
Chapter 5
Shallow-Water Rogue Waves

When the sea becomes shallow, the water flow induced by surface waves is almost
uniform with depth. Thus, properties of shallow water waves are radically different
from those in deep water: the wave dispersion is weak, and waves now “feel” the
seafloor. Nonlinearity leads to strong correlation between spectral components sup-
porting existence of various wave shapes such as solitons, cnoidal waves, and undu-
lar bores. The interaction of water waves with variable bathymetry and coastal lines
modifies the wave regime in shallow water and influences rogue wave formation.
This chapter is devoted to the description of theoretical models of shallow-water
freak waves.

5.1 Nonlinear Models of Shallow-Water Waves

The basic 3D hydrodynamic models are effective for studying wave processes in
relatively small basins due to limited computer resources. This is why various depth-
averaged models (2D) are popular to describe wind wave processes in the coastal
zone of seas and oceans, and sometimes for transoceanic propagation of large-scale
waves (such as a tsunami). A straightforward way to derive nonlinear dispersive
models of shallow-water waves is to use the Euler equation written for potential
flow

U = ∇φ , W = ∂φ/∂Z. (5.1)

All vector operations hereafter act in the horizontal plane, so that ∇ = (∂/∂X ,
∂/∂Y )t ,Δ = ∇ ·∇ and U = (U,V ) (see geometry in Fig 2.1). Then, the Laplace
equation (2.13) has the form

Δφ +
∂ 2φ
∂Z2 = 0, (5.2)

with the boundary condition (2.31) at the uneven bottom, Z = −D(X ,Y ),

∂φ/∂Z +∇φ ·∇D = 0, (5.3)

and kinematic and dynamic conditions on the free surface, Z = η(X ,Y,T ) (see
Chap. 2),
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∂φ
∂Z

=
dη
dT

=
∂η
∂T

+∇φ ·∇η on Z = η , (5.4)

∂φ
∂T

+
1
2

(
∂φ
∂Z

)2

+gη = 0 on Z = η . (5.5)

Since potential flow is governed by a harmonic function, it can be differentiated
with respect to all its arguments and expanded as a Taylor series with respect to the
vertical coordinate centered at Z = −D,

φ(X ,Y,Z,T ) =
∞

∑
n=0

qn(X ,Y,T )(Z +D)n. (5.6)

Substitution of Eq. (5.6) into the Laplace equation (5.2) yields the recurrence
correlations for the unknown functions qn,

(n+2)(n+1)qn+2 +Δqn +2(n+1)∇qn+1∇D

+(n+1)qn+1ΔD+(n+2)(n+1)qn+2(∇D)2 = 0, (5.7)

so that only two of them (namely, q0 and q1) are independent. Specifically, q2 is
given by

q2 = −Δq0 +2∇q1∇D+q1ΔD
2[1+(∇D)2]

. (5.8)

By substituting series (5.6) into the boundary condition on the bottom (5.3) and
using Eq. (5.7), we may deduce the following relation between q1 and q0

q1 = − ∇q0∇D
[1+(∇D)2]

. (5.9)

Thus, the series (5.6) is completely determined by only one function, q0(X ,Y,T ).
Boundary conditions on the free surface (5.4) and (5.5) provide equations for η and
∇q0. The physical meaning of ∇q0 is the bottom velocity (for a flat floor). When the
depth-averaged velocity

u(X ,Y,T ) =
1

D+η

η∫

−D

∇φ(X ,Y,Z,T )dZ (5.10)

is chosen as the “physical” horizontal velocity, then the value of ∇q0 can be calcu-
lated from (5.6) approximately as

∇q0 = u+
D+η

2
uΔD+(D+η)(∇D∇)u+(∇D)2u+

(D+η)2

6
Δu+ . . . , (5.11)

where the iteration procedure employs a small parameter D/λ , where λ is the
wavelength characterizing the “shallowness” of long-water waves. After substitu-
tion of series (5.11), Eqs. (5.4) and (5.5) result in equations for the fully nonlinear
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weakly dispersive theory (see details in Green and Naghdi 1976, and Zheleznyak
and Pelinovsky 1985)

∂η
∂T

+∇ · [(D+η)u] = 0, (5.12)

∂u
∂T

+(u∇)u+g∇η = F, (5.13)

where F characterizes weak dispersion

F =
1

D+η
∇
[
(D+η)3

3
R+

(D+η)2

2
Q

]
−∇D

[
D+η

2
R+Q

]
, (5.14)

R =
∂
∂T

∇ ·u+(u∇)∇ ·u− (∇ ·u)2, Q =
∂u
∂T

∇D+(u∇)(u∇D). (5.15)

In fact, we may choose the particle velocity at any depth as a physical vari-
able, and recalculate ∇q0 from (5.6); this leads to other forms of nonlinear disper-
sive equations for long waves (Wei et al. 1995, Madsen and Schaffer 1998, Agnon
et al. 1999, Chen et al. 2000, Kim et al. 2003, Madsen et al. 2002, 2003). For most
of them, the obtained linear dispersion relation has a Padé-polynomial form like
(Madsen et al. 2003)

Ω2

gDK2 =
1+K2D2/6+K4D4/120
1+K2D2/2+K4D4/24

, (5.16)

which is a very good approximation of the exact dispersion relation (2.52) in a
relatively wide range of water depths KD (until depth of order KD ≈ 10). Therefore,
models of this type might be called fully nonlinear and dispersive systems of long
waves (Boussinesq-like systems).

For the case of weakly nonlinear and weakly dispersive waves, all the Boussi-
nesq-like models reduce to the Peregrine system (Peregrine 1967, 1972)

∂η
∂T

+∇ · [(D+η)u] = 0,

∂u
∂T

+(u∇)u+g∇η =
D
2

∂
∂T

[
∇(∇ · (uD))− D

3
∇(∇ ·u)

]
. (5.17)

If the wave propagates mostly in one direction, and the bottom slope is small
enough to neglect the wave reflection, the Peregrine system can be reduced to the
famous Korteweg-de Vries and Kadomtsev-Petviashvili equations. At first, system
(5.17) can be re-written in the form of a nonlinear wave equation for the water
surface elevation, η ,

∂ 2η
∂T 2 −∇ ·

[
C2∇η

]
= Π{η ,u} := −∇ ·

[
∂ (ηu)
∂T

+DF−D(u∇)u
]
, (5.18)
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where C is the long-wave speed, C2 = gD. The function ∏ specifies nonlinear and
dispersive terms that are weak. Let us introduce a new temporal variable

s = τ(X ,Y )−T, (5.19)

where the function τ will be determined later. With these new variables, Eq. (5.18)
reads

[
1−C2(∇τ)2] ∂ 2η

∂ s2 − ∂
∂ s

[
2C2∇τ∇η +η∇ ·

(
C2∇τ

)]
−∇ · (C2∇η) = Π. (5.20)

When curvatures of the wave front and bottom slope are small (this assumption
is normal for the ray theory), the elevation is a fast function of s and a slow function
of spatial coordinates. Due to this, the last term on the LHS of Eq. (5.20) may be
neglected. Owing to the weakness of nonlinearity and dispersion on the RHS of
(5.20), a linear relation of long waves

u = g∇τη (5.21)

can be applied as follows from Eq. (5.17). As a result, Eq. (5.20) splits into a system
of two equations for τ and η (see Engelbrecht et al. 1988 and Dingemans 1996)

(∇τ)2 = C−2(X ,Y ) = (gD)−1, (5.22)

∂
∂ s

[
2C2∇τ∇η +ηC2Δτ +η∇τ∇C2]+Π{η} = 0, (5.23)

The first Eq. (5.22) is the famous eikonal equation of the ray theory for long waves,
allowing the determination of ray paths and wave fronts. This equation may be
rewritten in the Hamiltonian form (3.6) (see Chap. 3 and discussion in Sect. 3.1).
In the context of rogue waves, it determines the random location of caustics, where
the wave field exhibits high amplitudes. The second Eq. (5.23), once integrated,
results in

2C2∇τ∇η +η(C2Δτ +∇τ∇C2)+
3η
D

∂η
∂ s

+
D
3g

∂ 3η
∂ s3 = 0. (5.24)

Noting that ∇τ∇η = C−1 ∂η/∂ l and calculating Δτ = b−1d(b/C)/dl, where l
is a coordinate along the ray and b is a distance between neighboring rays, then
Eq. (5.24) gives the following equation (see Pelinovsky 1982, Dingemans 1996)

C
∂η
∂ l

+
3η
2D

∂η
∂ s

+
D
6g

∂ 3η
∂ s3 +

Cη
4Db2

d(Db2)
dl

= 0. (5.25)

This equation stands for the energy flux conservation (3.7) used previously for
monochromatic waves in the linear approximation. Equation (5.25) governs the evo-
lution of weakly nonlinear and weakly dispersive waves in a basin with variable
depth. The first time, it was derived by Ostrovsky and Pelinovsky (1975). In basins
of constant depth (5.25), it reduces to the Korteweg-de Vries equation
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C
∂η
∂X

+
3η
2D

∂η
∂ s

+
D
6g

∂ 3η
∂ s3 = 0, s =

X
C
−T, (5.26)

∂η
∂T

+
3Cη
2D

∂η
∂X ′ +

CD2

6
∂ 3η

∂ (X ′)3 = 0, X ′ = X −CT, (5.27)

and describes the evolution of an initial spatial disturbance. The Korteweg-de Vries
equation is an etalon equation in the theory of nonlinear waves; it can be solved
exactly with the help of the Inverse Scattering Technique (IST) (Novikov et al. 1984,
Drazin and Johnson 1989).

When the wave field is directional with significant variation in the transversal
direction, then the last term on the LHS of Eq. (5.20) can not be neglected and
should be replaced by ∂ (C2∂η/∂Y )/∂Y , where Y is the transverse coordinate. This
term does not allow integration of Eq. (5.23), and the modified evolution equation
is now of fourth order, instead of the third order as is Eq. (5.25). In particular, for
basins of constant depth, it becomes

∂
∂X ′

[
∂η
∂T

+
3Cη
2D

∂η
∂X ′ +

CD2

6
∂ 3η

∂ (X ′)3

]
+

C
2
∂ 2η
∂Y 2 = 0, X ′ = X −CT. (5.28)

This equation is the famous Kadomtsev–Petviashvili equation that is also com-
pletely integrable (Novikov et al. 1984, Drazin and Johnson 1989).

These evolution equations for shallow water waves will be used in the next sec-
tions to study the freak-wave phenomenon.

5.2 Nonlinear-Dispersive Focusing of Unidirectional
Shallow-Water Wave Fields

Unidirectional shallow water waves are known to be stable with respect to long
perturbations. An initial wave field represented by weakly modulated wave trains
evolves in time with some change of the shape of the trains, but the waves remain
uniform, and their amplitudes do not vary significantly (Kit et al. 2000). Therefore,
the modulational instability mechanism that is important for deep water cannot pro-
vide wave energy exchange and focusing within a wave group in shallow water.
Dispersion, however, still may spawn rogue waves, although the shallow water dis-
persion law is different from that of deep water. The Korteweg-de Vries (KdV) equa-
tion (5.27), derived in the previous section, is a basic weakly dispersive and weakly
nonlinear model. This equation was the first that exhibited exact soliton solutions
(Zabusky and Kruskal 1965), and the associated Cauchy problem was integrated by
using IST (Gardner et al. 1967). The soliton solution is a steady-state solution of
Eq. (5.27)

η(X ,T ) = Hsech2

[√
3H
4D

X −V T
D

]

, V = C

[
1+

H
2D

]
, (5.29)
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corresponding to a moving solitary crest on the free surface that was first observed
by Scott Russel in a narrow channel in 1844. The soliton length is formally infinite,
but physically it is naturally determined at the level of elevation 0.5:

λs = 2D

√
4D
3H

ln(1+
√

2) ∼= 2D

√
D
H

. (5.30)

For instance, a soliton of 1 m height has a length of about 60 km in water of
1 km depth. Solitons are generated from a wide class of initial disturbances that
vanish at infinity. Its upper number may be estimated by the formula (Drazin and
Johnson 1989)

Ns ≤ 1+
3

4D3

∞∫

−∞

|X |(1+ sgn(η))η (X)dX . (5.31)

The qualitative character of nonstationary processes of nonlinear wave dynamics
within the framework of the Korteweg-de Vries equation can be clarified from the
nondimensional form of Eq. (5.27)

∂ζ
∂ t

+ζ
∂ζ
∂x

+
1

9Ur
∂ 3ζ
∂x3 = 0, (5.32)

where the dimensionless variables ζ = η/A0, x = X/λ0, and t = (3CA0T )/(2λ0D)
are normalized by the amplitude A0 and length λ0 of the initial disturbance, respec-
tively. Here, Ur is the Ursell parameter

Ur =
A0λ 2

0

D3 . (5.33)

The physical meaning of the Ursell parameter is evident: it characterizes the ratio
of nonlinearity to dispersion. When the Ursell parameter is small, the nonlinearity
can be neglected and the wave is a linear dispersive wave. Alternatively, if the Ursell
parameter is large, dispersion can be neglected, and the wave evolves as a nonlinear
nondispersive wave forming a steep front. For a soliton solution, Ur = 4, and this
value is marginal, separating nonlinear nondispersive and linear dispersive regimes.
This approach and exact solutions will be used in this section to investigate the effect
of nonlinear-dispersive focusing.

To study rogue wave generation, it is convenient to invert the time variable in
the evolution equation, as similarly done in Chaps. 3 and 4. To do this, the spatial
coordinate, X , in the KdV equation should be replaced by −X . Hence, an initial
value problem for an expected rogue wave may be considered to draw some infer-
ences about wave fields that could form a freak wave (when time is reversed back to
its normal run). Vanishing at infinity (X →±∞), boundary conditions result in the
simplest analytical analysis of the Cauchy problem.

In particular, solutions for an initial wave in the form of a delta-function (singular
initial data) can be obtained analytically (Drazin and Johnson 1989). According
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to the exact solution, a positive1 delta-function evolves into a solitary wave (one
soliton) and oscillating dispersive tail. The generated soliton is

η =
3Q2

4D3 sech2
[

3Q
4D3

(
X −C

(
1+

3Q2

8D4

)
T

)]
, (5.34)

where Q is the delta-function intensity. The soliton moves with a larger speed and
therefore is in front of the wave train; other waves are distributed in space according
to the dispersion of the wave velocity. The soliton conserves its shape and energy,
while the dispersive tail is spreading in space and thus vanishes. Therefore, the
solitary part of the solution is the asymptotic solution of a Cauchy problem for
the KdV equation. When the delta function is negative, only a dispersive tail may
occur.

Bearing in mind that time may be reversed, this solution actually shows that
a delta-function wave may be formed from weak-amplitude waves with or with-
out a soliton. The KdV model does not limit the amplitude of possible abnormal
waves; the wave-focusing mechanism due to dispersion is applicable in the non-
linear case as well, but the wave field structure is more complicated and includes
amplitude-frequency modulated wave packets and solitons. This process was inves-
tigated in detail by Pelinovsky et al. (2000) and Kharif et al. (2000), and is shown
in Fig. 5.1 (in the system of coordinates moving with speed C). The value of max-
imum wave amplitude in the domain increases rapidly and then decreases rapidly
again (Fig. 5.2); this explains the short-lived character of rogue waves. Neverthe-
less, it should be emphasized that the Korteweg-de Vries model is a weakly non-
linear model, and use of singular initial conditions (like delta functions) may be
nonphysical. Smoothed bell-like initial conditions with characteristic amplitude, A0,
and length, λ0, may be considered as well. Negative initial disturbances result in a
dispersive tail only; therefore, this process is qualitatively similar to the linear limit
(see Sect. 3.2). In this case, the rogue wave is a deep hole on the sea surface (see
Fig. 5.3). Positive initial pulse (a crest) may transform into solitons; their number
and amplitudes depend on the Ursell parameter (5.33).

When the Ursell parameter is large, the amplitudes of generated solitons are com-
parable with the amplitude of the initial disturbance (in the limiting case Ur >> 1,
the amplitude of the leading soliton is two times larger than the initial pulse). There-
fore, an initial pulse (that is supposed to be an expected rogue wave) cannot be con-
sidered a model of a freak wave, since condition (I.1) for the wave field amplitude
amplification is not satisfied.

In the case of a small Ursell parameter, only one soliton is formed with a small
amplitude (proportional to Ur). The initial pulse may now be much larger than the
wave field at large time, since the soliton amplitude is small, and the dispersive train
vanishes. When time is inversed, the evolution may represent a likely process of a
rogue wave generation (see Fig. 5.1), while the pulse-like wave may be considered
as a freak wave.

1 This sign depends on the sign of the nonlinear coefficient in the Korteweg-de Vries equation,
which is positive for surface water waves.
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Fig. 5.1 Freak wave formation in shallow water. Numbers denote moments of time (scaled)
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Fig. 5.2 Maximum wave amplitude versus time in the process of the freak wave formation given
in Fig. 5.1

It is noteworthy to say that solitons do not play a crucial role in this freak wave
generation scenario. The huge wave is mainly due to the frequency-modulated dis-
persive wave train.

The nonlinear-dispersive mechanism of freak wave formation is relatively robust;
weak variation of the wave field parameters modifies the shape and amplitude of the
freak wave, but is unable to prevent its occurrence. Specific numerical simulations
have been performed in Pelinovsky et al. (2000) and Talipova et al. (2008) to
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Fig. 5.3 Generation of a deep hole in shallow water

highlight this property. A wave packet generated from a positive narrow pulse (as
shown in Fig. 5.1) is inverted in space, X →−X , and then several individual waves
are canceled. This wave field is used to start the numerical simulation of the KdV
equation. The simulation would result in the initially imposed positive impulse if the
wave field has not been cut. If the soliton is deleted from the dispersed wave field
(Fig. 5.4a), its focusing results in a freak wave with a large crest and following deep
trough (a sign-variable wave; see Fig. 5.4b). If the first negative wave in the train
shown in Fig. 5.4a is cut in addition to the soliton wave (Fig. 5.4c), the generated
huge wave represents an almost positive pulse (a crest) with no deep neighboring
troughs (Fig. 5.4d). The heights of computed abnormal waves in both cases satisfy
the amplitude amplification criterion for rogue waves (I.1). Many natural observa-
tions support the existence of sign-variable rogue waves (see Chap. 1).

Similar analyses have been performed with a “solitonless” wave train, resulting
from a negative pulse disturbance (see Fig. 5.3). If the leading negative oscillation
is deleted (see Figs. 5.3a. and 5.5a), the huge wave is represented by several intense
waves (Fig. 5.5b) that could be related to the observation of the “three sisters” also
presented in Chap. 1.

Besides smooth solutions, singular exact solutions of the Korteweg-de Vries
equation may be found (Matveev 2002). Similar to the soliton solutions, they pre-
serve their identity, manifesting elastic collision with other waves. The positon so-
lution is given as an example, although other solutions exist (negaton, singularities,
a rational solution; see Matveev 2002)

η
D

= −128p2 sinΘ(sinΘ− pΨcosΘ)
(sin2Θ−2pΨ)2 , (5.35)

where

Θ =
√

6p
D

(
X − (1−4p2)CT

)
, Ψ =

√
6

D

(
X − (1−12p2)CT

)
.



182 5 Shallow-Water Rogue Waves

Fig. 5.4 “Non-optimal” focusing of the wave train in shallow water: initial conditions (a, c) and
resulting waves (b, d)

Fig. 5.5 Non-optimal generation of an abnormal wave from the wave train with negative “mass”
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The parameter of this solution is p. A positon solution as a function of X has a
second-order pole and, therefore, has an infinite energy; the tails of the oscillatory
solution. Such solutions cannot be realized physically. They show, moreover, a ten-
dency of smooth solutions of the KdV equation, close to waves with very high peaks.

The solution of the associated scattering problem with periodic boundary con-
ditions is, in fact, much trickier to implement, since it operates with special theta
functions. The detailed analysis of periodic solutions of the KdV equation is given
in a series of papers by Osborne and coauthors (see, for instance, Osborne 1995,
Osborne et al. 1998). The solution of the KdV equation is represented by a linear
superposition of nonlinear oscillatory modes (multiple quasi-cnoidal waves) in the
associated spectral problem. The freak wave in this approach is the superposition of
these modes with suitable phases.

A statistical analysis of shallow-water rogue-wave characteristics has been con-
ducted by Pelinovsky and Sergeeva (2006) with the help of direct numerical simu-
lation of the KdV equation, with periodic boundary and random initial conditions;
these results will be discussed in the next section. We would like to emphasize that
a superposition of random and weak frequency modulated deterministic compo-
nents still can efficiently spawn rogue waves, as it is shown in Fig. 5.6 (taken from
Pelinovsky et al. 2000). So, freak waves in shallow water may be generated from a
wide class of wave fields with the help of the nonlinear dispersive focusing.
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Fig. 5.6 Freak wave formation from the combination of a random field and frequency modulated
wave train. Numbers denote moments of time (scaled)
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5.3 Numerical Modeling of Irregular Wave Fields
in Shallow Water (KdV Framework)

In the previous section, it has been shown, with the help of exact and numerical solu-
tions of the KdV equation, how nonlinear-dispersive wave focusing may efficiently
generate rogue waves. The KdV equation is integrable with the help of the IST, and
this property supports the existence of solitons. When the wave field vanishes as
coordinates tend to infinity, solitons are known to represent long-time asymptotic
wave behavior, since quasilinear waves decay but solitons remain unchanged.

As shown above in the framework of the KdV equation, the nonlinear disper-
sive focusing of the wave trains is the major mechanism of freak wave occurrence.
The random wave field is characterized by the modulation of the amplitude and fre-
quency of waves. Therefore, the focusing mechanism should “work” in a random
field. Meanwhile, the KdV equation is fully integrable, demonstrating an important
role of the solitons in nonlinear wave dynamics. For initial disturbances vanishing
at infinity, the solitons correspond to the final stage of the wave field evolution, and
these results are well known. When the initial disturbance corresponds to the sine
periodic wave, its evolution leads to soliton formation and its disappearance (recur-
rence phenomenon), as has been shown by Zabusky and Kruskal (1965).

Later, this process was investigated for different values of nonlinearity/dispersion
ratio (the Ursell parameter given by (5.33)) and large times (see Salupere et al. 2002,
2003a,b and references therein). Actually, an initial sine state is not fully recon-
structed at large time, and soliton ensembles play an important role in the long-time
behavior of a nonlinear wave field, especially for large values of the Ursell param-
eter. The dynamics of the soliton ensembles, even for this simple initial sine condi-
tion, are very complicated and perhaps may be interpreted as solitonic turbulence,
which can be considered as a combination of “rarefied solitonic gas” and the residue
of oscillating quasilinear waves (Salupere et al. 1996).

Zakharov (1971) used the inverse scattering method to show that paired collisions
occurring between solitons, and the interaction with a nonsoliton field, could not
change the amplitude of the soliton. As a result, the total soliton velocity distribution
function does not depend on time. In real situations of wind waves, the values of the
Ursell parameters are not too large and the dispersive trains contribute significantly
to the statistical wave characteristics.

Meanwhile, physically observed wave characteristics (spectra, amplitude, and
height distributions) will change. The nonlinear energy exchange between different
spectral components even for initial narrow-band wave fields is significant: a wave
packet may split into several groups with different carrier wave numbers, and the
wave profile becomes asymmetrical (Kit et al. 2000, Grimshaw et al. 2001, Groesen
and Westhuis 2002). A wave realization, represented by multicnoidal waves and
solitons, varies in space and time more significantly and its behavior is irregular
(quasi-chaotic). Moreover, when an initial spectrum has two peaks, such a state
is unstable (Zakharov 1971, Onorato et al. 2005), and therefore the wave dynam-
ics should be complicated. As a result, the statistical moments and the distribution
functions of the wave field change in time; its spatial spectrum also varies. Under
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the assumption of random initial conditions, the properties of such wave fields may
be studied with the help of the random functions theory. In fact, we know only one
mathematical paper (Murray 1978) where the soliton generation from irregular data
is studied, but random wave characteristics have not been considered.

The direct numerical simulation of the KdV equation with periodic boundary
conditions is applied in Pelinovsky and Sergeeva (2006) to study the statistical
characteristics of wave fields and probability distributions of freak waves. In these
simulations, the dimensionless form of the KdV equation (5.32) is used where nor-
malization with significant wave amplitude (for random wave field the significant
wave amplitude, As, is equal to 2σ, where σ2 is the variance (2.72)), and carrier
wave number K0 (for random wave field it is the spectral peak wave number) are
employed.

The numerical integration of the KdV equation (5.32) with periodic boundary
conditions: ζ (0, t) = ζ (L, t) is based on a pseudospectral method (Fornberg 1998).
A zero-mean random wave field is described by a Fourier series containing 256
harmonics

ζ (x,0) =
256

∑
j=1

√
2S(k j)Δk cos(k jx+ϕ j), (5.36)

where S(k) is the initial nonsymmetric spectrum, k j = jΔk, Δk is the sampling
wavenumber, varying from 0.03 to 0.023, and the phase ϕ j is a random variable,
uniformly distributed in the interval [0, 2π]. The length of the initial realization is
L = 2π/Δk. The initial spectrum is assumed to have a Gaussian shape of amplitude
Q, and width δ :

S(k) = Qexp

(
− (k−1)2

2δ 2

)
. (5.37)

The parameter Q is chosen so that
∞∫

0
2S (k)dk =σ2

0 = 1/4(σ2
0 is the dimensionless

variance). The spectral width parameter δ and the Ursell parameter both determine
the dynamics of the nonlinear wave field. The sizes of the spectral domain (256 har-
monics) and the characteristic spectrum widths are chosen to provide the spectrum
decay when k is large. The initial spectra with a cut-off spectrum tail are presented
in Fig. 5.7.

In numerical experiments by Pelinovsky and Sergeeva (2006), the Ursell param-
eter varies from 0.07 to 0.95, and the spectrum width varies from 0.27 to 0.18.
Here, only the case δ = 0.27 will be presented in detail. The statistical characteris-
tics are computed for each time step and are averaged over 500 ensembles, which
corresponds to a total wave record of about 15,000 individual waves to provide suf-
ficient statistics. The computation is performed for relatively large time evolution,
compared with the characteristic time scale of nonlinear effects (till t = 100) and
includes about 1,000 wave periods depending on the initial conditions. This simu-
lation time is sufficient for the manifestation of nonlinear and dispersive effects and
to reach equilibrium conditions.

The evolution of a wave record is displayed in Fig. 5.8 for different instants
of time. It is obviously seen that the wave profile becomes asymmetric, so that the
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Fig. 5.7 Initial spectra for different widths δ

Fig. 5.8 Wave profiles at different instants of time (Ur = 0.73)

crests are sharp while the troughs are gentle. It is interesting to analyze the trajectory
patterns (Fig. 5.9) presented in the time-space plane. This figure evidently shows
solitons’ traces for different initial conditions. The number of visible solitons, even
for Ur = 0.95, is about 5; this means that solitons do not contribute significantly to
the total random field. Under conditions of strong nonlinearity, the propagation gives
rise to a maximum value of peak amplitude in most realizations (Fig. 5.10a). The
key role of nonlinear effects in the formation of large wave amplitudes in this model
becomes evident, as shown in Fig. 5.10b. This figure represents the distribution
functions of the largest amplitudes, found for the case of numerical simulations
and compared with the case of a linear propagation (when the nonlinear term in the
KdV equation is canceled). Nonlinearity makes high amplitude wave occurrence
more frequent.
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Fig. 5.9 Time-space plane of
wave propagation for various
Ur. Color gradations show the
wave intensity. (a) The linear
limit Ur = 0; (b) Ur = 0.95

Fig. 5.10 Maximum of wave amplitudes in different realizations (a) and distribution of maximum
crest amplitudes (b)
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The first two statistical moments—the mean level and the variance—are integrals
of the KdV equation, so that they remain unchanged during the process of wave
evolution. The next two statistical moments define the skewness γ and kurtosis

∼κ = κ−3, (5.38)

where γ and κ are defined by Eqs. (2.73) and (2.74) (see Chap. 2).
As known, the skewness is a statistical measure of the vertical asymmetry of the

wave field. If the value of the skewness increases (positive), the crests are sharper,
while the troughs are flatter. The kurtosis represents the degree of peakedness in
the distribution and defines the contribution of large amplitude waves in the whole
distribution. For a random Gaussian process, κ = 3, corresponding to

∼κ = 0. When
∼κ is positive, the contribution of large waves is more significant. The computed evo-
lution of statistical moments shows a stationary state existence and a transition to
this state. The transition period is about 10-20 characteristic time scale of nonlin-
earity. During this process, both moments of the wave field tend to almost constant
values (Fig. 5.11). Figure 5.12 displays the values of γ and

∼κ , corresponding to this
stationary mode.

For all conditions, the skewness is positive, and it means that the positive waves
(crests) have larger amplitudes than the negative waves (troughs). The asymptotic
value of skewness increases with an increase of the Ursell parameter; and therefore
elevation (positive) waves are more visible in the nonlinear wave field than the de-
pression (negative) waves. This conclusion corresponds to the known expressions
for the classical cnoidal waves (sharp crest and flat trough).

The kurtosis tends to a negative asymptotic value for Ur < 0.6; therefore, the
probability of large amplitude (freak) wave occurrence should be less than is pre-
dicted for Gaussian processes. For strong nonlinearity, the kurtosis asymptotic value
exceeds zero, which indicates a high probability of large wave occurrence. Onorato

Fig. 5.11 Temporal evolution of statistical moments for different Ursell parameters
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Fig. 5.12 Asymptotic value
of the spectral moments as
functions of the Ursell
parameter Ur

et al. (2001) and Tanaka (2001) showed by means of numerical experiments that
for nonlinear random waves over deep water, the kurtosis

∼κ oscillates around some
positive mean value. Janssen (2003) reports a positive fourth moment, calculated in
the weak turbulence theory for deep-water waves that grow while the wave ampli-
tude increases. Thus, the behavior of the fourth moment is qualitatively similar for
strongly nonlinear waves in deep and shallow waters.

As expected due to nonlinearity, the spectrum evolves, widens, and tends to a sta-
tionary state (Fig. 5.13). This state, depending on the Ursell parameter, corresponds
to the asymmetric wave shape; some energy is transferred to the low frequencies
(spectrum downshift phenomenon). For large Ursell values, the spectral density is
distributed almost uniformly at small k. The flatness of the spectrum is wider for
Ur = 0.95 when the wave field is more energetic and nonlinear effects are more
significant. The tendency to the flatness of the spectrum (Rayleigh-Jeans spectrum)
is known for the statistical equilibrium with no sources and sinks.

Fig. 5.13 Temporal evolution of spectra S(k) for various Ur: (a) Ur = 0.2, (b) Ur = 0.95
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It is important to mention that the spectrum downshifts into the low-frequency
range even for an initial spectrum taken in a symmetric Gaussian form. For com-
parison, the downshift of the initial symmetric spectrum for deep-water waves
is possible only in the extended version of the nonlinear Schrödinger equation,
like the Dysthe equation, which includes an asymmetry of the wave field (Dysthe
et al. 2003). The shallow water model based on the KdV equation is initially asym-
metric due to the quadratic nonlinearity, and the asymmetry of the wave group is im-
mediately obtained in the process of the wave evolution (Kit et al. 2000, Grimshaw
et al. 2001, Groesen and Westhuis 2002). As already noticed, the spectrum becomes
asymmetric with weak shifting in the short-wave range. For larger dimensionless
wavenumbers k(0.1 < k < 0.2), the spectrum may be approximated by the power
law asymptotics k−α , where the slope of the spectrum, α , decreases with an increase
of the Ur parameter (from α = 3.7 for Ur = 0.5 till α = 2 for Ur = 0.95).

The distribution of the wave crest amplitudes, calculated as a maximum between
two zero-crossings, is presented in Fig. 5.14. For Ur < 0.3, the probability of small
amplitudes (A < 1.2) exceeds the Rayleigh distribution, which is the theoretical ap-
proximation of a linear narrow-band Gaussian process (see Chap. 2); meanwhile, in
the range of high amplitudes (A > 1.5), the distribution lays below the theoretical
curve. For the more energetic wave field (Ur > 0.3), the asymptotic distribution ex-
ceeds the Rayleigh distribution, and the probability of the highest crest occurrence
increases. In a qualitative sense, the shape of the amplitude distribution function
does not contradict the behavior of the skewness and kurtosis (Fig. 5.12). The first
one shows that positive waves have larger amplitudes than negative waves, whereas
the second one indicates a significant contribution of the small waves in the whole
distribution. Finally, these results allow us to estimate the probability of the rogue-
wave occurrence (its amplitude exceeds twice the significant amplitude; see (I.1)).
Freak waves should appear more frequently when the wave field is strongly nonlin-
ear (high values of the Ursell parameter).

The same results are obtained when using experimental spectra of shallow-water
waves in the coastal zone of the North Sea and in Lake Georgia in Australia

Fig. 5.14 Asymptotic crest
amplitude distribution for
different Ur numbers. Solid
line corresponds to the
Rayleigh distribution
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(Kokorina and Pelinovsky 2005). The computed results confirm that the irregular
nonlinear wave field does not satisfy the Gaussian statistics, and its statistical char-
acteristics depend on the Ursell parameter, which represents the “ratio” of nonlinear
to dispersive effects.

In this way, it is demonstrated that the nonlinear shallow water-wave field be-
comes asymmetric with sharp crests and flat troughs, which leads to a positive third
statistical moment. The skewness grows monotonously with the increase of the Ur
number. The behavior of the 4th statistical moment (kurtosis

∼κ) is nonmonotonic.
It is negative when Ur < 0.8, which indicates a significant contribution of small
amplitude waves to the total distribution. When the initial disturbance is more non-
linear, then the kurtosis exceeds the zero level, at which it increases with a growth
of Ur. For small Ur numbers, close to zero, the probability distribution function
slightly deviates from the theoretical Rayleigh distribution. For Ur > 0.3, the com-
puted curve lies above the theoretical distribution, which means a higher probability
of large wave formation—namely freak-wave occurrence. An important result is the
existence of a steady state for statistical characteristics: statistical moments (skew-
ness and kurtosis), distribution functions, and spectral density. The computations
demonstrate that both the statistical moments and distribution functions evolve until
some bound level is reached. The analysis of a random wave-spectrum evolution
shows the same effect. The initially symmetric power spectrum with a Gaussian
shape broadens with time, and energy is transferred down the spectrum. For a pe-
riod of time approximately equal to 20 of a characteristic time scale of nonlinearity,
the spectrum relaxes to some stationary state with energy concentration in the low
frequency range, as has been already noticed. The parameters of the equation—in
particular the Ur parameter—influence the width of the steady spectrum. For strong
nonlinearity, the established stable spectrum is wider, and the energy is distributed
almost uniformly in the range of long waves.

5.4 Three-Dimensional Rogue Waves in Shallow Water

When two horizontal coordinates are considered, rogue waves can appear owing to
(i) the focusing of transient wave groups, and (ii) spatial (geometric) focusing of
water waves. Nonlinear models of spatially inhomogeneous wave fields are com-
plex even in basins of constant depth. They have been used to model freak-wave
occurrence in 3D transient trains. Qualitatively, nonlinear processes support linear
mechanisms of huge wave formation (see references in Sect. 3.2).

To clarify new, essentially nonlinear effects occurring in spatial inhomogeneous
wave fields, let us first consider the interaction of two oblique propagating solitary
waves. Basic equations for weakly nonlinear and weakly dispersive water waves
were discussed in Sect. 5.1. It is convenient here to rederive such equations for
the “equivalent” potential, q (it corresponds to the dimensional first term in the se-
ries (5.6), q1) and dimensionless water displacement, ζ (Miles 1977a,b, Pelinovsky
1996)
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ζ = −∂q
∂ t

− α
2

(∇q)2 +
β
2
∂ 3q
∂ t3 , (5.39)

∂ 2q
∂ t2 −Δq = −α

∂
∂ t

[
1
2

(
∂q
∂ t

)2

+(∇q)2

]

+
β
3
∂ 4q
∂ t4 , (5.40)

where coordinates are normalized with the wave length, λ , time, with the wave pe-
riod, displacement, and with the wave amplitude, A. As a result, two parameters—
α = A/D and β = (D/λ )2—characterize the weak nonlinearity and dispersion, re-
spectively. When two solitons propagate in different directions, it is convenient to
make a change of coordinates as follows:

ξ1 = ycosΨ1 + xsinΨ1 − t, ξ2 = ycosΨ2 + xsinΨ2 − t, τ = αt. (5.41)

In these new variables, Eqs. (5.39) and (5.40) become

ζ = (∂1 +∂2 −α∂τ)q−α
[
(∂1q)2 +(∂2q)2

2
+(1−2θ)∂1q∂2q

]
− β

2
(∂1 +∂2)2q,

(5.42)

α(∂1 +∂2)
{

2∂τq+
[

3
2
(∂1q)2 +

3
2
(∂2q)2 +(3−4θ)∂1q∂2q

]}

+
β (∂1 +∂2)3q

3
−4θ∂1∂2q = 0, (5.43)

where θ = sin2[(Ψ1 −Ψ2)/2] corresponds to the difference in the soliton propaga-
tion directions; ∂1 and ∂2 denote derivation with respect to coordinate ξ1 and ξ2,
respectively. In particular, the case Ψ1 = 90◦ and Ψ2 = −90◦ corresponds to the
counter propagation of solitary waves. The solution of Eq. (5.43), to the first order
of the nonlinear parameter (assuming α ∼ β ), can be sought as

q = F1(ξ1,τ)+F2(ξ2,τ)+αF12(ξ1,ξ2,τ). (5.44)

Here, ∂F1,2/∂ξ1,2 (it is proportional to the water displacement in the linear theory
of long waves) are the “non-interacting” solitons described by the unidirectional
KdV equation

2α
∂F1,2

∂τ
+

3α
2

(
∂F1,2

∂ξ1,2

)2

+
β
3
∂ 3F1,2

∂ξ 3
1,2

= 0. (5.45)

After substitution of Eq. (5.44) in Eq. (5.43), and taking into account Eq. (5.45),
the first nonlinear correction to the potential is expressed by

F12(ξ1,ξ2,τ) =
3−4θ

4θ

(
∂
∂ξ1

+
∂
∂ξ2

)
F1(ξ1,τ)F2(ξ2,τ). (5.46)

As a result, the series (5.44) can be written with the same accuracy as Miles
(1977a,b)

q = F1(ξ1 +ρ2,τ)+F2(ξ2 +ρ1,τ), (5.47)
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where

ρ1,2 = α
((

3
4θ

−1

)
F1,2(ξ1,2,τ)

)
. (5.48)

Similarly, the water displacement at the first order of nonlinearity is given by

ζ = N1(ξ1 +ρ2,τ)+N2(ξ2 +ρ1,τ)+αIN1N2, (5.49)

Ni =
(

∂
∂ξi

− β
3

∂ 3

∂ξ 3
i

)
Fi +

α
4

(
∂Fi

∂ξi

)2

, I =
3

2θ
−3+2θ . (5.50)

The result of the interaction of two solitons depends on the angle between the
soliton directions (expressed by the parameter θ ). The coefficient of the interaction
is I = 0.5 for solitons propagating toward each other (Ψ1 −Ψ2 = 180◦), then it
weakly decreases (down to 0.464) when Ψ1−Ψ2 decreases to 138◦, and then grows
to infinity when the waves copropagate.

The breakdown of the perturbation technique for waves propagating in almost
the same directions is evident from the mathematical point of view, because the
two new coordinates, ξ1 and ξ2, are not independent in this case. From a physical
point of view, almost parallel propagation of two solitons leads to strong interaction
between them, and each soliton changes the trajectory of the propagation of the
other soliton. In the vicinity of the almost parallel wave propagation, the solution
should be obtained directly from the nonlinear evolution equations: the Kadomtsev-
Petviashvili equation if the waves propagate almost parallel, or the KdV equation if
the waves propagate in one direction.

The Kadomtsev-Petviashvili equation was derived in Sect. 5.1 and is reproduced
here in dimensionless form

∂
∂x

(
∂ζ
∂ t

+6ζ
∂ζ
∂x

+
∂ 3ζ
∂x3

)
= −3

∂ 2ζ
∂y2 , (5.51)

where ζ = 3η/2D, x = X/D, y =Y/D and t =CT/6D. The Kadomtsev-Petviashvili
equation is also integrable (Drazin and Johnson 1989) and therefore exact solutions
can be used to study the soliton interaction. It is convenient to use the Hirota trans-
formation

ζ = 2
∂ 2

∂x2 lnΓ(x,y, t), (5.52)

to reduce Eq. (5.51) to bilinear form

Γ
(

∂ 2Γ
∂ t∂x

+
∂ 4Γ
∂x4 +3

∂ 2Γ
∂y2

)
− ∂Γ

∂ t
∂Γ
∂x

−3

(
∂Γ
∂y

)2

−4
∂Γ
∂x

∂ 3Γ
∂x3 +3

(
∂ 2Γ
∂x2

)2

= 0.

(5.53)
The plane soliton of the Kadomtsev-Petviashvili equation

ζ =
k2

2
sech2 (kξ/2) , ξ = k(x− py−Vt), V = k2 +3p2 (5.54)

in the framework of Eq. (5.53) is expressed in the simple form
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Γ = 1+ exp(ξ ). (5.55)

Here, p determines the slope of the soliton trajectory in space. Similarly, the
two-soliton solution of Eq. (5.53) can be written explicitly (Satsuma 1976):

Γ = 1+ exp(ξ1)+ exp(ξ2)+ r2 exp(ξ1 +ξ2), (5.56)

ξi = ki(x− piy−Vit), r2 =
(k1 + k2)2 +(p1 + p2)2

(k1 − k2)2 − (p1 + p2)2 .

Solitons are separated in space except the area of interaction around the moving
point:

x∗ =
V1 p2 −V2 p1

p2 − p1
t, y∗ =

V1 −V2

p2 − p1
t. (5.57)

The shapes of the large-amplitude waves occurring in the process of the two-
soliton interaction for various angles between soliton fronts are given in Fig. 5.15
from the paper by Peterson et al. (2003). The wave amplitude depends strongly on
the angle between the soliton fronts. Similar combinations of nonlinearly interacting
waves may be often observed in nature near the coast (see Fig. 5.16).

To show the main features of the oblique interaction of solitons and calculate pos-
sible parameters of the enhanced wave, let us consider two solitons with the same
amplitudes (k1 = k2) traveling symmetrically with respect to the Ox axis (p1 =−p2).
As often used in wave physics, such an interaction is equivalent to the wave reflec-
tion at the wall located at y = 0. Then the condition p1 = −p2 has the meaning of

Fig. 5.15 Large-amplitude waves occurring in the process of soliton interaction. Reproduced from
(Peterson et al. 2003) by permission of European Geosciences Union
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Fig. 5.16 Crescent nonlinear wave trains near the shore. A growing breaking wave is readily
observed (Courtesy of I.I. Didenkulova)

the well-known Snell law (the reflection angle is equal to the incident angle). Such
a situation with oblique soliton reflection is very often reproduced in laboratories
(Melville 1980, Funakoshi 1980, Mase et al. 2002). In this case, the solitons propa-
gate with the same speed (V1 = V2) and the pattern of wave interaction is stationary,
while the interacting area moves along the Ox axis with constant speed. Under these
conditions, the wave field is expressed as

ζ (x,y, t) = 2k2 1+ r cosh[k(x−Vt)]cosh(kpy)
{cosh[k(x−Vt)]+ r cosh(kpy)}2 , r =

√

1−
(

k
p

)2

. (5.58)

The water displacement on the wall (y = 0) can be found from Eq. (5.58); and in
dimensional variables it reads

Hw

H0
=

4

1+

√

1− 3H0

D tan2Θ

, (5.59)

where H0 is the height of the incident soliton, and Θ is the angle between the soliton
front and the Oy axis (see sketch in Fig. 5.17a).

Y

X

a b

Fig. 5.17 Soliton reflection from a wall: quasi-linear reflection (a) and Mach stem formation (b)
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At Θ ∼ π/2 (normal approach of the wave to the wall or, alternatively, counter
soliton propagation), the wave height is increased almost twice and the same result
can be obtained from the perturbation analysis (5.49). At small angles (tan2Θ ∼
3H0/D), when the soliton propagates almost along the wall, the wave amplification
near the wall can reach the value of four, and this is the result of joint action of
nonlinear and diffraction effects that are of the same order of magnitude. But when
the angle is very small (k > p), the solution (5.58) becomes complex and cannot
describe the physical wave field. This means that wave fields at small angles are
not stationary, and the interaction area should “take off” from the wall. In fact, this
can be achieved from (5.58). When the solitons propagate toward each other with
almost parallel wave crests, the incident and reflected solitons are well-separated
everywhere in space (Fig. 5.17a). When p → k, the induced soliton appears near the
wall and propagates along the wall (Fig. 5.17b). The amplitude of this wave (5.59)
and its speed (5.57) are different from those of a Korteweg-de Vries soliton, and
it can be called a “virtual” soliton (Onkuma and Wadati 1983). Only under special
conditions can this wave become a true soliton and propagate along the wall (the
so-called Mach stem). Let us assume that the parameters of the incident (i) and
reflected (r) solitons are related as

ki + kr = pi + pr. (5.60)

Thus, r = 0 and the two-soliton solution (5.56) is

Γ = 1+ exp(ξi)+ exp(ξr). (5.61)

The wave (the Mach stem) propagates along the wall (y = 0) if

ki pi = kr pr, (5.62)

which is the Snell law for wave reflection. Parameters of the reflected soliton may
be found explicitly from Eq. (5.60) to Eq. (5.62)

kr = pi, pr = ki > pi, (5.63)

and soliton speeds are not equal: Vr < Vi. It confirms that the process of wave re-
flection is not stationary and can be interpreted as a resonant interaction of three
solitons: incident, reflected, and the Mach stem. The wave height at the wall can be
found in Eq. (5.61), and in dimensional form it reads

Hw

H0
=
[

1+
tanΘ

(3H0/D)2

]2

. (5.64)

Formulas (5.59) and (5.64) describe the nonmonotonic character of the wave
amplification. Its maximum (four) is achieved when the angle between waves is
of the same order as the nonlinear parameter A/D. Formation of the Mach stem
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Fig. 5.18 Formation of the Mach stem in almost collinear soliton interaction. Reproduced from
Porubov et al. (2005) with permission from Elsevier

was studied numerically by Porubov et al. (2005); Fig. 5.18 illustrates this process
in the general case. The wave steepness in the process of two-soliton interactions
can be enhanced to a value eight times that of the initial steepness (Soomere and
Engelbrecht 2005).

It is important to note that two-soliton interaction leads to the formation of a
rogue wave with an infinite lifetime. Specific numerical simulations of the Cauchy
problem for the Kadomtsev-Petviashvili equation performed in Porubov et al. (2005)
show that the result of the interaction of initially separated solitons depends strongly
on the curvature of the initial fronts, and the maximum amplification in the interact-
ing area can be very large. In fact, a combination of two different effects takes place
in this case: nonlinear interaction of solitons and geometrical focusing. The same
effect may be observed at random wave incidence (Mase et al. 2002). Figure 5.19
shows the effect of the Mach stem formation in a laboratory tank.

So, comparison with unidirectional wave-field dynamics in shallow water shows
that soliton interactions play a significant role in localized rogue wave formation.
Toffoli et al. (2006) performed detailed calculations of the statistical properties
of shallow water waves in crossing seas within the framework of the Kadomtsev-
Petviashvili equation. Numerical simulations indicate that the interaction of two
noncollinear wave trains generates steep and high amplitude peaks, thus enhancing
the deviation of the surface elevation from the Gaussian statistics. These peaks yield
a modification of the upper tail of the probability density function for surface ele-
vation, which significantly deviates from the distribution of wave elevation in the
unimodal condition. The coexistence of two spectral peaks, therefore, enhances the
nonlinearity of the wave field, which results in an increase of the skewness and kur-
tosis. Whereas this enhancement is negligible for nearly collinear waves, the skew-
ness and kurtosis reach high values when the two spectral peaks have well-separated
directions.
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Fig. 5.19 Formation of Mach stem (see arrows) near the vertical wall at random wave incidence.
Reproduced from (Mase et al. 2002) with permission from Elsevier

5.5 Anomalous High Waves on a Beach

The rogue wave phenomenon is usually discussed in terms of waves in seas and
oceans far from the shores. Such unusual waves are observed also in the coastal
zone and on coastlines. Excellent photos of freak waves on rocky coasts are given
in Chap. 1 (Fig. 1.1h), when a freak wave reached height of 25 m approximately
4 sec after it became visible near the coast of Vancouver Island, Canada. Other freak
waves attacked the breakwater in Kalk Bay (South Africa) on April 21, 1996 and
August 26, 2005. In both events, the freak wave washed off the breakwater peo-
ple, some of whom were injured. The freak waves induced panic at Maracas Beach
(Trinidad Island, Lesser Antilles) on October 16, 2005, when a series of towering
waves, many more than 25 feet high (height of 8 m), flooded the beach, forcing
sea-bathers, venders, and lifeguards to run for their lives (see Fig. 1.1g).

The wave field in coastal zones contains strong coherent components and may
be represented as the nonlinear superposition of solitary (solitons), cnoidal, and
breaking waves (undular and smooth bores). Their interaction can generate narrow
“spots” of large-amplitude freak waves. The bottom topography plays a significant
role in spatial (geometric) interference of waves, resulting in the formation of ran-
dom focusing and caustic points, where the wave field is amplified. The effect of
water wave amplification in the coastal zone is well known. It means that probabil-
ity of large-amplitude waves should increase in the coastal zone. In this section, we
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will investigate the probability of freak waves on the background of high-amplitude
coastal waves (tails of the probability distribution function).

5.5.1 Waves at Vertical Walls

First, one of the typical nonlinear effects in the coastal zone will be considered
and analyzed when the wave propagates close to vertical walls (rocks, breakwaters,
other vertical structures) and may suffer reflection. A simplified geometry of the
coastal zone is shown in Fig. 5.20. The wave approaches the vertical wall located
at X = 0 from the left. For the sake of simplicity, the incident wave is represented
as a single crest, but later we will consider the incident wave as a continuous func-
tion, describing random crests and troughs. The basic equations for water waves in
shallow water are

∂η
∂T

+
∂
∂X

[(D+η)u] = 0,
∂u
∂T

+u
∂u
∂X

+g
∂η
∂X

= 0, (5.65)

where u(X ,T ) is the depth-averaged horizontal velocity of the water flow (see
Eq. (5.10)) and η(X ,T ) is the vertical displacement of the sea level.

The boundary condition on the vertical wall corresponds to the total reflection of
the wave energy and no penetration of fluid through the wall is considered:

u(X = 0,T ) = 0. (5.66)

Another condition that concerns the approach of the incident wave to the wall
from the left will be discussed. To solve Eq. (5.65), it is convenient to introduce the
Riemann invariants

I± = u±2
[√

g(D+η)−
√

gD
]
, (5.67)

and rewrite system (5.65) in the following form

∂ I±
∂T

+C±
∂ I±
∂X

= 0, (5.68)

η (X, T )

η w(T )

D

X0

Fig. 5.20 Definition sketch of the considered geometry
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where the characteristic speeds are

C± = ±
√

gD+
3
4

I± +
1
4

I∓. (5.69)

According to Eq. (5.68) each invariant remains constant along the characteristic
curves

dI±
dT

= 0 along
dX
dT

= C±. (5.70)

Note that the characteristic speeds depend on both invariants, and nonlinearity
bends the characteristics in the vicinity of the wall area where the incident and
reflected waves interact. When taking into account conservation of the Riemann in-
variants, the effect of wave interaction yields phase corrections of the travel times
of different parts of the wave profile. As a result, the water displacement at the ver-
tical wall ηw(T ) = η(X = 0,T ) depends on the incident wave in a very complicated
manner, and cannot be found in an explicit form. Nevertheless, the relation between
values of the wave in the incident field and in the near-wall water oscillations can be
derived explicitly. Outside the interaction near-wall area, the incident and reflected
waves propagate independently. The incident wave is characterized by

I− = 0, u = 2
[√

g(D+η)−
√

gD
]
, I+ = 4

[√
g(D+η)−

√
gD
]
. (5.71)

Due to the boundary condition (5.66), the incident invariant at the wall is

I+ = 2
[√

g(D+ηw)−
√

gD
]
. (5.72)

From the conservation of I+ along the characteristic curves it follows that

ηw(T )
D

= 4

[

1+
η(T − τ)

D
−
√

1+
η(T − τ)

D

]

. (5.73)

So, the water level on the wall can be expressed through the water displace-
ment of the incident wave. Unfortunately, this method cannot predict the time-lag,
τ , which is generally an unknown functional of the wave field in the interaction zone.
This is why expression (5.73) cannot be straightforwardly applied for calculations
of the water level oscillations near the vertical wall, even when all the characteristics
of the incident wave are known. However, a practical formula can be derived from
(5.73)—it is the relation between the extreme values of the wave field

R
D

= 4

[

1+
A
D
−
√

1+
A
D

]

, (5.74)

where A is the positive or negative amplitude (crest or trough height) of the incident
wave, and R is the amplitude of water level oscillations on the wall. This relation is
plotted in Fig. 5.21 (solid line).
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Fig. 5.21 Amplitude of water
oscillations at the wall (R)
versus the incident wave
amplitude (A) according to the
linear (dashed) and nonlinear
(solid) theories
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The linear limit gives the following relation between the wave characteristics,
R = 2A. This curve is plotted by dashed line in Fig. 5.21 for comparison. As can be
seen, the nonlinearity increases the crest height and decreases the trough height at
the wall. In fact, the weak increase of the wave height, when the positive wave (crest)
comes near the wall, was analyzed earlier by Mirchina and Pelinovsky (1984) and
Pelinovsky and Mazova (1992). A more interesting case occurs when the negative
wave (trough) comes near the wall. The nonlinear effects become stronger when
the total depth tends to zero. The algebraic solution (5.74) exists only if the trough
amplitude is less than 3D/4; in other words, if the total depth under the trough is
greater than D/4.

The process of the wave interaction with a vertical wall has been considered for
a pulse-like shape of a certain polarity, but this restriction is actually unnecessary.
The expression (5.74) can be obtained for an arbitrary function η(T ), finite or con-
tinuous in time, if its shape is sufficiently smooth. The conditions of application of
the derived relation between the amplitude of the water oscillations at the wall and
the incident wave amplitude are discussed in Pelinovsky et al. (2008). It is shown
that the analytical expression (5.74) is valid at least for smooth incident waves if the
crest amplitude is less than 3D and the trough amplitude is less than 5D/9. These
criteria are obtained from the shallow-water theory, which does not include wave
dispersion. Within the framework of the nonlinear-dispersive theory, the height of
steady-state waves (cnoidal or solitary waves) is limited as H = 2A < 0.78D. Ac-
cording to many laboratory data, where the role of dispersion is important, the wave
height is bounded by 0.55D (see Massel 1996b). Further, we will use the closed
criterion for the normalized significant wave height/depth, Hs/D < 0.5÷0.7.

The approach applied above is valid for any incident wave that is regular, as well
as irregular, due to the wave separation along characteristics. In the latter case, it
can be used to analyze distribution functions of the wave field and its spectrum.
Unfortunately, it cannot predict the time-lag between the incident wave and water
oscillations at the wall, and therefore the function ηw(τ) is not fully determined
within the framework of the nonlinear theory. The process is not Gaussian due to
nonlinearity, and all the moments cannot be calculated, including the significant
height of water oscillations at the wall. On the other hand, the relationship between



202 5 Shallow-Water Rogue Waves

random wave amplitudes of the incident wave and water oscillations at the wall
(see Eq. (5.74)) is explicit and does not include the time-lag. Hence, as soon as
the distribution function of the wave amplitude of the incident wave field is known,
expression (5.74) can be used to obtain the distribution function of the amplitude
of the water oscillations at the wall. The noninertial (“instant”) transformation of
random processes is described in various books (see Massel 1996a). The exceedance
probability function of the water oscillation amplitude at the wall can be determined
as follows

PR(R) = PA(A)|A(R) , (5.75)

where A(R) is the inverse function obtained from Eq. (5.74), which is known ex-
plicitly as

A
D

=
R

4D
+

1
2

[√

1+
R
D
−1

]

. (5.76)

For detailed calculations, the exceedance probability function of the incident
wave should be specified. Below, the Rayleigh distribution for wave heights is used
(indices of distribution functions will be omitted in the following formulas)

P(H) = exp

(
− H2

8σ2

)
≈ exp

(
−2H2

H2
s

)
, (5.77)

where the significant wave height, Hs ≈ 4σ, and σ2, is the variance of the initial
Gaussian field (see formula (2.84) from Chap. 2). In fact, the wave field in shallow
water (as well as in deep water) is not Gaussian (see Sect. 5.3), but for the sake of
simplicity we will use the assumption of a narrow-band Gaussian process result-
ing in the Rayleigh distribution for wave heights. For a quasi-monochromatic wave
H = 2A, the amplitude distribution has the same form as Eq. (5.77). As a result,
the exceedance probability functions of the positive (crest) and negative (trough)
amplitudes of water oscillations at the vertical wall can be determined explicitly

P(R+) = exp

{

− 2
A2

s

[
R+

4
+

1
2

(√
D+R+ −D

)]2
}

, (5.78)

P(R−) = exp

{

− 2
A2

s

[
R−
4

− 1
2

(√
D−R−−D

)]2
}

, (5.79)

where both amplitudes (heights of the crests and troughs) have positive values. For
the convenience of graphic representation of the distribution functions, the ampli-
tudes of the water oscillations at the wall will hereafter be normalized by Hs = 2As,
taking into account that the wave amplitude on the wall is within the framework of
the linear theory twice the amplitude of the incident wave. In this case, any deviation
from the Rayleigh distribution characterizes nonlinear effects, and the main param-
eter here is ε = Hs/D, which is the natural nonlinear parameter of the shallow-water
theory.



5.5 Anomalous High Waves on a Beach 203

Fig. 5.22 Exceedance proba-
bility function of crest heights
of water oscillations at the
wall. Numbers on curves de-
note values of ε = Hs/D with
increment of ε = 0.1
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Figure 5.22 displays the exceedance probability function of the crest heights of
the water oscillations at the wall for different values of the parameter ε , from 0
(linear case) to 0.7 (large-amplitude waves). As it is expected, weak and moderate
water oscillations have almost the same Rayleigh distribution as the incident wave,
but their crest heights are twice the incident wave amplitudes (this factor is included
in the normalization). For extreme waves, including freak waves (their amplitude
exceeds twice and more the significant wave height), the probability of the large
crests is increased with an increase of the ratio of the significant wave height to
water depth. This means that anomalous high crests should occur in the coastal
zone more often than in the open sea, and this effect is related to the nonlinear
mechanism of wave transformation in the coastal zone. Such waves may overflow
through breakwaters and flood the coasts, causing the accidents described in the
literature.

In this way, statistical characteristics of trough amplitudes and wave heights are
calculated in Pelinovsky et al. (2008). The probability of occurrence of the deepest
troughs near the wall is less than the Rayleigh prediction, and therefore freak waves
should often have the shape of crests rather than of troughs. Concerning wave height,
it can be concluded that nonlinearity decreases the probability of the highest waves
compared with the Rayleigh distribution. It means that the probability of meeting
unusual high waves for ships and boats near rocks and breakwaters is less than in the
open sea, but the shallow water waves may be significantly steeper due to shoaling
effects.

5.5.2 Wave Run-up on a Plane Beach

A similar approach can be applied for the process of long wave run-up on a plane
beach, defined by the bottom profile function D(X) =−αX (Fig. 5.23). In this case,
the nonlinear shallow-water equations (5.65) can be solved with the use of Riemann
invariants

I± = u±2
√

g(D+η)+αT (5.80)
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Fig. 5.23 Definition sketch
for the wave runup problem

D(X )
Xα

and the Legendre (hodograph) transformation (Carrier and Greenspan 1958). As a
result, the long wave run-up process is described by the linear wave equation

∂ 2Φ
∂λ 2 − ∂ 2Φ

∂σ2 − 1
σ
∂Φ
∂σ

= 0, (5.81)

and all the physical variables can be expressed through the function Φ(λ ,σ):

η =
1

2g

(
∂Φ
∂λ

−u2
)

, u =
1
σ
∂Φ
∂σ

, (5.82)

T =
1
αg

(
λ − 1

σ
∂Φ
∂σ

)
, X =

1
2αg

(
∂Φ
∂λ

−u2 − σ2

2

)
. (5.83)

The physical meaning of the variable σ is the total water depth, and σ = 0
corresponds to the moving shoreline. Various calculations of the wave field and
run-up characteristics using the Carrier-Greenspan transformation can be found in
Spielfogel (1976), Pedersen and Gjevik (1983), Synolakis (1987), Pelinovsky and
Mazova (1992), Tadepalli and Synolakis (1994), Carrier et al. (2003), Tinti and
Tonini (2005), Kânoulu and Synolakis (2006), Didenkulova et al. (2006, 2007), and
Didenkulova and Pelinovsky (2008).

A surprising result, which follows from the linear equation (5.81), is that the ex-
treme run-up characteristics (run-up and run-down amplitudes, run-up velocities)
can be calculated in the framework of the linear shallow-water theory when the in-
cident wave propagates to the beach from the open sea. Particularly, the run-up am-
plitude of incident sine wave with amplitude A and frequency Ω given on depth D is

R
A

=
(
π2Ω2D

gα2

)1/4

. (5.84)

Moreover, the water oscillations on shore are not sinusoidal (see Fig. 5.24). In
the figure, cases of various initial amplitudes are shown, expressed through the pa-
rameter Br = RΩ2/gα2 (condition Br = 1 corresponds to wave breaking on shore).

Formulae (5.81), (5.82), (5.83) and (5.84) can be applied to describe the run-up of
regular as well as irregular long waves. Due to the implicit character of the Carrier-
Greenspan transformation, it is a tricky task to calculate wave characteristics and
wave statistics. However, the linear approach may be applied for calculations of the
extreme run-up characteristics. Extremes of the Fourier series
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Fig. 5.24 Velocity (a) and vertical displacement (b) of the moving shoreline

η(T,X = 0) =
(

16π2Ω2D
gα2

)1/4 ∞

∑
n=1

√
nAn sin

[
nΩ(T − τ)+

π
4

]
, (5.85)

should be obtained for this purpose (Didenkulova et al. 2007, Didenkulova and
Pelinovsky 2008). In Eq. (5.85), An denotes the spectral amplitudes, Ω is the ba-
sic frequency of the incident wave, and τ is the travel time to the coast.

It should be emphasized that series (5.85) can be used when calculating positive
and negative run-up amplitudes, but not the moments and distribution functions of
the water displacement onshore. Detailed calculations of the distribution functions
of the run-up amplitudes are given in(Sergeeva and Didenkulova (2005). For the
narrow-band incident wave field, the distribution functions of the run-up character-
istics are described by the Rayleigh distribution, as is expected owing to the linearity
of the expressions for extreme characteristics. When the spectrum of the incident
wave is wider, the distribution functions differ from the Rayleigh law; the mean
value of the run-up amplitude changes as well.

The wave field in shallow water involves many coherent wave components. A
way to represent such a field as a random set of solitary waves is very popular (see
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Brocchini and Gentile 2001). The run-up of a solitary wave on a plane beach is well
studied (Synolakis 1987), and the run-up amplitude, R, can be expressed through
the soliton amplitude, A, as

R
D

= 2.8312
1√
α

(
A
D

)5/4

. (5.86)

In fact, this formula can be derived from Eq. (5.85) by taking into account the
relation between the soliton amplitude and the duration. When the wave field con-
tains random separated solitons, the runup of each individual soliton represents an
independent random process and the distribution function of run-up amplitude can
be found analytically when the distribution function of the soliton amplitudes is
known. Assuming for the sake of simplicity that the Rayleigh distribution for the
soliton amplitude, and using (5.86), the exceedance probability of run-up ampli-
tude is

P(R) = exp

[

−0.378α4/5 (R/D)8/5

(A/D)2

]

. (5.87)

The tail of the distribution (5.87) decays slower than that of the Rayleigh distri-
bution. Therefore, the probability of large wave occurrence on coasts is high. More
detailed computations of statistical run-up characteristics of the wave field repre-
sented by a soliton ensemble are performed in Brocchini and Gentile (2001).

So, the wave run-up on a vertical wall or plane beach leads to an increase of the
probability of large-amplitude waves. Thus, a way to reduce possible rogue wave
damage should be to include proper coastal protection.

List of Notations

A wave amplitude
As significant wave amplitude
b(X ,Y ) distance between neighbouring rays
C long-wave speed
D water depth
g acceleration due to gravity
H wave height
Hs significant wave height
I± Riemann invariants
k dimensionless wavenumber
K wavenumber
l coordinate along the ray
Ns soliton number
P probability distribution function
R runup amplitude
s temporal variable
S non-symmetric wave spectrum
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t dimensionless time
T time
u(X , Y , T ) depth-averaged velocity
U = (U,V ) fluid velocity in the horizontal plane
Ur Ursell parameter
V velocity of the soliton
(x, y) dimensionless coordinates in the horizontal plane
(X , Y , Z) coordinates
W vertical fluid velocity
ε nonlinear parameter
φ(X ,Y,Z,T ) velocity potential
γ skewness
η(X ,Y,T ) surface elevation
κ kurtosis
∼κ normalized kurtosis
λ wavelength
σ depth variable in the hodograph transformation
σ standard deviation, σ2 is the variance
Ω cyclic wave frequency
ζ (x,y, t) dimensionless surface displacement
∇ gradient operator in the horizontal plane
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