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Abstract. We identify a new class of decidable hybrid automata: namely, par-
allel compositions of semi-algebraic o-minimal automata. The class we consider
is fundamental to hierarchical modeling in many exemplar systems, both nat-
ural and engineered. Unfortunately, parallel composition, which is an atomic op-
erator in such constructions, does not preserve the decidability of reachability.
Luckily, this paper is able to show that when one focuses on the composition
of semi-algebraic o-minimal automata, it is possible to translate the decidability
problem into a satisfiability problem over formulæ involving both real and in-
teger variables. While in the general case such formulæ would be undecidable,
the particular format of the formulæ obtained in our translation allows combining
decidability results stemming from both algebraic number theory and first-order
logic over (R, 0, 1,+, ∗, <) to yield a novel decidability algorithm. From a more
general perspective, this paper exposes many new open questions about decidable
combinations of real/integer logics.

Introduction

We wish to suggest a novel algebraic framework for the purpose of studying compo-
sition of hybrid automata. In this framework, we exploit various algebraic techniques
(both semi-algebraic geometric and algebraic-number theoretic) to provide effective
procedures to solve reachability problems for at least one important class, namely, semi-
algebraic o-minimal hybrid automata. We believe that these techniques are applicable
more generally and will motivate further applications to other classes and subclasses of
hybrid-automata. Our techniques show how to model state-space evolution (as quanti-
fied semi-algebraic formulae) separately from the temporal synchronization (modeled
as a system of linear algebraic Diophantine equations and inequalities) and yet, seek a
combined solution to represent simultaneous arrival at a point in the product state-space
by each individual component automaton. In order to obtain this decidability result, we
needed to innovate in at least three different areas: to be precise, (1) theory of automata:
how to effectively reduce an automata theoretic problem to an algebraic problem by
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modeling and by seeking solutions for algebraic systems described via algebraic geo-
metric and number theoretic formulations—thus, circumscribing difficulties faced by
the usual finite-quotient-techniques; (2) algorithmic algebra: how to solve a system of
equations and inequalities involving semi-algebraic geometric formulae combined with
linear algebraic-Diophantine relations—a rather non-trivial problem that had remained
unsolved till now, except for the special system arising in case of composition of just
two automata (see [1]); and (3) recursive function theory: how to better recognize the
boundary separating decidability from undecidability in the context of automata, and
along the way, expand the body of techniques applicable to such questions. To the best
of our knowledge, this paper is the first to explicitly connect discrete-continuous hy-
bridness of these automata to their algebraic analog of mixed real-integer formulations
and also first in proposing how to solve them algorithmically.

The paper is organized as follows: Section 1 and 2 introduce hybrid automata and
their parallel composition, respectively; in Section 3, we prove the decidability of linear
Diophantine systems with semi-algebraic coefficients and, in Section 4, we show how
one can reduce to it the reachability problem for hybrid automata obtained by parallel
composition of semi-algebraic o-minimal automata; Section 5 hints some simple appli-
cations of the proposed techniques; in Section 6, we discuss some possible extentions
and Section 7 summarizes the results presented in the paper and draws some compar-
isons with related literature. All the missing proofs can be found in [2].

1 Motivations and Notations

Since their introduction (see, e.g., [3]), hybrid automata have initiated a new tradition,
promising powerful tools for modeling and reasoning about complex engineered or nat-
ural systems: e.g., embedded and real time systems, or computational biology, where
the resulting analyses are providing many new insights. Unfortunately, in their flexibil-
ity in capturing dynamics, resides also their limitations: many different undecidability
and complexity results have been proven over general hybrid automata [4] and cast
doubt on their suitability as a general tool that can be algorithmized and efficiently im-
plemented. However, if these representations are further restricted, as in the powerful
family of o-minimal systems [5], one could hope to still enjoy fidelity of representation
that far surpasses that of both discrete models and differential equations, and yet avoid
undecidability. In particular, reachability has been shown decidable over semialgebraic
o-minimal automata [5].

In order to build a theoretical framework that can also use these hybrid represen-
tations in a natural manner, one must shift one’s attention to the description of large
and complex hybrid systems that can be described in a compositional manner, built
out of many elementary modules at many different levels of hierarchy. Since the basic
fundamental step in a compositional construction is through a parallel composition, an
essential desideratum of this new theoretical framework is that the reachability prop-
erty of the product hybrid automaton be decidable, provided that the component hybrid
automata belong to a suitably restricted decidable family of automata, e.g., one in the
class of o-minimal automata. In general, the product operation does not assure a closure
of decidability property for reachability condition. Nonetheless, in [1], we establish
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decidability of the reachability condition considering the parallel composition of two
semi-algebraic o-minimal automata. Even if such hybrid automata could be used to
model interesting systems (e.g., in system biology), the limitation on the number of
composable automata poses many restrictions on the applicability of the suggested
techniques. To address these shortcomings, in this paper, we have generalized the decid-
ability result for the reachability problem over parallel composition of semi-algebraic
o-minimal automata by allowing the composition of an arbitrary number of automata
and we extend the applicability of the proposed framework to more complex systems.

1.1 Basic Notions

A directed graph is a pair 〈V,E〉 where V is a finite set of vertices and E is a finite
set of edges. The functions Source : E −→ V and Dest : E −→ V characterize the
vertex exited by an edge and the vertex entered by an edge, respectively. In particular,
we say that Source (e) = v and Dest (e) = v′ are the source and the destination of e,
respectively. In this paper, when we refer to graphs, we always intend directed graphs.
A path ph from v ∈ V to v′ ∈ V in G = 〈V,E〉 is either the vertex v, if v = v′, or a
sequence of edges ”e1, . . . , en” such that, for all i ∈ [1, n−1], Source (ei+1) = Dest (ei),
Source (e1) = v, and Dest (en) = v′. A path p = ”e1, . . . , en” is a cycle if e1 = en and
n > 1. Moreover, if ei � ej for all i, j ∈ [1, n − 1] with i � j, then we say that p is
a simple cycle. The standard definition of cycle requires that the first node coincides
with the last one, while in our definition we impose that the first and the last edges are
identical. Similarly, the standard definition of simple cycle requires that in the cycle the
internal nodes are not repeated, while in our definition we require that the internal edges
are not repeated. The two definitions are obviously not equivalent, however, a graph has
only a finite number of simple cycles under both definitions. Later on we write |p| to
denote the length of the path p, i.e., the number of its edges.

Next, we introduce some notations and conventions that we will need to define hybrid
automata. Capital letters X, X′, Xm, and Xm

′, where m ∈ N, denote variables ranging
overR. Analogously, Z denotes the vector of variables 〈X1, . . . ,Xd〉 and Z′ denotes the
vector 〈X1

′, . . . ,Xd
′〉. The temporal variables T, T′, T0,. . . , Tn model time and range

overR≥0. We use the small letters p, q, r, s, . . . to denote d-dimensional vectors of real
numbers. Occasionally, we may use the notation ϕ[X1, . . . , Xm] to stress the fact that
the set of free variables of the first-order formula ϕ is included in the set of variables
{X1, . . ., Xm}. By extension, if {Z1, . . ., Zn} is a set of variable vectors, ϕ[Z1, . . ., Zn]
indicates that the free variables ofϕ are included in the set of components of Z1, . . ., Zn.
Moreover, given a formula ϕ[Z1, . . ., Zi, . . ., Zn] and a vector p of the same dimension
as the variable vector Zi, the formula obtained by component-wise substitution of Zi
with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1, . . ., Zn]. When in ϕ the only free variables
are the components of Zi, after the substitution we can determine the truth value of
ϕ[p].

We are now ready to define hybrid automata. For each node of a graph we have an
invariant condition and a dynamic law. The dynamic law may depend on the initial con-
ditions, i.e., on the values of the continuous variables at the beginning of the evolution
in the state. The jumps from one discrete state to another are regulated by the activation
and reset conditions.
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Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′, V, E,
Inv, F , Act, Res) of dimension d consists of the following components:

1. Z = 〈X1, . . ., Xd〉 and Z′ = 〈X1
′, . . ., Xd

′〉 are two vectors of variables ranging
over the reals R;

2. 〈V, E〉 is a graph. Each element of V will be dubbed location.
3. Each vertex v ∈ V is labeled by the formula Inv(v)[Z];
4. F is a function assigning to each vertex v ∈ V a continuous vector field over Rd;

we will use fv : Rd × R≥0 −→ Rd to indicate the solution of the vector field F (v)
and Dyn(v)[Z,Z′,T]

def
= Z′ = fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z,Z′];

Note that, without loss of generality, we may consider only hybrid automata whose
formulæ are satisfiable. In fact, if this is not the case, we can transform the automaton
and eliminate the unsatisfiable formulæ. For instance, if there is an edge e such that
Res(e)[Z,Z′] is unsatisfiable, we can simply delete the edge from the automaton. We
use d(H) to denote the dimension of the automaton H.

Definition 2 (Hybrid Automata - Semantics). A state � of H is a pair 〈v, r〉, where
v ∈ V is a location and r = 〈r1, . . . , rd〉 ∈ Rd(H) is an assignment of values for the
variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relation
t−→C, where t ≥ 0 is the transition

elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒ It holds that r = fv(r, 0) and it holds that s = fv(r, t) (see 1),
and for each t′ ∈ [0, t] the formula Inv(v)[ fv(r, t′)] is true.

The discrete reachability transition relation→D between admissible states is defined
as follows:

〈v, r〉 e−→D 〈u, s〉 ⇐⇒ it holds that e ∈ E, Source (e) = v, Dest (e) = u, and
both Act(e)[r] and Res(e)[r, s] are true.

We write � →C �′ and � →D �′ meaning respectively that there exists a t ∈ R≥0 such

that �
t−→C �′ and that there exists an e ∈ E such that �

e−→D �′. Moreover, we use the
notation �→ �′ to denote that either �→C �′ or �→D �′.

Building upon a combination of both continuous and discrete transitions, we can
formulate a notion of trace as well as a resulting notion of reachability. A trace is a
sequence of continuous and discrete transitions. A point s is reachable from a point r if
there is a trace starting from r and ending in s.

Definition 3 (Hybrid Automata - Reachability). Let I be eitherN or an initial finite
interval of N. A trace of H is a sequence of admissible states �0, �1, . . . , �i, . . . , with
i ∈ I, such that �i−1 → �i holds for each i ∈ I greater than zero; such a trace is also
denoted by (�i)i∈I.

The automaton H reaches a point s ∈ Rd (in time t) from a point r ∈ Rd if there exists
a trace tr = �0, . . . , �n of H such that �0 = 〈v, r〉 and �n = 〈u, s〉, for some v, u ∈ V

(and t is the sum of the continuous transitions elapsed times). In such a case, we also
say that s is reachable from r in H.
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Given a hybrid automaton H and trace, tr, of H, a corresponding path of tr is a path ph
obtained by considering the discrete transitions occurring in tr. In this case, we also say
that ph corresponds to tr. Notice that if tr is a trace, then there is a set of corresponding
paths of tr and such a set is finite and hence, computable.

We are interested in the reachability problem for hybrid automata, namely, given an
automaton H, an initial set I ⊆ Rd, and a final set F ⊆ Rd we wish to decide whether
there exists a point in I from which a point in F is reachable.

An interesting class of hybrid automata is the class of o-minimal automata [5,6].
The formulæ Dyn(v), Inv(v), Act(e), and Res(e) of such automata are defined in a o-
minimal theory for each v ∈ V and e ∈ E. Moreover, their resets are constant, i.e., they
do not depend on the point from which the edge is crossed. In the case of o-minimal au-
tomata defined by a decidable theory, reachability and temporal logic properties can be
decided through bisimulation [5]. O-minimal automata always possess a finite bisimu-
lation quotient whose computation is effective when the o-minimal theory is decidable.
An o-minimal and decidable theory is the first-order theory of (R, 0, 1,+, ∗, <) [7], also
known as the theory of semi-algebraic sets.

Definition 4 (Semi-Algebraic O-Minimal Automata). An o-minimal automaton is a
hybrid automaton such that Dyn(v), Inv(v), Act(e), and Res(e) are formulæ of an o-
minimal theory [8] and the truth value of Res(e)[Z,Z′] does not depend on Z, for any
v ∈ V and e ∈ E. A semi-algebraic o-minimal automaton is an o-minimal automaton
such that Dyn(v), Inv(v), Act(e), and Res(e) are semi-algebraic formulæ.

The decidability of reachability problem for such class follows directly from [5,7] and
the problem itself has been reduced to the satisfiability of a finite disjunction of formulæ
of the form Reach(H)(ph)[Z,Z′,T] in [9]. In particular, if H is a semi-algebraic o-
minimal automaton, then q ∈ Rd(H) is reachable from p ∈ Rd(H) in H through a trace
whose corresponding path is ph in time t if and only if the formula Reach(H)(ph)[p, q, t]
holds.

2 Parallel Composition of Hybrid Automata

Given two or more hybrid automata with distinct variables we are interested in analyz-
ing the reachability problem when we let them run independently.

Definition 5 (Parallel Composition). Let Ha = (Za,Za
′,Va,Ea, Inva, Fa, Acta, Resa)

and Hb = (Zb,Zb
′,Vb,Eb, Invb, Fb, Actb, Resb) be two hybrid automata over distinct

variables. The parallel composition of Ha and Hb is the hybrid automaton Ha ⊗ Hb =
(Z,Z′,V,E, Inv, F , Act, Res), where:

– Z (Z′) is the vector obtained by concatenating Za and Zb (Za
′ and Zb

′, respec-
tively);

– V = Va × Vb;
– E = (Ea × Eb)∪ (Ea ×Vb)∪ (Va × Eb) and θ(〈ea, eb〉) def

= 〈θ(ea), θ(eb)〉, θ(〈va, eb〉) def
=

〈va, θ(eb)〉, and θ(〈ea, vb〉) def
= 〈θ(ea), vb〉 for all θ ∈ {Source, Dest};

– Inv(〈va, vb〉)[Z]
def
= Inva(va)[Za] ∧ Invb(vb)[Zb];
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– Dyn(〈va, vb〉)[Z,Z′,T]
def
= Dyna(va)[Za,Za

′,T] ∧Dynb(vb)[Zb,Zb
′,T];

– Act(〈ea, eb〉)[Z]
def
= Acta(ea)[Za]∧Actb(eb)[Zb], Act(〈ea, vb〉)[Z]

def
= Acta(ea)[Za], and

Act(〈va, eb〉)[Z]
def
= Actb(eb)[Zb];

– Res(〈ea, eb〉)[Z,Z′] def
= Resa(ea)[Za,Za

′] ∧ Resb(eb)[Zb,Zb
′], Res(〈ea, vb〉)[Z,Z′] def

=

Resa(ea)[Za,Za
′]∧Zb

′=Zb, and Res(〈va, eb〉)[Z,Z′] def
= Za

′=Za∧Resb(eb)[Zb,Zb
′];

where va ∈ Va, ea ∈ Ea vb ∈ Va, and eb ∈ Eb.

Our notion of parallel composition is equivalent to those in [10,11] in the case of disjoint
set of events. The discrete graph underlying a parallel composition Ha ⊗ Hb can be a
multigraph, i.e., there can be more than one edge connecting two nodes. In particular,
this could happen if in either Ha or Hb there are self-loop edges. Hence, we should
introduce labels to distinguish different edges connecting the same pair of nodes. For
the sake of simplicity, we avoid this additional labeling in the rest of the paper, when
no ambiguity may result.

Example 1. Let us consider the o-minimal automata Ha = (〈Xa〉, 〈Xa
′〉, Va, Ea, Dyna,

Inva, Acta, Resa) and Hb = (〈Xb〉, 〈Xb
′〉,Vb, Eb,Dynb, Invb, Actb,Resb), where Vi =

{vi} and Ei = {ei}, for any i ∈ {a, b}, and

Ha: Dyna(va)
def
= Ẋa = −1 Hb: Dynb(vb) def

= Ẋb = −1
Inva(va)

def
= 0 ≤ Xa ∧ Xa ≤ 1 Invb(vb) def

= 0 ≤ Xb ∧ (Xb)2 ≤ 2
Acta(ea)

def
= Xa = 0 Actb(eb)

def
= Xb = 0

Resa(ea) def
= Xa

′ = 1 Resb(eb) def
= (Xb

′)2 = 2.

The automaton Ha ⊗ Hb is depicted in Figure 1. Ha ⊗ Hb is not o-minimal since it has
also identity resets. Moreover, it is possible that a variable is never reset along a cycle
of Ha ⊗Hb, e.g., Xb is never reset in the cycle ”〈ea, vb〉, 〈ea, vb〉”.

Ẋa = −1
∧

Ẋb = −1

Xa ∈ [0, 1]
∧

Xb ∈
[
0,
√

2
]

Xa = 0 ∧ Xb = 0;
Xa

′ = 1 ∧ Xb
′ =

√
2

〈ea, eb〉

Xa = 0;
Xa

′ = 1 ∧ Xb
′ = Xb

〈ea, vb〉

Xb = 0;
Xa

′ = Xa ∧ Xb
′ =

√
2

〈va, eb〉

Fig. 1. The hybrid automaton Ha ⊗Hb of Example 1
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It is easy to prove that (H1 ⊗ H2) ⊗ H3 reaches q from p in time t through a trace tr if
and only if H1 ⊗ (H2 ⊗H3) reaches q from p in time t through tr. Hence, we denote by
H1 ⊗ . . . ⊗Hm and

⊗m
i=1 Hi the composition of n automata.

As far as reachability is concerned, we first point out that we will study the reach-
ability problem over

⊗m
i=1 Hi considering only sets of points of the form I =

∏m
i=1 Ii

and F =
∏m

i=1 Fi, where Ii, Fi ⊆ Rd(Hi). To some extent, this simplification will allow
us to work on each Hi independently. In the general case, our results can be used to
both under-estimate and over-estimate reachability. Unfortunately, even with this as-
sumption, one may not always be able to ascertain the closure of reachability condition
under composition; namely, starting from a set I1 it may be possible to reach a set F1

in the automaton H1 and similarly, starting from a set I2 it may be possible to reach
a set F2 in H2, and yet starting from I1 × I2 in H1 ⊗ H2 it may not be possible to
reach F1 × F2. For instance, this happens if F1 is reachable only at time t = 1, while
F2 is reachable only at time t = 2. Moreover, the decidability of reachability is not
always preserved under parallel composition i.e., it is possible that reachability is de-
cidable over m classes C1, . . . ,Cm of hybrid automata, but not over the product class⊗m

i=1 Ci = {
⊗m

i=1 Hi | ∀i ∈ [1,m] Hi ∈ Ci} (see [11]).
O-minimal hybrid automata have always a finite bisimulation quotient. In [1], we

proved that the parallel composition of two o-minimal automata can have an infinite
simulation quotient. Hence, the standard quotienting techniques cannot be applied to
decide reachability on product automata.

However, it holds that the automaton
⊗m

i=1 Hi reaches the set
∏m

i=1 Fi from
∏m

i=1 Ii

in time t if and only if Hi reaches Fi from Ii in time t for each i ∈ [1,m]. Hence, in
order to study reachability over

⊗m
i=1 Hi, it would be necessary to better understand

the nature of timed reachability over each Hi for i ∈ [1,m].

Definition 6 (Timed-Reachability). Let H be a hybrid automaton. Given t ≥ 0, I, F ⊆
R

d(H) the (H, t, I, F)-timed-reachability problem consists in deciding whether there exist
two points i ∈ I and f ∈ F such that H reaches f from i in time t.

Timed-reachability is in general undecidable. However, the decidability of timed-
reachability is preserved by parallel composition and, when I and F are semi-algebraic
sets, timed-reachability is decidable over semi-algebraic o-minimal automata (see [2]).
Unfortunately, decidability of timed-reachability does not imply the decidability of
reachability, since there are an infinite number of time instants to be checked.

Intuitively, to decide reachability over the composition of many o-minimal automata,
we need to check that we can cycle on their loops elapsing the same amount of time.
This check involves both integer variables (i.e., the number of times a simple cycle is re-
peated) and real ones (i.e., the time elapsed on a simple cycle). In the following sections,
we first prove a result about decidability of a particular class of Diophantine systems
with semi-algebraic coefficients and, then, we reduce the decidability of reachability
for parallel composition of an arbitrary number of automata to it.

3 Linear Systems with Semi-algebraic Coefficients

A semi-algebraic set over R≥0 is a finite union of intervals and points such that: each
interval is characterized by algebraic numbers greater or equal to 0; each point is an
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algebraic number greater or equal to 0. Semi-algebraic sets are exactly those character-
izable through first-order formulæ over (R, 0, 1,+, ∗, <).

We consider systems of the following form

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n1
i=1 Ai ∗ αi + α =

∑n2
i=1 Bi ∗ βi + β∑n1

i=1 Ai ∗ αi + α =
∑n3

i=1 Ci ∗ γi + γ
. . .∑n1

i=1 Ai ∗ αi + α =
∑nw

i=1 Wi ∗ωi +ω

(1)

where capital letters denote variables ranging overN>0, while Greek letters denote real
coefficients. In particular, each coefficient can either be a non negative algebraic number
or range over a non negative interval characterized by algebraic numbers. Notice that,
since the coefficients can range over intervals, this can also be seen as a system of
equations and disequations in which some variables range in N>0, while other range
in R≥0. Intuitively, we can look at it as both a generalization of a linear system of
Diophantine disequations and an existential first-order formula involving both integer
and real variables. We are interested in the question of satisfiability of such systems.

We distinguish thee cases for the expressions involved in our systems: (a)
∑nd

i=1 Di ∗
δi+δ is punctual if all the involved coefficients are algebraic numbers; (b)

∑nd
i=1 Di∗δi+δ

is quasi-punctual if all δi’s are algebraic numbers, while δ ranges over an interval;
(c)
∑nd

i=1 Di ∗ δi + δ is non-punctual if at least one of the δi’s ranges over an interval.
An equation is punctual if both its left and right hand sides are punctual. It is quasi-
punctual if at least one of the involved expressions is quasi-punctual, while the other
one is either punctual or quasi-punctual. It is non-punctual if it involves at least a non-
punctual expression.

The algorithm we propose for deciding the satisfiability of System (1) first finds
the solutions of the punctual equations. Then these are refined considering the quasi-
punctual equations. And in the last step the non-punctual ones come into play. In par-
ticular, systems involving only punctual equations can be proved equivalent to linear
systems of Diophantine equations, which are decidable [12]. We can deal with the
quasi-punctual equations exploiting properties of the additive subgroups ofRq and other
results from Diophantine approximations [13,14]: closed subgroups of Rq are decom-
posable in a discrete component and a dense one; the discrete component requires a
“finite” number of checks; the dense one is “easy” to deal with. On the one hand, if the
punctual together with the quasi-punctual equations admit a finite number of solutions,
then we can test them on the non-punctual ones. On the other hand, if the punctual and
quasi-punctual equations have an infinite set of solutions, then we can always satisfy
also the non-punctual equations. All the details can be found in [2].

Since semi-algebraic sets are composed of a finite number of intervals and points,
the techniques presented above not only lead us to the decidability of systems of the
form (1) when each coefficient ranges over an interval, but also do so when they range
over non negative semi-algebraic sets.

Theorem 1. Let S be a system of the form (1), where capital letters denote variables
ranging overN>0, while Greek letters denote real coefficients ranging over some given
semi-algebraic sets included in R≥0. The satisfiability of S is decidable.
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4 Reachability over Parallel Composition

Now let H =
⊗m

i=1 Hi be the parallel composition of m semi-algebraic o-minimal
automata. We are interested in the reachability problem over H, i.e., we want to check
whether the set F =

∏m
i=1 Fi is reachable from I =

∏m
i=1 Ii. The considerations presented

in Section 2 lead us to the following characterization.

Lemma 1. Let H1, . . . ,Hm be m o-minimal hybrid automata. Moreover, for all i ∈
[1,m], let Ii, Fi ⊆ Rd(Hi) be sets of points characterized by the first-order formulæIi[Zi]
and Fi[Zi], respectively. It holds that

⊗m
i=1 Hi can reach

∏m
i=1 Fi from

∏m
i=1 Ii if and

only if, for all i ∈ [1,m], there is a path phi in Hi such that the following formula holds1.

∃T ≥ 0∃Z1, . . . ,Zm∃Z1
′, . . . ,Zm

′
m∧

i=1

(
Ii[Zi] ∧ Reach(Hi)(phi)[Zi,Zi

′,T] ∧ Fi[Zi
′]
)

Unfortunately, the model suggested by above lemma does not immediately provide any
decidability result, since we have to consider also an infinite number of cyclic paths. In
fact, it may be the case that in order to synchronize all the automata, it is necessary to
spend some time over their cycles.

To construct a decidable characterization for reachability over parallel compositions,
we exploit the existence of a canonical path decomposition: namely, given a semi-
algebraic o-minimal hybrid automaton, from any cyclic path of the automaton, we can
extract both an acyclic part, by removing all the cycles occurring in it, and a set of sim-
ple cycles. The global time necessary to cover the path is then equal to the sum of the
time necessary to cover the acyclic part plus multiples of the times we can spend over
the simple cycles. What is important is that in the case of o-minimal automata the time
we can spend over a cycle does not depend on the starting and ending point. We define
the operation which allows us to add a simple cycle to a path.

Definition 7 (Path Augmentability). Let ph, ph′ be two paths. We say that ph′ is aug-
mentable to ph if ph′ is a simple cycle starting and ending with the edge e and ph is a
path involving the edge e. If ph′ is augmentable to ph we denote by ph ⊕ ph′ the path
obtained by inserting ph′ in ph over the first occurrence of their common edge e, i.e., if
ph′ = ”e, ph′1, e” and ph = ”e1, . . . , ei−1, e, ei+1 . . . , en” where we explicitly identify the
first occurrence of e, then ph ⊕ ph′ = ”e1, . . . , ei−1, e, ph′1, e, ei+1 . . . , en”

Let PH′ be a set of (simple cyclic) paths we say that PH′ is augmentable to a path
ph if either PH′ = ∅ or there exists an ordering ph1, . . . , phl of the elements of PH′ such
that for each i ∈ [1, l] either phi is augmentable to ph or there exists j < i such that phi

is augmentable to phj.

Notice that if ph′ is augmentable to ph, then it is augmentable to ph⊕ph′ also. Moreover,
if ph is a cyclic path, then there exist ph1, . . . , phn, simple cyclic and acyclic, such that
ph = ph1 ⊕ . . . ⊕ phn.

1 The formula Reach(H)(ph)[Z,Z′,T] has been defined in [15].



Decidable Compositions of O-Minimal Automata 283

Let H be an o-minimal hybrid automaton and let ph = ”e1, . . . , em” be a path of H.
We define the following formula

R̃each(H)(ph)[Z,Z′,T] def
= ∃Z,Z′

(
Reach(H)(e1)[Z,Z] ∧ Reach(H)(em)[Z′,Z′]∧

Reach(H)(”e2, . . . , em−1”)[Z,Z′,T]
)

where Reach(H)(e)[Z,Z′] def
= (Act(e)[Z] ∧ Res(e)[Z,Z′]). It is easy to see that the

above formula characterizes all the traces, corresponding to ph, which start and end
with a discrete transition. Because of the constant reset condition imposed on o-minimal
automata, if both the formulæ R̃each(H)(ph)[a, b, t] and R̃each(H)(ph)[c, d, t′] hold, then

R̃each(H)(ph)[a, b, t′] holds also.
It follows that, if H is an o-minimal automaton, then we can use the formula

R̃each(H)(ph)[Z,Z′,T] to define the set of time instants Time(ph) in which ph can

be covered, i.e., Time(ph) def
= {t | ∃Z,Z′R̃each(H)(ph)[Z,Z′, t] holds}. Notice that, since

H is o-minimal by hypothesis, for each path ph of H the set Time(ph) is o-minimal. It
is easy to see that if a path ph′ is augmentable to a path ph and t is the time needed to
evolve through ph then the automaton can elapse a time t+ t′, where t′ ∈ Time(ph′), to
evolve through ph ⊕ ph′.

By using observations such as these, we can deduce the following lemma, which
characterizes the existence of a trace with elapsed time t, without having to examine an
infinite number of formulæ.

Lemma 2. Let H be an o-minimal hybrid automaton, let r, s ∈ Rd(H) and let t ∈ R≥0.
There exists a path ph such that Reach(H)(ph)[r, s, t] holds if and only if there exist a
path ph0 and a set of paths PH such that: (1) ph0 is acyclic; (2) PH = {ph1, . . .phl} is
augmentable to ph0; (3) we can choose α, a vector 〈A1, . . . ,An〉 ∈ Nn

>0 and a vector
〈α1, . . . , αn〉 ∈ Rn

≥0, with {αkj , . . . , α(k( j+1)−1)} ∈ Time(phj) and 1 = k1 < . . . < kl+1 =

n + 1, such that Reach(H)(ph0)[r, s, α] holds and t = α +
∑n

i=1 Ai ∗ αi.

This result suggests a class of verification techniques for timed-reachability on
o-minimal automata, but avoids testing an infinite set of formulæ. Moreover, exploiting
such result, we can propose the following characterization.

Theorem 2. Let H1, . . . ,Hm be o-minimal automata and Ij, Fj ⊆ Rd(Hj) be charac-
terized by the first-order semi-algebraic formulæ I j[Zj], F j[Zj] for all j ∈ [1,m]. The

automaton
⊗m

i=1 Hi reaches
∏m

i=1 Fi from
∏m

i=1 Ii if and only if, for each h ∈ {1, . . . ,m},
there exist an acyclic path phh, a set of paths PHh = {phh,1, . . . , phh,mh}, augmentable
to phh, a vector 〈Ah,1, . . . ,Ah,mh〉 ∈Nmh

>0 , and a vector 〈αh,1, . . . , αh,mh〉 ∈ Rmh
≥0 such that

{αkh, j , . . . , α(kh, j+1−1)} ∈ Time(phh, j), with 1 = kh,1 < . . . < kh,mh+1 = mh + 1, and there
is αh ∈ R≥0, satisfying both ∃Zh,Zh

′(Reach(Hh)(phh)[Zh,Zh
′, αh]∧Ih[Zh]∧Fh[Zh

′])
and the system ⎧

⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n1
i=1 A1,i ∗ α1,i + α1 =

∑n2
i=1 A2,i ∗ α2,i + α2∑n1

i=1 A1,i ∗ α1,i + α1 =
∑n3

i=1 A3,i ∗ α3,i + α3

. . .∑n1
i=1 A1,i ∗ α1,i + α1 =

∑nm
i=1 Am,i ∗ αm,i + αm

(2)
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The number of both acyclic and simple cyclic paths of a hybrid automaton can be
bounded from above. Moreover, given a semi-algebraic set S ⊆ R, we can compute
the number of its connected components. Since, by Theorem 1, we can decide systems
such as the one shown above (Eq. 2), we get the following result.

Corollary 1. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all j ∈
[1,m], let Ij, Fj ⊆ Rd(Hj) be sets of points characterized by first-order semi-algebraic
formulæ. Whether

⊗m
j=1 Hj reaches

∏m
j=1 Fj from

∏m
j=1 Ij is decidable.

In this direct formulation of the positive result stating the decidability of reachability
problem, we have simply focused on the existence of a decision procedure and not its
time or space complexity. Furthermore, the infiniteness of simulation quotient gives a
hint of its inherent “hardness”. However, since the problem is central to any program
that focuses on a modular and hierarchical representation of hybrid automata, further
work will need to be devoted to the complexity issues. From what we wrote in Sec-
tion 3, we can deduce an algorithm which, in some (but frequent) cases, decides the
reachability problem over parallel composition of o-minimal hybrid automata with a
small overhead with respect to the time needed to decide the reachability problem over
its components.

Corollary 2. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all j ∈
[1,m], let Ij, Fj ⊆ Rd(Hj) be sets of points characterized by first-order semi-algebraic
formulæ. If, for all j ∈ [1,m], there exists an acyclic path ph′j, a cyclic path ph′′j , and a

proper interval Oj ⊆ R≥0 such that ph′′j is augmentable to ph′j, Oj ⊆ Time(ph′′j ), and

Hj reaches Fj from Ij through ph′j, then
⊗m

j=1 Hj reaches
∏m

j=1 Fj from
∏m

j=1 Ij.

Hence, if the hypothesis in the above corollary holds, the reachability problem is com-
positional and can be decided by testing each component separately. In this case on
each component we can apply either the bisimulation based algorithm proposed in [5]
or the semi-algebraic geometry based one proposed in [9].

5 Applications in System Biology

As a first example assume that we are monitoring a patient who is under therapy with
two drugs, X and Y. X and Y have non-commensurate degradation curves and, hence,
they cannot be always injected at the same time. Let X′ = fx(X,T) and Y′ = fy(Y,T) be
degradation curves of X and Y. We can imagine that the levels of X and Y have to stay
in the ranges [xm, xM] and [ym, yM], respectively. When the machine monitoring the
patient found that X is in the critical range [xm, xl] (near the lowest admissible value)
it injects X. Similarly, when Y enters in the critical range [ym, yl] it is injected. We can
model this situation with the hybrid automata depicted in Figure 2. Since there are some
interactions between X and Y, we can imagine that, if X is in the interval [xa, xb] and
at the same time Y is in the interval [ya, yb], the patient can have some problems. Let
us assume that at time t = 0 the drug levels are x0 and y0, respectively. We have to
check if in the product of these automata the region [xa, xb]× [ya, yb] is reachable from
the initial point 〈x0, y0〉. This check can be performed automatically. If the answer is
positive, then critical ranges have to be refined.
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X ′ = fx(X, T )
X ∈ [xm, xM ]

X ∈ [xm, xl]
X ′ = xM

Y ′ = fy(Y, T )
Y ∈ [ym, yM ]

Y ∈ [ym, yl]
Y ′ = yM

Fig. 2. The hybrid automata depicting a clinical application of parallel composition

v1

Z ′
A = fA(A, T )
ZA ∈ [a, b]

v2

Z ′
A = gA(A, T )
ZA ∈ [a, b]

ZA ∈ [a, d]
Z ′

A = a

e2

ZA ∈ [c, b]
Z ′

A = b

e1

Fig. 3. The hybrid automaton representing the expression level of gene A

Our second example concerns the analysis of metabolic pathways. Imagine we are
studying two genes A and B involved in the same pathway. We have some time evolution
traces for the expression levels of both A and B. Analyzing the traces of A we observe
that we can represent its behavior with the automaton depicted in Figure 3. Similarly,
we can draw an analogous automaton for B. We can now exploit these automata to
study whether there exists a strong interaction between A and B. For instance if A is a
repressor for B and vice-versa, then in the product of the two automata from a region
near the maximum value of A and the minimum of B it should be possible to reach a
region near the minimum of A and the maximum of B and vice-versa.

In [16] we proposed a method to translate sets of gene profiles data coming from
Real-Time PCR experiments into semi-algebraic hybrid automata. In particular, we pro-
posed clustering techniques which allow to reduce the dimensions of the involved au-
tomata. The automata we used in [16] are not o-minimal, since some edges can involve
reset conditions of the form

∨r
i=1(Z = ai ∧ Z′ = bi). However, since the disjunctions

range over finite sets, it is immediate to translate them into o-minimal semi-algebraic
automata with multiple edges. Hence, the reasoning proposed above on genes A and B
can be applied and generalized in that context, in order to infer relationships between
genes. The combination of the techniques proposed in [16] with the results of this paper
suggests us to build one hybrid automaton for each cluster of genes and then to use their
parallel composition for the analysis of the relationships between different clusters. The
fact of building one hybrid automaton for each cluster ensures us to get substantial re-
ductions on the automaton dimensions, as proved in [16]. The results presented in this
paper allow us to combine and compare the behaviors of different clusters represented
by separate automata.

6 Synchronizing Automata and Exchanging Information

As noticed above, parallel composition provides a powerful and theoretically clean way
of modeling complex systems by combining simple component models. However, since
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the original hybrid automata should not share variables by definition, components can-
not “communicate” in models built by parallel composition, i.e., they evolve in isolated
environments without interacting. Still, the results of Section 4 can be used to prove
the decidability of reachability problem over a different kind of composition operator,
similar to that proposed in [10,11], which allows both interactions and synchronizations
between components during system evolution. For the sake of example, let us consider
the two semi-algebraic o-minimal hybrid automata H1 = (Z1,Z1

′,V1,E1, Inv1, F1,
Act1,Res1) and H2 = (Z2,Z2

′,V2,E2, Inv2,F2,Act2,Res2) depicted in Figure 4, where:

H1: Z1 = 〈X1,X2,X3〉 H2: Z2 = 〈X2〉
Dyn1(v1) def

= X′1 = X1 + T ∧X′3 = X3 Dyn2(v2) def
= X′2 = X2 + T

Dyn1(v′1)
def
= X′1 = 0 ∧ X′3 = X3 + T

Res1(e1) def
= X′1 = 0 ∧X′3 = 0 Res2(e2) def

= X′2 = 0
Res1(e′1)

def
= X′1 = 0 ∧X′3 = 0 ∧X′2 = 0

Inv1(v1) def
= X1 ≤ 1, Inv1(v′1) def

= X1 = 0 Inv2(v2) def
= X2 ≤

√
2

Act1(e1)
def
= X1 = 1, Act1(e′1)

def
= X1 + X2 > 2 Act2(e2)

def
= X2 =

√
2

v1 v′1e1
e′1 v2 e2

Fig. 4. The discrete projection of H1 and H2

Since H1 and H2 share the variable X2, we cannot model their synchronous evolution
by using parallel composition. However, one may notice that all the formulæ involving
X2 in H1 are related with e′1. Let H′1 be the automaton obtained by removing e′1 from
H1. It is easy to see that the concurrent evolution of H1 and H2 is representable by the
hybrid automaton H∗ obtained by providing H′1 ⊗ H2 of a further edge ē, from 〈v1, v2〉
to 〈v′1, v2〉, whose activation and reset formulæ are Act1(e′1) and Res1(e′1), respectively.

〈v1, v2〉 〈v′1, v2〉〈e1, e2〉

〈v1, e2〉

〈e1, v2〉

ē 〈v′1, e2〉

Fig. 5. The discrete projection of H∗

It follows that F is reachable from I in H∗ if and only if either F is reachable from
I or Act1(e′1) is reachable from I and F is reachable from Res1(e′1) in H′1 ⊗ H2. Hence,
we can exploit the results presented in this paper to decide reachability property on H∗.
Notice that a similar approach can be used also when shared variables appear in either
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dynamics or invariants. We leave both formal definition and applicability analysis of
synchronous composition for future work.

7 Conclusions

This paper extends our earlier work [1] showing that the reachability problem for paral-
lel composition of semi-algebraic o-minimal hybrid automata is decidable. To achieve
such a result, it exploited Tarski’s decidability result on semi-algebraic theory, density
results overR, algorithms for the membership problems over algebraic fields, and algo-
rithms for solving systems of linear Diophantine systems. Further, by showing that this
class of automata does not admit a finite simulation quotient (see [1,2]), we have proved
impossibility of obtaining such a result through standard finite quotient techniques.

Time-complexity issues limit the practical applicability of our result. Nevertheless,
it presents some intriguing theoretical features. Note first that, to prove the decidability
of parallel composition, we took advantage of the decidability of a rather simple mixed
real/integer problem. Such mixed approaches, in some sense, reflect the continuous-
discrete behavior described by hybrid systems.

Our decidability results may be surprising, in the context of Miller’s undecidability
results [11], but can be explained as follows. While we require constant resets on au-
tomata components, Miller admitted both constant and identity resets. Hence, he could
test the value of a variable through an activation and do not change it by applying an
identity reset. This is a fundamental gadget in the construction of the two-counter Min-
sky machine encoding needed to prove the undecidability result (see Figure 3 in [11]),
but it is inapplicable in our case.

Finally, the technique of this paper emphasizes the hardest cases to decide and sug-
gests a class of automata for which the reachability problem of parallel composition can
be reduced to reachability problems on each component.
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