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Abstract. We propose an approach for analyzing non-termination and reacha-
bility properties of recursive programs using a combination of over- and under-
approximating abstractions. First, we define a new concrete program semantics,
mixed, that combines both natural and operational semantics, and use it to de-
sign an on-the-fly symbolic algorithm. Second, we combine this algorithm with
abstraction by following classical fixpoint abstraction techniques. This makes
our approach parametrized by different approximating semantics of predicate
abstraction and enables a uniform solution for over- and under-approximating
semantics. The algorithm is implemented in YASM, and we show that it can es-
tablish non-termination of non-trivial C programs completely automatically.

1 Introduction

Automated predicate abstraction is one of the key techniques for extending finite-state
model-checking to software. It combines automated construction of a finite abstract
model with automated analysis by model-checking and iterative abstraction refinement.
Traditionally, predicate abstraction is an over-approximation of a program and thus is
biased towards establishing correctness of safety properties. To exploit the bug detec-
tion ability of model-checkers and to extend the scope of abstract model-checkers to
richer properties, recent research has proposed abstract analysis that combines both
over- and under-approximations [9, 15, 25, 26, 4, 18, 17]. Although such a combination,
which we call exact-approximation, has been shown to be effective in practice [17,19],
until now this line of research has focused exclusively on analyzing non-recursive pro-
grams. In this paper, we propose a novel approach to extend such over- and under-
approximating analyses to recursive programs. Our approach has been implemented in
a software model-checker YASM. We illustrate it on non-termination and reachability
analysis of several C programs, including the benchmarks from BEBOP [6], VERA [1],
and MOPED [14, 8], the Ack program from [10] and a buggy version of Quicksort
from [14]. To our knowledge, this is the first time that non-termination of such C pro-
grams was established completely automatically.

As a motivation, we review an over-approximation-based approach for model-
checking of non-recursive programs and its limitations. Assume we want to check
whether the ERROR label is reachable in the C program EX0 shown in Figure 1(a). This
safety property is expressed in CTL as ϕ : AG (pc �= ERROR). An over-approximating
abstraction α(EX0) of EX0 using the predicate p : x > 0 is shown in Figure 1(b),
where ‘*’ is interpreted as a non-deterministic choice. α(EX0) is a finite boolean model
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1. x=read(); y=read();
2. if(x>0){
3. while(x>0) {
4. x=x+1;
5. if(x<=0) ERROR;}
6. } else
7. while(y>0) y=y-1;
8. END;

1. p = *;
2. if(p){
3. while(p) {
4. p = p?true:*;
5. if(!p) ERROR;}
6. } else
7. while(*) p = p;
8. END;

(a) (b)

Fig. 1. (a) A program EX0, and (b) its over-approximation α(EX0) using predicate p : x > 0

which over-approximates the original program: it contains all feasible and some in-
feasible (or spurious) executions. For example, α(EX0) has an execution which gets
stuck in the while(*) loop on line 7, but EX0 does not have the corresponding exe-
cution. Thus, if a universal temporal property, i.e., in the one expressed in ACTL, holds
in α(EX0), it also holds in EX0. For example, our property ϕ is satisfied by α(EX0),
which means ERROR is unreachable in EX0. However, when a property is falsified by
α(EX0), the result cannot be trusted since it may be caused by a spurious behavior.
For example, consider checking whether EX0 always terminates, i.e., whether it satisfies
ψ : AF (pc = END). ψ is falsified on our abstraction, but this result cannot be trusted
due to the infeasible non-terminating execution around the while(*) loop on line 7.

The falsification (or refutation) ability of predicate abstraction can be dramatically
improved by using an under-approximating abstraction, where each abstract behavior
is simulated by some concrete one. In this case, if a bug (or an execution) is present in
the abstract model, it must exist in the concrete program. For example, the predicate p
must always be true in the while(p) loop at line 3 (assuming int is interpreted as
mathematical integers). Thus, an under-approximation based on predicate p is sufficient
to establish that EX0 is non-terminating.

There has been a considerable amount of research exploring abstract analysis based
on a combination of over- and under-approximating abstractions, e.g., [9, 15, 25, 26, 4,
18, 17]. Compared with an analysis based on over-approximation alone, there are two
main differences:

1. Such a combination requires a non-boolean abstract model that can represent both
over- and under-approximations at the same time. Examples of such models are
Modal Transition Systems [21] (equivalently, 3-valued Kripke structures [9]) and
Mixed Transition Systems [13] (equivalently, 4-valued Kripke structures [18]).
These models use two types of transitions: may for over-approximation, and must
for under-approximation.

2. It requires new model-checking algorithms for these models, such that a formula is
evaluated to either true or false, which are trusted, or to unknown, which indicates
that the abstraction is not precise enough for a conclusive analysis.

Although both theoretical and practical combinations of exact-approximation with au-
tomated CounterExample Guided Abstraction Refinement have been explored, they are
all limited to analyzing non-recursive programs.

One way to extend such analysis to recursive programs is to continue to mirror the
traditional approach, i.e., (a) extend push-down systems to support combined over-
and under-approximations, and (b) develop analysis algorithms for this new modeling
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formalism. While this approach seems natural, we are not aware of any existing work
along this line.

In this paper, we propose an alternative solution to this problem. Our approach does
not require the development of new specialized types of push-down systems, nor new
specialized analysis algorithms. The key to our approach is to separate the analysis of
recursive programs from abstraction of the data domain. We accomplish this by intro-
ducing a new concrete program semantics, which we call mixed, and using it to de-
rive efficient symbolic algorithms for the analysis of non-termination and reachability
properties of finite recursive programs. These algorithms share many insights with tech-
niques in related work [8, 6, 1], i.e., they are functional [24] in terms of interprocedural
analysis, and apply only to stack-independent properties. The novelty of our approach
is the formalization of the algorithms as equational systems, and the parametrization of
the algorithms by data abstractions. This makes it possible to share the same analysis
algorithms for over-, under-, and exact-approximations! In particular, we demonstrate
that in combination with exact-approximation [17], our abstract analysis supports both
verification and refutation.

The rest of this paper is organized as follows. We present preliminaries and fix our
notation in Sec. 2. We present a simple programming language PL and its natural, and
operational semantics in Sec. 3. In Sec. 4, we introduce mixed semantics and derive
symbolic on-the-fly algorithms for analyzing recursive programs with finite data do-
main for reachability and non-termination. In Sec. 5, we parametrize the algorithms of
Sec. 4 by abstraction for handling programs with infinite data domain. Experiments are
reported in Sec. 6, and we conclude in Sec. 7. Additional illustrations are given in the
Appendix.

2 Preliminaries

Valuation and Relations. A valuation σ on a set of typed variables V is a function that
maps each variable x in V to a value σ(x) in its domain. We assume that valuations
extend to expressions in the obvious way. The domain of σ is called a valuation type
and is denoted by τ(σ). For example, if σ = {x �→ 5, y �→ 10} then τ(σ) = {x, y}.
The projection of σ on a subset U ⊆ V is denoted by σ|U .

The set of all valuations over V is denoted by ΣV � {σ | τ(σ) = V }. Note that Σ∅
is well-defined and consists of the unique empty valuation. A relation r on two sets of
variables U and V is a subset of ΣU ×ΣV . The relational type of r is U → V , denoted
by τ(r). For example, the type of x′ = y is from y to x, that is, τ(x′ = y) = {y} →
{x}. In this paper, we use several simple relations: true is the true relation, id is the
identity relation (e.g., id(x) � x′ = x), decl is a relation for variable declaration, and
kill — for variable elimination. Formally, they are defined as follows, with the format
name ‘�’ expression ‘:’ type:

true(U → V ) � ΣU × ΣV : U → V decl(V ) � true(∅ → V ) : ∅ → V

kill(V ) � true(V →∅) : V →∅ id(V ) � {(σ, σ′) ∈ ΣV × ΣV | σ=σ′} : V → V

Operations on relations are defined in Table 1, where ∨, ◦ and × are asynchronous,
sequential and parallel composition, respectively, assume is a restriction of identity
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Table 1. Relational operations

Operation Assumption Definition Type
r1 ∨ r2 τ(r1) = τ(r2) λa, a′ · r1(a, a′) ∨ r2(a, a′) τ(r1)

r1 ◦ r2
τ(r1) = U → V

∧ τ(r2) = V → W
λa, a′ · ∨a′′ (r1(a, a′′) ∧ r2(a

′′, a′)) U → W

r1 × r2

τ(r1) = U → V1

∧ τ(r2) = U → V2

∧ V1 ∩ V2 = ∅
λa, a′ · r1(a, a′|V1

) ∧ r2(a, a′|V2
) U → (V1 ∪ V2)

assume(Q) λa, a′ · Q(a) ∧ id(τ(Q))(a, a′) τ(Q) → τ(Q)

[W ]r τ(r) = U → V λa, a′ · r(a|U , a′) (U ∪ W ) → V

(W → Z)r τ(r) = U → V ∧ U ⊆ W ∧ (Z \ V ) ⊆ W ([W ]r) × ([W ](id(Z \ V ))) W → Z

relation to a set Q of valuations, [·] is variable introduction, and (· → ·) is scope ex-
tension. Note that × combines the outputs of two relations, and [·] extends the source
of a relation with new variables. Together these operators allow constructing complex
relations from simple ones. For example, [{x, y}](x′ = y)×[{x, y}](y′ = x) is the re-
lation (x′ = y) ∧ (y′ = x) with the type {x, y} → {x, y}. Directly composing x′ = y
and y′ = x without variable introduction, i.e., (x′ = y)×(y′ = x), is invalid because
τ(x′ = y) = {y} → {x} and τ(y′ = x) = {x} → {y} have different source types.
Scope extension extends a relation by combining it with the identity on new variables.
For example, ({x, y} → {x, y})(x′ = x + 1) is (x′ = x + 1) ∧ (y′ = y). The
assumptions for scope extension ensure that any new variable introduced in the desti-
nation of r must also be available in the source. For example, the extension ({x, y} →
{x, z})(x′ = x+ 1) is not allowed since z is not available in the source of the relation.

For a relation r with a type U → V , we define the pre-image of Q ⊆ ΣV w.r.t. r,
pre[r] : 2ΣV → 2ΣU , as

pre[r](Q) � λa · ∨a′ (r(a, a′) ∧Q(a′))

Reachability and Non-termination. A Kripke structure K = 〈S,R〉 is a transition
system, where S is a set of states and R ⊆ S × S is a transition relation.

Let p be an atomic proposition, and Sp � {s ∈ S | s |= p} be the set of states
satisfying p. A reachability property (EF p in CTL) is true in a state s if there exists a
path from s to a state in Sp. A non-termination property (EG p in CTL) is true in a state
s if there exists an infinite path starting at s and contained in Sp.

The set RS of all states satisfying EF p is the least solution to equation reach, and
the set NT of all states satisfying EG p is the greatest solution to equation non-term:

RS = Sp ∪ pre[R](RS) (reach) NT = pre[R∩ Sp](NT ) (non-term)

3 Programming Language and Semantics

We use a simple imperative programming language PL which allows non-determinism
and recursive function calls. We assume that (a) functions have a set of call-by-value
formal parameters and a set of return variables; (b) each variable has a unique name
and explicit scope; (c) there are no global variables (they can be simulated by local
variables); and (d) a type expression is associated with each statement and explicitly
defines the pre- and post-variables of the statement.
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(a)

1: f1() {
2: en1: skip;
3: var x,y;
4: x,y := 3,0;
5: x := f2(x);
6: skip;
7: while (x==2 && y<=0) {
8: y := f2(y);
9: }
10: kill x,y;
11: ex1: }

12: f2(z):z {
13: en2: skip;
14: while (z < 0) {
15: z := z+1;
16: }
17: z := z-1;
18: ex2: }

(b)

ex1

10

7 8

9

6

5

4

3

en1

ex2

17

14 15

16

en2

skip

var x,y

x,y:=3,0

skip

[x = 2 ∧ y ≤ 0]

skip[!(x = 2 ∧ y ≤ 0)]

kill x,y

skip

[z<0]

z:=z+1
skip

[z ≥ 0]

z:=z-1

func-call
x:=f2(x)

func-call
y:=f2(y)

ret
x:=z

ret
y:=z

call
z:=x

call
z:=y

Fig. 2. (a) A program EX1 and (b) its ICFG

Syntax. Let var denote variables, func function identifiers, e expressions, and T valua-
tion types. The syntax of PL is defined as follows:

Atomic ::= skip | var+ := e+ | assume(e) | var var+ | kill var+ | (T → T )Atomic
Stmt ::= Atomic | Stmt ; Stmt | Stmt ‖Stmt | if(e) then Stmt else Stmt

| while(e) Stmt | var+ := func(var+) | (T → T )Stmt
Fdef ::= func(var+) : var+ Stmt
Prog ::= Fdef+

We use bold lower case letters to represent vectors, e.g., a statement x := e means an
assignment x1, · · · , xn :=e1, · · · , en. For a function f with declaration f(p1, · · · , pn) :
r1, · · · , rk, pf and rf to denote the formal parameters and the return variables of f ,
respectively. var(e) denotes the variables of e, and we assume that each program has a
“main” function f1, not called by other functions.

Base Semantics. Let Σ denote the set of all valuations in a PL program. With each
atomic statement S, we associate base semantics that interprets the statement as a rela-
tion [[S]] ⊆ Σ ×Σ on valuations of program variables:

[[skip]] � id(∅) [[var x]] � decl[x] [[kill x]] � kill[x] [[(U → V )(S)]] � (U → V )[[S]]

[[x := e]] � {(σ, σ′) | τ (σ) = var(e) ∧ σ′ = [xi �→ σ(ei)]}
[[assume(e)]] � {(σ, σ′) | (σ, σ′) ∈ id(var(e)) ∧ σ |= e}

Note that for the type cast statement (U → V )S, we only consider those cases where
the assumptions for the scope extension are satisfied.

Interprocedural Control Flow Graph. A PL program is represented by an Interproce-
dural Control Flow Graph (ICFG) [24]. An ICFG is a labeled graph G = 〈Loc,Edge,
π〉, where Loc is a finite set of locations, Edge ⊆ Loc × Loc is a set of edges, and
π labels each edge with a program statement. For example, the ICFG for the program
EX1 (see Fig. 2(a)) is shown in Fig. 2(b). In ICFGs, (a) each function has a unique entry
(en) and exit (ex); (b) there is a self-loop at ex of f1 to ensure existence of an infinite
execution; (c) each function call (func-call) is: a call edge, where the values of actual
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Table 2. The rules of operational and mixed semanics. U is the set of local variables in the scope
of the function call; [[f ]] is natural semantics, pf are the formals, and rf are the returns of f .

Statement π(〈k, l〉) Operational Semantics r〈k,l〉 Mixed Semantics rm
〈k,l〉

func-call edge (U → U) x := f(a) ∅ (U → U) ([[pf := a]] ◦ [[f ]] ◦ [[x := rf ]])

call edge S ≡ (U → x) x := e Γt = s ∧ (σk, σl) ∈ [[S]] [[S]]

ret edge (U → V ) x := r

let (c, σc).Γc = Γs in

Γt = Γc ∧ l = ret(c)
∧ σl = σc[{xi �→ σk(ri)}]

∅

Intraprocedural: S Γt = Γs ∧ (σk, σl) ∈ [[S]] [[S]]

parameters of the callee function are assigned to the formal parameters, a function body,
and a ret edge, where the return values are assigned to the variables of the caller.

We assume that call and ret edges are uniquely determined by each other. For a call
edge (k, en) and the corresponding ret edge (ex, l), k is the call location, call(l) � k,
and l is the return location, ret(k) � l.

Operational Semantics of a program P = 〈Loc,Edge, π〉 is a transition system
K = 〈S,R〉. Each state in S is a stack of activation records where each record is
of the form 〈pc, σ〉, where pc ∈ Loc is a program counter, corresponding to a particular
control location in P , and σ ∈ ΣV (pc) is the valuation for variables in the scope of pc
(denoted by V (pc)). For a state s = (k, σk).Γ , (k, σk) is the top element of s, top(s).
For a pair of states s = (k, σk).Γs and t = (l, σl).Γt, the transition relation R is defined
as R(s, t) � 〈k, l〉 ∈ Edge∧ r〈k,l〉(s, t), where r〈k,l〉 is a deterministic (but not neces-
sarily total) relation on S at the edge 〈k, l〉, as defined in the 2nd column of Table 2. An
intraprocedural statement only modifies the top activation record, and a statement on a
call or a ret edge pushes a new record or pops one, respectively. The transition relations
on func-call edges are empty, i.e., these edges are removed.

Natural Semantics [22] (a.k.a. big-step) of a block of code S is a relation [[S]] ⊆ Σ×Σ
between the input and output of S: i.e., (σ, σ′) ∈ [[S]] iff the execution of S on σ
terminates and results in σ′. Natural semantics of a program P ≡ f1, · · · , fn is a set of
relations, one per function, i.e., [[P ]] = 〈[[f1]], · · · , [[fn]]〉.

The semantic rules for PL are defined compositionally on the syntax using the func-
tion [[·]]ρ, where ρ is an environment mapping free fixpoint variables (used for loops and
functions) to relations with an appropriate type. Natural semantics for atomic statements
is the same as base semantics; the other cases are:

[[S1; S2]]ρ � [[S1]]ρ ◦ [[S2]]ρ [[μX · S(X)]]ρ � lfp
�
λZ · [[S(X)]]ρ{X �→Z}

�
[[S1 ‖ S2]]ρ � [[S1]]ρ ∨ [[S2]]ρ [[x := f(a)]]ρ � [[pf := a; Xf ;x := rf ]]ρ

[[X]]ρ � ρ(X) [[while(e) S]]ρ � [[μXw · if(e) then (S; Xw)]]ρ

[[if(e) then S1 else S2]]ρ � [[(assume(e); S1) ‖ (assume(¬e); S2)]]ρ

where lfp denotes for least fixpoint, τ(ρ(Xf )) = pf → rf and τ(ρ(Xw)) = τ([[S]]ρ).
A program P ≡ f1, · · · , fn induces the system of equations

ρ(Xfi) = [[Sfi ]]ρ (1 ≤ i ≤ n) (nat)

Natural semantics of P is the least fixpoint solution to this system, e.g., for the program
EX1, natural semantics of f2 is (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1).
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Theorem 1. Let P ≡ f1, · · · , fn be a program and K = 〈S,R〉 be its operational
semantics. A pair of activation records (〈k, σk〉, 〈l, σl〉) is in [[fi]] iff there exists a path
s0, · · · , sm inK such that s0 = 〈k, σk〉.Γ0 and sm = 〈l, σl〉.Γm, such that Γ0 = Γm, k
and l are en and ex of fi, respectively, and for all other sj = 〈p, σp〉.Γj either Γj �= Γ0

or p is not ex of fi.

4 Reachability and Non-termination Analysis

We now turn our attention to checking reachability and non-termination of recursive
programs. Reachability can be reduced to finding the least fixpoint solution to the equa-
tion reach w.r.t. a transition system of operational semantics of a program (see Sec. 2).
Similarly, non-termination corresponds to finding the greatest solution to the equation
non-term. However, since operational semantics explicitly exposes a potentially un-
bounded call stack at each state, these equations must be solved over an infinite tran-
sition system (even when all program variables range over finite domains). Thus, the
exact fixpoint solution may not be computable.

However, many program properties depend only on the top of the call stack: i.e., they
are stack-independent. Analysis of such properties can be done using stack-free opera-
tional semantics in which everything except for the top activation record is abstracted
away. In this section, we apply this idea to the analysis of EF p (reachability) and EG p
(non-termination) properties, where p is a proposition that depends only on the top ac-
tivation record. Without loss of generality, we further assume that p only depends on
program locations, i.e., it is of the form pc = x.

4.1 Mixed Semantics

We start by defining a stack-free operational semantics, called mixed semantics, for PL
programs which removes the call stack but preserves reachability and non-termination
properties w.r.t. operational semantics of Sec. 3.

Intuitively, mixed semantics is a combination of operational and natural semantics,
in which a program is executed as follows: an atomic statement is executed as usual; a
function call x := foo(y) is executed as a non-deterministic choice between (a) execut-
ing foo, i.e., updating the top activation record according to natural semantics of foo,
and (b) entering the body of foo, and forgetting all but the top activation record. Upon
reaching the end of the main function, the execution enters a self-loop indicating the
end of the program, and blocks at all other exit locations since it does not remember the
origin of the call. For example, consider mixed execution of the program EX1 starting
from line 5 with x = 3 and y = 0. At this point, the execution can either (a) move to
line 6 and decrease x by one according to natural semantics of f2, or (b) move to en2
(line 13), assign z to 3, and forget about x and y. Within f2, the execution continues
until it blocks at ex2 (line 18) with z = 2.

Formally, mixed semantics of a program P = 〈Loc,Edge, π〉 is a Kripke struc-
ture Km = 〈Sm,Rm〉, where each state is a single activation record 〈pc, σ〉. For
a pair of states s = 〈k, σk〉 and t = 〈l, σl〉, the transition relation is Rm(s, t) �
(〈k, l〉 ∈ Edge) ∧ rm

〈k,l〉(σk, σl), where rm
〈k,l〉 is a relation on valuations, as defined in
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the 3rd column of Table 2. Note that rm
e for ret edges is empty, which is equivalent to

removing those edges from the ICFG.
Mixed semantics preserves reachability and non-termination properties w.r.t. opera-

tional semantics. If an execution of a function f reaches a state s under the latter, then
either s is a location within f , or it is inside some other function that f calls (directly or
indirectly). The non-deterministic treatment of function calls in the former ensures that
both of these cases are covered. Similarly, if there exists an infinite execution starting
inside f , then either this execution lies within f , or f calls a function that does not
return the control back to f . Again, both cases are captured by mixed semantics.

Theorem 2. Let K and Km be operational and mixed semantics of a given program,
respectively, and p be a propositional formula on control locations. Then, (K |= EF p)
⇔ (Km |= EF p) and (K |= EG p) ⇔ (Km |= EG p).

When all variables of a given program P range over finite domains, mixed semantics of
P is a finite Kripke structure. Theorem 2 implies the following analysis algorithm:

Step 1: compute natural semantics of P by solving equation nat;
Step 2: construct the structure Km following the rules of mixed semantics;
Step 3: solve equations reach or non-term on Km for reachability or non-termination,

respectively.
While sound and complete, this algorithm is not efficient, since it relies on the (poten-
tially unnecessary) computation of “full” natural semantics of all functions (for Step
2) and the construction of “full” mixed semantics before the analysis of the property
can even begin. As a trivial example, consider checking EF(pc = 5) on the program
EX1. Since reachability of line 6 is irrelevant for this analysis, there is no need to con-
struct the transition relation corresponding to func-call edge 〈5, 6〉 and thus no need to
compute natural semantics of f2. Following this observation, in the rest of this section,
we show that the three steps of the above algorithm can be combined into an on-the-fly
algorithm that only computes the necessary parts of mixed and natural semantics.

4.2 On-the-Fly Reachability

Intuitively, the analysis of EF p properties only needs a part of mixed semantics that
is used for solving equation reach, and that, in turn, drives the computation of the nec-
essary parts of natural semantics. To illustrate, consider checking EF(pc = 8) on EX1.
Natural semantics of f2 is [[f2]] ≡ (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1). After a
few iterations, the reachability algorithm computes a pre-conditionQ ≡ x = 2∧ y ≤ 0
for reaching line 8 from line 6. To determine a pre-condition for Q w.r.t. a function call
x:=f2(x) at line 5, it needs to compute pre[rm

〈5,6〉](Q) = (x = 3 ∧ y ≤ 0), where
rm
〈5,6〉 ≡ (y′ = y)∧((x > 0 ∧ x′ = x− 1) ∨ (x ≤ 0 ∧ x′ = −1)) is the instantiation of

[[f2]] to the call site. However, instead of using the “full” version of [[f2]], it is sufficient to
compute a pre-condition that assumesQ as a post-condition, i.e., to restrict rm to x′ = 2
(the relevant part ofQ) yielding r̂m ≡ y′ = y∧x = 3∧x′ = 2. r̂m is an instantiation of
z = 3∧z′ = 2 in the context of the call, obtained by (a) convertingQ to a postcondition
of f2 by taking its pre-image over the ret edge (which eliminates y and renames x to z),
and (b) restricting [[f2]] to this post-condition: [[f2]]◦(assume(z = 2)) ≡ z = 3∧z′ = 2.
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We now formalize the above intuition. Recall that V (k) stands for the set of
variables in the scope of a location k. Let l be the return location of a func-
tion call to fi, Q ⊆ ΣV (l) be a set of valuations at l, and the corresponding
ret edge 〈exi, l〉 be labeled with x := rfi . Then, function prop(〈exi, l〉, Q) �
pre [[[x := rfi ; (x → V (l))var (V (l) \ x)]]] (Q) turns Q into a post-condition of fi.
Here, the pre-image w.r.t. var undeclares (or removes) all variables that are not
changed by the call, and the pre-image w.r.t. ret edge turns the post-condition on
x into the one on rfi .

Let RS : Loc → 2Σ map each location k to a subset of ΣV (k), and, as in Sec. 3,
let ρ be the semantics environment, mapping each fixpoint variable to a relation of
an appropriate type. The on-the-fly algorithm for reachability analysis is the equation
system reach-otf:

RS(k) =

�
ΣV (k) if k |= p (k ∈ Loc)

RS(k) ∪�l∈succ(k) pre[r̂m
〈k,l〉] (RS(l)) otherwise

ρ(Xfi) = [[Sfi ]]ρ ◦ assume
��

l∈succ(exi)
prop (〈exi, l〉, RS(l))

�
(i ∈ [1..n])

(reach-otf)

where succ are the successors of a node in the ICFG, Sfi is the body of fi, and for
S ≡ π(〈k, l〉), r̂m

〈k,l〉 is defined as:

r̂m
〈k,l〉 =

�
(U → U) ([[pf := a]] ◦ ρ(Xfi) ◦ [[x := rf ]]) if S ≡ (U → U) x := f(a)

[[S]] otherwise

This system is a combination of nat and reach, where prop is used to propagate the
reachability information to the computation of natural semantics. Since reachability and
natural semantics are both least solutions to equations reach and nat, respectively, we
need the least solution to the above equation as well.

The following theorem shows that the analysis based on equation system reach-otf is
sound, and computes only the necessary part of natural semantics.

Theorem 3. Let RS↓ and ρ↓ be the least solutions to equation system reach-otf. Then,

1. RS↓ is the least solution to equation reach on Km ;

2. ∀i ∈ [1..n] · ρ↓(Xfi) ⊆ [[fi]];

3. for any ρ, if RS↓ is the least solution to the RS equations in reach-otf w.r.t. ρ, then ∀i ∈
[1..n] · ρ↓(Xfi) ⊆ ρ(Xfi).

Part 1 of Theorem 3 shows that RS↓ is the solution for the reachability analysis; part 2
– that ρ↓ is sound w.r.t. natural semantics of fi; and part 3 – that ρ↓ only contains the
information necessary for the analysis.

Since we need the least solution for both RS(k) and ρ(Xfi) equations, it can be ob-
tained by any chaotic iteration [11] and thus is independent of the order of computation
of RS and ρ. Interestingly, the algorithm derived from reach-otf is a pre-image-based
variant of the post-image-based reachability algorithm of BEBOP [6], and is similar to
the formalization of backward analysis with wp described in [3].
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4.3 On-the-Fly Non-termination

The derivation of the on-the-fly algorithm for the analysis of non-termination, nt-otf,
proceeds similarly, and is a combination of systems nat and non-term:

NT (k) =

�
∅ if k �|= p (k ∈ Loc)�

l∈succ(k) pre[r̂m
〈k,l〉](NT (l)) otherwise

ρ(Xfi) = [[Sfi ]]ρ ◦ assume
��

l∈succ(exi)
prop (〈exi, l〉, NT (l))

�
(i ∈ [1..n])

(nt-otf)

where NT : Loc → 2Σ maps each location k to a subset of ΣV (k), and succ, Sfi

and r̂m are the same as those in reach-otf. Since non-termination requires the greatest
solution to non-term, and natural semantics – the least solution to nat, in nt-otf, we need
the greatest solution toNT (k), and the least solution to ρ(Xfi) equations, respectively.

The following theorem shows that the non-termination algorithm based on nt-otf is
sound and computes only the necessary part of natural semantics.

Theorem 4. Let NT↑ and ρ↓ be the greatest solution for NT and the least solution for
ρ in system nt-otf, respectively. Then,

1. NT↑ is the greatest solution to the equation non-term on Km ;
2. ∀i ∈ [1..n] · ρ↓(Xfi) ⊆ [[fi]];
3. for any ρ, if NT↑ is the greatest solution to the NT equations in nt-otf w.r.t. ρ, then ∀i ∈

[1..n] · ρ↓(Xfi) ⊆ ρ(Xfi).

As in Theorem 3, part 1 of Theorem 4 shows soundness of non-termination, and parts
2 and 3 – soundness and necessity of computation of natural semantics, respectively.

Unlike reachability, non-termination requires different fixpoint solutions forNT and
ρ, and thus the order of computation can influence the result. For example, consider
checking EG(pc �= ex1) on EX1. Initially, lines 7, 8, and 9 are associated with all the
valuations on x and y, i.e., NT(7) = NT(8) = NT(9) = Σ{x,y}, and ρ(f2) is empty,
which is not the partial semantics of f2 restricted to NT(9). If the computation of NT
proceeds along the function call y:=f2(y) using the initial value of ρ(f2), NT(8) is
assigned ∅. Eventually, NT(7) = NT(8) = NT(9) = ∅, i.e., the algorithm incorrectly
concludes that any execution starting at lines 7, 8 or 9 terminates.

The correct order for computing the solution is such that the pre-image of a set Q
w.r.t. a function call to f has to be delayed until the derivation of ρ(Xf ) w.r.t. Q is
finished. Nonetheless, since this order is only restricted to func-call edges, the order of
the computation elsewhere can be arbitrary. This can be used to avoid deriving “full”
natural semantics. Going back to the previous example, one can first computeNT along
all edges except for func-call edges, which will assignNT (9) with x = 2∧ y ≤ 0, and
then compute natural semantics of f2 restricted to the post-condition z ≤ 0. Similarly,
although initiallyNT (6) is assignedΣ{x,y},NT (6) = (x = 2∧y ≤ 0) after the initial
computation of NT , which means that only partial natural semantics of f2 restricted to
the post-condition z = 2 is needed.

In this section, we have presented mixed semantics – a stack-free operational seman-
tics of PL, and showed how it can be used to check reachability and non-termination of
programs with a finite data domain. Although the use of such semantics is not new, our
formalization provides a basis for a tight integration between abstraction and analysis,
which is described in the next section.
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5 Abstract Reachability and Non-termination Analysis

Here, we follow the framework of abstract interpretation (AI) [12] to derive an abstract
version of the concrete analysis described in Sec. 4. To do so, we require two abstract
domains: abstract setsAs whose elements approximate sets in 2Σ , and abstract relations
Ar whose elements approximate relations in 2Σ×Σ . These domains must be equipped
with abstract version of all of the operations used in equations reach-otf and nt-otf.
Finally, the framework of AI ensures that the solution to an abstract equation is an
approximation of the solution to the corresponding concrete equation. In what follows,
we identify the necessary abstract operations onAs andAr, and then show how to adapt
predicate abstraction for our algorithm.

Abstract Domains and Operations. The domain of abstract sets As must be equipped
with a set union ∪ (used in the reachability computation) and equality (to detect the
fixpoint convergence). The domain of abstract relations Ar must be equipped with (a)
a pre-image operator to convert abstract relations to abstract transformers over As, (b)
asynchronous and sequential compositions of abstract relations (used in natural seman-
tics), (c) scope extension (used to instantiate a function call using natural semantics
of a function), and (d) equality (to detect the fixpoint convergence). Furthermore, we
need an assume operator that maps an abstract set to a corresponding abstract relation;
and, to apply the abstraction directly to the source code, a computable version of ab-
stract base semantics [[·]]α that maps each atomic statement S to an abstract relation that
approximates [[S]] (the concrete semantics of S).

Predicate Abstraction. In the rest of this section, we show how the domain of predicate
abstraction [16, 5, 18] can be extended with the necessary abstract operations to yield
abstract reachability and non-termination algorithms.

Predicate abstraction provides domains for abstracting elements, sets, and relations
of valuations. Let V be a set of variables, and P be a set of predicates over V . The
elementary domain of predicate abstraction over P , denoted ΘP , is the set of all con-
junctions of literals over P . For example, if P = {x > 0, x < y}, then ¬(x > 0) and
(x > 0) ∧ ¬(x < y) are in ΘP . An element of θ ∈ Θ approximates any valuation
σ ∈ ΣV that satisfies all literals in θ. For example, σ = 〈x �→ 2, y �→ 2〉 is approxi-
mated by x > 0, and is also approximated by (x > 0) ∧ ¬(x < y) more precisely.

The elementary domain is lifted to sets and relations in an obvious way: sets over
Θ represent concrete sets, and relations overΘ – concrete relations. This extension can
be either over- or under-approximating, i.e., a collection of concrete valuations corre-
sponding to an abstract set either over-approximates or under-approximates a concrete
set. The over- and under-approximating interpretations can also be combined into a
single exact-approximation using sets and relations over Belnap logic [18].

Abstract versions of set union, set and relation equality, pre-image, and base se-
mantics for over-approximating predicate abstraction have been defined (e.g., [5]).
For example, if X and Y are two abstract sets, their abstract union is X ∪α Y �
λz · X(z) ∨ Y (z). In [18, 17], we show that these operations also naturally extend to
under-approximating and exact predicate abstractions. In the latter case, conjunctions
and disjunctions, e.g., ∨ in the definition of ∪α, are interpreted in Belnap logic. We
define the missing abstract relational operations assumeα, asynchronous (∨α), and se-
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int g;

void main(){
level_1();
if (g<0){

ERROR: ;
}
END: ;
}

void level_i(){
int t = 0;
g = -1 * g;
if (g<=0){

t = t+1;
} else {

level_i+1();
g = -1 * g;
level_i+1();

}
g = -1 * g;}

void level_n(){
int t = 0;
g = -1 * g;
if (g<=0){
t = t+1;

} else {

<stmt>

}
g = -1 * g;}

<stmt>:=
g = -1 * g;

<stmt>:=
level_n();
g = -1 * g;
level_n();

(a)

(b)

(c)

Fig. 3. (a) The template for experiments. (b) <stmt> for template T1(n). (c) <stmt> for T2(n).

quential (◦α) compositions similarly, using the corresponding definitions from Sec. 2,
e.g., if r1 and r2 are abstract relations, then their abstract asynchronous composition is
r1 ∨α r2 � λs, t · r1(s, t) ∨ r2(s, t), where ∨ is interpreted in Boolean logic for over-
and under-approximating abstraction, and in Belnap logic for exact abstraction.

In concrete semantics, scope extension is used to extend a relation to additional vari-
ables. That is, if r is a relation of type U → V , then (U → U)r is an extension of r to
variables in U \V . In the abstract semantics, relations are defined over predicates; thus,
abstract scope extension must extend a relation to additional predicates. To do this, we
assume that the elementary abstract domain Θ corresponding to U can be decomposed
into two independent abstract domains: one for V and the other – for U \ V , i.e., Θ
is defined using predicates that either range only over V , or only over U \ V . Then,
abstract scope extension (· → ·)α, defined as in Table 1, is a sound approximation of
concrete scope extension.

Theorem 5. Abstract operations assumeα, ∨α, ◦α, and (· → ·)α as defined above are
sound approximations of their concrete counterparts.

In the context of our on-the-fly algorithms, the assumption on abstract scope extension
means that predicates that are used to abstract valuations at a return location l of a
function call x :=f(a) are either defined only over x, or only over other variables in the
scope of l. For example, predicates x = 2 and y ≤ 0 can be used to abstract valuations
at line 6 in the program EX1, but predicate x > y cannot. This is not a severe restriction
in practice since a function can always be extended to accept additional parameters and
return them without modification.

To summarize, both over- and under-approximating predicate abstractions can be
used to soundly abstract reachability and non-termination analysis. The choice depends
on the desired algorithm. For example, over-approximation is necessary to establish un-
reachability, whereas under-approximation – to establish non-termination. Since exact
predicate abstraction combines them, it can be used for both verification and refutation.

6 Experiments

The technique described in this paper has been implemented in our symbolic software
model checker YASM [19]. YASM is written in JAVA; it uses CVC Lite [7] to approxi-
mate program statements and CUDD [27] as a decision diagram engine. We have also
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Table 3. Experimental results: overall analysis time in seconds

T1(n) T2(n)
n EF (pc = ERROR) (reach) EG (pc �= END) (non-terminate) ¬EF (pc = ERROR) (unreach)

20 6.5 4.9 4.3
50 11.7 8.9 6.3
100 20.3 20.3 11.1
200 36.7 25.2 27.6
300 47.6 34.4 42.1
400 68.1 43.2 64.5
500 105.2 60.6 86.6

extended our proof-based refinement approach [17] to handle natural semantics of func-
tions. In the rest of this section, we report on a preliminary evaluation of this implemen-
tation. All of the experiments have been conducted on a 2xP4Xeon-3.6GHz server and
are available at http://www.cs.toronto.edu/fm/yasm/yasm-tests.zip. Our
experiments demonstrate YASM’s ability to analyze reachability and non-termination
of recursive programs using exact-approximation. In summary:

1. We run YASM on template programs similar to those in the BEBOP and MOPED

benchmarks. The experiment shows that the analysis time for both reachability and
non-termination increases linearly w.r.t. the number of functions in a program.

2. We show that abstract analysis based on exact-approximation supports both verifi-
cation and refutation.

3. We compare YASM with MOPED and VERA (BEBOP does not do non-termination),
and show that YASM can prove non-termination of the original buggy Quicksort
algorithm, whereas MOPED and VERA cannot.

To evaluate the reachability algorithm, we have used the template program T1(n)
which is a variant of the one used for BEBOP in [6]. T1(n) is the result of replacing
<stmt> in the template shown in Fig. 3(a) with the statements in Fig. 3(b). It consists
of a main function and n sub-functions, where main calls level 1, and level i
calls level i+1 twice if the global variable g is positive. Since g is not initialized, its
initial value is arbitrary. Although this program has no recursion, inlining function calls
increases its size exponentially, making the analysis infeasible for a sufficiently large
n. We checked the reachability property EF (pc = ERROR) with values of n ranging
between 20 and 500, and measured the overall analysis time (including parsing, ab-
straction, model-checking, and refinement). The results are shown in the second column
of Table 3. Since our technique analyzes each function separately, the analysis time in-
creases linearly w.r.t. the number of functions (n), as expected. In all these cases, YASM

was successful in proving reachability, and discovered predicates g < 0, g > 0 and
g ≤ 0. While the template T1(n) is similar to the one used in [6], there is a fundamen-
tal difference: BEBOP assumes an over-approximating abstract semantics of Boolean
programs and cannot conclusively verify that the ERROR label is reachable with these
predicates. YASM uses exact-approximation which results in a conclusive analysis.

We also checked the template program T2(n), obtained by replacing <stmt> in the
template in Fig. 3(a) with statements in Fig. 3(c). Non-termination and unreachability
results are presented in the third and fourth columns of Table 3, respectively. As ex-
pected, the analysis time increases linearly with the number of functions.

http://www.cs.toronto.edu/fm/yasm/yasm-tests.zip
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void main (){
int mx, my;
ack (mx, my);
END:; }

int ack (int x, int y){
int r1, n;
if (x > 0) {

if (y > 0) {
y = y - 1;
n = ack (x, y);

} else { n = 1; }
r1 = ack (x, n);
return r1;

} else {
r1 = y + 1;
return r1;

}}

void main(){
int x;
foo(x);
while(x!=0) {

if (x<0) {
x = -1 * x;
x = x+2;

} else {
x = -1 * x;
x = x+3;

}}
END: ;}

void foo (int y){
y = -1 * y;
if (y < 0) {

foo (y);
}}

void main (){
int mleft, mright;
quicksort (mleft, mright);
END:;}

void quicksort (int left, int right){
int lo, hi;
if (left >= right) return;
lo = left; hi = right;
while (lo <= hi) {

if (nondet()) {
lo = lo+1;

} else {
if(lo!=left || hi!=right)

hi = hi-1;
}}

quicksort (left, hi);
quicksort (lo, right); }

(a) (b) (c)

Fig. 4. Non-terminating programs: (a) Ack; (b) Shift; (c) Buggy Quicksort

For non-termination, we have also applied YASM to several examples inspired by
[10], in particular, on programs Ack and Shift, shown in Fig. 4(a) and (b), respec-
tively. YASM was able to automatically prove non-termination of Ack in 2.1 seconds
and discovered predicates y > 0, n > 0, x > 0, mx > 0 and my > 0. Analysis
of Shift took 1.9 seconds and yielded predicates y < 0, x < 0, x > 3, x = 0
and x = 3. Finally, we have compared YASM to MOPED [14] and VERA [1] on the
buggy Quicksort example from [14] in Fig. 4(c), where nondet() represents non-
deterministic choice. YASM has established non-termination of Quicksort in 10 sec-
onds, finding 7 predicates. Note that both MOPED and VERA only apply to programs
with finite data domain, and the analysis in [1] and [14] had to restrict the number of
bits used by each variable, while YASM did not need any such restriction.

7 Conclusion and Related Work

This paper presented a model-checking technique for analysis of reachability and
non-termination properties of recursive programs. The technique is based on a stack-
free mixed operational semantics of programs that uses natural semantics and non-
determinism to eliminate the call stack while preserving stack-independent properties.
We show how to compute only the necessary part of natural semantics during the analy-
sis, leading to on-the-fly algorithms for analysis of reachability and non-termination of
programs with finite data domains. We then use the framework of abstract interpreta-
tion [12] to combine our algorithms with data abstractions, making them applicable to
programs with infinite data domains as well. Although we specialize our approach to
predicate abstraction, we believe that it can be extended to other abstract domains as
well. We have implemented a combination of this approach with exact predicate ab-
straction in YASM [19] which supports both verification and refutation of properties.
Our experiments indicate that YASM scales to programs with a large number of func-
tions and is able to establish non-termination of non-trivial (although small) examples.
In particular, we were able to automatically prove non-termination of Ack [10] and
Quicksort [14] without any restrictions on the data domain.



Model Checking Recursive Programs with Exact Predicate Abstraction 109

In the terminology of interprocedural program analysis [24], our approach is func-
tional since it uses natural semantics to handle function calls. Most other model-checking
approaches for recursive programs (e.g., [23,6,1]) are functional as well, and only com-
pute the necessary part of natural semantics. Our reachability algorithm can be seen as
a pre-image-based variant of the RHS algorithm [23], as implemented in BEBOP [6].

Both MOPED [14] and VERA [1] can check non-termination of programs with finite
data domains. Their algorithms are comparable with our non-termination algorithm.
However, it is unclear how to combine their techniques with an arbitrary abstraction,
whereas it is quite natural in our approach. Note that an ability to detect non-termination
of over-approximating Boolean programs is of limited utility since over-approximation
often introduces spurious non-terminating computations. Thus, non-termination of an
over-approximation says nothing about non-termination of the concrete program.

Jeannet and Serwe [20] apply abstract interpretation to derive abstract analysis of
recursive programs by different abstractions of the call stack. Their approach is also pa-
rameterized by an arbitrary data abstraction. However, the authors restrict their attention
to reachability (i.e., invariance) properties, and do not report on an implementation.

Our interest in non-termination is motivated by the work on termination (e.g., [10]).
We view our approach as complementary to that. As illustrated by our experiments,
YASM can prove non-termination of non-trivial programs. However, its ability to prove
termination is limited to cases where termination can be established by a constant rank-
ing function. In the future, we plan to investigate how the strengths of the two ap-
proaches can be combined in a single algorithm.

In this paper, we have restricted our attention to stack-independent properties. We
hope to extend our approach to a more general class of properties, e.g., the ones express-
ible in CARET [2]. Finally, the refinement strategies that are currently implemented in
YASM were originally developed for reachability analysis only. While they were suf-
ficient for our non-termination experiments, we believe that strategies specifically tai-
lored to the non-termination analysis are essential for scaling the tool to large programs.
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