
Chapter 4
Rogue Waves in Waters of Infinite
and Finite Depths

The most widely investigated rogue wave events are those due to modulational in-
stability or dispersive focusing mechanisms. So far, the nonlinear terms of the equa-
tions have been neglected, hence in this chapter attention is paid to rogue wave
occurrence when nonlinear effects are taken into account. This chapter—which is
mainly devoted to modeling and simulating the physics of rogue wave events in the
deep sea—addresses finite depth situations to some extent, too.

First, we present the modulational instability of water waves within the frame-
work of the fully nonlinear equations and weakly nonlinear approximate approach
in Sect. 4.1. From a deterministic viewpoint, it is the so-called Benjamin-Feir insta-
bility: a carrier wave is unstable in terms of sideband perturbations provided their
respective wavenumbers are sufficiently close. From a statistical view point it is
known as spectral instability, which is the random version of the Benjamin-Feir
instability: a random narrowband wave train is unstable in terms of sideband pertur-
bations provided the width of the spectrum is sufficiently narrow.

The widely-used nonlinear Schrödinger equation and related approximate theory
for the Benjamin-Feir instability are presented in Sect. 4.2. Generation of rogue
waves due to the nonlinear-dispersive focusing is investigated with the help of the
inverse scattering approach. Breathing exact solutions of this model are described.

Section 4.3 is devoted to the occurrence of rogue waves in the deep sea when
fully nonlinear equations are used. The High Order Spectral Method (HOSM) and
the Boundary Integral Equation Method (BIEM), which are used to simulate nu-
merically rogue waves due to modulational instability and dispersive focusing, are
briefly presented with and without wind forcing. Sections 4.2 and 4.3 are devoted to
deterministic description of the rogue-wave occurrence, while Sect. 4.4 concerns a
statistical description of these giant waves.

Some laboratory experiments on rogue waves are presented in Sect. 4.5 with and
without wind action.

Section 4.6 is aimed at presenting 3D aspects of the freak-wave occurrence.
Instrumental registrations of rogue waves give the possibility to fit elaborate theo-

ries with natural phenomena. Some approaches to understanding the nature of freak
waves are presented in Sect. 4.7.1. They exhibit significant nonlinear (and modu-
lational) effects when rogue waves occur. Results of statistical processing of huge
wave in-situ records are collected in Sect. 4.7.2.
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4.1 The Modulational Instability

The generation of extreme wave events can be simply obtained from the
Benjamin-Feir instability (or modulational instability) of uniformly traveling trains
of Stokes waves in water of infinite and finite depths. Stokes’ wave trains are unsta-
ble in terms of various perturbations. Among these instabilities is the Benjamin-Feir
instability (a long-wave instability). The latter dominates for small values of the
amplitude. Various researchers discovered the existence of modulational instability
of Stokes waves at the same time. Lighthill (1965) provided a geometric condi-
tion for wave instability in deep water. Later, Benjamin and Feir (1967) demon-
strated the result analytically. Using a Hamiltonian approach, Zakharov (1968)
derived the same instability result. Furthermore, in the context of modulated wa-
ter waves, he obtained the famous Nonlinear Schrödinger equation. It would have
been more appropriate to call the modulational instability the BFLZ instability in-
stead of BF instability. Benney and Roskes (1969) extended the study to finite
depth and derived what is now called the Davey-Stewartson system (Davey and
Stewartson 1974). Both Zakharov (1968) and Benney and Roskes (1969), for in-
finite depth and finite depth, respectively, investigated the stability with 3D per-
turbations. Dysthe (1979) pursued the perturbation analysis one step further, to
fourth-order in wave steepness, and found that the wave-induced mean flow signifi-
cantly influences the growth rate of the modulational instability. Later on, Stiassnie
and Shemer (1984) used a powerful approximate equation—the Zakharov equation
free of the narrow band assumption—to investigate the stability of Stokes waves.
Note that the Dysthe equation was derived from the Zakharov equation by Stiassnie
(1984) under the assumption of narrow band wave field. Furthermore, with the
Zakharov equation it is possible to consider perturbations different from modula-
tional type. Later on, numerical computations based on fully nonlinear equations,
allowed researchers to go beyond the modulational instability. The main advantage
is that there is no restriction on the length of perturbations and amplitude of the ba-
sic wave. Longuet-Higgins (1978a,b) investigated 2D instabilities, whereas McLean
et al. (1981) and McLean (1982a,b) considered 3D instabilities of 2D Stokes waves.
More recently, Francius and Kharif (2006) extended the linear stability analysis of
finite-amplitude periodic progressive gravity waves to steeper waves and shallower
water. The method used by McLean to study the stability of Stokes wave trains,
within the framework of the fully nonlinear equations, is presented in Sect. 4.1.1,
followed by a brief presentation of the obtained main results. See the papers by
Kharif and Ramamonjiarisoa (1988) and Dias and Kharif (1999), too.

4.1.1 Within the Framework of the Fully Nonlinear Equations

In this section, a general presentation of surface wave instabilities is given, based on
the fully nonlinear equations (2.13), (2.28), (2.30), and (2.31). More precisely, we
consider the linear stability of a Stokes’ wave train of arbitrary wave steepness.
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Let η = η̄ +η ′ and φ = φ̄ +φ ′ be the perturbed elevation and perturbed velocity
potential, where (η̄ , φ̄) and (η ′,φ ′) correspond to the unperturbed Stokes wave (ba-
sic wave) and infinitesimal perturbative motion (η ′ � η̄ ,φ ′ � φ̄), respectively. Fol-
lowing Longuet-Higgins (1985), the Stokes wave of wavenumber K0 is computed
iteratively. Substituting these decompositions in the boundary conditions linearized
about the unperturbed motion (η̄ , φ̄), and using the following forms with p and q
arbitrary real numbers (see McLean 1982b),

η ′ = e−iσT exp [i(pK0X +qK0Y )]
∞

∑
j=−∞

A je
i jK0X , (4.1)

φ ′ = e−iσT exp [i(pK0X +qK0Y )]
∞

∑
j=−∞

B je
i jK0X

cosh

[√
(p+ j)2 +q2K0 (Z +D)

]

cosh

[√
(p+ j)2 +q2K0D

] ,

(4.2)

yields a complex eigenvalue problem for σ , with eigenvector u = (A j,B j)t

(A− iσB)u = 0, (4.3)

where A and B are complex matrices depending on the wave steepness of the basic
wave and the arbitrary real numbers pK0 and qK0 corresponding to the longitudinal
and transverse wavenumbers of the perturbation, respectively. The physical distur-
bance that corresponds to the real part of expressions (4.1) and (4.2) has periods
2π/pK0 and 2π/qK0 in X- and Y -directions, respectively. The terms corresponding
to the sums in (4.1) and (4.2) have the spatial periodicity of the basic Stokes waves.
Hence, forms (4.1) and (4.2) express that the perturbations feel the presence of the
Stokes waves. Instability corresponds to Im(σ) �= 0. The spectrum is easy to com-
pute when η̄(X ,T ) = 0. In the moving frame with the basic wave, one finds that the
eigenvalues are

σn = −(p+n)
√

gK0 tanh(K0D)±
√

gKn tanh(KnD),

k2
n = (p+n)2 +q2, Kn = K0kn.

(4.4)

The eigenvalues are real, hence the state corresponding to η̄ = 0 is spectrally
stable. As the wave steepness of the Stokes wave increases, the eigenvalues move.
MacKay and Saffman (1986) derived a necessary condition for a Stokes wave to
lose spectral stability corresponding to the collision of eigenvalues of opposite
Krein signature (Krein 1955), or a collision of eigenvalues at zero (see MacKay
and Saffman 1986).

σ±
n1

(p,q) = σ±
n2

(p,q) (4.5)

The instabilities are separated into two classes: class I when the collisions occur
between modes with n = m and n = −m, and class II when the collisions occur
between modes with n = m and n = −m− 1. The corresponding instabilities are
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called class I and class II instabilities. Class I (m) corresponds to (2m + 2)-wave
interactions, whereas class II (m) corresponds to (2m+3)-wave interactions:
Class I (m)

k1 = (m+ p,q), k2 = (m− p,−q),

σ+
m (p,q) = σ−

−m (p,q) , (4.6)

Ω1 +Ω2 = 2mΩ0.

Class II (m)

k1 = (m+ p,q), k2 = (1+m− p,−q),

σ+
m (p,q) = σ−

−m−1 (p,q) , (4.7)

Ω1 +Ω2 = (2m+1)Ω0,

with

Ωn =
√

gKn tanh(KnD), n = 0,1,2,

Kn = K0kn, Kn = K0kn, n = 1,2. (4.8)

The collision of eigenvalues may be interpreted as wave-wave resonant interac-
tions satisfying the following conditions

K1 +K2 = NK0, Ω1 +Ω2 = NΩ0, N ≥ 2, (4.9)

where even values of N(= 2m) correspond to Class I (m), and odd values of N(=
2m+1) correspond to Class II (m), respectively.

Class I (m) instabilities correspond to resonant interactions between the basic
mode K0 = (1,0)K0 counted 2m times and the satellites K1 = (m+ p,q)K0 and K2 =
(m− p,−q)K0, whereas class II (m) instabilities correspond to resonant interactions
between the basic mode K0 = (1,0)K0 counted 2m + 1 times and two satellites
K1 = (m + p,q)K0, K2 = (1 + m− p,−q)K0. For instance, N = 2 corresponds to
quartet resonant interactions, and N = 3 responds to quintet resonant interactions,
etc.

The BF instability belongs to class I instability with m = 1 and corresponds to
small values of the wavenumber p. Class I (m = 1) generalizes the BF instability
and includes modulational instabilities.

In water of infinite depth (K0D → ∞), the 2D (q = 0) modulational instability is
dominant for small to moderate values of the wave steepness, whereas for larger val-
ues, 3D instabilities of class II (m = 1) become dominant. The latter instability may
lead to the formation of horseshoe patterns while modulational instability evolves
into a series of modulation-demodulation cycles (Fermi-Pasta-Ulam recurrence).

In finite depth, McLean (1982b) considered three depths—one greater (K0D = 2)
and two smaller (K0D = 1 and 0.5) than K0D = 1.363, which is a critical depth
(see the next section). He confirmed the stabilization of 2D long-wave perturbations
(p � 1) for K0D < 1.363 as predicted by Whitham (1967). For K0D = 2, he found
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that the dominant instability still belongs to class I (m = 1) when the wave steepness
is small or moderate. Unlike the deep water case, the modulational instability is now
3D (q �= 0). For steeper waves, 3D instabilities of class II (m = 1) crescent-shaped
form become dominant. For K0D = 1, 2D long-wave perturbations (p � 1) of class
I (m = 1) are stable for small wave steepness. However, this class is dominated by
3D unstable perturbations (q �= 0). For steeper waves, it is the crescent-shaped in-
stability of class II (m = 1) that is dominant. The shallowest case (K0D = 0.5) that
McLean considered is most unstable for small wave steepness, to a 2D perturbation
of class I (m = 1) with a wavenumber comparable to K0, in contrast to the familiar
2D long-wave perturbations that are the dominant instabilities in deep water. For
small-amplitude waves, this result was rediscovered by Francius and Kharif (2006)
for K0D < 0.5. Two-dimensional long-wave perturbations are stable at these depths.
For moderate steepness, the dominant instability shifts to the 3D one and is still as-
sociated with class I (m = 1). For sufficiently steep waves, class II (m = 1) dominates
and the most unstable perturbation is three-dimensional.

4.1.2 Within the Framework of the Nonlinear
Schrödinger (NLS) Equation

The evolution equations describing wave propagation over deep or shallow waters
may straightforwardly be derived heuristically (Kharif and Pelinovsky 2006). One
of the common ways to rigorously derive these equations is based on the asymptotic
technique of Engelbrecht et al. (1988). Slowly modulated weakly nonlinear water
waves may thus be described with the help of approximate asymptotic equations
for wave modulations. The Nonlinear Schrödinger (NLS) equation represents the
simplest equation of this kind, first obtained by Zakharov (1968). The detail of its
derivation may be found, for example, in Johnson (1997).

4.1.2.1 The Davey-Stewartson and Nonlinear Schrödinger Equations

Let us consider unidirectional wave propagation on the sea surface of arbitrary con-
stant depth; the geometry of the problem is the same as used in Chap. 2 (see Fig. 2.1).
The system of governing equations is given by the Laplace equation (2.13), bound-
ary conditions on the free surface (2.28) and (2.30), and the sea bottom condition
(2.46).

We will restrict our interest to the narrow-band wave fields (long-wave modula-
tions) so that the solution to the problem may be sought in the form of perturbation
expansions similar to (2.33) and (2.34):

φ (X ,Y,Z,T ) =
∞

∑
n=0

εn+1φn (X ,Y,Z,T ), (4.10)

η (X ,Y,Z,T ) =
∞

∑
n=0

εn+1ηn (X ,Y,Z,T ), (4.11)
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where

φn =
∞

∑
m=−∞

φn,mEm, (4.12)

ηn =
∞

∑
m=−∞

ηn,mEm, (4.13)

Em =
{

1, m = 0
1/2exp [im(K0X −Ω0T )] , m �= 0

.

For the sake of simplicity, we choose the direction of wave propagation along the
OX axis so that the carrier (fundamental) wave has wave vector K0 = (K0,0),K0 > 0,
and cyclic frequency Ω0 > 0; ε is a small parameter that will be specified later. Rela-
tions φn,−m = φ ∗

n,m and ηn,−m = η∗
n,m should be satisfied to provide real values of the

surface displacement and the velocity potential. The asterisk denotes the complex
conjugate.

With the help of Taylor expansion at the still water level (2.35), the boundary
conditions on the sea surface read

ηT +ηX

∞

∑
j=0

η j∂ j
ZφX

j!
+ηY

∞

∑
j=0

η j∂ j
ZφY

j!
−φ

∞

∑
j=0

η j∂ j+1
Z φ
j!

= 0 on Z = 0, (4.14)

∞

∑
j=0

η j∂ j
ZφT

j!
+

1
2

(
∞

∑
j=0

η j∂ j
ZφX

j!

)2

+
1
2

(
∞

∑
j=0

η j∂ j
ZφY

j!

)2

+
1
2

(
∞

∑
j=0

η j∂ j+1
Z φ
j!

)2

+gη = 0 on Z = 0. (4.15)

We introduce slow coordinates X1 and Y1, and multiple slow times T1 and T2 as

∂
∂X

⇒ ∂
∂X0

+ ε
∂

∂X1
, (4.16)

∂
∂Y

⇒ ∂
∂Y0

+ ε
∂
∂Y1

, (4.17)

∂
∂T

⇒ ∂
∂T0

+ ε
∂
∂T1

+ ε2 ∂
∂T2

+ . . . . (4.18)

The main contribution in the series (4.12) and (4.13) corresponds to the first har-
monic (m = ±1), so that we put ϕ0,m = 0 for |m| > 1 and η0,m = 0 for m �= ±1. The
term ϕ0,0 is responsible for the nonlinear induced flow (see Johnson 1997), and is
also a zero-order term. Substituting series (4.16), (4.17), and (4.18) into Eqs. (4.14)
and (4.15), and collecting terms of similar harmonic component (power of E) and
of similar order (power of ε), one comes to a set of equations that may be resolved.

In particular, the Laplace equation (2.13) results in

Lmφn,m +2imK0∂X1φn−1,m +∂ 2
X1
φn−2,m = 0, Lm = ∂ 2

Z −m2K2
0 . (4.19)
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The consecutive order-by-order solution of Eq. (4.19) provides the modal (vertical)
structure of the surface waves. The leading order mode of the 2D carrier wave is
given by (2.47).

Terms with (n = 0, m = 1) give the dispersion relation (2.52) and the relation
between the surface disturbance and the velocity potential:

η0,1 = i
Ω0

g
φ0,1. (4.20)

This relation was also obtained in Chap. 2 (see Eqs. (2.47) and (2.48)). The next
order (n = 1, m = 1) leads to the equation

∂η0,1

∂T1
+Cgr

∂η0,1

∂X1
= 0, (4.21)

where Cgr is the group velocity (2.54), which is given by

Cgr =
∂Ω
∂K

=
g

2Ω0

[
d̃ +K0D

(
1− d̃2)] , d̃ ≡ tanh(K0D) . (4.22)

To obtain the next order evolution equation, the neighboring harmonic compo-
nents should be considered (m = 0,1,2). So, the zeroth and the second harmonics
contribute to the carrier wave at this level of accuracy. These orders, solved jointly,
give the following equations (Johnson 1997):

−i
∂η0,1

∂T2
+β11

∂ 2η0,1

∂X2
1

+β22
∂ 2η0,1

∂Y 2
1

+α11 |η0,1|2η0,1 +α12η0,1
∂φ0,0

∂X1
= 0, (4.23)

s1
∂ 2φ0,0

∂X2
1

+ s2
∂ 2φ0,0

∂Y 2
1

= γ
∂ |η0,1|2

∂X1
. (4.24)

The summation of Eqs. (4.21) and (4.23), supplemented by (4.24), gives the
closed system of equations involving terms of two orders of accuracy:

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β11

∂ 2A
∂X2 +β22

∂ 2A
∂Y 2 +α11 |A|2 A+α12A

∂B
∂X

= 0, (4.25)

s1
∂ 2B
∂X2 + s2

∂ 2B
∂Y 2 = Γ

∂ |A|2

∂X
, (4.26)

where A ≡ η0,1 and B ≡ φ0,1. The small parameter ε used for the derivation of the
model, actually defines two small quantities. They are the wave steepness (used
when writing the Taylor expansions (4.14) and (4.15)) and spectral bandwidth (see
(4.16), (4.17), and the series (4.12) and (4.13)). In the present approach, these quan-
tities are supposed to be of the same order of smallness. The field of the surface
displacement and velocity potential are defined according to (4.12), (4.13), and
(4.20) as
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η = Re(Aexp [i(K0X −Ω0T )]) , (4.27)

φ =
g
Ω0

Im(Aexp [i(K0X −Ω0T )]) . (4.28)

The systems (4.25) and (4.26) were found by Benney and Roskes (1969) and
Davey and Stewartson (1974) and are usually referred to as the Davey-Stewartson
system or equation (DS). The two first terms in the LHS of Eq. (4.25) support wave
propagation with linear group velocity. The four first terms in the LHS of Eq. (4.25)
represent the linear dispersive part. Besides the strict asymptotic calculations, the
linear dispersive contribution may easily be obtained heuristically from the disper-
sion relation (2.57) by using a Taylor expansion about the wave vector of the carrier,
K0 = (K0,0)

Ω(K0 +KX ,KY ) ≈ Ω(K0,0)

+KX
∂Ω
∂KX

∣
∣
∣
∣
(K0,0)

+
1
2

K2
X
∂ 2Ω
∂K2

X

∣
∣
∣
∣
(K0,0)

+
1
2

K2
Y
∂ 2Ω
∂K2

Y

∣
∣
∣
∣
(K0,0)

,

(4.29)

where the derivatives give the coefficients of the linear part of Eq. (4.25),

Cgr =
∂Ω
∂K

, β11 = −1
2
∂ 2Ω
∂K2 , β22 = − Cgr

2K0
. (4.30)

The group velocity in (4.30) is given by (4.22). It may be easily seen from Fig. 2.3
that the second derivative of the frequency with respect to the wave number (which
is equal to the derivative Cgr

′(K)) is negative for all depths, and therefore the coef-
ficient β11 is always positive, whereas β22 is negative.

The other coefficients in the DS system (4.25) and (4.26) are

α11 =
g2Ω0

16C4
ph

(
1+9d̃−2 −13

(
1− d̃2)−2d̃4) ,

α12 =
Ω0

2C2
ph

(
2Cph +Cgr

(
1−d2)) , (4.31)

s1 = C2
LW −C2

gr, s2 = C2
LW , Γ = −α12

g2

2Ω0
.

The long-wave speed CLW in (4.31) is defined as

CLW =
√

gD. (4.32)

Coefficients s1, s2, α11, and α12 are always positive.
The nonlinear part in Eq. (4.25) includes the effect of nonlinear induced flow (the

Stokes flow), described by Eq. (4.26). In the deep-water limit, s1 → ∞ and s2 → ∞;
therefore, the contribution of the mean flow velocity potential B vanishes, and (4.25)
and (4.26) become
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−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+

Ω0

8K2
0

∂ 2A
∂X2 − Ω0

4K2
0

∂ 2A
∂Y 2 +

Ω0K2
0

2
|A|2 A = 0, (4.33)

where

Ω0 =
√

gK0, Cgr =
Ω0

2K0
. (4.34)

Eq. (4.33) is the 2D (2D+1) NLS equation valid for the case of deep water (infi-
nite depth).

The DS system (4.25) and (4.26) transforms into one evolution equation describ-
ing waves in the OXZ plane when the transverse dynamic is disregarded. Then,
the DS equation results in the 1D NLS equation (Zakharov 1968, Hasimoto and
Ono 1972), written as follows

− i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A = 0, (4.35)

β = β11, α = α11 +α12
Γ
s1

. (4.36)

Contrary to the deep-water limit, the term of induced flow becomes very impor-
tant in shallow water, although on deep water α > 0, it becomes negative when the
normalized depth of the basin is less than a critical value KD = 1.363. This bifur-
cation value corresponds to a significant change in the nonlinear wave dynamics.
For KD ≈ 1.363, the nonlinear coefficient in Eq. (4.35) turns to zero, and thus, the
nonlinear effects appear at higher levels, and may be taken into account through
a modified asymptotic scheme (see Johnson 1977, Kakutani and Michihiro 1983,
Sedletsky 2003, and Slunyaev 2005).

To conclude this section, we would like to state here two important remarks about
the NLS equation. First, the coefficients in the evolution equations turn out to be
functions of the carrier wave frequency Ω0 (or wavenumber K0). The meaning of
this result is illustrated by the expansion (4.29). When deriving the NLS equation,
the linear dispersion relation Ω(K) is approximated by a parabolic function in the
vicinity of the carrier wavenumber. Hence, to derive the DS system or NLS-like
equation, it is first necessary to define the mean frequency (or wavenumber) of the
waves. Although some regular methods of the mean frequency definition exist—for
instance, via the spectral moments (see Sect. 2.2.2)—the result is not always robust
if the waves are not sufficiently narrow-band. Secondly, the derivation of Eqs. (4.25)
and (4.26) supposes two weak effects: (i) nonlinearity, of which the smallness serves
for expansions (4.10), (4.11) and the expressions of the boundary conditions in the
Taylor expansions (4.14) and (4.15); and (ii) weak modulation (the narrowband ap-
proximation) that is employed when considering different harmonics and introduc-
ing the slow coordinates (4.16), (4.17). In the derived equations, it is assumed that
these effects are of the same order of strength. Otherwise, it is necessary to include
additional terms in the evolution equation (Trulsen 2006).
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4.1.2.2 The Benjamin-Feir Instability

The Benjamin-Feir instability discussed in the previous section can be studied
within the framework of the NLS equation, too. Let us consider the linear stabil-
ity of a plane wave of real constant amplitude A0, frequency Ω, and wavenumber K.
The solution of the NLS equation (4.35) is sought in the following form

A(X ,T ) = A0 (1+a)exp [i(KX −ΩT )] , (4.37)

where a is a complex function of X and T , so that |a| � A0, and A(X ,T ) is the
exact solution of (4.35) when a ≡ 0 (which implies that Ω = CgrK −βK2 +αA2

0).
Then, the wave modulation a may exponentially grow with time when the following
condition is satisfied:

αβ > 0. (4.38)

This classical result can be found in Newell (1981), Johnson (1997), and Dias and
Kharif (1999) and is true when K0D > 1.363. The long perturbations of wavenumber
ΔK satisfying

0 < ΔK < ΔKBF , ΔKBF = A0

√
2α
β

(4.39)

are unstable, while the growth rate is given by

σBF = |ΔK|
√

2αβA2
0 −β 2ΔK2, (4.40)

where σBF ≡ −Im(σ). The subscript “BF” refers to the Benjamin-Feir instability.
The maximum growth rate

σBF max = αA2
0 (4.41)

is achieved for wavenumber

ΔKBF max = A0

√
α
β

. (4.42)

Let us consider a plane wave with carrier wave vector K0 = (K0,0), perturbed
by a disturbance of wave vector ΔK = (ΔKX ,ΔKY ). It is convenient to deal with
the deep-water 2D NLS equation (4.33) (or, similarly, the DS system when the con-
stant water case is considered) along the perturbation direction. Hence, the analysis
is similar to the 1D case and results in formulas (4.38), (4.39), (4.40), (4.41) and
(4.42), where the coefficients should be chosen as

α =
Ω0K2

0

2
, β =

Ω0

8K2
0

ΔK2
X −2ΔK2

Y

ΔK2
X +ΔK2

Y

, (4.43)

and ΔK2
X +ΔK2

Y = ΔK2. Instability occurs for long wave perturbations with wave
vectors lying in an angular domain bounded by angles ± atan(2−1/2) (it is about
± 35◦).
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The analysis for the DS system (4.25) and (4.26) is trickier, but still may be com-
pleted analytically (Slunyaev et al. 2002). The DS system for weak 2D modulation
of type (4.37) may be reduced to the form (4.35) with coefficients

α =

[

α11 +α12
Γ
s1

+α11
s2

s1

(
ΔKY

ΔKX

)2
]

·
[

1+
s2

s1

(
ΔKY

ΔKX

)2
]−1

,

β =

[

β11 +β22

(
ΔKY

ΔKX

)2
]

·
[

1+
(
ΔKY

ΔKX

)2
]−1

, (4.44)

which should be substituted into Eqs. (4.38), (4.39), (4.40), (4.41), and (4.42) to
derive the stability analysis.

The instability diagram depends on the water depth and direction of propaga-
tion of the perturbation with wave vector ΔK = (ΔKX ,ΔKY ), which is defined by
the tangent of ΔKY /ΔKX . The instability diagrams in the (ΔKX ,ΔKY )-plane are
given in Fig. 4.1 for various depths. The value of the growth rate σBF varies from
zero (black) to maximum (white). For K0D < 1.363, the longitudinal perturbations

Fig. 4.1 Instability diagrams in the plane of dimensionless perturbation vectors for a plane wave
with amplitude A0 = 1 within the framework of the Davey-Stewartson system. Four dimensionless
water depths are considered as examples: K0D = 100 (deep water), K0D = 2 (moderately deep
water), K0D = 1.363 (cancellation of the nonlinear term in the evolution equation), and K0D = 1
(finite depth close to shallow water)
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become stable. Only oblique perturbations develop modulational instability. For
K0D < 0.5, the region of instability becomes very narrow, and the instability does
not exist practically.

Formulas (4.38), (4.39), (4.40), (4.41), (4.42), (4.43), and (4.44) are valid for the
weakly nonlinear theory and are based on a narrowband wave-field approximation.
That is why the instability diagram has to be improved by using higher-order models
(Trulsen et al. 2000).

The figure shows stability diagrams for various depths from K0D = 100 (deep
water) to K0D = 1 (finite depth). As it has been already noted, only oblique pertur-
bations suffer from modulational instability when K0D < 1.363. Generally, the in-
stability regions become smaller when improved models are considered (see Trulsen
et al. 2000). The nonlinear stage of BF instability was thoroughly investigated ana-
lytically, numerically, and experimentally (see Dias and Kharif 1999).

The Benjamin-Feir instability is one of several other possible unstable wave
configurations—i.e., weak perturbations of a uniform plane wave. Other wave sys-
tems and structures may be analyzed with respect to stability (nonlinear wave pack-
ets, short-crested and bound waves), as reviewed in papers by Roskes (1976), Dhar
and Das (1991), Shukla et al. (2006), and Onorato et al. (2006a). This analysis is
trickier technically, less evident, and needs further research. Moreover, only the lin-
ear stability analysis was performed, but nonlinear instabilities are possible as well.

The nonlinear coefficient α for unidirectional waves described by (4.35) vanishes
at depth K0D = 1.363 and becomes negative in shallower water; the longitudinal
perturbations become stable. Oblique perturbations remain unstable, although the
areas of instability shrink. This degeneration of the coefficient due to the specific
geometry changes the parity of nonlinear and dispersive terms and requires con-
sideration of higher-order asymptotic expansions, briefly considered just above, to
have explicit nonlinear terms included in the evolution equation. The corresponding
equation was first derived by Johnson (1977). The equation has the form

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A− iγ1 |A|2

∂A
∂X

− iγ2A2 ∂A∗

∂X
+α2 |A|4 A = 0,

(4.45)
where γ1 and γ2 relate to the nonlinear-dispersion contribution, and α2 is the non-
linear coefficient of a higher (fifth) order. Considering the plane wave solution with
amplitude A0 and wavenumber K0, the condition of possible BF instability excita-
tion is modified when compared with (4.38) and is

βα +β (K −K0)(γ2 − γ1)+A2
0

(
2βα2 −

1
2
γ2

2

)
> 0. (4.46)

Hence, the instability diagram for this marginal case is affected by the wave am-
plitude and the frequency offset, and qualitatively depends on the combination of
coefficients in (4.46). The coefficients were first obtained by Johnson (1977), later
by Kakutani and Michihiro (1983) and Slunyaev (2005), and partly by Sedletsky
(2003). The complexity of the computation of high-order asymptotic expansions
results in a difference of the coefficients, so that the analysis of the modulational
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instability in the cited papers differs quantitatively, and even sometimes qualita-
tively. Johnson (1977) concludes that the marginal depth when the BF instability dis-
appears is even larger than K0D ≈ 1.363, owing to the nonlinear corrections (the last
summand on the LHS of (4.46)). Results obtained by Kakutani and Michihiro (1983)
and Slunyaev (2005) point at the opposite conclusion: the marginal depth becomes
shallower. Sedletsky (2006) undertook a further theoretical study of modulational
instability within an improved generalized envelope equation theory.

4.1.2.3 The Spectral Instability of Benjamin-Feir Type

In the real sea, the wave field always suffers from random disturbances, which calls
statistical considerations. Alber and Saffman (1978) and Alber (1978) derived an
equation describing the evolution of the wave envelope of a random wave train.
Their analysis started from the DS system, and resulted in a transport equation
(see Chap. 2). Using a more general approximate equation, the Zakharov equation
(Crawford et al. 1980) investigated the evolution of a random inhomogeneous field
of nonlinear deep-water gravity waves. Following Alber and Saffman (1978), they
considered the stability of a narrow-band homogeneous spectrum to inhomogeneous
perturbations in the limiting cases of the 1D and 2D NLS equations. Using a more
realistic spectrum, they obtained results that agree qualitatively with those of Alber
and Saffman—namely, they found that the effect of randomness characterized by
the spectral bandwidth is to reduce the growth rate and the extent of the instability.

Let us stay now within the framework of the deep-water limit of the 1D version of
the NLS equation (4.33). The instability growth rate in the presence of randomness
is given by Alber (1978) by

σBF

Ω0
=

1
8
ΔK
K0

⎡

⎣

√

16(K0Arms)
2 −

(
ΔK
K0

)2

− 2σr

K0

⎤

⎦ , (4.47)

when random waves are distributed according to the Gaussian function and σ2
r is

the variance that characterizes randomness effects. Variable Arms denotes the root
mean-square wave amplitude of the Gaussian random process (if one identifies A0 =
21/2Arms, then in the limit σr → 0 (4.47) coincides with (4.39)). The waves are stable
with respect to the BF instability if

σr

K0
> 2ArmsK0. (4.48)

In general, the effect of increasing randomness is to restrict the instability cri-
terion, to delay the onset of instability, and to reduce the amplification rate of the
modulation. The correlation length scale in the system is defined by σ−1

r , and hence
decorrelation of the waves (small correlation length or large σr) leads to stabilization
of the wavetrain according to the relation
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modulation length
correlation length

∝
σr

ΔKBF max
∝

σrK0

ArmsK0
. (4.49)

In fact, Alber (1978) estimated that the typically measured sea wave parameters
result in stable wave trains, although they are close to the neutral stability condition.

When breaking is neglected, wave damping is usually not taken into account
considering sea wave dynamics. Nevertheless, loss of energy is always observed in
experiments and motivates researchers to argue whether the BF instability is rele-
vant for real waves in the ocean. Generalizations of the NLS equation have been
suggested to take into account the effects of wave dissipation and bottom friction in
a simple way. Dissipative effects can be introduced in the NLS equation through a
linear term with coefficient δdis

−i

(
∂A
∂T

+Cgr
∂A
∂X

)
+β

∂ 2A
∂X2 +α |A|2 A− iδdisA− iδ f ric |A|γ A = 0. (4.50)

Voronovich et al. (2008) considered the effect of bottom friction that brought a
more sophisticated term into the NLS equation (with coefficient δ f ric in (4.50)).

In Eq. (4.50), the parameter δdis ≥ 0 characterizes the effect of linear dissipation.
δ f ric is a complex number manifesting both the stress at the bottom and the phase
lag between the stress and orbital velocity. The power γ is estimated in Voronovich
et al. (2008) as γ ≈ 0.48. At first sight, it seems easier to determine the values of
the parameters δdis, δ f ric, and γ from experimental data rather than from theoretical
developments.

Segur et al. (2005) reported that the plane wave solution becomes linearly and
nonlinearly stable when small dissipation δdis is taken into account. The term of
linear dissipation in Eq. (4.50) may be illuminated after the following change

A(X ,T ) = Q(X ,T )exp(−δdisT ) . (4.51)

Then Eq. (4.50) becomes

−i

(
∂Q
∂T

+Cgr
∂Q
∂X

)
+β

∂ 2Q
∂X2 +αe−2δdisT |Q|2 Q = 0, (4.52)

where we set δ f ric = 0 to restrict our interest to effects of linear dissipation only. The
exponent in (4.52) reduces the nonlinear effect. It is obvious that if the timescale of
the dissipation is much larger than other timescales of the problem, then formu-
las (4.38), (4.39), (4.40), (4.41), and (4.42) are asymptotically valid. The resulting
growth rate of perturbations is

σBF = −δdis + |ΔK|
√

2αβe−2δdisT A2
0 −β 2ΔK2. (4.53)

The study of Segur et al. (2005) confirms that the radical expression in Eq. (4.53)
defines the onset of the modulational instability. The instability is always cancelled
when the time interval becomes sufficiently long. The energy transfer from the
carrier wave to the sidebands is still possible and may be substantial if
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α |A0|2 >> δdis. (4.54)

Nevertheless, the spectral satellites grow for a limited time, and its increase is
halted due to the dissipation.

Considering the case of nonlinear wave damping due to bottom friction only
(δdis = 0), the amplitude of the carrier wave decays in a power-law way in contrast
to Eq. (4.51). The exponential growth rate has a rather complicated form, but the
instability condition is defined by the following expression (one may compare this
expression with the radical in Eq. (4.53))

βΔK2 (2αA2
0 +F1

)
−β 2ΔK4 −F2 > 0, (4.55)

where α and β are given by Eq. (4.44) for the general three-dimensional case; F1

and F2 relate to the action of the bottom stress and are functions of the complex
parameter δ f ric, and wave amplitude A0. The dissipation hampers the development
of instability and shrinks the corresponding instability domain. The longitudinal
perturbations turn out to be the most susceptible to be influenced by bottom friction.
Voronovich et al. (2008) estimate that the longitudinal perturbations become stable
when the nonlinear term in Eq. (4.50) becomes less than the frictional one

α |A0|2−γ <≈
∣
∣δ f ric

∣
∣ . (4.56)

Since the velocity components decay exponentially at large depths (see formu-
las (2.58), (2.59), and (2.60)), the bottom friction produces a significant contribu-
tion only when the dimensionless depth K0D is not large, and becomes unimportant
in the deep-water case. For intermediate depths (K0D ∼ 1.5), realistic estimations
foresee that the modulational growth may be seriously suppressed by the nonlinear
bottom friction or even cancelled at all.

4.2 Rogue Wave Phenomenon within the Framework
of the NLS Equation

In what follows, it is convenient to use the dimensionless form of the NLS equation

iqt +qxx +2 |q|2 q = 0, (4.57)

which results from Eq. (4.35) under the following transformations

t =
1
2
Ω0T, x = 2K0 (X −CgrT ) , q =

1√
2

K0A∗. (4.58)

Eq. (4.57) corresponds to the deep-water case; it is often called the focusing
NLS equation with inherent property that the signs between the nonlinear and the
dispersive terms are same. Condition (4.38) is satisfied by Eq. (4.57), and hence,
modulational instability is possible in this system.



106 4 Rogue Waves in Waters of Infinite and Finite Depths

4.2.1 General Solution of the Cauchy Problem

Equation (4.57) is known to be integrable as it was demonstrated by Zakharov and
Shabat (1972) with the help of the Inverse Scattering Transform (IST) (see Novikov
et al. 1984, Drazin and Johnson 1989). This technique has attributes of the clas-
sic Fourier method (spectrum and eigenfunctions) and allows the determination of
some explicit exact solutions and an analytical description of model cases. Never-
theless, from the viewpoint of computations it is trickier than the Fourier transform.
Two formulations of the IST exist, suggested by Zakharov and Shabat (1972) and
Ablowitz et al. (1974), respectively. We will hereafter follow the latter, usually re-
ferred to as the Ablowitz-Kaup-Newell-Segur (AKNS) scheme.

Following the AKNS approach, the initial value problem associated with the fo-
cusing NLS equation (4.57) is written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂Ψ
∂x

=
(

λ q
−q∗ −λ

)
Ψ,

∂Ψ
∂ t

=
(

a a12

a21 −a

)
Ψ,

(4.59)

where

Ψ =
(
Ψ1

Ψ2

)
,

⎧
⎪⎨

⎪⎩

a = i |q|2 +2iλ 2

a12 = iqx +2iλq

a21 = iq∗x −2iλq∗
.

The eigenvalues λ are independent of time and constitute the spectrum. The
first matrix equation in (4.59) defines the spatial dependence of the eigenfunctions
Ψ(x, t), while the second one defines their time dependence. The solution of the ini-
tial value problem consists of determining the spectrum for the initial perturbation
q(x, t = 0) (the direct scattering transform), and then restoring the wave field on
the basis of the permanent spectrum and known time-dependent eigenfunctions (the
IST).

The spatially localized eigenfunctions correspond to the discrete spectrum, while
the others form the continuous spectrum. The discrete spectrum is responsible for
the existence of solitary waves discovered first for the Korteweg-de Vries equation
by Zabusky and Kruskal (1965) and later found in many important equations and ob-
served in different physical problems. The solitons are localized nonlinear solutions
that interact elastically with other solitons and quasilinear waves, preserving their
energy and shape. Considering the Cauchy problem on the infinite interval with
q → 0 when x → ±∞, any initial perturbation evolves into a set of solitons (they
correspond to the discrete spectrum) and a spreading due to dispersive oscillatory
tail (described by the continuous spectrum). Since the system is conservative, the
spreading waves decay in amplitude over time, so the solitons represent the asymp-
totic solution of the initial value problem for the integrable equation such as the
NLS equation.
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Fig. 4.2 The envelope soliton solution (4.60) with Aes = 1 and Ves = 10. The real part of the
solution is given by the solid line, while the dashed lines show ±|qes|

A solitary wave of the NLS equation is represented by the nonlinear envelope as
follows

qes (x, t) = Aes

exp
[
i
(

xVes
/

2 −
((

Ves
/

2
)2 −A2

es

)
t
)]

cosh(Aes (x−Vest))
, (4.60)

where Aes is the amplitude, and Ves is the speed of the envelope soliton. The envelope
soliton (4.60) is plotted in Fig. 4.2.

The part of the wave field corresponding to the continuous spectrum tends to the
following solution when t → ∞

qtail (x, t) =
Q√

t
exp

[
i

(
x2

4t
+2Q2 ln t +Θ

)]
, (4.61)

where Q and Θ are functions of the ratio x/t (Ablowitz and Segur 1979).
The multisoliton solution may be found analytically, but even the two-soliton

expression (a bi-soliton) has a rather complicated form (see Peregrine 1983,
Akhmediev and Ankiewicz 1997). That is why the numerical solution of the NLS
equation (4.57) is often used as the less laborious way of analysis. The nonlin-
ear combinations of solitons (4.60) with background waves will be discussed in
Sect. 4.2.3.

4.2.2 Nonlinear-Dispersive Formation of a Rogue Wave

The problem, which is at the heart of our attention in this section, is “How can
normal waves evolve into a rogue wave?” Let us draw the reader’s attention to the
fact that the change q → q∗ in the NLS equation (4.57) is equivalent to the time
inversion: t →−t. This property becomes understood from relation (4.20), where the
complex conjugation corresponds to inversion of the velocity, which should result
in time inversion. Due to this symmetry, instead of considering the process of freak
wave generation, the opposite evolution may be investigated. Suppose we know the
rogue wave profile. What are the waves resulting from its disintegration? Hence, the
problem of seeking the wave combinations causing rogue waves is transformed into
an initial value problem for a probable rogue wave shape.

We choose the expected freak wave q(x) having a pulse-like shape. It should be
understood, however, that the NLS equation is valid for weakly modulated wave
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trains, and thus an impulse field q(x) corresponds to a wave group η(X) with carrier
wavenumber K0 on the sea surface.

The initial value problem for the NLS equation (4.57) for some shapes of the
impulse disturbances was studied by Satsuma and Yajima (1974), Burzlaff (1988),
Kaup and Malomed (1995), Desaix et al. (1996), Clarke et al. (2000), and Slun-
yaev (2001). They provide qualitatively and quantitatively similar results. A partic-
ular shape of the expected freak wave

q f r = Ap sech
( x

L

)
, (4.62)

where Ap and L are real positive values, will be considered. The initial value problem
(4.59) for the potential (4.62) was solved by Satsuma and Yajima (1974), and the
discrete eigenvalues are defined by the expression

λnL =
M
π

−n+
1
2
, n = 1,2, ...,Ns, (4.63)

where the number of discrete eigenvalues is given by

Ns =
[

M
π

+
1
2

]
. (4.64)

The bracket [ f ] in (4.64) denotes the integer part of f . The parameter M is the
“mass” of the initial wave shape

M =
∞∫

−∞

∣
∣q f r

∣
∣dx, (4.65)

which is equal to M = πApL for a freak wave having the shape of the sech function
(4.62). Discrete eigenvalues emerge only when the mass exceeds the threshold value
M ≥ Mth where

Mth =
π
2

. (4.66)

Every eigenvalue λ corresponds to an envelope soliton (4.60) with parameters
defined by the relation

λ =
1
2

Aes + i
1
4

Ves. (4.67)

Therefore, the integer number Ns is often called the soliton number.
Actually, besides the sech-like initial pulse, the solution (4.63) and (4.64) is valid

for a variety of real shapes q f r(x) (see Satsuma and Yajima 1974, Burzlaff 1988,
Kaup and Malomed 1995, Desaix et al. 1996, Clarke et al. 2000, and Slunyaev
2001). The number M is a convenient parameter of the Cauchy problem since it
corresponds to the ratio of nonlinearity with respect to dispersion in Eq. (4.57). This
ratio is

q |q|2

qxx
∝ |q|2 L2 ∝ M2 (4.68)

(L is the characteristic length scale) and shows the significance of nonlinear effects
compared with dispersive effects. Note that one envelope soliton has “mass”
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Mes = π, (4.69)

that is twice the threshold value in Eq. (4.66). When the number of discrete eigen-
values Ns is large (and M is large, too) then formula (4.64) with M defined by
Eq. (4.65) agrees with the quantization rule of Bohr and Sommerfeld (Landau and
Lifshitz 1980) for the scattering problem defined by the first equation in (4.59).

Now, two states of the wave evolution may be compared: the expected freak wave
and the result of its evolution over time. When solitons emerge, their amplitudes
satisfy Eq. (4.67). The maximum amplitude of the solitary part of the field is equal
to Amax = 2λ1. Applying the formal definition of a rogue wave (I.1), as Ap/Amax ≥ 2,
one may easily obtain the necessary condition for the freak wave occurrence from
(4.63)

M ≤ 2π
3

≈ 2.1. (4.70)

Condition (4.70) allows the existence of no more than one envelope soliton in
the wave field (see (4.64)), which may give birth to a freak wave. If M < Mth, the
wave field does not contain solitons at all. Thus, solitons are not necessary for the
formation of a freak wave; and what is more important, rogue waves in the form
of very nonlinear (with large M) pulse-like wave packets cannot be formed. An
intensive dispersive tail is most important in this process. Its asymptotic form is
given by (4.61).

4.2.2.1 Case of a Small Mass Parameter

In the limit M → 0, solitons do not appear (actually, when M < π/2,Ns = 0). Hence,
only spreading decaying wave trains may occur as the result of the Cauchy problem.
The problem may be considered in the linear approach as a first approximation. The
linear wave grouping due to dispersion has been considered in Chap. 3. The evo-
lution of the Gaussian pulse in the linear limit is described by the exact solution
(3.27).1 In the deep-water case, the dispersion law results in quadratic wavenumber
modulation, optimal for the dispersive focusing. Other shapes of the expected rogue
waves correspond to other distributions of the energy and phases in the dispersive
train, although the quadratic phase modulation remains optimal and becomes appar-
ent over time. Note that solution (4.61) has quadratic phase modulation if Q and Θ
are taken as constant. In fact, these functions correct the optimal phase modulation,
but such a correction becomes less important if t is large. Formula (3.23), describing
the asymptotic behavior of the wave field stemming from the linear disintegration of
a rogue wave in the form of the delta-function, does not contain these corrections.

In a more complicated case, the expected freak wave profile may be repre-
sented by the Gaussian shape with quadratic phase modulation, specified by the
parameter β ,

q f r = Apexp
[
−
(
x
/

L
)2
]

exp
(
−iβx2) . (4.71)

1 Note that here there is a temporal wave evolution, while in Chap. 3 it is the spatial one.
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Kaup and Malomed (1995) showed that the squared modulation leads to a growth
of the thresholds of the emerging soliton (4.66); the discrete eigenvalues move along
the real axis closer to zero. This result agrees with simple estimations made in
(Slunyaev et al. 2002). Thus, a freak wave, expected as a modulated impulse (4.71),
is the result of an even lower number of solitons (i.e., one or none).

4.2.2.2 Competition of the Self-Modulation and Dispersive Effects

When a wave train has both amplitude and phase modulation, the effects of dis-
persive and nonlinear self-focusing will compete with each other. We illustrate this
case with the help of a numerical simulation of the NLS equation (4.57). The initial
condition is taken in the following form

q(x, t = 0) = A0 (1+ ε cos(x/LBF))exp
(
ix2/L2

disp

)
, (4.72)

where A0 = 0.043, ε = 0.1 (it is a small parameter specifying the strength of the
amplitude modulation), LBF = 28, and Ldisp varies. Length scales LBF and Ldisp are
responsible for the amplitude and wavenumber modulation, respectively. Results of
the numerical simulation of the evolution of the envelope are presented in Fig. 4.3

(a) (b)

Fig. 4.3 Numerical simulations of the wave train with amplitude and phase modulation (4.72)
within the NLS model. (a) The initial profile and the amplified wave envelopes for different values
of the parameter of phase modulation Ldisp. (b) The maxima of the wave field envelope versus
time, corresponding to the cases shown in panel (a)
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for different values of Ldisp. Focusing due to the phase modulation (small Ldisp)
happens rapidly and for short time scales, while modulational growth due to the
Benjamin-Feir instability (large Ldisp) occurs for longer time scales. When the mod-
ulational instability starts, the growth is exponential and then saturates (see Kharif
et al. 2001 and Slunyaev et al. 2002). The dispersive focusing exhibits a power-law
dependence and has a sharp maximum (see Sect. 3.2).

4.2.3 Solitons on a Background and Unstable Modes

In the previous section, the Cauchy problem on infinite intervals with zero condi-
tions at infinity has been considered, and the dispersive quasi-linear waves could
spread and decay. The case of non-zero background waves, as well as the periodic
problem, leads to the nonlinear interaction of the waves of the discrete spectrum
with quasi-linear waves that cannot be neglected.

4.2.3.1 Exact Solutions

The so-called “breather” solutions2 of the NLS equation represent nonlinear inter-
actions of an envelope soliton with a background plane wave. These basic solutions
were first obtained by Kuznetsov (1977), Kawata and Inoue (1978), and Ma (1979),
and completed later in Peregrine (1983), Akhmediev et al. (1985, 1987), Nakamura
and Hirota (1985), Tajiri and Watanabe (1998), Dysthe and Trulsen (1999), Calini
and Schober (2002), and Slunyaev et al. (2002). The simplest case of a breather is
represented by a single eigenvalue of the modified associated scattering problem
when the solution tends to a plane wave at infinity (x →±∞). Except the different
boundary conditions, other details of the approach are similar to the classical one
given by (4.59). From this point of view, a breather may be called a soliton (usually
called Ma soliton) or the superposition of a classical envelope soliton of the NLS
equation with a plane wave. Naturalness and richness of this interpretation will be
demonstrated below. We will use the general form of this solution, obtained directly
from the inverse scattering problem in Slunyaev et al. (2002) and through the Hirota
method in Tajiri and Watanabe (1998). For the dimensionless NLS equation (4.57),
the solution with a single eigenvalue λ is given by

qbr (x, t) = e2it×

× cosμcos(2γ (x− vt)+2iψ)− coshψcosh(2Γ(x−Vbrt)+2iμ)
cosμcos(2γ (x− vt))− coshψcosh(2Γ(x−Vbrt))

, (4.73a)

2 Note that this name for solutions of this kind is not generally accepted. For instance, Akhmediev
and Ankiewicz (1997) refer to the specific collision of two solitons with equal speeds localized at
the same place as a “breather.”
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where

Γ = −sinhψcosμ , γ = coshψsinμ ,

Vbr = −cosh2ψsin2μ
sinhψcosμ

, v =
sinh2ψcos2μ

coshψsinμ
,

λ = cos(μ + iψ) .

(4.73b)

Here, Vbr is the speed of the plane wave perturbation that is traveling as a group.
The speed and parameters v, γ , and Γ are defined through the eigenvalue. Solu-
tion (4.73) is scaled with respect to the amplitude of the surrounding plane wave
(qbr(x, t) → exp(2it) when x →±∞).

While evolving, the perturbations of the plane wave oscillate with the period

Tbr =
π

cos2μ sinh2ψ
(4.74)

and stay within the interval
∣
∣Abr −Apw

∣
∣≤ |qbr| ≤

∣
∣Abr +Apw

∣
∣ , (4.75)

where
Abr = 2coshψ cosμ , Apw = 1 (4.76)

(Apw denotes the amplitude of the plane wave). The following relations between the
breather’s and eigenvalue properties may be straightforwardly found from (4.73):

λ =
Abr

2
− isinμ sinhψ and Vbr = 4 Im (λ )

1+ coth2ψ
2

. (4.77)

Vbr is the breather velocity defined in (4.73b), and Abr plays the role of the breather
amplitude.

Solution (4.73) may look differently, like a pulsating disturbance (Fig. 4.4a) or
like a propagating group of the plane wave perturbations (Fig. 4.4b). It is straight-
forward to see that in the case λ ∈ℜ the solution (4.73) tends to the time-periodic
Ma soliton when λ > 1,

qbr (x, t) = e2it+iϕ0 × cos(ωbrt −2iψ)− coshψcosh(2Γ(x− x0))
cos(ωbrt)− coshψ cosh(2Γ(x− x0))

, (4.78)

where

Γ = −sinhψ, ωbr =
2π
Tbr

, λ = coshψ.

Solution (4.78) does not propagate, since Vbr = 0. When 0 < λ < 1, the solution
(4.73) is reduced to the Akhmediev et al. (1985) solution3

3 Akhmediev et al. (1987) also found a double periodic (in time and space) solution.
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Fig. 4.4 Breather solutions (4.73) of the NLS equation. (a) A traveling Ma soliton-like solution
(λ = 1.2+0.2i). (b) A traveling envelope-like solution (λ = 0.5+0.2i). (c) The time-periodic Ma
soliton (λ = 1.2). (d) The space-periodic Akhmediev solution (λ = 0.8). (e) The rational solution
of Peregrine (λ = 1)

qbr (x, t) = e2it+iϕ0 × cosμcos(2γ (x− x0))− cosh(σt −2iμ)
cosμcos(2γ (x− x0))− cosh(σt)

, (4.79)

where
γ = sinμ , σ = 2sin(2μ) , λ = cosμ .

The solution (4.79) does not propagate; it is space-periodic and breathes once.
The so-called Peregrine (1983) solution is the limit of Eq. (4.73) when λ → 1 is
imposed:
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qbr (x, t) = e2it+iϕ0

(

1− 4(1+4it)

1+4(x− x0)
2 +16t2

)

. (4.80)

Nakamura and Hirota (1985) called this rational solution the explode-decay soli-
tary wave. The examples of the particular solutions (4.78), (4.79), and (4.80) are
shown in Fig. 4.4c–e.

Peregrine (1983) pointed out that the Kuznetsov-Ma soliton tends to a usual en-
velope soliton solution of the NLS equation when its amplitude is much larger than
the plane wave amplitude (Abr � Apw). According to formula (4.75), the behavior
of the general breathing wave (4.73) may evidently be interpreted in some sense as a
linear superposition of a nonlinear envelope with its own amplitude Abr and a plane
wave with amplitude Apw.

Let us now suppose that the soliton has run away from the region of interaction
with the plane wave and is propagating over the zero background (see illustration in
Fig. 4.5). Since the nonlinear spectrum λ is conserved, the breather’s eigenvalue will
be related to the envelope soliton parameters by Eq. (4.67). Comparing Eq. (4.77)
with Eq. (4.67), one may conclude how the collision with a plane wave affects a
soliton: the envelope preserves its amplitude in the interaction, Abr = Aes, but it
accelerates (compare the speeds defined by Eqs. (4.67) and (4.77) for the same
value of λ ). Figure 4.6 illustrates how combinations of envelope and plane wave
parameters result in different kinds of breathing waves. Horizontal curves on the

Fig. 4.5 Numerical simulation of an envelope soliton-plane wave collision. The soliton is orig-
inally located at the zero background and has rightward velocity, while the plane wave solution
(|x| > 75) does not move in the chosen frame of reference. Periodic boundary conditions are em-
ployed. It is readily seen how the soliton climbs up the plane wave and restores its original shape
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Fig. 4.6 The λ -plane of an envelope soliton over background and corresponding solutions. Left
column of images, from top to bottom: the time-periodic Ma solution (λ > 1), the limiting Pere-
grine solution (λ = 1), and the space-periodic Akhmediev solution (λ < 1). Horizontal lines on
the plane denote dimensionless soliton amplitudes, and bent curves show the isovelocity lines

λ -plane show the isoamplitude lines (the amplitude values are given by numbers);
bent curves represent the isovelocity lines (numbers indicate corresponding values
of Vbr). The traveling solution is less influenced by the plane wave when Aes is large
and/or the difference between the speeds of the soliton and the plane wave is large
(Slunyaev 2006).

It follows from formula (4.75) that when an envelope soliton interacts with the
background plane wave, the maximum wave field is just the linear superposition
of the amplitudes of the soliton and the background wave. The maximum wave
amplification that can be achieved in this process (3 times) is obtained with the
Peregrine soliton (4.80) (Fig. 4.4e) that presents a single oscillation of one localized
perturbation of the plane wave. This solution corresponds to the case Aes/Apw = 2.

4.2.3.2 Chaotic Behavior of the Wave Modulations

When several breathing waves interact (they may be called multibreathers) more
complex solutions have been considered (see Calini and Schober 2002). Besides
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the complexity of the analytical description (and comprehension of the dynam-
ics by eye), the case of interacting breathers (“solitonic turbulence;” see Zakharov
et al. 2006a,b) is sensitive with respect to any kind of perturbations. This is due
to the fact that the NLS breathers are homoclinic orbits of the equation—thus,
small perturbations (for example, such as the round-off errors of numerical com-
putations) may result in chaotic behavior of the wave modulations (see Ablowitz
and Herbst 1990, Ablowitz et al. 2000, 2001). The integrable NLS equation pos-
sesses the Fermi-Pasta-Ulam recurrence (Newell 1981), although its approximate
models may lose this property. Therefore, the detailed description of real modula-
tions of sea waves obviously fails, if the cases of many breathers or evolution over
time are considered. The statistical approach given in Sect. 4.4 may turn out to be
more successful, although the soliton and breather conceptions are often very useful
for the understanding of particular wave dynamics.

It is straightforward to show that the Akhmediev solution (4.79) provides an ex-
ponential growth, which is equal to the modulational growth rate (4.40) (here values
α = 2,β = 1,A0 = 1,ΔK = 2γ should be employed). Hence, the breather solutions
indeed describe the development of the Benjamin-Feir instability. The wavenum-
ber corresponding to the maximum growth rate (4.41) results in the length scale
γ = 1/

√
2, hence, μ = π/4. This corresponds to the breather amplitude (4.76)

Abr =
√

2. The amplification factor achieved by solution (4.79) is then obtained
using (4.75) and reads

max(|qbr|)
Apw

=
Abr +Apw

Apw
= 1+

√
2 ≈ 2.4, (4.81)

which is smaller than the result of the Peregrine solution (3 times) but still agrees
with the rogue wave criterion (I.1).

In such a way the breathing solutions are closely linked with the modulational
instability. They are often associated with unstable modes that can be revealed in
the wave field with the help of the IST and then used to describe the modulational
properties of the waves. Osborne et al. (2005) suggested this approach on the basis
of the scattering problem on a periodic domain (long before, the IST was applied
by Osborne and Petti (1994) to analyze shallow water laboratory waves). The un-
stable modes were also studied by Islas and Schober (2005); another way to use the
IST to analyze real sea waves was suggested and developed in papers by Slunyaev
et al. (2005, 2006) and will be considered in Sect. 4.7.1.

When the statistical description is concerned, the effects of nonlinear instabili-
ties do influence the probability distribution functions. These effects are beyond the
bound nonlinear wave corrections and certainly result from the dynamics described
in this section. Some recent results on sea wave probabilistic descriptions that in-
volve nonlinear wave-wave interactions and the bridge to the dynamical aspect will
be discussed further in Sect. 4.4.

To conclude this section, we briefly present some results on chaos and modula-
tional instabilities that go beyond the NLS equation. Solving the Zakharov equa-
tion numerically, Caponi et al. (1982) discovered that owing to the modulational
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instability the Stokes wave train evolves into a chaotic system. They called this
phenomenon confined chaos. Later, Yasuda and Mori (1997) simulated numerically
the long-term evolution of a perturbed Stokes wave by modulational instabilities us-
ing the fully nonlinear equations. They showed that the evolution of the perturbed
Stokes wave trains into Fermi-Pasta-Ulam recurrence or chaos depends on the num-
ber of Fourier modes within the unstable range, the initial steepness of the Stokes
waves and the nonlinear coupling between the fundamental modes and higher har-
monics of the modulation. By means of high-order modeling with sufficiently many
degrees of freedom, they demonstrated that Stokes wave trains evolve into chaotic
systems. The numerical method used by Yasuda and Mori is due to Dommermuth
and Yue (1987) and is presented in the next section.

4.3 Rogue Wave Simulations within the Framework of the Fully
Nonlinear Equations

In the previous section, the dynamics of rogue waves have been investigated within
the framework of weakly nonlinear theories. The validity of these models can be-
come questionable in accurately describing rogue waves that are strongly nonlinear
water waves. The approximate models may be inaccurate when the extreme wave
event is occurring. Hence, to have a more realistic description of this phenomenon,
it is necessary to use the fully nonlinear equations (2.13), (2.28), (2.30), and (2.31)
with initial and boundary values for the potential and elevation. In constant depth
and infinite depth, the bottom condition is given by Eqs. (2.46) and (2.61), re-
spectively. Most of the time, these equations are solved numerically. Different
numerical methods are available for the spatio-temporal evolution of water-wave
groups. Among the many papers devoted to extreme wave events due to modula-
tional instability and dispersive or directional focusing, one can cite the follow-
ing list, which is not exhaustive: Henderson et al. (1999), Bateman et al. (2001),
Clamond and Grue (2002), Touboul et al. (2006), Clamond et al. (2006), Fochesato
et al. (2007), Dyachenko and Zakharov (2005), and Kharif et al. (2008). Among
the different kinds of numerical methods used commonly to simulate unsteady evo-
lution of strongly nonlinear free surface flows due to modulational instability and
dispersive or directional focusing, we present here a High-Order Spectral Method
(HOSM) and a Boundary Integral Equation Method (BIEM).

4.3.1 A High-Order Spectral Method

We consider the case of infinite depth and introduce the following dimensionless
variables into Eqs. (2.13), (2.28), (2.29), and (2.61): x = K0X ,y = K0Y,z = K0Z,ζ =
K0η ,ϕ = φ · (g/K3

0 )−1/2, p = P/(ρg/K0), where K0 is a reference wavenumber.
Hence, the kinematic and dynamic boundary conditions become
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∂ζ
∂ t

+
∂ϕ
∂x

∂ζ
∂x

+
∂ϕ
∂y

∂ζ
∂y

− ∂ϕ
∂ z

= 0 on z = ζ , (4.82)

∂ϕ
∂ t

+
1
2
∇ϕ ·∇ϕ + pa + z = 0 on z = ζ . (4.83)

Following Zakharov (1968), we introduce the velocity potential at the free sur-
face ϕs(x,y,z, t) = ϕ(x,y,z = ζ (x,y, t), t) into Eqs. (4.82) and (4.83)

∂ζ
∂ t

= −∇ϕs ·∇ζ +w
[
1+(∇ζ )2

]
, (4.84)

∂ϕs

∂ t
= −ζ − 1

2
∇ϕs ·∇ϕs +

1
2

w2
[
1+(∇ζ )2

]
− pa, (4.85)

with

w =
∂ϕ
∂ z

(x,y,z = ζ (x,y, t) , t) . (4.86)

The main difficulty is the computation of the vertical velocity at the free surface,
w. Following Dommermuth and Yue (1987), the potential ϕ(x,y,z, t) is written as a
finite perturbation series up to a given order M

ϕ (x,y,z, t) =
M

∑
m=1

ϕ(m) (x,y,z, t). (4.87)

The term ϕ(m) is of O(εm) where ε , a small parameter, is a measure of the wave
steepness. Then, expanding each ϕ(m) evaluated at z = ζ in a Taylor series about
z = 0, we obtain

ϕs (x,y, t) =
M

∑
m=1

M−m

∑
l=0

ζ l

l!
∂ l

∂ zl ϕ
(m) (x,y,z = 0, t). (4.88)

At a given instant of time, ϕs and ζ are known so that from Eq. (4.88), we can
calculate ϕ(m) at each order:

O(1): ϕ(1) (x,y,z = 0, t) = ϕs (x,y, t) , (4.89)

O(m): ϕ(m) (x,y,z = 0, t) = −
m−1

∑
l=1

ζ l

l!
∂ l

∂ zl ϕ
(m−l) (x,y,z = 0, t). m ≥ 2. (4.90)

These boundary conditions, with the Laplace equations Δϕ(m)(x,y,z, t) = 0 to be
solved in the domain occupied by the water, define a series of Dirichlet problems
for ϕ(m).

For 2π-periodic conditions in (x,y) in deep water, ϕ(m) can be written as follows

ϕ(m) (x,y,z, t) =
∞

∑
j=0

∞

∑
l=0

ϕ(m)
jl (t)exp

(
k jlz

)
exp [i( jx+ ly)], (4.91)

where k jl =
√

j2 + l2.
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Note that ϕ(m)(x,y,z, t) automatically satisfies the Laplace equation and the con-
dition lim∇ϕ(m)(x,y,z, t) → 0 as z →−∞.

For constant finite depth d, an alternative decomposition must be used, namely

ϕ(m) (x,y,z, t) =
∞

∑
j=0

∞

∑
l=0

ϕ(m)
jl (t)

cosh
[
k jl (z+d)

]

cosh
(
k jld

) exp [i( jx+ ly)]. (4.92)

Substitution of (4.91) into the set of Eqs. (4.89) and (4.90) gives the modes

ϕ(m)
jl (t). The vertical velocity at the free surface is then

w =
M

∑
m=1

M−m

∑
l=0

ζ l

l!
∂ l+1

∂ zl+1ϕ
(m) (x,y,z = 0, t). (4.93)

Substitution of Eq. (4.93) into the boundary conditions (4.84) and (4.85) yields
the evolution equations for ϕs and ζ .

The numerical method used to solve the evolution equations (4.84) and (4.85)
is similar to that developed by Dommermuth and Yue (1987). Equations (4.84) and
(4.85) are integrated using a pseudo-spectral treatment with N = JL wave modes,
where J = max( j) and L = max(l) and retaining nonlinear terms up to order M.
Once the surface elevation ζ (x,y, t) and the potential at the free surface ϕs(x,y,z, t)
at time t are known, the modal amplitudes may be computed. The spatial derivatives
of ϕ(m), ϕs, ζ , and w are calculated in the spectral space, while nonlinear terms
are evaluated in the physical space at a discrete set of collocation points (x j,yl).
Fast Fourier Transforms (FFTs) are used to link spectral and physical spaces. Equa-
tions. (4.89) and (4.90) are solved in the spectral space. Evolution equations for ϕs

and ζ are integrated in time using a fourth-order Runge-Kutta integrator with con-
stant time step. The calculation accuracy depends on several sources of errors due
to truncation in the number of modes J and L, and order M, aliasing phenomenon,
numerical time integration, etc. Numerical convergence tests can be found in Dom-
mermuth and Yue (1987) and Skandrani et al. (1996).

Another version of HOSM developed by West et al. (1987) can also be used. The
difference between both methods lies in the way we compute w from ϕ(m). West
et al. (1987) assume a power series for w as

w(x,y, t) =
M

∑
m=1

w(m), (4.94)

where

w(m) =
m−1

∑
l=0

ζ l

l!
∂ l+1

∂ zl+1ϕ
(m−l) (x,y,z = 0, t). (4.95)

The treatment of nonlinear terms in the latter method is useful for comparisons
between the truncated fully nonlinear equation and approximate models, such as the
Zakharov equation.
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4.3.2 A Boundary Integral Equation Method

In this section, we describe a 2D numerical wave tank based on a boundary integral
equation method applied to rogue waves due to energy focusing in a small area. The
computational domain is defined as a volume of fluid bounded by a bottom, two
lateral walls, a paddle, and the free surface (Fig. 4.7). The boundary corresponding
to the bottom, lateral walls, and paddle is denoted by ∂ΩSB while the free surface
is denoted by ∂ΩFS. The Laplace equation (2.13) is solved within this domain. The
no-flux condition along the solid boundaries ∂ΩSB is

∂ϕ
∂n

= vSB ·n, (4.96)

where vSB is the velocity of the rigid boundaries set equal to zero on the bottom and
vertical walls and equal to the velocity of the paddle located at the beginning of the
numerical wave tank. The unit normal to the boundaries is n.

On the free surface, ∂ΩFS, the potential ϕ(x,z, t) satisfies the kinematic boundary
condition written in the following form

Dr
Dt

= ∇ϕ, (4.97)

with r = (x,z)t . The dynamic boundary condition (2.29) is rewritten as

Dϕ
Dt

=
1
2
∇ϕ ·∇ϕ−gz− pa. (4.98)

Hence the set of equations to be solved is the Laplace equation Δϕ = 0 in the fluid
domain, Eq. (4.96) on the rigid boundaries and Eqs. (4.97) and (4.98) on the free
surface. These equations are solved numerically using a boundary integral equa-
tion method (BIEM) and a mixed Euler-Lagrange (MEL) time marching scheme.
Green’s second identity transforms the Laplace equation into the following bound-
ary integral equation for ϕ

∫

∂Ω
ϕ (P)

∂G
∂n

(P,Q)d∂Ω −
∫

∂Ω

∂ϕ
∂n

(P)G(P,Q)d∂Ω = α (Q)ϕ (Q) , (4.99)

Fig. 4.7 Sketch of the
computational domain for the
numerical wave tank

∂ΩFS

∂ΩSB

∂ΩSB

∂ΩSB
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where the integration includes both the solid and free surfaces ∂Ω = ∂ΩSB∪∂ΩFS,
G is the 2D free-space Green’s function, P and Q denote two points of the fluid
domain, and n is the outward unit vector normal to the boundary. The angle α(Q) is
defined as follows: α(Q) = 0 or −2π when Q is outside or inside the fluid domain,
respectively, and α(Q) = θ when Q is on the boundary. The angle θ is the inner
angle with respect to the fluid domain at point Q along the boundary.

Eq. (4.99) can be written in a more explicit form.
For the free surface Q ∈ ∂ΩFS:

θϕ−
∫

∂ΩFS

ϕ (P)
∂G
∂n

(P,Q)d∂Ω +
∫

∂ΩSB

∂ϕ
∂n

(P)G(P,Q)d∂Ω

=
∫

∂ΩSB

ϕ (P)
∂G
∂n

(P,Q)d∂Ω −
∫

∂ΩFS

∂ϕ
∂n

(P)G(P,Q)d∂Ω , (4.100)

For the solid boundaries Q ∈ ∂ΩSB:

∫

∂ΩFS

ϕ (P)
∂G
∂n

(P,Q)d∂Ω +
∫

∂ΩSB

∂ϕ
∂n

(P)G(P,Q)d∂Ω

= θϕ +
∫

∂ΩSB

ϕ (P)
∂G
∂n

(P,Q)d∂Ω −
∫

∂ΩFS

∂ϕ
∂n

(P)G(P,Q)d∂Ω . (4.101)

The unknowns are ∂ϕ/∂n on ∂ΩFS and ϕ on ∂ΩSB. The above equations, that
are assumed to be satisfied at a discrete set of points on the boundary of the fluid do-
main, are transformed into a linear system of algebraic equations for a finite number
of unknowns (for more details see the Appendix). Equations (4.97) and (4.98) are
integrated in time using a fourth-order Runge-Kutta integrator.

4.3.3 Numerical Simulation of Rogue Waves Due
to Modulational Instability

Henderson et al. (1999) investigated the time evolution of a 2D almost uniform wave
train with a small growing modulation. They performed numerical experiments—it
was observed that energy focuses into a short group of steep waves, called steep
wave events (SWE). Details about the numerical code used to study water wave
modulations can be found in Dold (1992). It was found that the breather solutions
of the NLS equation fit numerical SWEs rather well. These SWEs are considered to
be rogue waves. Hence, the rogue-wave mechanism due to the Benjamin-Feir insta-
bility is confirmed in fully nonlinear computations. Later, Clamond and Grue (2002)
and Clamond et al. (2006) performed fully nonlinear numerical simulations of
lengthy evolution of a 2D localized long-wave packet. The numerical method used
is a fast converging iterative solution of the Laplace equation. One part of the so-
lution is obtained by FFT, while another part is highly nonlinear and consists of
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integrals with kernels that decay quickly in space (see Clamond and Grue 2001).
The result showed how interacting solitary wave groups that emerge from the long
wave packet can produce rogue wave events (see Sect. 4.3.5). Dyachenko and
Zakharov (2005) and Zakharov et al. (2006b) claimed that rogue wave events are
due to solitonic turbulence emerging from modulational instability of Stokes waves.
This scenario seems similar to that suggested by Clamond and Grue (2002) and
Clamond et al. (2006). Their simulation was based on a numerical method using a
conformal mapping of the fluid domain to the lower half plane. More generally, this
quasi-solitonic turbulence can appear as a result of the instability of narrow spectral
distributions of gravity waves. More details on solitonic turbulence can be found in
Zakharov et al. (2006a).

Until now, studies on rogue waves have not taken into account the action of wind.
Previous works on rogue waves have not considered the direct effect of wind on their
dynamics. It was assumed that they occur independently of wind action, far away
from storm areas where wind wave fields are formed. Kharif et al. (2008) consid-
ered wind above rogue waves, both numerically and experimentally. Two kinds of
mechanisms yielding rogue waves were investigated. In this subsection, we present
numerical experiments showing how a rogue event can arise from the modulational
instability of a Stokes’ wave train with and without wind.

In different situations, several authors have experimentally investigated the in-
fluence of wind on the evolution of mechanically generated gravity-water waves.
Bliven et al. (1986), Li et al. (1987), and Waseda and Tulin (1999) studied the in-
fluence of wind on Benjamin-Feir instability. Contrary to results reported by Bliven
et al. (1986) and Li et al. (1987), Waseda and Tulin (1999) found that wind did not
suppress the sideband instability. Banner and Song (2002) numerically studied the
onset of wave breaking in nonlinear wave groups in the presence of wind forcing.
Here, we investigate how wind forcing modifies unforced extreme wave events due
to modulational instability.

The generation of extreme wave events can be simply obtained from the
Benjamin-Feir instability (or modulational instability) of uniformly traveling trains
of Stokes’ waves in deep water. It is well-known that these trains are subject to
sideband instability producing amplitude and frequency modulations. This instabil-
ity corresponds to a quartet interaction between the fundamental component (the
carrier) K0 = K0(1, 0) counted twice, and two satellites K1 = K0(1 + p,q) and
K2 = K0(1 − p,−q), where pK0 and qK0 are the longitudinal wavenumber and
transversal wavenumber of the modulation, respectively.

As was emphasized in Sect. 4.1.1, the dominant instability of a uniformly-
traveling train of Stokes’ waves in deep water is the 2D modulational instabil-
ity (class I) provided that its steepness is less than s = 0.30. For higher values
of the wave steepness, 3D instabilities (class II) become dominant, phase locked
to the unperturbed wave. First we shall focus on the 2D nonlinear evolution of a
Stokes’ wave train suffering modulational instability without wind action, and then
with wind action. Two series of numerical simulations that can be found in Kharif
et al. (2008) are presented. They correspond to two wave trains of five and nine
waves, respectively.
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4.3.3.1 Rogue Waves without Wind Action

A series of 2D rogue-wave simulations in deep water, obtained when using the nu-
merical method described in Sect. 4.3.1, is presented. The wind effect on the water-
wave dynamics is neglected, hence the atmospheric pressure, pa, is set equal to zero
in Eq. (4.83).

First, we consider the case of wave trains of five waves. The initial condition is a
Stokes wave train of steepness s = 0.11, disturbed by its most unstable perturbation,
which corresponds to p ≈ 1/5. The fundamental wavenumber of the Stokes wave
is chosen so that integer numbers of the sideband perturbation (satellites) can be
fit into the computational domain. For the considered case, the normalized4 dimen-
sionless fundamental wave harmonic of the Stokes’ wave is k0 = 5 and the dominant
side bands are k1 = 4 and k2 = 6 for the subharmonic and superharmonic part of
the perturbation, respectively. The wave parameters have been rescaled so that the
wavelength of the perturbation is equal to 2π . There exist higher harmonics involved
in the interactions, which are not presented here. The normalized amplitude of the
perturbation relative to the Stokes wave amplitude is initially taken to be equal to
10−3. The order of nonlinearity in the HOSM is M = 6; the number of mesh points
is greater than (M + 1)kmax, where kmax is the highest harmonic taken into account
in the simulation. To compute the evolution length of the wave train, the time step
is chosen to be equal to one hundredth of the fundamental period of the basic wave,
T0. In this way, the time step satisfies the Courant-Friedrichs-Levy (CFL) condition.

The time histories of the normalized amplitude of the carrier, lower sideband, and
upper sideband of the most unstable perturbation are plotted in Fig. 4.8a. Another
perturbation that was initially linearly stable becomes unstable in the vicinity of the
maximum of modulation, resulting in the growth of the sidebands k3 = 3 and k4 = 7.
The nonlinear evolution of the 2D wave train exhibits the Fermi-Pasta-Ulam recur-
rence phenomenon. This phenomenon is characterized by a series of modulation-
demodulation cycles in which initially uniform wave trains become modulated and
then demodulated until they are again uniform. Here, one cycle of modulation-
demodulation is reported. At time t ≈ 360T0, the initial condition is more or less
recovered.

At the maximum of modulation t = 260T0, one can observe a temporary fre-
quency (and wavenumber) downshifting since the subharmonic mode k1 = 4 is
dominant. At this stage, a very steep wave occurs in the group as it can be seen
in Fig. 4.9a. Notice that the solid line represents the free surface without wind ef-
fect while the dotted line corresponds to the case with wind effect, which will be
discussed later. Figure 4.9b–d shows the free surface profiles at several instants in
time. The solid lines correspond to the case without wind action. We can emphasize
that no breaking occurs during the numerical simulation. Dold and Peregrine (1986)
have numerically studied the nonlinear evolution of various modulating wave trains
towards breaking or recurrence. For a given number of waves in the wave train,
breaking always occurs above a critical initial steepness, and below, a recurrence

4 Note the wavenumbers in this Section are normalized in a different way than those in Sect. 4.2.
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Fig. 4.8 Time histories of the amplitude of the main spectral modes for an evolving perturbed
Stokes wave with fundamental wave period T0, without wind action. (a) The fundamental mode
k0 = 5 (solid line), subharmonic mode k1 = 4 (dashed line), superharmonic mode k2 = 6 (dotted
line). The initial wave steepness is s = 0.11. The two lowest curves (dot-dot-dashed and dot-dashed
lines) correspond to the modes k3 = 3 and k4 = 7. (b) The fundamental mode k0 = 9 (solid line),
subharmonic modes, k1 = 7 (dashed line) and k3 = 8 (dot-dashed line), and superharmonic modes,
k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed line). The initial wave steepness is s = 0.13
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Fig. 4.9 Surface wave profiles at t = 260T0 (a), t = 265T0 (b), t = 270T0 (c) and t = 275T0 (d):
without wind (solid lines) and with wind (dotted lines)

towards the initial wave group is observed. This problem was revisited by Banner
and Tian (1998) who, however, did not consider the excitation at the maximum
modulation of the perturbation corresponding to p ≈ 2/5.

A second numerical simulation corresponding to the case of wave trains of
nine waves is now considered. The initial condition is a Stokes wave of steepness
s = 0.13, disturbed by its most unstable perturbation, which corresponds to p≈ 2/9.
The unstable sideband perturbation corresponding to p = 1/9 is introduced, as well.
Hence, we consider the nonlinear evolution of the wave train when two unstable
modulations are now present, whereas in the previous case only one unstable mod-
ulation was introduced. The fundamental wave harmonic of the Stokes wave is now
k0 = 9, and the dominant sidebands are k1 = 7 and k2 = 11 for the subharmonic and
superharmonic parts of the perturbation, respectively, while the satellites k3 = 8 and
k4 = 10 are the sidebands of the unstable perturbation corresponding to p = 1/9.
The time histories of the normalized amplitude of the carrier, lower sideband, and
upper sideband of the two unstable perturbations are plotted in Fig. 4.8b. A kind
of Fermi-Pasta-Ulam recurrence can be observed, which is stopped at t ≈ 500T0 by
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the onset of breaking. Here, the onset of breaking is delayed by the presence of two
unstable perturbations. This result is in agreement with those of Dold and Peregrine
(1986) and Banner and Tian (1998). At t = 192 T0, t = 360 T0, and t = 445 T0,
which correspond to the first, second, and third maxima of modulation, an extreme
wave event occurs as shown in Fig. 4.10a (solid line), Fig. 4.10e,f. The subharmonic
sideband, k1 = 7, is dominant and a temporary frequency downshifting is observed.
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Fig. 4.10 Surface wave profiles at t = 192 T0 (a), t = 195 T0 (b), t = 200 T0 (c), t = 210 T0 (d),
t = 360 T0 (e) and t = 445 T0 (f): without wind (solid lines) and with wind (dotted lines)
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Figure 4.10b–d gives the profiles of the wave train at t = 195 T0, t = 200 T0, and
t = 210 T0, respectively.

Owing to a mode competition between the satellites of the two unstable distur-
bances, it is now the subharmonic sideband, k3 = 8, of the initially less unstable
perturbation that is dominant at the second maximum of modulation.

4.3.3.2 Rogue Waves with Wind Action

Here, we investigate how wind forcing modifies unforced extreme wave events due
to the modulational instability. The questions are: how do the extreme wave events
due to the modulational instability under wind action evolve? How are the amplifi-
cation and time duration of these waves under wind effect modified?

It was shown experimentally (Kharif et al. 2008) that steep wave events occurring
in wave groups are accompanied by air flow separation. The experimental results are
presented in Sect. 4.5. Jeffreys (1925) suggested that the energy transfer from wind
to water waves was due to the form drag associated with the air flow separation
occurring on the leeward side of the crests. The air flow separation produces a pres-
sure asymmetry with respect to the wave crest resulting in a wave growth. However,
this mechanism can be invoked only if the waves are sufficiently steep. For weak
or moderate steepness of the waves, this phenomenon cannot apply and the Jeffreys
sheltering mechanism becomes irrelevant. Hence, a modified sheltering effect has
been suggested by Kharif et al. (2008). Following Jeffreys, the relationship between
the pressure at the interface and the local wave slope is given by

Pa = ρas j
(
Uw −Cph

)2 ∂η
∂X

, (4.102)

where s j is termed the sheltering coefficient, Uw is the wind speed, Cph is the wave
phase velocity, and ρa is the density of the air. Expression (4.102) is applied for only
steep waves—i.e., when the local wave slope ∂η/∂X becomes larger than a given
threshold (∂η/∂X)c, otherwise Pa = 0.

Figure 4.11a,b is similar to Fig. 4.8a,b, respectively, except that now water waves
evolve under wind action. Wind forcing is applied over crests of the group of five
waves of slopes larger than (∂η/∂X)c = 0.405, while for the group of nine waves
it is applied over crests of slopes steeper than 0.5125. These conditions are satisfied
for 256 T0 < t < 270 T0 for the first wave train, and for 187 T0 < t < 200 T0 and
237 T0 < t < 240 T0 for the second—that is, during the maximum of modulation
that corresponds to the formation of the extreme wave event. When the values of
the wind velocity are too high, the numerical simulations fail during the formation
of the extreme wave event, owing to breaking. During the breaking wave process,
the slope of the surface becomes infinite, leading numerically to a spread of energy
into high wavenumbers. This local steepening is characterized by a numerical blow-
up (for methods dealing with an Eulerian description of the flow). To avoid a wave
breaking too early, the wind velocity Uw is fixed close to 1.75 Cph. Owing to the
weak effect of the wind on the kinematics of the crests on which it acts, the phase
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Fig. 4.11 Time histories of the amplitude of the main spectral modes for an evolving perturbed
Stokes wave with fundamental wave period T0, with wind action (Uw = 1.75Cph). (a) The funda-
mental mode k0 = 5 (solid line), subharmonic mode k1 = 4 (dashed line), and superharmonic mode
k2 = 6 (dotted line). The initial wave steepness is s = 0.11. The two lowest curves (dot-dot-dashed
and dot-dashed lines) correspond to the modes k3 = 3 and k4 = 7. (b) The fundamental mode
k0 = 9 (solid line), subharmonic modes, k1 = 7 (dashed line) and k3 = 8 (dot-dashed line), and
superharmonic modes, k2 = 11 (dotted line) and k4 = 10 (dot-dot-dashed line). The initial wave
steepness is s = 0.13
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velocity, Cph, is computed without wind. The effect of the wind significantly reduces
the demodulation cycle and thus sustains extreme wave event.

This feature is clearly shown in Fig. 4.12a,b corresponding to the wave trains of
five and nine waves, respectively. The amplification factor is stronger in the pres-
ence of wind, and the rogue wave criterion is satisfied during a longer period of
time. In the presence of wind forcing, extreme waves evolve into breaking waves at
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Fig. 4.12 Numerical amplification factor as a function of time without wind (solid lines) and with
wind (dotted lines) for Uw = 1.75Cph: (a) for the wave train of five waves, (b) for the wave train of
nine waves
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t ≈ 330 T0 and t ≈ 240 T0 (dotted lines in Fig. 4.12a,b) for wave trains of five and
nine waves, respectively. For the case of a wave train of five waves, Fig. 4.9a–d dis-
play water wave profiles at different instants of time in the vicinity of the maximum
of modulation with and without wind. The solid lines correspond to waves propagat-
ing without wind, whereas the dotted lines represent the wave profiles under wind
action. These figures show that the wind does not modify the phase velocity of the
very steep waves while it increases their height and duration. A similar behavior is
shown in Fig. 4.10a–d corresponding to the group of nine waves.

We can conclude that extreme waves occurring under wind action in both wave
trains present the same features. Furthermore, in the presence of local wind forcing,
extreme waves evolve into breaking waves for initial wave trains of steepness s =
0.11 and s = 0.13 considered here. In another context, Banner and Song (2002)
investigated numerically the onset and strength of breaking for deep water waves
under wind forcing and surface shear. In their study, wind modeling is based on
Miles’ theory, which is different from Jeffreys’ sheltering mechanism used in this
chapter.

4.3.4 Numerical Simulation of Rogue Waves Due to Dispersive
Focusing in the Presence of Wind and Current

As shown in Chap. 3, extreme wave events can be generated by means of dispersive
enhancement of wave trains. This mechanism is based upon the dispersive nature
of water waves. We consider a chirped wave packet with the leading waves having
a higher frequency than trailing waves. For this purpose, the numerical wave tank
described in Sect. 4.3.2 is used to produce an extreme wave event.

Within the framework of infinite depth and linear waves, the frequency imposed
to the wavemaker located at X = 0 is given by formula (3.18), where Xf and Tf are
the coordinates of the point of focus in the (X ,T ) plane. The coordinates of the focus
point read

Tf = ΔT
fmax

fmax − fmin
, (4.103)

Xf =
gΔT
4π

1
fmax − fmin

, (4.104)

where fmax and fmin are the maximum and minimum values of the frequency (note
that the relation between the cyclic frequency Ω and the frequency f is Ω = 2π f )
imposed to the wavemaker during a period of time ΔT .

Within the framework of the linear theory, the focus points are singular points
where the amplitude becomes infinite and behaves as (Tf −T )−1/2 (see (3.19)). As it
was shown by Touboul et al. (2006) and Kharif et al. (2008), when nonlinear effects
are introduced, the rogue wave formation mechanism is not suppressed. In this case,
the amplitude of the extreme wave event is finite. The frequency of the wavemaker
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of the numerical wave tank is varied linearly from fmax = 1.85 Hz to fmin = 0.8 Hz
during ΔT = 23.5 s. The focusing mechanism is investigated with and without wind
as well (Touboul et al. 2006, Kharif et al. 2008). A series of numerical simulations
has been run for two values of the wind velocity: Uw = 0 m/s and Uw = 6 m/s. For
each value of the wind velocity, the amplification factor A of the group between
fetches X and 1 m is defined as follows

A(X ,Uw) =
Hmax (X ,Uw)

Hre f
, (4.105)

similar to the abnormality index. In (4.105), Hmax(X ,Uw) is the maximum height
between two consecutive crests and troughs in the transient group, and the height
Hre f of the quasi uniform wave train generated at the entrance of the tank is mea-
sured at 1 m. Figure 4.13 shows the experimental and computed surface elevation as
a function of time at fetch X = 1 m. The experimental results will be presented in
detail in Sect. 4.5.

Using definition (4.105), Fig. 4.14 describes the spatial evolution of the numer-
ically computed amplification factor. For a value of the threshold wave slope fixed
to be equal to 0.3, a blow-up of the numerical simulation occurs owing to the on-
set of breaking. This threshold value is too low and the transfer of energy from the
wind to the steep waves leads to wave breaking. The threshold value of the slope
beyond which the wind forcing is applied has been increased and is 0.4. This value
corresponds to a wave close to the limiting form for which the modified Jeffreys the-
ory applies. The observed asymmetry between the focusing and defocusing regimes
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Fig. 4.13 Surface elevation as a function of time at fetch X = 1 m: experiments (solid line) and
numerical simulation (dotted line) within the framework of the spatio-temporal focusing
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Fig. 4.14 Numerical amplification factor A(X ,Uw) as a function of the distance X for two values
of the wind velocity within the framework of the spatio-temporal focusing: Uw = 0 (solid line)
and Uw = 6 m/s with the threshold value of the wave slope taken to be equal to 0.4 (dotted line),
Uw = 6 m/s with the threshold value of the wave slope taken to be equal to 0.3 (dashed line)

can be explained as follows. Without wind, the amplitude of the extreme wave is
decreasing during defocusing. In the presence of wind, the modified Jeffreys mech-
anism that is acting locally in time and space amplifies only the highest waves and
hence delays their amplitude decrease during the very beginning of the defocusing
stage. The competition between the dispersive nature of the water waves and the
local transfer of energy from the wind to the extreme wave event leads to a bal-
ance of these effects at the maximum of modulation. This asymmetry results in an
increase in the lifetime of the steep wave event, which increases with the wind ve-
locity. Hence, the duration of the wind effect is relatively too short to increase the
amplification of the extreme wave event significantly. However, a weak increase of
the amplification factor is observed in the presence of wind. The main effect of Jef-
freys’ sheltering mechanism is to sustain the coherence of the short group involving
the steep wave event.

Figure 4.15 shows the numerical amplification factor as a function of the normal-
ized fetch X/Xf , where Xf is the abscissa of the point of focus without wind. The
experimental amplification factor is plotted for comparison as well. We can observe
an excellent agreement between the numerical and experimental results. The numer-
ical and experimental values of the abscissa of the focus point, Xf , and amplification
factor, A, are almost the same.

In the presence of wind of velocity Uw = 6 m/s, Fig. 4.16a demonstrates that the
numerical and experimental amplification factors deviate from one another beyond
the focus point. For a value of the threshold wave slope fixed to be equal to 0.4, the
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Fig. 4.15 Numerical (solid line) and experimental (circles) amplification factor A(X/Xf ,Uw) as
a function of the normalized distance without wind within the framework of the spatio-temporal
focusing

Jeffreys’ sheltering mechanism is not effective enough in the present case, whereas
a reduction of the threshold value to 0.30 produces the onset of breaking at the focus
point.

Wind waves are generally propagating in the presence of a current. Figure 4.16b
corresponds to the spatio-temporal focusing in the presence of wind and current
with a value of the threshold slope taken to be equal to 0.3. The wind velocity is
Uw = 6 m/s and a uniform following current corresponding to 2% of Uw has been
introduced to have the numerical value of the focus point equal to the experimental
value. Generally, the current induced by wind is equal to 3% of the wind velocity.
More information about the introduction of a current in the model can be found in
the paper by Touboul et al. (2007), who considered the formation of rogue waves
from transient wave trains propagating on a current. The laboratory experiments of
Wu and Yao (2004) should also be reviewed. The introduction of the following cur-
rent prevents the onset of breaking. During extreme wave events, the wind-driven
current may play a significant role in the wind-wave interaction. The combined
action of the Jeffreys sheltering mechanism and wind-driven current may sustain
longer extreme wave events. We can see good agreement between the numerical
simulation and the experiment. The steep wave event is propagating over a longer
distance (or period of time) in the numerical simulation as well as experiments.

To summarize, we can claim that within the framework of the spatio-temporal fo-
cusing (or dispersive focusing) both numerical and experimental results are in qual-
itative good agreement even if some quantitative differences have been observed,
namely when the wind-induced current is ignored. Moreover, the importance of a
following current on the evolution of the wave group has been emphasized as well.
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Fig. 4.16 Numerical (solid and dashed lines) and experimental (circles) amplification factor
A(X/Xf ;Uw) as a function of the normalized distance for threshold values of the wave slope equal
to 0.3 (solid line) and 0.4 (dashed line) within the framework of the spatio-temporal focusing: (a)
with wind (Uw = 6 m/s), (b) in the presence of wind (Uw = 6 m/s) and following current

The results of this section have shown that extreme wave events generated by dis-
persive focusing behave similarly to those due to modulational instability in the
presence of wind, as discussed previously. It is found that extreme wave events gen-
erated by two different mechanisms exhibit the same behavior in the presence of
wind.
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4.3.5 Numerical Simulation of Rogue Waves Due
to Envelope-Soliton Collision

As it has been discussed in Sect. 4.2, the nonlinear wave groups, also called enve-
lope quasi-solitons, are often a very convenient model for describing the dynamics
of modulated waves. The Cauchy problem for an initial localized wave packet was
considered by Clamond and Grue (2002) and Clamond et al. (2006). The evolution
of a wave packet with an initial steepness of s = 0.09 and a bell-shaped (sech func-
tion) profile has been computed for more than 3,000 wave periods (see Fig. 4.17).
During this period of time, three large wave events occur. At about 1,200 wave pe-
riods, the wave field consists of three separate solitary wave groups with ordered
heights, the steepest being ahead. Until 3,000 wave periods (and later), the groups
separate slowly, each group traveling with its characteristic speed. Figure 4.18 illus-
trates the difference between the weakly nonlinear models (the NLS and extended
Dysthe equation) and the fully nonlinear simulation based on Clamond & Grue’s
scheme regarding envelope dynamics. The analytical theory of the NLS equation
predicts that any symmetric envelope (with uniform wavenumber within the group)
disintegrates into a finite number of solitons that propagate with the same speed,
the linear group velocity, and a small oscillatory tail. For the initial condition con-
sidered, it predicts the formation of three solitons that are attached to each other.
Furthermore, the corresponding envelope always remains symmetric with respect to
the center of the wave group. These bound solitons describe very mild modulations
of the envelope amplitude (very long period of recurrence).

The NLS equation predicts the rise of three envelope solitons from the considered
initial condition, which is in agreement with the fully nonlinear solution. The shape
of each well-separated solitary wave group fits the analytical NLS envelope solu-
tions pretty well. Hence, the observed wave dynamics can be reasonably explained
as nonlinear interactions between three perturbed NLS solutions. Nevertheless, it
should be noted that the speed of each solitary wave group is not equal to the linear
group velocity, as predicted by the NLS theory.

From a qualitative point of view, a somewhat better agreement is obtained with
the extended Dysthe equation (Dysthe 1979, Trulsen and Dysthe 1996, Trulsen
et al. 2000). This model predicts the early stages of the group splitting (until 300
wave periods) and the characteristic features of the evolution rather well, namely
the separation into solitary wave groups and temporary frequency downshifting.
However, this model fails to predict the lengthy scenario based on fully nonlinear
predictions. Clamond et al. (2006) emphasize that it may be worthwhile to develop
a generalization of Dysthe equations, including higher (quintic) nonlinear terms to
improve the accuracy and increase the time period of validity.

The result of the fully nonlinear simulation is compared with the fitted exact
solution of the NLS equation (the time periodic breather) at the instants of time 155,
156, 157, and 158 wave periods (see Fig. 4.19). This corresponds to the moment of
the first steep wave event shown in Figs. 4.17 and 4.18. It is seen that the analytical
solution captures some features of the solution rather well and may be used as “first
approximation.”
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Fig. 4.17 Dynamics of a wave packet with initial sech-like shape. k0 and T0 denote the carrier
wavenumber and period, respectively (see Clamond et al. 2006)
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Fig. 4.18 Comparison of the envelope dynamics from Fig. 4.17 (solid) with the results provided by
the extended Dysthe equation (dashed) and the NLS equation (dots), k0 and T0 denote the carrier
wave number and period, respectively (see details in Clamond et al. 2006)
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Fig. 4.19 Comparison of the fully nonlinear simulation (solid) and the fitted exact NLS solution
(dash). Elevation (panels on the left) and envelope (panels on the right) of the surface elevation
at t/T0 = 155, 156, 157, 158 versus dimensionless coordinate. K0 and T0 denote the carrier wave
number and period, respectivel. (see details in Clamond et al. 2006)
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Evolution and interaction of strongly nonlinear envelope solitary waves is consid-
ered in Zakharov et al. (2006b). The exact solutions of the NLS equation—namely,
envelope solitons—have been used to initialize the computation. Weakly nonlinear
wave packets behave similarly to the solutions of the NLS equation; they may propa-
gate without deformation and preserve their identity rather well (Fig. 4.20a). Larger

(a)

(b)

(c)

Fig. 4.20 Fully nonlinear evolution of an envelope soliton solutions of the NLS equation. Initial
conditions are given in the left panels, the result is presented in the right panels. (a) Collision of
two envelope solitons, each with steepness 0.085. (b) Evolution of an envelope soliton with steep-
ness 0.1. (c) Evolution of an envelope soliton with initial steepness 0.14 (Zakharov et al. 2006b,
reproduced with permission from Elsevier)
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initial steepness results in modification of the profile of the envelope and radiation
(Fig. 4.20b). The envelope approximation completely fails when the steepness is
about 0.15 (Fig. 4.20c). The initial wave packet undergoes an additional compres-
sion, obviously related to strongly nonlinear effects, leading to the formation of a
very high wave. This effect can be explained when the envelope solutions of a defi-
nite critical amplitude are unstable and can collapse.

4.4 Statistical Approach for Rogue Waves

It was shown by Caponi et al. (1982) and Yasuda and Mori (1997) that modulated
water wave trains may evolve to chaotic states. This feature suggests the use of
statistical and spectral descriptions. In looking at the sea surface, we are struck by
both randomness and regularity of the wave field. Hence, the prediction of wave
parameters of irregular waves may be achieved through a statistical approach.

For 1D propagation, Janssen (2003) studied the influence of the nonlinear four-
wave interactions on the occurrence of large surface waves over deep water, us-
ing the Zakharov equations (Zakharov 1968, Krasitskii 1994) as a basis with both
resonant and non-resonant interactions taken into account. The former interaction
evolves on the characteristic time scale (s4Ω)−1, whereas the latter has a much
shorter characteristic time scale (s2Ω)−1. At the same time, Dysthe et al. (2003)
considered the stability of moderately narrow bell-shaped spectra by numerical sim-
ulation of the Dysthe equation. It was found that, regardless of the initial spectral
bandwidth, the spectra evolve within the characteristic Benjamin-Feir time scale,
(s2Ω)−1, from a symmetric to an asymmetric shape, with a frequency downshifting
of the peak. For 2D propagation, the computations of the latter authors confirm
the K−2/5 (or Ω−4) power law of the spectrum in the inertial range. Using a trun-
cated JONSWAP spectrum as initial conditions, and two kinds of angular distribu-
tions corresponding to short- and long-crested waves, respectively, Socquet-Juglard
et al. (2005) found similar results and reported on the probability of the occurrence
of rogue waves, too. For crest heights less than four times the standard deviation
(very close to the significant wave height Hs), they showed that the distributions of
surface elevation and crest height fit very well with the theoretical second-order dis-
tributions of Tayfun (1980). For larger waves (elevation higher than Hs), this is not
always the case. For long-crested waves with a normalized spectral width ΔΩ/Ω
less than the steepness s, an increase of the extreme wave events during a phase of
spectral change is observed, whereas for short-crested waves, the spectral change
does not seem to have much effect on the distribution of extreme wave events. To
conclude this extreme wave analysis, Socquet-Juglard et al. (2005) found that the
Tayfun distribution is a good approximation, even up to five standard deviations.

The key parameter controlling the importance of the nonlinear wave-wave inter-
actions is the Benjamin–Feir Index (BFI) which is the ratio of the wave steepness to
the spectral bandwidth. We define the BFI following Janssen (2003) as

IBF =
√

2
Kηrms

ΔΩ
/
Ω

= 2
√

2
Kηrms

ΔK
/

K
, (4.106)
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where K and Ω are the mean wavenumber and frequency of the waves, and ΔΩ/Ω
is the spectral bandwidth. One may find other possible definitions of the BFI at the
end of this section (see also Olagnon and Magnusson 2004) for the collection of
the BF indices applied for the wave record analysis. The dispersion in the deep-
water case yields the relation ΔK/K = 2ΔΩ/Ω. The mean values and variances
may be defined through spectral moments (see Sect. 2.2). The root mean-square
surface displacement ηrms is related to the root mean-square amplitude Arms via
Arms = 21/2ηrms. The wave amplitude is assumed to vary slowly compared with the
carrier sinusoidal wave length. Therefore,

IBF =
KArms

ΔΩ
/
Ω

= 2
KArms

ΔK
/

K
. (4.107)

Following Alber (1978), the random wave field is stable when IBF < 1 (here σr

from Eq. (4.48) is equal to ΔΩ). In the opposite case, the BF instability is potentially
possible if condition (4.39) is satisfied.

The BFI provides a convenient indicator for prediction of modulational instabil-
ity. A number of recent research projects were aimed at establishing the relationship
between the BFI and rogue wave-probability occurrence. Stochastic simulations of
random wave fields and laboratory experiments have been performed, where the
spectrum evolution and probability of extreme wave occurrence were compared
against the values of the BFI (Onorato et al. 2001, 2004, 2005, 2006b; Janssen 2003;
Dysthe et al. 2003; Socquet-Juglard et al. 2005). Under the assumptions of weakly
non-Gaussian and narrow-band wave trains, Mori and Janssen (2006b) showed that
the wave height and the maximum wave height probability distribution depend on
the wave variance and kurtosis. The fourth-order statistical moment (kurtosis, κ) is
a convenient parameter for measuring the non-Gaussianity of the wave field. For 1D
propagation, it is found that the probability of occurrence of extreme wave events
increases with kurtosis. The following support of this feature was derived by Mori
and Janssen (2006b)

κ−3 =
π√
3

I2
BF (4.108)

(the Gaussian process corresponds to κ = 3). Hence, the kurtosis and the BFI are de-
pendent parameters, and their growths lead to an increase of rogue wave occurrence.
The relationship between the freak wave occurrence probability observed in numeri-
cal simulations and natural observations was discussed in Mori and Janssen (2006a).

A directional sea was considered in Onorato et al. (2002) within the framework
of the extended Dysthe equation. Nonlinear interactions of codirectional waves lead
both to an increase of the kurtosis and probability of occurrence of extreme waves,
whereas for multidirectional waves the kurtosis is shown to oscillate around κ ≈ 3,
indicating that the probability density function for the wave amplitudes is approxi-
mately Gaussian.

Let us consider a slightly perturbed plane wave with amplitude A, mean wave-
number K, and long perturbation wavenumber defined by ΔK. According to the
instability condition (4.39) for deep-water waves, the plane wave may be unstable if



142 4 Rogue Waves in Waters of Infinite and Finite Depths

2
√

2
KA

ΔK
/

K
=
√

2
KA

ΔΩ
/
Ω

> 1. (4.109)

From a formal point of view, in terms of the BFI (4.107), this condition trans-
forms into √

2IBF > 1. (4.110)

The wave modulations split the carrier into groups. The number of individual
waves within such a group may be naturally defined as

nx =
K
ΔK

, and nt =
Ω
ΔΩ

, (4.111)

where nx and nt are the numbers of individual waves observed in a snapshot and
measured in one point time series, respectively. On deep water, they satisfy the con-
dition nt = 2nx. Hence, definition (4.107) results in the dimensionless estimation

IBF = s̄nt , (4.112)

where s̄ denotes the averaged steepness, s̄ ≡ KArms.
Taking into account the normalization (4.58), the “mass” integral (4.65) for one

wave envelope may be written in the form

M ≈ π2
√

2KAnx = π
√

2IBF , (4.113)

where the length of the envelope is estimated as 2π/ΔK. Hence, the soliton number
(4.64) for a smooth pulse-like initial condition for the NLS equation is equal to

Ns =
[√

2IBF +
1
2

]
. (4.114)

Relations (4.113) and (4.114) link the statistically defined BF index and the dy-
namical parameters of M and Ns. They are, roughly speaking, proportional to each
other, when the 1D version of the NLS equation (4.33) is considered,

nonlinearity
dispersion

∝
ΩK2A2

2
· 8K2

Ω(ΔK)2 = I2
BF . (4.115)

In this sense, the BFI is an analogue to the Ursell number, which is well known
for shallow-water waves (see Chap. 5). Table 4.1 collects some important values of
these parameters. It is seen that for different applications, the choice of different
parameters may be convenient. When dealing with deterministic waves, it is more
pertinent to use the quantity

√
2IBF (see Osborne et al. 2005, Slunyaev 2006).

In Onorato et al. (2001), Janssen (2003), Mori and Janssen (2006b), Gramstad
and Trulsen (2007), and Tanaka (2007), it is shown through numerical experiments
that the growth of the BFI index indeed qualitatively changes the statistical prop-
erties of the wave fields, but the change is not so abrupt and the threshold value of
the index is not so obvious. The requirement of robust definition of this parameter
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Table 4.1 Key values of parameters characterizing the nonlinear effects versus dispersion

Threshold Parameter

BFI, IBF M/π Ns

Rise of envelope solitons from a pulse-like packet ≥ 1
/√

8 ≈ 0.35 ≥ 1
/

2 ≥ 1

Onset of the plane wave modulational instability
instability

≥ 1
/√

2 ≈ 0.71 ≥ 1 ≥ 1

One isolated envelope soliton 1
/√

2 ≈ 0.71 1 1

Cancellation of the BF instability instability due to
randomness

< 1

on the basis of real natural measurements, where noise perturbations always exist,
opens a new problem (Olagnon and Magnusson 2004, 2005). See the discussion in
Sect. 4.7.2.

4.5 Laboratory Experiments of Dispersive Wave Trains
with and without Wind

Within the framework of dispersive focusing, Sect. 4.3.4 refers to experimental re-
sults conducted in the large wind-wave tank of IRPHE at Marseille, Luminy (see
Fig. 4.21). The facility consists of a closed loop wind tunnel positioned above a
water tank 40 m long, 1 m deep, and 2.6 m wide. The wind tunnel above the water
flow is 40 m long, 3.2 m wide, and 1.6 m high. The blower can produce wind ve-
locities up to 14 m/s, and a computer-controlled wavemaker submerged under the
upstream beach can generate regular or random waves in a frequency range from
0.5 Hz to 2 Hz. Particular attention has been paid to simulating a pure logarithmic
mean wind-velocity profile with constant shear layer over the water surface. A trol-
ley installed in the test section allows probes to be located at different fetches all
along the facility. The fetch is defined as the distance between the probes on the
trolley and the end of the upstream beach where air flow meets the water surface.
The water surface elevation is measured by using capacitive wave gauges: one is lo-
cated at a fixed fetch 1 m from the upstream beach, and the others are installed on a
trolley to measure the water surface elevation at different fetches from the upstream

Fig. 4.21 A schematic description of the Large Air-Sea Interactions Facility, IRPHE
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beach. The longitudinal and vertical air flow velocity fluctuations have been mea-
sured by means of an x-hot wire anemometer.

As in Sect. 4.3.4, extreme wave events are generated by means of a dispersive
focusing mechanism with and without wind. The same initial wave train is generated
and propagated without wind first, and under wind action for various values of the
wind velocity afterwards. When the wind blows, the focusing wave train is generated
once the wind waves have developed. For each value of the mean wind velocity Uw,
the water surface elevation is measured at 1 m fetch and at different fetches between
3 m and 35 m. The wavemaker is driven by an analog electronic signal to produce
this signal linearly varying with time from 1.3 Hz to 0.8 Hz in 10 s, with almost
constant amplitude of the displacement. The wavemaker is totally submerged to
avoid any perturbation of the air flow that could be induced by its displacement.

Figure 4.22 shows two time series of the probe located at 1 m fetch, recorded with
no wind, and under a wind speed of Uw = 6 m/s. The probe record, corresponding
to a wind velocity equal to 0 m/s, is artificially increased by 10 cm for more clarity
of the figure. We see that the two signals are very similar. Some weak differences in
amplitude are observed locally. Nevertheless, it is seen that no significant variations
are observed, and the experiment is considered to be repeatable in the presence of
wind.

More details on experiments conducted in the large wind-wave tank of IRPHE,
can be found in Kharif et al. (2008). These results were anticipated in Sect. 3.3.
Figure 3.11 presents the time series of the water surface elevation at different fetches
for Uw = 0 m/s. For the sake of clarity, as it has been done for Fig. 4.22, the probe
records given here are recursively increased by 10 cm. As predicted by the linear
theory of free deep water waves (no wind), dispersion makes short waves propagate
more slowly than long waves, and as a result, the waves focus at a given position
in the wave tank leading to the occurrence of a large amplitude wave. Downstream
from the point of focus, the amplitude of the group decreases rapidly (defocusing).

Fig. 4.22 Surface elevation
(in cm) at fetch X = 1 m
for wind speeds Uw = 0 and
Uw = 6 m/s (note that for
Uw = 0 m/s, the origin of the
elevation corresponds to the
value 10 cm)
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Figure 3.12 shows the same time series of the water surface elevation, at several
values of the fetch X , and for a wind speed Uw = 6 m/s. The wave groups, mechan-
ically generated by the wavemaker, are identical to those used in the experiments
without wind (see Fig. 4.22). Some differences appear in the time-space evolution
of the focusing wave train. One can observe that the group of the extreme wave
event is sustained longer.

Figure 4.23 gives the amplification factor as a function of the distance from the
upstream beach for several values of the wind velocity, equal to 0 m/s, 4 m/s and
6 m/s. We can see that the effect of the wind is twofold: (i) it weakly increases
the amplification factor; and (ii) it shifts the focus point downstream. Moreover,
contrary to the case without wind, an asymmetry appears between focusing and
defocusing stages. The slope of the curves corresponding to defocusing is modified.
Note that before the focus point, the wind has no effect on the amplification factor.
One can observe that the rogue wave criterion (I.1) is satisfied for a longer period of
time. It is also interesting to emphasize that the rogue wave criterion is satisfied for
a longer distance, while the wind velocity increases.

The numerical results obtained in Sect. 4.3.4 are confirmed by the experiments, at
least qualitatively. A detailed physical analysis of wind-wave coupling over focusing
groups may be found in Kharif et al. (2008).

Through experimentation, Baldock et al. (1996) investigated the spatio-temporal
focusing of a large number of water waves at one point in space and time to pro-
duce a large transient wave group. The experiments were conducted in a 20 m long
and 0.3 m wide wave flume. The facility has a maximum working depth of 0.7 m.
The waves are generated by a flat bottom-hinged paddle located at one end of the
wave flume. The period of the generated waves can vary from 0.4 s to 2.0 s. A to-
tal of six surface-piercing wave gauges were used to measure the surface elevation
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Fig. 4.23 Evolution of the amplification factor A(X ,Uw) as a function of the distance for several
values of the wind speed
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at fixed spatial locations. Baldock et al. (1996) adopted the approach developed by
Rapp and Melville (1990) to create an extreme wave within the laboratory flume.
They used a linear solution to determine the appropriate phasing of the various wave
components. Owing to nonlinear wave-wave interactions present in the experiments,
the theoretical and experimental focal points and focus times are different. To sim-
plify the experimental procedure, they imposed that the focus point be located at
a fixed distance down-stream of the paddle and the focusing time be set to zero.
Measurements of the water surface elevation were compared with both linear wave
theory and a second-order solution derived by Longuet-Higgins and Stewart (1960).
The experimental results showed that the focusing wave mechanism produces the
occurrence of an extreme wave event whose nonlinearity increases with the wave
amplitude and reduces with increasing bandwidth. A comparison of the first- and
second-order solutions shows that the wave-wave interactions generate a steeper en-
velope, in which the central wave crest is higher and narrower, whereas the adjacent
wave troughs are broader and less deep. The authors suggested that the formation of
a focused wave group involves a significant transfer of energy into both higher and
lower harmonics.

Within the framework of 2D wave fields, Grue and Jensen (2006) reported ve-
locity and acceleration fields in six very large wave events realized in a series of
wave tank experiments. The wave slope is in the range 0.40–0.46 and exceeds the
previously mentioned laboratory study of large waves (Baldock et al. 1996) by a
factor of about 50%. Focusing water waves were produced in a 24.6 m long wave
tank in the Hydrodynamic Laboratory at the University of Oslo. The tank width is
0.5 m and the water depth 0.72 m. The velocities and the material acceleration fields
of the waves are obtained by employing an extended Particle Image Velocity (PIV)
system (see Jensen et al. 2001). The velocity vector has a magnitude comparable to
the wave speed in the strongest case, and is manifested in the jet that develops at the
front face of the breaking waves. The nonbreaking waves present a maximal hori-
zontal acceleration up to about 0.70 g in the front face of the wave at vertical level
about halfway to the crest. The overturning events present horizontal accelerations
up to 1.1 g and vertical accelerations up to 1.5 g in the front face of the wave, at the
base below the overturning jet.

Onorato et al. (2006b) conducted a series of experiments in a long water-wave
flume at Marintek in Trondheim (Norway). The length of the tank is 270 m, its
width is 10.5 m, and its depth is 10 m for the first 85 m, then 5 m for the rest of the
flume. A horizontally double-hinged flap type wavemaker located at one end of the
tank was used to generate the long-crested waves, whereas an absorbing beach is
located at the end opposite from the wavemaker. Several probes were used along
the tank to measure the wave surface elevation. Three experiments corresponding to
three different JONSWAP spectra with different values of the Phillips parameter α
and the peakedness γ (see (2.116)) were conducted. The main goal of these exper-
iments was to give experimental support to the results of theoretical and numerical
studies developed previously. According to these studies, it was suggested that the
modulational instability was responsible for the occurrence of extreme wave events.
The modulational instability or the Benjamin-Feir instability that was obtained for
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uniform wave trains within the framework of deterministic approaches is assumed to
work in random wave fields, too. Onorato et al. (2006b) showed that for long-crested
water waves and large values of the Benjamin-Feir index, the second-order theory
is not relevant to describe the tails of the probability density function of wave crests
and wave heights. They showed that the probability of finding an extreme wave
was underestimated by more than one order of magnitude if second order theory
is considered, and found that the deviation was due to the modulational instability
mechanism occurring for large BFI.

4.6 Three-Dimensional Rogue Waves

Until now, we have mainly paid attention to 2D aspect of the rogue wave formation.
In this section, 3D aspects are discussed.

Rogue waves in the form of “walls of water” (see Fig. 1.2b) may potentially be
described within the framework of 2D models (i.e., unidirectional wave propaga-
tion). At the same time, transversal effects are known to be important—for exam-
ple, the NLS envelope soliton is transversally unstable. The localized “pyramidal”
waves, like those in Fig. 1.2a,c, undoubtedly require consideration of the transverse
wave direction. The geometrical focusing phenomenon may result from spreading
waves. It is a linear mechanism of wave-energy focusing that was considered in
Sect. 3.1. This primitive mechanism may be quite important in the real ocean, since
papers report about higher probability of rogue wave occurrence in mixed seas.

Dispersive focusing is still efficient in 3D situations; and this kind of wave com-
pression may be further enhanced by geometrical focusing (see Slunyaev et al. 2002).
This results in more rapid and significant wave growth compared to the 2D case. If
the dispersive wave train is far from the modulational instability threshold, the dis-
persive focusing prevails similarly to the linear case. The presence of random wave
components may hide the deterministic process of rogue wave generation, but does
not prevent the quasi-linear wave focusing as shown in Fig. 4.24. The rogue wave
appears “from nowhere” and disappears at once.

Realistic fully nonlinear 3D simulations of directional wave focusing were con-
ducted by Fochesato et al. (2007) (see Fig. 4.25). They found that the vertical 2D
longitudinal cross section through an extreme wave crest looks quite similar to the
characteristic shape frequently observed for rogue waves in the ocean: a tall and
steep doubly asymmetric wave crest occurs in between two shallower troughs. The
3D wave generation yields a curved wave front before focusing occurs. A shallow
circular trough forms in front of the focused wave (“hole in the sea”), followed by
a deeper trough with a crescent shape. For a small time prior to breaking, the 3D
shape of the focused wave appears to be almost pyramidal. By contrast, during the
focusing phase, as well as the development of overturning, the transverse shape of
the wave through the crest tends to have a more rounded shape. The problem of
reproducing the desired 3D wave shapes in tanks was investigated by Bonnefoy
et al. (2005).
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(a) (b)

(c)

Fig. 4.24 Three-dimensional dispersive focusing of a wave train with modulated wavenumber in
the presence of strong random wave components: (a) initial wave envelope, (b) moment of focus-
ing, (c) record of maximum envelope amplitude versus time. Simulation within the framework of
the NLS equation (see details in Pelinovsky et al. 2003)

Fig. 4.25 Snapshots of 3D free surface evolution computed by Fochesato et al. (2007). The focused
wave is starting to overturn in panel (d) (Reproduced with permission from Elsevier)

Johannessen and Swan (2001) extended the experimental investigation of Baldock
et al. (1996) in 3D wave fields. They considered a laboratory study in which a large
number of water waves of varying frequency and propagating in different directions,
were focused at one point in space and time to generate a large wave event. Exper-
iments were conducted in a basin located at Edinburg University. This facility has
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a plan area of 24 m × 11 m and supports a constant working depth of 1.2 m. The
water waves are generated by 75 numerically controlled wave paddles located along
one of the longer sides of the wave tank. At the opposite end of the basin, a set of
passive absorbers dissipates the incident wave energy. Different directional distri-
butions are applied to the frequency spectra of the surface elevation. Johannessen
and Swan (2001) showed that the directionality may have a profound impact effect
upon the nonlinearity of a large wave event. When the sum of the wave amplitudes
generated at the wave paddles is kept constant, an increase in the directional spread
of the wave field results in lower maximum crest elevations. Conversely, when the
generated wave amplitudes are increased until the onset of wave breaking, an in-
crease in the directional spread allows larger extreme waves to evolve. The authors
suggested that these results are due to the redistribution of the wave energy within
the frequency domain. They emphasized the rapid widening of the free-wave regime
in the vicinity of an extreme wave event, too.

In 2D (XZ) geometries, the modulational instability is strongly associated with
the solitary solutions of the NLS equation (breathers or homoclinic orbits). These
objects are conserved during the evolution due to the integrability property of
the NLS equation. The 3D version of the NLS equation, as well as the Davey-
Stewartson system5 are nonintegrable. Therefore, the wave dynamics are more com-
plicated for comprehension. For instance, the wave field, growing due to geometric
or dispersive grouping but initially stable with respect to modulational instability,
may then pass the threshold of nonlinear self-focusing and continue further enhanc-
ing due to nonlinearity. The Benjamin-Feir instability diagram (Fig. 4.1) provides
a rich variety of unstable growing wave packets. Some shapes of 3D rogue waves
spawned by modulational instability have been presented in the papers by Osborne
et al. (2000) and Slunyaev et al. (2002), respectively. As an example, the 3D rogue
wave given in Fig. 4.26d is more than seven times amplified with respect to the ini-
tial weakly modulated waves. The quasi 2D modulational instability (Fig. 4.26a,b)
is followed by the strictly 3D modulational dynamics (Fig. 4.26c,d), which results
in the formation of a huge wave isolated in both longitudinal and transversal direc-
tions. It is readily seen from Fig. 4.26e that the 3D rogue wave growth (t ≈ 4.1) is
more sudden and significant than the 2D dynamics (t ≈ 3).

In water of infinite depth, it is well known that the 2D modulational instability
is dominant for small to moderate initial steepness and evolves into a recurrence
phenomenon (the Fermi-Pasta-Ulam recurrence) for small initial wave steepness
(see Sect. 4.1.1). Another kind of disturbance suffered from 3D instabilities (see
McLean 1982a,b) exists and becomes dominant for larger values of the steepness.
This instability may lead to the formation of horseshoe patterns evolving into 3D
spilling breakers. These three-dimensional patterns take the form of crescent-shaped
perturbations riding on the basic waves. Three-dimensional horseshoe patterns were
observed in experiments of Su et al. (1982) and Su (1982), Melville (1982), Kusuba
and Mitsuyasu (1986, in presence of wind), and others.

5 The DS system becomes integrable only in the shallow-water limit. In this case it does not show
modulational instability.
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(a)

(c) (d)

(e)

(b)

Fig. 4.26 Evolution of a weakly amplitude modulated plane wave within the framework of the
NLS equation (see details in Slunyaev et al. 2002). Four snapshots of the envelope evolution (a–d)
and the record of the maximum envelope amplitude versus time (e)

Generally, the two kinds of instability, namely the modulational instability and
the crescent patterns that belong to class I and class II, respectively, coexist in
the wave field. Depending on parameters such as the wave steepness of the initial
Stokes wave and water depth, one can expect a competition to occur between the
two classes of instability. Figure 4.27 illustrates the critical steepness together with
the distinction between class I and class II dominances at the same depths. In the
finite depth case, class II dominates in a large range of steepness and recurrence is
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Fig. 4.27 Threshold
steepnesses between class I
and class II predominances
and between class II
recurrence and breaking:
(a) the infinite depth case,
(b) the finite depth case
K0D = 1
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possible within this range. Note that for shallow water cases and relatively moderate
steepness, instability of a plane Stokes wave is dominated by class II (Francius and
Kharif 2006).

Numerical simulations by Fructus et al. (2005) and Kristiansen et al. (2005),
taking into account both class I and class II instabilities, showed that for moder-
ately steep waves (s > 0.12), their nonlinear coupling (involving the fundamental of
the Stokes wave) results in breaking of the wave when in the initial condition only
the modulational instability was considered. Furthermore, the breaking can occur
for s = 0.10 when the initial unstable perturbation corresponds to the phase-locked
crescent-shaped patterns. At the maximum amplitude of this instability, the modula-
tional instability is excited followed by the breaking of the wave. For steeper waves,
the strength of class II instability alone is sufficient to trigger the breaking of the
wave. The nonlinear dynamics of the most unstable class II perturbation leads to
breaking when s > 0.17 (see Fig. 4.27a).

Annenkov and Badulin (2001) selected the specific component peculiar to five-
wave interactions in the frequency spectrum of the 20 min New Year Wave record.
This component corresponds to class II instabilities phase-locked to the dominant
component of the spectrum. In order to have a better understanding of the role of
this kind of resonance in the formation of rogue waves, the authors performed nu-
merical simulations of the Zakharov equation, which takes into account the mod-
ulational (which is a four-wave interaction) and five-wave interactions. Annenkov
and Badulin (2001) showed that the cooperative effects of these interactions might
be responsible for the occurrence of rogue waves and emphasize the role of oblique
waves in this process.

Ruban (2007) investigated a weakly 3D evolution of modulationaly unstable
wave patterns by means of fully nonlinear simulation and observed “zigzag pat-
terns” with extreme waves in their turns formed during instability development.
Recurrent dynamics of 3D wave patterns over deep and finite depth were simulated
in recent papers (Kristiansen et al. 2005, Fructus et al. 2005) and are shown in
Figs. 4.28 and 4.29, respectively. In the real sea, the hydrodynamic instability ap-
pears at the center of the crescent patterns when the wave steepness is above a
threshold value.
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Fig. 4.28 Temporal evolution of the surface elevation during a recurrence cycle, fully nonlinear
simulation of Kristiansen et al. (2005). The infinite depth case (Reproduced with permission from
American Institute of Physics)

Recent findings of Gramstad and Trulsen (2007) by means of numerical simu-
lation of the extended Dysthe equation show a conspicuous qualitative difference
between the extreme wave dynamics in long- and short-crested seas. The paper re-
ports about weak deviation of extreme waves from the Gaussian statistics when short
crest lengths are concerned. On the other hand, the long crest wave statistics of freak
waves is strongly non-Gaussian, and the Benjamin-Feir instability seems responsi-
ble for rogue wave formation. These results qualitatively agree with the predictions
of Onorato et al. (2002, with extended Dysthe equations), Shukla et al. (2006, with
coupled NLS equations) and Gibson et al. (2007) but appear to be conflicting with
the studies of unstable crested waves by Onorato et al. (2006a, with coupled NLS
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Fig. 4.29 Temporal evolution of the surface elevation during a recurrence cycle, fully nonlinear
simulation of Kristiansen et al. (2005). The finite depth case K0D = 1

equations), fully nonlinear simulations of Ducrozet et al. (2007), and some natural
observations (Pinho et al. 2004, Scott et al. 2005).

Although the real ocean is not homogeneous nor stationary, it was suggested
by Haver (2005) and Gibson et al. (2007) that in seas of short-crested waves, some
long-crested sub areas may exist in principle, which provides conditions for the high
probability of the rogue wave occurrence.

Using the data collected from 1995 to 1999 by Lloyd’s Marine Information Ser-
vice, Toffoli et al. (2004) showed that a large percentage of ship accidents due to bad
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Fig. 4.30 Pyramidal waves observed by Kimmoun et al. (1999) in a laboratory tank

weather conditions occurred in crossing sea states. Crossing sea sates are character-
ized by two dominant spectral peaks, and may be due to the interaction between
a swell and a wind-wave sea coming from a different direction. This feature was
also observed in the New Year Wave record. Onorato et al. (2006a) considered
a weakly nonlinear model that describes the interaction of two-wave systems in
deep water with two different directions of propagation. Under the assumption of
narrow-band wave fields, they derived two coupled NLS equations from the Za-
kharov equation. As a main result, they showed that given a single unstable plane
wave, the introduction of a second plane wave traveling in a different direction can
increase the instability growth rates and enlarge the instability region. From their
simple model, they suggested that the modulational instability could explain the
formation of rogue wave events in crossing sea states. For more details concerning
the stability of short-crested gravity waves due to the nonlinear interaction between
two plane waves propagating in two different directions, see the papers by Ioualalen
and Kharif (1994) and Badulin et al. (1995). These numerical and theoretical inves-
tigations on short-crested waves were followed by an experimental study conducted
by Kimmoun et al. (1999) who observed pyramidal waves (see Fig. 4.30).

4.7 In Situ Rogue Waves

A great deal of theoretical investigations aimed at solving the rogue-wave phe-
nomenon has been undertaken. Although some of the suggested physical mecha-
nisms explain the occurrence of rogue waves rather well, the natural mechanisms
that spawn rogue waves observed in the real ocean still need investigation. Instru-
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mental measurements are the best source of getting information about real sea wave
dynamics. The state-of-art in instrumental registrations is discussed in Sect. 1.2.
Many registrations correspond to the case of deep or moderately deep water, but still
are made in very different conditions throughout long periods of time. This makes
direct statistical analysis quite hard or impossible. Some recent results of these sta-
tistical studies are given in Sect. 4.7.2. Section 4.7.1 is devoted to the analysis of the
instrumental records themselves, trying to find out most possible information from
“traces” of rogue waves.

4.7.1 Nonlinear Analysis of Measured Rogue Wave Time Series

4.7.1.1 Local Parameters

Local wave parameters may be used to reveal peculiar properties of measured rogue
waves within the field of usual oceanic waves. To do this, shorter overlapping time
intervals are extracted from the record. This procedure is known as Gabor or “win-
dowing” transform. To reduce possible spurious effects due to the discontinuity of
the time series at the boundaries, the Hanning data mask may be applied (Massel
1996). Examples of some local parameter estimations are given in Figs. 4.31 and
4.32 for two time series measured at the North Alwyn platform in the North Sea
(see details in Slunyaev et al. 2005, Slunyaev 2006). The platform conditions corre-
spond to sufficiently deep water (KD > 3.6), therefore we will restrict ourselves to
the infinite depth approximation.

The mean frequency Ω is obtained as the spectral moment (2.109), Ωp. The un-
favorable result of considering a shorter time series gives a worse accuracy in sta-
tistical estimations and in particular the spectrum and all spectral parameters. The
carrier frequency curves are given in Figs. 4.31 and 4.32 on panels A and B (the
solid white line on the background of the Fourier time-frequency spectra) for two
different durations of the sampling window Twin. One can observe some variations
during the 20-min record, which become more evident if expressed in terms of group
velocity Cgr (see Figs. 4.31D and 4.32D). The group velocity is obtained through the
linear dispersion relation, since the measurement is available in only one point. The
deviation of the group velocities observed in these cases is about 50%; it leads to the
energy exchange between the individual waves. This may provide the wave growth
or decrease and represents the simplest case of dispersive focusing. For a simple
analysis of this process, the kinematic theory (3.13) may be used accompanied by
the energy balance equation (3.5) (see Chap. 3):

∂Cgr

∂T
+Cgr

∂Cgr

∂X
= 0,

∂η2

∂T
+

∂
∂X

(
Cgrη2)= 0 (4.116)

where η(X ,T ) is the surface elevation.
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Fig. 4.31 Wave record made at the North Alwyn platform on November 18th, 1997 at 01:10.
(A) Time-Frequency Fourier spectrum built for the sampling window of 117 s duration (about 10
wave periods); solid line shows the local mean frequency Ω, dashed lines bound the domain of
Benjamin-Feir instability Ω±ΔΩBF . B) The same as on panel A, but for the sampling window of
36 s duration (3 wave periods). C) Measured time series of the surface displacement (in meters).
Symbols denote the determined amplitudes of solitary waves with permanent normalizing (circles)
and flexible normalizing (crosses). D) Local group velocities (in m/s) defined for the sampling
window of 117 s (solid line) and 36 s (dashes). Symbols denote the determined velocities of solitary
waves: permanent normalizing (circles) and flexible normalizing (crosses). E) Growth rates σBFmax

(solid) and σdis (dashed) (in s−1) defined with the sampling window of 36 s
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Fig. 4.32 Wave record made at North Alwyn platform on November 19th 1997 at 20:11. The
legend is same as in Fig. 4.31
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Then the total derivative of the energy quantity is given by:

dη2

dT
= 2σdisη2, where σdis =

1
2Cgr

∂Cgr

∂T
. (4.117)

Parameter σdis expresses the exponential growth rate due to dispersive wave con-
vergence. Waves grow when σdis > 0 and decay for σdis < 0. The dispersive growth
rates computed for the time series are given in Figs. 4.31 and 4.32 (panel E, dashed
lines).

4.7.1.2 Application of the IST Approach

The simple nonlinear theory is based on the NLS equation (4.35) under the extra
assumption of unidirectional wave propagation. The spatial version of the dimen-
sionless NLS equation has the form

iqx +qtt +2q |q|2 = 0, (4.118)

where

t = Ω0T −2K0X , x = K0X , q =
1√
2

K0A∗, (4.119)

and A ≡ η01 is the complex envelope amplitude (see Eqs. (4.11), (4.13)). The spec-
tral areas that are unstable with respect to long perturbations of the uniform Stokes
waves may be estimated as the domain (Ω− ΔΩBF ,Ω+ ΔΩBF ), where ΔΩBF is
defined with the help of the instability criterion (4.39) and deep-water dispersion
relation as

2
ΔΩBF

Ω
=

ΔKBF

K
< 2

√
2Kη . (4.120)

The unstable frequency domain Ω0 ±ΔΩBF is bounded by the dashed lines in
Figs. 4.31 and 4.32 (panels A, B). The initial stage of the modulational growth is
described by the exponential law with a maximum growth rate given by formula
(4.41), which is, in the deep-water case,

σBFmax =
1
2
ΩK2η2. (4.121)

The two growth rates σdis and σBFmax (see Figs. 4.31 and 4.32, panels E) are
used for rough estimates of the time scales of dispersive and nonlinear wave focus-
ing effects. It is seen from the figures that dispersion typically works faster, while
estimated modulational growth should take more than 500 s.

The nonlinearity of individual waves is characterized by the steepness, although
the strength of self-focusing is characterized by another nonlinear parameter, which
is the soliton number or the BFI (see Sects. 4.2 and 4.4). The “dynamical” definition
of BFI (4.112) includes the number of individual waves observed in the wave group
nt . The number of waves within a packet is actually a convenient dimensionless
parameter, and is often used for estimations.



4.7 In Situ Rogue Waves 159

Since the modulational instability occurrence is related to the homoclinic or-
bits, “unstable modes,” or envelope solitons (see Sect. 4.2), a more accurate way to
estimate the features of the modulational instability may be suggested by employ-
ing the concept of the envelope soliton. The envelope soliton of the NLS equation
may be considered as the first approximation for oceanic solitary wave groups. Re-
sults reported in Sect. 4.3.5 concerning the steep NLS soliton-like envelopes, justify
the adequacy of the quasi-soliton concept even in strongly nonlinear cases. For the
equation in the form (4.118), the envelope soliton solution (4.60) is rewritten as

qes (x, t) = Aes

exp

(
i(t − t0)

2Ves
− ix

(
1

4V 2
es
−A2

es

)
+ iθ0

)

cosh
Aes

Ves
(x− x0 −Ves (t − t0))

, (4.122)

where the parameters t0 and θ0 are explicitly introduced, which are the time shift at
position x = 0, and the initial phase. In Eq. (4.122), Aes and Ves are a dimensionless
amplitude and velocity of the envelope soliton, respectively. The physical parame-
ters, the amplitude of the wave packet Awp, and its velocity Vwp are expressed as

Awp =
√

2
K0

Aes, Vwp =
Ω0

K0
(
2+V−1

es
) . (4.123)

The applicability of the NLS theory (spectral narrowness) requires the quantity
|V−1

es | being small.
When envelope solitons interact with other waves, the dynamics of the wave

field may become complex. The possibility of detecting hidden solitons in time se-
ries may provide an effective tool in understanding and predicting nonlinear wave
dynamics. This can be done with the help of the Inverse Scattering Technique (see
Sect. 4.2.1). The spectrum of the scattering problem is time independent, and its
discrete part corresponds to envelope solitons. Let us consider the scattering prob-
lem (4.59) for the infinite line; then the soliton parameters are simply related to the
spectrum as follows

Aes = 2 Reλ and V−1
es = 4 Imλ (4.124)

instead of (4.67). The complete solution of the inverse scattering problem for func-
tion q(x = 0, t)—i.e. determination of t0 and θ0—requires knowledge of the eigen-
modes. The parameter t0, which defines the position of the envelope soliton in the
time series, may be well localized if short overlapping extracts from the time series
are considered (employing the windowing transform). Thus, the direct scattering
problem is solved in a sliding sampling window of length twin that identifies the po-
sition t0 of solitons. If wave groups of large amplitude are of interest, the window
twin is bounded owing to the conservation of the mass parameter Mes (4.69) for the
envelope solitons (i.e., steep solitons are narrow).

It is necessary to define the carrier wave frequency when considering the NLS
equation (4.118). Panels A in Figs. 4.31 and 4.32 show its variation. Therefore,
to follow the variation of the frequency, a short window should be used. On the



160 4 Rogue Waves in Waters of Infinite and Finite Depths

other hand, it is more difficult to obtain a reliable estimate of this value within a
short window, preserving only few wave periods. The number of envelope solitons
is governed by the mass parameter, as Eq. (4.64). In the case of the spatial version
of the NLS equation (4.118), the following estimate may be done

Ns ∝ K0Ω0 ∝ Ω3
0, (4.125)

where the deep-water dispersion relation is used. Therefore, accurate determination
of the carrier wave frequency may be crucial for this method.

The soliton amplitudes that have been obtained with the help of this approach
are plotted as circles and crosses on panel C of Figs. 4.31 and 4.32. The corre-
sponding soliton velocities are given on panel D. The mean frequency is defined via
two methods. First, it is defined as the spectral moment Ωp (2.109) of the whole
20-min record (“permanent normalization”), and second, as the spectral moment
of each short extract (“flexible normalization”). These cases correspond to circles
and crosses in the figures. It is evidently seen that sometimes the results are rather
different. After having a look at the curves of the group velocity (panel D), it be-
comes clear that a soliton vanishes if the mean group velocity increases. The effect
of non-uniformity on modulated wave packets was considered by Duin (1999) with
the same qualitative conclusion: the BF instability is depressed when the local group
velocity increases and is intensified when Cgr becomes smaller.

Only the first (steeper) solitons defined in extracts are shown in the figures. Other
solitons are usually much smaller and assumed not to be very trustworthy. Although
the found solitons can often be seen by eye, they interact nonlinearly with other
waves, and in other conditions may be hidden by the surrounding waves.

The idea to seek solitons in a time series was, evidently, first realized by Osborne
and Petti (1994) for the shallow-water case, when the waves were described within
the framework of the Korteweg-de Vries equation. Recently, a similar technique has
been used for the study of freak waves over deep water within the NLS approach
(Osborne et al. 2005, Islas and Schober 2005, Schober and Calini 2008). In contrast
to the previous description, they suggest the use of periodic domains and the deter-
mination of the eigenmodes (full reconstruction of unstable modes). This makes the
approach more difficult when employing the theta-functions, whereas applying the
infinite line scattering problem formulation admits the description of wave groups
with the help of breathing solutions considered in Sect. 4.2.3.

To estimate the contribution of the solitary part in the observed freak waves, let
us assume a rogue wave is the result of the interaction of an envelope soliton with
a plane wave. Then the “solitary part” is defined as Awp/A f r, where Awp is the de-
tected amplitude of the soliton (4.123), and A f r is the Hilbert envelope amplitude
including the freak wave obtained directly from the time series. The contribution of
the background waves is estimated as Hs/(2A f r). According to the analysis provided
in Sect. 4.2.3, these contributions linearly supplement each other as Eq. (4.75). They
are represented by the solid and hatched areas in Fig. 4.33, respectively. Eleven ana-
lyzed rogue waves measured at oil platforms in the North Sea are used in the figure.
The rest (the empty areas) estimates the effects that are not taken into account. It
may be noticed that the first two contributions (the solitary part and the significant
background) may often completely explain the registered wave amplitude; this obvi-
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Fig. 4.33 “Solitary parts” As (solid) and Hs/2 (hatched) of the freak wave amplitudes for 10
records from the North Alwyn platform and the New Year Wave

ously proves the important role of the nonlinear modulation effect in the freak-wave
occurrence.

The application of the IST method to the analysis of water wave groups may be
improved by use of the Creamer et al. (1989) transform that takes into account the
nonlinear bound corrections that are not described by the NLS envelope equation.
Higher-order integrable (or nearly integrable) versions of the envelope equation may
be employed to describe more accurately the envelope solitary solutions (Schober
and Calini 2008).

In the present analysis, we have employed the window Fourier transform to deter-
mine the wave frequency. Wavelets provide an alternative improved way to estimate
the mean wave scale. They have been used by various authors: among them we cite
Mori et al. (2002), Chien et al. (2002), Paprota et al. (2003), Scott et al. (2005).
These studies present different occurrences of rogue waves in wavelet planes. Chien
et al. (2002) distinguish freak waves generated by wind waves (unimodal spectrum
with strong grouping phenomenon) and bimodal waves caused by interaction of two
wave systems (say, wind waves and swell). There also exist a large amount of multi-
modal waves that have many energetic areas in the wavelet spectrum. Although the
wavelet analysis may catch the transient change of wave parameters better than the
Fourier transform, the wavelet spectra are more difficult to interpret. The shapes of
the prototype functions (“mother wavelets”) are often very similar (or identical) to
the NLS envelope soliton, hence the application of the IST analysis in combination
with the exact theory may prove to be very efficient.

The three-dimensionality of rogue waves can help to identify their origin, as is
discussed in Sect. 4.6. Although the development of air-, ship- and satellite-borne
SAR measurements and the associated methods of analysis are very promising (see
Rosenthal 2005), until now there have been very few results concerning 3D observa-
tions. It needs further improvement and justification to enable regular measurements
and analysis (see Dysthe et al. 2008).
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4.7.2 Statistics from Registrations of Natural Rogue Waves

Most available long-run instrumental registrations are made over relatively deep-
water areas (see Fig. 1.3). Although the number of measured rogue waves is in
the hundreds, these waves are measured under very different conditions and obvi-
ously do not satisfy the stationary random process requirement. That is why the
results of their statistical analysis are often dubious. This doubt is indirectly con-
firmed by conflicting conclusions of different investigations about the probabil-
ity of highest waves registered by gauges. Rogue waves are found to occur much
more frequently than is foreseen by the Rayleigh distribution function in studies
(Mori 2004, Pinho et al. 2004, Stansell 2004, Liu and MacHutchon 2006). This dis-
tribution, however, fits natural data reported quite well in Mori et al. (2002). The
freak wave phenomenon is rarer than it follows from the Rayleigh distribution func-
tion according to Chien et al. 2002, Paprota et al. 2003, both for relatively shallow
water). Stansell (2004) has undertaken a careful analysis of the records from the
viewpoint of statistical stationarity, and reported on about 300 times more frequent
occurrence of the highest measured wave (AI = 3.19) than it could be expected
from the Reyleigh statistics. Similar estimates may be found in the paper by Mori
and Janssen (2006a). Although some theoretical relations are suggested by the au-
thors to describe the results, the general disagreement between the results about
the rogue-wave probability obviously makes the conclusions about the quantitative
rogue-wave probability estimation premature. Thus, the present database of rogue
waves cannot answer the question about the true probability of rogue waves. The
more or less accepted opinion about the statistical description of observed extreme
waves is as follows: the high-order statistical models in general are able to describe
many huge waves, although a population exists of “true rogue waves” that do not
satisfy the classical statistical description.

It has already been discussed that the scientific community tries to fill in the
lack of in situ data by numerical data obtained from computational runs. To do this,
it is necessary to ensure that the dynamics described by the computer models are
similar to real ocean dynamics. The main result achieved through the numerical
simulations of irregular surface waves consists of an increase of the rogue wave
probability when the Benjamin-Feir index grows. Hence, this parameter has been
considered as a possible good indicator of high probability of freak-wave occur-
rence. Therefore, the first question that should be answered is: does the probability
of extreme sea-waves exhibit a dependence on the BFI? The answer is actually not
straightforward. The BFI seems to be a promising parameter for evaluating the dan-
ger of extreme sea waves. As it was demonstrated by numerical simulation, a strong
correlation exists between high wave probability and BFI. Nevertheless, its prac-
tical use seems to be still not fully operational. The BFI is a complex parameter,
roughly speaking, reflecting the typical wave height (or corresponding dimension-
less parameter, “steepness”) and spectral bandwidth (or number of waves in a group,
which is the inverse value) (see Sect. 4.4). Surprisingly, it is found that the probabil-
ity of occurrence of freak waves is only weakly dependent on the significant wave
height, significant wave steepness, and spectral bandwidth (Stansell 2004, Olagnon
and Prevosto 2005, Olagnon and Prevosto 2005). Furthermore, Melville et al. (2005)
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remark that the threshold in the abnormality index, AI, does not correspond to equiv-
alent thresholds in either the skewness or excess kurtosis.

In order to confirm the adequacy of a selected parameter to be used in warnings
of risk occurrence, it is necessary to ensure that it is sensitive to the presence of
rogue waves, and that it can be robustly computed. Olagnon and Magnusson (2004,
2005) note that the BF indices (defined in Olagnon and Magnusson 2004 in different
ways) and the peakedness factor of the JONSWAP spectrum exhibit particularly
poor robustness. High natural variability of the BF index might be a consequence of
the difficulty to obtain stable estimators when considering short in situ records.

The investigation of the robustness of some popular statistical parameters (wave
height, crest height, period, steepness, kurtosis, BFI, parameters of the spectral
shape) performed by Olagnon and Magnusson (2004) reports that only the kurtosis
exhibits a sufficient correlation with normalized crest height to allow considering
it as a parameter to be monitored. However, the kurtosis is directly influenced by
the presence of extreme waves. We should emphasize here that from the theoretical
point of view the kurtosis and the BFI are related through Eq. (4.108).

From a practical viewpoint, a parameter must vary on a characteristic time scale
significantly larger than the wave period. Otherwise, the variation of the parame-
ter will merely be a detector of the rogue wave and cannot be used for forecasting.
Olagnon and Prevosto (2005) report that the change of the kurtosis value registered
at the instant of a high wave occurrence can be satisfactorily explained by the high
wave alone, and that no further relationship can be found at larger time scales. If the
maximum wave is removed from the kurtosis computation, and kurtosis is estimated
from the remaining of the record, no further correlation between the kurtosis and the
maximum wave height can be seen. Therefore, Olagnon and Prevosto (2005) con-
clude that the Benjamin-Feir instability is very local and is not reflected by statistics
at the time scale of a sea state. The deviations that they could observe for some spec-
tral parameters close to occurrences of extreme waves were well within the natural
range of variability. They could not identify any special feature on the time-histories
of the BFI that might have some chance of being related to rogue wave occurrence.

A possible explanation of the discrepancy between numerical studies and natural
observations may be due to the typically unidirectional wave propagation (long-
crested waves) studied in the majority of the numerical computations, while the
natural sea waves are essentially short-crested. The evidence of two qualitatively
different sea wave regimes (long- and short-crested) that result in very different
statistics is formulated in recent papers (Haver 2005, Gramstad and Trulsen 2007,
Dysthe et al. 2008) (see Sect. 4.6), and is becoming supported by theoretical studies
and numerical simulations as well. These studies will obviously guide the focus of
future research.

List of Notations

A amplification factor
A wave amplitude
Abr amplitude of the breather
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Aes amplitude of the envelope soliton
Apw amplitude of the plane wave
Awp dimensional amplitude of the wave packet
AI abnormality index
Cgr group velocity
CLW long wave velocity
Cph phase velocity
d dimensionless water depth
d̃ depth parameter
D water depth
D/DT material derivative
g acceleration due to gravity
H wave height
Hs significant wave height
IBF Benjamin-Feir index
k = (p,q) dimensionless wave vector
K = (KX ,KY ) wave vector
K wavenumber
M mass integral
M order of perturbation series in the HOSM approach
n unit vector normal to the boundary
nt , nx number of individual wave in the time series or wave snapshot
Ns soliton number
p dimensionless pressure
pa dimensionless atmosphere pressure
P pressure
Pa atmosphere pressure
q(x, t) dimensionless envelope amplitude in the NLS equation
s wave steepness
t dimensionless time
T time
Tbr period of the breather
Tf focusing time
Uw wind velocity
Vbr velocity of the breather
Ves velocity of the envelope soliton
Vwp dimensional velocity of the wave packet
(x, y, z) dimensionless coordinates
(X , Y , Z) coordinates
Xf focusing length
φ (X , Y , Z, T ) velocity potential
η(X , Y , T ) surface elevation
ϕ(x, y, z, t) dimensionless velocity potential
κ kurtosis
λ eigenvalue of the associated scattering problem
ρa atmosphere density
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σ growth rate
σ standard deviation, σ2 is the variance
Ω cyclic wave frequency
Ωp mean wave frequency
ζ (x, y, t) dimensionless surface displacement
∂ΩFS free surface
∂ΩSB solid boundaries
∇ gradient operator

List of Acronyms

BF Benjamin-Feir
BFI Benjamin-Feir Index
BIEM Boundary Integral Equation Method
DS Davey-Stewartson system
HOSM High Order Spectral Method
NLS Nonlinear Schrödinger equation
SWE Steep Wave Event
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