
Matching Degree - NMD is calculated from the 3vAPL Degree of Expertise of each 
case. For the cases from the knowledge base, the value of NMD is maximum, equal to 
1, and for the new cases its value is lower than 1, except for the new case which is 
equal to any case from the knowledge base. In the third module, the NMD is ranked 
in decreasing order. With this procedure, all the degrees from the knowledge base 
cases will be ordered first and then comes the ordering of the new cases. In this way, 
the search is restricted to only the cases from the initial knowledge base, and not the 
whole memory. 
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Fig. 4. Architecture of a Recovery Prototype with 3vAPL for Restoration of Substations 

4   Operation Procedures and Data for Automatic Restoration of 
Substations 

This section describes some characteristics of a typical electrical substation of an 
electrical power system, Minas Gerais State Power Company – CEMIG, Brazil. The 
substation in study is of Main and Transfer Buses type, one of the most frequent mod-
els used by CEMIG, Fig 5 [1]. 

 

 

 

 

 

 

Fig. 5. Electrical substation in study and its simplification 
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Considering that the three transmission lines (1, 2, 3) that supply energy to the sub-
station have the same amount, 35 MW. The nominal power of each transformer is 50 
MVA. The system has three kinds of loads during the day: light, moderate, and peak 
(heavy), in such a way that the demands are altered in the period. Supposing that the 
four loads (7, 8, 9, 10) are balanced, then their demand description is as follows: (a) 
light load - 10 MW; (b) moderate load - 15 MW; (c) peak load - 25 MW. 

After a contingency, the restoration will include reasoning for the identification of 
the need for actions and for a switching plan. The configuration of the substation 
presents restrictions and priorities, such as: switch 4 may only be turned on when only 
one of the transformers is energized; switch 7 must be turned on under any circum-
stance after a contingency. The desirable diagnostics for the restoration of the normal 
configuration after the occurrence of a contingency are: 

• Optimum Diagnostics (O) – Diagnostics that is desirable to reestablish the normal 
condition of the substation, without violating any technical condition neither fail-
ing to supply any expected need. 

• Correct Diagnostics (C) – Diagnostics that is correct to reestablish the normal 
condition of the substation, that is, it does not violate any technical condition, but 
fails to supply some expected need. 

• Incorrect Diagnostics (I) – Diagnostics that is incorrect to reestablish the normal 
condition of the substation, in such a way that it violates some technical condition 
and/or fails to supply some expected need. 

• Minimum Diagnostics (MIN) – Diagnostics that does not change any operational 
condition of the substation. 

The substation operator controls the position of five switches: 4, 7, 8, 9 and 10, ac-
cording to Fig 5. For this, he must observe the position of the ten switches and the 
substation loading level. Switches 1, 2, 3, 5 and 6 are operated automatically by the 
protection system. The operator’s actions may be described as in Table 1. 

Table 1. Specification of Descriptions and their Extensions 

Attributes Descriptions 
Extension of 
Importance 

Scale 
Attributes Descriptions 

Extension of 
Importance 

Scale 

Condition 1 - Switch 1 0 - off / 1 – on Decision 4 - Switch 4 0 - off / 2 – on 

Condition 2 - Switch 2 0 - off / 1 – on Decision 7 - Switch 7 0 - off / 4 – on 

Condition 3 - Switch 3 0 - off / 1 – on Decision 8 - Switch 8 0 - off / 1 – on 

Condition 4 - Switch 4 0 - off / 2 – on Decision 9 - Switch 9 0 - off / 1 – on 

Condition 5 - Switch 5 0 - off / 3 – on Decision 10 - Switch 10 0 - off / 1 – on 

Condition 6 - Switch 6 0 - off / 2 – on    

Condition 7 - Switch 7 0 - off / 4 – on    

Condition 8 - Switch 8 0 - off / 1 – on    

Condition 9 - Switch 9 0 - off / 1 – on (*) 1 – light   

Condition 10 - Switch 10 0 - off / 1 – on  2 – moderate  

Condition L – Load (*)   3 – peak  



238 H.G. Martins et al. 

Table 2. Knowledge Base 

C 1 2 3 4 5 6 7 8 9 10 L D C 1 2 3 4 5 6 7 8 9 10 L D 
1 1 0 0 0 0 2 0 0 1 1 1 D1 17 0 0 1 0 0 2 0 0 1 1 1 D7 
2 1 0 1 0 0 2 0 0 1 1 2 D1 18 0 1 0 0 0 2 0 0 1 1 2 D8 

3 1 0 0 0 3 0 4 1 0 0 1 D1 19 1 1 0 0 0 2 0 0 1 1 3 D8 

4 0 0 1 0 3 0 4 1 0 0 1 D2 20 1 0 0 0 3 2 4 1 0 0 2 D9 

5 1 1 0 0 3 0 4 1 0 0 2 D2 21 1 1 1 0 3 0 4 1 0 0 3 D9 

6 0 1 0 0 3 0 4 1 0 0 1 D2 22 1 1 0 0 3 2 4 1 1 1 2 D10 

7 0 1 0 0 0 2 0 0 1 1 1 D3 23 1 1 1 0 3 2 4 1 1 1 3 D10 

8 0 1 1 0 0 2 0 0 1 1 2 D3 24 0 1 0 0 3 2 4 0 1 1 1 D11 

9 1 0 0 0 0 2 0 0 0 1 3 D4 25 1 0 0 0 3 2 4 1 0 1 1 D12 

10 0 1 0 0 0 2 0 0 0 1 3 D4 26 0 1 1 0 3 2 4 0 1 0 3 D13 

11 0 0 1 0 0 2 0 0 1 0 3 D4 27 1 0 0 0 3 2 4 0 1 0 2 D13 

12 1 0 0 0 0 2 0 0 1 1 2 D5 28 1 0 1 0 3 2 4 0 0 1 3 D14 

13 1 1 1 0 0 2 0 0 1 1 3 D5 29 1 0 0 0 3 2 4 0 0 1 2 D14 

14 1 1 0 0 3 0 4 1 0 0 1 D6 30 0 0 1 0 3 0 4 0 0 0 3 D15 

15 1 1 1 0 3 0 4 1 0 0 1 D6 31 0 0 1 0 3 2 4 0 0 0 3 D15 

16 0 0 1 0 0 2 0 0 1 1 2 D7 32 0 1 0 0 3 2 1 1 1 0 1 D16 

The knowledge base consists of 32 cases, describing the initial estates of the 
switches and their diagnostics as shown in Table 2. 

Table 3 depicts the possible diagnostics and the identification referring to their  
descriptions. 

Table 3. Diagnostics and their characteristics 

Diagnostics 4 7 8 9 10  Diagnostics 4 7 8 9 10 
D1 2 4 1 1 0  D9 0 4 1 0 0 
D2 2 4 1 0 1  D10 0 4 1 1 1 

D3 2 4 0 1 1  D11 0 4 0 1 1 

D4 2 4 0 0 0  D12 0 4 1 0 1 

D5 2 4 0 0 1  D13 0 4 0 1 0 

D6 2 4 1 1 1  D14 0 4 0 0 1 

D7 2 4 0 1 0  D15 0 4 0 0 0 

D8 2 4 1 0 0  D16 0 4 1 1 0 

The knowledge base is the result of the expert’s experience, thus, it is a very par-
ticular situation of each substation since the occurrences are experiences located in 
their areas and the restoration to normal configuration is specific of each situation. 
Despite this fact, tables 2 and 3 may be obtained from the substation past switching or 
from theoretical studies carried out at the substation. Once the diagnostics and the 
restoration characteristics for the knowledge base are defined, the objective now is to 
apply the CBR Para-Expert program to solve the restoration problem. 

When a new configuration occurs, it will be presented to the algorithm which will 
execute the CBR Para-Expert program resulting in the following diagnostics: O, C, I,  
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Fig. 6. Flowchart of the Strategies to Determine the Optimum Diagnostic 

and MIN. The CBR Para-Expert algorithm will be repeated several times until it reaches 
its aim of restoration, that is, until it reaches the Optimum Diagnostics. The rules of the 
Strategies to Determine the Optimum Diagnostic are shown in the flowchart of Fig 6. 
When translating the analysis of the 4vAPL into the scenario of automatic restoration 
one may visualize the behavior of the diagnostics during the execution of the CBR Para-
Expert program until it finds the Optimum Diagnostics for the configuration of the sub-
station after the contingency. 

5   Application of the “CBR Para-Expert” in Automatic 
Restoration of Substations 

The configuration of an electrical power substation analyzed after a contingency is 
shown in Fig 7. It presents an "incorrect" diagnostics according to the rules defined 
previously. 

 
1 2 3

45 6

7 8 9 10
 

Fig. 7. Substation arrangement with incorrect diagnostics 

The input case is of the type [10100200111]. According to this description, the system 
configuration is such that the substation loading level is light, value 1. The switches pre-
sent the following characteristics: 1-on; 2-off; 3-on; 4-off; 5-off; 6-on; 7-off; 8-off; 9-on; 
and 10-on. By applying the algorithm of Fig. 6 proposed for the restoration: 

a) Execution of CBR Para-Expert for the new case [10100200111]. 

The three first solutions with the highest Matching Degree are shown in Table 4. 
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Table 4. Three first solutions for the case [10100200111] 

N NMD Case Diag. 4 7 8 9 10 

1 0.7454 1 D1 2 4 1 1 0 

2 0.7454 17 D7 2 4 0 1 0 

3 0.7037 2 D1 2 4 1 1 0 

b) Determination of the Diagnostics type 
The diagnostics for the configuration is "CORRECT", but not "OPTIMUM", because 
none of the technical conditions are violated; however not all the possible needs are 
supplied. 
c) Stores the Highest New Matching Degree.    NMD = 0.7454 
d)Determination of the characteristics of the diagnostics - Minimum or Non-
Minimum. 

The diagnostics is "NON-MINIMUM" because the final position of the switches is 
not the same as the initial position. 
e) Substitution of the Solution 
In this case, the proposed switching plan is substituted by Diagnostics 1, such that the 
new analyzed case will be: [10120241101]. 
f) Program Execution for the new case [10120241101] 
The three first solutions with the highest Matching Degree are shown in Table 5. 

Table 5. Three first solutions for the case [10120241101] 

N NMD Case Diag. 4 7 8 9 10 

1 0.3509 15 D6 2 4 1 1 1 

2 0.3509 25 D12 0 1 1 0 1 

3 0.3509 32 D16 0 1 1 1 0 

g) Determination of the Diagnostics type 
The diagnostics for the configuration is "OPTIMUM", because none of the technical 
conditions are violated, and all the possible needs are supplied. Thus, Fig 8 represents 
the diagnostics behavior. 

 

0 1 2 3

Iteration 

Diagnostics   

Optimum 
Correct 

Minimum Correct 
Incorrect 

Minimum Inorrect 

 

Fig. 8. Diagnostics behavior in the restoration of a substation 
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6   Conclusions 

This paper presents an alternative approach using Artificial Intelligence techniques in 
the search for the optimization of actions and procedures in restoration of electrical 
power substations. The proposed approach joins the Annotated Paraconsistent Logic 
and Case-Based Reasoning to establish the rules for the Strategies to Determine the 
Optimum Diagnostics. Thus, the consistency between the recovered cases and their 
diagnostics is guaranteed. These strategies describe the reasoning for the identifica-
tion of actions and a switching plan necessary for the automation of the restoration of 
electrical power substations. 

The 4vAPL and CBR techniques applied to the restoration of substations present 
advantages once they take into account the situations closer to reality, treating the 
inconsistencies and the different kinds of diagnostics in a non-trivial fashion. This 
makes the systems more reliable and consistent. This study case confirms the consis-
tency of the method. 

The proposed methodology could be equally applied to other substation arrange-
ments such as duple bus, ring, one and half circuit breakers, among others. 

Acknowledgments. The authors would like to thank CNPq, CAPES, and FAPEMIG, 
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Abstract. Attribute reduction is an important process in rough set the-
ory. More minimal attribute reductions are expected to help clients make
decisions in some cases, though the minimal attribute reduction problem
(MARP) is proved to be a NP-hard problem. In this paper, we propose
a new heuristic approach for solving the MARP based on the ant colony
optimization (ACO) metaheuristic. We first model the MARP as find-
ing an assignment which minimizes the cost in a graph. Afterward, we
introduce a preprocessing step that removes the redundant data in a
discernibility matrix through the absorbtion operator, the goal of which
is to favor a smaller exploration of the search space at a lower cost. We
then develop a new algorithm R-ACO for solving the MARP. Finally,
the simulation results show that our approach can find more minimal
attribute reductions more efficiently in most cases.

1 Introduction

Rough set theory, proposed by Pawlak [5] in 1982, is a valid mathematical tool
to deal with imprecise, uncertain, and vague information. It has been developed
and applied to many fields such as decision analysis, machine learning, data
mining, pattern recognition, and knowledge discovery successfully.

In these applications, it is typically assumed that the values of objects are
represented by an information table. The notion of a reduction plays an essential
role in analyzing an information table [5]. In many cases, the minimal (optimal)
attribute reduction is expected. Unfortunately, it is proven to be a NP-hard
problem [13] to compute the minimal attribute reduction problem(MARP) of
an information table. Thus, many heuristic methods have been proposed and
examined for finding the set of all reductions or a single reduction [9,10,11,12,14].

Ant colony optimization (ACO) [1], is a stochastic approach to solve different
hard combination optimization problems [1,7] such as traveling salesman prob-
lems, vehicle routing problem, constraint satisfaction problem, machine learning,
etc. The main idea of ACO is to model the problem as a search for a minimum
cost path in a graph. Artificial ants walk through this graph, looking for good
paths. Each ant has a rather simple behavior so that it will typically only find

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 242–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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rather poor-quality paths on its own. Better paths are found as the emergent
result of the global cooperation among ants in the colony.

Since the MARP is a NP-hard problem, inspired by the character of ant colony
optimization, some researchers [3,4] have focused on solving the problem with
ACO. To combat the efficiency and gain more minimal attribute reductions, we
will propose a new heuristic approach for solving the MARP based on ACO in
this paper. We transfer the MARP to a constraint satisfaction problem. The
goal is to find an assignment which satisfies the minimum cost in a graph.

As we know, the notion of the discernibility matrix introduced by Skowron and
Rauszer [6] is important in computing cores and attribute reductions. In fact,
there usually exists redundant data in the matrix. We can remove the redundant
data from the matrix in order to reduce the exploration of the search space. In
other words, the methods can make improvement in time and space. Therefore,
a preprocessing step is needed before reduction, which is described in Section 4.

This paper is organized as follows. First, we introduce some definitions and ter-
minologies about the minimal attribute reduction problem. In Section 3, a model
of solving the MARP with ACO is proposed. Section 4 develops a preprocess-
ing step by removing the redundant data in a discernibility matrix through the
absorbtion operator. A new algorithm R-ACO for solving the MARP is given in
Section 5. The experiment results in Section 6 show that the approach to solve
the MARP with ACO can find more minimal reductions more efficiently in most
cases. Some conclusions will be given in Section 7.

2 The Attribute Reduction Problem

Let us first review the relevant definitions and terminologies [6,11].

Definition 1 (Information Table). An information table is the following tu-
ple: I = (U,Atr = C ∪D,V, f) where U = {x1, x2, . . . , xn} is a finite non-empty
set of objects, C = {a1, a2, . . . , am} is a finite non-empty set of attributes and
also called the conditional attribute set, D = {d} is the decision attribute set,
V is the set of possible feature values, f is the information function, given an
object and a feature, f maps it to a value f : U ×Atr → V .

Definition 2 (Discernibility Matrix). Given a consistent information table
I = (U,C ∪D,V, f), its discernibility matrix M = (Mi,j) is a |U | × |U | matrix,
in which the element Mi,j for an object pair (xi, xj) is defined by:

Mi,j =
{
{a | a ∈ C ∧ a(xi) 
= a(xj)} if d(xi) 
= d(xj)
∅ else

Definition 3 (Discernibility Function). The discernibility function of a dis-
cernibility matrix is defined by:

f(M) =
∧

1≤i≤|U|−1

i+1≤j≤|U|

( ∨
ak∈Mi,j

Mi,j =∅

ak

)
.
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Table 1 is the discernibility matrix of an information table. The discernibility
function can be denoted by f(M) = {a∨ b∨ c∨ d∨ e} ∧ {a∨ c} ∧ {a∨ e} ∧ {c}∧
{a ∨ b ∨ d} ∧ {b ∨ c ∨ d ∨ e}.

Table 1. A Discernibility Matrix

∅ {a, b, c, d, e} {a, c} ∅ ∅
{a, b, c, d, e} ∅ ∅ {a, e} {c}

{a, c} ∅ ∅ {a, b, d} {b, c, d, e}
∅ {a, e} {a, b, d} ∅ ∅
∅ {c} {b, c, d, e} ∅ ∅

The discernibility function can be transformed to a disjunctive form as
f(M) =

∨
Rq, where Rq is a conjunction of some attributes. Each conjunc-

tor Rp = a1 ∧ a2 ∧ · · · ∧ aq is a reduction, denoted by Rp = {a1, a2, . . . , aq}. We
can acquire the minimal attribute reductions based on this Boolean calculation.
However, the computation is very complex when considering the scale of the
problem since it is a NP-hard problem.

3 Model of Solving MARP with ACO

Previously, [3,4] have used the ACO approach to solve the MARP. The model
they used is a complete graph whose nodes represent conditional attributes, with
the edges between them denoting the choice of the next conditional attribute.
The search for the minimal attribute reduction is then an ant traversal through
the graph where a minimum number of nodes are visited that satisfies the traver-
sal stopping criterion. The ant terminates its traversal and outputs the attribute
subset as a candidate of attribute reductions.

A suitable heuristic desirability of traversing between attributes could be
any subset evaluation function - for example, the rough set dependency
measure [3] or an mutual information entropy based measure [4]. However, the
relevant operations cost too much time because the operations are all in the
space U × C. On the other hand, the approaches are also heuristic.

To combat this problem, with more reductions especially minimal reductions
expected, we propose a new model R-Graph to solve the MARP with ACO.

Firstly, let us review the constraint satisfaction problem(CSP) [8].

Definition 4 (Constraint Satisfaction Problem). A constraint satisfaction
problem is defined by a triple (B,Dom,Con) such that B = {B1, B2, . . . , Bk} is
a finite set of k variables, Dom is a function which maps every variable to its
domain Dom(Bp), and Con is a set of constraints.

A solution of a CSP(B, Dom, Con) is an assignment A = {< B1, v1 >, · · ·, <
Bk, vk >}, which is a set of variable-value pairs, where vi ∈ Dom(Bi). The cost
of an assignment A is denoted by cost(A). An optimal solution of a CSP(B,
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B6 0 1 1 1 1 {b,c,d,e} 

cost (path) a b c d e

2 1 0 1 0 0

Fig. 1. R-graph of Table 1

Dom, Con) is a complete assignment for all the variables in B, which satisfies
all the constraints in Con with the minimal cost.

Let us come back to the discernibility matrix M . If we take a unique Mi,j

as a variable Bp, then Dom(Bp) = Mi,j . We can transfer an attribute reduc-
tion problem to a CSP and define the following model R-graph to describe the
attribute reduction problem.

Definition 5 (R-graph Associated with CSP). A R-graph associates a ver-
tex with each value of the tuple T = < v1, . . . , vm > to be permuted, and T is
a tuple of |C| = m values, where C is the conditional attribute set of an infor-
mation table I. There is an extra vertex corresponding to the nest, from which
ants will start their paths. Hence, the R-graph associated with a CSP(B, Dom,
Con) is a complete oriented graph G = (V,E) such that: V = {< Bi, v >| Bi ∈
B and v ∈ Dom(Bi)}, E = {(< Bi, v >,< Bj , w >) ∈ V 2 | Bi 
= Bj}.

Definition 6 (Path in a R-graph). A path in a R-graph G = (V,E) is a
sequence of vertices of V . We only consider elementary paths, which do not
contain any cycles.

Definition 7 (Cost of a Path). The goal of R-graph is to find a complete
assignment which minimizes the cost. Because the values in every Bi is in
T = < v1, . . . , vm >, ants going over the same values in the path will have a
cost of 0. Therefore, the more duplicate values selected in a path, the less cost
a path is. Hence, the cost of a path π, denoted by cost(π), is the number of the
different values that appeared in the path π.

A solution of a R-graph G is an assignment A = {B1 ← r1, · · · , Bi ← ri, · · · ,
Bk ← rk}, where ri ∈ Dom(Bi). Ants deposit pheromone on edges of the R-
graph; the amount of pheromone laying on an edge (vi, vj) is denoted as τvivj .
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Ants start from the nest, and successively visit each of the other k vertices. Here,
all ants have a constraint condition such that they must visit every vertex.

According to [6], if we choose one attribute from every element of the dis-
cernibility matrix, then the set of the selected attributes can compose a super
attribute reduction. Therefore, the path(assignment) of a R-graph is also a su-
per reduction of the information table. For Table 1, we can gain a reduction
f(M) = {a} ∧ {a} ∧ {c} ∧ {a} ∧ {c} = {a} ∧ {c} = {a, c}. The path is described
as thicker lines(or shadow letters) in Fig.1, where 0-1 representation is used to
encode the variables. For example, B2 can be encoded as {10100}. The path is
denoted by 10100 with cost 2 corresponding to an ant from nest to food passes
the values a and c. Recall that, {a, c} is the minimal attribute reduction of
Table 1. In summary, if ants can find the minimal cost paths in a R-graph, then
ants find the minimal attribute reductions of the information table. In fact, we
prefer which values in the tuple T are selected in a path to how to build a path.

4 Discernibility Matrix Simplification

Paths in a R-graph are in the reductions of the corresponding discernibility ma-
trix. However, since there are many redundant data in the matrix, we may need to
reduce the search space through removing the redundant elements of the matrix.

Consider the reduction space S, which is the subset of discernibility matrix M
with no uniform elements, denoted by S = {Bk | Bk = Mi,j ∧ (∀s∀tBs 
= Bt)}.
Obviously, the reduction computation based on a discernibility matrix is the
computation based on Boolean calculation [6]. Let Bi ∈ S, if Bj ∈ S, and
Bj ⊆ Bi, Bi is called an absorbed discernibility attribute element by Bj . We
then have Bj ∩Bi = Bj , (∨(Bi))∧ (∨(Bi)) = ∨(Bj), (∧(Bj))∨ (∧(Bi)) = ∧(Bj).
The property pertaining to Boolean logic can be used to reduce the reduction
space, in other words, a minimal reduction space(MRS) can be acquired by
removing all absorbed discernibility attribute items. Algorithm AMRS(Acquire
Minimal Reduction Space) is given in Fig.2.

In addition, we know that the reduction based on the simplified matrix MRS
is equal to the reduction on the original discernibility matrix M [15].

In order to judge if a discernibility element is absorbed by another, we define
the absorbtion operator &&, which is an and-operator one by one bit. Consid-
ering Table 1, B1 = {a, b, c, d, e} = {11111} and Mi,j = M1,3 = {a, c} =
{10100}, thenBk&&Mi,j = {11111}&&{10100}= {10100}.Obviously, this leads
to Bk&&Mi,j = Mi,j . We then have Mi,j ⊆ Bk, which means Bk should be re-
moved.

The elements with |Bi| = 1 are the core attributes. We can remove the core
from MRS and add it to the reduction later. The size of the MRS[P ][Q] will be
extended to (P + 1)× (Q+ 1), where each cell of the 0-th row stores the number
of the 1’s in the corresponding column. Each cell of the 0-th column stores the
number of the 1’s in the corresponding row. These values can be acquired easily
through Algorithm AMRS, and they can be used as heuristic information in the
next section.
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Algorithm AMRS: Acquire Minimal Reduction Space 
Input: ( , , , )I U Atr C D V f= = ∪ , | | , | |U n C m= =
Output: the Minimal Reduction Space MRS
Begin 

MRS = Φ; absorded = 0; 
 for i= 1 to n do 
  for j=i+1 to n do 
   if (d(xi) ≠ d(xj)) then  

Compute Mi,j ;    
   end if    
   for each Bk in MRS and Bk≠Φ do 
    if (Bk⊆ Mi,j) then  //if Mi,j be absorbed, i.e Bk&& Mi,j = Bk

           absorded = 1;    
       elseif (Mi,j ⊆ Bk)  //if Bk be absorbed, i.e. Bk&& Mi,j = Mi,j

           MRS = MRS - Bk;  
               end if      
   end for 
   if (absorded = 0) then // if Mi,j cannot be absorbed or B k be absorbed 
        MRS = MRS + Mi,j   // add Mi,j to the space MRS 
      end if 
   absorded = 0;   //reset 
  end for 
 end for 
 Output: MRS
End 

Fig. 2. The Algorithm of Acquire Minimal Reduction Space

Table 2 is the extended MRS[P ][Q] of Table 1, where the number in the
parentheses means the number of 1’s in the corresponding row or column.The
R-graph can be built from Table 2 instead of Table 1, the search space is greatly
reduced.

As already mentioned in Section 3, the decision method, to add an attribute
to the ant traversing, used in [3,4] are all on the space U × C. To compute
the entropy or the dependency function, the compute time of each decision
is O(|U |2 + |U |)/2. Therefore, the time complexity is O(|C| · (|U |2 + |U |)/2)
in [3,4]. By contraries, the searching space used in R-graph is no better than |C|
at each decision. Considering the worst case, the items of the discernibility matrix
are different from each other, then the times of decisions will be (|U |2 + |U |)/2.
Actually, there are usually many redundant items in the discernibility matrix,
the compute times is far less than O((|U |2 + |U |)/2) · |C|) in most cases.

Table 2. The MRS[P + 1][Q + 1] of Table 1

T = {a, b, d, e} a(2) b(1) d(1) e(1) Dom(Bp)

B1(3) 1 1 1 0 {a, b, d}
B2(2) 1 0 0 1 {a, e}
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In addition, the following property holds. It can be used to cut a travel path
which can not be a minimum cost path. The cut operating can make improve-
ment in time and space.

Property 1. If Qmax = maxMRS[0][q], 1 ≤ q ≤ Q, the minimum attributes of
the minimal reduction denoted by min Redu, C0 is the core, then
min Redu− |C0| ≤ P −Qmax + 1.

5 Algorithm to Solve MARP with ACO

After the preprocessing step as described in the last section, a simplified dis-
cernibility matrix will be obtained. A new algorithm R-ACO is proposed to find
most of the minimal attribute reductions using the ant colony optimization. Let
us explain some ideas used in the algorithm.

There are different variable orderings [8] for selecting a variable. We use the
random ordering, which comes from MRS (the simplified discernibility matrix)
directly with no other computation. The pheromone values are all initialized to
a constant value e, every node (value) in B1 is assigned an ant. That is, the
initialized number of ants is ant = MRS[1][0].

The termination conditions used here as same as the basic ACO [1]. That is,
when the solutions are stable or the max cycles are reached, the iterations are
ended. In fact, the iterations perform no more than 5 times when the solutions
are convergent in our experiments, even if the max cycles is initialized to 10.

The basic ingredient of any ACO algorithm is a constructive heuristic for
probabilistically constructing solutions. The transition probabilities are defined
as follows:

P k
uv =

{
τα

uv(ηv+∆ηv)β

�
r∈Bi

τα
ur(ηr+∆ηr)β if v ∈ Bi

0 otherwise
(1)

where Bi means the next selected variable, u is the current value, v is the
next value in Bi, and η is the heuristic information. As we have discussed in
Section 4, MRS[0][j] is used as an initial η. In order to avoid convergence quickly,
the heuristic information is adjusted by ∆η automatically. The values of parame-
ters α and β determine the relative importance value and heuristic information.
There, 1 ≤ α ≤ 5 and 1 ≤ β ≤ 5 are derived from experience. To acquire more
optimal solutions, the random probability is also used in the R-ACO algorithm.

Pheromone (τ) updating uses the following rule:

τ = (1− ρ)τuv +∆τuv, u ∈ Bi−1, v ∈ Bi

∆τuv =
∑m

k=1∆τ
k
uv

∆τk
uv =

{ Q
cost(SPk) u, v ∈ SPk

0 else

(2)

where ρ ∈ (0, 1] is a parameter for pheromone evaporation, Q is a constant, and
SP is the partial solution.

The algorithm R-ACO (finding the set of attribute Reduction based on ACO)
is represented in Fig.3.
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Algorithm R-ACO: finding the set of attribute Reduction based on ACO 
Input: MRS[P+1][Q+1] //2≤Q≤|C| 
Output: the set SG whose element is an attribute reduction 
Begin 

// Initialization: 
    temp_mincost = P - Qmax + 1;     //come from Algorithm AMRS and Property 1  

Artifical ants ant= MRS[1][0];  // the number of ants is ant
Euv.pheromone = e;           // initialize the pheromone 
EdgeCovereduv = 0;         // the nubmer of ant that selected Euv

Constringency = False;   // the termination conditions
    Initial q0, max_cycles; // They are constants, 0< q0<10. eg: q0=5, max_cycles=10 

while (!constringency) do        
if (ant=MRS[1][0]) then  

     set the ant ants to each of the node in B1;  
        else   

set ant ants on nodes with larger pheromone values;  
        end if 

// construct solution
        for k=1 to ant do       // local search  
            SPk=B1,k;   // initialize the partial solution is the node b1k the ant k associate 
            for i∈B2 to BP do        
                Produce a random value q;  // 0<q<10 
            if (q>q0) then    
                    Select a node v random from the set whose nodes have the maximal 

heuristic information.   
                else  

maxNode = max(Puv
k) ; // Equation (1),  

                    node v ← v∈ maxNode ∧ v is min(EdgeCovered). 
                end if 

SPk  = SPk ∪{v}; EdgeCovereduv ++;  
                if ((SPk && SPk ) != SPk) then  

compute new SPk and the cost(SPk);  
                end if 
         if (cost(SPk) > temp_mincost) then 
            delete SPk; continue; 
         end if 

v --; // the node v has been selected by the current ant 
end for 

end for 
         SPmin = min{SP1, SP2…, SPk,…, SPant}; 

// updating: 
         if (|SPminK|<|SG|) then 

     SG = SPmin; temp_mincost = min (cost(SPk[0])); // 1≤ k ≤m 
         else  

 SG = SG (SPmin - SG); 
         end if 
         update the pheromone of all nodes according Equation (2) max_cycles--; 
         if (SG is stable or max_cycles = 0) then 
             constringency = true; 
         end if 

end while 
    Output the set SG.   
End 

Fig. 3. The Algorithm R-ACO: Finding the Set of Attribute Reduction Based on ACO
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6 Experimental Results

In our experiments, eight databases [2] are used. We test each database on a
Pentium4 PC with Algorithm R-ACO, RSACO [4] and Algorithm 3 [9]. The
algorithm in [9] can be used to compute all the reductions of an information
table and give us the minimal reductions to reference. The results of our ex-
periments are shown in Table 3. |U | and |C| are the cardinality of the uni-
verse and the conditional attribute set, respectively. |SG| is the cardinality
of the set of reductions, |att R| is the number of conditional attributes in a
attribute reduction, |att minR| is the number of conditional attributes in a
minimal attribute reduction, and CPU(s) is the CPU time (by second) of the
process.

Table 3. Comparison of the CPU time and Results of the Algorithms

Database |U | |C| Algorithm R-ACO Algorithm RSACO Algorithm 3
|SG| |att R| CPU(s) |SG| |att R| CPU(s) |att minR|

ZOO 101 17 6 11 0.003 3 11 6.570 11

Car 1728 6 1 6 0.000 1 6 53.589 6

Soybean-large 307 35 4 11 0.857 1 11 207.809 9

LED24 1000 24 2 18 6.361 2 16 1144.455 16

Australian 690 14 2 3 0.076 2 3 38.017 3

Tic-tac-toe 958 9 6 8 0.016 2 8 39.804 8

statlog(germa) 1000 20 3 10 1.240 1 10 641.651 7

Mushroom 4062 22 1 1 0.045 1 1 829.314 1

From Table 3, we can observe that Algorithm R-ACO is more efficient than
Algorithm RSACO, and Algorithm R-ACO finds more minimal reductions. Fur-
thermore, we can see that Algorithm R-ACO developed in this paper is a feasible
solution to the MARP and the approach can acquire the minimal attribute re-
ductions in most cases.

7 Conclusion

Attribute reduction is an important process in data mining based on rough
set theory. In this paper, the minimal attribute reduction problem is studied
based on the ant colony optimization metaheuristic. A model R-graph is first
constructed to find an assignment which minimizes the cost in the graph. To sim-
plify the search space, a preprocessing step that removes the redundant data in a
discernibility matrix is introduced. A new algorithm R-ACO for solving minimal
attribute reduction problem is proposed. Finally, the simulation results show
that our approach can find more minimal attribute reductions more efficiently
in most cases.
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Abstract. This paper introduces an approach to reinforcement learn-
ing by cooperating agents using a near set-based variation of the Peters-
Henry-Lockery rough set-based actor critic adaptive learning method.
Near sets were introduced by James Peters in 2006 and formally de-
fined in 2007. Near sets result from a generalization of rough set theory.
One set X is near another set Y to the extent that the description of
at least one of the objects in X matches the description of at least one
of the objects in Y . The hallmark of near set theory is object descrip-
tion and the classification of objects by means of features. Rough sets
were introduced by Zdzis�law Pawlak during the early 1980s and provide
a basis for perception of objects viewed on the level of classes rather
than the level of individual objects. A fundamental basis for near set as
well as rough set theory is the approximation of one set by another set
considered in the context of approximation spaces. It was observed by
Ewa Or�lowska in 1982 that approximation spaces serve as a formal coun-
terpart of perception, or observation. This article extends earlier work
on an ethology-based Peters-Henry-Lockery actor critic method that is
episodic and is defined in the context of an approximation space. The
contribution of this article is a framework for actor-critic learning de-
fined in the context of near sets. This paper also reports the results of
experiments with three different forms of the actor critic method.

Keywords: Adaptive learning, approximation space, ethogram, ethol-
ogy, actor critic, near sets, rough sets.

1 Introduction

The problem considered in this paper is how to refine and extend Peters-Henry-
Lockery rough set-based actor critic learning method (see, e.g., [1,4,3,15]). The
Peters-Henry-Lockery approach provides an ethology-based form of the Sutton-
Barto actor-critic method [2], an on-policy method that predefines the policy to
select an action. Actor critic methods are temporal difference [2] methods that
have a separate memory structure that explicitly represents a policy independent
of a value function. The policy structure is known as actor because it is used
to select actions and the estimated value function is known as critic, because
it criticizes the actions made by the actor. Learning is always on-policy: the
critic must learn about and critique whatever policy is currently being followed

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 252–261, 2008.
� Springer-Verlag Berlin Heidelberg 2008
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by an actor. The critique takes the form of a TD error (i.e., difference between
value-of-state estimates obtained at different times). The solution to the problem
considered in this paper results from a near set-based actor critic method.

Near sets were introduced by James Peters in 2006 [16], formally defined
in 2007 [17] and elaborated in [18]. Near sets result from a generalization of
rough set theory. Briefly, one set X is near another set Y to the extent that
the description of at least one of the objects in X matches the description of
at least one of the objects in Y . The hallmark of near set theory is object
description and the classification of objects by means of features [14]. Rough
sets were introduced by Zdzis�law Pawlak during the early 1980s [10,11] and
provide a basis for perception of objects viewed on the level of classes rather
than the level of individual objects. A fundamental basis for near set as well
as rough set theory is the approximation of one set by another set considered
in the context of approximation spaces. It was observed by Ewa Or�lowska in
1982 that approximation spaces serve as a formal counterpart of perception, or
observation [13].

The contribution of this article is a framework for actor-critic learning defined
in the context of near sets. This paper also reports the results of experiments
with three different forms of the actor critic method, traditional Sutton-Barto
actor critic method [2], Peters-Henry-Lockery actor critic method [1,4,3,15], and
a new near set-based actor critic method. A brief introduction to near sets is
given in Sect. 5. Then a new near set-based actor critic method is presented in
Sect. 6 (this section also includes the results of experiments with all three forms
of actor critic learning).

This paper has the following organization. The traditional actor critic method
is briefly presented in Sect. 2. An approach to describing organism behaviour is
given in Sect. 3. The basic framework for the Peters-Henry-Lockery actor critic
method is presented in Sect. 4.

2 Sutton-Barto Actor Critic

Actor critic methods are a natural extension of the idea of reinforcement compar-
ison [2] methods to TD learning (i.e., combination of Monte Carlo and dynamic
programming methods [2]) and to the full reinforcement learning problem. Alg. 1
provides a representation of the basic Sutton-Barto actor-critic method described
in [2].

Let S be a set of possible states, let s denote a current state and for each s ∈ S,
and let A(s) denote the set of actions available in state s . Put A = ∪s∈SA(s). the
collection of all possible actions. Let a denote a possible action in the current
state; let s,denote the subsequent state after action a; let p(s, a) denote an
action-preference and let r denote the reward for an action while in state s.

The method begins by fixing a number γ ∈ [0, 1], called a discount rate that
diminishes the estimated value of the next state; in a sense, γ captures the
confidence in the expected value of the next state. Let C(s) denote the number
of times the actor has observed state s. The estimated value function V (s) is



254 S. Anwar and K.S. Patnaik

Algorithm 1. The actor critic Method
Input : States s ∈ S, Actions a ∈ A(s), Initialize γ, β
Output: Policy π(s,a)
for (all s ∈ S , a ∈ A(s)) do

p(s, a)←− 0; π(s, a)←− ep(s,a)
�|A(s)|

b=1 ep(s,b)
; C(s)←− 0;

end
while True do

Initialize s;
for (i = 0; i ≤ # of episodes; i+ +) do

Choose a from s using policy π;
Take action a; observe reward r, and next state s′;
C(s)←− C(s) + 1;
V(s) ←− V(s)+ 1

(s) [r - V(s)];
δ = r + γ V(s’) - V(s);
p(s, a)←− p(s, a) + β.δ;
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s←− s′;
end

end

defined as the average of the rewards received while in state s. This average may
be calculated as

V (s) =
C(s)− 1
C(s)

· VC(s)−1(s) +
1

C(s)
· r (1)

where VC(s)−1(s) denotes V (s) for the previous occurrence of state s. After each
action selection, the critic evaluates the quality of selected action using

δ ← r + γV (s′)− V (s),

which is the error between successive estimates of expected value of a state. If
δ > 0, then it can be said that the expected return received from taking action
a at time t is larger than the expected return in state s resulting in an increase
in action preference p(s, a). Conversely, if δ < 0, then the action a produced a
return that is worse than expected and p(s, a) is decreased. The preferred action
a in state s is calculated using

p(s, a)← p(s, a) + βδ,

where β is the actor’s learning rate. The policy π(s, a) is employed by an actor
to choose actions stochastically using Gibbs softmax method [9] in

π(s, a)← ep(s,a)∑|A(s)|
b=1 ep(s,b)

.
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3 Behaviour Description

This section briefly presents the approach to describing learning behaviour, start-
ing first with object description useful in classifying perceived objects. Objects
are known by their descriptions. An object description is defined by means of
a tuple of function values φ(x) associated with an object x ∈ X (see (2)). The
important thing to notice is the choice of functions φi ∈ B used to describe an
object of interest.

Object Description : φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φL(x)). (2)

The intuition underlying a description φ(x) is a recording of measurements from
sensors, where each sensor is modelled by a probe function φi. Assume that
B ⊆ F is a given set of functions representing features of sample objects X ⊆
O. Let φi ∈ B, where φi : O −→ '. The value of φi(x) is a measurement
associated with a feature of an object x ∈ X . The function φi is called a probe.
In combination, the functions representing object features provide a basis for
an object description φ : O → 'L, a vector containing measurements (returned
values) associated with each functional value φi (x) in (2), where the description
length |φ| = L.

4 Peters-Henry-Lockery Actor Critic Method

This section briefly introduces Peters-Henry-Lockery actor critic method that
is rough set-based. The basics of rough set theory are presented in [12] and
are omitted, here. To set up an ethological approach to adaptive learning, put
B = {[x]B | x ∈ O}, a set of classes that “represent” behaviours of an organism
that learns adaptively. Let D denote a decision class, e.g., D = {x | d(x) = 1},
a set of objects having acceptable behaviours. Let ν denote traditional rough
coverage computed relative to B∗D (lower approximation of D) as shown in (3).
Define ν̄ (average rough coverage)1 in (3).

ν̄ =
1
|B|

∑
[x]B∈B

ν ([x]B , B∗D) , where, ν =
| [x]B , B∗D|
|B∗D|

. (3)

where ν = 1, if B∗D = ∅. From (3), it is possible to design various families
of adaptive learning algorithms (see, e.g., [1,4,3,15]). For example, ν̄ is used to
compute preference p(s, a) as shown in (4).

p(s, a)← p(s, a) + β[δ − v̄] (4)

where ν̄ is reminiscent of the idea of a reference reward used during reinforcement
comparison. To complete the picture, it is assumed that learning is episodic. In

1 ν̄ is computed at the end of each episode using an ethogram that is part of the
adaptive learning cycle.
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Algorithm 2. Peters-Henry-Lockery Actor Critic Method
Input : States, s ∈ S , Actions a ∈ A(s), Initialize γ, β, ¯̄v.
Output: Policy π(s,a)
for (all s ∈ S , a ∈ A(s)) do

p(s,a) ←− 0; π (s,a) ←− ep(s,a)
�|A(s)|

b=1 ep(s,b)
; C(s) ←− 0;

end
while True do

Initialize s;
for (i = 0; i ≤ # of episodes; i+ +) do

Choose a from s, using policy;
Take action a; observe reward, r, and next state, s’;
C(s)←− C(s) + 1;
V(s) ←− V(s)+ 1

(s) [r − V (s)];
δ = r + γ V(s’) - V(s);
p(s, a)←− p(s, a) + β[δ − v̄];
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s ←− s’;
end
Extract ethogram table IS = (Ubeh, A, d);
Discretize feature values in IS;
Compute v̄ using IS;

end

keeping with the analogy of learning by a biological organism, organism behav-
iour observed an episode is stored in a table called an ethogram. An ethogram
is a tabular representation of observed behaviours. In this case, observation ob-
servation of each behaviour is limited to a recording of a tuple (s, a, r, V (s), d),
i.e., state, action, reward, value of state and decision d, respectively. In simulat-
ing organism behaviour, we assume that d = 1 (action a accepted) and d = 0
(action is rejected). This is a special case of the model for object description
in (2). For more details about ethograms used in ethology-based adaptive learn-
ing, see [4,7].

5 Near Sets

The basic idea in the near set approach to adaptive learning is to compare be-
haviour descriptions. In general, sets X,X ′ are considered near each other if the
sets contain objects with at least partial matching descriptions. Let ∼B denote
{(x, x′) | f(x) = f(x′) ∀f ∈ B} (called the indiscernibility relation [11,12]).

Definition 1. Near Sets [17]
Let X, Y ⊆ O, B ⊆ F . Set X is near Y if, and only if there exists x ∈ X, y ∈
Y, φi ∈ B such that x ∼{φi} y.



Actor Critic Learning: A Near Set Approach 257

Object recognition problems, especially in adaptive learning and images [1] and
the problem of the nearness of objects have motivated the introduction of near
sets (see, e.g., [5,6,17,18]).

5.1 Nearness Approximation Spaces

The original generalized approximation space (GAS) model [16] has been ex-
tended as a result of recent work on nearness of objects [5]. A nearness approx-
imation space (NAS) is a tuple

NAS = (O,F ,∼Br , Nr, νNr),

defined using set of perceived objects O, set of probe functions F representing
object features, indiscernibility relation ∼Br defined relative to Br ⊆ B ⊆ F ,
family of neighbourhoods Nr, and neighbourhood overlap function νNr . The
relation∼Br is the usual indiscernibility relation from rough set theory restricted
to a subset Br ⊆ B. The subscript r denotes the cardinality of the restricted
subset Br, where we consider

(|B|
r

)
, i.e., |B| functions φi ∈ F taken r at a time

to define the relation ∼Br . This relation defines a partition of O into non-empty,
pairwise disjoint subsets that are equivalence classes denoted by [x]Br

, where

[x]Br
= {x′ ∈ O | x ∼Br x

′} .

These classes form a new set called the quotient set O/ ∼Br , where

O/ ∼Br=
{

[x]Br
| x ∈ O

}
.

In effect, each choice of probe functions Br defines a partition ξBr on a set of
objects O, namely,

ξBr = O/ ∼Br .

Table 1. Nearness Approximation Space Symbols

Symbol Interpretation

Br non-empty, countable set of probe functions in B, r ≤ |B|,
∼Br Indiscernibility relation defined using Br,
[x]Br

[x]Br
= {x′ ∈ O | x ∼Br x

′}, equivalence class,
O/ ∼Br O/ ∼Br =

{
[x]Br

| x ∈ O
}

, quotient set,
ξBr Partition ξO,Br = O/ ∼Br ,
φi Probe function φi ∈ F ,
r

(|B|
r

)
, i.e., |B| functions φi ∈ F taken r at a time,

Nr(B) Nr(B) = {ξBr | Br ⊆ B}, set of partitions,
νNr νNr : P(O)× P(O) −→ [0, 1], overlap function,

Nr(B)∗X Nr(B)∗X =
⋃

x:[x]Br⊆X [x]Br , lower approximation,
Nr(B)∗X Nr(B)∗X =

⋃
x:[x]Br∩X [x]Br 
= ∅, upper approximation,

BndNr(B)(X) Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.
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Algorithm 3. The Near Actor Critic Method
Input : States, s ∈ S, Actions a ∈ A(s), feature n.
Output: Ethogram resulting form Policy π(s,a).
for (all s ∈ S, a ∈ A(s)) do

p(s,a) ←− 0; π (s,a) ←− ep(s,a)
�|A(s)|

b=1 ep(s,b)
; C(s) ←− 0;

end
while True do

Initialize vav wrt n feature nbds, s;
for (i = 0; i ≤ # of episodes; i+ +) do

Choose a from s, using policy;
Take action a; observe reward, r, and next state, s’;
C(s)←− C(s) + 1;
V(s) ←− V(s)+ 1

(s) [r − V (s)];
δ = r + γ V(s’) - V(s);
p(s,a) ←− p(s,a) + β[δ − va];
π (s,a) ←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s ←− s’;
end
Extract ethogram table IS = (Ubeh, A, d);
Discritize feature values in IS;
Compute vav using IS;

end

Every choice of the set Br leads to a new partition of O. The overlap function
νNr is defined by

νNr : P(O)× P(O) −→ [0, 1],

where P(O) is the powerset of O. The overlap function νNr maps a pair of sets to
a number in [0, 1] representing the degree of overlap between sets of objects with
features defined by probe functions Br ⊆ B. For each subset Br ⊆ B of probe
functions, define the binary relation ∼Br = {(x, x′) ∈ O ×O : ∀φi ∈ Br, φi(x) =
φi(x′)}. Since each ∼Br is, in fact, the usual indiscernibility relation [12], let
[x]Br denote the equivalence class containing x, i.e.,

[x]Br = {x′ ∈ O | ∀f ∈ Br, f(x′) = f(x)}.

If (x, x′) ∈ ∼Br (also written x ∼Br x′), then x and x′ are said to be B-
indiscernible with respect to all feature probe functions in Br. Then define a
collection of partitions Nr(B) (families of neighbourhoods), where

Nr(B) = {ξBr | Br ⊆ B} .

Families of neighbourhoods are constructed for each combination of probe func-
tions in B using

(|B|
r

)
, i.e., |B| probe functions taken r at a time. The family of

neighbourhoods Nr(B) contains a set of percepts. A percept is a byproduct of
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perception, i.e., something that has been observed. For example, a class in Nr(B)
represents what has been perceived about objects belonging to a neighbourhood,
i.e., observed objects with matching probe function values.

It is now possible to introduce a near set-based form of coverage that ex-
tends the basic rough coverage model in (3). That is, we can formulate a basis
for measuring the degree of overlap between each class in Nr(B) and the lower
approximation Nr(B)∗X of a set X for each choice of r. The lower approxima-
tion Nr(B)∗X defines a standard for classifying perceived objects. The notation
Bj(x) denotes a class in the family of neighbourhoods in Nr(B), where a ∈ Br.
Put

va([x]Br , Nr(B)∗X) =
|[x]Br ∩Nr(B)∗X |
|Nr(B)∗X |

where vj is defined to be 1, ifNr(B)∗X = φ. PutB = {[x]Br : a(x) = j, x ∈ O}, a
set of equivalence classes that represent action a(x) = j. Let D denote a decision
class, e.g., D = {x|d(x) = 1}, a set of object having acceptable behaviours.
Define va(t) (near lower average coverage) with respect to an action a(x) = j at
time t in (5).

va(t) =
1
|B|

∑
[x]Br∈B

v([x]Br , Nr(B)∗D). (5)

6 Near Actor Critic Method

This section briefly introduces a near set-based actor critic method. Using (5),
action preference is now calculated as

p(s, a)← p(s, a) + β · [δ − va],

where va is computed at the end of each episode for each feature value using an
ethogram. In experimenting with near actor critic learning, different values of r
are considered, starting with r = 1 (single feature case based on the selection of
a single feature from {a, r, V (s)}) and concluding with r = 3 (three feature case).
In a manner similar to [4], the behaviour of groups of interacting organisms that
learn has been simulated using Alg. 1 and Alg. 2 as well as Alg. 3 near actor
critic method.

From the plots in Fig. 1, we observe that the Peters-Henry-Lockery actor
critic method fares better than the traditional actor critic method, i.e., average
V(s) values are comparatively much higher. The plots in Fig. 1 also show that
single feature near actor critic yields V (s) values consistently higher than all of
the other forms of the actor critic method. It can also be observed that learning
during the initial episodes is much better for the near set actor critic than for the
other forms of actor critic. The results in Fig. 1 are promising but are considered
preliminary.
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1.1: γ = 0.1 1.2: γ = 0.5

1.3: γ = 0.9 1.4: γ = 1

Fig. 1. Sample Experimental Results

7 Conclusion

This paper considers several approaches to actor critic learning. The proposed
near set-based form of actor critic is compared with the Sutton-Barto and Peters-
Henry-Lockers forms of actor critic. From the experimental results already ob-
tained for these three methods appear to confirm the near set-based approach to
biologically-inspired adaptive learning reported in [15]. Future work will include
the implementation of the near actor critic method in engineering systems that
learn. In addition, there is some interest in considering limiting cases and the
convergence of value-of-state to an optimal value during a typical sequence of
learning episodes.
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Abstract. Rough set theory is an efficient tool for machine learning and
knowledge acquisition. By introducing weightiness into a fuzzy approx-
imation space, a new rule induction algorithm is proposed, which com-
bines three types of uncertainty: weightiness, fuzziness and roughness.
We first define the key concepts of block, minimal complex and local
covering in a weighted fuzzy approximation space, then a weighted fuzzy
approximation space based rule learner, and finally a weighted certainty
factor for evaluating fuzzy classification rules. The time complexity of
proposed rule learner is theoretically analyzed. Furthermore, in order to
estimate the performance of the proposed method on class imbalanced
and hybrid datasets, we compare our method with classical methods by
conducting experiments on fifteen datasets. Comparative studies indi-
cate that rule sets extracted by this method get a better performance
on minority class than other approaches. It is therefore concluded that
the proposed rule learner is an effective method for class imbalanced and
hybrid data learning.

Keywords: Rule induction, fuzzy rough set, weighted rough set, hybrid
attributes, class imbalanced data sets.

1 Introduction

Continuous attributes and class imbalanced data sets exist in a large number
of real-world domains and are recognized as two crucial problems in rough set
based machine learning and knowledge acquisition [1,2]. LERS system (Learning
from examples based on rough sets) is one of the most widely used rule induc-
tion systems for real-world applications [3,4]. In LERS system, algorithm LEM2
cannot cope with continuous attributes [5]. Algorithm MLEM2 is proposed as an
extension of LEM2, which computes cut points by averaging any two consecutive
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values of a continuous attribute [6]. However, the selection of crisp cut points
is crucial to the performance of a rule learner. The cut points should reflex the
structure of the data and patterns. If the boundary of patterns were fuzzy and
indistinguishable, the crisp cut point would not capture the actual semantics [7].

As we know, in Pawlak’s rough set model, fuzziness and weightiness are not
taken into account [8,9]. Some generalized rough set models were proposed to
deal with hybrid attributes. Dubois et al. [10] proposed fuzzy rough set, and the
properties of fuzzy rough set were analyzed in details by [11]. Currently, fuzzy
rough set models were extensively applied to data reduction [12], fuzzy rough
classification tree [13]. As to fuzzy attributes or numerical attributes, fuzzy set
and fuzzy equivalence relations are capable of modeling the uncertainty in hybrid
datasets [14].

However, these models just consider all examples equally important. Using
this default hypothesis may increase overall accuracy of the generated rules, es-
pecially for highly skewed data [15]. In some cases, it may even lead to generation
of only majority class label as “artificial” rules [16]. While such a solution pro-
duces accurate classification rules, there is no practical use for the user since no
data model for any of the minority class can be obtained. In order to balance the
accuracy on majority and minority class, weighted rough set models were pro-
posed, where samples are associated with probabilities [17]. Based on weighted
factors, attribute reduction and rule induction algorithms were proposed [18].

It can be seen from the reviews above that a weighted fuzzy approximation
space is a good solution to deal with classification rule learning from imbalanced
data, but it has not been discussed in this framework so far. In this study, we
focus on introducing a weighted fuzzy approximation space into rule learner so
that it can balance classification accuracy on minority class in order to imply
useful information from minority class. By conducting systematic comparative
experiments on fifteen datasets, we find that weighted fuzzy rough set based rule
learner is effective for class imbalanced and hybrid data learning.

2 WFLEM2: Rule Learner on Weighted Fuzzy
Approximation Spaces

In fuzzy approximation spaces, all samples are considered equally important.
In order to introduce probabilities of samples into fuzzy rough set model, the
concept of weightiness to represent a prior knowledge can be employed [18].

A five-tuple WFS = 〈U,A,w, V, f〉 is denoted as a weighted fuzzy information
system or a weighted fuzzy approximation space, where U = {xi}|i=1∼n is a
nonempty and finite universe, A = C ∩ D is an attribute set, C = {ci}|i=1∼m

is a set of conditional attributes, and D = {d} is a set of decision attributes,
w : U → R is a weighted distribution function on U , V = ∪a∈AVa is the domain
of all attributes, f : U × A → V is an information function. For simplicity, we
use xi

j denotes the value of f(xi, cj). Each attribute cj is represented by a family
of fuzzy sets Term(cj) = {F k

j }|k=1∼tj . F k
j refers to kth fuzzy set of an attribute



264 Y. Liu, B. Feng, and G. Bai

cj , and tj is equal to the number of fuzzy sets on cj . Therefore, µF k
j

(xi
j) is the

membership degree of the ith object’s value of attribute cj on the fuzzy set F k
j

Decision attribute d classifies each object to a single class out of q classes. Each
class l|l=1∼q has been modeled as a fuzzy singleton with membership degree of
xi in lth class defined as follows:

µl(xi
d) =

{
1, ifxi

d = l
0, otherwise . (1)

A fuzzy classification rule defined in space Term(c1)× . . .×Term(cm)×Termd

can be represented in the form of :

IF c1 is F k1
1 AND . . . AND cm is F km

m THEN d is l. (2)

A fuzzy decision rule can be put into simpler form F k1
1 × . . . F km

m ⇒ l. It is inter-
preted as a fuzzy relation from m-dimension space of conditional attributes to
the space of decision attribute, where FV = {F kj

j }|j=1∼m is called as fuzzy evi-
dence, which represents the fuzzy values taken by one or more fuzzy conditional
attributes presented in the premise part of a rule [19].

For a given weighted fuzzy approximation space WFS, weight function w is
used to present a prior knowledge about samples. While a crisp equivalence
relation will generate a crisp block, a fuzzy rough set model can induce a fuzzy
block. Therefore, the definition of fuzzy block can be naturally derived from
fuzzy rough set model.

Definition 1 Fuzzy Block. Let WFS be a weighted fuzzy approximation
space, t = (cj , F k

j ) be an attribute-value pair. The fuzzy block of t is defined as

[t] =
∫

xi∈U

µF k
j

(xi
j)/xi. (3)

Due to the fuzzy properties, the fuzzy block is a fuzzy set. This is a main dif-
ference of fuzzy block with crisp block. It is easy to find that the definition of
fuzzy block is a natural extension of crisp one. If an attribute is nominal, the
relation matrix and equivalence relation with respect to it will be degraded to
the classical concept of block.

Some problems encountered by fuzzy lower and upper approximation set were
identified [20]. The crisp lower and upper approximation set was consequently
used to solve the computation problems in real-world applications [14]. We em-
ploy a weaker definition of the inclusion operator, which is defined as that a
fuzzy set A ⊆α B if and only if ∀x ∈ U,max(1− µA(x), µB(x)) 	 α.

Definition 2 α-Fuzzily Depends On. Let X be a crisp set, T be a set of
attribute-value pairs. Set X α-fuzzily depends on T if and only if

∅ 
= [T ] = ∩{[t] | t ∈ T } ⊆α X, (4)

where A ∩B =
∫

x∈U min(µA(x), µB(x))/x.
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Let B be a nonempty lower or upper approximation set of a concept, T be
a set of attribute-value pairs. Set T is an α-minimal complex of B if and only
if B α-fuzzily depends on T and no proper subset T

′
of T exists such that B

α-fuzzily depends on T
′
.

Definition 3 (α, β)-Weighted Local Covering. Let WFS be a weighted
fuzzy information system, T be a nonempty collection of nonempty sets of
attribute-value pairs and B be a nonempty crisp set. T is an (α, β)- weighted
local covering of B if and only if the following conditions are satisfied:

1. each member T of T is an α-minimal complex of B,
2. Iw(∪T∈T[T ], B) 
 β, and
3. T is minimal, i.e., T has the smallest possible number of members,

where the weighted similarity function of fuzzy sets is Iw(A,B) = (|A ∩ B|w +
|A ∩B|w)/|A ∪B|w, | • |w =

∑
x∈U µ•(x) × w(x), A =

∫
x∈U

(1− µA(x))/x.

It is obvious that α and β provide a new stopping condition for rule learner.
When α = 0, β = 0, w(x) = w, ∀x ∈ U and attributes are nominal, the stopping
condition is degraded into the same condition used in algorithm LEM2. Due to
the strong termination criteria of algorithm LEM2, it may extract over-specified
rules that would overfit training data, and the computational complexity of the
algorithm increases dramatically. In contrast with LEM2, we introduce a flexible
stopping condition that can be easily tuned, by which rule learner can allow an
input set partially depends on a minimal complex and tolerate a local covering
that does not cover a small amount of training data. These parameters are used
to relax the termination requirement of algorithms in LERS system. Such a
mechanism is especially valuable in case of data containing overlapping classes
and having inconsistent examples.

In LERS system, algorithms explore the search space of attribute-value pairs
from the lower or upper approximation set of each concept. The searching strat-
egy can be hardly effective because the minimal complex with a large number of
attribute-value pairs is apt to be obtained. In contrast to LEM2, our rule learner
tends to select the attribute-value pair with the maximum value based on a new
score function on attribute-value pairs.

Definition 4 Score function of an attribute-value pair. Let t be an
attribute-value pair and G be a fuzzy set. The score of t related to G is de-
fined as follows:

Scorew(t, G) = |[t] ∩G|w, (5)

where | • |w =
∑

x∈U µ•(x)× w(x).

Let us denote that WFS is a weighted fuzzy approximation space, B is a non-
empty lower or upper approximation set of a concept set. Normal operations
of fuzzy set are based on Zadeh’s definition [21]. Algorithm 1 presents the
pseudocode of proposed rule learner.
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Algorithm 1. WFLEM2 Rule Learner
Data: A weighted information system WFS = 〈U, A, w, V, f〉, a non-empty lower

or upper approximation set of a concept B and thresholds α and β.
Result: A (α, β)-weighted local covering T.
G ⇐ B; // G is a fuzzy set of objects1

T ⇐ ∅; //T is a crisp set of attribute-value pairs2

while Iw(∪T∈T[T ], B) > β do3

T ⇐ ∅;4

while (T = ∅) or (not ([T ] ⊆α B)) do5

t ⇐ arg max∀t′∈T,head(t) �=head(t′) Scorew(t, G);6

T ⇐ T ∪ {t};7

G ⇐ [t] ∩ G;8

end9

for ∀t ∈ T do10

if [T \ {t}] ⊆α B and T \ {t} �= ∅ then11

T ⇐ T \ {t};12

end13

end14

T ⇐ T ∪ {T};15

G ⇐ B \ ∪T∈T[T ];16

end17

for ∀T ∈ T do18

if Iw(∪S∈T\{T}[S], B) 
 β then19

T ⇐ T \ {T};20

end21

end22

return T;23

Now we theoretically analyze the time complexity of WFLEM2 rule learner.
Assumptions are as follows: r is the number of generated rules, and q is the
number of decision classes. The complexity of operations on sets is asymptotic
to the total size of sets. The cardinality of a minimal complex is O(log n), and it
is not longer than m. r and q are small constants in the analysis so that we can
provide general complexity estimation. The finally complexity thus is a function
of n. We break the analysis process into determination of the time complexity
for particular steps of WFLEM2 procedure:

Line 1: O(1)
Line 2: O(1)
Line 3-17: Iterates at most O(r) times, O(n) evaluates condition
Line 4: O(1)
Line 5-9: Iterates at most O(log n) times, O(n) evaluates condition
Line 6: O(mn) one sweep through G to find pair with max score
Line 7: O(1)
Line 8: O(n) fuzzy set operation
Line 10-14: Iterates at most O(log n) times
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Line 11-13: O(n) fuzzy set operation
Line 15: O(log n) set operation
Line 16: O(n) fuzzy set operation
Line 18-22: Iterates at most O(r) times
Line 19-21: O(n)
Line 23: O(1)

Thus, the total estimated time complexity of the WFLEM2 procedure is: O(r) ·
{O(n)+O(log n) · [O(n)+O(mn)+O(n)]+O(log n) · [O(n)+O(log n)+O(n)]}+
O(r) ·O(n) = O(rmn log n).

Our rule learner for the problems with q classes will call the WFLEM2 pro-
cedure q times. Therefore, the overall complexity is qO(rmn log n). As from the
assumption in the beginning of this section, r and q are usually small constants.
We note that for some applications the number of attributes m can be O(1), or
m can be O(log n). In the worst case, time complexity of the WFLEM2 learner is
O(n log2 n). We also note that the above estimation holds for decision table that
supports any hybrid attributes such as nominal, numerical or fuzzy attributes.

Definition 5 Weighted Certainty Factor of a Rule. Let WFS be a
weighted fuzzy information system, FV ⇒ l be a fuzzy decision rule. The weighted
certainty factor of the rule can be measured by

βw(FV ⇒ l) =

∑
xi∈U

w(xi)× {[∧F∈FV µF (xi
j)] ∧ µl(xi

d)}
∑

xi∈U

w(xi)× [∧F∈FV µF (xi
j)]

, (6)

where ∧ is denoted as min operator.

In LERS system, the prediction of unseen cases is done using a modification
of the bucket brigade algorithm, on the basis of the rule strength, specificity,
support and partial matching factor. However, in algorithm WFLEM2, a basic
fuzzy inference engine can take either fuzzy measurements or crisp measurements
as inputs from real world to suggest a classification or decision. In proposed rule
learner, we have considered fuzzy classifiers with crisp measurements from real
world as inputs. The outputs that the fuzzy classifiers produce can be either a
fuzzy singleton representing a class label of the pattern or the prediction certainty
with which the pattern can be classified to each class. In experimental section,
WFLEM2 employs a matching factor based procedure to classify new objects.
For a given test case, the sum of weighted certainty factor of rules that match
this case within each concept is computed. The concept with the biggest value
wins as target for classification of the test case.

3 Experiments and Discussion

We implemented WFLEM2 in Java and tested on some benchmark problems
with the same parameters and conditions. Here, threshold parameters α and β
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are set to be 0.02 and 0.05. Continuous attributes are fuzzified by fuzzy c-mean
method into three fuzzy clusters and a triangle membership function is employed
to approximate each fuzzy set [22]. We calculate the inverse class probability as
the weight of each object, i.e., the weight of x is computed by n/|[x]D|, where
[x]D denotes the decision equivalence class containing object x [18].

In order to evaluate the performance of WFLEM2, comparative experiments
are conducted. The methods employed for the comparison comprise a weighted
decision tree based method and a classical rough set based rule learner.

1. WC4.5: A weighted decision tree method proposed by [23]. The inverse class
probability weight is assigned to each sample for class imbalance learning.

2. LEM2: A rough set based rule induction algorithm proposed by [4]. The
continuous attributes need to be discretized first. LEM2 uses fuzzy c-means
clustering algorithm as a front-end discretization technique with pre-defined
three clusters.

Table 1. Description of fifteen datasets in comparison tests. C indicates the number
of continuous attributes, and N indicates the number of nominal attributes.

Abbr. Dataset Size Class Attr.(C/N) Test data Class distribution

hea StatLog heart disease 270 2 7/6 10F-CV 120/150
cle Cleve database 303 2 6/8 10F-CV 138/165
bup BUPA liver disorders 345 2 6/0 10F-CV 145/200
ion Ionosphere database 351 2 34/0 10F-CV 126/225
hor Horse Colic database 368 2 7/20 10F-CV 124/244
cov Congressional voting 435 2 0/16 10F-CV 168/267
aca Australian credit approval 690 2 6/8 10F-CV 307/383
wib Wisconsin breast cancer 699 2 9/0 10F-CV 241/458
pim PIMA indian diabetes 768 2 9/0 10F-CV 268/500
ann Annealing data 898 6 9/29 10F-CV 8/40/67/99/684
gec StatLog German credit 1000 2 7/13 10F-CV 300/700
dna Statlog DNA 2000 3 0/180 10F-CV 464/485/1051
hyp Hypothyroid disease 3163 2 7/18 10F-CV 151/3012
sat Statlog satellite image 6435 6 36/0 2000 415/470/479/961/1038/1072
adu Adult 48842 2 6/8 16281 7841/24720

A detailed description of fifteen benchmarking datasets is presented in
Table 1. The datasets were obtained from the UCI ML repository [24]. The miss-
ing values in each data set are filled with mean values for continuous attributes
and majority values for nominal attributes. We focus on reporting accuracy and
rule complexity of three methods on fifteen datasets.

Table 2 reports accuracy of WFLEM2 and other two learners achieved on fif-
teen datasets. We report the average accuracy on minority class and the average
accuracy on majority class. Results for all ten-fold cross-validation experiments
are mean values include standard deviations. On average, WFLEM2 obtains the
highest average accuracy on minority class, with WC4.5 being the second best,
followed by LEM2. LEM2 obtains the highest average overall accuracy, with
WC4.5 being the second best, followed by WFLEM2. Closer observation reveals
that there is no universally best learner in this comparison group.

The t-statistics test was used to compare learners for thirteen ten-fold cross-
validation experiments. The 5% confidence level test was performed. Table 3
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Table 2. Comparison of average accuracy between three methods on fifteen datasets

Accuracy of minimum class Accuracy of maximum class Overall accuracy
Set WC4.5 LEM2 WFLEM2 WC4.5 LEM2 WFLEM2 WC4.5 LEM2 WFLEM2

hea 82 ±1.6 73 ±3.3 74 ±3.9 68 ±2.5 80 ±2.1 82 ±2.3 75 ±1.8 77 ±1.2 78 ±2.6
cle 55 ±5.8 50 ±2.7 57 ±5.2 57 ±2.0 59 ±1.9 56 ±2.4 56 ±3.5 58 ±2.3 55 ±3.4
bup 46 ±8.2 24 ±13.5 43 ±10.3 71 ±7.3 75 ±6.2 72 ±9.4 67 ±8.3 68 ±13.0 68 ±7.5
ion 80 ±5.9 73 ±3.1 85 ±3.8 93 ±2.7 93 ±1.5 92 ±3.0 92 ±2.3 89 ±3.6 90 ±2.4
hor 95 ±1.5 95 ±2.8 96 ±2.6 98 ±1.3 97 ±1.1 96 ±2.8 96 ±1.7 97 ±1.3 95 ±1.9
cov 98 ±2.2 97 ±3.9 97 ±2.8 97 ±3.7 96 ±3.5 96 ±2.1 97 ±2.0 97 ±1.9 97 ±1.6
aca 85 ±2.4 80 ±2.0 84 ±1.7 87 ±3.8 84 ±1.5 82 ±4.7 84 ±2.2 86 ±1.8 83 ±3.6
wib 51 ±4.6 24 ±7.5 92 ±5.2 95 ±1.7 97 ±2.5 95 ±0.8 94 ±2.8 93 ±3.6 94 ±2.3
pim 47 ±5.3 41 ±5.7 52 ±5.4 87 ±2.5 89 ±3.7 86 ±2.6 73 ±5.0 75 ±5.7 74 ±4.6
ann 98 ±1.3 100 ±0.0 100 ±0.0 100 ±0.0 100 ±0.0 100 ±0.0 99 ±1.0 100 ±0.0 100 ±0.0
gec 53 ±4.1 23 ±7.2 80 ±3.8 75 ±2.3 95 ±4.5 56 ±2.8 70 ±3.2 71 ±5.7 60 ±3.0
dna 85 ±1.5 80 ±3.4 84 ±3.8 92 ±3.2 96 ±2.6 93 ±3.9 88 ±2.2 94 ±1.9 90 ±2.9
hyp 75 ±5.6 46 ±7.8 71 ±7.3 92 ±4.2 94 ±3.7 91 ±4.9 88 ±4.3 90 ±5.2 89 ±6.8
sat 69 57 66 78 85 84 75 84 81
adu 75 74 82 80 87 80 78 81 80

Mean 73 62 78 85 88 84 82 84 82
Stdev 18.5 26.8 17.0 12.7 10.8 13.6 12.7 12.2 13.5

Table 3. Results of t-test between WFLEM2 and a second learner with respect to
accuracy of minority class on thirteen ten-fold cross-validation experiments. “++” de-
notes WFLEM2 is significantly better than a second learner, “+−” denotes WFLEM2
is no different with a second learner and “−−” denotes WFLEM2 is significantly worse
than a second learner.

Set hea cle bup ion hor cov aca wib pim ann gec dna hyp ++ +− −−
WC4.5 −− +− −− ++ +− −− +− ++ ++ ++ ++ +− +− 5 5 2
LEM2 ++ ++ ++ ++ +− +− ++ ++ ++ +− ++ ++ ++ 10 3 0

Table 4. Comparison of rule set complexity on fifteen datasets

Number of rules Length per rule
Set WC4.5 LEM2 WFLEM2 WC4.5 LEM2 WFLEM2

hea 17 32 22 3.8 2.8 2.7
cle 23 43 28 2.6 3.1 2.3
bup 18 29 16 3.7 2.7 2.8
ion 5 14 3 2.3 2.0 2.1
hor 23 76 28 3.7 3.2 3.9
cov 8 35 12 1.6 2.5 1.8
aca 23 67 21 3.8 3.2 3.7
wib 18 43 16 2.4 2.1 2.7
pim 15 76 12 2.1 2.4 2.5
ann 39 103 42 4.3 3.7 4.8
gec 41 74 38 3.4 5.8 4.3
dna 48 96 53 3.4 3.6 3.2
hyp 16 46 18 2.8 2.5 3.1
sat 95 224 103 5.6 4.8 5.2
adu 59 179 62 3.7 3.3 4.4

Mean 30 76 32 3.3 3.2 3.3
Stdev 23.5 57.6 25.5 1.0 1.0 1.0

shows the results, where each entry describes t-test outcome considering differ-
ence in accuracy obtained by WFLEM2 and some second learner given in the left
column. The summary columns show that the proposed algorithm is significantly
better on five datasets, significantly worse on two datasets, and no difference on
five datasets, when compared with WC4.5 learner.
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In Table 4, we present measurements of rule complexity. The average number
of rules generated by WFLEM2 is close to the average number of rules gener-
ated by WC4.5. We note that WFLEM2 generates rule sets that are on average
half the size of LEM2 series, which shows a significant improvement for LEM2.
Although both the number of rules and the average length per rules are re-
ported, the latter measure gives better indication of the average complexity of
an individual rule.

To summarize, WFLEM2 is characterized by accuracy that is comparable with
accuracy of other two methods. The WFLEM2 is statistically better in compari-
son with WC4.5 and LEM2, although for majority of datasets they characterized
by results of similar quality. It generates rule sets that are comparable in size
to those generated by WC4.5, albeit two times smaller than those generated by
LEM2. The good accuracies and compact rule sets are observed in comparison
experiments.

4 Conclusion

Classical rough set based rule learner just works in nominal domain and treats
each sample as equal important weightiness. In this paper, we propose a new rule
induction algorithm that can exhibits on class imbalanced and hybrid datasets.
This method overcomes the poor termination condition and the limitation of
classical algorithms on highly skewed or hybrid datasets. The time complexity of
proposed rule learner is theoretically analyzed. Experiments show that proposed
rule learner gets the same results as that of other classical methods on fifteen UCI
datasets. However, the performance of the proposed method on minority class is
better than the classical methods with respect to class imbalanced and hybrid
datasets. Therefore, the proposed rule learner can gain better performance in
case of skewed and hybrid data learning.
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Abstract. We study the Rough Set theory as a method of feature selec-
tion based on tolerant classes that extends the existing equivalent classes.
The determination of initial tolerant classes is a challenging and impor-
tant task for accurate feature selection and classification. In this paper
the Expectation-Maximization clustering algorithm is applied to deter-
mine similar objects. This method generates fewer features with either a
higher or the same accuracy compared with two existing methods, i.e.,
Fuzzy Rough Feature Selection and Tolerance-based Feature Selection,
on a number of benchmarks from the UCI repository.

1 Introduction

The problem of reducing dimensionality has been investigated for a long time
in a wide range of fields, e.g., statistics, pattern recognition, machine learn-
ing, and knowledge discovery. In order to reduce the input dimensionality, there
exist two main approaches, i.e., feature extraction and feature selection (FS).
Feature extraction maps the primitive feature space into a new space with a
lower dimensionality. Two of the most popular feature extraction approaches in-
clude Principal Components Analysis [13], and Partial Least Squares [2]. There
are numerous applications of feature extraction in the literature, such as image
processing [9], visualization[29], and signal processing [21]. In contrast, the FS
approach chooses the most informative features from the original features ac-
cording to a selection method, e.g., t -statistic [17], f -statistic [15], correlation
[34], separability correlation measure [7], or information gain [32]. The irrelevant
and redundant features in the dataset lead to slow learning and low accuracy.
Finding the subset of features that are enough informative is NP complete. Some
heuristic algorithms are proposed to search through the feature space. The se-
lected subset can be evaluated from some issues, such as the complexity of the
learning algorithm and the accuracy.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 272–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The Rough Set (RS) theory can be used as a tool to reduce the input dimen-
sionality and to deal with vagueness and uncertainty in datasets. The reduction
of attributes is based on data dependencies. The RS theory partitions a dataset
into some equivalent (indiscernibility) classes, and approximates uncertain and
vague concepts based on the partitions. The measure of dependency is calculated
by a function of the approximations. The dependency measure is employed as
a heuristic to guide the FS process. In order to obtain a significant measure,
proper approximations of the concepts are required. Hence, the initial partitions
play an important rule. Given a discrete dataset, it is possible to find the in-
discernibility classes; however, in case of datasets with real-valued attributes,
it is impossible to say whether two objects are the same, or to what extent
they are the same, using the indiscernibility relation. A number of research
groups [6, 20, 26, 27, 28, 30] extended the RS theory using the tolerant or
similarity relation (termed tolerance-based Rough Set). The similarity measure
between two objects is delineated by a distance function of all attributes. Two
objects are considered to be similar when their similarity measure exceeds a sim-
ilarity threshold value. Finding the best threshold boundary is both important
and challenging. [14] used genetic algorithms to find the best similarity thresh-
old. [8, 10, 22, 23, 25] used fuzzy similarity to cope with real-valued attributes. In
this paper we use Expectation-Maximization (EM) [3, 5, 16, 24, 33, 35] cluster-
ing algorithm to determine the tolerance classes. The EM algorithm is a general
statistical method for finding the maximum likelihood estimations of parameters
in probabilistic models. In particular it can be applied in clustering problems.
The EM algorithm allows for overlapping clusters and it is robust to noise and
to highly skewed data.

The paper is organized as follows. Section 2 summarizes basics of the RS
theory. A brief overview of the mixture model and EM algorithm is represented
in section 3. In Section 4, the proposed method of feature selection using the RS
theory and EM clustering algorithm is outlined. Section 5 shows the potential
of the proposed method on some real datasets. We discuss our results and draw
some conclusions in the final section.

2 Basics of the Rough Set Theory

Let T (U,A,C,D) be a decision table, where U is a universe of objects, A is a set
of primitive features, C is a set of conditional attribute, D is a decision attribute
or class label, and C,D ⊆ A. For an arbitrary set P ⊆ A, an indiscernibility
relation is defined as follows,

IND(P ) = {(x, y) ∈ U × U : ∀a ∈ P, a(x) = a(y)} (1)

If P ⊆ C and X ⊆ U then the lower and upper approximations of X , with
respect to P , are respectively defined as follow,

PX = {x ∈ U : [x]IND(P ) ⊆ X} (2)

PX = {x ∈ U : [x]IND(P ) ∩X 
= φ} (3)
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where
[x]IND(P ) = {y ∈ U : a(y) = a(x), ∀a ∈ P} (4)

is the equivalence class of x in U/IND(P ).
A P -positive region of D is a set of all objects from the universe U which

can be classified with certainty to one class of U/IND(D) employing attributes
from P ,

POSP (D) =
⋃

x∈U/IND(D)

PX (5)

A dependency of D on P is defined as,

γp(D) =
|POSP (D)|
|U | . (6)

where |A| is the cardinality of a set A.
A feature a ∈ C is dispensable in P , if γp(D) = γp−a(D); otherwise a is an

indispensable attribute in P with respect to D. An arbitrary set B ⊆ C is called
independent if all its attributes are indispensable.

From these definitions a reduct set of features can be defined as follows, a set
of features R ⊆ C is called the reduct of C, if R is independent and POSR(D) =
POSC(D). In other words, the reduct is a set of attributes that conserves the
partitions generated by C.

In [4] the QUICKREDUCT algorithm for determining the reduct set is pro-
posed. It is a heuristic algorithm that avoids exhaustively generating all possible
subsets. The greedy algorithm starts with an empty set and in each iteration adds
the attribute that results in the greatest increase in the rough set dependency
metric to the reduct set.

3 Mixture Model and EM Algorithm

The mixture model is an effective representation of the probability density func-
tion and consists of k component density functions. The objective of a mixture
model is to fit the density functions to a given dataset to approximate the data
distribution. The EM alogrithm can be used in solving the problem of the mix-
ture models where Θ is the model parameters, and unknown-random variable
Y = {yi}N presents each object belongs to which model. That means yi = k
if the i − th object belongs to the component k. The EM algorithm allows for
overlapping clusters hence each object can belong to more than one component.
The EM algorithm is outlined in the Appendix.

Let D be a dataset with m objects and d attributes and x ∈ D be an object
in the dataset. The mixture model probability density function, evaluated at x,
is defined as follows,

p(x|Θ) =
k∑

l=1

Wl.p(x|θl) (7)

where
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– Wl is the fraction of data points belonging to the cluster l, and
∑k

l=1 Wl = 1.
– p(x|θl) is the cluster or component distribution models the records of the
l-th cluster.

– θl is the model parameters of density function of cluster l. In case of Gaussian
distribution, θl is the mean (µl) and covariance matrix (Σl).

The complete-data log-likelihood expression for this density from the data X
and Y is given by:

log(L(Θ|X,Y )) = log(P (X,Y |Θ)) =
N∑

i=1

log(P (xi|yi)P (y)) =
N∑

i=1

logWyip(xi|θyi) (8)

In this work a Gaussian distribution is used. The EM algorithm is used to deter-
mine the value of mean (µl), covariance matrix (Σl), and sampling probability
(Wl) for each cluster. The attribute set will affect the distribution of data and
lead to the different model parameters.

The algorithm is as follows,

1. E Step. For each object x ∈ D, compute the membership probability of x
in each cluster l = 1 · · ·k at iteration j:

p(yi|xi,µ
j ,Σj) =

W j
yi
.p(xi|µj

yi
, Σj

yi
)

p(xi|µj ,Σj)
(9)

2. M Step. Update mixture model parameters for each cluster l = 1, 2, · · · , k
that maximize the value of Q(Θ,Θ(j)):

W j+1
l =

1
N

∑
x∈D

pr(l|x) (10)

µj+1,l =
∑

x∈D x.pr(l|x)∑
x∈D pr(l|x)

(11)

Σj+1,l =
∑

x∈D pr(l|x)(x− µj+1,l)(x − µj+1,l)T∑
x∈D pr(l|x)

(12)

3. If |Lj−Lj+1| ≤ ε, stop. Else set j = j+1 and go to 1. Lj is the log likelihood
of the mixture model at iteration j,

Lj =
∑
x∈D

log(prj(x)) =
∑
x∈D

log(
k∑

l=1

W j
l .pr

j(x|µj
l , Σ

j
l )) (13)

4 Proposed Method

In the proposed method, each cluster represents a tolerance class. The tolerance
classes that are generated by the EM clustering algorithm for an object x are
defined as:

ClusP (x) = {Y ∈ U | x, and Y belongs to the same cluster} (14)
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4.1 Approximations and Dependency

In a similar way to the original RS theory, the lower and upper approximations
are then delineated as follow,

PX = {x ∈ U : ClusP (x) ⊆ X} (15)

PX = {x ∈ U : ClusP (x) ∩X 
= φ} (16)

Based on this, the positive region and dependency functions can respectively be
defined as follow,

POSP (D) =
⋃

x∈U/IND(D)

PX, (17)

γ́P (D) =
|POSP (D)|
|U | (18)

Following the above definitions, a feature selection algorithm can be constructed
that uses the tolerance-based degree of dependency, γP (D), to evaluate the signif-
icance of feature subsets. The proposed FS algorithm are presented in Figure 1.

EM-CLUSTERING-REDUCT(C, D).
Inputs :
C, the set of all conditional attributes;
D, the set of decision attributes;
Output :
R, the Reduct Set

(1) R = φ
(2) γ́best = 0
(3) do
(4) γ́tmp = γ́best

(5) T = R
(6) for x in (C −R)
(7) if γ́R∪{x}(D) > γ́T (D)
(8) T = R ∪ {x}
(9) γ́best = γ́T (D)
(10) R = T
(11) until γ́best == γ́tmp

(12) return R

Fig. 1. EM Clustering QuickReduct

4.2 An Illustrative Example

In this section, a simple example is used to demonstrate the procedure of the
proposed method (see Table 1). There are three continuous conditional attributes
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Table 1. Example Table

Object a b c q

1 -0.4 -0.3 -0.5 0

2 -0.4 0.2 -0.1 1

3 -0.3 -0.4 -0.3 0

4 0.3 -0.3 0 1

5 0.3 -0.3 0 1

6 0.2 0 0 0

and a crisp-valued class attribute in the dataset. In this example, the number of
clusters is set to 3.

The greedy algorithm starts with an empty reduct set. It checks each attribute
separately and chooses the attribute that has the highest dependency degree. In
this example the attribute c is chosen with the dependency degree of 0.33. Then
the attribute c is added to the reduct set.

U/clust{q} = {{1, 3, 6}, {2, 4, 5}}

U/clus{a} = {{3}, {4, 5, 6}, {1, 2}}

γ́a =
|{3}|

|{1, 2, 3, 4, 5, 6}| =
1
6

= 0.17

U/clust{b} = {{1, 3, 4, 5}, {6}, {2}}

γ́b =
|{2, 6}|

|{1, 2, 3, 4, 5, 6}| =
2
6

= 0.33

U/clust{c} = {{3}, {2, 4, 5, 6}, {1}}

γ́c =
|{1, 3}|

|{1, 2, 3, 4, 5, 6}| =
2
6

= 0.33

R← {c}

The hill climbing forward selection algorithm chooses other attributes in the
reduct set as follow,

U/clust{a,c} = {{1, 3}, {4, 5, 6}, {2}}

γ́a,c =
|{1, 2, 3}|

|{1, 2, 3, 4, 5, 6}| =
3
6

= 0.5

U/clust{b,c} = {{1, 3}, {4, 5}, {2, 6}}
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γ́b,c =
|{1, 2, 4, 5}|
|{1, 2, 3, 4, 5, 6}| =

4
6

= 0.67

R← {b, c}

U/clust{a,b,c} : {{1, 3}, {4, 5, 6}, {2}}

γ́a,b,c =
|{1, 2, 3}|

|{1, 2, 3, 4, 5, 6}| =
3
6

= 0.5

Finally, it returns {b, c} as the reduct set which has the same size as the reduct
set provided by the Fuzzy Rough Feature Selection (FRFS) and tolerance based
FS methods in [11].

5 Simulation Result

In order to evaluate the proposed method, we applied it to a number of real
datasets from the UCI repository [1] in Table 2. The EM clustering algorithm
from the Weka software [31] was chosen where the number of clusters was selected
empirically. The obtained reducts are evaluated via the accuracy of classification.
J48, JRIP, and PART classifier in the Weka [31] are chosen as the classifier
algorithms.

The obtained accuracies are compared with the accuracy of the FRFS and
Tolerance-based FS in [11]. In [12] the FRFS method is compared with other
FS methods (such as Relief-F, PCA, and entropy-based approaches) and has
been shown that the FRFS method outperformed them. Hence in this paper,
the proposed method is compared with only the FRFS and Tolerance-based FS.
Table 3 shows the average classification accuracy of 10-fold cross validation as a
percentage. The classification algorithms are performed on the original dataset
and reduced datasets were obtained by the feature selection algorithms, i.e., the
FRFS [11], the Tolerance-based FS [11], and the proposed method.

Table 2. Reduct Size For FRFS, Tolerance, and EM Clustering Methods

Dataset Objects Features Reduct Size

FRFSa Tol.b EMRSc

Glass 214 10 9 7 5

Heart 270 14 11 10 3

Ionosphere 230 35 11 10 5

Iris 150 5 5 4 4

Water2 390 39 11 8 3

Wine 178 14 10 8 8
a FRFS : Fuzzy Rough Set Feature Selection [11].
b Tol. : Tolerance-based Feature Selection [11].
c EMRS : The proposed method, i.e., Feature Selection

using the RS theory and EM algorithm
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Table 3. Classification Accuracies(%) For Unreduced, FRFS, Tolerance, and Cluster-
ing Methods

CAa J48 JRIP PART������Dataset
FSb

Originalc FRFSd Tol.e EMRSf Originalc FRFSd Tol.e EMRSf Originalc FRFSd Tol.e EMRSf

Glass 67.29 69.63 69.16 69.16 69.16 67.76 67.76 69.16 67.76 68.22 69.62 69.16

Heart 76.67 78.89 80.37 79.59 79.63 81.85 82.59 79.59 73.33 78.52 80.37 79.59

Ionosphere 87.83 91.30 87.39 88.32 86.96 86.52 86.96 86.61 88.26 91.30 86.52 90.03

Iris 96.00 96.00 96.00 96.00 95.33 95.33 94.67 95.33 94.00 94.00 95.33 95.33

Water2 83.33 80.26 81.79 81.77 81.03 80.51 82.31 81.57 85.64 82.56 81.28 82.34

Wine 94.38 92.14 94.94 94.94 91.57 90.45 94.38 92.7 93.82 93.82 94.38 94.38
a CA : Classification Algorithm.
b FS : Feature Selection Algorithm used for each Classification Algorithm.
c Original : Original dataset.
d FRFS : Fuzzy Rough Set Feature Selection [11].
e Tol. : Tolerance-based Feature Selection [11].

f EMRS : The proposed method, i.e., Feature Selection using the RS theory and EM algorithm

It is evident from Table 2 that the proposed method generated fewer features
compared with the two other FS methods. For the J48 classifier, the clustering
based FS improved the average accuracy of the unreduced datasets except for
the water2 dataset. The proposed method either unchanged or improved upon
the performance of the reduced datasets with the other two FS algorithms in
all but in the Ionosphere dataset. For the JRip classifier, the proposed method
maintained the average accuracy of the unreduced datasets in all. It either im-
proved or maintained the performance of the reduced dataset with the other two
FS algorithms in all but two cases. For PART, the proposed method improved
the average accuracy of unreduced datasets in all except the water2 dataset. It
has the same behavior as the other two FS methods.

Overall, the proposed algorithm produced a smaller number of attributes com-
pared to the other two FS algorithms and the average accuracy of classifiers is
improved or in a few instances remains unchanged. For example, in the water2
dataset the proposed method chose 3 features among 39 features whereas the
FRFS chose 10 and the Tolerance-based FS method chose 8 features. In addition,
the proposed method has a similar average accuracy compared with the other
two approaches.

6 Conclusion

In this work the EM clustering algorithm was applied to deal with the problem of
determining initial tolerant classes to obtain a significant classification accuracy.
Through some experiments, it was concluded that the proposed method gener-
ated a smaller size of feature sets in all datasets compared with the
FRFS [11] and tolerance-based FS methods [11]. Beside that, the proposed
method either improved or unchanged the average accuracy in all except a few
datasets. For future work, an improvement of searching algorithm for finding the
reduct set with the new definition of approximations is required. In Addition,
an evaluation of the proposed method through experimental comparisons with
the other methods in the literature is recommended.
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Appendix: EM Algorithm

Maximum Likelihood (ML) is a famous method for finding the model parameters
for complete data. In case of incomplete data, the EM algorithm can be used
for determining the parameters. Assume X is some observation data which is
incomplete, and Z = (X,Y ) be a complete data with the density function,

p(z|Θ) = p(x,y|Θ) = p(y|x, Θ)p(x|Θ) (19)

The complete data likelihood is defined as,

L(Θ|Z) = L(Θ|X,Y ) = p(X,Y |Θ). (20)
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The problem is to find Θ which makes the maximume likelihood for the com-
plete data. In this case the unknown-random variable Y leads to have a variable
likelihood. The EM algorithm is used for finding the parameters in 2 steps namely
Expectaion Step (E-step) and Maximization Step (M-step).

In the E-step, the expected value of log-likelihood of the complete data is
determined as follow,

Q(Θ,Θ(i−1)) = E[log(p(X,Y |Θ)|X,Θ(i−1))] =∫
y∈Υ

log p(X,y|Θ)f(y|X,Θ(i−1))dy (21)

where the notations are as follow,

X Observed-incomplete data and is constant.
Θ(i−1) Current estimation of the parameter Θ and is constant.
Y Unlnown-Random variable with a presumably governed

by an underlying distribution f(y|X,Θ(i−1)).
Θ Normal variable. The objective is to adjust Θ to obtain

the maximum likelihood for the complete data Z.
Then, the M-step is applied to determine the value of the Θ in the iteration i
that maximizes the expected value of log-likelihood of the complete data,

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)). (22)

The EM algorithm iterates both steps alternatively till converge.
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Abstract. As an emerging conceptual and computing paradigm of in-
formation processing, granular computing has received much attention
recently. Many models and methods of granular computing have been
proposed and studied. Among them was the granular computing model
using information tables. In this paper, we shall demonstrate the ap-
plication of this granular computing model for the study of a specific
data mining problem - outlier detection. Within the granular computing
model using information tables, this paper proposes a novel definition of
outliers - GrC (granular computing)-based outliers. An algorithm to find
such outliers is also given. And the effectiveness of GrC-based method for
outlier detection is demonstrated on three publicly available databases.

Keywords: Granular computing, outlier detection, rough sets, data
mining.

1 Introduction

L. A. Zadeh introduced the concept of granular computing in 1979 under the
name of information granularity [2]. And the term “granular computing” came
to life with a suggestion from T. Y. Lin in the discussion of BISC Special Inter-
est Group on Granular Computing [3]. Basic ingredients of granular computing
are granules such as subsets, classes, and clusters of a universe. Furthermore,
Andrzej Skowron, et al. introduced the discovery of information granules and
information granules in distributed environment [4-5]. D. Q. Miao, et al. pro-
posed an approach to web mining based on granular computing [6-9]. Specially,
Y. Y. Yao and N. Zhong proposed a granular computing model using informa-
tion tables [1, 10]. In an information table, each object of a finite nonempty
universe is described by a finite set of attributes. Based on attribute values of
objects, one may decompose the universe into parts called granules. Objects in
each granule share the same or similar description in terms of their attribute
values. Within this model, various methods for the construction, interpretation,
and representation of granules were examined. Although the model is simple, it
is powerful for the study of fundamental issues in granular computing, and has
many potential applications in data mining.

Data mining is an important issue in the development of data- and knowledge-
base systems. Usually, the tasks of data mining can be classified into four general

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 283–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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categories: (a) dependency detection, (b) class identification, (c) class descrip-
tion, and (d) outlier/exception detection [11]. In contrast to most tasks of data
mining, outlier detection aims to find small groups of data objects that are ex-
ceptional when compared with the rest large amount of data, in terms of certain
sets of properties. For many applications, such as fraud detection in E-commerce,
it is more interesting to find the rare events than to find the common ones, from
a data mining standpoint.

Outliers exist extensively in the real world. While there is no single, gener-
ally accepted, formal definition of an outlier, Hawkins’ definition captures the
spirit: an outlier is an observation that deviates so much from other observa-
tions as to arouse suspicions that it was generated by a different mechanism
[11-12].

With increasing awareness on outlier detection in literatures, more concrete
meanings of outliers are defined for solving problems in specific domains. But to
our best knowledge, there are few works about outlier detection in granular com-
puting community [14]. In this paper, we aim to exploit the granular computing
model using information tables proposed by Yao for outlier detection. The basic
idea is as follows. Given an information table S = (U,A, V, f), where U is a
non-empty finite set of objects, A a set of attributes, V the union of attribute
domains, and f : U × A → V a function such that for any x ∈ U and a ∈ A,
f(x, a) ∈ Va. In S, each attribute subset B ⊆ A determines an indiscernibility
relation IND(B) on U . IND(B) induces a partition of U , which is denoted
by U/IND(B), where each element from U/IND(B) is a granule (equivalence
class), and the element containing x ∈ U is called the granule containing x under
relation IND(B). For a given object x ∈ U and a set of indiscernibility relations
(available information/knowledge) on U , we can obtain a granule containing x
under each of these indiscernibility relations. Then through calculating the de-
gree of outlierness for each of these granules containing x, we can decide whether
object x behaves normally according to the given knowledge at hand. That is,
if the degrees of outlierness of the granules containing x under these indiscerni-
bility relations are always very high, then we may consider object x as a GrC
(granular computing)-based outlier in U wrt S. A GrC-based outlier in U wrt S
is an element such that the granules containing it always have a high degree of
outlierness in view of the given knowledge.

The paper is organized as follows. In the next section, we introduce some
preliminaries that are relevant to this paper. In section 3, based on the granular
computing model using information tables, we give the definition of GrC-based
outliers. An algorithm to find GrC-based outliers is also given. In section 4 we
give the experimental results. Section 5 concludes the paper.

2 Preliminaries

An information table is a quadruple S = (U,A, V, f), where:

1. U is a non-empty finite set of objects;
2. A is a non-empty finite set of attributes;
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3. V is the union of attribute domains, i.e., V =
⋃

a∈A Va, where Va denotes
the domain of attribute a;

4. f : U × A → V is an information function such that for any a ∈ A and
x ∈ U , f(x, a) ∈ Va.

In an information table S = (U,A, V, f), each subset B ⊆ A of attributes
determines a binary relation IND(B), called indiscernibility relation, defined as
IND(B) = {(x, y) ∈ U × U : ∀a ∈ B(f(x, a) = f(y, a))}.

For any two objects u1, u2 ∈ U , if (u1, u2) ∈ IND(B) then one cannot differ-
entiate u1 from u2 based solely on their values on attributes of B. We say that
u1 and u2 are indistinguishable. Since each indiscernibility class may be viewed
as a granule consisting of indistinguishable elements, u1 and u2 may be put into
the same granule.

Given any B ⊆ A, relation IND(B) induces a partition of U , which is denoted
by U/IND(B), where an element from U/IND(B) is called an equivalence class
or elementary set. Each equivalence class of relation IND(B) is a granule. The
equivalence class of IND(B) that contains object x ∈ U , written [x]B , is defined
by collecting all objects whose value on each attribute a ∈ B is the same as x’s
value:

[x]B = {y ∈ U : ∀a ∈ B(f(y, a) = f(x, a))} (1)

For every object x ∈ U , [x]B is called the granule containing x under relation
IND(B). When B is a singleton subset of A, the elements in U/IND(B) are
called elementary granules, as they are the smallest granules derivable. From the
elementary granules, large granules may be built by taking a union of a family
of elementary granules. One can build a hierarchy of granules [1].

3 GrC-Based Outlier Detection

3.1 Definitions

Given an information table S, we first define a granular outlier factor (GOF),
which can indicate the degree of outlierness for every granule in the granular
computing model using S [13]. Then we define an object outlier factor (OOF)
by virtue of GOF, which can indicate the degree of outlierness for every object.

Definition 1 (Distance Between Granules). Let S = (U,A, V, f) be an in-
formation table. Given any B ⊆ A, relation IND(B) induces a partition of U ,
which is denoted by G = U/IND(B), where each equivalence class of relation
IND(B) is a granule. For any two granules g1, g2 ∈ G, the distance between
granules g1 and g2 in S is defined as follows:

M(g1, g2) =

∑
p∈g1,q∈g2

δ(p, q)
|g1| × |g2|

(2)

where M : G ×G → [0,∞] is a distance function such that for any g1, g2 ∈ G,
M(g1, g2) denotes the distance between sets g1 and g2. And δ is a given distance
metric on U for nominal attributes.
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In the above definition, to calculate the distance between any two granules, we
consider the average distance between the objects in the analyzed two granules,
which is adopted in the average linkage algorithm of hierarchical clustering [15].

Definition 2 (Granular Outlier Factor). Let S = (U, A, V, f) be an infor-
mation table. Given any B ⊆ A, relation IND(B) induces a partition of U ,
which is denoted by G = U/IND(B), where each equivalence class of relation
IND(B) is a granule. For any granule g ∈ G, the granular outlier factor of g in
S is defined as follows:

GOF (g) =
|{g′ ∈ G : M(g, g′) > d}|

|G| (3)

where M(g, g′) denotes the distance between granules g1 and g2, d is a given
parameter, and |K| denotes the cardinality of set K.

Definition 3 (Object Outlier Factor). Let S = (U,A, V, f) be an informa-
tion table. For any x ∈ U , the object outlier factor of x in S is defined as

OOF (x) =

∑
a∈A

(GOF ([x]{a})×W{a}(x))

|A| (4)

where for every singleton subset {a} of A, W{a} : U → (0, 1] is a weight function

such that for any x ∈ U , W{a}(x) = 1 − |[x]{a}|
|U| . [x]{a} = {u ∈ U : f(u, a) =

f(x, a)} denotes the indiscernibility class of relation IND({a}) that contains
element x, i.e. the elementary granule containing x under relation IND({a}).
GOF ([x]{a}) denotes the granular outlier factor of granule [x]{a} and |K| denotes
the cardinality of set K.

In the above definition, we can see that in the granular computing model using
information table S, only those elementary granules are used to calculate the
object outlier factor. We do not consider other granules in the model.

Furthermore, the weight function W in the above definition expresses such an
idea that outlier detection always concerns the minority of objects in the data
set and the minority of objects are more likely to be outliers than the majority of
objects. Since from the above definition, we can see that the more the weight, the
more the object outlier factor, the minority of objects should have more weight
than the majority of objects. Therefore for every a ∈ A, if the elementary granule
containing x under relation IND({a}) is small with respect to other elementary
granules under relation IND({a}), then we consider x belonging to the minority
of objects in U , and assign a high weight to x.

Definition 4 (Granular Computing-based Outliers). Let S = (U,A, V, f)
be an information table. Let µ be a given threshold value, for any x ∈ U , if
OOF (x) > µ then x is called a granular computing (GrC)-based outlier in S,
where OOF (x) is the object outlier factor of x in S.
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3.2 Algorithm

In the worst case, the time complexity of algorithm 3.1 is O(m × n2), and its
space complexity is O(m× n2), where m and n are the cardinalities of A and U
respectively.

Algorithm 3.1

Input: information table S = (U,A, V, f), where |U | = n and |A| = m;
threshold value µ, d

Output: a set O of GrC-based outliers

(1) For any two objects u1, u2 ∈ U , calculate the distance between
them under a given distance metric on U , that is, δ(u1, u2);

(2) For every a ∈ A
(3) {
(4) Sort all objects from U according to a given order (e.g. the

lexicographical order) on domain Va of attribute a [16];
(5) Determine the partition U/IND({a});
(6) For any g1, g2 ∈ U/IND({a}), calculate the distance

M(g1, g2) =
�

p∈g1,q∈g2
δ(p,q)

|g1|×|g2|
(7) }
(8) For every x ∈ U
(9) {
(10) For every a ∈ A
(11) {
(12) Calculate the granular outlier factor of [x]{a} in S, i.e.

GOF ([x]{a}) = |{g′∈U/IND({a}): M([x]{a},g′)>d}|
|U/IND({a})| ;

(13) Assign weight W{a}(x) = 1− |[x]{a}|
|U| to x

(14) }
(15) Calculate OOF (x), the object outlier factor of object x in S;
(16) If OOF (x) > µ then O = O ∪ {x}
(17) }
(18) Return O.

4 Experimental Results

4.1 Experiment Design

In this section, following the experimental setup in [17], we use three real life
data sets (lymphography, annealing and cancer) to demonstrate the performance
of our algorithm against traditional distance-based method [11], FindCBLOF
algorithm [18] and KNN algorithm [19]. In addition, on the cancer data set, we
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add the results of RNN-based outlier detection method for comparison, these
results can be found in the work of Harkins et al. [20, 21].

For algorithm 3.1, in order to calculate the distance between any two gran-
ules, we should first calculate the distances between objects contained in these
granules under a given distance metric on U . In our experiment, we adopt the
overlap metric in rough set theory, which is defined as follows:

Definition 5. Given an information table S = (U,A, V, f), let x, y ∈ U be any
two objects between which we shall calculate the distance. The overlap metric in
rough set theory is defined as

∆(x, y) = |{a ∈ A : a(x) 
= a(y)}| (5)

where ∆ : U × U → [0,∞] is a function from U × U to the non-negative real
number, and |M | denotes the cardinality of set M .

And in algorithm 3.1, in order to calculate the granular outlier factor for a given
granule, we should specify a value for parameter d, we set d = |A| /2 in our
experiment, where |A| denotes the cardinality of attribute set A.

Furthermore, in our experiment, the two parameters needed by FindCBLOF
algorithm are set to 90% and 5 separately as done in [18]. And for the KNN
algorithm, the results were obtained by using the 4th nearest neighbor [19].

4.2 Lymphography Data

The first is the Lymphography data set, which can be found in the UCI machine
learning repository [22]. It contains 148 instances with 19 attributes (including
the class attribute). The 148 instances are partitioned into 4 classes: “normal
find” (1.35%), “metastases” (54.73%), “malign lymph” (41.22%) and “fibrosis”
(2.7%). Classes 1 and 4 are regarded as rare classes.

Aggarwal et. al. proposed a practicable way to test the effectiveness of an
outlier detection method [17, 23]. That is, we can run the outlier detection
method on a given data set and test the percentage of points which belonged
to one of the rare classes (Aggarwal considered those kinds of class labels which
occurred in less than 5% of the data set as rare labels [23]). Points belonged to
the rare class are considered as outliers. If the method works well, we expect
that such abnormal classes would be over-represented in the set of points found.

The experimental results are summarized in table 1.

Table 1. Experimental Results in Lymphography Data Set

Top Ratio
(Number

Number of Rare Class Included (Coverage)

of Objects) GrC DIS FindCBLOF KNN
5%(7) 6(100%) 5(83%) 4(67%) 5(83%)
6%(9) 6(100%) 6(100%) 4(67%) 5(83%)
8%(12) 6(100%) 6(100%) 4(67%) 6(100%)
20%(30) 6(100%) 6(100%) 6(100%) 6(100%)
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In table 1, “GrC”, “DIS”, “FindCBLOF”, “KNN” denote GrC-based, traditional
distance-based, FindCBLOF and KNN-based outlier detection methods, respec-
tively. For every objects in U , the degree of outlierness is calculated by using the
four outlier detection methods, respectively. For each outlier detection method,
the “Top Ratio (Number of Objects)” denotes the percentage (number) of the
objects selected from U whose degrees of outlierness calculated by the method
are higher than those of other objects in U . And if we use X ⊆ U to contain all
those objects selected from U , then the “Number of Rare Class Included” is the
number of objects in X that belong to one of the rare classes. The “Coverage”
is the ratio of the “Number of Rare Class Included” to the number of objects in
U that belong to one of the rare classes [17].

From table 1, we can see that for the lymphography data set, GrC-based
method performs best, since it can find all outliers in U when the Top Ratio
reaches 5%. The next one is distance-based method, which can find all outliers
in U when the Top Ratio reaches 6%. And the worst is FindCBLOF method,
since it can not achieve that goal until the Top Ratio reaches 20%.

Furthermore, for the lymphography data set, the false alarm rates (i.e., the per-
centage of objects in set X that are actually not outliers, where X is the set of the
top-n objects with highest degrees of outlierness calculated by the given method,
n is the number of outliers in U) of GrC-based, distance-based, FindCBLOF and
KNN-based method are 17%, 17%, 33% and 33%, respectively.

4.3 Annealing Data

The Annealing data set is found in the UCI machine learning repository [22]. The
data set contains 798 instances with 38 attributes. The data set contains a total
of 5 (non-empty) classes : class 1, 2, 3, 5 and U , where class 3 has 608 instances,
and the remained classes have 190 instance. Classes 1, 2, 5 and U are regarded
as rare classes since they are small in size. Since Annealing data set contains
6 continuous attributes, we respectively transform these continuous attributes
into categorical attributes by using the automatic discretization functionality
provided by the CBA software [24].

The experimental results are summarized in table 2.

Table 2. Experimental Results in Annealing Data Set

Top Ratio
(Number

Number of Rare Class Included (Coverage)

of Objects) GrC DIS FindCBLOF KNN
10%(80) 75(39%) 73(38%) 45(24%) 21(11%)
15%(105) 96(51%) 92(48%) 55(29%) 30(16%)
20%(140) 128(67%) 121(64%) 82(43%) 41(22%)
25%(175) 161(85%) 153(81%) 105(55%) 58(31%)
30%(209) 190(100%) 178(94%) 105(55%) 62(33%)
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Table 2 is similar to table 1. From table 2, we can see that for the Annealing
data set, GrC-based method performs the best among the four outlier detection
methods. In fact, the performances of GrC-based and distance-based methods
are very close, and they perform markedly better than the other two methods
— FindCBLOF and KNN-based methods.

Furthermore, for the Annealing data set, the false alarm rates of GrC-based,
distance-based, FindCBLOF and KNN-based method are 6%, 12%, 45% and
68%, respectively.

4.4 Wisconsin Breast Cancer Data

The Wisconsin breast cancer data set is found in the UCI machine learning
repository [22]. The data set contains 699 instances with 9 continuous attributes.
Here we follow the experimental technique of Harkins et al. by removing some
of the malignant instances to form a very unbalanced distribution [17, 20-21].
The resultant data set had 39 (8%) malignant instances and 444 (92%) benign
instances. Moreover, the 9 continuous attributes in the data set are transformed
into categorical attributes, respectively 1 [17].

The experimental results are summarized in table 3.

Table 3. Experimental Results in Wisconsin Breast Cancer Data Set

Top Ratio
(Number

Number of Rare Class Included (Coverage)

of Objects) GrC DIS FindCBLOF RNN KNN
1%(4) 4(10%) 4(10%) 4(10%) 3(8%) 4(10%)
2%(8) 7(18%) 5(13%) 7(18%) 6(15%) 7(18%)
4%(16) 14(36%) 11(28%) 14(36%) 11(28%) 13(33%)
6%(24) 21(54%) 18(46%) 21(54%) 18(46%) 20(51%)
8%(32) 28(72%) 24(62%) 27(69%) 25(64%) 27(69%)
10%(40) 32(82%) 29(74%) 32(82%) 30(77%) 32(82%)
12%(48) 37(95%) 36(92%) 35(90%) 35(90%) 38(97%)
14%(56) 39(100%) 39(100%) 38(97%) 36(92%) 39(100%)
16%(64) 39(100%) 39(100%) 39(100%) 36(92%) 39(100%)
18%(72) 39(100%) 39(100%) 39(100%) 38(97%) 39(100%)
20%(80) 39(100%) 39(100%) 39(100%) 38(97%) 39(100%)
28%(112) 39(100%) 39(100%) 39(100%) 39(100%) 39(100%)

From table 3, we can see that for the breast cancer data set, GrC-based
method performs the best among the five outlier detection methods, except
in the case when Top Ratio is 12%. In fact, the performances of GrC-based,
FindCBLOF and KNN-based methods are very close, and they perform markedly
better than the other two methods — RNN-based and distance-based methods.
1 The resultant data set is public available at:

http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/
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Furthermore, for the Wisconsin breast cancer data set, the false alarm rates of
GrC-based, distance-based, FindCBLOF, RNN-based and KNN-based method
are 18%, 26%, 21%, 23% and 18%, respectively.

5 Conclusion

Finding outliers is an important task for many data mining applications. In this
paper, we present a new method for outlier definition and outlier detection, which
exploits the granular computing model using information tables proposed by Yao
[1]. The main idea is that an object has more likelihood of being an outlier if the
granules containing it have a high degree of outlierness. Experimental results on
real data sets demonstrate the effectiveness of our method for outlier detection.
In the next work, we may consider to further reduce the time complexity of our
algorithm for finding GrC-based outliers.

Acknowledgements. This work is supported by the Natural Science Founda-
tion (Grant Nos. 60475019 and 60775036), and the Specialized Research Fund for
the Doctoral Program of Higher Education of China (Grant No. 20060247039)

References

1. Yao, Y.Y., Zhong, N.: Granular computing using information tables. In: Lin, T.Y.,
Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing,
pp. 102–124. Physica-Verlag (2002)

2. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Ragade, R.,
Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-
Holland, Amsterdam (1979)

3. Zadeh, L.A.: Some reflections on soft computing, granular computing and their
roles in the conception, design and utilization of information/intelligent systems.
Soft Computing 2(1), 23–25 (1998)

4. Skowron, A., Stepaniuk, J.: Towards discovery of information granules. In: Żytkow,
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Abstract. In order to obtain valuable knowledge from stored data on database 
systems, rule mining is considered as one of the usable mining method. How-
ever, almost current rule mining algorithms only use primary difference of a cri-
terion to select attribute-value pairs to obtain a rule set to a given dataset. In this 
paper, we implemented a rule generation method based on secondary differ-
ences of two criteria. Then, we performed a case study using UCI common 
datasets. With regarding to the result, we compared the accuracies of rule sets 
learned by our algorithm with that of three representative algorithms. 

1   Introduction 

In recent years, enormous amounts of data have been stored on information systems 
in natural science, social science, and business domains. People have been able to 
obtain valuable knowledge due to the development of information technology. Be-
side, data mining has been well known for utilizing data stored on database systems. 
In particular, if-then rules, which are produced by rule mining algorithms, are consid-
ered as one of the highly usable and readable outputs of data mining. 

Considering tradeoff of two criteria when selecting an attribute-value pair for a 
closure of rules, primary difference is so naïve to obtain an adequate volume of rules. 
Since such rule mining method searches attribute-value space1 exhaustibly [1], their 
outputs become enormous number of rules. 

Considering above mentioned issue, Tsumoto [2] proposed a search strategy to ob-
tain rules, which treat the tradeoff of accuracy and coverage using secondary differ-
ences. Therefore, we implemented the idea as a rule mining method. 

In this paper, we describe the difference between our proposed method and other 
representative rule mining method in Section 2. Then, the detail of our method is 
described in Section 3. In Section 4, we show a result of case study using an imple-
mentation of our method. Finally, we conclude this paper in Section 5. 

2   Related Work 

There are many conventional studies about rule learning algorithms, which are most 
popular learning algorithms in the machine learning field.  
                                                           
1 Maximum number of rules of dataset having n attribute-value pairs is 2n+1. 
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As rule mining algorithms, there are the following major approaches: separate-and-
conquer [3], methods based on divide-and-conquer, reinforcement learning. 

Their studies of separate-and-conquer algorithms, which are also called covering al-
gorithms, include many famous algorithms such as AQ family of algorithms [4] and 
Version Space (VS) [5]. C4.5Rule [6] is based on the decision tree learned with infor-
mation gain ratio called C4.5, which is classified as the divide-and-conquer approach. 

Although separate-and-conquer approach has been developed for decades, many 
new algorithms are developed introducing ideas from the other viewpoints such as 
APRIORI-C [7]. These algorithms share the following top-level loop: an algorithm 
searches for a rule that explains a part of its training instances, separates these exam-
ples, and recursively conquers the remaining examples by learning more rules until no 
examples remain. 

Focusing on the search strategy of rule learning algorithms, they use one simple 
criterion, such as precision as shown in VS and old AQ family of algorithms. Besides, 
to treat multiple criteria, other groups of algorithms use combined criterion such as 
strength of each rule and information gain as shown in Classifier Systems [8], ITRule 
[9], C4.5 Rule, and PART [10]. There is no algorithm handling two different criteria, 
because it is a hard work to treat the tradeoff between generality and specificity when 
an algorithm obtains each rule. APRIORI-C (or so-called predictive Apriori) can use 
two criteria to search rules from possible rule space. However, they do not treat the 
tradeoff, but searching the space exhaustively. 

3   A Rule Mining Method Using Secondary Differences 

Tsumoto proposed a rule generation algorithm using secondary differences of two 
different criteria, α  andκ , to generate rules holding both of high accuracy and high 
coverage2. The search space of the algorithm is shown in Figure 1(a) as the gray col-
ored region. Figure 1(b) shows the search space of exhaustive search. To similar, Fig-
ure 1(c) shows the search space of the algorithms, which don’t consider the tradeoff. 

Figure 2 shows the search strategies of our proposed algorithm. In this figure, 
)1,( +∆ iiα  and )1,( +∆ iiκ  are the primary differences of α  and κ . Also, 

)2,1,(2 ++∆ iiiα  and )21,1,(2 ++∆ iiκ  are the secondary differences of α  andκ . 

For each R, these differences are calculated the following equations to dataset D, 
where i means the length of the consequents of R. 

)()()1,( )()1( DDii iRiR ααα −=+∆ +  (1) 

)()()1,( )()1( DDii iRiR κκκ −=+∆ +  (2) 

)1,()2,1()2,1,(2 +∆−++∆=++∆ iiiiiii ααα  (3) 

)1,()2,1()2,1,(2 +∆−++∆=++∆ iiiiiii κκκ  (4) 

                                                           
2 Accuracy is also called precision or confidence. Coverage is also called recall. 
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Fig. 1. Search spaces (gray colored) of the three search strategy 
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Fig. 2. Search strategies of our rule learning algorithm using secondary differences 
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Fig. 3. An overview of the steps of the rule generation 
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The overview of the algorithm is shown in Figure 3. Using given two criteria and 
their lower threshold values, α  andκ , by a user, the algorithm firstly obtains the 
rules with one clause in their consequent. Then, another clause is added to these rules. 
The rules, which don’t satisfy the strategy-I in Figure 2, are pruned. The remaining 
rules are stored in to the rule set, and go to next step. In the next step, the rules are 
added another clause again. Then, the rules, which don’t satisfy the strategy-II, are 
pruned. Storing rules, which satisfy minα  and minκ , on each step, the algorithm iter-

ates these steps for each attribute )2,...,2,1( −= Aii 3 and class value. 

Figure 4 shows a pseudo code of the algorithm. 

Input: Dataset,Attributes=An-1+Class, Alphamin, Kappamin
Output: Ruleset

Begin:
for(class=0; class<ClassNum; class++){

for(i=0; i<n-1; i++){
inclementAntecedent(Ai, Ruleset, Cclass);
calculateAlpha(Dataset, Ruleset);
calculateKappa(Dataset, Ruleset);
selectRules(Ruleset, =>Alphamin);
selectRules(Ruleset, =>Kappamin);
for(j=i+1; j<n-1; j++){
inclementAntecedent(Aj, Ruleset, Cclass);
calculateAlpha(Dataset, Ruleset);
calculateKappa(Dataset, Ruleset);
selectDelta(Ruleset, Alpha,>0);
selectDelta(Ruleset, Kappa, min);
selectRules(Ruleset, =>Alphamin);
selectRules(Ruleset, =>Kappamin);
for(k=i+2; k<n-1; k++){

inclementAntecedent(Ak, Ruleset, Cclass);
calculateAlpha(Dataset, Ruleset);
calculateKappa(Dataset, Ruleset);
selectDelta2(Ruleset, Alpha, min);
selectDelta2(Ruleset, Kappa, >0);

selectRules(Ruleset, =>Alphamin);
selectRules(Ruleset, =>Kappamin);

}
}

}
}

End;  

Fig. 4. Pseudo code of the rule learning algorithm using secondary differences 

4   Experiment 

In this section, we describe about a case study of an implementation of the algorithm 
explained in Section 3. We implemented the algorithm in Java, combining a rule 
                                                           
3 A: Number of Attributes of a dataset D. 
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evaluation index calculation module called COIN [11]. Using the implementation, we 
generated rule sets to the five datasets from UCI Machine Learning Repository [12]. 
The numerical attributes in these datasets, we discretized each attributes into ten bins 
with equalized width. For example, the number of possible rules of iris, which has four 
numerical attributes, is 2(44+1). Then, the accuracies of the rule sets are compared with 
that of OneR [13], PART, and unpruned J4.8, which are implemented in Weka [14]. 

In this experiment, we specified precision and recall to search for rule sets. Preci-
sion shows the correct rate of the prediction of each rule as shown in Equation 5. In 
similar, recall shows the rate of correctly predicted instances in the dataset D for each 
class, as shown in Equation 6. 

PrecisionR = P(D|R) (5) 

RecallR=P(R|D) (6) 

Our rule learning method also needs lower thresholds, minα  and minκ . We set up these 

lower thresholds as 0.5Precisionmin =  and 3.0=minRecall in this experiment. 

Table 1 shows the averaged accuracies of each algorithm to the eight dataset. 
These accuracies are obtained with 100 times repeated 10-fold cross validation. The 
accuracy of the rule sets outperform their of OneR  on several datasets. 

Table 1. The average accuracies (%) of the four rule learning algorithms and standard 
deviations (SDs) of the accuracies 

Acc. SD Acc. SD Acc. SD Acc. SD

iris 68.5 17.0 96.0 4.7 94.8 5.5 96.0 4.7

balance-scale 75.1 3.6 57.7 3.5 76.3 4.7 64.5 4.6

glass 38.3 12.9 50.8 9.5 55.7 9.5 57.6 8.8

breast-cancer 73.8 7.7 67.1 5.9 69.7 7.1 73.9 5.6

diabetes 65.1 4.6 74.4 4.3 73.3 4.8 74.0 4.0

J4.8 (unpruned)
Dataset

Proposed Algorithm OneR PART

 

The disadvantage of the accuracies is caused by the two major reasons: lower 
threshold values and the confliction avoid strategy. The given lower threshold values 
were not optimized to obtain accurate rule sets. In addition, we avoid conflictions of 
rules using “better precision first”, when predicting the class for each test instance. The 
strategy should be selected an adequate one to predict test instances more correctly. 

5   Conclusion and Future Work 

In this paper, we described a rule mining algorithm using secondary difference of two 
criteria. The result of the case study in Section 4 shows that our proposed algorithm 
can obtain the rule sets with lower correct rates, comparing with the four representa-
tive rule learning algorithms. However, our algorithm can obtain a kind of valid rule 
sets from different point of view, considering that our method searches for different 
space of the given datasets. 
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In the future, we will evaluate usefulness of the proposed method with actual 
medical data, comparing with the other metrics. Then, we will also obtain rule sets 
with pairs of objective rule evaluation indices, which have different functional  
behaviors [15]. 
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Abstract. A rule in a Deterministic Information System (DIS) is
often defined by an implication τ such that both support(τ ) ≥ α and
accuracy(τ ) ≥ β hold for the threshold values α and β. In a Non-
deterministic Information System (NIS), there are derived DISs due
to the information incompleteness. The definition of a rule in a DIS is
extended to the lower and upper approximations of a rule in a NIS.
This definition explicitly handles non-deterministic information and in-
complete information. To implement the utility programs for two ap-
proximations, Apriori algorithm is extended. Even though the number
of derived DISs increases in exponential order, this extended algorithm
does not depend upon the number of derived DISs. A prototype system
is implemented, and this system is applied to some data sets.

Keywords: Rough sets, Non-deterministic information, Incomplete in-
formation, Rule generation, Lower and upper approximations, Apriori
algorithm.

1 Introduction

We follow rule generation in DISs [12,13,17], and we describe rule generation
in NISs. NISs were proposed by Pawlak [12], Or�lowska [10,11] and Lipski [7,8]
to handle information incompleteness in DISs, like null values, unknown values,
missing values. Since the emergence of incomplete information research, NISs
have been playing an important role.

The following shows some important research on rule generation from in-
complete information. In [7,8], Lipski showed a question-answering system be-
sides an axiomatization of logic. Or�lowska established rough set analysis for
non-deterministic information [10,11], and Grzymala-Busse developed a system
named LERS, which depends upon LEM1 and LEM2 algorithms [3,4]. Ste-
fanowski and Tsoukias also defined non symmetric similarity relations and val-
ued tolerance relations for analyzing incomplete information [18]. Kryszkiewicz

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 299–309, 2008.
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proposed a framework of rules in incomplete information systems [5,6]. Accord-
ing to authors’ knowledge, these are the most important research on incomplete
information. We have also focused on the semantic aspect for incomplete in-
formation [9], and proposed Rough Non-deterministic Information Analysis
(RNIA) [14].

In this paper, we continue the framework of rule generation inNISs [14,15,16],
and propose the lower and upper approximations of rules in NISs. Here, we
briefly survey the basic definitions in RNIA. A Deterministic Information Sys-
tem (DIS) is a quadruplet (OB,AT, {V ALA| A ∈ AT }, f). Let us consider two
sets CON ⊆ AT which we call condition attributes and DEC ⊆ AT which we
call decision attributes. An object x ∈ OB is consistent (with any distinct ob-
ject y ∈ OB), if f(x,A)=f(y,A) for every A ∈ CON implies f(x,A)=f(y,A)
for every A ∈ DEC.

A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT, {V ALA|A ∈ AT }, g), where g : OB ×AT → P (∪A∈ATV ALA) (a power set
of ∪A∈ATV ALA). Every set g(x,A) is interpreted as that there is an actual
value in this set but this value is not known. For a NIS=(OB,AT, {V ALA| A ∈
AT }, g) and a set ATR ⊆ AT , we name a DIS=(OB,ATR, {V ALA|A ∈ ATR},
h) satisfying h(x,A) ∈ g(x,A) a derived DIS (for ATR) from a NIS.

For a set ATR={A1, · · · , An} ⊆ AT and every x ∈ OB, let PT (x,ATR)
denote the Cartesian product g(x,A1)×· · ·×g(x,An). We name every element a
possible tuple (for ATR) of x. For ζ=(ζ1, · · ·, ζn) ∈ PT (x,ATR), let [ATR, ζ]
denote a formula

∧
1≤i≤n[Ai, ζi]. Let PI(x,CON,DEC) (x ∈ OB) denote a

set {[CON, ζ] ⇒ [DEC, η]|ζ ∈ PT (x,CON), η ∈ PT (x,DEC)}. We name an
element of PI(x,CON,DEC) a possible implication (from CON to DEC) of
x. If PI(x,CON,DEC) is a singleton set {τ}, we say τ (from x) is definite.
Otherwise, we say τ (from x) is indefinite.

2 An Example and Definitions

Let us consider Table 1. This is an exemplary NIS. In Table 1, every attribute
value is not a value but a set. We usually interpret an indefinite attribute value
as that ”the real attribute value is in this set, but the real value is uncertain”.

Table 1. A Table of NIS

OB Temperature Headache Nausea F lu

1 {high} {yes, no} {no} {yes}
2 {high, very high} {yes} {yes} {yes}
3 {normal, high, very high} {no} {no} {no}
4 {high} {yes} {yes, no} {yes}
5 {high} {yes, no} {yes} {no}
6 {normal} {yes} {yes, no} {no}
7 {normal} {no} {yes} {no}
8 {normal, high, very high} {yes} {yes, no} {yes}
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In our previous research, we named a possible case in a NIS a derived DIS
from aNIS, and extended several rough sets based concepts according to derived
DISs. In Table 1, there are 576 (26×32) derived DISs. For an implication τ , τx

denotes an implication from object x ∈ OB. For τ : [Nausea, no] ⇒ [Flu, yes],
τ1 appears in 576 derived DISs, and τ4 appears in 288 derived DISs.

Rules in a Deterministic Information System (DIS) are often defined by
a set (for given threshold values α and β) as follows:

Rule(α, β)={τ |τ is an implication, support(τ) ≥ α and accuracy(τ) ≥ β}.

We extend this definition to the lower and upper approximations of rules in
NISs as follows:

(1) DD(τx)={derived DIS|τx appears in DIS}.
(2) Lower approximation of a set of rules (from x) in a NIS:

Rule(x, α, β, LA)={τx|support(τx) ≥ α and accuracy(τx) ≥ β hold
for each derived DIS in DD(τx)}.

(3) Lower approximation of a set of rules in a NIS:
Rule(α, β, LA)=∪x∈OBRule(x, α, β, LA).

(4) Upper approximation of a set of rules (from x) in a NIS:
Rule(x, α, β, UA)={τx|support(τx) ≥ α and accuracy(τx) ≥ β hold

for some derived DISs in DD(τx)}.
(5) Upper approximation of a set of rules in a NIS:

Rule(α, β, UA)=∪x∈OBRule(x, α, β, UA).

In order to divide definite and indefinite implications in Rule(α, β, LA), we may
employ the following:

(6) Lower approximation of a set of definite rules in a NIS:
Rule(α, β, LA, def)={τ ∈ Rule(α, β, LA)|τ is definite},

(7) Lower approximation of a set of indefinite rules in a NIS:
Rule(α, β, LA, indef)={τ ∈ Rule(α, β, LA)|τ is indefinite},

Intuitively, every τ ∈ Rule(α, β, LA, def) is a possible implication, which is
not influenced by the information incompleteness at all. Similarly, every τ ∈
Rule(α, β, UA) is a possible implication, which satisfies the conditions in some
derived DISs. These two approximations depend upon the number of derived
DISs. It increases in exponential order. Therefore, a method depending upon
the number of derived DISs will not be applicable to large data sets.

3 Background of This Work

Now, we describe the background of this work. We have already found some
algorithms which do not depend upon the number of derived DISs [15,16]. The
most important definition is the following:
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For a descriptor [Ai, ζi] and a conjunction ∧i[Ai, ζi],
Descinf([Ai, ζi])={x ∈ OB| g(x,Ai)={ζi}}.
Descinf(∧i[Ai, ζi])=∩iDescinf([Ai, ζi]).
Descsup([Ai, ζi])={x ∈ OB| ζi ∈ g(x,Ai)}.
Descsup(∧i[Ai, ζi])=∩iDescsup([Ai, ζi]).

Descinf and Descsup are the minimum and the maximum sets for an equiva-
lence class, respectively. In Table 1, the following holds:

Descinf([Temperature, high])={1, 4, 5},
Descinf([Headach, yes]∧ [Nausea, yes])={2, 4, 6, 8}∩ {2, 5, 7}={2},
Descsup([Temperature, high])={1, 2, 3, 4, 5, 8},
Descsup([Headach, yes]∧ [Nausea, yes])={1, 2, 4, 5, 6, 8}∩ {2, 4, 5, 6, 7, 8}.

Result 1. [15,16] For each τx there is an algorithm, which does not depend
upon the size of DD(τx), to calculate the following:

minsupp(τx)=Minψ∈DD(τx){support(τx) in ψ},
maxsupp(τx)=Maxψ∈DD(τx){support(τx) in ψ},
minacc(τx)=Minψ∈DD(τx){accuracy(τx) in ψ},
maxacc(τx)=Maxψ∈DD(τx){accuracy(τx) in ψ}.

For example, If τx : [CON, ζ]⇒ [DEC, η] is definite,

minsupp(τx)=|Descinf([CON, ζ]) ∩Descinf([DEC, η])|/|OB|,
minacc(τx)= |Descinf([CON,ζ])∩Descinf([DEC,η])|

|Descinf([CON,ζ])|+|OUTACC| .

OUTACC=[Descsup([CON, ζ])−Descinf([CON, ζ])]−Descinf([DEC, η]).
(A sketch of this proof) The proof of minsupp(τx) is trivial, so we show
an overview of minacc(τx). The details are in [15,16]. Let NUME be the
amount of τ in a DIS, and DENO be the amount of condition part in τ . Then,
accuracy(τx) is a ratio NUME/DENO. Let us consider an object y (y 
= x)
satisfying τy ∈ PI(y, CON,DEC). If τy is definite, τy occurs in every derived
DISs. Therefore, this object y belongs to both NUME and DENO. On the
other hand, if τy is indefinite, this object y influences the value of accuracy(τx).
For an indefinite τy, there are three cases in the following:

(CASE 1) [CON, ζ] ⇒ [DEC, η′] ∈ PI(y, CON,DEC) (η′ 
= η),
(CASE 2) [CON, ζ′]⇒ [DEC, η] ∈ PI(y, CON,DEC) (ζ′ 
= ζ),
(CASE 3) [CON, ζ′]⇒ [DEC, η′] ∈ PI(y, CON,DEC) (η′ 
= η, ζ′ 
= ζ).

Furthermore, NUME/DENO ≤ (NUME +K)/(DENO+K) (K > 0) holds,
so the occurrence of τy causes to increase accuracy(τx). Therefore, for every
object y we do not select a possible implication τy. Instead of τy , we first
select a possible implication in (CASE 1). If (CASE 1) does not hold, we se-
lect a possible implication in (CASE 2). Every object y in (CASE 1) belongs
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to just DENO, and a set OUTACC defines such object y. Every object y
in (CASE 2) does not belong to NUME nor DENO. In this way, we ob-
tain the formula of minacc(τx). This selection of cases specifies the attribute
values in a NIS, therefore some derived DISs are also specified as a side ef-
fect. Because there is no indefinite τy in every specified DIS, the numerator of
support(τx) becomes |Descinf([CON, ζ]) ∩Descinf([DEC, η])|. In every spec-
ified DIS, support(τx) becomes minimum. Similarly, it is possible to derive
maxsupp(τx) and maxacc(τx), and we obtained the next result.

Result 2. [16] For each τx there is a derived DISworst, where both support(τx)
and accuracy(τx) are minimum. There is also a derived DISbest, where both
support(τx) and accuracy(τx) are maximum.

We call DISworst a derived DIS with the worst condition for τx. We also call
DISbest a derived DIS with the best condition for τx. In Table 2, two de-
rived DISs with the worst condition for τ1 : [Temperature, high] => [Flu, yes]
are shown. These two DISs are obtained as follows: Since [Temperature, ζ] ⇒

Table 2. For an implication τ 1 : [Temperature,high] => [F lu, yes] in Table 1, there
exist two derived DISs with the worst condition. The ∗ symbol shows the difference
of two DISs. Here, minsupp(τ 1)=0.25 and minacc(τ 1)=0.5 hold.

OB Temperature F lu

1 high yes

2 very high yes

3 high no

4 high yes

5 high no

6 normal no

7 normal no

8 normal∗ yes

OB Temperature F lu

1 high yes

2 very high yes

3 high no

4 high yes

5 high no

6 normal no

7 normal no

8 very high∗ yes

Table 3. For an implication τ 1 : [Temperature,high] => [F lu, yes] in Table 1, there
exist two derived DISs with the best condition. The ∗ symbol shows the difference of
two DISs. Here, maxsupp(τ 1)=0.5 and maxacc(τ 1)=0.8 hold.

OB Temperature F lu

1 high yes

2 high yes

3 normal∗ no

4 high yes

5 high no

6 normal no

7 normal no

8 high yes

OB Temperature F lu

1 high yes

2 high yes

3 very high∗ no

4 high yes

5 high no

6 normal no

7 normal no

8 high yes
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[Flu, η] is definite for objects 1,4,5,6 and 7, the attribute values of these objects
are fixed. Objects 2,3 and 8 influence the value of accuracy(τ1). In order to
reduce it, we select a possible implication [Temperature, high] ⇒ [Flu, no] in
(CASE 1), and the attribute values of object 3 are fixed to high and no. For
objects 2 and 8, we select a possible implication [Temperature, ζ] ⇒ [Flu, yes]
(ζ 
= high) in (CASE 2). In this way, two derived DISs with the worst condition
for τ1 are obtained. Generally, a DISworst may not be unique and a DISbest

may not be unique, either.

Proposition 1. The following holds.

(1) τ ∈ Rule(α, β, LA) holds, if and only if there is an implication τx such that
support(τx) ≥ α and accuracy(τx) ≥ β hold in a DISworst for τx.
(2) τ ∈ Rule(α, β, UA) holds, if and only if there is an implication τx such that
support(τx) ≥ α and accuracy(τx) ≥ β hold in a DISbest for τx.

4 Extended Apriori Algorithms and a Real Execution

We follow Apriori algorithm in transaction data [1,2], and extend it to algo-
rithms in NISs. Apriori algorithm employs a large item set, which corresponds
to an equivalence class for a descriptor. On the other hand, Algorithm 1 em-
ploys two classes, i.e., Descinf and Descsup. Due to Proposition 1 and the
manipulation of Descinf and Descsup, Algorithm 1 can pick up derived DISs
with the worst and the best conditions for τx and it calculates four values, i.e.,
minsupp(τx), minacc(τx), maxsupp(τx) and maxacc(τx). In this way, Algo-
rithm 1 handles non-deterministic information as well as deterministic informa-
tion. In Algorithm 1, it takes twice steps of Apriori algorithm for manipulating
Descinf and Descsup. Since the rest is the same, the complexity of Algorithm
1 is almost the same as Apriori algorithm.

The following shows a real execution about Table 1. Every program is im-
plemented in C on a Windows PC with Pentium 4 (3.2GHz). We first ap-
ply Microsoft Excel to make the following data set flu.csv in Table 1. For
handling indefinite attribute values, we employ a list notation, for example,
[high, very high].

high,"[yes,no]",no,yes /* table data */

"[high,very high]",yes,yes,yes

"[normal,high,very high]",no,no,no

high,yes,"[yes,no]",yes

high,"[yes,no]",yes,no

normal,yes,"[yes,no]",no

normal,no,yes,no

"[normal,high,very high]",yes,"[yes,no]",yes
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Algorithm 1. Extended Apriori Algorithm for Lower Approximation:
Rule(α, β, LA)
Input : A NIS, a decision attribute DEC, threshold value α and β.
Output: Every rule defined by Rule(α, β, LA).
for (every A ∈ AT ) do

Generate Descinf([A, ζ]) and Descsup([A, ζ]);
end
For the condition minsupp(τ )=|SET |/|OB| ≥ α, obtain the number NUM of

elements in SET ;
Generate a set CANDIDATE(1), which consists of descriptors [A, ζA]

satisfying either (CASE A) or (CASE B) in the following;
(CASE A) |Descinf([A, ζA])| ≥ NUM ,
(CASE B) |Descinf([A, ζA])| = (NUM − 1) and

(Descsup([A, ζA]) − Descinf([A, ζA])) �= {}.
Generate a set CANDIDATE(2) according to the following procedures;

(Proc 2-1) For every [A, ζA] and [DEC, ζDEC] (A �= DEC) in
CANDIDATE(1), generate a new descriptor [{A, DEC}, (ζA, ζDEC)];

(Proc 2-2) Examine condition (CASE A) and (CASE B) for each
[{A, DEC}, (ζA, ζDEC)] and each object x;
If either (CASE A) or (CASE B) holds and minacc(τx) ≥ β

display τx : [A, ζA] ⇒ [DEC, ζDEC] as a rule;
If either (CASE A) or (CASE B) holds and minacc(τx) < β,

add this descriptor to CANDIDATE(2);
Assign 2 to n;
while CANDIDATE(n) �= {} do

Generate CANDIDATE(n + 1) according to the following procedures;
(Proc 3-1) For DESC1 and DESC2 ([DEC, ζDEC] ∈ DESC1 ∩ DESC2 )

in CANDIDATE(n), generate a new descriptor by using a
conjunction of DESC1 ∧ DESC2;

(Proc 3-2) Examine the same procedure as (Proc 2-2).
Assign n + 1 to n;

end

Algorithm 2. Extended Apriori Algorithm for Upper Approximation:
Rule(α, β, UA)
Input : A NIS, a decision attribute DEC, threshold value α and β.
Output: Every rule defined by Rule(α, β, UA).
Algorithm 2 is proposed as Algorithm 1 with the following two revisions :

1. (CASE A) and (CASE B) in Algorithm 1 are replaced with (CASE C).
(CASE C) |Descsup([A, ζA])| ≥ NUM .

2. minacc(τx) in Algorithm 1 is replaced with maxacc(τx).

In order to reduce the manipulation of string data, we translate this data to
numerical data by using trans.exe. Then, we also make an attribute definition
file in the following. In rule generation, we adjust values in this file. Finally, we
execute nis apriori.exe command.
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========================================

Lower Approximation Strategy

========================================

CAN(1)=[Temperature,high],[Temperature,normal],[Headache,no],

[Headache,yes],[Nausea,no],[Nausea,yes],[Flu,no],[Flu,yes](8)

CAN(2)=[Temperature,normal][Flu,no](<DEF>0.667,<INDEF>0.750),

[Headache,no][Flu,no](<DEF>0.667,<INDEF>0.750),

[Nausea,yes][Flu,no](<DEF>0.400,<INDEF>0.500),

[Temperature,high][Flu,yes](<DEF>0.500,<INDEF>0.600),

[Headache,yes][Flu,yes](<DEF>0.600,<INDEF>0.667)(5)

========== OBTAINED RULE ==========

EXEC TIME=0.000(sec)

In the above execution, the constraint is minsupp(τ)=|SET |/|OB| ≥ 0.3.
Thus, |SET | ≥ 3 must hold. Therefore, we need to handle a descriptor [A, ζA]
satisfying either (CASE A) or (CASE B) in the following:

(CASE A) |Descinf([A, ζA])| ≥ 3,
(CASE B) |Descinf([A, ζA])|=2 and (Descsup([A, ζA]) − Descinf([A, ζA])) �= {}.

A definite descriptor can be obtained in (CASE A), and an indefinite descrip-
tor can be obtained in (CASE B). Like this, CAN(1) is generated. Then, for
descriptors [A, ζA], [Flu, ηFlu] ∈ CAN(1), if minsupp([A, ζA] ∧ [Flu, ηFlu]) ≥ 3,
minacc([A, ζA] ∧ [Flu, ηFlu]) is calculated according to Result 1. If this value is
more than 0.8, the conjunction is a rule. Otherwise, we add this conjunction to
CAN(2). Algorithm 1 continues this process until CAN(n)={}. The following
is a case of the upper approximation.

========================================

Upper Approximation Strategy

========================================

CAN(1)=[Temperature,high],[Temperature,normal],[Headache,no],

[Headache,yes],[Nausea,no],[Nausea,yes],[Flu,no],[Flu,yes](8)

CAN(2)=[Temperature,normal][Flu,no](<DEF>1.000,<INDEF>1.000),

[Headache,no][Flu,no](<DEF>1.000,<INDEF>1.000),

[Nausea,yes][Flu,no](<DEF>0.750,<INDEF>0.750),

[Temperature,high][Flu,yes](<DEF>0.800,<INDEF>0.800),

[Headache,yes][Flu,yes](<DEF>0.800,<INDEF>0.800)(5)

========== OBTAINED RULE ==========
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[Temperature,normal]=>[Flu,no]

maxsupp<DEF>=0.375,maxsupp<INDEF>=0.375,

maxacc<DEF>=1.000,maxacc<INDEF>=1.000

(<DEF>from 6,7) (<INDEF>from 3)

: : :

[Headache,yes]=>[Flu,yes]

maxsupp<DEF>=0.500,maxsupp<INDEF>=0.500,

maxacc<DEF>=0.800,maxacc<INDEF>=0.800

(<DEF>from 2,4,8) (<INDEF>from 1)

EXEC TIME=0.000(sec)

Now, we briefly show the application to Mammographic data in UCI Machine
Learning Repository [19]. This original data consists of 961 objects and 6 at-
tributes, i.e., BI-RADS assessment, Age, Shape, Margin, Density, Severity.
We obtained 150 objects from the top of the data. In this data, ? symbol is
marked for every 76 missing value. We replaced these ? symbols with a list of
possible values. There are 455 × 521 derived DISs for these 150 objects. Proba-
bly, it seems hard to enumerate all derived DISs sequentially. For this data, it
took 0.000(sec) for generating Rule(0.2, 0.5, LA) and Rule(0.2, 0.5, UA) in the
following:

Rule(0.2,0.5,LA,def)=Rule(0.2,0.5,LA)

= {[SHAPE,1]=>[SEVERITY,0], [SHAPE,2]=>[SEVERITY,0],

[MARGIN,1]=>[SEVERITY,0], [SHAPE,4]=>[SEVERITY,1]},
Rule(0.2,0.5,UA)-Rule(0.2,0.5,LA)

= {[DENSITY,3]=>[SEVERITY,0], [DENSITY,3]=>[SEVERITY,1]}.

If we employ a lower approximation strategy to this data, we may miss two im-
plications on DENSITY in Rule(0.2, 0.5, UA)−Rule(0.2, 0.5, LA). By chance,
these two implications are inconsistent, but this may occur in an upper approx-
imation strategy. Because nearly 33 percent of the 150 objects are ? => Any
in Table 4, and this percent is too large. Since NUME/DENO ≤ (NUME +
K)/(DENO+K) (K > 0) holds, τ3 in Table 4 is identified with τ1 in a DISbest

for τ1. Thus, maxacc(τ1)= (33+37)/(78+37)=0.608. As for τ2, τ4 is identified
with τ2, therefore maxacc(τ2)= (45+10)/(78+10)=0.625. This example shows a
characteristic aspect of an upper approximation strategy.

Table 4. Amount of each implication in 150 objects

Implication Amount Implication Amount

τ1 : [DENSITY, 3] => [SEV ERITY,0] 33 τ3 :? => [SEV ERITY,0] 37

τ2 : [DENSITY, 3] => [SEV ERITY,1] 45 τ4 :? => [SEV ERITY,1] 10

[DENSITY, 3] => Any 78 ? => Any 47
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5 Concluding Remarks

We defined lower and upper approximations of rules in NISs. We employed
Descinf , Descsup and the concept of large item set in Apriori algorithm, and
proposed two extended Apriori algorithms in NISs. The complexity of these
extended algorithms is almost the same as Apriori algorithm. Due to these util-
ity programs, we can explicitly handle not only deterministic information but
also non-deterministic information.
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Abstract. In this paper, we present a new fuzzy-rough nearest neigh-
bour (FRNN) classification algorithm, as an alternative to Sarkar’s fuzzy-
rough ownership function (FRNN-O) approach. By contrast to the latter,
our method uses the nearest neighbours to construct lower and upper
approximations of decision classes, and classifies test instances based on
their membership to these approximations. In the experimental analysis,
we evaluate our approach with both classical fuzzy-rough approxima-
tions (based on an implicator and a t-norm), as well as with the recently
introduced vaguely quantified rough sets. Preliminary results are very
good, and in general FRNN outperforms both FRNN-O, as well as the
traditional fuzzy nearest neighbour (FNN) algorithm.

1 Introduction

The K-nearest neighbour (KNN) algorithm [6] is a well-known classification
technique that assigns a test object to the decision class most common among
its K nearest neighbours, i.e., the K training objects that are closest to the
test object. An extension of the KNN algorithm to fuzzy set theory (FNN)
was introduced in [8]. It allows partial membership of an object to different
classes, and also takes into account the relative importance (closeness) of each
neighbour w.r.t. the test instance. However, as Sarkar correctly argued in [11],
the FNN algorithm has problems dealing adequately with insufficient knowledge.
In particular, when every training pattern is far removed from the test object,
and hence there are no suitable neighbours, the algorithm is still forced to make
clear-cut predictions. This is because the predicted membership degrees to the
various decision classes always need to sum up to 1.

To address this problem, Sarkar [11] introduced a so-called fuzzy-rough owner-
ship function that, when plugged into the conventional FNN algorithm, produces
class confidence values that do not necessarily sum up to 1. However, this method
(called FRNN-O throughout this paper) does not refer to the main ingredients of
rough set theory, i.e., lower and upper approximation. In this paper, therefore,
we present an alternative approach, which uses a test object’s nearest neigh-
bours to construct the lower and upper approximation of each decision class,
and then computes the membership of the test object to these approximations.
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The method is very flexible, as there are many options to define the fuzzy-rough
approximations, including the traditional implicator/t-norm based model [10],
as well as the vaguely quantified rough set (VQRS) model [3], which is more
robust in the presence of noisy data.

This paper is structured as follows. Section 2 provides necessary details for
fuzzy rough set theory, while Section 3 is concerned with the existing fuzzy (-
rough) NN approaches. Section 4 outlines our algorithm, while comparative ex-
perimentation on a series of crisp classification problems is provided in Section 5.
The paper is concluded in section 6.

2 Hybridization of Rough Sets and Fuzzy Sets

Rough set theory (RST) [9] provides a tool by which knowledge may be extracted
from a domain in a concise way; it is able to retain the information content whilst
reducing the amount of knowledge involved. Central to RST is the concept of
indiscernibility. Let (U,A) be an information system1, where U is a non-empty
set of finite objects (the universe of discourse) and A is a non-empty finite set
of attributes such that a : U → Va for every a ∈ A. Va is the set of values
that attribute a may take. With any B ⊆ A there is an associated equivalence
relation RB:

RB = {(x, y) ∈ U2|∀a ∈ B, a(x) = a(y)} (1)

If (x, y) ∈ RB, then x and y are indiscernible by attributes from B. The equiv-
alence classes of the B-indiscernibility relation are denoted [x]B . Let A ⊆ U. A
can be approximated using the information contained within B by constructing
the B-lower and B-upper approximations of A:

RB↓A = {x ∈ U | [x]B ⊆ A} (2)
RB↑A = {x ∈ U | [x]B ∩A 
= ∅} (3)

The tuple 〈RB↓A,RB↑A〉 is called a rough set.
The process described above can only operate effectively with datasets con-

taining discrete values. As most datasets contain real-valued attributes, it is
necessary to perform a discretization step beforehand. A more intuitive and
flexible approach, however, is to model the approximate equality between ob-
jects with continuous attribute values by means of a fuzzy relation R in U, i.e.,
a U→ [0, 1] mapping that assigns to each couple of objects their degree of simi-
larity. In general, it is assumed that R is at least a fuzzy tolerance relation, that
is, R(x, x) = 1 and R(x, y) = R(y, x) for x and y in U. Given y in U, its foreset
Ry is defined by Ry(x) = R(x, y) for every x in U.

Given a fuzzy tolerance relation R and a fuzzy set A in U, the lower and
upper approximation of A by R can be constructed in several ways. A general
definition [4,10] is the following:

1 In the classification problems considered further on in this paper, A = C∪{d}, where
C represents the set of conditional attributes, and d is the decision or class attribute.
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(R↓A)(x) = inf
y∈U

I(R(x, y), A(y)) (4)

(R↑A)(x) = sup
y∈U

T (R(x, y), A(y)) (5)

Here, I is an implicator2 and T a t-norm3. When A is a crisp (classical) set and
R is an equivalence relation in U, the traditional lower and upper approximation
are recovered.

Just like their crisp counterparts, formulas (4) and (5) (henceforth called the
FRS approximations) are quite sensitive to noisy values. That is, a change in
a single object can result in drastic changes to the approximations (due to the
use of sup and inf, which generalize the existential and universal quantifier,
respectively). In the context of classification tasks, this behaviour may affect
accuracy adversely. Therefore, in [3], the concept of vaguely quantified rough sets
(VQRS) was introduced. It uses the linguistic quantifiers “most” and “some”,
as opposed to the traditionally used crisp quantifiers “all” and “at least one”, to
decide to what extent an object belongs to the lower and upper approximation.
Given a couple (Qu, Ql) of fuzzy quantifiers4 that model “most” and “some”,
the lower and upper approximation of A by R are defined by

(R↓A)(y) = Qu

(
|Ry ∩A|
|Ry|

)
= Qu

⎛
⎝

∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

⎞
⎠ (6)

(R↑A)(y) = Ql

(
|Ry ∩A|
|Ry|

)
= Ql

⎛
⎝

∑
x∈X

min(R(x, y), A(x))∑
x∈X

R(x, y)

⎞
⎠ (7)

where the fuzzy set intersection is defined by the min t-norm and the fuzzy set
cardinality by the sigma-count operation. As an important difference to (4) and
(5), the VQRS approximations do not extend the classical rough set approxi-
mations, in a sense that when A and R are crisp, R↓A and R↑A may still be
fuzzy.

3 Fuzzy Nearest Neighbour Classification

The fuzzy K-nearest neighbour (FNN) algorithm [8] was introduced to classify
test objects based on their similarity to a given number K of neighbours (among
the training objects), and these neighbours’ membership degrees to (crisp or

2 An implicator I is a [0, 1]2 → [0, 1] mapping that is decreasing in its first and
increasing in its second argument, satisfying I(0, 0) = I(0, 1) = I(1, 1) = 1 and
I(1, 0) = 0.

3 A t-norm T is an increasing, commutative, associative [0, 1]2 → [0, 1] mapping sat-
isfying T (x, 1) = x for x in [0, 1].

4 By a fuzzy quantifier, we mean an increasing [0, 1] → [0, 1] mapping such that
Q(0) = 0 and Q(1) = 1.
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fuzzy) class labels. For the purposes of FNN, the extent C(y) to which an un-
classified object y belongs to a class C is computed as:

C(y) =
∑
x∈N

R(x, y)C(x) (8)

where N is the set of object y’s K nearest neighbours, and R(x, y) is the [0,1]-
valued similarity of x and y. In the traditional approach, this is defined in the
following way:

R(x, y) =
||y − x||−2/(m−1)∑

j∈N

||y − j||−2/(m−1)
(9)

where || · || denotes the Euclidean norm, and m is a parameter that controls
the overall weighting of the similarity. Assuming crisp classes, Figure 1 shows
an application of the FNN algorithm that classifies a test object y to the class
with the highest resulting membership. The complexity of this algorithm for the
classification of one test pattern is O(|U|+K · |C|).

FNN(U,C,y,K).
U, the training data; C, the set of decision classes;
y, the object to be classified; K, the number of nearest neighbours.

(1) N ← getNearestNeighbours(y,K);
(2) ∀C ∈ C
(3) C(y) =

∑
x∈N

R(x, y)C(x)
(4) output arg max

C∈C
(C(y))

Fig. 1. The fuzzy KNN algorithm

Initial attempts to combine the FNN algorithm with concepts from fuzzy
rough set theory were presented in [11,12]. In these papers, a fuzzy-rough own-
ership function is constructed that attempts to handle both “fuzzy uncertainty”
(caused by overlapping classes) and “rough uncertainty” (caused by insufficient
knowledge, i.e., attributes, about the objects). The fuzzy-rough ownership func-
tion τC of class C was defined as, for an object y,

τC(y) =

∑
x∈U

R(x, y)C(x)

|U| (10)

In this, the fuzzy relation R is determined by:

R(x, y) = exp

(
−

∑
a∈C

κa(a(y)− a(x))2/(m−1)

)
(11)

where m controls the weighting of the similarity (as in FNN) and κa is a para-
meter that decides the bandwidth of the membership, defined as
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κa =
|U|

2
∑
x∈U

||a(y)− a(x)||2/(m−1)
(12)

τC(y) is interpreted as the confidence with which y can be classified to class C.
The corresponding crisp classification algorithm, called FRNN-O in this paper,
can be seen in Figure 2. Initially, the parameter κa is calculated for each attribute
and all memberships of decision classes for test object y are set to 0. Next,
the weighted distance of y from all objects in the universe is computed and
used to update the class memberships of y via equation (10). Finally, when
all training objects have been considered, the algorithm outputs the class with
highest membership. The algorithm’s complexity is O(|C||U|+ |U| · (|C|+ |C|)).

By contrast to the FNN algorithm, the fuzzy-rough ownership function con-
siders all training objects rather than a limited set of neighbours, and hence
no decision is required as to the number of neighbours to consider. The rea-
soning behind this is that very distant training objects will not influence the
outcome (as opposed to the case of FNN). For comparison purposes, the K-
nearest neighbours version of this algorithm is obtained by replacing line (3)
with N ← getNearestNeighbours(y,K).

FRNN-O(U,C,C,y).
U, the training data; C, the set of conditional features;
C, the set of decision classes; y, the object to be classified.

(1) ∀a ∈ C
(2) κa = |U|/2

∑
x∈U

||a(y) − a(x)||2/(m−1)

(3) N ← |U|
(4) ∀C ∈ C, τC(y) = 0
(5) ∀x ∈ N
(6) d =

∑
a∈C

κa(a(y) − a(x))2

(7) ∀C ∈ C
(8) τC(y)+ = C(x)·exp(−d1/(m−1))

|N|
(9) output arg max

C∈C
τC(y)

Fig. 2. The fuzzy-rough ownership nearest neighbour algorithm

It should be noted that the algorithm does not use fuzzy lower or upper
approximations to determine class membership. A very preliminary attempt to
do so was described in [1]. However, the authors did not state how to use the
upper and lower approximations to derive classifications.

4 Fuzzy-Rough Nearest Neighbour (FRNN) Algorithm

Figure 3 outlines our proposed algorithm, combining fuzzy-rough approximations
with the ideas of the classical FNN approach. In what follows, FRNN-FRS and
FRNN-VQRS denote instances of the algorithm where traditional, and VQRS,
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approximations are used, respectively. The rationale behind the algorithm is that
the lower and the upper approximation of a decision class, calculated by means
of the nearest neighbours of a test object y, provide good clues to predict the
membership of the test object to that class.

In particular, if (R↓C)(y) is high, it reflects that all (most) of y’s neighbours
belong to C, while a high value of (R↑C)(y) means that at least one (some)
neighbour(s) belong(s) to that class, depending on whether the FRS or VQRS
approximations are used. A classification will always be determined for y due to
the initialisation of µ1(y) and µ2(y) to zero in line (2). To perform crisp classi-
fication, the algorithm outputs the decision class with the resulting best fuzzy
lower and upper approximation memberships, seen in line (4) of the algorithm.
This is only one way of utilising the information in the fuzzy lower and upper
approximations to determine class membership, other ways are possible (such as
combining them into a single measure) but are not investigated in this paper.
The complexity of the algorithm is O(|C| · (2|U|)).

FRNN(U,C,y).
U, the training data; C, the set of decision classes;
y, the object to be classified.

(1) N ← getNearestNeighbors(y,K)
(2) µ1(y) ← 0, µ2(y) ← 0, Class ← ∅
(3) ∀C ∈ C
(4) if ((R↓C)(y) ≥ µ1(y) && (R↑C)(y) ≥ µ2(y))
(5) Class ← C
(6) µ1(y) ← (R↓C)(y), µ2(y) ← (R↑C)(y)
(7) output Class

Fig. 3. The fuzzy-rough nearest neighbour algorithm

When using FRNN-FRS, the use of K is not required in principle: as R(x, y)
gets smaller, x tends to have only have a minor influence on (R↓C)(y) and
(R↑C)(y). For FRNN-VQRS, this may generally not be true, because R(x, y)
appears in the numerator as well as the denominator of (6) and (7).

Furthermore, the algorithm is dependent on the choice of the fuzzy toler-
ance relation R A general way of constructing R is as follows: given the set of
conditional attributes C, R is defined by

R(x, y) = min
a∈C

Ra(x, y) (13)

in which Ra(x, y) is the degree to which objects x and y are similar for attribute
a. Possible options include

R1
a(x, y) = exp

(
− (a(x)− a(y))2

2σa
2

)
(14)

R2
a(x, y) = 1− |a(x) − a(y)|

|amax − amin|
(15)
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where σa
2 is the variance of attribute a, and amax and amin are the maximal and

minimal occurring value of that attribute.

5 Experimentation

This section presents the initial experimental evaluation of the classification
methods FNN, FRNN-O, FRNN-FRS and FRNN-VQRS for the task of pattern
classification, over nine benchmark datasets from [2] and [11]. The details of the
datasets used can be found in table 1. All of them have a crisp decision attribute.

Table 1. Dataset details

Dataset Objects Attributes

Cleveland 297 14
Glass 214 10
Heart 270 14

Ionosphere 230 35
Letter-dgoq 3114 17

Olitos 120 26
Water 2 390 39
Water 3 390 39

Wine 178 14

5.1 Experimental Setup

K is initialized as |U|, the number of objects in the training dataset and then
decremented by 1/30th of |U| each time, resulting in 30 experiments for each
dataset. For each choice of parameter K, 2× 10-fold cross-validation is per-
formed. For FNN and FRNN-O, m is set to 2. For the new approaches, the
fuzzy relation given in equation (15) was chosen. In the FRNN-FRS approach,
we used the min t-norm and the Kleene-Dienes implicator I defined by I(x, y) =
max(1−x, y). The FRNN-VQRS approach was implemented usingQl = Q(0.1,0.6)

and Qu = Q(0.2,1.0), according to the general formula

Q(α,β)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ α
2(x−α)2

(β−α)2 , α ≤ x ≤ α+β
2

1− 2(x−β)2

(β−α)2 ,
α+β

2 ≤ x ≤ β

1, β ≤ x

5.2 Comparative Investigation

The results of the experiments are shown in Figure 4. Several interesting observa-
tions can be made from them. First, for all but one dataset (letter-dgoq, which
was used in [11]), either FRNN-FRS or FRNN-VQRS yields the best results.
Overall, FRNN-FRS produces the most consistent results. This is particularly
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Fig. 4. Classification accuracy for the four methods and different values of K
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remarkable considering the inherent simplicity of the method. FRNN-VQRS is
best for cleveland and heart, which might be attributed to the comparative
presence of noise in those datasets, but it performs rather disappointing for a
number of other datasets (glass, letter-dgoq, wine, olitos).

It is also interesting to consider the influence of the number of nearest neigh-
bours. Both FRNN-FRS and FRNN-O remain relatively unaffected by changes
in K. This could be explained in that, for FRNN-FRS, an infimum and supre-
mum are used which can be thought of as a worst case and best case respectively.
When more neighbours are considered, R(x, y) values decrease as these neigh-
bours are less similar, hence I(R(x, y), C(x)) increases, and T (R(x, y), C(x))
decreases. In other words, the more distant a neighbour is, the more unlikely
it is to change the infimum and supremum value. For FRNN-O, again R(x, y)
decreases when more neighbours are added, and hence the value R(x, y)C(x)
that is added to the numerator is also small. Since each neighbour has the same
weight in the denominator, the ratios stay approximately the same when adding
new neighbours.

For FNN and FRNN-VQRS, increasing K can have a significant effect on clas-
sification accuracy. This is most clearly observed in the results for the olitos
data, where there is a clear downward trend. For FRNN-VQRS, the ratio |Ry ∩
C|/|Ry| has to be calculated. Each neighbour has a different weight in the de-
nominator, so the ratios can fluctuate considerably even when adding distant
neighbours.

6 Conclusion and Future Work

This paper has presented two new techniques for fuzzy-rough classification based
on the use of lower and upper approximations w.r.t. fuzzy tolerance relations.
The difference between them is in the definition of the approximations: while
FRNN-FRS uses “traditional” operations based on a t-norm and an implicator,
FRNN-VQRS uses a fuzzy quantifier-based approach. The results show that
these methods are effective, and that they are competitive with existing methods
such as the fuzzy K-nearest neighbour and the fuzzy-rough ownership function
approach. Further investigation, however, is still needed, to adequately explain
the impact of the choice of fuzzy relations, connectives and quantifiers.

Also, the impact of a feature selection preprocessing step upon classification
accuracy needs to be investigated. It is expected that feature selectors that in-
corporate fuzzy relations expressing closeness of objects (see e.g. [5,7]) should be
able to further improve the effectiveness of the classification methods presented
here.

Finally, an important challenge is to adapt the algorithms so that they can
deal with continuous decision attributes. In this case, we need to predict the
membership of a test object to different, possibly overlapping classes. Such a
prediction can be based on the test object’s membership degrees to the lower
and/or upper approximation (e.g., on the average of these two values).
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Abstract. We discuss the notion of risk in generally understood classification
support systems. We propose a method for approximating the loss function and
introduce a technique for assessing the empirical risk from experimental data.
We discuss the general methodology and possible directions of development in
the area of constructing compound classification schemes.

Keywords: risk assessment, loss function, granularity, approximation, neigh-
bourhood, empirical risk.

1 Introduction

While constructing a decision support (classification) system for research purposes we
usually rely on commonly used, convenient quality measures, such as success ratio (ac-
curacy) on test set, coverage (support) and versatility of the classifier. While sufficient
for the purposes of analysing classification methods in terms of their technical abilities,
these measures sometimes fail to fit into a bigger picture.

In practical decision support applications the classifier is usually just a sprocket in
a larger machine. The decision whether to construct and then use such system is taken
by the user on the basis of his confidence in relative “safety” of his computer-supported
decision. This confidence is closely related to the users’ assessment of the risk involved
in making the decision.

The overall topics of risk assessment, risk management and decision making in pres-
ence of risk constitute a separate field of science. The ubiquity of decision-making
processes that involve risk is making risk assessment a crucial element in areas such as
economy, investment, medicine, engineering and many others. Numerous approaches
have been developed so far, and vast literature dedicated to these issues exist (see
[1,2,3]). The topic or risk assessment and management is a topic of research in many
fields of science, ranging from philosophy to seismology. In this article we restrict our-
selves to a much narrower topic of calculating (assessing) the risk associated with the
use of classifier in a decision-making process.

We focus on one commonly used method for calculating a risk of (using) a classifier,
which is known from the basics of statistical learning theory [4]. In this approach the
risk is measured as a summarised chance for creating a loss due to classifier’s error.
More formally, the risk is equal to the total loss (integral) over the probabilistic distrib-
ution of data. Loss is expressed in terms of a specialised function which compares the
answer of classifier with the desired one and returns the numerical value corresponding

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 320–328, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to the amount of “damage” resulting from misclassification. Such a measure of risk is
to a large extent intuitive in many situations. It is by no means the only scheme used by
humans to judge the risk, but a popular one. It is quite common to make assessment of
the involved risk by hypothesising the situations in which the gain/loss can be generated
in our system, and then weighting them by the likelihood of their occurrence.

We investigate the possibilities for approximating the risk in a situation when the
standard numerical, statistical learning methods cannot be applied to full extent. The
real-life data is not always (verifiably) representative, large enough or sufficiently com-
pliant with assumptions of underlying analytical model. Also, the information we posses
about the amount of loss and its probabilistic distribution may be expressed in granular
rather than crisp, numerical way. Nevertheless, we would like to be able to provide ap-
proximate assessment of risk associated with a classification method. For this purpose
we put forward some ideas regarding the approximate construction of two crucial com-
ponents in measuring risk i.e., the loss function and the summarisation method needed
to estimate overall risk from the empirical, sample-dependant one.

This article is intended to pose some questions and provide suggestions in which
direction we may search for answers, rather than deliver ready to use technical solu-
tions. The paper starts with more formal introduction of risk functional, as known from
statistical learning theory. Then, we discuss the possible sources of problems with such
definition and suggest some directions, in particular an outline for a loss function ap-
proximation method. We also extend the discussion to the issue of finding the proper
summarisation procedure for measuring the value of empirical risk functional. We con-
clude by pointing out several possible directions for further investigation.

2 Risk in Statistical Learning Theory

In the classical statistical learning approach, represented by seminal works of Vapnik
[4,5], the risk associated with a classification method (classifier) α is defined as a func-
tional (integral) of the loss function Lα calculated over an entire space with respect to
probability distribution.

To put it more formally, let X∞ be the complete (hypothetical) universe of objects
from which we are drawing our finite sample X ⊂ X∞. In the analytical model of
risk we are assuming that a probability distribution P is defined for entire σ-field of
measurable subsets of X∞.

Definition 1. The risk value for a classifier α is defined as:

R(α) =
∫

X∞
LαdP

where Lα = L(x, fα(x)) is the real-valued loss function defined for every point x ∈
X∞ where the classifier α returns the value fα(x).

The classical definition of risk, as presented above, is heavily dependant on assump-
tions regarding the underlying analytical model of the space of discourse. While over
the years several methods have been developed within the area of statistical learning in
pursuit of practical means for calculating risk, there are still some important shortcom-
ings in this approach. Some of them are:
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1. Sensitivity to scarceness of the data sample. In real life experiments we may be
very far from complete knowledge of our data universe. The sample we are given
may be tiny in comparison with the range of possible outcomes.

2. Incomplete definition of loss function. We expect that L(y, fα(x)) is integrable
wherever fα takes value. Unfortunately, in practice all we are given is the set of
points from the graph of Lα. From these few points we have to extend (approxi-
mate) the function Lα.

3. Incomplete knowledge of the distribution, which is closely related to the point 1
above. Even with large data sample X we may not be certain about its representa-
tiveness.

There are also several advantages of the classical risk functional definition. Thanks
to solid mathematical grounding it is possible to provide answers with provable quality.
As long as we can assure sufficient compliance to assumptions of the underlying sta-
tistical methodology the task of estimating the risk is equivalent to solving a numerical
optimisation problem. For a given classifier α we search for the solution to:

lim
l−→∞

Pr
{
z ∈ (X∞)l : |R(α)−Remp(α)| > ε

}
= 0

where z is a data sample of size l, probability Pr is calculated according to distribution
P (see Def. 1), ε ≥ 0, and Remp(α) is the empirical risk measured for the classifier α
on (labelled) sample z. The empirical risk is usually measured as an average over values
of loss function. For a labelled sample z of length l

Remp(α) =
∑l

i=1 L(x, fα(x))
l

.

It is visible, that the ability to calculate value of loss Lα, i.e., to compare the answer of
classifier with the desired one is the key element in empirical risk assessment.

3 Approximation of Loss Function and Its Integral

The formal postulates regarding the loss function may be hard to meet, or even verify
in practical situations. Nevertheless, we would like to be able to asses the loss. In this
section we suggest a method for approximating the loss function from the available,
finite sample. In the process we will consider the influence of granularity on our ability
to make valid approximations of loss function.

First, we will attempt to deal with the situation when the value of loss functionLα for
a classifier α is given as a set of positive real values defined for data points from a finite
sample z. Let z ∈ (X∞)l be a sample consisting of l data points, by R+ we denote the
set of non-negative reals (including 0). A function L̂α : z �→ R+ is called a sample of
loss function Lα : X∞ �→ R+ if Lα is an extension of L̂α. For any Z ⊆ X∞×R+ we
introduce two projection sets as follows:

π1(Z) = {x ∈ X∞ : ∃y ∈ R+ (x, y) ∈ Z},

π2(Z) = {y ∈ R+ : ∃x ∈ X∞ (x, y) ∈ Z}.
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We assume that we are also given a family C of neighbourhoods, i.e, non-empty,
measurable subsets ofX∞×R+. These neighbourhoods shall be defined for a particular
application.

Under the assumptions presented above the lower approximation of L̂α relative to C
is defined by

CL̂α =
⋃
{c ∈ C : L̂α(π1(c) ∩ z) ⊆ π2(c)}. (1)

Note, that the definition of lower approximation given by (1) is different from the tradi-
tional one, known from rough set theory [6,7]

One can define the upper approximation of f relative to C by

CL̂α =
⋃
{c ∈ C : L̂α(π1(c) ∩ z) ∩ π2(c) 
= ∅}. (2)

An illustration of the upper and lower approximations of a function given by a finite
sample if provided in Fig.1.

Fig. 1. Loss function approximation (neighbourhoods marked by solid lines belong to the lower
approximation and with dashed lines - to the upper approximation)

Example 1. We present an illustrative example of a function L̂α : z �→ R+ approx-
imation in a simple situation where z = {1, 2, 4, 5, 7, 8} is a sequence of l = 6 real
numbers. Let L̂α(1) = 3, L̂α(2) = 2, L̂α(4) = 2, L̂α(5) = 5, L̂α(7) = 5, L̂α(8) = 2.

We consider a neighbourhood consisting of three indiscernibility classes C1 = [0, 3]
× [1.5, 4], C2 = [3, 6]× [1.7, 4.5] and C3 = [6, 9]× [3, 4].

We compute projections of indiscernibility classes: π1(C1) = [0, 3], π2(C1) =
[1.5, 4], π1(C2) = [3, 6], π2(C2) = [1.7, 4.5], π1(C3) = [6, 9] and π2(C3) = [3, 4].

Hence, we obtain L̂α(π1(C1)∩X) = L̂α({1, 2}) = {2, 3} ⊆ π2(C1), L̂α(π1(C2)∩
X) = L̂α({4, 5}) = {2, 5} � π2(C2) but L̂α(π1(C2) ∩ X) ∩ π2(C2) = {2, 5} ∩
[1.7, 4.5] 
= ∅, L̂α(π1(C3) ∩X) = ∅.
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As a result, we get the lower approximation CL̂α = C1 and the upper approximation
CL̂α = C1 ∪ C2.

For the moment we have defined the approximation of loss function as a pair of sets
created from the elements of neighbourhood family C. From this approximation we
would like to obtain an estimation of risk. For that purpose we need to define summari-
sation (integration) method that will return a value analogous tothe one in Def. 1. We
will define an integration functional that is based on the idea of probabilistic version of
Lebesgue-Stieltjes integral [4,?].

In order to define our integral we need to make some additional assumptions. For
the universe X∞ we assume that µ is a measure on a Borel σ-field of subsets of X∞

and that µ(X∞) < ∞. By µ0 we denote a measure on a σ-field of subsets of R+.
We will also assume that C is a family of non-empty subsets of X∞ × R+ that are
measurable relative to the product measure µ̄ = µ × µ0. Finally, we assume that the
value of loss function is bounded by some positive real B. Please, note that none of the
above assumptions is unrealistic, and that in practical applications we are dealing with
finite universes.

For the upper bound B we split the range [0, B] ⊂ R+ into m > 0 intervals of equal
length I1, . . . , Im, where Ii = [ (i−1)B

m , iB
m ]. This is a simplification of the most general

definition, where the intervals do not have to be equal. For every interval Ii we consider
the sub-family Ci ⊂ C of neighbourhoods such that

Ci =
{
c ∈ C : ∀x ∈ (z ∩ π1(c)) L̂α(x) >

(i− 1)B
m

}
.

With the previous notation the estimate for empirical risk functional is given by:

Remp(α) =
m∑

i=1

B

m
µ

( ⋃
c∈Ci

π1(c)

)
(3)

subject to limitation with m → ∞. The parameter m in practical situation does not
have to go to infinity. It is sufficient to find m such that for every pair of points x1 
= x2

taken from sample z if L̂α(x1) < L̂α(x2) then for some integer i ≤ m we have
L̂α(x1) < iB

m < L̂α(x2).
The notions of function approximations and risk functional that we have introduced

are heavily dependant on the data sample z and decomposition of our domain into
family of neighbourhoods C. It is not yet visible, how the ideas we present may help in
construction of better decision support (classification) systems. In the following section
we discuss these matters in some detail.

4 Classifiers, Neighbourhoods and Granulation

Insofar we have introduced the approximation of loss and the measure of risk. To show
the potential use of these entities, we intend to investigate the process of creation and
evaluation (scoring) of classifier-driven decision support system as a whole.
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The crucial component in all our definitions is the family of non-empty sets (neigh-
bourhoods) C. We have to know this family before we can approximate loss or esti-
mate empirical risk. In practical situations the family of neighbourhoods have to be
constructed in close correlation with classifier construction. It is quite common, es-
pecially for rough set approaches, to define these sets constructively by semantics of
some formulas. An example of such formula could be the conditional part of decision
rule or a template (in the sense of [9,10]). Usually the construction of proper neigh-
bourhoods is a complicated search and optimisation task. The notions of approximation
and empirical risk that we have introduced may be used to express requirements for this
search/optimisation. For the purpose of making valid, low-risk decision by means of
classifier α we would expect the family C to possess the following qualities:

1. Precision. In order to have really meaningful assessment of risk as well as good
idea about the loss function we would like the elements of neighbourhood family
to to be relative large in terms of universeX∞, but at the same time having possibly
low variation. These requirements translate to expectation that for the whole fam-
ily C we want to minimise the boundary region in loss approximation, i.e., achieve
possibly the lowest value of µ̄(CL̂α \ CL̂α). The minimisation of boundary region
shall be constrained by requirements regarding the “shape” of elements of C. We
should try to find such a family C that for c ∈ C the value of µ(π1(c)) is relatively
large while the value of µ0(π2(c)) is relatively small. The neigbourhoods that ful-
fill these requirement correspond to ability of characterising large portions of the
domain X∞ as being relatively uniform in terms of the value of loss function. The
low variation of loss function on any given neighbourhood can be understood as
equivalent to the requirement that this neighbourhood is well contained in a gran-
ule defined by application of the classifier α.

2. Relevance. This requirement is closely connected withe previous one (precision).
While attempting to precisely dissect the domain into neighbourhoods we have to
keep under control the relative quality (relevance) of neighbourhoods with respect
to the data sample z. We are only interested in the neighbourhoods that contain suf-
ficient number of elements of z. The actual threshold for this number is obviously
dependant on the particular application and data set we are dealing with. It should
be noted that without such threshold we are likely to produce neighbourhoods that
are irrelevant to the data sample, hence potentially harmful for classifier learning
process and risk assessment. The threshold for relevance of a neighbourhood is a
subject to optimisation as well. If the threshold is too high, the resulting granularity
of domain is to coarse and we are unable to make precise classification. On the
other hand, if the threshold is too low and the resulting neighbourhoods contain
too few elements from data sample, we may face the effect that is an equivalent of
overfitting in classical classification systems.

3. Coverage and adaptability. One of the motivations that steer the process of creat-
ing the family of neighbourhoods and the classifier is the expectation regarding its
ability to generalise and adapt the solution established on the basis of finite sam-
ple to a possibly large portion of the data domain. In terms of neighbourhoods it
can be expressed as the requirement for minimisation of µ(X∞\

⋃
c∈C π1(c)). This
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minimisation has to be constrained by requirements expressed in points 1 and 2
above (precision and relevance). It shall also, to largest possible extent, provide
for adaptability of our solution to classification problem. The adaptability require-
ment is understood as expectation that in the presence of newly collected data point
the quality of loss approximation will not decrease dramatically as well as quality
of our empirical risk assessment. In other words, the domain shall be covered by
neighbourhoods in such a way that they are complaint with the expected behav-
iour of classifier on yet unseen examples. In terms of granulation of the domain
we expect that the creation of neighbourhoods and learning of classifiers will be
performed in some kind of feedback loop, that will make it possible to achieve
possibly the highest compliance between the two. This requirement is formulated
quite vaguely and obviously hard to turn into numerical optimisation criterion. It
is, nevertheless, a crucial one, as we expect the system we are creating to be able
to cater limited extensions of data sample with only small adjustments, definitely
without the need for fundamental reconstruction of the entire system (classifier,
neighbourhoods and loss function).

As discussed in points 1–3 above, the task of finding a family of neighbourhoods can
be viewed as a multi-dimensional optimisation on meta-level. It is in par with the kind
of procedure that has to be employed in construction of systems based on the granular
computing paradigm [11,10].

The idea of granularity, impreciseness and limited expressiveness may surface in
other places within the process of constructing the classifier, approximating the loss and
assessing empirical risk. So far we have followed the assumption made at the beginning
of Section 2, that the values of loss function are given as non-negative real numbers. In
real application we may face the situation when the value of loss is given to us in less
precise form. One such example is the loss function expressed in relative, qualitative
terms. If the value of loss is given to us by the human expert, he/she may be unable to
present us with precise, numerical values due to, e.g., imprecise or incompletely define
nature of problem in discourse. We may then be confronted with situation when the loss
is expressed in qualitative terms such as “big”,“negligible”, “prohibitive”,“acceptable”.
Moreover, the value of loss may be expressed in relative terms, by reference to other,
equally imprecise notions such as “greater than previous case” or ”on the border be-
tween large and prohibitive”. Such imprecise description of the loss function may in
turn force us to introduce another training loop into our system, one that will learn
how to convert the imprecise notions we have into concrete, numerical values of loss
function. As a result, we may expect the final classification system to be compound,
multi-stage and possibly hierarchical one.

Yet another axis for possible discussion and extensions of ideas presented in previous
sections is associated with the choice of methodology for summation (integration). In
order to introduce definition of risk measure (3) we have assumed that the the universe
and corresponding sets are measurable in conventional sense. In other words, for finite
samples we are dealing with, we have assumed that we ma rely on additivity of mea-
sure, and that the summation (integral) in our universe is a proper linear functional. That
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assumption may be challenged, as currently many authors (see [12]) bring examples
that in several application domains we cannot easily make assumptions about linearity
and sub-additivity of the mathematical structure of the universe. This is in particular the
case of risk assessment. In complicated systems involving risk it may be necessary to
perform a complex analysis that will lead to discovery of the actual properties of the
domain. It is likely that such investigation will entail utilisation of expert’s knowledge
and domain theory/knowledge in addition to mathematical, analytic tools. The method-
ologies for proper utilisation of domain knowledge and experiences of human experts
pose challenge that may be far greater and more general than the task of empirical risk
assessment in classification systems we are dealing with in this paper.

5 Summary and Conclusion

In this paper we have discussed the issues that accompany the assessment of risk in
classification systems on the basis of the finite set of examples. We have pointed out
some sources of possible problems and outlined some directions, in which we may
search for solutions that match our expectations sufficiently well.

In conclusion, we would like to go back to the more general issue of weighting the
risk involved in computer-supported decision making. As we have mentioned in the in-
troduction to this paper, in the real-life situations the human user may display various
patterns in his/her risk assessment and aversion. In particular, even with a well estab-
lished mathematical model that measures the risk in a given situation, we are frequently
forced to change it as new information arrives. This is a natural phenomenon that we
have to take into account in design of our solutions from the very beginning. In human
terms, we can talk of evolution of the concept of risk in a given system as time passes
and new information arrives. Humans may wish to change the way of perceiving the
risk if they are able to use more information, form new experiences and make more
informed judgement. In terms of computer-aided decision making the inflow of new in-
formation contributes to changes in parameters of the model. The challenge is to devise
such a model that is flexible and far-fetching enough to be able to adjust for even signif-
icant changes resulting from changes generated by inflow of new information. It would
be unrealistic to expect that it would be possible to devise and explicitly formulate a
model, that would possess the extensibility as well as adaptability, and at the same time
applicable in many different situations. It is much more likely that in practical situation
we may need to learn (or estimate) not only the parameters, but the general laws gov-
erning its dynamics, at the same time attempting preserve its flexibility and ability to
adapt for new cases.
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Abstract. Business aviation has been popular in the United States, Eu-
rope, and South America, however, top economies in East Asia, including
Japan, Korea, and Taiwan, have been more conservative and lag behind
in the development of business aviation. In this paper, we hope to dis-
cover possible trends and needs of business aviation for supporting the
government to make decision in anticipation of eventual deregulation in
the near future. We adopt knowledge-discovery tools based on rough set
to analyze the potential for business aviation through an empirical study.
Although our empirical study uses data from Taiwan, we are optimistic
that our proposed method can be similarly applied in other countries to
help governments there make decisions about a deregulated market.

Keywords: Rough set theory, Information system, Decision rule, Busi-
ness aviation, Data mining, Decision making.

1 Introduction

General aviation includes all aircrafts not flown by the airlines or the military,
and business aviation is a segment of general aviation that consists of companies
and individuals using aircrafts as tools in the conduct of their business. The
largest market for business aviation is in North America, with Europe second in
size. And this is not without reason. The U.S. government actively encourages
and promotes the development of aviation. It invests a great deal of resources
on the research of general aviation transportation and the establishment of the
Advanced General Aviation Transport Experiments (AGATE) in 1994. Like-
wise, the British government offers special Customs, Immigration, Quarantine,
Security (CIQS) to speed up immigration and customs procedures for business
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aviation passengers. It has also invested and constructed a Jet Center in 2002
that offers expedited passport control for business aviation passengers. But un-
like most Western countries, business aviation has remained largely undeveloped
in East Asian countries for three reasons: (1) lack of landing slots, parking spaces,
and facilities at existing airports to support business aviation; (2) excessive reg-
ulations regarding the use of airports, pilot qualifications, and maintenance of
aircrafts; (3) lack of understanding for the benefits and commercial value of busi-
ness aviation. In Taiwan, since the completion of the second expressway and the
new high-speed rail, it is expected that some airport capacity to become avail-
able for the development of business aviation. In addition, as more and more
Taiwanese companies become multinational corporations, there should be sub-
stantial growth in demand for business aviation. The purpose of this study is to
answer some pertinent questions in anticipation of deregulation in the business
aviation industry in Taiwan. Specifically, we would like to address the third rea-
son listed above, which is the lack of understanding for the economic benefits
of business aviation, especially by the policymakers and the regulators. Is there
a demand for business air travel in Taiwan? If so, which industries want to use
business aviation? In addition, what are the most important criteria for business
executives regarding business aviation? To find out the answer to these ques-
tions, we use the rough set approach to analyze the results from questionnaires
given to Taiwanese companies on the subject of business aviation.

Rough Set Theory (RST) introduced by Pawlak in 1982 [7] is a knowledge-
discovery tool that can be used to help induce logical patterns hidden in massive
data. This knowledge can then be presented to the decision-maker as convenient
decision rules. Its strength lies in its ability to deal with imperfect data and to clas-
sify, and its applications have grown in recent years. The rough set approach has
already been applied with success in many applications, including data mining [6],
business failure prediction [2,4], evaluation of bankruptcy risk [12], activity-based
travel modeling [13], etc. However, RST has not been widely used in analyzing the
airline industry, or for that matter, business aviation. Therefore, this study adopts
RST to analyze above purposes, and the results demonstrate that the rough set
approach is well suited for analyzing the market potential for business aviation
and the needs of business aviation customers prior to the industry’s deregulation.
Likewise, the rough set approach can also be used to analyze the underlying mar-
ket demand in any industry slated for deregulation.

The remainder of this paper is organized as follows: In Section 2, we present the
basic concepts of RST. In Section 3, an empirical study is done using the rough
set approach, and the results are presented and discussed. Section 4 concludes.

2 Basics of Rough Set Theory

The Rough Set Theory was first introduced by Pawlak in 1982 [7,8]. RST has
been used by many researchers, and the theory has had a long list of achievements
[10]. This section reviews the basic concepts of rough sets.
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2.1 Information System and Approximations

RST is founded on the assumption that every object of the universe of dis-
course is associated with some information (data, knowledge). An information
system/table can be represented as S=(U, A, V, f), where U is the universe
(a finite set of objects), A is a finite set of attributes (features, variables),
V = ∪

a∈A
Va, where Va is the set of values for each attribute a (called the do-

main of attribute a), and f : U × A → V is an information function such that
f(x, a) ∈ Va, for all x ∈ U and a ∈ A. Let B ⊆ A,and x, y ∈ U. We say x
and y are indiscernible by the set of attributes B in S iff f(x, b) = f(y, b) for
every b ∈ B. Thus every B ⊆ A generates a binary relation on U , called B
indiscernibility relation, denoted by IB .

In RST, the accuracy and the quality of approximations are very important in
extracting decision rules. Let B ⊆ A and X ⊆ U . The lower approximation of X
in S byB, denoted by BX , and the upper approximation of X in S byB, denoted
by BX are defined as: BX = {x ∈ U |IB[x] ⊆ X}andBX = {x ∈ U |IB[x] ∩X 
=
φ} where the equivalence class of x in relation IB is represented as IB [x]. The
boundary of X in S by B, is defined as BNB(X) = BX − BX. An accuracy
measure of the set X in S by B ⊆ A is defined as:

αB(X) = card(BX)/card(BX),

where card(·) is the cardinality of a set. Let F = {X1, X2, · · · , Xn} be a classi-
fication of U , i.e., Xi ∩ Xj = φ, ∀i, j ≤ n, i 
= j and

n
∪

i=1
Xi = U , Xi are called

classes of F . The lower and upper approximations of F by B ⊆ A are defined as:
BF = {BX1, BX2, · · · , BXn} and BF = {BX1, BX2, · · · , BXn}, respectively.
The quality of approximation of classification F by the set B of attributes, or in

short, quality of classification F is defined as:γB(F ) =
n∑

i=1

card(BXi)/card(U). It

expresses the ratio of all B-correctly classified objects to all objects in the system.

2.2 Reductions and Core

An important issue in RST is about attribute reduction, which is performed
in such a way that the reduced set of attributes B,B ⊆ A, provides the same
quality of classification γB(F ) as the original set of attributes A. A minimal
subset C ⊆ B ⊆ A such that γB(F ) = γC(F ) is called a F -reduct of B and is
denoted by REDF (B). A reduct is a minimal subset of attributes that has the
same classification ability as the whole set of attributes. Attributes that do not
belong to a reduct are superfluous in terms of classification of elements of the
universe. The core is the common part of all reducts. For example, COREF (B)
is called the F -core of B, if COREF (B) = ∩REDF (B).

2.3 Decision Rules

An information table A = C ∪D can be seen as a decision table, where C and
D are condition and decision attributes, respectively, and C ∩ D = ∅. The set
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of decision attributes D induces an indiscernibility relation ID that is indepen-
dent of the conditional attributes C; objects with the same decision values are
grouped together as decision elementary sets (decision classes). The reducts of
the condition attribute set will preserve the relevant relationship between con-
dition attributes and decision classes. And this relationship can be expressed by
a decision rule.

A decision rule in S is expressed as Φ → Ψ , read if Φ then Ψ(a logical
statement). Φ and Ψ are referred to as conditions and decisions of the rule,
respectively. In data mining, we usually take into account relevant confirmation
measures and apply them within RST to data analysis. They are presented
as follows [8]. The strength of the decision rule Φ → Ψ in S is expressed as:
σs(Φ, Ψ) = supps(Φ, Ψ)/card(U),where supps(Φ, Ψ) = card(‖Φ ∧ Ψ‖s) is called
the support of the rule Φ → Ψ in S and card(U) is the cardinality of U. With
every decision rule Φ → Ψ we associate a coverage factor/covering ratio (CR)
defined as: covs(Φ, Ψ) = supps(Φ, Ψ)/card(‖Ψ‖s).

CR is interpreted as the frequency of objects having the property Φ in the set
of objects having the property Ψ.The strength of the decision rule can simply be
expressed as the ratio - the number of facts that can be classified by the decision
rule divided by the number of facts in the data table. Both CR and the strength
of the decision rule are used to estimate the quality of the decision rules. They
play an essential role for a decision-maker in considering which decision rule
to use.

2.4 Flow Graphs

The study of flow graphs is not new [1, 5]. In this work, we use the approach
introduced by Pawlak [8, 9]. The basic idea is that each branch of a flow graph
is interpreted as a decision rule and the entire flow graph describes a decision
algorithm. In flow graphs, the Bayesian factors, namely, support, strength, cer-
tainty, and coverage factors, associated with each decision rule as defined in
previous Section 2.3 are formulated in terms of throughflows. More precisely, a
flow graph is a directed acyclic finite graph G = (V , E, w), where V is a set
of nodes, E ⊆ V× V , is a set of directed branches, and w: E → R+ is a flow
function where R+ is the set of non-negative real numbers. The throughflow of
a branch (x, y) in E is denoted by w(x, y). For each branch (x, y) in E, x is an
input of y and y is an output of x. For x in V , let I(x) denote the set of all inputs
of x and O(x) be the set of all outputs of x. The inputs and outputs of a graph
G are defined by I(G) = {x in V |I(x) is empty} and O(G) = {x in V |O(x) is
empty}. For every node x in G, inflow(x) is the sum of throughflows from all its
input nodes, and outflow(x) is the sum of throughflows from x to all its output
nodes. The inflow and outflow of the whole flow graph can be defined similarly.
It is assumed that for any node x in a flow graph, inflow(x) = outflow(x) =
throughflow(x). This is also true for the entire flow graph G.

Every branch (x, y) of a flow graph G is associated with the certainty (cer)
and coverage (cov) factors defined as: cer(x, y) = σ(x, y)/σ(x) and cov(x,
y) = σ(x, y)/σ(y), where σ(x, y) = w(x, y)/w(G), σ(x) = w(x)/w(G), and
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σ(y) = w(y)/w(G) are normalized throughflows, which are also called strength
of a branch or a node, and we have σ(x) 
= 0, σ(y) 
= 0, and 0 ≤ σ(x, y) ≤ 1.
Properties of the coefficients and the certainty, coverage, and strength of paths
and connections were defined and studied in Pawlak [8, 9].

3 An Empirical Case for Classifying the Business
Aviation Prediction

This study adopts two stages for the rough set approach. Each stage focuses on
the problem of classifying data sets into classes, and each stage follows the same
analytical procedure: (1) Calculate the approximation; (2) Find the reductions
and the core attributes; (3) Create the decision rules; (4) Arrange rules into a
decision flow graph as the final decision algorithm induced from data. We use
an example in business aviation to illustrate the strength of rough set approach.
The results are used to identify and predict the willingness of companies to use
business aviation; they can also be used to propose improved attributes levels
through plans to satisfy customers’ needs by the government agencies or airline
companies. The background of the empirical study, the statement of problem,
and the experimental setup are discussed below.

3.1 Background and the Statement of Problem

Taiwan’s business aviation sector has not yet been deregulated. But with Tai-
wan’s multinational businesses having production facilities strewn all over Asia,
there is a clear demand for business aviation. Our research aims to find out the
underlying demand for business aviation if the industry were to be deregulated
in the future. We will use the rough set approach to analyze the demand for
business aviation and make suggestions for government agencies to start making
plans for a deregulated future today.

3.2 Experimental Setup

In order to investigate the possibility of utilizing business aviation in the future,
we randomly select 200 companies from the top 500 corporations in Taiwan
(according to the annual ranking by a notable business magazine in Taiwan) as
our survey subjects and mail out a questionnaire to these selected companies.
The content of the questionnaire, the criteria or attribute about business aviation
that we are interested in, is based on a research report done by Taiwan’s Civil
Aeronautics Administration (Research Program of CAA in 2004). Of the 88
questionnaires returned, 76 of them are qualified replies. Among the 76 replies,
2 (2.6%) companies said that they would definitely use business aviation when
business aviation becomes available, 40 (52.6%) companies said that they are
considering the possibility of using business aviation, and 34 (44.7%) companies
said they would not use business aviation. In order to operate multiple-choice
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question value and to improve the classification rate, the value class has been
redefined by the Research Program of CAA in 2004.

Our analysis includes two stages based on the rough set approach. The first
stage is to find out the market potential for business aviation. The companies’
basic attributes and their present experiences of flying are stated as conditional
attributes and the classification is defined as a decision attribute (D1). The de-
cision classes are Definitely yes, Considering the possibility, and No. The second
stage is to understand the factors elaborated by companies in considering the use
of business aviation. These factors are the six condition attributes. They include:
(B1) the purpose of utilizing business aviation; (B2) the estimated flying trips
in a year; (B3) what special services are needed; (B4) which Taiwan airports
are preferred; (B5) what is the maximum price the company is willing to pay
for a business chartered plane; (B6) whether the business is willing to buy an
aircraft or rent instead. Four factors that influence the companies in considering
whether to use business aviation are: (D2-1) direct flight between Taiwan and
China; (D2-2) whether the cost is too expensive or not; (D2-3) the quality of
ground services and maintenance; (D2-4) the scheduled flights cannot meet your
needs. These 4 factors serve as decision attributes. The details of our analysis of
this survey data are as follows.

3.3 First Stage Results

In the first stage, we use question D1 to define a classification on our sample
data, and we calculate the accuracy of approximations of each class. Here class
1 denotes companies who answered “Definitely yes” on question D1, class 2 de-
notes companies who answered “Considering the possibility”, and class 3 denotes
companies who answered “No”. Both the accuracy and the quality of the clas-
sification are equal to 1, which means that the results of the classification are
very satisfactory.

In the next step, we used the ROSE2 (Rough Set Data Explorer) tool [11]
to find all potential reducts and the core attributes. Two reducts were found:
Set1 = {A1, A2, A3, A4, A5} and Set2 = {A2, A3, A4, A5, A7}. Therefore, the
core is the set of attributes {A2, A3, A4, A5}. These attributes are the most
significant attributes for classification purposes. Dimitras et al. [4] proposed some
criteria for selecting reducts: (1) the reduct should contain as small a number of
attributes as possible, (2) the reduct should not miss the attributes judged by the
decision maker as the most significant for evaluation of the objects. Following the
criteria, the reduct Set1 was selected for further analysis. We used the BLEM2
tool [3] to generate decision rules from data set reduced to attributes in Set1.
There are 51 rules generated by BLEM2 for classes 1, 2, and 3. There are 2 rules
with total support of 2 for class 1 (D1 = “1”), which denotes the companies
definitely will utilize business aviation, there are 26 rules with total support of
40 for class 2 (D1 = “2”), which denotes companies that are considering the
possibility of utilizing it, and there are 23 rules with total support of 34 for class
3 (D1 = “3”), denoting companies have no willingness at all to use business
aviation.
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We have applied a minimum support threshold for further reduction of rules.
For class 2 rules, with minimum support value≥ 2, the number of rules is reduced
from 26 to 7 as shown in Table 1. In addition, condition attribute A4 is no longer
used among these rules as shown in the table that entries in A4 are all blanks.

Table 1. Stage 1 rules for class 2 with minimum support value ≥ 2

A1 A2 A3 A4 A5 D1 Support Certainty Strength Coverage
4 2 5 1 0.0658 0.125

5 3 2 2 3 1 0.0395 0.075
2 4 2 2 1 0.0263 0.05
4 1 2 3 1 0.0395 0.075

1 3 1 2 4 1 0.0526 0.1
1 5 1 2 2 1 0.0263 0.05
1 3 3 2 2 1 0.0263 0.05

Rules in Table 1 can be translated into one decision algorithm represented
by the decision flow graph shown in Figure 1. For simplicity, certainty, strength,
and coverage factors associated with each branch are omitted, only throughflows
(supports) are shown in the figure. The total inflow of the graph is 21, which is
the sum of the supports corresponding to rules appeared in Table 1.

Fig. 1. Decision flow graph for rule-set shown in Table 1

3.4 Second Stage Results

In the second stage, we isolate the 40 companies who said they would consider
using business aviation and analyze them separately. Four decision tables are
generated, with each decision table made up of the same six conditional at-
tributes (B1∼B6) and one decision attribute D2-X (where X is assigned 1, 2, 3,
4, respectively). Similarly, the approximations of decision classes are calculated
the same way as in the first stage, and the results are: the classification accuracy
of D2-1 and D2-4 is 0.6667 and their classification quality is 0.8; both of the
classification accuracy and quality of D2-2 are 1; the classification accuracy of
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Table 2. The support value more than 2 from Stage 2 (D2-1=1)

B1 B2 B3 B4 B5 D2-1 support certainty strength coverage
3 1 3 1 0.075 0.1364

2 1 H A 1 2 1 0.05 0.0909
1 1 H 1 1 3 0.75 0.075 0.1364

Table 3. The support value more than 2 from Stage 2 (D2-2=1)

B2 B3 B4 D2-2 support certainty strength coverage
J 1 9 1 0.225 0.2432
K 1 4 1 0.1 0.1081
N 1 3 1 0.075 0.0811

N H A 1 4 1 0.1 0.1081
1 H 1 11 1 0.275 0.2973
2 H B 1 2 1 0.05 0.0541

Table 4. The support value more than 2 from Stage 2 (D2-3=1)

B1 B2 B3 B4 B5 D2-3 support certainty strength coverage
N 1 3 1 0.075 0.1364

2 N 1 2 1 0.05 0.0909
2 1 H A 1 2 1 0.05 0.0909
1 1 H 1 1 4 1 0.1 0.1818

Table 5. The support value more than 2 from Stage 2 (D2-4=1)

B1 B2 B3 B4 B5 D2-4 support certainty strength coverage
2 N 1 2 1 0.05 0.0952

2 N 1 2 1 0.05 0.0952
2 N 1 2 1 0.05 0.0952

2 1 H A 1 2 1 0.05 0.0952
1 1 H 1 1 3 0.75 0.075 0.1429

D2-3 is 0.8182 and its classification quality is 0.9. These results of the classifi-
cation are acceptable, since all the accuracies for D2-1 through D2-4 are better
than 0.6, and their qualities are close to 1. Next, we find the reductions and the
core attributes. As a result, the reduct and the core for D2-2 obtained are { B2,
B3, B4}; the reduct and the core for the others are {B1, B2, B3, B4, B5}. The
next step of data analysis is to generate decision rules by using BLEM2 based
on the selected reducts. The resulting rule sets with minimum support value ≥
2 are shown in Tables 2 - 5.
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4 Discussions

Our empirical study on the market potential for business aviation using the
rough set approach has uncovered some important facts. In the first stage, by
correlating their decision to use business aviation with their basic attributes, in-
cluding type of industry and the regions they are doing business with, our results
match up closely to the present economic realities in Taiwan: (1) the majority
of businesses who replied to our survey said they would consider using business
aviation if it became available; (2) the regions that these companies are doing
business with are mainly China region, North America, and Northeast Asia; (3)
the companies’ type of industry is mainly traditional industries, manufactur-
ing industries, and information technology industries. The RST analysis clearly
shows that there is a market potential for business aviation in Taiwan. There-
fore, if the Taiwan government wants to develop its business aviation industry, it
should start thinking about how to satisfy companies’ flying needs before busi-
ness aviation is deregulated in the future. Our study has also addressed this issue
through a second stage RST analysis, and we found five common patterns which
could be of interest to government policymakers as they plan relative resources
distribution, provide special services, select available airports, and set reasonable
price, etc. Based on Tables 2 - 5 with higher strength, we find several proposals
could be made:

1. Government agency should consider the regions that the companies are doing
business with when they plan air traffic rights in the future.

2. Government agency should plan a way for these passengers to pass through
the immigration & customs quickly. In addition, airports need to construct
a business aviation center that can deal with related services such as trans-
portation and hotel accommodation.

3. The most preferred airport for business aviation is Taipei Songshan Airport.
Previously, Songshan Airport was an international airport. Nowadays, it is a
domestic airport. Although the land this airport sits on isn’t that big, it is big
enough for smaller aircrafts. And it is situated right in the heart of Taipei,
the capital of Taiwan, where most Taiwanese companies are headquartered.
Also, Taipei’s subway system is being extended to Songshan Airport. This
makes Taipei Songshan Airport an ideal airport for business aviation.

4. The maximum price that businesses are willing to pay for business chartered
flights should be limited to no more than double the price of first-class tickets
in future planning.

The above proposals are made for the consideration of Taiwan government agen-
cies. Moreover, government agencies should consider the resource distribution be-
tween existing scheduled commercial flights and business aviation, so that they
can both thrive in the market. Currently, business aviation has not yet been
deregulated in many countries. The rough set approach should be able to help
these countries predict the underlying market demand and trends for business
aviation and help their government agencies plan for a future where business
aviation is allowed to thrive.
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5 Conclusions

This paper uses the rough set approach to analyze the underlying market demand
and needs for business aviation in Taiwan. Discovered patterns are interesting
and corresponding well to current local economical reality. Therefore, we have
shown that rough set approach is a promising method for discovering important
facts hidden in data and for identifying minimal sets of relevant data (data
reduction) for the business aviation. Our results provide several useful proposals
for local government agencies. In addition, although our empirical study uses
data from Taiwan, we are optimistic that the method can be similarly applied in
other countries to help governments there make decisions about a deregulated
market.
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Abstract. This study introduces new aspects of phase transition in two new hy-
brid intelligent systems called Self-Organizing Neuro-Fuzzy Inference System 
(SONFIS) and Self-Organizing Rough SeT (SORST). We show how our algo-
rithms can be taken as a linkage of government-society interaction, where gov-
ernment catches various states of behaviors: “solid (absolute-oppressive) or 
flexible (democratic)”. So, transition of such System, by changing of connec-
tivity parameters (noise) and using a simple linear relation, from order to disor-
der states is inferred.  

Keywords: phase transition, SONFIS, SORST, Nations-Government interactions. 

1   Introduction 

Social systems as a type of the Complex systems are often coincided with uncertainty 
and order-disorder transitions (or reverse) so that a small event can trigger an impres-
sive transition.  Apart of uncertainty, fluctuations forces due to competition of be-
tween constructive particles of the system drive the system towards order and disorder 
[1], [12]. For example a social system (ranging from stock markets to political sys-
tems, and traffic flow) whose individuals have an inclination to conform to each other 
may show a phase transition step [2]. In other view, in monitoring of most complex 
systems, there are some generic challenges for example sparse essence, conflicts in 
different levels of a system, inaccuracy and limitation of measurements are the real 
obstacles in analysis and predication of the possible emerged behaviors.  

There are many methods to analyzing of systems include many particles that are 
acting on each other, for example statistical methods [3], [4], Vicsek model [5]. Other 
solution is finding out of main nominations of each distinct behavior which may has 
overlapping- in part-to others. This advance is to bate some mentioned difficulties that 
can be concluded in the “information granules” proposed by Zadeh [6]. In fact, more 
complex systems in their natural shapes can be described in the sense of networks, 
which are made of connections among the units. These units are several facets of 
information granules as well as clusters, groups, communities, modules [7].  

Regarding mentioned aspects and the role of information flow in mass behavior, 
analysis and evaluation of social systems are accomplished typically in the context of 
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the specific system. For example consider a society involving political groups, parts, 
social networks and so forth. A stimulated wave – or information flows- in to this 
society, may amplify (or abridge) the range of distinguished nodes which are the 
nominations of a complex system. Evolving of social cores –as well as semi-self or-
ganizing system - is associated with the responses of a government or external forces. 
Definitely, when an oppressive government slightly worsens the living condition –
with their oppressive instruments-this task may leads to increase of the opposition to 
the government. Depending on the information statics, the impact of the pervious 
states (background mind) of groups or government or even a small parameter, a dra-
matic transition can be occurred. So, the role of significant external trigger can’t be 
denied.  Phase transition modeling in specific social systems (such political revolu-
tion, fragility of mass behavior, social cooperation, traffic flow, and stock market 
crashes so forth) has been reviewed in [2]. 

Phase transitions in some intelligent systems especially in neural networks, sto-
chastic self organizing maps and cellular neural network regarding statistical physics 
theorems have been applied [8-11]. In this study, we reproduce two hybrid intelligent 
systems called Self-Organizing Neuro-Fuzzy Inference System (SONFIS) and Self-
Organizing Rough SeT (SORST), and investigate several levels of responses against 
the real information. The motivations of our methods are considering of several states 
of society, government, their effects on each other and the role of other parameters 
(such external forces) which are concluded behind transformations of information 
nodes. In [18] we showed how relatively such our simple methods can produce 
(mimic) government-nation interactions where the adaptive scaling scheme of SORST 
(SORST-AS) and SONFIS with the changing of the highlighted parameters have been 
utilized. In this paper the aim is to analysis and inferring new contexts upon the re-
garding of more rules and external forces in SONFIS and direct transition evaluation 
of SORST (with constant scaling). In fact, Mutual relations between algorithms layers 
identify order-disorder transferring of such systems. Developing of such intelligent 
hierarchical networks, investigations of their performances on the noisy information 
and exploration of possible relate between phase transition steps and flow of informa-
tion in to such systems are new interesting fields, as well in various fields of science 
and economy. 

2   The Proposed Procedure 

In this section based upon self organizing feature map [13], adaptive neuro fuzzy 
inference system [14] and rough set theory (RST) [15], we reproduce: Self Organizing 
Neuro-Fuzzy Inference System (SONFIS) and Self Organizing Rough SeT (SORST) 
[9], [10]. In this study our aim is to investigate order-disorder transition in the men-
tioned systems. The mentioned algorithms use four basic axioms upon the balancing 
of the successive granules assumption:  

• Step (1): dividing the monitored data into groups of training and testing data 
• Step (2): first granulation (crisp) by SOM or other crisp granulation methods  

Step (2-1): selecting the level of granularity randomly or depending on the ob-
tained error from the NFIS or RST (regular neuron growth) 
Step (2-2): construction of the granules (crisp). 
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• Step (3): second granulation (fuzzy or rough granules) by NFIS or RST 
Step (3-1): crisp granules as a new data. 
Step (3-2): selecting the level of granularity; (Error level, number of rules, strength 
threshold...) 
Step (3-3): checking the suitability.  (Close-open iteration: referring to the real data 
and reinspect closed world) 
Step (3-4): construction of fuzzy/rough granules. 

• Step (4): extraction of knowledge rules 

Information Nodes

Government Rules

External Forces

Government Performance

Society

 

Fig. 1. A general schematic of Society-Government network  

Mutual relations of the two main layers of the algorithms can be imagined as soci-
ety – government interactions, where reactions of a dynamic community to an “abso-
lute (solid) or flexible” government (regulator) are controlled by correlation (noise) 
factors of the two simplified systems. In absolute case, the second layer (government\ 
regulator) has limited rules with stable learning iteration for all of matters. In first 
layer, society selects the main structures of the stimulator where these clusters upon 
the reaction of government and the pervious structures will be adjusted. Flexible regu-
lator (democratic government) has ability of adapting with the evolution of society. 
This situation can be covered by two discrete alternatives: evolution of constitutive 
rules (policies) over time passing or a general approximation of the dominant rules on 
the emerged attitudes. In latter case the legislators can considers being conflicts of the 
emerged states. Other mode can be imagined as poor-revealing structures (informa-
tion nodes) of the society due to poor-learning or relatively high disturbances within 
inner layers of the community. In other view and using complex networks theory [19], 
we may make a hierarchical complex network in which information nodes in a society 
depend on their requirements (or in a compulsory way) are connected to the govern-
ment’s rule(s) (Fig.1). Considering of several aspects of intellectuality, uncertainty, 
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evolution of nodes (society and/or government) and other possible fascinating results 
are some of the motivations of such structures.  

With variations of correlation factors of the two sides (or more connected intelli-
gent particles), one can identify point (or interval) of changes behavior of society or 
overall system and then controlling of society may be satisfied. Obviously, consider-
ing of simple and reasonable phase transition measure in the mentioned systems will 
be necessary so that regarding of entropy and order parameter are two distinguished 
criteria [1].  In this study we use crisp granules level to emulation of phase passing. 
So, we consider both “absolute and flexible” government while in latter case the ap-
proximated rules are contemplated and the presumed society will cope to the distur-
bances. As before mentioned, in this macroscopic sight of the interactions, the reac-
tion of first layer to the current stimulator is upon the batching inserting of 
information, and so cannot take in to account of “historical memory decadence” of 
individuals of the community. In other sense all of information gets an equal effect on 
the society whereas in actual case time streamlet bears other generations and new 
worlds, so new politics. 

 
Monitored data sets

SOM1 SOM2 SOM3 SOMn

NFIS1 NFIS2 NFIS3 NFISn

Fuzzy partition: MAX. MFs =n.r

For i=1: n

For  j=2:n.r

For  j=1: k %

{Select best NFIS with min RMSE on the test data }

clo se op en iteratio nsκ = −

select new 1 ,2 ,...,n{n m }× for SOM(s);

1 2n n n≤ ≤ & 1 2m m m≤ ≤

 

Fig. 2. Self Organizing Neuro-Fuzzy Inference System (SONFIS) 

Balancing assumption is satisfied by  the close-open iterations: this process is a 
guideline to balancing of crisp and sub fuzzy/rough granules by some random/regular 
selection of initial granules or other optimal structures and increment of supporting 
rules (fuzzy partitions or increasing of lower /upper approximations ), gradually. The 
overall schematic of Self Organizing Neuro-Fuzzy Inference System -Random: 
SONFIS-R has been shown in Fig.2. In first granulation step, we use a linear relation 
is given by: 

                                   1 ;t t t t tN N Eα β γ+ = + ∆ ∆ = + ,                                         (1) 
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SOM1 SOM2 SOM3 SOMn

RST1 RST2 RST3 RSTn

Rule strength=

Error measure on the test 
data=

MSE EL≤
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1j j= +

j κ≤

New Generation of  SOM 
(rectangular topology)

End-select         SOM(s) 
& RST(s)

thi

yes

no
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C(X1,X2,…,Xn)                  D (d1) κ =number of close-open iterations

SOM(1-D)
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Fig. 3. Self Organizing Rough Set Theory (SORST) 

where 1 2 1 2; .tN n n n n Min= × − = is the number of neurons in SOM or Neuron 

Growth (NG); tE is the obtained error (measured error) from second granulation on 

the test data and coefficients must be determined, depend on the used data set.  
Obviously, one can employ like manipulation in the rule (second granulation) genera-
tion part, i.e., number of rules (as a pliable regulator). Determination of granulation 
level is controlled with three main parameters:  range of neuron growth, number of 
rules and/or error level.  The main benefit of this algorithm is to looking for best 
structure and rules for two known intelligent system, while in independent situations 
each of them has some appropriate problems. 

In second algorithm RST instead of NFIS has been proposed (Fig. 3).  Because of 
the generated rules by a rough set are coarse and therefore need to be fine-tuned, here, 
we have used the preprocessing step on data set to crisp granulation by SOM (close 
world assumption).  

3   Phase Transition on the “Lugeon Data Set”  

In this part of paper, we ensue our algorithms on the “lugeon data set” [16-18]. So, a 
similar procedure has been accomplished in other data sets [20, 21]. To evaluate the 
interactions due to the lugeon values we follow two situations where phase transition 
measure is upon the crisp granules (here NG):  1) second layer gets a few limited 
rules by using NFIS; 2) second layer gets all of the extracted rules by RST and under 
an approximated progressing. 
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Fig. 4. Effect of Alpha variations in the neuron growth (N.G) of SONFIS-AR with n.r=2 over 
30 iterations; β =.001, γ =.5 a) .7=< α <=.9; b). 8=< α  <=.85 and c).9=<α <=1.1 

Analysis of first situation is started off by setting number of close-open iteration 
and maximum number of rules equal to 30 and 3 in SONFIS respectively.  The error 
measure criterion in SONFIS is Root Mean Square Error (RMSE), given as below:  

  

* 2( )
1

m
t ti i

iRMSE
m

−∑
==  ,                                             (2) 

where it is output of SONFIS and *
it is real answer; m is the number of test data 

(test objects).  In the rest of paper, let m=93 and number of inserting data set =600. 
By employing of Eq.1 in SONFIS ( β =.001 and γ =.5); the general patterns of NG 

and RMSE vs. time steps and variations of α can be observed (Fig.4). It must be 
noticed for two like process (i.e., α =.9), we have different situation of neuron 
growth. The main reason of such behavior is on the regulation of weight neurons in 
SOM thank to initial random selection and fall in to the “dead neurons state”.  
However, this will be interesting if we see real case, as is appeared in a real society, 
in order to “in an identical cases (but in an unlike iteration) society may shows 
other behavior, not completely different from other mate”. The neurons fluctuations 
with the time passing reveal more chaos while the phase transition step can be tran-
spired in α =.8-.85(Fig.5).  
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Increasing of rules number (n.r) in second layer to 3, system doesn’t disclose a sig-
nificant change in phase transition step (starting of rush afterα  =.8) where the initial 
values of NFIS and an upper limit for N.G, i.e., 150 have been employed (Fig.5). It must 
be noticed that the variation of RMSE (or deduction of the government from the soci-
ety) is not coincided with the N.G whereas with fixing of β and changingα , the as-

sumed government considers a constant impact for repression of a dynamic society [18]. 
In the former and latter options, the phase transition has been occurred gradationally 
likewise one can consider three discrete steps to these conversions: society with “silent 
dead (laminar)”, in transition and in triggering of revolutionary community.  
 

 

Fig. 5. Effect of Alpha variations in neuron growth –Beta=.001(N.G)-left- &RMSE-right- of 
SONFIS with n.r=3 over 30 iterations; a) .6=< Alpha<=.9; b) .95=< Alpha <=1.1 

 

N.G RMSEa) b)

 

Fig. 6. Diagram contour of γ  variations on the N.G and RMSE (
3.8, 10α β −= = ) over 9 

time steps 
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Fig.7. Color code of alpha variations in SORST on the N.G and MSE over 9 time steps-
β =1.01 

 

Fig. 8. Effect of β  variations in neuron growth (N.G) &MSE of SORST over 9 iterations-; 

α =.8  

In other process and to investigate the position of γ as a small parameter (we call ex-

ternal forces), we considered SONFIS with
3.8, 10α β −= = over 9 time steps (Fig.6). As if 

system shows a transition step after .9, one can recognize the disordered zones.  
In second situation instead of NFIS, we employ RST upon this assumption that the 

government based on history, experience and other like fashions in the world, can has 
ability to elicitation of relatively approximated rules of the observed and distinguished 
behaviors (by transferring of attributes to three scaled classes using 1-D SOM, as well 
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as low, middle and high). The applied error measure for measure of performance of 
SORST is given by:  

   

2( )
1

m real classifiedd di i
iMSE

m

−∑
== ,         (3) 

In deducing of decision for approximated rules (not unique decision part), we se-
lect highest value (largest ambiguities) for such decisions. By repeating of steps as 
well pervious situation, we obtain other behavior of SORST where we employ 1γ = , 

in Eq.1 (Fig.7&Fig.8). Fig.7 shows how with keeping of β as a fixed value, N.G after 

α =.8 gets in to the steeper rate while it has endured relatively high transition time. In 
fact government without changing of his affecting power ( β ) preserve, in a long time 

society between “tranquil and rushing”.  Other guessed difference with first option, is 
on the fast change of the society over passing time and for high α  values as though 
MSE exhibits a low range of variations.  

4   Conclusion 

In this study we proposed two new algorithms in which SOM, NFIS and RST make 
SONFIS and SORST. Mutual relations between algorithms layers identify order-
disorder transferring of such systems. So, we found our proposed methods have good 
ability in mimicking of government-nation interactions while government and society 
can take different states of responses. Developing of such intelligent hierarchical 
networks, investigations of their performances on the noisy information and explora-
tion of possible relate between phase transition steps and flow of information are new 
interesting fields, as well in various fields of science and economy. 
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Abstract. The classical multivariate statistical method can only dis-
cuss the effectiveness of result, but can’t explain the cause and intrin-
sic mechanism when dealing with classification problems. In this paper,
a new rough sets decision method based on the Principal Component
Analysis (PCA) and the ordinal regression is proposed which may help
to explain the cause and the intrinsic mechanism of classification prob-
lems. An empirical study is employed to validate the reasonability and
effectiveness of the proposed method.

Keywords: Principal component analysis, rough sets theory, ordinal
regression, classification.

1 Introduction

In the process of decision-makings, people may meet many classification prob-
lems, e.g., the financial risk early warning of listed companies, the credit evalu-
ation and performance evaluation. The traditional statistic methodologies such
as the logistic regression, discriminant analysis and cluster analysis can be used
for classification problems. For the two former methods, they need the prior in-
formation to construct the discriminant function and the final discriminant rule
relies on the probability distributing or the measurement. However, the prior in-
formation sometimes may not be available in our real applications. In addition,
the number of clusters has to be given at first when using the k -mean algorithm
in the cluster analysis. Moreover, the only standard, the precision of classifica-
tion, is employed to judge the classification quality of the above methods while
the reasons for generating all labels are not considered, which may not help us
explore the latent rules in complex systems.

The Rough Sets Theory (RST), proposed by Pawlak in 1982, has been exten-
sively studied in recent years. It is a mathematical tool to deal with vagueness and
uncertainty and has been applied successfully in data mining [1,2,8,9,10,11,12].
For example, RST has been used to mining classification rules in databases, which
helps people to understand the inner mechanism among objects. In addition, when
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we deal with practical problems, e.g., in the case that the prior information does
not exist, we only obtain the information table and it is difficult to acquire the
values of the decision attribute of the decision table which is vital to our decision-
makings.

As a classical method in statistics, the Principal Component Analysis (PCA)
is usually used to reduce the dimensionality of the orthogonal space. Swiniarski
firstly used RST and PCA in data model building and classification as well
as feature selection and recognition [3,4]. Swiniarski and Skowron presented a
description of the algorithm for feature selection and reduction based on the
rough sets method proposed jointly with PCA, and then a description of hy-
brid methods of face recognition which are based on independent component
analysis, PCA and RST. The feature extraction and pattern forming from face
images have been provided using Independent Component Analysis and PCA.
The feature selection/reduction has been realized using the rough sets technique.
The face recognition system was designed as rough-sets rule based classifier [5,6].
Zeng, et al advocated a knowledge acquisition approach based on RST and PCA
(KA-RSPCA) to acquire rules with stronger generalization capabilities. KA-
RSPCA used a collective correlation coefficient as heuristic knowledge to assist
attribute reduction and attribute value reduction. The coefficient was a PCA-
based quantitative index to measure every condition attribute’s contributions to
the state space constructed by the whole of the condition attributes in a decision
table [7]. However, in the domain of management, PCA can be used to construct
the principal component function and obtain the estimation and order of every
object, which may form a natural values of the decision attribute. In this paper,
PCA is used to generate the values of the decision attribute and RST is used to
acquire the decision rules.

The remaining of the paper is organized as follows. Some basic concepts are
reviewed in Section 2. A new rough sets decision method based on PCA and
ordinal regression is proposed to deal with classification problems in Section 3.
A case study is given to validate the proposed model in Section 4. Section 5
concludes the research work of this paper.

2 Preliminaries

The basic concepts, correlative notations of rough sets and PCA are briefly
reviewed [1,9,10].

Definition 1. RST is based on an information system S = (U,A, V, f), where
U is a non-empty finite set of objects, A = C ∪ D is a non-empty finite set of
attributes, C denotes the set of condition attributes and D denotes the set of
decision attributes, C ∩ D = ∅. V = ∪

a∈A
Va and Va is a domain of the attribute

a, and f : U × A → V is an information function such that f(x, a) ∈ Va for
every x ∈ U , a ∈ A. When D = ∅, the system is an information table.

For PCA, U stands for the object sets, A stands for the factor sets. PCA uses
the linear combination of target sets A to construct the comprehensive factors
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F = {F1,F2, · · · ,Fp}. If the accumulative contribute rate of the anterior p prin-
cipal components exceeds 80%, then we think that F1,F2, · · · ,Fp contain nearly
all of the original information of the system. Suppose that the information sys-
tem S is constituted by the m objects u1, u2, · · · , um and n factors a1, a2, · · · , an,
which form the data matrix as follows:

U=(u1, u2, · · · , um)=

⎛
⎜⎜⎜⎝

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

...
...

vm1 vm2 · · · vmn

⎞
⎟⎟⎟⎠

where, ui ∈ U, vij ∈ V. Then,⎧⎪⎪⎨
⎪⎪⎩
F1 = w11a1 + w21a2 + · · ·+ wn1an

F2 = w12a1 + w22a2 + · · ·+ wn2an

· · ·
Fp = w1pa1 + w2pa2 + · · ·+ wnpan

where, p < n, w2
1i + w2

2i + · · · + w2
ni = 1. If we denote Var(F) = Var(w’X) =

w’Σw, then Var(F1) = maxVar(Fi) and Var(F1) ≥ Var(F2) ≥ · · · ≥ Var(Fp),
i = 1, 2, · · · , p. In addition, the characteristic roots of the characteristic equation
|λΣ − I| = 0 are denoted as λ1, λ2, · · · , λp, where λ1 ≥ λ2 ≥ · · · ≥ λp.

Definition 2. Suppose S = (U,C
⋃
D,V, F ) is a complete information system,

we denote U/C = {X1, X2, · · · , Xm}, U/D = {D1, D2, · · · , Dn}. the support, ac-
curacy and coverage of Xi → Dj are defined as: Support of Xi → Dj : Sup(Dj →
Xi) = |Xi

⋂
Dj |; Accuracy of Xi → Dj : Acc(Dj → Xi) = |Xi

⋂
Dj |/|Xi|; Cov-

erage of Xi → Dj : Cov(Dj → Xi) = |Xi

⋂
Dj|/|Dj |, where Xi ∈ U/C, i =

1, 2, · · · ,m and Dj ∈ U/D, j = 1, 2, · · · , n.

3 A New Rough Sets Decision Method Based on PCA
and Ordinal Regression

For the RST, it is mainly based on the equivalence class, in other words, it uses
an equivalence relation to obtain a partition of the universe. For the PCA, it
usually use the information contribution maximization principle to select the
principal component in turn, then construct the comprehensive principal com-
ponent function by the weighted method. Finally, we can get the comprehensive
evaluation value for every object. It is easy to see that we can use the compre-
hensive evaluation value to generate the values of the decision attribute. Then it
can also form a partition of the universe after its values are discretized. There-
fore, both RST and PCA can give a partition of the universe, we can combine
the two methodologies together. Above all, we can expand the information table
into a decision table by using PCA and ordinal regression.

In the following, we construct the rough sets decision method based on PCA
and ordinal regression. Following is the detailed process (See Fig. 1).
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Selecting the initial factors and inputting the original data

Developing the information table (Getting the condition class)

Preparing and discretizing the data
Distilling principal components by PCA

Obtaining the values of the decision attribute

Developing the decision table (Getting the decision class)
    Condition attributes: The selected factors
    Decision attributes: The comprehensive evaluation value for every object 

Getting the reduct sets of attributes Using ordinal regression to get the equation

Finding a best reduct after comparing the calculation results of two methods

Obtaining the interesting decision rules with high accuracy and coverage

Exploring the inner mechanism of the classification by decision rules

Research target: A New Rough Sets decision Method based on PCA and ordinal regression

Fig. 1. The rough sets decision method based on PCA and ordinal regression

Step 1: Selecting the investigated objects, and using the objects and factors to
construct the information table.

Step 2: Using PCA, obtaining the principal components from the information
table and constructing the comprehensive principal component function.

Step 3: Calculating the comprehensive evaluation value for every object, and
using it to generate the decision attribute and construct the decision
table.

Step 4: Using RST and ordinal regression to obtain the interesting rules and
available knowledge from the decision table and explore the inner reason
of the classification.

4 Case Study

In this section, we consider the economic benefit conditions of 31 areas of P.R.
China in 2000, and we select GDP (a1), industrial added value (a2), total capital
contribution ratio (a3), asset-liability ratio (a4), current assets turnover times
(a5), profit rate of industrial costs and expenses (a6), all laborproductivity (a7)
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Table 1. The economic benefit conditions of 31 areas in 2000

Area a1 a2 a3 a4 a5 a6 a7 a8

1 2478.76 28.17 6.94 57.65 1.43 5.02 6.39 95.95

2 1639.36 24.18 8.50 60.83 1.79 6.48 5.24 98.39

3 5088.96 33.06 9.00 61.73 1.75 5.75 4.20 97.64

4 1643.81 35.23 5.52 63.92 0.98 1.94 2.34 96.88

5 1401.01 37.32 6.19 59.25 1.24 2.23 3.28 98.45

6 4669.06 28.10 6.91 60.46 1.46 4.27 4.05 97.79

6 1821.19 29.54 7.91 65.82 1.27 5.70 3.68 98.08

8 3253.00 49.29 21.60 58.07 1.60 31.39 6.22 98.12

9 4551.15 27.19 8.87 49.80 1.56 6.43 8.23 99.02

10 8582.73 24.92 8.92 61.80 1.91 3.87 5.03 97.15

11 6036.34 23.62 11.26 57.11 2.02 5.77 4.83 96.87

12 3038.24 30.54 7.09 63.19 1.43 2.40 3.12 98.48

13 3920.07 30.47 8.60 57.52 1.89 4.76 5.12 96.95

14 2003.07 28.93 6.20 68.30 1.27 1.43 2.48 97.27

15 8542.44 30.67 11.86 62.54 2.07 7.31 4.88 97.86

16 5137.66 31.94 8.28 66.43 1.52 4.47 3.23 98.00

17 4276.32 33.02 7.86 63.50 1.50 3.95 4.39 99.14

18 3691.88 32.44 8.86 67.60 1.45 2.38 3.17 98.61

19 9662.23 27.43 8.55 57.56 1.87 4.82 5.98 97.40

20 2050.14 32.28 7.82 68.39 1.49 3.86 3.55 97.85

21 518.48 31.18 5.54 66.48 1.16 2.73 5.27 94.41

22 1589.34 29.48 6.09 64.80 1.18 1.67 3.13 99.09

23 4010.25 31.89 6.85 64.45 1.18 3.60 3.18 98.21

24 993.53 34.35 7.17 69.29 0.91 2.31 3.18 96.61

25 1955.09 49.98 15.80 55.48 1.31 8.39 6.90 98.79

26 117.46 56.29 5.31 26.97 0.71 21.97 3.16 92.11

27 1660.92 34.71 7.6 68.17 1.12 6.06 3.29 96.70

28 983.36 29.11 5.10 65.05 1.08 1.34 2.68 95.15

29 263.59 33.32 4.77 72.90 0.63 0.41 4.12 97.22

30 265.57 30.81 5.50 60.01 1.20 1.87 3.29 96.26

31 1364.36 41.86 11.01 62.71 1.55 12.83 7.67 97.62

and product sales rate (a8) as the evaluation factors (see Table 1). We hope to
obtain the causes which affect the economic benefit in Table 1.

Firstly, we employ z-score transformation to standardize the continuous data
in Table 1, then we calculate 3 characteristic roots: λ1 = 2.887, λ2 = 2.636,
λ3 = 1.094 (shown in Table 2), and the accumulative contribute rate of the
3 principal components exceeds to 82.7%. The component matrix is shown in
Table 3.

Secondly, we use the component score (see Table 3) to divide the correspond-
ing square root of principal components and obtain the coefficient of each princi-
pal component (for example, the coefficient of a1 in Formula (1) can be calculated
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Table 2. The accumulative contribute rate of 3 principal components

Component Total % of V ariance Cumulstive %

1 2.887 36.114 36.114

2 2.636 32.942 69.056

3 1.092 13.653 82.710

Table 3. The component matrix of the 3 principal components

1 2 3 1 2 3

a1 0.489 0.649 -0.382 a5 0.627 0.667 -0.254

a2 0.346 -0.827 0.288 a6 0.745 -0.568 0.077

a3 0.879 0.018 0.386 a7 0.744 0.102 -0.037

a4 -0.455 0.571 0.551 a8 0.217 0.654 0.584

as: 0.489/
√

2.887 = 0.2875). Then, we construct the 3 principal components as
follows:

F1 = 0.2875a1 + 0.2034a2 + 0.5176a3 − 0.2676a4 + 0.3690a5 + 0.4387a6 +
0.4376a7 + 0.1278a8;

F2 = 0.3997a1 − 0.5092a2 + 0.0110a3 − 0.3517a4 + 0.4108a5 − 0.3496a6 +
0.0627a7 + 0.4026a8;

F3 = −0.3653a1 + 0.2756a2 + 0.3689a3 + 0.5266a4 − 0.2424a5 + 0.0738a6 −
0.0351a7 + 0.5581a8.

Thirdly, the comprehensive evaluation value for each object can be calculated
by the following formula.

F = σ1F1 + σ2F2 + σ3F3 (1)

where, σi = λi/(λ1 + λ2 + λ3), i = 1, 2, 3. That is, σ1 = 2.887/(2.887 + 2.636 +
1.094) = 0.4363, σ2 = 0.3984, σ3 = 0.1653.

Fourthly, we calculate the economic benefit comprehensive evaluation value
F of 31 areas in P.R. China by Formula (1) (see Table 4).

Fifthly, we use the comprehensive evaluation value F to generate the values of
the economic benefit evaluation and construct a decision table. In addition, the
data in Table 1 and Table 4 are continuous. We discretize the original data in
order to obtaining reducts by RST. The criterion of discretization by the expert
evaluation method is shown in Table 5 and the final decision table is shown in
Table 6.

Sixthly, we obtain the the reduct sets of Table 6 by RST. Here we directly
use the software Rosetta produced by Warsaw University in Poland to get the
17 reduction sets: {a3, a7, a8}, {a1, a4, a7, a8}, {a1, a2, a3, a7}, {a1, a2, a3, a8},
{a1,a4, a6, a8}, {a1, a4, a6, a7}, {a1, a2, a4, a8}, {a2, a3, a6, a8}, {a2, a4, a5,
a8}, {a2, a3, a4,a8}, {a2, a4,a6, a8}, {a3, a4, a6, a8}, {a4, a6, a7, a8}, {a4, a5,
a6, a8}, {a1, a2, a4, a5, a7}, {a1, a3, a5, a6, a7}, {a2, a3, a5, a6, a7}.
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Table 4. The comprehensive evaluation value in 31 areas

Area F Area F Area F Area F
1 -0.2731 9 0.909 17 0.5297 25 0.945

2 0.5538 10 0.8335 18 0.3433 26 -2.9049

3 0.4715 11 0.783 19 0.9335 27 -0.5105

4 -0.9815 12 0.0232 20 0.0698 28 -1.2949

5 -0.3986 13 0.3297 21 -1.0633 29 -0.9145

6 0.0763 14 -0.4843 22 -0.1602 30 -1.0071

7 -0.0315 15 1.3466 23 -0.1227 31 0.7023

8 1.7663 16 0.3087 24 -0.7781

Table 5. The criterions of data discretization

a1 a2 a3 a4 a5 a6 a7 a8 F
A ≥ 5000 ≥ 40 ≥ 10 ≤ 55 ≥ 2 ≥ 8 ≥ 6 ≥ 99 ≥ 0.6

B 3500 to 5000 35 to 40 8 to 10 55 to 60 1.5 to 2 6 to 8 5 to 6 98 to 99 0.1 to 0.6

C 2000 to 3500 30 to 35 6 to 8 60 to 65 1 to 1.5 4 to 6 4 to 5 97 to 98 -0.4 to 0.1

D 500 to 2000 25 to 30 ≤ 6 ≥ 65 ≤ 1 2 to 4 3 to 4 96 to 97 -0.9 to -0.4

E ≤ 500 ≤ 25 ≤ 2 ≤ 3 ≤ 6 ≤ −0.9

After that, we will validate which reduct is more important from 17 reduction
sets in our case. By considering the decision attribute value F in Table 6 is induced
by the comprehensive evaluation value of PCA, we can choose it as the dependent
variable, and we also can choose a1, · · · , a8 as independent variables. Due to F
value in Table 6 is the string variable, we transform them into the numeric variable
(A→ 1, B→ 2, and so on). In addition, we can obviously obtain that F is also a
ordinal variable by the former analysis (which means the value A is better than
B, · · · , D is better than E). So we will use the ordinal regression (F is treated
as a dummy variable) to find the relations between the dependent variable and
independent variables, and the result is shown in Table 7.

From Table 7, we get the 2 variables a7 and a8 with the Wald value are more
than 2 and p value are less than 0.1 simultaneously, which indicate the coefficient
of the 2 variables are statistically significant when the confidence level is 90%.
So, the 2 variables will enter into the final regression equation.

After getting the equation, we discover that the set {a3, a7, a8} will be the best
reduct in our information system by comparing the computing results of RST
and ordinal regression. So, we can choose the 3 attributes to generate decision
rules. In addition, the rules acquired by the system should have high accuracy
and coverage (the accuracy is equal to 1 and the coverage is no less than 0.15).
Table 8 shows the 10 main and valuable rules.

According to Table 8, we find that the total capital contribution ratio (a3), all
laborproductivity (a7) and the product sales rate (a8) are the most important at-
tributes, and {a3, a7, a8} is the shortest of all the 17 reduct sets. However, the
all laborproductivity stands for the labor market, the total capital contribution
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Table 6. Final decision table of the economic benefit in 31 regions

Area a1 a2 a3 a4 a5 a6 a7 a8 F Area a1 a2 a3 a4 a5 a6 a7 a8 F

1 C D C B C C A E C 17 B C C C C D C A B

2 E E B C B B B B B 18 B C B D C D D B B

3 A C B C B C C D B 19 A D B B B C B C A

4 D B D C D E E D E 20 C C C D C D D C C

5 D B C B C D D B C 21 D C D D C D B E E

6 B D C C C C C C C 22 D D C C C E D A C

7 D D C D C C D B C 23 B C C C C D D B C

8 C A A B B A A B A 24 D C C D D D D D D

9 B D B A B B A A A 25 D A A B C A A B A

10 A E B C B D B C A 26 E A D A D A D E E

11 A E A B A C C D A 27 D C C D C B D D D

12 C C C C C D D B C 28 D D D D C E E E E

13 B C B B B C B D B 29 E C D D D E C C E

14 C D C D C E E C D 30 E C D C C E D D E

15 A C A C A B C C A 31 D A A C B A A C A

16 A C B D B C D C B

Table 7. The ordinal regression result

Estimate Std.Error Wald df Sig.

Threshold

[F=1] -8.886 3.469 6.561 1 .010
[F=2] -1.098 2.282 .232 1 .630
[F=3] 7.747 2.786 7.736 1 .005
[F=4] 12.776 4.059 9.908 1 .002

Location

a1 -2.830 1.895 2.231 1 .135
a2 -.921 2.639 .122 1 .727
a3 -9.411 5.904 2.541 1 .111
a4 .118 2.888 .002 1 .967
a5 -1.968 3.208 .376 1 .540
a6 3.435 5.079 .458 1 .499
a7 -3.423 2.067 2.743 1 .098
a8 -4.044 1.853 4.764 1 .029

ratio can be considered as money market, and the product sales rate is an impor-
tant factor in the product market. The rules generated by Table 8 shows the the
economic benefit conditions is decided by the labor market, money market and
product market, which is consistent with the Keynesian model in macro-economy
theory.

In addition, the 10 rules obtained from the system are not only intuitive and
clear and conforms with the reality and the people’s experience, but also show
the internal essence of the information table. For example, the attribute value
performs A in a2, a4 and a6 in the area of 26, but the value performs D, E, E
in a3, a7 and a8 respectively, and we can use the 10th rule in Table 8 to judge



A New Rough Sets Decision Method Based on PCA and Ordinal Regression 357

Table 8. The 10 main rules

No. The detailed rules Support Accuracy Coverage

1 (a3, A) ∧ (a7, A) ∧ (a8, B) → (F, A) 2 1 0.25

2 (a3, C) ∧ (a7, D) ∧ (a8, B) → (F, C) 4 1 0.5

3 (a3, B) ∧ (a7, B) ∧ (a8, C) → (F, A) 2 1 0.25

4 (a3, C) ∧ (a7, D) ∧ (a8, D) → (F, D) 2 1 0.667

5 (a3, C) ∧ (a7, E) ∧ (a8, C) → (F, D) 1 1 0.333

6 (a3, B) ∧ (a7, B) ∧ (a8, D) → (F, B) 1 1 0.167

7 (a3, B) ∧ (a7, D) ∧ (a8, C) → (F, B) 1 1 0.167

8 (a3, D) ∧ (a7, D) ∧ (a8, D) → (F, E) 1 1 0.167

9 (a3, D) ∧ (a7, D) ∧ (a8, E) → (F, E) 1 1 0.167

10 (a3, D) ∧ (a7, E) ∧ (a8, E) → (F, E) 1 1 0.167

the comprehensive evaluation value of the 26th area is E. So, the example shows
that a3, a7 and a8 play a more important role than other condition attributes,
although there are no core attributes in our information table. Moreover, the
process of case study shows that the proposed model not only can be used for
classification tasks, but also can explain the inner mechanism of the classification
and explore the interesting rules in complex systems, which is helpful for the
knowledge discover tasks in information system.

5 Conclusions

In this paper, PCA and ordinal regression was induced into RST to obtain the
rules of information systems firstly. Then, a new rough sets decision method was
proposed and a case study was given to validate the rationality and validity of
the proposed method. Our future research work is focused on the incompletely
information system and extend the basic relation to a dynamic environment. It
also seems worthwhile to explore if the proposed approach can be extended to
other generalized rough set models like fuzzy rough set theory.
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Abstract. The paper makes the first attempt to combine two method-
ologies concerning uncertainty and fuzzy reasoning, namely rough set
flow graphs and fuzzy relation equations. Rough set flow graphs pro-
posed by Z. Pawlak are a useful tool for the knowledge representation.
In this paper, we use them to represent the knowledge of transitions be-
tween states included in multistage dynamic information systems. The
knowledge represented by flow graphs is a basis for determining possi-
bilities of appearances of states in the future using the max − ∗ fuzzy
composition. In the approach proposed in the paper, we take advantage
of some properties of the max − ∗ fuzzy relation equations.

Keywords: rough sets, flow graphs, fuzzy relations, prediction.

1 Introduction

One of the important aspects of data mining is the analysis of data changing
in time (temporal data). Different methodologies of soft computing are used
for prediction with temporal data, e.g., fuzzy reasoning, neural networks, rough
sets. In this paper, we use rough set flow graphs proposed by Z. Pawlak [10] as
a tool for representing the knowledge of transitions between states. We assume
that the knowledge is included in the multistage dynamic information systems
introduced in [8]. Multistage dynamic information systems are generalization of
dynamic information systems proposed by Z. Suraj in [12]. Having the knowl-
edge represented in rough set flow graphs, we use the max − ∗ fuzzy relation
equations to predict possibilities of the appearance of states in the future. In
our approach, we treat the flow graph as a ”black box”. The knowledge included
in the flow graph is described by means of a matrix with fuzzy elements (num-
bers), called a certainty matrix. We are interested only in input and output of
the flow graph. This leads to the max − ∗ composition. Input is determined as
a possibility distribution of current states of a given system. As a result of the
max − ∗ composition we obtain a possibility distribution of states of the sys-
tem in the future, i.e., after several steps (time units). This information can be
useful in the state prediction problems. The usage of fuzzy relation equations
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is very interesting because they have the solid theoretical basis. Moreover, a lot
of properties of fuzzy relation equations have been proved. We recall and take
advantage of some of them.

The rest of the paper is organized as follows. In Section 2, a brief review of the
basic concepts of information systems and rough set flow graphs is presented.
Section 3 presents multistage dynamic information systems describing transitions
between states of considered systems. Section 4 includes essential information on
max − ∗ fuzzy relation equations and their properties. Section 5 shows how to
apply rough set flow graphs and fuzzy relation equations in state prediction
problems. Finally, Section 6 consists of some conclusions.

2 Preliminaries

In this section, we recall the basic concepts concerning information systems and
rough set flow graphs which are crucial to understand the approach proposed in
the paper.
Information Systems. An information system is a pair S = (U,A), where U
is a set of objects, A is a set of attributes, i.e., a : U → Va for a ∈ A, where
Va is called a value set of a. A decision system is a pair DS = (U,A), where
A = C ∪ D, C ∩ D = ∅, and C is a set of condition attributes, D is a set of
decision attributes. Any information (decision) system can be represented as a
data table, whose columns are labeled with attributes, rows are labeled with
objects, and entries of the table are attribute values.
Rough Set Flow Graphs. Rough set flow graphs have been defined by Z.
Pawlak [10] as a tool for reasoning from data. A flow graph is a directed, acyclic,
finite graph G = (N,B, σ), where N is a set of nodes, B ⊆ N × N is a set of
directed branches and σ : B → [0, 1] is a flow function.

An input of a node x ∈ N is the set I(x) = {y ∈ N : (y, x) ∈ B}, whereas
an output of a node x ∈ N is the set O(x) = {y ∈ N : (x, y) ∈ B}. σ(x, y) is
called a strength of a branch (x, y) ∈ B and it is also denoted as str(x, y). We
define the input and the output of the graph G as I(G) = {x ∈ N : I(x) = ∅}
and O(G) = {x ∈ N : O(x) = ∅}, respectively. The input and the output of G
consist of external nodes of G. The remaining nodes of G are its internal nodes.

With each node x ∈ N we associate its inflow δ+(x) and outflow δ−(x) defined
by:

– δ+(x) =
∑

y∈I(x)

σ(y, x),

– δ−(x) =
∑

y∈O(x)

σ(x, y).

For each node x ∈ N , its throughflow δ(x) is defined as follows:

δ(x) =

⎧⎨
⎩
δ−(x) if x ∈ I(G)
δ+(x) if x ∈ O(G)
δ−(x) = δ+(x) otherwise.

(1)
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With each branch (x, y) ∈ B we also associate:

– certainty: cer(x, y) = σ(x,y)
δ(x) ,

– coverage: cov(x, y) = σ(x,y)
δ(y) ,

where δ(x) 
= 0 and δ(y) 
= 0.
A directed path [x . . . y] between nodes x and y in G, where x 
= y, is a

sequence of nodes x1, x2, . . . , xn such that x1 = x, xn = y and (xi, xi+1) ∈ B,
where 1 ≤ i ≤ n− 1. For each path [x1 . . . xn], we define:

– certainty: cer[x1 . . . xn] =
n−1∏
i=1

cer(xi, xi+1),

– coverage: cov[x1 . . . xn] =
n−1∏
i=1

cov(xi, xi+1),

– strength: str[x1 . . . xn] = δ(x1)cer[x1 . . . xn] = δ(xn)cov[x1 . . . xn].

A connection 〈x, y〉 from the node x to the node y is a set of all paths from x
to y in G. For each connection 〈x, y〉, we define:

– certainty: cer 〈x, y〉 =
∑

[x...y]∈〈x,y〉
cer[x . . . y],

– coverage: cov 〈x, y〉 =
∑

[x...y]∈〈x,y〉
cov[x . . . y],

– strength: str 〈x, y〉 =
∑

[x...y]∈〈x,y〉
str[x . . . y].

For a given rough set flow graph G, we can define the so-called certainty
matrix C(G) as follows.

Definition 1. A certainty matrix C(G) = [cij ] ∈ [0, 1]m×n of the rough set flow
graph G, where m = card(O(G)) and n = card(I(G)), is a matrix such that
cij = cer 〈xj , yi〉, where xj ∈ I(G) and yi ∈ O(G).

3 Multistage Dynamic Information Systems

A notion of dynamic information systems was introduced by Z. Suraj in [12]
to represent dynamic behavior of systems (transitions between states). We can
extend a notion of dynamic information systems to the so-called multistage dy-
namic information systems (in short, MDISs) (cf. [8]). If we are interested in
sequences of changes of states, then we should represent such changes by means
of polyadic relations over the sets of states. In this section, we give some crucial
notions concerning multistage dynamic information systems.

Definition 2. A multistage transition system is a pair MTS = (U, T ), where
U is a nonempty set of states and T ⊆ Uk is a multistage transition relation,
where k > 2.

A multistage transition relation T ⊆ Uk is a polyadic relation defined over the
set U .
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Definition 3. A multistage dynamic information system is a tuple MDIS =
(U,A, T ), where S = (U,A) is an information system called the underlying sys-
tem of MDIS and MTS = (U, T ) is a multistage transition system.

Each element of a multistage transition relation T in a multistage dynamic in-
formation system MDIS = (U,A, T ) is a sequence of global states (from the set
U) which can be referred to as an episode.

Definition 4. Let MDIS = (U,A, T ) be a multistage dynamic information sys-
tem, where T ⊆ Uk. Each element (u1, u2, . . . , uk) ∈ T , where u1, u2, . . . , uk ∈ U ,
is called an episode in MDIS.

A dynamic information system can be presented by means of data tables rep-
resenting information systems in the Pawlak’s sense. In this case, each dynamic
information system is depicted by means of two data tables. The first data ta-
ble represents an underlying system that is an information system. The second
one represents a decision system that is further referred to as a decision transi-
tion system. This table represents transitions determined by a transition relation.
Analogously, we can use a suitable data table to represent a multistage transition
system. Such a table will represent the so-called multistage decision transition
system.

Definition 5. Let MTS = (U, T ) be a multistage transition system. A multi-
stage decision transition system is a pair MDTS = (UT , A

1 ∪ A2 ∪ . . . ∪ Ak),
where each t ∈ UT corresponds exactly to one element of the polyadic transition
relation T whereas attributes from the set Ai determine global states of the i-th
domain of T , where i = 1, 2, . . . , k.

Each object in a multistage decision transition system represents one episode in
a given multistage dynamic information system.

By InfAi we denote the set of all information vectors (appearing in the i-th
stage in the multistage decision transition system MDTS) in the form:

(ai
1(ut), ai

2(ut), . . . , ai
m(ut)), (2)

where ai
1, a

i
2, . . . , a

i
m ∈ Ai, i = 1, 2, . . . , k, and ut ∈ UT .

Let MDTS = (UT , A
1 ∪ A2 ∪ . . . ∪ Ak) be a multistage decision transition

system. By |(v1, v2, ..., vm)|iMDTS we denote the set of objects in UT for which
an information vector (v1, v2, ..., vm) appears in the i-th stage in MDTS, i.e.,

|(v1, v2, ..., vm)|iMDTS = {ut ∈ UT : ai
j(ut) = vj , a

i
j ∈ Ai, j = 1, 2, . . . ,m}.

Each information vector in the form of (2) can be interpreted as a global
state observed in the time instant i. In that case, each episode in MDIS can be
described as a sequence of information vectors:[

(a1
1(ut), . . . , a1

m(ut)), (a2
1(ut), . . . , a2

m(ut)), . . . , (ak
1(ut), . . . , ak

m(ut))
]
, (3)

where ai
1, . . . , a

i
m ∈ Ai, i = 1, 2, . . . , k and ut ∈ UT .
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By
〈
(a1

1(ut), . . . , a1
m(ut)), (ak

1(ut), . . . , ak
m(ut))

〉
we denote an episode starting

from the global state described by the information vector (a1
1(ut), . . . , a1

m(ut))
and ending in the global state described by the information vector
(ak

1(ut), . . . , ak
m(ut)).

4 Max − ∗ Fuzzy Relation Equations and Their
Properties

In this section, we recall some properties of the max − ∗ composition with
necessary assumptions on the operation ∗ important from our point of view.
We assume the following notation: sup denotes supremum whereas inf denotes
infimum.

By max − ∗ composition of a matrix A = [aij ] ∈ [0, 1]m×n and a vector
B = [bi] ∈ [0, 1]n we understand a vector C = A ◦B = [ci] ∈ [0, 1]m such that:

ci = sup
k=1,2,...,n

(aik ∗ bk), (4)

where i = 1, 2, . . . ,m.
Let m,n ∈ N, A = [aij ] ∈ [0, 1]m×n, and B = [bi] ∈ [0, 1]m. We are interested

in solutions X = [xi] ∈ [0, 1]n to the max− ∗ system A ◦X = B, i.e.,

sup
j=1,2,...,n

(aij ∗ xj) = bi, (5)

where i = 1, 2, . . . ,m. The family of all such solutions will be denoted by S(A,B).

Theorem 1. If operation ∗ with neutral element e = 1 is infinitely sup-
distributive, then U = A→ B, where

uj = inf
k=1,2,...,m

(akj
∗→ bk)

for j = 1, 2, . . . , n is the greatest solution of inequality A◦X ≤ B, where a
∗→ b =

max{t ∈ [0, 1] : a ∗ t ≤ b} is residuated implication induced by ∗.

Proof. The proof can be found in [11].

The product operation satisfies, among others, assumptions given in Theorem 1.
If an operation ∗ fulfills assumptions from Theorem 1, then for a matrix

A = [aij ], the matrix Ar = [ar
ij ], where

ar
ij =

{
aij if aij ∗ uj = bi
0 otherwise. (6)

is called a reduced matrix of A.
Analogously, we can reduce a matrix A for each fixed solution X less than or

equal to U . Such a reduced matrix will be denoted by Ar
X .
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Matrices A,C ∈ [0, 1]m×n are solution invariant about B ∈ [0, 1]m if
S(A,B) = S(A,C) 
= ∅. Then we write A ∼B C. It is clear that relation ∼B is
an equivalence in [0, 1]m×n and we can consider equivalence classes [A]∼B .

One can prove that under the assumptions of Theorem 1 we have Ar ∈ [A]∼B .
Therefore, S(A,B) = S(Ar, B). For the fixed solution X , if we have the reduced
matix Ar

X , then we obtain that A ◦X = Ar
X ◦X = B.

5 State Prediction

To represent an information flow distribution in multistage decision transition
systems we can use rough set flow graphs proposed by Z. Pawlak. Let MDTS =
(UT , A

1 ∪A2 ∪ . . .∪Ak) be a multistage decision transition system. A rough set
flow graphG corresponding to MDTS consists of k layers. Nodes in the i-th layer
of G represent information vectors (global states) determined by attributes from
the set Ai, where i = 1, 2, . . . , k. Since attribute sets A1, A2, ..., Ak are ordered
in time, we can call the graph G a temporal rough set flow graph. It represents
temporal flow distribution in the multistage decision transition system. In order
to construct a rough set flow graph G corresponding to a multistage decision
transition system MDTS we may perform Algorithm 1. A graph constructed
using this algorithm is supplemented with a certainty function which assigns a
number called certainty from the interval [0, 1] to each branch in G. So, we have
G = (N,B, σ, cer), where N is a set of nodes, B is a set of directed branches,
σ : B → [0, 1] is a flow function, and cer : B → [0, 1] is a certainty function.
Certainty factors of branches will be used in our approach presented here.

If we have a possibility distribution (cf. [5]) of global states (information vec-
tors) being the start points of episodes (global states determined by attributes
from A1) and the knowledge included in a multistage decision transition system
and expressed by the temporal rough set flow graph, then we can determine
a possibility distribution of global states (information vectors) being the end
points of episodes (global states determined by attributes from Ak). Thus we
can determine a possibility distribution of global states after k − 1 transitions
between global states (in k − 1 time units).

Let MDTS = (UT , A
1 ∪ A2 ∪ . . . ∪ Ak) be a multistage decision transition

system and G be a rough set flow graph corresponding to MDTS. The possibility
distribution of global states determined by attributes from A1 defines the fuzzy
set over the set of information vectors from InfA1 :

µ1

(v1
11
, . . . , v1

m1
)

+ . . . +
µq

(v1
1q
, . . . , v1

mq
)
,

where (v1
11
, . . . , v1

m1
), . . . , (v1

1q
, . . . , v1

mq
) ∈ InfA1 and µ1, . . . , µq ∈ [0, 1]. This

possibility distribution can be presented as a column vector [µ1, . . . , µq]T . Anal-
ogously the possibility distribution of global states determined by attributes from
Ak defines the fuzzy set over the set of information vectors from InfAk :

µ1

(vk
11
, . . . , vk

m1
)

+ . . .+
µr

(vk
1r
, . . . , vk

mr
)
,
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Algorithm 1. Algorithm for creating a temporal rough set flow graph corre-
sponding to a multistage decision transition system

Input : A multistage decision transition system
MDTS = (UT , A1 ∪ A2 ∪ . . . ∪ Ak).

Output: A temporal rough set flow graph G = (N, B, σ, cer) corresponding to
MDTS.

N ←− ∅;
B ←− ∅;
for each i = 1, 2, . . . , k do

Create an epmty set Ni of nodes;
for each information vector inf ∈ InfAi do

Create a node ninf representing inf and add it to Ni;
end
N ←− N ∪ Ni;

end
for each i = 1, 2, . . . , k − 1 do

for each node ninfx ∈ Ni do
for each node ninfy ∈ Ni+1 do

Create a branch b = (ninfx , ninfy);

σ(b) ←− card(|infx|iMDT S∩|infy|i+1
MDT S

)
card(UT ) ;

cer(b) ←− card(|infx|iMDT S∩|infy|i+1
MDT S

)
card(|infx|i

MDT S
) ;

B ←− B ∪ {b};
end

end
end

where (vk
11
, . . . , vk

m1
), . . . , (vk

1r
, . . . , vk

mr
) ∈ InfAk and µ1, . . . , µr ∈ [0, 1]. This

possibility distribution can be presented as a column vector [µ1, . . . , µr]T .
An element cij of the certainty matrix C(G) determines certainty of appearing

of the episode
〈

(v1
1j
, . . . , v1

mj
), (vk

1i
, . . . , vk

mi
)
〉

, where (v1
1j
, . . . , v1

mj
) ∈ InfA1 ,

(vk
1i
, . . . , vk

mi
) ∈ InfAk , j = 1, 2, . . . , card(InfA1), i = 1, 2, . . . , card(InfAk ), and

m = card(A1) = . . . = card(Ak).
Suppose, we have determined a possibility distribution of global states (infor-

mation vectors) being the start points of episodes given as a vector Π(InfA1) =
[π1

i ]n, where n = card(InfA1), and a certainty matrix C(G) of the flow graph
G. We can obtain a possibility distribution of global states (information vectors)
being the end points of episodes and expressed as a vector Π(InfAk) = [πk

i ]p,
where p = card(InfAk ), in the following way Π(InfAk) = C(G) ◦ Π(InfA1),
where ◦ denotes max− product composition. Properties of max− ∗ fuzzy rela-
tion equations recalled in Section 4 enable us to obtain some useful information
what will be shown in an example.

Example 1. Now, we give a simple example enabling readers to understand the
approach proposed in this section. Let us take daily exchange rates between the
Polish zloty and two currencies: the US dollar (marked with usd) and the euro



366 Z. Matusiewicz and K. Pancerz

(marked with euro). The meaning of values of attributes is the following: -1
denotes decreasing a given exchange rate in relation to the previous exchange
rate, 0 denotes remaining a given exchange rate on the same level in relation to
the previous exchange rate, 1 denotes increasing a given exchange rate in relation
to the previous exchange rate. A multistage decision transition system MDTS
is shown in Table 1. MDTS contains five episodes of length 3. Each global state
belonging to these episodes is described by two attributes usd and euro.

Table 1. A multistage decision transition system MDTS

UT A1 A2 A3

usd1 euro1 usd2 euro2 usd3 euro3

e1 -1 1 0 0 0 0

e2 -1 1 -1 0 0 0

e3 0 0 -1 0 1 0

e4 0 1 -1 0 1 1

e5 -1 0 -1 0 1 0

A rough set flow graph G corresponding to the multistage decision transition
system MDTS and built using Algorithm 1 is shown in Figure 1. For legibility,
branches are labeled only with certainties.

Fig. 1. A flow graph G corresponding to MDTS

The certainty matrix C(G) of the rough set flow graph G corresponding to
MDTS has the following form:

C(G) =

⎡
⎣0.625 0.25 0.25 0.25

0.25 0.5 0.5 0.5
0.125 0.25 0.25 0.25

⎤
⎦
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Let us assume the following possibility distribution of current global states:
1.0

(−1, 1)
+

0.5
(0, 0)

+
0.2

(0, 1)
+

0.8
(−1, 0)

.

Solving max− product composition we obtain the following possibility distribu-
tion of global states after two transitions between states:

0.625
(0, 0)

+
0.4

(1, 0)
+

0.2
(1, 1)

.

The reduced matrix C(G)r
Π(InfA1 ) of C(G) has the form:

C(G)r
Π(InfA1 ) =

⎡
⎣0.625 0 0 0

0 0 0 0.5
0 0 0 0.25

⎤
⎦

It means that:

– the appearance of the global state (0, 0) in two time units in the future is
announced, first of all, by the global state (−1, 1) currently appearing,

– the appearance of the global state (1, 0) in two time units in the future is
announced, first of all, by the global state (−1, 0) currently appearing,

– the appearance of the global state (1, 1) in two time units in the future is
announced, first of all, by the global state (−1, 0) currently appearing.

The greatest solution has the following form:

U =

⎡
⎢⎢⎣

1
0.8
0.8
0.8

⎤
⎥⎥⎦

The greatest solution determines a maximal possibility distribution of current
global states leading to a given possibility distribution of future global states. It
means that having the following possibility distribution of current global states:

1.0
(−1, 1)

+
0.8

(0, 0)
+

0.8
(0, 1)

+
0.8

(−1, 0)

we also obtain the same possibility distribution of global states after two transi-
tions between states, like previously.

6 Conclusions

The paper has shown how to combine rough set flow graphs and max− ∗ fuzzy
relation equations in the state prediction problems. It is worth noting that the
approach proposed in the paper provides only one of possible solutions. In the
future works we will study deeper, incorporating fuzzy relation equations in
reasoning by means of the knowledge represented in the rough set flow graphs.
It seems to be very interesting because fuzzy relation equations have the solid
theoretical basis and a lot of their important properties have been proved. It is
also necessary to examine our approach on real-life data.
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Abstract. Conventional clustering algorithms categorize an object into
precisely one cluster. In many applications, the membership of some of
the objects to a cluster can be ambiguous. Therefore, an ability to specify
membership to multiple clusters can be useful in real world applications.
Fuzzy clustering makes it possible to specify the degree to which a given
object belongs to a cluster. In Rough set representations, an object may
belong to more than one cluster, which is more flexible than the con-
ventional crisp clusters and less verbose than the fuzzy clusters. The
unsupervised nature of fuzzy and rough algorithms means that there is
a choice about the level of precision depending on the choice of parame-
ters. This paper describes how one can vary the precision of the rough
set clustering and studies its effect on synthetic and real world data sets.

Keywords: Rough sets, K-means clustering algorithm, precision.

1 Introduction

In addition to clearly identifiable groups of objects, it is possible that a data set
may consist of several objects that lie on the fringes. The conventional clustering
techniques will mandate that such objects belong to precisely one cluster. Such
a requirement is found to be too restrictive in many data mining applications. In
practice, an object may display characteristics of different clusters. In such cases,
an object should belong to more than one cluster, and as a result, cluster bound-
aries necessarily overlap. Fuzzy set representation of clusters, using algorithms
such as fuzzy C-means, make it possible for an object to belong to multiple
clusters with a degree of membership between 0 and 1 [11]. In some cases, the
fuzzy degree of membership may be too descriptive for interpreting clustering
results. Rough set based clustering provides a solution that is less restrictive
than conventional clustering and less descriptive than fuzzy clustering.

Rough set theory has made substantial progress as a classification tool in
data mining [1,14]. The basic concept of representing a set as lower and up-
per bounds can be used in a broader context such as clustering. Clustering in
relation to rough set theory is attracting increasing interest among researchers
[4,2,8,9,10,15,13]. Lingras [5] described how a rough set theoretic classification
scheme can be represented using a rough set genome. In subsequent publications
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[6,7], modifications of K-means and Kohonen Self-Organizing Maps (SOMs) were
proposed to create intervals of clusters based on rough set theory.

Clustering is an unsupervised learning process. That means there is no cor-
rect solution prescribed by an expert. For example, in a multidimensional space
with a large number of objects, one cannot easily identify the number of clusters
an algorithm should aim for. Researchers have proposed various cluster quality
measures that make it possible to arrive at the appropriate number of clusters.
The rough clustering has an additional issue that one needs to consider, namely,
the precision of the clusters. Precision of the clusters refers to the number of
objects that are precisely assigned to a cluster. An object in rough set cluster-
ing may be assigned to exactly one cluster or it may be assigned to multiple
clusters. The objects that are assigned to multiple clusters are said to belong
to the boundary region. Percentage of objects in boundary region is inversely
proportional to the precision of rough clustering. This paper demonstrates how
the size of boundary region can be varied with the help of threshold in rough
set clustering. Experiments with a synthetic data set and a real world data set
also suggest a procedure for choosing an appropriate precision.

2 Adaptation of Rough Set Theory for Clustering

Due to space limitations, some familiarity with rough set theory is assumed [14].
Rough sets were originally proposed using equivalence relations. However, it is
possible to define a pair of upper and lower bounds

(
A(C), A(C)

)
or a rough

set for every set C ⊆ U as long as the properties specified by Pawlak [14] are
satisfied. Yao et al. [16] described various generalizations of rough sets by relaxing
the assumptions of an underlying equivalence relation. Such a trend towards
generalization is also evident in rough mereology proposed by Polkowski and
Skowron [12] and the use of information granules in a distributed environment
by Skowron and Stepaniuk. The present study uses such a generalized view of
rough sets. If one adopts a more restrictive view of rough set theory, the rough
sets developed in this paper may have to be looked upon as interval sets.

Let us consider a hypothetical classification scheme

U/P = {C1, C2, . . . , Ck} (1)

that partitions the set U based on an equivalence relation P . Let us assume
due to insufficient knowledge that it is not possible to precisely describe the sets
Ci, 1 ≤ i ≤ k, in the partition. Based on the available information, however, it
is possible to define each set Ci ∈ U/P using its lower A(Ci) and upper A(Ci)
bounds. We will use m-dimensional vector representations, u,v for objects and
ci for cluster Ci.

We are considering the upper and lower bounds of only a few subsets of U .
Therefore, it is not possible to verify all the properties of the rough sets [14].
However, the family of upper and lower bounds of ci ∈ U/P are required to
follow some of the basic rough set properties such as:
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(P1) An object x can be part of at most one lower bound
(P2) x ∈ A(ci) =⇒ x ∈ A(ci)
(P3) An object x is not part of any lower bound ⇐⇒

x belongs to two or more upper bounds.

Property (P1) emphasizes the fact that a lower bound is included in a set. If two
sets are mutually exclusive, their lower bounds should not overlap. Property (P2)
confirms the fact that the lower bound is contained in the upper bound. Property
(P3) is applicable to the objects in the boundary regions, which are defined as the
differences between upper and lower bounds. The exact membership of objects in
the boundary region is ambiguous. Therefore, property (P3) states that an object
cannot belong to only a single boundary region. Their discussion can provide
more insight into the essential properties for a rough set model. Note that (P1)-
(P3) are not necessarily independent or complete. However, enumerating them
will be helpful later in understanding the rough set adaptation of evolutionary,
neural, and statistical clustering methods. In the context of decision-theoretic
rough set model, Yao and Zhao [17] provide a more detailed discussion on the
important properties of rough sets and positive, boundary, and negative regions.

3 Adaptation of K-Means to Rough Set Theory

Here, we refer readers to [3] for discussion on conventional K-means algorithm.
Incorporating rough sets into K-means clustering requires the addition of the
concept of lower and upper bounds. Calculation of the centroids of clusters from
conventional K-Means needs to be modified to include the effects of these bounds.
The modified centroid calculations for rough sets are then given by:

if A(c) 
= ∅ and A(c) −A(c) = ∅

cj =
�

x∈A(c) xj

|A(c)|

else if A(c) = ∅ and A(c) −A(c) 
= ∅

cj =
�

x∈(A(c)−A(c)) xj

|A(c)−A(c)|

else

cj = wlower ×
�

x∈A(c) xj

|A(c)| + wupper ×
�

x∈(A(c)−A(c)) xj

|A(c)−A(c)| ,

(2)

where 1 ≤ j ≤ m. Here, m is the dimensions of the vectors c and x. The
parameters wlower and wupper correspond to the relative importance of lower and
upper bounds, and wlower +wupper = 1. If the upper bound of each cluster were
equal to its lower bound, the clusters would be conventional clusters. Therefore,
the boundary region A(c) − A(c) will be empty, and the second term in the
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equation will be ignored. Thus, Eq. (2) will reduce to conventional centroid
calculations.

The next step in the modification of the K-means algorithms for rough sets
is to design criteria to determine whether an object belongs to the upper or
lower bound of a cluster given as follows. For each object vector x, let d(x, cj)
be the distance between itself and the centroid of cluster cj . Let d(x, ci) =
min1≤j≤k d(x, cj). The ratio d(x, ci)/d(x, cj), 1 ≤ i, j ≤ k, are used to determine
the membership of x. Let T = {j : d(x, ci)/d(x, cj) ≤ threshold and i 
= j}.

1. If T 
= ∅, x ∈ A(ci) and x ∈ A(cj), ∀j ∈ T . Furthermore, x is not part of any
lower bound. The above criterion guarantees that property (P3) is satisfied.

2. Otherwise, if T = ∅, x ∈ A(ci). In addition, by property (P2), x ∈ A(ci).

It should be emphasized that the approximation space A is not defined based on
any predefined relation on the set of objects. The upper and lower bounds are
constructed based on the criteria described above.

4 Refinements of Rough Set Clustering

Rough clustering is gaining increasing attention from researchers. The rough K-
means approach, in particular, has been a subject of further research. Peters [15]
discussed various deficiencies of Lingras and West’s original proposal [6]. The
first set of independently suggested alternatives by Peters are similar to the Eq.
(2). Peters also suggest the use of ratios of distances as opposed to differences
between distances similar to those used in the rough set based Kohonen algo-
rithm described in [7]. The use of ratios is a better solution than differences.
The differences vary based on the values in input vectors. The ratios, on the
other hand, are not susceptible to the input values. Peters [15] have proposed
additional significant modifications to rough K-means that improve the algo-
rithm in a number of aspects. The refined rough K-means algorithm simplifies
the calculations of the centroid by ensuring that lower bound of every cluster
has at least one object. It also improves the quality of clusters as clusters with
empty lower bound have a limited basis for its existence. Peters tested the re-
fined rough K-means for various datasets. The experiments were used to analyze
the convergence, dependency on the initial cluster assignment, study of Davies-
Boulden index, and to show that the boundary region can be interpreted as a
security zone as opposed to the unambiguous assignments of objects to clusters
in conventional clustering. Despite the refinements, Peters concluded that there
are additional areas in which the rough K-means needs further improvement,
namely in terms of selection of parameters.

By its very definition, unsupervised learning is an exercise with no known
solution. Clustering is one of the primary examples of unsupervised clustering,
which attempts to find groups of objects with similar characteristics. There are
a number of unknowns involved in the process. The appropriate number of groups
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is not known apriori. Measures such as Davies-Boulden index have been used to
identify the most appropriate number of clusters. As mentioned previously, even
if there were clearly identifiable clusters of objects, it is quite often likely that
some of the objects may be straying from these clusters. In that case, the next
issue is how to decide what percentage of objects are straying from the neatly
formed clusters. These stray objects will then be assigned to boundary regions
of multiple clusters using the rough K-means algorithm. This paper experiments
with the issue of determining the appropriate number of boundary region objects
using two data sets. The first data set is a two dimensional set of objects arti-
ficially created with clearly identifiable clusters and stray objects. Since we can
visualize the appropriate rough set clustering, we can test the behavior of the
rough K-means algorithm for different values of threshold. The threshold para-
meter helps us control the size of the boundary region. We define the percentage
of boundary region as a ratio of cardinality of the union of all the boundary
regions divided by the total number of objects expressed as percentages, given
by:

BoundarySize =
‖
⋃

c∈U/P(A(c)−A(c))‖
‖U‖ × 100 (3)

The following section studies the variation in BoundarySize along with qual-
itative analysis of changing memberships to suggest a procedure for identifying
appropriate value of the threshold in the rough K-means algorithm.

5 Study Data and Experimental Analysis

We use two kinds of data, synthetic data and real data, to demonstrate how to
choose an appropriate threshold for rough clustering.

5.1 Synthetic Data

The synthetic data set has been developed to study how the BoundarySize
varies with threshold for rough clustering. In order to visualize the data set, we
restrict it to two dimensions as can be seen in Fig. 1. There are a total of 65
objects. It is obvious that there are three distinct clusters, denoted by C1, C2

and C3. However, five objects, identified as xi (1 ≤ i ≤ 5), do not belong to any
particular cluster. We performed rough clustering on the synthetic data set for
different values of threshold.

Fig. 2 shows how changing the value of threshold can affect the BoundarySize
of rough clustering with k = 3 and wlower = 0.75. In the inset figure, we can
see a slow increase in the BoundarySize until the threshold reaches a value of
1.4, since the higher values lead to larger boundary regions. While the threshold
values were changed from 1.4 to 2, the BoundarySize remained constant at
7.7%. However, the re-distribution of objects in the boundary region did occur.
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Fig. 1. Synthetic data

For example, x5, which was in the boundary region of c2 and c3, was also added
to the boundary region of c1, when threshold changed the value from 1.6 into 1.7.
It is obvious from Fig. 1 that x5 should only belong to the boundary region of c2

and c3. That means increasing the value of threshold beyond a certain value can
lead to unreasonable addition of some objects to boundary regions of some of the
clusters. Moreover, one should not increase the boundary region too much as it
will lead to fairly indecisive and uninformative rough clustering. Fig. 2 shows a
sudden and sharp increase in the BoundarySize after threshold reaches a value
of 2. The BoundarySize goes up to a value of more than 50% when threshold
reaches the value of 2.5. Therefore, it is reasonable to consider threshold = 1.4
as an appropriate value in terms of the variance in BoundarySize. This value
of threshold can be identified by the fact that further number of increases in
threshold do not lead to net change in BoundarySize.

5.2 Real Data

This section reports experiments with a real world data set belonging to a small
retail chain. The data consists of all the customer transactions in 2006. There were
a total of 68716 transactions, one transaction per item purchased. 40260 of these
transactions can be associated with 5878 identified customers. The objective of
the experiment is to cluster the customers based on their spending habits. Each
customer is represented by his monthly spending patterns. The monthly spending
pattern gives a better understanding of a customer’s spending habits than total
spending. A customer who spends $100 regularly may be a little more loyal than
one who spends $1000 during a single visit. The chronological ordering of spending
does not help us understand the propensity of a customer to spend. For example, a
person spending $100, $200, $300 in three months will look different from the one
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Fig. 2. Synthetic data: Change in BoundarySize with threshold

who spends $300, $100, $200 during the same three months. Therefore, we sort
the spending values, which makes the two customers identical in terms of their
revenue generation potential. Instead of using twelve monthly spending and visit
values, which may be too detailed for the purpose of grouping, we will represent
the patterns using the lowest, highest and average spending. However, in some
cases, lowest and highest values can be outliers. Therefore, we use second highest,
second lowest and median values as a representative of the pattern.

313 customers visited in only one month. These customers were termed as
infrequent customers. It was decided that there was no further need for grouping
these customers. After eliminating the 313 customers, the number of customers
was 5565. After experimenting with different number of clusters we set k = 5.
wlower was set at 0.75.

Fig. 3 describes the BoundarySize changes with the threshold, which is sim-
ilar to the one found for the synthetic data. The BoundarySize goes up a little
slowly until the threshold reaches a value of 1.4, where there is a marked in-
crease. This suggests that 1.4 may be an appropriate value for the threshold.
We can also see a sudden and sharp jump at threshold = 2.5. This reinforces our
earlier observation that high values of threshold may lead to inconclusive rough
clustering. Fig. 4 presents the rough centroids as the representative patterns for
each cluster. Cluster c1 is the largest cluster consisting of moderate spenders who
spend $0 to $52 in a month. The next cluster, c2, is about the quarter the size
of c3 with spending ranging from $0 to $100. Third cluster (c3) is even smaller
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Fig. 3. Real data: Change in BoundarySize with threshold

Fig. 4. Rough centroids for the retail data

with spending ranging from $10 to $250. Fourth cluster has approximately 70
to 100 customers who spend $120 to $500. The last cluster is the smallest with
spending ranging from $137 to $1330. The overlap between different clusters for
threshold = 1.4 and threshold = 2 are shown in Table 1. It can be seen in
Table 1(a) that the intermediate clusters, i.e. c2, c3, and c4 have overlaps with
two clusters on either side. For example, c2 overlaps with c1 and c3, while c3
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Table 1. The number of objects in the intersection of clusters

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5
C1 – 403 0 0 0 C1 – 809 81 11 8
C2 403 – 177 0 0 C2 809 – 388 28 9
C3 0 177 – 41 0 C3 81 388 – 163 18
C4 0 0 41 – 9 C4 11 28 163 – 59
C5 0 0 0 9 – C5 8 9 18 59 –

(a)threshold=1.4 (b)threshold=2.0

overlaps with c2 and c4, and c4 overlaps with c3 and c5. Clusters c1 and c5 have
overlap with only one cluster: c1 with c2 and c5 with c4. When the threshold is
raised to 2.0, we can see from Table 1(b) that each cluster overlaps with other
four clusters. That means many objects have now moved to boundary regions of
all the clusters. This makes any conclusion about their membership impossible.

6 Conclusions

Rough set clustering makes it possible to assign stray objects - that may not
belong to a precise cluster - to boundary regions of two or more clusters. This
aspect of rough set clustering adds a degree of imprecision to the clustering
scheme. The degree of imprecision is an additional unknown in the unsupervised
learning based on rough set theory. The experiments with a synthetic data set
and a real world data set show that it is important to choose a right balance
between rough and precise cluster assignments. The paper describes a procedure
that can be used to control the imprecision in rough set clustering for the rough
K-means algorithm by varying the threshold parameter. The results presented
here lay foundations for a more comprehensive study of the quality of rough set
clustering, which will be presented in a subsequent publication.
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Abstract. Many projects in data mining face, besides others, the follow-
ing two challenges. On the one hand concepts to deal with uncertainty
- like probability, fuzzy set or rough set theory - play a major role in
the description of real life problems. On the other hand many real life
situations are characterized by constant change - the structure of the
data changes. For example, the characteristics of the customers of a re-
tailer may change due to changing economical parameters (increasing oil
prices etc.). Obviously the retailer has to adapt his customer classifica-
tion regularly to the new situations to remain competitive. To deal with
these changes dynamic data mining has become increasingly important
in several practical applications. In our paper we utilize rough set the-
ory to deal with uncertainty and suggest an engineering like approach to
dynamic clustering that is based on rough k-means.

Keywords: Rough Clustering, Dynamic Clustering, Dynamic Data
Mining.

1 Introduction

Rough clustering approaches have gained increasing attention since Lingras et
al. introduced rough k-means [1,2]. Several extensions and modifications have
been suggested in the meantime (e.g. in [3,4,5,6,7]). In applications it has been
shown that rough clustering is a successful method for many real life problems
(for example [2,4]).

Up to now, rough clustering algorithms only perform in stable environments,
in environments where the structure of the data remains unchanged. However,
Crespo and Weber [8] pointed out that many real life situations are characterized
by changing data structures. They identified three strategies to deal with such
situations: (1) Neglect the changes and do not change the classifier1. (2) Perform
1 Note, we use the terms classify and classifier in the sense that new data are assigned

to the clusters obtained by a cluster analysis. Both terms are also used in supervised
learning and have a different meaning there.
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the cluster algorithm again using all data and build a new classifier. (3) Dynami-
cally adapt the initial classifier with respect to the changes in the data structure.
Crespo and Weber [8] argued that the last approach is very adequate for dynamic
data structures and therefore suggested a method to dynamically adapt the clas-
sifier derived by fuzzy c-means [9].

The objective of our paper is to develop an engineering like method2 how to
dynamically adapt the classifier of Lingras rough k-means.

The remaining paper is organized as follows. In the next Section we discuss
related literature. In Section 3 we present our approach how to engineer the
changes in rough clustering. The paper ends with a conclusion in Section 4.

2 Related Literature

In literature several approaches for dynamic data mining have been proposed.
In our context the paper of Crespo and Weber [8] is of special interest. They
suggested a dynamic approach to fuzzy c-means (FCM) and applied it to traffic
data besides others.

Basically they proposed to check the results of the objects’ classification for
changes in the data structure after each cycle of new data. Depending on the
changes they proposed a five step approach with three different actions (see
Figure 1): (1) create new clusters, (2) move clusters or (3) eliminate clusters.

Fig. 1. Crespo’s and Weber’s Methodology for Dynamic Data Mining [8]

For a more detailed overview and a discussion on related literature on dynamic
clustering the reader is referred to Weber [10].

2 We define an “engineering like method” as an approach that operates in many but
not necessarily in all real life situations properly.
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Dynamic approaches can also be seen in the context of the determination of
the initial parameters of partitive clustering algorithms. Several cluster validity
indexes have been suggested (e.g. [11,12,13]) which can also be used to determine
the optimal number of clusters. However, Mitra [5] pointed out the determination
of optimal initial parameters remains one of the main challenges especially in
rough clustering where the weights of the approximations and a threshold have
to be determined besides the number of clusters.

A dynamic, engineering-like approach can be a promising method to support
this process since the parameters are questioned and discussed after each cycle
of new data again.

3 Engineering Dynamic Cluster Structures

3.1 Basic Notations

For our dynamic rough clustering approach we use notations as follows:

Notation Meaning
i Cycle i
Ki Number of clusters in cycle i

M i = M i Total number of objects respectively total number of
objects in upper approximations after cycle i

M i =
Ki∑
k=1

M i
k Total number of objects in lower approximations af-

ter cycle i
M i

k, M i
k Number of objects in the upper respectively lower

approximation of cluster k after cycle i
N Number of new objects in cycle i

N i
k, N i

k Number of new objects in the upper respectively
lower approximation of cluster k in cycle i

wB , wL Weights of the boundary region respectively lower
approximation (with wB + wL = 1)

ε Threshold in rough k-means
F Number of objects that are far away from existing

cluster centers

Details on the underlying rough k-means can be found in e.g. [14,2].

3.2 Setup of the Dynamic Rough Clustering System

The setup of the dynamic rough clustering system is depicted in Figure 2. At the
beginning of each cycle the rough k-means algorithm is performed. The obtained
parameters are used to classify new objects.
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Fig. 2. Dynamic Rough Clustering Loop

Then we check for structural changes in the new data. If there are none
the classifier remains unchanged. If there are structural changes the current
parameters of the rough k-means are updated and, in the case of dying clusters,
old objects belonging to those are eliminated. Finally the rough cluster algorithm
is performed again. The method’s details are described in the following Section.

3.3 Possible Changes in the Cluster Structure

In our engineering approach we consider three possible changes in the data struc-
ture which lead to the adaption of the current parameters of the rough k-means
algorithm or an elimination of objects.

– Dying Clusters. A cluster is dying when it won’t be refreshed sufficiently
by new objects. As a consequence we proposed to eliminate the cluster.

– Emerging Clusters. If new objects do not sufficiently fit to the current
cluster structure we propose to create a new cluster.

– Changing Uncertainty. When the fraction between the number of objects
in the lower approximation and the number of objects in the boundary region
changes significantly we consider this as a change in the uncertainty of the
clusters. Here we propose to adapt the threshold parameter ε to the new
situation.

In this phase of our research we do not consider a possible tuning of the rough
k-means by changing the initial parameters wB and wL. Please note, that we also
consider the feature space as stable in our analysis. So we exclude any changes
in the dimensions of the feature space and the replacement of features.
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3.4 Dying Clusters

Condition. We propose that a cluster should be refreshed - that is to get a
reasonable number of new sure objects in every cycle - to stay alive. So we only
consider new objects that are assigned to lower approximations.

We propose the following criterion. The cluster strength, in terms of its sure
members, should not decline significantly in relation to the overall number of
objects:

Ni+1
k /Mi+1

Ni
k/Mi = r1 < τ1 (1)

For r1 = 1 the relative significance of cluster k remains unchanged from cycle
i to i + 1 while r1 > 1 indicates an increasing importance of that cluster. If
r1 < 1 the importance of cluster k decreases.

The parameter τ1 is a user defined threshold. In our context, the identification
of dying clusters, τ1 must be selected in a range of 0 < τ1 < 1.

Action. If a cluster is to be eliminated the members of its lower approxima-
tion will be eliminated. For the objects in its upper approximation we have to
distinguish two cases:

– An object still belongs to at least two other upper approximations. Since
this complies with the properties of interval based rough set clustering no
further action is required.

– An object belongs to only one upper approximation after the elimination of
the cluster. Since this would violate a property of interval based rough set
clustering we suggest to assign this object to the lower approximation of the
corresponding cluster.

The obtained solution is already quite good but might not be optimal in the
sense of rough clustering. Therefore, we suggest two alternative strategies here:

– The obtained solution is good enough for the needs of a data analyst (in
our engineering like approach the “good criterion” is based on a subjective
evaluation of an expert). Therefore, we do not need to perform the rough
k-means again.

– After the elimination of the objects the rough k-means will be performed
again with a cluster number of Ki+1 = Ki−1. The initial assignment of the
objects to the clusters should equal the ones obtained after the elimination
of the objects in iteration i.

3.5 Emerging Clusters

Condition. For fuzzy c-means Crespo and Weber [8] suggested to create a new
cluster when the following two conditions hold:

– The membership values of many new objects are close to 1/c (with c the
number of fuzzy clusters).

– These many new objects are far away from current cluster centers vk.
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In the case of rough k-means we can only apply the latter condition since new
groups of objects can emerge in upper as well as in lower approximations. So we
cannot transfer the membership criterion to rough approximations.

Therefore, along the lines with Crespo and Weber [8], we suggest the following
indicator when to create a new cluster:

ˆdjh >
1
2min{d(vj , vk)}∀h ∈ {M i + 1, ...,M i +N i+1}∀j 
= k ∈ {1, ...,Ki} (2)

Whenever we discover many new objects that are far away from existing
cluster centers we assume that they might form one new cluster3 (see Figure 3).
The term many should be defined use-dependent. We propose, for example, that
the number F of this kind of new objects should at least exceed the average
number of objects in the lower approximations of the existing clusters:

F > Mi

Ki =

Ki�

k=1
Mi

k

Ki

(3)

Fig. 3. Required Action: Creating a New Cluster

Action. In the given case we set the initial parameter Ki+1 = Ki + 1 and
leave the remaining initial parameters unchanged. Then we perform the rough
k-means again.

3.6 Changing Uncertainty

There are several possibilities to define criteria that indicate a significant change
in the data’s structure. In our context we emphasize on the relation between the
3 In general, one or more new clusters may have emerged. Preliminary, for simplicity,

we restrict our analysis to one new cluster here.
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number of objects in the lower approximations and the number of objects in the
upper approximations of the data set respectively all objects.

In many real-life situations a fraction between sure objects and objects that
“need a second look” is defined. Ideally this fraction can be derived intrinsically
- the fraction is within the data. However, in many cases the fraction is defined
extrinsically, for example by the famous 80/20 proportion: 80% of the cases go
through immediately while 20% need to have a second look.

Applying this idea to rough clustering this means 80% (or any other user
defined percentage) of the objects should belong to lower approximations since
their assignment to a cluster is clear. However, the remaining 20% are members
of boundary regions since their membership is unclear. Therefore, they need a
second look.

As a criterion for the change in the clusters’ uncertainty we suggest the fol-
lowing quotient:

Mi

Mi
(4)

that is the relation of the number of objects in all lower approximations to
the number of all objects4.

We distinguish two cases here - whether the uncertainty of the clusters increase
or decrease:

I. Increase of Uncertainty: Mi

Mi
> Mi+1

Mi+1
,

II. Decrease of Uncertainty: Mi

Mi
< Mi+1

Mi+1
.

We discuss these two cases of uncertainty in the following paragraphs in more
detail.

I. Increase of Uncertainty

Condition. As discussed above we define an increase of uncertainty as follows:
Mi

Mi
> Mi+1

Mi+1
. The fraction between objects surely belonging to clusters and all

objects decreases. So relatively more objects are in the boundary region. One or
more clusters become blurred.

A possible reason is that new objects emerge around the core cluster as de-
picted in Figure 4. Therefore, they are possibly not assigned to the lower ap-
proximation of the cluster but belong to the boundary region5.

Action. As already mentioned above we assume that our goal is to keep the
quotient of the number of objects in the lower approximation and the total
number of objects constant. So the threshold ε must be decreased.

One way to optimize the threshold ε according to our objective is to implement
a genetic algorithm [15]. A simpler way is to apply an iterative method as defined
as follows:
4 Note, that this number equals the number of objects in all upper approximations.
5 Please note, that the upper approximations are not necessarily spatial, which might

be implied by Figure 4.
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Fig. 4. Required Action: Adaption of the Parameters

– Initial Settings:
Set i = 0, εmax

i = εinitial and εmin
i = 0.

– Iteration:

1. Set i = i+ 1.
2. Let εi = εmin

i + εmax
i −εmin

i

2 .
3. Conduct rough k-means with the new initial parameter εi.
4. IF [Mi

Mi
≈ Mi+1

Mi+1
] THEN [Stop].

ELSE IF [Mi

Mi
> Mi+1

Mi+1
] THEN [εmax

i+1 = εi and εmin
i+1 = εmin

i

and continue with Step 1].
ELSE [εmin

i+1 = εi and εmax
i+1 = εmax

i

and continue with Step 1].

When the algorithm has converged sufficiently, new data of the next cycle
will be sent on the obtained rough classifier.

The sufficiently criterion is indicated by the ≈ symbol in the iteration above.
The threshold - when both fractions are approximately equal - must be defined
by the data analyst context dependently.

II. Decrease of Uncertainty

Condition. As discussed above we define a decrease of uncertainty as follows:
Mi

Mi
< Mi+1

Mi+1
. The fraction between objects surely belonging to clusters and all

objects increases. So relatively more objects are in lower approximations in com-
parison to the total number of objects.

Action. To increase the number of objects in the boundary region the threshold
criterionhas tobe relaxed, i.e. thevalue εmustbe increased.Ourapproach is similar
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to the approach we have presented already in the previous Section I. Increase of
Uncertainty. The main difference is that the parameter ε will be increased instead
of decreased. Therefore, we have to define an upper limit for ε. For example, we
suggest to select εmax

0 ten-timehigher than εinitial whichwillbemore than sufficient
for most real life applications. Then the algorithms proceeds as follows:

– Initial Settings:
Set i = 0, εmax

i = 10 · εinitial and εmin
i = εinitial.

– Iteration:

1. Set i = i+ 1.
2. Let εi = εmin

i + εmax
i −εmin

i

2 .
3. Conduct rough k-means with the new initial parameter εi.
4. IF [Mi

Mi
≈ Mi+1

Mi+1
] THEN [Stop].

ELSE IF [Mi

Mi
> Mi+1

Mi+1
] THEN [εmax

i+1 = εi and εmin
i+1 = εmin

i

and continue with Step 1].
ELSE [εmin

i+1 = εi and εmax
i+1 = εmax

i

and continue with Step 1].
Again, as in Section I. Increase of Uncertainty, when the algorithm has con-

verged sufficiently, new data of the next cycle will be sent on the obtained rough
classifier.

4 Conclusion

In this paper we presented a novel dynamic approach for rough clustering. Our
method should be applied in real life situation that are characterized by changing
structures in the underlying data. It can also be utilized to determine the initial
parameters of rough set clustering in an engineering like approach.

Presently, we are conducting experiments with synthetic as well as real data
and developing methods to extend and further automate the dynamic rough
cluster algorithm.
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Abstract. Usual clustering algorithms just generate general description
of the clusters like which entities are member of each cluster and lacks
in generating cluster description in the form of pattern. Pattern is de-
fined as a logical statement describing a cluster structure in terms of rel-
evant attributes. In the proposed approach reduct from rough set theory
is employed to generate pattern. Reduct is defined as the set of attributes
which distinguishes the entities in a homogenous cluster, therefore these
can be clear cut removed from the same. Remaining attributes are ranked
for their contribution in the cluster. Cluster description is then formed by
conjunction of most contributing attributes. Proposed approach is demon-
strated using benchmarking mushroom dataset from UCI repository.

Keywords: Rough set theory, Reduct, Indiscernibility, Clustering, Clus-
ter description, Mushroom, Pattern.

1 Introduction

Clustering partitions a given dataset into clusters such that entities in a cluster
are more similar to each other than entities in different clusters [3]. Description
of clusters helps in understanding these different clusters. Cluster description is
able to approximately describe the cluster in the form that ‘ this cluster consists
just of all the entities having the pattern P, where the pattern is formulated
using the attribute and values of the given many valued context’ [2]. Clustering
algorithms in literature are divided into different categories [3,8]. Partitional
clustering algorithms are commonly used clustering algorithms. K-Means and
Expectation Maximization (EM) algorithms are the widely known partitional
algorithms. These clustering algorithms just generate general description of the
clusters like which entities are member of each cluster and lacks in generating
pattern. This is because classical approach has no mechanism for selecting and
evaluating the attributes in the process of generating clusters [6]. Therefore
post processing of clusters is required to extract patterns from the same. The
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problem of finding pattern of a single cluster is relatively new and is beneficial
in situation where interpretation of clusters is required in meaningful and user
understandable format. From an intelligent data analysis perspective, pattern
learning is as important in clustering as cluster finding.

In this paper, an attempt is being made to describe the clusters using Rough
Set Theory (RST). Indiscernibility relation is core concept of RST. Indiscernibil-
ity relation partitions the set of entities into equivalence/ indiscernible classes,
that’s why it has a natural appeal to be applied in clustering as every indis-
cernible class can be considered as natural cluster. Moreover RST performs
automatic concept approximation by producing minimal subset of attributes
(Reduct) which distinguishes entities in the indiscernible class. Mostly reduct is
computed relative to decision attribute in the dataset [4]. However, our approach
of reduct computation is different. Clustering is done on unsupervised data where
decision/class information is not present, hence reduct computation is purely on
the basis of indiscernibility. Such reducts are referred as unsupervised reducts in
this paper. We have computed unsupervised reduct for individual cluster as com-
pared to reduct computation for dataset because our aim is to generate patterns
of individual clusters.

Removal of reduct attributes from the cluster will lead to attributes which
will have same attribute value pair for majority of its instances in the cluster.
These remaining attributes play significant role in pattern formulation. These
attributes are ranked on Precision Error for their significance in the cluster. Pat-
tern formulation is then carried out with the conjunction of major contributing
attributes. The efficacy of the proposed approach is demonstrated with the help
of benchmarking mushroom dataset from the UCI repository [9]. Objective of ap-
plying the proposed approach on mushroom dataset is to study the relationship
of attributes with edible and poisonous nature of mushrooms.

The paper is organized as follows. In section 2 the basic notions of rough
set theory and cluster description is described. Section 3 presents the cluster
description approaches including the proposed approach. In section 4, applica-
tion of proposed approach is demonstrated on mushroom dataset followed by
conclusions in Section 5.

2 Basic Notions

2.1 Rough Set Theory Concepts

In RST data is represented as an information system X = (U,A) [5,11]. In this
U is non-empty finite set of entities and A is a non-empty, finite set of attributes.
With every attribute a ∈ A , we associate a set Va such that a : U → Va. The
set Va is called the domain or value set of attribute a. Every entity x in the
information system X is characterized by its information vector:

InfX(x) = {(a, a(x)) : a ∈ A} (1)
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Relationship between entities is described by their attribute values. Indiscerni-
bility relation IND(B), for any set B ⊆ A is defined by:

xIND(B)y ⇔ ∀a ∈B (a(x) = a(y)) (2)

Two entities are considered to be indiscernible by the attributes in B, if and
only if they have the same value for every attribute in B. Entities in the infor-
mation system about which we have the same knowledge form an equivalence
relation. Indiscernibility relation on B, IND(B) is an equivalence relation that
partitions U into set of indiscernible classes. Set of such partitions are denoted
by U/IND(B).

Reduct is the set of attributes that can differentiate all indiscernible classes.
More formally reduct(R) is a set of attributes such that:

R ⊆ A
INDR(U) = INDA(U)
INDR−a(U) = INDA(U) ∀a ∈ R

(3)

There are many methods as well as many software’s available for computation
of reducts, discussion on those is beyond the scope of this paper. We have con-
sidered Genetic Algorithm(GA) [14] for reduct computation as it can produce
many reduct sets of varying length.

2.2 Cluster Description Concepts

Partitional clustering algorithm divides the data into k clusters. Pattern P of
cluster C is formed by concatenating significant attribute value pairs of the form
((a1 = v) ∧ (a2 = v) ∧ . . . ∧ (an = v)) from that cluster. Where attribute value
pair (ai = v) is defined as descriptor d , attribute ai ∈ A can have any value
v ∈ Vai. Pattern formed with the conjunction of all significant descriptors can be
quite complex and for maximum comprehensibility, shorter cluster description is
preferred. Hence descriptors are evaluated for their contribution in the cluster.
A descriptor is said to be more contributing if, most of the entities satisfying
that descriptor belongs to a single cluster. It is quite possible that some entities
that satisfy the descriptor also belongs to other clusters. Therefore descriptors
are measured on Precision Error (PE). Precision error for descriptor d, PE(d)
is defined as:

PE(d) =
|FalsePositive C (d)|

|U − C| (4)

where numerator defines the number of False Positive (an entity x ∈ U − C
for which ai = v is true) and denominator defines the number of entities out-
side C.

Problem of pattern formulation can be carried out by combining the descrip-
tors with less PE such that this pattern distinctively describes the cluster without
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any error. Pattern is evaluated on Precision Error [7]. Precision Error for pattern
P , PE(P ) is defined as:

PE(P ) =
|FalsePositive C (P )|

|U − C| (5)

Where numerator denotes the number of entities that lies outside the cluster
C for which pattern P is true and denominator denotes the number of entities
outside cluster C.

Pattern Length, L(P ) is defined as number of descriptors occurring in P .

3 Cluster Description Approaches

The field of producing patterns for individual clusters is relatively new. There
are few references of cluster description approaches available in literature. Mirkin
has proposed a method for cluster description applicable to only continuous at-
tributes [7]. In Mirkin’s approach attributes are normalized first and then ordered
according to their contribution weights which are proportional to the squared
differences between their with-in group averages and grand means. A conjunc-
tive description of cluster is then formed by consecutively adding attributes
according to the sorted order. An attribute is added to the description only if it
decreases the error. This forward attribute selection process stops after the last
element of attribute set is checked. Abidi et al. has proposed the rough set the-
ory based method for rule creation for unsupervised data using dynamic reduct
[1]. Dynamic reduct is defined as the frequently occurring reduct set from the
samples of original decision table. However these approaches have its limitations.
Mirkin’s approach is applicable only to datasets having continuous attributes.
Abidi in his approach has used the cluster information obtained after cluster
finding and generated rules from entire data with respect to decision/cluster
attribute, instead of producing description for individual clusters.

3.1 Proposed Approach (Reduct Driven Cluster Description–RCD)

Proposed approach of pattern formulation is divided into three stages. First stage
deals with obtaining clusters from dataset by applying clustering algorithm.
In the second stage we have computed sets of non significant and significant
attributes for that cluster. Computation of reduct set (RC) provides the set of
non significant attributes for a cluster. These non significant attributes (reduct)
are straight away removed from the cluster. Remaining attributes then form
the set of significant attributes (I) for that cluster. PE is calculated for every
descriptor (d) in set I, and descriptors are arranged in ascending order of their
PE score. In the third stage pattern is formulated by conjunction of descriptors in
the order of minimum PE until pattern completly describes the cluster without
any error.
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Steps for RCD

1. Data Clustering
Apply clustering algorithm on dataset to obtain clusters.

2. Reduct Computation.
Compute unsupervised reduct (RC) for individual cluster C.

3. Cluster Description
a) Computation of Descriptor Set (I)

I=A-RC; A is attribute set and RC is reduct set of C.
b) Ranking of Descriptors

Calculate PE(d)(Equ.4) for every descriptor in set I.
Arrange the set I in ascending order of PE value.

c) Pattern Formulation P
Take first descriptor(di)of minimum PE from I
and assign it to P
Compute PE(P)(Equ. 5)
If PE(P) is zero, then output P
Otherwise P=P^di+1
keep on concatenating the descriptor from I in order of PE
till PE(P)is zero.

d) Computation of Pattern Length L(P)
L(P)= Number of descriptor in pattern P

4. Repeat step 2 and 3 for every cluster

4 Experimental Results

4.1 Data Description

We have considered benchmarking mushroom dataset from UCI repository for
demonstration of RCD approach [9]. Dataset consists of large number of records
that is 8124 records. The number of edible and poisonous mushrooms in the data
set is 4208 and 3916 respectively. Class attribute (edible (e) or poisonous (p))
and attribute stalk root with missing values are not considered for clustering.
Details of 22 categorical attributes that describes the physical characteristics of
mushrooms is given below:

1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s;
2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s;
3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, pur-

ple=u, red=e, white=w, yellow=y;
4. bruises: bruises=t, no=f;
5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n,

pungent=p, spicy=s;
6. gill-attachment: attached=a, descending=d, free=f, notched=n;
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7. gill-spacing: close=c, crowded=w, distant=d;
8. gill-size: broad=b, narrow=n;
9. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, or-

ange=o, pink=p, purple=u, red=e, white=w, yellow=y;
10. stalk-shape: enlarging=e, tapering=t;
11. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r,

missing=?;
12. stalk-surface-above-ring: ibrous=f, scaly=y, silky=k, smooth=s;
13. stalk-surface-below-ring: ibrous=f, scaly=y, silky=k, smooth=s;
14. stalk-color-above-ring: brown=n ,buff=b, cinnamon=c, gray=g, orange=o,

pink=p, red=e, white=w, yellow=y;
15. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o,

pink=p, red=e, white=w, yellow=y;
16. veil-type: partial=p, universal=u;
17. veil-color: brown=n, orange=o, white=w, yellow=y;
18. ring-number: none=n, one=o, two=t;
19. ring-type: ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n,

pendant=p, sheathing=s, zone=z;
20. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, or-

ange=o, purple=u, white=w, yellow=y;
21. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v,

solitary=y;
22. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w,

woods=d.

4.2 Data Clustering

We have used Weka implementation [13] of EM algorithm for cluster finding
as it can handle continuous as well as categorical attributes. EM is a mixture
based algorithm that attempts to maximize the likelihood of the model [8].
By default, EM selects the number of clusters automatically by maximizing
the logarithm of the likelihood of future data, estimated using cross-validation.
Beginning with one cluster, it continues to add clusters until the estimated log-
likelihood decreases.

When EM clustering algorithm is applied on mushroom dataset, it learned 14
numbers of clusters from the data. Table 1 shows the result obtained with EM
algorithm. There is wide variance among the size of the clusters that range from

Table 1. Clustering results with EM algorithm

cluster number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

poisonous 288 1728 84 0 0 0 0 256 1296 0 192 0 72 0

edible 0 0 112 192 768 96 1728 0 0 512 96 192 224 288
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96 entities to 1728 entities. As shown in Table 1, except clusters 3, 11 and 13
which are mix clusters, all other clusters are pure clusters. Pure clusters in the
sense that mushrooms in every cluster are either all poisonous or all edible.

4.3 Reduct Computation

We have used Rosetta software [12] for computation of reduct using GA. Unsu-
pervised reduct are computed for individual pure poisonous and edible clusters.
Table 2 shows the reduct attributes in poisonous and edible clusters. Although all
the four clusters(1, 2, 8, and 9) are poisonous, yet reduct attributes are not com-
mon among these clusters. Similarly reduct attributes are not common among
pure edible clusters(4, 5, 6, 7, 10, 12 and 14).

Table 2. Reduct attribute in poisonous and edible clusters

Poisonous Clusters
Cluster1 cap-shape, cap-color, gill-color, stalk-surface-above-ring, stalk-surface-

below-ring, population, habitat

Cluster2 cap-shape, cap-surface, cap-color, odor, stalk-surface-above-ring, stalk-
surface-below-ring, stalk-color-above-ring, stalk-color-below-ring, habitat

Cluster8 cap-shape, cap-surface, cap-color, gill-color, spore-print-color, population,
habitat

Cluster9 cap-shape, cap-surface, cap-color, gill-color, stalk-color-above-ring, stalk-
color-below-ring, population, habitat

Edible Clusters
Cluster4 cap-shape, gill-color, veil-color, spore-print-color, population

Cluster5 cap-shape, cap-surface, cap-color, gill-color, stalk-surface-above-ring, stalk-
surface-below-ring, spore-print-color, population

Cluster6 cap-shape, cap-surface, cap-color, odor, gill-color, spore-print-color

Cluster7 cap-shape, cap-surface, cap-color, gill-color, stalk-color-above-ring, stalk-
color-below-ring, spore-print-color, population

Cluster10 cap-shape, cap-surface, cap-color, odor, gill-color, spore-print-color, popu-
lation, habitat

Cluster12 cap-shape, cap-color, odor, gill-color, spore-print-color, population, habitat

Cluster14 cap-shape, cap-surface, cap-color, gill-color, stalk-surface-above-ring, stalk-
surface-below-ring, population

4.4 Cluster Description

Let us consider Cluster1 for pattern formulation. We remove the reduct at-
tributes of Cluster1(Ref. Table 2)(cap-shape, cap-color, gill-color, stalk-surface-
above-ring, stalk-surface-below-ring, population, habitat). Cluster1 is left with
remaining descriptors (cap-surface=s, bruises=t, odor=f, gill-attachment=f, gill-
spacing=c, gill-size=b, stalk-shape=t, stalk-color-above-ring=w, stalk-color-
below-ring=w, veil-color=w, ring-number=o, ring-type=p, spore-print-color=h)
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having same value for all the entities within this cluster. We then calculated
PE of these descriptors to find out the major contributing descriptors. Let us
consider calculation of PE (Equ.4) for descriptor (cap-surface=s) in Cluster1.
Descriptors cap-surface=s has support of 2556 entities in the dataset, out of
which Cluster1 has support of 288 entities. PE is defined as number of false
positive for that descriptor divided by the total number of entities outside that
cluster.

PE (cap-surface=s) = (2556-288)/ (8124-288) = .2894
Table 3 and Table 4 shows the descriptors along with value of PE for pure

edible and poisonous clusters respectively.
Pattern generation for Cluster1 involves conjunction of three descriptors spore-

print-color=h ∧ odor=f ∧ cap-surface=s (Ref. Table 4) for describing the Cluster

Table 3. PE for descriptors in edible clusters

Cluster5 gill-spacing=w(.0739), habitat=g(.1876), ring-type=e(.2729),
odor=n(.3752), stalk-color-below-ring=w(.4915), stalk-color-
above-ring=w(.5024), stalk-shape=t(.5220), bruises=f(.5410), gill-
size=b(.6585), ring-number=o(.9135), gill-attachment=f(.9714), veil-
color=w(.9728)

Cluster6 gill-spacing=w(.1514), habitat=d(.3801), gill-size=n(.3009),
bruises=t(.4085), ring-type=p(.4823), population=v(.4912), stalk-
color-below-ring=w(.5341), stalk-color-above-ring=w(.5440), stalk-
shape=t(.5620), stalk-surface-below-ring=s(.6028), stalk-surface-
above-ring=s(.6327), veil-color=w(.9750), ring-number=o(.9207) , gill-
attachment=f(.9738)

Cluster7 habitat=d(.2220), bruises=t(.2576), odor=n(.2814), ring-
type=p(.3502), stalk-shape=t(.4502), gill-attachment=f(.9671), stalk-
surface-below-ring=s(.5015), stalk-surface-above-ring=s(.5390),
gill-size=b(.6072), gill-spacing=c(.7948), ring-number=o(.9005), veil-
color=w(.9687)

Cluster10 bruises=t(.3763), stalk-shape=e(.3947), ring-type=p(.4540), stalk-
color-below-ring=w(.5087), stalk-color-above-ring=w(.5192), stalk-
surface-below-ring=s(.5812), stalk-surface-above-ring=s(.6127),
gill-size=b(.6700), gill-spacing=c(.8276), ring-number=o(.9164), gill-
attachment=f(.9724), veil-color=w(.9737)

Cluster12 stalk-surface-below-ring=y(.0115), cap-surface=y(.3847),
bruises=t(.4014), stalk-shape=e(.4190), ring-type=p(.4760), stalk-
color-below-ring=w(.5284), stalk-color-above-ring=w(.5385), stalk-
surface-above-ring=s(.6283), gill-size=b(.6833), gill-spacing=c(.8345),
ring-number=o(.9198), gill-attachment=f(.9735), veil-color=w(.9747)

Cluster14 ring-number=t(.0398), gill-spacing=w(.1306), habitat=g(.2373),
spore-print-color=w(.2679), stalk-shape=e(.4119), odor=n(.4134),
ring-type=p(.4696), stalk-color-below-ring=w(.5227), stalk-
color-above-ring=w(.5329), bruises=f(.5691), gill-size=b(.6794), gill-
attachment=f(.9732), veil-color=w(.9744)
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Table 4. PE for descriptors in poisonous clusters

Cluster1 spore-print-color=h(.1715), odor=f(.2390), cap-surface=s(.2894),
bruises=t(.3940), ring-type=p(.4696), stalk-color-below-ring=w(.5227),
stalk-color-above-ring=w(.5329), stalk-shape=t(.5513), gill-size=b(.6794),
gill-spacing=c(.8325), ring-number=o(.9188), gill-attachment=f(.9732),
veil-color=w(.9744)

Cluster2 gill-color=b(0), spore-print-color=w(.1031), gill-size=n(.1225),
ring-type=e(.1638), population=v(.3614), stalk-shape=t(.4502),
bruises=f(.4721), gill-spacing=c(.7948), ring-number=o(.9005), gill-
attachment=f(.9671), veil-color=w(.9687)

Cluster8 odor=p(0), gill-size=n(.2867), bruises=t(.3965), stalk-shape=e(.4143),
ring-type=p(.4717), stalk-color-below-ring=w(.5246), stalk-color-
above-ring=w(.5348), stalk-surface-below-ring=s(.5948), stalk-surface-
above-ring=s(.6253), gill-spacing=c(.8332), ring-number=o(.9191), veil-
color=w(.9745), gill-attachment=f(.9733)

Cluster9 ring-type=l(0), spore-print-color=h(.0492), odor=f(.1266), stalk-
surface-below-ring=k(.1476), stalk-surface-above-ring=k(.1575),
stalk-shape=e(.3251), bruises=f(.5055), gill-size=b(.6321), gill-
spacing=c(.8078), ring-number=o(.9068), gill-attachment=f(.9692), veil-
color=w(.9707)

with zero PE. Similarly, forCluster2 (Ref. Table 4), only onedescriptor gill-color=b
generate zero PE and hence this alone describes the cluster.

4.5 Results

Cluster description with RCD approach resulted in short patterns with zero PE
for pure edible and poisonous clusters.
Pattern obtained with RCD for poisonous clusters are:
Cluster1 (288 entities): spore-print-color=h ∧ odor=f ∧ cap-surface=s; L(P)=3.
Cluster2 (1728 entities): gill-color=b; L(P)=1.
Cluster8 (256 entities): odor=p; L(P)=1.
Cluster9 (1296 entities): ring-type=l ; L(P)=1.
Pattern obtained with RCD for edible clusters are:
Cluster4 (192 entities): stalk-color-above-ring=o or stalk-color-below-ring=o;
L(P)=1.
Cluster5 (768 entities): gill-spacing =w ∧ habitat=g ∧ ring-type=e; L(P)=3.
Cluster6 (96 entities): gill-spacing=w ∧ gill-size=n ∧ habitat=d ∧ bruises=t ;
L(P)=4.
Cluster7 (1728 entities): habitat=d ∧ bruises=t ∧ odor=n; L(P)=3.
Cluster10 (511 entities): bruises=t ∧ stalk-shape=e ∧ ring-type=p ∧ stalk-
surface-below-ring=y ∧ gill-size=b ∧ ring-number=o; L(P)=6.
Cluster12 (192 entities): stalk-surface-below-ring=y ∧ cap-surface=y ∧
bruises=t ; L(P)=3.
Cluster14 (288 entities): ring-number=t ∧ gill-spacing=w ; L(P)=2.
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5 Conclusion

Reduct driven approach for cluster description (RCD) is presented in this paper
on benchmarking dataset. Reduct along with Precision Error has resulted in
formulation of significant and user understandable patterns from clusters. It is
observed that patterns obtained with RCD, distinctively described the clusters
with no errors. Patterns obtained is of short length hence easily understandable
to users. On average two to three attributes are used to describe the clusters.
To confirm the existence of relation, future research will be focused on applying
the same approach on real time benchmarking datasets.
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Experiments with Rough Set Approach to Face

Recognition

Xuguang Chen and Wojciech Ziarko

Department of Computer Science University of Regina
Regina, SK, S4S 0A2, Canada

Abstract. The article reports our experiences with the application of
the hierarchy of probabilistic decision tables to face recognition. The
methodology underlying the classifier development for our experiments
is the variable precision rough sets, a probabilistic extension of the rough
set theory. The soft-cut classifier method and the related theoretical
background, the feature extraction technique based on the principal com-
ponent analysis and the experimental results are presented.

1 Introduction

Face recognition is an important research area with numerous potential applica-
tions, most notably in security. According to [12], face recognition methods can
roughly be classified into the three categories:

(1)Feature-based matching methods, in which local features such as based on
eyes, nose, and mouth are firstly extracted and then their locations and local
information such as geometric characteristics and appearance are input into a
structural classifier for recognition.

(2)Holistic matching methods, in which the information about whole face re-
gion will be input into a recognition system (a classifier). One of the most widely
used techniques is to represent the face region as eigenfaces based on principal
component analysis (PCA) [5][6].

(3)Hybrid methods, in which both local features and the whole face region are
used for face recognition.

Many face recognition techniques applying PCA have been developed in past
years, but PCA cannot guarantee that the selected principal components are
the most adequate features for face recognition. One of possible solution for
selecting most adequate discriminative features is to apply rough set theory [1].
That is, rough set theory is applied to select the best features from the principal
components generated by PCA [6].

In this paper, we present a face representation and classification methodology,
called soft-cut classifier, based on merging PCA and rough sets theory. Its basic
idea for feature extraction is similar with that of Turk and Pentland [5], but
different techniques, especially on how to classify a test photo into an appropriate
category, have been applied. The techniques, which are introduced in sections
3-4, involve developing a hierarchy of learnt decision tables based on accumulated
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training data (pictures of faces). The process of building, analysis and evaluation
of such decision tables involves rough set theory [1], in particular the variable
precision model of rough sets (VPRSM) [2]. The hierarchy is subsequently used
for classification of previously unseen pictures of faces. Section 5 describes the
experimental procedure, and section 6 presents some experimental results.

2 Techniques for Feature Selection

In this section, we discuss the feature value acquisition methods used for form-
ing representation of training face pictures and for recognition, adopting ex-
isting standard techniques of principal component analysis (PCA) and of Harr
wavelets.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technique that can reduce multidimen-
sional data sets to lower dimensions for analysis. PCA can be applied to various
fields including face recognition [5].

For a data set of N samples, each of which is n-dimensional and denoted as
x, we assume that a training data set T = x1, x2, · · ·, xN can be represented
as an N × n data pattern matrix X = [x1, x2, · · ·, xN ]T . Such a training set
can be characterized by the n × n dimensional covariance matrix Rx. Then,
we arrange the eigenvalues of the covariance matrix Rx in the decreasing order
λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 with the corresponding orthonormal eigenvectors
e1, e2, · · ·, en. Using the m × n optimal Karhunen-Love transformation matrix
denoted as WKLT = [e1, e2, · · ·, em]T , each sample x in the data set can be
transformed into

y = WKLTx (1)

where m ≤ n. In this way, the optimal matrix WKLT will transform the original
pattern matrix X into dimension-reduced feature pattern matrix Y as

Y = (WKLTX
T )T = XWT

KLT . (2)

PCA can extract the features and reduce the dimensions by forming the m-
dimensional feature (m ≤ n) vector y that has only the first m most dominant
principal components of x.

2.2 Harr Wavelets

A wavelet is a mathematical function used to divide a given function into different
frequency components so as to study each component with a resolution matching
its scale. By using wavelets, a photo can be transformed from pixel space into
the space of wavelet coefficients, which can have some consistency throughout
the photo class and while ignoring noise [10]. The wavelet vector spaces form the
foundations of the concept of a multi-resolution analysis, which can be formalized
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as the sequence of approximating subspaces V 0 ⊂ V 1 ⊂ V 2 · ·· ⊂ V j ⊂ V j+1 · ··.
In the sequence, the vector space V j+1 describes finer details than the space V j .
As a basis for the space V j , the following scaling functions can be used

φj
i =
√

2jφ(2jx− i) i = 0, 1, · · ·, 2j − 1 (3)

where the Harr Wavelet can be expressed as:

φ(x) =
{

1 0 ≤ x < 1
0 otherwise

(4)

Correspondingly, the vector W j describes the subspace of details in increasing
refinements. It is orthogonal complement of two consecutive approximating sub-
spaces, V j+1 = V j ⊕W j . As a basis for the wavelet space W j , the following
functions can be used

ψj
i =
√

2jψ(2jx− i) i = 0, 1, · · ·, 2j (5)

where the Harr Wavelet can be represented

ψ(x) =

⎧⎨
⎩

1 0 ≤ x < 0.5
−1 0.5 ≤ x < 1

0 otherwise
(6)

Two-dimensional wavelet transform can be obtained by taking the tensor
product of two one-dimensional wavelet transforms [10]. The results are three
types of wavelet basis functions, which are ψ(x, y) = ψ(x) ⊕ φ(y), ψ(x, y) =
φ(x) ⊕ ψ(y), and ψ(x, y) = ψ(x)⊕ ψ(y).

3 Decision Table-Based Approach

Our approach to face classification and recognition involves machine learning
from training data representing photographs of faces. The end-result of the learn-
ing process is a linear hierarchy of decision tables, which subsequently is used
for the purpose of recognition. The automated construction of the hierarchy of
decision tables is based on the VPRSM. This probabilistic approach to rough
sets is also used for the evaluation of generated decision tables and their hier-
archies, especially for determination of dependencies between attributes and for
their optimization.

3.1 Variable Precision Rough Sets

The rough set theory was introduced by Pawlak [1], and the variable precision
model of rough sets broadens its basic ideas. In the VPRSM, conditional prob-
abilities and prior probability P (X) of the set X in the universe U , are used
to represent set X approximation defining criteria. Two model precision-control
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parameters are used, denoted as the lower limit l, and the upper limit u, respec-
tively. With these two parameters, the original rough set theory definitions of
the negative region, the positive region, and the boundary region of a set are
extended as follows.

The lower limit l, 0 ≤ P (X) < 1 represents the highest acceptable degree
of the conditional probability P (X |E) to include the elementary set E in the
negative region of the set X . The negative region in VPRSM is defined as

NEGl(X) = ∪{E : P (X |E) ≤ l} (7)

Objects are classified into the negative region of the set X if the probability of
the membership in the set X is significantly lower, as expressed by the lower
limit, than the prior probability P (X). The upper limit u, 0 < P (X) < u ≤ 1,
represents the least acceptable degree of the conditional probability P (X |E) to
include the elementary set E in the positive region of the set X . The positive
region in VPRSM is defined as

POSu(X) = ∪{E : P (X |E) ≥ u} (8)

Objects are classified into the positive region of the set X if the probability of
the membership in the set X is significantly higher, as expressed by the lower
limit, than the prior probability P (X). The objects that are not classified into
either the positive region or the negative region are classified into the boundary
region of the decision category X . The boundary region in VPRSM is defined as

BNDl,u(X) = ∪{E : l < P (X |E) < u} (9)

3.2 Hierarchies of Probabilistic Decision Tables

The probabilistic decision tables and their hierarchies extend the notion of de-
cision table acquired from data introduced by Pawlak [1]. The probabilistic de-
cision table approximately represents the stochastic relation between condition
and decision attributes via a set of uniform size probabilistic rules. The proba-
bilistic decision table is a mapping that assigns each vector of condition attribute
values, corresponding to an elementary set E, to its unique designation of one
of VPRSM approximation regions POSu(X), NEGl(X) or BNDl,u(X), along
with associated elementary set E probabilities P (E) and conditional probabili-
ties P (X |E). They can be conveniently represented in a tabular form.

In the VPRSM, the boundary region is a definable subset of the universe
U , that is, it can be precisely specified by its elementary sets. To construct
the hierarchy of decision tables, let us denote the boundary region as U ′ =
BNDl,u(X). The basic idea behind the hierarchies of probabilistic decision table
construction is to treat the boundary region as a sub-universe of the universe U
that is completely independent from the universe U. Such a sub-universe can have
its own ”private” collection of condition attributes, denoted as C′, to form a new
approximation sub-space, from which the ”child” decision table can be derived.
By repeating the step of parent-child decision table formation recursively, until
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the boundary region is eliminated, or some other attribute-based termination
criteria are satisfied, a hierarchy of probabilistic decision tables will be formed.
In our experiments, a separate hierarchy of decision tables was developed for each
face to be distinguished, corresponding to the decision classes X and ¬X . The
generated decision tables and their hierarchies need to be evaluated with respect
to their expected performance as classifiers. For that purpose, two dependency
measures, called the γ-dependencies and the λ-dependencies [3] respectively, were
adopted in our experiments.

4 Forming Hierarchies of Probabilistic Decision Tables

The attributes of the probabilistic decision tables in the hierarchy were formed
with coefficients of several levels of 2-dimensional Harr wavelets transformation.
In our experiments, a hierarchy having up to five probabilistic decision tables
was built, and their attributes were separately formed from the coefficients of
various levels of the Harr wavelet transformation of each photo in the training
set.

The Harr wavelet transformation can provide many useful features, but it is
still hard to tell how powerful these features are for face recognition. Moreover,
these features are too numerous, and a lot of redundant information is included,
so PCA was applied to choose the most useful Harr-based features. If each photo
has n Harr-based coefficients, represented as xi

harr,n and there are N photos in
the training data set, then these photos can be represented by an N ×n pattern
matrix

X = [x1
harr,n, x

2
harr,n, · · ·, xN

harr,n]T (10)

For each photo, formula (1) was applied to transform its original features xi
harr,n

from n-dimensional Harr-based coefficients into m-dimensional (m ≤ n) PCA
feature patterns, and for the whole training data set, formula (2) was applied.
PCA can significantly reduce the size of features to retain the most important
information for face recognition, but the question which principal components
are the best for face recognition remains unresolved [6]. In our experiments, we
dealt with that problem by applying rough set theory.

Before a probabilistic decision table in the hierarchy was formed, the principal
components selected by PCA in previous step needed to be converted from real-
valued components into binary-valued components.

As the first step in the discretization, a threshold τ satisfying 0.5 < τ ≤ 1
was defined for each probabilistic decision table in the hierarchy . Each selected
principal component was then transformed according to the following sigmoid
function formula:

f ′(x) =
1

1 + ea(c−x)
(11)

where x is the real value of that selected principal component, a is a parameter,
the values of which would be identified heuristically, and c is the arithmetic av-
erage of that selected principal component of all photos in the training set. The
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transformation defines a soft cut in place of binary cut to allow for accommoda-
tion of situations, during discretization and recognition stages, when the feature
value is close the cut and possibly affected by random noise.

Each selected principal component was discretized according to the compari-
son result between f ′(x) and the threshold τ as below:

1. if f ′(x) ≥ τ , then the selected principal component is assigned 1 as its value;
2. if f ′(x) ≤ 1− τ , then 0 is assigned;
3. if 1− τ < f ′(x) < τ , then no assignment is made.

The basic idea of our soft cut is similar with the one in [7]. It splits the real
axis of each dimension into three intervals. Only those principal components that
can classified into two of specific intervals are discretized. On the other hand,
unlike [7], it does not attempt to find a threshold value so that all of principal
components can be discretized.

Our way to deal with those principal components that cannot be discretized is
similar with that of support vector machine (SVM)[8]. The SVM model creates
a soft margin that permits some misclassifications, and has a cost parameter,
C, that controls the rate of misclassifications. In our method, those principal
components that cannot be discretized are considered as misclassified points.
That is, if a photo had one, or more than one selected principal components that
could not be discretized, it was automatically classified into the boundary area
and considered again when working on the photos in the boundary area to build
next probabilistic decision table in the hierarchy. After the discretization was
completed, only those photos, the selected principal components of which have
been completely discretized, were evaluated by rough sets theory. The purpose
was to find a group of principal components that are the most adequate for the
recognition task. According to the formula in [3], a group of discretized principal
components, the ones that generate the highest λ-dependency was heuristically
selected and eventually used as condition attributes for the probabilistic decision
table.

In order to avoid overfitting, the following strategies were applied. Firstly,
we tried to limit the size of the group of discretized principal components to a
reasonable number. In practice, we set that the size must be less than 50 percent
of the dimension of PCA feature patterns. For example, if its dimension was 48,
the size of the group must be less 24 discretized principal components. Moreover,
if two groups of discretized principal components had similar λ-dependency, the
group with fewer components would be selected. When training and testing the
system, the corresponding data sets were only constructed based on the method
of holdout validation and the method of K-fold cross-validation.

Subsequently, photos were classified into elementary sets based on the con-
structed attributes. The elementary sets were then assigned to rough approxima-
tion regions: the positive region, the negative region, and the boundary region
based on the formulas (1-3). The above process was recursively repeated on pho-
tos classified into the boundary area to build next layer probabilistic decision
table in the hierarchy, and so on. The process described above was continued un-
til all photos were classified into either the positive area or the negative area of a
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probabilistic decision table or all of Harr-wavelet coefficients have been utilized.
The end-result of this process was a hierarchy of probabilistic decision tables
based on photos from the training set.

5 Distance-Based Classification of Objects Using
Decision Tables

The process of classification of previously unseen objects (photos), for the pur-
pose of recognition, employs a technique based on the evaluation of the distance
between an object and an elementary set (see [9] for review of related methods).
This is a departure from the standard technique involving exact match between
the feature vectors representing objects and elementary sets. Our approach is
motivated by the need to ”soften” the matching procedure in order to ignore
small differences between compared patterns, possibly caused by noise, which
would result in many unclassified test objects.

When a test photo (an unseen object) is input, it is first transformed by the
Harr wavelet transformation and the PCA. Then, each of its selected principal
components i is processed by the formula (11), with the result denoted as f ′

i(x).
The real-valued vector (f ′

i(x))i=1,2,...n is then compared to binary-valued vectors
(attEi (x))i=1,2,...n of all elementary sets E of a probabilistic decision table based
on the distance function d(x,E) as follows:

d(x,E) = MAXi=1,2,...n(|f ′
i(x) − attEi (x)|), (12)

where || is the absolute value function.
An object is classified into an elementary set E if it satisfies the following two

conditions:

1. the distance between the elementary set and the tested photo is at minimum
among all elementary sets;

2. the distance is no higher than the value of a predefined threshold;

The recognition is based on the rough region location of the lowest distance
elementary set, starting with the top layer of the hierarchy of decision tables.
For a hierarchy with k decision tables, assume that each decision table has n
rows with m condition attributes, we need O(knm) operations to classify unseen
objects as the worst case. If such an elementary set is located in the positive
area, then the positive recognition is made, i.e. it is assumed that the test object
x belongs to the decision class X . Similarly, if the elementary set is located in
the negative area, then the negative recognition is made, i.e. it is assumed that
the test object x does not belong to the decision class X . If the closest-match
elementary set is located in the boundary region or cannot be classified into any
elementary set, then no recognition is made. In this case, the process passes to
the next layer decision table and the procedure is repeated until either a test
photo is classified into the positive area (or the negative area) of a probabilistic
decision table, or all of probabilistic decision tables in the hierarchy have been
checked. In the latter case, no decision is produced.
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6 Experimental Results

To evaluate the performance of soft-cut classifier in different situations, a series
of experiments was performed. Facial photos of 10 men and 11 women were se-
lected from the AR Face Database [11]. The photos comprise 756 experimental
sets. Each of the sets consists of 72 facial photos of two persons, 36 facial photos
for each one. The experimental sets were divided into a training set(48 photos
totally, 24 photos for each person) and a test set (24 photos totally, 12 photos for
each person).

The first experiment was to test the overall performance of the soft-cut classi-
fier when the number of selected principal components was varied. The objective
was to check if the overall performance of the classifier would improve with the
increase of the number of selected principal components. In this experiment, the
soft-cut classifier was repetitively trained by the same training sets and tested
by the same test sets, but each time, the number of selected principal com-
ponents was varied. Totally 756 experimental sets (756 training sets and 756
test sets) were used for this experiment. Based on the experimental results, we
concluded that as a general rule, the more principal components were selected,
the more test sets produced the highest accuracy rate R ≥ 0.9. For example,
as demonstrated in Table 1, when 10 principal components were selected, there
were 431 test sets in the accuracy range R ≥ 0.9 among total of 756 test sets. If
24 principal components were selected, the number of test sets the accuracy rate
of which was in the range R ≥ 0.9 was 518. It should be noted, however, that
when working on a specific data set, the performance of the soft-cut classier will
also depend on other factors, for example on the threshold value, as described
in the third and fourth experiments.

The second experiment was to compare the overall performance of soft-cut
classifier with that of the nearest-neighbor (N-N) classifier [5]. For this purpose,
a N-N classifier was implemented first. These two classifiers were then trained
and tested on the same data sets (756 training sets and 756 test sets) and the
same selected principal components.

Based on the results, we found that when working on our data sets with a
fixed number of selected principal components, the soft-cut classifier performed
significantly better than the N-N classifier. Moreover, when the number of prin-
cipal components was increased, the performance of soft-cut classifier would
improve faster than of the N-N classifier. That is, the number of test sets with a
higher accuracy rate (for instance, in the range R ≥ 0.9) would be significantly
greater than that of N-N classifier. For example, if 22 principal components were
selected, there were 512 test sets among total 756 test sets with an accuracy
rate R ≥ 0.9 for soft-cut classifier versus 387 test sets for N-N classifier, which
constitutes 32% improvement.

The third experiment was to test the overall performance of the soft-cut clas-
sifier when varying the threshold τ and the parameter a of the formula (11).
We found out that when τ is very close to 0.5, the performance of the soft-cut
classier will be the best. In this case, the classifier can work with all of 756
training/test sets. When τ is far away from 0.5, the performance of the soft-cut
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Table 1. Accuracy Rate Versus Number of Principal Components

classier deteriorates. In the worse case, for example when τ = 0.65, the soft-cut
classier was not able to discretize any photo for some training sets. That is, there
was no photo in certain training sets, that the selected principal components of
which could be completely discretized. As for the parameter a, its value had no
greater impact on the performance.

The last experiment was to identify the relationship between the number of
selected principal components and the threshold value when the soft-cut clas-
sifier was working on a specific training/test set. In particular, the goal of this
experiment was to check if a specific threshold value could significantly reduce
the number of selected principal components and while preserving the higher
accuracy rate. Based on the results, we found that number of selected prin-
cipal components can be reduced for some specific threshold values. However,
the process of choosing the number of eigenvectors and threshold values is a
heuristic one, making it difficult to arrive at any general threshold optimization
rule. According to the results from the third experiment, when τ is very close to
0.5, the performance of the soft-cut classier was the highest. Thus, the following
heuristic rule can be formulated:

For a specific data set, different combinations of selected principal components
and the threshold values that are around 0.5 such as 0.5 < τ ≤ 0.7 should be
tried first. Then, select such a combination which results in minimum number of
selected principal components and the maximum accuracy rate. For example, the
accuracy rate is 100% for several different combinations of τ and principal com-
ponents. Therefore, the combination of τ = 0.540001 with the minimum number
of selected principal components equal to nine would eventually be selected.

7 Final Remarks

The soft-cut classifier approach involves machine learning from training data
representing photographs of faces to form a linear hierarchy of decision tables,
which subsequently is used for the purpose of recognition.
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In order to evaluate its performance in different situations, we completed a
series of experiments. Based on the experimental results, we observed that the
soft-cut classifier performed significantly better on our data sets than that of
the N-N classifier, especially when a large number of principal components were
selected for representing pictures. We also noticed that in the case of soft-cut
classifier, as a general rule, the more principal components are selected, the more
test sets can produce a higher accuracy rates. In addition, we observed that when
working on a specific data set, the best solution for improving the performance
of the soft-cut classier is to heuristically try different combinations of selected
principal components and the soft cut threshold values.
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Abstract. Clustering or data grouping presents fundamental initial
procedure in image processing. This paper addresses the problem of com-
bining the concept of rough sets and entropy measure in the area of im-
age segmentation. In the present study, comprehensive investigation into
rough set entropy based thresholding image segmentation techniques has
been performed. Segmentation presents the low-level image transforma-
tion routine concerned with image partitioning into distinct disjoint and
homogenous regions with thresholding algorithms most often applied in
practical solutions when there is pressing need for simplicity and robust-
ness. Simultaneous combining entropy based thresholding with rough sets
results in rough entropy thresholding algorithm. In the present paper,
new algorithmic schemes Standard RECA (Rough Entropy Clustering
Algorithm) and Fuzzy RECA in the area of rough entropy based parti-
tioning routines have been proposed. Rough entropy clustering incorpo-
rates the notion of rough entropy into clustering model taking advantage
of dealing with some degree of uncertainty in analyzed data. Both Stan-
dard and Fuzzy RECA algorithmic schemes performed usually equally
robustly compared to standard k -means algorithm. At the same time, in
many runs yielding slightly better performance making possible future
implementation in clustering applications.

Keywords: Granular computing, image clustering, rough sets, entropy
measure, rough entropy measure, fuzzy rough entropy measure.

1 Introduction

During last decades, growing research attention has been focused on data cluster-
ing as robust technique in data analysis. Clustering or data grouping describes
important technique of unsupervised classification that arranges pattern data
(most often vectors in multidimensional space) in the clusters (or groups). Pat-
terns or vectors in the same cluster are similar according to predefined criteria,
in contrast to distinct patterns from different clusters [3], [10]. Possible areas of
application of clustering algorithms include data mining, statistical data analy-
sis, compression, vector quantization and pattern recognition [3]. Image analysis
is the area where grouping data into meaningful regions referred to as image
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segmentation) presents the first step into more detailed routines and procedures
in computer vision and image understanding.

In practical applications, most often image regions do not depict well-defined
homogeneous characteristics, so it seems naturally appropriate to use techniques
that additionally incorporate the ambiguity in information for performing the
thresholding operation. In recent years [8], the theory of rough sets has gained
considerable importance with numerous applications in diverse areas of research,
especially in data mining, knowledge discovery, artificial intelligence and infor-
mation systems analysis. Combination of thresholding methods with rough set
theory has been attempted in [7], [4]. The authors minimize the roughness value
in order to perform image thresholding by optimizing an entropy measure, which
they refer to as the ”rough entropy of image”. Incorporation of fuzzy set based
methodology and rough sets based methodologies has become a technique that
is attracting much research attention owing their more flexible representation
of clusters. Both techniques taken separately or combined into the same algo-
rithmic solutions should handle uncertainty related to analyzed data and their
incompleteness and imprecision with more accurateness. In clustering domain
much effort has been put into extensions of fuzzy and rough theory into data
clustering routines. Fuzzy and rough setting has been practically employed into
such algorithmic schemes as k-means clustering, Kohonen self-organizing maps,
evolutionary unsupervised learning and support vector clustering.

In Section 2 introductory information of proposed solution together with ex-
planation of basic notions is given. In Subsection 2.1, review of existing seg-
mentation techniques has been provided. Selected rough entropy concepts are
explained in Subsection 2.2. In Subsection 2.3 evolutionary algorithms are de-
scribed. Rough entropy based segmentation algorithms together with proposed
Standard RECA and Fuzzy RECA algorithms are outlined in Subsections 3.1
and 3.2. Experimental setup and results are given in Section 4. Conclusions and
further research are finally shortly outlined.

2 Basic Notions

2.1 Image Segmentation Methods

Segmentation operation is essential and extremely important preprocessing step
in the majority of image analysis based routines such as computer vision with
practical applications ranging from object extraction and detection, change de-
tection, monitoring and identification tasks. After preprocessing stage of image
handling routines, with for example noise removal, smoothing, and sharpening
of image contrast, follows image segmentation step, and subsequently more spe-
cific, high-level analysis is performed such as depicting objects and regions, and
final interpretation of the image or scene. In almost all areas, the quality of
segmentation step determines the quality of the final image analysis output.
Segmentation process is defined as an operation of image partitioning into some
non-overlapped regions such that each region exhibits homogeneous properties
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and no two adjacent regions are homogeneous. Segmentation routines present ex-
act partitioning of input image into distinct, homogenous regions (by means of
intensity, color, texture or other relevant features). Segmentation is the standard
image partitioning process that results in determining and creation of disjoint
and homogeneous image regions. Regions resulting from the image segmenta-
tion according to [2] should be uniform and homogeneous with respect to some
characteristics, regions interiors should be simple and without many small holes,
adjacent regions should be significantly different with respect to the uniformity
characteristics and each segment boundary should be comparatively simple and
spatially accurate.

Unsupervised segmentation and supervised segmentation (with further clas-
sification) starts by creating partition of the image data into groups by means
of defining similarity measure, which values for image data are then compared
and on that basis image data partitioning follows. Image segmentation routines
are divided into: histogram based routines, edge-based routines, region merge
routines, clustering routines and some combination of the above routines. Ex-
haustive overview of the segmentation methods is available in [2].

Additionally, many segmentation techniques make use of particular data analy-
sis approaches such as neural networks, fuzzy computing, evolutionary computing,
multiscale resolution techniques and morphological analysis. Into this framework-
based segmentation approaches falls thresholding and clustering with rough en-
tropy based segmentation quality measure that is the subject of this paper.

2.2 Rough Entropy

The intention of rough set theory is to approximate an imprecise concept in the
domain of discourse by a pair of exact concepts, called the lower and upper ap-
proximations. The lower approximation is the set of objects definitely belonging
to the vague concept, whereas the upper approximation is the set of object possi-
bly belonging to the same. In this way, the value roughness(X) of the roughness
of the set X equal 0 means that X is crisp with respect to B, and conversely
if the roughness(X) > 0 then X is rough (i.e., X is vague with respect to B).
Detailed information on rough set theory is provided e.g. in [8], [9].

Entropy is a concept introduced and primarily used in the Second Law of
Thermodynamics. Entropy measures the spontaneous dispersion of energy as
a function of temperature. It was introduced into communications theory as
the measure of the efficiency of the information transferred through a noisy
communication channel. The mathematical definition of the entropy is

H = −
n∑

i=0

pilog(pi)

where H is an entropy, pi is the statistical probability density of an event i.
Considering each image cluster as a set in image attribute domain, it is possi-
ble to calculate this set roughness. After calculating cluster roughness values for
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every cluster, each roughness(C) of cluster C is considered as system state and
accordingly is calculated its system entropy roughness:

Rough entropy(C) = −e
2
× [roughness(C)× log(roughness(C))]

Resulting image rough entropy is the sum of all rough entropies of all clusters
referred to further as rough entropy measure.

2.3 Evolutionary Algorithms

Investigation into application of evolutionary algorithms in k -means clustering
based image segmentation routines is given in [6]. Chromosomes represent solu-
tions consisting of centers of k clusters - each cluster center is a d -dimensional
vector of values in the range between 0 and 255 representing intensity of gray
or color component. Selection operation tries to choose the best suited chromo-
somes from parent population that come into mating pool and after cross-over
and mutation operation create child chromosomes of child population. Most
frequently genetic algorithms make use of tournament selection that selects into
mating pool the best individual from predefined number of randomly chosen pop-
ulation chromosomes. This process is repeated for each parental chromosome.
The crossover operation presents probabilistic process exchanging information
between two parent chromosomes during formation of two child chromosomes.
Typically, one-point or two-point crossover operation is used. According to [1]
crossover rate 0.9 - 1.0 yields the best results. Mutation operation is applied
to each created child chromosome with a given probability pm. After cross-over
operation children chromosomes that undergo mutation operation flip the value
of the chosen bit or change the value of the chosen byte to other in the range
from 0 to 255. Typically mutation probability rate is set in the range 0.05 -
0.1 by [1]. Termination criterion determines when algorithm completes execu-
tion and final results are presented to the user. Termination criterion should
take into account specific requirements. Most often termination criterion is that
algorithm terminates after predefined number of iterations. Other possible condi-
tions for termination of the k -means algorithms depend on degree of population
diversity or situation when no further cluster reassignment takes place. In the
present research, apart from rough entropy measure for evaluation of population
solutions two additional measures are taken into account, Index-β and k -means
based partition measure. These two measures are established clustering valida-
tion measures.

Quantitative Measure - Index-β
Index−β measures the ratio of the total variation and within-class variation.
Define ni as the number of pixels in the i-th (i = 1, 2, ...,K) region form

segmented image. Define Xij as the gray value of j-th pixel (j = 1, ..., ni) in the
region i and Xi the mean of ni values of the i-th region.

The index-b is defined in the following way

β =

∑k
i=1

∑ni

j=1 (Xij −X)
2

∑k
i=1

∑ni

j=1 (Xij −Xi)
2
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where n is the size of the image and X represents the mean value of the image
pixel attributes. This index defines the ratio of the total variation and the within-
class variation. In this context, important notice is the fact that index-b value
increases as the increase of k number.

Quantitative Measure - k-means partition measure
In case of k -means clustering schemes, the quality of clustering partitions is

evaluated by calculating the sum of squares of distances of all points from their
nearest cluster centers. This kind of measure is a good quantitative measure
describing quantitatively clustering model. In this paper, this sum of squares of
distances from cluster centers is further referred to as KM measure and applied
in the assessment of RECA and k-means experimental results. Values of KM
measure should be minimized.

3 Rough Entropy Clustering Algorithms

3.1 Standard RECA Algorithm

Proposed solution is an extension of rough entropy measure introduced in [7]
into multiclass clustering domain. In Rough Entropy Clustering, initial cluster
centers are selected. Number of clusters is given as input parameter. Algorithm
does not impose any constraints on data dimensionality and is described in [5].
For each cluster center, two approximations are maintained, lower and upper
approximation. For each object in universe (namely pixel data in image segmen-
tation setting) as described in Algorithm 2, the closest cluster center is deter-
mined, and lower and upper approximations for that cluster are incremented by
1. Additionally, upper approximation of the clusters that are located within the
distance not greater than threshold value from the closest cluster is incremented
also by 1. After all data objects (image pixels) are processed, and lower and
upper approximation for each cluster are determined, roughness value for each
cluster is determined as described in Algorithm 2.

Algorithm 1. Standard RECA Algorithm Flow
Data: Input Image
Result: Optimal Threshold Value
1. Create X population with Size random N-level solutions (chromosomes)
repeat

forall chromosomes of X do
calculate their rough entropy measure values RECA
Rough Entropy Measure;

end
create mating pool Y from parental X population ;
apply selection, cross-over and mutation operators to Y population;
replace X population with Y population ;

until until termination criteria ;
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Algorithm 2. Standard RECA - calculation of cluster Lower and Upper
Approximations, Roughness and Entropy Roughness
foreach Data object D do

Determine the closest cluster center Ci for D
Increment Lower(Ci)++ Increment Upper(Ci)++
foreach Cluster Ck not further then eps from D do

Increment Upper(Ck)++
end

for l = 1 to C(number of data clusters) do
roughness(l) = 1 - [ Lower(l) / Upper(l)];

for l = 1 to C(number of data clusters) do
Rough entropy = Rough entropy − e

2 × [roughness(l) × log(roughness(l));

Rough Entropy clustering incorporates the notion of rough entropy into clus-
tering model. Rough entropy measure calculation of the cluster centers is based
on lower and upper approximation generated by assignments data objects to
the cluster centers. Roughness of the cluster center is calculated from lower and
upper approximations of each cluster center. In the next step, rough entropy
is calculated as sum of all entropies of cluster center roughness values. Higher
roughness measure value describes the cluster model with more uncertainty at
the border. Uncertainty of the class border should be possibly high as opposed to
the class lower approximation. For each selected cluster centers, rough entropy
measure determines quality measure or fitness value of this cluster centers.

In order to search thoroughly space of all possible class assignments for prede-
fined number of cluster centers, evolutionary algorithm has been employed. Each
solution in the evolutionary population, represented by chromosome, consists of
N cluster centers. After calculation of rough entropy measure for this class cen-
ters, new mating pool of solution is selected from parental population, based
on the rough entropy measure as fitness measure. Higher fitness measure makes
selection of the solution into mating pool more probable. From the (parental)
mating pool new child population is created by means of selection, cross-over,
mutation operations. The procedure is repeated predefined number of times or
stops when some other predefined criteria are met. Detailed algorithm flow with
evolutionary processing is described in Algorithm 1.

Standard RECA algorithm presents algorithmic routine that determines clus-
ter centers or representatives for given image data and further image clustering
is based on image data assignment into their closest cluster center. In this way,
in Standard RECA algorithm as in other partitioning data clustering algorithms
performs search for optimal data cluster centers. RECA population consists of
predefined number of solutions or chromosomes, that represent clusters centers
in d-dimensional domain. Initial population of chromosomes is then iteratively
evolving by means of selection, cross-over and mutation operations with clusters
rough entropy measure as a fitness value for each chromosome.
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Given a chromosome with N d -dimensional clusters, lower and upper approx-
imation for each cluster is determined by means of separate analyzing distances
of all data points from cluster centers. In this way, for each image data point,
its closest data cluster is determined together with distances to all other clus-
ter centers. If data point is located near to only one cluster, then this data
point is assigned to lower and upper approximation for this closest data cluster.
However, if data point is located close to more that one data center with the
given threshold value, then this data point is assigned to upper approximations
for these closest data centers. Threshold value determines maximal admissible
difference of distances of data point and two clusters that is interpreted as a
data point belonging to these two data clusters. After analyzing all data points
and lower and upper approximation calculation for the given cluster centers,
roughness for each data cluster is calculated and further roughness entropy is
determined. Roughness entropy presents the measure of segmentation quality
for evolutionary algorithm that manages on that base, consecutive population
iterations. Algorithm flow is stopped after predefined termination criteria are
met.

3.2 Fuzzy RECA Algorithm

Fuzzy RECA algorithm presents fuzzy version of RECA algorithm. . During
computation of lower and upper approximations for the given cluster centers,
fuzzy membership value is calculated and this fuzzy membership value added to
lower and upper approximation. Fuzzy membership value is calculated by means
of standard formula taking into account distances of the data point from each
data centers.

In Fuzzy RECA setting, for the given point, lower and / or lower approxima-
tion value is incremented not arbitrary by 1, but is increased by its membership
value. In this way, fuzzy concept of belongings to overlapped classes has been
incorporated. Taking into account fuzzy membership values during lower and
upper approximation calculation, should more precisely handle imprecise infor-
mation that imagery data consists of.

Experimental data for RECA algorithm and Fuzzy RECA algorithm are
presented in subsequent section.

4 Experimental Results

Experiments have been carried out for image set of 2d Lenna images. The set of
Lenna images consisted from four images standard image, and three convoluted
images with the window 3x3 with operations. In this way, for Lenna images, six
separate 2d images were created by creating pairs: Lenna Std−Max, Std−Min,
Std−Mean, Max−Min Max−Mean and Min−Mean.
Lenna images - Standard RECA
In Table 2 index-β values of the solutions from 2d RECA algorithm two runs

for R = 5 ranges are presented together with k -means clusterings. For each
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Algorithm 3. Fuzzy RECA Algorithm Flow
Data: Input Image
Result: Optimal Threshold Value
1. Create X population with Size random N-level solutions (chromosomes)
repeat

forall chromosomes of X do
calculate their rough entropy measure values RECA
Fuzzy Rough Entropy Measure;

end
create mating pool Y from parental X population ;
apply selection, cross-over and mutation operators to Y population;
replace X population with Y population ;

until until termination criteria ;

Algorithm 4. Fuzzy RECA - calculation of cluster Lower and Upper Ap-
proximations, Roughness and Fuzzy Entropy Roughness
foreach Data object D do

Determine the closest cluster center Ci for D
Increment Lower(Ci) by fuzzy membership value of D Increment Upper(Ci)
by fuzzy membership value of D
foreach Cluster Ck not further then eps from D do

Increment Upper(Ck) by fuzzy membership value of D
end

for l = 1 to C(number of data clusters) do
roughness(l) = 1 - [ Lower(l) / Upper(l)];

for l = 1 to C(number of data clusters) do
Fuzzy Rough entropy = Fuzzy Rough entropy − e

2 × [roughness(l) ×
log(roughness(l));

Table 1. Lenna gray 1D image - standard image and exemplary segmentation
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experiment, independently measures β-index and KM are given separately for
2d k-means and 2dRECA. Solutions that yielded better results than 2d standard
k -means algorithm based segmentations are bolded. In each experiment as input
images pairs of images Std − Min, Std − Max, Std − Mean, Min − Max,
Min−Mean, Max−Mean have been taken as input.
Lenna images - Fuzzy RECA
In Table 3 index-β values of the solutions from Fuzzy 2d RECA algorithm

two runs for R = 5 ranges are presented together with k -means clusterings. For
each experiment, independently measures β-index and KM are given separately
for 2d k-means and 2d RECA. Solutions that yielded better results than 2d
standard k -means algorithm based segmentations are bolded. In each experiment
as input images pairs of images Std−Min, Std−Max, Std−Mean, Min−Max,
Min−Mean, Max−Mean have been taken as input.

Table 2. Quality Indices for 1D-1D Images Lenna for 2d RECA

Image Lenna KM k -means β k -means KM RECA β RECA

Std-Max 654471 10.32 661310 10.33
Std-Min 679808 11.48 658499 11.45

Std-Mean 512745 19.18 505791 19.16

Max-Min 828134 7.64 826195 7.49

Max-Mean 629493 11.93 549895 11.95
Min-Mean 606263 14.02 690796 13.30

Table 3. Quality Indices for 1D-1D Images Lenna for 2d Fuzzy RECA

Image Lenna KM k -means β k -means KM RECA β RECA

Std-Max 654471 10.32 710370 10.33
Std-Min 679808 11.48 698514 11.46

Std-Mean 512745 19.18 568150 19.18

Max-Min 828134 7.64 854481 7.65
Max-Mean 629493 11.93 651475 11.95
Min-Mean 606263 14.02 649731 14.02

5 Conclusions

In the present study, detailed investigation into standard rough entropy thresh-
olding algorithm has been performed. In order to make rough entropy thresh-
olding more robust, completely new approach into rough entropy computation
has been elaborated. Proposed algorithm addresses the problem of extension of
rough entropy thresholding into rough entropy based clustering scheme RECA
and Fuzzy RECA. In the present paper, new algorithmic scheme in the area of
rough entropy based partitioning routines has been proposed. Standard RECA
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and Fuzzy RECA clustering algorithm is based on the notion of rough entropy
measure and fuzzy rough entropy measure of object space partitioning or uni-
verse. Rough entropy of data partitioning quantifies the measure of uncertainty
generated by the clustering scheme, and this rough entropy relates to the border
of the partitioning, so rough entropy measure should be as high as it is possible.
Experiments on two different types of 2d images are performed and compared
to standard 2d k -means algorithm. Results proved comparably equal or better
performance of RECA and Fuzzy RECA algorithmic schemes. In this way, fu-
ture research in the area of rough entropy based clustering schemes is possible
with prospect of practical robust and improved clustering performance.
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Abstract. In this paper we propose an efficient method of discovering
Jumping Emerging Patterns with Occurrence Counts for the use in clas-
sification of data with numeric or nominal attributes. This new extension
of Jumping Emerging Patterns proved to perform well when classifying
image data and here we experimentally compare it to other methods,
by using generalized border-based pattern mining algorithm to build the
classifier.

1 Introduction

Recently there has been a strong progress in the area of rule- and pattern-
based classification algorithms, following the very fruitful research in the area of
association rules and emerging patterns. One of the most recent and promising
methods is classification using jumping emerging patterns (JEPs). It is based
on the idea that JEPs, as their support changes sharply from one dataset to
another, carry highly discriminative information that allows creating classifiers,
which associate previously unseen records of data to one of these datasets. As
JEPs have been originally conceived for transaction databases, where each data
record is a set of items, a JEP-based classifier is not usually directly applicable
to relational databases, i.e. containing numeric or nominal attributes. In such
case an additional discretization step is required to transform the available data
to transactional form.

In this article we address the problem of efficiently discovering JEPs and
using them directly for supervised learning in databases, where the data can
be described as multi-sets of features. This is an enhancement of the transac-
tional database representation, where instead of a binary relation between items
and database records, an occurrence count is associated with every item in a
set. Example real-world problems that could be approached in this way include
market-basket analysis (quantities of bought products), as well as text and mul-
timedia data mining (numbers of occurrences of particular features). We use a
new type of JEPs to accomplish this task – the jumping emerging patterns with
occurrence counts (occJEPs) – show both the original semi-näıve algorithm and
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.
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a new border-based algorithm for finding occJEPs and compare their discrimi-
native value with other recent classification methods.

The rest of the paper is organized as follows. Section 2 outlines previous work
done in the field, while Section 3 gives an overview of the concept of emerg-
ing patterns in transaction databases. In Sections 4–7 we introduce jumping
emerging patterns with occurrence counts (occJEPs), present their discovery al-
gorithms and describe the chosen method of performing classification with a set
of found occJEPs. Section 8 presents experimental results of classification and
a comparison of some of the most current classifiers. Section 9 closes with a
conclusion and discussion on possible future work.

2 Previous Work

The concept of discovering jumping emerging patterns and using them in classifi-
cation of transactional datasets has been introduced in [1]. Such patterns proved
to be a very accurate alternative to previously proposed rule- and tree-based
classifiers. Efficient mining of emerging patterns has been first studied in [2,3,4]
and in the context of JEP-based classification in [5]. More recently, a rough set
theory approach to pattern mining has been presented in [6] and a method based
on the concept of equivalence classes in [7].

The application of association rules with recurrent items to the analysis of
multimedia data has been proposed in [8], while general and efficient algorithms
for discovering such rules have been presented in [9] and [10]. The extension of
the definition of jumping emerging patterns to include recurrent items and using
them for building classifiers has been proposed in [11].

3 Emerging Patterns

We restrict further discussion on emerging patterns to transaction systems. A
transaction system is a pair (D, I), where D is a finite sequence of transactions
(T1, . . . , Tn) (database), such that Ti ⊆ I for i = 1, . . . , n and I is a non-
empty set of items (itemspace). A support of an itemset X ⊂ I in a sequence
D = (Ti)i∈K⊆{1,...,n} ⊆ D is defined as suppD(X) = |{i∈K: X⊆Ti}|

|K| .
Given two databases D1, D2 ⊆ D we define an itemset X ⊂ I to be a jumping

emerging pattern (JEP) fromD1 to D2 if suppD1
(X) = 0∧suppD2

(X) > 0. A set
of all JEPs from D1 to D2 is called a JEP space and denoted by JEP (D1, D2).

4 Jumping Emerging Patterns with Occurrence Counts

Let a transaction system with recurrent items be a pair (Dr, I), where Dr is a
database and I is an itemspace (the definition of itemspace remains unchanged).
We define database Dr as a finite sequence of transactions (T r

1 , . . . , T
r
n) for i =

1, . . . , n. Each transaction is a set of pairs T r
i = {(ti, qi); ti ∈ I}, where qi :

I → N is a function, which assigns the number of occurrences to each item of
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the transaction. Similarly, a multiset of items Xr is defined as a set of pairs
{(x, p); x ∈ I}, where p : I → N. We say that x ∈ Xr ⇐⇒ p(x) ≥ 1 and
define X = {x : x ∈ Xr}. We will write Xr = (X, P ) to distinguish X as the set
of items contained in a multiset Xr and P as the set of functions, which assign
occurrence counts to particular items.

The support of a multiset of items Xr in a sequence Dr = (T r
i )i∈K⊆{1,...,n} ⊆

Dr is defined as: suppD(Xr, θ) = |{i∈K: Xr
θ
⊆T r

i }|
|K| , where

θ
⊆ is an inclusion relation

between a multiset Xr = (X, P ) and a transaction T r = (T, Q) with an
occurrence threshold θ ≥ 1:

Xr
θ
⊆ T r ⇐⇒ ∀x∈I q(x) ≥ θ · p(x) (1)

The introduction of an occurrence threshold θ allows for differentiating trans-
actions containing the same sets of items with a specified tolerance margin of
occurrence counts. It is thus possible to define a difference in the number of oc-
currences, which is necessary to consider such a pair of transactions as distinct

sets of items. We will assume that the relation ⊆ is equivalent to
1
⊆ in the context

of two multisets.
Let a decision transaction system be a tuple (Dr, I, Id), where (Dr, I ∪ Id)

is a transaction system with recurrent items and ∀T r∈Dr |T ∩ Id| = 1. Elements
of I and Id are called condition and decision items, respectively. A support
for a decision transaction system (Dr, I, Id) is understood as a support in the
transaction system (Dr, I ∪ Id).

For each decision item c ∈ Id we define a decision class sequence Cc = (T r
i )i∈K ,

where K = {k ∈ {1, . . . , n} : c ∈ Tk}. Notice that each of the transactions
from Dr belongs to exactly one class sequence. In addition, for a database D =
(T r

i )i∈K⊆{1,...,n} ⊆ Dr, we define a complement database D′ = (T r
i )i∈{1,...,n}−K .

Given two databases D1, D2 ⊆ Dr we call a multiset of items Xr a jumping
emerging pattern with occurrence counts (occJEP) from D1 to D2, if suppD1

(Xr, 1) = 0 ∧ suppD2
(Xr, θ) > 0, where θ is the occurrence threshold. A set

of all occJEPs with a threshold θ from D1 to D2 is called an occJEP space
and denoted by occJEP (D1, D2, θ). We distinguish the set of all minimal occ-
JEPs as occJEPm, occJEPm(D1, D2, θ) ⊆ occJEP (D1, D2, θ). Notice also that
occJEP (D1, D2, θ) ⊆ occJEP (D1, D2, θ − 1) for θ ≥ 2. In the rest of the doc-
ument we will refer to multisets of items as itemsets and use the symbol Xr to
avoid confusion.

5 A Semi-näıve Mining Algorithm

Our previous method of discovering occJEPs, introduced in [11], is based on the
observation that only minimal patterns need to be found to perform classifica-
tion. Furthermore, it is usually not necessary to mine patterns longer than a
few items, as their support is very low and thus their impact on classification
accuracy is negligible. This way we can reduce the problem to: (a) finding only
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such occJEPs, for which no patterns with a lesser number of items and the same
or lower number of item occurrences exist; (b) discovering patterns of less than
δ items.

Let Cc be a decision class sequence of a database Dr for a given decision
item c and C′

c a complement sequence to Cc. We define D1 = C′
c, D2 = Cc

and the aim of the algorithm to discover occJEPm(D1, D2, θ). We begin by
finding the patterns, which are not supported in D1, as possible candidates
for occJEPs. In case of multi-item patterns at least one of the item counts
of the candidate pattern has to be larger than the corresponding item count
in the database. We can write this as: Xr = (X,P ) is an occJEP candidate
⇐⇒ ∀T r=(T,Q)∈D1 ∃x∈X p(x) > q(x).

The first step of the algorithm is then to create a set of conditions in the form
of [p(ij) > q1(ij) ∨ . . . ∨ p(ik) > q1(ik)] ∧ . . . ∧ [p(ij) > qn(ij) ∨ . . . ∨ p(ik) >
qn(ik)] for each of the candidate itemsets Xr = (X,P ), X ⊆ 2I , where j and
k are subscripts of items appearing in a particular Xr and n is the number of
transactions in D1. Solving this set of inequalities results in its transformation
to the form of [p(ij) > rj ∧ . . .∧ p(ik) > rk]∨ . . .∨ [p(ij) > sj ∧ . . .∧ p(ik) > sk],
where r and s are the occurrence counts of respective items. The counts have to
be incremented by 1, to fulfill the condition of suppr

D1
(Xr, θ) = 0.

Having found the minimum occurrence counts of items in the candidate item-
sets, we then calculate the support of each of the itemsets in D2 with a thresh-
old θ. The candidates, for which suppr

D2
(X, θ) > 0 are the minimal occJEPs

(D1, D2, θ).

6 Border-Based Mining Algorithm

The border-based occJEP discovery algorithm is an extension of the EP-mining
method described in [4]. Similarly, as proved in [3] for regular emerging patterns,
we can use the concept of borders to represent a collection of occJEPs. This is
because the occJEP space S is convex, that is it follows: ∀Xr, Zr ∈ Sr ∀Y r ∈
2Sr

Xr ⊆ Y r ⊆ Zr ⇒ Y r ∈ Sr. For the sake of readability we will now onward
denote particular items with consecutive alphabet letters, with an index indicat-
ing the occurrence count, and skip individual brackets, e.g. {a1b2, c3} instead of
{{1 · i1, 2 · i2}, {3 · i3}}.

Example 1. S = {a1, a1b1, a1b2, a1c1, a1b1c1, a1b2c1} is a convex collection of
sets, but S′ = {a1, a1b1, a1c1, a1b1c1, a1b2c1} is not convex. We can partition it
into two convex collections S′1 = {a1, a1b1} and S′2 = {a1c1, a1b1c1, a1b2c1}.

A border is an ordered pair < L,R > such that L and R are antichains,
∀Xr ∈ L ∃Y r ∈ R Xr ⊆ Y r and ∀Xr ∈ R ∃Y r ∈ L Y r ⊆ Xr. The collection of
sets represented by a border < L,R > is equal to:

[L,R] = {Y r : ∃Xr ∈ L, ∃Zr ∈ R such that Xr ⊆ Y r ⊆ Zr} (2)

Example 2. The border of collection S, introduced in earlier example, is equal
to [L,R] = [{a1}, {a1b2c1}].
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The most basic operation involving borders is a border differential, defined
as:

< L,R >=< {∅},R1 > − < {∅},R2 > (3)

As proven in [3] this operation may be reduced to a series of simpler opera-
tions. For R1 = {U1, . . . , Um}:

< Li,Ri > = < {∅}, {U r
i } > − < {∅},R2 > (4)

< L,R > = <

m⋃
i=1

Li,

m⋃
i=1

Ri > (5)

A direct approach to calculating the border differential would be to expand
the borders and compute set differences.

Example 3. The border differential between [{∅}, {a1b2c1}] and [{∅}, {a1c1}] is
equal to [{b1}, {a1b2c1}]. This is because:

[{∅}, {a1b2c1}] = {a1, b1, b2, c1, a1b1, a1b2, a1c1, b1c1, b2c1, a1b1c1, a1b2c1}
[{∅}, {a1c1}] = {a1, c1, a1c1}

[{∅}, {a1b2c1}] − [{∅}, {a1c1}] = {b1, b2, a1b1, a1b2, b1c1, b2c1, a1b1c1, a1b2c1}

6.1 Algorithm Optimizations

On the basis of optimizations proposed in [4], we now show the extensions nec-
essary for discovering emerging patterns with occurrence counts. All of the ideas
presented there for reducing the number of operations described in the context
of regular EPs are also applicable for recurrent patterns. The first idea allows
avoiding the expansion of borders when calculating the collection of minimal
itemsets Min(S) in a border differential S = [{∅}, {U r}]− [{∅}, {Sr

1, . . . , S
r
k}]. It

has been proven in [4] that Min(S) is equivalent to:

Min(S) = Min({
⋃
{s1, . . . , sk} : si ∈ U r − Sr

i , 1 ≤ i ≤ k})

In the case of emerging patterns with occurrence counts we need to define
the left-bound union and set theoretic difference operations between multisets
of items Xr = (X, P ) and Y r = (Y, Q). These operations guarantee that the
resulting patterns are still minimal.

Definition 1. The left-bound union of multisets Xr ∪ Y r = Zr. Zr = (Z,R),
where: Z = {z : z ∈ X ∨ z ∈ Y } and R = {r(z) = max(p(z), q(z))}.

Definition 2. The left-bound set theoretic difference of multisets Xr−Y r = Zr.
Zr = (Z,R), where: Z = {z : z ∈ X ∧ p(z) > q(z)} and R = {r(z) = q(z) + 1}.

Example 4. For the differential: [{∅}, {a1b3c1d1}]− [{∅}, {b1c1}, {b3d1}, {c1d1}].
U = {a1b3c1d1}, S1 = {b1c1}, S2 = {b3d1}, S3 = {c1d1}. U − S1 = {a1b2d1},
U − S2 = {a1c1}, U − S3 = {a1b1}. Calculating the Min function:
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Min([{∅}, {a1b3c1d1}]− [{∅}, {b1c1}, {b3d1}, {c1d1}]) =
= Min({a1a1a1, a1a1b1, a1c1a1, a1c1b1, b2a1a1,

b2a1b1, b2c1b1, d1a1a1, d1a1b1, d1c1a1, d1c1b1}) =
= Min({a1, a1b1, a1c1, a1b1c1, a1b2, a1b2, b2c1, a1d1, a1b1d1, a1c1d1, b1c1d1}) =

= {a1, b2c1, b1c1d1} .

Similar changes are necessary when performing the border expansion in an
incremental manner, which has been proposed as the second possible algorithm
optimization. The union and difference operations in the following steps need to
be conducted according to Definitions 1 and 2 above:

1. Incremental expansion
2. L = {{x} : x ∈ U r − Sr

1}
3. for i = 2 to k
4. L = Min{Xr ∪ {x} : Xr ∈ L, x ∈ U r − Sr

i}

Lastly, a few points need to be considered when performing the third opti-
mization, namely avoiding generating nonminimal itemsets. Originally, the idea
was to avoid expanding such itemsets during incremental processing, which are
known to be minimal beforehand. This is the case when the same item is present
both in an itemset in the old L and in the set difference U−Si (line 4 of the incre-
mental expansion algorithm above). In case of recurrent patterns this condition
is too weak to guarantee that all patterns are still going to be generated, as we
have to deal with differences in the number of item occurrences. The modified
conditions of itemset removal are thus as follows:

1. If an itemset Xr in the old L contains an item x from T r
i = U r − Sr

i and its
occurrence count is equal or greater than the one in T r

i , then move Xr from
L to NewL.

2. If the moved Xr is a singleton set {(x, p(x))} and its occurrence count is the
same in L and T r

i , then remove x from T r
i .

Example 5. Let U r = {a1b2}, Sr
1 = {a1}, Sr

2 = {b1}. Then T r
1 = U r − Sr

1 = {b1}
and T r

2 = U r − Sr
2 = {a1b2}. We initialize L = {b1} and check it against T r

2 .
While T r

2 contains {b2}, {b1} may not be moved directly to NewL, as this would
falsely result in returning {b1} as the only minimal itemset, instead of {a1b1, b2}.
Suppose Sr

1 = {a1b1}, then initial L = {b2} and this time we can see that {b2}
does not have to be expanded, as the same item with at least equal occurrence
count is present in T r

2 . Thus, {b2} is moved directly to NewL, removed from T r
2

and returned as a minimal itemset.

The final algorithm, consisting of all proposed modifications, is presented
below.

1. Border-differential(< {∅}, {U r} >, < {∅}, {Sr
1, . . . , S

r
k} >)

2. T r
i = U r − Sr

i for 1 ≤ i ≤ k
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3. if ∃T r
i = {∅} then return < {}, {} >

4. L = {{x} : x ∈ T r
1}

5. for i = 2 to k
6. NewL = {Xr = (X,P (X)) ∈ L : X∩Ti 
= ∅∧∀x ∈ (X∩Ti) p(x) ≥ t(x)}
7. L = L−NewL
8. T r

i = T r
i − {x : {(x, p(x))} ∈ NewL}

9. for each Xr ∈ L sorted according to increasing cardinality do
10. for each x ∈ Ti do
11. if ∀Zr ∈ NewL suppZr(Xr ∪ {x}, 1) = 0
12. then NewL = NewL ∪ (Xr ∪ {x})
13. L = NewL
14. return L

6.2 Discovering occJEPs

Creating an occJEP-based classifier involves discovering all minimal occJEPs to
each of the classes present in a particular decision system. We can formally define
the set of patterns in a classifier occJEP θ

C for a given occurrence threshold θ
as: occJEP θ

C =
⋃

c∈Id
occJEPm(C′

c, Cc, θ), where Cc ⊆ Dr
L is a decision class

sequence for decision item c and C′
c is a complementary sequence in a learning

database Dr
L.

To discover patterns between two dataset pairs, we first need to remove non-
maximal itemsets from each them. Next, we multiply the occurrence counts of
itemsets in the background dataset by the user-specified threshold. Finally, we
need to iteratively call the Border-differential function and create a union of the
results to find the set of all minimal jumping emerging patterns with occurrence
counts from C′

c to Cc.

1. Discover-minimal-occJEPs(C′
c, Cc, θ)

2. L = Remove-non-maximal-itemsets(Cc)
3. R = Remove-non-maximal-itemsets(C′

c)
4. for Sr

i ∈ R do
5. Sr

i = (Si, s(x) · θ)
6. end
7. J = {∅}
8. for Lr

i ∈ L do
9. J = J ∪ Border-differential(< {∅}, {Lr

i} >,< {∅}, {Sr
1, . . . , S

r
k} >)

10. end
11. return J
Example 6. Consider a learning database Dr

L containing transactions of three
distinct classes: C1, C2, C3 ⊂ Dr

L. C1 = {b2, a1c1}, C2 = {a1b1, c3d1} and C3 =
{a3, b1c1d1}. We need to discover occJEPs to each of the decision class sequences:
occJEPm(C2∪C3, C1, θ), occJEPm(C1∪C3, C2, θ) and occJEPm(C1∪C2, C3, θ).
Suppose θ = 2. Calculating the set of all minimal patterns involves invoking
the Discover-minimal-occJEPs function three times, in which the base Border-
differential function is called twice each time and the resulting occJEPs are as
follows: {a1c1} to class 1, {c3, a1b1} to class 2 and {a3, b1c1, b1d1} to class 3.
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7 Performing Classification

Classification of a particular transaction in the testing database Dr
T is performed

by aggregating all minimal occJEPs, which are supported by it [5]. A scoring
function is calculated and a category label is chosen by finding the class with
the maximum score:

score(T r, c) =
∑
Xr

suppr
Cc

(Xr), (6)

where Cc ⊆ Dr
T and Xr ∈ occJEPm(C′

c, Cc), such that Xr ⊆ T r. It is possible to
normalize the score to reduce the bias induced by unequal sizes of particular de-
cision sequences. This is performed by dividing the calculated score by a normal-
ization factor: norm-score(T r, c) = score(T r, c)/base-score(c), where base-score
is the median of scores of all transactions with decision item c in the learning
database: base-score(c) = median{score(T r, c), for each T r ∈ Cc ⊆ Dr

L}.

8 Experimental Results

We have used two types of data with recurrent items to assess the performance
of the proposed classifier. The first is a dataset used previously in [11], which
consists of images, represented by texture and color features, classified into four
categories: flower, food, mountain and elephant. The data contains ca. 400 in-
stances and 16 recurrent attributes, where each instance is an image represented
by 8 types of texture and 8 types of color features, possibly occurring multiple
times on a single image. The accuracy achieved by applying the classifier based
on jumping emerging patterns with occurrence counts for several threshold val-
ues and compared with other frequently used classification methods is presented
in Table 1. All experiments have been conducted as a ten-fold cross-validation
using the Weka package [12], having discretized the data into 10 equal-frequency
bins for all algorithms, except the occJEP method. The parameters of all used
classifiers have been left at their default values. The results are not directly com-
parable with those presented in [11], as currently the occJEP patterns are not
limited to any specific length and the seed number for random instance selection
during cross-validation was different than before.

The second dataset used for experiments represents the problem of text clas-
sification and has been generated on the basis of the Reuters-21578 collection of
documents. We have used the ApteMod version of the corpus [13], which orig-
inally contains 10788 documents classified into 90 categories. As the categories
are highly imbalanced (the most common class contains 3937 documents, while
the least common only 1), we have presented here the results of classification of
the problem reduced to differentiating between the two classes with the greatest
number of documents and all other combined, i.e. the new category labels are
earn (36.5% of all instances), acq (21.4%) and other (42.1%). Document repre-
sentation has been generated by: stemming each word in the corpus using the
Porter’s stemmer, ignoring words, which appear on the stoplist provided with
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Table 1. Classification accuracy of four image datasets. The performance of the clas-
sifier based on jumping emerging patterns with occurrence counts (occJEP) compared
to: regular jumping emerging patterns (JEP), C4.5 and support vector machine (SVM),
each after discretization into 10 equal-frequency bins.

method θ accuracy (%)
flower/ flower/ flower/ food/ food/ elephant/

food elephant mountain elephant mountain mountain

1 89.50 84.38 90.63 - 73.00 -
1.5 94.79 96.35 98.44 78.50 87.00 87.50

occJEP 2 97.92 98.96 97.92 88.00 91.00 88.50
2.5 92.71 97.92 95.31 83.00 90.50 85.50

3 89.06 97.92 95.31 74.00 87.00 80.50

JEP - 95.83 91.67 96.35 88.50 93.50 83.50
C4.5 - 93.23 89.58 85.94 87.50 92.50 82.00
SVM - 90.63 91.15 93.75 87.50 84.50 84.50

Table 2. Classification accuracy of the Reuters dataset, along with precision and recall
values for each of the classes, and the number of discovered emerging patterns / C4.5
tree size

earn acq other
method θ accuracy precision recall precision recall precision recall patterns

1 85.12 96.2 84.7 76.6 96.1 95.5 89.4 10029
1.5 85.58 96.2 84.7 77.8 96.1 95.5 90.4 9276

occJEP 2 84.65 96.2 87.9 78.9 95.7 96.6 91.5 7274
2.5 84.19 96.2 87.9 77.6 95.7 96.6 90.4 7015
10 83.72 98.00 86.2 79.3 97.9 95.5 91.3 3891

JEP - 66.98 86.8 55.0 46.2 47.1 70.7 85.3 45870
C4.5 - 73.49 92.9 65.0 67.5 52.9 69.2 88.5 51
SVM - 86.98 98.1 85.0 85.4 68.6 82.8 97.1 -

the corpus, and finally creating a vector containing the number of occurrences
of words in the particular document. We have selected the 100 most relevant
attributes from the resulting data, as measured by the χ2 statistic, and sampled
randomly 215 instances for cross-validation experiments, the results of which are
presented in Table 2.

9 Conclusions and Future Work

We have proposed an extension of the border-based emerging patterns mining al-
gorithm to allow discovering jumping emerging patterns with occurrence counts.
Such patterns may be used to build accurate classifiers for transactional data
containing recurrent attributes. By avoiding both discretization and using all
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values from the attribute domain, we considerably reduce the space of items
and exploit the natural order of occurrence counts. We have shown that areas
that could possibly benefit by using such an approach include image and text
data classification. The biggest drawback of the method lies in the number of
discovered patterns, which is however less than in the case of regular JEPs found
in discretized data. It is thus a possible area of future work to reduce the set
of discovered patterns and further limit the computational complexity without
influencing the classification accuracy.
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Abstract. Proposed filtration algorithm for fingerprints images is based
on iterative algorithm for image binarization which minimizes within
class variance for image foreground and background classes. The pro-
posed solution was modified to fit better to local structures of fingerprint
pattern using Gabor filters and directional filtering. The algorithm was
tested on fingerprint images database, with low quality images, giving
very good results in reducing noise and disturbances.

1 Introduction

In the fingerprint verification process three important phases can be distinguished:
fingerprint preprocessing phase, feature extraction and feature verification.
Analysis of fingerprint patterns can be based on many different features, char-
acteristic for fingerprint images, for example coefficients extracted by local filtra-
tion and local statistical parameters. Most common methods tend to use points
characteristic for a single ridge called minutiae – namely ridge endings and ridge
bifurcations. The efficiency of verification algorithm is strictly related to efficiency
of fingerprint preprocessing phase regardless of the features on which verification
is based. In the preprocessing phase image is normalized, filtered and the back-
ground of image is segmented out. Proposed algorithm concerns mostly fingerprint
filtration problem, which is very important for fingerprint images verification. Im-
ages acquired by fingerprint sensors are typically distorted because of both: the
quality of sensor and the nature of human fingers. The typical distortions are: lo-
cal discontinuity of ridge structure (”scratches”), local contrast deficiency (blurred
ridges) and salt’n’pepper noise. The most common methods for filtration take ad-
vantage of fingerprints local features in order to get best efficiency. Directional
filtration uses information about local ridge orientation and is mostly applied as
lowpass filtering (mean or median) on dominant directions. The most common
type of filtration of fingerprints uses Gabor filterbank. Gabor filter fits not only
local ridge direction but also to the characteristic parallel ridges pattern in image.
Gabor filtering is very efficient also when applied to regions of very low contrast.
Proposed algorithm uses both previously mentioned methods of filtration in an
iterative algorithm based on Dirac Needles algorithm for an image binarization
[1]. The algorithm was tested on fingerprint database from the Fingerprint Verifi-
cation Competition [2], with images of very low quality. Next paragraphs are or-
ganized as follows: Paragraph 2 describes Dirac’s needles algorithm and proposed
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modifications. Paragraph 3 describes filtration methods and proposed algorithm
for computing orientation map of fingerprint image. Paragraph 4 describes full
algorithm, the results of the algorithm are also shown.

2 Dirac’s Needles Algorithm and Proposed Modifications

Dirac’s needles algorithm is an evolutionary algorithm for image binarization. The
goal of the algorithm is to minimize the cost function given with the equation (1).

var(µd) = λ1Σµd≤0 ‖ g(p)− ḡf ‖2 +λ2Σµd≤0 ‖ g(p)− ḡb ‖2 (1)

where: µd is a function in an image domain P , µd: P → [−1, 1], related to the
membership of a pixel into background or foreground of an image; g(p) is a
function in an image domain g: P → [0, 255], related to the graylevel values
of each pixel; λ1, λ2 are the parameters of the algorithm. Equation (1) can be
rewritten in a from (2):

var(µd) = λ1Σ ‖ g(p)− ḡf ‖2 u(µd(p)) + λ2Σ ‖ g(p)− ḡb ‖2 u(−µd(p)) (2)

The minimum of var(µd) function is found using gradient algorithm with a
gradient given in (3):

- var(µd) = λ1Σ ‖ g(p)− ḡf ‖2 u(δd(p))− λ2Σ ‖ g(p)− ḡb ‖2 u(δd(p)) (3)

In this algorithm image is divided into two categories: background and fore-
ground basing on the membership function µd which minimizes the cost function
(1). In Dirac’s needles algorithm background category is defined for pixels with
µd < −α and foreground is defined for pixels with µd > α. Pixels for which
|µd| < α belong to the category ”unclassified”, still for µd which minimizes cost
function (1) this category is usually empty. In the Dirac’s needles algorithm bi-
narization is applied basing on the membership function µd. The optimal values
of this function are evaluated in order to minimize within class variance of pixels
belonging to foreground and background classes. Changing values of µd function
has no effect on the graylevel values of image pixels, which remain constant.

Proposed modifications first of all concern the output of the algorithm. Dirac’s
needles algorithm is used for image binarization, that is why graylevel values of
each pixel are constant and only the membership function values for each pixel
are modified. Proposed algorithm is used for image filtration and the member-
ship function is not used as an output data for image thresholding, but becomes
an input image for each iteration. The graylevel values of each pixel are changed
in each iteration and have a similar function in proposed algorithm that member-
ship function had in Dirac’s needles algorithm. Equation (4) becomes a modified
equation (2):

var(g) = λ1Σ ‖ ϕ(p)− ϕ̄f ‖2 (g(p)) + λ2Σ ‖ ϕ(p)− ϕ̄b ‖2 (−g(p)) (4)

where: g is a graylevel value of a pixel belonging to the input image for a
given iteration and is related to the membership function from a Dirac’s needles
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algorithm, ϕ(p) is an input image for a given iteration after filtration and is
related to the graylevel values of pixels in Dirac’s needles algorithm;

In proposed algorithm the weighting function of unary step u(ϕd(p)) is also
changed. The unary step function is replaced with linear function g(p), in order
to use every pixel graylevel value when computing within class variation (for
line and background classes) with appropriate weights. The main cause of this
modification was to make the filtration faster in each iteration. The weights in
this algorithm are chosen to give the biggest gradient value -(var(g)) for pixels
which graylevel value in image g differs most from graylevel value from filtered
image –µ. The mean values for each class are computed basing on a global mean:

ϕ̄ = 1
nΣϕ

ϕ̄b = 1
n1
Σϕ|ϕ>ϕ̄

ϕ̄f =
1
n2
Σϕ|ϕ<ϕ̄ (5)

The modified version of equation (3) is given in (6):

- var(g) = λ1Σ ‖ ϕ(p)− ϕ̄f ‖2 +λ2Σ ‖ ϕ(p)− ϕ̄b ‖2 (−1) (6)

The proposed algorithm for minimizing a given cost function occurred to be not
optimal. Next modification was applied to the weighting function related to the
unary step from Dirac’s needles algorithm. The modified cost function is given
in (7):

var(g) = λ1Σ ‖ ϕ(p)−ϕ̄f ‖2 (
1
2
g2(p)−g(p)max(g(p)))−λ2Σ ‖ ϕ(p)−ϕ̄b ‖2 (

1
2
g2(p)−g(p)min(g(p)))

(7)
and a gradient of (7) is given in:

�var(g) = λ1Σ ‖ ϕ(p)−ϕ̄f ‖2 (g(p)−max(g(p)))−λ2Σ ‖ ϕ(p)−ϕ̄b ‖2 (g(p)−min(g(p)))

(8)
The filtration based on a proposed iterative algorithm, which minimizes cost
function from (7), gave very good results.

3 Methods for Fingerprint Images Filtration

The filtration methods were used for acquiring images that were used to evaluate
the cost function (7).

3.1 Directional Filtering

The directional filtering of fingerprint images uses important local image feature
– ridge orientation [3]. The analysis along ridge direction enables the reduction
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of distortion of ridge pattern in regions with similar local ridge orientation.
The proposed filtration algorithm bases on evaluating mean graylevel value of
pixels belonging to analysed region, with a region being fitted to the local ridge
direction. This filtration is done using equation given in (9):

ϕ(p0) =
1
m
Σn∈Ng(pn) (9)

where: N is a section with a direction related to the local ridge orientation,
crossing pixel p, m – is a number of pixels belonging to section N , ϕ(p0) – is
a graylevel value of pixel after filtration, g(pn) – is a graylevel value of pixel
belonging to N in an input image;

The directional filtration is very efficient in reduction of noise and ”scratches”
in fingerprint images. Using this type of filtration enabled reduction even very
strong local disturbances in fingerprint images. On Fig. 2 the result of directional
filtration is shown for an image from Fig.1. The directional filtering is less efficient
when applied to regions of low contrast and high curvature.

Fig. 1. Fingerprint image

3.2 Gabor Filter

Gabor Filter [4] is the most common type of filter used for fingerprint images
analysis. This is because of the fact that it is fitted not only to local ridge
orientation but also to the characteristic ”hills and valleys” structure shown on
Fig. 3, which can be approximated with a sinusoidal function. The Gabor Filter
can be described with the equation:

g(x, y) = e
−0.5( x2

d2
x

+ y

d2
y

)
cos(2πux) (10)

where – 1/u corresponds to local frequency of fingerprint pattern, α – corre-
sponds to local ridge orientation:

x = x0sinα+ y0cosα
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Fig. 2. Image from Fig.1 after directional filtering

Fig. 3. The local fingerprint pattern, with a sinusoid approximating graylevel distrib-
ution

Fig. 4. Gabor filter in image domain (a) and frequency domain (b)

y = y0sinα− x0cosα (11)

x0, y0 correspond to coordinates of pixels, dx, dy are coefficients related to the
deviation of Gauss function. On Fig.4 the example of Gabor filter is shown in the
image and frequency domain. Gabor filtration is efficient in regions with quick
changing local ridge orientation and in the regions with low contrast, mostly
because of the mid-pass filtering. This type of filtration is not as efficient as sim-
ple directional filtering in the regions of high orientation coherence. Combining
Gabor filtering with directional filtering proved to give very good results.
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3.3 Evaluating of Local Ridge Orientation

The important parameter describing fingerprint ridge pattern is an orientation
map. Information about local ridge orientation is used in both filtering meth-
ods as well as in whole evolutionary filtering algorithm. Correctly evaluated
orientation map is crucial for the efficiency of the algorithm. Proposed method
for evaluating ridge orientation enables implementation of efficient, full algo-
rithm. Evaluation of local ridge orientation is based on the analysis of graylevel
values gradients on two perpendicular axes: -x, -y, acquired with the convo-
lution with Sobel masks. Local ridge orientation is evaluated as a division of
gradients:

Θ =
-y
-x (12)

Above mentioned method is especially sensitive for the distortion of fingerprint
image and is insufficient for practical use. In order to improve this method in
next iterations the orientation map is filtered with a low-pass filter. For this pur-
pose orientation map is firstly transformed to the form of a vector filed, using
equations:

φx = cos(Θ)

φy = sin(Θ) (13)

next the filtration is done. In the process of image filtering additionally infor-
mation about local orientation coherence is used. Local orientation coherence is
evaluated from the equation:

coh =
(Gxx −Gyy)2 + 4Gxy

Gxx +Gyy
(14)

where Gxx, Gyy, Gxy are local mean graylevel value gradients given from the
equations:

Gxx = ΣWG2
x

Gyy = ΣWG2
y (15)

Gxy = ΣWGxGy (16)

Orientation coherence has 0 value for the regions with abruptly changing ridge
orientation and 1 value for the regions with uniform orientation. In each suc-
cessive iteration of the algorithm the condition for growing value of local
coherence is tested for local windows. Only regions with improved value of
orientation coherence are being filtered . Experiments proved that good re-
sults of determining orientation map can be achieved after a small number of
iterations.
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4 Full Algorithm of Fingerprint Image Filtration and
Results

The full algorithm of image filtration is described in the following schema:

1. evaluating of fingerprint orientation map
2. evaluating images: ϕ1 and ϕ2, resulted from the filtration of the input image

g with the directional and Gabor filters
3. evaluating of means: ϕ̄f

1 ,ϕ̄b
1 ,ϕ̄f

2 ,and ϕ̄b
2 for the images after filtration

4. evaluating of the gradient -var(g) from equation (8) separately for the im-
ages ϕ1 and ϕ2

5. modification of graylevel values for pixels from image g with the use of pre-
viously evaluated gradients

6. back to point 1.

Proposed algorithm was tested on fingerprint images database from the Fin-
gerprint Verification Competition, which included images of low quality. The
algorithm proved to be very efficient in the improvement of the regions heavily
distorted by noise, local scratches, contrast deficiency and image blur. On Fig.
6 are shown regions of fingerprint images from Fig.5 with high distortion rate
(scratches, contrasts deficiency) as a result of filtration. The proposed algorithm
was compared with results for fingerprint images filtration using Gabor filtering,
giving much better results when filtering fingerprint images regions with high
noise level. The comparison of both algorithms using simple efficiency measure

Fig. 5. Examples of fingerprint image regions with local distortion

Fig. 6. Fingerprint image regions from Fig. 5 after proposed method of filtration
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Fig. 7. Examples of fingerprint image after filtration using proposed algorithm (left
image) and Gabor filtering (right image)

Fig. 8. Examples of minutiae extracted from fingerprint images after filtration using
proposed algorithm (left image) and Gabor filtering (right image)

is not a trivial issue, since lack of the high quality images which could be use
as a reference ones. The database from the Fingerprint Verification Competition
contains only natural fingerprint images, mostly highly disturbed. The first pro-
posed comparison method was simple visual comparison of results. The example
of this comparison method is shown on Fig. 7, on Fig. 9 the original image is
shown. Acquired filtered images using proposed filtration algorithm proved to be
better than when using Gabor filter. The second method for comparison results
was the analysis of minutiae detected from images filtered using both algorithms.
The example of this comparison method is shown on Fig. 8, on Fig. 9 the original
image is shown. In this case again the lack of information about true position
of minutiae in fingerprint images makes the method less valuable. Nevertheless
the detection of minutiae using proposed filtration algorithm gives in authors
opinion much better results than when using Gabor filtering.
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Fig. 9. The original fingerprint image from examples from Fig. 7 and 8

5 Conclusions

The algorithm proved to be very efficient, nevertheless it still gives a little worse
results in the regions of quickly changing ridge frequency. Future work includes
the optimization of this problem, for example by reducing directional filtering
influence in these regions. The efficiency of this algorithm is related to the proper
combination of the advantages of directional filtering with Gabor filtering using
evolutionary algorithm. The additional advantage is the fact that the output
image can be easily binarized with a simple global thresholding algorithm, with
a constant threshold. This is due to the fact, that original Dirac needles algo-
rithm was prepared mainly for image binarization. Because of its advantages the
algorithm can be effectively used for fingerprint image analysis and verification,
as well as in the analysis of images with a similar structure. Proposed algo-
rithm does not stabilize quickly, with consecutive iterations oscillations occurs.
Nevertheless the efficient filtration can be seen after a few steps (tests showed
that 3 full steps of algorithm are sufficient) which reduces the computational
complexity of the algorithm.
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Abstract. Jumping emerging patterns, like other discriminative pat-
terns, help to understand differences between decision classes and build
accurate classifiers. Since their discovery is usually time-consuming and
pruning with minimum support may require several adjustments, we con-
sider the problem of finding top-k minimal jumping emerging patterns.
We describe the approach based on a CP-Tree that gradually raises
minimum support during mining. Also, a general strategy for pruning
non-minimal patterns and their descendants is proposed. We employ the
concept of attribute set dependence to test pattern minimality. A two
and multiple class version of the problem is discussed. Experiments eval-
uate pruning capabilities and execution time.

Keywords: jumping emerging pattern, strong jumping emerging pat-
terns, top-k most interesting patterns, CP-Tree, rough sets, attribute set
dependence.

1 Introduction

Emerging patterns (EP) were introduced to capture differences between classes
in classified transaction datasets ([1]). This generic idea is being constantly ex-
tended to obtain derivative pattern types with specific properties, like, recently
proposed, generalized noise-tolerant ([2]) and statistically significant EPs ([3]).
Various experiments prove that such patterns are accurate in classification and
provide valuable knowledge in business and bioinformatics ([4]). In addition,
emerging patterns appear to share several important ideas with the rough set
theory ([5]) and can benefit from its achievements, e.g. reduct computation ([6]).

In this paper we bring the concept of top-k most interesting patterns to the
field of emerging patterns. We consider the problem of mining top-k minimal
jumping emerging patterns (JEPs), i.e. the k most supported minimal JEPs in
each decision class. A JEP is a pattern that exists in one class and is absent
from the others. One usually focuses on minimal JEPs due to their generality
and, thus, good classification capabilities. In a classified dataset from Fig. 1, the
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Polish Ministry of Education and Science.
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T1 bdca c0

T2 bdaf c0

T3 bce c0

T4 ca c1

T5 bdc c1

T6 caef c1

Fig. 1. Sample classified dataset with transaction items following the order b < d <
c < a < e < f and a respective CP-Tree

patterns bce, bdf , ab are JEPs in c0, but only ab is minimal. At the same time,
the pattern bc is not a JEP, since it is supported by transactions in both classes.

Many mining methods specify minimum support to prune infrequent patterns.
However, in practice, it is hard to predict the size of the result set for a certain
threshold. If its value is too high, one may obtain few patterns, if it is too low,
a mining process usually becomes time-consuming or infeasible. Therefore, a
specified number of top patterns may be a convenient alternative.

To provide an efficient solution, we exploit the resemblance between our prob-
lem and mining strong JEPs (SJEPs, [2]). We modify the approach based on a
CP-Tree, so that it is capable of gradually raising minimum support and, thus,
intensifying pattern pruning. New values of the threshold are deduced from min-
imal JEPs identified so far, which means that their minimality has to be verified
at discovery time. For this purpose, we leverage the method from [7], which uses
the notion of attribute set dependence from the rough set theory. As a general
improvement for CP-Tree mining, we advocate to use our minimality test to all
considered patterns and push pruning capabilities even further. The modifica-
tions are discussed for two and multiple classes. Experiments show significant
savings in the number of considered patterns and total computation time.

The content is organized as follows. In Sect 2 a related work is covered.
Section 3 provides preliminaries and a problem definition. Our algorithmic pro-
positions that utilize a CP-Tree are given in Sect. 4. Section 5 contains an exper-
imental evaluation of the presented methods. The paper is concluded in Sect. 6.

2 Related Work

Finding top-k most interesting patterns has been widely considered for frequent
patterns and their derivatives. Early works look at finding k largest (most fre-
quent) patterns ([8]) or k most frequent patterns of each length ([9]). In [10]
authors consider top-k closed frequent patterns with an additional constraint on
a minimum pattern length. A version for sequential patterns is presented in [11].
Two latter algorithms incorporate a support raising mechanism to mining based
on a FP-Tree. In our approach, we refer to the same general strategy, however,
desirable patterns, raising method and space traversal are different. To the best
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of our knowledge finding top-k discriminative patterns of any kind, in particular
EPs, have not been analyzed in literature yet.

EPs were introduced in [1]. In our work we specifically focus on minimal
JEPs, whose good classification capabilities and applications to bioinformatics
are covered in [4]. A classic JEP mining approach utilizes border differentia-
tion operation ([11]). A rough set approach that uses local projection and local
reducts is presented in [6]. Moreover, many other mining strategies defined later
for more general types of patterns can still be applied to this problem. In par-
ticular, an algorithm that mines a CP-Tree to find strong JEPs or generalized
noise-tolerant EPs ([12,2]), or a recent method for finding equivalence pattern
classes based on closed frequent pattern mining with a FP-Tree ([3]).

3 Preliminaries

This section covers theoretical background for the paper. It provides foundations
for classified datasets and emerging patterns and define the problem of finding
top-k minimal JEPs. Formal convention follows [6].

Let a transaction system be a pair (D, I), where D is a finite sequence of
transactions (T1, .., Tn) (database) such as Ti ⊆ I for i = 1, .., n and I is a non-
empty set of items (itemspace). Let a decision transaction system be a tuple
(D, I, Id), where (D, I ∪ Id) is a transaction system and ∀T∈D|T ∩ Id| = 1.
Elements of I and Id are called condition and decision items, respectively. For
each c ∈ Id, we define a decision class sequence Cc = (Ti)i∈K , where K = {k ∈
{1, .., n} : c ∈ Tk}. The notations Cc and C{c} are used interchangeably.

Let us consider a decision transaction system (D, I, Id). For a database D =
(Ti)i∈K⊆{1,..,n} ⊆ D, we define a complementary database D′ = (Ti)i∈{1,..,n}−K .
The count (support) of an itemset X ⊆ I ∪ Id in a database D = (Ti)i∈K ⊆ D
is defined as countD(X) = |{i ∈ K : X ⊆ Ti}|; (suppD(X) = countD(X)

|K| ), where
K ⊆ {1, .., n}.

Let us now consider two databases D1, D2 ⊆ D referred to as negative and
positive, respectively. The growth-rate of an itemset X ∈ P from D1 to D2

is defined as GRD1→D2(X) = 0, for suppD1(X), suppD2(X) = 0; = ∞, for
suppD1(X) = 0 and suppD2(X) 
= 0; = suppD2 (X)

suppD1 (X) , otherwise. Also, the support-
ratio of an itemset X ∈ P is SR(X) = max(GRD1→D2(X), GRD2→D1(X)).
Given ρ as minimum growth rate, a ρ-emerging pattern from D1 to D2 is de-
fined as an itemset X ⊆ I, for which GRD1→D2(X) ≥ ρ. For brevity, if D1

is known from the context, we talk about patterns in D2. Similarly, a jumping
emerging pattern (JEP) in D2 is an itemset X ⊆ I with an infinite growth-rate,
GRD1→D2(X) = +∞. In addition, given ξ as minimum support, we define a ξ-
strong jumping emerging pattern (SJEP) in D2 as an itemset X ⊆ I, for which
suppD1(X) = 0 and suppD2(X) ≥ ξ, and these not hold for its any proper subset.
In other words, X can be seen as a minimal JEP in D2 with suppD2(X) ≥ ξ.

The set of all JEPs from D1 to D2 is called a JEP space and denoted by
JEP (D1, D2). JEP spaces can be described concisely by means of borders ([11]).
For c ∈ Id, we use a border < Lc,Rc > to represent a JEP space JEP (C′

c, Cc).
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Pattern collections L and R are called a left and a right bound, and contain
minimal and maximal patterns in terms of inclusion, respectively.

Let us consider a decision transaction system DTS = (D, I, Id). The problem
of finding top-k minimal JEPs for DTS is defined as finding a collection {Jc}c∈Id

such that for each c ∈ Id: |Jc| = k and ∀X∈Jc,Y ∈Lc−JcsuppCc(X) ≥ suppCc(Y ).
In other words, for each decision class c ∈ Id, one looks for a set of k min-
imal JEPs from C′

c to Cc with the highest support. Note that, similarly to
formulations for closed frequent patterns ([10]), equally supported patterns are
indiscernible, thus, the result set may not be unequivocal.

Example 1. For the decision transaction system in Fig. 1 JEP spaces for classes c0,
c1 have the following form, respectively: < {df, bf, be, ad, ab}, {abcd, abdf, bce}>,
< {ef, cf, ae}, {ac, bcd, acef} >. Top-2 minimal JEPs in the class c0 are: ad, ab.

4 Top-K Patterns Discovery

Finding top-k minimal JEPs can be simply accomplished by selecting the k most
supported elements from the left bound of a priory computed complete JEP
space. This naive approach does not take advantage of the usually low value of
k and unnecessarily considers numerous infrequent patterns. In order to limit a
search space, we leverage the resemblance between mining SJEPs with a given
support threshold and top-k minimal JEPs, where this threshold is specified
implicitly by the value of k. Hereinafter, we consider our problem for a decision
transaction system DTS = (D, I, Id) and k ∈ N, where Id = {c0, c1}.

If we assume that Jc is the result for the class c ∈ Id, we may easily calculate
the best tuned minimum count as ξ = minX∈Jc(suppDc(X)). Then, our problem
can be immediately transformed to finding ξ-SJEPs and selecting k most sup-
ported patterns from the result set. Since the value of ξ is not known upfront,
it has to be discovered during the mining process. Similar strategy is utilized to
solve other related problems ([10,13]), although actual implementations strongly
depend on properties of a particular mining algorithm.

4.1 Mining Based on CP-Tree

In order to address the problem of finding top-k minimal JEPs, we modify a
popular method for mining SJEPs based on a CP-Tree ([12]). Due to space
limitations, only the main sketch is provided here (details in [12,2]).

Let us assume an order ≺ in I. A Contrast Pattern tree (CP-Tree) is a mod-
ified prefix tree. It is multiway and ordered. Each edge from a node N to one of
its children is labeled with an item i. The set of edge labels of N is denoted by
N.items. For i ∈ N.items, we associate its edge with a child (N.child[i]), positive
and negative count (N.posCount[i], N.negCount[i]). Children of each node and
edges on each rooted path are ordered in the way the respective labels follow ≺.
A set of labels on a rooted path represents a transaction prefix with counts in
the positive and negative class indicated by respective counts of the last node
of this path. For example, on the leftmost path bd is marked with 2, 1, since it
occurs in 2 transactions in c0 and 1 transaction in c1.
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A CP-Tree concisely represents a two-class transaction decision system and
enables efficient pattern mining. In order to construct a tree for DTS, items
of each transaction from (Ti ∩ I : Ti ∈ D} are sorted according to ≺ and the
resulting strings are inserted like to a regular prefix tree. As a part of each
insertion positive or negative counts are incremented based on the transaction’s
class (insert-tree, [12]). A tree for our sample system is given in Fig. 1.

SJEPs can be found by mining a CP-Tree as expressed by the mine-tree
routine (Algorithm 1). We parameterized the original scheme to demonstrate our
propositions. Two result sets for positive and negative patterns are maintained.
All found JEPs are added to respective result sets based on the accept-pattern
function. For pattern pruning two thresholds, a positive and negative minimum
count, are used. The raise-count procedure is responsible for raising their values.
Once the current pattern β is serviced, the function visit-subtree indicates, if its
subtree should be considered. Besides traversal of nodes the algorithm performs
subtree merging that allows us to consider subtrees associated with successive
transaction prefixes. This step is performed by the merge procedure and modifies
the structure of a tree. It is unrelated to our proposals, thus, omitted.

In the original algorithm for SJEP mining, all found JEPs are collected. Thus,
the routine accept-pattern(β, T.negCount[i], T.posCount[i],minPosCount) for
positive patterns checks basically if T.negCount[i] = 0. The thresholds are con-
stant, thus, raise-count(minPosCount, posPatterns) returns minPosCount.
Also the subtree is considered, if there is a chance to find patterns fulfilling re-
spective thresholds, i.e. visit-subtree checks if (T.posCount[i] ≥ minPosCount∨
T.negCount[i] ≥ minNegCount). In order to group JEPs closer to the top of the
tree, the order ≺ is based on support-ratio ([12]). Since result sets contain also
non-minimal JEPs, minimal ones has to be identified after mining is finished.

4.2 Minimum Support Raising

As mentioned before, our problem can be solved by finding a superset of ξ-SJEPs
with a certain minimum threshold ξ. Higher values of the threshold likely lead to
more efficient pruning. At the same time, one cannot exceed a certain threshold
that would prune patterns from the top-k set. Our discussion refers to one class
c ∈ Id. Analogous logic and structures are needed for the other.

We propose to gradually raise a minimum support threshold while a CP-Tree
is being mined. In order to achieve that, minimal JEPs are collected upfront,
i.e. a check for minimality is performed when a JEP is found. In consequence,
inferences on minimum support can be made based on patterns identified so far.
The following theorem states that whenever one knows a pattern collection of
the size at least k, the minimum support ξ equal to the minimum over supports
of patterns from this collection, ensures that a respective set of ξ-SJEPs contains
at least k elements. The trivial proof is omitted to space limitations.

Theorem 1. ∀P∈Lc |P | ≥ k ∧minX∈P (suppDcX)≥ξ ⇒ |ξ-SJEP (D′
c, Dc)|≥k.

Therefore, to solve our problem it is sufficient to store the current result in a
priority queue, e.g. a heap, of at most k elements ordered by non-increasing
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Algorithm 1. mine-tree (T,α)
1. for all (i ∈ T.items) do
2. if T.child[i].items is not empty then
3. merge(T.child[i], T )
4. end if
5. β = α ∪ T.items[i]
6. if accept-pattern(β,T.posCount[i], T.negCount[i], minNegCount) then
7. negPatterns := negPatterns ∪ β; count(β) := T.negCount[i]
8. minNegCount := raise-count(minNegCount, negPatterns)
9. else

10. if accept-pattern(β,T.negCount[i], T.posCount[i], minPosCount) then
11. posPatterns := posPatterns ∪ β; count(β) := T.posCount[i]
12. minPosCount := raise-count(minPosCount, posPatterns)
13. else
14. if visit-subtree(T, β) then
15. mine-tree(T.child[i], β)
16. end if
17. end if
18. end if
19. delete subtree i
20. end for

supports. For simplicity, we operate on counts instead of supports. At the begin-
ning minimum count is equal to 0. Whenever a new minimal JEP is identified
and fewer than k elements have been collected or its count is higher than the
current minimum count, it gets inserted to the queue. If k elements are collected,
one may set the minimum count to the count of the top element of the queue
plus one. This way the threshold can be raised without a significant overhead.

In the original algorithm, all found JEPs in c are added to a respective result
set. If one collects only minimal JEPs, their minimality has to be tested in
the accept-pattern routine. For X ⊆ I and D ⊆ D, we propose that X is D-
discernibility minimal iff ∀Y ⊂XsuppD′(X) < suppD′(Y ). In fact, it is sufficient
to examine only immediate subsets of X to check this property. The proof is
analogous to Theorem 5 in [7] and omitted due to space limitations.

Theorem 2. X is D-discernibility minimal ⇔ ∀a∈XsuppD′X < suppD′(X− a)

In fact, this notion is closely related to attribute set dependence from the rough
set theory. Note that, if X is a JEP, we have suppD′

c
(X) = 0, thus, X is minimal,

iff all its immediate subsets have non-zero negative counts.

Example 2. The following JEPs are successively discovered by the original algo-
rithm for c0: abcd, abd, bdf, abc, bce, ab, be, bf, acd, ad, df . Additional computation
is required to identify minimal patterns and pick ab,ad. If we check minimality
upfront, ab is the first minimal JEP, since suppD′

0
(a), suppD′

0
(b) > 0. For k = 2,

one collects ab, be (counts: 2, 1), and sets minimum count to 2. Then, it prunes
all patterns but ad, so that even additional minimality checks are not needed.
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4.3 Pruning of Non-minimal Patterns

For a given node, associated with a certain pattern X , all its descendants refer
to patterns that subsume X . The following theorem states that only supersets of
a D-discernibility minimal pattern can be minimal JEPs. The proof is analogous
to the one for Theorem 4 in [7] and omitted due to space limitations.

Theorem 3. ∀X⊆IX is not D-discernibility minimal =⇒ ∀Y ⊇XY 
∈ Lc

Therefore, one may use such a minimality test in the visit-subtree function and
prevent unnecessary traversing and merging. According to Theorem 2, it requires
checking counts in the negative class for all immediate subsets of β. Although this
pruning approach may be very powerful, the test is performed for every pattern
that was not added to result sets and, in consequence, can impact the overall
efficiency. Here, we use a classic counting method that stores a list of transaction
identifiers for each individual item and computes the count of a given pattern
by intersecting the lists referring to its items ([14]). Bit operations are employed
to improve performance.

Example 3. Theorem 3 allows us to avoid mining subtrees of non-minimal pat-
terns. For example, in Fig. 1, the patterns bd and bc are not minimal, since suppD′

0

bd = suppD′
0
bc = suppD′

0
b, and their subtrees can be pruned after merging.

4.4 Multiple Classes Case

Frequently, decision transaction systems contain more than two classes. In this
case, it is recommended ([11,12]) to induce EPs in each class separately and
treat the remaining classes as a negative class. A classic approach based on a
CP-Tree searches simultaneously for patterns in a positive and negative class.
Since negative ones would be discarded anyway, it is economical to modify our
algorithm, so that a search space and information stored in nodes are smaller.

As it was explained before, children of each node and nodes on each path are
ordered by support-ratio. This strategy makes positive and negative EPs with a
high growth-rate remain closer to the root of a tree. Since we are not interested
in finding negative patterns, it is better to use the ordering based solely on
growth-rate to the positive class. Also, there is no need to store exact negative
count in each node. A single bit that indicates if the associated pattern is a JEP
or not, is sufficient. As far as mining is concerned, only one priority queue and
variable for minimum count are required.

5 Experimental Evaluation

Our experiments consider finding top-k minimal JEPs for different values of
k. For each dataset, two cases are examined: with a minimality check only for
JEPs and with pruning of non-minimal patterns. The efficiency is contrasted
with finding top-∞ JEPs in both cases and classic finding SJEPs with a CP-
Tree without a minimum support pruning (Classic). Mining is performed for
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Table 1. Dataset summary and JEP finding with the Classic method

No Dataset Objects Items Classes
Minimal Classic Classic

JEPs exam. patterns comp. time

1 breast-wisc 699 29 2 499 8024 313
2 dna 500 80 3 444716 - -
3 heart 270 22 2 151 125008 625
4 krkopt 28056 43 18 1187 146004 18250
5 kr-vs-kp 3196 73 2 - - -
6 lung 32 220 3 203060 - -
7 lymn 148 59 4 1699 1670728 92188
8 mushroom 8124 117 2 1818 15279338 577254
9 tic-tac-toe 958 27 2 1429 45886 2578

10 vehicle 846 72 4 5045 19319956 2024497
11 zoo 101 35 7 103 198326 2109

Table 2. Finding top-k minimal JEPs without and with non-minimal pattern pruning

Dataset
Examined patterns Computation time

10 20 50 ∞ 10 20 50 ∞
breast-wisc 1095 1460 2864 8024 93 110 140 203

270 443 1205 3618 94 78 109 187
dna 5182 8538 16768 - 4407 5296 6985 -

2330 3520 6308 787714 4156 4891 6265 65235
heart 33720 52170 80474 125008 219 312 422 609

1952 2952 4364 6523 125 171 219 281
krkopt 58982 66753 76337 146004 16109 16203 16485 19766

54446 61586 70233 134244 20250 21204 22594 36875
kr-vs-kp - - - - - - - -

19147911 33734042 54507469 - 2067294 3834973 6497624 -
lung 150996628 189214719 - - 2871705 3614961 - -

138 252 1515 49782 578 797 662 252598
lymn 24749 44842 97792 1670728 656 984 1625 14016

1512 2328 4342 36409 360 484 656 2438
mushroom 5591 20747 141041 15279338 3625 4672 9485 165798

306 474 2220 64839 2969 3156 4469 17672
tic-tac-toe 4716 6535 10251 45886 563 625 672 954

3847 5117 7335 23855 578 609 672 984
vehicle 1277105 1798589 2878406 19319956 32406 40609 56235 207830

39374 56734 92145 418401 5844 7188 9718 27407
zoo 59976 93980 146856 198326 593 828 1234 1532

2393 4062 7679 10851 156 188 281 359

each class separately. Each test is described by the number of examined patterns
(mine-tree calls) and total computation time in ms. Results are averaged over
several repetitions. In order to demonstrate efficiency of the pruning approaches,
larger datasets from UCI Repository were chosen. They were transformed to
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transaction systems, so that an item refers to an attribute value pair. Tests were
performed on a machine with 2 Quad CPU, 2.4GHz each and 4GB of RAM.

In Classic, one discovers patterns that are not necessarily minimal. Final prun-
ing is performed at the end and may involve large collections of candidates. In
order to show improvement in JEP finding, we compare it to top-∞, where prun-
ing is performed upfront. Significant improvement can be observed for datasets
with large number of patterns, like mushroom or vehicle.

Thanks to minimum count raising finding top-k minimal JEPs is usually pos-
sible in reasonable time for small k. Even without pruning of non-minimal pat-
terns, benefits in a number of examined patterns and an execution time are
significant (dna, lymn, lung, krkopt, vehicle).

In terms of examined patterns, efficiency of pruning of non-minimal patterns
is visible for the majority of sets. Significant impact on a total execution time
can be observed for datasets: lung, vehicle, zoo. For three datasets (dna, lung,
kr-vs-kp) we were unable to obtain solution neither with Classic nor with top-
∞ without pruning of non-minimal patterns. However, after applying the latter
pruning both datasets dna and lung could be solved.

Notice that, if only a small part of all patterns can be pruned, additional
overhead of checking pruning conditions decreases gains in a computation time
(e.g. breast-wisc, heart, krkopt, tic-tac-toe).

6 Conclusions

In this paper we have considered the problem of finding top-k minimal jumping
emerging patterns (JEPs). Such approach may give good insight on a classified
dataset when a full computation is time-consuming or infeasible and a proper
value of minimum support is hard to estimate. The classic case of two classes
and its extension to multiple classes have been covered.

We have proposed an algorithm that follows the approach to finding strong
JEPs based on a CP-tree. A search space is pruned with minimum support,
whose value is being gradually raised as new minimal JEPs are discovered. In
order to enable this, minimality of each new JEP has to be verified by the time
it is found rather than at the end of the process. Our minimality test adapts
the idea of set dependence from the rough set theory. In fact, it is sufficient
to prove indispensability of each item of a pattern to ensure a specific support
in a negative class. Independently of the main problem, we have put forward a
general pruning strategy for a CP-Tree. Instead of verifying minimality only for
JEPs, we apply it to each considered pattern and possibly avoid examining its
descendants. Both methods may lead to significant space reductions, but they
come at the price of additional pattern counting.

Experiments show significant savings both in time and the number of ex-
amined patterns, when a small number of highly supported JEPs is requested.
This effect is even stronger when the general pruning approach of non-minimal
patterns is applied. For datasets with large itemspaces, it was the only fea-
sible method. For small datasets, the overhead of minimality verification is
noticeable.
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Abstract. In the continuing investigation of identifying musical instru-
ments in a polyphonic domain, we present a system that can identify
an instrument in a polyphonic domain with added noise of numerous
interacting and conflicting instruments in an orchestra. A hierarchical
tree specifically designed for the breakdown of polyphonic sounds is used
to enhance training of classifiers to correctly estimate an unknown poly-
phonic sound. This paper shows how goals to determine what hierarchi-
cal levels and what combination of mix levels is most effective has been
achieved. Learning the correct instrument classification for creating noise
together with what levels and mixed the noise optimizes training sets is
crucial in the quest to discover instruments in noise. Herein we present
a novel system that disseminates instruments in a polyphonic domain.

1 Introduction

The challenge for automatic indexing of instruments and Music Instrument Re-
trieval has moved from the monophonic domain to the polyphonic domain [15,7].
Previously we presented the rationale and need for creating a categorization
system more conducive for music information retrieval, see [6]. Essentially, the
Dewey-based, Hornbostel-Sachs classification system, [2,9] which classified all
instruments into the four categories of Idiophones (vibrating bodies), Membra-
nophones (vibrating membranes), Chordophones (vibrating strings), and Aero-
phones (vibrating air) firstly, permits instruments to fall into a more than one
category and secondly, humanistic conventions of categorization of certain in-
struments such as a piano or tamborine are alien to machine recognition. After
fine tuning our categorization, see Figure 1, we focused on solving an issue that
was prevalent in MIR of polyphonic sounds: In the past, if the training data did
not work, one did not know if the bug was in the classification tree or if it was in
the levels used to mix noise. With the classification issue resolved we could focus
on learning the optimal choice of mixes to create training noise and the optimal
levels of mix ratios for noise. Knowing the aforementioned allows discovery of
optimal conditions for machine learning how distortions caused by noise can be
eliminated in finding an instrument in a polyphonic domain.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 448–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Instrument Hierarchy Tree: Categorized by the MPEG-7 audio descriptor
LogAttackTime. We split the Convex and Non-Convex categories to smaller, more
specific groupings of instruments. We select instruments from the smaller categories
and combined them to make the polyphonic sounds.

2 Creating a Controlled Noise

With the issue of hierarchical categorization of music instruments solved we
decided to create the best controlled environment for training. To do this we
decided to use similarly pitched notes. We randomly chose Middle-C because it
was, simply put, in the middle of the spectrum. Even when certain instruments
could not reach Middle-C we still used the closest C, be it up or down one octave.
We also decided to create training sets consisting of both polyphonic and single
instrument tuples. The test set comprised all the mixed sounds with different
noise-ratios. Also, it was clear that the environment of this polyphonic domain
would have to be controlled. The issue would be how one control’s noise in a
manner that empirical calculations can be run and tested upon the polyphonic
domain? Considering our database is MPEG-7 based the authors decided to use
1) MPEG-7 descriptors [5] and five non-MPEG-7 based descriptors upon the
following rationale:

In the temporal domain we differentiate between tone-like and noise-like
sounds, where the center of gravity of a sound’s frequency power spectrum is
located, the variation and deviation, the slight variations of harmonicity of some
sounds, percussive and harmonic sounds and the time averaged over the energy
envelope. We also decided to incorporate descriptors that take into account how
human’s hear sounds in the time domain such as the ears perception to the fre-
quency components in the mel-frequency scale, the average number of positive
and negative traces of a sound wave that cross over zero, the frequencies that fall
below a specific magnitude and variations of the energy through the frequency
scales.
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3 Descriptors

3.1 MPEG-7 Descriptors

SpectrumSpread. To differentiate between tone-like and noise-like sounds the
authors used SpectrumSpread because its an economical descriptor that indi-
cates whether the power is concentrated in the vicinity of its centroid, or else
spread out over the spectrum.

S =

√√√√∑
n

log2(f(n)/1000)− C))2P ′
x(n)

/∑
n

P ′
x(n) (1)

where P
′

x(n) is the power spectrum, f(n) is the corresponding frequency. C is
spectrum centroid and S is the spectrum spread, in the form of RMS deviation
with respect to the centroid.

SpectrumCentroid. To identify instruments with a strong or weak center
of gravity of the log-frequency power spectrum we used the SpectrumCentroid
descriptor which is defined as the power weighted log-frequency centroid. Here,
frequencies of all coefficients are scaled to an octave scale anchored at 1 kHz

C =
∑

n

log2(f(n)/1000)P
′

x(n)

/∑
n

P
′

x(n) (2)

where P
′

x(n) is the power associated with the frequency f(n).

HarmonicSpectral Variation and Deviation (HSV) and (HSD). To re-
alize shifts within a running window of the harmonic peaks we used the HSV
and HSD descriptors, where the HarmonicSpectralVariation is the mean over the
sound segment duration of the instantaneous HarmonicSpectralVariation. The
HarmonicSpectralDeviation is the sound segment duration of the instantaneous
HarmonicSpectralDeviation within a running window computed as the spectral
deviation of log-amplitude components from a global spectral envelope.

HSV =
nbframes∑
frame=1

IHSV (frame)

/
nbframes (3)

HSD =
nbframes∑
frame=1

IHSD(frame)

/
nbframes (4)

where nbframes is the number of frames in the sound segment.

HarmonicPeaks. To differentiate instruments based on peaks of the spectrum
located around the multiple of the fundamental frequency of the signal we used
the HarmonicPeaks descriptor. The descriptor here looks for the maxima of the
amplitude of the Short Time Fourier Transform (STFT) close to the multiples
of the fundamental frequency. The frequencies are then estimated by the posi-
tions of these maxima while the amplitudes of these maxima determine their
amplitudes.
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LogAttackTime (LAT). The motivation for using the MPEG-7 temporal de-
scriptor, LogAttackTime (LAT ), is because segments containing short LAT pe-
riods cut generic percussive (and also sounds of plucked or hammered string)
and harmonic (sustained) signals into two separate groups [4,5]. The LAT is
the logarithm of the time duration between the point where the signal starts
to the point it reaches its stable part.[10] The range of the LAT is defined as
log10( 1

samplingrate ) and is determined by the length of the signal. Struck instru-
ments, such as most percussive instruments have a short LAT whereas blown or
vibrated instruments contain LATs of a longer duration.

LAT = log10(T 1− T 0), (5)

where T 0 is the time the signal starts; and T 1 reaches its sustained part (har-
monic space) or maximum part (percussive space).

TemporalCentroid. To sort instruments based upon the time averaged over
the energy envelope we used the TemporalCentroid descriptor which is extracted
as follows:

TC =
length(SEnv)∑

n=1

n/sr · (SEnv)(n)

/
length(SEnv)∑

n=1

(SEnv)(n) (6)

3.2 Non-MPEG-7 Descriptors

Energy MFCC. The MPEG-7 work is in the frequency domain but what about
differentiating instruments in the time-domain. In other words, like we hear
instruments? We know that the ears perception to the frequency components of
sound do not follow the linear scale but the mel-frequency scale [3], which in the
linear frequency domain below 1,000 Hz and a logarithmic spacing above 1,000
Hz [13]. To do this, filters have in the past been spaced linearly at low frequencies
and logarithmically at high frequencies [12]. We chose MFCC because it can key
in on the known variation of the ears critical band-widths with frequency [11]:

M(f) = 2595log10(1 + f/700) (7)

where f is frequency in Hertz. Based on this assumption, the mel-frequency
cepstrum coefficient, once known, opens the door to computing MFCC [1].

ZeroCrossingDensity. When a pure sound, a monophonic harmonic sound
is affected by noise, such as we are doing, the average number of positive and
negative traces of the sound wave that cross over zero (zero-crossings) per second
is affected. Using the ZeroCrossing Density descriptor allows us to consider this
dimension of the experiment.

RollOff. To differentiate frequencies that fall below an experimentally chosen
percentage of the accumulated magnitudes of the spectrum [14]. We chose to
include the RollOff descriptor.
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Flux. When non-linear sound waves are disturbed, such as being bombarded
by noise, the measurement of the variations of the energy through the frequency
scales is flux. Having a means to measure these changes as various levels of noise
are imposed upon a sound is crucial in differentiating the noise.

4 Experiments

In our experiments we used Weka 3.5.7 to build models for each training data
and chose the J48 decision tree as our classification algorithm. We had observed
in previous research that the J48 decision tree had a better performance in
detecting instrument timbres (see [17] and [16]). The goal is to find rules of how
modification of the mix levels of various combinations of instruments influences
the quality of the trained classifiers. We used the McGill University CDs, used
worldwide in research on music instrument sounds [8]. To test how the accuracy
of a classifier improves the estimation of the dominant instrument in a polyphonic
sound, we built a training dataset comprising mixtures of single instrument
sounds and polyphonic sounds. The polyphonic sounds comprised one dominant
sound and a specific mix of instruments located in the leaves at the same level
of the hierarchical tree with decreased amplitude which we observed as ”noise.”
Continuing with this strategy we combined more instruments according to our
hierarchical tree. However, before making the polyphonic sounds for the entire
hierarchical tree, we ran experiments to determine what levels of noise would be
optimal for each instrument in order to ensure a trained robust estimation of the
classification model’s unknown polyphonic sound. To make the size of training
data reliable we used the pitch of a single tone of 4C containing 10 different
dominant instruments.

Table 1. List of instruments making the basis for the noise

instrumnet category

ElectricGuitar string

Oboe reed

B-flatclarinet string

CTrumpet brass

TenorTrombone brass

Violin string

Accordian reed

TenorSaxophone reed

DoubleBass string

Piano string

As shown in Table 2, we observed that the 75% mixture got the best perfor-
mance in terms of dominant instrument estimation. In order to decide whether
the 75% result also holds at each node of the hierarchy tree we divided the entire
training group into 2 sub groups of reed and string. After dividing into the 2
sub groups we repeated the test to verify whether the 75% level was indeed the
most effective level to use. Here we observed
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Table 2. The results showing classification confidence from the 10-fold cross validation
process

Training Set Accuracy

mix100+single 69.90%

mix75+single 79.56%

mix50+single 73.82%

mix30+single 73.48%

mix25+single 70.26%

mix65+single 73.06%

mix80+single 73.58%

Table 3. Results after we divided the instrument sounds into 2 groups according to
each category

Training Set String Accuracy Reed Accuracy

mmix100+single 68.14% 71.70%

mix80+single 73.76% 82.94%

mix75+single 79.50% 83.98%

mix65+single 70.63% 71.72%

mix50+single 77.66% 76.53%

mix30+single 68.05% 53.19%

mix25+single 74.34% 78.47%

As shown in Table 3, the 75% noise ratio is still the best choice for each single
group of instruments, regardless the distribution of the whole tests changed a
little bit when different path of hierarchy tree is followed.

Figure 2 shows a graphic representation of the performance of the polyphonic
sounds with the non-dominant instrument at 80% volume, 75% volume, 65%, 50%,
30%, and 25%, and the accuracy with which the database identified the domi-
nant instrument. It also shows the performance of the specific groups of sounds,
the string group and the reed group. In all three data sets, a non-dominant in-
strument volume of 75% yielded the most accurate results. However, in the case
of the reed group a non-dominant of 80% gave only slightly less accurate results
in comparison and more accurate results than any other group at that volume.
A non-dominant instrument volume of 30% yielded the least accurate results in
the case of the reed group and the string group, with the reed group showing the
least accurate results of any instrument group at any volume. The accuracy of the
whole data set was lowest at 100%. Figure 3 shows the same results with more ex-
act values on the left-hand vertical axis. The values on the right-hand axis show
the percentile that the data falls in, in order to see how the groups compare overall
to each other. Overall the reed group yielded the most accurate results. Even at
its lowest accuracy, the results of the reed group didn’t drop below 72%, which
cannot be said for either the string group or the entire set of sounds. In fact the
accuracy of the string group drops to nearly 68% at its lowest point. The string
group also displayed the greatest changes in accuracy, with the largest difference
between two non-dominant instrument volumes being roughly 9%.
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Fig. 2. Graphic Representation of the Results: This graph shows the performance
of the polyphonic sounds and the accuracy with which the database identified the
dominant instrument. It also shows the performance of the specific groups of sounds,
the string group and the reed group.

Fig. 3. Graphic Representation of the Results with Percentile Axis: This
graph shows the same results with more exact values on the left-hand vertical axis.
The values on the right-hand axis show the percentile that the data falls in, in order
to see how the groups compare overall to each other.

5 Conclusion and Future Work

Using the new hierarchical tree in our closed domain show that a 75% volume
is optimal. Knowing this we now have the tools to know that future errors
in retrieving instruments in a polyphonic sound if wrong, will be because of
a property inherent in the expanded domain. This is good news as it directs
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us to the fault. Our next domain will bear instruments playing various sets of
harmonics in tex training set not all on one similar pitch. Once this is achieved,
the ultimate goal of identifying instruments in a non-harmonic or harmonic noise
will be a step closer.
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Abstract. Affective computing is becoming a more and more important
topic in intelligent computing technology. Emotion recognition is one of
the most important topics in affective computing. It is always performed
on face and voice information with such technology as ANN, fuzzy set,
SVM, HMM, etc. In this paper, based on the idea of data driven data
mining and rough set theory, a novel emotion recognition method is pro-
posed. Firstly, an information system including facial features is taken
as a tolerance relation in rough set, based on the idea of data driven
data mining, a suitable threshold is selected for the tolerance relation.
Then a reduction algorithm based on condition entropy is proposed for
the tolerance relation, SVM is taken as the final classifier. Simulation
experiment results show that the proposed method can use less features
and get higher recognition rate, and the proposed method is proved ef-
fective and efficient.

Keywords: Affective computing, Emotion recognition, Rough set, Data
driven data mining.

1 Introduction

It is always a dream that computers can simulate and communicate with a hu-
man, or have emotions that human have. A lot of research works have been
done in this field in recent years. Affective computing is one of them. Affec-
tive computing is computing that relates to, arises from, or deliberately influ-
ences emotion, which is firstly proposed by Picard at MIT in 1997 [1]. Affective
computing consists of recognition, expressing, modelling, communicating and re-
sponding to emotion. Emotion recognition is one of the most fundamental and
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important modules in affective computing. It is always based on facial and au-
dio information, which is in accordance with people’s recognition to emotion.
Its applications have reached almost every aspect of our daily life, for example,
health care, children education, game software design, and human-computer in-
teraction. Nowadays, emotion recognition is always studied using ANN, fuzzy
set, SVM, HMM, Rough Set and the recognition rate often arrives at 64% to
98% [2][3]. In our previous work in [4][5][6][7], rough set has been used for feature
selection and SVM is taken as the classifiers in emotion recognition with audio
and visual information, and high recognition rate are resulted. But in the course,
we find that facial feature and voice feature are measured, and these features
may be imprecise and contain error. In traditional rough set theory, information
system is taken as an equivalence relation. A process of discretization in equiv-
alence relation is necessary since facial features and emotion voice features are
both continuous value. Unfortunately, information should be lost in discretiza-
tion, and the result can be impacted. To solve this question, a novel emotion
recognition method based on tolerance relation is proposed in this paper, and
based on the idea of data driven data mining, a method for suitable threshold
is introduced, SVM is still taken as the classifier. Experiment results show the
proposed method is effective and efficient. The rest of this paper is organized as
follows. Basic concepts of rough set theory and proposed method are introduced
in section 2, Simulation experiments and discussion are introduced in section 3.
Finally, conclusion and future works are discussed in section 4.

2 Proposed Emotion Feature Selection Method

2.1 Basic Concept of Rough Set Theory

Rough set (RS) is a valid mathematical theory for dealing with imprecise, uncer-
tain, and vague information, it was developed by Professor Z. Pawlak in 1980s
[8][9]. Some basic concepts of rough set theory are introduced here for the con-
venience of following discussion.

Def. 1. A decision information system is a continuous value information system
and it is defined as a pair S = (U,R, V, f) , where U is a finite set of objects
and R = C ∪D is a finite set of attributes, C is the condition attribute set and
D = {d} is the decision attribute set. With every attribute a ∈ R , a set of its
values Va is associated. Each attribute a determines a function fa : U → Va.

Def. 2. For a subset of attributes B ⊆ A, the indiscernibility relation is defined
by Ind(B) = {(x, y) ∈ U × U : a(x) = a(y), ∀a ∈ B}.

The indiscernibility relation defined in this way is an equivalence relation. Obvi-
ously, Ind(B) = {(x, y) ∈ U ×U : a(x) = a(y), ∀a ∈ B}. By U/Ind(B) we mean
the set of all equivalence classes in the relation Ind(B). The classical rough set
theory is based on an observation that objects may be indiscernible (indistin-
guishable) due to limited available information, and the indiscernibility relation
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defined in this way is an equivalence relation indeed. The intuition behind the
notion of an indiscernibility relation is that selecting a set of attribute B ⊆ A
effectively defines a partition of the universe into sets of objects that can not be
discerned/distinguished using the attributes in B only. The equivalence classes
Ei ∈ U/Ind(B), induced by a set of attributes B ⊆ A , are referred to as object
classes or simply classes. The classes resulted from Ind(A) and Ind(D) are called
condition classes and decision classes respectively.

Def. 3. A decision information system is a continuous value information system
and it is defined as a pair S = (U,R, V, f) , where U is a finite set of objects and
R = C ∪D is a finite set of attributes, C is the condition attribute set and D =
{d} is the decision attribute set.∀c ∈ C , c is continuous vale attribute,∀d ∈ D,
d is continuous value attribute or discrete value attribute.

Since the attribute vales could be imprecise and contain error in continuous
value information systems, the definition of equivalence relation is too rigid to
be used in these systems. Therefore, the concept of tolerance relation is used for
depicting continuous value information system. There are many research works
about tolerance relation in rough set theory[10][11][12].

Def. 4. A binary relation R(x, y) defined on a attribute set B is called a tolerance
relation if it satisfies:

1) symmetrical: R(x, y) = R(y, x).
2) reflextive: R(x, x) = R(x, x).

Let an information system S = (U,R, V, f) be a continuous value informa-
tion system, ∀x, y ∈ U, ∀a ∈ C, a relation R(x, y) defined on C is defined as
R(x, y) = {(x, y) ||ax − ay| < α,α ≥ 0}. Apparently, R(x, y) is a tolerance rela-
tion according to Def. 4 since R(x, y) is symmetrical and reflextive. R(x, y) is
used for depicting continuous value information systems in this paper with the
motivation that ∀x, y ∈ U, ∀a ∈ C, attribute value ax and ay are equal indeed
while |ax − ay| < α, since there are some error when ax and ayare measured.

In classical rough set theory, equivalence relation constitutes a partition of
U , but tolerance relation constitutes a cover of U , and equivalence relation is a
particular type of tolerance relation.

If ∀x ∈ U , an equivalence class of x is taken as the neighborhood of x , the
amount of equivalence class of x is the number of neighborhood which x belongs
to. Similarly, in tolerance relation, a tolerance class of x is taken as the neigh-
borhood of x , the amount of tolerance class of x is the number of neighborhood
which x belongs to. The bigger tolerance class is, the more uncertainty it con-
tains, the less knowledge it contains. Therefore, concept of knowledge entropy
and conditional entropy are defined as follows according to the knowledge which
tolerance class contains in tolerance relation.

Def. 5. Let U = {x1, x2, ..., x|U|}, R(xi, xj)be a tolerance relation defined on
attribute set B, nR(xi)be tolerance class of xi with respect to B, which denote
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neighborhood of xion B, then, |xi|R = |{nR(xj) |xi ∈ nR(xj), 1 ≤ j ≤ |U |}| so,

knowledge entropyE (R) under relationR is defined as E (R)=− 1
|U|

|U|∑
i=1

log2
|xi|R
|U| .

Def. 6. Let R and Q are tolerance relation defined on U , a relation satisfy R and
Q simultaneous can be taken as R∪Q , and it is a tolerance relation defined on
U too.∀xi ∈ U ,nR∪Q(xi) = nR(xi) ∩ nQ(xi) , therefore, knowledge of R ∪Qcan

be defined as E(R ∪Q) = − 1
|U|

|U|∑
i=1

log2

|xi|R∪Q

|U| .

Def. 7. Let R and Q are tolerance relation defined on U , conditional entropy
of R relative to Q is defined as E(R |Q ) = E(R ∪Q)− E(Q) .

Def. 8. Let R be a tolerance relation defined on attribute B, ∀a ∈ B , if
E({d} |R ) = E({d} |R − {a}) , then a isn’t necessary and can be reductive.

2.2 Selecting Threshold Value of Tolerance Relation Based on Idea
of Data Driven Data Mining

In the face of knowledge reduction and data mining for continuous value in-
formation systems, tolerance relation could be constituted for continuous value
information system, but there is an open problem should be solved, that is,
threshold vale of α in tolerance relation should be made certain firstly. Tradi-
tionally, threshold vale can be gotten according to expert’ experience, but there
could be no expert experience in some circumstance.

According to the idea of data driven data mining [13], knowledge could be
expressed in many different ways, there should be some relationship between
the different formats of the same knowledge. In order to keep the knowledge
unchanged in a data mining process, properties of the knowledge should re-
main unchanged during the knowledge transformation process. Otherwise, there
should be some mistake in the process of knowledge transformation. Based on
the idea, knowledge reduction can be seen a process of knowledge transforma-
tion, and in the course, properties of the knowledge should remain unchanged.
Based on the idea, classification ability of conditional attribute set relative to
decision attribute set can be taken as an important property of knowledge when
knowledge reduction is used in classification. Therefore, classification ability of
conditional attribute set relative to decision attribute set is made certain when
a decision information table is given, and the ability should be unchanged in the
process of attribute reduction, accordingly, conditional entropy E(D |C ) should
be unchanged.

Let’s constitute a tolerance relation R on the conditional attribute set C
of continuous value information system S. From the standpoint of conditional
entropy E(D |C ), we can found the result as follows.

1) In a continuous value information system S , each instance is different from
the others, and conditional attribute values of an instance could be different with
another instance’, but their decision attribute may be same. If threshold vale of α
in tolerance relation is taken the minimum, for example, α is taken data precision
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of the decision information table, tolerance class nR(xi) of an instance xi only
contains xi itself. Accordingly, conditional entropy E(D |C ) = 0.

2) If threshold vale of α in tolerance relation is increased from data precision,
tolerance class nR(x) of any instance x contains more and more instances. At
first, nR(x) ⊂ nQ(x) , |x|R∪Q = nR(x) ∩ nQ(x) = nR(x) , E(D |C ) = 0 .

3) If threshold vale of α is increased continually, tolerance class nR(x) of
any instance x contains more and more instances, at a time, nR(x) 
⊂ nQ(x) ,
|x|R∪Q = nR(x) ∩ nQ(x) 
= nR(x) , E(D |C ) 
= 0.

4) If threshold vale of α is increased continually to some extent, nQ(x) ⊂
nR(x), |x|R∪Q = nR(x) ∩ nQ(x) = nQ(x), at the same time, tolerance class of
condition attribute set C is bigger, that is, |x|Ris bigger, then E(C) is decreased,
E(D |C ) is increased.

The relationship between entropy, condition entropy and |x|R can be depicted
in Fig. 1.

Fig. 1. The relationship between entropy, condition entropy and |x|R

From Fig. 1 and discussion above, if threshold vale of α take αopt , it could
make E(D |C ) = 0 and classification ability of conditional attribute set relative
to decision attribute set is unchanged, at the same time, tolerance class of x is
biggest relative to E(D |C ) = 0 . In a sense, knowledge granular of conditional
attribute set is biggest in αopt, then, generalization is the best.

In a word, in this section, parameter selection of α is discussed, based on the
idea of data driven data mining, As the suitable threshold vale of α , αopt is found
and it can keep the classification ability of conditional attribute set relative to
decision attribute set, and at the same time, it can keep generalization the most.
It is predominant for the course of finding αopt since the method is based on
data driven and dose not need expert’s experience, therefore, the method has
more robustness.

2.3 Proposed Attribute Reduction Algorithm Based on Conditional
Entropy in Tolerance Relation

Based on the definition about reduct in tolerance relation in Def. 8 and proposed
suitable threshold vale of αopt, a data driven attribute reduction algorithm based
on conditional entropy named DDARACE is proposed for emotion recognition
system.
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Alg. 1: DDARACE

Input: a decision table S = (U,C∪D,V, f) according to a emotion recognition
system, where U is a finite set of objects, C is the conditional attribute set and
include 33 facial features. and D = {d} is the decision attribute set and include
7 basic emotion.

Output: a relative reduction B of S

Step1: Compute αopt, then set up a tolerance relation on conditional attribute
set C.

Step2: Compute condition entropy of decision attribute set D relative to con-
dition attribute set C in decision table S , E(D |C ) .

Step3: ∀ai ∈ C , compute E(D |{ai}) . Sort E(D |{ai} ) according to ai .
Step4: Let B = C , deal with each ai as the follows according to E(D |{ai})

descendently.

Step4.1: Compute E(D |B − {ai}) ;
Step4.2: If E(D |C ) = E(D |B − {ai}) , attribute ai should be reduct,

B = B − {ai} , otherwise, ai could not be reduct, B is holding.

3 Experiment and Discussion

In this paper, three comparative experiments are done on two facial emotion data
sets . One facial emotion data set comes from CMU, which include 405 expression
images with 7 basic emtoions. Another facial emotion data set is extracted from
6 volunteers, in which three are female and three are male. The dataset contains
652 expression images. For both of the dataset, 33 facial features are extracted
for emotion recognition accoring to [4-7].

Three compared experiments are taken to prove the effective of the pro-
posed method. SVM is taken as classifier in the three experiments, meanwhile
the training course of SVM adopts same parameters for all the three exper-
iments. On the other hand, 4-fold cross-validation is taken for every
experiment.

Proposed algorithm DDARACE is taken as attribute reduction and SVM is
taken classifier in the first experiment, and it can be abbreviated DDARACE+
SVM.

CEBARKNC [14] is a reduction algorithm based on conditional entropy in
equivalence relation in traditional rough set. It is taken is taken as attribute
reduction and SVM is taken classifier in the second experiment, and it can be
abbreviated CEBARKNC +SVM. The attribute reduction of CEBARKNC is
taken by experiment tools of RIDAS [15].

In third experiment, process of attribute reduction is omitted, all the data is
trained and classified by SVM.

When we compare No.1with No.2 experiment from Table 1 and Table 2, we
can find that No. 1 experiment can use nearly as many features as the No.2
experiment, but the correct classification rate is a little less than No.2 experiment
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Table 1. Three comparative experiments on CMU facial database

DDARACE+SVM CEBARKNC+SVM SVM
Rate Number Rate Number Rate Number

1 83.1 14 81.1 12 81.1 33
2 70.2 10 73.2 12 75.2 33
3 61.3 11 60.3 13 66.3 33
4 75.5 10 77.4 13 76.4 33

average 72.5 11.25 73 12.50 74.75 33

Table 2. Three comparative experiments on Self-construction facial database

DDARACE+SVM CEBARKNC+SVM SVM
Rate Number Rate Number Rate Number

1 77.91 10 76.69 13 90.80 33
2 83.44 11 80.98 13 90.18 33
3 91.41 25 85.28 15 90.80 33
4 81.60 10 72.39 13 91.41 33

average 83.59 14 78.83 13.50 90.80 33

in the first dataset, but the correct classification rate is much more better than
No.2 experiment in the second data set. Therefore, we can draw a conclusion that
DDARACE is also a useful feature selection method using in emotion recognition
system compared with CEBARKNC.

When we compare No.1 with No. 3 experiment from Table 1 and Table 2,
we can find that although No. 3 experiment can get much more better correct
classification rate than No.1 experiment in the second dataset and a little better
correct classification rate than No.1 experiment in the first dataset, but it use
more features. Since No.1 experiment use less features and get a nearly correct
classification rate compared with No.3 experiment, therefore, we can draw a
conclusion that proposed method, DDARACE used as feature selection and SVM
taken as classifier, is also an effective method for emotion recognition systems,
and it is more suitable real time emotion recognition for it just use less feature
for recognition.

4 Conclusion and Future Works

In this paper, based on a reduction algorithm based conditional entropy in toler-
ance relation, and method of finding appropriate threshold vale of α in tolerance
relation, a novel emotion recognition method is proposed. From the experimen-
tal results, the proposed method is effective and efficient. Since the proposed
method doesn’t need expert knowledge and parameter of the method is decided
according to data only, therefore, the method should be robust in real applica-
tions. In the future work, ensemble of feature selection in tolerance relation will
be studied and used for emotion recognition.
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Abstract. In our research we deal with polyphonic audio data, contain-
ing layered sounds of representing various timbres. Real audio recordings,
musical instrument sounds of definite pitch, and artificial sounds of def-
inite and indefinite pitch were applied in this research. Our experiments
included preparing training and testing data, as well as classification of
these data. In this paper we describe how results obtained from classifi-
cation allowed us to discover abnormalities in the data, then adjust the
data accordingly, and improve the classification results.

Keywords: Music Information Retrieval, sound recognition.

1 Introduction

Audio data are difficult to deal with, since we have to work with samples repre-
senting amplitude of the recorded complex sound wave. Therefore, parameteri-
zation is needed before further processing, in order to replace a long sequence
of amplitude values for a given audio channel with a relatively compact feature
vector. However, identification of instruments present in a given piece of music
(if we are interested in more information than just a tune), still poses a big prob-
lem. Since all users of Internet and even stand-alone computers have access to
large amount of music data in digital form, it is desirable to have the possibility
to automatically search through such data, in order to find the favorite tune,
played by favorite instrument, etc.

Decomposing complex audio wave into source waves representing particular
instruments or voices is hardly feasible (unless spatial cues are used, but the
position of sources may overlap anyway). Sound engineers usually record each
instrument or vocal on separate tracks, but the user listening to the CD only
gets the final result, which is down-mixed into 2 stereo channels. Still, extraction
of the main, dominating sounds in the mix recorded in any audio track/channel,
is possible, although the more sources, the more difficult the task, especially if
spectra overlap, and the overlapping sounds are of the same length.

In our research, we deal with polyphonic, multi-timbral recordings, mainly
representing musical instrument sounds of definite pitch, since they are cru-
cial to recognize tunes (maybe parallel) that can be present in a given audio
recording. We used singular isolated sounds of musical instruments of definite
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pitch, accompanied by various sounds: complex orchestral sounds, sounds of
other instruments of definite pitch, and artificial sounds of definite pitch (har-
monic waves) and indefinite pitch (noises). Our purpose was to recognize the
instrument dominating in a given recording, i.e. the loudest one, using a lim-
ited set of exemplary instruments and accompanying (mixed) sounds, and also
possibly obtaining the generalization property of the classifier, i.e. recognition
of the specified instruments in the audio environment different than mixes used
for training purposes. It is a difficult task, because there is no standard sound
parameterization, data set, nor experiment set-up, and it can be difficult even
for humans. Moreover, the sound data change significantly when a different ar-
ticulation (the way the sound is played) is applied, or even when a different
specimen of the instrument is used. Sounds of different instruments can be more
similar to each other than sounds of the same instrument played in a different
way. Consequently, the classification cannot rigidly fit the data, to obtain classi-
fiers with ability to recognize new data with possibly high accuracy. This is why
soft computing methods seem to be good tools to deal with such data. Also,
sounds are described by musicians using subjective descriptors, and no clear de-
pendencies between numerical and subjective properties of sounds can be easily
found. Therefore, observing any numerically definable sound properties is also
desirable, which is another advantage to be gained from these experiments.

This paper presents and discusses results of experiments on recognition of
the dominating instrument in sound mix, which was already investigated by the
author [17], [18]. The focus of this paper is to find abnormalities in the analyzed
data, and conclude with an improved set-up for further experiments in the future.

1.1 Literature Review

Automatic recognition of musical instrument is not a new topic and has been
already investigated by many researchers. A broad review of parameterization
and classification methods used in the research on recognition of isolated singular
sounds is given in [3]. Sound parameterization techniques include various spectral
domain, time domain, and timbral-spectral methods, based on Fourier transform,
wavelet analysis, cepstral coefficients, constant-Q coefficients, and so on [1], [2],
[4], [16]. MPEG-7 based features are applied for sound parameterization purposes
[10], [12]. Research on instrument identification in mixes has also been performed,
with and without using spacial clues [6], [14], [15]. Various classifiers have been
applied, including k-nearest neighbor, decision trees, support vector machines,
artificial neural networks, rough set based classifiers, hidden Markov models, and
other techniques [5], [3], [7], [9]. Obviously, the papers mentioned here represent
only part of the research performed in this area, still they picture the main trends
and techniques applied.

Identification of particular sounds in mixes is especially important for support-
ing automatic transcription of musical recordings, and although we should not
expect full automatic transcription, the main notes still can be extracted. In our
research performed in the area of instrument recognition in sound mixes, we were
dealing with audio data parameterized mainly based on MPEG-7 parameters,
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and applying various classifiers, including Bayesian networks, decision trees, sup-
port vector machines, and other methods, using WEKA classification software
[13], [17], [18]. Some experiments were performed using cross-validation for the
training data, but later we decided to use different data for training and testing,
in order to test generalization abilities of the classifiers used, and to obtain more
reliable evaluation of our methodology [8], [18].

2 Audio Parameterization

In this research, audio data parameterization was mainly based on MPEG-7
parameters, and other features already applied for the recognition of musical
instruments [19]. The parameterization was performed using 120 ms analyzing
frame, sliding along the entire parameterized sound, with Hamming window
and hop size 40 ms. Such a long frame was used in order to parameterize low
sounds, if needed. Most of the calculated parameters represent average value
of parameters calculated through consecutive frames of a sound. Since some of
the features are multi-dimensional, statistical descriptions of those features were
extracted in order to avoid too high dimensionality of the data. The feature set
consists of the following 219 parameters [18], [19]:

– MPEG-7 audio descriptors:

• basic spectral descriptors, using 32 frequency bins, with values averaged
through frames for the entire sound: AudioSpectrumSpread,
AudioSpectrumCentroid, AudioSpectrumFlatness - 25 out of 32 fre-
quency bands were used in this case;
• spectral basis - AudioSpectrumBasis; minimum, maximum, mean, dis-

tance, and standard deviation were extracted, for 33 subspaces;
• timbral temporal - LogAttackT ime, TemporalCentroid;
• timbral spectral, averaged through the entire sound -
HarmonicSpectralCentroid, HarmonicSpectralSpread,
HarmonicSpectralV ariation, HarmonicSpectralDeviation;

– other descriptors:

• Energy - average energy of spectrum in the parameterized sound;
• MFCC - min, max, mean, distance, and standard deviation of the MFCC

vector through the entire sound;
• ZeroCrossingDensity, averaged through the given sound;
• RollOff - the frequency below which a chosen percentage of the accu-

mulated magnitudes of the spectrum is concentrated (averaged over all
frames);
• Flux - the difference between the magnitude of the DFT points in a

given frame and its successive frame, averaged through the entire sound
(value multiplied by 107 to comply with the requirements of the WEKA
classifiers);
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• AverageFundamentalFrequency, with maximum likelihood algorithm
applied for pitch estimation;
• Ratio r1, . . . , r11 - ratio of the amplitude of a harmonic partial to the

total harmonic partials.

Detailed description of sound parameters is behind the scope of this paper,
and it can be found in [10], [12].

Since there is no one standard parameter set that can be applied for all sound-
related research purposes, we use the parameterization which has already been
applied in similar research. Still, the experiments allow checking if this parameter
set performs satisfactorily, or should be modified.

3 Classification Set-Up

The experiments were performed using audio samples from McGill University
Master Samples CDs [11], containing singular sounds of musical instruments,
recorded with 44.1 kHz sampling rate and with 16-bit resolution. Data from
the left channel of stereo recordings were taken for further processing. Initial
experiments were focused on 4 instruments of definite pitch:
B-flat clarinet, trumpet, violin, and cello.

This set was later replaced by the following 8 instruments:

B-flat clarinet, cello, trumpet, flute, oboe, tenor trombone, viola, and violin.

Some of the sounds were played with vibration, which makes recognition more
difficult because of changes in pitch, amplitude, and timbre of such sounds.

WEKA [13] software was used for classification experiments. Initially, Bayesian
Network, decision trees (Tree J48), Logistic Regression Model (LRM), and Locally
Weighted Learning (LWL) were applied. However, the obtained results did not
show consistency between those classifiers. Later, we decided to apply Support
Vector Machine (SMO) classifier, since it is suitable for multi-dimensional data,
as it aims at finding the hyperplane that best separates observations belonging
to different classes in multi-dimensional feature space. Also, such a classifier was
already reported successful in case of musical instrument sound identification.

Initial experiments were performed using cross-validation, but in further ex-
periments, different data were prepared for training and testing purposes, to
allow better evaluation of the classifier. The details of the experiments are given
in the next section.

4 Experiments and Results

In our experiments, we were using singular musical instrument sounds, mixed
with other sounds, of level lower than the main sound. We experimented with
various levels of added (mixed) sounds, in order to check how accuracy of the
recognition of the main sound changes depending on the level of accompanying
sound. Initially we planned to perform ten-fold or three-fold cross-validation,
but finally different training and testing data were used in experiments.
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4.1 Initial Experiments - 4 Instruments

To start with, we decided to use the following musical instrument sounds as the
recognition goal:

1. B-flat clarinet - 37 sound objects,
2. C-trumpet (also trumpet muted, mute Harmon with stem out) - 65 objects,
3. violin vibrato - 42 objects
4. cello vibrato - 43 objects.

These sounds were mixed with orchestral recordings for training purposes.
Adagio from Symphony No. 6 in B minor, Op. 74, Pathetique by P. Tchaikovsky
was used, choosing 4 short excerpts representing data based on a chord, but
changing in time (with fast string passages). The level of added sounds was
diminished to 10, 20, 30, 40, and 50% of the original amplitude.

For testing, the singular sounds were mixed with singular sounds of the same
instrument (440 Hz sounds, i.e. A4 were chosen for this purpose).

The following classifiers from WEKA have been applied:

– Bayesian network,
– Logistic Regression Model (LRM),
– Locally Weighted Learning (LWL),
– decision tree J48.

The results obtained from these experiments are shown in Table 1.

Table 1. Results for initial experiments with classifiers from WEKA, for 4 instruments

Mix level Bayesian network LRM LWL J48 
10% 80.98% 85.11% 67.42% 76.46% 
20% 76.33% 89.36% 66.36% 79.65% 
30% 77.39% 85.90% 62.63% 91.62% 
40% 76.73% 84.18% 55.85% 66.36% 
50% 75.13% 82.98% 53.86 71.94% 
 

As we can see, no clear dependency can generally be observed between the
accuracy and the level of mixed sounds - at least different trends are visible for
various classifiers, but generally the obtained accuracy was relatively high, so we
can conclude that the parameterization used is satisfying. As we have expected,
lower levels of added (mixed) sounds generally result in higher accuracy.

Local maxima of classification accuracy oscillated around 10-30% (with an-
other maximum around 50% for decision trees). This result was quite a bit
surprising, since we hoped to observe more clear dependency. This result sug-
gested that there might be some abnormality in the data regarding levels of
added (mixed) sounds. Because of big amount of audio data, we did not check
all samples before experiments, but the results showed that there are abnormal-
ities in the data, and more careful elaboration of the audio data for experiments
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is needed. First of all, since the levels of the main sounds and mixed sounds were
not normalized, in further experiments we decided to apply normalization of the
mixed (added) sound with respect to the RMS level of the main sound, before
further processing of the sound loudness.

Also, more steps in added levels could show more details, especially with
denser steps for lower levels of added sounds. Therefore, we decided to improve
the experiment set-up, this time choosing more thresholds of levels of mixed
sounds, and not in linear, but in geometrical way instead, since this is more
suitable for human hearing.

4.2 Extended Experiments - 8 Instruments

Continuing our experiments, we decided to use a larger set of decision classes,
including the following 8 instruments:

1. B-flat clarinet,
2. cello - bowed, played vibrato,
3. trumpet,
4. flute played vibrato,
5. oboe,
6. tenor trombone,
7. viola - bowed, played vibrato,
8. violin - bowed, played vibrato.

For each instrument, 12 sounds representing octave no. 4 (in MIDI notation)
were chosen - we wanted to avoid a huge data set. To maintain reasonable size of
the data sets, and avoid all possible combinations of sounds, we decided to per-
form experiments on the most difficult case, i.e. when spectra of mixed sounds
fully overlap. Therefore, these data were mixed for training with artificially gen-
erated harmonic waves, triangular and saw-tooth, of always of the same pitch
as the main sound, and also with noises, white and pink. The following levels of
mixed, accompanying sounds were chosen:

– 50%,
– 50%/

√
2 ≈ 35.36%,

– 25%,
– 25%/

√
2 ≈ 17.68%

– 12.5%,
– 12.5%/

√
2 ≈ 8.84%,

– 6.25%.

The level of each added (mixed) sound was first normalized with respect to
the RMS of the main sound, then silence replaced the beginning and the end of
each added sound, and fade-in and fade-out effects were applied. Next, the level
was diminished, according to the desired percentage level. Therefore, we made
sure that the main sound is actually always dominating, i.e. louder than any
accompanying sound, which was not previously assured.
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Testing was performed on mixes of the main sound with the sum of other 7
instrument sounds of the same pitch, with the RMS adjusted to the level of the
main sound, with silence at the beginning and the end, and fade in and fade out
effects applied, to assure that all the time, including transients, the main sound
is still louder, and then processed the level similarly as during training.

Since previously we did not observe consistency between results obtained from
different classifiers, we decided to use one classifier only. This time, support
vector machine was chosen, as reported successful in similar research and suitable
to multidimensional data.

These experiments yielded the following results:

– 50.00% level: 81.25% correctness,
– 35.36% level: 90.63% correctness,
– 25.00% level: 87.50% correctness,
– 17.68% level: 94.79% correctness,
– 12.50% level: 81.25% correctness,
– 08.84% level: 100% correctness,
– 06.25% level: 100% correctness.

As we can see, the recognition rate has significantly improved, and the lowest
levels of mixed sounds did not influence the recognition accuracy, which is the
expected result. Other results oscillate around 80-90%, so still there are some
difficult data to classify in our data set. This suggests having a closer look into
the details, with hope to find the most problematic sounds. The contingency
table for this experiment is shown in Table 2.

As we can observe, especially viola and violin pose difficulties in recognition.
The percentage of confusion is quite high, showing again some abnormality in
the data. This result suggests that the sounds used in experiments should be
more carefully checked (also by human experts). However, on the other hand,
those instruments are difficult to distinguish even for humans, so problems with
their separation are not so surprising.

Therefore, this experiment shows the general results as quite high, but the
difficulties with recognition of violin and viola suggests some abnormalities in
the data. Again, this is a hint that maybe the data need further improvement.
Indeed, when listening to the recorded samples afterwards, we discovered that
mixes suffer from some imperfections. Actually, the sounds were not perfectly in
tune, and also vibration of mixed sounds was different, which can be problematic
in experiments. This suggests that maybe new samples should be prepared for
experiments, with musicians playing together rather than independently (and
then mixed), playing in sync, and more in tune.

5 Summary and Conclusions

The performed experiments aimed at recognition of musical instrument sound,
dominating in mixes of instrumental sounds of definite pitch as the main sounds,
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Table 2. Contingency table for the support vector machine classifiers, trained and
tested for 8 instruments

Classified as -> clarinet cello trumpet flute oboe trombone viola violin 
clarinet+6.25% 12        
clarinet+8.84% 12        
clarinet+12.5% 10 1   1    
clarinet+17.68% 12        
clarinet+25% 12        
clarinet+35.36% 12        
clarinet+50% 10 1   1    
cello+6.25%  12       
cello+8.84%  12       
cello+12.5%  12       
cello+17.68%  12       
cello+25%  12       
cello+35.36%  12       
cello+50%  12       
trumpet+6.25%   12      
trumpet+8.84%   12      
trumpet+12.5%   12      
trumpet+17.68%   12      
trumpet+25%   12      
trumpet+35.36%   12      
trumpet+50%   12      
flute+6.25%    12     
flute+8.84%    12     
flute+12.5% 1 1  8 2    
flute+17.68%    12     
flute+25%    12     
flute+35.36%    12     
flute+50% 1 1  8 2    
oboe+6.25%     12    
oboe+8.84%     12    
oboe+12.5%     12    
oboe+17.68%     12    
oboe+25%     12    
oboe+35.36%     12    
oboe+50%     12    
trombone+6.25%      12   
trombone+8.84%      12   
trombone+12.5%      12   
trombone+17.68%      12   
trombone+25%      12   
trombone+35.36%      12   
trombone+50%      12   
viola+6.25%       12  
viola+8.84%       12  
viola+12.5%  3     9  
viola+17.68%  2     10  
viola+25%  3     9  
viola+35.36%  2     10  
viola+50%  3     9  
violin+6.25%        12 
violin+8.84%        12 
violin+12.5% 1    1  7 3 
violin+17.68%       3 9 
violin+25%     1  8 3 
violin+35.36%     2  5 5 
violin+50% 1    1  7 3 
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and added other sounds. The feature vector was based on parameterization al-
ready applied in similar research, and also in this research the parameter set ued
yielded good results.

The initial experiments showed that no clear dependency could be found be-
tween the level of mixed sounds and the correctness of recognition for all classi-
fiers applied. Therefore, further experiments focused on one classifier, and more
steps used, especially for lower levels. Since linearly chosen steps of added un-
processed sounds did not work as expected, data were considered abnormal and
checked. Therefore, level processing was applied in further experiments, to as-
sure that the main sound is actually the loudest one, and geometrical step was
selected in further research, with denser steps for lower levels. The obtained re-
sults showed significant improvement of accuracy, even though the most difficult
case of the same pitch of sounds was chosen.

The results again showed abnormality in the data with some instruments far
too difficult to distinguish, thus being considered again as abnormality in the
data, and suggesting further work with those sounds. Although these instru-
ments, violin and viola, have very similar timbre, we believe that more careful
preparation of the data may improve the recognition rate.

As a result, further experiments are planned as a follow-up, to assure removal
of probably still existing abnormalities in the data, obtaining sounds yielding
consistent results, and conforming to general standards of such a recognition,
even in case of data difficult to recognize for humans.
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Abstract. The paper presents a novel application of the shadowed
clustering algorithm for uncertainty modeling and CT scan image seg-
mentation. The core, shadowed and the exclusion regions, generated via
shadowed c-means (SCM), quantize the ambiguity into three zones. This
leads to faster convergence and reduced computational complexity. It is
observed that SCM generates the best prototypes even in the presence
of noise, thereby producing the best approximation of a structure in the
unsupervised mode. A comparison with rough-fuzzy clustering algorithm
reveals the automatic determination of the threshold and absence of ex-
ternally tuned parameters in SCM. Experiments suggest that SCM is
better suited for extraction of regions under vascular insult in the brain
via pixel clustering. The relative efficacy of SCM in brain infarction di-
agnosis is validated by expert radiologists.

Keywords: Shadowed clustering, three-valued logic, rough-fuzzy clus-
tering, image segmentation, CT scan imaging.

1 Introduction

Shadowed set theory aims at ambiguity demarcation. Gradual distribution of
membership values have known to work reasonably well in the fuzzy frame-
work. Though complete, the membership values often represent excessive detail
in the form of precise numeric values. Shadowed set, proposed by Pedrycz [1],
provides an alternate mechanism for handling uncertainty. Together with fuzzy
logic, neural network, genetic algorithms and rough sets, shadowed sets could
be considered the next extension to broaden the paradigm of Soft computing
methodologies [2]. Fuzzy and rough clustering have been well documented in
the literature [3] [4] [5]. The development of fuzzy c-means (FCM) [3], rough c-
means (RCM) [4] and the hybridized rough-fuzzy c-means (RFCM) [6] [7] serve
as specific instances of the extension of the c-means framework [K-means or
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hard c-means (HCM)]. Fuzzy clustering, through membership values, seeks to
handle overlapping clusters. Rough clustering, via the notion of approximation
spaces, deals with vagueness and ambiguity in data in terms of upper and lower
approximation.

Shadowed clustering, called shadowed c-means (SCM), was developed [8] to
connect the ideas of FCM, RCM and RFCM. It incorporated the membership
concept from fuzzy sets, while simultaneously avoiding the use of too many
external parameters as in rough clustering. In this article, we present the appli-
cation of shadowed clustering for segmentation of regions under vascular insult
in brain images. Clustering of the highly overlapped vowels in Indian Telegu
speech data [9] is also investigated. SCM provides maximum importance to the
core members during clustering, threby increasing the robustness and reliability
of the algorithm. We use the membership based Xie-Beni validity index [10] to
optimize the number of clusters for the speech data.

The paper is organized into five sections. Section 2 leads the reader into the
basic notions about shadowed sets, while Section 3 discusses the rough-fuzzy and
the shadowed clustering algorithms. Cluster validation via Xie-Beni index is also
described in this section. Section 4 presents the results on the speech data as well
as the segmentation of the CT scan imagery. Section 5 draws the conclusion.

2 Shadowed Sets

Shadowed sets looks to answer the question of optimum level of resolution re-
quired in precision. Traditional methods, such as fuzzy sets, tend to capture
ambiguity exclusively through membership values. Naturally, this leads to the
problem of eexcessive precision in describing imprecise phenomenon [1] [11].
There is hardly any problem in assigning membership values close to 0 or 1, but
a lot of confusion does exist regarding the assignment of a grade of 0.5. To solve
the above issues, Pedrycz [1] proposed the idea of shadowed sets to improve the
observability of imprecise phenomenon.

Consider a fuzzy set, G, as shown in Fig. 1. Rather than having uniform mem-
bership values, defined by the membership function, we go for quantization of
the same on the lines of three valued logic. In doing so, some membership values
are markedly reduced to zero, while some are elevated to one. To compensate
for the ambiguity thus introduced, we declare a particular region as the zone
of uncertainty. This area of the universe of discourse has intermediate member-
ship values on a unit interval between [0 1], but is left undefined. In order to
induce a shadowed set, a fuzzy set must accept a specific threshold. This facili-
tates the transformation of the domain of discourse into clearly marked zones of
vagueness. We call this mapping, a shadowed set.

G : X→ {0, 1, [0 1]} (1)

Elements with grade equal to one form the core, while the elements with
G(x) = [0, 1] lie in the shadow of the mapping; the rest forms the exclusion.
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Fig. 1. The fuzzy set G inducing a shadowed set via a threshold, δ

To obtain the threshold, Pedrycz proposed an optimization based on balance
of vagueness. A particular threshold, δ, is selected for the quantization process
and is expressed in terms of the relationship

P(δ) =

∣∣∣∣∣
∫ L1

−∞
G(x)dx +

∫ ∞

L2

(1 −G(x))dx −
∫ L2

L1

dx

∣∣∣∣∣ , (2)

where δ ∈ (0, 1/2) such that P(δ) = 0. L1 and L2 are points where G is
thresholded [11].

Shadowed sets reveal very interesting relationship with rough sets. Although
conceptually quite similar, the mathematical foundations of rough sets is very
different. We must remember that in rough sets, we define the approximation
space in advance and the equivalent classes are kept fixed. In shadowed set
theory, on the other hand, the class assignment is dynamic.

Computation of the threshold δ for common membership functions, such as
triangular and Gaussian, can be found in [1] [11]. The minima of P(δ) gives the
δopt [11].

3 Rough and Shadowed Clustering with Validation

Rough sets [5] are used to model clusters in terms of upper and lower approxima-
tions, that are weighted by a pair of parameters while computing cluster proto-
types [4]. We observe that the rough set theory assigns objects into two distinct
regions, viz., lower and upper approximations, such that objects in lower approx-
imation indicate definite inclusion in the concept under discussion while those
in the upper approximation correspond to possible inclusion in it [4]. Shadowed
clustering attempts to overcome the problem of assigning weighting parameters
in RFCM. This increases the stability of the algorithm and minimizes data-
dependency [8].
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3.1 Rough-Fuzzy C-Means (RFCM)

A rough-fuzzy c-means (RFCM) algorithm, involving an integration of fuzzy
and rough sets, has been developed [6]. This allows one to incorporate fuzzy
membership value uik of a sample xk to a cluster mean vi, relative to all other
means vj ∀ j 
= i, instead of the absolute individual distance dik from the
centroid. The major steps of the algorithm are provided below.

1. Assign initial means vi for the c clusters.
2. Compute membership uik for c clusters and N data objects as

uik =
1∑c

j=1

(
dik

djk

) 2
m−1

, (3)

where m is the fuzzifier.
3. Assign each data object (pattern) xk to the lower approximation BUi or

upper approximation BUi, BUj of cluster pairs Ui, Uj by computing the
difference in its membership uik − ujk to cluster centroid pairs vi and vj .

4. Let uik be maximum and ujk be the next to maximum.
If uik − ujk is less than some threshold

then xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower
approximation,

else xk ∈ BUi such that membership uik is maximum over the c clusters.
5. Compute new mean for each cluster Ui as

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wlow

∑
xk∈BUi

um
ikxk∑

xk∈BUi
um

ik

+ wup

∑
xk∈(BUi−BUi)

um
ikxk∑

xk∈(BUi−BUi)
um

ik

if BUi �= ∅ ∧ BUi − BUi �= ∅,∑
xk∈(BUi−BUi)

um
ikxk∑

xk∈(BUi−BUi)
um

ik

if BUi = ∅ ∧ BUi − BUi �= ∅,∑
xk∈BUi

um
ikxk∑

xk∈BUi
um

ik

otherwise.

(4)

6. Repeat Steps 2-5 until convergence, i.e., there are no more new
assignments.

In rough clustering algorithms, we commonly use a number of parameters, viz.
wup = 1− wlow, 0.5 < wlow < 1, m = 2, and 0 < threshold < 0.5.

3.2 Shadowed C-Means (SCM)

Based on the concept of shadowed sets, we delineate here the shadowed c-means
(SCM) clustering algorithm [8]. The quantization of the membership values into
core, shadowed and exclusion region permit reduced computational complexity.
The elements corresponding to the core should not have any fuzzy weight factor
in terms of its membership values. In other words, unlike uniform computation of
uik as in FCM, here the uik should be unity for core patterns while calculating the
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centroid. The elements corresponding to the shadowed region lie in the zone of
uncertainty, and are treated as in FCM. However, the members of the exclusion
region are incorporated in a slightly different manner. Here the fuzzy weight
factor for the exclusion is designed to have the fuzzifier raised to itself in the
form of a double exponential. The centroid for the ith class is evaluated as vi =∑

xk|uik≥(uimax−δi)
xk +

∑
xk|δi<uik<(uimax−δi)

(uik)mxk +
∑

xk|uik≤δi
(uik)mm

xk

φi + ηi + ψi

,

(5)
(5)

where
φi = card{xk|uik ≥ (uimax − δi)}, (6)

ηi =
∑

xk|δi<uik<(uimax−δi)

(uik)m, (7)

ψi =
∑

xk|uik≤δi

(uik)mm

, (8)

and δi is the threshold for the ith class. This arrangement causes a much wider
dispersion and a very low bias factor for elements which can generally be consid-
ered outside the class under discussion or most definitely, the exclusion members.
This prevents the mean from getting drifted from its true value. It also mini-
mizes the effect of noise and outliers. The threshold to induce the core, shadowed
and exclusion region is automatically calculated through functional optimization
using eqn. (2).

The mean in eqn. (5) basically tries to first get a coarse idea regarding the
cluster prototype (using the first term in the numerator and denominator, re-
spectively) and then proceeds to tune and refine this value using data from the
shadowed and exclusion region. This enables a better estimation of the actual
cluster prototypes. The major steps of the algorithm are outlined below [8].

1. Assign initial means, vi, i = 1, . . . , c. Choose values for fuzzifier m, and tmax.
Set iteration counter t = 1.

2. Repeat steps (3) - (5) by incrementing t until no new assignment is made
and t < tmax.

3. Compute uik by eqn. (3) for c clusters and N data objects.
4. Compute threshold δi for the ith class, in terms of eqn. (2), as P(δi) =∣∣∣∣∣∣

∑
xk|uik≤δi

uik +
∑

xk|uik≥uimax−δi

(uimax
− δi) − card{xk|δi < uik < (uimax

− δi)}

∣∣∣∣∣∣
(9)

such that
δi = δopt = arg min

δi

P(δi). (10)

5. Update mean, vi, using eqn. (5).

The range of feasible values of δi could be taken as [uimin ,
uimin

+uimax

2 ].
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3.3 Cluster Validation

Prespecification of the number of clusters in partitive algorithms is a necessity.
Hence the results are dependent on the choice of c. In this article, we com-
pute the optimal number of clusters c0 in terms of the Xie-Beni index [10]. As
the Xie-Beni index is designed to work in a fuzzy framework, therefore it was
employed to validate our results. The fuzzy validity function identifies overall
compact and separate fuzzy c-partitions. This function depends upon the data
set, geometric distance measure, distance between cluster centroids, as well as
the fuzzy partitions, irrespective of the algorithm used. We define ρ as a fuzzy
clustering validity function

ρ =

∑c
i=1

∑N
j=1 u

2
ij ||vi − xj||2

N mini,j ||vi − vj||2
. (11)

In case of FCM and RFCM algorithms, with m = 2, eqn. (11) reduces to

ρ =
J2

N ∗ (dmin)2
, (12)

where J2 is the fuzzy objective function with Euclidean norm and dmin =
mini,j ||vi − vj||. The more separate the clusters, the larger (dmin)2 and the
smaller ρ. Thus the smallest ρ, corresponding to c = c0, indeed indicates a valid
optimal partitioning.

4 Results

The performance of the rough-fuzzy and the shadowed clustering algorithms is
presented in this section. Two real life data sets, involving vowel sounds and CT
scan images of the brain, are explored.

The Telegu speech data, Vowel, is a set of 871 vowel sounds from the Indian
Telegu language, obtained by the utterance of three male speakers in the age
group of 30-35 years, in a Consonant-Vowel-Consonant context [9]. The three
input features correspond to the first, second and third vowel format frequencies
obtained through spectrum analysis of the speech data. Fig. 2(a) shows the six
highly overlapped vowel classes ∂, a, i, u, e, o, marked with symbols ‘star’, ‘plus’,
‘decagon’, ‘circle’, ‘upper triangle’ and ‘cross’, respectively.

Siemens Emotion-Duo model was the clinical instrument for the acquisition
of the CT scan imagery. The images, obtained in the DICOM format, were

Table 1. Xie-Beni index on Speech data, Vowel

Index c HCM FCM RCM RFCM SCM

Xie 5 0.2074 0.2378 0.2503 0.2142 0.3268
Beni 6 0.1665 0.1893 0.1795 0.1625 0.1496

7 0.1774 0.1913 0.2049 0.1598 0.3466
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Speech data Vowel. (a) Original, and after clustering with (b) HCM, (c) FCM,
(d) RCM, (e) RFCM, (f) SCM algorithms for c=6.

converted to RAW as part of pre-processing. The images were of size 512 x 512
pixels with 16-bit gray levels. The brain images were of patients in an age-range
of 30-65 years, and exhibit different cases of brain infarction. Fig. 3(a) illustrates
a sample image for patient P45 indicating fresh vascular insult. We also present
the segmented image for a patient, P135, via SCM, indicating chronic case of
infarction. (Fig. 4)

4.1 Speech Data

The boundaries portrayed in the scatter plot of Vowel, as observed from Figs.
2(b)-(f), are highly fuzzy. The validity indices in Table 1 demonstrate the best
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Sample case of Fresh Infarction for patient, P45. (a) Original CT scan image,
and the corresponding segmented versions for (b) HCM (c) FCM (d) RCM (e) RFCM
(f) SCM clustering.

results with SCM for c=6. This corresponds to the actual number of vowel
categories under consideration. For example, in case of RFCM, we observe that
XB is indicative of incorrect optimization at seven partitions. On the other
hand, SCM provides better modeling of the uncertainty in the overlapped data.
The comparative study involving algorithms, HCM, FCM and RCM give higher
values of XB index, as compared to SCM. All the algorithms were randomly
initialized and the average over nine runs was computed.

4.2 Medical Image

Segmentation partitions an image into some non-overlapping meaningful re-
gions [12]. Pixel clustering is one of the faster and efficient techniques of consti-
tuting homogeneous regions for segmentation. Here, we present sample results
of different members of the family of c-means algorithms on segmentation of the
infarcted region in CT scan images of the brain.

The patients under study, P45 and P135, were suffering from fresh and chronic
vascular insult, respectively. The fresh infarction [Fig. 3(a)] is observable on the
left, with the left side compressing the right side such that the third ventricle is
not visible due to this severe edema. Dilation of the blood ventricles is the main
cause of the edema here. In case of chronic infarction, the symmetry of the brain
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(a) (b)

Fig. 4. Sample case of Chronic Infarction for patient, P135. (a) Original CT scan
image, and the corresponding segmented version for (b) SCM clustering.

in Fig. 4(a) is not as distorted as in the previous case. Cholesterol deposit due
to old age is among the main causes of such an infarction.

The problem at hand is modeled as the task of segmenting six regions com-
prising the gray matter (GM), the white matter (WM), the infarcted region,
the skull and the background. Figs. 3(b)-(f) depict the results of segmentation
under HCM, FCM, RCM, RFCM and SCM. In the absence of an accurate index
to test the accuracy of segmentation in CT scan images, we resorted to expert
domain knowledge. In all, 36 frames of the patient P45 and 58 frames of the
P135 were studied, and the ground-truth regarding the best segmentation was
validated by an experienced radiologist. As before, the SCM algorithm produced
the best results. The superiority of SCM based segmentation was readily evident
over RFCM based partition [7], and was confirmed by the experts.

5 Conclusion

Applications of the family of c-means algorithms to real life speech and medical
imagery were described. The superiority of shadowed clustering, over algorithms
like HCM, FCM, RCM, RFCM, was established here. Modulation of the mem-
bership function helped achieve a quantization in SCM. This in turn leads to
reduced computational complexity, faster convergence and low memory usage.
The contrast-enhancement paradigm in SCM enabled knowledge discovery in un-
labeled data in a more effective manner. The CT scan image segmentation was
viewed from this novel angle, for the efficient extraction of vascular infarction.
In the next phase, we aim to establish an inventory, so that a second opinion is
readily available to the radiologist.
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Abstract. Computational intelligence techniques were applied to human brain
cancer magnetic resonance spectral data. In particular, two approaches, Rough
Sets and a Genetic Programming-based Neural Network were investigated and
then confirmed via a systematic Individual Dichotomization algorithm. Good pre-
liminary results were obtained with 100% training and 100% testing accuracy
that differentiate normal versus malignant samples.

1 Introduction

Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are
two non-invasive and harmless clinical techniques that can provide useful biochemical
information about a region of interest in the body. They can be particularly helpful
when the organ under investigation is difficult or dangerous to reach (e.g. the brain)
where direct inspection and surgery should be avoided as much as possible.

Both techniques are based on magnetic resonance (MR), which is related to the phys-
ical property called quantum spin. The MRI technique reveals water concentration lev-
els and is used in routine examinations by clinicians; whereas the MRS technique is
not used as frequently as MRI (despite its great potential). MRS information consists
of a signal, possibly noisy, composed of peaks whose location and height correspond
to different metabolites and their relative concentrations. Reading the most frequent
chemical in an MR spectrum is relatively straightforward, but the complete interpreta-
tion of a spectrum or the comparison between two spectra usually requires an expert
[14]. This reliance on specialized expertise may be one of the reasons why it has been
more difficult to introduce MRS into routine medical practice.

An international project, INTERPRET http://azizu.uab.es/INTERPRET,
gathered the efforts of 5 centers across Europe with the long term goal of generalizing
the use of MRS. During this project, a large database of 1HMR spectra was built in order
to develop an automatic MRS-based system to aid clinicians to diagnose brain tumors.
Each spectrum in the database was acquired according to a pre-defined protocol and
formally validated by clinicians and pathologists [9].

This paper has a preliminary character and will focus on the study of the tumor vs
normal differentiation (i.e. {G1, G2, G3}vs{normal}), with 204 and 15 cases respec-
tively. Future studies will cover the distinction between the different types of tumors.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 485–494, 2008.
c© Her Majesty the Queen in Right of Canada 2008

http://azizu.uab.es/INTERPRET


486 A.J. Barton and J.J. Valdes

2 Rough Sets

The Rough Set Theory [17], [16] bears on the assumption that in order to define a
set, some knowledge about the elements is needed. This is in contrast to the classical
approach where a set is uniquely defined by its elements. In the Rough Set Theory,
some elements may be indiscernible from the point of view of the available information
and it turns out that vagueness and uncertainty are strongly related to indiscernibility.

Reducts and Minimum Reducts. LetO = {o1, o2, · · · , om} be a set ofm objects and
A = {a1, a2, · · · , aN} a set of N attributes. Let d be a special attribute called the deci-
sion attribute. O is consistent if ∀k, n, ∀i ∈ [1, N ], ai(ok) = ai(on)→ d(ok) = d(on).
A reduct is a subset R ⊆ A so that ∀k, n, ∀a ∈ R, a(ok) = a(on) → d(ok) = d(on).
Minimal reducts are those for which no proper subset is a reduct and are extremely
important, as decision rules can be constructed from them [3]. However, the problem of
reduct computation is NP-hard, and several heuristics have been proposed [21].

Reduct Computation. Genetic algorithms are the most popular representative of the
evolutionary computation family of algorithms [5], [1].They have been used as an ap-
proach to reduct computation by [20], which proposed several methods based on the
notion of a distinction table; which is a (m2 − m)/2 × (N + 1) matrix B where
columns i are attributes (the last one is the decision attribute d) and the rows are pairs
of objects k, n. For every row i ∈ [1, N ] and every k, n ∈ [1,m] the values of B are
constructed as follows: B[(k, n), i] = 1 if ai(ok) 
= ai(on) and 0 otherwise. For the
last row B[(k, n), N + 1] = 1 if d(ok) = d(on) and 0 otherwise. In terms of B, a
reduct is a subset of columns R with the property [20] ∀k, n, ∃i ∈ R, (B[(k, n), i] =
1) ∨ (B[(k, n), N + 1] = 1). In its simplest representation, a GA with binary chro-
mosomes of length N encodes subsets of attributes (the indices of the chromosomes
for which the value is 1). The evolution is guided by a fitness function given by:
F (r) = ((N − Lr)/N) + Cr/K , where r is a chromosome, Lr is the cardinality
of the set of attributes (given by the number of 1s in the chromosome,Cr is the number
of object pairs (with different values of the decision attribute) which are discerned by
the attributes in R. K = (m(m− 1))/2 is the number of object pairs.

3 Genetic Programming

Analytic functions are among the most important building blocks for modeling, and are
a classical way of expressing knowledge and have a long history of usage in science.
From a data mining perspective, direct discovery of general analytic functions poses
enormous challenges because of the (in principle) infinite size of the search space.
Within computational intelligence, genetic programming techniques aim at evolving
computer programs, which ultimately are functions. Genetic Programming (GP) intro-
duced in [10] and further elaborated in [11], [12] and [13], is an extension of the Genetic
Algorithm. The algorithm starts with a set of randomly created computer programs and
this initial population goes through a domain-independent breeding process over a se-
ries of generations. It employs the Darwinian principle of survival of the fittest with



Computational Intelligence Techniques Applied to MRS Data 487

operations similar to those occurring naturally, like sexual recombination of entities
(crossover), occasional mutation, duplication and gene deletion.

3.1 Gene Expression Programming

There are many approaches to GP leading to a plethora of variants (and implemen-
tations). A discussion about their relative merits, drawbacks and properties is beyond
the scope of this paper. One of these GP techniques is the so-called Gene Expression
Programming (GEP) [7], [8]. GEP individuals are nonlinear entities of different sizes
and shapes (expression trees) encoded as strings of fixed length. For the interplay of the
GEP chromosomes and the expression trees (ET), GEP uses an unambiguous translation
system to transfer the language of chromosomes into the language of expression trees
and vise versa. The structural organization of GEP chromosomes allows a functional
genotype/phenotype relationship, as any modification made in the genome always re-
sults in a syntactically correct ET or program. The set of genetic operators applied to
GEP chromosomes always produces valid ETs.

3.2 Neural Networks Constructed Via Genetic Programming (NN-GP)

A general extension to GEP for vector valued functions was previously introduced [19],
whereby GEP individuals consist of multiple chromosomes. Such an extension was the
starting point for the construction of a technique to evolve explicit neural networks. Fig-
ure 1 shows an example of an explicit neural network consisting of (n+m+ c) neurons
and (3) layers (other topologies are also possible), where each neuron is a chromosome
in an individual. For this example, n neurons in the input layer are determined by the
number of variables in the input data set; m neurons in the hidden layer determine
the dimension of the non-linear space to be constructed (in this paper, m = 1); and c
determines the number of classes that need to be discriminated. In general, c neurons
in the output layer may be used, but other approaches exist. For example, this paper
uses c = 2 and uses 1 output neuron in order to construct explicit classifiers. Future
studies will investigate these issues more deeply, for example, when determining class
discrimination between c > 2 classes.

f1(x1, x2, · · · ) � x′

1

f2(x1, x2, · · · ) � x′

2

fn(x1, x2, · · · ) � x′

n
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2, · · · ) � ϕ1

f ′
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1, x
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f ′′

1 (ϕ1, ϕ2, · · · ) � o1
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f ′′

c
(ϕ1, ϕ2, · · · ) � oc

Fig. 1. Neural network representation of one specific topology containing (3) layers and (n +
m + c) neurons. Each box is a neuron in the network where all activity occurs (e.g. activation,
aggregation, etc). Weights are learned within the neuron by NN-GP.
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4 Individual Dichotomization

This is a simple screening algorithm used with the purpose of finding individual at-
tributes that are relevant from the point of view of their ability to differentiate the classes
(in a binary problem), when their values are dichotomized. The inputs for the algorithm
are: i) the values of a given attribute A for all the objects , ii) the classes C1, C2 associ-
ated with each sample (Cancer vs Normal in this case), and iii) a probability threshold
pT . The algorithm proceeds as follows: (1) construction of the set of distinct values of
A (call it ∆). If O is the set of objects and A(o) is the value of the attribute for any
object o ∈ O , ∆ = {δ1, δ2, · · · , δk}, (k ∈ [1, card(O)]) with the following properties:
( ∀δi, δj ∈ ∆, δi 
= δj), (∀o ∈ O, ∃δ ∈ ∆ s.t. A(o) = δ) and (∀δ ∈ ∆, ∃o ∈ O

s.t. A(o) = δ). (2) sort ∆ in increasing order. (3) construct the set ∆̂ composed by
the mean of all consecutive values of ∆. That is, for every pair δi, δi+1 ∈ ∆ compute
(δ̂i = (δi + δi+1)/2 . Clearly, ∆̂ has one element less than ∆. (4) use each (δ̂i ∈ ∆̂ as
a binary threshold for the values of attribute A. This divides the set of objects into two
disjointed classesA1, A2 . (5) compute the contingency table ofA1, A2 vsC1, C2 (6) on
the table, compute the conditional probabilities p1 = p(C1/A1) , p2 = p(C1/A2)and
retain pmax = max(p1, p2). (7) if pmax ≥ pT select the attribute as relevant, and
discard it otherwise. The process is repeated for all attributes and the resulting set of
selected attributes gives an indication on how many of them contain a differentiation
power equal or better than the pre-set probability threshold pT . Specifically, if pT = 1
the algorithm will give a set of attributes such that each of them (individually) will
perfectly differentiate the classes {C1, C2}.

5 Experimental Settings

The height and shape of each resonance in the MR spectrum is determined by several
parameters related to the way in which signal produced by the exited proton spin de-
cays by a relaxation process. One of them, called the echo time (TE) is very important.
The longer the TE, the more the signal has attenuated before acquisition. Hence, a short
echo time spectrum (TE ≤ 50ms) has larger peaks than a long echo time spectrum (TE
≥ 130ms). A short echo time spectrum also contains more peaks, as resonances with
a small relaxation value or complex coupling pattern, like mI (myo-Inositol), Glu (glu-
tamate) and Gln (glutamine) are less pronounced at longer echo times. At short echo
time signals, macromolecules are prominent; originating from proteins and membrane
components. They have very broad peaks with a large contribution to an underlying and
partially unknown baseline [14], [6]. The data used in this study consist of 219 long-
echo MR spectra (echo time TE≥ 130ms). The data acquisition protocol and the signal
processing procedure is described in [18]. Each spectrum covers a range between [4.23
.. 0.45] parts per million (ppm) along the x-axis, where 200 equally spaced samples
were taken. The available validated set represents different types of tumors and normal
cases grouped into 4 main classes: G1: astrocytome, oligoastrocytome and oligoden-
drogliome, G2: glioblastome and metastasis and G3: meningiomes. This paper has a
preliminary character and so will focus on the study of the tumor vs normal differen-
tiation (i.e. {G1, G2, G3}vs{normal}), with 204 and 15 cases respectively. In order
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Table 1. Experimental settings for the two series of experiments involving NN-GP

Series 1 (240) Series 2 (2250)
GEP Max. Num. Generations 50 same
GEP Population Size 5, 10, 15 10
GEP Num. Elite Individuals 1 same
GEP Inversion Rate 0.1 same
GEP Mutation Rate 0.044 same
GEP IS Transposition Rate 0.1 same
GEP RIS Transposition Rate 0.1 same
GEP One Point Recomb. Rate 0.3 same
GEP Two Point Recomb. Rate 0.3 same
GEP Gene Recombination Rate 0.1 same
GEP Gene Transposition Rate 0.1 same
GEP Num. Genes Per Chromosome 1 same
GEP Gene Headsize 2 same
GEP Gene Linking Function Addition same
GEP Num. Real Constants Per Gene 2, 4, 8, 200 1, 2, 3, 4, 5
GEP Constants Limits [−100.0, 100.0] same
GEP Seeds 5 unique seeds Series 1 and 45 more
GEP Species RNC Mutation Rate 0.01 same
GEP Species DC Mutation Rate 0.044 same
GEP Species DC Inversion Rate 0.1 same
GEP Species DC IS Transposition Rate 0.1 same
GEP Functions For All Symbol Sets Addition, Subtraction, Multiplication
GEP Number of Symbol Sets Determined by NN topology: 3 (one/layer)
GEP Number of Chromosomes Determined by NN topology: 202
Neural Network (NN) Topology 200 Input Nodes, 1 Hidden, 1 Output
NN Input Layer Constant Weights 1, 200 1, 100, 200
NN Input Layer Terminal Weights 1 same
NN Hidden Layer Constant Weights 1, 200 1, 100, 200
NN Hidden Layer Terminal Weights 1 same
NN Output Layer Constant Weights 1 same
NN Output Layer Terminal Weights 1 same

to simplify the application of some procedures, in particular genetic programming, the
dataset (219 individuals and 200 predictive variables) was linearly re-scaled from its
original range [−44.850571, 56.267685] to the [1, 100] range. The purpose was to work
with strictly positive values and since the target range is almost the same as the original
(99 vs 101.118256), the re-scaling operation is essentially a shifting. The re-scaled data
was divided into a training and a test set using random stratified sampling so that class
proportions were preserved. The training set contained 80% of the data (175 objects)
and the test set the remaining 20% (44 objects). The NN-GP approach was investigated
within a series of two experiments (See Table nn-gep-experimental-settings). The first
series of 240 attempted to broadly sweep the parameter space; with the second series
of 2250 being used to more closely investigate the parameter space around the good
solution obtained within the first series.
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6 Results

Results from Rough Sets and NN-GP are reported, along with validation via the indi-
vidual dichotomization approach.

Rough Sets Results. Rough sets analysis was conducted as follows: i) the training
set was discretized according to the global method described in [2], [4], ii) reducts
(see Section 2) were computed using exhaustive and genetic algorithms [2], [20], iii)
classification rules were generated from the reducts, iv) the test set was discretized using
the same cuts produced by the discretization of the training set, and finally, v) the set
was classified using the rules obtained for the training set. Remarkably, both reduct
computation algorithms found a single reduct on the training set. Moreover, it was a
simple reduct composed of a singleton attribute ({V 270}). Accordingly, both sets of
classification rules consist of the common single rule:

IFV270

{
≥ 69.374496⇒ C1 (i.e. Normal)
< 69.374496⇒ C2 (i.e. Diseased)

which classifies the training set with 100% accuracy. When applied to the test set, it
turned out that it also classifies with 100% accuracy. This is very interesting, as it shows
that a single attribute (V270) (out of the original 200) is capable of discriminating the
spectra from normal cases from those of the malignant class. It corresponds to a con-
centration of approx. 1.969 ppm.

NN-GP Results. Two series of experiments, one of size 240, and the other size 2250
led to 26 explicit neural networks that, when interpreted as classifiers, had 100% train-
ing and 100% testing error; a very interesting preliminary result. In order to study the
properties of these high performing solutions, the space constructed from the mapping
function associated with each of the 26 networks is summarized in Fig.2. It can be seen
that all 26 spaces (horizontal lines in Fig.2) perfectly separate the 2 classes and that the
26 solutions can be divided into 4 equivalence classes based on constructed space mag-
nitude: i) extra large magnitude [−150000, 200000] (1 solution), ii) large magnitude
[−4000, 6000] (14 solutions), iii) medium magnitude [−1000, 2000] (2 solutions), and
iv) small magnitude [−200, 100] (9 solutions); with the small magnitude solutions lying
closest to the magnitude of the training and testing data. The 26 spaces shown in Fig.2
may also be analyzed in terms of their associated mapping functions. In particular, the
26 equations contain only 50 of the 200 attributes present within the input data; with
43 attributes occurring in exactly one equation, 3 attributes occurring in two equations
and 2 attributes occurring in exactly three equations. The two most frequent attributes
are V270 occurring in exactly eleven equations and V271 occurring most frequently, and
in sixteen equations. In addition, it is observed that V271 was more frequently used than
V270 within good solution networks and that it was not discovered by the Rough Sets
approaches that were investigated, which only discovered attribute V270. Of the 26 good
solution results (100% training and 100% testing accuracy), 3 are now highlighted that
show use of the 2 most frequent variables (as both independent and joint usage) in the
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Fig. 2. Best 26 mapped 1D spaces (varying orders of magnitude) from nonlinear discriminant
analysis of neural network (NN-GP) solutions having 200 input variables. All 26 spaces have an
associated classifier (not shown) with 0.00 training and validation error. X = healthy class. O =
diseased patient samples.

mapping and classifier results. It can be observed from Fig.2, that the mapping re-
sults may be converted into the good classifiers through rescaling (and possibly re-
flection about a point) of the constructed spaces. An example NDA and classifier result
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involving V270 was discovered in experiment S2 Exp207 and resulted in the construction
of a 200D to 1D mapping function ϕ1(·) = 66.86 − V270 and the following classifier
(with 100% training and testing accuracy):

IF (66.86− V270)3

⎧⎨
⎩
< 0.5⇒ C1 (i.e. Normal)
= 0.5⇒ Undecidable
> 0.5⇒ C2 (i.e. Diseased)

An example NDA and classifier result involving V271 was discovered in experiment S2

Exp347 and resulted in the construction of a 200D to 1D mapping function ϕ1(·) =
V271 − V234 − 27.69 and the following classifier (with 100% train/test accuracy):

IF − 28.75(V271 − V234 − 27.69)− 50.78

⎧⎨
⎩
< 0.5⇒ C1 (i.e. Normal)
= 0.5⇒ Undecidable
> 0.5⇒ C2 (i.e. Diseased)

An example NDA and classifier result involving both V270 and V271 was discovered
in experiment S2 Exp1699 and resulted in the construction of a 200D to 1D mapping
function ϕ1(·) = V331 −V295−V271 −V270−V195 +V179 and the following classifier
(with 100% train/test accuracy):

IFV331 − V295 − V271 − V270 − V195 + V179 + 137.40

⎧⎨
⎩
< 0.5⇒ C1 (i.e. Normal)
= 0.5⇒ Undecidable
> 0.5⇒ C2 (i.e. Diseased)
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Fig. 3. All 285 MR spectra. 2 out of 200 variables may be used (independently or jointly) for
discrimination. Larger values ([31.075169..48.118134] for V270 and [29.067427..49.497776]
for V271) are normal samples.
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Individual Dichotomization Results. A systematic exploration of each single attribute
in the training set was made with the individual dichotomization algorithm (see Section
4). The probability threshold was set to 1 (pT = 1) in order to find the highest condi-
tional probabilities of the classes given the attribute dichotomization. It was found that
P (class = normal/(V270 ≥ 69.375)) = 1 and that P (class = normal/(V271 ≥
68.257)) = 1. When these probabilities are computed on the test set using the same
conditionals, the result was the same, showing that both V270 and V271 (spectral peaks
at 1.969 and 1.95 ppm respectively), can individually discriminate the normal from the
malignant cases, thus confirming the results found with rough sets and especially with
the NN-GP network. Rough sets foundV270 but not V271, whereas NN-GP detected V270

and V271 as the two most important attributes, confirmed by individual dichotomization.

7 Conclusions

Computational intelligence techniques were applied to brain cancer data. Good prelim-
inary results were obtained with 100% training and testing accuracy that differentiate
normal versus malignant samples. Two out of 200 attributes were found to be most
important. Rough Sets found one; whereas the NN-GP experiments found both. The
results were confirmed via a systematic algorithm, which disregards attribute interac-
tions; something that cannot (in general) be assumed a priori. The NN-GP approach,
which, although more complex, did not miss a relevant attribute as did the Rough Sets
approach. Future studies will focus on differentiation of the different cancers.
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Abstract. This work presents a hybrid model, combining Bayesian Net-
works and the Multicriteria Method, for aiding in decision making for the
neuropsychological diagnosis of Alzheimer’s disease. Due to the increase
in life expectancy there is higher incidence of dementias. Alzheimer’s
disease is the most common dementia (alone or together with other de-
mentias), accounting for 50% of the cases. Because of this and due to
limitations in treatment at late stages of the disease early neuropsy-
chological diagnosis is fundamental because it improves quality of life
for patients and theirs families. Bayesian Networks are implemented us-
ing NETICA tool. Next, the judgment matrixes are constructed to ob-
tain cardinal value scales which are implemented through MACBETH
Multicriteria Methodology. The modeling and evaluation processes were
carried out with the aid of a health specialist, bibliographic data and
through of neuropsychological battery of standardized assessments.

Keywords: Diagnosis, neuropsychological, CERAD, alzheimer’s, MAC-
BETH, multicriteria.

1 Introduction

The World Health Organization [22] estimates that in 2025 the population over
age 65 will be 800 million, with 2/3 in developed countries. It is expected that
in some countries, especially in Latin America and Southeast Asia there will be
an increase in the elderly population of 300% in the next 30 years.

With the increase in life expectancy health problems among the elderly popu-
lation also increase and these complications tend to be of long duration, requir-
ing qualified personnel, multi-disciplinary teams, and high cost extra exams and
equipment.

Health care systems will have to confront the challenge of aiding patients and
those responsible for them. The costs will be enormous the whole world over.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 495–504, 2008.
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As the population increases the number of dementias increases as a conse-
quence. There are numerous causes of dementias and specific diagnosis depends
on knowledge of different clinical manifestations and a specific and obligatory
sequence of complementary exams [7].

The initial symptoms of dementia can vary, but the loss of short term memory
is usually the main or only characteristic to be brought to the attention of the
doctor in the first appointment. Even so, not all cognitive problems in elderly
people are due to dementia. Careful questioning of patients and family members
can help to determine the nature of cognitive damage and narrow the choices
for diagnosis [21].

Alzheimer’s disease (AD) is the most frequent cause of dementia and makes
up 50% of the cases in the 65+ age group [8].

The main focus of this work is to develop a multicriteria model for aiding
in decision making for the neuropsychological diagnosis of Alzheimer’s disease,
using Bayesian networks as a modeling tool. The processes of problem definition,
qualitative and quantitative modeling, and evaluation are presented here. In this
work, the modeling and evaluation processes have been conducted with the aid
of a medical expert and bibliographic sources. Batteries of standardized assess-
ments which help in the neuropsychological diagnosis of Alzheimer’s disease were
used for the application of the model.

The battery of tests used in this work is from the Consortium to Establish a
Registry for Alzheimer’s disease (CERAD). We have sought to discover which
questions are most relevant for neuropsychological diagnosis of Alzheimer’s dis-
ease by using this battery of tests.

The work has produced a Bayesian network and a ranking with the clas-
sification of these questions. This ranking is composed of the construction of
judgment matrixes and constructing value scales for each Fundamental Point of
View already defined. The construction of cardinal value scales was implemented
through MACBETH.

2 Diagnosis of Alzheimer’s Disease

Alzheimer’s disease is characterized by a progressive and irreversible decline in
some mental functions, such as memory, time and space orientation, abstract
thinking, learning, the incapacity to carry out simple calculations, language dis-
turbances, communication and the capacity to go about daily activities [21].

Diagnosis of Alzheimer’s disease [1,6,7,8,11,13,16,17,19,20,21,22] is based on
the observation of compatible clinical symptoms and the exclusion of other causes
of dementia by means of laboratory exams and structural neuro-imagery. A
variety of clinical instruments are used to come to a diagnosis such as a complete
medical history, tests to evaluate memory and mental state, evaluation of the
degree of attention and concentration of abilities in solving problems and level
of communication.
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3 CERAD - An Overview

The original mandate of the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) in 1986 was to develop a battery of standardized assessments
for the evaluation of cases with Alzheimer’s disease who were enrolled in NIA-
sponsored Alzheimer’s Disease Centers (ADCs) or in other dementia research
programs [15]. Despite the growing interest in clinical investigations of this ill-
ness at that time, uniform guidelines were lacking as to diagnostic criteria, test-
ing procedures, and staging of severity. This lack of consistency in diagnosis and
classification created confusion in interpreting various research findings. CERAD
was designed to create uniformity in enrollment criteria and methods of assess-
ment in clinical studies of Alzheimer’s Disease and to pool information collected
from sites joining the Consortium.

CERAD developed the following standardized instruments to assess the var-
ious manifestations of Alzheimer’s disease: Clinical Neuropsychology, Neuro-
pathology, Behavior Rating Scale for Dementia, Family History Interviews and
Assessment of Service Needs.

4 Model Construction

4.1 Definition of Problem

In studies developed by [9] and [10] the application of the multicriteria model
for aiding in diagnosis of Alzheimer’s disease was presented. These models were
initially validated using two patients and later, with a group of 235 patients
who had not yet been diagnosed with Alzheimer’s disease. In the validation with
the bigger group of people we used other data set that was obtained through of
study realized in 2005 with 235 elderly people in the city of So Jos dos Campos,
SP, Brazil. We used in this study a questionnaire with 120 questions that supply
demographic-social data, analyze the subjective perception of the elderly, the
mental and physical health (aspects cognitive and emotional), independency in
day-by-day, in addition to familiar and social support and the use of services.

In the present study, we sought to validate the model in a group of patients
who had already been diagnosed. So, in this validation we used a neuropsycho-
logical battery of assessments which has been applied all over the world.

In the next sections the structures of the model are shown. Initially, we defined
the mapping of the questions from the neuropsychological part of the battery
of assessments. As a result of this mapping a Bayesian network was created,
based on in the opinion of specialists. After that, with the Bayesian network, a
multicriteria model was structured that indicated the questions which had the
most decisive impact for the diagnosis. In addition to that, the questions of the
biggest impact for the diagnosis were shown for the percentage of elderly people
that presented the neuropsychological symptoms of Alzheimer’s disease.
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4.2 Bayesian Network Model

The Bayesian network is a graphic model that has an acyclic directed graph.
The nodes and arcs of the model represent, respectively, the universal variables
U=(A1, A2,...,An) and the dependencies among the variables. In the network
that was constructed for the medical problem modeled, the direction of the arcs
represents the relations of consequence-cause among the variables. For example,
we have an arc between an A node to a B node, we say that an A node represents,
semantically, a cause of B and we use the name A as one of the parents of B [12].
There are other works with applications using Bayesian Network in diagnosis of
Alzheimer’s disease [5].

During the construction of the Bayesian network, we sought to use the biblio-
graphic data with a health professional. For this reason, meetings were held with
a specialist nurse that helped in the structure of the network and the subsequent
quantification.

In obtaining the structural model of the network, sought to identify what
information relating to the problem of diagnosis, which were present in the neu-
ropsychological part of the battery of assessment which could be represented
as variables of the network, as well as the causal relationships between these
variables.

Fig. 1. Network for the diagnosis of Alzheimer’s disease in relation to the criteria
Mini-Mental State Examination

In the present model, the nodes of the network can be divided in the following
way:

1. Main objective of the study: Definition of the neuropsychological diagnosis
of Alzheimer’s disease.

2. Create uniformity in enrollment criteria and methods of assessment in neu-
ropsychological studies of Alzheimer’s diagnosis.
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3. Areas evaluated by the neuropsychological battery of assessments and used in
the network construction [15]: Verbal Fluency, Boston Naming, Mini-Mental
State Exam, Word List Memory, Constructional Praxis, Word List Recall,
Word List Recognition and Constructional Praxis (Recall).

The network structure for Mini-Mental State Exam is presented in figure 1.
We used Netica Software (http://www.norsys.com) for the construction of the
Bayesian network.

The use of the network occurs during the definition of the descriptors and in
the evaluation of the final results obtained in the multicriteria model that will
be shown in the next section.

4.3 Multicriteria Model

According to [2], in decision making it is necessary to look for elements that can
answer the questions raised in order to clarify and make recommendations or
increase the coherency between the evolution of the process and the objectives
and values considered in the environment.

In this study we used the Multi-Criteria Decision Analysis (MCDA) that is
a way of looking at complex problems that are characterized by any mixture of
objectives, to present a coherent overall picture to decision makers.

As a set of techniques, MCDA provides different ways of measuring the extent
to which options achieve objectives. A substantial reading on MCDA methods
can be found in [2,3,4,14,18], where the authors address the definitions and the
problems that are involved in the decision making process.

Although it is not simple, the task of constructing the value tree is greatly
facilitated with the aid of the Bayesian network. A great volume of information
and inter-relations of the raised concepts are provided through the network.

In this study, we used M-MACBETH for the MCDA tool (http://www.
m-macbeth.com) to help in the resolution of the problem.

Fig. 2. Problem value tree

http://www.norsys.com
http://www.
m-macbeth.com
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The evaluation process is composed of the construction of judgment matrixes
and constructing value scales for each Fundamental point of view (FPV) already
defined. The construction of cardinal value scales will be implemented through
the MACBETH methodology developed by [4].

Figure 2 shows the tree corresponding to the FPVs. The tree represents the
definitive structure of the problem that evaluates the neuropsychological diag-
nosis of Alzheimer’s disease.

From the family of FPVs it is possible to carry out the evaluation of the
attractiveness of the options for each interest. Although the definition of the de-
scribers of impact is a difficult task, it decisively contributes to a good formation
of judgments and a just and transparent evaluation [3].

4.4 Describers

An FPV is operational in the moment that has a set of levels of associated
impacts (describers). These impacts are defined for Nj, that can be ordered in
decreasing form according to the describers [18].

Table 1. Describer for the FPV - Mini-Mental State Exam

In this step of construction of the describers, the decisions were made during
the meetings with the health professional involved in the process.

Each FPV was operationalized in such a way as to evaluate the influence of
the questions evaluated in the elderly patients that correspond to each criterion
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during the definition of the neuropsychological diagnosis of Alzheimer’s disease.
For the evaluation of each FPV, the possible states were defined. Each FPV

has a different quantity of states. These states were defined according to the
exams or questions involved for each describer.

Its important remember that the describers has a structure of complete pre-
order, otherwise, a superior level is always preferable a least level.

For the evaluation of the FPV Mini-Mental State Exam were defined 38 states
possible. Table 1 shows the describer of the Mini-Mental State Exam with 16
levels of impact.

4.5 Analysis of Impacts

In this step, the analysis of impacts is carried out, according to each FPV: (i)
the lowest and highest values of the impacts; and (ii) the relevant aspects of the
distribution of the impacts in each one.

In this work, for each describer, the same values were considered to get the
value function for each FPV. Therefore, scores higher than 60, obtained through
the judgments matrixes were considered risk describers during the evaluation
of diagnosis, in other words, the elderly person that has a great number of
answers considered right in the definition of the diagnosis, becomes part of the
group of people with a great probability of developing Alzheimer’s disease. This
perception was defined by the health professional.

4.6 Evaluation

After the definition of the FPVs, family and the construction of the describers,
the next step is the construction of the cardinal value scales for each FPV. The
evaluations of the judgments matrixes were made according to the opinion of
the decision maker, the health area professional.

Fig. 3. Judgment of all the FPVs

After evaluating the alternatives of all the FPVs individually, an evaluation
of the FPVs in one matrix only was carried out. For this, a judgment matrix
was created in which the decision maker’s orders are defined according to the
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preference of the decision maker. The decision maker defined the order based
on what he judged to be more important in deciding on a diagnosis. Figure 3
presents the judgment matrix of the FPVs.

4.7 Results

In this step, we show the final result of the model - the contribution of the
criteria for the neuropsychological diagnosis of Alzheimer’s disease. We can see
the describer values for each criterion. These values show the importance of
choosing these questions that are part of the describers during the definition of
the diagnosis.

Analyzing the FPV1 (Verbal Fluency), two describers achieved a value above
that which was defined in the impact analysis. They are describers N2 and N3
with values of 77.78 and 88.89 respectively.

In FPV2 (Boston Naming), three describers achieved a value above that which
was defined in the impact analysis. They are describers N4, N5 and N6 with
values of 82.35, 88.24 and 94.12 respectively.

In FPV3 (Mini-Mental State Exam), there were 10 describers which achieved
the minimum value in impact analysis. They were describers N7 to N16, with
values of 67.41, 78.57, 89.73, 92.41, 95.09, 97.77, 98.21, 98.66, 99.11 and 99.55.

In FPV4 (Word List Memory), two describers achieved a value above that
which was defined in the impact analysis. They are describers N2 and N3 with
values of 77.78 and 88.89 respectively.

In FPV5 (Constructional Praxis), four describers achieved a value above that
which was defined in the impact analysis. They are describers N5 to N8 with
values of 68.42, 84.21, 91.23 and 98.25 respectively.

In FPV6 (Word List Recall) only one describer achieved the minimum value.
Its value is 87.50.

In FPV7 (Word List Recognition), only one describer achieved the minimum
value. Its value is 87.50.

In FPV8 (Constructional Praxis (Recall)), six describers achieved a value
above that which was defined in the impact analysis. They are describers N5 to
N10 with values of 61.90, 84.13, 90.48, 93.65, 96.83 and 98.41 respectively.

With this result, we can conclude that the questions that are part of these
describers should be preferentially applied during the definition of neuropsycho-
logical diagnosis of Alzheimer’s disease.

Another important factor to be analyzed is the great quantity of describers
which achieved the minimum value in FPV3. Many studies show the importance
of the definition of the diagnosis of dementia that should be carried out before the
definition of the diagnosis of Alzheimer’s disease [6], because many diseases can
be confused with dementias and as a consequence, be confused with Alzheimer’s
disease. This is merely to underline the importance of these criteria for the
solution of this problem.

With these results we can carry out a probabilistic analysis with the objective
of producing the profiles of the elderly patients that were diagnosed by using
this battery of assessments.
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5 Conclusion

The diagnosis of Alzheimer’s disease is made up of many steps. The first step is
to discover if the patient has dementia and then the patient is assessed to see if
he has Alzheimer’s.

Due to these limitations, this study sought to find the best way possible in
the decision making process of defining this diagnosis. By using the neuropsy-
chological part of the battery of assessments adopted by CERAD we attempted
to select the main questions involved in diagnosis of Alzheimer’s. This battery
of assessments was chosen because it uses all the steps of the diagnosis process,
and has been used all over the world.

The MACBETH multicriteria method was used to aid in decision making with
the help of the Bayesian network during the mapping of the variables involved
in the problem. The criteria were defined according to the neuropsychological
CERAD areas of assessment.

The questions that make up the battery of assessments were defined as the
describers of the problem. With this information, the judgement matrixes were
constructed using MACBETH software.

After evaluating the matrixes, a ranking was obtained showing all the ques-
tions, from most important to least important with respect to the diagnosis of
Alzheimer’s.

With these results we can carry out a probabilistic analysis with the objective
of producing the profiles of the elderly patients that were diagnosed by this
assessment.

As a future project, this model can be extended with the inclusion of new crite-
ria or new models which can be developed using other batteries of
assessments.
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The theory of rough sets [15,16], based on the universal framework of information
systems, provides a powerful model for representing patterns and dependencies
both in databases and in data mining. On the one hand, although there are nu-
merous rough set applications to data mining and knowledge discovery [10,18],
the usage of rough sets inside the database engines is still quite an uncharted
territory. On the other hand, however, this situation is not so exceptional given
that even the most well-known paradigms of machine learning, soft comput-
ing, artificial intelligence, and approximate reasoning are still waiting for more
recognition in the database research, with huge potential in such areas as, e.g.,
physical data model tuning or adaptive query optimization [2,3].

Rough set-based algorithms and similar techniques can be applied to improve
database performance by employing the automatically discovered dependencies
to better deal with query conditions [5,9]. Another idea is to use available infor-
mation to calculate rough approximations of data needed to resolve queries and
to assist the database engine in accessing relevant data [20,24]. In our approach,
we partition data onto rough rows, each consisting of 64K of original rows. We
automatically label rough rows with compact information about their values on
particular columns, often involving multi-table cross-relationships. One may say
that we create a new information system where objects take the form of rough
rows and attributes correspond to various flavors of rough row information. A
number of database operations can be fully or partially processed within such a
new system, with an access to the original data pieces still available, whenever
required on top of rough row information. Such a framework seems to actually
fit the paradigms of rough and granular computing [1,17], where calculations on
granules are additionally allowed to interact with those on single items.

The above ideas guided us towards implementing the fully functional database
product, with interfaces provided via integration with MySQL [13,14] and with
internals based on such trends in database research as columnar stores [8,11]
and adaptive compression [6,22]. Relying on relatively small, flexible rough row
information enabled us to become especially competitive in the field of analytical
data warehousing, where users want to analyze terabytes of data in a complex,
dynamically changing fashion. We realize though that we should keep comparing
ourselves against other strategies of using data about data [4,12] and redesigning
various dependency/pattern/metadata/index structures originally defined over
single rows to let them work at our rough row level [7,19]. In particular, searching
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for most efficient though reasonably compact types of rough row information can
be interpreted by means of feature extraction and selection [21,23], which will
additionally inspire us to refer to the rough set methods in future.
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20. Śl ↪ezak, D., Wróblewski, J., Eastwood, V., Synak, P.: Brighthouse: An Analytic

Data Warehouse for Ad-hoc Queries. In: VLDB 2008 (2008)
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Abstract. This paper focuses on the technology of Email Archiving and
how it has changed the way emails and other such communications are
being handled in corporations of the world. In today’s world, email finds
itself at the top of the preferred modes of communications list. Emails
are being increasingly recognized as an acceptable form of evidence in
legal disputes and are treated as the most important wealth of infor-
mation in a company. Every year governments in countries like Unites
States of America introduce new laws governing the usage and handling
of emails in the corporate worlds. In addition, industry standards are be-
ing made that require companies to retain their email communications
as a mandatory requirement. These laws and regulations impose huge
fines on corporations that fail to comply with these rules. In addition to
the fines, any loss in email data makes the corporations susceptible to
law suits and losses. To adhere to all the laws and regulations and also
to make use of the wealth of information in emails companies have re-
quirement for retention of email data, search and discovery and surveil-
lance of this data. The Email Archiving technology has made it possible
for companies to meet these challenges. In this paper, we will elaborate
on the key aspects and the challenges that are faced in making an Email
Archiving solution. The paper will show how most of the challenges that
are faced in this area are closely related to classification and matching
of data and how better and advanced techniques need to be devised to
improve the email archiving technology.

1 Introduction

Electronic mail (Email) has emerged as the largest modes of communications in
today’s world. According to a survey performed by the Radicati Group
Inc. [1], in 2005 the total number of corporate email users around the world
was predicted around 571 million, with an average of 133 emails sent and re-
ceived by the user in a single day. The survey predicted that the number would
rise to an average of about 160 emails per day per user. Other than the speed,
ease and comfort provided by this mode of communication it is also the vari-
ety and the improvement that has contributed to the rise of email usage. Email
communication has grown from its conventional form to other variations such as
Instant Messages, SMS logs, Phone logs and Faxes. The amount and the nature
of the information that is contained in all these forms of communications makes
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it imperative for the corporations to capture, preserve and analyze this informa-
tion for several purposes. There are a growing number of workplaces in America
and in other parts of the world that are building repositories of these com-
munications and using the repositories to incorporate industry and government
regulations of retention of data, discovery of emails to handle law suits, man-
agement of storage and increase work productivity A single mid-size enterprise
generates email and messaging related information that is comparable to the size
of the information on the internet. The primary problem with captured archives
which are such in size is their housekeeping or management. Enterprises have
several requirements for the archive such as retention, discovery for satisfying
legal requirements, employee productivity, storage optimization etc. Enterprises
have been under pressure and have faced several penalties including high-profile
lawsuits for losing email data. One classic example of such a scenario is when the
White House lost email data during an upgrade of email system and was hence
sued for mismanagement [3]. Also, since the 2001 stock crash several companies
have faced a tough time in cases where they have lost email data. Some include
Morgan Stanley, Enron, etc. This paper will elaborate more on these challenges
and requirements for the enterprise and how these are met today and will iden-
tify areas where classification technologies and knowledge discovery can be used
to meet the requirement and increase productivity.

2 Email Archive Data Sources

Different enterprises based on their industry have varying requirements. Funda-
mentally, Information capture can distinguished into two – Active Captures and
Historical Captures.

2.1 Active Captures

The acquirement of real-time messaging data is classified as Active capture.

1. Real-Time Email Capture via Journaling. Journaling of email is a process of
capturing every email communications that transpires in a company network.
This process ensures that 100% of messaging information is captured for
further analysis or for storage purposes. Mails are captured at the Mail
Transfer Agent (MTA) level so as to ensure every mail that comes into
the company network and goes out of the network and also ones that stay
and rotate within the network. To enable what journaling offers, it becomes
mandatory of the journaling block to exist at the company’s gateway through
which information enters the company. Other factors of emails like group
lists in the email and blind carbon copy also need to be captured during the
Journaling operation. Email servers like Microsoft Exchange, Lotus Notes,
etc. which are present at the email gateway of the company to send and
receive email are in the best position to journal these emails. Therefore, all
major email systems like SendMail, Microsoft Exchange, Lotus Notes etc.
have mechanisms in place to enable Journaling of email. Email Archives are
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built by this journaling data. Email archiving solutions like ZL Technologies’
Unified Archival offer several methodologies to capture journaling data from
the email gateway or directly from the company email servers’ journaling
repositories. However, the drawback of this kind of capture is that due to
its real-time nature, only current emails can be captured by this method.
Any data from the past has no way to show up in the email archives of the
company.

2. Mailbox Crawling. Email archiving system use Mail Server API or protocol
to crawl through individual mailboxes and capture legacy information from
these mailboxes. This method enables companies to track and captures hu-
man behavioral patterns as in organization of these emails in folders by end-
users and other such patterns. However, the biggest differentiator between
the crawling method and the journaling method is that the archive formed
by the crawling method is susceptible to the user behavior. For example, a
user deleting an email will prevent the crawling method from discovering the
email and hence will have no way find if such an email every existed. The
Mailbox Crawling methodology of capturing email overcomes the problem
of Journaling wherein past emails cannot be captured. But this method is
more susceptible to user actions on his mailbox.

3. Other Messaging data. Messaging data which present themselves in other
formats than email also have a need to be archived. This data is usually
in the form of Instant Messaging from various sources such as MSN, Yahoo
Messenger, GTALK, ICQ etc. and also internal enterprise instant messag-
ing systems such as Sametime, Microsoft Live Communication server. SMS
and Phone logs from Blackberry enterprise server, dedicated chats such as
Bloomberg, Reuters etc. There are several companies that convert faxes into
email and send it out to employees. All these data sources also are taken
into consideration while designing an email archiving system.

2.2 Historical Capture

A historical capture of messaging data is usually performed at start of a proactive
archive project or more like for a reactive response to a lawsuit, subpoena, and
other discovery requests.

1. Old backed up databases. For example, tape backups of Microsoft Exchange
databases, Lotus Mail files or SMTP transactions from the past.

2. Mail Archives. End User Email files such as PST, NSF file, individual MIME
files, .msg files or other proprietary messaging formats.

3. Other outdated legacy archives.

Fundamentally, any organization will have one or all the forms of email data
that have been elaborated in Sections 2.1 and 2.2. Traditionally, the Historical
Capture of email data has been the most prominent way to capture email data,
but in recent times due to the rise in the demand for archiving more and more
organizations are moving towards Active capture of their email data.
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3 Business Drivers for Archive Creation

This section will focus on the main business requirements for having an email
archiving solution for maintaining an enterprise wide repository or archive of all
the messaging communications in a company.

1. Industry Specific Regulations
Corporations have to abide by several industry specific regulations related to
internal and external communications in order to be in business. A failure to
adhere to these regulation results in severe monetary penalties and sometimes
even the closure of business. The regulations usually demand retaining cer-
tain period worth of mail of the company’s employees for a particular period
of time. SEC-17a-4, NASD 3010 [2] are some such examples for industry reg-
ulations for financial companies. The Health Insurance Portability and Ac-
countability Act (HIPPA) is one such regulation in the healthcare industry.
In addition to industry regulations, there are laws in every country that re-
quire organizations to store emails and make them available when requested.

2. Laws [2]
There are several United States federal and state security and privacy laws
that require companies to preserve their email communications. Federal
Rules of Civil Procedure (FRCP), Florida Government-in-the-Sunshine Law
and California Security Breach Notification Act (SB 1386) are some such
examples in the United States of America. Other countries like Japan also
have similar laws like Japan’s Personal Information Protection Act (PIPA)
and United Kingdom’s UK Freedom of Information Act.

3. Corporate Governance
Corporations feel the need to monitor the flow of information through the
messaging channels inside the company. The protection of Intellectual prop-
erty, proactive action against internal and external fraud, and litigation re-
quests are some reasons that require a complete repository of messaging
communications from where companies can extract information. This is one
reason companies turn towards email archiving solutions as they provide an
unified approach towards all the message communications in the company
environment.

4. Storage Management
For the ease of administration, management and control of mail servers and
the data corporations turn towards email archiving products that provide a
feasible way to control and handle these problems. Companies find it more
convenient to transfer huge storage requirements and expensive operations
off of the primary mail servers to the email archiving solutions with a hope
to reduce the stress and work load on the mail servers.

5. Employee Productivity
Email archives can be used by employees in a company to find information
from past communications in a fast manner. The archiving solutions also
offer techniques to reduce stress of actual mail servers thus increasing their
performance and making the email interaction of employees more productive,
fast and reliable.
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4 Email Archiving Challenges

In previous section, we saw a high-level picture of the business requirements for
a need of an email archiving solution. This section will translate these high-level
needs to actual challenges.

4.1 Retention

Retention in simple words is the period for which an email should be retained
in the email archive. Retention must be driven by corporate policy to meet
several laws and regulations. The retention policies are variable in nature as
they undergo changes depending on changes made to policies and regulations on
which they are based. The law or regulation requires companies to keep records of
certain type of messaging transaction for certain amount of period. At the same
time to avoid increasing costs for storage and management, the companies want
to retain just enough to satisfy the legal requirement and reduce the liability of
carrying such data.

Typically the retention policy is set by a set of stake-holders which includes
compliance, legal and records management groups. The requirements are typi-
cally set by:

1. The user or a group to which a user adheres to, for example a department
in a company.

2. The category of record (for example, financial records, customer transaction
records, Spam mails, etc.)

Deletion of old mails from the repository of emails is controlled by the retention
that is set for the particular mail. There are cases where a mail may be required
to stay beyond its set retention period for legal or other reasons. This special
category wherein mails are kept beyond their life cycle or retention periods is
termed as Legal-Hold. It’s usually the case that an email is referred by more
than one user and so the conflict is resolved by the highest priority retention
(longer or shorter as per the requirement). The determination of which retention
period must be chosen for a particular email requires recognizing and establishing
categories and classification of an email (or record) to associate it with the
appropriate categories. The categories are human-based such as based on which
folder the mail was found, etc. or automated or a combination of both human-
based and automated categories. The categorization is performed based on the
content, headers and other attributes of an email and then a decision is made to
determine the closest matching retention type. This categorization and decision
making process plays a very crucial role in email archiving.

4.2 Surveillance or Supervision

As described in Section 3, enterprises are required to abide by several federal,
state and industry wide regulations which require them to monitor their employ-
ees’ communications. The types and nature of these regulations vary from the
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type of business that a company operates. For example, financial companies have
to supervise communication (SEC 17a-4, NASD-3010) so that they don’t over-
promise stock returns, commit fraud, insider trading activity and other suspi-
cious. Similarly, Human resources departments of companies proactively monitor
emails for inappropriate language, sexual harassment and other such violation.
Likewise, companies need to prevent the leaking of critical company information
like IP or Earnings Reports etc., to ensure their place in the competitive world of
industries. There are basically four types of supervisions that can be performed
by a company.

1. Preventive Supervision or Pre-Review. In this form of supervision, the in-
coming and outgoing mails are blocked from reaching their destination and
undergo supervision. If the supervision reveals that the mail does not comply
with the company’s standards, it can be prevented from delivery until being
approved by a human supervisor or reviewer. Extreme care is taken to avoid
false positives in case of categorizing a mail as Pre-Review as this adds to
the latency in communication and adds to the workload of the supervisors.

2. Reactive Supervision or Post-Review. This approach is taken by companies
to proactively monitor employee communication to avoid forced or unforced
violations within the company. The mail is captured and flagged based on
its content and presented to the supervisors as a potential violation.

3. Random-Sampling. Some percentage of every user’s mail is picked at random
and presented for supervision. This approach can prove extremely useful in
cases of employees trying to beat the automated review system by generating
communication which may be incorrect to look at from a machine’s perspec-
tive but may contain sensitive information in the form of misspelled words
and forced grammatical errors. The random sampling of the employees’ mail
can ensure that a general communication behavior of the employee can be
determined and forced or unforced misinterpretations can be alerted.

4. Targeted –Review – After fact, investigator are looking for certain type of
violation (for example, finding users who may be involved in trading a par-
ticular stock during a lock-out period).

Pre-Review and Post-Review requires technology to detect potential frauds by
analyzing the mail and attachment contents. Several methods have been used
including

• Simple Keyword Detections in the scope of certain part of the mail.
• Word Association techniques to determine the context of a sentence. For

example, in a financial company the words park and stock within 10 words
in a sentence can assumed to be a sentence that may be revealing or advising
on stocks and their prices.
• Natural Language Processing may be used to detect the language structure

of the content. (For example, the word Sue used as a proper noun as opposed
to the word used as a common noun.)
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• Reducing false positives by ignoring certain sections (for example, Disclaimer
messages in emails.) The challenge in this case is that it may be easy and
direct to filter known sections of the emails as false positives but detecting
unknown sections of an email that fall in the same category is a challenge.
For example, a company’s own disclaimer that is attached at the end of
every outgoing email from the company email is a known section that may
be treated as a section that may trigger a false alarm. However, for incoming
emails from other companies those carry similar sections but with completely
different content in the disclaimers also need to be triggered as false alarms.
• Automated mails such as spam emails, newsletters from Wall street Journal,

analyst reports etc. require to be treated specially. This is done using mail
header analysis and content analysis. However, this process can prove to be
laborious depending on the size and the format of the content. Classification
techniques can be of great help here to optimize and speed up the process.
• Other standard mail types such as Read-Receipt, Out of Office Response,

Delivery Status Notification etc. also fall into a special category. These types
are usually auto-generated based triggered based on some preset events.
Simple techniques like header analysis are used to determine such emails.
• Classification Mail direction also plays an important role in determining the

action that needs to be taken on the mail. For example, a company may
choose to be extremely critical over mails that generate inside the company
and go out of the company than mails that come into the company from
outside.
• Forced or unforced changes to emails either in their entirety or in part may

also make a supervision system behave differently than expected. For ex-
ample, if the supervision system is configured remove attachments of a cer-
tain type to not enter into the company network due to security and virus
protection reasons the mail could then be changed to send the same exact
attachment with a different extension in order for the passage of the email
to be successfully. Thus compromising
• Duplicate mails need to be identified and handled appropriately to avoid

unwanted work on the part of supervisors who supervise mail in the
company.

4.3 Search and Discovery

Search and Discovery of mails form an integral part of any email archiving
system. Being the single largest compilation of all the messaging communications
of a company, an email archive is expected to be the best place to search and find
mails for any given range of period. Mails are free text indexed using the keyword,
which means, the indexing process stores unique words in the search engine
associated with the email archive. Although, a simple search and discovery of
these mails using keyword searches may not be very efficient way of finding a mail
as the information returned from the search may be too generic in nature and not
specific to the search that is being performed. To understand the classification
challenges in this area, we will list the several types of search requirements and
their possible solutions of an email archive.
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1. Internal Risk Assessment / mounting defense. Internal Legal counsel may
anticipate and assess risk or collection information for defense. Concept
searches, Document Ranking etc are the important techniques that can em-
ployed in this case. Concept searches are searches that can be customized
based on the results received from a simple keyword search and the search-
ing process may be optimized to return better results in future searches.
Employing synonyms of words, phonetically similar words (homophones and
homonyms), etc. may be some ways to enhance the searching experience and
improve search results.

2. Responding to Discovery request. During a subpoena when mail information
is requested, the two counsels or the court negotiate for mails that belong
to certain people for certain period of time for a certain concept. Usually
a concept is defined by a keyword. Counsels from the two sides involved
end up negotiating keywords that can be searched on and mail related to
these keywords could be traded or presented as evidence in courts. In such
cases, Proximity search request are becoming the order of the day. Proxim-
ity searching uses concepts of distance between words to identify the usage
of these words in various contexts of the email. To make these proximity
searches possible and a practically viable and reliable option, ranking of
keywords plays a very important role. However, these approaches are prone
to lot of false-positives results that can present themselves in the search
results. Another important concept is an Attorney Client Privilege which al-
lows certain communications between the attorney and the client to remain
confidential. This set of communication may not be produced as evidence
during a legal battle.

3. Productivity / Internal Investigation. Internal company wide investigations
for proactive monitoring or for reactive purposes like investigating illegal
activity and fraud inside the company forms another major part of search
and discovery. Building Concepts or categories in the search engine and
overlaying taxonomy could be the most useful way to go about this search
approach. For example, internal supervisors of a financial company may want
to find all the users’ mails that have involved in internal trading in the past
one year. From the example, Internal trading could be treated as a concept
that is a combination of several keywords and their specific usage patterns.
If there could be ways of defining these patterns and analyzing the content
to fit these patterns using classification approaches, then the searches could
be made to return more focused results.

4.4 Storage Management

The amount of storage required to store this goliath of email communications is
the most challenging financial and logistic problem that enterprises face. With
the rise in the usage of email and the rise in the average size of the email storage
management of these emails becomes an important aspect of email archiving.
Some challenges in this respect are listed in this section.

Single Instancing of Mails: This is the most important concept in storage
management. Email data as a whole may be considered to have a huge amount
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of redundancy. In terms of the content, attachments, and other parts of the email,
there is a good enough possibility to find shared aspects between two separate
emails. This opens up a scope for taking advantage of this redundancy and using
compression techniques on the email archive to save storage of duplicate emails.
However, one point to note is that no matter how similar two emails are, they
will always be unique and distinguishable either in their creation time or the
source where they were generated or the destination that they are supposed to
reach. Identifying these similarities and analyzing the possibilities of avoiding
storage of duplicate data of emails is known as the single instancing feature of
an email archiving solution. Mail servers like Microsoft Exchange also employ
techniques to enable single instancing of email. Another factor to consider in
email archiving products is that since the archive receives mail from several
data sources (as listed in Section 2), the possibility of duplication is increased,
however separation of the mails based on their source of generation also remains
a challenge. To solve the problem better, an empirical analysis of email data
may give a clearer picture at the constraints that can be used to design a single
instancing store for an email archive. It may be observed, for example, that the
attachments contribute to most of the storage when an email is stored and are
also the most potential parts of an email that may be duplicated in a corporate
environment. Thus, separating out an attachment and storing them separated
and forming a single instance store of attachments would be an effective approach
towards this problem.

5 Research Challenges

This section will focus on some research challenges in the area of email archiving.
Most of these problems share their origins to several other fields of Computer
Science.

5.1 Mail Classification

As elaborated in previous sections of this paper, the primary function of an email
archiving solution revolves around the category of the mail. The mail category
is responsible and eventually determinates action that needs to be taken on the
mail, the way it needs to be presented, the purpose of the mail and its lifecycle.
For example, in the insurance industry as per regulation documents related to
asbestos litigations are to be retained for 10 years or more as per laws. In such a
case, if there a process is able to exactly pin-point the difference between a mail
dealing with stocks and their prices and a fixed income record related to asbestos
litigations the application of retention on these documents can be performed easily
and more effectively. Some key challenges in this area are as follows:

• The possibilities of false positives occurring during this classification process
are great in number and their effect can prove to be disastrous. Reducing
the occurrences of these false positives should be one of the primary goals
while solving the mail classification problem.
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• The process must be real-time, precise and has to account for the heavy
email volumes of a corporation.
• The process should be robust yet flexible. It should be able to allow human

input in order to form categories that are customized to an organization.
• The process should be able to give back feedback to the organization dealing

with the types and behavior of its email content so that organizations can
proactively take actions and improve the classification process by adding
better rules and policies.

5.2 Surveillance Techniques

Development of better surveillance techniques to help detect fraud, usage of in-
appropriate language, policy violations like sexual harassment, etc. is a constant
challenge in the area of surveillance of emails using an email archiving product.
The problem can be treated as a segmentation problem wherein the mail is di-
vided into several parts and analyzed based on several rules and a decision is
made. Some key challenges in this area are as follows:

• The process needs to be intelligent enough to be invariant to attempts to
bypass the rules. A practical example is when a user, after having detected
over a certain period of time will learn what kind of mail content is acceptable
and what is not. The user will then try to find ways to beat the system by
manipulating emails by changing the order of words, forcing grammatical
errors that may be readable by a human viewer but may be impossible to
interpret for a machine, changing attachment names to bypass file-extension
based email rules, etc.
• The system can be made to learn over time based on specific user activity

and the nature of the emails in general.
• Other than detecting potential cases for surveillance, the system must also be

effective in discarding unwanted information with great accuracy and speed.
Detection of spam emails, automated mails such as read receipts, vacation
responses, etc. can be made faster and easier.
• The process must be able to detect and skip certain sections of the email like

disclaimers which are repeatable and do not constitute as scan-able portion
of the email.
• The process must be prone to false positives and must be scalable in terms

of size of data and ease of use.

5.3 Understanding Non-textual Data

In today’s world, email is not just a medium of textual data. With companies
offering virtually unlimited storage for their employee’s emails and web-mail
companies competing based on the storage options that are offered to free and
paid email users, email communication is slowly moving towards being a stor-
age system of its own. Several heavy email users prefer storing documents as
attachments in their emails. More so mail servers have expanded their roles and
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provide users easy and effective options of storing and sharing files using their
email clients. This trend makes non-textual data in emails an important com-
ponent when it looked upon in the light of retention, surveillance etc. Better
understanding of image, audio and video will help companies improve their use
of an email archiving solution. Companies can be enabled to effectively track and
apply policies over inappropriate images, scanned copies of documents, inappro-
priate video content, sensitive audio records of meetings, etc. In this respect,
there is a need for:

• Optical Character Recognition (OCR) technologies to detect image and
video content and translate the content into a deterministic data. This data
can then be used to act upon these formats of data. Some examples where
companies can use such a technology to monitor such content is the pre-
vention of inappropriate images and videos like pornography in company
network, extracting text out of images to detect if the content abides by
company policies, etc.
• Classification of audio content to extract out information regarding the na-

ture of content. Confidential and internal presentations or meeting recording
being inappropriately distributed is one example of an application to this
problem.
• Extraction and proper definition of non-textual data can lead to creating

advanced classes of documents wherein a category of documents can have an
ensemble of both text and non-text data. Such an approach can be used to
create advanced analysis on the behavior of the information in the enterprise.
• Digital rights management algorithms can be incorporate to detect unau-

thorized software or media in email.

5.4 Search and Discovery

Searching for email data can be made more effective by using techniques such
as page ranking to improve finding similar documents. The challenge also lies
in determining the similarity criteria and how it can be controlled by a user to
make it more usable. Search techniques can be further improved to provide more
information that will help analyze the nature of the data. Some key challenges
in this area are as follows:

• Searches can be made event driven. Techniques need to be devised to catego-
rize huge amounts of searches so as to make them fall into several events or
classes. This approach will make the searching experience more productive
and effective.
• Techniques for finding similar documents, both text and non-text, which will

require coming up with similarity criteria. The similarity criteria should then
be made configurable and easily interpretable by a user.
• Internationalization also must play a role in designing systems for search

and discovery. Consideration of several languages and creating event based
search results that comprise of documents that transcend language can then
be made possible.
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5.5 Single Instancing

As described in Section 4.4, single instancing is the sole factor that makes storage
management an important and effective feature of email archiving solutions.
Traditionally, single instancing has made use hashing techniques to compare
content and detect similarity in emails. This determination decides if an email
is a duplicate of another and if it should be stored again or not. There is a need
for:

• Better hashing technologies to improve determination of uniqueness in doc-
uments that include both textual as well as non-textual data. For example,
a renamed attachment file must still be treated as the original file and stored
in addition to a simple pointer to the new file name so as to preserve the
email’s integrity and at the same time, saving space.
• Better and new techniques that will rely on better matching technologies.

The techniques must be smart and must be able to take several factors like
mail direction, effects of mail supervision and retention, etc. to determine
whether to store an email or not.
• Techniques that are robust, simple to understand, easy to configure and most

importantly adaptive to changes.

6 Conclusion

We have made an effort in this paper to bring to light the technology involved
in email archiving and the challenges that are faced in making an email archiv-
ing solution. Most of the problems that have been listed boil down to problems
in the area of classification, detection and pattern matching. There are several
methodologies that have been developed over the years in these areas, however
efforts on fitting them in the context of an email archiving solution is an exercise
that has gathered momentum only in the recent past. The authors believe that
technologies such as Bayes’ classification, ID3, Rough sets, concepts of nearest
neighborhood, Fuzzy logic, neural networks can be effectively employed to solve
the various problems in email archiving. Techniques to incorporate results hu-
man visualization and analysis can be developed to make the technology more
intelligent and attain its goals.
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Abstract. The goal of approximation in granular computing (GrC),
in this paper, is to learn/approximate/express an unknown concept (a
subset of the universe) in terms of a collection of available knowledge
granules. So the natural operations are “and” and “or”. Approximation
theory for five GrC models is introduced. Note that GrC approxima-
tion theory is different from that of rough set theory (RST), since RST
uses “or” only. The notion of universal approximation theory (UAT) is
introduced in GrC. This is important since the learning capability of
fuzzy control and neural networks is based on UAT. Z. Pawlak had in-
troduced point based and set based approximations. We use an example
to illustrate the weakness of set based approximations in GrC.

1 Introduction

Granular Computing (GrC) can be interpreted from three semantic views,
namely, uncertainty theory, knowledge engineering (KE) and how-to-solve/com-
pute-it. In this paper, we concentrate on the KE views: the primary goal of this
paper is to develop and investigate the approximation theory that can approx-
imate/learn/express an unknown concept (represented by an arbitrary subset of
the universe) in terms of a set of basic units of available knowledge (represented
by granules.)

2 Category Theory Based GrC Models

It is important to note that the following definition is basically the same as
the category model of relational databases that we proposed in 1990 [4]. This
observation seems to say that the abstract structures of knowledge and data are
the same. Let CAT be a given category.

Definition 1. Category Theory Based GrC Model:

1. C = {Ch
j , h, j,= 1, 2, . . .} is a family of objects in the Category CAT, it is

called the universe (of discourse).
2. There is a family of Cartesian products, Cj

1×C
j
2× . . . of objects, j = 1, 2, . . .

of various lengths.

C.-C. Chan et al. (Eds.): RSCTC 2008, LNAI 5306, pp. 520–529, 2008.
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3. Each n-ary relation object Rj, which is a sub-object of Cj
1 × Cj

2 × . . . Cj
n,

represents some constraint.
4. β = {R1, R2, . . .} is a family of n-ary relations (n could vary); so β is a

family of constraints.

The pair (C, β), called Category Theory Based GrC Model, is a formal definition
of Eighth GrC Model.

To specify the general category to the categories of functions, Turing machines
and crisp/fuzzy sets, we have Sixth, Seventh and Fifth GrC models, respec-
tively. In Fifth GrC model, by limiting n-ary relations to n = 2, we have Fourth
GrC Models, which are information tables based on binary relations [8], [9].
By restricting the number of relations to one, we have Third GrC Model
(Binary GrC Model).

Again from Fifth GrC Model, we have Second GrC Model (Global GrC Model)
by requiring all n-ary relations to be symmetric.

Note that a binary relation B defines a binary (right) neighborhood system
as follows:

p −→ B(p) = {y mid (p.y) ∈ B},

By considering the collection of B(p) for all binary relations in the Fourth GrC
Model, we have First GrC Model (Local GrC Model).

3 Approximations: RST vs GrC

In this paper, we are taking the following view: A granule represents a (basic
unit) of available knowledge. Based on this view, what should be the admissi-
ble operations? We believe “and” and “or” so we take intersection and union
as basic operations. For technical considerations (for the infinitesimal granules,
equivalently, topological spaces), we take finite intersections and unions of any
subfamily as acceptable knowledge operations. We do believe a negation of a
piece of available knowledge is not necessary a piece of available knowledge; so
negation is not an acceptable operation.

Note that the approximation in this sense is different from that of generalized
RST, which is based on the sole operation ”or”. (Is this a miss-interpretation of
Pawlak’s idea by the RST community? In classical RST, the intersections are
not needed, since they are always empty.) Anyway, in practice generalized RST
does not regard the ”and” of two known concepts as a known concept. So strictly
speaking, generalized rough set approximations are not concept approximations.

GrC has eight models; each has its own approximation theory. We will provide
a set of generic definitions here, then discuss the details for individual models.

Definition 2. Three (point based) approximations (we will suppress “point
based” in future discussions).

Let β = C1 be a granular structure (the collection of granules). Let G1 be the
collection of all possible finite operations of C1; note that operations are either
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finite intersections or point-wise finite intersections. Let G be a variable that
varies through the collection G1, then we define

1. Upper approximation:

C[X ] = β[X ] = {p : ∀ G, such that, p ∈ G & G ∩X 
= ∅}.
2. Lower approximation:

I[X ] = β[X ] = {p : ∃ a G, such that, p ∈ G &G ⊆ X}.
3. Closed set based upper approximation:

[17] used closed closure operator. It applies closure operator repeatedly (for
transfinite times) until the resultants stop growing. The space is called Frechet
(V)-space or (V)-space.
Cl[X ] = X∪C[X ]∪C[C[X ]]∪C[C[C[X ]]] . . . (transfinite). For such a closure,
it is a closed set.

The concept of approximations just defined is derived from topological spaces.
For RST, they can also be defined as follows:

Definition 3. Set based approximations

1. Upper approximation:

C[X ] = β[X ] =
⋃
{G : ∀ G, such that, G ∩X 
= ∅}.

2. Lower approximation:

I[X ] = β[X ] =
⋃
{G : ∃ a G, such that, G ⊆ X}.

These definitions do not work as well for many GrC models.

4 Rough Set Theory (RST)

Let us consider the easiest case first. Let U be a classical set, called the universe.

Definition 4. Let β be a partition, namely, a family of subsets, called equiva-
lence classes, that are mutually disjoint and their union is the whole universe
U . Then the pair (U, β) is called RST GrC Model (0th GrC Model or Pawlak
Model)

The two definitions of approximations agree in RST, in this case G1 is the
partition plus ∅.

5 Topological GrC Model

Next, we consider the approximation theory of a special case in the First GrC
Model (Local GrC Model), namely the classical topological space (U, τ), where
τ is the topology.
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Definition 5. Topological GrC Model (0.5th GrC Model) is (U, τ). A topology τ
is a family of subsets, called open sets, that satisfies the following (global version)
axioms of topology: The union of any family of open sets is open and a finite
intersections of open sets is open [1].

A subset N(p) in a topological space U is a neighborhood of p if N(p) contains
an open set that contains p. Note that every point in this open set has regarded
N(p) as its neighborhood. Such a point will be called the center of N(p) in First
GrC Model. The union of all such open sets is O(p) is the maximal open set in
N(p). It is clear every point in O(p) regards N(p) as its neighborhood. So O(p)
is the collection of center set. In First GrC, it is denoted by C(p). The topology
can also be defined by neighborhood system.

Definition 6. Topological GrC Model (0.5th GrC Model) is (U, TNS). Topo-
logical neighborhood system (TNS) is an assignment that associates each point p
a family of subsets, TNS(p), that satisfies the (local version) axioms of topology;
see [1]. In this case topology is the family {TNS(p) ∀ p U}.

6 Second GrC Model

Definition 7. Let β = C1 = {F 1, F 2, . . .} be a family of subsets. Then the pair
(U, β) is called Global GrC Model (2.nd GrC Model or Partial Covering Model).

In this case G1 is the family of all possible finite intersections of C1.

Theorem 1. The approximation space of Full Covering Model (point based) is a
topological space. However, under rough set approximation, it is not a topological
space.

Let τ be the collection of all possible unions of G1 (when C1 is a full covering),
then τ is a topology.

Proposition 1. G1 is a semi-group under intersection.

The set based definitions may not be useful, for example, C[X ] may always be
U if β is a topology.

7 First GrC Model

Now, we will generalize this idea to First GrC Model. Let U and V be two
classical sets. Let NS be a mapping, called neighborhood system(NS)

NS : V −→ 2(P (U)),

where P (X) is the family of all crisp/fuzzy subsets of X . 2Y is the family of all
crisp subsets of Y , where Y = P (U). In other words, NS associates each point
p in V , a (classical) set NS(p) of crisp/fuzzy subsets of U . Such a crisp/fuzzy
subset is called a neighborhood (granule) at p, and the set NS(p) is called a
neighborhood system at p; note that NS(p) could be a collection of crisp sets or
fuzzy sets.
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Definition 8. First GrC Model: The 3-tuple (V, U, β) is called Local GrC
Model, where β is a neighborhood system (NS). If V = U , the 3-tuple is reduced
to a pair (U, β). In addition, if we require NS to satisfy the topological axioms,
then it becomes a TNS.

Let NS(p) be the neighborhood system at p. Let G(p) be the collection of all
finite intersections of all neighborhoods in NS(p). Let G be a variable that varies
through G(p).

Definition 9. With such a G, the previous equations given above do define the
appropriate notions of C[X ], I[X ], Cl[X ] for First GrC Models.

7.1 Algebraic Structure of GrS

Let N(p) represent an arbitrary neighborhood of NS(p). Let CN (p), called the
center set of N(p), consists of all those points that haveN(p) as its neighborhood.
(Note that CN (p) is the maximal open set O(p) in N(p)).

Now we will observe something deeper: The finite intersections of all neigh-
borhoods in NS(p) is G(p). A hard question is: Do the intersections of neigh-
borhoods at distinct points belong to G(p)?

Proposition 2. The theorem of intersections

1. N(p) ∩N(q) is in G(p) = G(q), iff CN (p) ∩ CN (q) 
= ∅.
2. N(p) ∩N(q) is not in any G(p) ∀ p, iff CN (p) ∩ CN (q) = ∅.

If we regard N(p) as a known basic knowledge, then we should define the knowl-
edge operations: Let ◦ be the ”and” of basic knowledge (a neighborhood). For
technical reasons, ∅ is regarded as a piece of the given basic knowledge.

Definition 10. New operations

1. N(p) ◦N(q) = N(p) ∩N(q), iff CN (p) ∩CN (q) 
= ∅.
2. N(p) ◦N(q) = ∅, iff CN (p) ∩ CN (q) = ∅.

The second property says that even though N(p)∩N(q) may not be equal to ∅,
it does not form a neighborhood, hence not a knowledge.

8 Third and Fourth GrC Model

Let U and V be two classical sets. Each p ∈ V is assigned a subset B(p);
intuitively, it is a ”basic knowledge” (a set of friends or a ”neighborhood” of
positions as in quantum mechanics).

p −→ B(p) = {Yi, i = 1, . . .} ⊆ U

Such a set B(p) is called a (right) binary neighborhood and the collection {B(p) |
∀p ∈ V } is called the binary neighborhood system (BNS).
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Definition 11. Third GrC Model: The 3-tuple (U, V, β), where β is a BNS, is
called a Binary GrC Model. If U = V , then the 3-tuple is reduced to a pair
(U, β).

Observe that BNS is equivalent to a binary relation(BR):

BR = {(p, Y ) | Y ∈ B(p) and p ∈ V }.

Conversely, a binary relation defines a (right) BNS as follows:

p −→ B(p) = {Y | (p, Y ) ∈ BR}.

So both modern examples give rise to BNS, which was called a binary granular
structure in [8]. We would like to note that based on this (right) BNS, the (left)
BNS can also be defined:

D(p) = {Y | p ∈ B(Y )} for all p ∈ V }.

Note that BNS is a special case of NS, namely, it is the case when the collection
NS(p) is a singleton B(p). So the Third GrC Model is a special case of First GrC
Model.

The algebraic notion, binary relations, in computer science, is often repre-
sented geometrically as graphs, networks, forest and etc. So Third GrC Model
has captured most of the mathematical structure in computer science.

Observe that BNS is a special cases of NS. So we have

Definition 12. Let B be a BNS, then

1. B(p) ◦B(q) = B(p) = B(q), iff CB(p) ∩ CB(q) 
= ∅.
2. B(p) ◦ B(q) = ∅, iff CB(p) ∩ CB(q) = ∅. Note that B(p) ∩ B(q) may not be

empty, but it is not a neighborhood of any point.

Observe that in Binary GrC Model, two basic pieces of knowledge are either the
same or the set theoretical intersection does not represent any basic knowledge.

Next, instead of a single binary relation, we consider the case: β is a set of
binary relations. It was called a [binary] knowledge base [8]. Such a collection
naturally defines a NS.

Definition 13. Fourth GrC Model: the pair (U, β), where β is a set of binary
relations, is called a Multi-Binary GrC Model. This model is most useful in
databases; hence it has been called Binary Granular Data Model(BGDM), in the
case of equivalence relations, it is called Granular Data Model(GDM).

Observe that Fourth GrC Model can be converted by a mapping say First −
Four, to First Model, and First GrC Model induces, say by Four − First, to
Fourth Model. So First and Fourth models are equivalent, however, the conver-
sions are not natural, because, the two maps are not the inverse of each other.
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9 Fifth GrC Model

Definition 14. Fifth GrC Model:

1. Let U = {Uh
j , h, j,= 1, 2, . . .} be a given family of classical sets, called the

universe. Note that distinct indices do not imply the sets are distinct.
2. Let U j

1 × U
j
2 × . . . be a family of Cartesian products of various length.

3. A constraint is expressed by an n-ary relation, which is a subset Rj ⊆ U j
1 ×

U j
2 × . . . U j

n.
4. The constraints are the collection β = {R1, R2, . . .} of n-ary relations for

various n.

The pair (U , β), called Relational GrC Model, is a formal definition of Fifth GrC
Model.

Note that this granular structure is the relational structure (without functions)
in the First Order Logic, if n only varies through finite cardinal number.

Higher Order Concept Approximations (HOCA).
In Fifth GrC model, we consider the relations (subsets of product space) as

basic knowledge, and any subset in a product space as a new concept. We will
illustrate the idea in the following case: U j is either a copy of V or U . Moreover,
in each product space, there is at most one copy of V , but no restrictions on the
number of copies of U . If a Cartesian product has no V component, it is called
U -product space. If there is one and only copy of V , it is called a product space
with unique V .

1. u and u1 is said to be directly related, if u and u1 are in the same tuple (of
a relation in β), where u1 could be an element of U or V .

2. u and u2 is said to be indirectly related, if there is a finite sequence ui, i =
1, 2, . . . , t such that (1) ui and ui+1 are directly related for every i, and (2)
u = u1 and u2 = ut.

3. An element u ∈ U is said to be v-related (v ∈ V ), if u and v are directly
or indirectly related.

4. v-neighborhood, Uv, consists of all the u ∈ U that is v-related.

Such a relational granular model (with unique V ) induces a map:

B : V −→ 2U ; v −→ Uv,

which is a binary neighborhood system(BNS), where Uv is a v-neighborhood in
U , and hence induces a binary granular model (U, V,B). Next, we will consider
the case U = V , then

Definition 15. The high order approximations of Fifth GrC model is the ap-
proximations based on the v-neighborhood system.

[Digression] In the case n=2, depending on the given relation is either V × U
or U × V , the neighborhood systems so obtained is left neighborhood system or
right neighborhood system.

The algebraic notion, n-ary relations, in computer science, is often represented
geometrically as hypergraphs, hyper-networks, simplicial complexes and etc.
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10 Models in Other Categories

Let us consider the category of differentiable, continuous or discrete real-valued
functions (think of them as generalized fuzzy sets) on some underlying spaces
(these spaces can be differentiable manifolds, topological spaces, or classical sets).
In general any collection of functions can be a granular structure, but we will be
more interested in those collection that have universal approximation property
(for example, a Schauder base in a Banach space). In such case, the approxima-
tions are done under appropriate topology on functions spaces.

For a category of Turing machines (algorithms), it is still unclear as how to
define the concept approximations.

11 Future Directions

1) Higher Order Concept Approximations,

we may consider v-direct-related neighborhood system.

2) Admissible operations in Granular Structure.

For simplicity, we will consider the Global GrC Model (2nd GrC Model). In
other words, β is a partial/full covering. In this paper, we have not introduced
the admissible operations into GrS; GrS is represented by C1, the admissible
operations are carried in G1. In this section, we will include the admissible oper-
ations into granular structure. Let A(GrS) be the algebraic structure generated
by GrS using the admissible operations. The three approximations can be stated
as follows: Let G be a variable that varies through A(GrS), then the same equa-
tions given in Section 3 will be used to define C[X], I[X] and Cl[X]. Based on
this terminology, we say

1. RST-Based View. A(GrS) is a complete semi-group under union.
2. Topology Based View. A(GrS) is a topology (closed under finite intersec-

tion and general unions). This view is what we have adopted in this paper.
Actually, what we hope is a bit more general. We would require only that
A(GrS) to be a topology on a subset(=

⋃
(A(GrS)), not necessarily the whole

universe.
3. Complete Boolean Ring Based View. A(GrS) is an algebraic structure that

is closed under intersections and unions (of any sub-family), but not the
complement.

4. σ-ring based view. This is similar to the previous item, except that we restrict
it to countable intersections and countable unions.

3) Set based Approximation Theory:

Pawlak offered a set based approximation theory; in RST, both theories are the
same. However, for other GrC model, they are different. In the case of Topological
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GrC Model C[X ] is always equal to U ; uninteresting. Now, we have noticed
that some information will be lost in the set based approximation theory. Let us
consider the non-reflexive and symmetric binary relational GrC Model (Second
GrC Model). To be specific, we consider a finite universe U = {a, b, c}. Let ∆1

be a binary neighborhood system defined by

∆1 : U −→ 2U : a −→ B1; b −→ B2; c −→ B3,

where {B1, B2, B3} are three distinct fixed subsets of U . Now, let us consider a
new BNS, denoted by ∆2,

∆2 : U −→ 2U : b −→ B1; a −→ B2; c −→ B3.

In fact, we could consider 6 (= 3!) cases. All these six BNS have the same
covering. So these six BNS have the same set based approximation, and hence
the same C[X ], I[X ], and Cl[X ]. In other words, the set base approximation
cannot reflect the SIX differences. Nieminen considered such approximation for
tolerance relations [13], we have used point based notion [6]. It is implicitly in [3]
as we have treated it as a generalization of topology.

4) Numerical Measure Based Approximation Theory:

We will illustrate the idea from “infinite RST:” Let us consider a family of
partitions on the real line.

1. The first partition P1 consists of unit closed- open interval [n, n+1),where
−∞ < n <∞. They form a partition of real line,

2. The second partition P2 consists of 1/2 unit half closed-open intervals, [n.n+
(1/2)), . . .

3. The m-th partition Pm consists of 1/(2m) unit half closed-open intervals,
[n.n+ (1/(2m)).

Let β be the family of the union of these families (m = 1, 2, . . . ). It is important
to observe that β is a covering but not a partition, though every Pm,m = 1, . . .
is a partition. Now we have the following universal approximation theorem: Let
µ be the Lebesgue measure of real line.

Definition 16. A subset X is a good concept, if for every given ε, we can find
a finite set of granules such that |µ(C[X ]− µ(I[X ])| ≤ ε.

Note that this is a variation of Pawlak’s accuracy measure.

Theorem 2. Every measurable set is a good concept.

This is a universal approximation theorem. The learning capability of fuzzy
control and neural network is based on such a theorem, see for exmaple [15].
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