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Preface

This volume contains the papers presented at the 6th International Symposium
on Automated Technology for Verification and Analysis held during October
20–23 in Seoul, Korea. The primary objective of the ATVA conferences remains
the same: to exchange and promote the latest advances of state-of-the-art re-
search on theoretical and practical aspects of automated analysis, verification,
and synthesis.

Among 66 research papers and 16 tool papers submitted to ATVA 2008, the
Program Committee accepted 21 as regular papers, 7 as tool papers, and 5 as
short papers. In all, 33 experts from 27 countries worked hard to make sure
that every submission received as rigorous and fair an evaluation as possible.
In addition, the program also included three excellent tutorials and keynote
talks by David Dill (Stanford University), Sriram Rajamani (Microsoft Research
India), and Natarajan Shankar (SRI International). The conference organizers
were truly excited to have such distinguished researchers as keynote speakers.

Many worked hard and offered their valuable time so generously to make
ATVA 2008 successful. First of all, the conference organizers thank all 218 re-
searchers who worked hard to complete and submit papers to the conference.
The PC members, reviewers, and Steering Committee members also deserve spe-
cial recognition. Without them, a competitive and peer-reviewed international
symposium simply cannot take place.

Many organizations sponsored the symposium. They include: The Korean In-
stitute of Information Scientists and Engineers (SIGPL and Software Engineering
Society), Korea University, Korea Advanced Institute of Science and Technology
(KAIST), the Software Process Improvement Center and the Defense Software
Research Center at KAIST. The conference organizers also thank the BK pro-
gram at Korea University and the Department of Computer Science at KAIST for
financial support.

We sincerely hope that the readers find the proceedings of ATVA 2008
informative and rewarding.

August 2008 Sungdeok (Steve) Cha
Jin-Young Choi
Moonzoo Kim

Insup Lee
Mahesh Viswanathan
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Tests, Proofs and Refinements

Sriram K. Rajamani

Microsoft Research India
sriram@microsoft.com

Counter-example driven refinement using predicate abstraction has been suc-
cessfully used to find bugs and verify properties in programs [1]. We describe
two recent advances in counter-example driven refinement:

– We present a counter-example driven refinement technique that combines
verification and testing [4]. In our approach, we simultaneously use testing
and proving, with the goal of either finding a test that demonstrates that
P violates ϕ, or a proof that demonstrates that all executions of P satisfy
ϕ. The most interesting aspect of the approach is that unsuccessful proof
attempts are used to generate tests, and unsuccessful attempts to generate
tests are used to refine proofs. Besides being theoretically elegant, the ap-
proach has practical advantages —precise alias information obtained during
tests can be used to greatly aid the efficiency of constructing proofs [5].

– In the past, counter-example driven refinement schemes have worked with
a particular form of abstraction called predicate abstraction [1]. We present
approaches to refine any abstract interpretation automatically using coun-
terexamples. Several challenges arise: refining using disjunctions leads to
powerset domains, and the use of joins forces us to consider counterexample
DAGs instead of counterexample traces. We present our solutions to these
problems [3,2]. We also present experiences implementing our techniques in
a tool Dagger.

We also illustrate a dual technique that uses proof techniques to speedup
runtime analysis. This arises in context of checking object invariants in object
oriented programs. Checking object invariants, even at runtime, is a hard prob-
lem. This is because, the object invariant of an object o can depend on another
object p and it may not hold when p is modified without o’s knowledge. There-
fore, whenever an object p is modified, a runtime checker will have to check the
object invariant of all objects o that depend on p.

Whenever an object p is modified, a runtime checker will have to check the ob-
ject invariant for all objects o such that o depends on p. Keeping track of all such
dependencies at runtime can slow down a checker significantly. Interestingly, for a
large class of object invariants (called object protocol invariants) we can factor out
an object invariant in such a way that certain parts of the invariant can be checked
statically [6]. The approach has two advantages: (1) a certain class of errors can be
detected statically, and (2) the runtime overhead of checking is greatly reduced.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Formal Verification and Biology

David L. Dill

Department of Computer Science
Stanford University

dill@stanford.edu

The essence of formal verification is the modeling, analysis, and, ultimately, under-
standing of large reactive systems. How do many parts interact to produce appropriate
global behavior? How are properties guaranteed over all the possible variations of tim-
ing, non-deterministic behavior of components, and a dynamically changing environ-
ment?

Although formal verification has almost exclusively been applied to synthetic sys-
tems, I believe that these same types of questions will be of increasing interest in biol-
ogy, and that similar techniques to those used in formal verification will be of value in
answering them. The tutorial will discuss the rationale for modeling cellular processes
as discrete transition systems and past work in modeling of biological systems using
formalisms that parallel those in digital logic, along with state space search.

The conference talk will discuss two different applications of techniques from formal
methods to modeling of cellular functions. The first is the use of Petri nets to model and
analyze signal transduction pathways. Starting with a list of reactions in the cell, a tool
was developed that can interactively answer user queries about possible cell states by
solving a Petri net reachability problem in real-time, then displaying a diagram of the
reactions that lead to the result.

The second application is the use of symbolic model checking to analyze the steps of
the cell cycle in the bacterial cell Caulobacter Crescentus. The cell cycle even in sim-
ple organism is essentially a complex asynchronous circuit that must function reliably
despite the presence of substantial noise, environmental perturbations, and variations in
reaction rates due to other causes. Our findings were that, surprisingly, the cell cycle is
almost completely robust to arbitrary variations in the timing of cell cycle events.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Trust and Automation in Verification Tools�

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

http://www.csl.sri.com/∼shankar/

Abstract. On the one hand, we would like verification tools to feature powerful
automation, but on the other hand, we also want to be able to trust the results with
a high degree of confidence. The question of trust in verification tools has been
debated for a long time. One popular way of achieving trust in verification tools
is through proof generation. However, proof generation could hamstring both the
functionality and the efficiency of the automation that can be built into these
tools. We argue that trust need not be achieved at the expense of automation, and
outline a lightweight approach where the results of untrusted verifiers are checked
by a trusted offline checker. The trusted checker is a verified reference kernel
that contains a satisfiability solver to support the robust and efficient checking of
untrusted tools.

1 Introduction

Automated verification tools are used to formalize and check properties of hardware
and software systems. Verification tools need to be sound in the sense that any demon-
strated properties do in fact hold according to the intended interpretation of the formal
symbols. From the viewpoint of verification, soundness is crucial for trusting the ar-
tifact that has been verified. However, most verification tools are based on only an
informal argument for soundness. Some verification tools, notably the LCF-style proof
assistants [GMW79], justify their results on the basis of proof certificates. The draw-
back of proof certificates is that verification tools have to be instrumented to generate
them, and fully expanded proofs can have sizes that are exponential in the size of the
conjecture, or worse. We propose a lightweight approach to trusted verification tools
based on the use of offline checkers that are themselves verified. These verified ref-
erence kernels need not be as efficient as the untrusted tools since they can use hints
provided by the untrusted tools. We show how a large class of verification claims can
be checked using a relatively small kernel checker. This kernel checker can be itself be
verified to a high degree of trust.

“Quis custodiet ipsos custodes?” or “Who will watch the watchmen?” is a central
question of both philosophical and practical significance for computing. In the case
of verification, it is common to hear the question: Who will verify the verifier? When

� This research was supported NSF Grants and CCR-ITR-0325808, CNS-0823086, and CNS-
0644783.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 4–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Trust and Automation in Verification Tools 5

verification tools are viewed as aids for software construction, there is no real need for
the tools to be verified. If the tool is useful it will be exploited regardless of whether it
has been verified. However, there are circumstances where the fidelity of the verification
claims do matter. For example, in the verification of a security-critical or safety-critical
system system, we need end-to-end assurance with the highest degree of certitude that is
feasible. Another such example is with middleware systems where the formal properties
of the middleware are used to construct assurance cases for a large class of applications.

2 Approaches to Trust in Verification Tools

Gödel’s second incompleteness theorem [Smo78] eliminates the possibility of a formal
system proving its own consistency, since in this case, it must be inconsistent. Thus we
always need to anchor our trust by, for example, by trusting the proof rules of first-order
logic and the axioms of Peano arithmetic or set theory.

Untrusted verification tools can be instrumented to generate proofs that are checked
by an independent, trusted proof checker. One of the earliest proof assistants, de Bruijn’s
Automath, employed a typed lambda-calculus based on the Curry–Howard isomor-
phism between proofs and terms and formulas and types [dB70, dB80, NGdV94].
Proofs in Automath are explicitly represented as terms. Recently, Weedijk [Wie02] has
recreated an Automath checker in about 5000 lines of C code. Propositional satisfia-
bility (SAT) solvers like Zchaff [ZM03] and MiniSat (version 1.14) [ES03] generate
proofs that can be checked by an independent SAT solver [Gel07]. Proof generation
capabilities also exist in solvers for satisfiability modulo theories (SMT) such as CVC
Lite [BB04], CVC3 [BT07] and Z3 [dMB08]. Proof logs from CVC Lite can be verified
by HOL Light system discussed below [MBG06].

In the 1970s, Milner [GMW79] introduced the LCF approach where the theorems
are build using an abstract datatype so that theorems can only be derived from theorems
using the given inference rules. LCF auguments proof construction with tactics for
defining inference patterns. With the LCF approach, it is possible to write infer-
ence procedures for simplification, rewriting, and satisfiability as long as these pro-
cedures are able to generate proof certificates. The LCF approach has been quite
effective and has been adopted by a number of widely used systems such as
Coq [CCF+95], HOL [GM93], HOL Light [Har96b], Isabelle [Pau94], Lego [LP92],
and Nuprl [CAB+86]. The LCF approach is also adopted at a different level by
PVS [ORSvH95] which builds in various decision procedures, but supports proof gen-
eration in terms of inferences steps involving these decision procedures.

Of the LCF-based systems, HOL Light is especially interesting from the point of
view of trust since it employs a very small kernel written in about 400 lines of OCaml.
The kernel has been proven sound using a stronger version, because of the second in-
completeness theorem, of HOL Light [Har06]. More precisely, the soundness of the
HOL logic without the axiom of infinity has been demonstrated using HOL with this
axiom. Similarly, a HOL strengthened with an axiom that admits the construction
of function spaces, is used to demonstrate the soundness of HOL with the axiom of
infinity.
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With the LCF approach, it takes a lot of skill and labor to write inference procedures
in a form that is proof generating. The proof generation overhead is there even during
experimental use. For SAT solvers, the size of the proof can be exponential in the size
of the input. These proof certificates can be quite large and inefficient to check with
LCF-style systems [Gel07, WA07].

Another approach is to use verification tools themselves to verify other verification
tools [Sha85, Thé98, CN05, SV08] either by trusted or untrusted tools. A verified tool is
likely to be far more reliable for having been carefully scrutinized in this manner. How-
ever, these verifications are quite challenging since target tools are still research proto-
types that are evolving rapidly. Verifying a state-of-the-art verification tool requires a
significant investment of effort which would only make sense for software that is rel-
atively stable. The correct construction of verification tools is an interesting challenge
that should be pursued in the future when the technology is more stable.

One intriguing possibility is that of using verification tools to verify their own ex-
tensions through a process known as reflection [BM81, Wey80, KC86]. If we start with
a small and reliable core, then the extensions can be reflectively self-verified so that
we can have the same degree of confidence in the overall system as the core. This has
the advantage over the LCF approach that the core system can be extended using ver-
ified tactics. When these tactics are applied, the proofs do not need to be expanded.
For example, Chaieb and Nipkow [CN05] recently showed that the reflected version of
a verified quantifier elimination procedures ran 60 to 130 times faster than the corre-
sponding tactic. Reflection has had only limited success [Har96a], but it is still too early
to write it off.

A fourth possibility is that of using witnesses or certificates to independently con-
firm the results of a computation [Meh03]. Witnesses are similar to proofs but special-
ized to specific problem classes. For example, the witness of the infeasibility of linear
arithmetic constraints is obtained from Farkas’ lemma. For difference constraints, the
witness is obtained from the existence of a negative cycle. Proofs can be constructed
from the certificates, but it is easier to check the certificates directly. The drawback to
the use of certificates is that we have to trust the individual checkers as opposed to a
single proof checker. Also, many problems do not have succinct certificates.

The use of multiple verification tools is another way of checking verification claims.
However, the effort of applying multiple verifiers can be quite large and there is no
evidence that this approach delivers a high degree of assurance [KL86].

We propose a different approach that uses an offline, verified checker to check the
results of a range of untrusted verification tools. Since the overhead of generating proofs
from untrusted verification tools could limit the functionality and efficiency of these
tools, our approach decouples trust from online experimental use. A Verified Reference
Kernel (VeRK) is used as a trusted offline checker for the results of untrusted verifiers.
This way the experimental tools can continue to evolve without significantly affecting
the way in which their results are certified.

In Section 3, we present the basic background for capturing the certification of verifi-
cation tools. We outline the basic architecture of a verified reference kernel in Section 4
and in Section 5, we describe a verifiable SAT solver and examine the prospects for
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producing a verifying reference kernel. In Section 6, we demonstrate how different un-
trusted verification tools can be instrumented to generate evidence that can be checked
by this kernel.

3 Verification and Deduction

Verification tools span the spectrum from lightweight type checkers and static analysis
tools to heavyweight interactive proof checkers. When a verification tool guarantees the
absence of errors, this claim can be formally stated as a formula, and if we believe the
verifier, then this formula must have a proof and must hence be a theorem. Examples of
such claims include the validity of a Hoare triple, the termination proof of a program,
a refinement relation between two programs, and the satisfaction relation between a
transition system and a temporal property.

Verification properties can be expressed in propositional logic, modal or temporal
logic, first-order logic, or higher-order logic. For modal or temporal logics, the seman-
tics can be captured in first-order or higher-order logic. Background theories expressed
in the form of axioms in first-order or higher-order logic are used for reasoning about
algebra, arithmetic, set theory, graph theory, and analysis. Theories are also used to
state and prove properties of computational datatypes including bit-vectors, arrays, and
recursive datatypes.

Formal reasoning occurs within a trinity of language, semantics, and proof. We as-
sume for the sake of this paper that this reasoning occurs within first-order logic. A
formal language circumscribes the range of well-formed expressions and assertions.
The semantics defines the intended interpretation of the expressions. The proof system
captures sound principles for deriving valid assertions, i.e., those that hold in all possi-
ble interpretations given by the semantics.

A proof system consists of axioms and inference rules that can be used to demon-
strate that a formula is provable. Proofs provide an effective calculational mechanism
for deriving valid sentences, i.e., those that hold in all interpretations. A proof system is
sound if it only proves valid sentences. A proof system can be proved sound by induc-
tion on proofs by showing that each axiom is valid and each inference rule draws valid
conclusions when given valid premises. A proof system is complete if every valid sen-
tence is provable, or, conversely, the negation of any unprovable sentence is satisfiable.

An inference procedure determines if a given formula is unsatisfiable or satisfiable,
or indicates that the result is unknown. When an inference procedure indicates that
the input formula is satisfiable, it generates an assignment of truth values to the vari-
ables. The formula can be evaluated against this assignment to check that it is indeed
a satisfied by the assignment. The situation is different when the inference procedure
indicates that the input formula is unsatisfiable. In this case, it is typically possible to
generate a formal proof as a certificate for unsatisfiability, but even for propositional
logic, there is no succinct certificate for the unsatisfiability, unless NP = co-NP.

In the next section, we outline a lightweight approach to certifying the results that
uses a kernel inference engine built around a SAT solver as an offline checker.
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4 The Verified Reference Kernel Approach

We propose an alternative approach based on the use of a verified inference kernel
that serves as a reference for a collection of untrusted procedures. When an untrusted
inference procedure fails to verify a claim, it usually generates an assignment that can be
easily checked to refute the claim. However, if it finds the formula to be valid, we need
to some assurance that the result is sound. In our Verified Reference Kernel (VeRK)
approach, we can use an untrusted procedure U in an experimental manner to construct
a verification of a claim φ. Once this untrusted system has proved the validity of a
formula φ, i.e., U(φ) = �, we obtain a set of lemmas Lφ and a hint hφ from U . This
hint is used by the verified reference kernel V to show that V (Lφ =⇒ φ, hφ) = �
and V (ψ, hφ) = � for each lemma ψ in Lφ. The hints and lemmas are provided by
the untrusted checker U to assist the trusted verifier V . If the hints are inaccurate or the
lemmas are not valid, then the offline verification by V will fail. We give examples of
such hints and lemmas below.

One obvious question of whether the verification of V is to be trusted. In our ap-
proach, V could itself be verified using the untrusted procedure U . However, we instru-
ment V so that it is proof generating and V (φ, h) = �[π] where π is the proof of φ.
Now, when we have the correctness of V established as U(φV ) = �, then we generate
the hint hφV and verify V (φV , hφV ) = �[π], but in the latter case we independently
verify the generated proof π with a proof checker. We are trusting this proof checker
only once for the specific proof of the correctness of V . In order to trust this proof, we
can use a widely trusted checker or even employ a diversity of checkers. Note that this
self-verification of V does not violate Gödel’s second incompleteness theorem since we
are only showing that whenever V (φ, h) is �, then there is a proof π of φ. We are not
claiming that the proof system used by π is consistent.

We conjecture that a self-contained reference kernel can be built out of

1. A clausifier, including Skolemization and conversion to conjunctive normal form
2. An instantiator that checks that one formula is a substitution instance of another

formula
3. Checkers for lemmas generated as clauses from the individual theories
4. A SAT solver

It is important that these components of the reference kernel be verified. The kernel
components must be simple enough to be verifiable. All the components that are used
need not be verifiable since in some cases, such as equality or linear arithmetic, it is
feasible to generate and check the proofs of the lemmas. The efficiency of the checkers
in the reference kernel need not match the efficiency of state-of-the-art tools, but they
do need to be reasonably efficient so that the offline checking is not prohibitively ex-
pensive. The offline reference kernel V can use the hints and lemmas provided by the
online tools to gain efficiency. For example, it has been observed that even hard propo-
sitional problems often have a small set of strong backdoor variables that can be used
to significantly reduce the search space [WGS03].

We show that for a wide range of verification tools, the results of their verification
can be reduced to checking the propositional unsatisfiability together with some lem-
mas. The verification of these lemmas can involve theory-based decision procedures
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such as those for equality, arithmetic, bit-vectors. In this way, we are harnessing the
disruptive capabilities of modern satisfiability solvers [Rus06] to reconcile trust and
efficient automation.

5 A (Verifiable) Proof Generating SAT Solver

A propositional formula can be expressed in an equivalent conjunctive normal form
(CNF) as a conjunction (or, alternatively, as a set) of clauses, where each clause is a
disjunction of atoms or their negations. A literal is an atom or its negation. The negation
of a clause is a conjunction of literals that we label a state. A clause is a tautology if
it contains a literal and its negation as disjuncts. Any duplicate literals in a clause are
merged and the literals in a clause can be freely permuted.

We skip the details of CNF conversion. In contrast with a SAT solver for CNF
formulas, it is relatively easy to show that a formula φ and its CNF form CNF (φ)
are equisatisfiable. With a little more effort, it can be shown that � φ =⇒ CNF (φ)
so that if the latter is unsatisfiable, then we can prove the negation of CNF (φ), and
hence ¬φ.

Decision procedures for satisfiability can be described as inference systems [SR02,
Sha05] that apply satisfiability preserving transformations to an inference state until no
further transformations are possible. If the final state is the manifestly unsatisfiable ⊥,
then the formula corresponding to the initial state is unsatisfiable. Otherwise, the final
state is required to be satisfiable. In the latter case, the input must also be satisfiable.
There must not be any infinite sequence of transformations.

Resolution can be seen as a decision procedure for unsatisfiability for propositional
CNF formulas or as a proof system. As a proof system, the resolution rule proves non-
tautological clauses from a set of non-tautological clauses. The resolution rule derives
the clause κ1∨κ2 from the clauses l∨κ1 and l∨κ2, with the proviso that these clauses
are non-tautological. The clauses l ∨ κ1 and l ∨ κ2 are said to be compatible if the
resolvent κ1 ∨ κ2 is not tautological. The empty clause represents the falsum ⊥. When
a resolution proof derives⊥, the input set of clauses is unsatisfiable.

As an inference system, each resolution step augments a set of clauses with a new
clause obtained by resolving two clauses that are already in the set. Since the derived
clause in resolution is a consequence of the premise clauses, the step preserves satisfia-
bility. For Boolean clauses, there are a bounded number of these that can be generated
by resolution, so no infinite sequences of resolution steps are possible starting from a
finite set of input clauses. Finally, if no further resolution inferences are possible, and
⊥ has not been derived, it is possible to show that the final set of clauses is satisfiable.

The inference system for propositional satisfiability based on the Davis–Putnam–
Logemann–Love land (DPLL) algorithm can be given as a proof-carrying inference
system where each formula in the state has an associated proof from the input formulas.
The state of the algorithm consists of the input clauses K , the partial assignment M ,
and the conflict clauses C. Each clause κ in C has an associated proof πκ from the input
clauses K . The partial assignment M of truth values to variables. The assignments in
M are partitioned into levels from 0 to k. The assignments are level 0 are consequences
of clauses in K∪C. Each of the higher levels i+1 has a decision literal that is assigned



10 N. Shankar

step l M K C γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r,¬q[¬q ∨ ¬r] K ∅
propagate 2 ; s; r,¬q, p[p ∨ q] K ∅
conflict 2 ; s; r,¬q, p K ∅ ¬p ∨ q

analyze 0 ∅ K q[p ∨ q;¬p ∨ q]

backjump 0 q[q] K q[p ∨ q;¬p ∨ q]

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Fig. 1. The DPLL procedure with input {p ∨ q,¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q,¬s ∨ p ∨ ¬q,¬p ∨
r,¬q ∨ ¬r}

true at that level. The other assignments at level i + 1 are consequences of K ∪ C and
the decision literals at all the levels up to and including i + 1.

The DPLL inference steps are

1. Propagation: to add a truth value at the current decision level k when there is a
clause l ∨ κ in K ∪ C where l is unassigned and κ is falsified by M .

2. Conflict: If a clause κ in K∪C is falsified byM at level 0, then the original formula
is unsatisfiable and a proof of the conflict can be constructed from the assignment
M and the proofs of clauses in C.

3. Backjump: If a conflict is found at level i+1, then the conflict is analyzed to yield
a conflict clause κ (along with its proof πκ) that implies a new assignment at a level
i′ smaller than i + 1. The search is continued with κ[πκ] added to C and with the
partial assignment restricted to levels at or below i′ .

4. Decide: The search is continued by adding a new level to M by choosing an as-
signment for a previously unassigned variable.

An example of the procedure is shown in Figure 1. The input clause set K is {p ∨
q,¬p∨q, p∨¬q, s∨¬p∨q,¬s∨p∨¬q,¬p∨r,¬q∨¬r}. Since there are no unit (single
literal) clauses, there are no implied literals at level 0. We therefore select an unassigned
literal, in this case s as the decision literal at level 1. Again, there are no implied literals
at level 1, and we select an unassigned literal r as the decision literal at level 2. Now,
we can add the implied literals ¬q from the input clause ¬q ∨ ¬r and p from the input
clause p∨q. At this point, propagation identifies a conflict where the partial assignment
M falsifies the input clause ¬p ∨ q. The conflict is analyzed by replacing ¬p with q to
get the unit clause q. Since the maximal level of the empty clause is 0, backjumping
yields a partial assignment q at level 0 while adding the unit clause q to the conflict
clause set C. Propagation then yields the implied literals p from the input clause p∨¬q
and r from the input clause ¬p ∨ r, which leads to the falsification of the input clause
¬q ∨ ¬r. Since this conflict occurs at level 0, we report unsatisfiability. We can then
construct the proof of ⊥ as shown in Figure 2.

With Marc Vaucher [SV08], we have recently verified the correctness of a DPLL-
based SAT solver using PVS 4.2. Such proofs are still quite difficult. The verification
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p ∨ q ¬p ∨ q

q ¬q ∨ r

r ¬r

⊥

Fig. 2. A proof extracted from DPLL

effort here took about three man-months. The verified solver, though quite concrete,
is not executable, but it would be relatively easy to transform it to executable form.
Even with this transformation, the result SAT solver would not be anywhere near as
efficient as a state-of-the-art SAT solver. The VeRK approach uses the verified SAT
solver as an offline checker, which does not require state-of-the-art performance, but
a lot more work is needed to verify a reasonably competitive SAT solver. The SAT
solver that we have verified does not generate proofs, and a modest amount of additional
work will be needed to add and verify a proof generation capability. In any case, it is
certainly feasible to verify a moderately efficient SAT solver that can be used as an
offline checker. Our verification of a SAT solver is a preliminary step toward a verified
reference kernel.

6 Checking Verification Tools with the Kernel

We now show how untrusted verification tools can be checked using a verified reference
kernel that has its core, a verified SAT solver. We show for each of these that it is
possible to reduce the verification to clausification, lemmas, and SAT solving.

Binary Decision Diagrams. A binary decision diagram (BDD) represents a Boolean
function as an if-then-else graph with the variables as decision nodes and the truth
values 0 and 1 as the leaves [Bry86]. Reduced ordered BDDs use a uniform variable
ordering along all branches of the diagram and remove all redundant decision nodes.
ROBDDs are canonical representation for Boolean functions. There are verified BDD
libraries, but only for a limited range of operations. Now a ROBDD graph G can be
converted into a sum-of-cubes form. This sum-of-cubes representation is the clausal
form of the negation of G. The first step is to check that if a graph Gφ purports to be the
ROBDD representation for a Boolean formula φ, then we need to check that φ∧Gφ and
Gφ ∧ ¬φ are unsatisfiable. In the former case, we convert φ into CNF form and negate
the sum-of-cubes representation σ1 ∨ . . . ∨ σn of Gφ to obtain a CNF representation
κ1∧. . .∧κ2 of the conjunction. In the latter case, we check that each instance of σi∧¬φ
for 1 ≤ i ≤ n is unsatisfiable. Checking equivalence between two Boolean expressions
represented as ROBDDs can be certified by checking that the same BDD is a faithful
representation of both expressions.

Symbolic Model Checkers. As with SAT solvers, when a model checker fails to estab-
lish a property of a model, it generates a counterexample trace that can be checked.
However, when it proves the property, we do not have a witness that can be easily
checked for validity. There is prior work on certifying model checkers, but here we
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try to reduce the certification problem to one of satisfiability solving. One of the basic
operations in model checking is that of computing the reachable set of states R in a
transition system with an initial state predicate I and a transition relation N . The sets
I , N , and R are represented as ROBDDs which can be mapped to CNF formulas as
before. Most often, all we need to confirm about the set R is that it overapproximates
the set of reachable states. For this, it is enough to check that R(s)∧N(s, s′)∧¬R(s′)
is unsatisfiable using a SAT solver. We can use R to check that the computation-tree
logic (CTL) property AGP by checking that R(s) ∧ ¬P (s) is unsatisfiable. If we want
to check the CTL property AFP , we generate a sequence of sets S0, . . . , Sk such that
S0 = P and¬Si(s)∧N(s, s′)∧Si+1(s′) is unsatisfiable. If I(s)∧¬S0(s)∧. . .∧¬Sk(s)
is propositionally unsatisfiable, then this confirms that AFP does hold of the transition
system 〈I,N〉.

The same idea can be used to construct forms of evidence for the fixed point defini-
tions of other temporal connectives [SS03]. The evidence in the form of the intermediate
state sets can be provided by the symbolic model checker but checked using the trusted
SAT solver.

Static Analyzers. Static analysis tools check programs and specifications for unini-
tialized variables, buffer overflows, numeric overflow and underflow, memory leaks,
uncaught exceptions, worst-case execution time, termination, and type errors. In most
cases, these tools generate inductive invariants that can be independently checked using
SMT solvers. The results of the latter can be certified in the VeRK framework using
SMT solvers (see below).

SMT Solvers. The techniques for solving propositional satisfiability can be extended to
formulas that contain symbols that interpreted in specific theories [dMDS07]. A theory
can be seen as a specific first-order axiomatization or as a class of models. For example,
the theory of equality over uninterpreted function symbols admits all interpretations of
these symbols. The theory of real addition interprets + and < over the real numbers.
The theory of arrays interprets the store and select operations to satisfy the axioms
select(store(a, i, v), i) = v and i �= j =⇒ select(store(a, i, v), j) = select(a, j).

An SMT solver is an extremely complex piece of software but its results can be eas-
ily checked using a little bit more than a SAT solver. An untrusted SMT solver can be
instrumented to generate theory lemmas corresponding to all the theory-specific rea-
soning used in deciding the unsatisfiability of a formula. For example, all the instances
of the above axioms that were used in demonstrating unsatisfiable would be generated.
The verification then amounts to

1. Checking that these lemma clauses are valid according to the theory.
2. Confirming the unsatisfiability of the original formula together with the lemma

clauses.

Figure 3 shows the theory-based unsatisfiability of the clauses y = z, x = y ∨ x =
z, x �= y ∨ x �= z. We can identify the lemmas from the theory of equality that are
needed to demonstrate unsatisfiability. These are

1. x �= z ∨ y �= z ∨ x = y
2. x �= y ∨ y �= z ∨ x = z
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Step M F D C

Propagate y = z {y �→ z} ∅ ∅
Select y = z; x �= y {y �→ z} {x �= y} ∅

Scan
. . . , x �= z
[x �= z ∨ y �= z ∨ x = y]

{y �→ z} {x �= y, x �= z} ∅

Propagate . . . {y �→ z} {x �= y}
Analyze . . . {y �→ z} {x �= y} {y �= z ∨ x = y}
Backjump y = z, x = y {y �→ z} {x �= y} {y �= z ∨ x = y}
Assert y = z, x = y {x �→ y, y �→ z} {x �= y} {y �= z ∨ x = y}

Scan
. . . , x = z
[x = z ∨ x �= y ∨ y �= z]

{x �→ y, y �→ z} {x �= y} {y �= z ∨ x = y}

Conflict

Fig. 3. SMT Example

It is easy to now check that the augmented set of clauses is propositionally un-
satisfiable.

Since it is possible to confirm the results of an SMT solver with a SAT solver, we
can use an SMT solver as an intermediary between another verification tool, like a static
analyzer, and the reference kernel.

First-Order and Higher-Order Proofs. Checking the unsatisfiability of first-order logic
formulas is an undecidable problem, but once the unsatisfiability has been demon-
strated, the result is easily checked. For first-order logic, the Herbrand theorem states
that every statement that is unsatisfiable in first-order logic has a Herbrand expansion,
a disjunction of a finite number of instances of the Skolemized form of the original
formula, that is propositionally unsatisfiable. The Skolemized form of a sentence is
obtained by placing it in prenex normal form with the quantifiers at the outermost
level. Each existentially quantified variable is then replaced by a terms of the form
f(x1, . . . , xn) for a freshly chosen function symbol f , where x1, . . . , xn are the uni-
versally quantified variables governing the existential quantification. For example, the
claim ∀x.∃y.p(x)∧¬p(y) is unsatisfiable. The Herbrand form is just p(x)∧¬p(f(x)).
The Herbrand expansion p(a) ∧ ¬p(f(a)) ∧ p(f(a)) ∧ p(f(f(a))) is propositionally
unsatisfiable.

If we can instrument a prover to generate a Herbrand expansion, the unsatisfiability
of the original formula can be confirmed by

1. Checking that the Herbrand expansion is indeed a valid Herbrand expansion of the
original formula.

2. Checking the propositional unsatisfiability of the Herbrand expansion.

The situation is the same for first-order logic with equality. Here, finding the quantifier
instantiations is hard. Even for a bounded number of copies of the formula, the search
problem reduces to the probem of simultaneous rigid E-unification [DGV96, DV01],
which is known to be undecidable. However, once the proof search has succeeded,
Herbrand’s theorem can be used to reduce the problem to that of checking that a Herbrand



14 N. Shankar

expansion is valid under equality [Sho67], which can easily be checked by an SMT
solver. The result of the SMT solver can be checked by a SAT solver with lemmas, which
in this case are instances of the equality axioms.

Similarly, for higher-order logic, the problem of checking satisfiability is undecid-
able, but the Herbrand expansion [Mil83] can be checked from the instances of the
higher-order logic axiom schemes using an SMT solver.

Rewrite rules are a popular inference mechanism for building simplifiers and compu-
tation rules. Rewriting is a simple but useful fragment of first-order logic with equality
where the inference steps are restricted to instantiation (based on matching), equal-
ity replacement, and backchaining. A fairly sophisticated rewriter has been verified by
Davis [Dav07] using ACL2 [KMM00]. It is also possible to take a lighter approach to
certified rewriting by recording the instances of rewrite rules that have been used. The
theorem proved by means of rewriting can then be derived from these instances using
an SMT solver. As before, the result of the SMT solver can be checked in conjunction
with the lemmas by means of a SAT solver.

7 Conclusions

Reconciling trust and automation is a longstanding challenge in formalized reasoning.
We have argued that it is possible to check the results of a range of formal verification
tools using a trusted (verified) SAT solver plus a small amount of extra functionality.
Our approach saves the overhead of proof generation and allows the untrusted tools to
evolve without significant constraints. The main constraint is that the untrusted tools
must be instrumented to generate information that is needed by the SAT solver. For
example, we need quantifier instantiations, theory lemmas, and sum of cubes represen-
tations of BDDs.

The extra functionality needed beyond a SAT solver is also quite modest. For exam-
ple, we need to check the conversion to conjunctive normal form. We also need to verify
the theory validity of the lemmas that are given as extra clauses to the SAT solver. We
need to check that the instantiation of input formulas or rewrite rules has been carried
out correctly. In some of these cases, we can actually use proof generation as a way of
generating certificates.

We have only made very preliminary progress in the direction of building a verified
reference kernel. In particular, we have shown that it is possible to verify a simple SAT
solver based on modern ideas. Once the kernel is constructed, it will be possible to
instrument various untrusted tools to generate the information needed by the kernel in
order to reproduce the verification results. The untrusted tools can also be instrumented
to generate hints that reduce the search time for the SAT solver.

A lot can go wrong in the construction of software. The specifications can be wrong
or ambiguous. The semantics of the specification and programming languages can be
imprecise. The compilers, run-time systems, and hardware platforms can be faulty.
Given that there are many places where an assurance case for the system can spring
a leak, it seems more prudent to focus on automation than on trust. However, if we can
effectively reconcile trust and automation for verification tools, then we can direct more
of the resources to validating the other components of the system.
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Abstract. The use of the universal and existential quantifiers with the
capability to express the concept of at least k or all but k, for a non-
negative integer k, has been thoroughly studied in various kinds of logics.
In classical logic there are counting quantifiers, in modal logics graded
modalities, in description logics number restrictions.

Recently, the complexity issues related to the decidability of the μ-
calculus, when the universal and existential quantifiers are augmented
with graded modalities, have been investigated by Kupfermann, Sattler
and Vardi. They have shown that this problem is ExpTime-complete.

In this paper we consider another extension of modal logic, the Com-
putational Tree Logic CTL, augmented with graded modalities gener-
alizing standard quantifiers and investigate the complexity issues, with
respect to the model-checking problem. We consider a system model
represented by a pointed Kripke structure K and give an algorithm to
solve the model-checking problem running in time O(|K| · |ϕ|) which is
hence tight for the problem (where |ϕ| is the number of temporal and
boolean operators and does not include the values occurring in the graded
modalities).

In this framework, the graded modalities express the ability to gener-
ate a user-defined number of counterexamples (or evidences) to a spec-
ification ϕ given in CTL. However these multiple counterexamples can
partially overlap, that is they may share some behavior. We have hence
investigated the case when all of them are completely disjoint. In this
case we prove that the model-checking problem is both NP-hard and
coNP-hard and give an algorithm for solving it running in polynomial
space. We have thus studied a fragment of this graded-CTL logic, and
have proved that the model-checking problem is solvable in polynomial
time.

1 Introduction

Model-checking is the process, which is now becoming widely accepted, to check
whether a given model satisfies a given logical formula [CGP99, QS82], and it
can be applied to all kinds of logics. In this paper we consider model-checking
of formulas expressed in a logic which extends the classical Computational Tree
Logic, CTL, with graded modalities. Classical CTL can be used for reasoning
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about the temporal behavior of systems considering either all the possible futures
or at least one possible future. Here we use graded extensions on the existential
and universal quantifiers.

In the literature the capability to express at least k and all but k, given a
non-negative integer k, has been intensively studied in various logic frameworks.
In classical logics ∃>k and ∀≤k are called counting quantifiers, see e.g. [GOR97,
GMV99, PST00], in modal logics they are called graded modalities, see e.g.
[Fin72, Tob01], and in description logics one speaks about number restriction
of properties describing systems, see e.g. [HB91]. Recently the complexity issues
related to the decidability of the μ-calculus when the universal and existential
quantifiers are augmented with graded modalities, have been investigated in
[KSV02]. They have shown that this problem is ExpTime-complete, retaining
thus the same complexity as in the case of classical μ-calculus, though strictly
extending it.

In this paper we introduce the graded-CTL, obtained by augmenting CTL

with graded modalities that generalize standard path quantifiers and this logic,
here too, strictly extends classical CTL. With graded-CTL formulas we can rea-
son about more than any constant number of futures. For example, the formula
E>kF¬(wait ⇒ AFcriticSection) expresses the fact that in several cases it is
possible that a waiting process never obtains the requested resource. Note that
this logic allows also to grade nested path quantifiers to express other interesting
properties, such as the safety property that “a system always has at least two
ways to reach a safe state” (AGE>1Fsafe). Clearly formulas of this type cannot
be expressed in CTL and not even in classical μ-calculus. The focus in the paper
is on the complexities involved in the process of model-checking system models
against specifications given in this logic. In this framework the motivation in the
use of these graded modalities mainly arises from the fact that during the verifica-
tion of a system design, a central feature of the technique of model-checking is the
generation of counterexamples. In fact the realization process for a system passes
through the “Check/Analyze/Fix” cycle: model-check the design of the system
against some desired properties ϕ, analyze the generated counterexamples to
the properties, and re-design the system, trying to fix the errors. The analysis of
the counterexamples usually gives clues to that part of the system model where
the specification failed. It is therefore highly desirable to have as many significa-
tive counterexamples as possible simultaneously, c.f. [CG07, CIW+01, DRS03].
Usually up-to-date model-checkers, as NuSMV and SPIN [CCGR99, Hol97], re-
turn only one counterexample of ϕ or, by using the so-called onion ring tech-
nique, may determine all the counterexamples to a given non-graded formula.
Here we aim at getting more significative counterexamples, in the sense that
by nesting the graded quantifiers we can concentrate ourselves on zones of the
model for which we are more interested in. In other words with the actual model
checkers we can obtain counterexamples to a formula with only the first quan-
tifier which, in a sense, is graded, while in our scenario we can have also the
inner quantifiers which are graded. On the other side, the investigation of the
complexities involved in the generation and the analysis of the counterexamples
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is a central issue, as explained also in the survey [CV03] where the role and the
structure of counterexamples is nicely investigated putting an emphasis on the
complexities related to the generation problem.

Given a graded-CTL formula ϕ and a system model represented by a pointed
Kripke structure K, our first result is an algorithm to solve the model-checking
problem in time O(|K| · |ϕ|), the same running time of the algorithm for classical
CTL. Let us remark that this complexity does not depend at all on the values
representing the grading of the modalities and the size |ϕ| of the formula does
not depend on the representation of these values and is simply the number of
the temporal and boolean operators. However the multiple counterexamples re-
turned by this algorithm may overlap, while it can be desirable in the analysis
phase to detect independent traces where the specification fails. To deal with
this case, we have introduced a semantic for temporal operators to require the
edge-disjointness of the paths representing the counterexamples. The same set-
ting can be applied also, for example, to ensure that a “correct” system behavior
tolerates a given number of faults of the system. We have proved that to model-
check a system model against such specifications is both NP-hard and coNP-
hard. The reduction has been done from the cycle-packing problem (the problem
to check whether there are k disjoint cycles in a graph). This has suggested that
formulas of the type E>kGϕ (there exist at least k + 1 infinite edge-disjoint
paths globally satisfying ϕ) are hard to verify. We have then defined the still
interesting fragment of the logic obtained by dropping this kind of formulas and
proved that the model-checking problem can be solved in polynomial time in
this case. Clearly, unless NP = coNP, the problem, in the full logic, does not
belong to NP. We have then given an algorithm for it, showing that however
it is in Pspace. Finally, we have considered the scenario in which only a given
number of behaviors need to be disjoint and all the remaining may overlap. In
this case we have proved that the problem is fixed parameter tractable.

The paper is organized as follows: in Section 2 we give some preliminary defi-
nitions and introduce the model-checking problem for graded-CTL; in Section 3
we prove that the graded-CTL model-checking is solvable in polynomial time; in
Section 4 we study the edge-disjoint graded-CTL model-checking. Moreover we
show that the same problem restricted to a fragment of graded-CTL is solvable
in polynomial time, and that we can obtain a good algorithm in practical cases
by relaxing the edge-disjointness requirement; finally in Section 5 we give some
conclusions and open problems.

2 Graded-CTL Logic

In this section we introduce the graded-CTL logic which extends the classical
CTL logic with graded quantifiers. CTL can be used for reasoning about the
temporal behavior of systems considering either “all the possible futures” or “at
least one possible future”. Graded extension generalizes CTL to reasoning about
more than a given number of possible future behaviors.
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Let us start by giving the syntax of the logic. The graded-CTL operators
consist of the temporal operators U (“until”), G (“globally”) and X (“next”),
the boolean connectives ∧ and ¬, and the graded path quantifier E>k (“for at
least k+1 futures”).

Given a set of atomic propositions AP , the syntax of the graded-CTL formu-
las is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | E>kXϕ | E>kϕUϕ | E>kGϕ

where p ∈ AP and k is a non-negative integer.
We define the semantics of graded-CTL with respect to Kripke Structures.

As usual, a Kripke structure over a set of atomic propositions AP , is a tuple
K = 〈S, sin, R, L〉, where S is a finite set of states, sin ∈ S is the initial state,
R ⊆ S × S is a transition relation with the property that for each s ∈ S there is
t ∈ S such that (s, t) ∈ R, and L : S → 2AP is a labeling function.

A path in K is denoted by the sequence of states π = 〈s0, s1, . . . sn〉 or by
π = 〈s0, s1, . . .〉, if it is infinite. The length of a path, denoted by |π|, is the
number of states in the sequence, and π[i] denotes the state si, 0 ≤ i < |π|. Two
paths π1 and π2 are distinct if there exists an index 0 ≤ i < min{|π1|, |π2|} such
that π1[i] �= π2[i]. Observe that from this definition if a path is the prefix of
another path, then they are not distinct.

Let K = 〈S, sin, R, L〉 be a Kripke structure and s ∈ S be a state of K. The
concept of satisfiability for graded-CTL formulas is established by the relation
|=, defined as follows:

– (K, s) |= p, p ∈ AP , iff p ∈ L(s);
– (K, s) |= ϕ1 ∧ ϕ2 iff (K, s) |= ϕ1 and (K, s) |= ϕ2;
– (K, s) |= ¬ϕ iff ¬((K, s) |= ϕ) (shortly written, (K, s) �|= ϕ);
– (K, s) |= E>kXϕ iff there exist k + 1 different states s0, . . . , sk such that

1. (s, si) ∈ R and
2. (K, si) |= ϕ for all 0 ≤ i ≤ k;

– (K, s) |= E>kGϕ iff there exist k+1 pairwise distinct infinite paths π0, . . . , πk

such that for every 0 ≤ j ≤ k,
1. πj [0] = s and
2. for all h ≥ 0, (K, πj [h]) |= ϕ.

– (K, s) |=E>kϕ1Uϕ2 iff there exist k+1 pairwise distinct finite paths π0, . . . ,πk

of length i0, . . . , ik, respectively, such that for all 0 ≤ j ≤ k
1. πj [0] = s,
2. (K, πj [ij − 1]) |= ϕ2, and
3. for every 0 ≤ h < ij − 1, (K, πj [h]) |= ϕ1;

The graded-CTL formulas (as in the standard non-graded CTL) are also
called state-formulas and a state s in K satisfies a state-formula ϕ if (K, s) |= ϕ.
On the other side, Xϕ, Gϕ and ϕ1Uϕ2 are called as usual path-formulas. In
particular a path satisfying a path-formula θ is called an evidence of θ (note
that the evidences for X and U are finite paths). Then, for the fulfillment of a
formula E>kθ in a state s, it is required the existence of k+1 distinct evidences
of θ, starting from s.
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As usual, in our logic the temporal operator F (“eventually”) can be defined
in terms of the operators given above: E>kFϕ ⇔ E>k

True U ϕ. Moreover,
it is easy to observe that CTL is a proper fragment of graded-CTL since the
simple formula E>1Xp cannot be expressed in CTL, whereas any CTL formula
is also a graded-CTL formula since the quantifier E is equivalent to E>0 and
for the universal quantifier A the standard relations hold, recalled here:

– AXϕ⇐⇒ ¬EX¬ϕ;
– AGϕ⇐⇒ ¬EF¬ϕ;
– Aϕ1Uϕ2 ⇐⇒ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)) ∧ ¬EG¬ϕ2.

Finally, we also consider the graded extension of the quantifier A, A≤k, with
the meaning that all the paths starting from a node s, except for at most k, satisfy
a given path-formula. The quantifier A≤k is the dual of E>k and can obviously
be re-written in terms of ¬E>k. We now formally define the model-checking
problem.

Given a Kripke structure K = 〈S, sin, R, L〉, and a graded-CTL formula ϕ, the
graded-CTL model-checking is the problem to verify whether (K, sin) |= ϕ.

In the next sections we study the complexity of the model-checking problem
with respect to the size of the Kripke structure (expressed in terms of the number
of edges, as by our definition |R| ≥ |S|), and to the size of the CTL formula,
where the size |ϕ| of a CTL formula ϕ is the number of the temporal and the
boolean operators occurring in it.

3 Graded-CTL Model-Checking

In this section we show that the graded-CTL model-checking problem can be
solved in polynomial time and independently from the values occurring in the
graded modalities, involved in the formulas. Then we discuss possible applica-
tions of our result to the generation of counterexamples.

Let us recall that an algorithm to solve the model-checking problem for a
given Kripke structure K and a given formula ϕ computes the subset {s ∈ S s.t.
(K, s) |= ϕ}.

Theorem 1. Let K = 〈S, sin, R, L〉 be a Kripke structure and ϕ be a graded-
CTL formula. The graded-CTL model-checking problem can be solved in time
O(|R| · |ϕ|).

Proof. To solve the problem we give an algorithm that works on the sub-formulas
ψ of ϕ and for each state s determines whether (K, s) |= ψ (and sets a boolean
variable s.ψ to True), (see Algorithm 1). The algorithm uses a primitive function
Sub(ϕ) which returns all the sub-formulas of ϕ and moreover for a path-formula
θ, if E>kθ is in Sub(ϕ), then E>0θ is in Sub(ϕ) as well. In particular we assume
that such formulas are returned in non-decreasing order of complexity, with E>0θ
preceding E>kθ in the sequence.

If a sub-formula ψ is of type p ∈ AP , ¬ψ1, ψ1∧ψ2, E>0Gψ1, E>0ψ1Uψ2, then
the algorithm (lines 3−13) works as the classical CTL model-checking algorithm
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[CGP99], and, if a sub-formula is of type E>kXψ1, then the algorithm checks,
for each state s whether |{t ∈ S | (s, t) ∈ R and (K, t) |= ψ1}| > k, (lines 14−16).

Algorithm 1. The algorithm GradedCTL(K, ϕ).
Input: A Kripke Structure K = 〈S, sin, R,L〉 and a graded-CTL formula ϕ.
Output: For each state s, s.ϕ = True if (K, s) |= ϕ and s.ϕ = False otherwise

Let s.ψ = False for all s ∈ S and ψ ∈ Sub(ϕ);1

forall ψ ∈ Sub(ϕ) do2

case ψ = p ∈ AP : forall s ∈ S s.t. p ∈ L(s) do s.ψ ← True;3

case ψ = ¬ψ1: forall s ∈ S do s.ψ ← ¬s.ψ1;4

case ψ = ψ1 ∧ ψ2: forall s ∈ S do s.ψ ← (s.ψ1 ∧ s.ψ2);5

case ψ = E>0Gψ1:6

S′ ← {s ∈ S | s.ψ1 = True}; R′ ← R ∩ (S′ × S′);7

forall s ∈ S′ s.t. ∃ a cycle reachable from s in (S′, R′) do s.ψ ← True;8

end9

case ψ = E>0ψ1Uψ2:10

S′ ← {s ∈ S | s.ψ1 = True or s.ψ2 = True}; R′ ← R ∩ (S′ × S′);11

forall s ∈ S′ s.t. ∃ t with t.ψ2 = True reachable from s in (S′, R′) do12

s.ψ ← True;
end13

case ψ = E>kXψ1 with k ≥ 0:14

forall s ∈ S s.t. |{(s, t) ∈ R | t.ψ1 = True}| > k do s.ψ ← True;15

end16

case ψ = E>kGψ1 with k > 0:17

S′ ← {s ∈ S | s.E>0Gψ1 = True}; R′ ← R ∩ (S′ × S′);18

forall s ∈ S′ s.t. ∃ a non-sink-cycle reachable from s in (S′, R′) do19

s.ψ ← True;
forall s ∈ S′ s.t. ∃ k + 1 distinct finite paths from s to sink-cycles in20

(S′, R′) do s.ψ ← True;
end21

case ψ = E>kψ1Uψ2 with k > 0:22

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = True};23

R′ ← (R ∩ (S′ × S′)) \ {(s, t) ∈ R | s.ψ1 = False};24

forall s ∈ S′ s.t. ∃ a non-sink-cycle reachable from s in (S′, R′) do25

s.ψ ← True;
forall s ∈ S′ s.t. ∃ k + 1 distinct finite paths from s to states where ψ226

holds in (S′, R′) do s.ψ ← True;
end27

end28

Consider now a sub-formula ψ = E>kGψ1 with k > 0 (line 17). Let a sink-
cycle be a cycle not containing exit-nodes, that is nodes with out-degree at least
2. The algorithm is based on the following claim, that we will prove later:

Claim 1: Let Gψ = (Sψ , Rψ) be the graph induced by the states where E>0Gψ1

holds; then, given a state s ∈ S, (K, s) |= ψ iff s ∈ Sψ and either there is a
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non-sink-cycle reachable from s, or there are k+1 distinct finite paths connecting
s to sink-cycles in Gψ.

The algorithm looks for the states in Gψ from which it is possible to reach a
non-sink-cycle (line 19) and then looks for the states from which k + 1 distinct
finite paths start, each ending in sink-cycles (line 20).

Let us now consider a sub-formula ψ = E>kψ1Uψ2 (line 22). In this case, the
algorithm is based on the following claim:

Claim 2: Let Gψ = (Sψ, Rψ) be the graph induced by considering the states
where E>0ψ1Uψ2 holds and by deleting the edges outgoing from states where ψ1

is not satisfied; then, given a state s ∈ S, (K, s) |= ψ iff s ∈ Gψ and either there
is a non-sink-cycle reachable from s, or there are k+1 distinct finite paths from
s to states where ψ2 holds.

Similarly to what has been done for the case of the operator G, now the algorithm
looks for the states in Gψ from which it is possible to reach a non-sink-cycle (line
25), and then looks for the states from which k + 1 distinct finite paths start,
each ending in states where ψ2 holds, (line 26). The proof of the correctness of
the algorithm can be easily done by induction on the length of the formulas.

To complete the proof let us first prove Claim 1.

(if): Let s ∈ Sψ and C = 〈v0, . . . , vh−1〉 be a cycle in Gψ reachable from s via a
finite path 〈s, u0, . . . , ui, v0〉 and containing at least one exit-node, say vj , 0 ≤ j ≤
h− 1 connected to a node w0 ∈ Sψ such that w0 �= v(j+1) mod h and (vj , w0) ∈
Rψ. Since (K, w0) |= E>0Gψ1, there is an infinite path 〈w0, w1, . . .〉 starting from
w0 and satisfying Gψ1 and there are k+1 pairwise distinct infinite paths πl, 0 ≤
l ≤ k, each satisfying Gψ1, defined as πl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . .〉,
where (C)l denotes the fact that πl cycles l times on C. Thus (K, s) |= ψ.
Finally, since a finite path from s to a sink-cycle in Gψ constitutes an infinite
path satisfying Gψ1, if there are k + 1 distinct finite paths connecting s to sink-
cycles in Gψ then (K, s) |= ψ.

(only if): If (K, s) |= E>kGψ1 then obviously (K, s) |= E>0Gψ1, therefore
s ∈ Sψ. Let us consider k + 1 distinct infinite paths π0, . . . , πk starting from
s and satisfying Gψ1. Since an infinite path on a finite Kripke structure either
contains a non-sink-cycle, or ends in a sink-cycle, the claim follows from the fact
that each state in π0, . . . , πk belongs to Sψ.

Finally let us now prove Claim 2.

(if): Let s ∈ Sψ and C = 〈v0, . . . , vh−1〉 be a non-sink-cycle, reachable from
s via a finite path 〈s, u0, . . . , ui, v0〉. Let vj , for 0 ≤ j ≤ h − 1, be an exit-
node of C connected to a node w0 ∈ Sψ such that w0 �= v(j+1) mod h and
(vj , w0) ∈ Rψ. Since (K, w0) |= E>0ψ1Uψ2, then in Gψ there is a finite path
〈w0, . . . , wr〉 starting from w0 and ending in a wr such that (K, wr) |= ψ2.
Consider the k + 1 pairwise distinct finite paths πl, 0 ≤ l ≤ k, defined as
πl = 〈s, u0, . . . , ui, (C)l, v0, . . . , vj , w0, . . . wr〉, where (C)l denotes the fact that
πl cycles l times on C. Since Rψ does not contain edges out-going from nodes
where ψ1 is not satisfied, then (K, x) |= ψ1 for all x in πl, except at most wr, and
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therefore each πl is an evidence of ψ1Uψ2. Thus (K, s) |= ψ. Now, let π0, . . . , πk

be k + 1 distinct finite paths connecting s to nodes where ψ2 holds; from the
definition of Gψ , πi is an evidence of ψ1Uψ2 for all 0 ≤ i ≤ k, and therefore
(K, s) |= ψ, as well.

(only if): If (K, s) |= E>kψ1Uψ2 then obviously (K, s) |= E>0ψ1Uψ2, therefore
s ∈ Sψ. On the other side, from the semantics of E>kψ1Uψ2, there are k + 1
distinct finite paths starting from s and ending in states satisfying ψ2 and these
are also paths in Gψ , and this completes the proof of the claim.

Let us now evaluate the running-time of the algorithm. It is easy to see that to
check a sub-formula of type p ∈ AP , ¬ψ1, ψ1∧ψ2, requires O(|S|) and for a sub-
formula E>kXψ1, E>0Gψ1, E>0ψ1Uψ2 the algorithm requires time O(|R|). For
a sub-formula E>kGψ1, note that the set of vertices from which it is possible to
reach a non-sink-cycle can be globally calculated in time O(|R|) by using a Depth
First Search algorithm and, as soon as a cycle is detected, checking whether the
cycle contains an exit-node. Finally, also the set of vertices from which k + 1
paths leading to sink-cycles exist, can be globally calculated in time O(|R|) by
using a standard DFS algorithm. The analysis for E>kψ1Uψ2 is essentially the
same as that of the case E>kGψ1. Since the size of Sub(ϕ) is O(|ϕ|), then the
overall complexity of the algorithm is O(|R| · |ϕ|). ��

An example of Claim 2 is the model in Figure 1 which satisfies the formula
E>kF(wait1 ∧EG¬critic1), for all k ≥ 0, as contains reachable non-sink-cycles
(one is depicted with bold-faced edges).

The graded-CTL model-checking can be used to obtain simultaneously more
than one counterexample for a formula. For example, consider the formula AFp
expressing a simple liveness property: in all behaviors something good eventually
happens. Given a model K, a counterexample is a path in K where ¬p always
holds. It can be useful to detect whether there are more than a fixed number
k of behaviors in which the desired property fails. To get that, we can test
whether (K, sin) |= E>kG¬p. Analogously, we can consider a safety property
expressed by ¬EF error: once fixed a number k, if (K, sin) |= E>kF error then
there are more than k wrong behaviors, each leading to an error. Note that the
algorithm we introduced in Theorem 1 can be modified to return the required
counterexamples.

Let us also consider the formula AG(wait⇒ AFcritic) for the access control
to a critical section of a system. A counterexample for this formula is an “unfair”
path which is an evidence for the formula EF(wait∧EG¬critic). In this case, it
is useful to detect whether the model can generate more bad behaviors. By using
graded-CTL model-checking it is possible to analyze three bad situations: the
first is to detect whether there are more “unfair” paths from the initial state, by
verifying the formula E>k1F(wait∧EG¬critic); the second is to verify whether
there is a finite path from the initial state to a state where wait holds, from which
more “unfair” paths stem, and this can be done by testing the formula EF(wait∧
E>k2G¬critic), or, third, by using the formula E>k1F(wait ∧E>k2G¬critic).
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The following example shows the result of running NuSMV and SMV Cadence
for a system model implementing mutual exclusion and having more than one
unfair path.

Example 1. Consider the model in Figure 1 which violates the graded-CTL for-
mula ϕ = A≤1G(wait1⇒ AFcritic1).

idle1

idle2

idle2

critic1

idle1

idle1

wait2

idle2

wait1

critic1

critic2

wait2

wait1
wait2

critic2

wait1

Fig. 1. A mutual exclusion system

When NuSMV (or also SMV Cadence [CCGR99, McM]) runs on this model
and on the classical CTL formula corresponding to ϕ, then it generates as a
counterexample the path:

〈(idle1, idle2), (wait1, idle2), (wait1, idle2), . . .〉
Then, if the user corrects this error by removing the self-loop on the state labeled
(wait1, idle2), the model-checker reports the second path

〈(idle1, idle2), (wait1, idle2), (wait1, wait2), (wait1, critic2), (wait1, idle2), . . .〉.
In practice most model-checkers implement symbolic algorithms which ma-

nipulates state sets represented by BDD. We have hence studied a symbolic
algorithm for our setting whose complexity turns out to be O(2|AP | · k · |ϕ|),
where k is the maximum value occurring in ϕ. The extra factor k is due to the
fact that when we consider state sets represented symbolically one has to take
into account also all sub-formulas of the type E>iθ, 0 < i < k, for each E>kθ
occurring in the given formula ϕ. Thus we have the following theorem (whose
full proof is in the extended version of the paper [FNP08]).

Theorem 2. Let K = 〈S, sin, R, L〉 be a Kripke structure represented symboli-
cally on a set of atomic propositions AP and let ϕ be a graded-CTL formula.
The graded-CTL model-checking problem can be solved by a symbolic algorithm
in time O(2|AP | · k · |ϕ|), where k is the maximum value occurring in ϕ.

4 Edge-Disjoint Graded-CTL Model-Checking

In this section we introduce a different semantics of graded-CTL to distinguish
whether different behaviors of the system, satisfying a graded-CTL formula, are
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completely disjoint. This setting can be applied also to ensure that a “correct”
system behavior tolerates a given number of faults of the system.

The edge-disjoint semantics of graded-CTL is given by the relation |=ed,
which differs from the previous |= relation only for the formulas of the following
two types E>kGψ1 and E>kψ1Uψ2. In these two cases it is required the edge-
disjointness of the evidences, that is of the infinite paths satisfying Gψ1 and of
the finite paths satisfying ψ1Uψ2. Let us note that the model of Figure 1 does
no longer satisfy the formula E>2F(wait1 ∧ EG¬critic1) now as there are only
two disjoint paths that violate the formula.

The edge-disjoint graded-CTL model-checking is defined as the problem
of determining whether (K, sin) |=ed ϕ, for a Kripke structure K with initial state
sin and a graded-CTL formula ϕ.

We first prove that the problem is both NP-hard and coNP-hard, and we give
an upper bound showing that it lies in Pspace. Then we introduce a fragment of
our logic for which the problem has a polynomial time solution. To show this, we
use techniques which are standards for flow network problems, see e.g. [CLRS01].
Finally we give a polynomial time algorithm for the case in which only a given
number of single actions of behaviors (edges) must be disjoint and all the others
may overlap. Note that this problem is a generalization both of the graded-CTL

model-checking and of the edge-disjoint graded-CTL model-checking, since it is
equivalent to the former (resp. to the latter) when no actions (all the actions)
have to be disjoint.

4.1 Complexity

The proof of the hardness is given by a reduction from the Cycle-Packing prob-
lem, defined as follows: given a directed graph G and an integer n ≥ 2, check
whether in G there are at least n edge-disjoint cycles. The Cycle-Packing prob-
lem is known to be NP-complete (see [CPR03]).

Theorem 3. The edge-disjoint graded-CTL model-checking problem is both NP-
hard and coNP-hard.

Proof. We first prove that edge-disjoint model-checking problem is NP-hard
for specifications in the graded-CTL fragment FRAG containing only formulas
E>kGp, for an atomic proposition p and k ≥ 0.

Given a graph G = (V , E) and an instance (G,n), n ≥ 2, of the Cycle-Packing
problem, let K = 〈V ∪ {ŝ}, ŝ, R, L〉 be the Kripke structure obtained from G by
adding an initial state ŝ �∈ V , connected to all the other nodes, and by labeling
each state of K with a single atomic proposition p. Formally, K is defined on the
atomic propositions AP = {p} in such a way that R = E ∪ {(ŝ, s) s.t. s ∈ V}
and L(s) = {p} for all s ∈ V ∪ {ŝ}. Moreover, let us consider the graded-CTL

formula ϕ = E>n−1Gp. Since ŝ is connected to each node of G and has no incom-
ing edges, and since p holds in every node, then it follows that (K, ŝ) |=ed ϕ iff
G contains at least n edge-disjoint cycles. From the NP-hardness of the Cycle-
Packing problem, the edge-disjoint FRAG model-checking problem is NP-hard
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as well. The edge-disjoint model-checking problem for specifications expressed
with formulas of the type ¬E>kGp hence turns out to be coNP-hard. Thus the
theorem holds. ��

From the previous theorem, we have that the edge-disjoint graded-CTL model-
checking problem is not in NP (and not in coNP as well) unless NP = coNP.
However we now show an upper bound for this problem. In fact let us consider the
following simple algorithm to model-check formulas E>kθ with either θ = Gψ1

or θ = ψ1Uψ2: the Kripke structure is visited to find paths satisfying θ and, each
time a path is found, a new visit is recursively started, looking for other paths
in the remaining graph, until k+1 edge-disjoint paths are found. This algorithm
can be easily implemented by using polynomial space, as the overall size of the
k + 1 paths is bounded by |R|. Therefore we obtain the following theorem.

Theorem 4. There is an algorithm to solve the edge-disjoint graded-CTL model-
checking problem in space O(|R| · |S|+ |ϕ|).

4.2 A Fragment

One question that naturally arises from Theorem 3 is whether it is possible to
define interesting fragments of graded-CTL for which the edge-disjoint graded-
CTL model-checking problem can be solved in polynomial-time. In particular,
the proof of Theorem 3 suggests that only formulas of the type E>kGϕ, with
k > 0, are “hard” to verify. In this section we introduce a fragment, called
graded-RCTL, of graded-CTL not containing formulas of the type E>kGϕ,
with k > 0 and show that for it there is a polynomial-time algorithm for the
model-checking problem. Note that the fragment is an extension of CTL and
that still many significant properties can be expressed within it. For example,
consider the property stating that do not exist more than k bad behaviors such
that a device does not start unless a key is pressed : such a property can be
expressed in graded-RCTL with the formula ¬E>k(¬key U(start ∧ ¬key)).
Theorem 5. Let K = 〈S, sin, R, L〉 be a Kripke structure and ϕ be a graded-
RCTL formula. The edge-disjoint graded-RCTL model-checking problem, for K
and ϕ, can be solved in time O(|R|2 · |S| · |ϕ|).

Proof. Since in the graded-RCTL there are no E>kGψ1 formulas, we have only
to show how to check sub-formulas E>kψ1Uψ2 with k > 0. To this aim we
will use ideas from flow networks of the graph theory. Let us recall that a flow
network is a directed graph with a source node, a destination node, and with
edges having a non-negative capacity representing the amount of data that can
be moved through the edge. A maximum flow from the source to the destination
is the maximum amount of data that a network can move from the source to the
destination in the time unit.

The algorithm is identical to Algorithm 1 for graded-CTL, with the lines 17−
27 rewritten as follows (where d �∈ S is the destination node, inDegree(s) returns
the in-degree of a state s and MaxFlow(S,R, c, s, d) returns the maximum flow
from s to d on the graph (S,R) with c as the capacity function on the edges):
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case ψ = E>kψ1Uψ2 with k > 0:17

S′ ← {s ∈ S | s.E>0ψ1Uψ2 = True} ∪ {d};18

R′ ← (R ∩ (S′ × S′)) \ {(s, t) | s.ψ1 = False} ∪ {(s, d) | s.ψ2 = True};19

forall e ∈ R′ do c(e) = inDegree(s) if e = (s, d) and c(e) = 1 otherwise;20

forall s ∈ S′ \ {d} s.t. MaxFlow(S′, R′, c, s, d) > k do s.ψ ← True;21

end22

Our algorithm considers the graph (S′, R′), subgraph of K, of the states where
the formula E>0ψ1Uψ2 holds (without the edges outgoing from states where ψ1

doesn’t hold), and adds a new destination node d with incoming edges from all
the nodes where ψ2 holds (the capacity of the link (s, d) is the in-degree of s,
while the remaining edges have capacity 1). It is known that in graphs with all
unitary edge capacities, the maximum flow is equal to the maximum number of
edge-disjoint paths from the source to the destination node, see e.g. [CLRS01].
However, it is easy to see that in our network the maximum flow from a node
s to d is equal to the maximum number of edge-disjoint paths from s to the
set {t ∈ S′ \ {d} | (t, d) ∈ R′}, therefore our algorithm has only to evaluate the
maximum flow from each state to d.

The running-time of the algorithm on a sub-formula E>kψ1Uψ2 depends on
the time required to calculate the maximum flow. Note that the total capacity
of the edges entering in d is at most |R|, therefore the maximum flow from any
state to d is upper bounded by |R|. Since in this case, the maximum flow can
be calculated in time O(|R|2), see e.g. [CLRS01], the overall time complexity of
the algorithm is O(|R|2 · |S| · |ϕ|). ��

4.3 A Parameterized Version of the Problem

Let K = 〈S, sin, R, L〉 and R̂ be a subset of R. We say that two paths π1 and
π2 in K are R̂-edge-disjoint if there are no edges in R̂ belonging to both π1 and
π2. We introduce the relation |=R̂

ed which differs from the finer relation |=ed only
for the formulas of the type E>kGψ1 and E>kψ1Uψ2. In particular, we require
the existence of k + 1 pairwise R̂-edge-disjoint paths satisfying Gψ1 or ψ1Uψ2.
Then, the subset-edge-disjoint graded-CTL model-checking requires to
verify whether (K, sin) |=R̂

ed ϕ, for a Kripke structure K, a set R̂ ⊆ R, and a
graded-CTL formula ϕ.

The lower bound to this problem obviously matches the lower bound of the
edge-disjoint graded-CTL model-checking problem. However, in the following
theorem we prove that the problem is fixed parameter tractable, in fact we solve
it in time exponential only in the size of R̂, obtaining thus a good algorithm for
practical cases.

Theorem 6. Let K = 〈S, sin, R, L〉 be a Kripke structure, R̂ ⊆ R and ϕ be
a graded-CTL formula. The subset-edge-disjoint graded-CTL model-checking
problem can be solved in time O((4|R̂| · |R| + 2|R̂|2) · |S| · |ϕ|) and in space
O(4|R̂| · |R̂|+ |R|+ |ϕ|).
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Proof. Since the difference between graded-CTL and subset-edge-disjoint
graded-CTL model-checking is only in the satisfiability of formulas E>kθ, with
the path-formula θ being either θ = Gψ1 or θ = ψ1Uψ2 and k > 0, the algorithm
to solve our problem is identical to Algorithm 1, but for the extra input value
R̂, and for the lines 17-27 replaced by these:

case ψ = E>kθ with θ = Gψ1 or θ = ψ1Uψ2 and k > 0:17

forall s ∈ S do18

I ← {i ∈ {k + 1− |R̂|, . . . , k + 1} | i ≥ 0 and ∃ i distinct paths from s19

satisfying θ without using edges in R̂};
if I �= ∅ then20

k̂ ← k + 1−max{i | i ∈ I};21

if k̂ = 0 then s.ψ ← True; continue;22

V ← {T |T is the set of edges of R̂ occurring in an evidence of θ};23

E ← {(T, T ′) ∈ V2 | T ∩ T ′ = ∅};24

if ∃ a clique with size k̂ in (V, E) then s.ψ ← True;25

end26

end27

end28

This part of the algorithm works as follows. Consider a state s ∈ S. As the
number of R̂-edge-disjoint evidences of θ which use at least one edge belonging
to R̂ is bounded by |R̂| itself, the number of the remaining evidences of θ (not
using edges of R̂) must be greater than k+1− |R̂| (otherwise (K, s) �|=R̂

ed E>kθ).
Thus the algorithm first determines a number k̂, lines 19-21, with the property
that: (K, s) |=R̂

ed E>kθ if and only if there are k̂ R̂-edge-disjoint evidences of θ
which use at least one edge belonging to R̂. Then the graph (V ,E), described in
lines 23 and 24, is computed, such that a vertex in V is a set of edges of R̂ which
occur in an evidence of θ in K and an edge in E connects two disjoint such sets.
Thus, (K, s) |=R̂

ed E>kθ iff in the graph (V , E) there is a clique of size k̂.
Let us evaluate the running time and the space required by the algorithm.

Since the set I described in line 19 is such that |I| ≤ |R̂|, the lines 19-21 can be
easily computed in time O(|R| · |R̂|) by using a simple variation of Algorithm 1.
Moreover, for a given subset T of R̂, the existence of an evidence of θ which uses
all the edges in T and possibly edges of R \ R̂, can be verified in time O(|R|),
while the set of edges outgoing from T can be computed in time O(2|R̂| · |R̂|);
therefore the graph (V , E) can be computed in time O(4|R̂| · |R|). Finally, the
existence of a clique of size k̂ ≤ |R̂| can be verified in time O(2|R̂|2).

The algorithm needs, to model-check a formula E>kθ in a state s ∈ S, space
O(4|R̂| · |R̂|) to store the graph (V , E) and space O(|R|) to calculate the path
needed to verify whether a non-empty subset T of R̂ is in V . Moreover, the
algorithm globally needs only 3 · |S| truth values for the sub-formulas (two for
the operands and one for the operator in each state). Therefore the space required
by the algorithm is O(4|R̂| · |R̂|+ |R|+ |ϕ|). ��
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In the extended version of the paper [FNP08] we show how to modify this algo-
rithm to fit in polynomial space.

5 Discussion

In this paper we have introduced the graded-CTL as a more expressive extension
of classical CTL. The results presented are in the model-checking setting with
specifications in this logic. We have investigated the complexities involved in
various scenarios, all from a theoretical perspective. One possible future direction
to work on, is to verify in practice whether an existing model-checker tool could
be augmented with these grading modalities, retaining the usual performances.
We believe that this framework could turn out to be useful also in the verification
of fault tolerant physical properties of networks.

As said in the introduction, in [KSV02] the satisfiability problem has been
studied for the graded μ-calculus obtaining the same complexity as for the non-
graded logic. We have investigated the problem in our setting of graded-CTL

(reported in the extended version [FNP08]) and have proved that it is ExpTime-
complete, when the values in the formula are represented in unary. An open
problem is hence to establish the complexity when the values are in binary.

Another theoretical aspect to investigate is also with respect to the Linear
Temporal Logic LTL. Also here this graded framework is a strict extension of
the standard logic, but, differently to what happens for graded CTL, a straight-
forward algorithm to solve the model-checking problem, seems here to involve
the values representing the graded modalities.

Finally let us mention a drawback of our setting. As said in the introduction
the generation of more than one counterexample is highly desirable, however the
analyze stage (of the realization process of a system) is critical also for the size
of the counterexamples and the poor human-readability of it.
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Abstract. Recently, genetic programming and model checkingwere com-
bined for synthesizing algorithms that satisfy a given specification [7,6].
In particular, we demonstrated this approach by developing a tool that
was able to rediscover the classical mutual exclusion algorithms [7] with
two or three global bits. In this paper we extend the capabilities of the
model checking-based genetic programming and the tool built to experi-
ment with this approach. In particular, we add qualitative requirements
involving locality of variables and checks, which are typical of realis-
tic mutual exclusion algorithms. The genetic process mimics the actual
development of mutual exclusion algorithms, by starting with an exist-
ing correct solution, which does not satisfy some performance require-
ments, and converging into a solution that satisfies these requirements.
We demonstrate this by presenting some nontrivial new mutual exclusion
algorithms, discovered with our tool.

1 Introduction

The development of correct code for concurrent systems can be quite challeng-
ing. Some tasks like achieving mutual exclusion, cache coherence, linearized ex-
ecutions or committing a database transactions, are quite intricate. Classical
software engineering methods do not seem to provide the right way of approach-
ing this kind of involved problems. Guaranteeing correctness for such programs
is also not trivial. Manual proof methods, for verifying the correctness of the
code against a given formal specification, were suggested in the late 60s [4,2].
The next step for achieving more reliable software was to offer an automatic
verification procedure, called model checking [1,17]. Automatic synthesizing of
protocols followed, although their complexity was shown to be rather high [16].

Genetic programming (GP) is an automatic program generation methodology.
A population of programs is randomly created, and evolves by a biologically in-
spired process. The fitness of each program is usually calculated by running the
program on some test cases, and evaluating its performance. Recently, John-
son [6] suggested using the model checking for providing the fitness function for
synthesizing a reactive system. In his approach, the fitness is simply based on the
number of properties that the generated program satisfies. In [7], we presented
an approach for genetic programming based on model checking, which involves a
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deeper analysis than standard model checking. This approach assigns a weight,
also called fitness, of 0 to 100 to each generated mutation, even if the program
does not fully satisfy all the specified properties. For example, there can be bad
executions of the program not satisfying some given property, but the program
may still subscribe to a weaker notion of correctness, e.g., each prefix of a bad
execution can be completed into a good one.

The method presented in [7] was demonstrated using a tool for the automatic
generation of concurrent programs, with examples from mutual exclusion. The
solutions generated by our tool were discovered quite quickly and efficiently.
However, the experiments in that paper were limited to mutual exclusion based
on up to three global bits. Inspired by [20], we observed that, in fact, mutual
exclusion algorithms are, in practice, being developed manually in a way that
is reminiscent of the genetic programming process. Namely, one combines or
modifies existing algorithms that do not completely satisfy the specification, or
are less efficient according to some given criterion, into a better solution. This
helps in understanding the success of this approach: progressing from one version
to another, while improving or optimizing various aspects of the code, rather
than concentrating on finding directly a perfect solution. Thus, to some extent,
genetic programming serves as a heuristic search in the domain of syntactically
matching programs, based on a ranking that is provided by a model checking
analysis.

In this work, we continue the work reported in [7] by performing several
changes and extensions. We are still focusing on the generation of mutual exclu-
sion algorithms, although are now aiming at finding more realistic ones, which
satisfy various additional criteria than the classical ones. First, we modify the
weights given to mutations generated by the genetic programming according to
some qualitative properties, e.g., that processes will be able to wait only on their
own variables (i.e., local-spinning, see [19]). This means that instead of always
starting the genetic process with a set of randomly generated mutations, we ap-
ply the model checking-based genetic programming to solutions of the mutual
exclusion that are correct according to the temporal specification, but score low
with respect to the quality requirements.

In addition, we adopt here the use of specification formalism that is a sub-
set of the logic EmCTL∗, presented in [14]. This formalism allows refining the
results of model checking from the traditional yes/no and counterexample para-
digm. Even if a program does not satisfy its specification formalism, we can still
attach some positive score to it based on such formulas. The model checking al-
gorithm in [14] is based on Büchi automata (an alternative algorithm, based on
alternating automata can be found in [12]), and can replace the various ad-hoc
algorithms presented in [7] for the different level of correctness by a uniform al-
gorithm. Moreover, this logic allows us to easily and naturally add further levels
of correctness, refining the fitness score assigned to candidate solutions during
the genetic process.

Finally, we demonstrate our revised and improved tool by presenting some
newly generated algorithms for mutual exclusion that, as far as we are aware,
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were not published before. These new solutions provide some small improve-
ments over existing algorithms, demonstrating the ability of our method to effec-
tively and efficiently generating code for this intricate concurrency management
problem.

2 Related Work

2.1 Genetic Programming

Genetic Programming [10] (GP) is a method of automatic synthesis of computer
programs by an evolutionary process. An initial population of candidate solutions
is randomly generated and gradually improved by various biologically inspired
operations.

The GP algorithm we use in this work progresses through the following steps:
We first create an initial population of candidate solutions. Then we choose
randomly a subset of μ candidates. We create new (more than μ) candidates by
applying mutation (and optionally crossover, as explained below) to the above
μ candidates. The fitness function for each of the new candidates is calculated,
and μ individuals from the obtained set are selected proportionally to their
fitness (see [5]). The selected individuals then replace the old candidates. This
is repeated until a perfect candidate is found, or until the maximal permitted
number of iterations is reached.

The programs are represented as trees where each instruction or expression is
represented by an internal node having its parameters as its children. Strongly-
typed GP [13] is used, which means that every node has a type, which also
enforces the type of its offspring.

While traditional GP is heavily based on the crossover operation, i.e., the
combination of two mutations of the code into one, it is currently quite contro-
versial, especially in the case of small and sensitive programs that we investigate.
Thus, crossover is not used in our work. Instead, the main operation we use is
mutation. This includes randomly choosing a node (leaf or terminal) from the
program tree and changing the node by one of the following operations: replac-
ing the node subtree by a new randomly generated subtree, deleting the subtree
rooted by the node, adding an immediate parent to the node, or removing the
immediate parent of the node. The strong typing we apply directs each one of
these changes to be accompanied by an appropriate correction of the tree struc-
ture. For example, if we add a new node above an existing one, we may need
to complete some other children to this new node, according to the type of the
added node.

Fitness is used by GP in order to choose which mutations have a higher
probability to survive and participate in the genetic operations. The successful
termination of the genetic algorithm is based on the fitness value of the most
fitted individual. Traditionally, the fitness function is calculated by running the
program on some typical test suite. Johnsson [6] suggested to replace the use of
a test suite for fitness calculation by the more comprehensive model checking,
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providing fitness that is directly proportional to the number of satisfied prop-
erties. However, traditional model checking results provide a discrete ranking
paradigm, whereas genetic programming is based on the ability to identify levels
of success. Instead, in [7], we presented an approach for model checking that
allowed identifying progress in the generated code even if some of the properties
were only partially satisfied.

2.2 Model Checking

Model checking is an algorithmic approach for checking the correctness of a pro-
gram or an electronic circuit against a formal specification. For the algorithms
we would like to develop with our approach, we use linear specification, i.e., a
specification that requires that all the execution satisfy some given properties,
written in our selected formalism, which is Linear Temporal Logic (LTL). Other
formalisms can assert about the branching structure that involves all the execu-
tions, observing the splitting points where executions start to differ from each
other.

The syntax of LTL is defined over a finite set of propositions P , with typical
element p ∈ P , as follows:

μ ::= true|p | μ ∨ μ | ¬μ |Xμ | μ U μ (1)

Let M be a finite structure (S, {s0}, E,P , L) with states S, an initial state,
s0 ∈ S, edges E ⊆ S × S, a set of propositions P , and a labeling function
L : S �→ 2P . For simplicity, we assume that each state in S has a successor. This
can be forced by adding to each state without successors a self loop, marked with
a special symbol ε. A path in S is a finite or infinite sequence 〈g0g1g2 . . .〉, where
g0 ∈ S and for each i ≥ 0, giEgi+1. An execution is an infinite path, starting with
g0 = s0. Sometimes executions are further restricted to satisfy various fairness
assumptions.

We denote the ith state of a path π by πi, the suffix of π from the ith state
by πi and the prefix of π up to the ith state by π̂i. The concatenation of two
paths ρ and π, where the last state of ρ is the same as first state of π, is denoted
by ρ � π. Note that 〈π0〉� π = π, and that ρ � 〈s〉 = ρ, where s is necessarily
the last state of ρ.

The LTL semantics is defined for a suffix of an execution π of M as follows:

π |= true.
π |= p if p ∈ L(π0).
π |= μ1 ∨ μ2 if either π |= μ1 or π |= μ2.
π |= ¬μ if it is not the case that π |= μ.
π |= Xμ if π1 |= μ.
π |= μUη if there exists some i such that πi |= η and for each 0 ≤ j < i, πj |= μ.

We say that a structure M (or the corresponding program that is modeled as
M) satisfies μ if for each execution π of μ, π |= μ. We use the logical connections
to define additional temporal operators, e.g., μ1 → μ2 = (¬μ1) ∨ μ2, μ1 ∧ μ2 =
¬((¬μ1) ∨ (¬μ2)), �μ = trueUμ, �μ = ¬�¬μ, etc.
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Model checking can be conducted as follows: the negation of the checked
property μ is translated into an automaton (see e.g., [3]). This is a Büchi au-
tomaton, i.e., an automaton over infinite words, which has a similar structure
to an automaton over finite words. Then this automaton is intersected with the
structure M . Any common execution is an execution that does not satisfy the
checked property, hence a counterexample.

3 Model Checking-Based Genetic Programming

Our program synthesizing approach is based on genetic programming that uses
analysis related to model checking for providing a scoring system (fitness) for
the generated mutations. As opposed to classical model checking, we are not
satisfied with a pass/failed answer. In order to direct the search towards an
appropriate solution, a less discrete scoring system is required, one which allows
using mutations that are not perfectly correct. Thus, the scoring system is based
on the following ideas:

1. A mutation candidate may satisfy some properties but not the others. Keep-
ing it may improve the missing properties, albeit also ruin the satisfied prop-
erties. In [20], it is shown how the classical Peterson’s mutual exclusion al-
gorithm is combined from two solutions that solve part of the specification
each. This combination is similar to the result of the crossover operation in
genetic programming.

One needs to carefully select the way to weight different properties. For
example, one natural approach is to make the safety properties more basic
hence more dominating in the overall score than liveness.

2. Properties presented here have a universal flavor: a program satisfies a prop-
erty if all of its executions satisfy it. One can relax this criterion; weaker
notions of satisfactions can be considered. For example, although there are
some executions that do not satisfy the given property, they can be completed
into executions that satisfy it. One can define a hierarchy of satisfiability of
properties by a program. In particular, programs with no good executions
that satisfy a given property μ are ranked lowest, programs with both good
and bad executions are ranked higher than that, while programs where all
the executions satisfy μ are ranked even higher.

3. In addition to the correctness criteria required by the programming problem,
there can be some quality criteria. This can involve the size of the program,
and limitations on the number of access to variables (e.g., number of accesses
before entering a critical section), as will be demonstrated later.

4 A Uniform Formalism for Relaxed Satisfaction of LTL
Properties

In constructing the fitness function, we promote programs that are less than
perfect to the next stage of the search. This means that in addition to promoting
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programs that satisfy part of the specification properties, we also relax the re-
quirement that all the executions of the program need to satisfy the given LTL
specification.

4.1 The Logic EmCTL

In [7] we introduced model checking algorithms that extend the usual LTL model
checking approach; they were used to provide an analysis for situations where
not all the executions satisfy a given property, but do not seem completely
hopeless. We defined several such criteria, and provided some ad-hoc algorithms
for each one of them. These algorithms were based on translating the checked
property to a deterministic Streett automaton and taking the product with the
checked system M . Then a slightly different analysis, one for each criterion, was
applied, based on the the strongly connected components of the product and the
connection between them.

We use here LTL specification μ to provide the base specification, where cor-
rectness means that all the executions satisfy μ. We observe that even when
the system does not satisfy this correctness criterion, it may have both execu-
tions that satisfy and that do not satisfy this property. Thus, we can embed μ
in an analysis specification, which observes the branching structure of M . The
logic EmCTL∗ presented in [14], allows us to embed the LTL property inside a
branching formula. It can distinguish the branching points where the execution
splits into two branches, such that, together with the prefix so far, one satisfies
μ and another satisfies ¬μ.

The subset of EmCTL∗ that we use, and call simply EmCTL, has state for-
mulas of the form:

ϕ ::= true| ϕ ∨ ϕ | ¬ϕ |∃μψ

with μ an LTL formula, and path formulas of the form

ψ ::= ψ ∨ ψ| ¬ψ�ϕ

Note that these formulas do not contain any propositional variables, nor the
until (U) modality.

The semantics given for an EmCTL state formula is of the form M,ρ, s |= ψ,
where ρ is a finite prefix of an execution in M , leading to (i.e., ending with) the
state s. The semantics given for a path formula ψ is of the form M,ρ, π |= ψ,
where ρ is again a finite prefix of an execution of M , leading up to a state from
which an infinite path π of M starts (thus, ρ � π is an infinite execution of M).
A path subformula ψ is then evaluated in M,ρ, π |= ψ according to the path π.

Intuitively, in the semantic definition of M,ρ, s |= ψ and, similarly, in the
definition of M,ρ, π |= ψ, we keep the path so far ρ, so that we can assert
whether the base property holds from the beginning of the execution or not. As
we progress with the temporal operators in time over some finite fragment of a
path, this fragment is appended to ρ and removed from π. We can use the ∃μ

operator to assert about the existence of a path π, such that, together with the
prefix ρ, forms an execution ρ � π satisfying the base property μ. Similarly, we
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can use ∃¬μ to assert about the existence of such a path that together with the
prefix ρ does not satisfy μ. The formal semantics is given as follows.

M,ρ, s |= true.
M,ρ, s |= ϕ1 ∨ ϕ2 if either M,ρ, s |= ϕ1 or M,ρ, s |= ϕ2.
M,ρ, s |= ¬ϕ if it is not the case that M,ρ, s |= ϕ.
M,ρ, s |= ∃μψ if there exists a path π of M such that π0 = s and M,ρ, π |= ψ,
and furthermore, ρ � π |= μ in LTL.
M,ρ, π |= ψ1 ∨ ψ2 if either M,ρ, π |= ψ1 or M,ρ, π |= ψ2.
M,ρ, π |= ¬ψ if it is not the case that M,ρ, π |= ψ.
M,ρ, π |= �ϕ if there exists some i such that M,ρ � π̂i, si |= ϕ.

Other operators can be obtained using equivalences, e.g., false = ¬true, ψ1 ∧
ψ2 = ¬((¬ψ1) ∨ (¬ψ2)), ψ1 → ψ2 = (¬ψ1) ∨ ψ2, ∀μψ = ¬∃μ¬ψ, �ψ = ¬�¬ψ.

Our choice to eliminate the propositions from the logic EmCTL is based on
our goal to keep the requirement on the desired program entirely in the base
specification μ. The analysis specification only allows us to evaluate to what
extent the program satisfies μ, providing different levels of satisfaction of μ. The
elimination of the until operator U (which still exists in the base specification)
is for simplicity, and a matter of taste: we could not find a single useful (for our
purposes) analysis specification that requires U .

Examples for Relaxed LTL Satisfaction
Given an LTL property μ, we can express several EmCTL properties that are
based on μ. These properties represent several levels of satisfaction of μ.

1. ¬∃¬μtrue. There are no bad executions, i.e., executions that do not satisfy
the property μ (hence satisfies ¬μ). Equivalently, we can write ∀¬μfalse .
This is the perfect (i.e., strongest) requirement from μ, and the standard
interpretation for a program to satisfy the LTL specification μ (as defined
above).

2. ∀¬ϕ�∃ϕtrue. For each prefix of a bad execution of the program there is a
completion into a good execution of the program. This means that a bad
execution is a result of an infinite number of bad scheduling choices.

3. ∃¬μ�¬∃μtrue. There exists an execution such that from some point all the
continuations are bad. This means that the program can reach a point where
whatever choice is made, the LTL property μ will not be satisfied.

4. ∃μtrue. There is a good execution (although there can also be bad ones).
This is the minimal requirement we can write in EmCTL for μ.

5. ∃μtrue ∧ ∃¬μtrue There is a good execution, as well as a bad one.
6. ¬∃μtrue. There is not a good execution.

4.2 Model Checking and Complexity

A model checking algorithm for the logic EmCTL∗ was given in [14]. The main
principle is that one needs to translate the property μ (and ¬μ, depending which
appear in the formula) into a Büchi automaton. Then one needs to perform a
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subset construction, so that for every prefix of the execution it is known in which
states, the (in general nondeterministic) automaton can be. This allows, depend-
ing on the path quantifier ∃μ or ∃¬μ, to check whether the current execution can
satisfy, in addition to the current subformula, also the property μ or ¬μ, from
the beginning of the execution. An alternative model checking procedure, based
on alternating tree automata appears in [12].

This algorithm can replace the ad-hoc algorithms that were given in [7]. These
were based on translating the formula μ into a deterministic Streett automaton,
and checking for several cases of strongly connected components of the inter-
section product with the system automaton M . In both cases, the complexity
is in PSPACE in the size of a standard representation of the system M (given
as a collection of processes), and EXSPACE in the size of the property μ. This
makes the complexity exponentially worst than model checking in the size of μ;
but it is still the same in the size of the checked system M , which is usually
the dominant factor here. The lower bound for the related logic mCTL∗ in [12]
is also the lower bound for EmCTL: the lower bound was shown there for a
property that can be expressed in EmCTL as ∀¬μ�∃μtrue.

As for the emptiness of EmCTL properties: one can use the translation from
EmCTL∗ into mCTL∗, shown in [14], then apply the mCTL∗ emptiness proce-
dure in [12], which is in 2EXPTIME.

5 New Principles for Model Checking-Based Genetic
Programming

In this section we will describe the new principles that we implemented for the
genetic programming using model checking. With each principle, we present a
new solution to the mutual exclusion algorithm.

All of the generated algorithms should comply with the following structure:

Non Critical Section

Pre Protocol

Critical Section

Post Protocol

The goal of the evolutionary algorithm is to generate the Pre Protocol and
Post Protocol parts, while the other parts are fixed. Each one of the solutions
has two processes 0 and 1, where for each process, the constant me denotes the
process number and the constant other denotes the other process number. Hence
me+other= 1.

Table 1 describes the requirements from the generated algorithms. All of the
properties are expressed in LTL, except the last one which involves a special
algorithm described below. The four program parts are denoted NonCS, Pre, CS
and Post respectively. The proposition remote writing refers to transitions on
which a process modifies bits that are not assigned to it.

The fitness values for each generated algorithm are based on EmCTL formulae
(see section 4.1), and are depicted on table 2. In addition, a secondary measure
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Table 1. Mutual Exclusion Specification

No. Definition Description

1 �¬(p0 in CS ∧ p1 in CS) Mutual Exclusion

2,3 �(pme in Post → �(pme in NonCS)) Progress

4,5 �(pme in Pre ∧ �(pother in NonCS)) → �(pme in CS)) No Contest

6 �((p0 in Pre ∧ p1 in Pre) → �(p0 in CS ∨ p1 in CS)) Deadlock Freedom

7,8 �(pme in Pre → �(pme in CS)) Starvation Freedom

9 �¬(remote writing) Single-Writer

10 Bounded number of remote operations Local-Spinning

Table 2. EmCTL Properties, and Fitness Values

emCTL property Fitness value Description

¬∃μtrue 0 All executions are bad

∃¬μ�¬∃μtrue 1 There is a bad execution that cannot be
completed into a good one

∀¬ϕ�∃ϕtrue 2 Every prefix of a bad execution can be
completed into a good one

¬∃¬μtrue 3 All executions are good

gives fitness values to programs in inverse proportion to their size. This measure
encourages the creation of shorter algorithms.

In all of the following algorithms, we start the search with an existing algo-
rithm, such as the classical Peterson algorithm [15]:

Non Critical Section

A[me] = 1

turn = me

While (A[other] == 1 and turn == me);

Critical Section

A[me] = 0

5.1 Allowing Asymmetry

Inspired by algorithms of Kessels [8] and Tsay [20], the first step was to allow
a minor asymmetry between the two processes. This is done by defining the
asymmetric not operators not0 and not1, which act only on one of the processes.
Thus, for process 0, not0 (x) = ¬x while for process 1, not0 (x) = x. This is
reversed for not1 (x), which negates its bit operand x only in process 1, and is
idempotent on process 0. Using these operators allows us to keep the same syn-
tactic structure for the two-processes algorithms, while allowing them to behave
in an asymmetric way.

For the first test, we used a similar configuration as in our previous paper [7],
i.e., three shared bits A[0], A[1] and A[2], and allowing the constructs if, while,
and assignment. The specification included properties 1-8 from table 1. The tool
found two algorithms which may be considered simpler than Peterson’s. The
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first one has only one condition on the while loop, although a more complicated
atomic comparison between two bits. Note that the variable turn is in fact A[2]
and is renamed here turn to accord with classical presentation of the extra global
bit that does not belong to a specific process.

Non Critical Section

A[me] = 1

turn = me

While (A[other] != not1(turn));

Critical Section

A[me] = 0

When translating this algorithm to a process-dependent syntax, we get the
following asymmetric algorithm:

Process 0 Process 1

--------- ---------

Non Critical Section Non Critical Section

A[0] = 1 A[1] = 1

turn = 0 turn = 1

While (A[1] != turn); While (A[0] == turn);

Critical Section Critical Section

A[0] = 0 A[1] = 0

The second algorithm discovered the idea of setting the turn bit one more
time after leaving the critical section. This allows the while condition to be
even simpler. Tsay [20] used a similar refinement, but his algorithm needs an
additional if statement, which is not needed in our algorithm.

Non Critical Section

A[me] = 1

turn = not0(A[other])

While (turn != me);

Critical Section

A[me] = 0

turn = other

5.2 Adding New ‘Qualitative’ Constraints

Classical algorithms, such as Peterson’s, do not take into account the additional
overhead in waiting on a variable that belongs to the memory of another process,
and thus do not satisfy local-spinning [19]. Here, we added a negative weight for
such remote accesses. In fact, we can calculate the number of accesses, and by
giving negative weights to such accesses, promote solutions that provide the least
such number.

Calculating the Maximal Number of Non-Local Accesses. In order to cal-
culate the number of non-local accesses, we can apply the following algorithm.
First, we mark edges that correspond to transitions with access to non-local vari-
ables on the state graph M . Now, we calculate the strongly connected compo-
nents of the graph, using Tarjan’s classical algorithm [18]. If there is a strongly
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connected component that contains a marked edge and is reachable from the ini-
tial state, then the number of such accesses is unbounded, since we can generate
a path that would go though the marked edge as many times as we want. Other-
wise, we shrink each such strongly connected component into a single node (any
path through it does not contribute any remote accesses, so it is unimportant to
the analysis). The result is then a DAG (directed acyclic graph).

Now, we perform a depth first search, calculating for each node the number of
maximal number of accesses from it to a leaf node (a node without successors).
For a leaf node, the number of accesses is 0. For each node s that appeared in
the search, we keep some value a(s), which is the maximal number of accesses
to a leaf node found so far. When we first reach s in the search, we set a(s) to
0. When we backtrack in the DFS over an edge s→ t back to s we update a(s)
as follows:

If s → t is marked as non-local access, then a(s) := max(a(s), a(t) + 1).

Otherwise, a(s) := max(a(s), a(t)).

It is easy to see that during the execution the following invariant holds: upon
backtracking from a node s, a(s) contains the maximal number of accesses to a
leaf node is maintained, until the end of the execution of the algorithm.

In order to apply the above algorithm for the case of mutual exclusion algo-
rithm, observe that for a correct solution, the program consists of one strongly
connected component. Thus, we need first to break the code and apply the above
algorithm separately, first to the pre-protocol, representing the attempt to enter
the critical section, and then to the post-protocol, immediately following the exit
from the critical section. Then, we sum up the result of applying the algorithm
to the two parts.

5.3 Applying the New Constraints

In the next attempts we tried to automatically generate more sophisticated mu-
tual exclusion algorithms by adding new constrains. The configuration was ex-
tended into four shared bits (denoted by the two-bit vectors A and B), and two
private bits (one for each process) denoted by the array T .

The first requirement was that each process can change only its 2 local bits,
but can read all of the 4 shared bits (each process can also read from, and write
to its private bit). The new “single-writer” constraint was specified as a safety
property on the transitions, verifying that no process writes to the bits of the
other process (property 9 at table 1). This yielded the following algorithm.

Non Critical Section

A[me] = 1

B[me] = not1(B[other])

While (A[other] == 1 and B[0] == not1(B[1]));

Critical Section

A[me] = 0
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As can be seen, the genetic algorithm has discovered the idea of using two
bits as the “turn” flag, where each process changes only its bit B[me] to set
its turn, but compares both B[0] and B[1] on the while loop (and thus requires
unbounded number of remote read operations). Our next goal was to avoid such
unbounded remote operations by allowing busy waiting only on local bits (i.e.,
requiring local-spinning only). The requirement was implemented by the strongly
connected components analysis described earlier. One of the results was:

Non Critical Section

A[other] = 1

B[0] = other

B[1] = B[0]

While (A[me] != 0 and B[me] != me);

Critical Section

A[other] = 0

This time, the while loop involves only local bits, but in order to set the turn,
both processes have to write to the same bits (B[0] and B[1]).

At the final step, both “single-writer” and “local-spinning” were required
(requirements 9 and 10 at table 1). Note that this time requirement 9 is slightly
changed, so each process can modify only the bits of the other process. As a
result, the following algorithm (similar to Kessels’) was generated:

Non Critical Section

A[other] = 1

B[other] = not1(B[0])

T[me] = not1(B[other])

While (A[me] == 1 and B[me] == T[me]);

Critical Section

A[other] = 0

This algorithm also adds the idea of copying one of the turn bits into a private
variable T[me], thus allowing the two requirements to co-exist.

One of the ideas suggested by [20] (and found by our tool, as shown above), is
to add a redundant assignment of the turn flag after leaving the critical section.
When trying to evolve this idea into the more advanced two-bits-turn, a problem
arises. A single evolutionary step should cause the same complicated change to
the two identical turn assignments at different parts of the program. While this
can theoretically happen by a very rare mutation, a better solution would be to
allow the reuse of the same code at multiple program places.

Biological evolution has found the idea of reuse (e.g., the symmetry in the
bodies of many living organisms), and it can be adopted in genetic program-
ming as well. While the basic tree structure we use does not allow the reuse
of subroutines, it can be extended by a mechanism known as “Automatically
Defined Functions” or ADFs (see [11]). In this configuration, both the main
program and one or more independent functions (or macros) are evolved simul-
taneously, and by extending the building blocks available to the main program,
it can make calls to these evolved functions.
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5.4 Tests Summary

All of the tests were performed using an improved version of the tool described at
[7], and were running on an Intel Xeon 2.8GHz based server. Each test started from
a previously known algorithm, while adding new constraints and building blocks.
For each run, The termination criterion was 1300 successive iterations without
any improvement in the program’s fitness. Table 3 summaries the various tests.

Table 3. Test results

Starting from Requirements Generated algorithms Successful
runs (%)

Avg. run dur-
taion (sec)

Peterson 1-8 Standard, but asymmetric 100 133

Peterson 1-9 Single-writer 0.4 472

Peterson 1-8, 10 Local-spinning 26 651

Single-writer 1-10 Local-spinning and single-writer 34 830

6 Conclusions

We explored the ability to combine genetic programming and model checking. In
particular, we focused on the generation of correct and realistic mutual exclusion
algorithms.

While developing the tool and experimenting with it, we obtained several
observations. The first one is that one can apply the genetic programming ap-
proach in an incremental way: first obtain some simple solutions, perhaps start-
ing with a known one that does not satisfy some quality requirements. Then
change the scoring system such that the existing solution will be ranked lower
because of not satisfying some giving criteria, in an attempt to make the ge-
netic process progress towards a better solution. Such a process is semi-manual,
since one needs to constantly adapt the ranking system. One can then combine
the genetic process as a tiered program evolution, combining different results of
previous stages via the genetic process into a better solution.

This observation suggests that the ranking system should be open for the user
with facilities to help changing the ranking, as well as the given specification.
Another related feature allows combining the genetic programming results in
levels, where in each level we obtain a program satisfying somewhat different
goals (and where lower levels satisfy less requirements).

In the experiments we performed, we actually added verification procedures
‘by need’. Thus, we modified the system to allow additional constructs, and
sometimes were required to program a new algorithm for modifying the ranking
system. Thus, we, as the users (apart from being the developers) of the tool, inter-
vened in the genetic programming process and modified it according to a growing
number of requirements. Although once added, these constructs become a part of
the tool, it is only foreseen that new constructs will be needed and added in the
future. We view this manual ‘intervention’ as part of the genetic programming
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process; rather than having a closed tool, we suggested a methodology for gener-
ating new, more involved and complicated, programs.

Indeed, some of the adaptations of the tool where specific for the prob-
lem of finding new mutual exclusion algorithms. For example, the algorithm in
Section 5.2 makes sense for the mutual exclusion problem, and augments the
model checking procedure suggested. Moreover, it is applied separately, to the
pre-protocol and to the post-protocol, before summing up the results. This kind
of consideration and this particular calculation of the fitness function that worked
well for the mutual exclusion problem would be meaningless for some other pro-
gramming problems. Nevertheless, this methodology allowed us to successfully
find new solutions for the mutual exclusion problem (in this case). We believe
that the ‘litmus test’ for the success of this approach is that, without being ex-
perts on mutual exclusion algorithms, we did discover several new interesting
algorithms.

Finally, we can describe the genetic search process used here as a random
heuristic search: one starts with some solution which is not optimal (or can be
random), makes some small random changes around it, and use model checking
as a heuristic goal function to steer the search in the right direction. This is
also related to simulated annealing [9]; this can be described in metallurgy as
generating some “heat” around initial and intermediate results to force small
changes, and making some controlled “cooling” towards the required solution.
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Inria Rhône-Alpes, 655 Av. de l’Europe, F-38330 Montbonnot St Martin, France

2
Inesc-Id/Ist, Rua Alves Redol 9, 1000-029 Lisboa, Portugal

{Radu.Mateescu,Pedro.Monteiro,Estelle.Dumas,Hidde.de-Jong}@inrialpes.fr

Abstract. Model checking has proven to be a useful analysis technique
not only for concurrent systems, but also for the genetic regulatory net-
works (Grns) that govern the functioning of living cells. The applications
of model checking in systems biology have revealed that temporal logics
should be able to capture both branching-time and fairness properties. At
the same time, they should have a user-friendly syntax easy to employ by
non-experts. In this paper, we define Ctrl (Computation Tree Regular
Logic), an extension of Ctl with regular expressions and fairness opera-
tors that attempts to match these criteria. Ctrl subsumes both Ctl and
Ltl, and has a reduced set of temporal operators indexed by regular ex-
pressions, inspired from the modalities of Pdl (Propositional Dynamic
Logic). We also develop a translation of Ctrl into HmlR (Hennessy-
Milner Logic with Recursion), an equational variant of the modal μ-
calculus. This has allowed us to obtain an on-the-fly model checker with
diagnostic for Ctrl by directly reusing the verification technology avail-
able in the Cadp toolbox. We illustrate the application of the Ctrl

model checker by analyzing the Grn controlling the carbon starvation
response of Escherichia coli.

1 Introduction

Explicit state verification has been mostly applied to the analysis of concurrent
systems in engineering. Recently, however, biological regulatory networks have
been recognized as special cases of concurrent systems as well, which has opened
the way for the application of formal verification technology in the emerging
field of systems biology (see [1,2] for reviews). The networks controlling cellular
functions consist of genes, proteins, small molecules, and their mutual interac-
tions. Most of these networks are large and complex, thus defying our capacity
to understand how the dynamic behavior of the cell emerges from the structure
of interactions. A large number of mathematical formalisms have been proposed
to describe these networks [3], giving rise to models that can be directly or
indirectly mapped to Kripke structures.

The representation of the dynamics of biological regulatory networks by means
of Kripke structures enables the application of formal verification techniques to
the analysis of properties of the networks, formulated as queries in temporal logic.
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Several applications of model checking exists in the bioinformatics and systems
biology literature [4,5,6,7,8,9,10]. In our previous work [11,6], we have developed
Gna (Genetic Network Analyzer), a tool for the qualitative simulation of genetic
regulatory networks, and connected it to state-of-the-art model checkers like
NuSmv [12] and Cadp [13].

The application to actual biological systems brought a few properties of the
network dynamics to the fore that are not easily expressed in classical temporal
logics. For instance, questions about multistability are important in the analysis
of biological regulatory networks [14], but difficult (or impossible) to express in
Ltl [15]. Ctl [16] is capable of dealing with branching time, important for mul-
tistability and other properties of non-deterministic models. However, it is not
expressive enough to specify the occurrence of oscillations of indefinite length,
a special kind of fairness property [6]. An obvious solution would be to consider
Ctl

∗ [17] or the propositional μ-calculus [18], both of which subsume Ctl and
Ltl; however, these powerful branching-time logics are complex to understand
and use by non-experts. More generally, it is not easy to express observations
in temporal logic. Often these take the form of patterns of events corresponding
to variations of system variables (protein concentrations, their derivatives, etc.)
measured by experiments in the lab, which can be compared with the model
predictions and thus help validate the model. Observations are conveniently and
concisely formulated in terms of regular expressions, but these are not provided
by standard temporal logics such as Ctl and Ltl.

In this paper, we aim at providing a temporal specification language that al-
lows expressing properties of biological interest and strikes a suitable compromise
between expressive power, user-friendliness, and complexity of model checking.
Towards this objective, we propose a specification language named Ctrl (Com-
putation Tree Regular Logic), which extends Ctl with regular expressions and
fairness operators. Ctrl is more expressive than previous extensions of Ctl

with regular expressions, such as Rctl [19] and RegCtl [20], whilst having
a simpler syntax due to a different choice of primitive temporal operators, in-
spired from dynamic logics like Pdl [21]. Ctrl also subsumes Ctl, Ltl, and
Pdl-Δ [22] allowing in particular the concise expression of bistability and oscilla-
tion properties. Although Ctrl was primarily designed for describing properties
of regulatory networks in system biology, it also enables a succinct formulation
of typical safety, liveness, and fairness properties useful for the verification of
concurrent systems in other domains.

As regards the evaluation of Ctrl formulas on Kripke structures, we adopt as
verification engine Cadp [13], a state-of-the-art verification toolbox for concur-
rent asynchronous systems that provides, among other functionalities, on-the-
fly model checking and diagnostic generation for μ-calculus formulas on labeled
transition systems (Ltss). In order to reuse this technology, we have to move from
the state-based setting (Ctrl and Kripke structures) to the action-based setting
(μ-calculus and Ltss). The translation from Kripke structures to Ltss is done
in the standard way [16]. The translation from Ctrl to an action-based logic is
carried out by considering as target language HmlR (Hml with recursion) [23].
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The equational representation of HmlR is closer to the boolean equation sys-
tems (Bess) used as intermediate formalism by the verification engine, namely
the Cæsar Solve [24] generic library for local Bes resolution.

The Ctrl model checking procedure obtained in this way has a linear-time
complexity w.r.t. the size of the formula and the Kripke structure for a sig-
nificant part of the logic. This part notably subsumes Pdl-Δ and allows the
multistability and oscillation properties to be captured. The inevitability oper-
ator of Ctrl and its infinitary version (inevitable looping) has an exponential
worst-case complexity w.r.t. the size of its regular subformula; this complexity
becomes linear, however, when the regular subformula is “deterministic” in a
way similar to finite automata. In practice, the usage of Ctrl and the model
checker reveals that properties of biological interest can be expressed and verified
efficiently. We illustrate this on the analysis of a model of the genetic regulatory
network (Grn) controlling the carbon starvation response of E. coli.

The paper is organized as follows. Section 2 defines the syntax and semantics of
Ctrl and Section 3 presents the on-the-fly model checking procedure. Section 4
discusses the implementation of the Ctrl model checker and applies it to the
example of E. coli. Section 5 summarizes the results and provides directions for
future work. A more extensive description of Ctrl, including formal definitions
and proofs, is available in [25].

2 Syntax and Semantics of CTRL

Ctrl is interpreted on Kripke structures (Kss), which provide a natural formal
description of concurrent systems, including biological regulatory networks. A
Ks is a tuple K = 〈S, P, L, T, s0〉, where: S is the set of states; P is a set of atomic
propositions (predicates over states); L : S → 2P is the state labeling (each state
s is associated with the atomic propositions satisfied by s); T ⊆ S × S is the
transition relation; and s0 ∈ S is the initial state. Transitions (s1, s2) ∈ T are
also noted s1 →T s2 (the subscript T is omitted if it is clear from the context).
The transition relation T is assumed to be total, i.e., for each state s1 ∈ S, there
exists a transition s1 →T s2. A path π = s0s1 . . . sk . . . is an infinite sequence
of states such that si →T si+1 for every i ≥ 0. The i-th state of a path π is
noted πi. The interval going from the i-th state of a path π to the j-th state of
π inclusively (where i ≤ j) is noted πi,j . An interval π0,i is called prefix of π.
For each state s ∈ S, Path(s) denotes the set of all paths going out of s, i.e.,
the paths π such that π0 = s. In the sequel, we assume the existence of a Ks

K = 〈S, P, L, T, s0〉, on which all formulas will be interpreted.
The syntax and semantics of Ctrl are defined in the figure below. The logic

contains state formulas ϕ and regular formulas ρ, which characterize properties
of states and intervals, respectively. State formulas are built from atomic propo-
sitions p ∈ P by using standard boolean operators and the EF, AF, EF∞, AF∞

temporal operators indexed by regular formulas ρ. Regular formulas are built
from state formulas by using standard regular expression operators.
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The interpretation [[ϕ]]K of a state formula denotes the set of states of K that
satisfy ϕ. The interpretation of regular formulas is defined by the satisfaction
relation |=K , which indicates whether an interval πi,j of a path in K satisfies a
regular formula ρ (notation πi,j |=K ρ). The notation ρj (where j ≥ 0) stands
for the concatenation ρ . . . ρ, where ρ occurs j times. The semantics of boolean
operators is defined in the standard way. A state satisfies the potentiality formula
EFρϕ iff it has an outgoing path containing a prefix satisfying ρ and leading to
a state satisfying ϕ. A state satisfies the inevitability formula AFρϕ iff all of
its outgoing paths contain a prefix satisfying ρ and lead to a state satisfying ϕ.
A state satisfies the potential looping formula EF∞

ρ iff it has an outgoing path
consisting of an infinite concatenation of intervals satisfying ρ. A state satisfies
the inevitable looping formula AF∞

ρ iff all of its outgoing paths consist of an
infinite concatenation of intervals satisfying ρ. An interval satisfies the one-step
interval formula ϕ iff it consists of two states, the first of which satisfies ϕ. An
interval satisfies the concatenation formula ρ1.ρ2 if it is the concatenation of
two subintervals, the first one satisfying ρ1 and the second one satisfying ρ2.
An interval satisfies the choice formula ρ1|ρ2 iff it satisfies either ρ1, or ρ2. An
interval satisfies the iteration formula ρ∗ iff it is the concatenation of (0 or more)
subintervals satisfying ρ. By definition, an empty interval πi,i satisfies ρ0 for any
regular formula ρ. K satisfies ϕ (notation K |= ϕ) iff s0 ∈ [[ϕ]]K .

Syntax

State formulas:
ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | EFρϕ | AFρϕ | EF∞

ρ | AF∞
ρ

Regular formulas:
ρ ::= ϕ | ρ1.ρ2 | ρ1|ρ2 | ρ∗

Semantics

State formulas:
[[p]]K = {s ∈ S | p ∈ L(s)}

[[¬ϕ]]K = S \ [[ϕ]]K
[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[EFρϕ]]K = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[AFρϕ]]K = {s ∈ S | ∀π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[EF∞

ρ ]]K = {s ∈ S | ∃π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
[[AF∞

ρ ]]K = {s ∈ S | ∀π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}

Regular formulas:
πi,j |=K ϕ iff j = i + 1 ∧ πi ∈ [[ϕ]]K
πi,j |=K ρ1.ρ2 iff ∃k ∈ [i, j].πi,k |=K ρ1 ∧ πk,j |=K ρ2

πi,j |=K ρ1|ρ2 iff πi,j |=K ρ1 ∨ πi,j |=K ρ2

πi,j |=K ρ∗ iff i = j ∨ ∃k > 0.πi,j |=K ρk

Several derived operators can be defined in order to facilitate the specification
of properties. The trajectory operator EGρϕ and the invariance operator AGρϕ
are the duals of AFρϕ and EFρϕ, respectively. They express that for some (resp.
each) path going out of a state, all of its prefixes satisfying ρ lead to states
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satisfying ϕ. The potential saturation operator EG�
ρ and the inevitable saturation

operator AG�
ρ are the negations of the corresponding looping operators. They

express that some (resp. each) path going out of a state may begin with at most
a finite number of repetitions of intervals satisfying ρ. Fairness properties can be
expressed in Ctrl by means of the formula ¬EF∞

ρ , which forbids the existence
of unfair infinite execution sequences (see [25] for examples).

Expressiveness. Ctrl is a natural extension of Ctl [16] in which the until
operator U is not primitive, but can be described using Ctrl’s EF operator as
follows: E[ϕ1 U ϕ2] = EFϕ∗

1
ϕ2. Other extensions of Ctl, such as Rctl [19] and

RegCtl [20], keep the U operator primitive as in the original logic. Ctrl sub-
sumes RegCtl, whose U operator indexed by a regular formula can be expressed
in Ctrl as follows: E[ϕ1 Uρ ϕ2] = EFρ & ϕ∗

1
ϕ2, where & denotes the intersection

of regular formulas (its occurrence in EF can be translated concisely in terms of
the other regular operators [25]). The subsumption of RegCtl is strict because
the U operator of RegCtl cannot describe an infinite concatenation of intervals
satisfying a regular formula ρ, as specified by the EF∞

ρ operator of Ctrl. In [20]
it is shown that RegCtl is more expressive than Rctl [19], the extension of
Ctl with regular expressions underlying the Sugar [26] specification language;
consequently, Rctl is also subsumed by Ctrl.

The potential looping operator EF∞ is able to capture the acceptance condi-
tion of Büchi automata, making Ctrl more expressive than Ltl [15]. Assuming
that p characterizes the accepting states in a Büchi automaton (represented as
a Ks), the formula EF∞

true∗.p.true expresses the existence of an infinite sequence
passing infinitely often through an accepting state, where the p.true regular sub-
formula avoids infinite sequences consisting of a single p-state. Although EF∞

does not allow a direct translation of the Ltl operators, it may serve as an inter-
mediate form for model checking Ltl formulas; in this respect, this operator is
similar to the “never claims” used for specifying properties in the early versions
of the Spin model checker [27]. Since Ctl and Ltl are uncomparable w.r.t. their
expressive power [16], it turns out that they are strictly subsumed by Ctrl. In
fact, the Ctrl fragment containing the boolean connectors and the temporal
operators EF and EF∞ is the state-based counterpart of Pdl-Δ [22], which has
been shown to be more expressive than Ctl

∗ [28].

3 On-the-Fly Model Checking

Our method for evaluating Ctrl formulas on Kss on-the-fly relies on a trans-
lation from Ctrl to HmlR and on the connection with an existing on-the-fly
model checker for HmlR specifications on Ltss. In this section we briefly de-
scribe this translation by means of various examples of Ctrl temporal operators
(see [25] for formal definitions and proofs). We also illustrate the functioning of
the HmlR model checker, which rephrases the verification problem as the local
resolution of a boolean equation system (Bes).
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3.1 Translation from CTRL to HMLR

We consider as running example the following formula, stating that after every
sequence matching (p|q)∗.r, either an r-state is eventually reached via a sequence
satisfying ((p∗.q)|r∗)∗.q∗, or p and q alternate along an infinite sequence:

AG(p|q)∗.r(AF((p∗.q)|r∗)∗.q∗r ∨ EF∞
true∗.p.true∗.q)

This formula is neither expressible in Ctl (because of the EF∞ subformula),
nor in Ltl (because of the nested ∗-operators). The translation from a Ctrl

formula to a HmlR specification comprises three phases:

– The Ctrl formula is turned into a regular equation system (Res), which
is a list of fixed point equation blocks interpreted on the Ks, having propo-
sitional variables in their left-hand sides and Ctrl state formulas in their
right-hand sides. Ress are the state-based counterparts of PdlR (Pdl with
recursion) specifications used as intermediate formalism for model checking
regular alternation-free μ-calculus formulas [29] on Ltss.

– Each equation block in the Res is subsequently refined into a modal equation
system (Mes) by eliminating all occurrences of regular operators contained
in the regular formulas indexing the Ctrl operators. This is done by apply-
ing various transformations on the Res equations, according to the kind of
temporal operators present in their right-hand sides.

– Finally, the resulting Mes is converted into a HmlR specification by replac-
ing each occurrence of Ctrl temporal operator (now indexed by a state
formula) with a Hml formula having the same interpretation on the Lts

corresponding to the Ks.

The Ctrl formula above is translated into the following Res (μ and ν denote
minimal and maximal fixed point equations, respectively):

{X1
ν
= AG(p|q)∗.rX2, X2

ν
= Y1 ∨ Z1}.{Y1

μ
= AF((p∗.q)|r∗)∗.q∗r}.{Z1

ν
= EFtrue∗.p.true∗.qZ1}

We explain below how this Res is refined into a Mes by applying the transfor-
mations specific to each temporal operator, and we also show how the Ks and
the Mes are converted into an Lts and a HmlR specification, respectively.

Operators EFρ and AGρ. The Ctrl formula AGρϕ is the state-based counter-
part of the Pdl modality [ρ]ϕ, and therefore Pdl-like identities hold about the
distributivity of the AGρ operator over the regular operators contained in ρ:

AGρ1.ρ2ϕ = AGρ1AGρ2ϕ AGρ1|ρ2ϕ = AGρ1ϕ ∧ AGρ2ϕ AGρ∗
1
ϕ = ϕ ∧ AGρ1AGρ∗

1
ϕ

Dual identities are valid for EFρϕ, which corresponds to the Pdl modality 〈ρ〉ϕ.
A repeated application of these identities to the equations of the first block of
the Res above allows to eliminate all occurrences of regular operators, leading
to the following Mes block:

{X1
ν
= X3 ∧X4, X2

ν
= Y1 ∨ Z1, X3

ν
= AGrX2, X4

ν
= AGpX1 ∧ AGqX1}
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This transformation introduces a linear increase in size of the Mes w.r.t. the Res.
Note that additional equations were inserted in order to avoid nested occurrences
of temporal operators; this is necessary for keeping the size of the final Bes linear
w.r.t. the size of the Mes and of the Ks.

Operators AFρ and EGρ. The AFρ operator does not satisfy the identities of
EFρ, and thus the regular operators occurring in ρ cannot be eliminated simply by
applying substitutions. The procedure we propose for expanding AFρ operators
consists of the three steps below (a dual procedure holds for expanding EGρ

operators). Without loss of generality, we assume that the Res block contains a
single equation with an AFρ operator in its right-hand side.

(a) The equation block containing AFρ is first converted to potentiality form by
replacing AF with EF and eliminating all occurrences of regular operators using
the identities associated to EF. This operation does not preserve the semantics
of the initial block, but we will take care to restore it at step (c). For the second
block of our example Res, this yields the following Mes:

{ Y1
μ
= Y2 ∨ Y3, Y2

μ
= Y4 ∨ Y5, Y3

μ
= Y6 ∨ Y7, Y4

μ
= r, Y5

μ
= EFqY2,

Y6
μ
= Y8 ∨ Y9, Y7

μ
= Y1 ∨ Y10, Y8

μ
= EFqY1, Y9

μ
= EFpY6, Y10

μ
= EFrY7 }

(b) The resulting Mes is further transformed to guarded potentiality form
(Gpf) by eliminating all occurrences of unguarded propositional variables (not
preceded by an EF operator) in the right-hand sides of equations. This is
done by considering each equation Yi

μ
= ϕi, by replacing with ϕi all un-

guarded occurrences of Yi in other equations, and eliminating the possible self-
recursive unguarded occurrences found on the way using the absorption property
Yj

μ
= Yj ∨ ϕj ≡ Yj

μ
= ϕj [25]. When brought to Gpf and simplified (by delet-

ing redundant variable occurrences using idempotency of disjunction, dropping
identical equations, and renumbering variables), the Mes block becomes:

Y1
μ
= EFpY3∨EFqY1∨EFqY2∨EFrY1∨Y4, Y2

μ
= EFqY2∨Y4, Y3

μ
= EFpY3∨EFqY1, Y4

μ
= r

A Mes in Gpf is similar to the equation system defining the derivatives of
regular expressions [30].

(c) The Mes in Gpf is finally determinized in order to retrieve the inter-
pretation of the original Res block containing the AF operator. This is done
by considering meta-variables (i.e., sets of propositional variables) holding at a
state s and determining, for each combination of atomic propositions that may
hold at s, the meta-variables that should be satisfied by the successors of s.
We show below two equations obtained by determinizing the Mes above (Y{1,2}
stands for the meta-variable {Y1, Y2}, and similarly for the others):

Y{1}
μ
= AFpY{3} ∨ AFqY{1,2} ∨ AFrY{1} ∨ AFp∧qY{1,2,3} ∨ AFp∧rY{1,3} ∨ AFq∧rY{1,2}∨

AFp∧q∧rY{1,2,3} ∨ Y{4}, Y{3}
μ
= AFpY{3} ∨ AFqY{1} ∨ AFp∧qY{1,3}
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The rhs of the equations defining the meta-variables Y{1,2}, Y{1,3}, and Y{1,2,3}
is identical to the one defining Y{1}. After further simplifications (induced by the
implication AFp∧qϕ⇒ AFqϕ) we obtain the final Mes:

Y{1}
μ
= AFpY{3} ∨ AFqY{1} ∨ AFrY{1} ∨ Y{4}, Y{3}

μ
= AFpY{3} ∨ AFqY{1}, Y{4}

μ
= r

The determinization step is similar to the subset construction used for deter-
minizing finite automata [31].

The final Mes produced after expanding a Res block containing an AFρ op-
erator has in the worst-case a size exponential w.r.t. the size of ρ; however the
temporal formulas encountered in practice are far from reaching this bound. In
particular, when ρ is “deterministic”, i.e., for each equation of the corresponding
Mes in Gpf, the atomic propositions indexing the EF operators in the right-
hand side are disjoint (e.g., p and q disjoint in the Mes above), the resulting
determinized Mes has a size linear w.r.t. ρ.

Operators EF∞
ρ , AG�

ρ , AF∞
ρ , and EG�

ρ . The infinite iteration operators (and
their saturation duals) must be translated into Ress with alternation depth 2,
because they involve two mutually recursive minimal and maximal fixed points.
The third Res equation block of our running example would translate as follows:

{Z0
ν
= Z1}.{Z1

μ
= EFtrue∗.p.true∗.qZ0}

However, given the very simple structure of the first equation block, we can
abusively merge the two blocks into a minimal fixed point one, expand the regular
subformula using the EF substitutions, and mark the Z0 variable such that the
original semantics of the equation blocks can be restored during the resolution
of the underlying Bes (see Sec. 3.2). The AF∞

ρ operator is expanded in a similar
manner, and the saturation operators AG�

ρ and EG�
ρ are handled dually.

Moving from the state-based to the action-based setting. In order to
apply a HmlR model checker as verification back-end for Ctrl, we need to
interpret formulas on Ltss instead of Kss. A Ks can be converted to an Lts

by migrating all the atomic propositions valid at each state of the Ks on the
actions labeling the transitions going out from that state in the Lts [16]. This
conversion is succinct (it keeps the same state set and transition relation) and
can be performed on-the-fly during an incremental construction of the Ks. The
Mes produced from a Ctrl formula can be turned into a HmlR specification
by replacing basic Ctrl formulas with Hml modalities having the same inter-
pretation on the Lts corresponding to the Ks:

p = 〈p〉true EFpX = 〈p〉X AGpX = [p]X
AFpX = 〈p〉true ∧ [true]X EGpX = 〈p〉true⇒ 〈true〉X

These replacements increase by at most a linear factor the size of the HmlR

specification w.r.t. the Mes.
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3.2 BES Encoding and Local Resolution

The on-the-fly model checking of the HmlR specification produced from a Ctrl

formula on the Lts corresponding to a Ks can be rephrased as the local res-
olution of a Bes [23,32], which can be carried out using graph-based algo-
rithms [33,34,24]. Figure 1 illustrates the evaluation of a Ctrl infinite looping
operator on a Ks. For simplicity, we show the verification by considering di-
rectly the Mes (produced as indicated in Sec. 3.1) and the Ks instead of the
corresponding HmlR specification and Lts.

Formula:

Z00

Z10

Z11

Z24Z23

Z01 Z21

Z04

Z13

Z12

Z14Z22

p q

q

10 2 3

4

EF∞
true∗.p.true∗.q

Ks:���
��

Z0
μ
= Z1

Z1
μ
= EFpZ2 ∨ EFtrueZ1

Z2
μ
= EFqZ0 ∨ EFtrueZ2

���
��

Mes:

Bes: Zij = sj |= Zi

Fig. 1. Evaluation of a EF∞ formula. The underlying Bes is obtained by making a
product between the Mes and the Ks. It is represented here by its boolean graph,
which is explored on-the-fly by the A4cyc algorithm.

The Bes encoding the model checking problem is disjunctive, and could be
solved using the memory-efficient algorithm A4 proposed in [24]. If the EF∞ for-
mula is false, the solution of the Mes is also false, since by abusively switching
the sign from ν to μ we obtained an equation block with a “smaller” interpre-
tation. If the formula is true, the Ks contains a cycle going through a state
satisfying the marked variable Z0; this kind of cycle is detected in linear-time by
the A4cyc algorithm [35], which records that all states on the cycle satisfy EF∞,
thus restoring the original meaning of the formula.

Complexity. The complexity of our Ctrl model checking procedure is sum-
marized in the table below. The EFρ and EF∞

ρ operators, together with their
respective duals AGρ and AG�

ρ , are evaluated in linear-time w.r.t. the size of ρ
and the size of the Ks. Moreover, the evaluation of these operators stores only
the states (and not the transitions) of the Ks, thanks to the memory-efficient
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algorithms A4 [24] and A4cyc [35] dedicated to disjunctive and conjunctive Bess.
This fragment of Ctrl is the state-based counterpart of Pdl-Δ [22]. The linear-
time evaluation of the EF∞

ρ operator allows an efficient detection of complex
cycles, such as those characterizing oscillation properties [9]. EF∞

ρ is also useful
for capturing fairness properties in concurrent systems, such as the existence of
complex unfair executions in resource locking protocols [36].

The AFρ operator and its dual EGρ are evaluated in linear-time only when the
regular subformula ρ is deterministic. In general, these operators are evaluated
in exponential-time w.r.t. the size of ρ (because of the determinization step) but
still in linear-time w.r.t. the Ks size. In practice, the size of temporal formulas is
much smaller than the size of Kss, which reduces the impact of the factor 2|ρ| on
the total cost of model checking. Finally, the AF∞

ρ operator and its dual EG�
ρ are

evaluated in linear-time when ρ is deterministic (using a symmetric version of
the A4cyc algorithm); in the general case, these operators are evaluated in dou-
bly exponential-time w.r.t. the size of ρ and in quadratic-time w.r.t. the Ks size,
by applying local resolution algorithms for Bess with alternation depth 2 [34].
This complexity seems difficult to lower, since the Bess produced by translat-
ing these operators have a general shape (arbitrary nesting of disjunctions and
conjunctions in the right-hand sides of equations).

Ctrl Model checking complexity
operator ρ deterministic ρ nondeterministic

EFρ AGρ O(|ρ| · (|S|+ |T |))
AFρ EGρ O(|ρ| · (|S|+ |T |)) O(2|ρ| · (|S|+ |T |))
EF∞

ρ AG�
ρ O(|ρ| · (|S|+ |T |))

AF∞
ρ EG�

ρ O(|ρ| · (|S|+ |T |)) O(22|ρ| · (|S|+ |T |)2)

4 Implementation and Use

We implemented the model checking procedure for Ctrl described in Section 3
by reusing as much as possible the on-the-fly verification technology available
in the Cadp toolbox [13] for concurrent asynchronous systems. This section
presents the architecture of our Ctrl model checker and illustrates its use for
analyzing genetic regulatory networks.

4.1 An On-the-Fly Model Checker for CTRL

The tools of Cadp
1 (Construction and Analysis of Distributed Processes) [13]

operate on labeled transition systems (Ltss), which are represented either ex-
plicitly (by their list of transitions) as compact binary files encoded in the Bcg

(Binary Coded Graphs) format, or implicitly (by their successor function) as C
programs compliant with the Open/Cæsar interface [37]. Cadp contains the
on-the-fly model checker Evaluator [29], which evaluates regular alternation-
free μ-calculus (Lμreg

1 ) formulas on implicit Ltss. The tool works by translat-
ing the verification problem in terms of the local resolution of a Bes, which is
1 http://www.inrialpes.fr/vasy/cadp
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done using the algorithms available in the generic Cæsar Solve library [24].
Evaluator 3.6 uses HmlR as intermediate language: Lμreg

1 formulas are trans-
lated into HmlR specifications, whose evaluation on implicit Ltss is encoded as a
local Bes resolution. It generates examples and counterexamples illustrating the
truth value of formulas, and is also equipped with macro-definition mechanisms
allowing the creation of reusable libraries of derived temporal operators.
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Fig. 2. Ctrl translator and its connection to the Evaluator model checker

In order to reuse the model checking features of Evaluator 3.6, we had
the choice of translating Ctrl formulas either to Lμreg

1 formulas, or to HmlR

specifications. We adopted the second solution because it leads to a more suc-
cinct translation and avoids the translation step from Lμreg

1 to HmlR present
in Evaluator. This technical choice motivated the definition of the translation
from Ctrl to HmlR in the first place. The architecture of the Ctrl translator
(about 12, 000 lines of code) is shown in Figure 2. The tool takes as input a
Ctrl state formula and translates it to a Mes following the phases described
in Section 3.1, which are different for the EFρ and AFρ operators. The Mes

obtained is then converted into a HmlR specification by replacing basic Ctrl

operators with Hml modalities. The resulting HmlR specification is directly
given as input to Evaluator 3.6, together with the Lts corresponding to the
Ks. The translator from Ctrl to HmlR has been completely implemented using
the compiler construction technology proposed in [38].

4.2 Verification of Genetic Regulatory Networks

Ctrl has been used for the analysis of so-called genetic regulatory networks
(Grns), which consist of genes, proteins, small molecules and their mutual in-
teractions that together control different functions of the cell. In order to better
understand how a specific dynamic behavior emerges from these interactions,
and the role of each component in the network, a wide variety of mathematical
formalisms are available [3].
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Due to limited availability of numerical values for the kinetic parameters and
the molecular concentrations, some mathematical formalisms are difficult to ap-
ply in practice. This has motivated the use of a special class of piecewise-linear
(Pl) differential equation models, originally introduced by [39]. Using Pl models,
the qualitative dynamics of the high-dimensional systems are relatively straight-
forward to analyze, using inequality constraints on the parameters rather than
exact numerical values [40,41]. Discrete abstractions can be used to convert the
continuous dynamics of the Pl systems into state transition graphs (Stgs) [40]
that are formally equivalent to Kss. The atomic propositions describe, among
other things, the concentration bounds defining a region and the trend of the
variables inside regions. The generation of the Stg from the Pl model has been
implemented in the computer tool Gna (Genetic Network Analyzer) [6], which
is able to export the graph to standard model checkers like NuSmv [12] and
Cadp [13] in order to use formal verification.

We analyse here the carbon starvation response network of E. coli (illustrated
below), using a Pl model proposed in [42], with focus on the nutrient upshift
after a period of starvation, leading to exponential growth of the bacterial pop-
ulation. The dynamics of the system are described by 6 coupled Pl differential
equations, and 48 inequality constraints on the parameter values.
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P1/P1’

CRP

P
Fis

P

P1 P2

P1 P2

TopA
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The generated graph has 743 states and contains one terminal cycle corre-
sponding to a (damped) oscillation of some of the protein concentrations and
the concentration of stable Rnas (which are transcribed from the rrn oper-
ons). We expressed this property using the four Ctrl formulas below, where
inTermCycle is an atomic proposition indicating that a state is part of the
terminal cycle. Similarly, dec rrn (inc rrn) represent a decreasing (increasing)
concentration of stable Rnas (ρ+ stands for ρ.ρ∗).

N. Ctrl formula Answer Time
1. EFtrue∗AFinTermCycle+.(inc rrn+.dec rrn+)+true false 3 sec
2. EFtrue∗EF∞

inTermCycle+.(inc rrn+.dec rrn+)+
true 1 sec

3. AGtrue∗EF∞
inTermCycle+.(inc rrn+.dec rrn+)+

false 1 sec
4. AGtrue∗.inc Fis+.dec Crp+.inTermCycleEF∞

inTermCycle+.(inc rrn+.dec rrn+)+
true 2 sec

Formula 1 fails, indicating that an oscillation of stable Rnas is not inevitable
once the system has reached the terminal cycle. Formula 2, obtained by replacing
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the AF operator with an EF∞, is valid on the graph, showing the existence of
an infinite oscillation of the stable Rnas. Formula 3 is stricter, stating that all
paths in the graph lead to the terminal cycle with an oscillation of stable Rnas.
Formula 4 forces the model checker to consider the oscillation only on the paths
satisfying the restriction that an increase of the Fis concentration is followed by
a decrease of the Crp concentration before arriving at the terminal cycle.

The use of regular expressions in the Ctrl formulas above clearly outlines
the convenience of being able to characterize a sequence of events. Due to the
presence of nested iteration operators, these properties cannot be expressed using
standard temporal logics such as Ctl or Ltl. In addition, the EF∞

ρ operator
enables a natural formulation of infinite repetitions of sequences defined by ρ,
such as those corresponding to the oscillation in the E. coli example.

5 Conclusion and Future Work

Applications of model checking in system biology have demonstrated its use-
fulness for understanding the dynamic behaviour of regulatory networks in
living cells, but also pointed out certain limitations in expressiveness and
user-friendliness. Our work aims at alleviating these limitations in order to pro-
mote the practical usage of model checking in the bioinformatics and systems
biology communities. Ctrl extends Ctl with regular expressions and fairness
operators, allowing a natural and concise description of typical properties of bio-
logical interest, such as the presence of multistability or oscillations. We were able
to reduce the development effort and to obtain an on-the-fly model checker for
Ctrl by defining and implementing a translation from Ctrl to HmlR, and by
reusing the verification and diagnostic generation features of the Evaluator 3.6
model checker of the Cadp toolbox.

In this paper, we have employed Ctrl for the verification of dynamic proper-
ties of Grns modeled by (but not limited to) piecewise-linear differential equa-
tions. The continuous dynamics of these models, by defining appropriate discrete
abstractions, can be converted into discrete state transition graphs that are for-
mally equivalent to Kss. The computer tool Gna is able to generate the state
transition graphs and export them as Ltss to Cadp. Ctrl can be combined with
many of the other approaches proposed for the application of formal verification
tools to biological regulatory networks [4,5,6,7,8,9,10].

We plan to continue our work on several directions. First, we will extend
the Cæsar Solve [24] library of Cadp with resolution algorithms handling
Bess of alternation depth 2 [34] in order to obtain an on-the-fly evaluation
of the AF∞

ρ operator when the regular formula ρ is nondeterministic. Second,
the translation from Ctrl to HmlR can be optimized by adding static analysis
features on the Gna atomic propositions in order to reduce the size of the HmlR

specifications produced. Third, a distributed version of the Ctrl model checker
can be obtained by coupling it with the distributed Bes resolution algorithms
proposed in [43,44]. Fourth, we will develop pattern-based tools to help non-
expert users specify queries for the analysis of biological networks [45].
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Component-Based Systems and Application
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Abstract. We present a compositional method for the verification of
component-based systems described in a subset of the BIP language en-
compassing multi-party interaction without data transfer. The method is
based on the use of two kinds of invariants. Component invariants which
are over-approximations of components’ reachability sets. Interaction in-
variants which are constraints on the states of components involved in
interactions. Interaction invariants are obtained by computing traps of
finite-state abstractions of the verified system. The method is applied
for deadlock verification in the D-Finder tool. D-Finder is an interactive
tool that takes as input BIP programs and applies proof strategies to
eliminate potential deadlocks by computing increasingly stronger invari-
ants. The experimental results on non-trivial examples allow either to
prove deadlock-freedom or to identify very few deadlock configurations
that can be analyzed by using state space exploration.

1 Introduction

Compositional verification techniques are used to cope with state explosion in
concurrent systems. The idea is to aply divide-and-conquer approaches to infer
global properties of complex systems from properties of their components. Sepa-
rate verification of components limits state explosion. Nonetheless, components
mutually interact in a system and their behavior and properties are inter-related.
This is a major difficulty in designing compositional techniques. As explained in
[1], compositional rules are in general of the form

B1 < Φ1 >, B2 < Φ2 >, C(Φ1, Φ2, Φ)
B1‖B2 < Φ >

(1)

That is, if two components with behaviors B1, B2 meet individually properties
Φ1, Φ2 respectively, and C(Φ1, Φ2, Φ) is some condition taking into account the
semantics of parallel composition operation and relating the individual properties
with the global property, then the system B1‖B2 resulting from the composition
of B1 and B2 will satisfy a global property Φ.

One approach to compositional verification is by assume-guarantee where prop-
erties are decomposed into two parts. One is an assumption about the global be-
havior of the environment of the component; the other is a property guaranteed by
the component when the assumption about its environment holds. This approach

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 64–79, 2008.
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has been extensively studied (see for example [2,3,4,5,6,7,8,9]). Many issues make
the application of assume-guarantee rules diffcult. These are discussed in detail in
a recent paper [10] which provides an evaluation of automated assume-guarantee
techniques. The main difficulties are finding decompositions into sub-systems and
choosing adequate assumptions for a particular decomposition.

We present a different approach for compositional verification of invariants
based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

(2)

The rule allows to prove invariance of Φ for systems obtained by using a n-ary
composition operation parameterized by a set of interactions γ. It uses global
invariants which are the conjunction of individual invariants of components Φi

and an interaction invariant Ψ . The latter expresses constraints on the global
state space induced by interactions between components. It can be computed
automatically from abstractions of the system to be verified. These are the com-
position of finite state abstractionsBα

i of the components Bi with respect to their
invariants Φi. They can be represented as a Petri net whose transitions corre-
spond to interactions between components. Interaction invariants correspond to
traps [11] of the Petri net and are computed symbolically as solutions of a set
of boolean equations.

ψ

φ2

φ1

Fig. 1.

Figure 1 illustrates the method for a sys-
tem with two components, invariants Φ1 and
Φ2 and interaction invariant Ψ . Our method
differs from assume-guarantee methods in
that it avoids combinatorial explosion of the
decomposition and is directly applicable to
systems with multiparty (not only binary) in-
teractions. Furthermore, it needs only guaran-
tees for components. It replaces the search for
adequate assumptions for each component by
the use of interaction invariants. These can be
computed automatically from given compo-
nent invariants (guarantees). Interaction in-
variants correspond to a “cooperation test” in
the terminology of [12] as they allow to eliminate product states which are not
feasible by the semantics of parallel composition.

The paper provides a method for automated verification of component-based
systems described in a subset of the BIP (Behavior-Interaction-Priority) lan-
guage [13]. In BIP, a system is the composition of a set of atomic components
which are automata extended with data and functions written in C. We re-
strict to programs where interactions are pure synchronizations. Nonetheless,
the method can be easily extended for interactions involving data transfer. The
main results are the following:
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– We provide heuristics for computing component invariants and interaction
invariants. Component invariants are over-approximations of the set of the
reachable states generated by simple forward analysis. Interaction invariants
are derived automatically from component invariants and their interactions.
When proving invariance of a property fails, it is possible to find stronger
invariants by computing stronger component invariants from which stronger
interaction invariants are obtained.

– We present an implemention and application of the method in the D-Finder
tool for deadlock verification. D-Finder takes as input BIP programs and
progressively eliminates potential deadlocks by generating invariants. For
this, it cooperates with two tools: Omega [14] for quantifier elimination and
Yices [15] for checking satisfiability of predicates. It is also connected to the
state space exploration tool of the BIP platform, for finer analysis when the
heuristic fails to prove deadlock-freedom. We provide non trivial examples
showing the capabilities of D-Finder as well as the efficiency of the method.

The paper is organized as follows. Section 2 introduces the basic definitions
about BIP and invariants. The method for computing component invariants
and the corresponding interaction invariants is presented in Section 3. Section 4
presents the application of the method for checking deadlock-freedom including a
description of D-Finder and experimental results. Section 5 presents concluding
remarks and future work.

2 Models, Invariants and Their Properties

In this section, we present the basic model for the BIP language as well as the
notion of invariant.

2.1 Basic Model for BIP

We present a simplified model for component-based systems used in the
Behaviour-Interaction-Priority (BIP) component framework developed at Ver-
imag [13].

This framework has been implemented in a language and a toolset. The BIP
language offers primitives and constructs for modelling and composing compo-
nents. An atomic component consists of a set of ports used for the synchro-
nization with other components, a set of transitions and a set of local variables.
Transitions describe the behavior of the component. The BIP toolset includes an
editor and a compiler for generating from BIP programs, C++ code executable
on a dedicated platform.

We provide a formalization of atomic components in BIP and their composi-
tion by using interactions.

Definition 1 (Atomic Component). An atomic component is a transition
system extended with data B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), where:
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– (L,P, T ) is a transition system, that is
• L = {l1, l2, . . . , lk} is a set of control locations,
• P is a set of ports,
• T ⊆ L× P × L is a set of transitions,

– X = {x1, . . . , xn} is a set of variables and for each τ ∈ T respectively, gτ is
a guard, a predicate on X, and fτ (X,X ′) is an update relation, a predicate
on X (current) and X ′ (next) state variables.

Definition 2 (Semantics of extended transition system). The semantics
of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), is a transition system (Q,P, T0) such
that

– Q = L×X where X denotes the set of valuations of variables X.
– T0 is the set including transitions ((l,x), p, (l′,x′)) such that gτ (x)∧fτ (x,x′)

for some τ = (l, p, l′) ∈ T . As usual, if ((l,x), p, (l′,x′)) ∈ T0 we write
(l,x)

p→ (l′,x′).

Given a transition τ = (l, p, l′) ∈ T , l and l′ are respectively, the source and the
target location denoted respectively by •τ and τ•.

For a location l, we use the predicate at l which is true iff the system is at lo-
cation l. A state predicate Φ is a boolean expression involving location predicates
and predicates on X . Any state predicate can be put in the form

∨
l∈L at l∧ϕl.

Notice that predicates on locations are disjoint and their disjunction is true.
We define below a parallel composition for components parameterized by a

set of interactions. We consider only pure synchronizations, that is interactions
do not involve data transfer between components.

Definition 3 (Interactions). Given a set of components B1, B2, . . . , Bn,
where Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti, {fτ}τ∈Ti), an interaction a is a set of ports,
subset of

⋃n
i=1 Pi, such that ∀i = 1, . . . , n |a ∩ Pi| ≤ 1.

Definition 4 (Parallel Composition). Given n components Bi = (Li, Pi, Ti,
Xi, {gτ}τ∈Ti, {fτ}τ∈Ti) and a set of interactions γ, we define B = γ(B1, . . . , Bn)
as the component (L, γ, T , X, {gτ}τ∈T , {fτ}τ∈T ), where:

– (L, γ, T ) is the transition system such that
• L = L1 × L2 × . . .× Ln is the set of control locations,
• T ⊆ L × γ × L contains transitions τ = ((l1, . . . , ln), a, (l′1, . . . , l

′
n)) ob-

tained by synchronization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I

such that {pi}i∈I = a ∈ γ and l′j = lj if j �∈ I, for arbitrary I ⊆ {1, ..., n}
– X =

⋃n
i=1 Xi and for a transition τ resulting from the synchronization of a

set of transitions {τi}i∈I , the associated guard and function are respectively
gτ =

∧
i∈I gτi and fτ =

∧
i∈I fτi ∧

∧
i
∈I(X

′
i = Xi).

Definition 5 (System). A system S is a pair 〈B, Init〉 where B is a component
and Init is a state predicate characterizing the initial states of B.
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Fig. 2. Temperature Control System

Example 1 (Temperature Control System). [16] This system controls the coolant
temperature in a reactor tank by moving two independent control rods. The
goal is to maintain the coolant between the temperatures θm and θM . When the
temperature reaches its maximum value θM , the tank must be refrigerated with
one of the rods. The temperature rises at a rate vr and decreases at rate vd. A
rod can be moved again only if T time units have elapsed since the end of its
previous movement. If the temperature of the coolant cannot decrease because
there is no available rod, a complete shutdown is required.

We provide a discretized model of the Temperature Control System in BIP,
decomposed into three atomic components: a Controller and two components
Rod1, Rod2 modeling the rods. We take θm = 100◦, θM = 1000◦, T = 3600
seconds. Furthermore, we assume that vr = 1◦/s and vd = 2◦/s. The Controller
has two control locations {l5, l6}, a variable θ, three ports {tick, cool, heat} and
four transitions: 2 loop transitions labeled by tick which increase or decrease the
temperature as time progresses and 2 transitions triggering moves of the rods.
The components Rod1 and Rod2 are identical, up to the renaming of states and
ports. Each one has two control locations and four transitions: two loop tran-
sitions labeled by tick and two transitions synchronized with transitions of the
Controller. The components are composed by using the following set of inter-
actions, indicated by connectors in the figure: {tick, tick1, tick2}, {cool, cool1},
{cool, cool2}, {heat, rest1}, {heat, rest2}.

In our model, complete shutdown corresponds to a deadlock. Throughout the
paper we verify deadlock-freedom of this example by taking Init = at l5 ∧ (θ =
100) ∧ at l1 ∧ (t1 = 3600) ∧ at l3 ∧ (t2 = 3600). ��

2.2 Invariants and Their Properties

For a component B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ), we recall here the de-
finition of the post predicate transformer allowing to compute successors of
global states represented symbolically by state predicates. Given a state predi-
cate Φ =

∨
l∈L at l ∧ ϕl, we define post(Φ) =

∨
l∈L(

∨
τ=(l,p,l′) at l

′ ∧ postτ (ϕl))
where postτ (ϕ)(X) = ∃X ′.gτ (X ′)∧fτ (X ′, X)∧ϕ(X ′). Equivalently, we have that
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post(Φ) =
∨

l∈L at l ∧ (
∨

τ=(l′,p,l) postτ (ϕl′)). This allows computing post(Φ) by
forward propagation of the assertions associated with control locations in Φ.

We define in a similar way, the preτ predicate transformer for a transition τ ,
preτ (ϕ)(X) = ∃X ′.gτ (X) ∧ fτ (X,X ′) ∧ ϕ(X ′).

Definition 6 (Invariants). Given a system 〈B, Init〉 a state predicate Φ is

– an inductive invariant iff (Init ∨ post(Φ))⇒ Φ.
– an invariant iff there exists an inductive invariant Φ0 such that Φ0 ⇒ Φ.

Notice that invariants are over-approximations of the set of the reachable states
from Init. We extensively use the following well-known results about invariants.

Proposition 1. Let Φ1, Φ2 be two invariants of a component B. Then Φ1 ∧Φ2,
Φ1 ∨ Φ2 are invariants of B.

3 The Method

We consider a system γ(B1, . . . , Bn) obtained by composing a set of atomic
components B1, ..., Bn by using a set of interactions γ.

To prove a global invariant Φ for γ(B1, . . . , Bn), we use the following rule:

{Bi < Φi >}ni , Ψ ∈ II(γ(B1, . . . , Bn), {Φi}ni ), (
∧n

i Φi) ∧ Ψ ⇒ Φ
γ(B1, . . . , Bn) < Φ >

(3)

where Bi < Φi > means that Φi is an invariant of component Bi and Ψ is
an interaction invariant of γ(B1, . . . , Bn) computed automatically from Φi and
γ(B1, . . . , Bn).

A key issue in the application of this rule is finding component invariants
Φi. If the components Bi are finite state, then we can take Φ = Reach(Bi),
the set of reachable state of Bi, or any upper approximation of Reach(Bi). If
the components are infinite state, Reach(Bi) can be approximated as shown
in [17,18].

We provide below methods for computing component invariants used for
checking deadlock-freedom (section 4). We also provide a general method for
computing interaction invariants for γ(B1, . . . , Bn) from a given set of compo-
nent invariants Φi.

3.1 Computing Component Invariants

We present below a method for the lightweight computation of sequences of
inductive invariants for atomic components. This method is used in the D-Finder
toolset.

Proposition 2. Given a system S = 〈B, Init〉, the following iteration defines a
sequence of increasingly stronger inductive invariants:

Φ0 = true Φi+1 = Init ∨ post(Φi)
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We use different strategies for producing such invariants. We usually iterate until
we find deadlock-free invariants. Their use guarantees that global deadlocks are
exclusively due to synchronization.

A key issue is efficient computation of such invariants as the precise compu-
tation of post requires quantifier elimination. An alternative to quantifier elimi-
nation is to compute over-approximations of post based on syntactic analysis of
the predicates. In this case, the obtained invariants may not be inductive.

We provide a brief description of a syntactic technique used for approximating
postτ for a fixed transition τ . A more detailed presentation, as well as other
techniques for generating component invariants are given in [19].

Consider a transition τ = (l, p, l′) of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T ).
Assume that its guard is of the form gτ (Y ) and the associated update function
fτ is of the form Z ′

1 = eτ (U) ∧ Z ′
2 = Z2 where Y, Z1, Z2, U ⊆ X and {Z1, Z2} is

a partition of X .
For an arbitrary predicate ϕ find a decomposition ϕ = ϕ1(Y1) ∧ ϕ2(Y2) such

that Y2 ∩ Z1 = ∅ i.e. which has a conjunct not affected by the update function
fτ . We apply the following rule to compute over-approximations postaτ (ϕ) of
postτ (ϕ)

postaτ (ϕ) = ϕ2(Y2) ∧
{
gτ (Y ) if Z1 ∩ Y = ∅
true otherwise

}
∧
{
Z1 = eτ (U) if Z1 ∩ U = ∅

true otherwise

}
Proposition 3. If τ and ϕ are respectively a transition and a state predicate as
above, then postτ (ϕ)⇒ postaτ (ϕ).

Example 2. For the Temperature Control System of figure 2, the predicates Φ1 =
(at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600), Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600) and
Φ3 = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000) are respectively invariants of
the atomic components Rod1, Rod2 and Controller. ��

3.2 Computing Interaction Invariants

For the sake of clarity, we first show how to compute interaction invariants for a
system γ(B1, . . . , Bn) without variables, that is, where the atomic components
Bi are finite transition systems. Then, we show how to deal with infinite state
systems.

For Finite State Systems
Definition 7. [Forward Interaction Sets ] Given a system γ(B1, . . . , Bn) where
Bi = (Li, Pi, Ti) are transition systems, we define for a set of locations L ⊆⋃n

i=1 Li its forward interaction set L• =
⋃

l∈L l• where

l• =
{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.•τi = l ∧ {port(τi)}i∈I ∈ γ

}
That is, l• consists of sets of component transitions involved in some interaction
of γ in which a transition τi issued from l can participate (see figure 3).

We define in a similar manner, for a set of location its backward interaction
set •L =

⋃
l∈L

•l where •l =
{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.τ•i = l ∧ {port(τi)}i∈I ∈ γ

}
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Fig. 3. Forward interaction sets

The elements of •l and l• can be also viewed as transitions of a Petri net, which
correspond to interactions of γ. As for Petri nets, we can define the notion of
trap.

Definition 8 (Traps). Given a parallel composition γ(B1, . . . , Bn) where Bi =
(Li, Pi, Ti), a trap is a set L of locations L ⊆

⋃n
i=1 Li such that L• ⊆ •L.

The following proposition expresses a characteristic property of traps: if the
initial state of γ(B1, . . . , Bn) has some control location belonging to a trap then
all its successor states have some control location belonging to the trap.

Proposition 4. Given a system S = 〈γ(B1, . . . , Bn), Init〉, if the set of loca-
tions L ⊆

⋃n
i=1 Li is a trap containing an initial state of some component then∨

l∈L at l is an invariant of S.

The following result given in [20] characterizes traps as solution of a system of
implications.

Proposition 5. Let γ(B1, ..., Bn) and a boolean valuation v :
⋃n

i=1 Li → B. If
v satisfies the following set of the implications, then the set

{l ∈
n⋃

i=1

Li | v(l) = true}

is a trap, where v(l) ⇒
∧

{τi}i∈I ∈ l•

⎛⎝ ∨
l′ ∈ {τ•i }i∈I

v(l′)

⎞⎠ for l ∈
⋃n

i=1 Li

This characterization allows to compute by enumeration the minimal traps of
γ(B1, ..., Bn). For this we use Yices [15] to successively obtain minimal solutions
of the above system. As shown in [21,22] computing the set of minimal traps is
a NP-complete problem and in practice the trap extraction process may not be
exhaustive.

Example 3. The set of of minimal traps for the example given in figure 4 are:

L1 = {φ21, φ41, φ51, φ52}, L2 = {φ11, φ12, φ21, φ31, φ32, φ41}, L3 = {φ32, φ41, φ42, φ51},
L4 = {φ11, φ12, φ31, φ32, φ61, φ62} and L5 = {φ12, φ21, φ22, φ51}.



72 S. Bensalem et al.

For Infinite State Systems. We have shown how to compute interaction
invariants from traps relating control locations of finite state components. To
compute interaction invariants for infinite state systems, we first compute com-
posionally a finite state abstraction of the composite system. Interaction invari-
ants are concretizations of the traps of the abstract system.

Consider a system S = 〈γ(B1, . . . , Bn), Init〉 and a set of component invari-
ants Φ1 . . . Φn associated with the atomic components. We show below, for each
component Bi and its associated invariant Φi, how to define a finite state ab-
straction αi and to compute an abstract transition system Bαi

i .

Definition 9 (Abstraction Function). Let Φ be an invariant of a system
〈B, Init〉 written in disjunctive form Φ =

∨
l∈L at l ∧ (

∨
m∈Ml

ϕlm) such that
atomic predicates of the form at l ∧ ϕlm are disjoint. An abstraction function
α is an injective function associating with each atomic predicate at l ∧ ϕlm a
symbol φ = α(at l ∧ ϕlm) called abstract state. We denote by Φα the set of the
abstract states.

Definition 10 (Abstract System). Given a system S = 〈B, Init〉, an invari-
ant Φ and an associated abstraction function α, we define the abstract system
Sα = 〈Bα, Initα〉 where

– Bα = (Φα, P,�) is a transition system with � such that for any pair of
abstract states φ = α(at l ∧ ϕ) and φ′ = α(at l′ ∧ ϕ′) we have φ

p� φ′ iff
∃τ = (l, p, l′) ∈ T and ϕ ∧ preτ (ϕ′) �= false,

– Initα =
∨

φ∈Φα
0
at φ where Φα

0 = {φ ∈ Φα | α−1(φ) ∧ Init �= false} is the
set of the initial abstract states.

We apply the method presented in [23] and implemented in the InVeSt tool [24]
in order to compute an abstract transition system Bα for a component B. The
method proceeds by elimination, starting from the universal relation on abstract
states. We eliminate pairs of abstract states in a conservative way. To check
whether φ

p� φ′, where φ = α(at l∧ϕ) and φ′ = α(at l′∧ϕ′), can be eliminated,
we check that for all concrete transitions τ = (l, p, l′) we have ϕ ∧ preτ (ϕ′) =
false.

Example 4. The table below provides the abstract states constructed from the
components invariants Φ1, Φ2, Φ3 of respectively Rod1, Rod2, Controller given
in example 2.

φ11 = at l1 ∧ t1 = 0 φ51 = at l5 ∧ θ = 100 φ31 = at l3 ∧ t2 = 0
φ12 = at l1 ∧ t1 ≥ 1 φ52 = at l5 ∧ 101 ≤ θ ≤ 1000 φ32 = at l3 ∧ t2 ≥ 1
φ21 = at l2 ∧ t1 ≥ 3600 φ61 = at l6 ∧ θ = 1000 φ41 = at l4 ∧ t2 ≥ 3600
φ22 = at l2 ∧ t1 < 3600 φ62 = at l6 ∧ 100 ≤ θ ≤ 998 φ42 = at l4 ∧ t2 < 3600

Figure 4 presents the computed abstraction of the Temperature Control System
with respect to the considered invariants. ��
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Fig. 4. Abstraction of the Temperature Control System

By combining well-known results about abstractions, we compute interaction
invariants of 〈γ(B1, ..., Bn), Init〉 from interaction invariants of 〈γ(Bα

1 , . . . , B
α
n ),

Initα〉.
The following proposition says that γ(Bα1

1 , . . . , Bαn
n ) is an abstraction of B =

γ(B1, ..., Bn)

Proposition 6. If Bαi

i is an abstraction of Bi with respect to an invariant Φi

and its abstraction function αi for i = 1, ..., n , then Bα = γ(Bα1
1 , . . . , Bαn

n ) is
an abstraction of B = γ(B1, ..., Bn) with respect to

∧n
i=1 Φi and an abstraction

function α obtained as the composition of the αi.

The following proposition says that invariants of the abstract system are also
invariants of the concrete system.

Proposition 7. If Bα is an abstraction of B with respect to Φ and its ab-
straction function α, then Bα simulates B. Moreover, if Φα is an invariant
of 〈Bα, Initα〉 then α−1(Φα) is an invariant of 〈B, Init〉.

Thus, it is possible to compute from traps which are interaction invariants
of the abstract system, interaction invariants for the concrete system B =
γ(B1, ..., Bn).

3.3 Wrap Up

We give a sketch of a semi-algorithm allowing to prove invariance of Φ by iterative
application of the rule ( 3). The semi-algorithm takes a system 〈γ(B1, . . . , Bn),
Init〉 and a predicate Φ. It iteratively computes invariants of the form X = Ψ ∧
(
∧n

i=1 Φi) where Ψ is an interaction invariant and Φi an invariant of component
Bi. If X is not strong enough for proving that Φ is an invariant (X ∧ ¬Φ =
false) then either a new iteration with stronger Φi is started or we stop. In this
case, we cannot conclude about invariance of Φ. We can show by application of
the following proposition that the iteration process gives progressively stronger
invariants, in particular that for stronger component invariants we get stronger
interaction invariants.
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Input: S = 〈γ(B1, . . . , Bn), Init〉, Φ
Initially: Φi = true for each i = 1, . . . , n
Output: True or inconclusive.

1. For each Bi, compute a component invariant Φ′
i; Φi := Φi ∧ Φ′

i

2. For each Bi and Φi compute the corresponding abstraction Bαi
i .

3. For γ(Bα1
1 , ..., Bαn

n ), compute traps L1, L2, . . . , Lm

containing some abstract initial state.
4. For each trap Lk, compute the interaction invariant Ψk =

�
φ∈Lk

α−1(φ);

Ψ :=
�m

k=1 Ψk.
5. If ¬Φ ∧ Ψ ∧ (

�n
i=1 Φi) = false then Φ is an invariant else goto 1 or stop.

Fig. 5. Iterative application of the rule in figure 3

Proposition 8. Let 〈B, Init〉 be a system and Φ, Φ′ two non empty invariants
such that Φ ⇒ Φ′. If α and α′ are the abstraction functions corresponding to Φ
and Φ′ respectively, then Bα simulates Bα′

For two successive component invariants Φi and Φ′
i for Bi, we have Φi ⇒ Φ′

i.
From proposition 8 we deduce that Bαi

i simulates B
α′

i

i where αi and α′
i are

the abstraction functions corresponding to Φi and Φ′
i. As the simulation re-

lation is preserved by parallel composition, we have γ(Bα1
1 , ..., Bαn

n ) simulates
γ(Bα′

1
1 , ..., B

α′
n

n ). We can show that for each trap L′ of γ(Bα′
1

1 , ..., B
α′

n
n ) there

exists a trap L of γ(Bα1
1 , ..., Bαn

n ) such that L ⊆ L′. From this we infer that
for each interaction invariant of γ(B′

1, ..., B
′
n) there exists a stronger interaction

invariant of γ(B1, ..., Bn).

4 Application for Checking Deadlock-Freedom

We present an application of the method for checking deadlock-freedom.

Definition 11 (Deadlock States). We define the predicate DIS characteriz-
ing the set of the states of γ(B1, . . . , Bn) from which all interactions are disabled:

DIS =
∧

a ∈ γ

¬en(a) where en(a) =
∨

port(T ′) = a

∧
τ∈T ′

en(τ)

port(T ′) for a set of transitions T ′ ⊆ T is the set of ports labeling these transi-
tions. That is, en(a) characterizes all the states from which interaction a can be
executed.

Example 5. For the Temperature Control System (see figure 2), we have:

DIS = (¬(at l5 ∧ θ < 1000))
�

(¬(at l6 ∧ θ = 100) ∨ ¬at l2)
�

(¬(at l6 ∧ θ > 100))
�

(¬(at l5 ∧ θ = 1000) ∨ ¬(at l3 ∧ t2 ≥ 3600))�
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l1 ∧ t1 ≥ 3600))

�
(¬(at l6 ∧ θ = 100) ∨ ¬at l4) ��
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Input: S = 〈γ(B1, . . . , Bn), Init〉
Output: S is deadlock-free or has a set of potential deadlocks.

1. Find Φ an invariant of S
2. Compute DIS for γ(B1, . . . , Bn).
3. If Φ ∧DIS = false then return “S is deadlock-free” else go to 4 or 6
4. Find Φ′ an invariant of S
5. Φ := Φ ∧ Φ′ go to 3
6. return the set of the solutions that satisfy Φ ∧DIS

Fig. 6. Heuristic for Deadlock Verification

The system 〈γ(B1, . . . , Bn), Init〉 is deadlock-free if the predicate ¬DIS is an
invariant of the system. To check that ¬DIS is an invariant, we need a stronger
invariant Φ such that Φ⇒ ¬DIS or equivalently Φ ∧DIS = false.

Figure 6 presents the verification heuristic for a system 〈γ(B1, . . . , Bn), Init〉
applied by the D-Finder toolset.

Example 6. Φ = Φ1 ∧ Φ2 ∧ Φ3 is the conjunction of the deadlock-free invariants
given in example 2. The predicate Φ ∧DIS, where DIS is given in example 5,
is satisfiable and it is the disjunction of the following terms:

1. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l6 ∧ θ = 100)
2. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
3. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
4. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
5. (at l2 ∧ t1 ≥ 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

Each one of the above terms represents a family of possible deadlocks. To de-
crease the number of potential deadlocks, we find a new invariant Φ′ stronger
than Φ, such that Φ′ = Φ∧Φint, where Φint is an invariant on the states of Rod1,
Rod2 and Controller induced by the interactions:

( (at l2 ∧ t1 ≥ 3600) ∨ (at l4 ∧ t2 ≥ 3600)∨ (at l5 ∧ 100 ≤ θ ≤ 1000) )∧
( (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600)∨(at l3 ∧ t2 ≥ 0)∨ (at l4 ∧ t2 ≥ 3600) )∧
( (at l3 ∧ t2 ≥ 1) ∨ (at l4) ∨ (at l5 ∧ θ = 100) )∧
( (at l1 ∧ t1 ≥ 0) ∨ (at l3 ∧t2≥ 0)∨(at l6∧θ=1000)∨(at l6 ∨ 100 ≤ θ ≤ 998) )∧
( (at l1 ∧ t1 ≥ 1) ∨ (at l2) ∨ (at l5 ∧ θ = 100) )

The predicate Φ′ ∧DIS is reduced to:

6. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
7. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
8. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Finally, it can be checked by using finite state reachability analysis on an ab-
straction of the system without variables, that only the first term represents
feasible deadlocks, the two other being spurious. This term characterizes dead-
lock configurations leading to complete shutdown. ��
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Fig. 7. D-Finder

The D-Finder Toolset. The D-Finder toolset allows deadlock verification
by application of the method (figure 7). It takes as input a BIP model and
computes component invariants CI by using Proposition 2. This step may require
quantifier elimination by using Omega. Then, it checks for deadlock-freedom of
component invariants by using Yices. From the generated component invariants,
it computes an abstraction of the BIP model and the corresponding interaction
invariants II. Then, it checks satisfiability of the conjunction II ∧CI ∧DIS. If
the conjunction is unsatisfiable, then there is no deadlock else either it generates
stronger component and interaction invariants or it tries to confirm the detected
deadlocks by using reachability analysis techniques.

Experimental Results. We provide experimental results for three examples.
The first example is the Temperature Control System extensively presented in
the paper. The second example is Utopar, an industrial case study of the Euro-
pean Integrated project SPEEDS (http://www.speeds.eu.com/) about an auto-
mated transportation system. A succinct description of Utopar can be found at
http://www.combest.eu/home/?link=Application2.The system is the composition
of three types of components: autonomous vehicles, called U-cars, a centralized
Automatic Control System and Calling Units. The latter two types have (al-
most exclusively) discrete behavior. U-cars are equipped with a local controller,
responsible for handling the U-cars sensors and performing various routing and
driving computations depending on users’ requests. We analyzed a simplified
version of Utopar by abstracting from data exchanged between components as
well as from continuous dynamics of the cars. In this version, each U-Car is
modeled by a component having 7 control locations and 6 integer variables. The
Automatic Control System has 3 control locations and 2 integer variables. The
Calling Units have 2 control locations and no variables. Finally, as third exam-
ple, we consider Readers-Writer systems in order to evaluate how the method
scales up for components without data.

The table below provides an overview of the experimental results obtained for
the three examples. For the columns: n is the number of BIP components in the
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example, q is the total number of control locations, xb (resp. xi) is the total num-
ber of boolean (resp. integer) variables, D provides when possible, the estimated
number of deadlock configurations in DIS, Dc (resp. Dci) is the number of dead-
lock configurations remaining in DIS∧CI (resp. DIS∧CI∧II) and t is the total
time for computing invariants and checking for satisfiability of DIS ∧ CI ∧ II.
Detailed results are available at http://www-verimag.imag.fr/˜ thnguyen/tool.

example n q xb xi D Dc Dci t

Temperature Control System (2 rods) 3 6 0 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 0 5 32 17 15 1m05s
Utopar System (4 U-Cars, 9 Calling Units) 14 45 4 26 - - 0 1m42s
Utopar System (8 U-Cars, 16 Calling Units) 25 91 8 50 - - 0 22m02s
Readers-Writer (50 readers) 52 106 0 1 ∼1015 ∼1015 0 1m15s
Readers-Writer (100 readers) 102 206 0 1 ∼1030 ∼1030 0 15m28s
Readers-Writer (130 readers) 132 266 0 1 ∼1039 ∼1039 0 29m13s

5 Conclusion

The paper presents a compositional method for invariant verification of
component-based systems. In contrast to assume-guarantee methods based on
assumptions, we use interaction invariants to characterize contexts of individual
components. These can be computed automatically from component invariants
which play the role of guarantees for individual components.

There are two key issues in the application of the method. The first is the
choice of component invariants depending on the property to be proved. The
second is the computation of the corresponding interaction invariants. Here there
is a risk of explosion, if exhaustiveness of solutions is necessary in the analysis
process.

The implementation and application of the method for proving deadlock-
freedom of component-based systems is promising. We use a class of component
invariantswhich capturewell-enoughguarantees for componentdeadlock-freedom.
Their computation does not involve fixpoints and avoids state space exploration.
D-Finder applies an iterative process for computing progressively stronger invari-
ants. Best precision is achieved when component reachability sets are used as
component invariants. This is feasible for finite state components. There are no
restrictions on the type of data as long as we stay within theories for which there
exist efficient decision procedures.

The obtained experimental results for non trivial case studies are really con-
vincing. The method can be adapted to interactions with data transfer. Data
transfer with finite domains, can be encoded by creating individual interactions
for each configuration of transferred data. Otherwise, the notion of component
invariant and subsequently the notion of interaction invariant can be extended
to take into account transferred data. Finally, an interesting work direction is
extending D-Finder to prove properties other than deadlock-fredom.
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Abstract. Multi-valued Model Checking is an extension of classical,
two-valued model checking with multi-valued logic. Multi-valuedness has
been proved useful in expressing additional information such as incom-
pleteness, uncertainty, and many others, but with the cost of time and
space complexity. This paper addresses this problem, and proposes a new
algorithm for Multi-valued Model Checking. While Chechik et al. have
extended BDD-based Symbolic Model Checking algorithm to the multi-
valued case, our algorithm extends Bounded Model Checking (BMC),
which can generate a counterexample of minimum length efficiently (if
any). A notable feature of our algorithm is that it directly generates
conjunctive normal forms, and never reduces multi-valued formulas into
many slices of two-valued formulas. To achieve this feature, we extend the
BMC algorithm to the multi-valued case and also devise a new transla-
tion of multi-valued propositional formulas. Finally, we show experimen-
tal results and compare the performance of our algorithm with that of a
reduction-based algorithm.

1 Introduction

Model Checking [7] is a way to verify (or refute) a temporal specification against
a system. Multi-valued Model Checking (mvMC) [5] is an extension of the ordi-
nary model checking with multi-valued logic [10]. Multi-valuedness can be used
to express additional information on the system being verified, such as incom-
pleteness, uncertainty, authenticity, capability, and many others, and has been
proved useful in various areas of system and software verification.

The extra expressivity comes at a cost: suppose the domain of truth values is
a 2n-valued Boolean algebra. A naive approach is to decompose the multi-valued
Kripke structure and specification into n components (or slices), each of which
constitutes the i-th bit of the original one, and run an ordinary, two-valued
model checker n times. Then the execution time would be n times as long as its
2-valued counterpart. In most applications of multi-valued model checking, each
component of the Kripke structure is similar to each other, checking these n
slices independently is obviously suboptimal to do multi-valued model checking.

To solve this problem, Chechik and others formulated the multi-valued model
checking problems with Quasi-Boolean algebra as the domain of truth values

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 80–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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[5,4,6,8], and proposed a symbolic model checking algorithm based on multi-
valued extension of Binary Decision Diagram (BDD). If several slices of Kripke
structure share the same structures, they can be shared as in the case of BDD’s.

This paper takes an alternative way: we propose a multi-valued model check-
ing algorithm based on bounded model checking (BMC) [1]. In the context of
two-valued model checking, BMC is known to be useful in finding a counterex-
amples of minimum length (and sometimes verifying specifications) efficiently
by making use of the propositional SAT solvers1. We consider the BMC-based
approach is promising in multi-valued model checking, since, in the translation
from propositional formulas to conjunctive normal forms, all common subformu-
las can be shared, hence the similarity among slices (components) of the multi-
valued Kripke structures can be captured automatically. BMC usually finds a
counterexample faster than SMC, but verification by BMC is usually slower than
SMC, so these two methods are complementary.

We propose a direct algorithm, rather than a reduction-based one. The
reduction-based one reduces multi-valued formulas into many bits of two-valued
formulas, and uses the ordinary, two-valued model checker. A merit of this ap-
proach is that we do not have to invent a new algorithm nor a new tool. A big
drawback is bad performance: if the truth domain is a finite Boolean algebra
that has 2n elements (that is, there are n slices), then we must run a two-valued
model checker n times. Instead of that we propose an algorithm which keeps
the multi-valued formulas as far as possible, and finally generates conjunctive
normal forms directly. To achieve this feature we propose a new translation from
multi-valued propositional formulas into conjunctive normal forms.

We compare the following three algorithms for multi-valued bounded model
checking:

– Naive algorithm: we reduce the Kripke structures and the specification for-
mula into n slices, and use the ordinary, two-valued BMC algorithm n times.

– Reduction-based algorithm: we generate a multi-valued propositional formula
which represents a bounded model, reduce it to sliced (two-valued) proposi-
tional formulas, and finally convert them to conjunctive normal forms (CNF).

– Direct algorithm: we generate a multi-valued propositional formula which
represents a bounded model, and translate this formula directly to CNF.

We have implemented the latter two and compared their performance, since
Naive algorithm is far less efficient. The experimental results are encouraging:
for CNF generation, Direct algorithm is more efficient in time and space than
Reduction-based one, and for SAT solving, their execution time is comparative.
Since CNF generation occupies large part of the total execution time, Direct
algorithm seems to be preferable. In addition, as the size of the lattice grows,
the merit of the direct algorithm becomes larger.

The contribution of this paper can be summarized as follows:

– We formulate Multi-valued Model Checking problems in the context of
Bounded Model Checking.

1 SAT for satisfiability.
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– We develop not only a reduction-based algorithm for mvMC but also a direct
translation algorithm.

– We compare the efficiency of the direct algorithm and the reduction one
using our prototypical implementation, which indicates the direct translation
is promising.

The rest of the article is organized as follows. Section 2 introduces multi-valued
Kripke structures (mvKS) and the semantics of multi-valued LTL as well as
multi-valued model checking. Section 3 introduces translations from multi-valued
model checking to multi-valued propositional satisfiability. The subsequent sec-
tions 4, 5 and 6 explain the translation algorithms in detail. Section 7 explains
our implementation, and gives performance measurement of experimental re-
sults. Section 8 gives conclusion and future work.

2 Basics of Multi-valued Model Checking

We introduce the basic definitions of multi-valued Model Checking (mvMC).
The formalization in this section is a slightly extended version of those found in
the literature [5,4,6,8], and readers are encouraged to refer to them for in-depth
explanation and motivating examples on this topic.

2.1 Lattice as the Domain of Truth Values

Classical model checking works for Kripke structures and specification written as
a temporal logic formula. In multi-valued model checking, both Kripke structures
and temporal logic are extended to multi-valued ones where the domain of truth
values forms a lattice with possibly more than two elements. In this paper we
use finite Boolean algebras (with 2n elements) as the domains of truth values.
Although this is a more restrictive choice than those found in the literature (for
instance, Chechik et al. studied mvMC on Quasi-Boolean algebras [5]), the focus
of this paper is in the algorithmic and implementational aspects. We will discuss
the extension to more general lattices briefly in Section 8.

We assume that L is a finite Boolean algebra with a set L of values and
operations � (meet), � (join) and ∼ (negation). An order-n Boolean algebra
is the one with 2n elements for a natural number n, and its element can be
represented by n bits (written, for instance, #1101). Then lattice operations join
and meet can be performed in a bit-wise manner. We write � def= #11...1 (top)
and ⊥ def= #00...0 (bottom).

2.2 Multi-valued Kripke Structure

Classical Kripke structures are extended to multi-valued ones as follows.

Definition 1 (Multi-valued Kripke Structure). A Multi-Valued Kripke
Structure (mvKS) over a a lattice L = 〈L,�,�,∼〉 is the tuple M = (S, I,R,
AP ,V) such that:
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– S is a finite set of states.
– I : S → L specifies the initial states with its “degree”.
– R : S × S → L is the transition relation in the lattice.
– AP is a finite set of atomic propositions.
– V : S×AP → L is the valuation function that determines the truth value of

an atom at a state.

Some authors [3] keep the transition relation defined over a two-valued lattice.
Here we gave a general definition for it.

Example 1 (mvKS). The following data determines an mvKS over order-4
Boolean algebra:

S = {s0, s1, s2, s3}

I(x) =

⎧⎨⎩#1100 if x = s0

#0011 if x = s3

⊥ otherwise

R(x, y) =

⎧⎪⎪⎨⎪⎪⎩
� if (x, y) ∈ {(s0, s1), (s1, s2), (s3, s0)}
#1010 if (x, y) = (s2, s3)
#0101 if (x, y) = (s2, s0)
⊥ otherwise

AP = {p}

V(x, p) =
{
� if x = s3

⊥ otherwise

The mvKS in Example 1 is illustrated in the left of Figure 1.
We can view an mvKS as a superposition of n classical Kripke structures,

each of which corresponds to the i-th bit of the lattice. The Kripke structure
corresponding to each bit is called a slice of the mvKS. In Figure 1, the right

s0 s1

s3 s2

Multi-valued 
Kripke structure

#1100

#0011 #1010

#0101

#1111

#1111#1111

p

s0 s1

s3 s2
p

s0 s1

s3 s2
p

s0 s1

s3 s2
p

s0 s1

s3 s2
p

0th slice 1st slice

2nd slice 3rd slice

reduction

superposition

4 slices (Kripke structures)

Fig. 1. Multi-Valued Kripke Structure and its Reduction
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figure shows the decomposition (or reduction) of the mvKS into 4 slices. It
is apparent that, in the case of order-n Boolean algebra, model checking an
mvKS is equivalent to model checking of its n slices (modulo the time and space
complexity).

We say an mvKSM is total if (
⊔

s∈S I(s)) = �, and, for all s ∈ S, (
⊔

s′∈S R(s,
s′)) = �. It is easy to see that an mvKS is total if and only if all its slices are
total and have at least one initial state. Following Clarke et al. [7], we assume
that every mvKS is total throughout the present paper.

We define a path as an infinite sequence of states, namely, a mapping π : N→
S where N is the set of natural numbers. For a path π, πj denotes the j-th suffix
(path), that is, πj(i) = π(i + j) for i ≥ 0.

2.3 Multi-valued Linear-Time Temporal Logic

We use Linear-time Temporal Logic (LTL) as the specification logic with a slight
extension to express multi-valuedness over a lattice L. We call this extension
mvLTL.

Definition 2 (Formulas of mvLTL). Let AP be a set of atomic propositions,
and p ∈ AP and � ∈ L where L = 〈L,�,�,∼〉 is a finite Boolean algebra. An
mvLTL formula is defined as follows:

φ, ψ ::= � | p | ¬φ | φ ∧ ψ | φ ∨ ψ

| Xφ | Fφ | Gφ | φUψ | φRψ

Definition 3 (Semantics of mvLTL). Let M be an mvKS as above, π be a
path onM, and φ be an mvLTL formula. We define the interpretation of φ with
respect to π in M, written (π |= φ), as an element of L as follows:

– (π |= �) def= � for � ∈ L.

– (π |= p) def= V(π(0), p) for p ∈ AP.

– (π |= ¬φ) def=∼(π |= φ).

– (π |= (φ ∧ ψ)) def= (π |= φ) � (π |= ψ).

– (π |= (φ ∨ ψ)) def= (π |= φ) � (π |= ψ).

– (π |= Xφ) def= (π1 |= φ).

– (π |= Fφ) def=
⊔

i≥0(π
i |= φ).

– (π |= Gφ) def=
�

i≥0(π
i |= φ).

– (π |= φUψ) def=
⊔

i≥0((π
i |= ψ) � (

�
j<i(π

j |= φ))).

– (π |= φRψ) def=
�

i≥0((π
i |= φ) � (

⊔
j≤i(π

j |= ψ))).

In the interpretations of temporal operators, we take infinitary meet and join,
but they always exist since we are working with finite Boolean algebras.
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2.4 Multi-valued Model Checking Problem

We define the semantics of an mvLTL formula φ with respect to M by:

(M |= φ) def=
�

π∈N→S

((∼W(π)) � (π |= φ))

where W is a mapping from the set of paths to L defined by:

W(π) def= I(π(0)) � (
�

i≥0

R(π(i), π(i + 1))).

W(π) is the weight of the path π, which represents the degree of “being a path
in M”. In particular, if the first state of the path π is not an initial state
(I(π(0)) = ⊥), then W(π) = ⊥, hence such a path does not affect the value of
M |= φ.

The multi-valued model checking problem is to decide if (M |= φ) = � holds
or not. If it holds, φ is valid in M.

A counterexample of φ with respect to M is a path π such that

(∼W(π)) � (π |= φ) �= �

or, equivalently,
W(π) � (π |= ¬φ) �= ⊥.

It is easy to see that φ is valid iff its counterexample does not exist. In the next
section, we present an algorithm to find such a counterexample, if it exists.

3 Algorithms of Multi-valued Bounded Model Checking

We aim to obtain an efficient multi-valued model checker. In the literature, the
BDD-based Symbolic Model Checking (SMC) has been extended to the MDD-
based one where MDD is a multi-valued extension of BDD [4]. However, as long
as the authors know, there has been no attempt to exemplify the multi-valued
extension of Bounded Model Checking (BMC), which is the goal of this paper.

3.1 Review of Two-Valued Bounded Model Checking

Figure 2 illustrates the process of classical Bounded Model Checking.
The process can be rephrased in words as follows.

1. Given a Kripke structure, an LTL formula φ, and a bound k > 0, it gen-
erates a propositional formula f (with state variables x0, x1, . . . , xk) which
expresses a k-bounded model of ¬φ. More precisely, f(x0, x1, . . . , xk) holds
if and only if x0, x1, . . . , xk is either a finite path or a “lasso”-shaped looping
path such that ¬φ holds along this path.

2. The formula f is converted to a conjunctive normal form (CNF) since most
SAT solvers accept CNF only.
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Kripke Structure

LTL formula

bound k >0
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SAT solvingbounded model
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satisfiable

unsatisfiable

Fig. 2. Process of Bounded Model Checking

3. Finally a SAT solver decides if the CNF is satisfiable or not. If it is satisfiable,
there is a counterexample of length k, and otherwise, k is incremented and
the same procedure is repeated.

We have to iterate this process only finitely many times, up to the complete-
ness threshold: if there is no counterexample until then, we can conclude that
the given specification is verified [1].

3.2 Overview of Multi-valued Bounded Model Checking

We desire a BMC algorithm for the multi-valued case, but still utilizing state-
of-the-art SAT solvers which works for two-valued formulas. Hence, we need
to switch from the multi-valued world to the two-valued one at some point in
Figure 2. There are three possibilities for this, which are illustrated by Figure 3.

Reflecting the three possibilities, we get three algorithms for Multi-valued
Bounded Model Checking:

– Naive Algorithm is the route 1→ 2→ 3→ 4, which first reduces the mvKS
and mvLTL formula to two-valued one.

– Reduction-based Algorithm is the route 5 → 6 → 3 → 4, which reduces the
output of the mv-formula generated by bounded model generation.

– Direct Algorithm is the route 5→ 7 → 4, which keeps the multi-valuedness
as far as possible, and directly generates CNF.

mvKS

mvLTL formula

bound k >0

mv propositional
formula

bounded
model
generation

Kripke Structure

LTL formula

bound k >0

propositional
formula

conjunctive
normal form

SAT solving
bounded
model
generation

prop-to-cnf
conversion

satisfiable

unsatisfiable

reduction reduction reduction

prop-to-cnf
conversion

1

5

2

6 7

3 4

Fig. 3. Process of Multi-Valued Bounded Model Checking
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Since performance of Naive Algorithm is the worst, we will investigate the
latter two where we use or extend the following algorithms and tools that were
developed for the two-valued case:

– For bounded model generation, we slightly extend Biere et al’s algorithm [1].
– For the conversion from propositional formula to CNF, we extend the algo-

rithm for structure-preserving conversion [12,1].
– For SAT solving, we use MiniSat solver [9].

4 Bounded Model Generation

The process of multi-valued Bounded Model Generation (Step 5 in Figure 3)
is common to Reduction-based and Direct Algorithms. It generates a multi-
valued propositional formula which represents a k-bounded model, namely, a
counterexample for the given specification of length k.

The algorithm is an extension of the two-valued case [1] and generates a
multi-valued propositional formula (mv-propositional formula), which is a propo-
sitional formula possibly with lattice elements as propositional constants.

Example 2. As examples of mv-propositional formula, we define the formulas
I ′ and R′ which correspond to I and R in Example 1.

I ′(x) def= (x = s0 ∧ #1100) ∨ (x = s3 ∧ #0011)

R′(x, y) def= (x = s0 ∧ y = s1) ∨ (x = s1 ∧ y = s2) ∨ (x = s3 ∧ y = s0)

∨ (x = s2 ∧ y = s3 ∧ #1010) ∨ (x = s2 ∧ y = s0 ∧ #0101)

Definition 4 (Bounded Model Generation). LetM, φ, and k be an mvKS,
an mvLTL formula, and a non-negative integer, resp., and x0, x1, . . . , xk be
variables for states. Then we construct a multi-valued propositional formula
[[M,¬φ]]k with free variables x0, x1, . . . , xk as follows:

[[M,¬φ]]k
def= [[M]]k ∧ [[¬φ]]k , where

[[M]]k
def= I ′(x0) ∧

k−1∧
i=0

R′(xi, xi+1)

[[¬φ]]k
def=

(
¬
(

k∨
l=0

R′(xl, xk)

)
∧ [[¬φ]]0k

)
∨

k∨
l=0

(
R′(xk, xl) ∧ l[[¬φ]]0k

)
where I ′ and R′ are the mv-propositional formulas representing I and R in M,
and the mv-formulas [[¬φ]]0k and l[[¬φ]]0k are defined in Figure 4.

As in the two-valued case, the formula [[M,¬φ]]k is constructed so that it has a
non-⊥ value if and only if x0, x1, . . . , xk form either a finite path along which ¬φ
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[[�]]ik
def
= �

[[p]]ik
def
= V ′(xi, p)

[[¬p]]ik
def
= ¬V ′(xi, p)

[[φ ∧ ψ]]ik
def
= [[φ]]ik ∧ [[ψ]]ik

[[φ ∨ ψ]]ik
def
= [[φ]]ik ∨ [[ψ]]ik

[[X φ]]ik
def
=

�
[[φ]]i+1

k , if i < k
⊥, otherwise

[[F φ]]ik
def
=
�k

j=i[[φ]]jk

[[G φ]]ik
def
= ⊥

[[φ U ψ]]ik
def
=
�k

j=i([[ψ]]jk ∧
�j−1

n=i[[φ]]nk )

[[φ R ψ]]ik
def
=
�k

j=i([[φ]]jk ∧
�j

n=i[[ψ]]nk )

(a) Translation [[φ]]ik of an mvLTL for-
mula φ without a loop.

l[[�]]
i
k

def
= �

l[[p]]ik
def
= V ′(xi, p)

l[[¬p]]ik
def
= ¬V ′(xi, p)

l[[φ ∧ ψ]]ik
def
= l[[φ]]ik ∧ l[[ψ]]ik

l[[φ ∨ ψ]]ik
def
= l[[φ]]ik ∨ l[[ψ]]ik

l[[X φ]]ik
def
= l[[φ]]

succ(i)
k

l[[F φ]]ik
def
=
�k

j=min(i,l) l[[φ]]jk

l[[G φ]]ik
def
=
�k

j=min(i,l) l[[φ]]jk

l[[φ Uψ]]ik
def
=
�k

j=i

�
l[[ψ]]jk ∧

�j−1
n=i l[[φ]]nk

�
∨

�i−1
j=l

�
l[[ψ]]jk ∧

�k
n=i l[[φ]]nk∧�j−1

n=l l[[φ]]nk

�

l[[φ Rψ]]ik
def
=
�k

j=min(i,l) l[[ψ]]jk∨�k
j=i

�
l[[φ]]jk ∧

�j
n=i l[[ψ]]nk

�
∨

�i−1
j=l

�
l[[φ]]jk ∧

�k
n=i l[[ψ]]nk∧�j

n=l l[[ψ]]nk

�

(b) Translation l[[φ]]ik of an mvLTL formula φ
for a (l, k)-loop.

Fig. 4. The inductive definition of the translation for an mvLTL formula φ in NNF
with a bound k and i ∈ N with i ≤ k, where V ′ is the formula representing V

holds in the bounded semantics, or an (l, k)-loop (the next state of xk is xl for
some l ≤ k) along which ¬φ holds in the standard semantics. Corresponding to
the two cases, the mv-formulas [[¬φ]]0k and l[[¬φ]]0k represent the semantics of ¬φ
at the state 0. Note that, following Biere et al.[1], Figure 4 defines the translation
for φ in NNF (Negation Normal Form) only, hence we need to convert ¬φ to
NNF before applying the translation in Figure 4.

The definition above is almost the same as the two-valued one found in the
literature[1] except the following points:

– The formulas I ′,R′, and V ′ are multi-valued propositional formulas, namely,
they may contain lattice elements as subformulas.

– However, the atomic formula x = sj is interpreted by either � or ⊥, namely,
it essentially remains a two-valued formula.

We say an mv-propositional formula f with free state variables x0, . . . xk is sat-
isfiable if and only if f has a non-⊥ value for some assignment of x0, . . . xk to
states. Then we have the following theorem.

Theorem 1 (Correctness of Bounded Model Generation). Let M be an
mvKS and φ be an mvLTL formula.

Soundness. If [[M,¬φ]]k is satisfiable, then there exists a counterexample of φ
in M whose length is k.
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Completeness. If φ is not valid inM, then [[M,¬φ]]k is satisfiable for some k.

Proof. For each i < n (where n is the order of Boolean algebra), the i-th
slice of [[M,¬φ]]k is identical to the resulting formula of two-valued Bounded
Model Generation for the i-th slice ofM and φ. Also the totality condition for
mvKS implies totality for sliced Kripke structures. Hence the soundness and
completeness for the multi-valued version of bounded model generation follows
from that for the two-valued version, which was proved, for instance, in [2].

5 Reduction-Based Algorithm

Reduction-based Algorithm takes the route 5→ 6→ 3→ 4 in Figure 3, and we
explain Steps 6 and 3 in this section.

Definition 5 (Reduction of mv-Propositional Formula (Step 6)). Given
a multi-valued propositional formula f , we define its i-th slice, Slicei(f), as fol-
lows:

Slicei(�)
def=

{
⊥ if the i-th bit of � is 0
� if the i-th bit of � is 1

For other cases, Slicei(f) is defined homomorphicly, for instance, Slicei(φ∧ψ) =
Slicei(φ) ∧ Slicei(ψ).

For example, for I ′(x) in Example 2, Slice1(I ′(x)) is (x = s0∧�)∨ (x = s3∧⊥),
which is simplified to (x = s0). Obviously, f is satisfiable (has a non-⊥ value) if
and only if Slicei(f) is satisfiable for some i.

The result of Step 6 is n sliced propositional formulas. We then take their
disjunction (since we are interested in satisfiability), and converts it to a CNF.
For the Prop-to-CNF Conversion (Step 3), we use the structure-preserving con-
version [12,1].

A few remarks follow.

– All common subformulas will be shared by the conversion, which is especially
useful in the context of multi-valued model checking, as we assume that slices
of one mvKS are similar to each other.

– However, sharing in Reduction-based Algorithm is not completely satisfac-
tory. Since sharing occurs only among identical subformulas, a small differ-
ence in a deeply nested subformula prohibits sharing. Suppose we reduce an
mv-formula (((#10 ∧ a) ∨ b) ∧ a) ∨ b into two slices and convert the disjunc-
tion of these slices into CNF. Although the two slices ((a ∨ b) ∧ a) ∨ b and
(b ∧ a) ∨ b are quite similar to each other, they do not share any subformu-
las except a and b. In general, if a lattice element exists in a deeply nested
subformula of the given mv-formula, sharing does not take place. In such a
case, Reduction-based Algorithm cannot generate a small CNF.



90 J.O. Andrade, Y. Kameyama

6 Direct Algorithm

We explain Step 7 in Figure 3, which is the key step of Direct Algorithm (5 →
7 → 4). This algorithm is motivated by occasional inefficiency of Reduction-
based Algorithm as explained in the previous section. In order to generate as
small CNF’s as possible, we should share as many subexpressions as possible.

Our idea is simple: rather than generating all the sliced formulas, we introduce
new propositional variables to represent slices, and leave the decision as to which
slice should be generated to the SAT solver.

Let us give an example. Example 2 uses the order-4 Boolean algebra, so we
introduce two propositional variables q0 and q1 to represent each slice number
as a binary number. For instance, the 0th slice is (¬q0∧¬q1), the 1st is (q0∧¬q1)
and so on.2 A lattice element #1100 has the bit 1 in the 0th and 1st slices, hence
it is represented by (¬q0 ∧¬q1)∨ (q0 ∧¬q1), or simply ¬q1. Then an mv-formula
(x = s0)∧#1100 is represented by (x = s0)∧¬q1. Then the whole formula I ′(x)
is represented by ((x = s0) ∧ ¬q1) ∨ ((x = s3) ∧ q1). This translation increases
the size of the resulting formula, compared to the original mv-formula, much less
than the Reduction-based algorithm does.

Definition 6 (Representation of Lattice Values). For an order-n Boolean
algebra L, let h = �log2(n)� and q0, . . . , qh−1 be propositional variables.

– For a natural number i such that 0 ≤ i < n, we define Qp(i) for 0 ≤ p < h
by:

Qp(i) =
{
qp if the p-th bit of i is 1
¬qp otherwise

and then R(i) is defined as Q0(i)∧· · ·∧Qh−1(i). Note that R(i) is the binary
representation of i in terms of q0, . . . , qh−1. For instance, if h = 5, then R(6)
is ¬q0 ∧ q1 ∧ q2 ∧ ¬q3 ∧ ¬q4, which is 00110 as a binary number (note that
q0 corresponds to the least significant bit).

– For an element � of L, we define Rep(�) =
∨

i∈One(�) R(i) where One(�) =
{i | �’s i-th bit is 1}.

Although the above representation is not quite efficient, we can make use of the
Karnaugh map technique to simplify it. Note also that, we need only �log2(n)�
propositional variables to represent slices in the order-n Boolean algebra.

Definition 7 (Direct Algorithm (Step 7)). Let f be a multi-valued propo-
sitional formula over the order-n Boolean algebra, and h = �log2(n)�.

1. Generate h propositional variables q0, . . . , qh−1.
2. Replace any lattice element � in f by Rep(�).
3. If n < 2h, let f ′ be f ∧

∧
n≤i<2h ¬R(i). If n = 2h, let f ′ be f .

4. Apply the structure-preserving conversion [12,1] to f ′.

2 Here we assume q0 corresponds to the least significant bit.
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The third step is necessary to exclude spurious slices.
The algorithm above is guaranteed to be correct. For simplicity we assume

that n = 2h for some natural number h.

Theorem 2 (Correctness of Direct Algorithm). Let f be an mv-
propositional formula over the order-n Boolean algebra with n = 2h. If the algo-
rithm for Step 7 generates a CNF c with q0, . . . , qh−1, then f is satisfiable (in the
multi-valued sense) if and only if c is satisfiable for some truth-value assignment
for q0, . . . , qh−1.

Proof. We have that f is satisfied if and only if its i-th sliced formula is satisfied
for some i. Since each slice is represented by a truth-value assignment of qj ’s,
this is equivalent to the satisfiability of the resulting CNF for some assignment
of qj ’s.

7 Experimental Results

We have implemented Reduction-based and Direct Algorithms for mvMC, and
compared their performance3. Our implementation choices are listed below.

– For Reduction-based Algorithm, we compose (fuse) Step 6 and Step 3 into a
single recursive function to gain better performance. At the same time, the
function simplifies the formula using � ∧ f ↔ f etc., and this choice forces
us to use the bottom-up variant of the prop-to-CNF conversion.

– For Direct Algorithm, we implement the top-down algorithm in Section 6.
Note that not only CNF’s but also the representation of lattice elements are
cached and shared, hence they are processed only once.

– For SAT solving, we use MiniSat solver version 1.14 using the DIMACS
format [11] as its input.

We have implemented these algorithms in the programming language OCaml,
and executed them on a machine with 1.0GB memory and Intel Celeron (2.8
GHz) processor running Linux Operating System.

s1s0 s2 s(m-1)

Fig. 5. Model-1

For the target of this experiment, we take a simple mvKS with m states,
and the order of Boolean algebra is n. The first model, Model-1, is illustrated
in Figure 5, which shows its initial state (s0 only) and the transition relation.
Transitions are essentially two-valued (with the truth values � or ⊥ only) so we

3 In fact, we have implemented many other variants, but here we list only the results
of the two most efficient algorithms.
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Table 1. Experimental Results for Model-1

Model-1 CNF gen. SAT solving CNF size
k n m red. direct red. direct one bit red. direct result

14 32 16 2 0 0.0 0.0 5470 11590 6331 unsat.
15 32 16 2 0 0.0 0.0 5889 12417 6801 sat.
30 64 32 32 0 0.5 0.1 23276 72380 26569 unsat.
31 64 32 40 0 0.2 0.0 24129 74817 27521 sat.
62 128 64 683 7 5.4 0.6 95818 488938 108615 unsat.
63 128 64 715 8 1.0 0.1 97537 496897 110529 sat.

Table 2. Experimental Results for Model-2

Model-2 CNF gen. SAT solving CNF size
k n m red. direct red. direct one bit red. direct result

10 128 64 66 1 4.4 8.2 30826 99466 33483 unsat.
12 128 64 90 2 9.7 11.1 36718 117838 39765 unsat.
14 128 64 113 2 12.5 14.0 42634 136234 46071 unsat.
16 128 64 145 2 25.4 12.2 48574 154654 52401 unsat.
18 128 64 184 2 63.7 22.9 54538 173098 58755 unsat.
20 128 64 226 2 94.4 28.6 60526 191566 65133 unsat.
22 128 64 281 3 42.8 14.0 66538 210058 71535 sat.
24 128 64 329 3 60.9 13.8 72574 228574 77961 sat.

do not write the lattice elements as their values. The valuation function only is
multi-valued:

V(si, p) = #0· · ·010· · ·0

with the i-th bit being 1. Then F p is valid in this model if m ≥ n, and not valid
otherwise, in which case there exists a counterexample of length k = m − 1.
The other two models, Model-2 and Model-3, are small variants of Model-1: in
Model-2, R(si, sj) = � if and only if i < j ≤ ((i + 3) mod m), and in Model-3,
R(si, sj) = � if and only if i < j ≤ ((i + 8) mod m). In addition, the valuation
function in Model-3 is modified to: V(si, p) = #0· · ·01· · ·10· · ·0 with the i-th to
i + 8-th bits being 1.

Tables 1, 2 and 3 show several experiments for these models. In the table,
“red.” means Reduction-based Algorithm and “direct” Direct one. The column
“CNF gen.” shows the execution time (in seconds) before SAT solving (Steps 6
and 3 for Reduction-based one and Step 7 for Direct one), and the column “SAT
solving” shows the execution time (in seconds) for SAT solving for their output
CNF’s. The column “CNF size” shows the number of clauses in the generated
CNF4 where the column “one bit” shows the CNF size of one slice. The col-
umn “result” shows the result of SAT solving where “sat.” means the algorithm
finds a counterexample for the given bound k, the model with m states and the

4 The number of propositional variables and the overall size of CNF are almost linear
in the number of clauses in all cases.
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Table 3. Experimental Results for Model-3

Model-3 CNF gen. SAT solving CNF size
k n m red. direct red. direct one bit red. direct result

10 32 128 95 5 20.5 32.1 142808 138977 138320 unsat.
12 32 128 124 5 25.9 46.9 164664 169968 165423 unsat.
14 32 128 157 7 35 81.7 191032 197152 191893 unsat.
16 32 128 204 9 22.9 0.2 217424 224360 218387 sat.
18 32 128 289 13 24.1 29.8 243840 251592 244905 sat.

order-n lattice. It should be noted that our implementations show the correct
answers for all cases.

We can understand the results as follows.

– Efficient implementation of mv-BMC is possible. Compared with the one-bit
case, both algorithms can generate CNF’s whose size is much smaller than
n times of the CNF size of one-bit case. For instance, the bottom line of
the first table shows that Direct Algorithm generated a CNF with 110,529
clauses which is only 13% larger than that generated by the one-bit slice
(note that n = 128 for this experiment).

– For the comparison between Reduction-based and Direct Algorithms, the
latter is better in CNF-generation: its execution time is always much faster
(and the difference becomes huge when the order n becomes larger), and the
size of generated CNF is smaller or roughly the same.

– The execution time of the SAT solver for the generated CNF is not easily
compared between the two methods. Reduction-based one is usually better
for smaller n’s despite the fact that it generates a bigger CNF. However, the
difference is not very big, and Direct method is sometimes better.

– Since CNF generation phase takes longer time than SAT solving, the total
execution of Direct Algorithm is better than that of Reduction-based one.
Since our experiments are for relatively small models, and our implementa-
tion may be suboptimal, we cannot generalize this statement at the moment.
However, these results are surely encouraging.

8 Conclusion and Future Directions

We have explored the possibility to obtain an efficient Multi-valued Bounded
Model Checker, and for this purpose, we have formalized Reduction-based and
Direct Algorithms with correctness guarantee. We have implemented these al-
gorithms (together with other ones) and successfully shown that Multi-Valued
Bounded Model Checking is surely possible. Also, we have compared their per-
formance: to the extent we have tested, Direct Algorithm seems to be better
than Reduction-based one, but this last point should be examined further.

For future work, we need to introduce into our framework various optimiza-
tions found in the context of two-valued BMC. We have already started in
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investigating some of such optimizations, which are easily integrated to our al-
gorithms. Another obvious thing to do is to extend the lattice to more general
one such as Quasi-Boolean algebras, which seems not too difficult, after Chechik
and others’ work [5]. Experiments with larger, more realistic Kripke structures
and finding good application areas are also important.

Acknowledgments. We would like to thank the anonymous referees for in-
sightful comments. The authors were supported in part by JSPS Grant-in-Aid
for Scientific Research 20650003.
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Abstract. We propose an approach for analyzing non-termination and reacha-
bility properties of recursive programs using a combination of over- and under-
approximating abstractions. First, we define a new concrete program semantics,
mixed, that combines both natural and operational semantics, and use it to de-
sign an on-the-fly symbolic algorithm. Second, we combine this algorithm with
abstraction by following classical fixpoint abstraction techniques. This makes
our approach parametrized by different approximating semantics of predicate
abstraction and enables a uniform solution for over- and under-approximating
semantics. The algorithm is implemented in YASM, and we show that it can es-
tablish non-termination of non-trivial C programs completely automatically.

1 Introduction

Automated predicate abstraction is one of the key techniques for extending finite-state
model-checking to software. It combines automated construction of a finite abstract
model with automated analysis by model-checking and iterative abstraction refinement.
Traditionally, predicate abstraction is an over-approximation of a program and thus is
biased towards establishing correctness of safety properties. To exploit the bug detec-
tion ability of model-checkers and to extend the scope of abstract model-checkers to
richer properties, recent research has proposed abstract analysis that combines both
over- and under-approximations [9, 15, 25, 26, 4, 18, 17]. Although such a combination,
which we call exact-approximation, has been shown to be effective in practice [17,19],
until now this line of research has focused exclusively on analyzing non-recursive pro-
grams. In this paper, we propose a novel approach to extend such over- and under-
approximating analyses to recursive programs. Our approach has been implemented in
a software model-checker YASM. We illustrate it on non-termination and reachability
analysis of several C programs, including the benchmarks from BEBOP [6], VERA [1],
and MOPED [14, 8], the Ack program from [10] and a buggy version of Quicksort
from [14]. To our knowledge, this is the first time that non-termination of such C pro-
grams was established completely automatically.

As a motivation, we review an over-approximation-based approach for model-
checking of non-recursive programs and its limitations. Assume we want to check
whether the ERROR label is reachable in the C program EX0 shown in Figure 1(a). This
safety property is expressed in CTL as ϕ : AG (pc �= ERROR). An over-approximating
abstraction α(EX0) of EX0 using the predicate p : x > 0 is shown in Figure 1(b),
where ‘*’ is interpreted as a non-deterministic choice. α(EX0) is a finite boolean model

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 95–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1. x=read(); y=read();
2. if(x>0){
3. while(x>0) {
4. x=x+1;
5. if(x<=0) ERROR;}
6. } else
7. while(y>0) y=y-1;
8. END;

1. p = *;
2. if(p){
3. while(p) {
4. p = p?true:*;
5. if(!p) ERROR;}
6. } else
7. while(*) p = p;
8. END;

(a) (b)

Fig. 1. (a) A program EX0, and (b) its over-approximation α(EX0) using predicate p : x > 0

which over-approximates the original program: it contains all feasible and some in-
feasible (or spurious) executions. For example, α(EX0) has an execution which gets
stuck in the while(*) loop on line 7, but EX0 does not have the corresponding exe-
cution. Thus, if a universal temporal property, i.e., in the one expressed in ACTL, holds
in α(EX0), it also holds in EX0. For example, our property ϕ is satisfied by α(EX0),
which means ERROR is unreachable in EX0. However, when a property is falsified by
α(EX0), the result cannot be trusted since it may be caused by a spurious behavior.
For example, consider checking whether EX0 always terminates, i.e., whether it satisfies
ψ : AF (pc = END). ψ is falsified on our abstraction, but this result cannot be trusted
due to the infeasible non-terminating execution around the while(*) loop on line 7.

The falsification (or refutation) ability of predicate abstraction can be dramatically
improved by using an under-approximating abstraction, where each abstract behavior
is simulated by some concrete one. In this case, if a bug (or an execution) is present in
the abstract model, it must exist in the concrete program. For example, the predicate p
must always be true in the while(p) loop at line 3 (assuming int is interpreted as
mathematical integers). Thus, an under-approximation based on predicate p is sufficient
to establish that EX0 is non-terminating.

There has been a considerable amount of research exploring abstract analysis based
on a combination of over- and under-approximating abstractions, e.g., [9, 15, 25, 26, 4,
18, 17]. Compared with an analysis based on over-approximation alone, there are two
main differences:

1. Such a combination requires a non-boolean abstract model that can represent both
over- and under-approximations at the same time. Examples of such models are
Modal Transition Systems [21] (equivalently, 3-valued Kripke structures [9]) and
Mixed Transition Systems [13] (equivalently, 4-valued Kripke structures [18]).
These models use two types of transitions: may for over-approximation, and must
for under-approximation.

2. It requires new model-checking algorithms for these models, such that a formula is
evaluated to either true or false, which are trusted, or to unknown, which indicates
that the abstraction is not precise enough for a conclusive analysis.

Although both theoretical and practical combinations of exact-approximation with au-
tomated CounterExample Guided Abstraction Refinement have been explored, they are
all limited to analyzing non-recursive programs.

One way to extend such analysis to recursive programs is to continue to mirror the
traditional approach, i.e., (a) extend push-down systems to support combined over-
and under-approximations, and (b) develop analysis algorithms for this new modeling
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formalism. While this approach seems natural, we are not aware of any existing work
along this line.

In this paper, we propose an alternative solution to this problem. Our approach does
not require the development of new specialized types of push-down systems, nor new
specialized analysis algorithms. The key to our approach is to separate the analysis of
recursive programs from abstraction of the data domain. We accomplish this by intro-
ducing a new concrete program semantics, which we call mixed, and using it to de-
rive efficient symbolic algorithms for the analysis of non-termination and reachability
properties of finite recursive programs. These algorithms share many insights with tech-
niques in related work [8, 6, 1], i.e., they are functional [24] in terms of interprocedural
analysis, and apply only to stack-independent properties. The novelty of our approach
is the formalization of the algorithms as equational systems, and the parametrization of
the algorithms by data abstractions. This makes it possible to share the same analysis
algorithms for over-, under-, and exact-approximations! In particular, we demonstrate
that in combination with exact-approximation [17], our abstract analysis supports both
verification and refutation.

The rest of this paper is organized as follows. We present preliminaries and fix our
notation in Sec. 2. We present a simple programming language PL and its natural, and
operational semantics in Sec. 3. In Sec. 4, we introduce mixed semantics and derive
symbolic on-the-fly algorithms for analyzing recursive programs with finite data do-
main for reachability and non-termination. In Sec. 5, we parametrize the algorithms of
Sec. 4 by abstraction for handling programs with infinite data domain. Experiments are
reported in Sec. 6, and we conclude in Sec. 7. Additional illustrations are given in the
Appendix.

2 Preliminaries

Valuation and Relations. A valuation σ on a set of typed variables V is a function that
maps each variable x in V to a value σ(x) in its domain. We assume that valuations
extend to expressions in the obvious way. The domain of σ is called a valuation type
and is denoted by τ(σ). For example, if σ = {x �→ 5, y �→ 10} then τ(σ) = {x, y}.
The projection of σ on a subset U ⊆ V is denoted by σ|U .

The set of all valuations over V is denoted by ΣV � {σ | τ(σ) = V }. Note that Σ∅
is well-defined and consists of the unique empty valuation. A relation r on two sets of
variables U and V is a subset of ΣU ×ΣV . The relational type of r is U → V , denoted
by τ(r). For example, the type of x′ = y is from y to x, that is, τ(x′ = y) = {y} →
{x}. In this paper, we use several simple relations: true is the true relation, id is the
identity relation (e.g., id(x) � x′ = x), decl is a relation for variable declaration, and
kill — for variable elimination. Formally, they are defined as follows, with the format
name ‘�’ expression ‘:’ type:

true(U → V ) � ΣU ×ΣV : U → V decl(V ) � true(∅ → V ) : ∅ → V

kill(V ) � true(V →∅) : V →∅ id(V ) � {(σ, σ′) ∈ ΣV ×ΣV | σ=σ′} : V → V

Operations on relations are defined in Table 1, where ∨, ◦ and × are asynchronous,
sequential and parallel composition, respectively, assume is a restriction of identity
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Table 1. Relational operations

Operation Assumption Definition Type
r1 ∨ r2 τ(r1) = τ(r2) λa, a′ · r1(a, a′) ∨ r2(a, a′) τ(r1)

r1 ◦ r2
τ(r1) = U → V

∧ τ(r2) = V → W
λa, a′ · ∨a′′ (r1(a, a′′) ∧ r2(a

′′, a′)) U → W

r1 × r2

τ(r1) = U → V1

∧ τ(r2) = U → V2

∧ V1 ∩ V2 = ∅
λa, a′ · r1(a, a′|V1) ∧ r2(a, a′|V2) U → (V1 ∪ V2)

assume(Q) λa, a′ · Q(a) ∧ id(τ(Q))(a, a′) τ(Q) → τ(Q)

[W ]r τ(r) = U → V λa, a′ · r(a|U , a′) (U ∪ W ) → V

(W → Z)r τ(r) = U → V ∧ U ⊆ W ∧ (Z \ V ) ⊆ W ([W ]r) × ([W ](id(Z \ V ))) W → Z

relation to a set Q of valuations, [·] is variable introduction, and (· → ·) is scope ex-
tension. Note that × combines the outputs of two relations, and [·] extends the source
of a relation with new variables. Together these operators allow constructing complex
relations from simple ones. For example, [{x, y}](x′ = y)×[{x, y}](y′ = x) is the re-
lation (x′ = y) ∧ (y′ = x) with the type {x, y} → {x, y}. Directly composing x′ = y
and y′ = x without variable introduction, i.e., (x′ = y)×(y′ = x), is invalid because
τ(x′ = y) = {y} → {x} and τ(y′ = x) = {x} → {y} have different source types.
Scope extension extends a relation by combining it with the identity on new variables.
For example, ({x, y} → {x, y})(x′ = x + 1) is (x′ = x + 1) ∧ (y′ = y). The
assumptions for scope extension ensure that any new variable introduced in the desti-
nation of r must also be available in the source. For example, the extension ({x, y} →
{x, z})(x′ = x+ 1) is not allowed since z is not available in the source of the relation.

For a relation r with a type U → V , we define the pre-image of Q ⊆ ΣV w.r.t. r,
pre[r] : 2ΣV → 2ΣU , as

pre[r](Q) � λa · ∨a′ (r(a, a′) ∧Q(a′))

Reachability and Non-termination. A Kripke structure K = 〈S,R〉 is a transition
system, where S is a set of states andR ⊆ S × S is a transition relation.

Let p be an atomic proposition, and Sp � {s ∈ S | s |= p} be the set of states
satisfying p. A reachability property (EF p in CTL) is true in a state s if there exists a
path from s to a state in Sp. A non-termination property (EG p in CTL) is true in a state
s if there exists an infinite path starting at s and contained in Sp.

The set RS of all states satisfying EF p is the least solution to equation reach, and
the set NT of all states satisfying EG p is the greatest solution to equation non-term:

RS = Sp ∪ pre[R](RS) (reach) NT = pre[R∩ Sp](NT ) (non-term)

3 Programming Language and Semantics

We use a simple imperative programming language PL which allows non-determinism
and recursive function calls. We assume that (a) functions have a set of call-by-value
formal parameters and a set of return variables; (b) each variable has a unique name
and explicit scope; (c) there are no global variables (they can be simulated by local
variables); and (d) a type expression is associated with each statement and explicitly
defines the pre- and post-variables of the statement.
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(a)

1: f1() {
2: en1: skip;
3: var x,y;
4: x,y := 3,0;
5: x := f2(x);
6: skip;
7: while (x==2 && y<=0) {
8: y := f2(y);
9: }
10: kill x,y;
11: ex1: }

12: f2(z):z {
13: en2: skip;
14: while (z < 0) {
15: z := z+1;
16: }
17: z := z-1;
18: ex2: }

(b)

ex1

10

7 8

9

6

5

4

3

en1

ex2

17

14 15

16

en2

skip

var x,y

x,y:=3,0

skip

[x = 2 ∧ y ≤ 0]

skip[!(x = 2 ∧ y ≤ 0)]

kill x,y

skip

[z<0]

z:=z+1
skip

[z ≥ 0]

z:=z-1

func-call
x:=f2(x)

func-call
y:=f2(y)

ret
x:=z

ret
y:=z

call
z:=x

call
z:=y

Fig. 2. (a) A program EX1 and (b) its ICFG

Syntax. Let var denote variables, func function identifiers, e expressions, and T valua-
tion types. The syntax of PL is defined as follows:

Atomic ::= skip | var+ := e+ | assume(e) | var var+ | kill var+ | (T → T )Atomic
Stmt ::= Atomic | Stmt ; Stmt | Stmt ‖Stmt | if(e) then Stmt else Stmt

| while(e) Stmt | var+ := func(var+) | (T → T )Stmt
Fdef ::= func(var+) : var+ Stmt
Prog ::= Fdef+

We use bold lower case letters to represent vectors, e.g., a statement x := e means an
assignment x1, · · · , xn :=e1, · · · , en. For a function f with declaration f(p1, · · · , pn) :
r1, · · · , rk, pf and rf to denote the formal parameters and the return variables of f ,
respectively. var(e) denotes the variables of e, and we assume that each program has a
“main” function f1, not called by other functions.

Base Semantics. Let Σ denote the set of all valuations in a PL program. With each
atomic statement S, we associate base semantics that interprets the statement as a rela-
tion [[S]] ⊆ Σ ×Σ on valuations of program variables:

[[skip]] � id(∅) [[var x]] � decl[x] [[kill x]] � kill[x] [[(U → V )(S)]] � (U → V )[[S]]

[[x := e]] � {(σ, σ′) | τ (σ) = var(e) ∧ σ′ = [xi �→ σ(ei)]}
[[assume(e)]] � {(σ, σ′) | (σ, σ′) ∈ id(var(e)) ∧ σ |= e}

Note that for the type cast statement (U → V )S, we only consider those cases where
the assumptions for the scope extension are satisfied.

Interprocedural Control Flow Graph. A PL program is represented by an Interproce-
dural Control Flow Graph (ICFG) [24]. An ICFG is a labeled graph G = 〈Loc,Edge,
π〉, where Loc is a finite set of locations, Edge ⊆ Loc × Loc is a set of edges, and
π labels each edge with a program statement. For example, the ICFG for the program
EX1 (see Fig. 2(a)) is shown in Fig. 2(b). In ICFGs, (a) each function has a unique entry
(en) and exit (ex); (b) there is a self-loop at ex of f1 to ensure existence of an infinite
execution; (c) each function call (func-call) is: a call edge, where the values of actual
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Table 2. The rules of operational and mixed semanics. U is the set of local variables in the scope
of the function call; [[f ]] is natural semantics, pf are the formals, and rf are the returns of f .

Statement π(〈k, l〉) Operational Semantics r〈k,l〉 Mixed Semantics rm
〈k,l〉

func-call edge (U → U) x := f(a) ∅ (U → U) ([[pf := a]] ◦ [[f ]] ◦ [[x := rf ]])

call edge S ≡ (U → x) x := e Γt = s ∧ (σk, σl) ∈ [[S]] [[S]]

ret edge (U → V ) x := r

let (c, σc).Γc = Γs in

Γt = Γc ∧ l = ret(c)
∧ σl = σc[{xi �→ σk(ri)}]

∅

Intraprocedural: S Γt = Γs ∧ (σk, σl) ∈ [[S]] [[S]]

parameters of the callee function are assigned to the formal parameters, a function body,
and a ret edge, where the return values are assigned to the variables of the caller.

We assume that call and ret edges are uniquely determined by each other. For a call
edge (k, en) and the corresponding ret edge (ex, l), k is the call location, call(l) � k,
and l is the return location, ret(k) � l.

Operational Semantics of a program P = 〈Loc,Edge, π〉 is a transition system
K = 〈S,R〉. Each state in S is a stack of activation records where each record is
of the form 〈pc, σ〉, where pc ∈ Loc is a program counter, corresponding to a particular
control location in P , and σ ∈ ΣV (pc) is the valuation for variables in the scope of pc
(denoted by V (pc)). For a state s = (k, σk).Γ , (k, σk) is the top element of s, top(s).
For a pair of states s = (k, σk).Γs and t = (l, σl).Γt, the transition relationR is defined
asR(s, t) � 〈k, l〉 ∈ Edge∧ r〈k,l〉(s, t), where r〈k,l〉 is a deterministic (but not neces-
sarily total) relation on S at the edge 〈k, l〉, as defined in the 2nd column of Table 2. An
intraprocedural statement only modifies the top activation record, and a statement on a
call or a ret edge pushes a new record or pops one, respectively. The transition relations
on func-call edges are empty, i.e., these edges are removed.

Natural Semantics [22] (a.k.a. big-step) of a block of code S is a relation [[S]] ⊆ Σ×Σ
between the input and output of S: i.e., (σ, σ′) ∈ [[S]] iff the execution of S on σ
terminates and results in σ′. Natural semantics of a program P ≡ f1, · · · , fn is a set of
relations, one per function, i.e., [[P ]] = 〈[[f1]], · · · , [[fn]]〉.

The semantic rules for PL are defined compositionally on the syntax using the func-
tion [[·]]ρ, where ρ is an environment mapping free fixpoint variables (used for loops and
functions) to relations with an appropriate type. Natural semantics for atomic statements
is the same as base semantics; the other cases are:

[[S1; S2]]ρ � [[S1]]ρ ◦ [[S2]]ρ [[μX · S(X)]]ρ � lfp
�
λZ · [[S(X)]]ρ{X 	→Z}

�
[[S1 ‖ S2]]ρ � [[S1]]ρ ∨ [[S2]]ρ [[x := f(a)]]ρ � [[pf := a; Xf ;x := rf ]]ρ

[[X]]ρ � ρ(X) [[while(e) S]]ρ � [[μXw · if(e) then (S; Xw)]]ρ

[[if(e) then S1 else S2]]ρ � [[(assume(e); S1) ‖ (assume(¬e); S2)]]ρ

where lfp denotes for least fixpoint, τ(ρ(Xf )) = pf → rf and τ(ρ(Xw)) = τ([[S]]ρ).
A program P ≡ f1, · · · , fn induces the system of equations

ρ(Xfi) = [[Sfi ]]ρ (1 ≤ i ≤ n) (nat)

Natural semantics of P is the least fixpoint solution to this system, e.g., for the program
EX1, natural semantics of f2 is (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1).
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Theorem 1. Let P ≡ f1, · · · , fn be a program and K = 〈S,R〉 be its operational
semantics. A pair of activation records (〈k, σk〉, 〈l, σl〉) is in [[fi]] iff there exists a path
s0, · · · , sm in K such that s0 = 〈k, σk〉.Γ0 and sm = 〈l, σl〉.Γm, such that Γ0 = Γm, k
and l are en and ex of fi, respectively, and for all other sj = 〈p, σp〉.Γj either Γj �= Γ0

or p is not ex of fi.

4 Reachability and Non-termination Analysis

We now turn our attention to checking reachability and non-termination of recursive
programs. Reachability can be reduced to finding the least fixpoint solution to the equa-
tion reach w.r.t. a transition system of operational semantics of a program (see Sec. 2).
Similarly, non-termination corresponds to finding the greatest solution to the equation
non-term. However, since operational semantics explicitly exposes a potentially un-
bounded call stack at each state, these equations must be solved over an infinite tran-
sition system (even when all program variables range over finite domains). Thus, the
exact fixpoint solution may not be computable.

However, many program properties depend only on the top of the call stack: i.e., they
are stack-independent. Analysis of such properties can be done using stack-free opera-
tional semantics in which everything except for the top activation record is abstracted
away. In this section, we apply this idea to the analysis of EF p (reachability) and EG p
(non-termination) properties, where p is a proposition that depends only on the top ac-
tivation record. Without loss of generality, we further assume that p only depends on
program locations, i.e., it is of the form pc = x.

4.1 Mixed Semantics

We start by defining a stack-free operational semantics, called mixed semantics, for PL
programs which removes the call stack but preserves reachability and non-termination
properties w.r.t. operational semantics of Sec. 3.

Intuitively, mixed semantics is a combination of operational and natural semantics,
in which a program is executed as follows: an atomic statement is executed as usual; a
function call x := foo(y) is executed as a non-deterministic choice between (a) execut-
ing foo, i.e., updating the top activation record according to natural semantics of foo,
and (b) entering the body of foo, and forgetting all but the top activation record. Upon
reaching the end of the main function, the execution enters a self-loop indicating the
end of the program, and blocks at all other exit locations since it does not remember the
origin of the call. For example, consider mixed execution of the program EX1 starting
from line 5 with x = 3 and y = 0. At this point, the execution can either (a) move to
line 6 and decrease x by one according to natural semantics of f2, or (b) move to en2
(line 13), assign z to 3, and forget about x and y. Within f2, the execution continues
until it blocks at ex2 (line 18) with z = 2.

Formally, mixed semantics of a program P = 〈Loc,Edge, π〉 is a Kripke struc-
ture Km = 〈Sm,Rm〉, where each state is a single activation record 〈pc, σ〉. For
a pair of states s = 〈k, σk〉 and t = 〈l, σl〉, the transition relation is Rm(s, t) �
(〈k, l〉 ∈ Edge) ∧ rm

〈k,l〉(σk, σl), where rm
〈k,l〉 is a relation on valuations, as defined in
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the 3rd column of Table 2. Note that rm
e for ret edges is empty, which is equivalent to

removing those edges from the ICFG.
Mixed semantics preserves reachability and non-termination properties w.r.t. opera-

tional semantics. If an execution of a function f reaches a state s under the latter, then
either s is a location within f , or it is inside some other function that f calls (directly or
indirectly). The non-deterministic treatment of function calls in the former ensures that
both of these cases are covered. Similarly, if there exists an infinite execution starting
inside f , then either this execution lies within f , or f calls a function that does not
return the control back to f . Again, both cases are captured by mixed semantics.

Theorem 2. Let K and Km be operational and mixed semantics of a given program,
respectively, and p be a propositional formula on control locations. Then, (K |= EF p)
⇔ (Km |= EF p) and (K |= EG p)⇔ (Km |= EG p).

When all variables of a given program P range over finite domains, mixed semantics of
P is a finite Kripke structure. Theorem 2 implies the following analysis algorithm:

Step 1: compute natural semantics of P by solving equation nat;
Step 2: construct the structure Km following the rules of mixed semantics;
Step 3: solve equations reach or non-term on Km for reachability or non-termination,

respectively.
While sound and complete, this algorithm is not efficient, since it relies on the (poten-
tially unnecessary) computation of “full” natural semantics of all functions (for Step
2) and the construction of “full” mixed semantics before the analysis of the property
can even begin. As a trivial example, consider checking EF(pc = 5) on the program
EX1. Since reachability of line 6 is irrelevant for this analysis, there is no need to con-
struct the transition relation corresponding to func-call edge 〈5, 6〉 and thus no need to
compute natural semantics of f2. Following this observation, in the rest of this section,
we show that the three steps of the above algorithm can be combined into an on-the-fly
algorithm that only computes the necessary parts of mixed and natural semantics.

4.2 On-the-Fly Reachability

Intuitively, the analysis of EF p properties only needs a part of mixed semantics that
is used for solving equation reach, and that, in turn, drives the computation of the nec-
essary parts of natural semantics. To illustrate, consider checking EF(pc = 8) on EX1.
Natural semantics of f2 is [[f2]] ≡ (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1). After a
few iterations, the reachability algorithm computes a pre-condition Q ≡ x = 2∧ y ≤ 0
for reaching line 8 from line 6. To determine a pre-condition for Q w.r.t. a function call
x:=f2(x) at line 5, it needs to compute pre[rm

〈5,6〉](Q) = (x = 3 ∧ y ≤ 0), where
rm
〈5,6〉 ≡ (y′ = y)∧((x > 0 ∧ x′ = x− 1) ∨ (x ≤ 0 ∧ x′ = −1)) is the instantiation of

[[f2]] to the call site. However, instead of using the “full” version of [[f2]], it is sufficient to
compute a pre-condition that assumes Q as a post-condition, i.e., to restrict rm to x′ = 2
(the relevant part of Q) yielding r̂m ≡ y′ = y∧x = 3∧x′ = 2. r̂m is an instantiation of
z = 3∧z′ = 2 in the context of the call, obtained by (a) convertingQ to a postcondition
of f2 by taking its pre-image over the ret edge (which eliminates y and renames x to z),
and (b) restricting [[f2]] to this post-condition: [[f2]]◦(assume(z = 2)) ≡ z = 3∧z′ = 2.
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We now formalize the above intuition. Recall that V (k) stands for the set of
variables in the scope of a location k. Let l be the return location of a func-
tion call to fi, Q ⊆ ΣV (l) be a set of valuations at l, and the corresponding
ret edge 〈exi, l〉 be labeled with x := rfi . Then, function prop(〈exi, l〉, Q) �
pre [[[x := rfi ; (x→ V (l))var (V (l) \ x)]]] (Q) turns Q into a post-condition of fi.
Here, the pre-image w.r.t. var undeclares (or removes) all variables that are not
changed by the call, and the pre-image w.r.t. ret edge turns the post-condition on
x into the one on rfi .

Let RS : Loc → 2Σ map each location k to a subset of ΣV (k), and, as in Sec. 3,
let ρ be the semantics environment, mapping each fixpoint variable to a relation of
an appropriate type. The on-the-fly algorithm for reachability analysis is the equation
system reach-otf:

RS(k) =

�
ΣV (k) if k |= p (k ∈ Loc)

RS(k) ∪
�

l∈succ(k) pre[r̂m
〈k,l〉] (RS(l)) otherwise

ρ(Xfi) = [[Sfi ]]ρ ◦ assume
��

l∈succ(exi)
prop (〈exi, l〉, RS(l))

�
(i ∈ [1..n])

(reach-otf)

where succ are the successors of a node in the ICFG, Sfi is the body of fi, and for
S ≡ π(〈k, l〉), r̂m

〈k,l〉 is defined as:

r̂m
〈k,l〉 =

�
(U → U) ([[pf := a]] ◦ ρ(Xfi) ◦ [[x := rf ]]) if S ≡ (U → U) x := f(a)

[[S]] otherwise

This system is a combination of nat and reach, where prop is used to propagate the
reachability information to the computation of natural semantics. Since reachability and
natural semantics are both least solutions to equations reach and nat, respectively, we
need the least solution to the above equation as well.

The following theorem shows that the analysis based on equation system reach-otf is
sound, and computes only the necessary part of natural semantics.

Theorem 3. Let RS↓ and ρ↓ be the least solutions to equation system reach-otf. Then,

1. RS↓ is the least solution to equation reach on Km ;

2. ∀i ∈ [1..n] · ρ↓(Xfi) ⊆ [[fi]];

3. for any ρ, if RS↓ is the least solution to the RS equations in reach-otf w.r.t. ρ, then ∀i ∈
[1..n] · ρ↓(Xfi) ⊆ ρ(Xfi).

Part 1 of Theorem 3 shows that RS↓ is the solution for the reachability analysis; part 2
– that ρ↓ is sound w.r.t. natural semantics of fi; and part 3 – that ρ↓ only contains the
information necessary for the analysis.

Since we need the least solution for both RS(k) and ρ(Xfi) equations, it can be ob-
tained by any chaotic iteration [11] and thus is independent of the order of computation
of RS and ρ. Interestingly, the algorithm derived from reach-otf is a pre-image-based
variant of the post-image-based reachability algorithm of BEBOP [6], and is similar to
the formalization of backward analysis with wp described in [3].
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4.3 On-the-Fly Non-termination

The derivation of the on-the-fly algorithm for the analysis of non-termination, nt-otf,
proceeds similarly, and is a combination of systems nat and non-term:

NT (k) =

�
∅ if k �|= p (k ∈ Loc)�

l∈succ(k) pre[r̂m
〈k,l〉](NT (l)) otherwise

ρ(Xfi) = [[Sfi ]]ρ ◦ assume
��

l∈succ(exi)
prop (〈exi, l〉, NT (l))

�
(i ∈ [1..n])

(nt-otf)

where NT : Loc → 2Σ maps each location k to a subset of ΣV (k), and succ, Sfi

and r̂m are the same as those in reach-otf. Since non-termination requires the greatest
solution to non-term, and natural semantics – the least solution to nat, in nt-otf, we need
the greatest solution to NT (k), and the least solution to ρ(Xfi) equations, respectively.

The following theorem shows that the non-termination algorithm based on nt-otf is
sound and computes only the necessary part of natural semantics.

Theorem 4. Let NT↑ and ρ↓ be the greatest solution for NT and the least solution for
ρ in system nt-otf, respectively. Then,

1. NT↑ is the greatest solution to the equation non-term on Km ;
2. ∀i ∈ [1..n] · ρ↓(Xfi) ⊆ [[fi]];
3. for any ρ, if NT↑ is the greatest solution to the NT equations in nt-otf w.r.t. ρ, then ∀i ∈

[1..n] · ρ↓(Xfi) ⊆ ρ(Xfi).

As in Theorem 3, part 1 of Theorem 4 shows soundness of non-termination, and parts
2 and 3 – soundness and necessity of computation of natural semantics, respectively.

Unlike reachability, non-termination requires different fixpoint solutions for NT and
ρ, and thus the order of computation can influence the result. For example, consider
checking EG(pc �= ex1) on EX1. Initially, lines 7, 8, and 9 are associated with all the
valuations on x and y, i.e., NT(7) = NT(8) = NT(9) = Σ{x,y}, and ρ(f2) is empty,
which is not the partial semantics of f2 restricted to NT(9). If the computation of NT
proceeds along the function call y:=f2(y) using the initial value of ρ(f2), NT(8) is
assigned ∅. Eventually, NT(7) = NT(8) = NT(9) = ∅, i.e., the algorithm incorrectly
concludes that any execution starting at lines 7, 8 or 9 terminates.

The correct order for computing the solution is such that the pre-image of a set Q
w.r.t. a function call to f has to be delayed until the derivation of ρ(Xf ) w.r.t. Q is
finished. Nonetheless, since this order is only restricted to func-call edges, the order of
the computation elsewhere can be arbitrary. This can be used to avoid deriving “full”
natural semantics. Going back to the previous example, one can first computeNT along
all edges except for func-call edges, which will assign NT (9) with x = 2∧ y ≤ 0, and
then compute natural semantics of f2 restricted to the post-condition z ≤ 0. Similarly,
although initially NT (6) is assigned Σ{x,y}, NT (6) = (x = 2∧y ≤ 0) after the initial
computation of NT , which means that only partial natural semantics of f2 restricted to
the post-condition z = 2 is needed.

In this section, we have presented mixed semantics – a stack-free operational seman-
tics of PL, and showed how it can be used to check reachability and non-termination of
programs with a finite data domain. Although the use of such semantics is not new, our
formalization provides a basis for a tight integration between abstraction and analysis,
which is described in the next section.
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5 Abstract Reachability and Non-termination Analysis

Here, we follow the framework of abstract interpretation (AI) [12] to derive an abstract
version of the concrete analysis described in Sec. 4. To do so, we require two abstract
domains: abstract sets As whose elements approximate sets in 2Σ , and abstract relations
Ar whose elements approximate relations in 2Σ×Σ . These domains must be equipped
with abstract version of all of the operations used in equations reach-otf and nt-otf.
Finally, the framework of AI ensures that the solution to an abstract equation is an
approximation of the solution to the corresponding concrete equation. In what follows,
we identify the necessary abstract operations on As and Ar, and then show how to adapt
predicate abstraction for our algorithm.

Abstract Domains and Operations. The domain of abstract sets As must be equipped
with a set union ∪ (used in the reachability computation) and equality (to detect the
fixpoint convergence). The domain of abstract relations Ar must be equipped with (a)
a pre-image operator to convert abstract relations to abstract transformers over As, (b)
asynchronous and sequential compositions of abstract relations (used in natural seman-
tics), (c) scope extension (used to instantiate a function call using natural semantics
of a function), and (d) equality (to detect the fixpoint convergence). Furthermore, we
need an assume operator that maps an abstract set to a corresponding abstract relation;
and, to apply the abstraction directly to the source code, a computable version of ab-
stract base semantics [[·]]α that maps each atomic statement S to an abstract relation that
approximates [[S]] (the concrete semantics of S).

Predicate Abstraction. In the rest of this section, we show how the domain of predicate
abstraction [16, 5, 18] can be extended with the necessary abstract operations to yield
abstract reachability and non-termination algorithms.

Predicate abstraction provides domains for abstracting elements, sets, and relations
of valuations. Let V be a set of variables, and P be a set of predicates over V . The
elementary domain of predicate abstraction over P , denoted ΘP , is the set of all con-
junctions of literals over P . For example, if P = {x > 0, x < y}, then ¬(x > 0) and
(x > 0) ∧ ¬(x < y) are in ΘP . An element of θ ∈ Θ approximates any valuation
σ ∈ ΣV that satisfies all literals in θ. For example, σ = 〈x �→ 2, y �→ 2〉 is approxi-
mated by x > 0, and is also approximated by (x > 0) ∧ ¬(x < y) more precisely.

The elementary domain is lifted to sets and relations in an obvious way: sets over
Θ represent concrete sets, and relations over Θ – concrete relations. This extension can
be either over- or under-approximating, i.e., a collection of concrete valuations corre-
sponding to an abstract set either over-approximates or under-approximates a concrete
set. The over- and under-approximating interpretations can also be combined into a
single exact-approximation using sets and relations over Belnap logic [18].

Abstract versions of set union, set and relation equality, pre-image, and base se-
mantics for over-approximating predicate abstraction have been defined (e.g., [5]).
For example, if X and Y are two abstract sets, their abstract union is X ∪α Y �
λz · X(z) ∨ Y (z). In [18, 17], we show that these operations also naturally extend to
under-approximating and exact predicate abstractions. In the latter case, conjunctions
and disjunctions, e.g., ∨ in the definition of ∪α, are interpreted in Belnap logic. We
define the missing abstract relational operations assumeα, asynchronous (∨α), and se-
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int g;

void main(){
level_1();
if (g<0){

ERROR: ;
}
END: ;
}

void level_i(){
int t = 0;
g = -1 * g;
if (g<=0){

t = t+1;
} else {

level_i+1();
g = -1 * g;
level_i+1();

}
g = -1 * g;}

void level_n(){
int t = 0;
g = -1 * g;
if (g<=0){
t = t+1;

} else {

<stmt>

}
g = -1 * g;}

<stmt>:=
g = -1 * g;

<stmt>:=
level_n();
g = -1 * g;
level_n();

(a)

(b)

(c)

Fig. 3. (a) The template for experiments. (b) <stmt> for template T1(n). (c) <stmt> for T2(n).

quential (◦α) compositions similarly, using the corresponding definitions from Sec. 2,
e.g., if r1 and r2 are abstract relations, then their abstract asynchronous composition is
r1 ∨α r2 � λs, t · r1(s, t) ∨ r2(s, t), where ∨ is interpreted in Boolean logic for over-
and under-approximating abstraction, and in Belnap logic for exact abstraction.

In concrete semantics, scope extension is used to extend a relation to additional vari-
ables. That is, if r is a relation of type U → V , then (U → U)r is an extension of r to
variables in U \V . In the abstract semantics, relations are defined over predicates; thus,
abstract scope extension must extend a relation to additional predicates. To do this, we
assume that the elementary abstract domain Θ corresponding to U can be decomposed
into two independent abstract domains: one for V and the other – for U \ V , i.e., Θ
is defined using predicates that either range only over V , or only over U \ V . Then,
abstract scope extension (· → ·)α, defined as in Table 1, is a sound approximation of
concrete scope extension.

Theorem 5. Abstract operations assumeα, ∨α, ◦α, and (· → ·)α as defined above are
sound approximations of their concrete counterparts.

In the context of our on-the-fly algorithms, the assumption on abstract scope extension
means that predicates that are used to abstract valuations at a return location l of a
function call x :=f(a) are either defined only over x, or only over other variables in the
scope of l. For example, predicates x = 2 and y ≤ 0 can be used to abstract valuations
at line 6 in the program EX1, but predicate x > y cannot. This is not a severe restriction
in practice since a function can always be extended to accept additional parameters and
return them without modification.

To summarize, both over- and under-approximating predicate abstractions can be
used to soundly abstract reachability and non-termination analysis. The choice depends
on the desired algorithm. For example, over-approximation is necessary to establish un-
reachability, whereas under-approximation – to establish non-termination. Since exact
predicate abstraction combines them, it can be used for both verification and refutation.

6 Experiments

The technique described in this paper has been implemented in our symbolic software
model checker YASM [19]. YASM is written in JAVA; it uses CVC Lite [7] to approxi-
mate program statements and CUDD [27] as a decision diagram engine. We have also
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Table 3. Experimental results: overall analysis time in seconds

T1(n) T2(n)
n EF (pc = ERROR) (reach) EG (pc �= END) (non-terminate) ¬EF (pc = ERROR) (unreach)

20 6.5 4.9 4.3
50 11.7 8.9 6.3
100 20.3 20.3 11.1
200 36.7 25.2 27.6
300 47.6 34.4 42.1
400 68.1 43.2 64.5
500 105.2 60.6 86.6

extended our proof-based refinement approach [17] to handle natural semantics of func-
tions. In the rest of this section, we report on a preliminary evaluation of this implemen-
tation. All of the experiments have been conducted on a 2xP4Xeon-3.6GHz server and
are available at http://www.cs.toronto.edu/fm/yasm/yasm-tests.zip. Our
experiments demonstrate YASM’s ability to analyze reachability and non-termination
of recursive programs using exact-approximation. In summary:

1. We run YASM on template programs similar to those in the BEBOP and MOPED

benchmarks. The experiment shows that the analysis time for both reachability and
non-termination increases linearly w.r.t. the number of functions in a program.

2. We show that abstract analysis based on exact-approximation supports both verifi-
cation and refutation.

3. We compare YASM with MOPED and VERA (BEBOP does not do non-termination),
and show that YASM can prove non-termination of the original buggy Quicksort
algorithm, whereas MOPED and VERA cannot.

To evaluate the reachability algorithm, we have used the template program T1(n)
which is a variant of the one used for BEBOP in [6]. T1(n) is the result of replacing
<stmt> in the template shown in Fig. 3(a) with the statements in Fig. 3(b). It consists
of a main function and n sub-functions, where main calls level 1, and level i
calls level i+1 twice if the global variable g is positive. Since g is not initialized, its
initial value is arbitrary. Although this program has no recursion, inlining function calls
increases its size exponentially, making the analysis infeasible for a sufficiently large
n. We checked the reachability property EF (pc = ERROR) with values of n ranging
between 20 and 500, and measured the overall analysis time (including parsing, ab-
straction, model-checking, and refinement). The results are shown in the second column
of Table 3. Since our technique analyzes each function separately, the analysis time in-
creases linearly w.r.t. the number of functions (n), as expected. In all these cases, YASM

was successful in proving reachability, and discovered predicates g < 0, g > 0 and
g ≤ 0. While the template T1(n) is similar to the one used in [6], there is a fundamen-
tal difference: BEBOP assumes an over-approximating abstract semantics of Boolean
programs and cannot conclusively verify that the ERROR label is reachable with these
predicates. YASM uses exact-approximation which results in a conclusive analysis.

We also checked the template program T2(n), obtained by replacing <stmt> in the
template in Fig. 3(a) with statements in Fig. 3(c). Non-termination and unreachability
results are presented in the third and fourth columns of Table 3, respectively. As ex-
pected, the analysis time increases linearly with the number of functions.

http://www.cs.toronto.edu/fm/yasm/yasm-tests.zip
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void main (){
int mx, my;
ack (mx, my);
END:; }

int ack (int x, int y){
int r1, n;
if (x > 0) {

if (y > 0) {
y = y - 1;
n = ack (x, y);

} else { n = 1; }
r1 = ack (x, n);
return r1;

} else {
r1 = y + 1;
return r1;

}}

void main(){
int x;
foo(x);
while(x!=0) {

if (x<0) {
x = -1 * x;
x = x+2;

} else {
x = -1 * x;
x = x+3;

}}
END: ;}

void foo (int y){
y = -1 * y;
if (y < 0) {

foo (y);
}}

void main (){
int mleft, mright;
quicksort (mleft, mright);
END:;}

void quicksort (int left, int right){
int lo, hi;
if (left >= right) return;
lo = left; hi = right;
while (lo <= hi) {

if (nondet()) {
lo = lo+1;

} else {
if(lo!=left || hi!=right)

hi = hi-1;
}}

quicksort (left, hi);
quicksort (lo, right); }

(a) (b) (c)

Fig. 4. Non-terminating programs: (a) Ack; (b) Shift; (c) Buggy Quicksort

For non-termination, we have also applied YASM to several examples inspired by
[10], in particular, on programs Ack and Shift, shown in Fig. 4(a) and (b), respec-
tively. YASM was able to automatically prove non-termination of Ack in 2.1 seconds
and discovered predicates y > 0, n > 0, x > 0, mx > 0 and my > 0. Analysis
of Shift took 1.9 seconds and yielded predicates y < 0, x < 0, x > 3, x = 0
and x = 3. Finally, we have compared YASM to MOPED [14] and VERA [1] on the
buggy Quicksort example from [14] in Fig. 4(c), where nondet() represents non-
deterministic choice. YASM has established non-termination of Quicksort in 10 sec-
onds, finding 7 predicates. Note that both MOPED and VERA only apply to programs
with finite data domain, and the analysis in [1] and [14] had to restrict the number of
bits used by each variable, while YASM did not need any such restriction.

7 Conclusion and Related Work

This paper presented a model-checking technique for analysis of reachability and
non-termination properties of recursive programs. The technique is based on a stack-
free mixed operational semantics of programs that uses natural semantics and non-
determinism to eliminate the call stack while preserving stack-independent properties.
We show how to compute only the necessary part of natural semantics during the analy-
sis, leading to on-the-fly algorithms for analysis of reachability and non-termination of
programs with finite data domains. We then use the framework of abstract interpreta-
tion [12] to combine our algorithms with data abstractions, making them applicable to
programs with infinite data domains as well. Although we specialize our approach to
predicate abstraction, we believe that it can be extended to other abstract domains as
well. We have implemented a combination of this approach with exact predicate ab-
straction in YASM [19] which supports both verification and refutation of properties.
Our experiments indicate that YASM scales to programs with a large number of func-
tions and is able to establish non-termination of non-trivial (although small) examples.
In particular, we were able to automatically prove non-termination of Ack [10] and
Quicksort [14] without any restrictions on the data domain.
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In the terminology of interprocedural program analysis [24], our approach is func-
tional since it uses natural semantics to handle function calls. Most other model-checking
approaches for recursive programs (e.g., [23,6,1]) are functional as well, and only com-
pute the necessary part of natural semantics. Our reachability algorithm can be seen as
a pre-image-based variant of the RHS algorithm [23], as implemented in BEBOP [6].

Both MOPED [14] and VERA [1] can check non-termination of programs with finite
data domains. Their algorithms are comparable with our non-termination algorithm.
However, it is unclear how to combine their techniques with an arbitrary abstraction,
whereas it is quite natural in our approach. Note that an ability to detect non-termination
of over-approximating Boolean programs is of limited utility since over-approximation
often introduces spurious non-terminating computations. Thus, non-termination of an
over-approximation says nothing about non-termination of the concrete program.

Jeannet and Serwe [20] apply abstract interpretation to derive abstract analysis of
recursive programs by different abstractions of the call stack. Their approach is also pa-
rameterized by an arbitrary data abstraction. However, the authors restrict their attention
to reachability (i.e., invariance) properties, and do not report on an implementation.

Our interest in non-termination is motivated by the work on termination (e.g., [10]).
We view our approach as complementary to that. As illustrated by our experiments,
YASM can prove non-termination of non-trivial programs. However, its ability to prove
termination is limited to cases where termination can be established by a constant rank-
ing function. In the future, we plan to investigate how the strengths of the two ap-
proaches can be combined in a single algorithm.

In this paper, we have restricted our attention to stack-independent properties. We
hope to extend our approach to a more general class of properties, e.g., the ones express-
ible in CARET [2]. Finally, the refinement strategies that are currently implemented in
YASM were originally developed for reachability analysis only. While they were suf-
ficient for our non-termination experiments, we believe that strategies specifically tai-
lored to the non-termination analysis are essential for scaling the tool to large programs.
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Abstract. Existing program analysis tools that implement abstraction
rely on saturating procedures to compute over-approximations of fix-
points. As an alternative, we propose a new algorithm to compute an
over-approximation of the set of reachable states of a program by replac-
ing loops in the control flow graph by their abstract transformer. Our
technique is able to generate diagnostic information in case of property
violations, which we call leaping counterexamples. We have implemented
this technique and report experimental results on a set of large ANSI-
C programs using abstract domains that focus on properties related to
string-buffers.

1 Introduction

Abstract Interpretation [1] is a framework for the approximative analysis of dis-
crete transition systems, and is based on fixpoint computations. It is frequently
applied to verify reachability properties of software programs. Abstract interpre-
tation is performed with respect to an abstract domain, which is an approximate
representation of sets of concrete values. Instances are numerical abstract do-
mains such as intervals [1] and polyhedra [2], or specialized domains as, for
example, a domain specific for heap-manipulating programs. In abstract inter-
pretation, the behavior of a program is evaluated over the abstract domain using
an abstract transformer. This is iterated until the set of abstract states saturates,
i.e., an abstract fixpoint is reached. If certain formal constraints between the ab-
stract and concrete domains are met, this abstract fixpoint is guaranteed to be
an over-approximation of the set of reachable states of the original program.

A main issue in abstract interpretation is the number of iterations required
to reach the abstract fixpoint. On large benchmarks, a thousand iterations is
commonly observed, even when using simplistic abstract domains. Thus, many
tools implementing abstract interpretation apply widening in order to accelerate
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an award from IBM research.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 111–125, 2008.
© Springer-Verlag Berlin Heidelberg 2008



112 D. Kroening et al.

convergence. Widening, however, may yield imprecision, and thus, the abstract
fixpoint may not be strong enough to prove the desired property [3].

We propose a novel technique to address this problem, which uses a symbolic
abstract transformer [4]. A symbolic abstract transformer for a given program
fragment is a relation over a pair of abstract states ŝ, ŝ′ that holds if the fragment
transforms ŝ into ŝ′. We propose to apply the transformer to perform sound
summarization, i.e., to replace parts of the program by a smaller representative.
In particular, we use the transformer to summarize loops and (recursion-free)
function calls.

The symbolic abstract transformer is usually computed by checking if a given
abstract transition is consistent with the semantics of a statement [4,5]. Our
technique generalizes the abstract transformer computation and applies it to
program fragments: given an abstract transition relation, we check if it is con-
sistent with the program semantics. This way, we can tailor the abstraction to
each program fragment. In particular, for loop-free programs, we precisely en-
code their semantics into symbolic formulas. For loops, we exploit the symbolic
transformer of the loop body to infer invariants of the loop. This is implemented
by means of a sequence of calls to a decision procedure for the program logic.

When applied starting from the inner-most loops and the leaves of the call
graph, the run-time of the resulting procedure becomes linear in the number of
looping constructs in the program, and thus, is often much smaller than the num-
ber of iterations required by the traditional saturation procedure. We show sound-
ness of the procedure and discuss its precision compared to the conventional ap-
proach on a given abstract domain. In case the property fails, a diagnostic coun-
terexample can be obtained, which we call leaping counterexample. This diagnos-
tic information is often very helpful for understanding the nature of the problem,
and is considered a major plus for program analysis tools. Additionally, our tech-
nique localizes the abstract domains: we use different abstract domains for differ-
ent parts of the code. This further improves the scalability of the analysis.

We implemented the procedure in a tool called LoopFrog and applied it
to search for buffer-overflow errors in well-known UNIX programs. Our exper-
imental results demonstrate that the procedure is more precise than any other
tool we compared with. Moreover, it scales to large programs even if complex
abstract domains are used. In summary, the contributions of this paper are:

– We introduce a new technique for program abstraction by using symbolic
abstract transformers for summarization of loops and function calls. The
technique is sound and has the advantage that the run-time is linear in the
number of looping constructs.

– In contrast to most other implementations of abstract interpretation, our
analysis technique produces counterexamples which can be used to diagnose
the property violation. Moreover, the counterexamples can be used to refine
the abstract domains.

Related work. Other work on analysis using summaries of functions is quite
extensive (see a nice survey in [6]) and dates back to Cousot and Halbwachs [2],
and Sharir and Pnueli [7]. In a lot of projects, function summaries are created for
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alias analysis or points-to analysis, or are intended for the analysis of program
fragments. As a result, these algorithms are either specialized to particular prob-
lems and deal with fairly simple abstract domains or are restricted to analysis
of parts of the program. An instance is the summarization of library functions
in [6]. In contrast, our technique aims at computing a summary for the entire
program, and is applicable to complex abstract domains. The principal novelty
of our technique is that it is a general-purpose loop summarization method that
(unlike many other tools) is not limited to special classes of faults.

Similarly to our technique, the Saturn tool [8] computes a summary of a
function with respect to an abstract domain using a SAT-based approach to
improve scalability. However, in favor of scalability, Saturn simply unwinds loops
a constant number of times, and thus, bugs that require more iterations are
missed. Similarly to Saturn, the Spear tool [9] summarizes the effect of larger
functions, which improves the scalability of the tool dramatically. However, as
in the case of Saturn, loops are unwound only once.

SAT-solvers, SAT-based decision procedures, and constraint solvers are fre-
quently applied in program verification. Instances are the tools Alloy [10] and
CBMC [11]. The SAT-based approach is also suitable for computing abstractions,
as, for example, in [8,5,4] (see detailed discussion in Sec. 2.3). The technique re-
ported in this paper also uses the flexibility of a SAT-based decision procedure
for a combination of theories to compute loop summaries.

One of the benefits of our approach is its ability to generate diagnostic infor-
mation for failed properties. This is usually considered a distinguishing feature
of model checking [12], and is rarely found in tools based on abstract interpreta-
tion. Counterexamples aid the diagnosis of errors, and may also be used to filter
spurious warnings.

2 Background

2.1 Notation

In this section we introduce the basic concepts of abstract interpretation [1,13].
Let U denote the universe where the values of the program variables are drawn
from. The set L of elementary commands consists of tests LT and assignments
LA, i.e., L = LT ∪̇LA, where a test q ∈ LT is a predicate over dom(q) ⊆ U .
An assignment e ∈ LA is a total map from dom(e) ⊆ U to U . Given q ∈ LT ,
we denote with q the predicate over dom(q) such that q(u) = ¬q(u) for all
u ∈ dom(q).

A program π is formalized as the pair 〈U, G〉, where U is the universe and G
is a program graph [13]. A program graph is a tuple 〈V, E, vi, vo, C〉, where

– V is a finite non-empty set of vertices called program locations.
– vi ∈ V is the initial location.
– vo ∈ V is the final location.
– E ⊆ V ×V is a non-empty set of edges; E∗ denotes the set of paths, i.e., the

set of finite sequences of edges.
– C : E → L associates a command with each edge.
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p=a;

while(*p!=0){

if(*p==’/’)

*p=0;

p++;

}

p++
*p==0

p=a

vo

vi

*p=0

*p==’/’*p!=0

*p!=’/’

Fig. 1. The running example

We write L∗ for the set of sequences of commands. Given a program π, the set
paths(π) ⊆ L∗ contains the sequence C(e1), . . . , C(en) for every 〈e1, .., en〉 ∈ E∗.

Example 1. We use the program fragment in Figure 1 as running example. On
the left-hand side, we provide the C version. On the right-hand side, we depict
its program graph.

The (concrete) semantics of a program is given by the pair 〈A, τ〉, where

– A is the set of assertions of the program, where each assertion P ∈ A is a
predicate over U ; A(⇒, false, true,∨,∧) is a complete Boolean lattice;

– τ : L → (A → A) is the (concrete) predicate transformer.

In forward semantic analysis, τ represents the strongest post-condition. The
analysis of a program determines which assertions are true in each program
location by simulating the program from the initial location to that particular
program location.

2.2 Abstract Interpretation

An abstract interpretation is a pair 〈Â, t〉, where Â is a complete lattice Â(",
⊥,�,�,�), and t : L → (Â → Â) is a predicate transformer. Note that 〈A, τ〉 is
a particular abstract interpretation called the concrete interpretation. In the fol-
lowing, we assume that for every command c ∈ L, the function t(c) is monotone
(which is the case for all natural predicate transformers). Given a predicate
transformer t, the function t̃ : L∗ → (Â → Â) is recursively defined as follows:

t̃(p)(φ) =
{

φ if p is empty
t̃(e)(t(q)(φ)) if p = q; e for some q ∈ L, e ∈ L∗.

Example 2. We continue the running example (Fig. 1). Consider an abstract
domain where abstract states are a four-tuple 〈pa, za, sa, la〉. The first member,
pa is the offset of the pointer p from the base address of the array a (i.e. p− a in
our example), the Boolean za holds if a contains the zero character, the Boolean
sa holds if a contains the slash character, la is the index of the first zero character
if present. The predicate transformer t is defined as follows:
t(p = a)(φ) = φ[pa := 0] for any assertion φ;
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t(∗p != 0)(φ) = φ ∧ (pa �= la) for any assertion φ;
t(∗p == 0)(φ) = φ ∧ za ∧ (pa ≥ la) for any assertion φ;
t(∗p ==′ /′)(φ) = φ ∧ sa for any assertion φ;
t(∗p !=′ /′)(φ) = φ for any assertion φ;

t(∗p = 0)(φ) =

⎧⎨⎩
⊥ if φ ⇒ ⊥;
φ[za := true, la := pa] if φ ⇒ (pa < la), φ �= ⊥;
φ[za := true] otherwise

t(p++)(φ) = φ[pa := pa + 1] for any assertion φ.
(We used φ[x := v] to denote an assertion equal to φ apart from the variable x
that takes value v.)

Given a program π, an abstract interpretation 〈Â, t〉, and an element φ ∈ Â, we
define the Merge Over all Paths MOPπ(t, φ) as the element

⊔
p∈paths(π) t̃(p)(φ).

Given two complete lattices Â(",⊥,�,�,�) and Â′("′,⊥′,�′,�′,�′), the pair
of functions 〈α, γ〉, with α : Â → Â′ and γ : Â′ → Â is a Galois connection iff α
and γ are monotone and 1) for all φ ∈ Â, φ " γ(α(φ)), and 2) for all φ′ ∈ Â′,
α(γ(φ′)) "′ φ′.

An abstract interpretation 〈Â, t〉 is a correct over-approximation of the con-
crete interpretation 〈A, τ〉 iff there exists a Galois connection 〈α, γ〉 such that
for all φ ∈ Â and P ∈ A, if P ⇒ γ(φ), then α(MOPπ(τ, P )) " MOPπ(t, φ) (i.e.,
MOPπ(τ, P ) ⇒ γ(MOPπ(t, φ))).

2.3 A SAT-Based Abstract Transformer

In order to implement abstract interpretation for a given abstract domain, an
algorithmic description of the abstract predicate transformer t(p) for a specific
command p ∈ L is required. Reps et al. describe an algorithm that implements
the best possible (i.e., most precise) abstract transformer for a given finite-height
abstract domain [4]. Graf and Säıdi’s algorithm for constructing predicate ab-
stractions [14] is identified as a special case.

The algorithm has two inputs: a formula Fτ(q), which represents a command
q ∈ L symbolically, and an assertion φ ∈ Â. It returns the image of the predicate
transformer t(q)(φ). The formula Fτ(q) is passed to a decision procedure, which
is expected to provide a satisfying assignment to the variables. The assignment
represents one concrete transition P, P ′ ∈ A. The transition is abstracted into
a pair φ, φ′ ∈ Â, and a blocking constraint is added to remove this satisfying
assignment. The algorithm iterates until the formula becomes unsatisfiable. An
instance of the algorithm for the case of predicate abstraction is the implemen-
tation of SatAbs described in [5]. SatAbs uses a propositional SAT-solver as
decision procedure for bit-vector arithmetic. The procedure is worst-case expo-
nential in the number of predicates, and thus, alternatives have been explored.
In [15,16] a symbolic decision procedure generates a symbolic formula that rep-
resents the set of all solutions. In [17], a first-order formula is used and the
computation of all solutions is carried out by a SAT modulo theories (SMT)
solver. In [18], a similar technique is proposed where BDDs are used in order to
efficiently deal with the Boolean component of Fτ(q).
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3 Summarization Using Symbolic Abstract Transformers

3.1 Abstract Summarization

The idea of summarization is to replace a code fragment, e.g., a procedure of
the program, by a summary, which is a (smaller) representation of the behavior
of the fragment. Computing an exact summary of a program (fragment) is in
general undecidable. We therefore settle for an over-approximation. We formalize
the conditions the summary must fulfill in order to have a semantics that over-
approximates the original program.

We extend the definition of a correct over-approximation (see Sec. 2) to pro-
grams. Given two programs π and π′ on the same universe U , we say that
π′ is a correct over-approximation of π iff for all P ∈ A(⇒, false, true,∨,∧),
MOPπ(τ, P ) ⇒ MOPπ′(τ, P ).

Definition 1 (Abstract Summary). Given a program π, and an abstract in-
terpretation 〈Â, t〉 with a Galois connection 〈α, γ〉 with 〈A, τ〉, we denote the ab-
stract summary of π by Sum〈Â,t〉(π). It is defined as the program 〈U, G〉, where
G = 〈{vi, vo}, {〈vi, vo〉}, vi, vo, C〉 and C(〈vi, vo〉) is a new (concrete) command
a such that τ(a)(P ) = γ(MOPπ(t, α(P ))).

Lemma 1. If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, the abstract sum-
mary Sum〈Â,t〉(π) is a correct over-approximation of π.

We now discuss algorithms for computing abstract summaries. Our summariza-
tion technique is first applied to particular fragments of the program, specifically
to loop-free and single-loop programs. In Section 3.4, we use these procedures as
subroutines to obtain the summarization of an arbitrary program. We formalize
code fragments as program sub-graphs.

Definition 2. Given two program graphs G = 〈V, E, vi, vo, C〉 and G′ = 〈V ′, E′,
v′i, v

′
o, C

′〉, G′ is a program sub-graph of G iff V ′ ⊆ V , E′ ⊆ E, and C′(e) = C(e)
for every edge e ∈ E′.

3.2 Summarization of Loop-Free Programs

Obtaining MOPπ(t, φ) is as hard as assertion checking on the original pro-
gram. Nevertheless, there are restricted cases where it is possible to represent
MOPπ(t, φ) using a symbolic predicate transformer.

Let us consider a program π with a finite number of paths, in particular, a
program whose program graph does not contain any cycle. A program graph
G = 〈V, E, vi, vo, C〉 is loop free iff G is a directed acyclic graph.

In the case of a loop-free program π, we can compute a precise (not abstract)
summary by means of a formula Fπ that represents the concrete behavior of π.
This formula is obtained by converting π to a static single assignment (SSA)
form, whose size is linear in the size of π. The details of this step are beyond the
scope of this paper; see [11].
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Example 3. We continue the running example (Fig. 1). The symbolic transformer
of the loop body π′ is represented by:
((∗p =′ /′ ∧ a′ = a[∗p = 0]) ∨ (∗p �=′ /′ ∧ a′ = a)) ∧ (p′ = p + 1).

Recall the abstract domain from Ex. 2. We can deduce that:

1. if m < n, then MOPπ′(t, (pa = m ∧ za ∧ (la = n) ∧ ¬sa)) = (pa = m + 1 ∧
za ∧ la = n ∧ ¬sa)

2. MOPπ′(t, za) = za.

This example highlights the generic nature of our technique. For instance, case
1 of the example cannot be obtained by means of predicate abstraction because
it requires an infinite number of predicates. Also, the algorithm presented in [4]
cannot handle this example because assuming the string length has no a-priori
bound, the lattice of the abstract interpretation has infinite height.

3.3 Summarization of Single-Loop Programs

We now consider a program that consists of a single loop.

Definition 3. A program π = 〈U, G〉 is a single-loop program iff G = 〈V, E, vi,
vo, C〉 and there exists a program sub-graph G′ and a test q ∈ LT such that

– G′ = 〈V ′, E′, vb, vi, C
′〉 with

• V ′ = V \ {vo},
• E′ = E \ {〈vi, vo〉, 〈vi, vb〉},
• C′(e) = C(e) for all e ∈ E′,
• G′ is loop free.

– C(〈vi, vb〉) = q, C(〈vi, vo〉) = q.

vo

vb

q
q

G′

vi

The following can be seen as the “abstract interpretation analog” of Hoare’s rule
for while loops.

Theorem 1. Given a single-loop program π with guard q and loop body π′, and
an abstract interpretation 〈Â, t〉, let ψ be an assertion satisfying MOPπ′(t, t(q)
(ψ)) " ψ and let 〈Â, tψ〉 be a new abstract interpretation s.t.

MOPπ(tψ, φ) =
{

t(q)(ψ) if φ " ψ
� elsewhere.

If 〈Â, t〉 is a correct over-approximation, then 〈Â, tψ〉 is a correct over-approxi-
mation as well.

In other words, if we apply the predicate transformer of the test q and then the
transformer of the loop body π′ to the assertion ψ, and we obtain an assertion
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at least as strong as ψ, then ψ is an invariant of the loop. If a stronger asser-
tion φ holds before the loop, the predicate transformer of q applied to φ holds
afterwards.

Theorem 1 gives rise to a summarization algorithm. Given a program fragment
and an abstract domain, we heuristically provide a set of formulas that encode
that a (possibly infinite) set of assertions ψ are invariant (for example, x′ = x
encodes that every ψ defined as x = c, with c a value in the domain U , is an
invariant); we apply a decision procedure to check if the formulas are satisfiable.
The construction of the summary is then straightforward: given a single-loop
program π, an abstract interpretation 〈Â, t〉, and an invariant ψ for the loop
body, let 〈Â, tψ〉 be the abstract interpretation as defined in Theorem 1. We
denote the summary Sum〈Â,tψ〉(π) by SlS(π, Â, tψ) (Single-Loop Summary).

Corollary 1. If 〈Â, t〉 is a correct over-approximation of 〈A, τ〉, then SlS(π, Â,
tψ) is a correct over-approximation of π.

Example 4. We continue the running example. Recall the abstract domain in
Ex. 2. Let π′ denote the loop body of the example program and let q denote the
loop guard. By applying the symbolic transformer from Ex. 3, we can check that
the following conditions hold:

1. MOPπ′(t, t(q)(φ)) " φ for any assertion ((pa ≤ la) ∧ za ∧ ¬sa).
2. MOPπ′(t, t(q)(φ)) " φ for the assertion za.

Thus, we summarize the loop with the following predicate transformer:

(za → z′a) ∧ (((pa ≤ la) ∧ za ∧ ¬sa) → ((p′a = l′a) ∧ z′a ∧ ¬s′a)) .

3.4 Summarization for Arbitrary Programs

We now describe an algorithm for over-approximating an arbitrary program. Like
traditional algorithms (e.g. [19]), the dependency tree of program fragments is
traversed bottom-up, starting from the leaves. The code fragments we consider
may be function calls or loops. We treat function calls as arbitrary sub-graphs
(see Def. 2) of the program graph, and do not allow recursion. We support
irreducible graphs using loop simulation [20].

Specifically, we define the sub-graph dependency tree of a program π = 〈U, G〉
as the tree 〈T, >〉, where

– the set of nodes of the tree are program sub-graphs of G;
– for G1, G2 ∈ T , G1 > G2 iff G2 is a program sub-graph of G1 with G1 �= G2;
– the root of the tree is G;
– every leaf is a loop-free or single-loop sub-graph;
– every loop sub-graph is in T .

Algorithm 1 takes a program as input and computes its summary by following the
structure of the sub-graph dependency tree (Line 1). Thus, the algorithm is called
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Summarize(π)1

input : program π = 〈U, G〉
output : over-approximation π′ of π
begin2

〈T, >〉 :=sub-graph dependency tree of π;3

πr := π;4

for each G′ such that G > G′ do5

〈U, G′′〉:=Summarize(〈U,G′〉);6

πr := πr where G′ is replaced with G′′;7

update 〈T, >〉;8

if πr is a single loop then9

〈Â, t〉 := choose abstract interpretation for πr;10

ψ := test invariant candidates for t on πr;11

π′ := SlS(πr, Â, tψ);12

else13

/* πr is loop-free */

π′ := Sum〈A,τ〉(πr);14

return π′
15

end16

Algorithm 1: Generic program summarization

recursively on the sub-program until a leaf is found (Line 1). If it is a single loop,
an abstract domain is chosen (Line 1) and the loop is summarized as described
in Section 3.3 (Line 1). If it is a loop-free program, it is summarized with a
symbolic transformer as described in Section 3.2 (Line 1). The old sub-program
is then replaced with its summary (Line 1) and the sub-graph dependency tree
is updated (Line 1). Eventually, the entire program is summarized.

Theorem 2. Summarize(π) is a correct over-approximation of π.

The precision of the over-approximation is controlled by the precision of the
symbolic transformers. However, in general, the computation of the best ab-
stract transformer is an expensive iterative procedure. We use the inexpensive
syntactic procedure for loop-free fragments. Loss of precision only happens when
summarizing loops, and greatly depends on the abstract interpretation chosen
in Line 1.

Note that Algorithm 1 does not limit the selection of abstract domains to any
specific type of domains, and that it does not iterate the predicate transformer
on the program. Furthermore, this algorithm allows for localization of the sum-
marization procedure, as a new domain may be chosen for every loop. Once the
domains are chosen, it is also easy to monitor the progress of the summarization,
as the number of loops and the cost of computing the symbolic transformers are
known – another distinguishing feature of our algorithm.

The summarization can serve as an over-approximation of the program. It can
be trivially analyzed to prove unreachability, or equivalently, to prove assertions.



120 D. Kroening et al.

3.5 Leaping Counterexamples

Let π′ denote the summary of the program. The program π′ is a loop-free se-
quence of symbolic summaries for loop-free fragments and loop summaries. A
counterexample for an assertion in π′ follows this structure: when traversing
symbolic summaries for loop-free fragments, it is identical to a concrete coun-
terexample. Upon entering a loop summary, the effect of the loop body is given
as a single transition in the counterexample: we say that the counterexample
leaps over the loop.

Example 5. Consider the summary from Ex. 4. Suppose that in the initial con-
dition, the buffer a contains a null terminating character in position n and no
′/′ character. If we check that, after the loop, pa is greater than the size n, we
obtain a counterexample with p0

a = 0, p1
a = n.

The leaping counterexample may only exist with respect to the abstract in-
terpretations used to summarize the loops, i.e., they may be spurious in the
concrete interpretation. Nevertheless, they provide useful diagnostic feedback to
the programmer, as they show a (partial) path to the violated assertion, and
contain many of the input values the program needs to read to violate the as-
sertion. Furthermore, spurious counterexamples can be eliminated by combining
our technique with counterexample-guided abstraction refinement, as we do have
an abstract counterexample.

4 Experimental Evaluation

We implemented our loop summarization technique in a tool called LoopFrog

and report our experience using abstract domains tailored to the discovery of
buffer overflows on a large set of ANSI-C benchmarks.1 The loop summarization
(as described in Section 3.3) relies on the symbolic execution engine of CBMC.
We use bit-blasting to SAT as a decision procedure, but any SMT-BV solver is
applicable as well.

We use Goto-CC
2 to extract model files from C source code; full ANSI-C is

supported. The model files essentially contain a symbol table and a control flow
graph. LoopFrog performs a field-sensitive pointer analysis, which is used to
add assertions about pointers. The program is then passed to the loop summa-
rization and, finally, the CBMC assertion checker.

The current implementation of LoopFrog is able to automatically check
user-supplied assertions of arbitrary form. In addition to these, array and dy-
namic object bounds checks, pointer validity, and string termination assertions
are added automatically, where required. Also, abstract models for string-related
functions from the ANSI-C library are provided and added if necessary.

1 Note that our technique is a general-purpose loop and function call summarization
method. It is not limited to special classes of faults such as buffer overflows.

2 http://www.cprover.org/goto-cc/

http://www.cprover.org/goto-cc/
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4.1 An Abstract Domain for Strings

The choice of the abstract domain for the loop summarization has a significant
impact on the performance of the algorithm. A carefully selected domain gen-
erates fewer invariant candidates and thus speeds up the computation of a loop
summary. Besides, the abstract domain has to be sufficiently expressive to retain
enough of the semantics of the original loop to show the property.

In order to evaluate the effectiveness of the summarization algorithm, we use
programs that manipulate string buffers as benchmarks. We therefore implement
the following string-related abstract domain, similar to the instrumentation sug-
gested by Dor et al. [21]: for each string buffer s, a Boolean value zs and integers
ls and bs are tracked. The Boolean zs holds if s contains the zero character within
the buffer size bs. If so, ls is the index of the first zero character, otherwise, ls
has no meaning.

In our experiments, we use the following assertions for the abstract states,
which we call invariant templates :

– Arithmetic relations between i and ls, where i is an integer type expression,
and s is a string buffer. Currently, we use 0 ≤ i < ls.

– String termination, i.e., zs holds.
– String length, i.e., ls < bs holds.
– Pointer validity: p points to a specific object. Currently, we use the weaker

p �= NULL.

These templates are instantiated according to variables occurring in the code
fragment taken into account. To lower the amount of template instantiations,
the following set of simple heuristics is used:

1. Only variables of appropriate type are considered (we concentrate on string
types).

2. Indices and string buffers are combined in one invariant only if they are used
in the same expression, i.e., we detect instructions which contain p[i] and
build invariants that combine i with all string buffers pointed by p.

These templates have proven to be effective in our experiments. Other applica-
tions likely require different abstract domains. However, new domain templates
may be added quite easily: they usually can be implemented with less than a
hundred lines of code.

4.2 Results on Small Benchmarks

We use metrics proposed by Zitser et al. [22] to evaluate and compare the pre-
cision of our implementation. We report the detection rate R(d) and the false
positive rate R(f). The discrimination rate R(¬f |d) is defined as the ratio of
test cases on which an error is correctly reported, while it is, also correctly,
not reported in the corresponding fixed test case. Using this measure, tools are
penalized for not finding a bug, but also for not reporting a fixed program as
safe.
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The experiments are performed on two recently published benchmark sets.
The first one, by Zitser et al. [22], contains 164 instances of buffer overflow prob-
lems, extracted from the original source code of sendmail, wu-ftpd, and bind.
The test cases do not contain complete programs, but only those parts required
to trigger the buffer overflow. According to Zitser et al., this was necessary be-
cause the tools in their study were all either unable to parse the test code, or the
analysis used disproportionate resources before terminating with an error ([22],
pg. 99). In this set, 82 tests contain a buffer overflow, and the rest represent a
fix of a buffer overflow.

Table 1. Effectiveness: Detection rate
R(d), false positive rate R(f), and dis-
crimination rate R(¬f |d) for various sta-
tic analysis tools

R(d) R(f) R(¬f |d)
LoopFrog 1.00 0.38 0.62
=, �=, ≤ 1.00 0.44 0.56
Interval Domain 1.00 0.98 0.02
Polyspace 0.87 0.50 0.37
Splint 0.57 0.43 0.30
Boon 0.05 0.05 0
Archer 0.01 0 0
Uno 0 0 0
LoopFrog [23] 1.00 0.26 0.74
=, �=, ≤[23] 1.00 0.46 0.54

The results of a comparison with a
wide selection of static analysis tools3

are summarized in Table 1. Almost all of
the test cases involve array bounds vio-
lations. Even though Uno, Archer and
BOON were designed to detect these
type of bugs, they hardly report any er-
rors. The source code of the test cases
was not annotated, but nevertheless, the
annotation-based Splint tool performs
reasonably well on these benchmarks.
LoopFrog is the only tool that reports
all buffer overflows correctly (a detec-
tion rate of R(d) = 1) and with 62%,
LoopFrog also has the highest discrim-
ination rate among all the tools. It is also
worth noticing that our summarization
technique performs quite well, when only a few relational domains are used (the
second line of Table 1). The third line in this table contains the data for a simple
interval domain, not implemented in LoopFrog, but as a traditional abstract
domain; it reports almost everything as unsafe.

The second set of benchmarks was proposed by Ku et al. [23]. It contains 568
test cases, of which 261 are fixed versions of buffer overflows. This set partly
overlaps with the first one, but contains source code of a greater variety of appli-
cations, including the Apache HTTP server, Samba, and the NetBSD C system
library. Again, the test programs are stripped down, and are partly simplified to
enable current model checkers to parse them. Our results on this set confirm the
results obtained using the first set; the corresponding numbers are given in the
last two lines of Table 1. On this set the advantage of selecting property-specific
domains is clearly visible, as a 20% increase in the discrimination rate over the
simple relational domains is witnessed. Also, the performance of LoopFrog

is much better if specialized domains are used, simply because there are fewer
candidates for the invariants.

3 The data for all tools but LoopFrog, “=, �=, ≤” and the Interval Domain is
from [22].
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The leaping counterexamples computed by our algorithm are a valuable aid in
the design of new abstract domains that decrease the number of false positives.
Also, we observe that both test sets include instances labelled as unsafe that
LoopFrog reports to be safe (1 in [22] and 9 in [23]). However, by manual
inspection of the counterexamples for these cases, we find that our tool is correct,
i.e., that the test cases are spurious.4 For most of the test cases in the benchmark
suites, the time and memory requirements of LoopFrog are negligible. On
average, a test case finishes within a minute.

4.3 Large-Scale Benchmarks

We also evaluated the performance of LoopFrog on a set of large-scale bench-
marks, that is, complete un-modified program suites. Table 2 contains a se-
lection of the results.5 Further experimental data, an in-depth description of
LoopFrog, the tool itself, and all our benchmark files are available on-line for
experimentation by other researchers.6 Due to the problems reported by Zitser
et al., we were unable to apply other tools to the large-scale benchmarks.

These experiments clearly show that the algorithm scales reasonably well in
both memory and time, depending on the program size and the number of loops
contained. The time required for summarization naturally depends on the com-
plexity of the program, but also to a large degree on the selection of (potential)
invariants. As experience has shown, unwisely chosen invariant templates may
generate many useless potential invariants, each requiring to be tested by the
SAT-solver. This is a problem that we seek to remedy in the future, by leveraging
incremental SAT-solver technology.

In general, the results regarding the program assertions shown to hold are not
surprising; for many programs (e.g., texindex, ftpshut, ginstall), our selection of
string-specific domains proved to be quite useful. It is also interesting to note that
the results on the ftpshut program are very different on program versions 2.5.0
and 2.6.2: This program contains a number of known buffer-overflow problems in
version 2.5.0, and considerable effort was spent on fixing it for the 2.6.2 release;
an effort clearly reflected in our statistics. Just like in this benchmark, many of
the failures reported by LoopFrog correspond to known bugs and the leaping
counterexamples we obtain allow us to analyze those faults. Merely for reference
we list CVE-2001-1413 (a buffer overflow in ncompress) and CVE-2006-1168 (a
buffer underflow in the same program), for which we are easily able to produce
counterexamples.7 On the other hand, some other programs (such as the ones
from the freecell-solver suite) clearly require different abstract domains, suitable
for other heap structures than strings. The development of suitable domains and
subsequent experiments, however, are left for future research.

4 We exclude those instances from our benchmarks.
5 All data was obtained on an 8-core Intel Xeon 3.0 GHZ. We limited the runtime to

4 hours and the memory per process to 4 GB.
6 http://www.cprover.org/loopfrog/
7 The corresponding bug reports may be obtained from http://cve.mitre.org/

http://www.cprover.org/loopfrog/
http://cve.mitre.org/
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Table 2. Large-Scale Evaluation
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freecell-solver aisleriot-board-2.8.12 347 26 10s 295s 305s 111MB 358 165 193
freecell-solver gnome-board-2.8.12 208 8 0s 3s 4s 13MB 49 16 33
freecell-solver microsoft-board-2.8.12 168 4 2s 9s 11s 32MB 45 19 26
freecell-solver pi-ms-board-2.8.12 185 4 2s 10s 13s 33MB 53 27 26
gnupg make-dns-cert-1.4.4 232 5 0s 0s 1s 9MB 12 5 7
gnupg mk-tdata-1.4.4 117 1 0s 0s 0s 3MB 8 7 1
inn encode-2.4.3 155 3 0s 2s 2s 6MB 88 66 22
inn ninpaths-2.4.3 476 25 5s 40s 45s 49MB 96 47 49
ncompress compress-4.2.4 806 12 45s 4060s 4106s 345MB 306 212 94
texinfo ginstall-info-4.7 1265 46 21s 326s 347s 127MB 304 226 78
texinfo makedoc-4.7 701 18 9s 6s 16s 28MB 55 33 22
texinfo texindex-4.7 1341 44 415s 9336s 9757s 1021MB 604 496 108
wu-ftpd ckconfig-2.5.0 135 0 0s 0s 0s 3MB 3 3 0
wu-ftpd ckconfig-2.6.2 247 10 13s 43s 57s 27MB 53 10 43
wu-ftpd ftpcount-2.5.0 379 13 10s 32s 42s 37MB 115 41 74
wu-ftpd ftpcount-2.6.2 392 14 8s 24s 32s 39MB 118 42 76
wu-ftpd ftprestart-2.6.2 372 23 48s 232s 280s 55MB 142 31 111
wu-ftpd ftpshut-2.5.0 261 5 1s 9s 10s 13MB 83 29 54
wu-ftpd ftpshut-2.6.2 503 26 27s 79s 106s 503MB 232 210 22
wu-ftpd ftpwho-2.5.0 379 13 7s 23s 30s 37MB 115 41 74
wu-ftpd ftpwho-2.6.2 392 14 8s 27s 35s 39MB 118 42 76
wu-ftpd privatepw-2.6.2 353 9 4s 17s 22s 32MB 80 51 29

5 Conclusion and Future Work

We presented a novel algorithm for program verification using symbolic abstract
transformers. The algorithm computes an abstraction of a program with respect
to a given abstract interpretation by replacing loops and function calls in the
control flow graph by their symbolic transformers. The runtime of our algo-
rithm is linear in the number of looping constructs. It addresses the perennial
problem of the high complexity of computing abstract fixpoints. The proce-
dure over-approximates the original program, which implies soundness of our
analysis. An additional benefit of the technique is its ability to generate leap-
ing counterexamples, which are helpful for diagnosis of the error or for filtering
spurious warnings. Experimental results show the best error-detection and error-
discrimination rates comparing to a broad selection of static analysis tools. As
future work, we plan to analyze the leaping counterexamples automatically in
order to rule out spurious traces and to refine the abstract domain.
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Abstract. We present a new property driven pruning algorithm in dynamic
model checking to efficiently detect race conditions in multithreaded programs.
The main idea is to use a lockset based analysis of observed executions to help
prune the search space to be explored by the dynamic search. We assume that
a stateless search algorithm is used to systematically execute the program in a
depth-first search order. If our conservative lockset analysis shows that a search
subspace is race-free, it can be pruned away by avoiding backtracks to certain
states in the depth-first search. The new dynamic race detection algorithm is both
sound and complete (as precise as the dynamic partial order reduction algorithm
by Flanagan and Godefroid). The algorithm is also more efficient in practice,
allowing it to scale much better to real-world multithreaded C programs.

1 Introduction

Concurrent programs are notoriously hard to debug because of their often large number
of possible interleavings of thread executions. Concurrency bugs often arise in rare
situations that are hard to anticipate and handle by standard testing techniques. One
representative type of bugs in concurrent programs is a data race, which happens when
multiple threads access a shared data variable simultaneously and at least one of the
accesses is a write. Race conditions were among the flaws in the Therac-25 radiation
therapy machine [12], which led to the death of three patients and injuries to several
more. A race condition in the energy management system of some power facilities
prevented alerts from being raised to the monitoring technicians, eventually leading to
the 2003 North American Blackout.

To completely verify a multithreaded program for a given test input, one has to in-
spect all possible thread interleavings. For deterministic threads, the only source of
nondeterminism in their execution comes from the thread scheduler of the operating
system. In a typical testing environment, the user does not have full control over the
scheduling of threads; running the same test multiple times does not necessarily trans-
late into a better interleaving coverage. Static analysis has been used for detecting data
races in multithreaded programs, both for a given test input [20, 16] and for all possible
inputs [6, 4, 17, 11, 22]. However, a race condition reported by static analysis may be
bogus (there can be many false alarms); even if it is real, there is often little information
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for the user to reproduce the race. Model checking [3, 18] has the advantage of exhaus-
tive coverage which means all possible thread interleavings will be explored. However,
model checkers require building finite-state or pushdown automata models of the soft-
ware [10, 1]; they often do not perform well in the presence of lock pointers and other
heap allocated data structures.

Dynamic model checking as in [9, 5, 14, 23, 24] can directly check programs written
in full-fledged programming languages such as C and Java. For detecting data races,
these methods are sound (no bogus race) due to their concrete execution of the pro-
gram itself as opposed to a model. While a bounded analysis is used in [14], the other
methods [9, 5, 23, 24] are complete for terminating programs (do not miss real races)
by systematically exploring the state space without explicitly storing the intermediate
states. Although such dynamic software model checking is both sound and complete,
the search is often inefficient due to the astronomically large number of thread inter-
leavings and the lack of property specific pruning. Dynamic partial order reduction
(DPOR) techniques [5, 23, 7] have been used in this context to remove the redundant
interleavings from each equivalence class, provided that the representative interleaving
has been explored. However, the pruning techniques used by these DPOR tools have
been generic, rather than property-specific.

T1

...
a1 lock(f1) ;
a2 x++;
a3 unlock(f1) ;
a4 ...
a5 lock(f2) ;
a6 y++;
a7 unlock(f2) ;
a8 ...
a9 lock(f1) ;
a10 z++;
a11 unlock(f1) ;

T2

...
b1 lock(f1) ;
b2 lock(f2) ;
b3 z++;
b4 c = x;
b5 unlock(f2) ;
b6 unlock(f1) ;
b7 ...
b8 lock(f1) ;
b9 if (c==0)
b10 y++;
b11 unlock(f1) ;

Fig. 1. Race condition on accessing variable y (assume that x = y = 0 initially)

Without a conservative or warranty type of analysis tailored toward the property to be
checked, model checking has to enumerate all the equivalence classes of interleavings.
Our observation is that, as far as race detection is concerned, many equivalence classes
themselves may be redundant. Fig. 1 shows a motivating example, in which two threads
use locks to protect accesses to shared variables x, y, and z. A race condition between
a6 and b10 may occur when b4 is executed before a2, by setting c to 0. Let the first execu-
tion sequence be a1 . . . a11b1 . . . b9b11. According to the DPOR algorithm by Flanagan
and Godefroid [5], since a10 and b3 have a read-write conflict, we need to backtrack
to a8 and continue the search from a1 . . . a8b1. As a generic pruning technique, this
is reasonable since the two executions are not Mazurkiewicz-trace equivalent [13]. For
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data race detection, however, it is futile to search any of these execution traces in which
a6 and b10 cannot be simultaneously reachable (which can be revealed by a conserv-
ative lockset analysis). We provide a property-specific pruning algorithm to skip such
redundant interleavings and backtrack directly to a1.

In this paper, we propose a trace-based dynamic lockset analysis to prune the search
space in the context of dynamic model checking. Our main contributions are: (1) a new
lockset analysis of the observed execution trace for checking whether the associated
search subspace is race-free. (2) property driven pruning in a backtracking algorithm
using depth-first search.

We analyze the various alternatives of the current execution trace to anticipate race
conditions in the corresponding search space. Our trace-based lockset analysis relies
on both information derived from the dynamic execution and information collected sta-
tically from the program; therefore, it is more precise than the purely static lockset
analysis conducted a priori on the program [4, 6, 17, 11, 22]. Our method is also dif-
ferent from the Eraser-style dynamic lockset algorithms [20, 16], since our method
decides whether the entire search subspace related to the concrete execution generated
is race-free, not merely the execution itself. The crucial requirement for a method to be
used in our framework for pruning of the search space is completeness—pruning must
not remove real races. Therefore, neither the aforementioned dynamic lockset analysis
nor the various predictive testing techniques [21, 2] based on happens-before causality
(sound but incomplete) can be be used in this framework. CHESS [14] can detect races
that may show up within a preemption bound; it exploits the preemption bounding for
pruning, but does not exploit the lock semantics to effect reduction.

In our approach, if the search subspace is found to be race-free, we prune it away
during the search by avoiding backtracks to the corresponding states. Recall that essen-
tially the search is conducted in a DFS order. If there is a potential race, we analyze
the cause in order to compute a proper backtracking point. Our backtracking algorithm
shares the same insights as the DPOR algorithm [5], with the additional pruning capa-
bility provided by the trace-based lockset analysis. Note that DPOR relies solely on the
independence relation to prune redundant interleavings (if t1, t2 are independent, there
is no need to flip their execution order). In our algorithm, even if t1, t2 are dependent,
we may skip the corresponding search space if flipping the order of t1, t2 does not affect
the reachability of any race condition. If there is no data race at all in the program, our
algorithm can obtain the desired race-freedom assurance much faster.

2 Preliminaries

2.1 Concurrent Programs

We consider a concurrent program with a finite number of threads as a state transition
system. Let T id = {1, . . . , n} be a set of thread indices. Threads may access local
variables in their own stacks, as well as global variables in a shared heap. The operations
on global variables are called visible operations, while those on thread local variables
are called invisible operations. We use Global to denote the set of states of all global
variables, Local to denote the set of local states of a thread. PC is the set of values of
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the program counter of a thread. The entire system state (S), the program counters of
the threads (PCs), and the local states of threads (Locals) are defined as follows:

S ⊆ Global × Locals× PCs
PCs = T id → PC

Locals = T id → Local

A transition t : S → S advances the program from one state to a subsequent state.
Following the notation of [5, 23], each transition t consists of one visible operation,
followed by a finite sequence of invisible operations of the same thread up to (but ex-
cluding) the next visible operation. We use tid(t) ∈ T id to denote the thread index of
the transition t. Let T be the set of all transitions of a program. A transition t ∈ T
is enabled in a state s if the next state t(s) is defined. We use s

t→ s′ to denote that
t is enabled in s and s′ = t(s). Two transitions t1, t2 may be co-enabled if there ex-
ists a state in which both t1 and t2 are enabled. The state transition graph is denoted
〈S, s0, Γ 〉, where s0 ∈ S is the unique initial state and Γ ⊆ S × S is the transition

relation: (s, s′) ∈ Γ iff ∃t ∈ T : s
t→ s′. An execution sequence is a sequence of states

s0, . . . , sn such that ∃ti . si−1
ti→ si for all 1 ≤ i ≤ n.

Two transitions are independent if and only if they can neither disable nor enable
each other, and swapping their order of execution does not change the combined effect.
Two execution trace are equivalent iff they can be transformed into each other by re-
peatedly swapping adjacent independent transitions. In model checking, partial order
reduction (POR [8]) has been used to exploit the redundancy of executions from the
same equivalence class to prune the search space; in particular, model checking has to
consider only one representative from each equivalence class.

2.2 Dynamic Partial Order Reduction

Model checking of a multithreaded program can be conducted in a stateless fashion by
systematically executing the program in a depth-first search order. This can be imple-
mented by using a special scheduler to control the execution of visible operations of
all threads; the scheduler needs to give permission to, and observe the result of every
visible operation of the program. Instead of enumerating the reachable states, as in clas-
sic model checkers, it exhaustively explores all the feasible thread interleavings. Fig. 2
shows a typical stateless search algorithm. The scheduler maintains a search stack S
of states. Each state s ∈ S is associated with a set s.enabled of enabled transitions,
a set s.done of executed transitions, and a backtracking set, consisting of the thread
indices of some enabled transitions in s that need to be explored from s. In this context,
backtracking is implemented by re-starting the program afresh under a different thread
schedule [23], while ensuring that the replay is deterministic—i.e. all external behaviors
(e.g., mallocs and IO) are also assumed to be replayable1.

The procedure DPORUPDATEBACKTRACKSETS(S, t) implements the dynamic par-
tial order reduction algorithm of [5]. It updates the backtrack set only for the last tran-
sition td in T such that td is dependent and may be co-enabled with t (line 19). The

1 While malloc replayability is ensured by allocating objects in the same fashion, IO replayabil-
ity is ensured by creating suitable closed environments.
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1: Initially: S is empty; DPORSEARCH(S, s0)

2: DPORSEARCH(S, s) {
3: if (DETECTRACE(s)) exit (S);
4: S.push(s);
5: for each t ∈ s.enabled, DPORUPDATEBACKTRACKSETS(S, t);
6: let τ ∈ T id such that ∃t ∈ s.enabled : tid(t) = τ ;
7: s.backtrack ← {τ};
8: s.done ← ∅;
9: while (∃t: tid(t) ∈ s.backtrack and t �∈ s.done) {

10: s.done ← s.done ∪ {t};
11: s.backtrack ← s.backtrack \ {tid(t)};
12: let s′ ∈ S such that s

t→ s′;
13: DPORSEARCH(S, s′);
14: S.pop(s);
15: }
16: }
17: DPORUPDATEBACKTRACKSETS(S, t) {
18: let T = {t1, . . . , tn} be the sequence of transitions associated with S;
19: let td be the latest transition in T that is dependent and may be co-enabled with t;
20: if (td �= null){
21: let sd be the state in S from which td is executed;
22: let E be {q ∈ sd.enabled | either tid(q) = tid(t), or q was executed after td in T and

a happens-before relation exists for (q, t)}
23: if (E �= ∅)
24: choose any q in E, add tid(q) to sd.backtrack;
25: else
26: sd.backtrack← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
27: }
28: }

Fig. 2. Stateless search with dynamic partial order reduction (c.f. [5])

set sd.backtrack is also a subset of the enabled transitions, and the set E consists of
transitions q in T such that (q, t) has a happens-before relation (line 22). Intuitively,
q happens-before t means that flipping the execution order of q and t may lead to in-
terleavings in a different equivalence class. For a better understanding, a plain depth-
first search, with no partial order reduction at all, would correspond to an alternative
implementation of line 19 in which td is defined as the last transition in T such that
tid(td) �= tid(t), regardless of whether td and t are dependent, and an alternative im-
plementation of line 22 in which E = ∅.

Data race detection is essentially checking the simultaneous reachability of two con-
flicting transitions. The procedure DETECTRACE(s) used in line 3 of Fig. 2 checks
in each state s whether there exist two transitions t1, t2 such that (1) they access the
same shared variable; (2) at least one of them is a write; and (3) both transitions are
enabled in s. If all three conditions hold, it reports a data race; in this case, the se-
quence of states s0, s1, . . . , s currently in the stack S serve as a counterexample. The
advantage of this race detection procedure is that it does not report bogus races (of
course, the race itself may be benign; detecting whether races are malicious is outside



Dynamic Model Checking with Property Driven Pruning 131

the scope of our approach, as well as most other approaches in this area). If the top-level
DPORSEARCH(S, s0) completes without finding any race, then the program is proved
to be race-free under the given input. As pointed out in [5], DPOR is sound and com-
plete for detecting data races (as well as deadlocks and assertion violations), although
there is no property driven pruning employed in [5].

3 Race-Free Search Subspace

Given an execution sequence s0, . . . , si, . . . , sn stored in the stack S and a state si

(0 ≤ i ≤ n), we check (conservatively) whether the search space starting from si is
race-free. This search subspace consists of all the execution traces sharing the same
prefix s0, . . . , si. During dynamic model checking, instead of backtracking for each
conflicting transition pair as in DPOR, we backtrack to state si only if the corresponding
search subspace has potential races.

3.1 Set of Locksets

Let T = {t1, . . . , tn} be a transition sequence such that s0
t1→ s1 . . .

tn→ sn. First,
we project T to each thread as a sequence Tτ = {tτ1 , . . . , tτk

} of thread-local tran-
sitions; that is, ∀t ∈ Tτ : tid(t) = τ . For the example in Fig. 1, T is projected to
T1 = {a1, . . . , a11} and T2 = {b1, . . . , b9, b11}. Next, we partition each thread-local
sequence Tτ into smaller segments. In the extreme case, each segment would consist
of a single transition. For each segment segi ⊆ Tτ , we identify the global variables
that may be accessed within segi; for each access, we also identify the corresponding
lockset—the set of locks held by thread τ when the access happens.

Definition 1. For each segment segi and global variable x, the set lsSetx(segi) con-
sists of all the possible locksets that may be held when x is accessed in segi.

By conservatively assuming that transitions of different threads can be interleaved ar-
bitrarily, we check whether it is possible to encounter a race condition. Specifically, for
each global variable x, and for each pair (segi, segj) of transition segments from dif-
ferent threads, we check whether ∃set1 ∈ lsSetx(segi), set2 ∈ lsSetx(segj) such that
set1 ∩ set2 = ∅. An empty set represents a potential race condition—x is not protected
by a common lock. The result of this analysis can be refined by further partitioning
segi, segj into smaller fragments. To check whether the search space starting from si

is race-free, we will conservatively assume that ti+1, . . . , tn (transitions executed after
si in T ) may interleave arbitrarily, subject only to the program orders.

Note first, that the lockset analysis is thread-local, i.e., the analysis is performed on a
single thread at a time. Second, a precise computation of lsSetx(segi) as in Definition 1
requires the inspection of all feasible execution traces (exponentially many) in which
x is accessed in segi; we do not perform this precise computation. For conservatively
checking the race-free subspace property, it suffices to consider a set of locksets S such
that any constituent lockset of S is a subset of the actually held locks. For instance,
the coarsest approximation is lsSetx(segi) = {∅}; that is, x is not protected at all.
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Under this coarsest approximation for segi, if another thread also accesses x in segj ,
our algorithm will report a potential race condition between segi and segj .

Consider again the example in Fig. 1, let the first execution trace be partitioned into

seg1 = a1, . . . , a8 seg3 = b1, . . . , b7

seg2 = a9, . . . , a11 seg4 = b8, . . . , b11.

Since seg2 shares only z with seg3, and z is protected by lock f1, any execution trace
starting from seg1 is race-free. Therefore, we do not need to backtrack to a8.

However, the concrete execution itself may not be able to provide enough informa-
tion to carry out the above analysis. Note that, by definition, lsSetx(segi) must include
all the possible locksets that may be formed in an interleaving execution of segi. In
Fig. 1, for instance, although y is accessed in both threads (a6 and b10), the transition
b10 does not appear in seg4 since the else-branch was taken. However, lsSety(seg4) is
{{f1}}. In general, we need a may-set of shared variables that are accessed in segi and
the corresponding must-set of locks protecting each access. We need the information of
all the alternative branches in order to compute these sets at runtime.

3.2 Handling the Other Branch

Our solution is to augment all branching statements in the form of if(c)-else,
through source code instrumentation, so that the information of not-yet-executed
branches (computed a priori) is readily available to our analysis during runtime. To
this end, for both branches of every if-else statement, we instrument the program by
inserting calls to the following routines (’rec’ stands for record):

– rec-var-access-in-other-branch(x,Lacq , Lrel) for each access to x; with
the set Lacq of locks acquired and the set of Lrel of locks released before the access.

– rec-lock-update-in-other-branch(Lacq, Lrel); with the set Lacq of locks
acquired and the set Lrel of locks released in the other branch.

The instrumentation is illustrated by a simple example in Fig. 3. In addition to the above
routines, we also add recording routines to notify the scheduler about the branch start
and end. When the if-branch is executed, the scheduler knows that, in the else-branch,
x is accessed and lock C is acquired before the access (line 4); it also knows that C is
the only lock acquired and no lock is released throughout that branch (line 5). Similarly,
when the else-branch is executed, the scheduler knows that in the if-branch, x, y are
accessed and lock A is protecting x but not y. According to lines 5 and 16, lock C
will be held at the branch merge point because (Lacq \ Lrel) = {C}. Therefore, our
algorithm knows that z is protected by both B and C.

The information passed to these recording routines need to be collected a priori by
a static analysis of the individual threads (in Section 5). Note that neither the set of
shared variables nor any of the corresponding locksets Lacq, Lrel has to be precise. For
a conservative analysis, it suffices to use an over-approximated set of shared variables,
a subset Ľacq ⊆ Lacq of acquired locks, and superset L̂rel ⊇ Lrel of released locks. By
using Ľacq and L̂rel, we can compute a must-set (Ľacq \ L̂rel), which is a subset of the
actually held locks.



Dynamic Model Checking with Property Driven Pruning 133

1: lock(B)
2: if (c) {
3: rec-branch-begin(); //added
4: rec-var-access-in-other-branch(x,{C},{}); //added
5: rec-lock-update-in-other-branch({C},{}); //added
6: lock(A);
7: x++;
8: unlock(A);
9: y=5;
10: lock(C);
11: rec-branch-end(); //added
12: }else {
13: rec-branch-begin(); //added
14: rec-var-access-in-other-branch(x,{A},{ }); //added
15: rec-var-access-in-other-branch(y,{A},{A}); //added
16: rec-lock-update-in-other-branch({A,C},{A}); //added
17: lock(C);
18: x++;
19: rec-branch-end(); //added
20: }
21: z++;
22: unlock(C);
23: unlock(B)

Fig. 3. Instrumenting the branching statements of each thread

3.3 Checking Race-Free Subspace

The algorithm for checking whether a search subspace is race-free is given in Fig. 4.
For each transition t ∈ T and global variable x, we maintain:

– lsSet(t), the set of locksets held on one of the paths by t;
– mayUse(t, x) if t is a branch begin, the set of locksets of x in the other branch.

In state si, the set lsτ of locks held by thread τ is known. First, we use COMPUTELOCK-
SETS to update lsSet(t) and mayUse(t, x) for all variables x accessed and transitions
t executed after si. Potential race conditions are checked by intersecting pairwise lock-
sets of the same variable in different threads. If any of the intersection in line 11 is
empty, SUBSPACERACEFREE returns FALSE.

In Fig. 5, COMPUTELOCKSETS starts with lsτ , which comes from the concrete exe-
cution and hence is precise. Tτ consists of the following types of transitions: (1) instru-
mented recording routines; (2) lock/unlock; (3) other program statements. The stack
update is used for temporary storage. Both lsSet(t) and mayUse(t, x) are sets of
locksets, of which each constituent lockset corresponds to a distinct unobserved path (a
path skipped due to a false branch condition) or variable access. Note that we do not
merge locksets from different branches into a single must-lockset, but maintain them as
separate entities in lsSet(t) and then propagate to the subsequent transitions in Tτ .

Multiple branches may be embedded in the observed sequence Tτ , as shown in Fig. 6.
In the left-hand-side figure, the unobserved branch itself has two branches, each of
which needs a recording routine in Tτ to record the lock updates. Inside COMPUTE-
LOCKSETS, lock updates from tl2 are stored temporarily in the stack update and fi-
nally used to compute lsSet(ti) at the merge point. In the right-hand-side figure, the
observed branch (from t′j to t′i) contains another observed branch (from tj to ti). This
is why a stack update, rather than a set, is needed. Note that t′l2 is executed before tl2 ,
but lsSet(t′i) is computed after lsSet(ti).
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1: SUBSPACERACEFREE(si) {
2: let T = {t1, t2, . . . , tm} such that si

t1→ si+1 . . .
tm−→ sm+1 and sm+1.enabled = ∅;

3: for each (τ ∈ T id) {
4: let Tτ = {tτ1 , . . . , tτk} be a subsequence Tτ ⊆ T such that ∀t ∈ Tτ : tid(t) = τ ;
5: let lsτ be the set of locks held by thread τ at si;
6: COMPUTELOCKSETS(lsτ, Tτ );
7: }
8: for each (global variable x) {
9: let t1, t2 ∈ T , tid(t1) �= tid(t2), both may access x, and at least one is a write;

10: let ls1 ∈ (lsSet(t1) ∪mayUse(t1, x)), let ls2 ∈ (lsSet(t2) ∪mayUse(t2, x));
11: if (∃ls1, ls2 such that ls1 ∩ ls2 = ∅) return FALSE;
12: }
13: return TRUE;
14: }

Fig. 4. Checking whether the search subspace from si is race-free at run time

1: COMPUTELOCKSETS(lsτ, Tτ ) {
2: let lsSet(t0) ={ lsτ };
3: let Tτ = {t1, . . . , tk}; ∀ti ∈ Tτ ,∀x : lsSet(ti)← ∅ and mayUse(ti, x)← ∅;
4: i ← 1;
5: while (i ≤ k) {
6: if (ti is rec-branch-begin)
7: update.push(∅);
8: if (ti is lock(f1))
9: lsSet(ti)← {ls ∪ {f1} | ls ∈ lsSet(ti−1);

10: else if (ti is unlock(f1))
11: lsSet(ti)← {ls \ {f1} | ls ∈ lsSet(ti−1);
12: else if (ti is rec-var-access-in-other-branch(x, Lacq, Lrel))
13: let tj be the last branch begin that precedes ti;
14: mayUse(tj, x)← mayUse(tj, x) ∪ {ls ∪ Lacq \ Lrel | ls ∈ lsSet(tj)};
15: else if (ti is rec-lock-update-in-other-branch(Lacq , Lrel))
16: let tj be the last branch begin that precedes ti;
17: update.top()← update.top()∪ {ls ∪ Lacq \ Lrel | ls ∈ lsSet(tj)};
18: else if (ti is rec-branch-end)
19: lsSet(ti)← update.pop()∪ lsSet(ti−1);
20: else
21: lsSet(ti)← lsSet(ti−1);
22: i ← i + 1;
23: }
24: }

Fig. 5. Computing locksets that may be held by each transition in Tτ

Let sj
tj+1→ sj+1 be a branch begin and si−1

ti→ si be the matching branch end. From
the pseudo code in Fig. 5, it is clear that the following two theorems hold.

Theorem 1. lsSet(ti) contains, for each unobserved path from sj and to si, a must-set
of locks held at si (if that path were to be executed).
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Theorem 2. mayUse(ti, x) contains, for each access of x in an unobserved path from
sj to si, a must-set of locks held when accessing x in that path.

Although the standard notion of locksets is used in our analysis, the combination of
dynamically computed information of the observed execution and statically computed
information of not-yet-executed branches differentiates us from the existing dynamic
[20, 16] and static [6, 4, 17, 11, 22] lockset algorithms. It differs from the Eraser-style
lockset algorithms [20, 16] in that it has to consider not only the current execution
but also the not-yet-activated branches. It differs from the purely static lockset analy-
sis [6, 4, 17, 11, 22] in that it utilizes not only the statically computed program infor-
mation, but also the more precise information derived dynamically from the execution.
In particular, our lockset computation starts with a precise lockset lsτ of the concrete
execution (line 5 of Fig. 4). In the presence of pointers to data and locks, a purely
static analysis may be imprecise; the actual set of shared variables accessed or locks
held during a concrete execution may be significantly smaller than the (conservatively
computed) points-to sets of the pointers.

if−else

branch begin

var−access
lock−update

branch end

merge point

tl2

ti

ti−1

tj

tl1

using tl1 to compute mayUse(tj , x)

using tl2 , ti−1 to compute lsSet(ti)

branch end

if−else

branch begin

branch begin

branch end

t′i

ti

ti−1

t′i−1

t′j

tj

t′l2

tl2

using tl2 , ti−1 to compute (inner) lsSet(ti)

using t′l2 , t′i−1 to compute (outer) lsSet(t′i)

Fig. 6. Multiple branches in an execution trace (observed and unobserved branches)

4 The Overall Algorithm

We rely on the conservative lockset analysis to prune the search space, and the concrete
program execution to ensure that no bogus race is reported. The overall algorithm is
given in Fig. 7. The procedure PDPSEARCH, where PDP stands for Property-Driven
Pruning, takes the stack S and a state s as input. Each time PDPSEARCH is called on
a new state s, lines 10-24 will be executed. DETECTRACE(s) is used to detect race
conditions in s during runtime (explained in Section 2). If a race condition is found, it
terminates with a counterexample in S. When an execution terminates (s.enabled = ∅
of line 3), we update the backtracking points for the entire trace. This is significantly dif-
ferent from the DPOR algorithm, which updates the backtracking points for each state
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1: Initially: S is empty; PDPSEARCH(S, s0)

2: PDPSEARCH(S, s) {
3: if (s.enabled = ∅) {
4: for (i = 0; i < S.size(); i + +) {
5: let sb be the i-th element in S;
6: for each (t ∈ sb.enabled)
7: PDPUPDATEBACKTRACKSETS(S,t);
8: }
9: }

10: else {
11: if (DETECTRACE(s)) exit (S);
12: S.push(s);
13: let τ ∈ T id such that ∃t ∈ s.enabled : tid(t) = τ ;
14: s.backtrack ← {τ};
15: s.done ← ∅;
16: while (∃t: tid(t) ∈ s.backtrack and t �∈ s.done) {
17: s.done ← s.done ∪ {t};
18: s.backtrack ← s.backtrack \ {tid(t)};
19: let s′ ∈ S such that s

t→ s′;
20: PDPSEARCH(S, s′);
21: S.pop(s);
22: }
23: }
24: }

25: PDPUPDATEBACKTRACKSETS(S, t) {
26: let T = {t1, . . . , tn} be the sequence of transitions associated with S;
27: let td be the latest transition in T that (1) is dependent and may be co-enabled with t, and

(2) let sd ∈ S be the state from which td is executed, SubspaceRaceFree(sd) is FALSE;
28: if (td �= null){
29: let E be {q ∈ sd.enabled | either tid(q) = tid(t), or q was executed after td in T and

a happens-before relation exists for (q, t)}
30: if (E �= ∅)
31: choose any q in E, add tid(q) to sd.backtrack;
32: else
33: sd.backtrack← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
34: }
35: }

Fig. 7. Property driven pruning based dynamic race detection algorithm

s when it is pushed into the stack S. Rather than updating the backtracking points in the
pre-order of DFS as in DPOR, our algorithm waits until the information pertaining to
an entire execution trace is available. In line 27, for each state td that is dependent and
may be co-enabled with t, we check (in addition to that of DPOR) whether the search
subspace from sd is race-free. If the answer is yes, we can safely skip the backtracking
points at sd. Otherwise, we proceed in the same fashion as DPOR.
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The Running Example. We show how the overall algorithm works on the example in
Fig. 1. Assume that the first execution trace is

s0
a1→ s1

a2→ . . .
a6→ s6 . . . s9

a10→ s10 . . . s13
b3→ s14

b4→ s15 . . .
b9→ s20

b11→ s21 ,

produced by lines 11-20 of Fig. 7. Since s21.enabled = ∅, the call PDPSEARCH(S, s21)
executes lines 3-9. For every sb ∈ S, we update the backtrack sets; we go through the
stack in the following order: s0, s1, . . . , s21.

– For s0, . . . , s10, there is no need to add a backtracking point, because (per line 27)
there is no td from a thread different from tid(t).

– For s13, the enabled transition b3:z++ is dependent and may be co-enabled with
td = a10:z++. (We assume lock-atomicity by grouping variable accesses with pro-
tecting lock/unlock and regarding each block as atomic.) However, since the search
subspace from s8 is race-free, we do not add backtracking points at s8.

– For s14, the enabled transition b4:c=x is dependent and may be co-enabled with
td = a2:x++. Since the search subspace from s0 has a potential race condition
between a6 and b10, we set s0.backtrack = {2} to make sure that in a future
execution, thread T2 is scheduled at state s0.

After this, PDPSEARCH(S, si) keeps returning for all i > 0 as indicated by lines 20-
21. Since s0.backtrack = {2}, PDPSEARCH(S, s0) executes lines 16-20. The next

execution starts from s0
b1→ s′.

Proof of Correctness. The correctness of the overall algorithm is summarized as fol-
lows: First, any race condition reported by PDPSEARCH is guaranteed to be real.

Second, if PDPSEARCH returns without finding any race condition, the program
is guaranteed to be race-free under the given input. Finally, PDPSEARCH always re-
turns a conclusive result (either race-free or a concrete race) for terminating programs.
If a program is nonterminating, PDPSEARCH can be used for bounded analysis as in
CHESS [14]—to detect bugs up to a bounded number of steps. The soundness is en-
sured by the fact that it is concretely executing the actual program within its target
environment. The completeness (for terminating programs) can be established by the
following arguments: (1) the baseline DPOR algorithm as in [5] is known to be sound
and complete for detecting race conditions; and (2) our trace-based lockset analysis is
conservative in checking race-free subspaces. The procedure returns ’yes’ only if no
race condition can be reached by any execution in the search subspace.

5 Experiments

We have implemented the proposed method on top of our implementation of the DPOR
algorithm, inside Inspect [23]. We use CIL [15] for parsing, whole-program static analy-
sis, and source code instrumentation. Our tool is capable of handling multithreaded C
programs written using the Linux POSIX thread library. The source code instrumenta-
tion consists of the following steps: (1) for each shared variable access, insert a request
to the scheduler asking for permission to execute; (2) for each thread library routine,
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add a wrapper function which sends a request to the scheduler before executing the
actual library routine; (3) for each branch, add recording routines to notify about the
branch begin and end, the shared variables and the lock updates in the other branch.

In order to control every visible operation, we need to identify the set of shared vari-
ables during the source code instrumentation. Shared variable identification requires
a conservative static analysis of the concurrent program, e.g., pointer and may-escape
analysis [19, 11]. Since this analysis [19] is an over-approximated analysis, our instru-
mentation is safe for intercepting all visible operations of the program. This ensures
that we do not miss any bug due to missing identification of a shared variable. Simi-
larly, when a whole program static analysis is either ineffective or not possible (due to
missing source code) to identify the precise locksets, during instrumentation, we resort
to subsets of acquired locks and supersets of released locks.

We have conducted experimental comparison of our new method with the baseline
DPOR algorithm. The benchmarks are Linux applications written in C using the POSIX
thread library; many are obtained from public domain including sourceforge.net

and freshmeat.net. Among the benchmarks, fdrd2 and fdrd4 are variants of our
running example. qsort is a multithreaded quick sort algorithm. pfscan is a file scan-
ner implemented using multiple threads to search directories and files in parallel; the
different threads share a dynamic queue protected by a set of mutex locks. aget imple-
ments a ftp client with the capability of concurrently downloading different segments
of a large file. bzip2smp is a multithreaded version of the Linux application bzip.
All benchmarks are accompanied by test cases to facilitate the concrete execution. Our
experiments were conducted on a workstation with 2.8 GHz Pentium D processor and
2GB memory running Fedora 5.

Table 1 shows the experimental results. The first seven columns show the statistics
of the test cases, including the name, the lines of C code, the number of threads, the
number of shared variables, the number of shared variable accesses, the number of
locks, and the number of data races. Columns 8-13 compare the two methods in terms

Table 1. Comparing the performance of two race detection algorithms (with 1 hour time out)

Test Program Runtime (s) # of Trans (k) # of Traces Race-free Chk
name loc thrd gvar accs lock race dpor PDP dpor PDP dpor PDP chks yes skip

fdrd2 66 2 3 3 2 1 3 1 2 0.6 89 14 88 75 75
fdrd4 66 2 3 3 2 1 11 3 10 4 233 68 232 165 165
qsort 743 2 2 2000 5 0 17 8 12 8 4 1 2 2 2
pfscan-good 918 2 21 118 4 0 179 15 71 10 2519 182 398 217 217
pfscan-bug 918 2 21 39 4 1 3 1 1 1 31 10 5 5 6
aget-0.4 1098 3 5 72 1 0 183 1 103 0.1 3432 1 6 6 9
aget-0.4 1098 4 5 78 1 0 >1h 1 - 0.1 - 1 9 9 18
aget-0.4 1098 5 5 84 1 0 >1h 1 - 0.1 - 1 12 12 30
bzip2smp 6358 4 9 18 3 0 128 3 63 2 1465 45 48 5 5
bzip2smp 6358 5 9 18 3 0 203 4 99 2 2316 45 48 5 7
bzip2smp 6358 6 9 18 3 0 287 4 135 2 3167 45 48 5 9
bzip2smp2 6358 4 9 269 3 0 291 136 63 21 1573 45 48 5 5
bzip2smp2 6358 5 9 269 3 0 487 155 85 21 2532 45 48 5 7
bzip2smp2 6358 6 9 269 3 0 672 164 116 21 3491 45 48 5 9
bzip2smp2 6358 10 9 269 3 0 1435 183 223 21 7327 45 48 5 17
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of the runtime, and the number of executed transitions, and the number of completed
execution traces. For DPOR, every completed trace (reported in Column 12) belongs to
a distinct equivalence class of interleavings; however, many of them are pruned away
by PDP since they are redundant as far as race detection is concerned. Columns 14-16
provide the following statistics of PDP: the number of race-free checks, the number of
race-free check successes, and the number of skipped backtrack points.

The results show that our PDP method is significantly more efficient than DPOR in
pruning the search space. For all examples, PDP took significantly less time in either
finding the same data race or proving the race freedom; the number of transitions/traces
that PDP has to check during the process was also significantly smaller. Although the
average time for PDP to complete one execution is longer than DPOR, e.g., 4066 ms
vs. 195 ms as indicated by data from the last row of Table 1 (due to the overhead of
tracking branch begin/end and other auxiliary transitions), the overhead in PDP is well
compensated by the skipped executions due to property driven pruning.

6 Conclusions

We have proposed a new data race detection algorithm that combines the power of dy-
namic model checking with property driven pruning based on a lockset analysis. Our
method systematically explores concrete thread interleavings of a program, and at the
same time prunes the search space with a trace-based conservative analysis. It is both
sound and complete (as precise as the DPOR algorithm); at the same time, it is signif-
icantly more efficient in practice, allowing the technique to scale much better to real-
world applications. For future work, we would like to extend the proposed framework to
check other types of properties. Since race detection is a problem of simultaneous reach-
ability of two transitions, the techniques developed here should be readily applicable to
checking deadlocks and many other simple safety properties.
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Abstract. Non-freely generated data types are widely used in case stud-
ies carried out in the theorem prover KIV. The most common examples
are stores, sets and arrays. We present an automatic method that gener-
ates finite counterexamples for wrong conjectures and therewith offers a
valuable support for proof engineers saving their time otherwise spent on
unsuccessful proof attempts. The approach is based on the finite model
finding and uses Alloy Analyzer [1] to generate finite instances of the-
ories in KIV [6]. Most definitions of functions or predicates on infinite
structures do not preserve the semantics if a transition to arbitrary fi-
nite substructures is made. We propose the constraints which should be
satisfied by the finite substructures, identify a class of amenable defin-
itions and present a practical realization using Alloy. The technique is
evaluated on the library of basic data types as well as on some examples
from case studies in KIV.

Keywords: Algebraic specifications, abstract data types, finite models,
first-order logic, theorem proving, SAT checking.

1 Introduction

The concept of abstract data types is well-established in computer science. Al-
gebraic techniques are integrated in varieties of formal approaches in software
development [10,11,20]. This work is aimed at providing automatic techniques
for analysis of algebraic specifications of abstract data types. We present an
integration of an automatic procedure for finding finite counterexamples or wit-
nesses for first-order theories in the theorem prover KIV [6]. As first-order logic
is undecidable we can construct either a decision procedure for decidable frag-
ments or use an automated prover for full logic. Both approaches are useful for
provable goals. Most of the time in interactive theorem proving is spent to find
out why certain goals are not provable. An alternative approach however is to
try to disprove conjectures and to generate counterexamples. We were inspired
by the automatic analysis method for first-order relational logic with transitive
closure implemented in the Alloy [1] and its successful application in the Mon-
dex challenge by Ramananandro [24]. Alloy’s algorithm handles full first-order
relational logic with quantifiers and transitive closure [14].
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The reason why we are interested in the automation of the FOL part of KIV
is that in almost all proof tasks carried out interactively in KIV, whether in
the basic logic or in extensions for temporal logic proofs [4], ASM specifications
[28], statecharts [5] or Java program proofs [30], eventually a lot of first-order
proof obligations arise. These are typically discharged using simplifier rules. Most
simplifier rules are first-order lemmas which are automatically used for rewriting
and other simplifications. In large case studies the number of used rewrite rules
is often several thousands, many of them imported from the KIV library of basic
data types. Defining and proving such simplifier rules is therefore a regular task
in interactive verification. Usually, some of these theorems are wrong at the
first attempt, so a quick check that identifies unprovable ones is very helpful.
Currently, to “test” an algebraic specification the proof engineer has either to
perform an informal analysis or try to prove the desired property by starting an
interactive proof. Most of the bugs in designs are discovered in the first step while
some particularly hard to find ones - in the second. The technique presented in
this work is intended to be a complementary quality improvement step which
requires minimal additional user effort.

In this paper we extend the results in [15,9]. Kuncak and Jackson [15] pre-
sented a general approach of utilizing finite model finding for analysis of term
algebras with language restricted to selectors only. [9] was the first step toward
extending the language to arbitrary functions which however was restricted to
very special class of definitions of recursive functions on freely generated data
types only. We extend the application scope of the technique with non-freely
generated data types. Furthermore, we define constraints which should be satis-
fied by the analyzed specification in order to guarantee a sound axiomatization
of its operations on finite structures. The main contribution is a generic method
for construction of finite instances for first-order specifications of abstract data
types. We applied the method to a considerable set of examples to determine
the relative size of the application domain. We showed empirically that all spec-
ifications of freely generated data types in KIV’s library are amenable to the
technique while the generation of instances and checking of theorems with Alloy
is accomplished in a reasonable time (from several seconds to few minutes in
worst case). In our experiments we used Alloy version 4.0 RC17 [1].

1.1 Outline

Section 2 introduces the background notions used throughout the work. In Sec-
tion 3 using the specification of non-freely generated data type store (abstract
memory model) as an example we present an approach for generation of finite
models with Alloy. In Section 4 we determine the constraints necessary for a
proper axiomatization of functions and predicates on finite structures. Section 5
presents results from the application to the library of basic data types in KIV.
This is followed by an overview of the related work in Section 6 and conclusions
in Section 7.
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2 Preliminaries

2.1 Specifications of Algebraic Data Types

KIV is a tool for formal system development. It provides a strong proof support
for all validation and verification tasks and is capable of handling large-scale
theories by efficient proof techniques and an ergonomic user interface. The ba-
sic logic underlying the KIV system combines Higher-Order Logic (HOL) and
Dynamic Logic (DL) [12], which allows to reason about partial and total cor-
rectness of imperative programs as well as expressing the program equivalence.
KIV supports both functional and state-based approaches to specify systems.
In this paper, we concern ourselves with the functional approach. A theory in
KIV describes data types, e.g. naturals, lists, arrays or records, which afterward
are used in DL programs. Theories are specified using hierarchically structured
algebraic specifications.

Definition 1 (Language)
Let Σ = (S,F ,P) be a signature with sorts s ∈ S and sets F , P of operations
which combine the sets Fs→s of function symbols f : s → s with the sets Ps of
predicate symbols p : s, where s ∈ S∗.

This definition is accompanied by some auxiliary commonly used constructs: X ,
Xs - sets of all variables and variables of the type s respectively, T (F0, X0) - set of
terms constructed using functions from F0 and variables from X0, For(Σ) - set
of formulas over Σ. Using a valuation α (assigns values to free variables) terms
and formulas are evaluated over structures called algebras : [[t]]A,α, [[ϕ]]A,α.

Definition 2 (Algebra)
For Σ let Alg(Σ) be a set of structures A = ((As)s∈S , (fA)f∈F , (pA)p∈P), where
As denotes a nonempty domain of the sort s and fA, pA are concrete interpre-
tations of symbols f ∈ F , p ∈ P over domains.

To specify data structures adequately, in addition to first-order axioms, ax-
ioms for induction are needed. Unfortunately, an induction scheme cannot be
specified by a finite set of first-order formulas. As a replacement generation
clauses are used. Hence, for a signature Σ the corresponding set Gen(Σ) con-
tains term generation clauses: “s generated by Cs”. The set of constructors
Cs = {c1, . . . , cn} ⊆ Fs→s is assumed to contain at least one constructor
ci : s → s with all its argument sorts different from s (a constant construc-
tor). Generation clauses in Gen(Σ) have the following semantics:

A |= s generated by Cs ⇔
for all a ∈ As exists α, t ∈ Ts(Cs, X\Xs) : a = [[t]]A,α

The above equivalence ensures that any element in As is a value of some s-
valued constructor term t ∈ Ts(Cs, X\Xs) using an appropriate assignment α
to parameter variables X\Xs, i.e. As is term generated.
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Definition 3 (Specification)
For a signature Σ a specification SP = (Σ, Ax, Gen) is a triple with finite sets
Ax ⊆ For(Σ) and Gen ⊆ Gen(Σ).

Definition 4 (Model)
An algebra A is a model of a specification SP , A ∈Mod(SP ):

A |= SP ⇔ A ∈ Alg(Σ), A |= Gen, A |= Ax

A formula ϕ ∈ For(Σ) is valid:

SP |= ϕ ⇔ for all A ∈Mod(SP ) : A |= ϕ

It is distinguished between free and non-free data types. Freely generated data
types have the property that syntactically different terms denote different values,
e.g. data type list which is generated by constructors nil and cons and has
selectors first and rest. The corresponding models are called term algebras where
terms have the above property.

While [9] discusses freely generated data types, in this work we are particu-
larly interested in non-freely generated data types for which different terms can
denote the same value, e.g. sets, stores, arrays (unlike for freely generated data
types where syntactically different terms denote different values). For example,
multiple insertions of the same element in a set have always the same result,
[[∅ ++ a = ∅ ++ a ++ a]]A,α. For a non-freely generated data type s in ad-

dition to the generation clause Gens the equivalence relation on s-valued terms
has to be provided.

Definition 5 (Σ-congruence)
Let Σ = (S,F ,P) and A ∈ Alg(Σ). Σ-congruence R is a family of equivalence
relations (Rs)s∈S induced by S which are compatible with operations F ∪ P:

1. for all f ∈ F , f : s1 × · · · × sn → s, ai, bi ∈ Asi holds∧n
i=1 Rsi(ai, bi) ⇒ Rs(fA(a1, . . . , an), fA(b1, . . . , bn))

2. for all p ∈ P, p : s1 × · · · × sn, ai, bi ∈ Asi holds∧n
i=1 Rsi(ai, bi) ⇒ (pA(a1, . . . , an) ⇔ pA(b1, . . . , bn))

The corresponding models are quotient algebras A/R.

Definition 6 (Quotient algebra)
For a Σ-congruence R on A is A/R = ((Qs)s∈S , (f◦)f∈F , (p◦)p∈P) a quotient
algebra with:

1. Qs = {[a] : a ∈ As} where [a] = {b : Rs(a, b)}
2. For operations f ∈ F , p ∈ P and [ai] ∈ Qsi :

f◦([a1], . . . , [an]) = [fA(a1, . . . , an)]
p◦([a1], . . . , [an]) ⇔ [pA(a1, . . . , an)]

Because R is a congruence, all operations are well defined and A/R ∈ Alg(Σ).
Furthermore, if A is a term generated algebra, then the corresponding quotient
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algebraA/R is term generated too [25]. The equivalence relation Rs (for non-free
s) on terms is specified with the axiom of extensionality, e.g. for sets it states:

s1 = s2 ↔ (∀a. a ∈ s1 ↔ a ∈ s2)

2.2 Multisorted Relational Logic in Alloy

The logic used by the Alloy Analyzer is a multisorted first-order relational logic
with transitive closure [14]. It extends first-order logic by relational terms r ∈ Rs

instead of just predicate symbols p ∈ Ps. Thus atomic formulas have form
x1 = x2 or r(x1, . . . , xn) where r is n-ary relational term. Relational terms
are either predicate symbols or composition r1.r2 or transitive closure ∧r, where
r is a binary relation. An Alloy specification SPAlloy describes a finite multi-
sorted universe U = (Ds1 , . . . , Dsn , γ) with finite sets of atoms for each sort and
an interpretation γ of relational symbols on domains. First-order formulas in
SPAlloy can be arbitrary quantified. For a specification SPAlloy and a conjecture
ϕ Alloy can be operated in two basic modes: searching for a counterexample
(SPAlloy ∧ ¬ϕ) or computing a witness (SPAlloy ∧ ϕ).

We introduce a notion of a relational specification, where all functions are
replaced by relations (predicates) that behave like corresponding functions. It
is constructed from an algebraic specification SP = (Σ, Ax, Gen) using the
translation procedure τ from functional to relational form previously defined in
[9] and the generation principle SUGA (selector, uniqueness, generator, acyclicity
axioms for term algebras) described by Kuncak and Jackson [15].

Definition 7 (Alloy specification)
For an algebraic specification SP we define a transformation to Alloy language:

τfin(SP ) = ((S, τ(F) ∪ P), τ(Ax) ∪ Unique(τ(F)) ∪ SUA(Gen))

where τ translates all formulas from the functional to the equivalent relational
form and maps function symbols to predicates: τ(f) = {F : f ∈ F} while
axioms Unique require each predicate τ(f) to behave like a function:

∀x, y1, y2. F (x, y1) ∧ F (x, y2) → y1 = y2

SUGA axioms are used to specify term generated algebras (models of free data
types, e.g. lists). Dropping of the generator axiom results in SUA axioms which
specify finite subterm-closed substructures of infinite term algebras (for any term
all subterms are also in the finite structure). Such structures are generated for
Alloy specifications τfin(SP ).

Definition 8 (Alloy model)
Finite algebra M = ((Ms)s∈S , (pM)p∈P∪τ(F)) is a model of τfin(SP ):

M |= τfin(SP ) ⇔ M |= SUA(Gen), M |= τ(Ax), M |= Unique(τ(F))

In the next section we present an approach for specifying non-free data types in
Alloy.
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3 Example: Store

Non-freely generated data type store represents an abstract memory model with
addresses and data. It is used in almost all bigger case studies in KIV where it
specifies heaps, file systems, Java VM memory etc. In this section we present an
algebraic specification of stores and the corresponding Alloy specification.

3.1 Algebraic Specification

The algebraic specification of stores is parameterized by not generated types
elem (corresponds to addresses) and data, see Figure 1. Data type store is gen-
erated by constructors $ (empty store) and . [ . , . ] (put data in store at some
address; allocate the address if necessary). The equivalence relation is specified in
axiom of extensionality which uses operations ∈ (test an address to be allocated)
and . [ . ] (get data at some address). The basis specification can be enriched
with arbitrary operations, e.g. see enrichment with delete and subset operations.
A specification of naturals (freely generated) is also included as it will be used
later on. Altogether, we have SP = (Σ, Ax, Gen) with

Σ = ({store, elem, data}, {$, . [ . , . ], . [ . ], --}, {∈, ⊆}) ∪Σnat

Gen = {store generated by $, . [ . , . ]} ∪Gennat

Ax = {ext, in-empty, in-put, at-same, at-other, subset, del-in, del-at} ∪Axnat

3.2 Alloy Specification

For freely generated data types it would be enough to take the Alloy specifi-
cation τfin(SP ), see Definition 7, to generate subterm-closed structures [9]. In
the following, we show how to adopt translation procedure τfin for non-freely
generated data types.

The corresponding Alloy specification τ̂fin(SP ) yielding finite subterm-closed
structuresM is constructed as follows:

τ̂fin(SP ) = (Σ̂, Âx ∪ Unique(τ(F) ∪ {P̂UT,SIZE}) ∪ SUA(Gen) ∪ Ck
store)

Σ̂ = τ̂fin(Σ) ∪ {P̂UT,BIGGER,SIZE}
Âx = {Φextension, Φin, Φat} ∪ {ΦP̂UT

, ΦSIZE} ∪ {Φsubset, Φdel}[PUT/P̂UT]

Φ
P̂UT

≡ ∀st, st1 : store, a : elem, d : data. P̂UT(st, a, d, st1) ↔
IN(a, st1) ∧AT (st1, a, d) ∧
(∀b : elem. ∃d1, d2 : data. a �= b → (IN(b, st1) ↔ IN(b, st)) ∧

(∃d1, d2 : data. AT (st, b, d1) ∧AT (st1, b, d2) → d1 = d2))

where the signature is extended with new symbols P̂UT, SIZE and BIGGER.
Further, all occurrences of the symbol PUT ≡ τ(. [ . , . ]) in axioms Φin, Φat

(relational definitions of ∈ and . [ . ]) are replaced by the newly introduced
symbol P̂UT. We have to specify P̂UT to behave like the original put function
in A (. [ . , . ] : store × elem× data → store) using definition Φ

P̂UT
.
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generic specification

parameter elem, data

target sorts store

using nat

constants

� : store; comment : empty

functions

. [ . , . ] : store × elem × data → store; comment : put

. [ . ] : store × elem → data; comment : at

predicates

. ∈ . : elem × store;

variables

st, st0, st1, st2 : store;

induction

store generated by �, . [ . , . ];

axioms

Ext : st1 = st2↔ ∀a. (a ∈ st1↔ a ∈ st2) ∧ st1[a] = st2[a];

In-empty : ¬ a ∈ �;

In-put : a ∈ st[b, d] ↔ a = b ∨ a ∈ st;

At-same : (st[a, d][a]) = d;

At-other : a �= b→ (st[b, d][a]) = st[a];

end generic specification

enriched specification

functions

. -- . : store × elem → store; comment : delete

predicates

. ⊆ . : store × store;

axioms

Subset : st1 ⊆ st2↔ (∀a. a ∈ st1→ a ∈ st2 ∧ st1[a] = st2[a]);

Del-in : a ∈ st--b↔ a �= b ∧ a ∈ st;

Del-at : a �= b→ (st--b)[a] = st[a];

end enriched specification

Fig. 1. Basis algebraic specification of the non-freely generated data type store +
enrichment with two operations

The size function #store : store → nat measures the construction complex-
ity of store-valued terms, e.g. #store($) = 0, #store($[a, d]) = 1, a �= b →
#store($[a, d][b, d]) = 2. The predicate SIZE is the relational version of #store.
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Fig. 2. Finite instance M for τ̂fin(SP ) generated by Alloy

The predicate BIGGER : store×elem×data tests whether the insertion of (a, d)
into st leads to a bigger store (in terms of stored data):

∀st : store, a : elem, d : data. BIGGER(st, a, d) ↔ a �∈ st

Finally, we include a closedness constraint Ck
store which restricts only to those

subterm-closed structures which contain all store-valued terms up to the size k.
Closedness constraint Ck

store restricts to finite SUA-generated structures satisfying
the following:

put-bigger : ∀st, st1 : store, a : elem, d : data.

PUT(st, a, d, st1) → BIGGER(st, a, d)
generate : ∀st : store, a : elem, d : data.

#store(st) < k ∧ BIGGER(st, a, d) → ∃st1 : store. P̂UT(st, a, d, st1)
bound : ∀st : store. #store(st) ≤ k

The first axiom restricts the application of the constructor PUT (responsible
for the generation of new store-atoms) only to cases where it leads to a big-
ger store. The axiom generate is responsible for filling up a model with atoms
up to a certain bound k. Figure 2 is produced by Alloy and shows an instance
M = (Mstore,Melem,Mdata,Mnat, (pM)p∈P) which satisfies the C2

store closed-
ness constraint. The domains are composed as follows:

Mstore = {$,$[a, d1],$[a, d2],$[b, d1],$[b, d2],$[a, d1][b, d1],$[a, d1][b, d2],
$[a, d2][b, d1],$[a, d2][b, d2]}

Melem = {a, b}, Mdata = {d1, d2}, Mnat = {0, 1, 2}

For a better clearness only essential relations allowing an identification of the
values of atoms are shown. Operations at (data on the given position) and cplx
(#store) are shown as attributes of atoms.
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4 Model Construction with Alloy

In this section we consider the approach from the previous section from a more
general point of view and discuss the constraints which should be satisfied by the
analyzed algebraic specifications to guarantee the soundness. As demonstrated
in [9] for freely generated data types some definitions of functions do not pre-
serve the semantics under the transition from an infinite structure to some finite
substructure. In case of non-freely generated data types it becomes even more
complicated since the generation of the carrier set depends on some definitions
(axiom of extensionality). In this section we discuss constraints which should
be satisfied by an algebraic specification SP in KIV in order the corresponding
Alloy specification τ̂fin(SP ) to yield finite structuresM that are isomorphic to
some finite substructures of the algebra A (model of SP). Roughly speaking,
these constraints should guarantee that Alloy does not produce spurious coun-
terexamples. We give a syntactical characterization of the constraints such that
in the worst case they can be proven in the theorem prover KIV for a given
specification (if not automatically discharged by some efficient heuristics). For
this purpose, we enrich SP with auxiliary operations (in part even higher-order)
which will be used for the reasoning about correctness, see Definition 9.

Definition 9 (Auxiliary operations)

1. #s : s → nat used to measure the construction complexity of s-valued terms
2. %: s1 × s1 ∪ s1 × s2 ∪ · · · ∪ sk × sk - a preorder on domains
3. ≺: s× s a predicate on terms in As (for a non-freely generated s)
4. Υ : For(SP ) × V ars identifies %-compatible formulas

The preorder % is used to introduce the %-closedness of finite substructures of
infinite structures which can be semantically characterized as follows (for finite
structuresM and infinite A):

∀ d0 ∈ dom(M), d ∈ dom(A). d % d0 → d ∈ dom(M)

For example, we can take the subterm relation for %. The carrier set As/R con-
tains quotients [t]. We can characterize [t] by their minimal representatives, i.e.
terms tm ∈ [t] with minimal size (#s). Let [ ]m : s → s be a function calcu-
lating tm. The predicate ≺: s × s is defined such that t1 ≺ t2 ↔ #store[t1]m <
#store[t2]m (predicate BIGGER in the example with stores). ≺ is used to restrict
SUA axioms to generate only the terms [t]m. Furthermore, we assume ≺ to agree
with % : ≺ ⊆ %.

The predicate Υ is used to define the compatibility of definitions on finite
%-closed substructures:

Υ (χ, x) ≡ true, for quantifier-free χ

Υ (∃z. ϕ, x) ≡ (∃z. ϕ) → (∃z. ϕ ∧ (
∨
u∈x

z % u) ∧ Υ (ϕ, x ∪ z))

Υ (∀z. ϕ, x) ≡ (∃z. ¬ϕ) → (∃z. ¬ϕ ∧ (
∨
u∈x

z % u) ∧ Υ (ϕ, x ∪ z))
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Now we can define a class of compatible specifications, i.e. specifications for
which the transformation procedure τ̂fin to Alloy language is sound.

Definition 10 (Compatibility)

1. Definition1 Φ ≡ ∀x, y. f(x) = y ↔ Q1v1 . . .Qnvn. χ(v, x, y) of a function
f : s → s is %-compatible iff Υ (Q1v1 . . .Qnvn. χ(v, x, y), x∪{y}) holds. If χ
contains recursive calls to f we additionally require the recursive definition
Φ to be well-founded [13] and for the associated well-founded order2 %r to
satisfy %r ⊆ %.

2. Extensionality axiom Φext ≡ ∀x1, x2. x1 = x2 ↔ Q1v1 . . .Qnvn. χ(v, x1, x2)
is %-compatible iff Υ (Q1v1 . . .Qnvn. χ(v, x1, x2), {x1, x2}) holds

3. Specification SP is %-compatible iff all its definitions and extensionality ax-
ioms are %-compatible.

The following key steps in the process can not be completed automatically cur-
rently and require user creativity:

1. specification of the predicate ≺: s × s (indirectly encoded in the predicate
BIGGER in the example with stores)

2. specification of constructor functions ĉ for each c ∈ Cs for a non-freely
generated data type s (PUT and P̂UT in the example in Section 3).

3. verification of %-compatibility of SP (can be partly automated, currently
for practical reasons this step is performed informally)

Although, the first two steps are the most crucial and challenging from the user
point of view, they are also least labour intensive and require only a thorough
understanding of A/R. Furthermore, although non-free data types are used in
almost every case study, typically only the standard library types (stores, sets,
arrays, integers, graphs) are used, i.e. user effort is equal zero as library is already
ported to Alloy. The third step can become tedious, since in the worst case
proof obligations for %-compatibility of definitions have to be discharged. The
encouraging fact is, that in the considered case studies almost all definitions can
be automatically proven %-compatible using efficient heuristics. These heuristics
on their part require a negligible information input from the user concerning
input-output %-relationship of a small number of basis operations.

The choice of the preorder % has the major impact on the size of the gen-
erated structures (performance) and on the scope of amenable definitions (%-
compatibility). The most often used alternative is the subterm relation which
comes for free from the SUA generation principle, suffices for most practical cases
and is also the most efficient choice. As demonstrated in [9] for some definitions
subterm-closedness is too weak and additional constraints requiring the finite
structures to be filled to a certain degree must be specified. The strongest con-
straint is to require s, k-completeness (Ck

s ) for some data types s, see example in
Section 3 where we used it.
1 χ quantifier-free with free variables v ∪ x ∪ {y}.
2 A binary relation ≺ on a set X is said to be well-founded iff every nonempty subset

of X has a ≺-minimal element: ∀S ⊆ X. S �= ∅ ⇒ ∃m ∈ S. ∀y ∈ S. y �≺ m.
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Theorem 1 (Construction). For a %-compatible specification SP if a finite
structure M is a model of τ̂fin(SP ), then M is isomorphic to some finite %-
closed substructure A0 of A, where A |= SP .

Follows from the %-compatibility of SP and a similar theorem for freely gener-
ated term algebras by Kuncak and Jackson [15]. For the considered data types
in the library the reverse direction of the implication (⇐) holds as well.

We refer to the previous results concerning the class of amenable theorems,
which is composed of UBE (universal-bounded existential) formulas introduced
in [9]. For both subtypes the reasoning on infinite structures can be reduced to
reasoning on finite subterm-closed substructures, i.e. for for UBE sentences we
have finite refutation. Because the considered %-closed submodels are subterm-
closed anyway (SUA generation), these results apply to them as well.

Theorem 2 (Finite refutation). Let ϕ be an UBE formula in KIV, τ(ϕ) its
translation to the relational form, SP the specification. Then
existsM : M |= τ̂fin(SP ), M � τ(ϕ) ⇒ exists A : A |= SP, A � ϕ

5 Results

We applied our technique to algebraic specifications of abstract data types in
the theorem prover KIV. The scope of the application comprises KIV’s library
of the most essential freely and non-freely generated data types as well as some
interesting examples from case studies carried out in KIV. For an evaluation we
picked the following non-freely generated data types: stores, sets and arrays. The
following algebraic specifications were considered:

– SP1 = ({store, elem, data, nat}, (F ,P), Genstore ∪Gennat, Ax),
– SP2 = ({set, elem, nat}, (F ,P), {set generated by ∅, ++} ∪Gennat, Ax),
– SP3 = ({array, elem, nat}, (F ,P), Genarray ∪Gennat, Ax).

We measure the size of the above specifications by counting defined operations
(functions and predicates) and theorems. For SP1 we get: #F ∪P = 12, #ax =
16, #theorems = 84, for SP2 : #F ∪ P = 16, #ax = 19, #theorems = 341, for
SP3 : #F ∪ P = 12, #ax = 16, #theorems = 14. We informally checked the
specifications for compatible definitions and theorems amenable to the analysis.
In fact all operations in all considered specifications were compatible, i.e. prop-
erly definable on finite substructures. There were some theorems not amenable
to the analysis, i.e. not belonging to the UBE class (�∈ UBE). In SP1 only 3 (of
84) theorems belonged not to the UBE class and in SP2 - 10 (of 341). In SP3 all
theorems were analyzable. Among those 13 not amenable theorems the following
distribution occurs: 7 of type ϕ ↔ ∃x. ψ, 5 of type ϕ ↔ ∀x. ψ, and 1 of type
∃x. ∀y. ψ.

Finding a bug in the library is not possible as all theorems are proven. Still, for
the evaluation purposes we performed the following two steps. First, we picked
40 proven theorems altogether having the high coverage of the intended behav-
ior of the specification and run the tool on them to see whether they produce
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Table 1. Benchmark: generating an instance (zChaff [34] SAT solver, 2.4 GHz Dual)

sorts bounds s, k-compl #ops #clauses #vars w-time

store, |S| ≤ 9, |E| = 2, |D| = 2, |N | = 3 (store,2) 12 8 x 104 3 x 104 2 s
elem, |S| ≤ 10, |E| = 3, |D| = 3, |N | = 2 (store,1) 12 3 x 105 1 x 105 30 s
data, |S| ≤ 16, |E| = 1, |D| = 15, |N | = 3 (store,2) 12 5 x 105 2 x 105 33 s
nat |S| ≤ 16, |E| = 2, |D| = 3, |N | = 3 (store,2) 12 3 x 105 1 x 105 > 5 min

set, |S| ≤ 4, |E| = 2, |N | = 3 (set,2) 16 2 x 104 1 x 104 0.3 s
elem, |S| ≤ 7, |E| = 3, |N | = 3 (set,2) 16 6 x 104 3 x 104 1 s
nat, |S| ≤ 8, |E| = 3, |N | = 4 (set,3) 16 1 x 105 5 x 104 2 s

|S| ≤ 11, |E| = 4, |N | = 3 (set,2) 16 2 x 105 8 x 104 30 s
|S| ≤ 15, |E| = 4, |N | = 4 (set,3) 16 6 x 105 2 x 105 1 min
|S| ≤ 16, |E| = 4, |N | = 5 (set,4) 16 8 x 105 3 x 105 14 min

array, |A| ≤ 7, |E| = 2, |N | = 3 (array,2) 5 5 x 104 2 x 104 2 s
elem, |A| ≤ 14, |E| = 2, |N | = 4 (array,2) 5 2 x 105 1 x 105 1 min
nat |A| ≤ 17, |E| = 2, |N | = 4 (array,3) 5 4 x 105 2 x 105 > 5 min

spurious counterexamples, which was not the case. After this kind of empiri-
cal correctness test we artificially introduced different kinds of anomalies which
usually occur in the design process: from simple typos in a specification and/or
in theorems to omitting some important cases in a definition of an operation or
dropping essential preconditions in theorems. Alloy was able to detect all bugs
and obviously was tremendously more efficient as compared to a human checker.
It basically considers all possible finite models up to the size k leaving nothing
unregarded whithin the scope. To measure the dynamics of the resources usage
we performed a testing under the following changing parameters: bounds on the
number of atoms in the universe (for each sort), level of s, k-completeness of
the finite models and the number of the defined operations in the specification.
Further, we distinguish between two kinds of analysis: generation of an instance
for a given specification (run in Alloy notation), see Table 1, and checking a the-
orem for a specification (check in Alloy notation). For all wrong theorems it was
enough to consider relatively small finite models, e.g. for stores we limitedM to
|S| ≤ 9, |E| = 2, |D| = 2, |N | = 3 and required the store, 2-completeness (C2

store).
Beside the number of atoms in the universe, which has a major impact on the
size of the SAT instance, the arity of the relations included in the signature of
Alloy’s specifications significantly affects the time to generate the SAT instance
(even for moderate instance sizes). For example, in an unisorted universe with
only 4 atoms a simple inclusion of a 5-ary relation results in the SAT instance
generation time of 3 minutes, although instance size is just 105 clauses and it is
checked in 55 ms. Consequently, for the example with arrays we where not able
to analyze conjectures involving function fill : array×elem×nat×nat → array,
which is a 5-ary relation. Figure 3 shows a finite instance of SP2 where most
of 16 operations are hidden to get a clear picture of the universe. The instance
M satisfies the highest completeness possible C4

set (for |E| = 4 we get the whole
power set P(E)).
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Fig. 3. Finite instance M for SP2 (16 operations hidden for clarity)

6 Related Work

There exist various finite model generators: McCune’s tool MACE [16] (transla-
tion to propositional logic), Kodkod [32] (used in the most recent version of Al-
loy), Paradox [8], SEM [35] (model search directly on a set of first-order clauses),
FINDER [29], to name only a few. Combination of theorem proving and model
finding techniques have been done in a number of case studies. They have in
common rather symmetrical objectives: strengthen interactive proving tools by
adding automatic methods on one hand and extending automatic tools with in-
teractive formal reasoning on the other, e.g. Alloy has no support for theorem
proving. Both reasoning techniques are increasingly seen as complementary ac-
tivities. One approach is to use automated theorem provers based on resolution
or other calculi as a tactic in KIV to prove first-order theorems which was in-
vestigated in [3] and in [26] with some improvements on exploiting the structure
of algebraic theories. McCune’s automated theorem prover Prover9 [18] (suc-
cessor of Otter [17]) employs the MACE generator for search of countermodels.
Reversely, the Paradox model finder has been augmented by an automated first-
order theorem prover Equinox [7].

However, automated theorem provers are of limited use, since they do not sup-
port induction necessary to reason about algebraic types and recursive definitions.
Weber developed a model generator [33] for higher-order logic (HOL) and inte-
grated it in Isabelle [22]. In [19] an automation procedure for a theorem prover
is described which bridges numerous differences between Isabelle with its higher-
order logic and resolution provers Vampire and SPASS (restricted first-order, un-
typed, clause form). There exist similar approaches to integrate model checking
tools in theorem provers for more efficient identification of reasons why proofs fail,
e.g. Pike’s [23] integration of SPIN model checker in PVS [21]. Improving quality
of specifications by flaw detection plays a crucial role in practice and always re-
mains an up-to-date issue. Earlier works by Thums et al. [31,27] and Ahrendt [2]
considered an error detection in loose specifications of abstract data types.
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7 Conclusion

We have presented a method that is aimed at refutation of unprovable first-order
conjectures which in numbers arise in the interactive theorem proving practice. It
is also meant to be a complementary quality improvement step in the algebraic
specification development process imporving efficiency of proof engineers. A big
advantage of this approach is its ability to generate finite instances (nicely visual-
ized with Alloy) for counterexamples or witnesses. They can serve as an important
source of information to designers and proof engineers, helping in getting better
understanding of why their assumptions on models are wrong.
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Types. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 99–115.
Springer, Heidelberg (2008)

10. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification. Springer, Heidelberg
(1985)

11. Ehrig, H., Mahr, B.: Algebraic techniques in software development: A review of
progress up to the mid nineties. In: Current Trends in Theoretical Computer Sci-
ence, pp. 134–152 (2001)

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Harrison, J.: Inductive definitions: Automation and application. In: TPHOLs, pp.

200–213 (1995)
14. Jackson, D.: Automating first-order relational logic. In: Proceedings of the 8th ACM

SIGSOFT Symposium, pp. 130–139. ACM Press, New York (2000)
15. Kuncak, V., Jackson, D.: Relational analysis of algebraic datatypes. In: Proceedings

of the 13th ACM SIGSOFT Symposium (2005)

http://alloy.mit.edu


Automating Algebraic Specifications of Non-freely Generated Data Types 155

16. McCune, W.: Mace4 reference manual and guide (2003)
17. McCune, W.: Otter 3.3 reference manual (2003)
18. McCune, W.: Prover9 manual (April 2008)
19. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First proto-

type. Inf. Comput. 204(10), 1575–1596 (2006)
20. Mosses, P.D.: CASL Reference Manual, The Complete Documentation of the Com-

mon Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg
(2004)

21. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Hei-
delberg (1992)

22. Paulson, L.C.: Isabelle - A Generic Theorem Prover (with a contribution by T. Nip-
kow). LNCS, vol. 828. Springer, Heidelberg (1994)

23. Pike, L., Miner, P., Torres-Pomales, W.: Diagnosing a failed proof in fault-tolerance:
A disproving challenge problem. In: DISPROVING 2006 Participants Proceedings,
pp. 24–33 (2006)

24. Ramananandro, T.: Mondex, an electronic purse: specification and refinement
checks with the Alloy model-finding method. Formal Aspects of Computing 20(1),
21–39 (2008)

25. Reif, W.: Korrektheit von Spezifikationen und generischen Moduln. PhD thesis, Uni-
versität Karlsruhe, Germany (1991) (in German)

26. Reif, W., Schellhorn, G.: Theorem Proving in Large Theories. In: Bibel, W.,
Schmitt, P. (eds.) Automated Deduction—A Basis for Applications, vol. III, 2.
Kluwer Academic Publishers, Dordrecht (1998)

27. Reif, W., Schellhorn, G., Thums, A.: Flaw detection in formal specifications. In:
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Abstract. The linear arithmetic solver in Yices was specifically de-
signed for SMT provers, providing fast support for operations like adding
and deleting constraints. We give a procedure for developing interpolants
based on the results of the Yices arithmetic solver. For inequalities over
real numbers, the interpolant is computed directly from the one con-
tradictory equation and associated bounds. For integer inequalities, a
formula is computed from the contradictory equation, the bounds, and
the Gomory cuts. The formula is not exactly an interpolant because it
may contain local variables. But local variables only arise from Gomory
cuts, so there will not be many local variables, and the formula should
thereby be useful for applications like predicate abstraction. For integer
equalities, we designed a new procedure. It accepts equations and con-
gruence equations, and returns an interpolant. We have implemented our
method and give experimental results.

1 Introduction

In 1957 [5] Craig presented the idea of interpolant. But, only recently interpolant
are used as an important part of program verification. Interpolants are especially
useful for finding inductive invariants and for predicate abstraction [1,10,11,12].
Given two sets of logical formulas A and B where A ∪ B is unsatisfiable, a
formula P is an interpolant of (A,B) if A implies P , P contradicts B , and P
only contains variables common to A and B. Informally, an interpolant gives
the reason why A and B contradict, in a language common to both of them.
Invariants are created iteratively, and the common variable restriction keeps the
number of variables from exploding.

In this paper, we are concerned with linear arithmetic (in)equalities, either
over the reals or the integers. Our method, called YAI (Yices Arithmetic Inter-
polants), is based on the linear arithmetic algorithm of Yices[8]. This algorithm
was specially designed to work inside an SMT prover. It is able to quickly add
and remove single constraints. Yices’ linear arithmetic solver reduces sets of
inconsistent constraints into an unsatisfiable equation. Then, our method can
simply construct an interpolant from that unsatisfiable equation. Therefore, the
method is not proof-based, and after detecting unsatisfiability, it can find an
interpolant without much additional work.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 156–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Simplex methods are believed to be faster than Fourier Motzkin methods.
Yices does not use the Simplex method, but it uses essential ideas from that
method, with the idea that incremental changes must be fast. Given a set of con-
straints, Yices will first flatten the constraints using extension variables. What
is left are equations that are pivoted and updated in a Simplex manner, and
bounds on extension variables. The third component of the Yices algorithm is a
set of variable assignments, which is updated as bounds are added. If the con-
straint set is unsatisfiable, then the algorithm will halt with an equation that
conflicts with the bounds on the variables it contains. For real (in)equations, our
method creates the interpolant from that equation and those bounds.

For integer (in)equations, the Yices algorithm needs to apply Gomory cuts,
which introduce new variables. In this case, our formula uses the bounds, the
contradicting equation, and the Gomory cut definitions to create a conditional
formula which satisfies the first two conditions of the definition of interpolant.
However, it is possible that the formula may contain variables that are not
common to both A and B. Therefore, the formula is not exactly an interpolant.
However, these offending variables are only from the Gomory cuts. So, there will
not be many of them. When the purpose of requiring common variables is to
keep the number of variables from exploding when the interpolant construction
is iterated, we believe that these formulas are still useful in practice.

We have developed a special algorithm for interpolants over integer equations.
This algorithm takes as input a set of equations and congruence equations. It is
more of a Fourier Motzkin method, since new equations can be added, but in
a controlled fashion. However, we still use the extensions and bounds from the
Yices algorithm. This will retain the advantages of ease of adding and deleting
equations. When the algorithm determines unsatisfiability, we will again have
an equation which conflicts the bounds on the variables, and we will create a
congruence equation from that information, which will be an interpolant.

We have implemented each of these methods. We created some random con-
straints and compared our implementation, YAI, with Yices. Our algorithm is
the same as Yices except for integer equations, and the fact that we construct an
interpolant. The time to construct the interpolant does not add significantly to
the running time. However, due to clever coding techniques of the Yices program-
mers, YAI is slower than Yices. Our method could be incorporated into Yices
without increasing its running time. For integer equations, our implementation
is faster than Yices on the tested examples.

We are aware of two other implementations which create interpolants for linear
arithmetic: FOCI[11] is which a proof-based method, and CLP-Prover[13] which
is not proof-based. Those methods also handle uninterpreted function symbols
and disjunctions. However, CLP-Prover does not handle integers, and FOCI
only approximates them. Since FOCI is proof-based, it is more complicated to
find an interpolant. The main difference between our implementation and those
other two is that our implementation is designed to work in an SMT theorem
prover which supports fast operations for adding and deleting constraints. Re-
cently, we became aware of MATHSAT-ITP[3] and INT2[9]. For linear arithmetic
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over reals, both MATHSAT-ITP and YAI are based on the simplex method.
MATHSAT-ITP explicitly constructs a proof of unsatisfiability and uses McMil-
lan’s method[11] to build an interpolant from the proof of unsatisfiability. But,
YAI does a similar thing by directly computing an interpolant from the unsat-
isfiable equation with its bounds. MATHSAT-ITP converts an equality into two
inequalities, which creates more constraints. However, YAI can directly handle
equalities. INT2 creates interpolants for equalities over integers, but it does not
use the same method as YAI. INT2 is not designed to work in SMT.

YAI cannot handle uninterpreted function symbols and disjunctions. But,
YAI can easily be extended to handle those problems by using the combination
methods proposed by Yorsh and Musuvathi[14] or McMillan[11]. Notice that a
disequality t �= 0 can be rewritten into t > 0 ∨ t < 0.

Our paper is organized as follows. In Section 2, we introduce the preliminar-
ies. That is followed by a brief introduction to the linear arithmetic solver of
Yices. Next, we introduce YAI for linear equalities and inequalities over ratio-
nal numbers. In this section, the linear arithmetic solver is the same as Yices.
After that, we introduce YAI for linear equalities over integers. In this section,
a new complete linear arithmetic solver is introduced, which is different from
Yices. Following that, we introduce YAI for linear equalities and inequalities
over integers. The linear arithmetic solver of YAI is the same as Yices. Finally,
we conclude and mention future work.

2 Preliminaries

An atom is a single variable. A term is defined as a constant, an atom or cx
where c is a constant and x is a variable. If c is negative, we call cx a negative
term, otherwise cx is a positive term. An expression is a summation of terms.
t1 − t2 is an abbreviation of t1 + (−t2) where t1 and t2 are terms.

In our paper, an equation t1 = t2 is called a standard equation (or simply
equation) where t1 and t2 are expressions. t1 ≡m t2 is a congruence equation
where t1 and t2 are expressions and m is a constant. An inequality is of the form
t1φt2, where φ ∈ {>,<,≥,≤}. A constraint is a standard equation, an inequal-
ity, or a congruence equation. A congruence equation t1 ≡m t2 is satisfiable if
there is an assignment for the variables such that t1 and t2 are congruent modulo
m. Any other constraint is satisfiable if there is an assignment for the variables
which satisfies the constraint. A set of constraints is satisfiable if there is an as-
signment for the variables which satisfies all the constraints. A set of constraints
is unsatisfiable if it is not satisfiable.

We will consider two sets of constraints A and B, and we wish to determine
if A ∪ B is satisfiable. A variable occurring only in A or only in B is called a
local variable. Variables occurring in both A and B are called global variables. If
A ∪B is unsatisfiable, then P is an (A,B) interpolant if A implies P , P ∪B is
unsatisfiable, and all variables in P are global.
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3 A Linear Arithmetic Solver for DPLL(T)

Yices is an SMT solver that can efficiently check satisfiability of linear arithmetic.
If the problem is satisfiable, Yices generates an assignment for each variable; else
unsatisfiability is detected. Yices first converts the formula into a conjunction
of equalities and bounds. The new equalities and bounds can be derived by
introducing extension variables. For instance, given an constraint tφc where t is
an expression, c is a constant and φ ∈ {≥,≤,=, >,<}, a new equality s = t and
a bound sφc are generated by introducing an extension variable s. t is called a
definition of s, c is a bound value and φ is a bound operator. This process of
replacing a constraint tφc by an extension equation s = t and a bound sφc is
called flattening. Later on, we will need to replace the extension variables back
by their definitions, so we introduce a substitution σ to do that.

Definition 1. σ is a substitution that replaces extension variables by their def-
initions.

After flattening, a set of new equalities
∑m

i=1 si = ti forms a constraint matrix,
and a set of bounds

∑n
i=1 siφici is generated too. Notice that the conversion

preserves satisfiability. Here is an example. Given two linear arithmetic sets:
A = {x− y = 0, 2y ≥ 1}, B = {x ≤ 0}.

This will be flattened into extension equations {s1 = x − y, s2 = 2y} and
bounds { s1 = 0, s2 ≥ 1, x ≤ 0 } where s1 and s2 are extension variables. Notice
that no extension variable is introduced for the bound x ≤ 0 because x is an
atom. So, we can directly treat x ≤ 0 as a bound. After introducing extension
variables, the new set derived from A is called Ae, and the new set derived from
B is called Be. It is not hard to see that σ(Ae) is A and σ(Be) is B. In this
example, Ae is {s1 = x− y, s2 = 2y, s1 = 0, s2 ≥ 1 }, and Be is {x ≤ 0}.

The equations in the constraint matrix always maintain the following form:

xi =
∑

xj∈N
aijxj xi ∈ B

where xi is a basic variable, which only appears on the left side of the equations,
xj are non basic variables, which appears only on the right side of the equations,
B is the set of basic variables, N is the set of non-basic variables, and aij are
the coefficients. Each variable xi has two bounds li(lower bound) and ui(upper
bound). If no constant bound exists, we assume the bound is −∞ or +∞. If
li = −∞ and ui = +∞ then xi is a free variable; else if li = ui then xi is a
fixed variable. We introduce a variable assignment β that maps each variable to
a constant value. Initially β(x) = 0 for all variables x. The procedure continually
updates β, so that all equations and bounds will be true.

The main algorithm of this solver contains two parts. The first part con-
taining two asserting procedures in Figure 3 [8] is to assert bounds. The sec-
ond part is to resolve bound violations using the main procedure check() in
Figure 2[8]. Initially, for each variable x, β(x) = 0. Then, each bound will be
asserted one by one. After asserting a bound, the variable assignment may be
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procedure update(xi, v)
for each xj ∈ B , β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedure pivotAndUpdate(xi, xj ,v)

θ := v−β(xi)
aij

β(xi) := v
β(xj) := β(xj) + θ
for each xk ∈ B \ xi, β(xk) := β(xk) + akjθ
pivot(xi, xj);

Fig. 1. Auxiliary procedures

1. procedure check()
2. loop
3. select the smallest basic variable xi such that β(xi) < li or β(xi) > ui

4. if there is no such xi then return satisfiable
5. if β(xi) < li then
6. select the smallest non-basic variable xj such that
7. (aij > 0 and β(xj) < uj) or (aij < 0 and β(xj) > lj)
8. if there is no such xj then return unsatisfiable
9. pivotAndUpdate(xi, xj , li)
10. if β(xi) > ui then
11. select the smallest non-basic variable xj such that
12. (aij < 0 and β(xj) < uj) or (aij > 0 and β(xj) > lj)
13. if there is no such xj then return unsatisfiable
14. pivotAndUpdate(xi, xj , ui)
15. end loop

Fig. 2. Check procedure

1. procedure AssertUpper(xi ≤ ci)
2. if ci ≥ ui then return satisfiable
3. if ci < li then return unsatisfiable
4. ui := ci

5. if xi is non-basic variable and β(xi) > ci then update(xi, ci)
6. return ok

1. procedure AssertLower(xi ≥ ci)
2. if ci ≤ li then return satisfiable
3. if ci > ui then return unsatisfiable
4. li := ci

5. if xi is non-basic variable and β(xi) < ci then update(xi, ci)
6. return ok

Fig. 3. Assertion procedures
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updated. Then, it is possible that the assignment of some variable could violate
some asserted bound after updating the variable assignment. Thus, the procedure
check() will be immediately called to resolve bound violations after the assign-
ment is updated in the asserting procedures. If a bound violation is resolved by
pivotAndUpdate(xi, xj , v) or no violation is detected, a temporary assignment
satisfies all equations in the constraint matrix and the asserted bounds. So, after
all bounds are asserted, if the original problem is satisfiable then a model is
generated. If the algorithm determines unsatisfiability because an equation e is
unsatisfiable with the bounds of its variables, then we call e an unsat equation.
The termination of the algorithm has been proved in [8].

To handle strict inequalities over reals, Yices converts strict inequalities into
non-strict inequalities by introducing a variable δ representing an infinitely small
positive real number [8]. For instance, x > 2 is converted into x ≥ 2 + δ.

The linear arithmetic solver of Yices is complete to decide satisfiability for lin-
ear arithmetic over real numbers. But, it is incomplete for linear arithmetic over
integers. In the next section we will introduce a method to build an interpolant
when the solver of Yices detects that the problem is unsatisfiable.

4 YAI for Linear Equalities and Inequalities over Reals

In this section, our method to check satisfiability of linear arithmetic is the same
as Yices. Since any disequality t �= 0 can be converted into t > 0 ∨ t < 0 [8],
YAI can be easily extended to handle disequalities. As mentioned in the previous
section, the solver can detect unsatisfiability in the assert and check procedures.
In the assert procedures, unsatisfiability means two asserted bounds contradict
each other. For instance, the bound x ≥ 5 contradicts the bound x ≤ 0. So, in this
case the way to construct an interpolant is simple, and is presented in Figure 4.
The input bi and bj of this procedure represents two inconsistent bounds.

1. procedure bound interpolant(bi, bj)
2. if(both bounds are from Ae) then return FALSE;
3. if(both bounds are from Be) then return TRUE;
4. if(bi is from Ae) then return σ(bi);
5. if(bj is from Ae) then return σ(bj);

Fig. 4. Bound Interpolant procedure

If the algorithm returns unsatisfiable in the checking procedure, that means
that a bound violation is detected in an equation and the solver is not able
to resolve the bound violation. Thus, in this case an unsat equation is de-
tected. Notice that in an unsat equation there are no free variables because
if a free variable exists then the bound violation can always be resolved by call-
ing pivotAndUpdate(xi, xj ,v). We can rewrite the unsat equation in the form
t = 0. Since that equation contradicts the bounds, there must exist a minimal
set of bounds K such that K implies t > 0 or K implies t < 0. Let ax be a term
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Table 1.

φ inverse(φ)

≥ ≤
> <

≤ ≥
< >

= =

in t, and let xφd ∈ K. If ax is a positive term, then axφa ∗ d is called an active
bound. The function inverse maps an operator to an operator and is defined in
Table 1. If ax is a negative term, then ax inverse(φ)a ∗ d is called an active
bound. We say that a set of bounds has the same direction if all bound operators
of active bounds exist only in the set {>,≥,=} or the set{<,≤,=}. Since K
implies t > 0 or K implies t < 0, then all active bounds in the unsat equation
must have the same direction.

1. procedure real interpolant(i)
2. move the basic variable xi to the right side of the equation
3. for each variable xj in the equation
4. if the active bound of xj is from Ae then
5. s := s + aijxj

6. c+ = aij * b value(xj)
7. if aij <0 then op = inverse( b operator(xj))
8. else op = b operator(xj)
9. if op � φ then φ =op
10. return σ(s φ c)

Fig. 5. Interpolant procedure over reals

Our method collects all active bounds from Ae in that equation to build an
interpolant. Later on we will prove that the summation of all active bounds from
Ae is an interpolant. The procedure real interpolant(xi) to build an interpolant
over the reals is shown in Figure 5.

real interpolant(i) will be immediately called after the linear arithmetic
solver of Yices fails to find an assignment for the basic variable xi in the unsat
equation. The procedure takes as input an index i indicating the ith equation(xi

is a basic variable). We move basic variable xi to the right hand side of the
equation to express it in the form 0 = t. The variable s, initialized to the empty
string, is the sum of the left hand sides of active bounds from Ae, c, initialized to
zero, is the sum of corresponding bound values and φ is the active bound opera-
tor. b value(xj) returns the active bound value of xj , and b operator(xj) returns
the bound operator of xj . In the procedure an ordering is placed on operators
′ >′ ( ′ ≥′ ( ′ =′, and ′ <′ ( ′ ≤′ ′ =′. When adding active bounds
together, the procedure selects the biggest operator among bound operators.

Example 1. Let’s construct an interpolant from the example introduced in Sec-
tion 3. The solver detects an unsat equation 2x = 2s1 +s2 with its active bounds
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{x ≤ 0, s1 = 0, s2 ≥ 1}. Running real interpolant(i), we can derive s = 2s1+s2,
c = 1 and φ =′≥′ because ′ ≥′ ( ′ =′. So, sφc will be 2s1 + s2 ≥ 1. Then, the
interpolant σ(2s1 + s2 ≥ 1) is 2x ≥ 1 because s1 = x− y and s2 = 2y .

Lemma 1. σ(sφc) derived in real interpolant(i) is an (A,B)-interpolant.

5 YAI for Linear Equalities over Integers

Our method to check satisfiability of linear equations over integers is different
from Yices. Yices employs the branch-and-bound and Gomory cut strategies to
handle linear arithmetic over integers after a real assignment of variables is gen-
erated. Since in this section we only focus on integer equalities, then the Gomory
cut strategy is not applicable. So, Yices only can use the branch-bound strategy.
However, the branch-bound strategy is not suitable for generating interpolants
because it repeatedly splits the problem into subproblems. Thus, this strategy
not only increases the difficulty of constructing the interpolant, but it also makes
the format of the interpolant complex involving the composition of disjunction
and conjunction formulas. Therefore, we present a new linear arithmetic solver
for linear equalities over integers and a simple method to construct interpolants.

Our Interpolants are standard equations or congruence equations because in
some cases standard equations are not powerful to express the interpolant. For
example, A = {2x = y} and B = {2z = y + 1}. In this example, it is difficult
to express the interpolant as standard equations because the interpolant could
be a disjunction of infinitely many standard equations. But, if we introduce con-
gruence equations, we can simply represent the interpolant as y ≡2 0. Another
nice feature is that our method can treat congruence equations as inputs. This
will be useful to find inductive invariants, when the interpolant may be an input
to another call of the theorem prover.

We still use Yices’ method to build the constraint matrix and bounds. In
the constraint matrix we specify that all the coefficients of variables are inte-
gers. Basically, our method consists of two main procedures reduce matrix()
and reduce congruence matrix(). In those procedures some equations are re-
moved from the matrices, and some equations are added into the matrices. If no
equation is left After running those two procedures , then the original problem
is satisfiable; else, the problem is unsatisfiable and an interpolant is constructed.

In our paper, we assume every congruence equation is simplified. The algo-
rithm to simplify congruence equations is based on the Euclidian algorithm [4].
The definition of simplification of a congruence equation is given as follows.

Definition 2. A congruence equation ax ≡m t is simplified if a is a factor of
m, x is a variable, t is an expression, and a and m are constants.

The gcd test[4] is employed to check if an individual equation has an integer
solution. The algorithm of the gcd test is presented in Figure 6. Notice that in
the procedure, if equation i is a congruence equation, we consider the modulo as
the coefficient of a free variable. Thus, mod(i) returns the modulo of Equation



164 C. Lynch and Y. Tang

1. procedure gcd test(i)
2. if(all variables in Equation i are fixed) then g = 0
3. else g = gcd of coefficients of free variables in Equation i
4. if (Equation i is a congruence equation) then g = gcd(g,mod(i))
5. c is the summation of bound values of fixed variables
6. if (c is not a multiple of g) then return fail
7. if (all variables in Equation i are fixed) then remove Equation i
8. return success

Fig. 6. gcd test procedure

i. In certain cases, it is possible that there is no free variable in equation i. In
this case Equation i could be removed if c is a multiple of g. It is straightforward
that removing Equation i preserves satisfiability.

1. procedure reduce matrix()
2. assert all the bounds at once
3. if(bound violation exists during assert) then return bound interpolant(b1, b2)
4. if(Equation p fails gcd test) then return integer interpolant(p)
5. while(the matrix is not empty)
6. select a free variable xj from Equation i
7. build a set M of equations containing a variable xj

8. if(for each m ∈M |gcd(coef(xj , i), coef(xj , m))| > 1) then
9. add

�n
k=1 aikxk ≡aij 0 into the congruence matrix

11. apply Superposition Rule to replace xj in each equation in M by Equation i
12. if(Equation p fails gcd test) then return integer interpolant(p)
13. apply Congruence Superposition Rule to replace xj by Equation i
14. if(Congruence Equation p fails gcd test) then return integer interpolant(p)
15. remove Equation i from the matrix
16. if(the congruence matrix is empty) then return satisfiable
17. return reduce congruence matrix();

Fig. 7. Reduce matrix procedure

Yices asserts bounds one by one. But, in our procedure reduce matrix(), we
assert all the bounds at once. If a bound violation occurs while asserting bounds,
bound interpolant (b1, b2) is called to construct an interpolant where b1 and b2
are two inconsistent bounds. Notice that the element of the set M could be a
standard equation or a congruence equation. coef(xj , i) is a function that returns
the coefficient of xj in equation i. Thus, gcd(coef(xj , i), coef(xj ,m)) returns the
gcd of coefficients of xj in Equation i and Equation m. To preserve satisfiability,
a congruence equation

∑n
k=1 aikxk ≡aij 0 may be added into the congruence

matrix where
∑n

k=1 aikxk is the summation of all the terms in equation i and
aij is the coefficient of xj in equation i. Then, the procedure replaces xj in the
other equations by Equation i. In the following inference rules, we treat the left
premise as Equation i and the right premise as a updated equation.
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The way to replace xj in a standard equation by Equation i is given in Su-
perposition Rule.

axj = t1 bxj = t2
bt1 = at2

where xj is a free variable, t1 and t2 are expressions, and a and b are integers.
The idea to replace xj in a congruence equation by a standard equation is

given in Congruence Superposition Rule:

axj = t1 bxj ≡c t2
bt1 ≡ac at2

where xj is a free variable, t1 and t2 are expressions, and a, b, and c are integers.
The above two inference rules represent updates, meaning that the right

premise is replaced by the conclusion in the presence of the left premise. The
left premise will not be removed from the matrix until all the other equations
are updated. Thus, for each iteration in the while loop, an equation is removed
from the constraint matrix in reduce matrix(). Thus, in general our method is
efficient because the number of constraints in the matrix is reduced and the cost
to update standard equations is dramatically decreased.

Example 2. Given A = {2x = y} and B = {y = 2z + 1}, this is flattened into
equations {s1 = 2x− y, s2 = y− 2z} and bounds {s1 = 0, s2 = 1}. Suppose that
the ordering of the selected free variables in reduce matrix() is x from s1 = 2x−y
and y from s2 = y−2z. For the first pass of the while loop, y ≡2 s1 is added into
the congruence matrix. For the second pass of the while loop, the congruence
superposition rule is applied for s2 = y− 2z and y ≡2 s1. The inference result is
s2 + 2z ≡2 s1 which can be simplified to s2 ≡2 s1. The equation s2 ≡2 s1 fails
gcd test because s1 = 0 and s2 = 1. Thus, unsatisfiability is detected.

1. procedure reduce congruence matrix()
2. while(the congruence matrix is not empty)
3. select a free variable xj from Congruence equation i
4. build a set M of congruence equations containing xj

5. for an equation m ∈ M if |coef(xj , m)| > 1 then
6. add congruence Equation

�n
k=1 amkxk ≡amj 0

7. apply CC Superposition Rule replacing xj for each pair of equations in M
8. remove all the equations in M
9. if(an equation m fails the gcd test) then return integer interpolant(p)
10. return satisfiable

Fig. 8. Reduce congruence matrix procedure

Next, we will study the procedure reduce congruence matrix() which is shown
in Figure 8. In the procedure, a set M is built in which each congruence equa-
tion contains xj . For an equation j ∈ M , if the absolute value of the coefficient
of xj is greater than 1 then

∑n
k=1 amkxk ≡amj 0 is added where

∑n
k=1 amkxk
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is a summation of all terms in Congruence Equation m and amj is the coefficient
of xj in congruence Equation m. Then CC Superposition Rule is applied for
each pair of equations in M to replace xj .

axj ≡c t1 bxj ≡d t2
bt1 ≡gcd(b∗c,a∗d) at2

After applying the CC Superposition Rule, all the equations containing xj are
removed. Next, gcd test is applied on those new generated equations. An inter-
polant is constructed if unsatisfiability is detected. This procedure is terminated
when an interpolant is constructed or the congruence matrix is empty.

Since for each equation aix ≡mi ti in M , ai|ti(ti is divisible by ai) because
a congruence equation may be added. Thus, in some sense our method is the
successive substitution method which is a method of solving problems of simul-
taneous congruences by using the definition of the congruence equation. Usually,
the successive substitution method is applied in cases where the conditions of
the Chinese Remainder Theorem are not satisfied.

Example 3. Given A = {6m = 3x− y, 4n = 3x− z} and B = {3z = y + 1}, this
is flattened into extension equations {s1 = 6m− 3x + y, s2 = 4n− 3x + z, s3 =
3z − y} and bounds {s1 = 0, s2 = 0, s3 = 1}. Suppose the ordering of the
selected variables in reduce matrix() is m from s1 = 6m − 3x + y, n from
s2 = 4n − 3x + z and z from s3 = 3z − y. After running reduce matrix(), all
those standard equations are removed and {3x − y + s1 ≡6 0, 3x − z + s2 ≡4

0, y + s3 ≡3 0} is added into the congruence matrix. So, the next step is to call
reduce congruence matrix(). In this procedure, let’s assume that x is selected.
First, 3x− y + s1 ≡6 0 and 3x − z + s2 ≡4 0 can be rewritten to 3x ≡6 y − s1

and 3x ≡4 z − s2. Second, since the coefficient of x in those two congruence
equations is 3, y ≡3 s1 and z ≡3 s2 are generated. Third, after applying the CC
Superposition Rule for 3x ≡6 y − s1 and 3x ≡4 z − s2, the inference result is
y − s1 ≡2 z − s2. So, at this point the congruence matrix contains y + s3 ≡3 0,
y ≡3 s1 , z ≡3 s2 and y − s1 ≡2 z − s2. Suppose, the next selected variable is y.
Then, applying the CC Superposition Rule for y + s3 ≡3 0 and y ≡3 s1, we can
derive s1 + s3 ≡3 0 which is unsatisfiable because s1 = 0 and s3 = 1.

So far, we have introduced a new linear arithmetic solver different from Yices
for linear equations over integers. Next is to show a procedure to construct an
interpolant. In integer interpolant(i), we consider that the modulo of Equation
i is a coefficient of a free variable. s is a sum of the left hand sides of active
bounds and c is a sum of corresponding bound values.

Example 4. In example 2, our method detects that s2 ≡2 s1 with s2 = 1 and
s1 = 0 is unsatisfiable. Running integer interpolant(i), we can derive s = s1,
g = 2 and c = 0 because s1 is from Ae. Since s1 = 2x − y then an interpolant
σ(s1 ≡2 0) could be y ≡2 0 which is simplified from 2x − y ≡2 0. Similarly, in
example 3, running integer interpolant(i), we can derive an interpolant y ≡3 0.
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1. procedure integer interpolant(i)
2. g = gcd of coefficients of free variables in Equation i
4. if (Equation i is a congruence equation) then g = gcd(mod(i), g)
5. for each variable xj in the equation
6. if the active bound of xj is from Ae then
7. s := s + aijxj

8. c+ = aij ∗ b value(xj)
9. σ(s ≡g c)
10. return satisfiable

Fig. 9. Interpolant over integer equations

Notice that our arithmetic solver of YAI is different from Yices. However, our
solver uses the same flattening procedure as Yices does to separate constraints
and bounds. Thus, our solver is also able to quickly add and delete a single
constraint. To delete a constraint, we can simply delete its bound. To add a con-
straint, first we assert its bound. Then, we re-run gcd test(i) on the equations,
including the deleted equations which contain the corresponding extension vari-
able for that constraint. Actually, our method saves those deleted constraints for
adding and deleting operations.

In our implementation, YAI does not construct a model for a satisfiable prob-
lem because our interest is to construct interpolants. However, theoretically our
method is able to construct a model. We can build a model from the reverse
order of the deleted constraints using the successive substitution method [7].

Lemma 2. σ(s ≡g c) derived in integer interpolant(i) is an (A,B)-interpolant.

Lemma 3. Each pass of the while loop in reduce matrix() preserves satisfia-
bility.

Lemma 4. Each pass of the while loop in reduce congruence matrix() pre-
serves satisfiability.

6 YAI for Linear Equalities and Inequalities over Integers

The linear arithmetic procedure of Yices tries to find an assignment for each
variable and if an assignment is not an integer then branch-bound and Gomory
cut strategies are employed. In this section we use the linear arithmetic solver
in Yices to check satisfiability for linear arithmetic over integers. But, in our
implementation only the Gomory cut strategy is employed and the reason is
explained in the previous section. Notice that the linear arithmetic solver in Yices
is incomplete for integer problems. So, our method to construct interpolants
based on Yices is also incomplete.

Given an equation xi =
∑

xj∈N aijxj where the assignment of the basic vari-
able xi is a rational number, then a Gomory cut [8] is generated to restrict the
solution of xi. Gomory cut implied by constraints is an inequality. A Gomory
cut is a pure cut when the equation used to generate the cut is from Ae or Be.
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Otherwise, it is a mixed cut. We treat all pure Gomory cuts as constraints from
Ae or Be. For a mixed Gomory cut, a conjunction of constraints from Be, which
are used to generate the cut, will be stored with the corresponding cut.

If unsatisfiability is detected in the asserting procedure, then we can use
bound interpolant(bi, bj) to construct the interpolant; else cut interpolant(i)
is called to construct the interpolant.

1. procedure cut interpolant(i)
2. move the basic variable xi to the left side of the equation
3. for each variable xj in the equation
4. if the active bound of xj is mixed cut or from Ae then
5. s += aijxj

6. c += (aij ∗ b value(xj)
7. if aij <0 then op = inverse(b operator(xj)
8. else op = b operator(xj)
9. if op � φ then φ =op
10. if the active bound of xj is a mixed cut then b = b ∧ cut info(xj)
11. return σ (b ⇒ (s φ c))

Fig. 10. Interpolant for linear arithmetic over integers

cut interpolant(i) is quite similar to real inerpolant(i). cut info(xj) is a set
of constraints from Be which are used to generate the cut of xj . However, the
strategy of Gomory cut is employed. So, if a mixed cut is involved in the un-
satisfiability proof, then extracting information of Ae from the mixed cut is not
enough because the mixed cut is derived from a combination of constraints from
Ae and Be. Thus, in the procedure we use b to collect some constraints from Be

which are used to generate corresponding cuts. We use ⇒ as implication. Thus,
we treat b as a condition to conclude sφc.

Since b is a set of some constraints from Be, then b may contains some variables
local to Be. Thus, σ (b ⇒ (s φ c)) is not an interpolant. But, it does satisfy the
other two properties of (A,B)-interpolant.

Example 5. Given A = {5x = y + z, y ≥ 0, y ≤ 1} and B = {z ≥ 1, z ≤ 2},
this can be flattened into extension equations {s1 = 5x − y − z} and bounds
{s1 = 0, y ≥ 0, y ≤ 1, z ≥ 1, z ≤ 2}. Running the linear arithmetic procedure in
Yices, an assignment is generated but the value of x is 1/5 which can be derived
from 5x = y+z+s1 with y ≥ 0, z ≥ 1 and s1 = 0. Then, a Gomory cut y+z ≥ 5
is generated from that equation with its bounds. Notice that the constraint from
Be used to construct the Gomory cut is z ≥ 1. That Gomory cut is flattened into
an extension equation s2 = y+ z and a bound s2 ≥ 5. The extension equation is
added into matrix and the bound is asserted. Finally, unsatisfiability is detected
in z = −y + s2 with z ≤ 2, y ≤ 1 and s ≥ 5. Thus, running cut interpolant(i),
we derive that an interpolant σ(z ≥ 1 ⇒ −y + s2 ≥ 4) is z ≥ 1 ⇒ z ≥ 4
because s2 = y + z. The left side of the conditional formula is the conjunction
of constraints from Be used to construct Gomory cuts and the right side of the
conditional formula is the sum of constraints from Ae and Gomory cuts.
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Lemma 5. σ(b⇒ sφc) in cut interpoant(i) is implied by A and contradicts B.

7 Experimental Results

We implemented YAI using Microsoft Visual Studio 2008 C++ on the Windows
XP operating system. All experiments are conducted on a Lenovo Think Pad
T60 with the configuration of Intel 2.0GHz CPU and 2.0GB memory. YAI is
available on http://people.clarkson .edu/∼tangy/.

Since YAI for linear real inequalities and integer inequalities is based on the
linear arithmetic solver in Yices and constructing interpolants does not add too
much additional cost to Yices, we only compared the running time of YAI with
Yices for linear integer equalities.

Most SMT benchmarks contain disjunctions and function symbols. Thus, we
wrote a C program to randomly generate sample examples without contain-
ing disjunctions and function symbols. Each sample example set contains 100
examples. Let P (e1, e2) be a pair of integers and let e1 be the number of con-
straints and e2 be the number of variables in an example. In each example of
equality set 1, equality set 2, and equality set 3, the corresponding pairs are
P (10, 5), P (50, 25) and P (100, 50). For each constraint in the example the oper-
ator is ′ =′, the number of terms is randomly selected from [1, 10], the coefficient
for each term is randomly selected from [1, 100], the variable name is randomly
generated, and a constant is randomly selected from [1, 100]. The results in the
table are the total runtime of 100 examples. The running time of YAI for linear
integer equalities mainly depends on the number of congruence equations gen-
erated from the examples because the expensive operation of YAI is to reduce
congruence equations using the successive substitution method.

Number of Examples YAI (seconds) Yices(seconds)

equality set 1 100 4 5

equality set 2 100 8 10

equality set 3 100 6 67

Fig. 11. Comparison between YAI and Yices for linear equalities over integers

8 Conclusion and Future Work

We have shown how interpolant construction fits easily into the SMT framework
in the theory of linear arithmetic. In particular, we produce an interpolant di-
rectly from the single contradictory equation. Therefore, an interpolant can be
generated at no additional cost to the satisfiability procedure. We have imple-
mented YAI and compared our results against Yices.

We have several directions to work on. First, we plan to extend our method
to handle uninterpreted function symbols and disjunctions using the methods
proposed by Yorsh and Musuvathi[8] and McMillan [11]. Second, We would like
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to compare against FOCI, CLP-prover, MATHSAT-ITP and INT2 in the size
of interpolants and the efficiency of solvers. Finally, we would like to apply our
method to generate invariants.
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Abstract. In order to facilitate automated reasoning about large
Boolean combinations of non-linear arithmetic constraints involving or-
dinary differential equations (ODEs), we provide a seamless integration
of safe numeric overapproximation of initial-value problems into a SAT-
modulo-theory (SMT) approach to interval-based arithmetic constraint
solving. Interval-based safe numeric approximation of ODEs is used as an
interval contractor being able to narrow candidate sets in phase space in
both temporal directions: post-images of ODEs (i.e., sets of states reach-
able from a set of initial values) are narrowed based on partial informa-
tion about the initial values and, vice versa, pre-images are narrowed
based on partial knowledge about post-sets.

In contrast to the related CLP(F) approach of Hickey and Witten-
berg [12], we do (a) support coordinate transformations mitigating the
wrapping effect encountered upon iterating interval-based overapproxi-
mations of reachable state sets and (b) embed the approach into an SMT
framework, thus accelerating the solving process through the algorithmic
enhancements of recent SAT solving technology.

1 Introduction

Hybrid systems consist of interacting discrete and continuous components, with
the continuous components often being naturally described by a combination of
ordinary differential equations (ODEs), formalizing time-dependent continuous
behavior, and arithmetic (in-)equations portraying autonomous jumps, invari-
ants, and the like. Automating state-exploratory analysis of hybrid systems does
thus call for effective manipulation of Boolean combinations of the above, where
the large discrete state spaces encountered in real systems and the dependence
of the continuous behavior on the current discrete state give rise to potentially
extremely large Boolean combinations. Within this paper, we suggest a SAT
modulo theory (SMT) approach for directly handling these large compositions
of ODEs, arithmetic (in-)equations, and conditions on discrete states.

Our approach draws from three up to now distinct technologies, trying to
combine their virtues: (1) Solving large and complex-structured Boolean combi-
nations of arithmetic constraints by SAT modulo theory techniques (e.g., [10,6]).
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These approaches are attractive as they transfer the algorithmic enhancements
that were instrumental to the enormous performance gains recently achieved
in propositional SAT solving, like non-chronological backtracking and conflict-
driven learning, to the mixed Boolean-arithmetic domain, as encountered in
hybrid systems [2]. (2) Interval-based safe numeric approximation of ODEs, as
suggested by, a.o., Moore, Lohner, and Stauning [14,13,16] and recently gaining
renewed interest in the hybrid systems community [15]. This approach provides
a technique for safely overapproximating the image under an ODE of a rectan-
gular region in phase space and incorporates techniques based on coordinate
transformations for mitigating the wrapping effect encountered upon iterating
interval-based overapproximations of reachable state sets. (3) CLP(F) [12], offer-
ing a symbolic, constraint-based technology for reasoning about ODEs grounded
in (in-)equational constraints obtained from Taylor expansions, thus being able
to handle ODE parameters, error ranges in measurements, and other natural
uncertainties in modeling dynamic systems. Such effects are hard to deal with,
and hence often ignored, within numeric approaches to image computation.

Our design goal was to resolve the following shortcomings of the aforemen-
tioned techniques: First, the SMT framework, while being able to handle very
large constraint systems involving arithmetic (in-)equations, did previously lack
any native support for ODEs. Second, CLP(F) may fail to provide tight approx-
imations of the ODE solutions due to not counterfeiting the wrapping effect [14]
encountered in iterating interval-based, i.e. rectangular, overapproximations of
state sets. Furthermore, CLP(F) lacks the sophisticated means of pruning the
search space based on conflict analysis found in recent SMT solvers.1 Third, the
tighter approximations computed by interval-based safe numeric approximation
of ODEs, which have successfully been used in state-exploratory verification of
hybrid systems (e.g., in Hypertech [11]), lack the constraint propagation and
reasoning functionality of the CLP(F) approach. Instead, their use was confined
to extrapolating state sets in an a priori fixed temporal direction of exploration.

To mitigate these restrictions, we suggest a direct, seamless integration of safe
approximation of ODEs into the iSAT arithmetic constraint solver [9], which is
an adaptation of the SMT framework to the undecidable domain of non-linear
arithmetic involving, a.o., inequations entailing transcendental functions. On the
theory solver side, iSAT is based on interval constraint propagation (ICP) for
arithmetic (in-)equations [3], which we extend to ODEs as follows. Interval-based
safe numeric approximation of ODEs is used as an interval contractor being able
to narrow candidate sets in phase space in both temporal directions: post-images
of ODEs (i.e., sets of states reachable from a set of initial values) are narrowed
based on partial information about the initial values and, vice versa, pre-images
are narrowed based on partial knowledge about post-sets.

Structure of the paper. Section 2 states the structure of the input models we are
going to address. In Sect. 3, we then start our exposition of the solver algorithms

1 Due to the generality of the CLP framework, the programmer may nevertheless
be able to simulate many of these pruning operators, albeit at the price of a very
imperative use of CLP.
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with a description of the arithmetic SAT solving technology we build upon.
Thereafter, we provide a detailed exposition of its extension to ODEs (Sect. 4), an
overview of the integrated algorithm (Sect. 5), and benchmark results indicating
feasibility of the technique (Sect. 6).

2 Arithmetic SAT Problems Involving ODEs

Aiming at automated analysis of hybrid systems, our constraint solver addresses
satisfiability of non-linear arithmetic constraints, including ODEs, over real-
valued variables RV plus Boolean variables BV for encoding the control flow.
The user thus may input constraint formulae built from quantifier-free (in-)equa-
tional constraints over the reals, from ODEs, and from propositional variables
using arbitrary Boolean connectives. The atomic (in-)equational constraints are
relations between potentially non-linear terms involving transcendental func-
tions, like sin(x+ωt)+ye−t ≤ z +5. The ODE constraints define the derivatives
of the continuous variables w.r.t. time. They are given by equational constraints
of the form dxi(t)

dt = fi(�x(t)), where the ODE-defined variables xi constitute
a vector �V over a subset of RV and fi are potentially non-linear expressions
over �V . Additionally flow invariants of the form l ≤ xi ≤ u can be given that
constrain the range of the variables in V during a continuous flow.

An input model comprises predicative encodings of the initial state set init,
the transition relation trans over current-step (x) and next-step variables (x′),
and the (unsafe) target state. ODE constraints can only occur in the transition
relation where they define the relationship between two successive valuations of
the variables in V by constraining the possible trajectories in between the steps.

In Fig. 1, an abstract model of a room with an indoor stove is given. Being
either on or off, the stove has two discrete modes with different continuous
dynamics described by ODEs. The variable ϑi describes the temperature in
the room, ϑo the outside temperature (assumed to be constant but arbitrarily
chosen from the interval [−10, 20]) and c the concentration of exhaust gases in
the room. When switched off, the heater does not produce any exhaust gases
and the concentration thus decreases over time. The temperature in the room
changes accordingly to the difference between ϑo and ϑi. The heater is switched
on only when both, the temperature and the concentration of exhaust gases in
the air are below their respective thresholds. Being switched on, the room is
heated up, however at the expense of a growing concentration of undesirable
gases in the room’s air. The heating is switched off when the temperature is
comfortable again. Fig. 1 also shows the derived predicative encoding.

In order to perform bounded model checking (BMC) [4] on such model encod-
ings, the transition relation is unwound k times and conjoined with the predicates
that encode initial and target states, yielding a formula

φ = init(�x(0)) ∧ trans(�x(0), �x(1)) ∧ · · · ∧ trans(�x(k−1), �x(k)) ∧ target(�x(k)) (1)

that is satisfiable iff a state satisfying target is reachable in k steps. Each vari-
able xi thus results in k + 1 instances x

(0)
i , x

(1)
i , . . . , x

(k)
i . If φ is satisfied by the
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ϑi ≤ 21

Heat off

Heat on

dϑi /d t = −0.1 · (ϑi − ϑo)

ϑi ≥ 19 ∨ c ≥ 0.04

dϑi /d t = 0.2 · (35− ϑi)
−0.1 · (ϑi − ϑo)

d c /d t = −0.05 · c

d c /d t = 0.01− 0.05 · c

ϑi ≤ 19

c ≤ 0.04

ϑi ∈ [19, 25]

ϑi ∈ [15, 21]

c = 0

c = 0

ϑi ≥ 21

init =
−10 ≤ ϑo ≤ 20 ∧ c = 0

∧
(

19 ≤ ϑi ≤ 25 ∧ ¬on
∨ 15 ≤ ϑi ≤ 21 ∧ on

)
trans =

( ¬on ∧ on′ ∧ ϑi ≤ 19 ∧ c ≤ 0.04
∧ ϑ′

i = ϑi ∧ ϑ′
o = ϑo ∧ c′ = c)

∨ ( on ∧ ¬on′ ∧ ϑi ≥ 21
∧ ϑ′

i = ϑi ∧ ϑ′
o = ϑo ∧ c′ = c)

∨ ( ¬on ∧ ¬on′

∧ dϑi
dt

= −0.1(ϑi − ϑo)
∧ dc

dt
= −0.05c

∧ (ϑ′
i ≥ 19 ∨ c′ ≥ 0.04) ∧ ϑ′

o = ϑo)
∨ ( on ∧ on′

∧ dϑi
dt

= 0.2 · 35− 0.3ϑi + 0.1ϑo

∧ dc
dt

= 0.01 − 0.05c
∧ ϑ′

i ≤ 21 ∧ ϑ′
o = ϑo)

target =
(c > 0.1)

Fig. 1. Model of a room with indoor stove: hybrid system and predicative encoding

valuations of all instances for all variables occuring in φ, these valuations repre-
sent the evolution of the system during a particular trace. Like all other subex-
pressions of the transition system, also the ODE constraints are instantiated k
times. The resulting formula φ thus contains ODE constraints over disjoint sets
of variable instances V (0), . . . , V (k), where each V (i) contains those instances
whose ODE-defined trajectories emerge from the valuations in the i-th step.

As the ODEs that govern the hybrid-system behavior depend on the current
discrete state of the system, such ODE constraints are switched on and off by
propositional “triggers”, such that traces need only obey the pre-/post-relation
defined by those ODE constraints and the flow invariants whose triggers are
forced to true by predicates formalizing the interplay between discrete state and
continuous behavior.

3 Constraint Solving with the iSAT Algorithm

In this section, we first describe the internal representation of formulae handled
by iSAT. Thereafter, we give an overview of the solving algorithm and provide
some examples for the application of deduction rules, which are an essential part
of the algorithm. Our aim is to demonstrate that deduction rules for ODEs are
a natural extension of the iSAT framework.

3.1 Representation of Solver-Internal Formulae

Syntax. By the front-end of our solver, constraint formulae are rewritten into
equi-satisfiable quantifier-free formulae in conjunctive normal form, with atomic
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propositions ranging over propositional variables and (in-)equational constraints
confined to a form resembling three-address code. This rewriting is based on the
standard mechanism of introducing auxiliary variables for the values of arith-
metic sub-expressions and of logical sub-formulae, thereby eliminating common
sub-expressions and sub-formulae through re-use of the auxiliary variables, thus
reducing the search space of the solver and enhancing the reasoning power of the
interval contractors used in arithmetic reasoning [3]. Thus, the internal syntax
of constraint formulae is as follows:

formula ::= {clause ∧}∗clause
clause ::= ({atom ∨}∗atom) | (bound ⇒ ode ∧ flow invar)
atom ::= bound | equation

bound ::= variable ∼ rational constant
variable ::= real var | boolean var
equation ::= real var = real var bop real var | real var = uop real var

ode ::= {d real var /d t = term ∧}∗ d real var /d t = term
flow invar ::= {bound ∧}∗ bound

where ∼∈ {<,≤, >,≥}, the non-terminals bop, uop denote the binary and unary
operator symbols (including arithmetic operators such as + or sin), and term
the terms over real-valued variables built using these.

Semantics. Such constraint formulae are interpreted over valuations σ ∈ (BV
total−→ B) × (RV total−→ R), where BV is the set of Boolean and RV the set of
real-valued variables, being the instances of the variables that result from the
BMC unwinding depicted in (1). B is identified with the subset {0, 1} of R
such that bounds on a Boolean variable v correspond to literals v or ¬v. The
definition of satisfaction is standard: a constraint formula φ is satisfied by a
valuation iff all its clauses are satisfied. A disjunctive clause is satisfied iff at
least one of its atoms is satisfied. Satisfaction of atoms is wrt. the standard
interpretation of the arithmetic operators and the ordering relations over the
reals. We assume all arithmetic operators to be total and therefore extend their
codomain (as well as, for compositionality, their domain) with a special value
� �∈ R (“undefined”) such that the operators manipulate values in R� = R∪{�}.
The comparison operations on R are extended to R� in such a way that � is
incomparable to any real number, that is, c �∼ � and � �∼ c for any c ∈ R and
any relation ∼∈ {<,≤, =,≥, >}. ODE constraints are satisfied if there exists
for each BMC unwinding depth i a solution of the ODE system d�x(t)

dt = �f(�x(t))
where the activated triggers of that BMC depth i define which ODE constraints
are used as components f1, . . . , fn. Such a solution function �x(t) satisfies the
ODE up to a user-specified horizon of interest, the trajectory emerges from the
current valuation of �x on BMC depth i, i.e. �x(0) = σ(�x(i)) holds, and there exists
a τr ∈ [0, horizon] such that �x(τr) = σ(�x(i+1)), i.e. the trajectory eventually
reaches the next value of �x in the trace.

Interval-based overapproximation. Instead of real-valued valuations of variables,
our constraint solving algorithm manipulates interval-valued valuations ρ ∈
(BV total−→ IB) × (RV total−→ IR), where IB = 2B and IR is the set of convex subsets
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of R�.2 Slightly abusing notation, we write ρ(l) for ρIB
(l) when ρ = (ρIB

, ρIR
)

and l ∈ BV , and similarly ρ(x) for ρIR
(x) when x ∈ RV . In the following, we

occasionally use the term box synonymously for interval valuation. If both ζ and
η are interval valuations then ζ is called a refinement of η iff ζ(v) ⊆ η(v) for
each v ∈ BV ∪ RV . An interval valuation ρ is inconsistent with an atom x ∼ c
iff ρ(x) ∩ {u | u ∼ c} = ∅ and inconsistent with an equational atom x = y ⊕ z
iff ρ(x) ∩ ε(ρ(y)⊕ ρ(z)) = ∅, where ε denotes an outward rounding enclosure of
the exact evaluation of ρ(y)⊕ ρ(z). Analogously for unary operators.

3.2 Solving

Starting from the cartesian product of the ranges of all variables as initial search
space, the iSAT algorithm [9] operates similar to the behavior of a DPLL-based
Boolean SAT solver [5] by alternating between two steps: The decision step in-
volves (heuristically) selecting a variable, splitting its current interval (e.g. at
its midpoint) and temporarily discarding either the lower or the upper part of
the interval from the search. Each decision is followed by a sequence of deduc-
tion steps in which the solver applies a set of deduction rules that explore all
the consequences of the previous decision. Essentially, these deduction rules nar-
row the search space by carving away portions that contain non-solutions only.
Deduction rules are applied over and over again until no further interval nar-
rowing is achieved or the changes become negligible. Deduction may also yield
a conflict— i.e. a variable’s range becomes empty— indicating the need to undo
decisions and their consequences (backjumping).

3.3 Deduction

For each type of constraint occuring in the formula, at least one narrowing
operator is needed: clauses (disjunctions of atoms) are handled by unit propa-
gation (UP), arithmetic operators occuring in equations by narrowing operators
derived from interval constraint propagation (ICP) [3], and ODE constraints
by computing safe enclosures of their solution sets as described in Sect. 4.
The following examples illustrate the role these narrowing operators play in
solving.

Unit Propagation. Assume for example a clause (a ≥ 1 ∨ x ≤ 4 ∨ y = 2) and
interval assignments ρ(x) = [10, 20], ρ(y) = [−5,−4.7], and ρ(a) = {0, 1}. For
each atom of this clause, the truth value can be determined in a three-valued
logic: a ≥ 1 can still become true, while x ≤ 4 and y = 2 are inconsistent and
therefore definitely false under ρ. In order to retain a chance for satisfiability
of the formula, each clause must be satisfied and therefore also the unit atom
a ≥ 1, i.e. all values less than 1 can safely be pruned from ρ(a).

2 Note that this definition covers the open, half-open, and closed intervals over R,
including unbounded intervals, as well as the union of such intervals with {�}.
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Interval Constraint Propagation. Consider two clauses (x = a + b ∨ c ≤ 1) and
(a = cos(b)) together with bounds ρ(x) = [−10, 10], ρ(a) = [0.7, 20], ρ(b) =
[−1, 1.1], and ρ(c) = [2, 3]. From ρ(c) = [2, 3] and c ≤ 1 being in conflict with
each other, we know that the atom x = a + b has become unit as is the atom
a = cos(b) in the second clause. Interval constraint propagation can now be
used to find a (quasi) fixed point of the variables’ ranges by propagating their
bounds through these two constraints.3 From ρ(b) = [−1, 1.1] and a = cos(b)
we can deduce that ρ(a) = ([0.7, 20]∩ cos([−1, 1.1])) = [0.7, 1] using the interval
extension of the cosine function. Given that a ≥ 0.7 we can further confine
the range of b to the interval [−0.8, 0.8] by applying the inverse of cosine on
the interval of a (and subsequently rounding it outwards safely). Using these
bounds in the other constraint x = a + b, the bounds on x can be refined to
ρ(x) = [−10, 10]∩ ([0.7, 1] + [−0.8, 0.8]) = [−10, 10]∩ [−0.1, 1.8] = [−0.1, 1.8].

Propagation through ODEs. Consider the ODE constraint dc
dt = 0.01 − 0.05 · c

stemming from the system given in Fig. 1 as a unit atom. This ODE de-
scribes the connecting trajectories between two successive variable instances of
c yielded from unwinding the BMC formula— w.l.o.g. called c(0) and c(1). Given
ρ(c(0)) = [0, 0.1] and ρ(c(1)) = [0.15, 10], deduction rules for ODEs now try to
narrow the boxes for c(0) and c(1). For a fixed upper bound on the time t ≤ 15
(temporal horizon), no solution function of the ODE starting from [0, 0.1] ever
exceeds an upper bound of 0.155. This is thus a safe upper bound for c(1) that
may be propagated without losing any possible solution. Additionally, no trajec-
tory starting from values for c(0) below 0.082 can reach ρ(c(1)) within this time
horizon. It is thus also safe to propagate c(0) ≥ 0.082 as a new lower bound.

4 Contracting Pre- and Postimages of ODE Trajectories

In order to extend the concept of interval-based narrowing operators to ODEs,
we first introduce the following definitions. We consider an ODE problem

P :=
(

d�x
dt (t) = �f(�x(t)), �Xpre, �Xpost, �Xflow

)
(2)

where d�x
dt (t) = �f(�x(t)) is an n-dimensional system of time-invariant differential

equations with components dxi

dt (t) = fi(x1(t), . . . , xn(t)), with i ∈ {1, . . . , n},
and �Xpre, �Xpost, and �Xflow are the prebox , postbox , and flowbox respectively,
which are vectors of real-valued intervals for the variables x1, . . . , xn. The flowbox
is defined by the conjunction of activated flow invariants for the BMC depth i

to which P belongs. The prebox is given by �Xpre = ρ((x(i)
1 , . . . , x

(i)
n )T ) and the

postbox by the corresponding next values �Xpost = ρ((x(i+1)
1 , . . . , x

(i+1)
n )T ). This

relationship is illustrated in Fig. 2.
Similarly to the narrowing operators from interval constraint propagation, we

define narrowing operators for the ODE problem P that results from the active
triggers on BMC depth i:
3 In practice, not intervals but only the newly deduced bounds are propagated through

these constraints. For the sake of illustration we will ignore this enhancement here.
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resulting
contracted postbox

x1
given postbox

prebox

time of interest

horizon

time

Fig. 2. Find trajectories that emerge from the prebox and eventually reach the postbox

πP
→( �Xpost) := �Xpost ∩

ε
({

�y
∣∣∣∃τr ∈ [0, horizon], ∃�x : [0, τr] → Rn : �x(0) ∈ �Xpre

//�x(t) emerges
from prebox

∧ ∀τ ∈ [0, τr] :
d�x

dt
(τ) = �f(�x(τ)) //is a solution

∧ �y = �x(τr) ∧ ∀τ ∈ [0, τr] : �x(τ) ∈ �Xflow

})
//eventually reaches

�y without leaving
the flowbox

and similarly for the inverse direction

πP
←( �Xpre) := �Xpre ∩

ε
({

�y
∣∣∣∃τr ∈ [0, horizon], ∃�x : [0, τr] → Rn : �x(0) = �y //�x(t) emerges

from �y

∧ ∀τ ∈ [0, τr] :
d�x

dt
(τ) = �f(�x(τ)) //is a solution

∧ �x(τr) ∈ �Xpost ∧ ∀τ ∈ [0, τr] : �x(τ) ∈ �Xflow

})
//reaches postbox

without leaving
flowbox

where ε is an overapproximating interval enclosure of its argument. As all valu-
ations that are reachable from �Xpre are enclosed by the narrowed postbox and
all starting points of trajectories that can eventually reach �Xpost are enclosed
by the narrowed prebox, no solution of P can be lost by applying πP

→ and πP
←.

For the implementation of πP
→ the goal is thus to enclose all trajectories of P

that are (sufficiently often) differentiable solution functions �x, emerging from the
prebox, eventually reaching the postbox, and staying in the flowbox during their
evolution. These trajectories allow to define a contraction �X ′

post ⊆ �Xpost that
defines new bounds on the variables of the postbox and must contain all points
that are reachable by the trajectories and are included in the given �Xpost. The
postbox thus defines the set of points which are interesting to the surrounding
deduction. We call the points of time for which trajectories exist that have a
valuation inside �Xpost (and hence also in �X ′

post) the time of interest (ToI).
By multiplying the right hand side of the ODE, i.e. �f(�x(t)), with −1 and using

�Xpost in place of �Xpre and vice versa, the inverse problem

P−1 :=
(

d�x
dt (t) = −�f(�x(t)), �Xpost, �Xpre, �Xflow

)
is generated. P−1 then allows to also contract �Xpre into �X ′

pre ⊆ �Xpre by prop-
agating the postbox backwards through the ODE problem using the same ToI.

Enclosure mechanism. In order to enclose these trajectories, we essentially follow
the approach of Lohner [13], which is based on calculating Taylor series of the
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unknown exact solution and enclosures of their truncation errors. It also employs
coordinate transformations to fight the so-called wrapping effect which occurs
when interval boxes are used to enclose non-rectangular or rotated solution sets.

For the unknown exact solutions �x(t) = (x1(t), . . . , xn(t)) of a given ODE
problem P we generate symbolic representations of the truncated Taylor series
up to the user-specified order m and the corresponding Lagrange remainder term
of order m + 1 needed to enclose all possible truncation errors:

xi(tk + hk) =
m∑

j=0

hj
k

j!
djxi

dtj
(tk)︸ ︷︷ ︸

Truncated Taylor series

+
hm+1

k

(m + 1)!
dm+1xi

dtm+1
(tk + θhk)︸ ︷︷ ︸

Lagrange remainder with θ ∈ ]0, 1[

Each enclosure step from tk to tk+1 consists of two tasks: First, we generate
a rough overapproximation of the trajectories (“bounding box”) over [tk, tk+1]
along with a suitable stepsize hk = tk+1 − tk for which the bounding box guar-
antees to enclose all trajectories. This step is based on a theorem given by
Lohner [13, p. 263]. Extending the Picard-Lindelöf existence and uniqueness the-
orem for initial value problems, it allows to easily decide whether a given box
encloses the trajectories emerging from a box �Xk over [tk, tk + hk]. We use this
property in a greedy search algorithm that extends a bounding box candidate
into one direction at a time and checks whether the stepsize for which this box
guarantees to be a bounding box has grown. Second, we evaluate the Taylor
series over the calculated box �Xk at tk and the stepsize hk and calculate inter-
val bounds for the Lagrange remainder over the bounding box using outward
rounding for interval calculations as described in Sect. 2.

We call the vector of truncated Taylor series �TT ( �Xk, hk) =⎛⎜⎜⎝
∑m

j=0
hj

k

j!
dj−1f1
dtj−1 ( �Xk)
...∑m

j=0
hj

k

j!
dj−1fn

dtj−1 ( �Xk)

⎞⎟⎟⎠ ⊇
⎛⎜⎜⎝
∑m

j=0
hj

k

j!
dj−1f1
dtj−1 (�x(tk))
...∑m

j=0
hj

k

j!
dj−1fn

dtj−1 (�x(tk))

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∑m

j=0
hj

k

j!
djx1
dtj (tk)

...∑m
j=0

hj
k

j!
djxn

dtj (tk)

⎞⎟⎟⎠
with �Xk ⊇ �x(tk) being an overapproximating enclosure of the exact solution set
at tk. The first enclosure at t0 = 0 is given by the prebox: �X0 = �Xpre = �x(t0).
Similarly we call the vector of the error enclosure terms �EE( �BBk, hk) =⎛⎜⎜⎜⎝

hm+1
k

(m+1)!
dmf1
dtm ( �BBk)
...

hm+1
k

(m+1)!
dmfn

dtm ( �BBk)

⎞⎟⎟⎟⎠ ⊇
⎛⎜⎜⎜⎝

hm+1
k

(m+1)!
dm+1x1
dtm+1 (tk + θhk)

...
hm+1

k

(m+1)!
dm+1xn

dtm+1 (tk + θhk)

⎞⎟⎟⎟⎠
where �BBk ⊇ �x([tk, tk + hk]) is a bounding box over [tk, tk + hk].

Calculating the interval overapproximation of the symbolically given trun-
cated Taylor term and adding the safely enclosed error remainder yields a box
that encloses all trajectories at the next point of time tk+1 = tk + hk:

�Xnaive
k+1 ⊇ �TT ( �Xk, hk) + �EE( �BBk, hk) (3)
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(a)

enclosure at t2

enclosure at t1

enclosure at t0

x

y

(b)

y

[c, d]

x[a, b]

[r, s]

p

[t, u]
q

Fig. 3. (a) wrapping effect, (b) coordinate transformation (origin shifted for clarity)

This “naive” enclosure can be iterated up to the given horizon. Evaluating this
expression over the interval [0, hk] of time

�Xnaive
[k,k+1] ⊇ �TT ( �Xk, [0, hk]) + �EE( �BBk, [0, hk])

instead of at the endpoint hk only, as in (3), yields an enclosure for the timespan
of the k-th step. By intersecting the local enclosures and bounding boxes with the
given flowbox (not shown here), trajectories that are not interesting any longer
because they leave the flowbox can be pruned away. Generating the union

�Xnaive
post =

⋃
k∈{0,...,q−1}

�Xnaive
[k,k+1], with tq ≥ horizon

of these enclosures, one actually receives a correct enclosure of all possible tra-
jectories emerging from �Xpre over the entire timespan [t0, tq].

The quality of this enclosure, however, strongly depends on the influence of the
so-called wrapping effect which may cause exponential growth of the width of the
enclosure over time even when the exact trajectories themselves do not diverge
at all. Moore [14] uses the example of a harmonic oscillator to illustrate this
effect: dx

dt = y ∧ dy
dt = −x. At any point of time, all trajectories emerging from

a given initial rectangular box can again be enclosed by a rotated rectangular
box. Iterating the naive enclosure algorithm sketched above, each step would,
however, “wrap in” additional points by using boxes that are parallel to the
coordinate axes. As the algorithm cannot differentiate between points belonging
to the exact solution set and points thus wrapped in, all trajectories emerging
from this box need to be enclosed, resulting in excessive growth of the enclosure.

The standard approach to mitigate this problem is given already by Moore as
well: In order to keep the enclosure tight, the coordinate system is adapted such
that it minimizes the wrapping effect, i.e. the coordinate system with respect
to which the enclosure boxes are given is rotated and even sheared along with
the solution set and thereby allows to enclose the solutions much more tightly.
This is illustrated in Fig. 3. Precautions need to be taken in order to avoid that
the involved transformation matrices become singular (cf. [13]). The enclosure
mechanism described above is therefore extended by determining suitable coor-
dinate systems and performing coordinate transformations, for which we leave
out the details here due to space constraints.
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As seen above, this method can generate almost optimal enclosures for solu-
tion sets that are affine images of the prebox. Lohner points out that we cannot
expect this method to work for nonlinear ODEs as good as it works in the case of
linear ODEs [13], whose solution sets are always given by affine transformations.
Though the method has no fundamental restriction to linear ODEs, coordinate
transformations of the described flavor are in general only effective in the case of
linear ODEs. The coarseness of the enclosures of nonlinear ODEs thus strongly
depends on whether the ODE itself causes a contraction of the solution sets that
is stronger than the expansion caused by the wrapping effect.

5 Integration into the iSAT Algorithm

Being a sound narrowing operator for ODE constraints, the above enclosure
mechanism can together with unit propagation and interval constraint propaga-
tion [3] form the backbone of a constraint solver directly handling the constraint
problems defined in Sect. 2. The overall algorithm is an extension of the iSAT
arithmetic constraint solver [9] obtained through adding the enclosure-based nar-
rowing operator for ODE constraints. Searching for a satisfying valuation, iSAT
starts from the initial interval assignment ρ(vi) = [min dom(vi), max dom(vi)] for
each vi ∈ RV ∪ BV . Its implication queue, which is the central data structure
mediating the constraint propagation process by holding a list of implied bounds
on the individual variables which have their consequences still to be explored,
initially contains the respective bounds vi ≥ min dom(vi) and vi ≤ maxdom(vi).
Furthermore, for each clause in the formula we initialize two— if possible, dis-
tinct— “watches” to not yet inconsistent wrt. ρ atoms in the clause. The algo-
rithm then iterates the following steps:

1. If the implication queue is non-empty then retrieve a bound x ∼ c from the
queue and visit all watched atoms containing x. Visiting watched atoms, the
algorithm performs the following actions:

(a) If the visited atom is not the only watched atom in the clause (i.e.,
there are two distinct watches) and is not inconsistent under ρ then the
algorithm proceeds to the next watched atom.

(b) If it is not the only watched one but is inconsistent under ρ then we
try to replace it by instead watching a still not inconsistent one in the
same clause, if possible distinct from the other watched atom. If this
replacement strategy succeeds (i.e., there are still two distinct watched
atoms in the clause), proceed to the next watched atom, else to step 1c.

(c) If the replacement strategy failed or if there already was only one watched
atom in this clause, this single watched atom is checked for inconsistency
with ρ. If inconsistent, a conflict has been detected and the algorithm
proceeds to step 4, else to step 1d.

(d) Interval constraint propagation is pursued wrt. the watched atom. I.e., if
the watched atom is a bound x ∼ c, the interval valuation ρ is narrowed
accordingly and the bound x ∼ c pushed to the implication queue. If the
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watched literal is an equation x = ⊕y or x = y ⊕ z, the corresponding
contractors (including those originating from the possible reshufflings of
the equation) are applied over and over to ρ until no further interval
narrowing is achieved.4 and the resulting new, i.e. narrowed, bounds
are pushed onto the implication queue. Thereafter, proceed to the next
watched atom, unless the narrowed interval valuation has become empty.

2. Whenever the implication queue obtained by ICP runs empty, we try to ad-
vance by ODE constraint propagation. In contrast to arithmetic constraints,
the method described above to perform enclosures of ODE trajectories re-
quires a definitionally closed ODE problem featuring a defining ODE for each
variable occurring freely in itself. As definitions may be distributed over more
than one ODE constraint, it is necessary to collect the activated ODE con-
straints prior to executing the enclosure algorithm. During this first step,
the active ODE constraints are grouped by their BMC unwinding depths
and common variables, i.e. all activated ODE constraints on BMC depth i
are collected and this set is then clustered into the smallest definitionally
closed subsets. This yields a family (Pi,j) of definitionally closed ODE prob-
lems, where each definitionally closed problem Pi,j is an (in general, proper)
subset of the ODE constraints active at step i of the BMC problem.

Enclosures are then calculated for the ODE problems Pi,j , in a round-
robin fashion. Thereby, new bounds on the postbox deduced by forward
propagation through an ODE problem Pi,j can subsequently be used to also
tighten the prebox by propagation through its inverse P−1

i,j and vice versa.
When the deduced bounds cease to become tighter, they are spilled out to
the implication queue and thus returned to the other constraint propaga-
tion mechanisms, proceeding at step 1. Only if neither arithmetic nor ODE
deductions were effective, a decision step is performed.

3. Decision: The interval assignment is split by selecting a variable v for which
ρ assigns a non-point interval, pushing a bound for v tighter than the bounds
assigned by ρ, e.g. a bisecting bound, to the implication queue, applying it
to ρ, and proceeding at step 1. We do not store the converse of that bound
as a possible backtracking point, since an appropriate assertion will in case
of conflict be generated by the conflict analysis scheme explained in step 4.

4. Conflict analysis and backjump: In order to be able to tell reasons for con-
flicts (i.e., empty interval valuations) encountered, our solver maintains an
implication graph akin to that known from propositional SAT solving: all
asserted bounds are recorded in a stack-like data structure which is unwound
upon backtracking when the bounds are retracted. Within the stack, each
bound not originating from a split, i.e. each bound a originating from a con-
traction, comes equipped with pointers to its antecedents. The antecedent of
a bound a is an equation e, a set of ODE constraints p1, . . . , pn constituting a
definitionally closed ODE problem, or some clause c containing the variable
v plus a set of bounds for the other free variables of e (of p1, . . . , pn or of c,
resp.) which triggered the contraction a.

4 In practice, one stops as soon as the changes become negligible.
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By following the antecedents of a conflicting assignment, a reason for
the conflict can be obtained: reasons correspond to cuts in the antecedent
graph and can be “learned” for pruning the future search space by adding a
conflict clause containing the disjunction of the negations of the bounds in
the reason. We use the unique implication point technique to derive a conflict
clause which is general in that it contains few bounds and which is asserting
upon backjumping (thereby adjusting implication queue and watches) to the
decision level where it would have become unit had it existed then already.

The algorithm terminates and reports that a solution has been found if the
maximum diameter of the interval valuations maxv∈RV∪BV {supρ(v)− inf ρ(v)}
is smaller than a given, very small threshold (note that the solution thus found
actually constitutes a —due to the small threshold, relatively tight— overap-
proximation of the constraints).

6 First Experimental Results

In order to test the presented ideas, we have implemented the method described
in the previous section by straightforward integration into iSAT. This integra-
tion is prototypical, lacking any optimizations like reuse of inferences along the
isomorphic copies of the transition relation in a BMC problem [8]. Given the
extremely high computational cost of computing an interval enclosure of an
ODE, such mechanisms for copying inferences across isomorphic sub-formulae
rather than recomputing them should provide large speedups. Without such op-
timizations, performance figures like runtime and memory consumption are not
indicative of the actual performance of the algorithm. This implementation can,
however, serve as a proof of concept that a tight integration of interval-based
ODE-enclosures as yet another interval narrowing operator in ICP provides a
viable alternative to conventional schemes of hybrid system analysis, where com-
putation of ODE images and transition images are strictly separate phases.

Heater example. For the heater depicted in Fig. 1, our tool was able to find
an error trace at an outside temperature of approximately −7◦C at which the
indoor temperature ϑi stabilizes just below 21◦C, leading to continuous heat
supply and, consequently, build-up of a critical concentration of exhaust fumes.

Bouncing ball. The bouncing ball is a simple, classical example of a hybrid sys-
tem, suitable as a test for the handover between the different interval narrowing
mechanisms. In free fall, height h and speed v of the ball are governed by dh

dt = v

and ds
dt = −g where g is the gravitational constant. Whenever the ball hits the

ground at h = 0, it bounces by discontinuous change of the sign of v. Search-
ing for a ground impact at a time t ≥ 8 starting from a limited start height,
solving required 664 hand-overs between equation-based and ODE-based interval
narrowing, entailing the computation of 1754 ODE enclosures which delivered 55
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Fig. 4. Runtime and number of conflicts for the moving heaters benchmark

tightened intervals and 5 conflicts5, the latter being memorized through conflict-
driven learning and thus eliminating multiple candidate traces.

Moving heaters. The current limitations of our implementation become visible
in the “room heating benchmark” proposed in [7]. For the scenario (two heaters
in three rooms, fixed initial temperature, reach a temperature below threshold),
we can check up to seven unwindings of the transition relation but fail to check
the resulting formulae for larger unwinding depths due to quickly increasing run-
times. For all unwinding depths, over 97% of the runtime was spent on enclosing
ODEs. Figure 4 shows the runtime and the number of conflicts that occured
during ICP and ODE deduction. Since backjumping after encountering a con-
flict always involves undoing decisions and deductions, especially also deductions
obtained from ODE enclosures, this data strongly indicates that a more sophis-
ticated scheme for storing the results from ODE deductions (e.g. by adding them
as clauses that are preserved during backjumps) could have a significant impact
on runtimes.

7 Conclusion

Within this paper, we have presented a seamless integration of safe numeric
integration of ODEs into SAT-modulo-theory (SMT) solving. From the practical
point of view, such an integration extends the scope of SMT algorithms from
mixed arithmetic-Boolean problems involving relations defined by arithmetic
inequations to problems additionally comprising relations defined by initial value
problems of ODEs. It therefore permits the direct application of SMT to hybrid
systems without the need for a preprocessing step replacing ODEs with pre-
post-relations defined by (in-)equations. Technically, it involves the embedding
of interval-based safe numeric approximation of ODE images and ODE pre-
images as a further rule for theory propagation in SMT solving.

First experiments show the feasibility of such an integration, yet do also in-
dicate that the computational cost of the individual ODE-related deductions is
5 I.e. proofs that the gap between the set of endpoints of one and startpoints of another

partial trace cannot be bridged by any continuous trajectory.
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extremely high. In the future we will thus try to drastically reduce their fre-
quency by adding further ODE-related pruning operators and through proven
methods for reuse of deductions within isomorphic subformulae [8] in order to
attain performance competitive with existing tools optimized for the domain.
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Abstract. We give a method for extending efficient SMT solvers to
handle quantifiers, using Superposition inference rules. In our method,
the input formula is converted into CNF as in traditional first order
logic theorem provers. The ground clauses are given to the SMT solver,
which runs a DPLL method to build partial models. The partial model
is passed to a Congruence Closure procedure, as is normally done in
SMT. Congruence Closure calculates all reduced (dis)equations in the
partial model and passes them to a Superposition procedure, along with
a justification. The Superposition procedure then performs an inference
rule, which we call Justified Superposition, between the (dis)equations
and the nonground clauses, plus usual Superposition rules with the non-
ground clauses. Any resulting ground clauses are provided to the DPLL
engine. We prove the completeness of this method, using a nontrivial
modification of Bachmair and Ganzinger’s model generation technique.
We believe this combination uses the best of both worlds, an SMT process
to handle ground clauses efficiently, and a Superposition procedure which
uses orderings to handle the nonground clauses.

1 Introduction

Deciding the satisfiability of a formula with respect to a background theory
is crucial for verification. There exist specialized reasoning methods for many
background theories of interest, such as lists, arrays, records, integer-offsets,
and linear arithmetic, etc., which go under the name of Satisfiability Modulo
Theories (SMT) solvers, but they used to be limited to the particular class of
first order formulae without quantifiers. Finding good heuristics for lifting SMT
techniques from ground to quantified formulas is a current topic of research. For
instance [5,8,1] use heuristics based on the instantiation method of the theo-
rem prover Simplify [11]. However those heuristics are incomplete, i.e. they may
fail to prove unsatisfiability of formulas. Another problem is that instantiation-
based heuristics cannot say anything about satisfiable formulas. This is because
they instantiate universally quantified variables, and it is never known when it
is safe to stop instantiating. On the other hand, there exist mature Automated
Theorem Provers (ATPs), Spass [17], Vampire [15], E [16] to name a few, imple-
menting Resolution/Superposition calculi (see e.g., [3,14]) which are complete for
first order logic with or without equality. A key property of the aforementioned
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ATP’s is that an ordering is placed on the literals which yields a drastic reduc-
tion in the search space. On several classes of problems, it causes termination
and therefore the inference procedure becomes a decision procedure. However,
Resolution ATPs are believed to not be as fast as SAT solvers on ground propo-
sitional problems having complex boolean structures. The same thing is true
for Superposition ATPs versus SMT solvers on ground equational problems. Re-
cently, the topic of instantiation-based ATP’s has become popular. See [6] for
some examples. These ATP’s take better advantage of the boolean structure,
but they do not take advantage of orderings.

In this paper we are concerned with the problem of lifting SMT solvers (with
equality as a background theory) from ground to quantified formulas in an effi-
cient and complete way. We propose a novel method, that we call Satisfiability
Modulo Equality with Lazy Superposition (SMELS), which combines the best
of both worlds ATPs and SMT: completeness for quantified problems; and effi-
ciency for ground problems. An ordering is used for the quantified part of the
problem and a SMT solver is used for the ground part. We show how to do
this without losing completeness. As far as we know, this is the first complete
combination of a SAT solver with orderings. It is designed for a set of clauses
that is mostly ground, with a small nonground part representing a theory. If the
clauses are mostly nonground, traditional methods would probably work better.

In SMELS, the input formula is first converted into CNF as in traditional first
order logic theorem provers. The set of clauses is partitioned into two subsets: a
set of ground clauses and a set of nonground clauses. Then we run a DPLL solver
to build a partial model, i.e. a set of ground literals, along with justifications of
elements in the model. The Congruence Closure algorithm is used to reduce the
partial model and to calculate justifications of elements in the reduced partial
model. The reduced partial model is next checked for consistency together with
the nonground clauses using a Superposition procedure. The main issue is that
the literals in the reduced partial model are not consequences of the input for-
mula, and hence any formula derived by the Superposition procedure may not
be a consequence of the input formula. To cope with this problem, we design a
rule called Justified Superposition, involving a literal from the reduced partial
model and a nonground clause, taking into account the justification of the literal.
The newly derived clause is a consequence of the input formula, and thereby we
ensure soundness of SMELS. We also perform usual Superposition inferences
among nonground clauses. Any ground clauses resulting from the Superposi-
tion procedure are provided to the DPLL solver. No Superposition inferences
among ground clauses are performed because they are treated by DPLL and the
Congruence Closure algorithm.

Figure 1 summarizes how SMELS works. In Figure 1, DPLL and Congruence
Closure are handled by a standard SMT tool. The SMELS inference system
described in this paper shows the nonground inference rules. We assume that
DPLL and Congruence Closure have done their job, and the SMELS inference
system gives the necessary Superposition rules for completeness. Therefore, it
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Ground clauses

DPLL

Clauses

Congruence Closure
Reduced ModelModel

Nonground clausesGround clauses

Superposition

Fig. 1. SMELS architecture

will not be necessary to refer to DPLL and Congruence Closure in this paper,
except to explain how SMT tools work.

We prove completeness of SMELS, using a nontrivial modification of Bachmair
and Ganzinger’s model generation technique. Completeness of SMELS ensures
that one of the following will happen when applying our calculus: (i) the original
set of clauses is satisfiable, and after a finite number of steps the process will
halt, giving a ground model modulo the nonground background theory; or (ii)
the original set of clauses is satisfiable, and in the limit, there is a set of clauses
for which we can build a model; or (iii) the original set of clauses is unsatisfiable,
and after a finite number of steps the process will halt with an unsatisfiable set
of ground clauses. Possibilities (i) and (iii) are the most interesting compared to
instantiation-based heuristics.

The paper is structured as follows. Section 2 introduces some background
notions. Section 3 presents a complete inference system, called SLR, for first
order logic. Section 4 presents SMELS, which is a complete calculus for first order
logic with equality. In Section 5, we outline the completeness proof of SMELS.
We do not prove the completeness of SLR as it is a special case of SMELS. In
Section 6 we give an example to illustrate the ideas. Section 7 discusses closely
related works. Section 8 concludes and mentions future works. Detailed proofs
can be found in the appendix.

2 Preliminaries

We assume the usual rewriting definitions, as defined in [10]. Atoms are repre-
sented by symbols A, B, literals by L. An atom is also called a positive literal,
and the negation of an atom is a negative literal. Equations will be written as
s = t, disequations as s �= t. The formula s �� t is either s = t or s �= t. Given a
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set of ground literals M , then M+ (resp. M−) represents the positive (resp. neg-
ative) literals in M . A clause is s disjunction of literals, thought of as a multiset.
If L is A (resp. ¬A) then ¬L is ¬A (resp. A).

Given a set of clauses S, let g(S) (resp. v(S)) be the set of ground (resp.
nonground) clauses in S. Define Gr(S) as the set of all ground instances of S.
For a clause C, let g(C) (resp. v(C)) be the multiset of ground (resp. nonground)
literals in C. Let GL(S) be the set of all ground literals in S.

We will be working on ground instances of clauses, called closures [4]. If L is a
literal and θ is a ground substitution, we write L · θ to indicate the θ instance of
L. A closure represents a ground instance, but makes it clear which is the original
literal and which is the grounding substitution. The literal L is the skeleton of
the closure, and θ is the substitution. A clause can be considered as a multiset of
closures, where the meaning of the closure L ·θ is just Lθ. When it is convenient,
we will treat the closure L · θ as the instantiated literal Lθ.

We define a quasiordering %g on closures, so that for literals K and L and
substitutions σ and θ, K ·σ %g L·θ if 1) K and L are both ground, or 2) K and L
are both nonground, or 3) K is ground and L is nonground. Define the ordering
%r to be a reduction ordering on terms, extended to equations by considering
them as multisets of terms, then extended to disequations in such a way that a
disequation s �= t is larger than an equation s = u if s *r t and s *r u. The
ordering %r is extended to closures so that K ·σ %r L ·θ if Kσ %r Lθ. This is the
way a reduction ordering is normally extended to literals in theorem proving.
Next we define an ordering %i, called an instance ordering, defined on closures
of literals to be the lexicographic combination of %g and %r. So, to compare
two closures in the instance ordering, first check if one skeleton is ground and
the other is nonground, otherwise apply the substitution and compare using the
reduction ordering. The instance ordering is extended to clauses by considering
them as multisets of literals.

An interpretation M is defined as a set of ground equations. For an inter-
pretation M and an equation s = t, we write M |= s = t if s = t is a logical
consequence of M . We write M |= s �= t if M �|= s = t. Given an interpretation
M and a ground clause C, M |= C if and only if M |= L for some L in C. Given
a set of ground clauses S, an interpretation M is a model of S if M |= C for all
C in S. If T is a set of literals, we say that T is satisfiable if T has a model.

For a reduction ordering %r an interpretation M and a literal L, let ML =
{L′ ∈ M | L′ %r L}. We write M |=�r L if ML |= L. An equation s = t has a
rewrite proof using E if s and t have the same normal forms with respect to E,
and we will write E � s = t. For an interpretation M and an equation s = t, we
write M � s = t if there is a set of equations E ⊆M such that E � s = t.

For a clause C, M |=�r C (resp. M � C) if M |=�r L (resp. M � L) for
some L ∈ C. For a set of ground clauses S, we write M |=�r S (resp. M � S)
if M |=�r C (resp. M � C) for all C ∈ S. A set of literals T is consistent with
respect to |=�r if there is no disequation s �= t ∈ T such that T |=�r s = t,
similarly T is consistent with respect to � if there is no disequation s �= t ∈ T
such that T � s = t. For a reduction ordering %r, a given interpretation M
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and an equation s = t, M |= s = t and M � s = t and M |=�r s = t are not
equivalent. However, if M is confluent then |=, |=�r and � coincide.

For example, consider M = {a = b, a = c}. If %r is an ordering such that
b %r a and c %r a, then M |= b = c but M �|=�r b = c and M �� b = c. But if
%r is defined such that a %r b and a %r c, then M |= b = c, M |=�r b = c, and
M � b = c.

3 Resolution Inference System

We give a Resolution inference system for first order logic, which is a special
case of the Superposition inference system given later. We give this inference
system to illustrate some ideas in a simpler setting, and to relate our work to
some previous work.

We represent a truth assignment GM as the set of ground literals made true
by GM . GM is a satisfying truth assignment for a set of ground clauses S if GM
makes all clauses in S true. Given a set of clauses S, assume a SAT procedure
has been run on g(S) to produce a satisfying truth assignment GM of g(S).
SAT procedures also construct justification functions from which lemmas are
constructed. Justification functions are formally defined as follows.

Definition 1. Given a set of ground clauses and literals S, we define cons(S)
as the set of literals implied by S. Let G be a set of ground clauses. Let M be
a truth assignment satisfying G. A function j : cons(M) → P(M) is called an
(M, G)-justification function if L ∈ cons(G ∪ j(L)) for all L in cons(M).

If j(L) = {L}, then L is said to be self-justified. If all literals in cons(M) are
self-justified, then j is a self-justification function.

Given a set of ground clauses G and a truth assignment M there is always a
self-justification function, since M is always a consequence of M .

Example 1. Let G = {p,¬p ∨ q, r ∨ ¬s,¬q ∨ s ∨ ¬t}. Then M = {p, q,¬s,¬t} is
a satisfying truth assignment of G. Let j1 be the function such that j1(p) = ∅,
j1(q) = ∅, j1(¬s) = {¬s}, and j1(¬t) = {¬s}. Then j1 is a justification function.
But there are many justification functions. For example, let j2 be identical to j1
except that j2(¬t) = {p,¬s}. Then j2 is also a justification function. There is
also the self-justification function j3 such that j3(L) = {L} for all L in M .

Let us briefly explain the relevance of justification functions. As mentioned pre-
viously, our aim is to check consistency of the truth assignment GM along with
the set of nonground clauses v(S). However, the literals in GM may not be
consequences of S, and anything derived from GM and v(S) using Resolution
inferences may not be a consequence of S. Our solution to this problem is to con-
sider the justifications of the literals in GM , that is for a given literal L ∈ GM ,
¬j(L) ∨ L is a consequence of the input set of clauses S.

We need the following notion for the presentation of our Resolution inference
system.
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Definition 2. Given a clause C containing literal L and a substitution σ, we
say that L is σ-var-maximal in C if L ∈ v(C) and there is no literal L′ ∈ C such
that L′ · σ (i L · σ.

For completeness of our Resolution inference system, we need the following as-
sumption.

Assumption 1. Each satisfying truth assignment GM of g(S) has been ex-
tended to the atoms of GL(S) in any way such that it is defined on all literals
of GL(S).

The (GM, g(S))-justification function j must be extended along with the ex-
tension of the model.

A simple way to extend the justification function is to make all the additional
literals self-justified.

We call our Resolution inference system SLR, Satisfiability with Lazy Resolu-
tion. It consists of the inference rules in Figure 2. The Nonground Resolution and
Factoring inference rules differ from the usual Ordered Resolution and Factoring
inference rules in two ways:

1. They are only allowed on nonground clauses.
2. They are not performed on the maximal literals of the premises, but instead

on the maximal nonground literals of the premises.

The Justified Resolution rule involves one nonground premise C with maximal
nonground literal L. It produces a new clause D, where a ground instance of L
is replaced by its justification. This is similar to the process in SAT procedures
where a lemma is created. The Justified Resolution inference rule could be viewed
as a Resolution inference between C and a new clause C′ = Lσ ∨ ¬j(Lσ).
However, C′ does not need to be explicitly created. By definition of justification
function, C′ is implied by g(S). Note that the Justified Resolution rule may still
apply if all clauses are nonground but contain ground literals, because those the
truth assignment is extended to give a truth value to all ground literals.

In the case where the literal L is self-justified, we call the inference Self-justified
Resolution. This corresponds to an inference with Lσ ∨ ¬Lσ, a tautology. The
inference then effectively just applies σ to its premise. This is a proper instan-
tiation, because L must be nonground since it is in v(C). Therefore, SLR with
a self-justification function can be viewed as a combination of an Instantiation-
based inference system such as InstGen[12] with Ordered Resolution, the first
such combination we are aware of.

In the inference rules, we have not considered selection functions. Our com-
pleteness results can be adapted to deal with selection rules, but we chose to
present just the ordered case to make the presentation as simple as possible.

4 Superposition Inference System

Now we extend our inference system to first order logic with equality.
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Nonground Resolution
Γ ∨ A Δ ∨ ¬B

(Γ ∨Δ)σ
if σ = mgu(A,B), Aσ ∈ max(v(Γ ∨
A)σ), and ¬Bσ ∈ max(v(Δ ∨ ¬B)σ)

Factoring
Γ ∨A ∨ B

(Γ ∨A)σ
if σ = mgu(A,B) and Aσ ∈ max(v(Γ∨
A ∨ B)σ)

Justified Resolution
Γ ∨ ¬L

Γσ ∨ ¬j(Lσ)
if Lσ ∈ GM , and ¬Lσ ∈ max(v(Γ ∨
¬L)σ))

where all premises are from v(S), GM is a satisfying truth assignment of g(S)
which is defined on GL(S), and j is a (GM, g(S)) justification function.

Fig. 2. Inference Rules of SLR

Definition 3. A set M of ground equations and disequations is called reduced
if M never contains a literal of the form L[s] along with another literal of the
form s = t, where s (r t.

A set M of ground equations and disequations is called left-reduced if there
does not exist u[s] �� v and s = t in M with u[s] (r v and s (r t.

If M is left-reduced then M+ is a convergent rewrite system. A Congruence
Closure algorithm can replace a set of literals with a logically equivalent reduced
set of literals. The Congruence Closure algorithm may add new constants by
flattening, which we call extension constants. Extension constants are generally
assumed to be smaller than all other symbols.

Again, we assume a set of clauses S, a satisfying truth assignment GM ex-
tended so that it is defined on all atoms of GL(S), and a (GM, g(S)) justifi-
cation function, as in Assumption 1. The only difference between here and the
nonequality case is that we now assume in addition the following.

Assumption 2. GM is reduced.

We will see in Section 5 that the reducedness of GM is necessary for the com-
pleteness of SMELS. Of course, if GM is not reduced, the Congruence Closure
algorithm can be used to reduce it.

The inference rules for SMELS, Superposition Modulo Equality with Lazy
Superposition, are given in Figure 3. The ideas are all the same as in the non-
equality case. The inference rules are like the usual Superposition rules on non-
ground clauses, except that the ordering only involves the nonground literals.
The Justified Superposition rules can be viewed as a Superposition between a
nonground clause and an implicit ground clause. We think this will be efficient,
because no inferences between ground clauses are necessary, and orderings are
used to prevent many cases of nontermination.

Let S be a set of clauses. Let GM be a reduced satisfying truth assignment of
g(S), extended so that it is defined on GL(S). Let j be a (GM, g(S)) justification
function. A SMELS inference system is parameterized by GM and j. So we
will refer to SMELS(GM, j) to indicate what the parameters are. An actual
implementation of this inference system will consist of a fair application of the
inference rules. When an inference rule adds a new ground clause, that clause will
be added to g(S), and a new satisfying truth assignment GM may be created.
Therefore, the parameters of SMELS may change as inferences are performed.
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Nonground Superposition
Γ ∨ u[s′] 
� v Δ ∨ s = t

(Γ ∨Δ ∨ u[t] 
� v)σ
(i), (ii), (iii), (iv)

Eq. Resolution
Γ ∨ s �= s′

Γσ
(v)

Eq. Factoring
Γ ∨ s = t ∨ s′ = t′

(Γ ∨ t �= t′ ∨ s = t′)σ
(iii), (iv), (vi)

Justified Superposition Into
Γ ∨ u[s′] 
� v

(Γ ∨ ¬j(s = t) ∨ u[t] 
� v)σ
(i), (ii), (iii)

Justified Superposition From
Δ ∨ s = t

(Δ ∨ ¬j(u[s′] 
� v) ∨ u[t] 
� v)σ
(i), (iii), (iv)

where all premises are from v(S), GM is a reduced satisfying truth assignment of g(S)
which is defined on GL(S), j is a (GM, g(S)) justification function, s′ is not a variable
in Nonground Superposition and Superposition Into, σ = mgu(s, s′), s = t ∈ GM in
Justified Superposition Into, u[s′] 
� v ∈ GM in Justified Superposition From, and

(i) u[s′]σ � r vσ, (ii) u[s′] 
� v is σ-var- maximal in its clause, (iii) sσ � r tσ,
(iv) s = t is σ-var-maximal in its clause, (v) s �= s′ is σ-var-maximal in its clause,
(vi) tσ � r t′σ and s′σ � r t′σ.

Fig. 3. Inference Rules of SMELS

A closure C is redundant in a set of closures S if the following hold:

1. there is a subset E of S, where E is a set of equations; and
2. all members of E are smaller than C with respect to both orderings %i and
%r; and

3. there is a closure D such that either D is in S or D is a tautology; and
4. D is smaller than C with respect to both orderings %i and %r; and
5. for every literal L in D, there is a literal L′ in C such that L and L′ are

equivalent modulo E and L′ is larger or equal to L with respect to both
orderings %i and %r.

Our definition of redundant closures obeys the usual properties of redundancy.
In particular, if C is redundant in S, and S′ is the result of removing a re-
dundant clause from S, then C is still redundant in S′. Also, usual redundancy
elimination techniques such as simplification, tautology deletion and some cases
of subsumption fit well into our redundancy notion.

An inference is said to be redundant in S if its premises are redundant in S
or its conclusion is redundant in S. We say that S is saturated with respect to
SMELS if all SMELS(GM, j) inferences are redundant in S, for some satisfying
truth assignment GM and justification function j.

We define a SMELS derivation as a sequence of triples of the form

(S0, G0, jo), (S1, G1, j1), · · ·

where each Si is a set of clauses, each Gi is a truth assignment defined over
GL(Si) such that Gi |= g(Si), and each ji is a (Gi, g(Si)) justification function.
Furthermore, one of the following is true of each Si+1
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1. Si+1 is a conservative extension of Si, or
2. Si+1 is formed by removing a redundant clause from Si, or
3. Si+1 is formed by removing a ground clause C that is implied by g(Si)\{C}.

The conditions on Si+1 are more general than the conditions in the standard
definition of theorem proving derivation. We allow conservative extensions to
allow for the fact that the SMT procedure may add new symbols. We also allow
for any ground clause to be removed if it is implied by other ground clauses,
although strictly speaking theorem provers generally only remove redundant
clauses. For example, given the equation g(f(a)) = b, an SMT procedure may
create a new constant c, and add equations f(a) = c and g(c) = b. This creates
a conservative extension of the original set of clauses. Then the procedure may
delete g(f(a)) = b which is implied by the new clauses.

We have assumed the existence of one satisfying truth assignment of the set of
ground clauses whenever this set is satisfiable. This is trivial if the derivation is
finite. The main problem is the case where the derivation is infinite, and ground
clauses are added infinitely. We need to ensure that there are some truth values
for the ground literals that occur infinitely often in the same triple, so that we
can assume the existence of a single satisfying truth assignment. This motivates
the following definitions of persistence and fairness for infinite derivations.

Given a SMELS derivation (S0, G0, jo), (S1, G1, j1), · · · , we say that a clause
C is persistent if C ∈

⋃
i≥0

⋂
j≥i Sj . This is the usual definition of persistent

clauses. If L is a ground literal, and M is a set of ground literals, we say that the
pair (L, M) is persistent if

⋃
{(Si, Gi, ji) | L ∈ Gi, ji(L) = M} is infinite. This

means that the ground literal occurs infinitely often in the derivation with the
same justification.

A Nonground Superposition, Equality Resolution, or Equality Factoring infer-
ence is persistent in a SMELS derivation if its premises are persistent. A Justified
Superposition Into derivation is persistent if its premise is persistent, and the
pair (s = t, j(s = t)) is persistent. A Justified Superposition From derivation is
persistent if its premise is persistent, and the pair (u �� v, j(u �� v)) is persistent.

A SMELS derivation is fair if all persistent inferences are redundant and
there exists an enumeration of all literals L1, L2, · · · and an n such that for
all m ≥ n, Li ∈ jm(Lj) implies that i < j. In this definition, we call n a
justification stabilizer of the derivation. This last condition ensures that we will
not continually add new literals and use those literals to justify previous literals,
which may create a non-well-founded chain that could destroy completeness.

Given a fair SMELS derivation (S0, G0, j0), (S1, G1, j1), · · · , let T0 be the
sequence Gn, Gn+1, · · · , where n is a justification stabilizer of the derivation.
Therefore, T0 is just the subsequence of the derivation where we can be assured
that literals are justified by smaller ones. We define a sequence of sequences in-
ductively, based on the enumeration A1, A2, · · · of the positive literals. We need
to define what Ti is, in terms of Ti−1 and Ai from the enumeration of positive
literals. The idea is to make Ti be a subsequence of Ti−1 such that either Ai or
¬Ai occurs in all ground truth assignments, and has the same justification each
time.
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We define Ti as follows:

1. If there exists an M such that (Ai, M) is persistent in the sequence Ti−1,
then Ti is the subsequence of all triples (S, G, j) in Ti−1 such that Ai ∈ G
and j(Ai) = M . In this case, define Gprodi = {Ai}, and define jprodi = M

2. Else if there exists an M such that (¬Ai, M) is persistent in the sequence
Ti−1, then Ti is the subsequence of all triples (S, G, j) in Ti−1 such that
¬Ai ∈ G and j(¬Ai) = M . In this case, define Gprodi = {¬Ai}, and define
jprodi = M .

3. Else Ti is the subsequence of all triples (S, G, j) in Ti−1 such that Ai �∈ G
and ¬Ai �∈ G. In this case, define Gprodi = ∅.

By definition, each Ti must be infinite. Let GM =
⋃

Gprodi, and let just be
the justification function so that for all L ∈ GM with Gprodi = {L}, we have
just(L) = jprodi. Let S be the set of all persisting clauses in the derivation.
Then every SMELS(GM, just) inference with a premise in S is redundant.

5 Completeness

We will show that if S is saturated with respect to SMELS and does not contain
the empty clause then there is a model M of S with GM+ ⊆M . This shows that
if the inference rules are applied fairly, then one of the following three things
will happen.

1. The original set of clauses is satisfiable, and after a finite number of steps
the process will halt with a set of clauses S and a satisfying truth assignment
GM of g(S) such that GM+ ∪ v(S) |= S.

2. The original set of clauses is satisfiable, and in the limit, there is a set of
clauses S and a satisfying truth assignment GM of g(S) such that GM+ ∪
v(S) |= S.

3. The original set of clauses is unsatisfiable, and after a finite number of steps
the process will halt with a set of clauses S such that g(S) is unsatisfiable.

The first item is the most interesting. Instantiation methods based on Simplify
do not have this property,because they instantiate universallyquantifiedvariables,
and it is never known when it is safe to stop instantiating. Of course, our inference
system is only useful if the first item will happen frequently, and we suspect that
it will, because of the orderings. In this case, we can think of v(S) as representing
a theory, and then GM is actually a satisfying truth assignment of S modulo the
theory v(S). This is useful, because the entire model M cannot always be repre-
sented with a finite number of ground clauses. In the case of the second item above,
we consider the limit of the saturation process. In this case, the satisfying truth as-
signment GM referred to is a limit of the satisfying truth assignments constructed
during the saturation process, which was defined in the previous section.

For the completeness proof, we build a model as in Bachmair and Ganzinger’s
model construction process. However, our model is more complicated because
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of the satisfying truth assignment GM . We construct a model of v(S), which
must be consistent (wrt. |=�r) with GM . The proof of completeness will work
as follows. Let Gr(v(S)) represent all the ground closures of closures in v(S). As
usual, we will create an interpretation M . But M will be created in such a way
that M |=�r S. Then we will prove that this implies that M |= S. Informally, the
model is constructed inductively on the clauses of Gr(v(S)), using the ordering
%i. The idea of using %i is that the inference system takes place over nonground
clauses, but the completeness proof works over ground instances of those clauses.
In order for the ground inference to be able to be lifted, we need to remember
whether the clause it was an instance of was ground or not.

Definition 4. Let S be a set of nonground clauses. For a given ground closure
C · σ of the form (Γ ∨ s = t) · σ in Gr(S), define ICσ = {(s = t)σ} if and only
of all the following hold:

1. (s = t) · σ is maximal in C · σ wrt. %i,
2. M≺iCσ �|=�r Cσ̇,
3. there is no u �= v ∈ GM− such that M≺iCσ ∪ (s = t)σ |=�r u = v,
4. (s = t)σ is left irreducible by M≺iCσ, and
5. Γ does not contain an equation s = u such that M≺iCσ |=�r (s = t)σ implies

M≺iCσ |=�r (s = u)σ,

where M≺iCσ =
⋃

Dθ≺iCσ∧Dθ∈Gr(S) IDθ ∪GM+. We say that Cσ̇ produces (s =
t)σ when ICσ = {(s = t)σ}; and Cσ is called a productive clause.

Definition 5. Define MCσ = M≺CCσ ∪ ICσ.
Define M∞ =

⋃
Cσ∈Gr(S) MCσ.

Let us compare this definition with the usual definition in Bachmair and
Ganzinger’s model construction process. The first difference from the usual com-
pleteness proof is that we build a model using |=�r instead of |=. Recall that
in SMELS we begin with a model of the ground clauses, and we extend this to
a model of all the nonground clauses. Therefore the model construction is only
defined over the nonground clauses. The second difference of our model construc-
tion compared with the usual definition is that we begin our construction using
GM+ instead of the empty set as is normally done. The third difference in our
method is that whenever we want to add an equation to the model, we can only
add it if the model is consistent with GM−. As a consequence, the complete-
ness proof in our case is more difficult than usual. One of the main issues is to
show the confluence of the model constructed. In the usual model construction
it is trivial, as a result of the fact that only reduced equations are added to
the model. Here, it is not so simple. It is true that we only add reduced literals
to the model. So literals added during the model construction process can be
assumed be reduced on the left hand side. Equations in GM+ are reduced by
GM+ by definition. However, it is possible that we may add an equation during
the model construction process that reduces the left hand side of an equation
from GM+. Therefore, the model we are constructing may not be fully reduced.
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But by saturation, we can show that in the end the model will be confluent. As
in the usual completeness proof, the confluence of the model constructed is the
key to proving completeness of SMELS.

Theorem 1 (Refutation Completeness). Let S be saturated with respect to
SMELS. Then S is satisfiable if and only if it does not contain the empty clause.

6 Example

Let S0 contain the following clauses:

p(a, b) = p1

p(c, d) = p2

p(e, f) = p3

p1 = p2 ∨ p1 = p3

a �= c

a �= e

p(x1, y1) �= p(x2, y2) ∨ x1 = x2

By running a DPLL procedure on g(S0), we obtain a model M0. Suppose
that the DPLL engine finds a model M0, then a Congruence Closure algorithm
reduces the model M0 to the model G0, as in the table below.

g(S0) M0 G0 Justification of G0

p(a, b) = p1 p(a, b) = p1 p(a, b) = p2 {p1 = p2}
p(c, d) = p2 p(c, d) = p2 p(c, d) = p2 ∅
p(e, f) = p3 p(e, f) = p3 p(e, f) = p3 ∅

p1 = p2 ∨ p1 = p3 p1 = p2 p1 = p2 {p1 = p2}
a �= c a �= c a �= c ∅
a �= e a �= e a �= e ∅

Now the Superposition procedure is applied on G0∪v(S0). For instance, we have
the following Justified Superposition Into inference

p(x1, y1) �= p(x2, y2) ∨ x1 = x2

p1 �= p2 ∨ p2 �= p(x2, y2) ∨ a = x2

where the equation p(a, b) = p2 in the G0 is used, and its justification is p1 = p2.
After an exhaustive application of inference rules and redundancy deletion,

we obtain a new set of clauses, noted S1. The new clauses resulting from the
Superposition procedure are those in the S1 \ S0 column of the following table.
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G0 v(S0) S1 \ S0

p(a, b) = p2 p(x1, y1) �= p(x2, y2) ∨ x1 = x2 p1 �= p2 ∨ p2 �= p(x2, y2) ∨ a = x2

p(c, d) = p2 p2 �= p(x2, y2) ∨ c = x2

p(e, f) = p3 p3 �= p(x2, y2) ∨ e = x2

p1 = p2 p1 �= p2 ∨ a = c
a �= c p1 �= p2 ∨ p2 �= p3 ∨ a = e
a �= e

Again, by running a DPLL procedure and a Congruence Closure algorithm
on g(S1), we obtain the following:

g(S1) M1 G1 Justification of G1

p(a, b) = p1 p(a, b) = p1 p(a, b) = p3 ∅
p(c, d) = p2 p(c, d) = p2 p(c, d) = p2 ∅
p(e, f) = p3 p(e, f) = p3 p(e, f) = p3 ∅

p1 = p2 ∨ p1 = p3 p1 = p3 p1 = p3 ∅
a �= c a �= c a �= c ∅
a �= e a �= e a �= e ∅

p1 �= p2 ∨ a = c p1 �= p2 p3 �= p2 ∅
p1 �= p2 ∨ p2 �= p3 ∨ a = e

The Superposition procedure is again applied on G1 ∪ v(S1). The new set of
clauses obtained is noted S2. The new clauses resulting from the Superposition
procedure are in the S2 \ S1 column of the following table.

G1 v(S1) S2 \ S1

p(a, b) = p3 p(x1, y1) �= p(x2, y2) ∨ x1 = x2 p3 �= p(x2, y2) ∨ a = x2

p(c, d) = p2 p1 �= p2 ∨ p2 �= p(x2, y2) ∨ a = x2 a = e
p(e, f) = p3 p2 �= p(x2, y2) ∨ c = x2

p1 = p3 p3 �= p(x2, y2) ∨ e = x2

a �= c
a �= e

p3 �= p2

Then DPLL outputs unsatisfiable running on the new set of clauses g(S2)
because it contains both a = e and a �= e.

7 Related Works

There are various techniques and tools adressing the satisfiability problems for
first order formulae. SMT solvers such as [5,8,1], are quite effective and efficient
on certain classes of problems. SMELS has, at least in principle, several advantages
compared to SMT solvers. On quantified problems, it is complete, in contrast with
SMT solvers, which use incomplete heuristics to handle quantifiers. On satisfiable
quantified problems, SMELS may have an edge over SMT, because on many ex-
amples, the ordering will cause SMELS to terminate with the result satisfiable
while SMT solvers diverge or are forced to halt with the result unknown.
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Instantiation theorem proving based on [12] also uses an SMT solver at the
bottom to handle ground clauses resulting from instantiations. However the cal-
culus given in [12] does not use ordering to limit search space. Instead, the
authors propose semantic selection of clauses to be used for instantiations. On
satisfiable quantified problems, SMELS may have an edge over the method in
[12] because it may terminate while the method in [12] will diverge. Of course,
SMELS is interesting on these problems only if it often halts. We suspect that
it will often happen because SMELS uses powerful orderings to limit the search
space and prevent many nonterminating cases. The Model Evolution calculus [7]
provides another theorem proving method based on model finding. It is a lifted
version of the DPLL method to first order logic. It is not easy to compare Resolu-
tion/Superposition theorem proving with Instatiation theorem proving based on
Model Evolution calculus. For some problems Reslution/Superposition methods
are better, and for some others instantiation methods based on Model Evolution
calculus are better. On satisfiable quantified problems, we suspect that methods
like [7] perform better as they are designed to be model finders.

Resolution/Superposition theorem provers like Spass [17] and Vampire [15]
use splitting to improve efficiency. Vampire uses explicit propositional symbols
to keep track splitting while splitting in Spass relies on labels to keep track
the split levels. Since SMELS does not perform any ground inferences in the
Superposition procedure but delegates them to an efficient SMT solver instead,
we believe that it can be better than existing Resolution/Superposition theorem
provers on large problems containing mostly ground clauses. If the clauses are
mostly nonground, traditional methods would probably work better.

The theorem prover haRVey [9] combines a Boolean solver (SAT or BDD)
with the equation themorem prover E [16]. The integration is loose, compared
to SMELS, because resulting non-unit ground clauses are handled by E, and not
by the SMT solver like in SMELS.

8 Conclusion

We have presented SMELS, which is a novel complete method for solving satisfi-
ability in first order logic with equality. We believe that SMELS inherits the best
of the two worlds SMT and ATPs: a DPLL(T) procedure to handle efficiently
ground equational clauses; and a complete Superposition procedure to efficiently
handle nonground equational clauses using powerful orderings. We plan to im-
plement SMELS and to compare it with existing SMT and ATP methods. An
interesting line of future work is to study how SMELS can be used to derive
decision procedures for finitely presented theories, along the line of [2]. Finally,
we plan to study how to integrate a solver for linear arithmetic into SMELS. Al-
though we know that there exists no complete calculus for the first order theory
of linear arithmetic and uninterpreted symbols [13], it is interesting to identify
subclasses of formulae which enjoy completeness.
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Abstract. In the distributed test architecture, a system with multiple
ports is tested using a tester at each port/interface, these testers can-
not communicate with one another and there is no global clock. Recent
work has defined an implementation relation for testing against an input-
output transition system in the distributed test architecture. However,
this framework placed no restrictions on the test cases and, in particular,
allowed them to produce some kind of nondeterminism. In addition, it did
not consider the test generation problem. This paper explores the class
of controllable test cases for the distributed test architecture, defining a
new implementation relation and a test generation algorithm.

1 Introduction

If the system under test (SUT) has physically distributed interfaces/ports then it
is normal to place a tester at each port. If testing is black-box, there is no global
clock, and the testers cannot directly communicate with each other then we are
testing in the distributed test architecture, which has been standardised by the
ISO [1]. The use of the distributed test architecture reduces test effectiveness
(see, for example, [2,3,4,5]).

The area of testing against a state-based model has received much attention
[6,7,8,9]. The main advantage of using a formal approach is that many testing
processes can be automated (see [10] for a discussion on the advantages of formal
testing and [11] for a survey). However, most previous work on testing in the
distributed test architecture has considered deterministic finite state machine
(DFSM). The IOTS formalism is more general: in a DFSM input and output al-
ternate and DFSMs have a finite state structure and are deterministic. The last
restriction is particularly problematic since distributed systems are often nonde-
terministic. While the implementation relation ioco [9], that is usually used in
testing from an IOTS, has been adapted in a number of ways (see, for example,
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[12,13,14,15,16,17,18,19]), only recently has the problem of testing from an IOTS
in the distributed test architecture been investigated [20].This work introduced
an implementation relation dioco but this assumes that any deterministic test
case can be applied including test cases that are not controllable. Controllable
test cases are such that there does not exist a situation where a local tester has
observed a trace after which either it should apply an input or wait for output,
depending on what has happened at the other port. The problem is that in such
situations local testers do not know when they have to apply their input.

This paper defines what it means for a test case to be controllable and shows
that we can decide in polynomial time whether a test case has this property. We
define a new implementation relation for controllable testing in the distributed
test architecture. Finally, we give an algorithm for generating these test cases.
This paper therefore extends the work of [20] by considering controllable testing.
In addition, it is the first paper to give a test generation algorithm for testing
against an IOTS in the distributed test architecture.

2 Preliminaries

This section defines input-output transition systems and associated notation and
outlines the distributed test architecture.

2.1 Input Output Transition Systems

We use input-output transition systems to describe systems. These are labelled
transition systems in which we distinguish between inputs and outputs [9].

Definition 1. An input-output transition system s ( IOTS) is defined by (Q, I,
O, T, qin) in which Q is a countable set of states, qin ∈ Q is the initial state, I is
a countable set of inputs, O is a countable set of outputs, and T ⊆ Q× (I ∪O ∪
{τ})×Q, is the transition relation, where τ represents an internal (unobservable)
action. A transition (q, a, q′) means that from state q it is possible to move to
state q′ with action a ∈ I ∪O∪{τ}. We let IOTS(I,O) denote the set of IOTSs
with input set I and output set O.

State q ∈ Q is quiescent if from q it is not possible to produce output without
first receiving input. We can extend T to Tδ by adding (q, δ, q) for each quiescent
state q. We let Act = I ∪ O ∪ {δ} denote the set of observable actions and so
τ /∈ Act. Process s is input-enabled if for all q ∈ Q and ?i ∈ I there exists
q′ ∈ Q such that (q, ?i, q′) ∈ T . s is output-divergent if it can reach a state in
which there is an infinite path that contains outputs and internal actions only.

Given action a and process s, a.s denotes the process that performs a and
then becomes s. Given a countable set S of processes,

∑
S denotes the process

that can nondeterministically choose to be any one of the processes in S. We will
sometimes use the binary operator + to denote the election between processes.

Processes and states are effectively the same since we can identify a processwith its
initial state and we can define a process corresponding to a state q of s by making q
the initial state.Thus,weuse states andprocess and their notation interchangeably.
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We use the normal notation in which we precede the name of an input by ?
and the name of an output by !. We assume that all processes are input-enabled
and are not output-divergent. The intuition behind the first restriction is that
systems should be able to respond to any signal received from the environment.
Regarding the second restriction, in the distributed testing architecture quies-
cent states can be used to combine the traces observed at each port and reach
a verdict. If a process is output-divergent then it can go through an infinite
sequence of non-quiescent states, so that local traces cannot be combined.

Traces are sequences of visible actions, possibly including quiescence, and are
often called suspension traces. Since they are the only type of trace we consider,
we call them traces. The following is standard notation in the context of ioco.

Definition 2. Let s = (Q, I,O, T, qin) be an IOTS.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write q a−−→ q′.
2. We write q

a==⇒ q′, for a ∈ Act, if there exist q0, . . . , qm and k ≥ 0 such
that q = q0, q′ = qm, q0

τ−−→ q1, . . . , qk−1
τ−−→ qk, qk

a−−→ qk+1, qk+1
τ−−→

qk+2, . . . , qm−1
τ−−→ qm.

3. We write q
ε==⇒ q′ if there exist q1, . . . , qk, for k ≥ 1, such that q = q1,

q′ = qk, q1
τ−−→ q2, . . . , qk−1

τ−−→ qk.
4. We write q

σ==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there exist q0, . . . , qm, q = q0,
q′ = qm such that for all 0 ≤ i < m we have that qi

ai+1
===⇒ qi+1.

5. We write s
σ==⇒ if there exists q′ such that qin

σ==⇒ q′ and we say that σ is
a trace of s. We let T r(s) denote the set of traces of s.

Let q ∈ Q and σ ∈ Act∗ be a trace. We consider

1. q after σ = {q′ ∈ Q|q σ==⇒ q′}
2. out(q) = {!o ∈ O|q !o==⇒}
3. Given a set Q′ ⊆ Q, we consider that Q′ after σ = ∪q∈Q′ q after σ and

out(Q′) = ∪q∈Q′out(q).

Process s is deterministic if for all σ ∈ Act∗, |out(qin after σ)| ≤ 1.

In testing from a single-port IOTS it is usual to use ioco [9,21].

Definition 3. Given s, i ∈ IOTS(I,O) we write i ioco s if for every trace σ ∈
T r(s) we have that out(i after σ) ⊆ out(s after σ).

2.2 Multi-port Input-Output Transition Systems

The two standard (ISO) test architectures are shown in Figure 1. In the local
test architecture a global tester interacts with all of the ports of the SUT. In
the distributed test architecture there is a local tester at each port [1]. For the
sake of simplicity, in this paper we will sometimes assume that there are only
two ports which we call U and L. However, all the results can be easily extended
to n > 2 ports. We use the term IOTS where there are multiple ports and when
there is only one port we use the term single-port IOTS.
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Fig. 1. The local and distributed test architectures

For an IOTS (Q, I,O, T, qin) with port set P = {U,L} we partition I into
sets IU and IL of inputs that can be received at U and L respectively. Similarly,
O can be partitioned into sets OU and OL that can be produced at U and L
respectively1. Inputs and outputs will often be labelled in a manner that makes
their port clear. For example, ?iU is an input at U and !oL is an output at L. A
global tester observes both ports and so observes a trace in Act∗, called a global
trace. These traces can be transformed into two local traces.

Definition 4. Let σ ∈ Act∗ and p ∈ P. We let πp(σ) denote the projection
of σ onto p; this is called a local trace. The function πp can be defined by the
following rules.

1. πp(ε) = ε.
2. If z ∈ (Ip ∪Op ∪ {δ}) then πp(zσ) = zπp(σ).
3. If z ∈ Iq ∪Oq, for q �= p, then πp(zσ) = πp(σ).

Given global traces σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot be
distinguished in the distributed test architecture. Thus, σ ∼ σ′ if and only if
πU (σ) = πU (σ′) and πL(σ) = πL(σ′).

The dioco implementation relation has been devised for testing in the distrib-
uted test architecture using a function in that returns the input potion of a trace
[20].

Definition 5. Let s, i ∈ IOTS(I,O). We write i dioco s if for every trace σ

such that i
σ==⇒ i′ for some i′ that is in a quiescent state, if there is a trace

σ1 ∈ T r(s) such that in(σ1) ∼ in(σ) then there exists a trace σ′ ∈ T r(s) such

that s σ′
==⇒ and σ′ ∼ σ.

Only traces reaching quiescent states are considered in dioco since these allow
us to put together the local traces; a non-quiescent state can receive additional
output at a port and this situation is uncontrollable [20]. Since in this paper all
processes are input-enabled we can simplify the previous definition.

1 An alternative, used in [20], is to allow outputs to be tuples of values but the formal-
ism used in this paper has the advantage of simplifying the notation and analysis.
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Proposition 1. Given s, i ∈ IOTS(I,O), if s and i are input-enabled then we
have that i dioco s if and only if for every trace σ such that i σ==⇒ i′ for some i′

that is in a quiescent state, there exists a trace σ′ such that s σ′
==⇒ and σ′ ∼ σ.

3 Test Cases for the Distributed Test Architecture

A test case is a process with a finite number of states that interacts with the
SUT. A test case may correspond to a test objective: It may be intended to
examine some part of the behaviour of the SUT. When designing test cases it
is thus simpler to consider global test cases, that is, test cases that can interact
with all of the ports of the system. However, in the distributed test architecture
we do not have a global tester that can apply a global test case: Instead we place
a local tester at each port. The local tester at port p only observes the behaviour
at p and can only send input to the SUT at p.

A global test case is an IOTS that has the same input and output sets as
the specification process s. A local test case is a tuple containing a test case for
each of the available ports and has the input and outputs sets corresponding
to its port. If s ∈ IOTS(I,O) then every global test case for s is a process
from IOTS(I,O ∪ {δ}). In our setting, with two ports, a local test case for s
is a pair (tU , tL) such that tp ∈ IOTS(Ip, Op ∪ {δ}) (p ∈ {U,L}). Test cases,
either global or local, synchronize on values with either specifications or SUTs
and do not contain internal actions. As usual, (global or local) test cases cannot
block output from the SUT: If the SUT produces an output then the test case
should be able to record this situation. Thus, for every state t′ of a test case t

and output !o ∈ O we have that t′ !o−−→ . ⊥ is the global test case that cannot
send input to the SUT and thus whose traces are all elements of (O ∪{δ})∗. We
let ⊥p denote the corresponding local tester for port p, whose set of traces is
(Op ∪ {δ})∗.

Definition 6. Let s ∈ IOTS(I,O) be an IOTS with port set P = {U,L}. A
local test case is a tuple (tU , tL) of local testers in which for all p ∈ P we have
that tp is a test case in IOTS(Ip, Op ∪ {δ}). In addition, if tp

σ==⇒ t′p for some

σ then t′p
!op

==⇒ for all !op ∈ Op ∪ {δ}.

The following function, defined in [20], takes a global test case and returns local
testers.

Definition 7. Given global test case t and port p, localp(t) denotes the local
tester at p defined by the following rules.

1. If t is the null process ⊥ then localp(t) is ⊥p.
2. If a ∈ Ip ∪Op ∪ {δ} then localp(a.t) = a.localp(t).
3. If a ∈ Iq ∪Oq, q �= p, then localp(a.t) = localp(t).
4. localp(t1 + · · ·+ tk) = localp(t1) + · · ·+ localp(tk).
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Next we introduce a notion of parallel composition between a system and a
(global or local) test case.

Definition 8. Let s ∈ IOTS(I,O), t be a global test case for s and t′ = (tU , tL)
be a local test case for s. We introduce the following notation.

1. s||t denotes the application of t to s. The system s||t belongs to IOTS(I,O)
and is formed by s and t synchronizing on all visible actions. Internal actions
can be autonomously performed by s.

2. s||t′ denotes the application of t′ to s, often represented by s||tU ||tL. s||t′
belongs to IOTS(I,O) and it is formed from s and t′ by s and tU synchro-
nizing on actions in IU ∪ OU and by s and tL synchronizing on actions in
IL∪OL. s, tU , and tL synchronize on δ. Internal actions can be autonomously
performed by s.

3. Since s||t and s||t′ are systems, the notation introduced in Definition 2 can
be applied to them.

4. We let T r(s, t) (resp. T r(s, t′)) denote the set of traces that can result from
s||t (resp. s||t′) and their prefixes.

The following notation is used in order to reason about the application of test
cases to systems.

Definition 9. Let s, i ∈ IOTS(I,O) and t be a test case.

1. A trace σ is a test run for i with t if i||t σδ==⇒ (and so at the end of this test
run the SUT is quiescent).

2. Implementation i passes test run σ with t for s if there exists σ′ ∈ T r(s)
such that σ′ ∼ σ. Otherwise i fails σ with t for s.

3. Implementation i passes test case t for s if i passes every possible test run
of i with t for s and otherwise i fails t.

A local test case t is said to be deterministic for a specification s if the interaction
between s and t cannot reach a situation in which both local testers are capable
of sending input [20] since in such a situation, the order in which these inputs
are received by the SUT cannot be known.

Definition 10. Let s ∈ IOTS(I,O). We say that the local test case (tU , tL)
is deterministic for s if there do not exist traces σ1 and σ2, with σ2 ∼ σ1, and
a1, a2 ∈ I, with a1 �= a2, such that s||tU ||tL

σ1a1===⇒ and s||tU ||tL
σ2a2===⇒ .

The local testers being deterministic does not guarantee that the local test case
is deterministic. For example, deterministic local testers tU and tL could both
start by sending input to the SUT.

Now let us consider a specification s such that T r(s) is the set of prefixes
of ?iU !oL!oU?iL plus the traces obtained by completing this to make it input-
enabled. We could have a local test case (tU , tL) in which tU sends ?iU and
expects to observe !oU and tL sends ?iL after observing !oL. Then (tU , tL) is
deterministic for s but tL does not know when to send ?iL and this is a form
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of nondeterminism. We obtain the same problem with the corresponding global
test case if we wish to apply it in the distributed test architecture. The following,
which adapts a definition from [22] for nondeterministic finite state machines, is
a necessary and sufficient condition under which we avoid this form of nonde-
terminism.

Definition 11. A (local or global) test case t is controllable for IOTS s if there
does not exist port p ∈ P, σ1, σ2 ∈ T r(s, t) and ?ip ∈ Ip with σ1?ip ∈ T r(s, t),
σ2?ip �∈ T r(s, t) and πp(σ1) = πp(σ2).

If a test case is controllable then, as long as no failures occur in testing, each
input is supplied by a local tester at the point specified in the test case.

Proposition 2. Let us suppose that we are testing i ∈ IOTS(I,O) with a test
case t that is controllable for specification s ∈ IOTS(I,O). If an input ?i is
supplied after σ ∈ T r(s, t) then σ?i ∈ T r(t).

Proof. Proof by contradiction: assume that ?i is supplied after the trace σ ∈
T r(s, t), where σ?i �∈ T r(t). Since ?i is supplied after σ at a port p ∈ P there
exists a trace σ′?i ∈ T r(s, t) such that πp(σ) = πp(σ′). Thus, there exists σ, σ′ ∈
T r(s, t), port p ∈ P and input ?i ∈ Ip that should be sent after σ′ but not after
σ and πp(σ) = πp(σ′). This contradicts t being controllable for s as required. ��

If a test case t is controllable for s and a global trace σ ∈ T r(s, t) has been
produced then each local tester knows what to do next (apply an input or wait for
output). It is natural to now ask whether we can always implement a controllable
global test cases using a controllable local test case.

Proposition 3. If t is a global test case for s ∈ IOTS(I,O) and tp = localp(t)
for p ∈ {U,L} then:

1. T r(s, t) ⊆ T r(s, (tU , tL))
2. T r(s, (tU , tL)) ⊆ T r(s, t) if and only if t is controllable.

Proof. It is straightforward to prove that for all σ ∈ T r(t) and p ∈ P there exists
σp ∈ T r(localp(t)) such that σp = πp(σ). The first part of the result follows from
the fact that T r(s, t) = T r(s)∩T r(t) and T r(s, (tU , tL)) = T r(s)∩T r((tU , tL)),
where T r((tU , tL)) is the set of traces formed from interleavings of traces in
T r(tU ) and T r(tL) and so T r(t) ⊆ T r((tU , tL)).

Now assume that t is controllable and we prove that for all σ ∈ T r(s, (tU , tL))
we have that σ ∈ T r(s, t), using proof by induction on the length of σ. Clearly
the result holds for the base case σ = ε. Thus, let us assume that the result holds
for all traces of length less than k > 0 and σ has length k. Thus, σ = aσ′ for
some a ∈ Act.

If a = δ then tU
a−−→ t′U , tL

a−−→ t′L, and t a−−→ t′ for some t′U , t
′
L, t

′ and
the result follows by observing that t′U = localU (t′), t′L = localL(t′), and t′ is
controllable for the process s′ such that s

a==⇒ s′ and thus by applying the
inductive hypothesis to σ′.
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Let us assume that a ∈ I ∪ O. Without loss of generality, a occurs at U and
so a ∈ IU ∪OU . Thus, there exists t′U such that tU

a−−→ t′U . Since tU = localU (t)
it must be possible to have event a at U in t before any other event at U and
so there must exist some minimal σL ∈ (IL ∪OL)∗ such that σLa ∈ T r(t). But
πU (σL) = πU (ε) and so, since t is controllable for s, by the minimality of σL we
must have that σL = ε. Thus, there exists t′ such that t a−−→ t′. The result now
follows observing that t′U = localU (t′), tL = localL(t′), t′ is controllable for the
process s′ such that s

a==⇒ s′ and by applying the inductive hypothesis to σ′.
Next we prove the left to right implication: We assume that T r(s, (tU , tL)) ⊆

T r(s, t) and will prove that t is controllable for s. The proof is by contradiction.
We assume that t is not controllable for s and so there exist σ1, σ2 ∈ T r(s, t)
and port p ∈ P such that πp(σ1) = πp(σ2) and there exists ?ip ∈ Ip such
that σ1?ip ∈ T r(s, t) and σ2?ip �∈ T r(s, t). But clearly, since σ1?ip ∈ T r(s, t),
we have that πp(σ1)?ip ∈ T r(tp) and so, since πp(σ1) = πp(σ2) we have that
πp(σ2)?ip ∈ T r(tp). Further, for q ∈ P , q �= p, we have that πq(σ2) ∈ T r(tq)
and so σ2?ip ∈ T r((tU , tL)). Finally, since σ2 ∈ T r(s, t) and s is input enabled
we have that σ2?ip ∈ T r(s). Thus, we conclude that σ2?ip ∈ T r(s, (tU , tL)) as
required. ��

The controllability of a test case t for s is defined in terms of the traces that
can be produced by t||s. Thus, if two test cases define the same sets of traces
when applied to s then either both are controllable or neither is controllable.
The proof of the following is immediate from Proposition 3 and Definition 11.

Proposition 4. Let t be a global test case for s ∈ IOTS(I,O) and t′ = (localU
(t), localL(t)). Then t′ is controllable for s if and only if t is controllable for s.

Proposition 5. Let t be a global test case and tp = localp(t), p ∈ P. If t is
controllable for s then (tU , tL) is deterministic for s. However, it is possible for
t to be deterministic for s but for t not to be controllable for s.

Proof. We have seen that a test case can be deterministic for s and not con-
trollable for s. We therefore assume that t is controllable for s and use proof by
contradiction and so assume that (tU , tL) is not deterministic for s. By Propo-
sition 3, T r(s, t) = T r(s, (tU , tL)). Since (tU , tL) is not deterministic for s there
exist σ1, σ2 ∈ T r(s, t) with σ1 ∼ σ2 and inputs ?iU ∈ IU and ?iL ∈ IL such
that σ1?iU , σ2?iL ∈ T r(s, t). Since global test cases are deterministic, in t it is
possible to input ?iU after σ1 but not after σ2, both of these are in T r(s, t) and
πU (σ1) = πU (σ2). Thus, t is not controllable as required. ��

4 Deciding Whether a Test Case Is Controllable

It is clear that it is desirable to apply controllable test cases since this allows
each local tester to know when to apply an input. In this section we show that
it is possible to determine whether a local test case is controllable in low or-
der polynomial time. This result will be used in Section 5 in a test generation
algorithm that returns controllable test cases.
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The work reported in [23,24] investigated Message Sequence Charts (MSCs)
and whether a set of MSCs implies other MSCs2. This is achieved by considering
the language defined by a set of MSCs. A trace can be seen as an MSC and in
this section we use a definition and a complexity result from [23].

Let us consider an MSC with message alphabet Σ. If message a ∈ Σ is
sent from process p to process q then the sending of a is represented by event
send(p, q, a) and the receiving of a is represented by event receive(p, q, a). Σ̂
denotes the set of send and receive events, Σ̂S denotes the set of send events
and Σ̂R denotes the set of receive events. An MSC with processes P1, . . . , Pk

and alphabet Σ can be defined by the following:

1. A set E of events, partitioned into a set S of send events and a set R of
receive events.

2. A mapping occ such that each event in E is mapped to the process on which
it occurs.

3. A bijective function f between send and receive events.
4. A mapping label from events to elements of Σ̂. Naturally, for e ∈ E we must

have that label(e) ∈ Σ̂S if and only if e ∈ S.
5. For each process Pi a total ordering ≤i on the events that occur at Pi such

that the transitive closure of the relation⋃
i

≤i ∪ {(s, r)|s ∈ S, r ∈ R, r = f(s)}

is a partial order on E. We include {(s, r)|s ∈ S, r ∈ R, r = f(s)} since a
message cannot be received before it is sent.

An MSC defines a partial order on E and a language with alphabet Σ̂ that
preserves this partial order: The set of words that are linearizations of the MSC.
A word is well-formed if for every receive event there is a corresponding earlier
send event. [23] looks at projections of words onto the processes of an MSC.
In our case, each local tester is a process and the SUT is also a process. Given
word w and process p, w|p is the sequence of events in w at p. We will use the
following closure condition [23].

Definition 12. A language L over Σ̂ satisfies closure condition CC3 if and only
if for every well-formed word w we have that if for each process p there is a word
vp ∈ pre(L) such that w|p = vp|p, then w is in pre(L).

A (global or local) test case defines a set of traces and each trace defines an MSC.
Results in [23] concern asynchronous communications but they apply when com-
munications and synchronous [24] by restricting the language defined by a set
of MSCs to only include words that are consistent with synchronous commu-
nications. Given a (global or local) test case t and specification s, L(s, t) will
denote the language of words that are defined by the MSCs corresponding to
traces in T r(s, t) where communications are synchronous and so every send is
immediately followed by the corresponding receive. We now prove that test case
t is controllable for s if and only if the corresponding language satisfies CC3.
2 They restrict attention to basic MSCs, which we call MSCs.
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Proposition 6. Given s ∈ IOTS(I,O), test case t is controllable for s if and
only if the language L = L(s, t) satisfies closure condition CC3.

Proof. First, assume that t is not controllable for s and we will prove that L does
not satisfy CC3. Since t is not controllable for s there exist a port p ∈ P , traces
σ1, σ2 ∈ T r(s, t), and input ?ip at p such that πp(σ1) = πp(σ2), σ1?ip ∈ T r(t)
but σ2?ip �∈ T r(t).

Let us consider w ∈ Σ̂ that corresponds to σ2 followed by send(p, SUT, ?ip).
For every q ∈ P ∪{SUT } such that q �= p we have that w|q is a projection of the
string from pre(L) corresponding to σ2 and so there is some vq ∈ pre(L) such
that w|q = vq|q. Since πp(σ1) = πp(σ2) we know that there is some vp ∈ pre(L)
such that w|p = vp|p. Thus, since w /∈ L, L does not satisfy CC3 as required.

Now assume that L does not satisfy CC3 and we will prove that t is not
controllable for s. Since L does not satisfy CC3 there is a well-formed word
w �∈ pre(L) such that for all p ∈ P ∪ {SUT } there is some vp ∈ pre(L) such
that w|p = vp|p. Let w be a shortest such word and w = w′e for some event e.
Clearly w′ is well-formed and for all p ∈ P ∪ {SUT } there is some vp ∈ pre(L)
such that w′|p = vp|p. By the minimality of w, w′ ∈ pre(L).

If e is a receive event then there is a corresponding send event e′ that is an
event for some process in w. Thus, since w′ ∈ pre(L) and communications are
synchronous we must have that w′e ∈ pre(L), providing a contradiction, and so
e must be a send event. Now let us suppose that e is the sending of a message
from process SUT . Then since w′e|SUT = vSUT |SUT for some vSUT ∈ pre(L),
after w′|SUT the SUT must be able to send e and so w = w′e ∈ pre(L), providing
a contradiction. Thus e is the sending of an input ?ip from the local tester at
some port p to the SUT.

Let σ2 denote the sequence from T r(s, t) that corresponds to w′: There must
be some such word since w′ is well-formed and can be followed by a send event
and communications are synchronous. There is a shortest vp ∈ pre(L) such that
w′e|p = vp|p. Let vp

1 ∈ pre(L) be equal to the sequence vp with the event e
removed. Let σ1 denote the sequence from T r(s, t) that corresponds to vp

1 . It is
possible to follow σ1 by the sending of ?ip in T r(s, t) but it is not possible to
follow σ2 by the sending of ?ip in T r(s, t) and πp(σ1) = πp(σ2). Thus, t is not
controllable for s as required. ��

Given k MSCs with n processes, if r is the total number of events in the MSCs
then it is possible to decide whether the language defined by the MSCs satisfies
CC3 in time of O(k2n + rn) [23]. Thus, this result holds if T r(s, t) contains k
traces and in our case n = 3. In addition, if l is an upper bound on the lengths
of traces in T r(s, t) then there are at most r = 2lk events. Thus, the worst time
complexity is of O(k2 + lk).

5 An Implementation Relation for Controllable Testing

We obtain a new implementation relation if we restrict testing to the use of
controllable test cases.
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Fig. 2. Processes s1 and i1

Definition 13. Given s, i ∈ IOTS(I,O) we write i c-dioco s if for every con-
trollable local test case (tU , tL) we have that i passes (tU , tL) for s.

We now investigate how c-dioco relates to dioco and ioco; dioco is strictly
weaker than ioco if all processes are input enabled [20].

Proposition 7. If i dioco s then i c-dioco s. Further, there exists processes
i1 and s1 such that i1 c-dioco s1 but we do not have that i1 dioco s1.

Proof. The first part follows from c-dioco restricting consideration to control-
lable local test cases. Consider the processes s1 and i1 shown in Figure 2, which
are incomparable under dioco. The only controllable local test cases involve
input at no more than one port and for each such test case neither process can
produce output. We therefore have that i1 c-dioco s1 as required. ��

We now define an algorithm that returns a complete test suite. We talk of com-
pleteness in the limit, requiring that for all non-conforming SUT the algorithm
will eventually produce a controllable local test case that will be failed by the
SUT. Completeness is usually split into two results. A test suite is sound if
conforming implementations pass all the tests in the suite. It is exhaustive if
non-conforming implementations fail some of the tests. Our algorithm, given
in Figure 3, is an adaption of an algorithm to derive test cases from timed
FSMs [19]. This algorithm is non-deterministic since in each recursive step it
can proceed in different ways. Each election generates a different controllable
local test case. By applying the algorithm in all the possible ways we generate a
test suite from a specification s that we call tests(s).

The algorithm keeps track of states of the local testers by storing tuples
(Q′, sU , sL) that indicate that the specification could be in any of the states in
Q′. We construct test cases by iteratively applying one of six possibilities. The
first two return a minimal local tester and are the base cases. The third and
fourth consider the possibility of adding an input. First, it is necessary to check
that the addition of this input will produce a controllable local tester. If this is
the case, we add a transition labelled by this input to the corresponding local
tester, updating the set of auxiliary tuples and considering all possible outputs
at the corresponding port. If the output is expected by the specification then we
can continue testing after receiving the output; otherwise,we should reach a state
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Input: Specification s = (Q, I, O, T, qin).
Output: Controllable local test case (tU , tL); tp = (Qp, Ip, Op, Tp, qp

in) for p ∈ {U, L}.

{Initialization}
Saux := {(qin after ε, qU

in, qL
in)}; QU := {qU

in}; QL := {qL
in}; TU , TL := ∅;

while Saux �= ∅ do

– Choose (Q′, sU , sL) ∈ Saux;
– Choose one of the following six possibilities:

1. {sU will be ⊥U if it has not been defined yet}
(a) if sU �= ⊥U then sU := ⊥U ;
(b) If sL = ⊥L then Saux := Saux − {(Q′, sU , sL)};

{Remove the tuple if both local testers are ⊥}
2. {sL will be ⊥L if it has not been defined yet}
{Similar to the previous case, substituting U by L}

3. {Add an input at port U if the result is controllable}
(a) Let ?iU ∈ IU be such that (t̂U , tL) is controllable for s, where t̂U is formed

from tU after making the following changes:
i. t̂U := (Q̂U , IU , OU , T̂U , q̂U

in), where Q̂U := QU ; T̂U := TU ;
ii. ŝU and q̂U

in are the copies of sU and qU
in in Q̂U ;

iii. Consider a fresh state q̂′ /∈ Q̂U ; Q̂U := Q̂U ∪ {q̂′}; q̂′ := ⊥U ;
iv. For all a ∈ OU ∪ {δ} ∪ {?iU} do T̂U := T̂U ∪ {(ŝU , a, q̂′)};
v. For all ŝ ∈ Q̂U \{ŝU} such that ∃Q′′, ŝ′ : (Q′′, ŝ, ŝ′) ∈ Saux do ŝ := ⊥U ;
vi. For all ŝ such that ∃Q′′, ŝ′ : (Q′′, ŝ′, ŝ) ∈ Saux do ŝ := ⊥L

(b) Saux := Saux − {(Q′, sU , sL)};
(c) Consider a fresh state q′ /∈ QU ; QU := QU ∪ {q′};
(d) TU := TU ∪ {(sU , ?iU , q′)}; Saux := Saux ∪ {(Q′ after ?iU , q′, sL)};
(e) For all !oU ∈ OU such that !oU /∈ out(Q′) do

{These are unexpected outputs: Construct ⊥U after them}
i. Consider a fresh state q′ /∈ QU ; QU := QU ∪ {q′}; q′ := ⊥U ;
ii. TU := TU ∪ {(sU , !oU , q′)}

(f) For all !oU ∈ OU such that !oU ∈ out(Q′) do
{These are expected outputs: Testing can continue after them}

i. Consider a fresh state q′ /∈ QU ; QU := QU ∪ {q′};
ii. TU := TU ∪ {(sU , !oU , q′)}; Saux := Saux ∪ {(Q′ after !oU , q′, sL)}

4. {Add an input at port L if the result is controllable}
{Similar to the previous case, substituting U by L}

5. {Wait for an output at port U}
(a) Saux := Saux − {(Q′, sU , sL)};
(b) For all o ∈ OU ∪ {δ} such that o /∈ out(Q′) do

{These are unexpected outputs: Construct ⊥U after them}
i. Consider a fresh state q′ /∈ QU ; QU := QU ∪ {q′}; q′ := ⊥U ;
ii. TU := TU ∪ {(sU , o, q′)};

(c) For all o ∈ OU ∪ {δ} such that o ∈ out(Q′) do
{These are expected outputs: Testing can continue after them}

i. Consider a fresh state q′ /∈ QU and let QU := QU ∪ {q′};
ii. TU := TU ∪ {(sU , o, q′)}; Saux := Saux ∪ {(Q′ after o, q′, sL)}

6. {Wait for an output at port L}
{Similar to the previous case, substituting U by L}

Fig. 3. Controllable test cases generation algorithm
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where we do not provide further input. The fifth and sixth consider the case
where a local tester patiently waits to receive an output; we also have to consider
the possibility of receiving no output represented by δ.

Now we show the completeness of tests(s). First, using Definition 13, it is
obvious that i c-dioco s implies that for every local test case t ∈ tests(s) we
have i passes t for s. The other implication is shown in the following result.

Proposition 8. Let s, i ∈ IOTS(I,O). If for every local test case t ∈ tests(s)
we have i passes t for s then we also have i c-dioco s.

Proof. We use proof by contradiction: Assume that i c-dioco s does not hold
and we have to prove that i fails a controllable test case belonging to tests(s).

Since i c-dioco s does not hold, there exists a controllable test case t1 such
that i fails t1 for s. If t1 belongs to tests(s) then we conclude the proof. Oth-
erwise, i must fail a test run with t1. Consider a minimal length sequence
σ = a1a2 . . . an ∈ Act∗ such that i fails σ for t1. Due to the minimality of
σ, for every proper prefix σ1 of σ such that i can be quiescent after σ1, there ex-
ists σ′

1 ∈ T r(s) such that σ′
1 ∼ σ1. The following algorithm defines a controllable

local test case (tU , tL), tp = (Qp, Ip, Op, Tp, q
p
in) for p ∈ {U,L}, that belongs to

tests(s) and is failed by i.

Saux := {(qin after ε, qU
in, q

L
in)}; QU := {qU

in}; QL := {qL
in}; TU , TL := ∅;

aux := (qin after ε, qU
in, q

L
in); {We have aux := (Qaux, s

U
aux, s

L
aux)}

for j := 1 to n do
Consider aux {aux belongs to Saux};
if aj ∈ IU then Apply case 3 of Algorithm; aux := (Qaux after aj , q

′, sL
aux);

if aj ∈ IL then Apply case 4 of Algorithm; aux := (Qaux after aj , s
U
aux, q

′);
if aj ∈ OU then Apply case 5 of Algorithm; aux := (Qaux after aj , q

′, sL
aux);

if aj ∈ OL then Apply case 6 of Algorithm; aux := (Qaux after aj , s
U
aux, q

′);
{Now we apply the base cases}
for all non-initialized sU such that ∃Q′, sL : (Q′, sU , sL) ∈ Saux do sU := ⊥U ;
for all non-initialized sL such that ∃Q′, sU : (Q′, sU , sL) ∈ Saux do sL := ⊥L

It is clear that this local test case belongs to tests(s), the last two steps
corresponding to the application of the base cases. Moreover, i||tU ||tL σ==⇒ since,
by construction, σ is a trace of (tU , tL). Thus, since there does not exist σ′ ∈
T r(s) such that σ′ ∼ σ, we obtain i fails (tU , tL), concluding i passes (tU , tL)
for s does not hold. ��
From Proposition 8 we immediately obtain the desired result.

Corollary 1. Let s, i ∈ IOTS(I,O). We have i c-dioco s if and only if for
every local test case (tU , tL) ∈ tests(s) we have that i passes (tU , tL) for s.

6 Conclusions

If we are testing a state based system with physically distributed interfaces/ports
then we place a tester at each port. If these testers cannot communicate with
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one another and there is no global clock then we are testing in the distributed
test architecture. While testing in the distributed test architecture has received
much attention, most previous work considered the problem of testing against a
deterministic finite state machine. Only recently has the problem of testing from
an input-output transition system (IOTS) been investigated.

This paper considered what it means for a test case to be controllable in the
distributed test architecture, showing that it is not sufficient for a test case to be
deterministic. A new implementation relation, c-dioco, was defined: This corre-
sponds to controllable testing from an IOTS in the distributed test architecture.

We have shown that it is possible to decide in low order polynomial time
whether a test case is controllable. This allowed us to define a test generation
algorithm. The algorithm is guaranteed to return controllable test cases and, in
addition, any controllable test case can be returned by the algorithm. Thus, in
the limit the test generation algorithm is complete.

There are several possible areas of future work. The test generation algorithm
does not aim to return test cases that, for example, achieve a given test objective.
It would therefore be interesting to combine this with approaches that direct
test generation. It would also be interesting to investigate formalisms in which
a transition can be triggered by the SUT receiving input at several ports [25].
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Abstract. Goanna is an industrial-strength static analysis tool used in
academia and industry alike to find bugs in C/C++ programs. Unlike
existing approaches Goanna uses the off-the-shelf NuSMV model checker
as its core analysis engine on a syntactic flow-sensitive program abstrac-
tion. The CTL-based model checking approach enables a high degree of
flexibility in writing checks, scales to large number of checks, and can
scale to large code bases. Moreover, the tool incorporates techniques
from constraint solving, classical data flow analysis and a CEGAR in-
spired counterexample based path reduction. In this paper we describe
Goanna’s core technology, its features and the relevant techniques, as
well as our experiences of using Goanna on large code bases such as the
Firefox web browser.

1 Introduction

Model checking and static analysis are automated techniques promising to ensure
(limited) correctness of software and to find certain classes of bugs automatically.
One of the drawbacks of software model checkers [1,2,3] is that they typically
operate on a low level semantic abstraction making them suitable for small code
bases, but less so for larger software and, when soundness is paramount, are
not applicable to industrial C/C++ code containing pointer arithmetic, unions,
templates and alike. On the other hand, static analysis tools [4] have been con-
centrating on a shallower but more scalable and applicable analysis of large code
bases. Typically, soundness is sacrificed for performance and practicality [5].

There are, however, many advantages in using a model checker. Specifications
can often be given elegantly in temporal logic, there are many built-in optimiza-
tions in state-of-the-art tools, and especially CTL model checkers have been
shown to be rather insensitive to the number of different checks performed on
the same model.

In this work we present Goanna, a tool for static program analysis that makes
use of the advances of modern model checkers and combines it with constraint
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solving and counterexample based abstraction refinement (CEGAR) techniques
[6,1]. Goanna uses standard symbolic CTL model checking as implemented in the
NuSMV [7] tool on a high-level program abstraction. This abstraction includes the
control flow graph (CFG) of a programand labels (atomic propositions) consisting
of syntactic occurrences of interest. On this level of abstraction model checking is
fast, scalable to large code fragments and scalable to many such checks in the same
model.Given that there are typically only a fewbugs in every thousand lines of code
[8] the abstraction is also appropriate for a first approximation. In a second step,
more advanced features are used such a constraint solving and CEGAR-inspired
path reduction to exclude false alarms. On top we incorporated alias analysis and
summary-based interprocedural analysis to gain additional depth while remaining
scalable.

In Section 2 we briefly explain the underlying technology, followed by a list of
additional features in Section 3. A summary of our experiences from analyzing in-
dustrial code can be found in Section 4.

2 Core Technology

Goanna is built on an automata based static analysis framework as described in [9],
which is related to [10,11,12]. The basic idea of this approach is to map a C/C++
programto its CFG, and to label this CFG with occurrences of syntactic constructs
of interest automatically. The CFG together with the labels can be seen as a tran-
sition systems with atomic propositions, which can easily be mapped to the in-
put language of a model checker, in our case NuSMV, or directly translated into a
Kripke structure for model checking.

A simple example of this approach is shown in Fig. 1. Consider the contrived
program foo which is allocating some memory, copying it a number of times to a,
and freeing the memory in the last loop iteration.

One example of a property to check is that after freeing some resource it will not
be used, i.e., otherwise indicating some memory corruption. In our approach we
syntactically identify program locations that allocate, use, and free resource p. This
is done automatically by pattern matching for the pre-defined relevant constructs
on the program’s abstract syntax tree. Next, we automatically label the program’s
CFG with this information as shown on the right hand side of Fig. 1 and encode
the check itself as follows in CTL:

AG (mallocp ⇒ AG (freep ⇒ ¬EF usedp)),

which means that whenever there is free after malloc for a resource p, there is no
path such that p is used later on. Neglecting any further semantic information will
lead to a false alarm in the current example since p is only freed once in the last
loop iteration and there is no access to it later. However, the abstraction in Fig. 1
does not reflect this. We will come back to this issue in Section 3.2.

One of the advantages of the proposed approach is that, e.g., a stronger variant
of the above check can easily be obtained by switching fromEF toAF , i.e., warning
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1 void foo() {

2 int x, *a;

3 int *p=malloc(sizeof(int));

4 for(x = 10; x > 0; x--) {

5 a = *p;

6 if(x == 1)

7 free(p);

8 }

9 }

l0

l1 mallocp

l2

l3 usedp

l4

l6

l5

freep

l7

Fig. 1. Example program and labeled CFG for use-after-free check

only when something goes wrong on all paths. As such, CTL model checking is an
easy and powerful approach to defining different properties with different strength
quickly.

3 Features

The aforementioned static analysis approach allows for describing properties in a
simple straightforward fashion. In this section we present a number of more ad-
vanced features integrated in Goanna. In particular, we describe new techniques
to increase the precision of the analysis and the type of bugs that can be found by
the tool.

3.1 Constraint Analysis

The model-checking based static analysis approach described in Section 2 is well
suited for checking control-flowdependent properties such as certain types ofmem-
ory leaks, uninitialized variables, potential null-pointer dereferences or alike. How-
ever, one of the major concerns for software correctness as well as software security
are buffer overruns such as accesses to arrays beyond their bounds.

Typically, these problems have been addressed by abstract interpretation solu-
tions [13]. In Goanna we added an interval constraint solving approach that uses
the approach first developed by [14]. These techniques guarantee a precise least so-
lution for interval analysis including operations such as additions, subtraction and
multiplication without any widening in the presence of (simple) loops. Goanna uses
interval analysis to infer for every integer variable in every program statement its
potential range and uses it to, e.g., check for buffer over- and underruns.

3.2 False Path Reduction

Not every bug is a real one, i.e., the initial coarse syntactic abstraction might lead
to a number of false positives. For instance in the example in Figure 1 the memory
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will only be accessed as long as the memory is not freed. A straightforward flow-
sensitive analysis will not catch this fact.

In Goanna we make use of the aforementioned interval constraint solving ap-
proach to rule out some of those spurious alarms automatically [15]. For a given
counterexample path Goanna subjects it to the interval analysis as described in
the previous Section 3.1. This means, for every variable every possible value will
be approximated along the counterexample path. E.g., in the program of Figure 1
the counterexamples loops trough the program after condition x==1 becomes true.
However, when x = 1, the loop counter will be set to x = 0 in the next iteration,
invalidating the loop condition of x > 0 and preventing the loop body to be re-
entered. An interval constraint analysis over the counterexample path will come
to the same conclusion by discovering that here is no possible satisfying valuation
for x.

Goanna will learn this fact and create an observer automaton as described in
[15]. This observer rules out a minimum set of conflicts, i.e., those conditions
responsible for a false path. Observers are put in parallel composition to the ex-
isting coarse grained model to obtain a more precise model showing fewer false
positives. While the parallel composition adds some overhead to the overall compu-
tation time, it is only added in a few cases were spurious alarms are found, ensuring
an overall efficient analysis.

Similar to CEGAR the above process is iterated until no more bugs are found
or no more counterexample paths can be eliminated. Note that since the interval
analysis is an approximation itself, it is not guaranteed that all false positives can
be removed.

3.3 Interprocedural Analysis

The aforementioned analysis techniques are mostly applicable for intraprocedural
analysis, i.e., analyzing one function at a time. While this is sufficient for return-
ing good results on standard software, it neglects, e.g., null pointers being passed
on through several functions and then finally dereferenced without being properly
checked. Therefore, we developed a summary-based interprocedural analysis. This
analysis includes two features: The computation of alias information by inferring
points-to sets [16] and computing a summary based on the lattice of the property
under investigation. In the case of passing null pointer information, the summary
records for every passed pointer if it points to Null, to something not Null or to an
unknown value.

Given the call graph of the whole program Goanna computes the fixed point
on the summary information, rerunning the local analysis when needed. Even in
the presence of recursion this procedure typically terminates within two to three
iterations involving a limited set of functions.

3.4 Additional Features

We briefly summarize a number of additional features built into Goanna, which are
mostly on a usability level.
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Integration. Goanna can be run from the command line as well as be tightly in-
tegrated in the Eclipse IDE. In the latter case, all the warnings are displayed in
the IDE, settings and properties can be set in the IDE and for every bug a coun-
terexample trace created by the model checker can be displayed. As a consequence,
Goanna can be used during software development for every compilation.

Incremental analysis. To minimize the analysis overhead Goanna creates hashes
of every function and object. If those functions and objects are not changed be-
tween compilations there will be no re-analysis. Of course, hashes are insensitive
to additional comments, line breaks and minor code rearrangements.

User defined checks. Goanna comes with a simple language including CTL-style
patterns, which enables the user to define his own checks. The language builds on
pre-defined labels for constructs of interest. This language does not enable full flex-
ibility, but it is safe to use and covers most scenarios. A full abstract language is in
preparation.

4 Experiences

We have been evaluating Goanna on numerous open source projects as well as on
industrial code. The largest code base has been the Firefox web browser, which has
2.5 million lines of code after preprocessing.Run-time is roughly 3 to 4 times slower
than compilation itself for intraprocedural analysis. Interprocedural analysis can
double the run-time, but it is worth to mention, that most of the time is spent in
the alias analysis that is not yet efficiently implemented.

In a typical analysis run over 90% of files are analyzed in less than 2 seconds.
Roughly 40% of the analysis time is spent for model checking, 30% for interval
analysis and 30% for pattern matching, parsing and other computations. Adding
more checks givesmodestpenalties, i.e., a threefold increase in thenumber of checks
doubles the analysis time. Interval analysis is fast as long as the number of con-
straints is below a few hundred, i.e., resulting in a maximal overhead of one second.

In very rare cases, due to C/C++ macros or C++ templates a function might
contain several hundreds of variables and very long code fragments. In these cases
the overall analysis might take considerable time. However, in our experience from
analyzing the source code of Firefox a time out of 2 minutes was only exceeded once
out of roughly 250, 000 functions for the complete analysis.

The overall defect density is between 0.3 to 2 bugs per 1000 lines of code, de-
pending on the code base and type of checks enabled. This is comparablewith other
commercial static code checkers [4].
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Abstract. For quite some time, the Unified Modeling Language (UML) [5] has
been adopted by designers of safety critical control systems such as automotive
and aviation control. This has led to an increased emphasis on setting up a val-
idation flow over UML that can be used to guarantee the correctness of UML
models. In this paper, we present a dynamic property verification (DPV) frame-
work for validation of UML designs. The verification engine is built on top of
Rhapsody [3], a popular UML simulator, using the concept of dynamic property
monitoring over simulation runs. In view of the growing popularity of model-
based development, we believe that the verification methodology presented in
this paper is of immediate practical value to the UML-based design community.

1 Introduction

In recent years, the safety-critical software development community is increasingly
moving towards a model-based development process, in which the largely textual way
of requirement capturing is replaced by executable specification models at different lev-
els of abstraction. For the past few decades, the Unified Modeling Language (UML) [5]
has been one of the preferred choices in the software community for the design of a
wide variety of applications at a higher level of abstraction, ranging from automotive
control to medical instrumentation. This has led to an increased emphasis on setting
up a validation flow over UML that can be used to guarantee the correctness of UML
models.

In the last few decades, formal property verification has established itself as an effec-
tive validation methodology, both in the hardware and software verification community
for its ability of automatic and exhaustive reasoning. Verification practitioners have
also been able to uncover flaws in the specifications of complex protocols and intricate
bugs in live designs. Unfortunately, the exponential increase in complexity and the in-
creasingly distributed nature of functions as used in application software renders formal
verification infeasible for intricate software systems because of its inherent capacity
bottleneck in handling large systems. In the last decade, the more popular validation
methodology (at least in the hardware domain) has been dynamic property verification
(DPV). DPV is a semi-formal approach where the formal properties are checked over
simulation runs. DPV is highly scalable and can support a richer specification language
as compared to languages supported by formal verification tools.
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UML Models

Verification Engine Interface signals

Rhapsody

Simulation Engine

Fig. 1. The DPV platform over Rhapsody

The main contribution of this paper is in developing an integrated platform for val-
idating behavioral requirements over UML Statecharts using DPV. The salient fea-
tures of our contribution are (a) Action-LTL, an extension of Linear Temporal Logic
(LTL) [2] to facilitate the expression of properties arising in the context of software sys-
tems, (b) A verification engine for dynamic assertion monitoring over Rhapsody simula-
tion runs, and (c) An integrated interface for facilitating DPV for checking Action-LTL
requirements on the UML model under test in Rhapsody. The main novelty of this work
lies in the way this framework has been built to facilitate dynamic property verification
in the UML context in Rhapsody. Figure 1 shows the overall architecture.

A number of different approaches for the verification of UML Statecharts have been
developed by researchers. [1] presents a survey of these approaches. The main prin-
ciple behind many of these approaches is to translate the Statecharts into some format
which is amenable to formal verification tools, and on the other hand, use the power of
temporal logic for specifying behavioral requirements. A model checker is then invoked
to establish the truth or falsify the specification on the model. The main novelty of our
work is in developing a DPV solution for validating behavioral requirements over UML
Statecharts. With the growing popularity of model-based development, we believe that
this work will have value for the model-based design community.

2 Tool Architecture

In this section, we describe the overall architecture of our verification platform, along
with details of its main components. To emphasize the challenges overcome in the
process, we discuss the issues in building a DPV tool for UML and our approach in
handling these. The requirements of a DPV platform are as follows:

1. A modeling language for the system under test and a simulator for that language
2. An assertion specification language
3. A verification engine running on top of the simulator

2.1 Modeling Language and Simulator

In this work, we used UML as the model development language, and Rhapsody [3]
as the UML simulator. For this, we needed to understand the simulation semantics of
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Rhapsody, the way it handles concurrency and communication. The main idea behind
our framework is to evaluate assertion requirements on the basis of responses produced
by the model under test during simulation inside Rhapsody. The behavior of a system
described in Rhapsody is a set of possible runs. A run consists of a series of detailed
snapshots of the system’s situation. Such a snapshot is called a status. The first in the
sequence is the initial status, and each subsequent one is obtained from its predecessor
by executing a step triggered by the dispatch of an event. In Rhapsody, events form
the central component for communication among Statecharts for different concurrent
modules of a system. A status contains information about the present condition of all
the objects in the system, data values, events and history information for states. The
concept of status and step are of utmost importance since properties in Action-LTL are
expressed over data values at status points and events at steps.

2.2 Action-LTL: Assertion Specification Language

To describe correctness properties, one needs to describe properties over data attributes
and events as well. Property specification languages that have been widely used in the
verification community are pre-dominantly either state-based or event-based. However,
for our purpose, we need to specify both state information and events (communication
among components). For example, the Local Interconnect Network (LIN) [4] proto-
col specification has the following requirement: In slave node, detection of break/synch
frame shall abort the transfer in progress and processing of the new frame shall com-
mence. As this shows, both states (for describing a transfer in progress) and events
(break/synch event) are required to capture the desired behavior.

To address the above issue, we extended Linear Temporal Logic (LTL) with some in-
teresting features, specifically, the ability to express requirements over events, ability to
express arithmetic and relational queries over data attributes, the concept of local vari-
ables and the concept of parameterized events. Our logic is called Action-LTL and is
used within our DPV framework for specifying assertions. We call the logic Action-LTL
to distinguish it from the standard LTL used in the hardware verification community.
However, it may be noted that this is not a new logic altogether. While the temporal
features remain as earlier, the only major difference is in the definition of events that al-
low us to capture state-event requirements of protocols and a support for verification of
properties involving the actual parameter values of parameterized events. The additional
novelty of Action-LTL lies in its semantics, which had to be defined in accordance to
the simulation semantics of Rhapsody, and was therefore, non-trivial. The following
example illustrates the way Action-LTL properties are expressed and interpreted with
respect to Rhapsody simulation runs.

Example 1. Consider the system in Figure 2 consisting of objects M1 and M2. x is a
data member of M1, y is a data member of M2. ev1 is an external event which is at
the top of the event queue at the start of simulation. ev2 (a) is an event with payload,
while ev3 and ev4 are normal events. State A is the initial state of M1 and State P is
the initial state of M2. Hence, the initial status of the system consists of (M1.A, M2.P).
Consider the following execution of the system: M1 receives event ev1 from the user.
The transition from state A to state B is fired. This transition involves sending event
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A B
x = 1x = 0

ev1/M2 −> GEN(ev2(a))

ev3

M2M1

P y = 0
ev4

Q
y = 5

ev2(a)/M1 −> GEN(ev3)

status status 
(M1.x=0, M2.y=0)

status 
(M1.x=1, M2.y=0) (M1.x=1, M2.y=5) (M1.x=0, M2.y=5)

status 

ev3ev1 ev2(5)

Fig. 2. A Sample System

ev2(a) to object M2 (by placing a new event ev2 in the event queue with a value for
parameter a), as specified by the action M2 → GEN(ev2 (a)) 1. Once the transition
to state B of M1 is completed, the status variable shows (M1.B, M2.P). In the next
step, event ev2 is removed from the event queue, and is dispatched to object M2 with
a value for a, causing it to take the transition from state P to Q. A sample snapshot of
the Rhapsody execution trace of the system (consisting of status and steps) is shown
in Figure 2. To demonstrate the power of Action-LTL, we present some correctness
requirements on this system and the corresponding Action-LTL encodings.

– M1.x = 0: The property formally expresses the requirement that M1 has x=0 in the
initial status. In this case, M1.x = 0 evaluates to true if the data attribute x has the
value 0. This property is true in our example model.

– G (M2.ev2(a) ⇒ X (M2.y = a)): This expresses the requirement that always when
event ev2 (a) is dispatched to M2, the value of M2.y equals the value of a in the
next cycle. This evaluates to true vacuously in the first simulation step since ev2 is
absent. It becomes true in the subsequent step considering the Rhapsody execution
trace shown in Figure 2 (ev2 is instantiated with 5).

– F ((M1.x = 0)∧ (M2.y = 6)): This expresses the requirement that in some future
status, the value of the data attributes x and y are 0 and 6 respectively. �

2.3 The Verification Engine

The main idea of DPV is based on examining the responses of the system under test
during simulation. Therefore, one of the primary requirements was to define a interface
for accessing model variables. The system under verification must allow some external
hooks to access the model attributes and events visible to the verification engine. In ad-
dition, the granularity of model attribute sampling is also important, due to the absence
of a universal clock (as in the hardware domain) and values of data attributes and events
sampled at different points may result in different validation results. To address this
issue, we had to understand the simulation semantics of Rhapsody and make necessary
modifications. The model parameters are sampled by the assertion engine.

The verification engine plays the most crucial role in the DPV process. Its main task
is to sample the model attribute values from the interface at the end of every simulation
cycle and evaluate the assertions on the basis of the sampled values. If any assertion
evaluates to true or false, it reports the corresponding status to the user. For assertions

1 GEN is a Rhapsody macro used for event generation.
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whose success/failure span multiple simulation cycles, the verification engine prepares
the property to be checked from the next simulation cycle and returns control to the
simulator. In this work, the verification engine was built on top of Rhapsody, using
the concept of dynamic property monitoring over simulation runs. This posed several
challenges, starting from creation to integration of assertion monitors, and required us
to engineer the internals of Rhapsody In our methodology, Action-LTL specifications
are compiled into an assertion monitor and integrated with the Rhapsody models of the
system under test. The assertion monitor is built as a Rhapsody object with embedded
C routines for dynamic verification. The assertion monitor is then cosimulated with
the model of the design-under-test and assertion violations/satisfactions are shown as
events on the generated sequence diagram to facilitate debug.

Action-LTL properties are interpreted in a similar manner as in case of simulation-
based dynamic property verification. The status (satisfaction/violation) of a property
can only be concluded if we can reach a decisive report within the number of cycles for
which simulation is carried out. For example, violation of liveness properties and sat-
isfaction of safety properties cannot be concluded. The task of dynamically monitoring
the truth of a given Action-LTL property along a simulation run is intuitively simple. If
we are required to check a property, ϕ, from a given time step, t, we rewrite the prop-
erty into a set of propositions over the signals (data and events) at time t and a set of
properties over the run starting from time t + 1. The rewriting rules are standard [2].
The assertion monitor reads the variable values from the active status at time t and sub-
stitutes these on the rewritten properties and derives a new property that must hold on
the run starting from t + 1. Consider Example 2.

Example 2. Consider the property:

ψ = M1.p U (M2.q U M3.r)

at time t, where p,q,r are all Boolean data attributes. We rewrite ψ as:

ψ = (M3.r ∨ (M2.q ∧ X (M2.q U M3.r))) ∨ (M1.p ∧ X (M1.p U (M2.q U M3.r)))

If the simulation at time t gives p = 0, q = 1, r = 0, then by substituting these values, the
assertion monitor obtains the property X (M2.q U M3.r). At t + 1, it needs to check
M2.q U M3.r. The same methodology is repeated on M2.q U M3.r at time t + 1. �

2.4 The Integrated Framework

Assertions in Action-LTL are written over the model attributes, specifically, the data
members and events. Hence, to determine satisfaction/refutation of an assertion at a
simulation step due to the model behavior, it is necessary to be able to sample val-
ues of the model attributes. In addition, the assertion monitor must be able to sense all
the events dispatched in the model. Whenever an event is dispatched in the model, the
verifier should be informed about the event, its parameters, if any, and its target. With
inception of every event, the assertion monitor must check if the model configuration
satisfies/refutes the desired specification. The assertion monitor must remember the
context of verification; it must remember what has to be checked after dispatch of each
event to certify correctness of the model at that point of time. We overloaded GEN,
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Table 1. Results of DPV

Module No. of Project Sim. Time Sim. time

Properties building time (without DPV) (with DPV)

LIN 25 54 mins 12.9 mins 15.4 mins

CMS 11 28.7 mins 7 mins 10.2 mins

to make the assertion monitor aware of any event transaction in the model. Whenever
an event is dispatched in the original model, a copy of the event is instantaneously
delivered to the assertion monitor. The assertion monitor has been implemented as a
Rhapsody object with an embedded C routine. At every simulation step, on an event
dispatch, the assertion monitor samples the data attribute values and checks for sat-
isfaction/refutations. To read the values of the data attributes of each object at each
simulation step, the assertion monitor object is integrated at the appropriate class hier-
archy.

3 Results

We deployed the DPV framework for the verification of two benchmarks, (a) an indus-
trial implementation of the Local Interconnect Network (LIN) [4] protocol, and (b) an
implementation of an access control mechanism in a web-based conference manage-
ment system (CMS). The properties were extracted from the specification document.

The dynamic ABV platform was tested on an industrial Rhapsody based LIN imple-
mentation and an in-house implementation of CMS. Table 1 shows the results obtained
by our tool on a Pentium-4 with 1 GB RAM. Column 2 shows the number of proper-
ties. Column 3 shows the time required by Rhapsody in building the project. Column
4 shows the time required by the simulation platform to simulate the model without
the assertion checking feature. Column 5 shows the respective times required when the
assertion monitor is inserted inside the simulation platform for verifying properties.
Results show that not much simulation overhead is incurred due to assertion checking.
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Abstract. As more and more chip design companies attempt to integrate for-
mal property verification (FPV) and assertion-based verification (ABV) into their
pre-silicon validation flows, the main challenge that they face is in the task of ex-
pressing the design intent correctly and accurately in terms of formal properties.
Incomplete specifications allow bugs to escape detection, while inconsistent spec-
ifications lead to the loss of validation effort, since the error lies in the specifica-
tion itself. In this paper, we present CheckSpec, a tool for automatically checking
the consistency and completeness of assertion specifications written in System
Verilog Assertions (SVA). CheckSpec comprises of two main engines, namely
(a) Certify: that certifies a given assertion suite to be free from inconsistencies
and (b) Quantify: that quantifies the completeness of a given assertion suite. On
one hand, CheckSpec will help verification teams to avoid significant waste of
validation effort arising out of inconsistent specifications. On the other hand, this
will provide a first-cut estimate of the comprehensiveness of an assertion speci-
fication suite. The adoption of CheckSpec in the mainstream validation flow can
significantly increase the productivity of assertion verification technologies.

1 Introduction

In recent times, most leading chip design companies are seriously attempting to induct
assertion-based verification techniques in the pre-silicon validation flows. The advan-
tages of specifying the key features of the design intent in terms of formal properties
are increasingly being acknowledged and accepted by validation engineers and design
managers. Property suites for standard interfaces, such as PCI Express, ARM AMBA,
and USB are in considerable demand. System Verilog Assertions (SVA) [3] and PSL [3]
are being extensively used for expressing formal properties.

One of the main tasks in all forms of assertion-based verification is to write a set of
assertions that express the design specification. The most important issues that must be
addressed while developing an assertion suite are:

1. Are my properties correct? If not then the property may fail on a valid design, and
the validation engineer will have to debug both the specification and the implemen-
tation in order to isolate the problem.

2. Have I written enough properties? If the answer to this question is negative, then
we have a more serious problem. All the properties may pass on an invalid design
because the erroneous behavior was not covered by the incomplete set of properties.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 228–233, 2008.
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Typically, formal property suites are derived manually from informal design specifi-
cations. This formalization often requires direct interaction between the validation en-
gineers and the architects of the design/protocol. The task of designing an assertion
IP is non-trivial, and inconsistencies are common, even for a designer who is well
versed with the semantics of assertion specification languages. Beyond a point, hu-
man debugging of the specification becomes infeasible because many properties may
together create a conflict. This is aggravated by the fact that popular assertion specifica-
tion languages (e.g. SVA, PSL) have very powerful constructs that not only widen the
expressive power of the language, but also allow the verification engineer to write very
complex properties that are completely unreadable (and un-debuggable). The second
issue mentioned above comes under the ambit of verification coverage [3], which has
been a subject of considerable research [3].

In this paper, we present CheckSpec, a tool that facilitates consistency and com-
pleteness analysis of a given assertion suite designed in System Verilog Assertions
(SVA). Our implementation of the consistency and coverage analysis features is based
on known methods. These methods have been developed over Linear Temporal Logic
(LTL) [3] that forms the backbone of most of the assertion specification languages to-
day. The main novelty of our work is in adapting these methods in the SVA perspective,
thereby increasing the value of CheckSpec. With assertion suites becoming more and
more popular for interface protocol specification, we believe that our tool will have
significant value to the verification community.
CheckSpec comprises of two main engines:

– Certify: This is used for consistency analysis of SVA assertions. In particular, this
takes into account two types of assertion inconsistencies, namely (a) satisfiability
violations and (b) implementability or realizability violations. The methods un-
derlying the tool are standard [3]. Certify has several building blocks. The main
components of this engine developed by us are as follows:
• A satisfiability checker for SVA for checking satisfiability of SVA specifi-

cations. This supports facilities for both bounded and unbounded satisfiability
checking using a symbolic approach.
• A realizability checker for SVA for realizability or implementability analysis

of SVA specifications.
– Quantify: This is used for coverage estimate of an assertion suite. This is indepen-

dent of any implementation and can be obtained directly from the properties.

Fig 1 shows the architecture of our tool. The tool accepts the assertions in SVA with
the information of the interface signals (direction, width etc). On the given set of asser-
tions, we first perform the consistency check using Certify. If we have any violation, the
specification needs to be refined. Once the specification passes the satisfiability check,
it is subjected to realizability analysis. For this, we have used Lily [4], a realizability
checker for LTL and PSL. Lily implements the most state-of-the-art algorithms for re-
alizability. The certified assertions in SVA are translated to PSL using an in-house SVA
to PSL translator and Lily is used for realizability checking. Lily has support for a lim-
ited subset of PSL and hence, our translator also supports the supported subset. Once
the Certify loop is closed, we perform the completeness analysis on the given set of
assertions. This step uses the realizability checker of Certify to deduce the coverage.
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Fig. 1. The Architecture of CheckSpec

The notions of satisfiability and realizability of temporal assertions have been well
studied in the verification community for LTL [3]. The main novelty of CheckSpec is
in adopting these problems in the SVA context. Our work on completeness analysis is
based on the idea proposed in [2] over LTL. Our contribution has been to extend this to
SVA and provide a prototype implementation for analyzing SVA assertion suites. The
fundamental idea used in [2] is to use a single stuck-at fault model as the reference,
and verify the realizability of the specification in the presence of the fault to determine
coverage gaps. If the given specification becomes unrealizable in the presence of a fault
then it should lead to a refutation if any design exhibits that fault. Otherwise it is inert
to the fault and the fault is not covered.

2 CheckSpec: Major Building Blocks

Certify: The satisfiability checking Engine: Given a set of SVA properties, Certify
can perform a satisfiability check on these properties in two modes, namely (a) bounded
mode and (b) unbounded automaton-based mode. The two modes have been added as
a feature to make the tool more flexible. The user can switch between the two modes
depending on the number and complexity of the assertions under consideration. The
satisfiability checking is done using a BDD-based representation of the assertions using
an in-house BDD package. The overall flow of the satisfiability engine is shown in
Figure 2. In the first stage, we use our in-house System Verilog Assertion parser to
parse the SVA specification and create an object model to hold the property expression.
Once this is done, we traverse this object model to build the BDD-based representation
of the property expression and analyze for satisfiability.
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Fig. 2. Work-Flow of the satisfiability checking engine

Bounded Satisfiability Engine: The idea behind this is to reduce SVA satisfiability to
an instance of Boolean satisfiability. In this mode, apart from the SVA specifications, the
user is required to give as input the depth k (number of clock cycles) for which he wishes
to examine the satisfiability of the assertions. This depth is utilized to create a k-bounded
Boolean unfolding of each SVA property. The unfolded properties are represented using
BDDs. The idea behind Boolean unfolding of properties is standard [3] and widely used
in the Bounded Model Checking (BMC) community. Example 1 illustrates this.

Example 1. Consider the following SVA properties.

property P1 property P2
@(posedge clk) a |−> ##1 b; @(posedge clk) ##1 (a && !b);
endproperty endproperty

To illustrate the idea, we create a Boolean unfolding of P1 and P2 with k=2.

P1: (a1 |-> b2) ∧ (a2 |-> b3);P2: (a2 && !b2) ∧ (a3 && !b3);

where xt represents the value of x in clock cycle t. The unfolded formulae are individ-
ually represented using BDDs. The conjunction of P1 and P2 gives an empty BDD.
Hence, we can conclude that they are unsatisfiable. It is interesting to note that the
bounded satisfiability analysis depends on the depth upto which the analysis is done. If
k=1, the unsatisfiability would not be revealed.

Unbounded Satisfiability Mode: Given a SVA property P , this approach builds the
corresponding (tableau) [3]. The transformation is a straightforward adaptation of the
corresponding rules for LTL [3]. Inside Certify, we create a BDD-based symbolic rep-
resentation of the automaton and check for its emptiness as per standard methods [3].

Certify: The Realizability Engine: Popular temporal logics such as SVA/PSL do not
syntactically distinguish between inputs and outputs, thereby allowing the designer to
freely mix the input and output signals in the properties. This leads to realizability
problems, since a property that is consistent when interpreted over a closed system can
be inconsistent when interpreted over all open systems. A closed system property over
a set of variables is satisfiable if there exists an assignment of values to the variables in
each time step such that the property is satisfied. On the other hand, the semantics of
realizability of a property is defined with respect to a open system and its environment.
A property is realizable if the module is able to set the values of the output variables
in a way that the property is satisfied for all possible behaviors of the environment. For
example, suppose we have the following requirement for an arbiter: Whenever the high
priority req, hreq, arrives, the grant line, hgnt, is given for one cycle with highest
priority. Suppose we interpret the requirement as – whenever hreq arrives, assert hgnt
in the next cycle and lower it after one cycle. We will then code this property as:
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P0: hreq |−> ##1 hgnt ##1 !hgnt ;

This property is unrealizable. Suppose hreq arrives in two consecutive cycles, t and
t +1. We will have a conflict at time t +2, because the request at t will require hgnt to
be lowered at t + 2, and the request at t + 1 will require hgnt to be asserted at t + 2.

The realizability engine of Certify is a wrapper around Lily that can be used for
checking realizability of SVA specifications. The flow of this has been explained in
Figure 1. Below, we describe its major components.

SVA to PSL translator: Given a SVA specification, we translate it to its semantically
equivalent PSL. The transformation rules are one-to-one and intuitively simple for most
of the SVA constructs. For some SVA features like first match, we had to generate addi-
tional SystemVerilog code to transform it to its semantic equivalent. We do not present
the details of the transformation rules here. For this translator, we utilized our in-house
SVA parser to parse the SVA specification suite and create the object model (OM). The
translation is done by a traversal of this OM and decompiling it.

Realizability Checking Engine: This is a wrapper module that invokes the SVA to
PSL translator on a given SVA specification suite to generate the equivalent PSL and
passes it to Lily for realizability checking. Lily is a linear logic synthesizer, which can
check for realizability of a a formal specification. Lily takes a set of properties and a
partition of the used signals into input and output signals and reports if the given set of
properties is realizable. Lily has support for LTL and a limited subset of PSL.

Quantify – Specification Coverage with respect to a fault model: Quantify imple-
ments the completeness analysis methods discussed in [2]. The core idea behind this
approach is as follows: If a given specification becomes unrealizable in the presence of
a fault on an interface signal, it should lead to a refutation if any design exhibits that
fault. Otherwise it is inert to the fault and the fault is not covered. [2] uses a single
stuck-at fault model as the reference. The high-level stuck-at fault model is quite ef-
fective in practice for finding input and output signals whose behaviors have not been
appropriately expressed in the assertion specification.

Quantify reads as input the interface signal list (name, width, direction) and the SVA
specification suite to be analyzed for completeness. The properties are first translated to
PSL and then the analysis engine is invoked. The analysis engine is written using Perl.

3 Results

We tested the algorithms on 2 of our in-house assertion IPs, namely, the ARM AMBA
AHB [1] protocol suite and the OCP [5] protocol suite. CheckSpec found some anom-
alies where properties turned out to be unsatisfiable. Some properties turned out to be
unrealizable when interpreted over individual modules due to improper decomposition
of the system level assertions into the module level ones. Certify pointed out interesting
inconsistencies in the assertion suite. Quantify was used to deduce the coverage of the
properties with respect to single stuck-at faults on the signals.
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Table 1. Results for ARM AMBA AHB and OCP

Ckt #i/p #o/p #Ass. # B. Sat. # U. Sat. Tr. #Ass. # Rlz. % Op. % Ip. Tm
AHB Master 11 9 22 20.2 43.16 3.2 15 2043.16 85 83 2067.1
AHB Slave 13 4 9 18.33 28.3 4.7 8 192.3 72 95 1768.3

AHB Arbiter 14 3 5 18.5 21 3 5 19.6 75 75 1578.3
OCP Master 26 25 63 78.6 211.5 99.1 35 NT NT NT NT
OCP Slave 24 22 34 58.5 95.3 68.1 25 2219.6 78 87 2578.3

Table 1 shows the runtimes on on a 2.4 Ghz Pentium-IV with 1 GB RAM. Column
1 indicates the interface type (master / slave / arbiter), while Columns 2 and 3 show the
number of input and output signals in these interfaces respectively. Column 4 shows
the number of assertions. Columns 5 and 6 show the satisfiability checking time (in
seconds) using the bounded satisfiability mode and the unbounded mode respectively.
We used k=10 (chosen arbitrarily) as the analysis depth for the bounded satisfiability
mode. Column 7 shows the time required to translate the SVA assertions to equivalent
PSL. Column 8 shows the number of assertions that could be used for realizability
and coverage analysis (limited support of Lily) while Column 9 shows the checking
time. Columns 10 and 11 respectively show the coverage obtained for the output and
input signals while Column 12 shows the time required for completeness analysis. All
times are in seconds. For the OCP Master, Lily could not handle the large number of
assertions, hence the analysis did not terminate (indicated as NT in Table 1).
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Abstract. We present a tool for parallel shared-memory enumerative
LTL model-checking and reachability analysis. The tool is based on
distributed-memory algorithms reimplemented specifically for multi-core
and multi-cpu environments using shared memory. We show how the par-
allel algorithms allow the tool to exploit the power of contemporary hard-
ware, which is based on increasing number of CPU cores in a single system,
as opposed to increasing speed of a single CPU core.

1 Introduction

DiVinE Multi-Core has evolved from DiVinE Tool [2], sharing its input
language and state space generator. As DiVinE Tool, it is an enumerative LTL
model checker based on parallel fair cycle detection. The full source code can be
obtained from [6] and compiled on a number of computer architectures.

The groundwork of tool design and algorithm choice has been laid down in [1].
We have crafted a tool from the ground up with shared-memory parallelism
in mind. Due to natural choices of algorithms and memory organisation (the
latter explored in more detail in [3]), the tool implementation closely resembles
a distributed-memory one and may lend itself to extension to clusters of multi-
core machines.

The primary motivation behind DiVinE Multi-Core has always been per-
formance. Until recently, improvements in hardware architecture have been pro-
viding verification tools with performance increases mostly for free – without
any need for implementational or algorithmic changes in the tools. However,
this trend appears to be diminishing in favour of increasing parallelism in the
system – which is nowadays much cheaper and easier to implement than it is to
build computers with even faster sequential operation.

However, this architectural shift means that it is no longer possible to benefit
from hardware progress, without introducing algorithmic changes to our tools.
This is what DiVinE Multi-Core is striving for – providing algorithms able
to exploit such parallel architectures and offering an implementation that can
� This work has been partially supported by the Grant Agency of Czech Republic
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be deployed in practical situations. The main challenging aspect of the design of
a parallel application is to achieve practical scalability – a decrease in runtime
with an increase in the number of involved CPU cores.

Other researchers have recognized this trend and multi-core algorithms have
been added to at least to previously purely serial model checker SPIN [7]. Un-
fortunately, only a dual-core algorithm has been devised for full LTL model
checking, limiting the multi-core capabilities to reachability analysis.

2 DiVinE-MC Algortihm

DiVinE Multi-Core is based on automata-theoretic approach to LTL model
checking [9]. The input language allows for specification of processes in terms of
extended finite automata and the verified system is then obtained as an asyn-
chronous parallel composition of these processes. This system is in turn synchro-
nously composed with a property process (negative claim automaton) obtained
from the verified LTL formula through a Büchi automaton construction.

The resulting finite product automaton is then checked for presence of ac-
cepting cycles (fair cycles), indicating nonemptiness of its accepted language –
which in turn indicates invalidity of the verified LTL property.

The algorithm employed for accepting cycle detection is OWCTY [5] aug-
mented with a heuristic for on-the-fly cycle detection inspired by the MAP
algorithm [4]. It is not the purpose of this tool paper to go into details of
the algorithm, so for in-depth description, we refer the reader to the two cited
papers.

The main idea behind the OWCTY algorithm is to use topological sort for
cycle detection – an algorithm that does not depend on DFS postorder and can
be thus parallelized reasonably well. Detection of cycles in this way is linear, but
since we do accepting cycle detection, provisions for removing non-accepting
cycles need to be added. This makes the algorithm quadratic in the worst case
for general LTL properties, although for a significant subset of formulae (those
that translate to weak Büchi automata) the algorithm runs in linear time in the
size of the product automaton.

The MAP algorithm uses maximal accepting predecessors to identify accept-
ing cycles in the product automaton. The main idea is based on the fact that
each accepting vertex lying on an accepting cycle is its own predecessor. Instead
of expensively computing and storing all accepting predecessors for each accept-
ing vertex (which would be sufficient to conclude the presence of an accepting
cycle), the algorithm computes only a single representative accepting predecessor
for each vertex – the maximal one in a suitable ordering. Clearly, if an accept-
ing vertex is its own maximal accepting predecessor then it lies on an accepting
cycle. This condition is used as the heuristic mentioned above. Note that the
opposite direction does not hold in general. It can happen that the maximal
accepting predecessor for an accepting vertex on a cycle does not lie on the cycle
and the original MAP algorithm employs additional techniques to handle such
a case.
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process P_$1 {
byte j=0, k=0;
state NCS, CS, wait, q2, q3;
init NCS;
trans
NCS -> wait { effect j = 1, active = $1, waiting[$1] = 1; },
wait -> q2 { guard j < N;

effect pos[$1] = j, active = $1; },
q2 -> q3 { effect step[j-1] = $1, k = 0, active = $1; },
q3 -> q3 { guard (k == $1 || pos[k]< j) && k < N;

effect k = k+1, active = $1; },
q3 -> wait { guard step[j-1] != $1 || k == N;

effect j = j+1, active = $1; },
wait -> CS { guard j == N;

effect in_critical = in_critical+1,
active = $1, waiting[$1] = 0; },

CS -> NCS { effect pos[$1] = 0, in_critical = in_critical-1,
active = $1; };

}

Fig. 1. An example of model specification: A single process participating in peterson
mutual exclusion protocol (the $1 placeholder signifies the id of the process)

#define a_0 (active == 0)
#define a_1 (active == 1)

#define w_0 (waiting[0] == 1)
#define w_1 (waiting[1] == 1)

#define c_0 (P_0.CS)
#define c_1 (P_1.CS)

#property G(F(c_0)) && G(F(c_1))
#property ((GF(a_0 && w_0)) -> GF(c_0)) && ((GF(a_1 && w_1)) -> GF(c_1))

Fig. 2. Atomic propositions and LTL properties for the model in a .ltl file

If the heuristic fails, the OWCTY run will still detect accepting cycles if
present. The heuristic does not interfere in any way when there are no accepting
cycles – OWCTY will detect that condition by itself. The cost of the heuristic
is a very slight increase in per-state memory usage, and a small runtime penalty
in the first phase of the first iteration of OWCTY. Overall, it does not increase
the time complexity compared to OWCTY and in a number of cases it detects
property violation without generating the entire state space, which makes the
combined algorithm on-the-fly.

However, even though the algorithm is not asymptotically optimal, in practice
it is hardly a problem when it comes to performance – the bottlenecks can be
found elsewhere.
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$ divine-mc owcty mutex_peterson.naive.dve
initialize... |S| = 81219
------------- iteration 0 -------------
reachability... |S| = 81219
elimination & reset... |S| = 59736
------------- iteration 1 -------------
reachability... |S| = 59736
elimination & reset... |S| = 59736
=====================================

Accepting cycle FOUND
=====================================
generating counterexample... done

Fig. 3. Invocation of the tool for LTL model checking

3 Using the Tool

First and foremost, the model needs to be specified in the DVE modelling lan-
guage and the property needs to be specified either as an LTL formula or as a
Büchi automaton. We will present usage of the tool on a simple example of a
mutual exclusion protocol. Source code of DVE specification of a single process
of such a model can be found in Figure 1. The first LTL property we will use is
GFc0 ∧GFc1, which is a näıve formulation of the idea that the two processes
are infinitely often in the critical section. An improved version of the formula
that enforces fairness will be (GF(a0∧w0)→ GFc0) ∧ (GF(a1∧w1)→ GFc1).
The propositions a and w mean that the given process is active (when a holds)
and that it is waiting (when w holds). First of these formulae is invalid (and the
tool produces a counterexample), whereas the second one will be shown to hold
for the model presented.

An example invocation of the tool for the model with 3 processes (and the
formulae extended to 3 processes straightforwardly) can be seen in Figure 3.
The counterexample could be browsed by running divine-mc.simulator on
the produced mutex peterson.naive.trail. The simulator is currently fairly
rudimentary, but it still serves the purpose. When the same verifier command
is used on the second formula, no counterexample is generated and the tool
declares that an acceepting cycle has not been found, which means that the LTL
property holds.

It can be seen that the input file to the verifier is a single DVE file that
already contains a property process. Such a file could be written by hand
(when the property has been specified as a Büchi automaton) or produced by
divine-mc.combine, which takes a set of LTL formulae as input (in an .ltl
file containing definitions of atomic propositions and the formulae – an exam-
ple of such file containing the 2 discussed properties can be seen in Figure 2).
The divine-mc.combine script will produce a single DVE file for each property,
which can then be used as an input for the verifier.
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Fig. 4. Timing and speedup of reachability analysis
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Fig. 5. Timing and speedup of LTL model checking, the algorithm used is OWCTY

4 Implementation

DiVinE Multi-Core is implemented on top of the POSIX Threads standard.
Similarly to the distributed-memory approach, the state space is partitioned into
parts, each thread being responsible for states of one of the parts. A thread main-
tains its own hashtable, explores successors of states of its part of the state space,
and communicates with other threads by means of lock-free shared-memory mes-
sage passing.

5 Experiments

The figures presented come from a 16-way AMD Opteron 885 (8 CPU units
with 2 cores each) machine, with 64G of RAM, compiled with gcc 4.2.2 in 64-
bit mode, using -O2. The models have been taken from a DVE model data-
base [8]. Their descriptions and the verified properties can be found in the
database: anderson is anderson.6.dve and anderson.6.prop4.dve, elevator
is elevator2.3.dve and elevator2.3.prop4.dve, at is at.5.dve, leader2 is
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leader election.5.prop2.dve and finally telephony is telephony.7.dve. The
property-less models have been used in reachability timing, whereas those con-
taining LTL property (suffixed propN.dve) have been used for OWCTY timing.

More experimental data can be found on the tool webpage [6].

6 Future Work

To improve the usefulness of the tool we plan to implement a graphical interface
for counterexample browsing, which would be much more intuitive than the
current fairly rudimentary simulator available.

Moreover, we intend to further optimize the state space generator, which
currently seems to be the main bottleneck of the tool – therefore the tool would
benefit greatly from an improved interpreter.

Another future goal is to adapt and implement some of the known distributed
memory partial order reduction techniques.
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1 Introduction

ALASKA is a verification tool that implements new algorithms based on antichains
[5, 7, 6] to efficiently solve the emptiness problem for both alternating finite automata
(AFW) and alternating Büchi automata (ABW). Using the well-known translation from
LTL to alternating automata, the tool can decide the satisfiability and validity problems
for LTL over finite or infinite words. Moreover, ALASKA can solve the model-checking
problem for ABW, LTL, AFW and finite-word LTL over symbolic (BDD-encoded)
Kripke structures.

While several tools (notably NUSMV [2], and SPIN [17]) have addressed the sat-
isfiability and model-checking problems for LTL [16], ALASKA uses new algorithms
that are often more efficient, especially when LTL formulas are large. Moreover, to the
best of our knowledge, ALASKA is the first publicly available tool to provide a direct
interface to efficient algorithms to decide the emptiness of ABW and AFW.

Given thepromising experimental resultsobtainedrecently [6],wehavedecided to pol-
ish our prototype and make it available to the research community.Ourgoal with ALASKA

is not to compete with industrial-level tools such as SPIN or NUSMV but rather provide
an open and clearly-documented library of antichain-based verification algorithms.

2 Classical and New Algorithms

A linear-time specification over a set of propositions P is a set of infinite words
over Σ = 2P . Linear-time specifications can be expressed using LTL formulas or ABW.
An LTL formula ϕ over P defines the set of words [[ϕ]] = {w ∈ Σω | w |= ϕ} that
satisfy ϕ. The satisfiability problem for LTL asks, given an LTL formula ϕ, if [[ϕ]] is
empty. The model-checking problem for LTL asks, given an effective representation
of an omega-regular language L ⊆ Σω (e.g., the set of all computations of a reac-
tive system) and a LTL formula ϕ, if L ⊆ [[ϕ]]. The language Lb(A) of an ABW A is
the set of words over which it has an accepting run [15]. The emptiness problem for
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ABW asks, given an ABW A, if Lb(A) = ∅. The model-checking problem for ABW
asks, given an omega-regular language L and an ABW A, if L ⊆ Lb(A). Note that
since ABW are closed under complementation and intersection in polynomial time,
the model-checking problem L ⊆ Lb(A) reduces in polynomial time to the emptiness
problem L ∩ Lb(A) = ∅. All these problems are PSPACE-COMPLETE.

Due to lack of space, the following focuses mainly on the LTL satisfiability and
ABW emptiness problems. Extensions to model-checking and to the finite-word case
are rather straightforward.

Classical approaches. The link between LTL and omega-regular languages is at the
heart of the so-called automata-theoretic approach to LTL [23]. Given an LTL formula ϕ,
one constructs a nondeterministic Büchi automaton (NBW) Aϕ whose language corre-
sponds exactly to the models of ϕ, i.e. Lb(Aϕ) = [[ϕ]]. This reduces the satisfiability and
model-checking problems for LTL to automata-theoretic questions. This elegant frame-
work has triggered a large body of works (e.g. [22,3,21,4,13,19,10,9,11,18,1,12,20])
that have been implemented in explicit-state model-checking tools such as SPIN [17] and
in symbolic-state model-checking tools such as SMV and NUSMV [2]. The translation
from LTL to NBW is central to the automata-theoretic approach to model-checking.This
construction is however worst-case exponential. An explicit translation is required for
explicit state model-checking, while in the symbolic approaches [3] the NBW is sym-
bolically encoded using boolean constraints. In [16], Rozier and Vardi have extensively
compared several symbolic and explicit tools for satisfiability checking of LTL. Accord-
ing to their experiments, the symbolic approach scales better.

The classical approach to solve ABW emptiness (and therefore LTL satisfiability) is
to transform the ABW into an equivalent NBW. The first construction is due to Miyano
and Hayashi [14], and many other constructions or variants have been proposed [4, 10,
9, 1]. Again, these constructions can be implemented either explicitly or symbolically.

The antichain approach. Given an LTL formula, ALASKA constructs an ABW over
the symbolic alphabet Σ = 2P that recognizes the models of the formula. This transla-
tion is very fast, as the number of states of the ABW is linear in the size of the formula.
This construction is well-known and is an intermediate step in several translators from
LTL to explicit NBW [21].

Once the ABW has been constructed, our tool implicitly uses the Miyano-Hayashi
construction (MH for short) to obtain an equivalent NBW (which is not explicitly com-
puted). This NBW is then explored efficiently in an on-the-fly fashion. ALASKA ex-
ploits a simulation relation to prune the search towards the most promising states (i.e.,
minimal for the simulation relation) during the exploration. The crucial point is the
that this simulation relation exists by construction for all NBW defined by the Miyano
Hayashi construction, and does not need to be computed.

The tools which use explicit translation from LTL to NBW typically spend much
effort in minimizing the constructed NBW. The rationale of this approach is that while
the size of the NBW is worst-case exponential, it should often be possible to minimize it
sufficiently in practice. In contrast, ALASKA systematically explores an NBW which is
of exponential size in all cases (MH), but does the exploration efficiently by exploiting
the special structure of the MH state-space (the simulation relation).
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To compute the emptiness of the MH NBW, ALASKA begins by computing the set of
reachable accepting states Rα ≡ Post∗(ιMH) ∩ αMH, where ιMH and αMH are respec-
tively the initial and accepting states of MH. It then computes the following fixpoint
formula1: F ≡ νX · Post∗(Post(X) ∩ Rα). Analogously to the Emerson-Lei back-
ward fixpoint formula [8], F contains exactly those states that are reachable from an
accepting state which (1) is reachable from the initial states, and (2) can reach itself by
a non-trivial loop. The set F is thus empty if and only if the NBW is empty.

The computation of the fixpoint F is done efficiently by ALASKA as follows. The
simulation relation that exists by construction on MH is such that ιMH and αMH are both
upward closed sets for this relation. Also, the Post operation preserves closedness2 (and
so do ∪ and ∩), which means that all the sets of states that appear in the computation
of F are closed sets. ALASKA achieves its performance because the Post operation of a
set of states that is closed for a simulation relation is easier than for an arbitrary set of
states. Indeed, upward closed sets can be canonically represented by a (generally small)
number of minimal states that are incomparable for the simulation relation (which we call
an antichain), and all operations can be done on those elements only. ALASKA exploits
the fact that antichains are often small in practice by computing the Post operation in
the following semi-symbolic manner. Given a set of states X symbolically encoded using
a BDD, ALASKA computes Post(X) by first enumerating the antichain elements of X
(which we note +X,) and computing the set X ′ =

⋃
s∈�X� Post({s}). By the simulation

relation, we know that X ′ = Post(X). Because the input andoutput of this algorithm
are symbolic (X and X ′ are BDD) but an explicit representation is used internally (+X,
is an explicit list of states), we call this algorithm semi-symbolic.

Interested readers will find all the details of the algorithms and proofs in [6], along
with experimental results comparing the relative performance of an early version of
ALASKA and NUSMV for LTL satisfiability and model-checking. More information is
available at http://www.antichains.be

3 Implementation

Programming Language
ALASKA is written in Python, except for the BDD package which is written in C. We
use the CUDD BDD library, with its PYCUDD Python binding. There is some perfor-
mance overhead in using Python, but we chose it for enhanced readability and to make
the code easy to change. We believe this is especially important in the context of acad-
emic research, as we expect other research teams to experiment with the tool, tweak the
existing algorithms and add their own.

User Interface
ALASKA is made of two components: a library (alaskalib) and an executable script
(alaska). The executable script is a simple command-line interface (See Fig. 1) to the
algorithms provided with the library. The user interface currently provides access to the
following features: finite and infinite-word LTL satisfiability, validity and equivalence

1 This section details the forward algorithm; a backward algorithm is also implemented.
2 There are some details involved, see [6].
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checking, AFW and ABW emptiness, and model-checking of specifications expressed
with finite or infinite-word LTL, AFW or ABW. Human-readable counter-example gen-
eration is available for all the aforementioned features. ALASKA can parse LTL formu-
las in the SPIN or NUSMV syntax and has a custom syntax for alternating automata (see
Fig. 1 for an example). ALASKA uses the NUSMV input syntax for symbolic Kripke
structures.

Fig. 1. On the top: example of an ABW encoded in the ALASKA syntax. On the bottom: example
of a command-line invocation of ALASKA for LTL satisfiability with counter-example generation.

Library Architecture

As a research tool, we believe that the most important contribution of the ALASKA

project is the availability of its source code. As such, we give an overview of its core
library components. The ALASKA library is divided into data packages3, state-space
packages and solver packages. The data packages contain the data-structures with the
associated parsers, pretty-printers and translation modules (e.g., LTL to ABW). The
state-space packages provide intuitive abstractions of on-the-fly-explorable implicit

data packages state-space packages solver packages
automata afasubset afaemptiness
bdd miyanohayashi abwemptiness
boolean kripkemiyanohayashi ltlsatisfiability
ltl ltlmodelchecking
nusmv

Fig. 2. Package structure of ALASKA

3 A Python package is a directory containing *.py files called modules.
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state-spaces. Finally, the solver packages contain the high-level fixpoint algorithms.
Each problem (ABW emptiness, AFA emptiness, LTL satisfiability, etc.) resides in its
own module which provides several algorithmic variants (backward, forward, hybrid,
etc.). Each solver uses a state-space package to evaluate a fixpoint formula and return
the answer, along with a witness or counter-example if appropriate.

The original aspects of ALASKA reside in the state-space packages. They imple-
ment the antichain-based techniques which make ALASKA different from existing tools.
There are currently three available state-space packages: afasubset represents the
NFA state-space obtained from an AFA by a powerset construction, miyanohayashi
represents the NBW state-space obtained from an ABW by the Miyano-Hayashi con-
struction, and kripkemiyanohayashi represents the product state-space of a sym-
bolic Kripke structure and a Miyano-Hayashi NBW. Each state-space package provides
functions for converting between the BDD-encoding of sets of states and the antichain
encoding, computing upward/downward closures, converting sets of states and traces to
human-readable output, etc. They also each implement the Pre and Post operations in
both fully-symbolic (using only BDD) and semi-symbolic (with antichains) variants.

package name input structure explorable state-space
afasubset AFA NFA
miyanohayashi ABW NBW
kripkemiyanohayashi Kripke, ABW Kripke ⊗ NBW

Fig. 3. Available sate-space packages

Possible Extensions

The ALASKA library can be used to implement various automata-based algorithms.
One possibility of extension would be to mix backward with forward analysis into one
algorithm. Also, as sometimes antichains do blowup in size, it might be interesting to
have heuristics to detect such blowups in advance and proceed fully-symbolically in
that case. For many such purposes, the ALASKA library could be a good starting point.

4 Tool Download, Examples, and Benchmarks

ALASKA is available for download at http://www.antichains.be. The tool is
available for Linux, Macintosh and Windows (by using Cygwin4). For convenience, the
tool can also be tested through a web interface, for which a number of examples and
benchmarks are provided.
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19. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

20. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: Goal extended: Towards a
research tool for omega automata and temporal logic. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer, Heidelberg (2008)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: 8th Banff Higher
Order Workshop. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1995)

22. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: LICS, pp. 332–344. IEEE Computer Society Press, Los Alamitos (1986)

23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)



NetQi: A Model Checker for Anticipation Game

Elie Bursztein

LSV, ENS Cachan, CNRS, INRIA
eb@lsv.ens-cachan.fr

Abstract. NetQi is a freely available model-checker designed to analyze net-
work incidents such as intrusion. This tool is an implementation of the anticipa-
tion game framework, a variant of timed game tailored for network analysis. The
main purpose of NetQi is to find, given a network initial state and a set of rules,
the best strategy that fulfills player objectives by model-checking the anticipation
game and comparing the outcome of each play that fulfills strategy constraints.
For instance, it can be used to find the best patching strategy. NetQihas been
successfully used to analyze service failure due to hardware, network intrusion,
worms and multiple-site intrusion defense cooperation.

1 Introduction

Using model-checking for intrusion analysis is an active area of research [7,8,6]. Mod-
els and tools have been developed to analyze how an intruder can combine vulnerabili-
ties as step-stones to compromise a network. However, Anticipation Game (AG) [4,3] is
currently the only game framework for network security. Netqi [2] is the complete im-
plementation of AG. With Uppaal Tiga [1], NetQi is the only model-checker for timed
ATL (Alternating-time Temporal Logic).

Anticipation games are an evolution of attack graphs based on game theory. More
specifically they are timed games based on a TATL variant designed for network secu-
rity analysis purpose. An AG is a kripke structure where each node represents a net-
work state and the transition between the nodes models the players (administrator and
intruder) actions on the network. Therefore an AG models the evolution of the network
as the result of players actions on it. Typically it is used to analyze how the network will
be impacted by various attacks and how administrator actions can counter them. Using
Anticipation game instead of attack graph offers the following advantages.

First it allows to model the concurrent interaction of the intruder and the administra-
tor with the network. For example it is possible to model that the intruder is trying to
exploit a vulnerability while the administrator is trying to patching.

Secondly the use of timed rules allows to model the temporal dimension of the at-
tack. It captures that each interaction with the network requires a different time. For
instance developing and launching an exploit is somewhat slower than downloading
and launching a public available one. Modeling the time also allows to model the so
called ”element of surprise” [5], which occurs when one player takes the other by sur-
prise because he is faster. For example when the administrator is patching a service she
can be taken by surprise by the intruder if he is able to exploit the vulnerability before
the patch is complete.
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Finally since anticipation game has been designed for network security analysis, it takes
into account network topological information such as dependency between network ser-
vices. This allow to model attack collateral effects. For example that when a DNS server
is unavailable by collateral effect the web service is merely available because the DNS
resolution failed.

The reminder of this paper is organized as follows. Sect. 2, details how the antici-
pation game framework and NetQi differs from previous tools and work on TATL and
what makes NetQi effective for network security analysis. In Sect. 3 discusses how
NetQi is implemented and presents some of its main optimizations. Sect. 4 presents
an example of the game analyzed by NetQi. In Sect. 5 we conclude and give future
directions.

2 The Framework

The AG framework differs from standard timed games in several points. The two most
prominent features are the use of a dual layer structure and the use of a compact model
description. In AG, the lower layer is used to model network information. It is composed
of two parts, a graph used to model network service dependency that is fixed over time
and a set of states that is meant to evolve over the time. States, which are Boolean
values, are used to describe nodes information such as which are compromised, and
which are vulnerable. States value are changed by player action effect. The upper layer
is a standard timed game structure used to model the evolution of the network layer due
to player action. Legal actions for each player are described by sets of timed rules. Each
rule is of the form:

Γx : Pre F
Δ, p, a, c−→ P

where F is the set of preconditions that needs to be satisfied in order to use the rule.
Δ is the amount of time needed to execute the rule, p is the player that uses the rule, a
is the rule label (string), c is the rule cost. P is the rule post-condition that states rule
effects and Γx is the rule location. Locations are used to restrict rules to a specific set
of network nodes. A example of rules set is given in Section 4. Describing the model
only with the network initial state and a set of rules relieve the security analyst from
the tedious and error prone burden of explicitly describing each network states and
transitions. While working on large network, explicitly describing each network state
is almost impossible because such game have millions of states. Therefore in AG the
model-checking algorithm uses the set of rules to infers automatically every transitions
and network states reachable from the network initial state. As a result, it is possible to
express very large and complex model in a very compact form which is handy while
working on large network and complex attack. Additionally modeling players action by
rules allows to capture security expert reasoning in an intuitive manner as it allows to
write things like: if a service is vulnerable then an intruder can compromise it, and if a
service is compromised then an administrator can isolate it by using a firewall.

Beside anticipation games specificity, the main differences between Uppaal Tiga and
NetQi are the game representation and the analysis goal. While Uppaal Tiga requires
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an expended model, NetQi uses a concise model described above. The other differ-
ence is that Uppal Tiga verifies TATL property whereas NetQi searches for strategy that
matches player objectives. The use of player objectives is required to select between all
the play that fulfills the TATL property, the one that will be the most efficient. For ex-
ample an administrator wants to find a play that allows to patch her network efficiently
but she probably wants the one that allows her to patch it efficiently for the minimal
cost. Being able to provide the most effective solution in term of time and cost is a
central issue in network security. Many natural questions that arise in network security
require such answer for instance : which attack will cause the most damage ? what is
the patching strategy that will minimize my loss ? Specifying analysis goal as strategy
objective is possible because each rule has a cost and a possible reward. The rule reward
is based on the value of the targeted network node. The use of time, cost and reward
allows to take into account the financial and temporal dimension of the attack in the
analysis. Theses objectives are described in the game file by a strategy objective tuple.
This tuple is:

S : (name, player, objectives, objectives order, constraints, location)

where name is the strategy name, player specifies for which player this strategy is,
objectives are strategy objectives based on player and opponent cost and reward,
objectives order is used to indicate which objectives are the more important,
constraints is a set of LTL constraints used to determine if a play should be con-
sidered as a potential strategy, and finally location specifies which group of service
the strategy has to consider. There are five possible objectives : player cost and reward,
opponent cost and reward and strategy time. A typical set of objectives is player cost
minimization and opponent cost maximization. This is equivalent to search for the less
costly strategy against opponent best play because in network security there is a direct
correlation between the cost of the attack and its efficiency. For finding a new vulner-
ability (0 day exploit) is more expensive than reusing a public one. On the other hand
the 0 day exploit is more efficient because there is no patch or intrusion detection rule
to catch it. Constraints can be used to express that a strategy is valid if and only if no
host was compromised during the play or that at the end of the strategy at least one host
is compromised for instance. Note that NetQi is able to model-check TATL property
as well. Model-checking a property is used for instance to prove that given an initial
network state and a given set of rules, whatever the intruder do, he cannot compromise
a given set of services.

3 The Implementation

NetQi is composed of two parts: the game engine written in C for speed, and the fron-
tend gui written in java for portability. NetQi can be run on Linux, OSX and Windows.
NetQi takes as input a game file (see figure 2) that describes the network information,
the strategy objectives, and player rules. It returns the strategy found either on the stan-
dard output or in a XML file. The Gui is used to build and display the game file and
analyze the output file. It draws a visual representation of the lower layer graph and the
strategy timeline.
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NetQi uses a search in depth strategy based on rules time and node value. This search
strategy is driven by the idea that since the fastest rule wins in timed game, if the player
is not able to reach his strategy objective with his fastest rules, it is unlikely that he will
reach them with slower rules. NetQi does not suffer from memory explosion because
it is used to find memoryless strategy. One of the most effective optimization used in
NetQi at runtime, is the use of early cut, which apply when the strategy constraints
use a standard LTL � operator. This operator is used to have a constraint that holds
during the entire play. In this case, the strategy constraints are evaluated dynamically
at each step on the play. If a step violates the strategy constraint, NetQi cuts the play
and immediately backtracks, because this play will never be an acceptable strategy. As
shown in figure 1, this optimization can reduce greatly the number of plays and states
considered during the analysis. The standard defense strategy uses the � operator to
ensure that no host is ever compromised.

Early cut plays states time (s)
No 6 113 459 18 444 859 515
Yes 124 047 366 829 9

Fig. 1. Early cut impact on performance

Before the execution of the analysis, NetQi perform a static analysis of the game file
to determine if some optimization can be made. For example the static analysis involves
removing the set of rules that will never be executed because there pre-conditions are
in conflict with strategy constraints. For example, if the strategy constraints requires
that not a single service is ever compromise then all the rules that requires in their
pre-conditions that one service is already compromised are removed.

4 Example

An hello world example of game file is presented in figure 2, the resulting strategy found
by NetQi is depicted in figure 3. The game file is composed of five sections.The first
section is the general options section, in the example only the number of lower-layer
node to consider is specified but other options exist such as timeout. The second sec-
tion contains the set of states used and their initial values. In the example two sets are
used: The V uln set is used to model that the node 1 is vulnerable and the set Compr
is used to model that no node is compromised at the beginning. The third section is
the rule section. In the example 3 rules are used. The first one states in its precondi-
tion that if a node is vulnerable (V uln), then in 3 units of time for a cost of 200$ the
intruder (I) can compromise (Compr) it (rule effect). The two other rules state that
the administrator can patch a vulnerable (V uln) service. They differ by their costs and
execution time. The fast rule requires less time, 1 instead of 6, but for a greater cost:
5000$ instead of 500$. The fourth section is the dependency graph description. Here
only the node 1 value is specified (42) but other type of information can be specified
here such as dependency between nodes and node location. Finally the last section is
the strategy objectives. The administrator (A) example strategy called Defense aims
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at minimizing player cost and ensuring by constraints that in the selected play no node
is ever compromised. The play considered as the best strategy, visible on the right of
the figure, is as expected the one that uses the fast patch rule. Note that the intruder is
taken by surprise by the administrator and its compromise rule fails.

nodes=1
<sets>
Vuln:1
Compr:false
</sets>
<rules>
I:3:Compromise:Vuln=>Compr=200
A:6:Patch slow:Vuln=>!Vuln=500
A:1:Patch fast:Vuln=>!Vuln=5000
</rules>
<graph>
1=42
</graph>
strategy(Defense,A,MIN(Cost),Cost,|!Compr)

Fig. 2. The Game file

Time Player Action Rule Target Reward Cost

0 Intruder choose Compromise 1 - -
0 Admin choose Patch fast 1 - -
1 Admin execute Patch fast 1 42 5000
3 Intruder fail Compromise 1 0 200

Fig. 3. The resulting strategy

5 Conclusion

NetQi has been run successfully on complex network attack scenario. For example to
find a multiple-site defense strategy, that involves 5 sites with 10 services each and 11
action rules analysis, the run-time on a Linux core2 2.9 GHz is less than 5 minutes.
We expect that with a suitable service collapsing abstraction, NetQi will scale to much
larger network. NetQi is very stable and therefore can be run on very large example
without crash or memory leak. So far, the biggest successful analysis was a game with
1 148 893 596 distinct states. This analysis took 527 minutes which is an average of
36290 states per seconds. In addition because NetQi game files are easy to write even for
a non game theory specialist, we hope it will be of use and interest to security experts.
For futher information on NetQi, including downloads, examples, and documentation,
see http://www.netqi.org
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Abstract. UPPAAL PORT is a new tool for component-based design and analysis
of embedded systems. It operates on the hierarchically structured continuous time
component modeling language SaveCCM and provides efficient model-checking
by using partial-order reduction techniques that exploits the structure and the
component behavior of the model. UPPAAL PORT is implemented as an extension
of the verification engine in the UPPAAL tool. The tool can be used as back-end
in to the Eclipse based SaveCCM integrated development environment, which
supports user friendly editing, simulation, and verification of models.

1 Introduction

UPPAAL PORT1 is a new extension of the UPPAAL tool. It supports simulation and
model-checking of the component modelling language SaveCCM [1,6], which has been
designed primarily for development of embedded systems in the area of vehicular sys-
tems. In SaveCCM, an embedded system is modelled as interconnected components
with explicitly defined input and output ports for data and control. A component can be
an encapsulation of a system of interconnected components, which externally behaves
as a component, or a primitive component. In the latter case the functional and timing
behaviour of a component is described as a timed automaton [2].

UPPAAL PORT accepts the hierarchical SaveCCM modelling language, represented
in XML format, and provides analysis by model-checking without conversion or flat-
tening to the model of network of timed automata normally used in the UPPAAL tool.
The hierarchical structure of the model, and the particular “read-execute-write” compo-
nent semantics adopted in SaveCCM is exploited in the tool to improve the efficiency
of the model-checking analysis, which is further improved by a partial order reduction
technique [10].

To provide user friendliness, UPPAAL PORT can serve as back-end in the SaveCCM
integrated development environment (SAVE-IDE) based on Eclipse, see Fig. 1. We have

� This work was partially supported by the Swedish Foundation for Strategic Research via the
strategic research centre PROGRESS.

1 UPPAAL PORT is available from the web page www.uppaal.org/port
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Fig. 1. SAVE-IDE architectural editor (upper view) and UPPAAL PORT simulator (lower view)

developed several plug-ins to integrate the two tools: an editor for timed automata de-
scriptions of the functional and timing behaviour of components, support for mapping
internal timed automata variables to external ports, a simulator that can be used to val-
idate the behaviour of a SaveCCM system, and support for verifying reachability and
liveness properties formalised in a subset of Timed CTL.

Related work includes for example the BIP component framework [9], where a sys-
tem is constructed in three layers: behaviour, interaction, and priorities. Partial order
techniques for timed automata are described for example in [11,7,5]. See also [10] for
additional related work.

2 Real-Time Component Specification

The modelling language employed in UPPAAL PORT is SaveCCM — a component mod-
elling language for embedded systems [1,6]. In SaveCCM, systems are built from in-
terconnected components with well-defined interfaces consisting of input- and output
ports. The communication style is based on the pipes-and-filters paradigm, but with an
explicit separation of data transfer and control flow. The former is captured by connec-
tions between data ports where data of a given type can be written and read, and the
latter by trigger ports that control the activation of components. Fig. 2 shows an exam-
ple of the graphical SaveCCM notation. Triangles and boxes denote trigger ports and
data ports, respectively.
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A component remains passive until all input trigger ports have been activated, at
which point it first reads all its input data ports and then performs the associated compu-
tations over this input and an internal state. After this, the component writes to its output
data ports, activates the output trigger ports, and returns to the passive state again. This
strict “read-execute-write” semantics ensures that once a component is triggered, the
execution is functionally independent of any concurrent activity.

<<Component>> <<Component>>

Fig. 2. Composition of two SaveCCM components

Components are composed into
more complex structures by connect-
ing output ports to input ports of other
components. In addition to this “hor-
izontal” composition, components can
be composed hierarchically by placing
a collection of interconnected compo-
nents inside an enclosing component.
From the outside, such a composite
component is indistinguishable from a
primitive component where the behav-
iour is given by a single model or piece
of code.

To support analysis and synthesis, a number of quality attributes and models can be
associated with a component, such as execution time information, reliability estimates,
safety models, etc. For UPPAAL PORT, it is required that each component is associated
with a behavioural model consisting of a timed automaton and a mapping between
component data ports and automata variables.

3 Model-Checking Real-Time Components

To support the dependability requirements of embedded real-time systems, SaveCCM
is designed for predictability in terms of functionality, timeliness, and resource usage.
In particular, the independence introduced by the “read-execute-write” semantics can
be exploited for analysis purposes using partial order reduction techniques (PORT).

When model-checking, PORTs explore only a subset of the state space. The idea is
to define equivalence between traces based on reordering of independent actions, and
to explore a representative trace for each equivalence class.This approach has been suc-
cessful for untimed systems, but for timed automata (TA) the implicit synchronization
of global time restricts independence of actions [3,11].

In [10] we have described a PORT for SaveCCM which we have implemented in the
UPPAAL PORT tool. As in [3,12] we use local time semantics to increase independence.
The structure of a SaveCCM system is used to partition local time-scales, to determine
independence of activities, and to construct the Ample-set.

Fig. 3 shows the tool architecture of UPPAAL PORT. The SAVE-IDE integrates an
editor for SaveCCM systems in the Eclipse framework, as well as a TA editor to model
the timing and behaviour of components. UPPAAL PORT adds support for simulation
and verification, using a client-server architecture. When a new SaveCCM system is
loaded into the server, the XML parser builds internal representations of UPPAAL TA
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SAVE-IDE

(SaveCCM modelling tool)

UPPAAL PORT server 

command response

state space

representation UPPAAL TA

representation

 

Trans Delay NormSuccAmple

initial state

 XML Parser

SaveCCM
system

representation

Query

yes / no / maybe

Uppaal PORT plug-in

(simulation and verification)

TA editor plug-in

(timing/behaviour modelling)

Fig. 3. Overview of the UPPAAL PORT tool architecture

and the SaveCCM system. By separating the UPPAAL TA representation when a new
SaveCCM system is parsed we can reuse much of the source code from the UPPAAL

model-checker.
The verification setup is shown in Fig. 3 as pipeline stages connected to the state

space representation, as described in [8]. Unexplored states are put into the transition
filter (Trans), which computes the enabled transitions. Each transition is forwarded with
a copy of the state to the successor filter (Succ), which computes the resulting state after
the transition. These two filters of the UPPAAL verifier are extended to implement the
SaveCCM semantics. An additional filter (Ample) selects a sufficiently large subset
of enabled transitions to be explored in order to model-check the property. This filter
implements the PORT described in [10].

The zone representation is replaced with local time zones that are implemented as
a data structure similar to Difference Bound Matrices (DBMs), as described for exam-
ple in [3]. When a component writes data to other components, the local time-scales
of participating components are synchronized by the successor filter. In combination
with a modified filter (Delay) this implements local time semantics. The purpose of the
normalisation filter (Norm) is to ensure that the state space is finite. This remains to be
updated in order to handle the ‘difference constraints’ introduced by using local time.

The transition, successor, and delay filters are used also during simulation to compute
possible transitions from the current state of the simulator, and to compute a new state
for the simulation when the user selects to make a transition.

4 Case Studies

UPPAAL PORT has so far been applied to some benchmark examples, and two larger
case studies. In [1], we present how an early version of UPPAAL PORT is applied to
analyse a SaveCCM model of an adaptive cruise controller. A small benchmark of the
partial order reduction technique implemented in the tool is described in [10], showing
significant improvement over the standard global time semantics of, e.g., UPPAAL.
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We are currently modelling and analysing a turntable production unit [4]. The system
has been modelled and the specified requirements (similar to those given in [4]) have
been analysed by model-checking.

The turntable system consists of a rotating disc (turntable) with four product slots
and four tools in fixed positions around the turntable; the tools operate on the products,
as illustrated in Fig. 4. Each slot either holds a single product in some state of the
production cycle or is empty. After each 90◦ rotation of the turntable, the tools are
allowed to operate - the turntable is stationary until all tools have finished operating.
All slots can hold products and tools are allowed to work in parallel.

Fig. 4. Turntable system overview

The architecture of the
system is encapsulated by
five SaveCCM components (a
turntable and four tools) mod-
elled using SaveCCM timed
automata, which are passive
and activated by trigger ports.
Each component TA wraps
C-style code that defines the
actual behaviour of the com-
ponent. This C-style code is
directly interpreted by UP-
PAAL PORT and is suitable as
basis for expansion into a pro-
duction system (the code used
in the model for verification
has no timeout-detection and
error-handling).

The control system communicates with the environment by means of external ports
that are defined at the root application level. When the code is generated for the target
platform these ports are connected to the sensors and actuators. For simulation and
verification purposes however, the external ports are mapped to global variables in the
environment model. The environment model is constructed using the UPPAAL tool and
utilizes UPPAAL timed automata, which, contrasting the SaveCCM TAs, are active.

Properties of safety and liveness are expressed as statements in the UPPAAL require-
ment specification language. To support more complex queries (involving a sequence of
states), a test automaton is constructed in UPPAAL as a part of the environment model.
The test automaton is connected to relevant ports in the SaveCCM model, to eliminate
the need for test flags and other verification specific (as opposed to functional) additions
to the control system model.

Model-checking the properties requires around 16MB at peak and an average of
around 3 seconds per verified property (on an Intel T2600 2.16 GHz processor). The
verification tool only needs to explore a maximum of 38,166 states to verify properties
such as deadlock freedom.
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5 Conclusion

In this paper, we have briefly described the new tool UPPAAL PORT that extends the ver-
ification engine of UPPAAL with partial order verification techniques for the real-time
component language SaveCCM. Our initial experiments with the new verifier have been
very encouraging and we are now in progress with evaluating UPPAAL PORT (together
with the SaveCCM component modeling language and Save IDE) in a larger case study.
As future work, UPPAAL PORT will be expended to support a richer component mod-
eling language with components that may be active, have multiple service interfaces, or
use other forms of communication.
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Abstract. Theevaluationof successor orpredecessor state spaces through
time progress is a central component in the model-checking algorithm of
dense-time automata. The definition of the time progress operator takes
into consideration of the path condition of time progress and usually re-
sults in high complexity in the evaluation. Previous algorithms in this
aspect usually assume that the original location invariance conditions of
an automaton are convex in the dense-time state space. Based on this as-
sumption, efficient algorithms for convex path conditions can be designed
for reachability analysis. However, it is not clear whether the path con-
ditions are still convex in the general setting of TCTL model-checking.
In this work, we discuss the concept of time-convexity that allows us
to relax the restrictions on the application of time-progress evaluation
algorithm for convex path conditions. Then we give examples in TCTL
model-checking that engenders time-concave path conditions even when
the original automaton location invariance conditions are time-convex.
Then we present two techniques that allow us to apply the evaluation
algorithms for time-convex path conditions to time-concave path condi-
tions. Finally, we report our experiment with the techniques. For some
benchmarks, our techniques may enhance the performance of model-
checking by an order of magnitude.
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1 Introduction

In the last two decades, we have witnessed significant progress in both theory and
applications of the model-checking technology of dense-time systems [1,4, 11,8].
One popular framework in this regard is called TCTL model-checking [1] which
assumes a given dense-time system description as a timed automaton (TA) [3] and

� The work is partially supported by NSC, Taiwan, ROC under grants NSC 95-2221-
E-002-067 and NSC 95-2221-E-002-072.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 258–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://cc.ee.ntu.edu.tw/~farn
http://sourceforge.net/projects/redlib


Time-Progress Evaluation for Dense-Time Automata 259

a given specification formula in Timed Computation Tree Logic (TCTL) [1] and
checks whether the TA satisfies the TCTL formula. The TCTL model-checking
technology could be an attractive choice to the industry as long as the perfor-
mance of the related verification algorithms could handle industrial projects.
However, at this moment, many algorithms used in TCTL model-checking still
suffer from low performance. To achieve the promise of TCTL model-checking,
the performance of related algorithms has to be enhanced.

One important algorithm in TCTL model-checking is the time-progress eval-
uation algorithm. For simplicity, we focus on the backward time-progress opera-
tion. However, the ideas discussed in this work should also apply to the forward
counterpart. Usually we are given a path condition φ and a destination condition
ψ and want to compute the condition, Tbck(φ, ψ) in symbols, of those states that
can go to a state satisfying ψ through a time progression along which all states
satisfying φ. For convenience, given t ∈ R≥0, we let φ + t be the condition for
states that satsify φ after the progression of t time units [1]. Then Tbck(φ, ψ)
can be formulated as follows [7].

Tbck(φ, ψ) def= ∃t ∈ R≥0
(
ψ + t ∧ ∀t′ ∈ R≥0 (t′ ≤ t → φ + t′)

)
≡ ∃t ∈ R≥0

(
ψ + t ∧ ¬∃t′ ∈ R≥0 (t′ ≤ t ∧ ¬φ + t′)

) . (T)

The outer quantification on t specifies the “through a time progression” part. The
inner quantification specifies that every state along the finite computation also
satisfies φ. As can be seen, Tbck(φ, ψ) incurs two existential quantifications (or
Fourier-Motzkin elimination [6]), two complementations, and two conjunctions.
Since the time-progress algorithm is fundamental to TCTL model-checking, such
an involved formulation usually results in significant performance degradation.

One way to enhance the evaluation efficiency of Tbck() is to make an assump-
tion of the TAs. An observation is that if the path condition φ characterizes a
convex1 state space, then Tbck(φ, ψ) can be rewritten as follows.

Tbck′(φ, ψ) def= ∃t ∈ R≥0 (ψ + t ∧ φ ∧ φ + t) (T’)

The reason is that for two states ν and ν′, that respectively represent the starting
state and the destination state of a time progression, we know that the following
two conditions are true.
• Both ν and ν′ are in the convex space characterized by φ.
• All states that happen during this time progress actually form a straight line

segment between ν and ν′.
According to the definition of convexity, then all states in this straight line seg-
ment (and time progression) must also be in the space characterized by φ. As can
be seen from Tbck′(), one existential quantification and two complementations
can be avoided with this assumption. It will be interesting to see to what extent
in TCTL model-checking [1,10], we can use Tbck′() in place of Tbck(). According

1 A space is convex if for any two points in the space, any point in the straight line
segment between the two points is also in the space. A space that is not convex is
concave.



260 F. Wang

to our knowledge, there is no related work in this regard. In this work, we have
the following contributions.
• We propose the idea of time-convexity to relax the applicability of Tbck′()

to concave path conditions.2

• We show that if the location invariance conditions of a TA are all time-
convex, then all path conditions used in the reachability analysis are also
time-convex.
• We show that there are examples in TCTL model-checking [1] that entail

the computation of time progress through time-concave path conditions even
when all the location invariance conditions of the TA are time-convex.
• We present two techniques that allow us to apply Tbck′() for the time

progress evaluation through time-concave path conditions. For several bench-
marks, the techniques have significantly enhanced the performance of our
TCTL model-checker.

We have the following presentation plan. Section 2 reviews the background the-
ory. Section 3 explains the concept of time-convexity. Section 4 investigates the
possibilities of time-concave and time-convex path conditions in reachability
analysis and model-checking. Sections 5 and 6 respectively present a technique
for efficient time progress evaluation with time-concave path conditions. Sec-
tion 7 reports our implementation and experiment. Section 8 is the conclusion.

2 TCTL Model-Checking Problem

2.1 Timed Automata

Let N be the set of non-negative integers, Z the set of all integers, and R≥0

the set of non-negative reals. Also ‘iff’ means “if and only if.” Given a set Q
of atomic propositions and a set X of clocks, a location predicate is a Boolean
combination of atoms of the forms q and x ∼ c, where q ∈ Q, x ∈ X , ‘∼’ is
one of ≤, <, =, >,≥, and c ∈ N. The set of all location predicates of Q and X is
denoted as L(Q, X).

Definition 1. Timed automaton (TA) A TA is a tuple 〈Q, X, I, H, E, σ, δ, τ,
π〉 with the following restrictions. Q is a finite set of control locations. X is a finite
set of clocks. I ∈ L(Q, X) is the initial condition. H ∈ L(Q, X) is the location
invariance condition. E ⊆ Q × Q is a finite set of transition rules. σ : E �→ Q
and δ : E �→ Q respectively specify the source and the destination locations of
each transition. τ : E �→ L(∅, X) defines the triggering condition of each rule
execution. For each e ∈ E, π(e) ⊆ X specifies the set of clocks to reset during
the transition. �
For convenience, given a TA A = 〈Q, X, I, H, E, σ, δ, τ, π〉, we use QA, XA, IA,
HA, EA, σA, δA, τA, and πA to denote Q, X, I, H, E, σ, δ, τ, and π respectively.

2 For convenience, we say a condition is convex iff the state space that it characterizes
is convex. A non-convex condition is concave.



Time-Progress Evaluation for Dense-Time Automata 261

x > 3

{x}
q1

x ≤ 5 ∨ y > 7

q2

x > 3

{y}
q0

x ≤ 5 x < 10 ∧ y < 5
true

∅

Fig. 1. An example TA

Example 1. We have the transition diagrams of an example TA A in figure 1.
The ovals represent control locations q0, q1, and q2. Location q0 is the initial one.
In each control location, we label the name and the constraint at that location.
Thus the initial condition is IA ≡ q0∧x ≤ 5 and the location invariance condition
is HA ≡ (q0 ∧ x ≤ 5) ∨ (q1 ∧ (x ≤ 5 ∨ y > 7)) ∨ (q2 ∧ x < 10 ∧ y < 5). The
arcs represent transitions between locations. On each arc, we label the triggering
condition and the clock reset set. �
A valuation of a set Y (domain) is a mapping from Y to a codomain.

Definition 2. States of a TA A clock valuation of a TA A is a total valuation
from XA to R≥0. A state of A is a pair (q, ν) such that q ∈ QA and ν is a clock
valuation. Let VA denote the set of states of A. �
For any clock valuation ν of a TA A and t ∈ R≥0, ν + t is a valuation identical
to ν except that for every x ∈ XA, (ν + t)(x) = ν(x) + t. Given a set X ′ ⊆ XA,
we let νX ′ be a valuation that is identical to ν except that all variables in X ′

are mapped to zero.
A state (q, ν) satisfies a location predicate η, in symbols (q, ν) |= η, if η is

evaluated true when q is interpreted true, all other location names are interpreted
false, and all clock variables are interpreted according to ν. Given two states
(q, ν), (q′, ν′) and a transition e of a TA A, we say A transits with e from (q, ν)
to (q′, ν′), in symbols (q, ν) e−→ (q′, ν′), if σA(e) = q, δA(e) = q′, (q, ν) |=
τA(e) ∧HA, νπA(e) = ν′, and (q′, ν′) |= HA.

Definition 3. Runs Given a TA A, a run of A is an infinite sequence of state-
time pairs ((q0, ν0), t0)((q1, ν1), t1) . . . ((qk, νk), tk) . . . . . . with the following three
restrictions. (1) t0t1 . . . tk . . . . . . is a monotonically, non-decreasing, and divergent
real-number sequence. That is, ∀k ≥ 0(tk+1 ≥ tk) and ∀c ∈ N∃k > 1(tk > c).
(2) For all k ≥ 0, for all t ∈ [0, tk+1 − tk], (qk, νk + t) |= HA. (3) For all
k ≥ 0, either (qk, νk + tk+1 − tk) = (qk+1, νk+1) or there is an e ∈ EA such that
(qk, νk + tk+1 − tk) e−→ (qk+1, νk+1). The run is initial if (q0, ν0) |= IA. �

2.2 Timed Computation Tree Logic (TCTL)

Given a set Q of atomic propositions, a set X of clocks, and a b ∈ N, a zone
predicate within bound b is a Boolean combination of atoms of the forms q
and x − y ∼ c, where q ∈ Q, x, y ∈ X ∪ {0}, ‘∼’∈ {<,≤, =, �=,≥, >}, and
c ∈ Z ∩ [−b, b]. The set of all zone predicates of Q and X within bound b is
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denoted as Zb(Q, X). The satisfaction of zone predicates by a state is defined
similarly as that of location predicates.

TCTL is a language for the specification of timing behaviors with branching
structure [1]. A TCTL formula φ is of the following syntax.

φ ::= η | φ1 ∨ φ2 | ¬φ1 | ∃�∼cφ1 | ∃φ1U∼cφ2

Here η is a zone predicate in Z∞(Q, X)3, ∼∈ {<,≤, =, �=,≥, >}, and c is a
non-negative integer constant. For modal formulas ∃�∼cφ1 and ∃φ1U∼cφ2, φ1 is
called the path condition while φ2 is called the destination condition. Standard
shorthands like true, false, φ1 ∧ φ2, φ1 → φ2, ∃♦∼cφ1, ∀�∼cφ1, ∀♦∼cφ1, and
∀φ1U∼cφ2 are also adopted.

Note that, unlike the original definition of TCTL [1], we allow inequalities in
Z∞(Q, X) to appear in TCTL formulas. The reason is that in the evaluation
of nested modal formulas, the evaluation of inner modal formulas may yield
predicates in Z∞(Q, X) anyway. Thus, in the general context of TCTL model-
checking, it makes no difference to have zone predicates in TCTL formulas.

Given a state (q, ν) of a TA A and a TCTL formula φ, we use the notation
A, (q, ν) |= φ to mean that state (q, ν) satisfies φ in A. The definition of satis-
faction of zone (location) predicates and Boolean formulas are straightforward.
Those of satisfaction of the modal formulas are as follows.
• A, (q, ν) |= ∃�∼cφ1 iff there is a run from (q, ν) such that for all states (q′, ν′)

that is t time units from (q, ν) in the run with t ∼ c, A, (q′, ν′) |= φ1.
• A, (q, ν) |= ∃φ1U∼cφ2 iff there is a run from (q, ν) such that
− there is a state (q′, ν′) that is t time units from (q, ν) in the run with

t ∼ c and A, (q′, ν′) |= φ2; and
− for all states (q′′, ν′′) before (q′, ν′) in the run, A, (q′′, ν′′) |= φ1.

The TCTL model-checking problem asks if all initial states of a TA satisfy a
TCTL formula in the TA. Given a TA A and a TCTL formula φ, we use [[φ]]A
to denote the state space characterized by φ in A. It is easy to see that for any
state (q, ν), (q, ν) ∈ [[φ]]A iff A, (q, ν) |= φ.

For convenience, given a condition η for a set of destination state and a tran-
sition e, we let Xbcke(η) be the condition for states that can directly go to states
in η through transition e. Formally speaking, (q, ν) |= Xbcke(η) iff there exists
a (q′, ν′) |= η and (q, ν) e−→ (q′, ν′). According to [7, 10], the formulation for the
evaluation of a formula like ∃�∼cφ1 can be represented as follows.

∃z
(
z = 0 ∧ gfpZ

(∨
e∈EA

Tbck (z ∼ c → (φ1 ∧HA), Xbcke(Z))
))

(∃�)

Here gfp is the greatest fixpoint operator. The evaluation of the greatest fixpoint
operator works by iteratively eliminating states from Z until we find that there
is no more elimination possible. z is an auxiliary clock variable not used in φ1,
IA, HA, and the transitions of A. As can be seen, formula z ∼ c → (φ1 ∧HA)
appears in formula (T) as a path condition.

Also, the formulation for the evaluation of a formula like ∃φ1U∼cφ2 can be
represented as follows.
3 We abuse the notation [−∞,∞] for (−∞,∞).
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∃z
(
z = 0 ∧ lfpZ.

(
(φ2 ∧ z ∼ c ∧HA) ∨

∨
e∈E Tbck(φ1 ∧HA, Xbcke(Z))

))
(∃U)

Here lfp is the least fixpoint operator. It characterizes the space of those states
that can reach states satisfying φ2 through a run segment along which all states
satisfy φ1. The evaluation of the least fixpoint operator works by iteratively
adding states to Z until we find that there is no more addition possible. z is an
auxiliary clock variable not used in φ1, φ2, IA, HA, and the transitions of A. As
can be seen, formula φ1 ∧HA appears in formula (T) as a path condition.

3 Zones, Convexity, and Time-Convexity

Given a TA A and a TCTL formula φ, we let Cφ
A be the biggest timing constant

used in A and φ. A clock zone of A and φ is a set of clock valuations characteriz-
able with a conjunctive4 zone-predicate in ZCφ

A
(∅, XA). A clock zone is a convex

space of clock valuations. Without loss of generality, we assume that the given
characterization zone predicate for a clock zone is always tight. That is, for every
inequality x − y ∼ c in the characterization zone predicate, we cannot change
the value of c without changing the members of the corresponding clock zone.
Such a tight zone predicate for a clock zone can be obtained with an all-pair
shortest-path algorithm with cubic time complexity [5].

A zone of A and φ is a set of states in VA characterizablewith a conjunctive zone-
predicate like q ∧ η with a q ∈ QA and η ∈ ZCφ

A
(∅, XA). The states in a zone share

the samecontrol location.According to [7], the state spaces ofA thatweneed toma-
nipulate inmodel-checking forφ are finite unions of zones. Such aunion canbe char-
acterized with zone predicates inZCφ

A
(QA, XA ∪ {z}) where z is an auxiliary clock

variable not used in A [7, 10]. Many model-checkers for TAs are based on symbolic
manipulation algorithms of zone predicates represented in various forms [4,8, 11].

For convenience, we may also represent a zone as a pair like (q, η) with q ∈ QA

and η ∈ ZCφ
A
(∅, XA ∪ {z}). A set S of zones is convex if for each q ∈ QA,⋃

(q,η)∈S [[η]]A is convex. If S is not convex, it is concave. The reachable state
space of a TA is usually concave. Most state-spaces that we need to manipulate
in TCTL model-checking are likely concave. For convenience, we say a formula
φ is convex iff [[φ]]A is convex. If φ is not convex, then it is concave.

Example 2. The initial condition IA of the TA in example 1 is convex while the
location invariance condition HA is concave. Specifically, the following subformula
Ḣ ≡ q1∧ (x ≤ 5∨y > 7) is concave. For example, we may have two states (q1, ν1)
and (q1, ν2) with ν1(x) = ν1(y) = 4 and ν2(x) = ν2(y) = 8. It is clear that
(q1, ν1) ∈ [[Ḣ ]]A and (q1, ν2) ∈ [[Ḣ ]]A. However, the middle point, say (q1, ν3/2),
between (q1, ν1) and (q1, ν2) with ν3/2(x) = ν3/2(y) = 6 is not in [[Ḣ ]]A.

Concavity may also happen with difference constraints between two clocks.
For example, the following zone predicate Ḧ ≡ q1 ∧ (x − y < 3 ∨ x − y > 7)
is also concave. For example, we may have two states (q1, ν3) and (q1, ν4) with
ν3(x) = 9, ν3(y) = 1, ν4(x) = 1, and ν4(y) = 9. It is clear that (q1, ν3) and

4 A conjunctive predicate does not have negation and disjunction in it.
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(q1, ν4) are both in [[Ḧ ]]A. However the middle point, say (q1, ν7/2), between
(q1, ν1) and (q1, ν2) with ν7/2(x) = ν7/2(y) = 5 is not in [[Ḧ ]]A. �
It is known that procedure Tbck′() for time progress evaluation can be applied
to convex path conditions.

Example 3. In example 1, Tbck′() is not applicable to HA which is concave. For
example, Tbck(HA, q1 ∧ x = 10 ∧ y = 10) is q1 ∧ x > 7 ∧ y > 7 ∧ x ≤ 10 ∧ y ≤
10 ∧ x − y = 0. However, Tbck′(HA, q1 ∧ x = 10 ∧ y = 10) is q1 ∧ x ≥ 0 ∧ y ≥
0 ∧ x ≤ 10 ∧ y ≤ 10 ∧ x− y = 0 which is incorrect. �
Here we relax the restriction of the applicability of Tbck′() with the following
concept.

Definition 4. Time-convexity A union U of clock zones is time-convex iff for
any ν ∈ U and t ∈ R≥0 with ν + t ∈ U , then for any t′ ∈ [0, t], ν + t′ ∈ U .
Otherwise, it is called time-concave. A set S of zones is time-convex if for each
q ∈ QA,

⋃
(q,η)∈S [[η]]A is time-convex; it is time-concave else. �

Example 4. In examples 1 and 2, IA is time-convex while HA is time-concave.
Moreover, zone predicate Ḧ ≡ q1 ∧ (x − y < 3 ∨ x − y > 7) is concave. But we
have the following derivation for any state (q, ν) and real t ∈ R≥0.

(q1, ν) |= q1 ∧ (x − y < 3 ∨ x− y > 7)
≡ (q1, ν + t) |= q1 ∧ (x + t− y − t < 3 ∨ x + t− y − t > 7)
≡ (q1, ν + t) |= q1 ∧ (x− y < 3 ∨ x− y > 7)

Thus it is clear that q1 ∧ (x− y < 3 ∨ x− y > 7) is time-convex. �
Lemma 1. Given a TA A, a time-convex path zone predicate φ, and a destina-
tion zone predicate ψ, [[Tbck(φ, ψ)]]A = [[Tbck′(φ, ψ)]]A.

Proof: We can prove this lemma in two directions. First, we want to prove
that Tbck(φ, ψ) ⊆ Tbck′(φ, ψ). Given a state (q, ν) |= Tbck(φ, ψ), we have the
following derivation.

(q, ν) |= Tbck(φ, ψ)
≡ (q, ν) |= ∃t ∈ R≥0

(
ψ + t ∧ ∀t′ ∈ R≥0 (t′ ≤ t → φ + t′)

)
⇒ (q, ν) |= ∃t ∈ R≥0

(
ψ + t ∧ φ ∧ φ + t
∧ ∀t′ ∈ R≥0 (t′ ≤ t → φ + t′)

)
, instantiating t′ with t

⇒ (q, ν) |= ∃t ∈ R≥0 (ψ + t ∧ φ ∧ φ + t) , restriction relaxation.
≡ (q, ν) |= Tbck′(φ, ψ), defnition

Now we prove Tbck′(φ, ψ) ⊆ Tbck(φ, ψ) with the following derivation.

(q, ν) |= Tbck′(φ, ψ)
≡ (q, ν) |= ∃t ∈ R≥0 (ψ + t ∧ φ ∧ φ + t)

⇒ (q, ν) |= ∃t ∈ R≥0

(
ψ + t ∧ φ ∧ φ + t
∧ ∀t′ ∈ R≥0 (t′ ≤ t → φ + t′)

)
, since φ is time-convex

≡ (q, ν) |= ∃t ∈ R≥0
(
ψ + t ∧ ∀t′ ∈ R≥0 (t′ ≤ t → φ + t′)

)
, since t ≤ t ∧ 0 ≤ t

≡ (q, ν) |= Tbck(φ, ψ), defnition

With the proof for the two directions, we know the lemma is correct. �
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Lemma 1 implies that we can also apply the more efficient Tbck′() to concave
but time-convex path conditions.

Example 5. In example 2, Tbck′() was not thought to be applicable to path zone
predicate Ḧ either. But now, Tbck(Ḧ, q1 ∧ x = 8∧ y = 8) and Tbck′(Ḧ, q1 ∧ x =
8 ∧ y = 8) both evaluate to q1 ∧ x ≥ 0 ∧ y ≥ 0 ∧ x ≤ 8 ∧ y ≤ 8 ∧ x− y = 0. �

4 Time-Concavity and Convexity in Verification
Problems

In this section, we show two things for TCTL model-checking. First, time-
convexity of the location invariance condition HA is good enough to guaran-
tee the time-convexity of all path conditions used in the reachability analysis
of A. Second, time-convexity of HA is not good enough to guarantee the time-
convexity of all path conditions in the TCTL model-checking of A.

4.1 For Reachability Analysis

The most used verification framework is reachability analysis. In this framework,
we are given a TA A and a safety predicate η and want to check whether there
is an initial run of A along which some state satisfies ¬η. The system is safe iff
A satisfies ∀�η ≡ ¬∃trueU¬η. According to formula (∃U) in page 263, we find
that all the path conditions used in the time progress evaluation is exactly the
HA of a TA A. Thus we have the following lemma.

Lemma 2. For reachability analysis of a TA A, if HA is time-convex, then
Tbck′() can be used in place of Tbck() in formula (∃U) without affecting the
result of analysis. �

4.2 For TCTL Model-Checking

We have identified some generic cases in examples 6 through 10 that can cause
time-concave path conditions in model-checking.

Example 6. Disjunction in the path conditions in modal formulas. We
may have a formula: ∃(q1 ∧ (x ≤ 5 ∨ y > 7))Uq2. Given a TA A with a time-
convex HA, according to formula (∃U) in page 263, the path condition is q1∧(x ≤
5 ∨ y > 7) ∧ HA. As can be checked, the path condition is time-concave when
[[q1∧x ≤ 5∧HA]]A �= ∅, [[q1∧y > 7∧HA]]A �= ∅, and [[q1∧x > 5∧y ≤ 7∧HA]]A �= ∅.

For another example, according to formulation (∃�) in page 262, formula
∃�(q1 ∧ (x ≤ 5 ∨ y > 7)) also incurs time-concavity in path condition. �

Example 7. Complementation in the path conditions in modal formu-
las. We have a formula: ∀♦(q1 → (x > 5 ∧ y ≤ 7)) which can be rewritten as
¬∃�(q1 ∧ (x ≤ 5∨ y > 7)). According to formulation (∃�) in page 262, the path
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(a) (b)

q0

true

x ≥ 5

{x}

x ≤ 5

x ≥ 7

q0 q1

truetrue

∅

∅

Fig. 2. Another example TA

condition q1∧(x ≤ 5∨y > 7)∧HA is time-concave when [[q1∧x ≤ 5∧HA]]A �= ∅,
[[q1 ∧ y > 7 ∧HA]]A �= ∅, and [[q1 ∧ x > 5 ∧ y ≤ 7 ∧HA]]A �= ∅. �
Note that in TCTL model-checking, we usually need to calculate the complement
of time-convex state spaces and end up with time-concave state spaces.

Example 8. Timing constraints with ∃�-formulas. According to formula
(∃�) in page 262, formula: ∃�≤7x ≤ 5 incurs a path condition z ≤ 7 → x ≤ 5 ≡
z > 7 ∨ x ≤ 5. Then following the argument in examples 2 and 4, it is easy to
see that this path condition is also time-concave. �
The following two examples show that path condition concavity may also happen
due to the structures of TAs.

Example 9. Time-concavities due to TA structures. We may have the ex-
ample TA A in figure 2(a) and want to check A, (q0, ν) |= ∃�∃x > 3Ux ≤ 0
with ν(x) = 0. Note that the location invariance condition is time-convex.
(q0, ν) ∈ [[∃x > 3Ux ≤ 0]]A since x ≤ 0 is immediately fulfilled at ν. Also
(q0, ν + 4) ∈ [[∃x > 3Ux ≤ 0]]A with the firing of the transition at ν + 5. But it
is clear that (q0, ν + 1) �∈ [[∃x > 3Ux ≤ 0]]A. �
According to the original definition of TCTL [1], only propositions may appear
as atoms. Thus we may argue that the above-mentioned formulas in examples 6
to 9 may not happen in the original TCTL definition. The following example is
interesting in this regard.

Example 10. Nested ∃U-formulas with modal timing constraints. Now
we may want to check the TA in figure 2(b) for a formula ∃�∃q0U<1q1 at a state
(q0, ν) with ν(x) = 5. Then (q0, ν) ∈ [[∃q0U<1q1]]A and (q0, ν+2) ∈ [[∃q0U<1q1]]A.
However, it is clear that (q0, ν + 1) �∈ [[∃q0U<1q1]]A. �

5 Algorithm with Cascading Convexities

We have experimented with several techniques for performance enhancement of
time progress evaluation for time-concave path conditions. We present one such
technique that we have found useful. The technique breaks a time-concave zone
predicate into time-convex ones and then applies Tbck′() on each time-convex
ones for the evaluation of time progress.
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Given a zone predicate φ that describes a time-concave state space, we want to
characterizes those states in [[φ]]A that can first go through a state outside [[φ]]A
through time progression and then again end up at a state in [[φ]]A. To calculate
the time progress operation to such states in [[φ]]A, we cannot use Tbck′() in place
of Tbck() since such states are evidence for the time-concavity of φ. Formally
speaking, such states can be characterized as follows.

TConcave(φ) def= φ ∧ ∃t ∈ R≥0
(
φ + t ∧ ∃t′ ∈ R≥0(t′ < t ∧ (¬φ) + t′)

)
We have the following lemma that establishes some properties of the character-
izaton useful for our performance-enhancing techniques.

Lemma 3. Given a zone predicate φ for a TA A, [[φ]]A − [[TConcave(φ)]]A is
time-convex.

Proof: This is straightforward from the definition of TConcave(φ). �
Given two state spaces S and S′, we say S is time-connected to S′ if there is a
state (q, ν) ∈ S and a t ∈ R≥0 such that (q, ν + t) ∈ S′ and for every t′ ∈ [0, t],
(q, ν+t′) ∈ S∪S′. If S is not time-connected to S′, then it is time-disconnected to
S′. The concept of time-connectivity is important for the correctness of piecewise
evaluation of time progress.

Lemma 4. Suppose we are given two zone predicates φ and φ′ such that [[φ]]A
is not time-connected to [[φ′]]A and vice versa. Then for every zone predicate ψ,
[[Tbck(φ, ψ)]]A ∪ [[Tbck(φ′, ψ)]]A = [[Tbck(φ ∨ φ′, ψ)]]A.
Proof: It is easy to see that [[Tbck(φ, ψ)]]A∪[[Tbck(φ′, ψ)]]A ⊆ [[Tbck(φ∨φ′, ψ)]]A.
On the other hand, [[Tbck(φ, ψ)]]A ∪ [[Tbck(φ′, ψ)]]A ⊇ [[Tbck(φ∨ φ′, ψ)]]A is false
if either of the following two cases are true.

• There is a state (q, ν) ∈ [[φ]]A and a t ∈ R≥0 such that (q, ν + t) ∈ [[φ′]]A and
for every t′ ∈ [0, t], (q, ν + t′) ∈ [[φ]]A ∪ [[φ′]]A. But this exactly violates the
assumption that [[φ]]A is not time-connected to [[φ′]]A.
• There is a state (q, ν) ∈ [[φ′]]A and a t ∈ R≥0 such that (q, ν + t) ∈ [[φ]]A and

for every t′ ∈ [0, t], (q, ν + t′) ∈ [[φ]]A ∪ [[φ′]]A. This is symmetric to the first
case and violates the assumption that [[φ′]]A is not time-connected to [[φ]]A.

Since both of these cases are false, we know the lemma is proven. �

Lemma 5. Given a TA A and a zone predicate φ, [[φ]]A − [[TConcave(φ)]]A is
not time-connected to [[TConcave(φ)]]A and vice versa.

Proof: We first assume that [[φ]]A − [[TConcave(φ)]]A is time-connected to [[
TConcave(φ)]]A. This implies that there is a state (q, ν) ∈ [[φ]]A−[[TConcave(φ)]]A
and a t ∈ R≥0 such that (q, ν + t) ∈ [[TConcave(φ)]]A and for each t′ ∈ [0, t],
(q, ν+t′) ∈ [[φ]]A. According to the definition of TConcave(φ), there is a t′′ ∈ R≥0

such that (q, ν+t+t′′) ∈ [[φ]]A while there is a t̄ such that t < t̄ < t+t′′ and (q, ν+
t̄) �∈ [[φ]]A. This contradicts our assumption that (q, ν) ∈ [[φ]]A− [[TConcave(φ)]]A.

We then assume that [[TConcave(φ)]]A is time-connected to [[φ]]A− [[TConcave
(φ)]]A. This implies that there is a state (q, ν) ∈ [[TConcave(φ)]]A and a t ∈ R≥0
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such that (q, ν + t) ∈ [[φ]]A− [[TConcave(φ)]]A and for each t′ ∈ [0, t], (q, ν + t′) ∈
[[φ]]A. According to the definition of TConcave(φ), there is a t′′ ∈ R≥0 such that
(q, ν + t′′) ∈ [[φ]]A while there is a t̄ such that 0 < t̄ < t′′ and (q, ν + t̄) �∈ [[φ]]A.
With the assumption on t, we know that 0 ≤ t < t̄ < t′′. This implies that
(q, (ν + t) + t̄− t) �∈ [[φ]]A and (q, (ν + t) + t′′ − t) ∈ [[φ]]A. This contradicts the
assumption that (q, ν + t) ∈ [[φ]]A − [[TConcave(φ)]]A. �
Based on lemmas 3, 4, and 5, we present the following procedure that breaks a
zone predicate φ into a finite set of zone predicates such that for each two state
predicates φ1, φ2 in the set, [[φ1]]A is not time-connected to [[φ2]]A.

CascadingConvexities(φ) /* φ is a zone predicate for a TA A. */ {
Let Φ := ∅.
While [[φ]]A �= ∅, { η := TConcave(φ); Φ := Φ ∪ {φ ∧ ¬η}; φ := η. }
return Φ.

}

Note that this procedure terminates since the number of zone sets is
finite. Thus we repeatedly remove some zones from [[φ]]A and eventually reduce
it to ∅. According to lemma 3, we know that every zone predicate in
CascadingConvexities(φ) characterizes a time-convex state space. Moreover,
with lemma 3, 4, and 5, we can establish the following lemma for a new formu-
lation of backward time progress evaluation.

Lemma 6. For every two zone predicates φ and ψ, [[Tbck(φ, ψ)]]A
=
⋃

η∈CascadingConvexities(φ) Tbck
′(η, ψ). �

6 Algorithm with Approximate Time-Concavity
Checking

As can be seen in section 5, procedure TConcave() can be executed many times in
procdeure CascadingConvexities() and incur great computation cost. We want
to investigate if it may pay off to use an alternative technique that avoids the eval-
uation of procedure TConcave(). Given a path zone predicate φ and a destination
zone predicate ψ, this alternative technique works in the following two steps.

(1) Partition φ into two zone predicates φ1 and φ2 such that [[φ1]]A ∩ [[φ1]]A = ∅,
[[φ1]]A ∪ [[φ1]]A = [[φ]]A, [[φ1]]A is time-convex, and [[φ1]]A and [[φ2]]A are time-
disconnected to each other.

(2) Then we return Tbck′(φ1, ψ) ∨ Tbck(φ2, ψ) as the result of time progress
evaluation.

The performance of the technique relies on the efficiency in carrying out step
(1). We have the following lemma that helps us carrying out step (1). First, we
need some notations for the convenience of discussion. Given a zone predicate
φ, we assume that we can construct a set ZoneSet(φ) with zone elements of
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the form (q, η) such that [[φ]]A = [[
∨

(q,η)∈ZoneSet(φ) q ∧ η]]A. Depending on the
implementation of φ, there are various ways to do this. If φ is implemented with
DBMs [5], then φ should already have been represented as ZoneSet(φ) with η
represented as a DBM for each (q, η) ∈ ZoneSet(φ). If φ is implemented as a CRD
(Clock-Restriction Diagram) [8], then each (q, η) ∈ ZoneSet(φ) corresponds to a
path in the CRD.

Given a q ∈ Q, we let ZoneSetq(φ) = {(q, η) | (q, η) ∈ ZoneSet(φ)}. Also, given
a set Φ of zone predicates and two clocks x, y ∈ XA∪{0}, we let UBx−y(Φ) be the
minimum upper-bound for expression x−y in all states (q, ν) ∈ [[

∨
(q,η)∈Φ q∧η]]A.

That is, UBx−y(Φ) = min{u | (q, ν) ∈ [[
∨

(q,η)∈Φ q ∧ η]]A, ν(x) − ν(y) ≤ u}.5 If
UBx−y(Φ) does not exist, then we denote UBx−y(Φ) = ∞.

Moreover, we define a predicate ConcavityNecessaryφ() of two zone represen-
tations that share the same control location. Specifically, given two such zone
representations (q, η) and (q, η′), ConcavityNecessaryφ((q, η), (q, η′)) is true if
and only if there are two clocks x, y ∈ XA ∪ {z} such that
• UBx−0({(q, η)}) < UBx−0(ZoneSetq(φ));
• UB0−y({(q, η′)}) < UB0−y(ZoneSetq(φ)); and
• for all z, w ∈ XA ∪ {z}, UBz−w({(q, η)}) + UBw−z({(q, η′)}) ≥ 0.

Lemma 7. Given a zone predicate φ, if φ is time-concave, then there are (q, η),
(q, η′) ∈ ZoneSet(φ) satisfying ConcavityNecessaryφ((q, η), (q, η′)).

Proof: We assume there is a state (q, ν) and two reals t′ < t ∈ R≥0 such
that (q, ν), (q, ν + t) ∈ [[φ]]A while (q, ν + t′) �∈ [[φ]]A. Assume that there are
(q, η1), (q, η2) ∈ ZoneSet(φ) such that (q, ν) ∈ [[q ∧ η1]]A and (q, ν + t) ∈ [[q ∧
η2]]A. Note that for all clocks z, w ∈ XA, ν(z) − ν(w) = (ν + t)(z) − (ν +
t)(w) = (ν + t′)(z) − (ν + t′)(w). This implies that there is a clock x ∈ XA

such that UBx−0({(q, η1)}) < (ν + t′)(x) < (ν + t)(x) ≤ UBx−0({(q, η2)}) ≤
UBx−0(ZoneSetq(φ)). This implies that UBx−0({(q, η1)})< UBx−0(ZoneSetq(φ)).
This means that the first bullet is correct. Similarly, the second bullet is correct.

Note that for all clocks z, w ∈ XA, ν(z)−ν(w) = (ν + t)(z)− (ν + t)(w) which
implies that 0 = ν(z)−ν(w)+(ν + t)(w)− (ν + t)(z). According to the definition
of UBz−w() and UBw−z(), we know that ν(z) − ν(w) ≤ UBz−w({(q, η1)}) and
(ν + t)(w)− (ν(z) + t) ≤ UBw−z({(q, η2)}). Thus the third bullet is also proven
for (q, η1) and (q, η2).

By letting η and η′ be η1 and η2 respectively, the lemma is proven. �
Based on lemma 7, for step (1) in the above, we let

φ2 =
∨

(q,η),(q,η′)∈ZoneSet(φ),ConcavityNecessaryφ((q,η),(q,η′))(q ∧ η)

and φ1 = φ∧ ¬φ2. We have the following lemma that shows this is indeed what
we can use in step (1).

Lemma 8. With the φ1 and φ2 defined in the last paragraph, for any ψ,
[[Tbck(φ, ψ)]]A = [[Tbck′(φ1, ψ) ∨ Tbck(φ2, ψ)]]A.
5 For convenience, we let ν(0) = 0.
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Proof: The lemma is true if φ1 is time-convex and φ1, φ2 are time-disconnected
to each other. If φ1 is time-concave, then according to lemma 7, there are
(q, η), (q, η′) ∈ ZoneSet(φ1) such that ConcavityNecessaryφ((q, η), (q, η′)) is true.
Then no states in [[(q∧η)∨(q∧η′)]]A should be in [[φ1]]A. This is a contradiction.

If φ1 is time-connected to φ2, then there are (q, η) ∈ ZoneSet(φ1) and (q, η′),
(q, η′′) ∈ ZoneSet(φ2) such that [[q ∧ η]]A is time-connected to [[q ∧ η′]]A and
ConcavityNecessaryφ((q, η′), (q, η′′)) is true. This implies ConcavityNecessaryφ

((q, η), (q, η′′)) which is also a contradiction.
With an argument similar to the one in the last paragraph, we can also prove

that φ2 is not time-connected to φ1. Thus the lemma is proven. �
Finally, the technique has been realized with a symbolic manipulation algorithm
for zone predicates represented with CRD.

7 Implementation and Experiments

We have implemented our ideas in sections 5 and 6 in RED 7.0, a model-checker
for TAs and a parametric safety analyzer for LHAs (linear hybrid automata) [2]
based on CRD and HRD (Hybrid-Restriction Diagram) technology [8, 9]. We
used the following two parameterized benchmarks from the literature.

1. Fischer’s timed mutual exclusion algorithm [8]: The algorithm relies on a
global lock and a local clock per process to control access to the critical
section. Three timing constants used are 10, 19, and 30. The first formula
that we check is the following.

∀�¬(∃(critical1)U((¬critical1) ∧ ∃♦<19critical1)) (C)

This formula intends to say that if process one leaves the critical section, then
it cannot enter the critical section again in 19 time units. However, since the
∃U-formula can be satisfied at a state that directly fulfills (¬critical1) ∧
∃♦<19critical1, the formula is not satisfied.

The second formula is the following.

∀�
(
critical1 →
∃♦∃idle1U∃ready1U<10∃waiting1U>19∃critical1Uidle1

)
(D)

It says that if process 1 is in the critical section, then it can go through an
expected mode sequence with timing restrictions back to the idle mode.
The third formula is the following.

∀� (ready1 → ∀♦<10 (waiting1 ∧ ∀� (critical1 → ∀♦<30idle1))) (E)

The formula says that if process 1 is in the ready mode, it enters the wait-
ing mode in 10 time units and from that point on, if it enters the critical
section, it returns to the idle mode in 30 time units. Note that the formula
is not satisfied with Zeno computations6. So we have to use option ‘-Z’ for
quantification for non-Zeno computations.

6 A Zeno computation runs forever without time converging to a finite value.
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Table 1. Performance data of scalability w.r.t. various strategies

TCTL Tbck() Cascading ATCC
benchmarks spec’s m time mem time mem time mem answer

3 0.024s 186k 0.004s 186k 0.012s 3.1M
Fischer’s (C) 4 0.42s 32M 0.044s 413k 0.044s 13M violated
mutual exclusion 5 8.38s 162M 1.80s 69M 1.83s 71M
(m processes) 3 0.008s 186k 0.008s 186k 0.012s 2.7M

(D) 4 0.060s 413k 0.044s 413k 0.036s 9.9M satisfied
5 4.18s 116M 0.588s 34M 0.536s 40M
3 0.036s 186k 0.032s 186k 0.032s 6.5M satisfied

(E) 4 1.06s 59M 0.048s 413k 0.128s 25k with
5 26.9s 344M 5.36s 113M 4.25s 116M non-Zenoness

2 0.024s 168k 0.048s 168k 0.028s 2.5M
(F) 3 0.072s 333k 0.068s 333k 0.116s 20M satisfied

CSMA/CD 4 5.49s 100M 4.38s 90M 4.72s 109M
(1 bus+m senders) 2 0.028s 168k 0.028s 168k 0.020s 1.2M violated

(G) 3 0.104s 333k 0.092s 333k 0.088s 4.1M
2 0.096s 168k 0.068s 168k 0.096s 166k violated with
3 108s 662M 93.2s 584M 96.7s 605M non-Zenoess
2 0.040s 168k 0.032s 168k 0.076s 1.6M violated

(H) 3 0.100s 333k 0.084s 333k 0.100s 5.6M
2 0.13s 168k 0.092s 168k 0.152s 24M satisfied with
3 266s 1199M 214s 1036M 222s 1082M non-Zenoess

data collected on a Pentium 4 1.7GHz with 2G memory running LINUX;
s: seconds; k: kilobytes of memory in diagram data-structure;

M: megabytes of memory in diagram data-structure

2. CSMA/CD [11]: This is the Ethernet bus arbitration protocol with collision-
and-retry. The timing constants used are 26, 52, and 808. The first property
that we want to check is the following.

∀�((transm1 ∧ x1 = 52) → ∀�<756¬transm2) (F)

It says that if sender 1 is in the transmission mode for 52 time units, then in
all computations, sender 2 cannot be in the transmission mode for at least
756 time units.

The second formula is as follows.

∀�¬(∃transm1U(transm2 ∧ ∃�<26¬retry1)) (G)

It intends to say that it is not possible that sender 1 remains in the transmis-
sion mode until sender 2 also does so and sender 1 does not enter the retry
mode in 26 time units. This formula is not satisfied since the ∃U-formula
can be satisfied immediately with a state that directly fulfills transm2 ∧
∃�<26¬retry1. From that state on, there is a computation along which
sender 2 stays in the transmission mode for 808 time units.

The final formula is the following.

∀� (bus collision → ∀ (∀♦<52 (wait1 ∨ retry1))U<52bus idle) (H)
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Note that the formula is not satisfied with Zeno computations. So we have
to use option ‘-Z’ for quantification for non-Zeno computations.

We have collected data respectively with three tool configurations.
• Tbck() represents the one that uses Tbck() for all time progress evaluation.
• Cascading represents the one with the technique in section 5.
• ATCC represents the one with the technique in section 6.

The performance data is reported in table 1. The CPU time used, the total mem-
ory consumption for the data-structures in state-space representations, and the
answers of model-checking are reported. As can be seen, our technique in sec-
tion 5 always performs better than Tbck(). For some benchmark, the performance
enhancement is one order of magnitude. This shows that our techniques could
be useful in applying TCTL model-checking technology to industrial projects.

The technique in section 6 did not perform as well as we expected. Further
investigation revealed that special arrangement for garbage CRD nodes might
have slowed down the hash table operations and blown up the memory consump-
tion. In our present implementation, garbage collection cannot be invoked inside
the procedures for the technique. In the future, we may gain more performance
with an implementation of a more powerful garbage collector.

8 Concluding Remarks

In this work, we discuss how to improve the performance of an important compo-
nent algorithm, the time progress evaluation algorithm, for the model-checking of
TAs. Techniques in section 6 may worth further investiagtion for better precision
in the approximation and more efficient algorithms.
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Abstract. We identify a new class of decidable hybrid automata: namely, par-
allel compositions of semi-algebraic o-minimal automata. The class we consider
is fundamental to hierarchical modeling in many exemplar systems, both nat-
ural and engineered. Unfortunately, parallel composition, which is an atomic op-
erator in such constructions, does not preserve the decidability of reachability.
Luckily, this paper is able to show that when one focuses on the composition
of semi-algebraic o-minimal automata, it is possible to translate the decidability
problem into a satisfiability problem over formulæ involving both real and in-
teger variables. While in the general case such formulæ would be undecidable,
the particular format of the formulæ obtained in our translation allows combining
decidability results stemming from both algebraic number theory and first-order
logic over (R, 0, 1,+, ∗, <) to yield a novel decidability algorithm. From a more
general perspective, this paper exposes many new open questions about decidable
combinations of real/integer logics.

Introduction

We wish to suggest a novel algebraic framework for the purpose of studying compo-
sition of hybrid automata. In this framework, we exploit various algebraic techniques
(both semi-algebraic geometric and algebraic-number theoretic) to provide effective
procedures to solve reachability problems for at least one important class, namely, semi-
algebraic o-minimal hybrid automata. We believe that these techniques are applicable
more generally and will motivate further applications to other classes and subclasses of
hybrid-automata. Our techniques show how to model state-space evolution (as quanti-
fied semi-algebraic formulae) separately from the temporal synchronization (modeled
as a system of linear algebraic Diophantine equations and inequalities) and yet, seek a
combined solution to represent simultaneous arrival at a point in the product state-space
by each individual component automaton. In order to obtain this decidability result, we
needed to innovate in at least three different areas: to be precise, (1) theory of automata:
how to effectively reduce an automata theoretic problem to an algebraic problem by
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modeling and by seeking solutions for algebraic systems described via algebraic geo-
metric and number theoretic formulations—thus, circumscribing difficulties faced by
the usual finite-quotient-techniques; (2) algorithmic algebra: how to solve a system of
equations and inequalities involving semi-algebraic geometric formulae combined with
linear algebraic-Diophantine relations—a rather non-trivial problem that had remained
unsolved till now, except for the special system arising in case of composition of just
two automata (see [1]); and (3) recursive function theory: how to better recognize the
boundary separating decidability from undecidability in the context of automata, and
along the way, expand the body of techniques applicable to such questions. To the best
of our knowledge, this paper is the first to explicitly connect discrete-continuous hy-
bridness of these automata to their algebraic analog of mixed real-integer formulations
and also first in proposing how to solve them algorithmically.

The paper is organized as follows: Section 1 and 2 introduce hybrid automata and
their parallel composition, respectively; in Section 3, we prove the decidability of linear
Diophantine systems with semi-algebraic coefficients and, in Section 4, we show how
one can reduce to it the reachability problem for hybrid automata obtained by parallel
composition of semi-algebraic o-minimal automata; Section 5 hints some simple appli-
cations of the proposed techniques; in Section 6, we discuss some possible extentions
and Section 7 summarizes the results presented in the paper and draws some compar-
isons with related literature. All the missing proofs can be found in [2].

1 Motivations and Notations

Since their introduction (see, e.g., [3]), hybrid automata have initiated a new tradition,
promising powerful tools for modeling and reasoning about complex engineered or nat-
ural systems: e.g., embedded and real time systems, or computational biology, where
the resulting analyses are providing many new insights. Unfortunately, in their flexibil-
ity in capturing dynamics, resides also their limitations: many different undecidability
and complexity results have been proven over general hybrid automata [4] and cast
doubt on their suitability as a general tool that can be algorithmized and efficiently im-
plemented. However, if these representations are further restricted, as in the powerful
family of o-minimal systems [5], one could hope to still enjoy fidelity of representation
that far surpasses that of both discrete models and differential equations, and yet avoid
undecidability. In particular, reachability has been shown decidable over semialgebraic
o-minimal automata [5].

In order to build a theoretical framework that can also use these hybrid represen-
tations in a natural manner, one must shift one’s attention to the description of large
and complex hybrid systems that can be described in a compositional manner, built
out of many elementary modules at many different levels of hierarchy. Since the basic
fundamental step in a compositional construction is through a parallel composition, an
essential desideratum of this new theoretical framework is that the reachability prop-
erty of the product hybrid automaton be decidable, provided that the component hybrid
automata belong to a suitably restricted decidable family of automata, e.g., one in the
class of o-minimal automata. In general, the product operation does not assure a closure
of decidability property for reachability condition. Nonetheless, in [1], we establish
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decidability of the reachability condition considering the parallel composition of two
semi-algebraic o-minimal automata. Even if such hybrid automata could be used to
model interesting systems (e.g., in system biology), the limitation on the number of
composable automata poses many restrictions on the applicability of the suggested
techniques. To address these shortcomings, in this paper, we have generalized the decid-
ability result for the reachability problem over parallel composition of semi-algebraic
o-minimal automata by allowing the composition of an arbitrary number of automata
and we extend the applicability of the proposed framework to more complex systems.

1.1 Basic Notions

A directed graph is a pair 〈V,E〉 where V is a finite set of vertices and E is a finite
set of edges. The functions Source : E −→ V and Dest : E −→ V characterize the
vertex exited by an edge and the vertex entered by an edge, respectively. In particular,
we say that Source (e) = v and Dest (e) = v′ are the source and the destination of e,
respectively. In this paper, when we refer to graphs, we always intend directed graphs.
A path ph from v ∈ V to v′ ∈ V in G = 〈V,E〉 is either the vertex v, if v = v′, or a
sequence of edges ”e1, . . . , en” such that, for all i ∈ [1, n−1], Source (ei+1) = Dest (ei),
Source (e1) = v, and Dest (en) = v′. A path p = ”e1, . . . , en” is a cycle if e1 = en and
n > 1. Moreover, if ei � ej for all i, j ∈ [1, n − 1] with i � j, then we say that p is
a simple cycle. The standard definition of cycle requires that the first node coincides
with the last one, while in our definition we impose that the first and the last edges are
identical. Similarly, the standard definition of simple cycle requires that in the cycle the
internal nodes are not repeated, while in our definition we require that the internal edges
are not repeated. The two definitions are obviously not equivalent, however, a graph has
only a finite number of simple cycles under both definitions. Later on we write |p| to
denote the length of the path p, i.e., the number of its edges.

Next, we introduce some notations and conventions that we will need to define hybrid
automata. Capital letters X, X′, Xm, and Xm

′, where m ∈ N, denote variables ranging
overR. Analogously, Z denotes the vector of variables 〈X1, . . . ,Xd〉 and Z′ denotes the
vector 〈X1

′, . . . ,Xd
′〉. The temporal variables T, T′, T0,. . . , Tn model time and range

overR≥0. We use the small letters p, q, r, s, . . . to denote d-dimensional vectors of real
numbers. Occasionally, we may use the notation ϕ[X1, . . . , Xm] to stress the fact that
the set of free variables of the first-order formula ϕ is included in the set of variables
{X1, . . ., Xm}. By extension, if {Z1, . . ., Zn} is a set of variable vectors, ϕ[Z1, . . ., Zn]
indicates that the free variables ofϕ are included in the set of components of Z1, . . ., Zn.
Moreover, given a formula ϕ[Z1, . . ., Zi, . . ., Zn] and a vector p of the same dimension
as the variable vector Zi, the formula obtained by component-wise substitution of Zi
with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1, . . ., Zn]. When in ϕ the only free variables
are the components of Zi, after the substitution we can determine the truth value of
ϕ[p].

We are now ready to define hybrid automata. For each node of a graph we have an
invariant condition and a dynamic law. The dynamic law may depend on the initial con-
ditions, i.e., on the values of the continuous variables at the beginning of the evolution
in the state. The jumps from one discrete state to another are regulated by the activation
and reset conditions.
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Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′, V, E,
Inv, F , Act, Res) of dimension d consists of the following components:

1. Z = 〈X1, . . ., Xd〉 and Z′ = 〈X1
′, . . ., Xd

′〉 are two vectors of variables ranging
over the reals R;

2. 〈V, E〉 is a graph. Each element of V will be dubbed location.
3. Each vertex v ∈ V is labeled by the formula Inv(v)[Z];
4. F is a function assigning to each vertex v ∈ V a continuous vector field over Rd;

we will use fv : Rd × R≥0 −→ Rd to indicate the solution of the vector field F (v)
and Dyn(v)[Z,Z′,T]

def
= Z′ = fv(Z,T);

5. Each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z,Z′];

Note that, without loss of generality, we may consider only hybrid automata whose
formulæ are satisfiable. In fact, if this is not the case, we can transform the automaton
and eliminate the unsatisfiable formulæ. For instance, if there is an edge e such that
Res(e)[Z,Z′] is unsatisfiable, we can simply delete the edge from the automaton. We
use d(H) to denote the dimension of the automaton H.

Definition 2 (Hybrid Automata - Semantics). A state � of H is a pair 〈v, r〉, where
v ∈ V is a location and r = 〈r1, . . . , rd〉 ∈ Rd(H) is an assignment of values for the
variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relation
t−→C, where t ≥ 0 is the transition

elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒ It holds that r = fv(r, 0) and it holds that s = fv(r, t) (see 1),
and for each t′ ∈ [0, t] the formula Inv(v)[ fv(r, t′)] is true.

The discrete reachability transition relation→D between admissible states is defined
as follows:

〈v, r〉 e−→D 〈u, s〉 ⇐⇒ it holds that e ∈ E, Source (e) = v, Dest (e) = u, and
both Act(e)[r] and Res(e)[r, s] are true.

We write � →C �′ and � →D �′ meaning respectively that there exists a t ∈ R≥0 such

that �
t−→C �′ and that there exists an e ∈ E such that �

e−→D �′. Moreover, we use the
notation �→ �′ to denote that either �→C �′ or �→D �′.

Building upon a combination of both continuous and discrete transitions, we can
formulate a notion of trace as well as a resulting notion of reachability. A trace is a
sequence of continuous and discrete transitions. A point s is reachable from a point r if
there is a trace starting from r and ending in s.

Definition 3 (Hybrid Automata - Reachability). Let I be eitherN or an initial finite
interval of N. A trace of H is a sequence of admissible states �0, �1, . . . , �i, . . . , with
i ∈ I, such that �i−1 → �i holds for each i ∈ I greater than zero; such a trace is also
denoted by (�i)i∈I.

The automaton H reaches a point s ∈ Rd (in time t) from a point r ∈ Rd if there exists
a trace tr = �0, . . . , �n of H such that �0 = 〈v, r〉 and �n = 〈u, s〉, for some v, u ∈ V

(and t is the sum of the continuous transitions elapsed times). In such a case, we also
say that s is reachable from r in H.
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Given a hybrid automaton H and trace, tr, of H, a corresponding path of tr is a path ph
obtained by considering the discrete transitions occurring in tr. In this case, we also say
that ph corresponds to tr. Notice that if tr is a trace, then there is a set of corresponding
paths of tr and such a set is finite and hence, computable.

We are interested in the reachability problem for hybrid automata, namely, given an
automaton H, an initial set I ⊆ Rd, and a final set F ⊆ Rd we wish to decide whether
there exists a point in I from which a point in F is reachable.

An interesting class of hybrid automata is the class of o-minimal automata [5,6].
The formulæ Dyn(v), Inv(v), Act(e), and Res(e) of such automata are defined in a o-
minimal theory for each v ∈ V and e ∈ E. Moreover, their resets are constant, i.e., they
do not depend on the point from which the edge is crossed. In the case of o-minimal au-
tomata defined by a decidable theory, reachability and temporal logic properties can be
decided through bisimulation [5]. O-minimal automata always possess a finite bisimu-
lation quotient whose computation is effective when the o-minimal theory is decidable.
An o-minimal and decidable theory is the first-order theory of (R, 0, 1,+, ∗, <) [7], also
known as the theory of semi-algebraic sets.

Definition 4 (Semi-Algebraic O-Minimal Automata). An o-minimal automaton is a
hybrid automaton such that Dyn(v), Inv(v), Act(e), and Res(e) are formulæ of an o-
minimal theory [8] and the truth value of Res(e)[Z,Z′] does not depend on Z, for any
v ∈ V and e ∈ E. A semi-algebraic o-minimal automaton is an o-minimal automaton
such that Dyn(v), Inv(v), Act(e), and Res(e) are semi-algebraic formulæ.

The decidability of reachability problem for such class follows directly from [5,7] and
the problem itself has been reduced to the satisfiability of a finite disjunction of formulæ
of the form Reach(H)(ph)[Z,Z′,T] in [9]. In particular, if H is a semi-algebraic o-
minimal automaton, then q ∈ Rd(H) is reachable from p ∈ Rd(H) in H through a trace
whose corresponding path is ph in time t if and only if the formula Reach(H)(ph)[p, q, t]
holds.

2 Parallel Composition of Hybrid Automata

Given two or more hybrid automata with distinct variables we are interested in analyz-
ing the reachability problem when we let them run independently.

Definition 5 (Parallel Composition). Let Ha = (Za,Za
′,Va,Ea, Inva, Fa, Acta, Resa)

and Hb = (Zb,Zb
′,Vb,Eb, Invb, Fb, Actb, Resb) be two hybrid automata over distinct

variables. The parallel composition of Ha and Hb is the hybrid automaton Ha ⊗ Hb =
(Z,Z′,V,E, Inv, F , Act, Res), where:

– Z (Z′) is the vector obtained by concatenating Za and Zb (Za
′ and Zb

′, respec-
tively);

– V = Va × Vb;
– E = (Ea × Eb)∪ (Ea ×Vb)∪ (Va × Eb) and θ(〈ea, eb〉) def

= 〈θ(ea), θ(eb)〉, θ(〈va, eb〉) def
=

〈va, θ(eb)〉, and θ(〈ea, vb〉) def
= 〈θ(ea), vb〉 for all θ ∈ {Source, Dest};

– Inv(〈va, vb〉)[Z]
def
= Inva(va)[Za] ∧ Invb(vb)[Zb];
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– Dyn(〈va, vb〉)[Z,Z′,T]
def
= Dyna(va)[Za,Za

′,T] ∧Dynb(vb)[Zb,Zb
′,T];

– Act(〈ea, eb〉)[Z]
def
= Acta(ea)[Za]∧Actb(eb)[Zb], Act(〈ea, vb〉)[Z]

def
= Acta(ea)[Za], and

Act(〈va, eb〉)[Z]
def
= Actb(eb)[Zb];

– Res(〈ea, eb〉)[Z,Z′] def
= Resa(ea)[Za,Za

′] ∧ Resb(eb)[Zb,Zb
′], Res(〈ea, vb〉)[Z,Z′] def

=

Resa(ea)[Za,Za
′]∧Zb

′=Zb, and Res(〈va, eb〉)[Z,Z′] def
= Za

′=Za∧Resb(eb)[Zb,Zb
′];

where va ∈ Va, ea ∈ Ea vb ∈ Va, and eb ∈ Eb.

Our notion of parallel composition is equivalent to those in [10,11] in the case of disjoint
set of events. The discrete graph underlying a parallel composition Ha ⊗ Hb can be a
multigraph, i.e., there can be more than one edge connecting two nodes. In particular,
this could happen if in either Ha or Hb there are self-loop edges. Hence, we should
introduce labels to distinguish different edges connecting the same pair of nodes. For
the sake of simplicity, we avoid this additional labeling in the rest of the paper, when
no ambiguity may result.

Example 1. Let us consider the o-minimal automata Ha = (〈Xa〉, 〈Xa
′〉, Va, Ea, Dyna,

Inva, Acta, Resa) and Hb = (〈Xb〉, 〈Xb
′〉,Vb, Eb,Dynb, Invb, Actb,Resb), where Vi =

{vi} and Ei = {ei}, for any i ∈ {a, b}, and

Ha: Dyna(va)
def
= Ẋa = −1 Hb: Dynb(vb) def

= Ẋb = −1
Inva(va)

def
= 0 ≤ Xa ∧ Xa ≤ 1 Invb(vb) def

= 0 ≤ Xb ∧ (Xb)2 ≤ 2
Acta(ea)

def
= Xa = 0 Actb(eb)

def
= Xb = 0

Resa(ea) def
= Xa

′ = 1 Resb(eb) def
= (Xb

′)2 = 2.

The automaton Ha ⊗ Hb is depicted in Figure 1. Ha ⊗ Hb is not o-minimal since it has
also identity resets. Moreover, it is possible that a variable is never reset along a cycle
of Ha ⊗Hb, e.g., Xb is never reset in the cycle ”〈ea, vb〉, 〈ea, vb〉”.

Ẋa = −1
∧

Ẋb = −1

Xa ∈ [0, 1]
∧

Xb ∈
[
0,
√

2
]

Xa = 0 ∧Xb = 0;
Xa

′ = 1 ∧Xb
′ =
√

2

〈ea, eb〉

Xa = 0;
Xa

′ = 1 ∧Xb
′ = Xb

〈ea, vb〉

Xb = 0;
Xa

′ = Xa ∧Xb
′ =
√

2

〈va, eb〉

Fig. 1. The hybrid automaton Ha ⊗Hb of Example 1
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It is easy to prove that (H1 ⊗ H2) ⊗ H3 reaches q from p in time t through a trace tr if
and only if H1 ⊗ (H2 ⊗H3) reaches q from p in time t through tr. Hence, we denote by
H1 ⊗ . . . ⊗Hm and

⊗m
i=1 Hi the composition of n automata.

As far as reachability is concerned, we first point out that we will study the reach-
ability problem over

⊗m
i=1 Hi considering only sets of points of the form I =

∏m
i=1 Ii

and F =
∏m

i=1 Fi, where Ii, Fi ⊆ Rd(Hi). To some extent, this simplification will allow
us to work on each Hi independently. In the general case, our results can be used to
both under-estimate and over-estimate reachability. Unfortunately, even with this as-
sumption, one may not always be able to ascertain the closure of reachability condition
under composition; namely, starting from a set I1 it may be possible to reach a set F1

in the automaton H1 and similarly, starting from a set I2 it may be possible to reach
a set F2 in H2, and yet starting from I1 × I2 in H1 ⊗ H2 it may not be possible to
reach F1 × F2. For instance, this happens if F1 is reachable only at time t = 1, while
F2 is reachable only at time t = 2. Moreover, the decidability of reachability is not
always preserved under parallel composition i.e., it is possible that reachability is de-
cidable over m classes C1, . . . ,Cm of hybrid automata, but not over the product class⊗m

i=1 Ci = {
⊗m

i=1 Hi | ∀i ∈ [1,m] Hi ∈ Ci} (see [11]).
O-minimal hybrid automata have always a finite bisimulation quotient. In [1], we

proved that the parallel composition of two o-minimal automata can have an infinite
simulation quotient. Hence, the standard quotienting techniques cannot be applied to
decide reachability on product automata.

However, it holds that the automaton
⊗m

i=1 Hi reaches the set
∏m

i=1 Fi from
∏m

i=1 Ii

in time t if and only if Hi reaches Fi from Ii in time t for each i ∈ [1,m]. Hence, in
order to study reachability over

⊗m
i=1 Hi, it would be necessary to better understand

the nature of timed reachability over each Hi for i ∈ [1,m].

Definition 6 (Timed-Reachability). Let H be a hybrid automaton. Given t ≥ 0, I, F ⊆
R

d(H) the (H, t, I, F)-timed-reachability problem consists in deciding whether there exist
two points i ∈ I and f ∈ F such that H reaches f from i in time t.

Timed-reachability is in general undecidable. However, the decidability of timed-
reachability is preserved by parallel composition and, when I and F are semi-algebraic
sets, timed-reachability is decidable over semi-algebraic o-minimal automata (see [2]).
Unfortunately, decidability of timed-reachability does not imply the decidability of
reachability, since there are an infinite number of time instants to be checked.

Intuitively, to decide reachability over the composition of many o-minimal automata,
we need to check that we can cycle on their loops elapsing the same amount of time.
This check involves both integer variables (i.e., the number of times a simple cycle is re-
peated) and real ones (i.e., the time elapsed on a simple cycle). In the following sections,
we first prove a result about decidability of a particular class of Diophantine systems
with semi-algebraic coefficients and, then, we reduce the decidability of reachability
for parallel composition of an arbitrary number of automata to it.

3 Linear Systems with Semi-algebraic Coefficients

A semi-algebraic set over R≥0 is a finite union of intervals and points such that: each
interval is characterized by algebraic numbers greater or equal to 0; each point is an
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algebraic number greater or equal to 0. Semi-algebraic sets are exactly those character-
izable through first-order formulæ over (R, 0, 1,+, ∗, <).

We consider systems of the following form

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n1
i=1 Ai ∗ αi + α =

∑n2
i=1 Bi ∗ βi + β∑n1

i=1 Ai ∗ αi + α =
∑n3

i=1 Ci ∗ γi + γ
. . .∑n1

i=1 Ai ∗ αi + α =
∑nw

i=1 Wi ∗ωi +ω

(1)

where capital letters denote variables ranging overN>0, while Greek letters denote real
coefficients. In particular, each coefficient can either be a non negative algebraic number
or range over a non negative interval characterized by algebraic numbers. Notice that,
since the coefficients can range over intervals, this can also be seen as a system of
equations and disequations in which some variables range in N>0, while other range
in R≥0. Intuitively, we can look at it as both a generalization of a linear system of
Diophantine disequations and an existential first-order formula involving both integer
and real variables. We are interested in the question of satisfiability of such systems.

We distinguish thee cases for the expressions involved in our systems: (a)
∑nd

i=1 Di ∗
δi+δ is punctual if all the involved coefficients are algebraic numbers; (b)

∑nd
i=1 Di∗δi+δ

is quasi-punctual if all δi’s are algebraic numbers, while δ ranges over an interval;
(c)
∑nd

i=1 Di ∗ δi + δ is non-punctual if at least one of the δi’s ranges over an interval.
An equation is punctual if both its left and right hand sides are punctual. It is quasi-
punctual if at least one of the involved expressions is quasi-punctual, while the other
one is either punctual or quasi-punctual. It is non-punctual if it involves at least a non-
punctual expression.

The algorithm we propose for deciding the satisfiability of System (1) first finds
the solutions of the punctual equations. Then these are refined considering the quasi-
punctual equations. And in the last step the non-punctual ones come into play. In par-
ticular, systems involving only punctual equations can be proved equivalent to linear
systems of Diophantine equations, which are decidable [12]. We can deal with the
quasi-punctual equations exploiting properties of the additive subgroups ofRq and other
results from Diophantine approximations [13,14]: closed subgroups of Rq are decom-
posable in a discrete component and a dense one; the discrete component requires a
“finite” number of checks; the dense one is “easy” to deal with. On the one hand, if the
punctual together with the quasi-punctual equations admit a finite number of solutions,
then we can test them on the non-punctual ones. On the other hand, if the punctual and
quasi-punctual equations have an infinite set of solutions, then we can always satisfy
also the non-punctual equations. All the details can be found in [2].

Since semi-algebraic sets are composed of a finite number of intervals and points,
the techniques presented above not only lead us to the decidability of systems of the
form (1) when each coefficient ranges over an interval, but also do so when they range
over non negative semi-algebraic sets.

Theorem 1. Let S be a system of the form (1), where capital letters denote variables
ranging overN>0, while Greek letters denote real coefficients ranging over some given
semi-algebraic sets included in R≥0. The satisfiability of S is decidable.
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4 Reachability over Parallel Composition

Now let H =
⊗m

i=1 Hi be the parallel composition of m semi-algebraic o-minimal
automata. We are interested in the reachability problem over H, i.e., we want to check
whether the set F =

∏m
i=1 Fi is reachable from I =

∏m
i=1 Ii. The considerations presented

in Section 2 lead us to the following characterization.

Lemma 1. Let H1, . . . ,Hm be m o-minimal hybrid automata. Moreover, for all i ∈
[1,m], let Ii, Fi ⊆ Rd(Hi) be sets of points characterized by the first-order formulæIi[Zi]
and Fi[Zi], respectively. It holds that

⊗m
i=1 Hi can reach

∏m
i=1 Fi from

∏m
i=1 Ii if and

only if, for all i ∈ [1,m], there is a path phi in Hi such that the following formula holds1.

∃T ≥ 0∃Z1, . . . ,Zm∃Z1
′, . . . ,Zm

′
m∧

i=1

(
Ii[Zi] ∧ Reach(Hi)(phi)[Zi,Zi

′,T] ∧ Fi[Zi
′]
)

Unfortunately, the model suggested by above lemma does not immediately provide any
decidability result, since we have to consider also an infinite number of cyclic paths. In
fact, it may be the case that in order to synchronize all the automata, it is necessary to
spend some time over their cycles.

To construct a decidable characterization for reachability over parallel compositions,
we exploit the existence of a canonical path decomposition: namely, given a semi-
algebraic o-minimal hybrid automaton, from any cyclic path of the automaton, we can
extract both an acyclic part, by removing all the cycles occurring in it, and a set of sim-
ple cycles. The global time necessary to cover the path is then equal to the sum of the
time necessary to cover the acyclic part plus multiples of the times we can spend over
the simple cycles. What is important is that in the case of o-minimal automata the time
we can spend over a cycle does not depend on the starting and ending point. We define
the operation which allows us to add a simple cycle to a path.

Definition 7 (Path Augmentability). Let ph, ph′ be two paths. We say that ph′ is aug-
mentable to ph if ph′ is a simple cycle starting and ending with the edge e and ph is a
path involving the edge e. If ph′ is augmentable to ph we denote by ph ⊕ ph′ the path
obtained by inserting ph′ in ph over the first occurrence of their common edge e, i.e., if
ph′ = ”e, ph′1, e” and ph = ”e1, . . . , ei−1, e, ei+1 . . . , en” where we explicitly identify the
first occurrence of e, then ph ⊕ ph′ = ”e1, . . . , ei−1, e, ph′1, e, ei+1 . . . , en”

Let PH′ be a set of (simple cyclic) paths we say that PH′ is augmentable to a path
ph if either PH′ = ∅ or there exists an ordering ph1, . . . , phl of the elements of PH′ such
that for each i ∈ [1, l] either phi is augmentable to ph or there exists j < i such that phi

is augmentable to phj.

Notice that if ph′ is augmentable to ph, then it is augmentable to ph⊕ph′ also. Moreover,
if ph is a cyclic path, then there exist ph1, . . . , phn, simple cyclic and acyclic, such that
ph = ph1 ⊕ . . . ⊕ phn.

1 The formula Reach(H)(ph)[Z,Z′,T] has been defined in [15].
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Let H be an o-minimal hybrid automaton and let ph = ”e1, . . . , em” be a path of H.
We define the following formula

R̃each(H)(ph)[Z,Z′,T] def
= ∃Z,Z′

(
Reach(H)(e1)[Z,Z] ∧ Reach(H)(em)[Z′,Z′]∧

Reach(H)(”e2, . . . , em−1”)[Z,Z′,T]
)

where Reach(H)(e)[Z,Z′] def
= (Act(e)[Z] ∧ Res(e)[Z,Z′]). It is easy to see that the

above formula characterizes all the traces, corresponding to ph, which start and end
with a discrete transition. Because of the constant reset condition imposed on o-minimal
automata, if both the formulæ R̃each(H)(ph)[a, b, t] and R̃each(H)(ph)[c, d, t′] hold, then

R̃each(H)(ph)[a, b, t′] holds also.
It follows that, if H is an o-minimal automaton, then we can use the formula

R̃each(H)(ph)[Z,Z′,T] to define the set of time instants Time(ph) in which ph can

be covered, i.e., Time(ph) def
= {t | ∃Z,Z′R̃each(H)(ph)[Z,Z′, t] holds}. Notice that, since

H is o-minimal by hypothesis, for each path ph of H the set Time(ph) is o-minimal. It
is easy to see that if a path ph′ is augmentable to a path ph and t is the time needed to
evolve through ph then the automaton can elapse a time t+ t′, where t′ ∈ Time(ph′), to
evolve through ph ⊕ ph′.

By using observations such as these, we can deduce the following lemma, which
characterizes the existence of a trace with elapsed time t, without having to examine an
infinite number of formulæ.

Lemma 2. Let H be an o-minimal hybrid automaton, let r, s ∈ Rd(H) and let t ∈ R≥0.
There exists a path ph such that Reach(H)(ph)[r, s, t] holds if and only if there exist a
path ph0 and a set of paths PH such that: (1) ph0 is acyclic; (2) PH = {ph1, . . .phl} is
augmentable to ph0; (3) we can choose α, a vector 〈A1, . . . ,An〉 ∈ Nn

>0 and a vector
〈α1, . . . , αn〉 ∈ Rn

≥0, with {αkj , . . . , α(k( j+1)−1)} ∈ Time(phj) and 1 = k1 < . . . < kl+1 =

n + 1, such that Reach(H)(ph0)[r, s, α] holds and t = α +
∑n

i=1 Ai ∗ αi.

This result suggests a class of verification techniques for timed-reachability on
o-minimal automata, but avoids testing an infinite set of formulæ. Moreover, exploiting
such result, we can propose the following characterization.

Theorem 2. Let H1, . . . ,Hm be o-minimal automata and Ij, Fj ⊆ Rd(Hj) be charac-
terized by the first-order semi-algebraic formulæ I j[Zj], F j[Zj] for all j ∈ [1,m]. The

automaton
⊗m

i=1 Hi reaches
∏m

i=1 Fi from
∏m

i=1 Ii if and only if, for each h ∈ {1, . . . ,m},
there exist an acyclic path phh, a set of paths PHh = {phh,1, . . . , phh,mh}, augmentable
to phh, a vector 〈Ah,1, . . . ,Ah,mh〉 ∈Nmh

>0 , and a vector 〈αh,1, . . . , αh,mh〉 ∈ Rmh
≥0 such that

{αkh, j , . . . , α(kh, j+1−1)} ∈ Time(phh, j), with 1 = kh,1 < . . . < kh,mh+1 = mh + 1, and there
is αh ∈ R≥0, satisfying both ∃Zh,Zh

′(Reach(Hh)(phh)[Zh,Zh
′, αh]∧Ih[Zh]∧Fh[Zh

′])
and the system ⎧

⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑n1
i=1 A1,i ∗ α1,i + α1 =

∑n2
i=1 A2,i ∗ α2,i + α2∑n1

i=1 A1,i ∗ α1,i + α1 =
∑n3

i=1 A3,i ∗ α3,i + α3

. . .∑n1
i=1 A1,i ∗ α1,i + α1 =

∑nm
i=1 Am,i ∗ αm,i + αm

(2)
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The number of both acyclic and simple cyclic paths of a hybrid automaton can be
bounded from above. Moreover, given a semi-algebraic set S ⊆ R, we can compute
the number of its connected components. Since, by Theorem 1, we can decide systems
such as the one shown above (Eq. 2), we get the following result.

Corollary 1. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all j ∈
[1,m], let Ij, Fj ⊆ Rd(Hj) be sets of points characterized by first-order semi-algebraic
formulæ. Whether

⊗m
j=1 Hj reaches

∏m
j=1 Fj from

∏m
j=1 Ij is decidable.

In this direct formulation of the positive result stating the decidability of reachability
problem, we have simply focused on the existence of a decision procedure and not its
time or space complexity. Furthermore, the infiniteness of simulation quotient gives a
hint of its inherent “hardness”. However, since the problem is central to any program
that focuses on a modular and hierarchical representation of hybrid automata, further
work will need to be devoted to the complexity issues. From what we wrote in Sec-
tion 3, we can deduce an algorithm which, in some (but frequent) cases, decides the
reachability problem over parallel composition of o-minimal hybrid automata with a
small overhead with respect to the time needed to decide the reachability problem over
its components.

Corollary 2. Let H1, . . . ,Hm be semi-algebraic o-minimal hybrid automata. For all j ∈
[1,m], let Ij, Fj ⊆ Rd(Hj) be sets of points characterized by first-order semi-algebraic
formulæ. If, for all j ∈ [1,m], there exists an acyclic path ph′j, a cyclic path ph′′j , and a

proper interval Oj ⊆ R≥0 such that ph′′j is augmentable to ph′j, Oj ⊆ Time(ph′′j ), and

Hj reaches Fj from Ij through ph′j, then
⊗m

j=1 Hj reaches
∏m

j=1 Fj from
∏m

j=1 Ij.

Hence, if the hypothesis in the above corollary holds, the reachability problem is com-
positional and can be decided by testing each component separately. In this case on
each component we can apply either the bisimulation based algorithm proposed in [5]
or the semi-algebraic geometry based one proposed in [9].

5 Applications in System Biology

As a first example assume that we are monitoring a patient who is under therapy with
two drugs, X and Y. X and Y have non-commensurate degradation curves and, hence,
they cannot be always injected at the same time. Let X′ = fx(X,T) and Y′ = fy(Y,T) be
degradation curves of X and Y. We can imagine that the levels of X and Y have to stay
in the ranges [xm, xM] and [ym, yM], respectively. When the machine monitoring the
patient found that X is in the critical range [xm, xl] (near the lowest admissible value)
it injects X. Similarly, when Y enters in the critical range [ym, yl] it is injected. We can
model this situation with the hybrid automata depicted in Figure 2. Since there are some
interactions between X and Y, we can imagine that, if X is in the interval [xa, xb] and
at the same time Y is in the interval [ya, yb], the patient can have some problems. Let
us assume that at time t = 0 the drug levels are x0 and y0, respectively. We have to
check if in the product of these automata the region [xa, xb]× [ya, yb] is reachable from
the initial point 〈x0, y0〉. This check can be performed automatically. If the answer is
positive, then critical ranges have to be refined.
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X ′ = fx(X,T )
X ∈ [xm, xM ]

X ∈ [xm, xl]
X ′ = xM

Y ′ = fy(Y, T )
Y ∈ [ym, yM ]

Y ∈ [ym, yl]
Y ′ = yM

Fig. 2. The hybrid automata depicting a clinical application of parallel composition

v1

Z ′
A = fA(A, T )
ZA ∈ [a, b]

v2

Z ′
A = gA(A, T )
ZA ∈ [a, b]

ZA ∈ [a, d]
Z ′

A = a

e2

ZA ∈ [c, b]
Z ′

A = b

e1

Fig. 3. The hybrid automaton representing the expression level of gene A

Our second example concerns the analysis of metabolic pathways. Imagine we are
studying two genes A and B involved in the same pathway. We have some time evolution
traces for the expression levels of both A and B. Analyzing the traces of A we observe
that we can represent its behavior with the automaton depicted in Figure 3. Similarly,
we can draw an analogous automaton for B. We can now exploit these automata to
study whether there exists a strong interaction between A and B. For instance if A is a
repressor for B and vice-versa, then in the product of the two automata from a region
near the maximum value of A and the minimum of B it should be possible to reach a
region near the minimum of A and the maximum of B and vice-versa.

In [16] we proposed a method to translate sets of gene profiles data coming from
Real-Time PCR experiments into semi-algebraic hybrid automata. In particular, we pro-
posed clustering techniques which allow to reduce the dimensions of the involved au-
tomata. The automata we used in [16] are not o-minimal, since some edges can involve
reset conditions of the form

∨r
i=1(Z = ai ∧ Z′ = bi). However, since the disjunctions

range over finite sets, it is immediate to translate them into o-minimal semi-algebraic
automata with multiple edges. Hence, the reasoning proposed above on genes A and B
can be applied and generalized in that context, in order to infer relationships between
genes. The combination of the techniques proposed in [16] with the results of this paper
suggests us to build one hybrid automaton for each cluster of genes and then to use their
parallel composition for the analysis of the relationships between different clusters. The
fact of building one hybrid automaton for each cluster ensures us to get substantial re-
ductions on the automaton dimensions, as proved in [16]. The results presented in this
paper allow us to combine and compare the behaviors of different clusters represented
by separate automata.

6 Synchronizing Automata and Exchanging Information

As noticed above, parallel composition provides a powerful and theoretically clean way
of modeling complex systems by combining simple component models. However, since



286 A. Casagrande et al.

the original hybrid automata should not share variables by definition, components can-
not “communicate” in models built by parallel composition, i.e., they evolve in isolated
environments without interacting. Still, the results of Section 4 can be used to prove
the decidability of reachability problem over a different kind of composition operator,
similar to that proposed in [10,11], which allows both interactions and synchronizations
between components during system evolution. For the sake of example, let us consider
the two semi-algebraic o-minimal hybrid automata H1 = (Z1,Z1

′,V1,E1, Inv1, F1,
Act1,Res1) and H2 = (Z2,Z2

′,V2,E2, Inv2,F2,Act2,Res2) depicted in Figure 4, where:

H1: Z1 = 〈X1,X2,X3〉 H2: Z2 = 〈X2〉
Dyn1(v1) def

= X′1 = X1 + T ∧X′3 = X3 Dyn2(v2) def
= X′2 = X2 + T

Dyn1(v′1)
def
= X′1 = 0 ∧ X′3 = X3 + T

Res1(e1) def
= X′1 = 0 ∧X′3 = 0 Res2(e2) def

= X′2 = 0
Res1(e′1)

def
= X′1 = 0 ∧X′3 = 0 ∧X′2 = 0

Inv1(v1) def
= X1 ≤ 1, Inv1(v′1) def

= X1 = 0 Inv2(v2) def
= X2 ≤

√
2

Act1(e1)
def
= X1 = 1, Act1(e′1)

def
= X1 + X2 > 2 Act2(e2)

def
= X2 =

√
2

v1 v′1e1
e′1 v2 e2

Fig. 4. The discrete projection of H1 and H2

Since H1 and H2 share the variable X2, we cannot model their synchronous evolution
by using parallel composition. However, one may notice that all the formulæ involving
X2 in H1 are related with e′1. Let H′1 be the automaton obtained by removing e′1 from
H1. It is easy to see that the concurrent evolution of H1 and H2 is representable by the
hybrid automaton H∗ obtained by providing H′1 ⊗ H2 of a further edge ē, from 〈v1, v2〉
to 〈v′1, v2〉, whose activation and reset formulæ are Act1(e′1) and Res1(e′1), respectively.

〈v1, v2〉 〈v′1, v2〉〈e1, e2〉

〈v1, e2〉

〈e1, v2〉

ē 〈v′1, e2〉

Fig. 5. The discrete projection of H∗

It follows that F is reachable from I in H∗ if and only if either F is reachable from
I or Act1(e′1) is reachable from I and F is reachable from Res1(e′1) in H′1 ⊗ H2. Hence,
we can exploit the results presented in this paper to decide reachability property on H∗.
Notice that a similar approach can be used also when shared variables appear in either
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dynamics or invariants. We leave both formal definition and applicability analysis of
synchronous composition for future work.

7 Conclusions

This paper extends our earlier work [1] showing that the reachability problem for paral-
lel composition of semi-algebraic o-minimal hybrid automata is decidable. To achieve
such a result, it exploited Tarski’s decidability result on semi-algebraic theory, density
results overR, algorithms for the membership problems over algebraic fields, and algo-
rithms for solving systems of linear Diophantine systems. Further, by showing that this
class of automata does not admit a finite simulation quotient (see [1,2]), we have proved
impossibility of obtaining such a result through standard finite quotient techniques.

Time-complexity issues limit the practical applicability of our result. Nevertheless,
it presents some intriguing theoretical features. Note first that, to prove the decidability
of parallel composition, we took advantage of the decidability of a rather simple mixed
real/integer problem. Such mixed approaches, in some sense, reflect the continuous-
discrete behavior described by hybrid systems.

Our decidability results may be surprising, in the context of Miller’s undecidability
results [11], but can be explained as follows. While we require constant resets on au-
tomata components, Miller admitted both constant and identity resets. Hence, he could
test the value of a variable through an activation and do not change it by applying an
identity reset. This is a fundamental gadget in the construction of the two-counter Min-
sky machine encoding needed to prove the undecidability result (see Figure 3 in [11]),
but it is inapplicable in our case.

Finally, the technique of this paper emphasizes the hardest cases to decide and sug-
gests a class of automata for which the reachability problem of parallel composition can
be reduced to reachability problems on each component.

References

1. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Composing semi-algebraic o-minimal
automata. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416,
pp. 668–671. Springer, Heidelberg (2007)

2. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Parallel composition of semi-algebraic
o-minimal automata (January 2008),
http://www.dimi.uniud.it/piazza/PAPERS/parallel.pdf

3. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded Systems.
In: IEEE Real-Time Systems Symposium 1993, pp. 2–11. IEEE Press, Los Alamitos (1993)

4. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
In: Proc. of Symp. on Theory of Computing (STOCS 1995), pp. 373–382 (1995)

5. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics of Control,
Signals, and Systems 13, 1–21 (2000)

6. Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-Minimal Hybrid Systems. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg
(2004)

http://www.dimi.uniud.it/piazza/PAPERS/parallel.pdf


288 A. Casagrande et al.

7. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. California Press
(1951)

8. van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society
Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

9. Casagrande, A., Piazza, C., Mishra, B.: Semi-Algebraic Constant Reset Hybrid Automata -
SACoRe. In: Proc. of the 44rd Conference on Decision and Control (CDC 2005), pp. 678–
683. IEEE Press, Los Alamitos (2005)

10. Henzinger, T.A.: The Theory of Hybrid Automata. In: Proc. of IEEE Symposium on Logic
in Computer Science (LICS 1996), pp. 278–292. IEEE Press, Los Alamitos (1996)

11. Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-linear Hy-
brid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–
309. Springer, Heidelberg (2000)

12. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In:
Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991)

13. Bourbaki, N.: Elements of Mathematics. General topology II. Springer, Heidelberg (1989)
14. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Math-

ematics, vol. 138. Springer, Heidelberg (1993)
15. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Synchronized product of semi-

algebraic o-minimal hybrid automata. Technical report, University of Udine (October 2006),
http://fsv.dimi.uniud.it/papers/syncro.pdf

16. Casagrande, A., Casey, K., Falchi, R., Piazza, C., Ruperti, B., Vizzotto, G., Mishra, B.:
Translating Time-Course Gene Expression Profiles into Semi-algebraic Hybrid Automata
Via Dimensionality Reduction. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS,
vol. 4545, pp. 51–65. Springer, Heidelberg (2007)

http://fsv.dimi.uniud.it/papers/syncro.pdf


On the Applicability of Stochastic Petri Nets for

Analysis of Multiserver Retrial Systems with
Different Vacation Policies

Nawel Gharbi

Department of Computer Science,
University of Sciences and Technology USTHB,

Algiers 16111, Algeria
ngharbi@wissal.dz

Abstract. This paper deals with retrial systems where servers are sub-
ject to random vacations. So far, these systems were analyzed only by
queueing theory and almost works assumed that the service station con-
sists of one server and the customers source is infinite. In this paper,
we give a detailed qualitative and performance analysis of finite-source
multiserver retrial systems with multiple and single vacations of servers
or all station, using Generalized Stochastic Petri nets. We show how this
high level stochastic model allows us to cope with the complexity of such
systems involving the simultaneous presence of retrials and vacations,
and how stationary performance indices can be expressed as a function
of Petri net elements.

Keywords: Multiserver retrial systems, Finite-source, Vacation policies,
Generalized Stochastic Petri nets, Modeling and Performance measures.

1 Introduction

Retrial systems (or systems with repeated calls) have gained a particular atten-
tion in the last two decades from practicians and theoreticians searchers [4,9,26].
That is mainly explained by the advances in telecommunication and computer
networks areas. These systems are characterized by the following feature: a cus-
tomer finding all servers busy or unavailable upon arrival, is obliged to leave
the service area, but after some random time, he repeats his demand. Between
trials, the customer is said to be in orbit. For a comprehensive review of the fun-
damental methods and results, the interested reader is referred to the surveys
papers by Artalejo [4,11] and the monograph by Falin and Templeton [10].

In this paper, we consider multiserver retrial systems in which each server
sometimes takes a vacation i.e. becomes unavailable to the primary and repeated
calls for a random period of time. These vacation periods are usually introduced
in order to exploit the idle time of the servers for other secondary jobs as: servic-
ing customers of another system, inspection tasks and preventive maintenance
actions which are mainly doing to prevent the risk of failure, to preserve the
sanity of the system, to provide a high reliability and to improve the quality

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 289–302, 2008.
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of service. Similarly, the servers breakdowns which may occur randomly, inde-
pendently of the system status, and also the repair periods may be regarded as
server vacations.

A wide class of policies for governing the vacation mechanism, have been dis-
cussed in the literature, namely the multiple vacation policy [6,22] and the single
vacation policy [19,25,27]. On the other hand, some works have considered the
vacation of a server independently of other servers [5,20] and other studies have
considered synchronous vacations of some servers [22,27,28] or all the station
servers (station vacation) [6]. However, all these works on multiserver vacation
queueing models [23], do not take into account the repeated calls of blocked
customers.

In retrial systems with vacations, customers who arrive while all servers are
busy or on vacation, have to join the orbit to repeat their call after a random
period. Thus, there is a natural interest in the study of this class of models,
which has been used in concrete applications as digital cellular mobile networks
[16], local area networks with nonpersistent CSMA/CD protocols [17], with star
topology [14] and so on. However, almost works combining retrial and vaca-
tion phenomenon, assume that the service station consists of one single server
[1,3,7,14,15,16,17,24] and the customers source is infinite [1,3,7,15,24]. On the
other hand, in all the works cited above, the retrial systems with vacations are
analyzed only by the queueing theory.

The Generalized Stochastic Petri nets (GSPNs) [2] are an important graphical
and mathematical model appropriate for describing and analyzing stochastic
systems that exhibit concurrency and synchronization. It allows to verify the
qualitative properties and to obtain performance indices either with analytic
means or by numerical algorithms. On the other hand, using GSPNs allows us
to incorporate features that may be difficult to model directly by Markov chains.

In the past decade, this formalism has received much attention from re-
searchers in the performance and reliability arena, and have been extensively
used for analytical modeling in the context of independability, performance and
performability of computer, telecommunication, manufacturing and aerospace
systems.

In this paper, we give a detailed qualitative and performance analysis of
finite-source retrial systems with multiple servers subject to vacations, using
the GSPNs. We show how this high level stochastic model allows us to cope
with the complexity of such systems involving the simultaneous presence of re-
trials and vacations, and how several performance indices can be expressed as a
function of Petri net elements, for the different vacation policies.

The modeling and the analysis of single server systems with vacations (without
retrials) using the GSPN model, was initially introduced by Trivedi in [21]. It
was then applied for retrial systems (without vacations) by Gharbi in [12]. The
present paper aims to combine both retrials and vacations in the same system.

The paper is organized as follows: First, we describe the systems under study.
In section 3, we present the GSPN models describing multiserver retrial systems
with station and server vacations mechanisms and under multiple and single va-
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cation policy. Qualitative analysis and performance indices are given in section 4.
Next, several numerical examples are presented with some comments and dis-
cussions. Finally, we give a conclusion.

2 Description of Retrial Systems with Different Vacation
Policies

In the analysis of retrial systems with vacations, it is usually assumed that
the customers source is infinite. However, in many practical situations, it is very
important to take into account the fact that the rate of generation of new primary
calls decreases as the number of customers in the system increases. Examples
of this behavior arise from the performance analysis of hybrid fiber-coax [13],
cellular mobile networks [18] and local area networks with collision avoidance
circuits and CSMA/CD protocols [14]. This can be done with the help of finite-
source retrial models where each customer generates its own flow of primary
demands.

In this paper, we consider retrial systems with finite source (population), that
is, we assume that a finite number K of potential customers generate the so
called quasi-random input of primary calls with rate λ. Each customer can be
in three states: generating a primary call (free), sending repeated calls (in orbit)
or under service by one of the servers.

If a customer is free at time t, it can generate a primary request for service
in any interval (t, t+ dt) with probability (K −n)λdt+ o(dt) as dt→ 0, where n
is the number of customers in the system. Each customer requires to be served
by one and only one server.

The service station consists of c (c ≥ 1) homogeneous and parallel servers.
Each server can be idle, busy or on vacation. If one of the servers is idle at the
moment of the arrival of a call, then the service starts. The requests are assigned
to the free servers randomly and without any priority order. The service times
are independent, identic and exponentially distributed with rate μ. After service,
the customer becomes free, so it can generate a new primary call, and the server
becomes idle.

We consider the two vacation mechanisms: server vacation and station vaca-
tion. For the first one, which is encountered even more often in practice, each
server is an independent working unit, and it can take its own vacation indepen-
dently of other servers states. In the model with station vacation mechanism,
all the servers take vacations simultaneously. That is, whenever the system is
empty, all the station leaves the system for a vacation, and returns when the
vacation is completed. So, station vacation is group vacation for all servers. This
occurs in practice, for example, when a system consists of several interconnected
machines that are inseparable, or when all the machines are run by a single op-
erator. In such situations, the whole station has to be treated as a single entity
for vacation. Hence, if the system (or the operator who runs the system) is used
for a secondary task when it becomes empty (or available), all the servers (the
operator) will then be utilized to perform a secondary task. During this amount
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of time, the servers are unavailable to serve any primary or repeated call and
this is equivalent to taking a station vacation.

The exhaustive service discipline is considered here. That is, each free server
(or all station) can take a vacation only if the system is empty at either a
service completion or at the end of a vacation, and only at these epochs. On the
other hand, upon completing a vacation, the server returns to the idle state and
starts to serve customers, if any, till the system becomes empty. Otherwise, if
the server (or the station) at the moment of returning from vacation, finds the
system empty, it takes one of the two actions:

– Under the multiple vacation policy, the server (station) shall leave immedi-
ately for another vacation and continues in this manner until he finds at
least one customer (not being served) in the system upon returning from a
vacation.

– Under the single vacation policy, the server (station) should wait until serving
one call at least before commencing another vacation.

The vacation times of all servers (or station) are assumed to be independent and
exponentially distributed with rate θ.

At the moment of the arrival of a call, if all the servers are busy or on vacation,
the customer joins the orbit to repeat his demand after an exponential time with
parameter ν.

As usual, we assume that the interarrival periods, service times, vacation times
and retrial times are mutually independent.

3 GSPN Models of Multiserver Retrial Systems with
Vacations

In this section, we present our approach for modeling finite-source multiserver
retrial systems with station and server vacations, under multiple and single va-
cation policies using the generalized stochastic Petri nets model.

A GSPN is a directed graph that consists of places (drawn as circles), timed
transitions (drawn as rectangles) which describe the execution of time consuming
activities and immediate transitions (drawn as thin bars) that model actions
whose duration is negligible, with respect to the time scale of the problem. This
class of transitions has priority over timed transitions and fire in zero time once
they are enabled.

Formally, a GSPN is an eight-tuple (P, T,W−,W+,Wh, π,M0, θ) where :
– P = {P1, P2, ..., Pn} is the set of places;
– T = {t1, t2, ..., tm} is the set of timed and immediate transitions;
– W−,W+,Wh : P ∗ T → IN are the input, output and inhibitor functions

respectively;
– π : T → IN is the priority function;
– M0 : P → IN is the initial marking which describes the initial state of the

system;
– θ : T → IR+ is a function that associates rates of negative exponential

distribution to timed transitions and weights to immediate transitions.
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3.1 Retrial Systems with Multiple Vacations of Servers

This model is used for describing many practical problems where servers take
individual vacations. This means, whenever a server completes servicing and
there are no more requests in the system, it takes a vacation independently of
other servers states. On the other hand, multiple vacations policy means that
at the end of a vacation period, if the orbit is empty and there is no primary
or repeated arrival, the server takes immediately another vacation. The process
continues until the server upon returning finds any customer in the system.

Fig. 1 shows the GSPN model describing the above system.
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Fig. 1. GSPN model of retrial systems with multiple vacations of servers

– The place Pa contains the free customers;
– The place Pe contains the primary or repeated (returning) calls ready for

service;
– The place Pd contains the free (available) servers;
– The place Po represents the orbit;
– The place Ps contains customers in service (or busy servers);
– The place Pv contains the servers that are on vacation.
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The initial marking of the net is:
M0 = {M(Pa),M(Pe),M(Pd),M(Po),M(Ps),M(Pv)} = {K, 0, c, 0, 0, 0}, which
represents the fact that all customers are initially free, the c servers are available,
no server is on vacation and the orbit is empty. Hence, at time t = 0, all servers
take a vacation simultaneously. So, this initial state is vanishing and equivalent
to the tangible state (K, 0, 0, 0, 0, c).

– The firing of transition ta indicates the arrival of a primary request generated
by a free customer. It has an infinite servers semantics, which is represented
by the symbol # placed next to transition. This means that the firing rate
of ta is marking dependent and equals λ.ED(ta,m) where ED(ta,m) is the
enabling degree of the transition ta in the marking m. Hence, all potential
customers are able to generate requests for service.

– At the arrival of a primary or repeated request to the place Pe, if Pd contains
at least one available server, the immediate transition X fires and one token
is deposited in Ps, which represents the beginning of the service. Otherwise,
if all servers are busy or on vacation (ie. no token in Pd), the immediate
transition Y fires and a token will be deposited in the place Po. So, the
customer joins the orbit.

– When the transition tr fires, the customer in orbit tries again for service, so
the system receives a repeated request.

– The firing of the immediate transition Z represents the event that an idle
server is commencing a vacation since there is no call left to be served. This
represents the exhaustive service discipline.

– The firing of transition tv represents the end of the vacation time. Hence,
the server is returned to the available state.

– When the timed transition ts fires, the customer under service returns to the
idle state and the server becomes ready to serve another customer.

– The service semantics of the timed transitions ts and tv are infinite servers
semantics, because the c servers are parallel. So, several servers can be in
service or on vacation at the same time. Similarly, the transition tr is marking
dependent because the customers in orbit are independent and can generate
repeated calls simultaneously.

3.2 Retrial Systems with Multiple Vacations of the Station

In this model, as soon as the system is empty of requests, all the servers become
idle, and consequently the station takes a vacation. As one may expect, this
situation appears to be more complicated that the previous one. In fact, it is
more simple, because all servers take a vacation simultaneously and return to
the system at the same time also. Hence, the GSPN modeling this system with
multiple vacations of the station, is the same model as the one given in Fig. 1,
in which the multiplicity of the arc connecting the place Pd to transition Z
and transition tv to place Pd equals c (rather than 1), because the c servers of
the station take a vacation together. So, if the place Pd contains c idle servers,
the orbit (Po) is empty and there is no arrival to the place Pe, the immediate
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transition Z fires, which represents the beginning of the station vacation time.
At the end of this period (after a mean delay equals 1/θ), c tokens corresponding
to the c servers of the station will be deposited in Pd. On the other hand, the
symbol # placed next to transition tv should be omitted, because only one token
can ever be in place Pv.

3.3 Retrial Systems with Single Vacations of Servers

This model corresponds to systems where each server is an independent working
unit. The single vacation policy means that at the end of a vacation period, even
if the system is empty, the server is obliged to wait until serving one call at least,
before commencing another vacation.

Fig. 2 shows the GSPN model describing the above system.
In the previous models with multiple vacations, the place Pd contains all the

free servers. Hence, at the end of a service or vacation period, the server returns
to the idle state represented by the place Pd. However, in the model with single
vacations given in Fig. 2, at a service completion, the server joins the place Pd
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Fig. 2. GSPN model of retrial systems with single vacations of servers
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which contains the servers having served at least one call since the last vacation
period. So, they can serve other calls if any (firing of transition X). Otherwise,
they can take a vacation after the firing of the immediate transition Z. However,
at the end of a vacation period, the server joins the place Pr which represents
the servers having just finished a vacation. Hence, the servers of Pr are obliged
to serve at least one call after the firing of the immediate transition W to join
the place Pd, where they can commence another single vacation.

Initially, all customers are free, the orbit is empty and the c servers are avail-
able to serve the calls or to take a vacation.

At the arrival of a primary or repeated request to the place Pe, several alter-
natives are possible:

– If the place Pr of servers just returning from vacation, contains at least one
server, the immediate transition W fires and the service of the arriving call
starts.

– If the place Pr is empty and the place Pd contains at least one free server,
the immediate transition X fires and the service period starts.

– If the two places Pd and Pr are empty which represents the fact that all the
servers are busy or on vacation, the immediate transition Y fires and a token
will be deposited in the place Po. So, the customer joins the orbit.

3.4 Retrial Systems with Single Vacations of the Station

The GSPN modeling systems with single vacations of the station is the same as
the model given in Fig. 2, in which the multiplicity of the arc connecting the
place Pd to transition Z and transition tv to place Pr equals c (rather than 1),
because the c servers of the station take a vacation together. At the end of this
period, c tokens corresponding to the c servers of the station will be deposited
in Pr. Hence, the station can’t take another vacation until each server serves at
least one call. On the other hand, as the place Pv contains one token at the most,
the symbol # describing the infinite server semantics of transition tv should be
omitted.

4 Performance Evaluation

The aim of this study is twofold. Firstly, we have to verify the correctness of
our models (bounded and live nets) and their ergodicity. Next, we derive the
formulas of the most important steady-state performance indices.

To verify the qualitative properties of the models under study, we used the
GreatSPN package [8] which is a software tool for modeling and analysis of par-
allel systems, based on the Petri net formalism. It provides a friendly framework
to experiment with GSPNs. The strong points of this package are: the use friend-
liness (in particular the availability of a graphical interface for model definition),
portability, modularity and particularly the efficiency of the analysis algorithms
which allow its use on complex systems.
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Compared with other tools, the peculiarity of GreatSPN is the attempt of
providing a more complete modeling and analysis environment, in which a variety
of efficient qualitative and quantitative analysis algorithms, for the steady-state
as well as transient performance evaluation are available. On the other hand, this
tool allows one to gain insight into the memory and CPU time requirements of
the solutions algorithms, because most of the algorithms currently implemented
in GreatSPN represent the state-of-the-art in terms of efficient utilization of
CPU and memory.

GreatSPN is composed of many separate programs that cooperate in the
construction and analysis of GSPN models by sharing files. Using network file
system capabilities, different analysis modules can be run on different machines
in a distributed computing environment.

4.1 Qualitative Analysis

The primordial qualitative property we have to verify is the boundness of the
proposed models. This property ensures that each place of the net is bounded.
The verification of this property is based on semi-flows computation and study,
which is in the GreatSPN implementation. We found that all places of each
model are covered by a semi-flow, so the nets are bounded. Hence, their state
spaces are finite. This is an important preliminary step, because it is hopeless to
try to compute the model state space for further analysis, if we know that the
model is unbounded.

The second important qualitative property is the liveness. A transition t is live
if from any reachable marking, there is a reachable marking enabling t. Thus, t
is live implies that the activity modeled by this transition can always take place
from any state. In the proposed models, all transitions are live.

Finally, another interesting qualitative property we had to check is the pres-
ence of home states. In fact, in the four models the initial marking is a home
state.

4.2 Stochastic Analysis

The proposed GSPN models are bounded and the initial marking is a home
state. Thus, the underlying continuous time Markov chains are ergodic.

The solution of each CTMC at steady-state is the probability distribution
vector π. This is computed as the solution of the linear system of equations
π.Q = 0 and

∑
i πi = 1, where Q is the infinitesimal generator matrix.

The numerical computation of the steady-state probability vector is imple-
mented in the GreatSPN by a variation of the Gauss-Seidel iterative solution.

Having the steady-state probability distribution π, several performance mea-
sures of multiserver retrial systems with vacations can be derived as follows.

In these formulas, Mi(P ) denotes the number of tokens in the place P in the
marking Mi, RS is the set of all accessible markings (Reachability Set) and E(t)
is the set of markings where the transition t is enabled.
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– The mean number of customers in orbit (no):
This correspond to the mean number of tokens in the place Po.

no =
∑

i:Mi∈RS

Mi(Po).πi (1)

– The mean number of busy servers (ns):
This corresponds to the mean number of tokens in the place Ps which is also
the mean number of customers under service.

ns =
∑

i:Mi∈RS

Mi(Ps).πi (2)

– The mean number of customers in the system (n):

n = ns + no (3)

– The mean number of servers on vacation (nv):
This represents the mean number of tokens in the place Pv.

nv =
{∑

i:Mi∈RS Mi(Pv).πi in servers vacations∑
i:Mi∈RS Mi(Pv).c.πi in station vacations (4)

– The mean number of idle servers (nf):

nf = c−(ns+nv)=
{∑

i:Mi∈RS Mi(Pd).πi in multiple vacations∑
i:Mi∈RS [Mi(Pd) + Mi(Pr)].πi in single vacations

(5)
– The mean rate of generation of primary calls (λ):

This represents the throughput of the transition ta.

λ =
∑

i:Mi∈E(ta)

Mi(Pa).λ.πi (6)

– The mean rate of generation of repeated calls (ν):
This represents the retrial frequency of customers in orbit. It corresponds to
the throughput of the transition tr.

ν =
∑

i:Mi∈E(tr)

Mi(Po).ν.πi (7)

– The mean rate of service (μ):
This represents the throughput of the transition ts.

μ =
∑

i:Mi∈E(ts)

Mi(Ps).μ.πi (8)
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– The mean rate of vacation (τ):
This represents the throughput of the transition tv.

τ =
∑

i:Mi∈E(tv)

Mi(Pv).θ.πi (9)

– The blocking probability of a primary call (Bp):

Bp =

⎧⎨⎩
∑

i:Mi∈RS

∑K
j=1 j.λ.Prob[Mi(Pa)=jandMi(Pd)=0]

λ
in multiple vacations

∑
i:Mi∈RS

∑K
j=1 j.λ.Prob[Mi(Pa)=jandMi(Pd)=0andMi(Pr)=0]

λ
in single vacations

(10)
– The blocking probability of a repeated call (Br):

Br =

⎧⎨⎩
∑

i:Mi∈A

∑K
j=1 j.ν.Prob[Mi(Po)=jandMi(Pd)=0]

ν in multiple vacations
∑

i:Mi∈A

∑K
j=1 j.ν.Prob[Mi(Po)=jandMi(Pd)=0andMi(Pr)=0]

ν in single vacations

(11)

– The blocking probability (B):
This represents the probability that a call either primary or repeated, finds
no idle server.

B = Bp + Br (12)

– The admission probability (A): This represents the probability that a
primary or a repeated call finds at least one idle server.

A = 1−B (13)

– Utilization of s servers (Us): (1 ≤ s ≤ c)
This corresponds to the probability that s servers at least are busy:

Us =
∑

i:Mi(Ps)≥s

πi (14)

– Vacation of s servers (Vs): (1 ≤ s ≤ c)
This corresponds to the probability that s servers at least are on vacation:

Vs =
{∑

i:Mi(Pv)≥s πi in servers vacations∑
i:c.Mi(Pv)≥s πi in station vacations (15)

– Availability of s servers (As): (1 ≤ s ≤ c)
This represents the probability that s servers at least are idle.

As = 1− (Us + Vs) (16)
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– The mean waiting time (W):
The mean waiting time W of the customers in the steady state, can be easily
obtained with the help of Little’s formula:

W = no/λ (17)

– The mean response time (R):

R = (no + ns)/λ (18)

5 Validation of Results

In this section, we consider some numerical results to validate the proposed mod-
els and also to show the influence of system parameters and vacation policies on
the performance measures of multiserver retrial systems. The numerical results
were established using the GreatSPN tool.

In Table 1, some experimental results are collected when the servers vacation
rate and the station vacation rate are very large. The results were validated by
the Pascal program given in the book of Falin and Templeton [10] for the analy-
sis of multiserver retrial queues without vacations. As it was expected, we can
see from this table, that for high vacation rate, the corresponding performance
measures for models with server vacation policy and station vacation policy are
very close to each other and to the case without vacation.

The parameter ρ = Nλ/μ, is defined as the largest offered load in the system.
Table 2 shows the variation of the mean response time with ρ, for the single
and multiple vacation policies, when the service station consists of one server
and the retrial rate is very high. From this table, we can see that the numerical
results are very close to those obtained by Trivedi [21] for single server queueing
systems with vacations and without retrials, since the retrial rate is very large.

Table 1. Validation of results in multiserver retrial case without vacations

Model without Model with Model with
vacation [10] servers vacation station vacation

Number of servers 4 4 4
Size of source 20 20 20
Primary call generation rate 0.1 0.1 0.1
Service rate 1 1 1
Retrial rate 1.2 1.2 1.2
Vacation rate - 1e+25 1e+25
Mean number of busy servers 1.800 748 1.800 768 1.800 758
Mean number of customers of 0.191 771 0.191 788 0.191 786
repeated calls
Mean rate of generation of 1.800 748 1.800 744 1.800 746
primary calls
Mean waiting time 1.106 495 1.106 518 1.106 510
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Table 2. Mean response time with N = 50, μ = 1, θ = 0.5, c = 1

ρ Models without retrials [21] Models with ν = 1e + 25
Multiple vacations Single vacations Multiple vacations Single vacations

0.1 3.107 1.494 3.106 810 1.493 581
0.3 3.391 2.370 3.390 962 2.370 404
0.5 3.834 3.172 3.833 990 3.172 221
0.7 4.592 4.152 4.592 591 4.152 760
0.9 6.000 5.718 6.000 657 5.719 090

6 Conclusion

In this paper, we proposed a technique that allows modeling and analyzing finite-
source multiserver retrial systems with different vacation policies using GSPNs.
The novelty of the investigation is essentially the combination of multiplicity of
servers with the simultaneous presence of repeated calls and vacations, which
make the system rather complicated.

The flexibility of GSPNs modeling approach allowed us a simple construction
of detailed and compact models for these systems. Moreover, it made it possible
to verify many qualitative properties of interest by inspection of the reachability
graph. From a performance point of view, the proposed approach offers a rich
means of expressing interesting performance indices as a function of the Petri
net elements.

Finally, many retrial and vacation systems problems and their solutions can
be simplified using the stochastic Petri nets modeling approach with all the
methods and tools developed within this framework.
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Abstract. We show how fault injection together with recent advances
in stochastic model checking can be combined to form a crucial ingredi-
ent for improving quantitative safety analysis. Based on standard design
notations (Statecharts) annotated with fault occurrence distributions we
compute to what extent certain fault configurations contribute to the
probability of reaching a safety-critical state.

1 Introduction

Today’s transportation systems become ever more complex and rely to a large
extent on embedded systems. Typically such systems come equipped with so-
phisticated redundancy and monitoring concepts to achieve a high degree of
fault-tolerance. Fault injection, that is the injection of particular failure behav-
iour into the nominal behaviour of a formal system model, has been proven to be
a suitable method to investigate the effectiveness of these fault-tolerance recipes.
Based on such an extended system model the ISAAC project [1] developed meth-
ods and tools to automatically compute fault trees [2] and extract Minimal Cut
Sets (MCSs). Intuitively, a MCS describes a minimal combination (i. e. no sub
set of an MCS is still an MCS) of faults that can cause a safety critical situ-
ation to occur. In [3] the application of these tools to an actual system from
the avionics domain and their integration into the established safety process are
presented.

However, in practice such qualitative analyses are not sufficient and quantita-
tive safety assessment, taking concrete fault occurrence rates (e. g. taken from
technical specification) into account, becomes imperative. The key problem for
assessing the quantitative impact of safety-critical fault configurations is to fac-
tor in the actually possible fault ordering as well as the transient nature of faults
that are both deeply integrated in the system and far from being evident. Ex-
pensive manual analyses of the concrete system dynamics and fault interplay
have to be performed in order to set up accurate stochastic models. But, since
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Fig. 1. Timed reachability analysis for Statemate - extended tool chain

those analyses are quite time consuming and can usually only be performed by
experts, simplified, naive methods are often employed to approximate results.
Making use of recent advances in stochastic model checking, in [4,5] a (plug-in)
extension of the industrial design tool Statemate [6] is presented enabling the
automated evaluation of timed reachability properties of the form:

“The probability to enter a safety critical system state within a mission time of
100 hours is at most 10−6.”

This paper presents a valuable extension of the work presented in [4,5]. Based on
a Statemate model extended by fault injection and annotated with fault occur-
rence distributions the probability of reaching a safety critical state is analysed,
taking into account all faults. Our extension makes it possible to determine the
contribution of particular MCSs to the over-all probability and thus to identify
those components, whose failing contributes most to reach a safety critical sys-
tem state. These components should be replaced or improved first in order to
improve the over-all system safety, for example if the requirements for certifica-
tion cannot be met. The benefits of our model-based approach are as follows:
The quantitative analysis is automated and can be performed directly on the
formal system model. Thus, no extra efforts are required and, as only the actu-
ally possible failure sequences are taken into account, more accurate probability
measures are derived compared to naive approaches.

We achieve this by encoding path information into the state space of a labelled
transition system (LTS). The principal set-up of the tool chain presented in [4,5]
and extended by this processing step is depicted in Fig. 1. We will refer to this
figure later. A brief overview of the tool chain is given in the next paragraph.

Tool Chain Overview. The over-all approach presented in [4,5] is compositional:
Stochastic Time Constraints, used to delay firing of particular (failure) transi-
tions, are introduced to the non-stochastic system model in a Minimisation and
Time Constraint Incorporation step, after the model has been minimised dras-
tically by building the Branching Bisimulation quotient. In particular, unique
(Failure) Transition Labels are used in the Extended Statechart formalism to ex-
pose relevant transitions by labels in a corresponding LTS. The same labels are
used to enrich absorbing continuous Markov chains (CTMCs) with “synchronisa-
tion potential” yielding a Stochastic Time Constraint [7]. This way, for example,
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time to failure distributions can be integrated into the system model LTS. Using
phase-type approximation [8] the incorporation of arbitrary stochastic delay dis-
tributions is possible [4,5]. The stochastic process algebra of Interactive Markov
Chains (IMCs) [9] is the key enabler that makes it possible to handle the or-
thogonal combination of LTSs and CTMCs. The path encoding, we present in
this paper, allows for the Computation of MCS Specific LTS Variants, retaining
the contribution of the faults in a particular minimal cut set, while disregarding
contributions of other faults. Note that the time constraint CTMCs are made
uniform. This uniformity is preserved during the different processing steps fi-
nally yielding a uniform continuous time Markov decision process (CTMDP) [10].
Further note that the Timed Reachability Analysis copes with model inherent
non-determinism (often used to represent under-specification or to specify an
unpredictable environment) by computing the worst-case probability to reach a
safety critical state within a given Time Bound among the existing choices.

Structure. In Sect. 2 we describe the modelling approach, how faults are specified
and furthermore introduce an example model that we will extend in Sect. 4 to
highlight benefits of our approach. Section 3 shows the construction of cut set
specific LTS variants. Concluding remarks are given in Sect. 5.

Related Work. Fault trees (FTs) are used to represent the dependencies of fail-
ures and other system events. Based on a FT stochastic models can be developed
to establish a quantitative analysis. Dynamic fault-trees (DFT), described in the
latest revision of the Fault Tree Handbook [2], are an extension of traditional
fault-trees and can be used to describe fault-tolerant systems and also relate
the FT to Markov models. The main differences to conventional FTs are the
introduction of the new, dynamic gate types Priority-And (PAND), Functional
Dependency (FDEP) and Spare. With these new gates it becomes possible to
express also sequences of events. For example only if all sub-events to a PAND
gate occur in the same order in which they are connected will the gate be acti-
vated. The Spare gate enables describing several standby configurations where
in the case of a fault in one basic component the function will be taken over
by another spare component. A spare gate allows sharing of these replacement
components between the different branches of the FT and will only propagate
the fault if no more spares are available that means all inputs to the spare gate
have failed. With these additional gates fault-trees become more expressive and
can be used to model systems that could previously not be described adequately.
However there are also drawbacks most notably the increased complexity of the
formalism for analysis as well as for the construction of the fault-tree although
there are some approaches (cf. [11]) that strive to overcome this issue. But an-
other problem of classical fault-tree analysis is still present with this extended
approach. Generating a DFT is usually a non-automated approach that requires
lots of manual steps and expert knowledge. This is an expensive step in terms of
money as well as in terms of time required to build the fault-tree. Keeping the
fault-tree in sync with an evolving system design requires even more effort.
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2 Extended Statecharts

In this section, following the lines of [5], we introduce extended Statecharts as the
user-visible formalism to specify behavioural models. We show how an extended
Statechart is translated into an LTS and thereby present a concise definition of
the formalism. The focus is set on the relevant core needed to clearly expose the
syntactical and semantic extensions to the conventional Statemate formalism.
We present a simple example to illustrate the translation and furthermore the
tool chain’s principles.

As indicated in Fig. 1, extended Statecharts rest upon two constituents,
namely (i) a Statemate description of the system under study and (ii) a set of
(failure) transition labels. These ingredients determine the semantics of extended
Statecharts. Additionally (iii) a safety requirement is used to characterise a sub-
set of system states to be safety critical. For example we identify all the states
where “sensor has failed without being detected” holds as safety critical. These
are the states we are interested in the timed reachability analysis, reaching one
of them is also considered as top level event (TLE).

While conventional Statecharts [12] support non-determinism, but no stochas-
tic time aspects, extended Statecharts allow one to refer to particular Statechart
transitions by a distinguished set of labels A that are later used as reference
anchors to synchronise with appropriately labelled stochastic time constraints.
This enables the modelling of stochastic, non-deterministic systems.

Example 1. The extended Statechart of Fig. 2 describes a simple train odometer
controller component. It comprises three orthogonal components. The Monitor
component detects faults in the Wheelsensor component, so that, in case of a
sensor fault, a brake manoeuvre can be initiated. A third component Observer
is not part of the system but a means to identify safety critical states.

Depending on the value of a non-deterministic input variable SPEED FAST, the
Wheelsensor can reach the node WF representing “sensor failed”. As soon as the
state WF is entered, the Monitor component will detect this and fire the (thin)
edge pointing to node BRAKE. Note that initiating this “emergency brake” is only

OBSERVER

MONITOR

M OK

WHEELSENSOR

ODOMETER CTRL

WOK WF

A

C

B

D

[SPEED FAST]

[not SPEED FAST]

START W FAIL F

START W FAIL S

WAIT W FAIL F

WAIT W FAIL S

SAFE WAIT TLE

[in(WF) and WSENSOR]

[not(in(WF) and WSENSOR)] SYNC

E BRAKE M FAILED

[in(WF)]/WSENSOR:=false;
EMERGENCY BRAKE;

WAIT MON FAIL

[true]/WSENSOR:=true

Fig. 2. An extended Statechart: a simple train odometer controller
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possible, if the Monitor is still working (i. e. in node E). In particular after firing
the (bold) edge pointing to node M FAILED node E will be left and the Monitor is no
longer sensitive to the guard in(WF) and thus can neither signal the Wheelsensor
status to other train components (WSENSOR:=false) nor initiate a break manoeuvre
(EMERGENCY BRAKE). The over-all compositional modelling approach allows us to de-
lay the occurrence of the WAIT MON FAIL edge using for instance a simple exponential
distribution determined by a rate λ. Likewise, the firing of edge WAIT W FAIL F can
be delayed w. r. t. START W FAIL F by rate μ. Thus, we can describe arbitrary fail-
ure behaviour of a component as part of the Statechart model and control the
occurrence of the injected failure behaviour by means of stochastic delays. In
addition, it is possible to incorporate delays to describe aspects of the nominal
(i. e. non failure related) behaviour.
Statecharts have an intuitive graphical syntax. We vary the corresponding tex-
tual syntax as follows.

Definition 1 (Extended Statecharts). An extended Statechart
SC = (N,A, V,G, S,E,m, r, d, c) is a 10-tuple, with

– N is a finite set of nodes,
– A a finite set of action labels,
– V a finite set of variables with a (possibly empty) subset I of input variables,
– G a finite set of boolean expressions on V,
– S a finite set of variable assignment statements,
– E ⊂ N ×A ∪̇ {τ} ×G × 2S ×N is a finite set of edges,
– m : N → {Basic, Or , And} is a type function, identifying nodes as Basic

nodes, Or nodes, or And nodes.
– r ∈ N, m(r) = Or is the root node of SC ,
– d : {n : n ∈ N ∧m(n) = Or} −→ N assigns a default node to each node of

type Or,
– c : N → 2N a child relation introducing hierarchy on N.

Example 2. The nodes WAIT and WHEELSENSOR are of type Basic and Or, respec-
tively. And node ODOMETER CTRL is the only child of the root node r. The hierarchy
determined by c is shown by nesting of states. Here d(Monitor) = E. The under-
lined identifiers in the Statechart define the set A (e. g. {SYNC, WAIT MON FAIL} ⊂ A).
Edge e01 = (E, τ, in(WF), {WSENSOR:=false;EMERGENCY BRAKE;}, BRAKE) is a τ -labelled Stat-
echart edge which we draw as a thin line by convention, while edges e02 =
(M OK, WAIT MON FAIL, true, {}, M FAILED) and e03 = (WAIT, SYNC, true, {}, TLE) are labelled by
elements of A and hence drawn bold. We implicitly define the guard g of such
bold edges to be always true.

For the sake of brevity, the above definition omits some well-formedness con-
ditions (cf. [12]) that are unchanged with respect to Statemate Statecharts.
The substantial extension to conventional Statecharts is the labelling of edges
by elements of A ∪̇ {τ}. We use the label τ for system internal behaviour, that is
for ordinary Statechart edges. Labels in A will be used for synchronisation with
“start” and “delay-expired” events of stochastic time-constraints. We emphasise
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that the behaviour of an extended Statechart is essentially in line with that of
conventional Statemate Statecharts, except that extended Statecharts allow
for a more refined control over which edges are allowed to be fired in orthogonal
components within one step. We introduce the following usual notions to deter-
mine this semantics. The scope sc(e) of an edge e ∈ E is the most nested Or state
that contains the edges nodes. We use de(n) to denote the depth of node n ∈ N in
the node hierarchy c and define de(SC) = max

(
{de(n) : n ∈ N}

)
. The priority

of an edge e is given by its scope distance from the root r. We define the priority
relation e ≤p e′, s. t. e ≤p e′ iff de(SC)− de

(
sc(e)

)
≤ de(SC)− de

(
sc(e′)

)
. Two

edges e, e′ ∈ E are orthogonal, denoted e⊥e′, iff either e = e′ or their scopes
are different children of some And node or their descendants. In the example
Statechart, it holds e01⊥e03 and e01 �⊥e02, for example.

Definition 2 (Configurations). Let D be the data domain of the variables V.
A configuration of an extended Statechart SC is a pair c = (M,σ) ∈ C ⊂ 2N×Σ,
where Σ is the set of all variable valuations σ : V\I → D and M is a set satisfying
1. r ∈M
2. n ∈M, m(n) = Or implies ∃!n′ ∈ c(n) : n′ ∈M
3. n ∈M, m(n) = And implies ∀n′ ∈ c(n) : n′ ∈M

Such a node set M is called a valid node configuration. We denote c0 for the
unique initial configuration of Statechart SC, given by an initial valuation of the
variables σ0 and the node configuration determined by d. The set of all configu-
rations of SC is denoted by C.
With dc(M ⊂ N) we refer to the default completion, as the smallest superset of
node set M , so that dc(M) is a valid node configuration. In particular dc(M)
comprises the default node d(n), for all those Or nodes n ∈ dc(M), that are not
already represented by a child node in M . The scope completion scc(e) of edge
e is the maximal set of child nodes derived by recursive application of c to the
edges scope node sc(e).

Intuitively, configurations comprise all current Basic nodes and their parent
nodes (given by inverse of c) and a valuation of the variables V. The state space
of the system LTS is defined over such configurations. We will now define the
transition relation between configurations and thus define how labels in A affect
the semantics of the edges they label. An extended Statechart can be considered
as a labelled transition system using the following transition relation.

Definition 3 (Transition Relation). For extended Statechart SC the transi-
tion relation −→ ⊆ C×A ∪̇ τ × C is composed of two types of transitions:
Internal Step. c = (M,σ) τ−→ c′ = (M ′, σ′), iff there exists a maximal set of
edges E =

{
ei : e1≤i≤k = (ni, ai, gi, si, n

′
i) ∈ E

}
so that

1. E ⊆ Een =
{
e = (n, a, g, s, n′) ∈ E : n ∈M and g evaluates to true in σ

}
.

2. ∀ei ∈ E : ai = τ and ∀ei, ej ∈ E : ei⊥ej.
3. ∀e ∈ Een \ E ∃e′ ∈ E, s. t. e �⊥e′ and e ≤p e′.

and σ′ is obtained from σ by applying the statement sets s1≤i≤k in some permu-
tation on σ and M ′ = dc((M \

⋃k
i=1 scc(ei)) ∪ {n′

i}1≤i≤k).
External Step. c = (M,σ) a−→ c′ = (M ′, σ′), iff
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1. �e = (n, τ, g, s, n′) ∈ E : n ∈M and g evaluates to true in σ.
2. ∃e = (n, a, g, s, n′) ∈ E : a ∈ A and n ∈M

and σ′ is obtained from σ by applying the statement set s on σ and M ′ =
dc((M \ scc(e)) ∪ {n′

i}1≤i≤n).

In a nutshell, the Internal Step rule defines conventional Statechart configura-
tion transitions that comprise firing of a maximal set of τ -labelled (thin) edges
in orthogonal components and thus implements truly concurrent executions. In-
stead the External Step rule restricts the (bold) labelled edges to be fired in
mutual isolation and only if no τ -labelled edge can be taken. Since bold edges
relate to time-relevant events, this mutual isolation allows us to recover partic-
ular configuration transitions, relative to other transitions. The semantics also
gives (non time consuming) internal steps precedence over external steps. This
idea of timeless computation is typical for the super-step semantics of State-

mate Statecharts [12]. We allow hiding of action labels (i. e. replace particular
labels in A by τ). This allows us to maintain the effect of external steps with-
out keeping their labels. For example we can hide the label Sync in the example
Statechart. However, within this paper, we will keep the Sync label for simplicity.
Given an extended Statechart and a set Ncr of safety-critical nodes (as specified
by a Safety Requirement, cf. Fig. 1) we derive an LTS as follows.

Definition 4 (LTS Extraction). Given a set of safety critical nodes Ncr ⊂ N
of extended Statechart SC = (N,A, V,G, S,E,m, r, d, c), with initial configu-
ration c0, SC can be considered as an LTS M = (SM , ActM , CM , TM , sM

0 ) by
setting
– SM = C ∪̇ {cinit}, the set of all valid configurations in SC plus a unique

pre-initial state cinit.
– ActM = A ∪̇ {τ} ∪̇ {INIT}, the set of labels occurring in the Statechart steps

plus a unique label INIT.
– CM =

{
c = (Mc, σc) ∈ SM : M

c
∩Ncr �= ∅

}
, the set of safety critical states.

– TM =
{
(cinit, INIT, c0)

}
∪
{
(c, a, c′) : c

a−→ c′
}
⊆ SM ×ActM ×SM , the set of

transitions possible between the Statechart configurations plus an additional
transition cinit

INIT−→ c0, introduced to represent the system start.
– sM

0 = cinit, a pre-initial configuration of Statechart SC.

Note that here we use nodes, such as the node TLE in the example, to identify
safety critical states of SC and thus also the set CM of critical LTS states.
Instead of this explicit automata based encoding other specification mechanisms
such as temporal logic expressions could also be used.

Example 3. The left part of Fig. 3 shows the LTS that has been constructed from
the extended Statechart in Fig. 2 with Ncr = {TLE} (defining the top-level event
to be an undetected sensor fault). The dashed boxes indicate which states are
considered equivalent under branching bisimulation yielding the depicted quo-
tient LTS. We use shortcuts to refer to the labelling in the extended Statechart
(e. g. SF stands for START W FAIL F). In Fig. 3 the state c01 is the only safety critical
state. If the Wheelsensor fails (leaving state c02 by edge WS or state c03 by edge WF)



310 E. Böde et al.

c0

c11 c04 c06 c05 c12

c09 c02 c03 c10

ca cc ce

c01 cb cd c08

τ τWMF WMF

WMF WMF

SS SS SF SF

INIT

τ

SY NC

τ τ WMF

WS

WF

WS

WF

c0

c11 c04 c06 c05 c12

c09 c02 c03 c10

c13 c07

c01 c08

τ τWMF WMF

WMF WMF

SS SS SF SF

INIT

SY NC WMF

WS WF
WS

WF

Fig. 3. LTS and quotient LTS for the odometer Statechart

the system goes to a configuration where no safety-critical states can be reached
anymore (the Monitor detected the sensor fault). If the monitor fault occurs be-
fore the Wheelsensor fails (e. g. leaving state c04 or state c03 by edge WMF), then the
system will finally enter state c01. There are two pairs of (failure) sequences that
lead to the safety critical state: (i) INIT,τ,WMF,SS,WS,SYNC;INIT,τ,SS,WMF,WS,SYNC and (ii)
INIT,τ,WMF,SF,WF,SYNC; INIT,τ,SF,WMF,WF,SYNC. In each of this sequences WMF precedes the
label WS or WF, respectively. The pairs result from the different failure scenarios in
the Wheelsensor component.
Thus, to actually assess the quantitative impact of the faults on the top-level
event, we have to distinguish the paths where these faults occur. Section 3 shows
how we can incorporate the necessary path information into the state space of
the investigated system. We complete the specification of the example by provid-
ing the time constraints for the extended Statechart of Fig. 2. We furthermore
provide the uCTMDP derived for this model.

Example 4. The left part of Fig. 4 shows the time constraint IMCs (cf. Fig. 1)
that are incorporated into the LTS of Fig. 3. Each of the three time constraints
is derived by a simple absorbing CTMC (drawn grey). These CTMCs are then
equipped with a new initial state and labelled edges for synchronisation with
the system model LTS. Note that the derived IMCs are made uniform. This
uniformity is preserved all along the tool chain. Given these time constraint IMCs
and the LTS of Fig. 3 the tool chain presented in [5] computes the uCTMDP
depicted in the right part of Fig. 4. Here state s5 is the critical state as indicated
by the self-loop labelled tle. State s3 is a sink state that results from those paths
in the LTS that do not finally yield a safety critical system state. In our example,
the Monitor introduces such a sink by a safe shutdown. Non-determinism is present
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Fig. 4. Time constraints and uCTMDP for the odometer
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in the states where more than one τ labelled edge emanates. The forking (dashed
drawn) edges represent races. For the sake of brevity, we introduce rate κ =
λ + ν + μ.

3 LTS Transformation

In this section, we show how we encode the context of faults into the state
space of an LTS. The basic idea of our approach to establish model based im-
portance analysis for minimal cut sets is as follows. First, given an LTS M =
(SM , ActM , TM , CM , sM

0 ), we compute an enhanced variant L = (SL, ActM , TL,
CL, sL

0 ), by coding label sets describing the path history (starting in the initial
state of M) to each particular state in M into the state space of L. Note, that for
optimisation purposes we follow [4,5] and use the equivalent quotient LTS, de-
rived by symbolic branching bisimulation minimisation to compute the enhanced
variant LTS.

A path s0
b−→ s1

τ−→ s2
a−→ s3

τ−→ s4
a−→ s5 in M , for example, would

yield a new state, described by the pair (s5, {a, b}) representing the fact that
state s5 is reachable in M by a path that comprises at least single occurrences
of the labels b and a. That is, we do neither code the concrete number of labels
nor occurrences of τ transitions into the state space of L, keeping the overall
number of states, O(|SM | · 2|ActM |) in the worst case, in L manageable in size.
We formalise this notion of path history in the following definition.

Definition 5 (Path History). Let M = (SM , ActM , TM , CM , sM
0 ) be an LTS.

Path. A possibly infinite sequence of transitions
π =

(
πi = (si, ai, s

′
i)
)

i∈N
= π0, π1, ... ∈ (SM×ActM×SM)∗∪(SM×ActM×SM)ω

is called a path in M , iff ∀(si, ai, s
′
i)∀(sj , aj , s

′
j)(

(si, ai, s
′
i) ∈ TM ∧ (sj , aj , s

′
j) ∈ TM ∧ j = i + 1 → sj = s′i

)
.

We denote π0 to refer to the first transition in π and πi for the i-th transition.
src(π) denotes the source state of π0, last(π) the target state of the last transition
in a finite path π.

Path History. For a given label set D ⊆ ActM and state s0 ∈ SM , we define
ΠD

M (s0) =
{
π : src(π) = s0 ∧

(
∀a ∈ D ∃si, s

′
i ∈ SM : πi = (si, a, s

′
i)
)
∧

π is a path in M
}

as the set of D-history paths in M .
The set ΠD

M (s0) of D-history paths, describes all paths in M , starting in s0,
that comprise at least one occurrence of the labels in D. Given an LTS M =
(SM , ActM , TM , CM , sM

0 ), we compute the enhanced variant LTS L = (SL,
ActM , TL, CL, sL

0 ) as follows.

Definition 6 (eLTS). Let M = (SM , ActM , TM , CM , sM
0 ) be an LTS. We call

the LTS L =
(
SL ⊆ SM × 2ActM

, ActM , TL, CL, (sM
0 , {})

)
enhanced M , iff

1.
(
(s,D), a, (s′, D ∪ {a})

)
∈ TL ⇔ a �= τ ∧ (s, a, s′) ∈ TM ∧

(
∃π ∈ ΠD

M (s0) :
last(π) = s ∨ s = s0 ∧D = {}

)
∧ s /∈ CM
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2.
(
(s,D), a, (s′, D)

)
∈ TL ⇔ a = τ and (s, a, s′) ∈ TM ∧

(
∃π ∈ ΠD

M (s0) :
last(π) = s ∨ s = s0 ∧D = {}

)
∧ s /∈ CM

3. CL =
{
(s,D) : s ∈ CM ∧ ∃π ∈ ΠD

M (s0) : last(π) = s
}

While computing L, we preserve the semantics of M w. r. t. the timed reachabil-
ity analysis, that is, we neither remove nor add paths starting in the initial state
of M to the first occurrence of its critical states. In particular, the LTS M and its
enhanced variant are obviously strong (and thus also branching) bisimilar [13,14]
by construction. The equivalence classes on L are induced by the state-pairs state
component, yielding the coarsest branching bisimulation equivalent M (that we
originally computed using the symbolic branching bisimulation [15] as described
in [4,5]1). The property of the enhanced LTS to be in a strong bisimilarity re-
lation to the original LTS is sufficient to justify their substitutability for the
subsequent analysis (cf. [9], p.73, theorem 4.3.1 and [17]).

Example 5. For our running example, we derive the enhanced LTS of Fig. 5 from
the LTS depicted in Fig. 3. This representation comprises the same sequences as
the original LTS but allows for a more detailed analysis: The two critical states
(c01, ·) correspond to the different failure scenarios described in example 3. Thus,
now these states may be distinguished by the failure sequences that caused them.

In a second step, we establish differentiated timed reachability analysis for L. We
only have to shrink the set of critical states CL to particular subsets dependent
on a given minimal cut set mcsi ∈ MCS, where MCS = {mcs1, . . . ,mcsn} ⊆
2ActM

denotes the set of all MCSs. In the enhanced variant LTS L for each
state scr = (scr, Dcr) ∈ CL label set Dcr encodes the concrete failure (la-
bel) set that caused the particular safety critical state scr. As we are inter-
ested in the contribution of all failure scenarios (i. e. paths) that require at
least the occurrence of the faults in the minimal cut set mcsi, we analyse
cut set specific LTS variants. For an enhanced LTS L we analyse the LTS
Lmcsi =

(
SL, ActM , TL, Cmcsi , (s0, {})

)
, where Cmcsi =

{
(s,D) : (s,D) ∈

CL ∧mcsi ⊆ D}. Note that our prototypical implementation of the described
LTS transformation is able to extract the set of minimal cut sets MCS by
analysing all label sets Dcr. Fig. 6 summarises the intuition of the transforma-
tion step. Given an LTS (a), the enhanced variant (b) is computed by unfolding
the paths in (a). This LTS encodes the paths of the original LTS in a differenti-
ated manner. Here, each of the critical states is related to one particular minimal
cut set. The analysis of the two cut set specific variants (c) and (d) using the
tool chain back-end (cf. Fig. 1) entails the disregard of minimal cut set {a, c}
for (c) and {a, b} for (d), respectively. One benefit of our model based approach
is that only those failure sequences that indeed cause a safety critical state are
considered. For example the multiple occurrence of fault c. In contrast the naive
approach, frequently used in practice, to determine the cut set specific measures
would be to multiply the single failure probabilities. For cut set {a, c}, given
1 As detailed in [4,5] we consider safety-critical states and non safety-critical states

non-bisimilar by definition. A more detailed discussion of the related issue of state
vs. transition labelling in IMCs can be found in [16].
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Fig. 5. Unfold LTS for the odometer Fig. 6. Overview: (a) LTS (b) eLTS (c)
LTSmcs{a,b} (d) LTSmcs{a,c}

the constant failure rates λa, λc this approach yields a less accurate probability
measure: Q(t){a,c} = (1− e−λa t) · (1− e−λc t). We consider all faults (stochastic)
independent and assume that common mode analysis has been carried out in
order to validate this assumption.

4 Case Study

In this section, we enrich the train odometer example of Sect. 2 and furthermore
present numbers for a more complex model, to show the general feasibility and
scalability of our approach2.

4.1 A Train Odometer Controller

The odometer system under study consists of two independent sensors used to
measure speed and position of a train. A Wheelsensor is mounted to an un-
powered wheel of the train to count the number of revolutions. A Radarsensor
determines the current speed by evaluating the Doppler shift of the reflected
radar signal. We consider transient faults for both sensors. For example water
on or beside the track could interfere with the detection of the reflected signal and
thus cause a transient fault in the measurement of the Radarsensor. Similarly,
skidding of the wheel affects the Wheelsensor. Due to the sensor redundancy
the system is robust against faults of a single sensor. However it has to be
detectable to other components in the train, when one of the sensors provides
invalid data. For this purpose a Monitor continuously checks the status of both
sensors. We will focus on this monitoring aspect of the system. Figure 7 shows
the corresponding Statechart model. The Radarsensor starts in the initial state
ROK and, when a fault occurs, enters state RF. The transient nature of the fault is
implemented by the transition back to the state ROK. The Wheelsensor behaves
like the Radarsensor with the exception that the rate for the fault depends on
the current, non-deterministically selected, Speed of the train. Whenever either
2 The experiments were carried out on a PC with P4 3GHz processor and 1GB RAM.



314 E. Böde et al.
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[in(RF)]/
RSENSOR:=false;

WAIT MON FAIL

[true]/WSENSOR:=true;RSENSOR:=true;

Fig. 7. A train odometer controller

the Wheelsensor or the Radarsensor fail and enter the WF or RF state respectively
this is detected by the Monitor and the corresponding status variable (WSENSOR or
RSENSOR) is set to false. This information can be used by other train components
that have to disregard temporary erroneous sensor data. Due to the robustness
against single faults and since both sensor faults are transient the system even
can recover completely from such a situation. If both sensors fail the system is
shut down by the Monitor (i. e. a brake manoeuvre is initiated), but also in this
case the system is safe. Only if the Monitor fails first, any subsequent faults
in the sensors will no longer be detected. Since now the train may be guided
by invalid speed and position information such situations are safety critical. We
therefore define the entering of node TLE of the Observer component as the safety
critical state. Consequently, three minimal cut sets (mcsa, mcsb, mcsc) exist
in this model. Table 1 shows all labelled transitions and their mapping to the
particular cut sets. Note, that we do not list implicit labels, such as the system-
start transition (INIT) used for instance to delay the Monitor fault. Based on
the listed rates, the lower part of the tables compare the concrete probabilities,
we computed for the model using the stochastic model checker MRMC3 [18],

Table 1. Rates and minimal cut set probabilities

Label

WAIT MON FAIL

WAIT R FAIL

START W FAIL F

WAIT W FAIL F

START W FAIL S

WAIT W FAIL S

WAIT W OK

WAIT R OK

time bound (h) method

10 mrmc
naive

100 mrmc
naive

1000 mrmc
naive

mcsa mcsb mcsc rate

yes yes yes 0.001

yes no no 0.015

no yes no -

no yes no 0.025

no no yes -

no no yes 0.01

no no no 240

no no no 360

P (t) P (t) P (t) -

0.0007122 0.0011479 0.0005027 -
0.0013860 0.0022010 0.0009469 -

0.0479257 0.0605680 0.0397182 -
0.0739289 0.0873512 0.0601542 -

0.5973047 0.6078448 0.5677622 -
0.6321204 0.6321206 0.6320919 -

mcsa mcsb mcsc rate

yes yes yes 0.01

yes no no 0.04

no yes no -

no yes no 0.003

no no yes -

no no yes 0.3

no no no 0.001

no no no 0.002

P (t) P (t) P (t) -

0.0149402 0.0014070 0.0318196 -
0.0313732 0.0028125 0.0904247 -

0.2343468 0.0724729 0.1887776 -
0.6205429 0.1638341 0.6321206 -

0.7310061 0.5490308 0.2095549 -
0.9999546 0.9501698 0.9999546 -

3 That in particular supports uCTMDP analysis [17].
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with those derived following the naive approach (cf. Sect. 3). It can be observed
that our model based approach yields probabilities well below those of the naive
approach. Moreover the numbers of the right table show that even the ranking
of the MCSs induced by the probabilities can diverge. While the naive approach
indicates 1. mcsc, 2. mcsa, 3. mcsb, the model based approach yields 1. mcsa,
2. mcsb, 3. mcsc for sufficiently large time bounds. Intuitively, in this example,
the high failure rates make it probable that the monitor signals the sensor to be
inoperable before failing itself and thus prevents a safety critical situation. Thus,
here, the naive approach that does not take the concrete system dynamics into
account, even yields a misleading importance measure.

4.2 Performance Remarks

The upcoming European Train Control System (ETCS), is designed to replace
the multitude of incompatible safety systems used by European Railways and
enable safe fast transnational railway service. Based on a fault tree description
taken from the ETCS specification [19], we developed an ETCS Level 2 train
model that we use to show the inherent worst case complexity of the path encod-
ing to be negligible in practice. Table 2 depicts the numbers of the intermediate
models (cf. Fig. 1). Note that the LTS extraction and the branching bisimulation
are implemented using efficient representations of the state space using binary
decision diagrams. The remaining steps rely on explicit representations of the
state space and make use of the CADP [20] tool box. We found that (i) the ef-
ficient symbolic branching bisimulation on the LTS yields enormous reductions
of the state space in the quotient LTS and thus is a crucial preprocessing step to
our unfolding step. Moreover (ii) the stochastic branching bisimulation [21,17]
that interleaves the (one-by-one) incorporation steps of the stochastic time con-
straints balances the introduced complexity (cf. column eLTS ) of the unwinding:
the finally computed stochastic models are of similar size to the model generated
for the original LTS (cf. uCTMDP-LTS and uCTMDP-eLTSmcs1−4

).

Table 2. ETCS Level 2 Train Model - comparison of LTSs and uCTMDP state spaces

LTS quotient
LTS

uCTMDP-
LTS

eLTS uCTMDP-
eLTSmcs1

uCTMDP-
eLTSmcs2

uCTMDP-
eLTSmcs3

uCTMDP-
eLTSmcs4

states 8266964 142789 3230 1071250 10023 3911 3919 1654

transitions 18313109 727609 15680 5538073 48066 22347 19137 8348

time (sec.) 12222.1 4714.24 173.15 5617.79 1013.48 674.42 635.77 628.52

5 Conclusion

In this paper we presented an automated model-based approach to determine
the quantitative contribution of safety critical fault configurations (MCSs) to
the over-all probability of reaching a safety critical state.

Therefore we extended the tool chain presented in [4,5] by an encoding of
path information into the state space of an LTS that enables to distinguish (and



316 E. Böde et al.

relate) all relevant paths leading to a safety critical state to a MCS. This also
allows for the extraction of the MCSs itself, but this is secondary. We gave a
detailed explanation of the LTS encoding as well as of how the LTS is derived
from an extended Statechart [5]. The over-all approach was successfully applied
to a case-study taken from the train-control domain. In particular, we observed
that the sophisticated combination of the symbolic branching and stochastic
branching minimisation steps balances the encodings inherent complexity.

On the application side the benefits are obvious. The derived MCS importance
measures enable the system developer to direct their work on those parts of the
systems where improvements will yield most impact. Due to the preservation
of the actual sequences of faults, the derived measures are more accurate than
conventional naive or manual safety assessment techniques that may even yield
misleading results. And – thanks to the automation – they can be derived without
any extra effort directly from the design model. Furthermore, by incorporating
stochastic non failure behaviour (e. g. repair rates of transient faults) into the
modelling and cut set analyses, again the accuracy can be improved, that is, a
less pessimistic assessment is derived.

All in all the (extended) tool chain seems to be a crucial step towards a better
integration of system development and quantitative safety analysis. Future work
will therefore strive for further integration of conventional safety assessment
tasks and refinements such as the inclusion of common mode failures.

Acknowledgements. We would like to thank our co-authors of [4,5] for the tight
cooperation resulting in those works making this work possible at all.
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Abstract. In order to verify larger and more complicated systems with
model checking, it is necessary to apply some abstraction techniques.
Using a subset of first-order logic, called EUF, is one of them. The EUF
model checking problem is, however, generally undecidable. In this paper,
we introduce a technique called term-height reduction, to guarantee the
termination of state enumeration in EUF model checking. This technique
generates an over-approximate set of states including all the reachable
states. By checking a designated invariant property, we can guarantee
whether the invariant property always holds for the design, when verifi-
cation succeeds. We apply our algorithm to a simple C program and a
DSP design and show the experimental results.

Keywords: Quantifier-free first order logic, state exploration, term-
height reduction, model checking.

1 Introduction

Model checking, which has been widely put to practical use, has still difficulties
in handling large and complicated designs. To tackle this problem, abstraction
techniques needs to be applied. In this paper, for the purpose, we adopt ab-
straction by a quantifier-free first-order logic with equality and uninterpreted
functions (EUF) [2,3].

Model checking using EUF is, however, known to be generally undecidable[4].
In fact, straightforward state exploration for transition functions defined with
EUF terms does not terminate, because the number of terms which possibly
occur in state variables can be infinite. Bounded model checking[11], which han-
dles transitions up to a given number of cycles, is an approach for this problem,
and some bounded model checkers have been developed such as UCLID[15],
EUREKA[7] or SAL[6] which utilize SAT solvers for EUF and its extension, e.g.
with memories, or SMT solvers.

In this paper, we consider unbounded invariant property checking. For this
problem, we introduce a technique called term-height reduction to restrict the
number of terms occurring in state variables. When the height of some term

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 318–331, 2008.
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which occurs in a state variable exceeds a given limit, its innermost sub-term is
replaced by a new variable so that its height is lower than or equal to the limit.
Intuitively, this manipulation discards least recently performed operation to the
corresponding term.

This height reduction technique, together with the state reduction technique
similar to that in [5], generates an over-approximate set of states including all
the reachable states, and guarantees termination of state enumeration to check if
a designated invariant always holds for the design. The degree of approximation
is controlled by the term-height parameter. Although our algorithm is based
on explicit state enumeration, in the experiments we performed, it effectively
curtails state explosion.

We applied our technique to a simple C program for Bisection Method and
a DSP design, that is, ADPCM encoder. Since both of the systems has an in-
determinate number of executions in their parts, state enumeration does not
terminate if we apply a naive procedure. Furthermore, both of them contain
arithmetic operations such as multiplication or division, formal verification with-
out an abstraction technique, or that at Boolean level, is significantly difficult.
Our verification algorithm was able to verify them successfully.

The remainder of this paper is organized as follows. We describe related works
first, and give the definition of EUF, its state machine, and invariant checking
problem. Next, we present the procedure of state traversal with EUF, followed
by the detail of our algorithm. We also show the experimental results for some
examples. For brevity, we generally omit the proofs for the theorems in this
paper.

2 Related Works

Unbounded model checking using EUF or its extension has been studied in some
literature[4,5,8]. In [5], Isles et al. show a state enumeration procedure for tran-
sition systems using EUF terms extended with memories. They use some state
reduction techniques shown in [4], which utilize replaceability of sub-terms that
comprise two states. In [8], Corella et al. show a procedure using Multiway Deci-
sion Graphs, which can represent characteristic functions for state sets. They also
use state reduction techniques similar to [5]. In both of these works, termination
is not guaranteed.

In [9], Bryant et al. show a criterion for convergence test, which checks if newly
added states are all included in the previously enumerated state set. This crite-
rion is formulated as a quantified second-order formula, for which they show a
semi-decidable procedure. This criterion gives a precise definition of convergence,
but they have also reported that their approach leads to high computational
complexity.

In this paper, we use state reduction techniques similar to [5]. Together with
term-height reduction, this provides a decidable procedure for computing an
over-approximate state set.
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3 EUF and State Machine

We abstract designs by a subset of the first-order logic, called EUF. In this
section, we define the syntax and the semantics of EUF and its state machine,
and then, invariant checking problem.

3.1 EUF Syntax

EUF is a subset of first-order logic. It does not have universal or existential
quantifiers, but has the equal sign as a special predicate. It is composed of terms
and formulas, and the syntax is shown in Fig.1. ITE term represents if-then-else.
The arities of function symbols and predicate symbols are finite.

term := variable | function-symbol(term, . . . , term) |
ITE(formula, term, term)
formula := true | false | Boolean-variable |
(term=term) | predicate-symbol(term, . . ., term) |
formula ∨ formula | formula ∧ formula | ¬ formula

Fig. 1. The syntax of EUF

Let t be a term which does not contain ITE terms, then t has nested structure
of function symbols. The term-height of t, denoted by term-height(t), is defined
as follows:

term-height(t) ={
MAX (term-height(t1), . . . , term-height(tn)) + 1, if t = f(t1, . . . , tn).
0, if t is a variable. ,

where MAX is the function which returns maximum value from its arguments
and f is a function symbol. For example, let c1 and c2 be terms, f and g be
function symbols, then the term-heights of terms c1, f(c1) and g(g(c1,f(c2)),
f(c1)) are 0, 1 and 3, respectively.

In this paper, an equation, a predicate and a Boolean variable are called
atomic formulas. An atomic formula and negation of an atomic formula are
literals. A product term is a literal or conjunction of more than one literals. A
disjunction normal form(DNF) is a product term or disjunction of more than
one product terms.

Here we assume, in the following operations, all of the ITE terms have been
removed. This can be done by recursively replacing t = ITE(α, t1, t2) with (α ∧
t = t1) ∨ (¬α ∧ t = t2).

3.2 EUF Semantics

For a nonempty domain D and an interpretation σ, the truth of a formula is
defined. The interpretation σ maps a function symbol and predicate symbol
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of arity k to a function Dk → D and Dk → {true, false}, respectively. Also,
σ assigns each variable to an element in D. Boolean variables are assigned to
{true, false}.

Valuation of a term t and a formula α, denoted by σ(t) and σ(α) respectively,
are defined as follows. Note that f is a function symbol and p is a predicate
symbol. 1) For a term t = f(t1, t2, . . . , tn), σ(t) = σ(f)(σ(t1), σ(t2), . . . , σ(tn)).
2) For a term t = ITE(α, t1, t2), σ(t) = σ(t1) if σ(α) = true, otherwise σ(t) =
σ(t2). 3) For a formula α = p(t1, t2, . . . , tn), σ(α) = σ(p)(σ(t1), σ(t2), . . . , σ(tn)).
4) For a formula α = (t1 = t2), σ(α) = true if and only if σ(t1) = σ(t2). 5) For
a formula α = ¬α1, σ(α) = ¬σ(α1). 6) For a formula α = α1 ◦ α2, where ◦ is ∨
or ∧, σ(α) = σ(α1) ◦ σ(α2).

A formula α is valid if and only if σ(α) = true for any interpretation σ and
any domain D.

For simplicity, we introduce a new special constant TRUE, and treat p(t1, . . . ,
tn) and ¬p(t1, . . . , tn) as p(t1, . . . , tn) = TRUE and ¬(p(t1, . . . , tn) = TRUE),
respectively. Then each literal can be treated as an equation, a Boolean variable
or negative forms of them.

3.3 EUF State Machine

An EUF state machine is defined by a set of transition functions. To describe
transition functions, we assume four types of variables as follows: 1) Boolean
state variables: b1, . . . , bm, 2) term state variables: t1, . . . , tn, 3) Boolean vari-
ables: a1, . . . , ap, 4) (EUF) variables: c1, . . . , cq.

We introduce next state variables b′1, . . . , b
′
m and t′1, . . . , t

′
n corresponding to

b1, . . . , bm and t1, . . . , tn respectively. Then, transition functions are described
by b′i := Fi (1 ≤ i ≤ m) and t′j := Tj (1 ≤ j ≤ n), where Fi is a propositional
logic formula whose variables are Boolean state variables and Boolean variables,
and Tj is a term which includes all types of variables. Transition functions can
have some variables, which are term variables or boolean variables, as inputs,
that is, each of these input variables at each step is treated as distinct, and an
interpretation for such a variable at step i can be different from that at step j
(i �= j).

We call the following formula transition relation:∧
1≤i≤m

(b′i = Fi) ∧
∧

1≤j≤n

(t′j = Tj) (1)

The behavior of an EUF state machine depends on an initial state and a se-
quence of interpretations for each step. At an initial state, each Boolean variable
is assigned to true or false, and each variable is assigned to an element in D. We
define an interpretation sequence as σ̃ = (σ0, σ1 . . .), where σi is an interpreta-
tion at i step. Note that the length of an interpretation sequence is infinite. Any
interpretation sequence is required to satisfy the following conditions.

– The interpretation of variables, Boolean variables, function symbols and
predicate symbols are the same at every step. In other words, for each
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variable cj , each Boolean variable aj , each function symbol fj and each
predicate symbol pj , σ0(cj) = σi(cj), σ0(aj) = σi(aj), σ0(fj) = σi(fj) and
σ0(pj) = σi(pj) for all i.

– For transition functions b′j := Fj and t′j := Tj, σi+1(bj) = σi(Fj), σi+1(tj) =
σi(Tj) for all i.

– For an initial state in which each (term) state variable tj is assigned to
variable cj, σ0(tj) = σ0(cj).

We call a interpretation sequence which satisfies the above conditions a normal
interpretation sequence. In this paper, we assume that interpretation sequences
are normal.

3.4 Invariant Checking Problem Using EUF

The inputs of our problem are an EUF state machine M , which models a design
we want to verify, and a property P , which is composed from Boolean state vari-
ables, term state variables, Boolean variables and (EUF) variables. The invariant
checking problem is to check whether M always satisfies P .

Since the contents of the boolean or term state variables used in P depends
on each state, so does the formula to be checked at each state. The details are
given in Section 4.2

4 State Traversal and Invariant Checking

Invariant checking is performed by enumerating all the reachable states from
the initial states and by checking whether the designated property holds for all
of them. In this section, we show a state traversal method for an EUF state
machine.

4.1 State Traversal

Each state is composed of the following two elements:

– State vector −→v = (−→b ,
−→
t )

– Condition set C ⊆ T × T ×Rel

where T is the set of all terms which do not contain ITE terms, and Rel = {=, �=}.
We suppose −→b = (b1, . . . , bm) and −→t = (t1, . . . , tn), where for 1 ≤ i ≤ m, bi is
true or false, and for 1 ≤ j ≤ n, tj is a term. C is the set of all conditions which
must be satisfied in order to reach the state.

According to the transition relation, we enumerate all the reachable states
by obtaining a state reachable from initial states one by one. Firstly, we per-
form a preprocess for the transition relation to convert the relation into DNF
(disjunctive normal form).

The next state s′ = (−→v ′, C′) is constructed from the current state s = (−→v , C)
according to the following rule. First, all the current state variables occurring in
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the transition relation are replaced with the corresponding values or terms in −→v .
Then, we can get the formula α � α1 ∨ α2 ∨ . . . ∨ αp, where each αi(1 ≤ i ≤ p)
is a product term whose variables are next state variables b′k (1 ≤ k ≤ m) and
t′l (1 ≤ l ≤ n), Boolean variables and variables. Note that any current state
variable is not contained in αi.

For each αi � β1 ∧ β2 ∧ . . . ∧ βq, where βj (1 ≤ j ≤ q) are literals, the next
state s′ is generated as follows. The contents of −→v ′ and C′ are initialized with
the ones of −→v and C, respectively. Next, according to each βj , the appropriate
process shown in the below is performed.

– If βj is an equation b′k = b, where b′k is a next Boolean state variable and b
is a propositional formula, the Boolean state variable bk at the next state is
assigned to the valuation of b.

– If βj is an equation t′l = t, where t′l is a next term state variable and t is a
term, the term state variable tl at the next state is assigned to t.

– If βj is an equation t1 = t2 or its negation ¬(t1 = t2), where t1 and t2
are terms which do not contain any next state variable, the new condition
(t1, t2, =) or (t1, t2, �=) is added to C′, respectively.

– If βj is an Boolean variable or its negation, the Boolean variable is assigned
to true or false so that βj is true.

Finally, all conditions containing variables which do not occur in −→t ′
are deleted

from C′.
State s′ is reachable from state s in one step if s′ can be composed from s by

applying the above rule once. For an EUF state machine M and an initial state
s0, (s0, s1, . . .) is a state transition sequence if si+1 is reachable from state si in
one step for any i ≥ 0.

4.2 Invariant Checking

A property P , which is restricted to an invariant in this paper, is an EUF formula
containing Boolean state variables, term state variables, Boolean variables and
variables.

For a state transition sequence s = (s0, s1, . . .), the formula whose state vari-
ables are all replaced with corresponding contents of −→v i, where state si =
(−→v i, Ci), is denoted by Pvi . The property P holds at state si if the formula
P i defined below is valid.

P i �
∧

(t1,t2,Re)∈Ci

t1Ret2 → Pvi (2)

5 Over-Approximation for Reachable States

In this section, we propose an over-approximate algorithm using term-height
reduction. We introduce the maximum value of term-height maxh and restrict the
heights of terms occurring in the state variables. The algorithm guarantees that
a property P always holds if P holds for the approximated state set, otherwise
the verification result is inconclusive.
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5.1 Overview of Algorithm

The overview of our algorithm is shown in Fig.2. R is the set which contains all
the visited states. First, we initialize R with initial states. After that, each state
reachable from R in one step is visited and added to R. When the terms whose
heights are larger than maxh occur in a state vector −→v or a condition set C,
we perform term-height reduction to restrict the heights of terms. Furthermore,
for a state s ∈ R, if the inclusion relation between states s ≥ s′ holds, then we
consider s includes s′. Thus s′ is not added to R, and all the states reachable
from s′ are not visited.

We detail term-height reduction and inclusion relation in the remainder of
this section.

Does Invariant P hold at initial states?

 R <- initial states

Does there exist a state
which is reachable from R by one step and has

not been visited yet?

Dpes there exist a term whose height is more
than maxh in s’?

For some state s in R, s >= s’ ?

Does P hold at state s’?

 R <- R U {s’}

 Inconclusive

P is always
satisfied

term-height reduction

 Inconclusive

 Yes
No

No

Yes

No

Yes

No

No

Yes

Yes

 (visited state s’)

Fig. 2. Overview of Algorithm

5.2 Term-Height Reduction

When the terms whose heights are larger than maxh occur in a state vector −→v or
a condition set C, we reduce their term-heights by replacing the subterms with
new variables, so that the term-heights are all restricted to less than or equal to
maxh.

Definition 1. For a term t whose height is larger than 0, the reduced subterms
of t, denoted RTt, are defined as those satisfying all the following conditions:

1. For any tr ∈ RTt, term-height(tr) = 1.
2. Let t′ be the term obtained from t by replacing all the subterms of t in RTt

with new variables. Then, term-height(t) = term-height(t′) + 1.
3. If some term is deleted from RTt, condition 2. does not hold.
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Term-height reduction for a term t is an manipulation replacing each subterm
of t in RTt with a new variable. For example, the reduced subterm of the term
g(g(c1,f(c2)), f(c1)) is f(c2). By applying term-height reduction for this
term, we get the term g(g(c1,c3),f(c1)), where c3 is a new variable. Also, the
reduced subterms of g(g(c1,c3),f(c1)) are { g(c1,c3), f(c1) }. We apply
term-height reduction to this term and get the term g(c4,c5), where c4 and c5
are new variables. By applying term-height reduction for a term, we can decrease
the term-height by just one. Note that for any term t whose height is larger than
0, the reduced subterms of t exist uniquely. Also, our algorithm replaces the
same subterm with the same variable.

We keep the record of the mapping from a subterm to a new variable until
the algorithm terminates. When term state variables are updated by new terms
in state traversal, this mapping is applied to all the subterms included. Note
that the record of the mapping can get larger in the progress of state traversal,
but this does not affect termination of the procedure, because the termination
condition does not depend on this record of mapping.

Theorem 1. For any EUF formula F , F is valid if the formula obtained by
applying term-height reduction for a term in F is valid.

Using term-height reduction, the procedure which constructs the next state s′ =
(−→v ′, C′) of the current state −→v = (−→b ,

−→
t ) is as follows.

1. s′ is initialized with s.
2. According to transition relation, −→v ′ and C′ are updated (See Section 4.1 ).
3. If −→v ′ or C′ contains terms whose heights are larger than maxh, their heights

are reduced repeatedly until becoming less than or equal to maxh.
4. The conditions containing any variable which does not occur in −→t ′

are all
deleted.

5.3 State Merging Based on Inclusion Relation

For a state s = (−→v , C), where −→v = (−→b ,
−→
t ) and −→t = (t1, . . . , tn), let Vt be

the set of variables occurring in −→t , D be a set of variables {d1, d2, . . . , d|Vt|},
where Vt ∩D = φ, and mapD

t be a bijective function from Vt to D. We denote
by mapD

t [ti] the term obtained from a term ti in which each variable c ∈ Vt

is replaced with mapD
t (c). Furthermore, we denote by mapD

t [−→t ] the vector of
terms obtained from −→t in which each term ti is replaced with mapD

t [ti]. Also, we
denote by mapD

t [C] the condition set obtained from C in which each condition
(t1, t2, Re) is replaced with (mapD

t [t1], mapD
t [t2], Re).

Definition 2. For two states s = (−→v , C) and s′ = (−→v ′, C′), where −→v = (−→b ,
−→
t ),

−→v ′ = (−→b ′
,
−→
t
′
), we say “s includes s′”, denoted by s ≥ s′, if the following

conditions are all satisfied.

1. −→b = −→b ′

2. |Vt| = |Vt′ |
3. For a set of variables D, there exist two functions mapD

t and mapD
t′ such

that:
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– mapD
t [−→t ] = mapD

t′ [
−→
t
′
] and

– |=
∧

(t′1,t′2,R′
e)∈mapD

t′ [C
′]

(t′1R
′
et

′
2) −→

∧
(t1,t2,Re)∈mapD

t [C]

(t1Ret2)

The third condition in Definition 2 means that when we compare−→t with−→t ′
, or C

with C′, we focus on the forms of terms and disregard the names of variables. Note
that the operation to be performed to check the third condition is similar to unifi-
cation in logic programming, but more restricted. Our algorithm does not regard
g(f(x), z)) and g(y, w) as “equivalent” under any mapping mapD

t , because mapD
t

maps only variables in the terms to other variables. On the other hand, unification
allows these two terms to be unified by replacing y with f(x) and z with w.

In our implementation, the terms in−→t are compared with those in−→t ′
from the

top of the lists, one by one. If renaming of the variables can make the two terms
syntactically equivalent, then the two mappings mapD

t and mapD
t′ are updated.

Otherwise, checking the conditions of Definition 2 is aborted. If construction of
mapD

t and mapD
t′ is successful, the implication of C by C′ is checked under the

mappings, which can be done by using an SMT solver.
In a state traversal, for a state r and its next state s′, if s ≥ s′ for some state

s we have already visited, then we move from r to s instead of s′, and do not
visit s′ and its successors. We say that “s′ is merged into s.” s is said to be a
merging state of s′.

The state transition graph which is obtained by applying the term-height
reduction and the state merging technique is called the abstract state transition
graph. The following is the key property for our state enumeration algorithm.

Theorem 2. For any state transition graph, the size of the abstract state tran-
sition graph is finite.

(Sketch of Proof). Suppose that term-height is restricted to a finite value. Then,
the number of term forms occurring in a state vector is finite because a function
and a predicate have the finite number of arguments. Also, the number of ele-
ments in a condition set is finite because the conditions containing any variable
which does not occur in the state variables are all deleted. Thus, disregarding
the name of variables, there exists only the finite number of components for a
state. Since state merging resolves the difference among variable names, the size
of the abstract state transition graph is finite. Q.E.D.

Theorem 3. For any state transition graph G and its abstract state transition
graph Ga, a property P holds at any state in G if P holds at any state in Ga.

5.4 Example

We show state traversal for an EUF code in the following:

0: while (t1!=t2){
t1 := f(t1,t2);

}
1: t2 := g(t2);
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The transition function for this code is as follows:

b1′ := ITE(b1 = 0, ITE(t1 = t2, 1, 0), 1)
t1′ := ITE(b1 = 0, ITE(t1 = t2, t1, f(t1, t2)), t1)
t2′ := ITE(b1 = 1, ITE(t1 = t2, g(t2), t2), t2)

State enumeration for this example does not terminate without term-height
reduction. Here, we introduced a Boolean state variable b1 to hold a current
execution point.

Fig.3 shows state traversal for this transition function under maxh = 1. We
initialize the state variables t1, t2 and b1 with c1, c2 and false respectively.
When the transition from s to s′ occurs, the height of t1 gets larger than maxh
and term-height reduction is performed. Then, s ≥ s′ holds under the domain
D = {d1, d2} and functions mapD

t = {c1 → d1, c2 → d2}, mapD
t′ = {c3 →

d1, c2 → d2}. Therefore, s′ is merged into s and we can obtain the abstract
state transition graph with four states.

6 Experimental Results

We implemented our algorithm in the C++ language and performed some exper-
iments with Intel Celeron 1.46GHz of 2GB Memory under Windows XP. We used
Yices [16] as an EUF SAT solver. The SAT solver was used to check Equation
(2) and the third condition of Definition 2.

We applied our technique to designs of a simple C program for Bisection
Method and an ADPCM encoder.

The run-times we show in this section do not include construction of a DNF
of the transition relation from transition functions. In the following examples,
we gave the transition relations in DNF as inputs.

6.1 Bisection Method

Bisection method is an algorithm for solving an equation. We show its pseudo
code in Fig. 4. The number of executions of the while body depends on input
value diff, and thus is indeterminate.

We verify equivalence of returned values between BISECT1 which executes
the code sequentially, and BISECT2 which is obtained by modifying BISECT1
to execute the loop body in one step. Both of the obtained EUF state machines
were executed concurrently.

The experimental result is shown in Table 1, where # of new vars. means
the total number of new variables introduced by term-height reduction and #
of states means the number of states in the obtained abstract state transition
graph.

6.2 ADPCM Encoder

An ADPCM (Adaptive Differential Pulse Code Modulation) encoder transforms
sound data to digital data. The high-level description of an ADPCM encoder [17]
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 t = (c1, c2)
C = φ

t=(f(c1,c2),c2)
C={c1 != c2}

t=(c1,g(c1))
C={c1=c2}

t=(f(c1,c2),g(c2))
C={f(c1,c2)=c2,
       c1!=c2}

 
t=(f(f(c1,c2),c2),c2)
C={c1!=c2,  f(c1,c2) != c2}

 f(c1,c2) is
replaced with c3

 state s’

state  s

t1  != t2 !(t1!=t2)

 !(t1!=t2)
t1!=t2

 0

0

01

1

 c3

c3

This condition is deleted because c1 is not
included in state variables any more.

Fig. 3. State Traversal Example (maxh = 1)

float bisect(float left, float right, // left < right
float diff, float (*f)(float)) // diff >= 0 is an allowed error

{
float mid, fleft, fright, fmid;

fleft = f(left);
fright = f(right);
if (fleft == 0) return left;
if (fright == 0) return right;
if (samesign(fleft, fright)) {

exit;
}
while (true) {

mid = (left + right) / 2;
if (mid - left <= diff) break;
if (right - mid <= diff) break;
fmid = f(mid);
if (fmid == 0) return mid;
if (samesign(fmid, fleft)) {

left = mid;
fleft = fmid;

} else {
right = mid;
fright = fmid;

}
}
return mid;

}

Fig. 4. Pseudo Code for Bisection Method
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Table 1. Experimental Result: Bisection Method

maxh # of new vars. # of states time(sec)

1 6 113 13.7

2 5 113 13.8

3 6 117 16.0

4 7 127 18.5

5 8 205 45.8

6 13 283 59.0

7 14 448 148.7

8 27 595 188.4

9 28 964 516.2

Table 2. Experimental Result: ADPCM Encoders

maxh # of new vars. # of states time(sec)

0 47 266 50.0

1 30 1016 234.9

2 21 1974 588.4

3 16 2956 1275.4

is written in the C language and has about 70 lines. This description also contains
multiplication and division. Furthermore, since it has a loop structure whose num-
ber of iteration depends on an input parameter, state enumeration for it does not
terminate if our technique is not used. The loop structure contains 9 if-branches.

We verify equivalence of output values between ADPCM1 which executes the
high-level description sequentially, and ADPCM2 which is obtained by modifying
ADPCM1 to execute the loop body in less steps. Table 2 shows the experimental
result.

6.3 Observation

In both of the above examples, term-heights at state variables continue to get
larger infinitely as state traversal proceeds. For larger maxh, state merging is de-
layed at later steps, and as a result, both of the number of states and the run-time
increase. This suggests that we should increase maxh from a smaller value.

On the other hand, verification for the design which does not contain feedback
structures, such as filter designs, is expected to terminate without term-height
reduction, because the term-height of any term state variable does not exceed
some constant. In this case, term-height reduction would not be necessary, and
can even degrade the performance. For determining maxh, it would be necessary
to analyze the high-level structure of the designs.

7 Conclusion

In this paper, we proposed term-height reduction to terminate state enumera-
tion for an EUF state machine. Together with the state merging technique, our
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algorithm can show equivalences of modified C programs as well as two DSP
designs, which the existent methods cannot verify.

Our technique, however, can naturally fail to check invariants, if the invariant
depends on the property of operators. For example, although both c1+c2 = c2+
c1 and c+ c = c×2 always hold, their abstractions in EUF, f(c1, c2) = f(c2, c1)
and f(c, c) = g(c, 2), are not valid. To compensate for this, we will study some
approach using the other logic together with EUF, or some other method such
as [10] to consider the property of functions when we check satisfiability for EUF
formulas.

As other future works, we would like to develop a scheme which can handle
the cases in which the designated property does not hold. For this purpose, we
would need to combine the other logic such as Boolean logic or linear arithmetic,
together with EUF. Also, it would be necessary to extend the algorithm to deal
with arrays or memories of arbitrary length, or to check more general temporal
properties which are not invariants.

In our approach, a limit on term-height influences the degree of over-
approximation. Since the term-height reduction implies discarding the least
recent operations done to state variables, larger height means less of approx-
imation. Finding an appropriate limit depends on the properties to be checked
and also affects the performance. In this paper, this is not considered much,
because small heights are sufficient for the examples we handled. In order to au-
tomate this process in general, we could increase the limit from some small value,
while checking generated counter-examples are surely spurious by, for example,
boolean SAT. This also remains as a future work.
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Abstract. Classical verification often uses abstraction when dealing
with data. On the other hand, dynamic XML-based applications have
become pervasive, for instance with the ever growing importance of web
services. We define here Tree Pattern Rewriting Systems (TPRS) as an
abstract model of dynamic XML-based documents. TPRS systems gener-
ate infinite transition systems, where states are unranked and unordered
trees (hence possibly modeling XML documents). Their guarded transi-
tion rules are described by means of tree patterns. Our main result is that
given a TPRS system (T,R), a tree pattern P and some integer k such
that any reachable document from T has depth at most k, it is decidable
(albeit of non elementary complexity) whether some tree matching P is
reachable from T .

1 Introduction

Classical verification techniques often use abstraction when dealing with data.
On the other hand, dynamic data-intensive applications have become pervasive,
for instance with the ever growing importance of web services. The format of
the data exchanged by web services is based on XML, which is nowadays the
standard for semistructured data. XML documents can be seen as unranked
trees, i.e. trees in which every node can have an arbitrary (but finite) number
of children, not depending on its labels. Very often, the order of siblings in the
document is of no importance. In this case, trees are in addition unordered.
There is a rich body of results concerning the analysis of fixed XML documents
(with or without data), see e.g [13,11] for surveys on this topic.

The analysis of the dynamics of XML documents accessed and updated in a
multi-peer environment has been considered only very recently [2,3]. Dynami-
cally evolving XML documents are of course crucial, for instance when doing
static analysis of XML-based web services. A general framework, Active XML
(AXML for short), has been defined in [2] to unify data (XML) and control
(services), by allowing data to be given implicitly in form of service calls.

In this paper we propose an abstract model for dynamically evolving docu-
ments, based on guarded rewriting rules on unranked, unordered tree. We show
that basic properties, such as reachability of tree patterns and termination, are
decidable for a natural subclass of our rewriting systems.
� Work supported by ANR DocFlow, ANR DOTS and CREATE ACTIVEDOC.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 332–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A standard technique to analyze unranked trees is to encode them as binary
trees [13]. However, this encoding does not preserve the depth of the tree, neither
locality, nor path properties. For these reasons, we define guarded tree rewrit-
ing systems directly on unranked trees. The rewriting rules are based on tree
patterns, that occur in two distinct contexts. First, tree patterns are used for
describing how the structure of the tree changes through the rules: subtrees can
be moved or deleted, and new nodes can be added. Thus, documents evolve in
a non monotonous way. Second, rules are guarded, and the guard condition is
tested via a Tree Pattern Query (TPQ). The role of the TPQ is actually twofold:
it is used in the pre-condition of the rule, and the query results can enhance the
information of the new tree. We call such systems Tree Pattern Rewriting Sys-
tem, TPRS for short. For an easier comparison with other works, we include an
example of a Mail-Order System in our presentation, close to the one used in [3].

The main tool we use to show decidability of various properties of TPRS are
well-structured systems [1,8]. Such systems cover several interesting classes of
infinite-state systems, such as Petri nets and lossy channel systems. Our TPRS
are of course not well-structured, in general. We impose two restrictions in order
to obtain well-structured systems. First, guards must be used positively: equiv-
alently, a rule cannot be disabled because of the existence of some tree pattern.
Second, we need a uniform bound on the depth of the trees obtained by rewrit-
ing. Indeed, we show that if the depth is not uniformly bounded, then TPRS can
encode Turing machines. Notice that the depth restriction is very realistic in the
XML setting, since such documents are usually large, but shallow. We show that
TPRS that satisfy both conditions yield well-structured transition systems, and
we show how to apply forward and backward analysis of well-structured systems
for obtaining the decidability of pattern reachability as well as termination. On
the negative side, we show that exact reachability, confluence and the finite state
property are undecidable for such TPRS. One can notice that the reachability
of a given tree pattern is more likely to be useful in practice than exact reacha-
bility, that supposes the complete knowledge about the target document. In the
decidable cases, we also show that the complexity is at least non elementary.

Related work. We review here other approaches where it is possible to decide
behavioral properties of active documents.

The systems called positive AXML in [2] are monotonous : a document is
modified by adding subtrees at nodes labeled by service calls, deletions are not
possible. In particular, trees can only grow, which is not the case for the TPRS
defined here. For instance, for the mail order example this means that a product
cannot be deleted from the cart. Moreover, there is no deterministic description
of the semantics of a service: a service call can create any tree, granted that
it satisfies some DTD. Such a system is always confluent, and one can decide
whether, after some finite number of steps, the system will stabilize [2].

Guard AXML [3] is very similar to our model, service calls being based on tree
pattern queries. The focus of [3] is to analyze the action of non recursive services
over documents satisfying a given schema, and with potentially unbounded data
(trees are labeled by symbols from an infinite alphabet and tree patterns use
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data constraints). Compared with our framework, [3] uses more powerful guards,
namely Boolean combinations of tree patterns guards. However, the price to pay
is that decidability results in [3] require a uniform bound on the length of the
rewriting chains. In contrast, our TPRS model active documents with possibly
recursive service calls.

A seemingly related area are term rewriting systems modulo associativity
and commutativity [10]. However, these rewriting systems act on ranked trees,
so applying results from this area on unranked trees requires to work on some
ranked encoding of the tree. Also, it is not clear how to simulate e.g. TPRS
rules that move all but some specific subtrees of a given node by term rewriting
rules. Tree rewriting on unranked (ordered) trees has been considered in [12].
The difference to our setting is that the rewriting is ground, i.e., rules can only
be applied at the deepest levels of the tree, which makes reachability decidable.

2 Tree Pattern Rewriting

The tree rewriting model presented in this section is inspired by the Active XML
(AXML) system developed at INRIA [4]. Active XML extends the framework
of XML to describe semi-structured data by a dynamic component, describing
data implicitly via service (function) calls. The evaluation of such calls is based
on queries, resulting in extra data that can be added to the document tree. The
abstract model is that of XML, i.e., unranked, unordered, labeled trees, together
with a specification of the semantics for each service.

Trees considered in this paper are labeled by tags from a finite set T . We
will distinguish a subset Tvar ⊆ T of so-called tag variables. In addition, we use
the special symbol $ to mark nodes where service calls insert new data. Trees
are in the following unranked and unordered, with nodes labeled by T ∪ T$,
where T$ = T × {$}. We will not distinguish function/service nodes, since we
consider here an abstract model for AXML documents, that is based on tree
rewriting. We also do not consider multiple peers actually: their joint behavior
can be described as the evolution of a unique document tree.

v1[Play.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[skins]

v22[£25]

v19[skins] v20[£10]

v23[£10]

v17[day] v18[day]

v8[Cart]

v14[skins]

v21[£10]

Fig. 1. Tree document representing a catalog of products and customers history
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A tree (V, parent, root, λ) consists of a set of nodes V with a distinguished
node called root, a mapping parent : V \ {root} → V associating a node with its
parent, and a mapping λ : V → T ∪ T$ labeling each node by a tag. Moreover,
for each node v ∈ V , there is some k ≥ 0 such that parentk(v) = root. Such a
tree is called a document if its labeling satisfies λ(V ) ⊆ T \Tvar, that is, no node
label uses a tag variable or the $ sign. A forest is a finite multiset of trees.

Consider for instance the tree in Fig. 1. Informally, it represents a simplified
version of the Play.com database, containing several products and information
about customers. Bracketed strings denote node labels. The subtrees of nodes
v5 and v6 are not represented in the figure. The document shows two customers,
one of which is currently shopping on the website with one product in her cart.
This customer has 3 outstanding orders, one of which was posted 2 days ago (the
counter days is encoded in unary in the tree - under node v11 for this customer).
One can represent a tree in a term-like way. For example, to denote the empty
catalog with no customer, we write v1[Play.com](v2[MailOrder], v3[Catalog]), or
if node names are irrelevant, [Play.com]([MailOrder], [Catalog]). Since trees are
unordered, a tree can have several such representations.

The atomic operations in our model are from a setR of guarded tree rewriting
rules, as described below. On an abstract level we view a service s as described
for instance by a regular expression R(s) over the set of rewriting rules R.
For example, the following expression describes an order service on Play.com:
(add-product + delete-product )∗checkout.

The tree resulting in the invocation of service s corresponds to the application
of some sequence of rewriting rules in R(s). The atomic rewriting rules will use
queries based on tree patterns (the descendant relation can be used together
with the child relation), as described next. The symbol / used below stands for
the disjoint union.

Definition 1 (Tree-Pattern). A tree pattern (TP for short) is a tuple P =
(V, parent, ancestor, root, λ), where (V, parent / ancestor, root, λ) is a tree.

A tree pattern represents a set of trees that have a similar shape. As for trees, a
TP can be described in a term-like way, ancestor-edges being represented by the
symbol – (such edges are represented by a double line in the figures). For instance,
the tree pattern LQBill shown in Fig. 2 can be written as w1(–w2(w3(w4))), with
λ(w1) = Play.com, λ(w2) = Ordered, λ(w3) = X , λ(w4) = Y (here X and Y are
tag variables: X,Y ∈ Tvar). This pattern represents trees with root “Play.com”,
having a node “Ordered”, having itself a grandchild.

Definition 2 (Matching). A tree T = (V, parent, λ, root) matches a TP P =
(V ′, parent′, ancestor′, λ′, root′) if there exist two mappings f : V ′ → V and t :
Tvar → T \ Tvar such that:

– f(root′) = root,
– For all v ∈ V ′, λ(f(v)) = λ′(v) if λ′(v) /∈ Tvar, and else λ(f(v)) = t(λ′(v)),
– For all v ∈ V ′ the following holds
• If parent′(v) is defined, then f(parent′(v)) = parent(f(v));
• If ancestor′(v) is defined, then f(ancestor′(v)) is an ancestor of f(v) in T .

Play.com
Play.com
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v1[play.com]

v2[MailOrder]

v3[Customer] v4[Customer]

v5[Ordered]

v6[LOTR]

v7[£25]

w1[play.com]

w2[Ordered]

w3[X]

w4[Y]

f

f

f

f

node node

T
′ LQBill

Fig. 2. A tree T ′ matching the TP LQBill

Mappings (f, t) as above are called a matching between T and P . Furthermore,
if f is injective, then (f, t) is called an injective matching.

Fig. 2 shows an example of an injective matching between a tree T ′ and the
TP LQBill. The only possible matching is f(w1) = v1, f(w2) = v5, f(w3) =
v6, f(w4) = v7 and t(X) =LOTR, t(Y ) = £25. With a matching f : V ′ → V we
associate the mapping node : V \ f(V ′)→ f(V ′), with node(v) being the lowest
ancestor of v belonging to f(V ′). For instance, for the mapping f matching T
to LQBill, we have node(v2) = node(v3) = node(v4) = v1.

Similarly to [2] we use in our model tree-pattern queries (TPQ for short, also
called positive queries in [2]). Such queries have the form Q � P , with Q a
TP and P a tree, and the variables used in Q are also used in P . The TP Q
selects tags in the tree. The result of a query query = Q � P on T is the
forest query(T ) of all instantiations of P by matchings between T and Q. That
is, for each matching (f, t) between T and Q we obtain an instance of P in
which each Tvar-label X has been replaced by the tag t(X). For instance, let
RQBill be the tree Product (Name(X),Price(Y)). Then the result of the TPQ
(LQBill � RQBill) on the tree in Fig. 1 is the forest depicted in Fig. 3.

We now define a generic kind of (guarded) rewriting rules, as a model for
active documents. Our rules are based on tree patterns, that occur in two distinct
contexts. First, tree patterns are used for describing how the structure of the
document tree changes through the rule - some subtrees might be deleted, new

r1[Product]

r2[Name] r3[Price]

r4[LOTR] r5[£25]

r6[Product]

r7[Name] r8[Price]

r9[skins] r10[£10]

Fig. 3. Result forest of the TPQ LQBill � RQBill on document T
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nodes can be added. Second, rules are guarded, and the guard condition is tested
via a TPQ. The role of the query is actually twofold: it is used in the pre-condition
of the rule, and its result can enhance the information of the new tree.

Definition 3 (TP rules). A TP rule is a tuple (left, query, guard, right), such
that:

– left is a TP (Vl, parentl, ancestorl, λl, rootl) over T ,
– right is a TP (Vr , parentr, ancestorr, λr , rootr) over T ∪ T$,
– query is a TPQ,
– guard is a set of forests.

We require the following additional properties:

1. all tag variables used in right appear also in left, and
2. ancestorr(x) = y iff x, y ∈ Vl ∩ Vr and ancestorl(x) = y.

w1(Play.com)

w5(Customer)

w2(Ordered)

w1(Play.com)

w5(Customer)

w6(Processed)

w7(Bill,$)

left right

Fig. 4. Tree patterns left and right of a rule

The additional conditions on right ensure that the right-hand side of a TP rule
determines the form of the resulting tree, as it is explained below. For instance,
Bill = (left, (LQBill � RQBill), guard, right) is a TP rule, with left, right defined
as in Fig. 4. Informally, the rule says that the system will process a bill for
the current order, and will tag the order as processed. The guard guard will be
usually specified as a finite set of trees. In this case, the guard is fulfilled if the
result of the query covers one of the tree of guard (see Section 4 on decidability).

We first describe the semantics of a rule using the rule Bill as an example on
the tree in Fig. 1. First, we compute an injective mapping f which maps the
nodes w1, w5, w2 of left with the nodes v1, v4, v10 of T , respectively. We produce
a new tree by rearranging and relabeling the nodes of T in the image of f , that
is v1, v4, v10. Some nodes can be deleted and others created. The resulting tree is
shown in Fig. 5. We keep all nodes of T which are matched by nodes of left also
present in right (v1 and v4), as well as their descendants by node−1. That is, we
keep all nodes labeled by vi in Fig. 5. In particular, a node matched in left which
does not appear in right is deleted (as v10, matched to w2), as well as its node−1

descendants (v16 and v23). The TP right makes it possible to create new nodes,
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v1[Play.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] w6[Processed] v11[Posted] v12[Name] v13[Price]

v15[LOTR] w7[Bill]

v22[£25]

v19[skins] v20[£10]v17[day] v18[day]

v8[Cart]

v14[skins]

v21[£10]
r6(Product)

r7(Name) r8(Price)

r9(skins) r10(£10)

Fig. 5. The tree document T ′ resulting of the application of the rule Bill

present in right but not in left, as w6, w7. In addition, the TPQ query of the rule
is used to attach a copy of the returned forest to all $-marked nodes of right.
Furthermore, if the TPQ Q � P uses in Q some node name m common to left,
then the results of the TPQ are restricted to those where m matches f(m). For
instance, in the TP rule Bill, the TP LQBill uses names w1, w2 common to left, so
the results of the TPQ (LQBill � RQBill) are restricted to the particular order
chosen by the matching f between T and left. The result is thus the subtree
rooted at node r6 in Fig. 3, but not the subtree rooted at r1, since it would
require f(w2) = v9, while f(w2) = v10. This restriction is desirable, since we
want to issue a bill only for the products of this particular order. Here, w7 is
$-marked, and the result forest is defined by nodes r6, · · · r10.

More formally, let query = Q � P be a TPQ and let (f, t) be an injective
matching between T and left. Moreover, let Vl be the nodes of left and VQ those
of Q. Let S1, . . . , Sk be the trees composing the resulting forest query(T ), and let
g1, . . . , gk be the respective associated matchings (that is, gi : VQ → V and Si is
the instantiation of P by gi). Then we define queryf (T ) as the forest Si1 , . . . , Sil

of those trees Sj such that gj agrees with f over Vl ∩ VQ. That is, queryf (T ) is
the subset of query(T ) that is consistent with the matching f . We now turn to
the formal semantics of rules.

Definition 4 (Semantics of rules). Let T = (V, parent, λ, root) be a tree and
R = (left, query = Q � P, guard, right) be a rule. Let left = (Vl, parentl, ancestorl,
λl, rootl) and right = (Vr, parentr, ancestorr, λr, rootr).

We say that R is enabled if there exists an injective matching (f, t) from left
into T , such that queryf (T ) ∈ guard. The result of the application of R via (f, t)
is the tree T ′ = (V ′, parent′, λ′, root′) defined as follows:

– V ′ = V1 / V2 / V3 / V4 with
1. V1 = f(Vl ∩ Vr), % in the example on Fig. 5, V1 = {v1, v4}.
2. V2 = node−1(V1), % in the example on Fig. 5, V2 = {vi | i /∈ {1, 4}}.
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3. V3 = f(Vr \ Vl), % in the example on Fig. 5, V3 = {w6, w7}.
4. V4 consists of distinct copies of the nodes of the forest queryf (T ), one for

each node marked by $ in right.
% in the example on Fig. 5, V4 = {ri | i ∈ {6, . . . , 10}}.

– Setting f(u) = u for all u ∈ V3, we extend f : Vr ∪ Vl → V1 / V3.
– root′ = f(rootr).
– Let u ∈ V1 and let ū = f−1(u) be the associated node in Vl∩Vr. If λr(ū) /∈ Tvar

then λ′(u) = λr(ū), else λ′(u) = t(λr(ū)). For all u �= root′, if parentr(ū) is
defined, then parent′(u) = f(parentr(ū)) else parent′(u) = parent(u).

– For all u ∈ V2, parent′(u) = parent(u) and λ′(u) = λ(u).
– For all u ∈ V3 \ {rootr}, parent′(u) = f(parentr(u)) and λ′(u) = λr(u).
– To each node u ∈ V ′ marked by $, we add a copy of the forest queryf (T ) as

children of u, and we unmark the node u.

Note that if x ∈ V2, then its parent is in V1∪V2. The same stands if ancestorr(x)
is defined. Note also that we indeed obtain a tree: for instance, if u ∈ V1

and parentr(ū) is not defined, then parent(u) is defined. This is because v =
ancestorr(ū) is then defined, so by Def. 3, v = ancestorl(ū) in left, so that u = f(ū)
cannot be the root of T .

We write T
R→ T ′ if T ′ can be obtained from T by applying the rule R. More

generally, given a set of rules R we write T → T ′ if there is some rule R ∈ R with
T

R→ T ′, and T
∗→ T ′ for the reflexive-transitive closure of the previous relation.

Notice that the tree T ′ matches right, through the matching f ′ : Vr → V ′ defined
by f ′(v) = f(v) if v ∈ Vr ∩ Vl, and f ′(v) = v if v ∈ Vr \ Vl.

Example (Play.com rules). To show how easily rules can be defined, we describe
now some rules of the Play.com system. When the rule does not use a query or
a guard, we only describe the left and right components.

– The rule New-Customer adds a new customer and its cart.
• left = w1[Play.com](w2[MailOrder]).
• right =w1[Play.com](w2[MailOrder](w3[Customer](w4[Cart]))).

– Every new day, if a posted parcel has not yet been received yet, then the day
counter is incremented.
• left = w1[Play.com](–w2[Posted]).
• right = w1[Play.com](–w2[Posted](w3[day])).

– If after 21 days a posted parcel is still not received, the customer can require
a payback. We use the guard to ensure this time limit. Notice that the query
is Q � P , where Q uses the same w2 as in left, that is the number of days
will be counted only for this particular parcel.
• left = w1[Play.com](–w2[Posted]).
• Q= w1[Play.com](–w2[Posted](w3[day]).
• P= w4[day].
• guard: a forest containing at least 21 trees (and possibly more nodes) whose

root is labeled day.
• right = w1[Play.com].
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3 Static Analysis of TPRS

We assume from now on that an active document is given by a tree pattern
rewriting systems (TPRS) (T,R), consisting of a set R of TP rules and a T -
labeled tree T . That is, we assume that each service corresponds to a rule. Our
results are easily seen to hold in the more general setting where services are
regular expressions over R.

A tree T with node set V is subsumed by a tree T ′ with node set V ′, noted
T % T ′, if there is an injective mapping from V to V ′ that preserves the labeling,
the root, and the parent relation. A forest F is subsumed by a forest F ′, written
F % F ′, if F is mapped injectively into F ′ such that each tree in F is subsumed
by its image in F ′. Similarly, a TP P with node set V is subsumed by a TP P ′

with node set V ′, if there is an injective mapping from V to V ′ that preserves
the labeling, the root, the parent and the ancestor relations.

With a TPRS (T,R) we can associate the (infinite-state) transition system
〈S(T,R),→〉 with S(T,R) = {T ′ | T ∗→ T ′}. We are interested in checking the
following properties:

– Termination: Are all derivation chains T → T1 → T2 → · · · of (T,R) finite?
– Finite-state property: Is the set S(T,R) of reachable trees finite?
– Reachability: Given (T,R) and a tree T ′, is T ′ reachable in (T,R)?
– Confluence (joinability): For any pair of trees T1, T2 ∈ S(T,R), does there

exist some T ′ such that T1
∗→ T ′ and T2

∗→ T ′?
– Pattern reachability (coverability): Given (T,R) and a tree pattern P , does

T
∗→ T ′ hold for some T ′ matching P?

– Weak confluence: For any pair of trees T1, T2 ∈ S(T,R), does there exist
T ′

1 % T ′
2 such that T1

∗→ T ′
1 and T2

∗→ T ′
2?

Pattern reachability is a key property. For example, we might ask whether an
already cancelled order could still be delivered, which would mean a problem in
the system. For this, it suffices to tag cancelled orders with a special symbol #,
and check for the pattern w1[Play.com](–w2[delivered](w3[#])). This is the same
kind of properties which are checked in [3]. As expected, any of the nontrivial
questions above is undecidable in the general case, see Theorem 1 below.

We are thus looking for relevant restrictions yielding decidability of at least
some of these problems. In the next section we consider a subclass of TPRS, which
is a special instance of the so-called well-structured systems. We say that (T,R) is
positive if all guards occurring in the rules fromR are upward-closed. This means
that for every guard G, and all forests F, F ′ with F % F ′, F ∈ G implies F ′ ∈ G,
too. In particular, if a rule R in a positive system is enabled for a tree T , then R is
enabled for any tree T ′ that subsumes T . The reason is that for any TPQ query,
we have that for every tree T ′

1 in query(T ′), there is some tree T1 in query(T ) such
that T1 is subsumed by T ′

1. Notice that positive TPRS allow deletion of nodes, so
they are more powerful than the positive AXML systems considered in [2].

The next theorem shows that upward-closed guards alone do not suffice for
obtaining decidability of termination:
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Theorem 1. Any two-counter machine M can be simulated by a positive TPRS
(T,R) in such a way that M terminates iff (T,R) terminates.

Theorem 1 shows that any non trivial property is undecidable for positive TPRS
without further restrictions. However, notice that the proof of the above result
needs trees of unbounded depth. A realistic restriction in the XML setting is
to consider only trees of bounded depth: XML documents are usually large,
but shallow. A TPRS (T,R) is called depth-bounded, if there exists some fixed
integer K such that every tree T ′ with T

∗→ T ′ has depth at most K. Of course,
Theorem 1 implies that it is undecidable to know whether a TPRS is depth-
bounded. However, in many real-life examples this property is easily seen to
hold (see e.g. the Play.com example, which has depth at most 8).

4 Decidability for Positive and Depth-Bounded TPRS

For positive and depth-bounded TPRS, we can apply well-known techniques
from the verification of infinite-state systems that are well-structured. Well-
structured transition systems were considered independently in [1,8] and they
cover many interesting models, such as Petri nets or lossy channel systems. We
recall first some basics of well-structured systems.

Definition 5. A well-quasi-ordering (wqo) on a set X is a quasi-ordering (that
is, a reflexive and transitive binary relation) %, such that in every infinite se-
quence (xn)n≥0 ⊆ X, there exist some indices i < j with xi % xj .

In general, the “subsumed” relation % on the set X of T -labeled trees is not a
wqo.1 However, using Higman’s lemma (see, e.g., [6, Chap. 12]), one can show
that % is a wqo on the set of trees of depth at most K (for any fixed K):

Proposition 1. Fix K ∈ N, and let XK denote the set of unordered T -labeled
trees of depth at most K. The “subsumed” relation % ⊆ XK ×XK is a wqo.

By the previous statement, a positive and depth-bounded TPRS (T,R) yields
a well-structured transition system 〈S(T,R),→〉 as defined in [8] (see also2 [1]).
This follows from the transition relation → being upward compatible: whenever
T

R→ T ′ and T % T1, there exists T ′
1 with T1

R→ T ′
1 and T ′ % T ′

1.
For the next theorem we need first some notation. Given a set X and a

preorder %, we denote by ↑X the upward closure {T ′ | T % T ′ for some T ∈ X}
of X . By min(X) we denote the set of minimal elements3 of X . Finally, by
1 Indeed consider the sequence of trees (Tn)n≥0 where for each n ≥ 0, Tn is the tree

formed by a single branch of length n + 1 whose internal nodes are labeled by a and
the unique leaf is labeled by b.

2 As shown in the proof of Theorem 2, 〈S(T,R),→〉 is also well-structured as defined
in [1], which requires in addition that the set of predecessors of upward-closed sets
is effectively computable.

3 For a wqo (X, ) and Y ⊆ X, the set min(Y )/∼ is finite, where ∼ =  ∩  −1. For
the subsumed relation  , note that ∼ is the identity.
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Pred(X) we denote the set of immediate predecessors of elements of X . Note
that whenever the transition relation → is upward compatible and X upward-
closed, the set Pred(X) is upward-closed, too.

Since the subsumed relation % is a wqo, the % relation on forests is a wqo
as well. Thus, each guard G in a positive, depth-bounded TPRS (T,R) can be
described by the (finite) set of forests min(G). Define the size |G| of G as the
maximal size of a forest in min(G).

Theorem 2. Termination and pattern reachability are both decidable for posi-
tive and depth-bounded TPRS.

Proof. First, termination is decidable for well-structured systems such that 1)
% is decidable, 2)→ is computable and 3) upward compatible, see [8, Thm. 4.6].

For pattern reachability, it is easy to see that the set of trees of depth bounded
by some K and matching a TP P is upward-closed, and that the set of its minimal
elements is effectively computable. We can thus use [1], which shows decidability
of the reachability of ↑T under the assumption that the set min(Pred(↑T )) is
computable. This makes it possible to use the obvious backward exploration algo-
rithm. So let us fix a tree T and a bound K of the system (T0,R). We claim that
min(Pred(↑T )) is indeed computable. Fix a rule R = (left, query, guard, right).

Let SR(T ) be the finite set of all trees T ′ with T ′ R−→ T , and of size at most
|T |+ |left|+K|query||guard|. We show that min(Pred(↑T )) = min

⋃
R∈R SR(T ).

Since the right member of this equality is clearly computable, this will prove the
claim. The inclusion from right to left is obvious. Let then T1 ∈ min(Pred(↑T )).
Thus, there exist some rule R and some injective matching (f, t) with T1

R−→ T
via (f, t). Let also F ∈ min(guard) be a forest with F % F ′, where F ′ is the
result of query on T1 (consistent with the matching f).

Let Vl be the nodes of left and Vr be those of right. The nodes of T1 can then
be partitioned into 4 sets: V1 = f(Vl ∩ Vr), V2 = node−1(V1), V ′

1 = f(Vl \ Vr),
V ′

2 = node−1(V ′
1 ). By Def. 4, T shares with T1 the nodes of both V1 and V2, hence

|T1| ≤ |T |+ |V ′
1 |+ |V ′

2 |. Now, |V ′
1 | ≤ |left|. We now explain that V ′

2 has at most
|query||guard| leaves, hence |V ′

2 | ≤ K|query||guard| which shows that T1 ∈ SR(T ).
Otherwise one can delete a leaf from V ′

2 and get a tree T ′
1 % T1 with T ′

1
R−→ T

(via (f, t)), and still F % F ′′, where F ′′ denotes the result of query on T ′
1. This

contradicts the minimality of T1. �

On the negative side, depth-bounded well-structured systems can simulate reset
Petri nets (i.e., nets with an additional transition that empties a place), hence
we can deduce the following from known results:

Theorem 3. Exact reachability, confluence, weak confluence and the finite-state
property are undecidable for positive and depth-bounded TPRS.

On the positive side, we can show that the finite-state property is decidable
for positive, depth-bounded TPRS, that are strict, i.e., such that for any rule
(left, query, guard, right), we require Vl ⊆ Vr. One cannot encode reset Petri nets
with such systems because deletion is no longer possible (actually one can only
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relabel an existing node and create new nodes). Strict systems enjoy the ad-
ditional property that whenever T

R→ T ′ and T ≺ T1, there exists T ′
1 with

T1
R→ T ′

1 and T ′ ≺ T ′
1 (notice that for non strict systems, we can only guarantee

that T ′ % T ′
1). The results from [8] yield the following theorem.

Theorem 4. The finite-state property and reachability are decidable for TPRS
that are positive, depth-bounded, and strict.

Note that the finite-state property is not very interesting in itself, but if it holds,
then the other problems become decidable as we are dealing with a finite-state
system. In particular, in order to test for confluence, it suffices to test that
(S(T,R),→) has a unique maximal strongly connected component.

Observe that reachability is decidable for positive, depth-bounded and strict
TPRS simply because T → T ′ implies |T | ≤ |T ′|, so that reachability of a tree
T1 reduces to its reachability in the finite state system ({T ′ | |T ′| ≤ |T1|},→).

The table below sums up the results we obtained so far. It presents (un)de-
cidability results concerning the various classes of positive TPRS we considered
(depth-bounded and strict). The negative results about strict TPRS come from
Theorem 1 (results on strict TPRS are obtained using slight variations of our
proofs). Term., FS, Reach., P-reach,Confl. and W-confl. stand respectively for ter-
mination, finite state property, reachability, pattern reachability, confluence and
weak confluence.

Model Term. FS Reach. P-reach. Confl. W-confl.

Strict U U U U U U

Depth-Bounded D U U D U U

Depth-Bounded & Strict D D D D U U

5 Lower Bounds and Extensions

Decidability results are obtained with non-constructive proofs coming from Hig-
man’s Lemma. This ensures termination of the algorithms, but without yielding
complexity bounds. It is thus relevant to obtain lower bounds for these results.

Theorem 5. The following problems have at least non-elementary complexity:

– Input: A TP P , a TPRS system (S,R) and an integer k such that the depth
of (S,R) is bounded by k.

– Problem1: Is the pattern P reachable in (S,R)?
– Problem2: Does (S,R) terminate, that is, does it have an infinite path?
Proof. Let tower(0, n) = n and tower(k+1, n) = 2tower(k,n). Fix some integer k,
and let M be an n �→ tower(k, n)-space bounded deterministic Turing machine
and x be an input of M . Denote by log∗ n the smallest integer m such that
n ≤ tower(m, 2) and let K = k + log∗ |x|, so that the computation of M on x
uses at most tower(k, |x|) ≤ tower(K, 2) tape cells. We build a (K + 1)-depth
bounded TPRS of size O(|M |+ |x|) simulating M on x.
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Informally, we encode each configuration of M by a tree. Each cell is encoded
by a subtree of the root, labeled at its own root by the cell content, with the forest
below it encoding the position of the cell. Since such a position is smaller than
tower(K, 2), it can itself be encoded recursively by a forest of depth at most K
(such a recursive encoding of large integers, by words, has already been used
in [15]). For instance, one can encode integers from 0 to 15 = tower(2, 2) − 1
at depth 2. The forest of Fig. 6 encodes 13 (1101 in binary). To recover its
position, each bit of the base 2 representation has under itself a forest of depth 1
encoding its position (recursively with the same encoding scheme). For instance,
the leftmost 1 is at position 00, which is encoded by the forest {[0]([0]), [0]([1])}.

[1] [1] [0] [1]

[0] [0] [0] [1] [1] [0] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

Fig. 6. A level 2 counter encoding 13

Let N = tower(K, 2) − 1. We encode the configuration C of M with tape
content a0 · · ·aN , current state q and scanned position m, by the forest FC =
[M ]

(
ā0(FK

0 ) · · · āN (FK
N )

)
of depth K+1, with ām = [am, q] and āi = [ai] for i �=

m, and where FK
i is the forest of depth K encoding the number i ≤ N . The

head position is thus doubly tagged: by the letter, and by the state. Such a node
with a double tag [α, β] is said marked by β, or a β-node.

In order to navigate through the cells, we use for each level � ≤ K an additional
placeholder node, child of the root, named c� for holding a level � counter below
it. The idea is that the counter attached below cK will be able to count up to
N , and hence can pinpoint a tape position. The other counters c� are needed in
the inductive process. During the computation, additional markers will be used
either as pebbles, or to guide the control. Figure 7 shows a typical tree reached
during the computation. The rules of the TPRS are set up so that it performs
successively the following actions:
1. It creates the forest FC0 corresponding to the initial configuration C0, and

attaches it under the root, leaving cK labeled by [cK , run] and for � < K, c�

labeled by [c�, ready].
2. It simulates repeatedly transitions of M , stopping if the final state is reached.

We only show how to encode transitions. The generation of the initial configu-
ration, starting from [M ]([c0, ready], . . . , [cK−1, ready], [cK , create-init-config]), is
done using similar routines. We use a finite set of rules without query/guard
part. Although the TPRS will be nondeterministic, appropriate tags shall en-
sure that rules applicable at some step have all the same left member. When the
TPRS discovers that a nondeterministic guess was wrong, it blocks. Therefore,
if M halts on x, then the TPRS always terminate. If M does not halt on x, then
the corresponding run of the TPRS where all guesses are correct does not either.
This ensures termination iff M halts on x.
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[M ]

[b] [b, ∗] [b, q] [a] [c0,true] [c1,cmp-compare-bits] [c2,check-suc3]

[0] [0] [0] [1] [1] [0, ∗1] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

[1] [1] [0, ∗′1]

[0] [1]

Fig. 7. The tree coding the tape b b q b a of the Turing machine M

To simulate a transition, the TPRS first performs the changes in the config-
uration, nondeterministically guessing the new head position. To check whether
the head has been properly placed, it ∗-marks the original head position. The
node cK is marked by tags from a set {run, check-suc, check-pred, . . .} to encode
the current stage of the simulation. For instance, the simulation of a transition

p
a/b/→−−−−→ q starts the application of one of the rules:

• left = r[M ](x[a, p], y[d], z[cK , run]),
• right = r[M ](x[b, ∗], y[d, q], z[cK , check-suc]), for all d in the tape alphabet.

To complete the simulation of the transition, the TPRS checks whether the
position written below the node pinpointed by q is a successor of that below
the node pinpointed by ∗. If yes, it deletes the mark ∗, and labels cK back to
[cK , run]. If not, the head position was incorrectly guessed and the system blocks.

The verification that the nodes marked ∗ and q occur successively has itself
several steps. First, we copy under cK the level K counter located below the ∗-
node. Then we increment that copy. Finally we compare the result to the counter
below the q-node. We use auxiliary markers ∗�, ∗′� for each level �, attached to
nodes below an � counter: ∗� in the part of the tree representing the configuration,
and ∗′� under some ci, i > �. We define inductively rules to achieve the following
tasks for each level � ≤ K:

– copy(�) copies below the ∗′�-marked node the level � counter found below c�.
– increment(�) increments the level � counter below c�.
– compare(�) compares level � counters below c� and below the ∗�-marked node.
– test-max(�) tests if the level � counter below c� has its maximal value.
– zero(�) generates under c� the level � counter F �

0 .

Each task of level � is implemented by a sequence of tasks of level (�− 1), using
some fresh tags to correctly organize the order of these level (�−1) tasks. See [9]
for rules and proof details. �

The bounded depth restriction needed for our decidability results can be relaxed
if we forbid the use of the direct parent-child edges in tree patterns. This leads to
the following preorder on unranked, unordered T -labeled trees, which is a well
quasi-ordering by Kruskal’s theorem (see [6, Chap. 12]). For two trees T, T ′ with
sets of nodes V, V ′ respectively, we write T �T ′, if there is an injective mapping
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from V to V ′ that preserves the labeling, the root, and the ancestor relation. So
compared to the relation % used previously, we do not require that the parent
relation is preserved.

Clearly, we need to restrict the TPRS rules in order to obtain well-structured
systems. Namely we require that all TP occurring in query and left use only
ancestor edges (right can still use parent edges, but the parent relation cannot be
tested for). We call such TPRS undirected. Using similar proofs as in Sect. 4, we
get the same decidability results. For the lower bound we obtain a stronger result,
by encoding reachability for lossy channel systems (LCS). These are finite-state
machines communicating over FIFO channels that can loose arbitrary many mes-
sages. Reachability for LCS has non primitive recursive complexity [14], already
for LCSs made up of two finite-state machines and two channels [5].

Theorem 6. Termination and pattern reachability have at least non primitive
recursive complexity for undirected TPRS.
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Abstract. We propose a tableau algorithm to decide bisimilarity of
guarded normed and unnormed BPA processes, which is very intuitive
and direct. It also has the advantage of helping us to show that the equa-
tional theory proposed by Hüttel and Stirling for normed BPA systems
is also complete for arbitrary guarded BPA systems. As a result, the first
equational theory for full BPA processes is found.

1 Introduction

It has been well established that strong bisimilarity is not only decidable for
normed BPA processes[1,3,5,8], but also decidable for full BPA processes[4].
Consequently, many deciding algorithms have been brought out. In [8,9], Hans
Hüttel and Colin Stirling proved the decidability result of normed BPA by using
a tableau decision method. Furthermore, a fast algorithm was proposed in [7] and
later a polynomial algorithm for this problem was given in [6]. As for arbitrary
context-free processes corresponding to full BPA, [4] proved that bisimulation
equivalence is decidable and suggested an algorithm based on two semi-decision
procedures. Finally in [2], along the same lines of [6], Burkart, Caucal, and
Steffen introduced an elementary decision procedure to solve this problem. All
these results are recorded by J.Srba[13], and he keeps an updated online version
too. In the paper [12], Srba also showed that strong bisimilarity checking on full
BPA is PSPACE-hard.

The decision procedure comprises three steps in [2], just as that in [6]. At first,
an initial bisimulation-complete base is computed. Then it is refined by fixpoint
iteration, generating a bisimulation base, with the help of which a branching
algorithm can be run to decide the bisimilarity of any given processes. To ensure
the finiteness of the initial base, the existence of a separability bound must be
guaranteed, which is the key point throughout the whole procedure in [2]. Ac-
tually, we can view these algorithms in [2] and [6] as global, for the bisimulation
bases capture all the essential parts of the greatest bisimilarity ∼. As a contrary,
the tableau method in [8,9] provides a local algorithm since it is goal-directed
and only generates necessary bisimilar pairs specific to the relevant given pair.
� Supported by Chinese NSF grant 60496320.

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 347–360, 2008.
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Under the help of the tableau technique, Hans Hüttel and Colin Stirling also
provided an equational theory for the bisimulation equivalence of normed BPA
processes given in 3-GNF([8,9]).

Based on the idea in [2], we give a tableau method to decide bisimulation
equivalence for full BPA processes, providing a counterpart of that in [8,9] for
normed BPA processes. We prove that the depth of every tableau is bounded by
a number involved with the seminorm of the root. That means, we do not have
a general bound but only have a local bound for the specific pair to be decided.
However, this is sufficient to guarantee the termination of our local algorithm.
Not only does this tableau method give us a direct and intuitive algorithm, it also
helps us to show that the equational theory in [8,9] is also complete for both
normed and unnormed BPA processes. As there has not been any equational
theory for full BPA processes so far, this result is interesting.

The rest of this paper is organized as follows: Section 2 gives some prelim-
inaries on BPA processes and bisimulation relations. In Section 3 we describe
the tableau method for deciding bisimulation equivalence relation of context-free
languages, and provide proofs for its termination, soundness and completeness.
In Section 4, we prove the completeness of the equational theory given by Hüttel
and Stirling. Finally, a conclusion is made in Section 5.

2 Preliminaries

2.1 BPA Processes and Bisimulation

Let V be a set of variables, Act a set of actions, the set of BPA expressions are
given by the following syntax:

E ::= a|X |E1 + E2|E1·E2

such that a is an atomic action ranging over Act and X over V . The operator +
is interpreted as nondeterministic choice while · is sequential. We usually omit
the ·.

A BPA process is defined by a finite system of recursive process equations

Δ = {Xi
def
= Ei|1 ≤ i ≤ n}

where the Xi are distinct and the Ei are BPA expressions, and free variables in
each Ei range over set {X1, . . . , Xn}. In this paper, we concentrate on guarded
BPA systems.

Definition 1. A BPA expression is guarded if every variable X occurs within
the scope of an atomic action, and a BPA system is guarded if each Ei is guarded
for 1 ≤ i ≤ n.

We use X, Y, . . . to range over variables in V and Greek letters α, β, . . . to range
over elements in V∗. The empty process is denoted by ε and for any α, εα =
αε = α.
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It was shown in [1] that any guarded system can be effectively transformed
into a 3-GNF normal form

Δ = {Xi
def
= Σmi

j=1aijαij |1 ≤ i ≤ n},

where for all i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ mi, |αij | < 3. So we only consider
BPA processes given in 3-GNF in this paper.

Example 1. Consider the system Δ = {A def
= aD + a, B

def
= aD, C

def
= bC, D

def
=

b}, then Δ is in 3-GNF normal form.

Definition 2. The operational semantics of a guarded BPA system can be de-
scribed by a labelled transition system (V∗, Act, →) where the transition relation
→ is generated by the rules in Table 1.

Table 1. Transition rules

a
a→ ε, a ∈ Act

E
a→ E′

X
a→ E′ X

def
= E ∈ Δ

E
a→ E′

E + F
a→ E′

F
a→ F ′

E + F
a→ F ′

E
a→ E′

EF
a→ E′F

For guarded BPA systems, it can be easily seen that the corresponding transition
graph is finite-branching, so it is also image-finite.

Definition 3 ([11]). A binary relation R ⊆ V∗ ×V∗ is a bisimulation if when-
ever (α, β) ∈ R then for each a ∈ Act,

– α
a−→ α′ ⇒ ∃β′.β

a−→ β′ and (α′, β′) ∈ R.
– β

a−→ β′ ⇒ ∃α′.α
a−→ α′ and (α′, β′) ∈ R.

Two processes α and β are said to be bisimulation equivalent, written as α ∼ β,
if there is a bisimulation relation R such that (α, β) ∈ R.

Definition 4. A match for (α, β) is a set M s.t. for all a ∈ Act,

– α
a−→ α′ ⇒ ∃β′.β

a−→ β′ and (α′, β′) ∈M .
– β

a−→ β′ ⇒ ∃α′.α
a−→ α′ and (α′, β′) ∈M .

– (α′, β′) ∈M ⇒ ∃a ∈ Act s.t. α
a−→ α′&β

a−→ β′.

Since the transition graphs for α and β are finite-branching, there can only be
finitely many matches for α = β and every match will be finite.

In [3], Caucal introduced the notion of self-bisimulation and showed that all
pairs in a self-bisimulation are bisimulation equivalent.



350 L. Luo

Definition 5. For any binary relation R on V∗, we denote the least precongru-
ence w.r.t. sequential composition containing R by

→
R, the symmetric closure of

→
R by

↔
R, and the reflexive and transitive closure of

↔
R by

↔
R

∗
.

Definition 6. A relation B ⊆ V∗×V∗ is a self-bisimulation if (α, β) ∈ B implies
that for each a ∈ Act

– α
a−→ α′ ⇒ ∃β′.β

a−→ β′ and (α′, β′) ∈
↔
B

∗
.

– β
a−→ β′ ⇒ ∃α′.α

a−→ α′ and (α′, β′) ∈
↔
B

∗
.

Lemma 1 ([3]). If B is a self-bisimulation then
↔
B

∗
⊆∼.

2.2 Norm, Decomposition and Seperability

The norm of a process α, written as ‖α‖, is the length of the shortest ω ∈ Act+

such that α
ω−→ ε. It is assumed that ‖ε‖ = 0. If ‖α‖ < ∞, we said α is normed,

otherwise(‖α‖ = ∞), α is said to be unnormed. The length of any action sequence
ω is denoted by |ω|. As a result, the set V can be divided into two disjoint sets
VN = {X ∈ V|X is normed } and V∞ = {X ∈ V|X is unnormed }.

After the division of normed and unnormed processes, it is not difficult to see
that:

If X ∈ V∞, then αXβ ∼ αX .

So in the remainder of this paper, it is reasonable to restrict our attention to
processes in VN∗V∞ ∪ VN∗.

On the basis of norm, seminorm is also defined, which is always finite.

Definition 7. The seminorm of every α , denoted by ‖.‖s, is defined as follows:

‖αX‖s =
{
||αX || if X ∈ VN
||α|| otherwise

Moreover, we define a partial order on (VN∗V∞ ∪VN∗)× ( VN∗V∞ ∪VN∗) as �
given by (α1, α2) � (β1, β2) if max{‖α1‖s, ‖α2‖s} < max{‖β1‖s, ‖β2‖s}.

For the system in Example 1, ‖AC‖s = ‖A‖ = 1, ‖BC‖s = ‖B‖ = 1.

Definition 8. Xα ∼ Y β is decomposable if X, Y ∈ VN and there is a γ such
that

– Xγ ∼ Y and α ∼ γβ if ‖X‖ ≤ ‖Y ‖.
– X ∼ Y γ and γα ∼ β if ‖Y ‖ < ‖X‖.

In the case of normed processes, any bisimilar pair Xα ∼ Y β is decomposable.
Another definition of ∼ is via a sequence of approximations.

Definition 9. The sequence of bisimulation approximations {∼n}∞n=0 is defined
inductively as follows.
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1. α ∼0 β for all processes α and β,
2. α ∼n+1 β if for each a ∈ Act

– α
a−→ α′ ⇒ ∃β′.β

a−→ β′ and α′ ∼n β′.
– β

a−→ β′ ⇒ ∃α′.α
a−→ α′ and α′ ∼n β′.

For any family Δ of guarded BPA processes,∼=
⋂∞

n=0 ∼n since it is image-finite.
It can also be checked that for any n, ∼n is an equivalence relation, moreover it
is a congruence relation w.r.t. the sequential operator·.

Based on the above definition, if α �∼ β there must exist some m s.t. α �∼m β.
We define the minimal such m as separability.

Definition 10. We define the separability of α and β as:

Sep(α, β) = max{α ∼n β} + 1.

If Sep(α, β) = m < ∞, then α and β are called m-separable. Obviously, for all
α �∼ β, Sep(α, β) > 0. Moreover, if Sep(α, β) = ∞ then α ∼ β.

For example, Sep(A, B) = 3 in the system defined in Example 1.

Lemma 2. When α �∼1 β and αγ ∼ βγ, then α = ε or β = ε.

3 The Tableau Method

3.1 Expanding BPA System

To guarantee the termination of the tableau algorithm, some essential prepara-
tions must be made beforehand.

Definition 11. Suppose that X is normed and Y is unnormed, define the dis-
tance of X, Y , denoted as dX,Y :

dX,Y = max{‖γ‖s|X ω−→ ε, Y
ω−→ γ and ‖X‖ = |ω|}.

Because the system is finite-branching and the norm of X is bounded, the number
of the γ is bounded. So dX,Y is well defined.

Lemma 3. All of the sets below are finite:

– U1 = {(X, Y )|X, Y ∈ V}.
– U2 = {(Xγ, Y )|Xγ, Y ∈ VN∗, Y

ω−→ γ such that ‖X‖ = |ω|}.
– U3 = {(Xα, Y )|X ∈ VN , α, Y ∈ VN∗V∞, ‖α‖s ≤ dX,Y }.

Proof. Since the number of variables in a BPA system is finite, it is easy to
see that U1 is finite; U2 is also finite for the norm of every normed variable is
bounded by the maximal one; U3 is finite because the number of the α such that
‖α‖s ≤ dX,Y is bounded. ��

Let S = max{Sep(Xγ, Y ) | Xγ �∼ Y and (Xγ, Y )∈ U2} and N = max{‖α‖ |
∃β.s.t.(α, β) ∈ U2}. Because of the remarkable result shown in [2, Theorem 3.12]
that when α �∼ β and α, β are normed, then Sep(α, β) is bounded, this S we de-
fined here can be calculated effectively. Define S as S = max(S, N).
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Definition 12. When ||X || ≤ ||Y || < ∞ and the following conditions hold:

– X
ω−→ ε, Y

ω−→ γ such that ‖X‖ = |ω|.
– Xγ

ω′
−→ ε, Y

ω′
−→ η �= ε or Y

ω′
−→ ε, Xγ

ω′
−→ η �= ε such that |ω′| ≤ S.

– Z1
Δ= ηZ1 and Z2

Δ= γZ1 where Z1, Z2 are fresh variables.

After changing Z1
Δ= ηZ1 and Z2

Δ= γZ1 to 3-GNF form, we said that (Z1, Z2)
is a generated pair of X, Y .

Because the number of the γ and the η is bounded, X, Y can only have finite
generated pairs. Let U4 = {(XZ2, Y Z1)|(Z1, Z2) is a generated pair for (X, Y )
such that ||X || ≤ ||Y || < ∞}. U4 must be finite.

The reason to add generated pairs will be explained in the proof for complete-
ness. Note that adding new unnormed variables Z1, Z2 to V∞ will not change
the bisimulation relation of any old processes. As a result, we can add all fresh
variables in those generated pairs to V∞ and let V ′ be the resulting variable
set. Note that VN remains unchanged. Besides, let Δ′ be the new BPA system
expanded by added equations like Z1

Δ= ηZ1 and Z2
Δ= γZ1. It is sufficient to

check bisimulation relations on the new expanded system Δ′. As a result, in the
next sections, we’ll deal with the revised system Δ′ but still use Δ to denote it.

Example 2. For the system Δ defined before, ||A|| < ||B|| < ∞, and we have

– A
a−→ ε, B

a−→ D.
– B

ab−→ ε, AD
ab−→ D �= ε such that |ab| ≤ 2.

Let Z1
Δ= DZ1 and Z2

Δ= DZ1. We change the new definitions to 3-GNF form
and get Z1

Δ= bZ1, Z2
Δ= bZ1. Then (Z1, Z2) is a generated pair for A and B. The

new expanded system is Δ′ = {A def
= aD + a, B

def
= aD, C

def
= bC, D

def
= b, Z1

Δ=
bZ1, Z2

Δ= bZ1}

Again define the following sets on V ′ as follows:

– U ′
1 = {(X, Y )|X, Y ∈ V ′}.

– U ′
2 = {(Xγ, Y )|Xγ, Y ∈ VN∗, Y

ω−→ γ such that ‖X‖ = |ω|}.
– U ′

3 = {(Xα, Y )|X ∈ VN , α, Y ∈ VN∗V ′
∞ and ‖α‖s ≤ dX,Y }.

It is not hard to see that U1 ⊆ U ′
1, U3 ⊆ U ′

3 and U2 = U ′
2. Define U = U ′

1 ∪U ′
2 ∪

U ′
3 ∪ U4. Actually, this set U is the initial base constructed in [2].

3.2 The Tableau Rules

In [8,9], Hans Hüttel and Colin Stirling gave a tableau method to decide bisim-
ilarity of normed BPA. In the following, we’ll introduce a counterpart of it: A
tableau system for all normed and unnormed BPA systems. The tableau method
involves goal-directed rules, which means that the prefix of a rule is the goal to
be achieved while the consequents are the subgoals. Those decision rules for our
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system are shown in Table 2. In the remainder, if we say a DSUB rule, we mean
DSUBL or DSUBR. Similarly for ESUB and DEDUCE. A SUB rule stands for
a DSUB or an ESUB.

The corresponding side conditions of the tableau rules in Table 2 are listed as
follows:

1. X, Y normed and α, β �= ε, ‖X‖ ≤ ‖Y ‖, and ∃ω. X
ω−→ ε, Y

ω−→ γ.s.t.|ω| =
‖X‖ and ‖Xγ‖ = ‖Y ‖.

2. X, Y normed and α, β �= ε, ‖X‖ > ‖Y ‖, and ∃ω. Y
ω−→ ε, X

ω−→ γ.s.t.|ω| =
‖Y ‖ and ‖X‖ = ‖Y γ‖.

3. X, Y normed, α, β unnormed and ‖X‖ ≤ ‖Y ‖, (Z1, Z2) is a generated pair
for (X, Y ).

4. X, Y normed, α, β unnormed and ‖X‖ > ‖Y ‖, (Z1, Z2) is a generated pair
for (Y, X).

5. X normed, Y unnormed, ‖α‖s > dX,Y and ∃ω.X
ω−→ ε.Y

ω−→ γ.s.t.|ω| =
‖X‖.

6. Y normed, X unnormed, ‖β‖s > dY,X and ∃ω.Y
ω−→ ε.X

ω−→ γ.s.t.|ω| =
‖Y ‖.

7. (Xα, Y β) ∈ U ∪ U−1, {(αi, βi)}ki=0 is a finite match of (Xα, Y β).

From those rules we can see that for α = β, at most one rule can be applied
except for the condition when α ≡ Xα′, β ≡ Y β′, X, Y normed, and ‖α′‖ =
‖β′‖ = ∞. In that case, both ESUB and DSUB are applicable. However, this
will not be a problem. It is like adding a finite number of choices to generate
children for α = β, among which one will be successful if α ∼ β.

A tableau is successful if every leaf of it is a successful terminal, while a
successful terminal has one of the following forms:

1. α = α;
2. α = β with α = β or β = α above it in the tableau, which is an UNFOLD

node.

We also give the termination conditions for the unsuccessful leaves. An un-
successful terminal α = β satisfies one of the conditions below:

1. ‖α‖ �= ‖β‖;
2. no rule can be applied but not successful.

Example 3. A successful tableau for AC = BC is as follows:

3.3 Termination, Soundness, and Completeness

Lemma 4. The depth of any tableau rooted with α = β is bounded.

Proof. As we know, along any path in a tableau, the number of UNFOLD nodes
is bounded by |U ∪ U−1|. Define SN as SN = max{‖α‖s|∃β.α = β or β =
α is the child of an UNFOLD node}. Next we show that the number of non-
UNFOLD nodes between any two successive UNFOLD nodes is bounded by
SN .

It is sufficient to prove that any non-UNFOLD sequence is seminormdecreasing.
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Table 2. Decision rules for BPA processes

DSUBL
Xα = Y β

Xγ = Y α = γβ
(1)

DSUBR
Xα = Y β

X = Y γ γα = β
(2)

ESUBL
Xα = Y β

XZ2 = Y Z1 α = Z2 β = Z1
(3)

ESUBR
Xα = Y β

XZ1 = Y Z2 α = Z1 β = Z2
(4)

DEDUCEL
Xα = Y

Xγ = Y α = γ
(5)

DEDUCER
X = Y β

X = Y γ γ = β
(6)

UNFOLD
Xα = Y β

{αi = βi}k
i=0

(7)

Table 3. A successful tableau

AC=BC

AZ2 = BZ1

Z2 = DZ1

Z1 = Z1
(7)

DZ2 = DZ1

D = D Z2 = Z1

Z1 = Z1
(7)

(1)

(7)
C = Z2

C = Z1
(7)

C = Z1

C = Z1
(7)

(3)

– DSUB rule:

Xα′ = Y β′

Xγ = Y α′ = γβ′ Assume w.l.o.g. that DSUBL is used. Xγ = Y will be an

UNFOLD node. Since‖Xγ‖ = ‖Y ‖, ‖γβ′‖s < ‖Xγβ′‖s = ‖Y β′‖s, ‖α′‖s <
‖Xα′‖s, (α′, γβ′) � (Xα′, Y β′) holds.

– ESUB rule:

Xα′ = Y β′

XZ2 = Y Z1 α′ = Z2 β′ = Z1
Assume ESUBL is used, XZ2 = Y Z1 will

be an UNFOLD node. Since ‖Z1‖s = ‖Z2‖s = 0, (α′, Z2) � (Xα′, Y β′),
(β′, Z1) � (Xα′, Y β′).

– DEDUCE rule:

Xα′ = Y
Xγ = Y α′ = γ

Assume DEDUCEL is used. Xγ = Y will be an UNFOLD

node. Since ‖α′‖s > dX,Y ≥ ‖γ‖s, (α′, γ) � (Xα′, Y ).

As a result, the depth is bounded by |U ∪ U−1| ×max{SN, ‖α‖s, ‖β‖s}. ��
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This theorem guarantees that once the root α = β is determined, the tableau
depth is bounded. This bound is specific to the seminorm of the root. However,
We can’t get a bound for all the pairs. For example, let A

Δ= aA, for any natural
number n, the tableau for anA = A will have depth n, which is not bounded.
Fortunately, for this local tableau method, a bound specific to the root is suffi-
cient.

Proposition 1

– Every tableau for α = β is finite.
– The number of tableaux for α = β is finite.

Proof. In a tableau, each node has only a finite number of children. So if there
was an infinite tableau, then according to König’s lemma, it would have an
infinite path, which contradicts lemma 4. The latter part is guaranteed by the
two facts that the depth is bounded and there are finitely many choices at each
step. ��

Proposition 2. If α = β has a successful tableau T , then α ∼ β.

Proof. Let S = {(α, β)|α = β is a node in the tableau T }. It is easy to show
that S is a self-bisimulation. ��

Proposition 3. If α ∼ β, then it will have a successful tableau.

Proof. We build a tree for α = β in such a way that for each node labelled with
α′ = β′ we have α′ ∼ β′.

1. α ≡ β ≡ ε. then the root is a single leaf.
2. α ≡ Xα′ and β ≡ Y β′, X, Y normed and α′, β′ �= ε. Xα′ ∼ Y β′ is decom-

posable. Suppose w.l.o.g. that ‖X‖ ≤ ‖Y ‖, then ∃γ′.Xγ′ ∼ Y and α′ ∼ γ′β′.
Let |ω| = ‖X‖, X

ω−→ ε, so Xγ′ ω−→ γ′, then ∃γ.Y
ω−→ γ and γ′ ∼ γ since

Xγ′ ∼ Y . So here ∃ω.X
ω−→ ε, Y

ω−→ γ, Xγ ∼ Y and α′ ∼ γβ′.
3. α ≡ Xα′ and β ≡ Y β′, X, Y normed and α′, β′ �= ε. Xα′ ∼ Y β′ is not

decomposable. Suppose ‖X‖ ≤ ‖Y ‖, since Xα′ ∼ Y β′, then ∃γ.X
ω−→ ε,

Y
ω−→ γ such that |ω| = ‖X‖, α′ ∼ γβ′ and Xγβ′ ∼ Y β′. So Xγ �∼ Y .

Xγ �∼m Y
a1 ↓ ↓ a1

δ1 �∼m−1 η1

...
...

am−1 ↓ ↓ am−1

δm−1 �∼1 ηm−1

Xγβ′ ∼ Y β′

↓ ↓
δ1β

′ ∼ η1β
′

...
...

↓ ↓
δm−1β

′ ∼ ηm−1β
′

Let Sep(Xγ, Y ) = m, there must exist a sequence δi �∼m−i ηi and δiβ
′ ∼ ηiβ

′

(1 ≤ i ≤ m− 1) such that Xγ
a1−→ δ1, Y

a1−→ η1 and δi
ai+1−→ δi+1, ηi

ai+1−→ ηi+1

for 1 ≤ i ≤ m− 1. As a result, we find δm−1 �∼1 ηm−1 but δm−1β
′ ∼ ηm−1β

′.
Recall lemma 2, δm−1 = ε or ηm−1 = ε. If δm−1 = ε, then ηm−1 �= ε and
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β′ ∼ ηm−1β
′, let Z1

Δ= ηm−1Z1; else if ηm−1 = ε, δm−1 �= ε and β′ ∼
δm−1β

′, let Z1
Δ= δm−1Z1. In both cases, β′ ∼ Z1. Define Z2

Δ= γZ2, so that
α′ ∼ γβ′ ∼ γZ1 ∼ Z2. What’s more, since |a1a2 . . . am−1| = m − 1, if γ is
unnormed, then m− 1 < ||Y || ≤ N, else if γ is normed, m− 1 ≤ S. That is,
m− 1 < S. Change the equations for Z1 and Z2 to 3-GNF, then (Z1, Z2) is
a generated pair for X, Y and XZ2 ∼ Y Z1.

4. α ≡ Xα′ and β ≡ Y , X normed, Y unnormed, ‖α′‖s > dX,Y . Since Xα′ ∼ Y ,
then ∃γ.X

ω−→ ε, Y
ω−→ γ such that |ω| = ‖X‖ and α′ ∼ γ, Xγ ∼ Y .

5. α ≡ X and β ≡ Y β′, Y normed, X unnormed. ‖β′‖s > dY,X . Similar to the
case above.

6. The rest case is that (α, β) ∈ U ∪ U−1. α = β will be applied to UNFOLD
and it surely have a match in which all pairs are bisimilar. ��

Why do we introduce generated pairs here? That is in spark of [2]. Intuitively,
we can find that for every unnormed α, there must exist some β and γ such that
α ∼ βγω. Here new variables Z1, Z2 are introduced to represent sequences like
γω to make the proof neat and clear.

4 The Equational Theory

We will show that the equational theory proposed by Hüttel and Stirling in [8,9]
for the bisimulation equivalence of normed BPA processes given in 3-GNF also
work for any guarded BPA system. The inference rules in the theory are shown
in Table 7, and the semantics are given as follows:

Definition 13. Γ |=Δ E = F if {(Xα, Y β)|Xα = Y β ∈ Γ} ∪ {(Xi, Ei)|Xi
def
=

Ei ∈ Δ} ⊆∼ implies E ∼ F .

As a result, E ∼ F will follow from the special case that ∅ |=Δ E = F . The
most difficult thing in the proof of completeness lies in UNFOLD nodes. Since
derivatives of an UNFOLD node are generated according to the operational
semantics of the processes, while rules of inference in the equational theory only
rely on the syntax. However, for guarded BPA systems, it is not hard to develop
the relationship between an UNFOLD node and the root of a basic step proposed
in [8,9]. By using a basic step as a bridge, we can get the desired result.

Recalling a basic step introduced in [8,9] composed of REC, SUM and PRE-
FIX rules shown in Table 4, we can investigate the relationship between an
UNFLOD node and a basic step as follows:

Lemma 5. In a successful tableau, if α1α = β1β,. . . ,αkα = βkβ are children
of an UNFOLD node Xα = Y β, then α1α = β1β,. . . ,αkα = βkβ can be all
the leaves of a subtree(named as T) generated by a basic step and rooted with
Xα = Y β(See Table 5).

Proof. Let
Xα = Y β
Eα = Fβ

be an application of the REC rule.

Since M = {(αiα, βiβ)|1 ≤ i ≤ k} is a match for (Xα, Y β) and (Eα, Fβ), the
following facts holds:
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Table 4. Rules within a basic step

REC
Xα = Y β

Eα = Fβ
X

Δ
= E, Y

Δ
= F ∈ Δ

PREFIX
aα = aβ

α = β

SUM
(
∑m

i=1 aiαi)α = (
∑n

j=1 bjβj)β

{aiαiα = bf(i)βf(i)β}m
i=1 {ag(j)αg(j)α = bjβjβ}n

j=1

where f : {1, . . . , m} −→ {1, . . . , n}, g : {1, . . . , n} −→ {1, . . . , m}
with m,n ≥ 1

– Eα
a−→ α′ ⇒ ∃β′.Fβ

a−→ β′ and (α′, β′) ∈M

– Fβ
a−→ β′ ⇒ ∃α′.Eα

a−→ α′ and (α′, β′) ∈M

So we can construct the subtree T as follows:
For any Eα

ai−→ αiα and Fβ
ai−→ βiβ such that (αiα, βiβ) ∈M , choose aiαiα =

aiβiβ as the children for the SUM node Eα = Fβ. And also for any Fβ
bj−→ βjβ

and Eα
bj−→ αjα such that (αjα, βjβ) ∈ M , choose bjαjα = bjβjβ as the

children for the SUM node Eα = Fβ.
As a result, every leaf is an element in M . Next we prove that every element

in M is a piece of leaf in T: According to the definition of a match, for any
1 ≤ i ≤ k, there exists ai ∈ Act s.t. Eα

ai−→ αiα and Fβ
ai−→ βiβ. From the

construction of T above, αiα = βiβ will be a piece of leaf after PREFIX is
applied. ��

Table 5. A basic step

Xα = Y β

(
∑m

i=1 aiαi)α = (
∑n

j=1 bjβj)β
REC

a1α1α = a1β1β

α1α = β1β
. . .

akαkα = akβkβ

αkα = βkβ
PREFIX

SUM

Lemma 6. Let Xα = Y β be an UNFOLD node with children α1 = β1,. . . ,αk =
βk in a successful tableau. If for some Γ we have Γ �Δ αi = βi for 1 ≤ i ≤ k.
then Γ\{Xα = Y β} �Δ Xα = Y β.

Proof. α1 = β1,. . . ,αk = βk must be of the forms α′
1α = β′

1β,. . . ,α′
kα = β′

kβ.
From lemma 5, α′

1α = β′
1β,. . . ,α′

kα = β′
kβ are the leaves of a basic step shown

in Table 5. Since Γ �Δ α′
iα = β′

iβ for 1 ≤ i ≤ k, it is not hard to get
Γ �Δ (

∑m
i=1 aiα

′
i)α = (

∑n
j=1 bjβ

′
j)β, denoted as Γ �Δ Eα = Fβ. So we have

Γ\{Xα = Y β}, Xα = Y β �Δ Eα = Fβ. Then Γ\{Xα = Y β} �Δ Xα = Y β
follows by R12. ��

Definition 14. In a successful tableau T, we define unf(X ′α′ = Y ′β′) for the
node X ′α′ = Y ′β′ as the set of UNFOLD nodes above X ′α′ = Y ′β′.



358 L. Luo

Lemma 7. Given a successful tableau T. For each node X ′α′ = Y ′β′ in T we
have that unf(X ′α′ = Y ′β′) �Δ X ′α′ = Y ′β′.

Proof. Induction in the structure of T.

– X ′α′ = Y ′β′ is a successful leaf. For condition i), R1 gives unf(X ′α′ =
Y ′β′) �Δ X ′α′ = Y ′β′ immediately. For condition ii), if X ′α′ = Y ′β′ ∈
unf(X ′α′ = Y ′β′) then the result holds by R11; If Y ′β′ = X ′α′ ∈ unf
(X ′α′ = Y ′β′), the result follows by R11 and R2.

– X ′α′ = Y ′β′ is a DSUB node, take DSUBL for example. IH gives that
unf(X ′γ = Y ′) �Δ X ′γ = Y ′ and unf(α′ = γβ′) �Δ α′ = γβ′. Observe
that unf(X ′γ = Y ′) = unf(α′ = γβ′) = unf(X ′α′ = Y ′β′), unf(X ′α′ =
Y ′β′) �Δ X ′α′ = Y ′β′ follows by R5 and R3.

– X ′α′ = Y ′β′ is an ESUB node or a DEDUCE node. Similar with the case
above.

– X ′α′ = Y ′β′ is an UNFOLD node. Let α1 = β1,. . . αk = βk be its children.
We have that unf(α1 = β1) = unf(α2 = β2). . . = unf(αk = βk) and
unf(X ′α′ = Y ′β′) = unf(α1 = β1)\{X ′α′ = Y ′β′}. IH gives that unf(α1 =
β1) �Δ αi = βi for 1 ≤ i ≤ k. According to lemma 6, unf(α1 = β1)\{X ′α′ =
Y ′β′} �Δ X ′α′ = Y ′β′, which is exactly unf(X ′α′ = Y ′β′) �Δ X ′α′ =
Y ′β′. ��

Theorem 1. If Γ �Δ Xα = Y β then Γ |=Δ Xα = Y β.

The proof for soundness can be found in [9].

Theorem 2. If Xα ∼ Y β then ∅ �Δ Xα = Y β.

Proof. Since Xα ∼ Y β, Xα = Y β will have a successful tableau. The desired
result is given directly by lemma 7 and the fact that unf(Xα = Y β) = ∅. ��
It should be pointed out that the whole equational theory is still applied on
the expanded BPA system because the completeness is achieved by referring to
tableau and the tableau method is implemented on the expanded system.

Example 4. Abbreviate �Δ as � for simplicity. The main steps for deriving that
� AC = BC is shown in Table 6.

Actually, there is a way to get rid of the use of a basic step, which can be achieved
by changing R12 to

R12’
Γ, α = β �Δ {αi = βi}ki=0

Γ �Δ α = β
where {(αi, βi)}ki=0 is a match of (α, β).

It is very easy to show the soundness and completeness of this new equational
theory. But we chose to stick to Hüttel and Stirling’s theory because R12’ has
been involved with the operational semantics somehow.
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Table 6. The proof sequence for # AC = BC

# bZ1 = bZ1

# Z2 = DZ1
(R12)

# D = D

# bZ1 = bZ1

# Z2 = Z1
(R12)

# DZ2 = DZ1

# C = Z1

# Z2 + DZ2 = DZ1

# (a + aD)Z2 = aDZ1

# AZ2 = BZ1

C = Z1 # bC = bZ1

# C = Z1
(R12)

# bC = bZ1

# C = Z2
(R12)

# AC = BC

Table 7. Rules in the equational theory

Equivalence
R1 Γ #Δ E = E

R2
Γ #Δ E = F

Γ #Δ F = E

R3
Γ #Δ E = F Γ #Δ F = G

Γ #Δ E = G
Congruence

R4
Γ #Δ E1 = F1 Γ #Δ E2 = F2

Γ #Δ E1 + E2 = F1 + F2

R5
Γ #Δ E1 = F1 Γ #Δ E2 = F2

Γ #Δ E1E2 = F1F2

BPA axioms
R6 Γ #Δ E + F = F + E
R7 Γ #Δ (E + F ) + G = E + (F + G)
R8 Γ #Δ E + E = E
R9 Γ #Δ (E + F )G = EG + FG
R10 Γ #Δ E(FG) = (EF )G
Recursion
R11 Γ, Xα = Y β #Δ Xα = Y β

R12
Γ, Xα = Y β #Δ Eα = Fβ

Γ #Δ Xα = Y β
X

def
= E, Y

def
= F ∈ Δ

5 Conclusion

We have given a tableau algorithm to decide bisimulation equivalence relation of
full BPA processes. The whole procedure is direct and easy to understand. It also
helps us to show the completeness of Hüttel and Stirling’s equational theory on
all normed and unnormed BPA systems. As a result, the first equational theory
for full BPA processes is found.

The study of bisimulation decision problems in the fields of BPA and BPP
processes are rather sophisticated already.

All of the results, as well as open problems, are recorded and updated by
J.Srba([13]). About algorithms, the remaining things need to be considered is
how to lower complexity and improve efficiency.
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Future works concerned, as the equational theory in this paper depends on
assumptions, it is somewhat different from that of Milner’s for regular processes
([10]). So one direction of interest is to construct a standard equational theory
of ∼ as elegant as that in [10]. Another direction worth attention may be the
construction of equational theory for weak bisimulation since many decision
results for them are already given.
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Abstract. We show the solvability of an optimization problem on in-
finite two-player games. The winning conditions are of the “request-
response” format, i.e. conjunctions of conditions of the form “if a state
with property Q is visited, then later a state with property P is visited”.
We ask for solutions that do not only guarantee the satisfaction of such
conditions but also minimal wait times between visits to Q-states and
subsequent visits to P -states. We present a natural class of valuations of
infinite plays that captures this optimization problem, and with respect
to this measure show the existence of an optimal winning strategy (if
a winning strategy exists at all) and that it can be realized by a finite-
state machine. For the latter claim we use a reduction to the solution of
mean-payoff games due to Paterson and Zwick.

1 Introduction

Infinite two-player games are a natural model of reactive systems in which a
controller interacts with moves of its environment and has to guarantee certain
conditions on the infinite runs on the system (i.e., infinite plays in the game
theoretic view). A typical condition that arises in many contexts is the “request-
response condition”. It refers to state properties Q1, . . . , Qk which capture k
different types of “requests”, and other state properties P1, . . . , Pk which repre-
sent the corresponding “responses”. The associated request-response condition is
the following requirement on an infinite state sequence (play of the game): For
each i, whenever a state in Qi is visited, then now or later a state in Pi is vis-
ited. In linear time temporal logic the condition is formalized as G(Qi → FPi).
In practice, request-response conditions often occur in the presence of safety con-
ditions. We assume here that the state space is restricted to states that satisfy
the safety condition.

In this paper we analyze request-response games over finite arenas, taking
in account not only the mere satisfaction of the winning condition but also the
quantitative aspect of minimizing the delay between Qi visits and the corre-
sponding subsequent Pi-visits. A quantitative sharpening of liveness conditions
� Research partially supported by ANR AVERISS and by the Research Networking

Programme AutoMathA of ESF (European Science Foundation).

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 361–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



362 F. Horn, W. Thomas, and N. Wallmeier

has been studied by several authors. For instance, in their work on parameterized
temporal logic, Alur et al. [1] supplement temporal operators by constants that
give bounds in the semantics, e.g., Fk meaning “eventually, within k steps”. A
more abstract view is to ask for the existence of an unspecified bound: Kupfer-
man, Piterman, and Vardi [11] define the “prompt” operator Fp, meaning that
there is a constant k that bounds the satisfaction of an eventuality formula over
all runs of a system. Chatterjee and Henzinger [4] consider finitary games, where
the wait time between a request and its satisfaction must be ultimately bounded.
In the present paper we go a step further in the sense that we try to achieve “best
bounds” rather than asking whether given bounds can be met or whether some
bound exists. Thus we study an optimization problem rather than a decision
problem. Moreover, we work in the context of open rather than closed systems.

In order to solve this optimization problem, we introduce valuations for infinite
plays (by real numbers) that measure globally the delays in a play between visits to
request- and subsequent response-states.The approach we take here is to associate
with any position where a request is “open” a corresponding “penalty”. In Section 2
we discuss possible conventions and then pursue a definition which stresses the
requirement of avoiding long wait times, namely the case of strictly growing and
diverging penalties. The penalties v1, v2, v3, . . . for waiting 1, 2, 3, . . . moments of
time strictly increase and give a diverging sequence of real numbers. For a finite
play prefix we take the sum of the occurring penalties divided by its length, and as
value of a play we define the limsup of the prefix values. The corresponding notion
of optimal winning strategy (of player “controller”) is now obvious.

Our main result states that for a finite-state request-response game (with
some given initial state) one can not only decide whether controller wins and
provide a finite-state strategy (which was known), but that also – with respect
to the mentioned valuation – an optimal winning strategy exists, is computable,
and can be realized by a finite-state machine.

The paper is structured as follows: In the subsequent Section 2 we introduce
the technical preliminaries on game arenas, request-response games, the valua-
tion of plays, and optimality of strategies. In Section 3 we state the main result.
Section 4 is devoted to the key lemma which states that an optimal strategy
realizes a uniform bound on the delays. This allows to study the optimization
problem over a finite game graph (resulting from the given one by attaching
all possible tuples of delays up to the mentioned bound) and to invoke (in Sec-
tion 5) known results on mean-payoff games for computing an optimal strategy.
In Section 6, we conclude with a discussion and some open problems.

The paper extends (and gives a more streamlined exposition of) results of the
third author’s dissertation [12, Chapter 4].

2 Definitions

2.1 Games

We recall here some background on infinite games used in specification and
verification. We refer the reader to [13,7] for more details.
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Arenas. A game arena G consists of a directed finite graph (S, T ), a partition
(SE , SA) of S, and an initial state s0. The states in SE (resp. SA) are Eve’s states,
or Controller’s states (resp. Adam’s states, or Environment’s states), and are
graphically represented as � (resp. �) in figures.

Plays and Strategies. A play over G is a finite or infinite sequence ρ = ρ0ρ1 . . .
of states such that ρ0 = s0 and (ρi, ρi+1) ∈ T for all i < length of ρ. The set of
occurring states is Occ(ρ) = {s ∈ S | ∃i ∈ N, ρi = s}.

A strategy for Eve is a function σ from S∗SE to S such that for any path w
ending in state q, there is a transition in T between q and σ(w). Intuitively, it
is a “recipe” to extend a finite play ending in one of Eve’s states.

A strategy with memory M for Eve is a function computed by a transducer
(M,m0, ν, μ) with initial memory m0, where ν : SE×M → S is the “next-move”
function such that (s, ν(s,m)) ∈ T , and μ : S×M →M is the “memory-update”
function. A strategy is finite-memory or finite-state, respectively memoryless if
it is computed by a finite-state transducer, respectively by a transducer with
singleton memory.

For two given strategies σ and τ , the outcome of the game is an infinite play
ρσ,τ . A play ρ is consistent with σ (resp. τ) if there is a strategy τ (resp. σ) such
that ρ is a prefix of, or equal to ρσ,τ .

Winning Conditions. A winning condition C is a boolean function used to
partition the plays between those winning for Eve and those winning for Adam.
The main problem is then to find winning strategies: A strategy σ is winning
for Eve if for every strategy τ of Adam, the play ρσ,τ is winning for Eve. When
games are determined (as are request-response games), there is always a winning
strategy for one of the players.

2.2 Request-Response Games

Request-Response games were introduced in [15]. They are a special case of ω-
regular games. Let G = (S, SE , SA, T ) be an arena. A play is winning for Eve
under the request-response condition C = (Qj , Pj)j=1...k (where Qj , Pj ⊆ S) if

k∧
j=1

∀n(ρn ∈ Qj ⇒ ∃m ≥ n ρm ∈ Pj)

Rather than the mere satisfaction of the request-response condition, we study
the question how well the controller (Eve) can satisfy it. As a trivial example con-
sider a game where controller has to operate traffic lights for a one-lane bottleneck
of a road, in each round giving the green light to one direction. For each of the two
directions there is one request-response condition: Whenever a car is waiting, it
is (now or later) allowed to pass. A simple winning strategy would be to alternate
giving green between the two directions. This may, however, result in unnecessary
phases of waiting (when in the opposite direction no car is waiting). A “better”
solution could be to give, at each moment, the green light to the side where the
“oldest” car is waiting, or to the one with the majority of cars.
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In order to capture the quality of strategies, we define the value of a play as
a real number. This is done in two steps: to each position in a play, we associate
a penalty, depending on the time since when the open requests are waiting for
a response; and secondly we define the value of a play as the limsup over the
averages for all finite play prefixes. The penalties (paid by Eve) count only steps
for as yet unanswered requests. In particular, the value of a play without any
request is zero, while a play winning for Adam has an infinite value.

There are many alternative versions of valuations. For example, rather than
considering the proportion between sums of penalties and the length of a play
prefix, one can consider sums of penalties divided by the number of “activations”
of request-response conditions (i.e., first visits to Qj without a matching Pj-
visit) that occur in a play prefix. The present results carry over to this variant
of valuation.

Formally, we use the following definitions in order to define the value. The
wait time for the condition (Qj , Pj) at the end of the (finite) play prefix w,
denoted by tj(w), is the number moves since the earliest unanswered visit to Qj

in w. If all visits to Qj have been answered, its value is 0. The value tj(w) is
defined recursively. We set tj(ε) = 0 and let

– if tj(w) = 0
• tj(ws) := 1 if s ∈ Qj \ Pj

• tj(ws) := 0 otherwise
– if tj(w) > 0
• tj(ws) := 0 if s ∈ Pj

• tj(ws) := tj(w) + 1 otherwise.

By definition of the wait times, we can immediately derive the following remark
about their evolution:

∀v, w ∈ S∗, s ∈ S : tj(v) < tj(w)⇒ tj(vs) < tj(ws) (1)

Based on the wait time tj(w) for condition (Qj , Pj) at play prefix w we can
introduce different kinds of “penalties” (for Eve). A simple choice would be to
count one unit of penalty for each time instance of waiting; this leads to a
linear increase of the accumulated penalties while time elapses. In this measure,
an extra moment of waiting costs the same regardless of the past. In realistic
scenarios it seems more appropriate to let the penalties increase, reflecting the
idea that longer wait times pose higher pressure for delivering response. A natural
implementation of this idea is to associate penalty p for the p-th moment of
(successive) waiting, which leads to a quadratic increase of accumulated penalties
over time. In order to capture the different options, we introduce (for condition
(Qj , Pj)) a penalty function fj : N → R≥0 where fj(n) is the penalty for the
n-th moment of waiting after a visit to Qj without a later visit to Pj . In the
two scenarios above, we used the constant 1, respectively the identity on N. Let
penalty pj(w) of play prefix w be fj(tj(w)). The global penalty over all conditions
(Qj , Pj) is the sum p(w) over all pj(w), and the value of an infinite play ρ,
denoted v(ρ), is the mean value of the costs p(w) of its prefixes w. Accordingly,
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the value of a strategy σ, denoted v(σ), is the limsup of the values of the plays
consistent with this strategy. To sum up:

– pj(w) = fj(tj(w))
– p(w) =

∑k
j=1 pj(w)

– v(ρ) = lim supn→∞
1
n ·

∑n
i=1 p(ρ0 . . . ρi−1)

– v(σ) = lim supτ v(ρ
σ,τ )

Our main result below is stated for the case of strictly increasing and unbounded
penalty functions fj . We have argued for this restriction from a pragmatic point
of view. Let us also observe that – for example – for the case of constant penalties
one cannot hope to construct optimal winning strategies.

Example 1. In the game of Figure 1, two requests are made each time the token
reaches the central state. We indicate membership in Q1, Q2, P2, P1 by corre-
sponding annotations. Eve can choose to satisfy either request, by going left or
right. Consider the strategy σk which repeatedly does the P1-loop k times and
then the P2-loop once. This gives a penalty sum of 3k+ 7 for the corresponding
2k+4 moves; hence (for constant penalties) we obtain v(σk) = 3/2+1/(2k+4).
Thus we can always improve the value of a strategy by increasing the portion of
P1-loops; hence there is no optimal winning strategy for Eve.

Q1Q2

P2

P1

Fig. 1. No optimal solution for constant penalties

Our main result shows that for increasing and diverging penalty functions opti-
mal strategies exist and can be computed.

3 Main Result

In the following, we consider request-response games with k conditions (Qj , Pj)
(j = 1, . . . , k), and we assume strictly increasing and unbounded penalty func-
tions fj for j = 1, . . . , k. We state the main result:

Theorem 2. If a request-response game is won by Eve, then Eve in fact has
(with respect to strictly increasing and unbounded penalty functions) an optimal
winning strategy, which moreover is finite-state and effectively computable.
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As a preparation we recall the solution given in [15] for classical (“Boolean”)
request-response games and deduce a bound for the value of a canonical winning
strategy.

Proposition 3. If Eve wins in a request-response game over G with n states
and k conditions, she has a winning strategy of value ≤M :=

∑k
j=1 fj(n · k).

Let us sketch the proof, which involves an easy reduction to Büchi games. Start-
ing from a game arena G = (S, SE , SA, T ) and k conditions, an expanded graph
is constructed over the vertex set S′ := S × {0, 1}k × [0, . . . , k]; the bit vector
signals which of the k conditions have an open request, and the final component
says which request is chosen to be served next (in cyclic order). The index 0 is
assumed everytime after index k is reached, signalling a successful cycle of satis-
faction of requests. (The Büchi condition then requires to visit vertices in S′ with
final component 0 again and again.) Using well-known fixed point computations
(see [13,7]) one can decide whether Eve wins this Büchi game. Moreover, it is
easy to see that the winning strategy σ0 derived from the game reduction will
guarantee uniformly bounded wait times for each condition. A “next response” is
reached after ≤ n steps (where n is the size of the arena), and it can take k such
responses until the currently considered request is served. Thus, the reduction
to Büchi games yields a bound of n · k for the wait times, and the value of the
corresponding strategy σ0 is v(σ0) ≤M :=

∑k
j=1 fj(n · k).

We often refer to the value f−1
j (M), i.e. the smallest number s of steps (of

waiting) such that fj(s) ≥ M . We shall show that for any strategy with value
≤M , there exists a strategy with smaller or equal value that uniformly bounds
the wait times for each pair (Qj , Pj). Let us state the main technical lemma.

Lemma 4. There is a function d : N2 → N such that the following holds for
request-response games over graphs with n vertices and with k conditions: from
any winning strategy σ with value v(σ) ≤M , we can compute a winning strategy
σ′ that bounds, for j = 1, . . . , k, all wait times for the pair (Qj , Pj) to bj =
f−1

j (M) + d(n, k − 1), and such that v(σ′) ≤ v(σ).

This result is the essential step in our analysis of request-response games. It says
that in the domain of strategies of value at most M , we can achieve a uniform
bound on the wait times and still keep or improve the value of the strategy. Intu-
itively this means that it is not possible to improve the value of a strategy by de-
ferring the responses for some condition more and more while preferring to “serve”
another condition. In other words, the effect of Example 1 is excluded.

To obtain the main result, we shall show how these “bounded” strategies can
be interpreted as strategies in finite-state mean-payoff games.

4 Bounding Wait Times

This section gives the proof of Lemma 4.
The main problem in the construction of optimal strategies is that a priori, the

wait times for the pairs can be unbounded if the long spells where a condition
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remains open occur rarely. The point of this section is to show that we can
restrict our study to strategies where the wait times are bounded. Furthermore,
the bounds can be computed beforehand, directly from the parameters of the
game.

In order to prove Lemma 4, we modify a strategy σ0 k times, thus construct-
ing strategies σ1, . . . , σk. At step j, the strategy σj−1 is “improved” into one
respecting the desired wait time bound for condition (Qj, Pj), with the follow-
ing constraints:

– the value of σj is less or equal to the value of σj−1;
– for any pair (Qi, Pi), if σj−1 ensures a bound B for the wait times w.r.t.

(Qi, Pi), then so does σj .

The function d occurring in Lemma 4 comes from a special version of Dickson’s
Lemma [5]. Recall that Dickson’s Lemma is a statement about infinite sequences
of vectors of natural numbers; it guarantees that in such a sequence of pairwise
distinct vectors eventually a vector must occur that is strictly greater than some
previous one (i.e., all components are ≥ the previous vector, and some compo-
nent is strictly larger).

We distinguish here play prefixes w by their last state and their wait time
vector t(w) := (t1(w), . . . , tk(w)). Let us call “non-Dickson sequence” a finite
sequence over S × Nk where there is no pair of elements such that the later is
larger than the former (“larger” meaning larger vector and same state). Note
that in a play the components tj(w) can only increase by 1 or be reset to 0.

This allows us to bound recursively the length of the longest non-Dickson
sequence. It is clear that for n states and 0 pairs, this length is n, so d(n, 0) =
n+ 1. Let us consider now a non-Dickson sequence for n states and k + 1 pairs.
The length between two positions such that tk+1 = 0 is at most d(n, k) − 1:
as tk+1 is non-decreasing, removing it must yield a non-Dickson sequence for n
states and k pairs. The wait times can only increase by 1, so their values cannot
exceed d(n, k) − 1, and the number of possible configurations in a non-Dickson
sequence is at most n · (k + 1)d(n,k)−1. We define the function d recursively as
follows:

– d(n, 0) = n + 1
– d(n, k + 1) = n · (k + 1)d(n,k)−1 + 1

Thus, we have shown the following lemma:

Lemma 5. In a request-response game with n states and k conditions, in any
play w of length at least d(n, k), there are two prefixes x and y such that x is a
prefix of y, x and y end in the same state of the game, and t(x) ≤ t(y).

Let us turn to the improvement of a strategy σ(= σj−1), aiming at bounding
the wait times for the condition (Qj , Pj). A path segment v, prefixed by w, is
considered undesirable and will be removed if the following holds:
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1. Pj /∈ Occ(v)
2. tj(w) ≥ f−1

j (M + 1)
3. t(w) ≤ t(wv)

The value of the final bound — f−1
j (M) + d(n, k − 1) — is then clear from

the conditions 2 and 3. In order to guarantee that we remove only costly factors,
we wait until the price from condition (Qj , Pj) alone is more than the worst
average penalty of the original strategy. And, in order to get a better strategy,
we remove factors only when everything is worse at the end of the factor: it is
always the case for pair j because of condition 1, and it is the case somewhere
for all the other pairs if the factor is longer than d(n, k − 1) by Lemma 5.

We describe now the improvement for pair (Qj, Pj). To ease notation, we
denote the initial strategy (σj−1) by σ, and the new one (σj) by τ . This strategy
τ is defined as a strategy with memory: the memory states of τ are words over
the vertices of S (more specifically, prefixes of plays consistent with σ). Let us
explain the notation to avoid confusion between the four functions involved in
the definition:

ν : S∗ × SE → S, the “next-move” function: Here the first component of the
argument is a memory state (i.e. a play consistent with σ), not the history
of the play.

μ : S∗ × SE → S∗, the “memory-update” function: Again, the first component
of the argument is a memory state.

Ω : S∗ → S∗, the extension of μ to words: Ω(ε) = ε, and Ω(ws) = μ(w, s).
Here, the argument is the history of the play (thus consistent with τ).

τ : S∗ → S∗, the resulting strategy: It can be defined from Ω: τ(ws) =
ν(Ω(w), s). Again, the argument is the history of the play.

We define only the functions ν and μ, as the two others derive from them. Let
y be the current memory and s the current vertex of S. We consider only the
case where ys is a finite play of G consistent with σ, as the update guarantees
that this holds during the whole play. There are two cases, depending on whether
the immediate penalty for condition (Qj , Pj) in ys is greater than M or not. If
it is not so, the update is done by adding the current state at the end of the
memory: μ(s, y) = ys. If it is Eve’s turn to play, her move mimics σ’s move:
ν(s, y) = σ(ys).

On the other hand, if tj(ys) > f−1
j (M), we first check if there is an “undesir-

able factor” to remove. We consider the game tree Gσ, rooted in ys and limited
to the path segments up to the next visit to Pj . This tree is finite, as an infinite
branch would be a losing play – in the boolean sense. We consider the nodes of
this tree such that the last visited state is s, and the wait times for all conditions
(Qi, Pi) are greater than the corresponding wait time in ys. Notice that ys itself
is one of these nodes. Let zs be a path of maximal length to a node satisfying
these conditions. Then, μ(y, s) := zs. Likewise, if it is Eve’s turn to play, she
mimics the behavior of σ after the prefix zs and we set ν(y, s) := σ(zs).

Notice that in both cases, the contents of the memory remain to be plays
consistent with σ. We claim that with such a definition, τ behaves as desired.
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We prove separately the Propositions 7, 8, and 9 that describe the different
attributes we want to ensure in τ . Proposition 6 is a useful step in the proofs of
Properties 7 and 8:

Proposition 6. For any finite play w consistent with τ , we have t(w) ≤ t
(Ω(w)).

Proof. We prove by induction on the length of v that (2) holds for any finite
play v consistent with τ :

t(v) ≤ t(Ω(v)) (2)

By definition of Ω, we have Ω(ε) = ε. Thus, (2) holds for ε. For the induction
step, suppose that (2) holds for w; we show that (2) also holds for ws provided
that ws is consistent with τ . From (2) applied to w and (1), we obtain

t(ws) ≤ t(Ω(w)s) (3)

We need now to check the two possible cases:

– tj(Ω(w)) ≤ f−1
j (M): By definition of μ, Ω(ws) = Ω(w)s. Thus, the fact

that (2) holds for ws follows from (3).
– tj(Ω(w)) > f−1

j (M): In this case, the update of memory guarantees that
t(Ω(ws)) ≥ t(Ω(w)s). From this and (3), we derive that (2) holds for ws.

Thus, (2) holds for any finite play v consistent with τ , and Proposition 6
holds. ��

We proceed now to the proof of Proposition 7.

Proposition 7. If σ uniformly bounds the wait time for pair (Qi, Pi) to B, then
so does τ .

Proof. Let us suppose that σ bounds uniformly the wait time for pair (Qi, Pi)
to B. Let w be a finite play consistent with τ . The corresponding memory state
Ω(w) is a finite prefix consistent with σ. Thus, ti(Ω(w)) ≤ B. By Proposition 6,
ti(w) ≤ ti(Ω(w)). Thus, ti(w) ≤ B. ��

Proposition 8. The value of τ is ≤ than the value of σ.

Proof. In order to prove this proposition, we extend the function Ω to infinite
plays consistent with τ : Ω(ρ) is the limit of the (Ω(wi))i∈N, for wi the prefix
of ρ of size i. This definition is sound, as Ω(wi+1) is always a strict suffix of
Ω(wi). Furthermore, as all the Ω(wi) are consistent with σ, Ω(ρ) is an infinite
play consistent with σ.

We show that for any play ρ consistent with τ , v(ρ) ≤ v(Ω(ρ)). We do so by
considering separately two sets of prefixes of Ω(ρ): A prefix w of Ω(ρ) belongs to
H if there is a prefix v of ρ such that Ω(v) = w. Otherwise, the prefix w belongs
to K.
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We consider first the case of the prefixes in K. The corresponding conditions
have been added to the memory during a “leap”. By definition, all the positions
in such a leap have a penalty for pair (Qj , Pj) that is greater than M + 1.
Thus, for all w ∈ K, p(w) ≥ M + 1. As the mean value for all the positions is
v(ρ) ≤ v(σ) ≤ M , it follows that the mean value for the prefixes in H is less
than v(ρ).

Let v be a prefix of ρ. By Proposition 6, we have for all i ∈ 1 . . . k that
ti(v) ≤ ti(Ω(v)), and thus p(v) ≤ p(Ω(v)). Thus, the average penalty for the
prefixes of ρ is less or equal than the average penalty for the prefixes in H . This
yields v(ρ) ≤ v(Ω(ρ)), and Proposition 8 follows. ��

Proposition 9 expresses the essential property of strategy τ :

Proposition 9. The strategy τ uniformly bounds the wait time for the pair
(Qj , Pj) to f−1

j (M) + d(n, k − 1).

Proof. This proof is done by contradiction and derives directly from the defi-
nition of the strategy and Lemma 5. We suppose that there is a path w con-
sistent with σj such that tj(w) > f−1

j (M) + d(n, k − 1). Let w = uv, where
|v| = d(n, k − 1). Thus, for any word between u and w, the wait time for pair
(Qj , Pj) is greater than f−1

j (M + 1), and the memory is updated to a maximal
branch in the tree. More formally, the definition of μ imposes that there cannot
be two words x and y such that:

– u < x < y < uv
– last(x) = last(y)
– For i = 1, . . . , k : ti(Ω(x)) < ti(Ω(y))

This contradicts Lemma 5, which states that there cannot be such a sequence
of length d(n, k − 1) (the second argument is k − 1 because we do not need to
consider the pair j). Thus, Proposition 9 holds. ��

It is now easy to complete the proof of Lemma 4. From a strategy σ, one can
derive strategies σ1, σ2, . . . , σk by successively applying the improvement scheme
with respect to each pair (Qj , Pj). Each time, a new pair is bounded (Propo-
sition 9); the bounds hold through any improvement (Proposition 7); and the
value of the strategy never increases (Proposition 8). Thus, the resulting strategy
bounds each pair to the desired bound, and its value is less than the one of the
original strategy. Lemma 4 follows.

5 From Request-Response Games to Mean-Payoff Games

By Lemma 4, we know that we can restrict our search for optimal strategies to
strategies in which the wait times for each condition (Qj , Pj) are bounded by

bj := f−1
j (M) + d(n, k − 1).
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In this section, we show how to interpret such strategies in a reduced mean-
payoff game, and derive from this interpretation optimal strategies with finite
memory. We assume here familiarity with mean-payoff games ([6,17]).

From a real-valued request-response game over G = (S, SE , SA, T ) with con-
ditions (Qj , Pj) and increasing unbounded penalty functions fj (where j =
1, . . . , k) we derive the mean-payoff game over the arena G+ = (S+, S+

E , S+
A , T+)

with a weight function w on the edges as follows:

– S+ = S ×
∏

j∈1...k[0, bj],
– S+

E and S+
A are defined accordingly,

– (q, n1, . . . , nk) → (q′, n′
1, . . . , n

′
k) ∈ T+ ⇐⇒ q → q′ ∈ T , and for all

j = 1, . . . , k
• if nj = 0 then n′

j = 1 if q′ ∈ Qj \ Pj and n′
j = 0 otherwise,

• if nj > 0 then n′
j = 0 if q′ ∈ Pj and n′

j = nj + 1 otherwise,
– w((q, n1, . . . , nk), (q′, n′

1, . . . , n
′
k)) =

∑k
j=1 fj(nj).

This construction consists essentially in adding wait times (and penalties) to the
graph, as long as they keep to the bounds we defined. Notice that the evolution
of the “wait times” part depends directly on the first component. Thus there is
a natural bijection between the plays of the original game and the plays of the
corresponding mean-payoff game.

We now apply a classical result on mean-payoff games:

Theorem 10 ([17]). In a finite-state mean-payoff game (with designated initial
vertex), there are (computable) optimal memoryless strategies for the two players.

The counterpart of a memoryless strategy in the mean-payoff game is a finite-
state strategy in the original request-response game:

– The set of memory states is
∏

j∈1...k[0, bj].
– The strategy mimics the moves of the mean-payoff game:

If σ(q,m1, . . . ,mk) = (q′,m′
1, . . . ,m

′
k), then the next-move function μ and

the memory update function ν are defined as follows:
• μ(q,m1, . . . ,mk) = (m′

1, . . . ,m
′
k)

• ν(q, (m1, . . . ,mk)) = q′.

Theorem 2 follows.

6 Conclusion

We have studied request-response games in a setting where optimal strategies
are to be constructed – in the present paper with respect to increasing and un-
bounded penalty functions. The main result says that if Eve (controller) wins
a request-response game, then also an optimal winning strategy exists and can
be effectively constructed as a finite-state strategy. This result fits into current
research on valued games, such as studies on optimality of (mostly memoryless)
strategies in stochastic and mean-payoff games [8,9,16]. In our case, however, we
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start from a discrete game, introduce a real-valued game, and after a reduction
to mean-payoff games arrive again at a discrete entity (a finite-state controller)
as optimal solution. Another methodological aspect is the necessity to find a
balance between possibly conflicting aims when different request-response con-
ditions (Qj , Pj) have to be satisfied, a feature which often is only attached to
multiplayer games.

Let us finally state some open problems:

1. The existence result of this paper involves very high complexity bounds (no-
tably, in the present version of Dickson’s Lemma). A more efficient synthesis
procedure to optimal strategy synthesis should be found.

2. One may ask for more efficient solutions when the value of the constructed
strategy only has to be an approximate of the optimal value.

3. The idea of approximation can also be invoked when bounded penalty func-
tions are considered: The task of synthesis is then to find a strategy which
realizes the limit of strategy values up to a certain factor.

4. Heuristic solutions should be developed, with an emphasis on games where
the penalties of the request-response conditions are different.

5. It should be analyzed whether the framework of Bouyer, Brinksma, and
Larsen [2], in which costs and rewards are distinguished as parameters for
optimizing infinite runs of transition systems, can be lifted to the present
game-theoretic context.

6. More general ω-regular winning conditions might be considered ([3]). For
example, “eager strategies” where Adam and Eve complete their cycles as
fast as possible (related to McNaughton’s work [12]), or finitary games where
requests must be answered in bounded time ([4,10]).
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Abstract. Authentication and secrecy have been widely investigated
in security protocols. They are closely related to each other and vari-
ants of definitions have been proposed, which focus on the concepts of
corresponding assertion and key distribution. This paper proposes an on-
the-fly model checking method based on the pushdown system to verify
the authentication of recursive protocols with an unbounded number of
principals. By experiments of the Maude implementation, we find the re-
cursive authentication protocol, which was verified in the sense of (weak)
key distribution, has a flaw in the sense of correspondence assertion.

1 Introduction

Security protocols, although each of them only contains several flows, easily cause
attacks even without breaking cryptography algorithms. Design and analysis of
security protocols have been a challenging problem over 30 years.

Woo and Lam proposed two goals for security protocols, authentication and
key distribution [1]. By authentication, we mean that after termination of the
protocol execution, a principal should be assured that it is “talking” to the
intended principal. Key distribution means that if a principal receives a session
key, then only the principal who sent the key (and the server) knew the key.
They also gave the formal definitions: authentication is defined as correspondence
assertion, and key distribution is defined as secrecy. Note that this secrecy is
stronger than the one widely used later [2,3]. Correspondence assertion is later
widely used to define the authentication [2,3,4]. The intuitive meaning is, when
B claims the message it accepted from A, then A exactly sent the same message.

These properties has various different points of view. For instance, Bellare et.
al. stated that key distribution is “very different from” authentication [5]. Bella
pointed out that two goals “are strictly related” and “might be equivalent” [4].

Paulson et al. formally defined the key distribution1, which intuitively means,
if a principal receives a session key, then only the principal who sent the key (and
the server) can know the key [4,6]. Its difference from the key distribution Woo
and Lam defined is quite subtle, since “can know” implies “may not know”. In
1 This “key distribution” is weaker than what Woo and Lam has defined in [1].

Cha et al. (Eds.): ATVA 2008, LNCS 5311, pp. 374–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Authentication Revisited 375

their sense of key distribution, Paulson proved the correctness of the recursive
authentication protocol (referred to as the RA protocol) [6].

This paper proposes an on-the-fly model checking method [7,8,9] based on
the pushdown system to verify the authentication property of recursive proto-
cols with an unbounded number of principals. By experiments with the Maude
implementation, we find out that the RA protocol has a flaw in the sense of
correspondence assertion.

The model checking method tackles various sources of infinity in the verifica-
tion of the RA protocol. Our main ideas are summarized as:

– Lazy instantiation on messages, i.e., message contents that do not affect
protocol actions will be left unsubstantiated.

– Lazy instantiation on names, i.e., names, such as encryption keys, are ex-
tended from constants to terms, and left uninstantiated until actual princi-
pals are assigned during communications.

– Identification of fresh messages by contexts, i.e., since the RA protocol does
not repeat the same context (i.e., once pop starts, never push again), each
nonce in a session is identified by the stack content.

The first idea is realized by a parametric semantics and a refinement step. The
second and the third ideas are realized by binders [7]. These ideas supply sound
and compete model checking for verifying authentication of the RA protocol.

Note that this methodology covers only a restricted class of recursive proto-
cols, which are described by sequential recursive processes. To the best of our
knowledge, this is the first model checking applied to recursive protocols.

This paper is organized as follows. Section 2 presents an environment based
process calculus for security protocol descriptions, and a trace equivalence to
specify the authentication property. Section 3 shows how to describe and analyze
the RA protocol in our setting. The encoding of the pushdown system and
experimental results by Maude are reported in Section 4. Section 5 presents
related work, and Section 6 concludes the paper.

Due to the lack of space, we omit detailed explanations, examples and theo-
rems; these can be found in the extended version [10].

2 A Process Calculus for Security Protocol Descriptions

2.1 The Syntax of the Calculus

Assume three disjoint sets: L for labels, B for binder names and V for variables.
Let a, b, c, . . . denote labels, let m, n, k, . . . for binder names, and let x, y, z, . . . for
variables.

Definition 1 (Messages). Messages M,N,L . . . in a set M are defined itera-
tively as follows:

pr ::= x | m[pr, . . . , pr]
M,N,L ::= pr | (M,N) | {M}L | H(M)

A message is ground, if it does not contain any variables.
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– pr ranges over a set of undecomposable primary messages.
– A binder, m[pr1, . . . , prn] is an atomic message indexed by its parameters,

pr1, . . . , prn. A binder with 0 arity is named a name, which ranges over a set
N (N ⊆ B).

– (M,N) represents a pair of messages.
– {M}L is an encrypted message where M is its plain message and L is its

encryption key.
– H(M) represents a one-way hash function message.

Definition 2 (Processes). Let P be a countable set of processes which is in-
dicated by P,Q,R, . . .. The syntax of processes is defined as follows:

P,Q,R ::= 0 | aM.P | a(x).P | [M = N ]P | (new x : A)P | (ν n)P |
let (x, y) = M in P | case M of {x}L in P |
P‖Q | P + Q | P ;Q | A(p̃r)

Variables x and y are bound in a(x).P , (newx : A)P , let (x, y) = M in P , and
case M of {x}L in P . The sets of free variables and bound variables in P are
denoted by fv(P ) and bv(P ), respectively. A process P is closed if fv(P ) = ∅.
A name is free in a process if it is not restricted by a restriction operator ν.
The sets of free names and local names of P are denoted by fn(P ) and ln(P ),
respectively.

Their intuition is,

– 0 is the Nil process that does nothing.
– aM.P and a(x).P are communication processes. They are used to describe

sending message M , and awaiting an input message via x, respectively.
– (new x : A)P and (ν n)P are binding processes. The former denotes that x

ranges over A (⊆ N ) in P ; The latter denotes that the name n is local in P .
– [M = N ]P , let (x, y) = M in P and case M of {x}L in P are validation

processes. They validate whether the message M is equal to N , whether it
is a pair, and whether it is an encrypted message, respectively.

– P‖Q, P+Q, and P ;Q are structure processes. P‖Q means that two processes
run concurrently; P + Q means nondeterministic choices of a process; P ;Q
means when P terminates, then Q runs.

– For each identifier A(pr1, . . . , prn), there is a unique definition, A(pr1, . . . ,
prn) � P , where the pr1, . . . , prn are free names and variables in P .

We assume a set of identifier variables, X will range over identifier variables. A
process expression is like a process, but may contain identifier variables in the
same way as identifers. E, F will range over process expressions.

Definition 3 (Recursive process). A recursive process is defined as an iden-
tifier, with the format, Ai � E(A1, . . . ,Ai, . . . ,An).

If a process is not a recursive process, we name it a flat process.

Definition 4 (Sequential). Let E be any expression. We say that an identifier
variable X is sequential in E, if X does not occur in any arguments of parallel
compositions. An expression E is sequential if all variables in E are sequential.
A sequential process is an identifier defined by an sequential expression.
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2.2 Characterizations and Restrictions on the Process Calculus

We use an environment-based process calculus [3], while traditional process cal-
culi, such as π-calculus [11], use channel-based communications. There are sev-
eral notable differences between two types of calculi.

– Communications.
• In channel-based calculi, two processes communicate through a specific

channel. For example, a communication in π-calculus [11] is,

((ν z)x z.P ) | x(y).Q | R −→+ ((ν z)P | Q{z/y}) | R

The first process sends a local name z through the channel x, while the
second process awaits a name via y on the same channel x. Thus the
name z will be communicated between two processes.
• In the environment-based process calculus, all processes communicate

through a public environment, which records all communicated messages.
The calculus is thus natural to describe a hostile network.

– Freshness of names.
• Channel-based calculi adopt scopes of local names for fresh names. In the

example above, the scope of z enlarges after the transition. Although R
is included in the system, it cannot “touch” the z during the transition.
Due to α-conversation, z can be substituted to any fresh name.
• All local names in the environment-based process calculus will be substi-

tuted to fresh public names during transitions. Since when two principals
exchange a message through a hostile network, we assume that all other
principals will know the message. Several techniques will be performed
to guarantee that each public name is fresh to the whole system.

– Infinitely many messages that intruders and dishonest principals generate.
• Channel-based calculi adopt recursive processes to generate these mes-

sages. Thus even describing a simple protocol, the system is complex [12].
• The environment based process calculus adopt deductive systems to gen-

erate the messages generated by intruders and dishonest principals [3,8].
Security protocols can be described in a straightforward way.

For both types of calculi, there are two representations for infinite processes,
identifiers and replications. Identifiers can represent recursive processes. Repli-
cations take the form !P , which intuitively means an unbounded number of
concurrent copies of P . For fitness to model as a pushdown system, we choose
identifiers with the sequential restriction.

2.3 Trace Semantics and Equivalence

An environmental deductive system (represented as �, see [10]) generates mes-
sages that intruders can produce, starting from the the logged messages. It pro-
duces, encrypts/decrypts, composes/splits, and hashes messages.

An action is a term of form aM or a(M). It is ground if its attached message
is ground. A string of ground actions represents a possible run of the protocol,
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if each input message is deduced by messages in its prefix string. We named
such a kind of string (concrete) trace, denoted by s, s′, s′′, . . .. The messages in
a concrete trace s, denoted by msg(s), are those messages in output actions of
the concrete trace s. We use s �M to abbreviate msg(s) �M .

Definition 5 (Concrete trace and configuration). A concrete trace s is
a ground action string, satisfying each decomposition s = s′.a(M).s′′ implies
s′ �M . A concrete configuration is a pair 〈s, P 〉, in which s is a concrete trace
and P is a closed process.

The extended version [10] presents the trace semantics, the parametric seman-
tics and a refinement step as the lazy instantiation. We proved the sound and
complete correspondence between two semantics [7,9].

Abadi and Gordon adopted testing equivalence to define security proper-
ties [2], in which the implementation and the specification of a security protocol
are described by two processes. If they satisfy the equivalence for a security
property, the protocol guarantees the property.

Testing equivalence is defined by quantifying the environment with which the
processes interact. Intuitively, the two processes should exhibit the same traces
under arbitrary observers (as intruders). In our calculus, capabilities of intruders
are captured by the environmental deductive system. Thus, a trace equivalence is
directly applied for the authentication property without quantifying observers.

For simplicity, we say a concrete configuration 〈s, P 〉 generates a concrete
trace s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′.

Definition 6 (Trace equivalence). P and Q are trace equivalent, written
P ∼t Q, if for all trace s, P generates s if and only if Q generates s.

3 Analysis of the Recursive Authentication Protocol

3.1 The Recursive Authentication Protocol

The recursive authentication protocol is proposed in [13]. It operates over an
arbitrarily long chain of principals, terminating with a key-generated server.

Assume an unbounded number of principals intending to generate session
keys between each two adjacent principals by contacting a key-generated server
once. Each principal either contacts the server, or forwards messages and its
own information to the next principal. The protocol has three stages (see Fig. 1):
Communication stage. Each principal sends a request to its next principal, com-
posing its message and the message accepted from the previous one. Submission
stage. One principal submits the whole request to the server. Distribution stage.
The server generates a group of session keys, and sends back to the last principal.
Each principal distributes the session keys to its previous principal.

The RA protocol is given informally as follows. For simplicity, we use a con-
venient abbreviation of the hash message,

HK(X) = (H(K,X), X)
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Fig. 1. The Recursive Authentication Protocol

Communication Stage
A0 −→ A1 : HKA0S (A0, A1, NA0 , Null)
Ai −→ Ai+1 : HKAiS (Ai, Ai+1, NAi , Xi)

Submission Stage
An −→ S : HKAnS (An, S,NAn , Xn)

Distribution Stage

S −→ An : {Kn, S,NAn}KAnS , {Kn−1, An−1, NAn}KAnS ,
{Kn−1, An, NAn−1}KAn−1S , {Kn−2, An−2, NAn−1}KAn−1S ,

. . .
{K1, A2, NA1}KA1S , {K0, A0, NA1}KA1S ,
{K0, A1, NA0}KA0S

Ai −→ Ai−1 : {Ki−1, Ai, NAi−1}KAi−1S , {Ki−2, Ai−2, NAi−1}KAi−1S , . . .

A1 −→ A0 : {K0, A1, NA0}KA0S

where Null is a special name, and Xi is the message from Ai−1 to Ai.

3.2 Authentication of the RA Protocol

To represent authentication, declaration processes will be inserted into a protocol
description [2,9]. For instance, the implementation, SY SRA

imp, of the RA protocol
below contains a declaration process acc x.0 for authentication.

Oa(x1, x2) �a1Hlk[x1,S](x1, x2, N[Null], Null).a2(x).case x of{y1, y2, y3}lk[x1,S].

[y3 = N[Null]]acc x.0

Ra(x1, x2) �(b1(x).let (y1, y2, y3, y4, y5) = x in [y2 = x1]

b2Hlk[x1,S](x1, A[x1], N[y3], x).(R(A[x1], x1)

+ b3Hlk[x1,S](x1, S, N[y3], x).0)); (b4(x).let (z1, z2, z3) = x in

case z1 of {z4, z5, z6}lk[x1,S] in [z5 = A[x1]] [z6 = N[y3]]

case z2 of {z7, z8, z9}lk[x1,S] in [z8 = x2] [z9 = N[y3]] b5z3.0)

S �s1(x).s2 (F (x)).0

SY SRA
imp �Oa(A[Null], A[A[Null]])‖Ra(A[A[Null]], A[Null])‖S
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In the description, we use a group of nested binders to describe unbounded
number of fresh names. For instances, by N[Null], N[N[Null]], . . . we describe fresh
nonces NA0 , NA1 , . . ..

F : M → M is an iterative procedure that generates an arbitrarily long
message. We name this kind of messages recursive messages.

F is defined as follows:
F (x) = let (y1, y2, y3, y4, y5) = x;

let t = ε;
while (y1 = H(y2, y3, y4, y5, lk[y2, S]) && y5! = Null)

let (z1, z2, z3, z4, z5) = y5;
if (z1 = H(z2, z3, z4, z5, lk[z2, S])&&z3 == y2)
then t = (t, {k[y4], y3, y4}, {k[y3], z2, z4});
else raise error
endif
(y1, y2, y3, y4, y5) := (z1, z2, z3, z4, z5);

endwhile
t := (t, {k[y4], y3, y4});
return t;

The specification for the authentication, SY SRA
spe , is a process that replaces x

in acc x.0 with {k[Null], A[A[Null]], N[Null]}lk[A[Null],S].
Authentication between the originator and its recipient is defined by

SY SRA
imp ∼t SY SRA

spe

The implementation and the specification may fail to generate the same traces
after certain message comparisons. The specification will guarantee that the mes-
sage received and validated by one principal should be the same as the message
sent by other principal, while these messages would be different in the imple-
mentation due to the ill-design of a protocol. Hence, we can explicitly check the
equality of the two messages in traces generated by the implementation [7,9],
which is another way to encode the correspondence assertion.

Definition 7 (Action terms[3]). Let α and β be actions, with fv(α) ⊆ fv(β),
and let s be a trace. We use s |= α ←↩ β to represent that for each ground
substitution ρ, if βρ occurs in s, then there exists one αρ in s before βρ. A
configuration satisfies α ←↩ β, denoted by 〈s, P 〉 |= α ←↩ β, if each trace s′

generated from 〈s, P 〉 satisfies s′ |= α←↩ β.

Characterization 1. [Authentication for the RA protocol] Given the formal
description of the RA protocol, the recipient is correctly authenticated to the
originator, if 〈ε, SY SRA

imp〉 |= b5x←↩ acc x.

4 Model Checking by the Pushdown System

4.1 Encoding as Pushdown Model

To analyze recursive protocols with a pushdown system, the restrictions for a
process are, (i) a system is restricted to contain at most one recursive process;
(ii) the expression that defines the recursive process is sequential.
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When analyzing protocols in bounded sessions, fresh messages that processes
generate are bounded. We can fix a set of distinguished symbols to describe
them [7]. However, for the analysis of recursive protocols, fresh messages can
be unbounded. We represent an unbounded number of fresh messages by nested
binders. With the restrictions of a single recursive process, the same context
(stack content) will not be repeated; thus freshness will be guaranteed.

Definition 8 (Pushdown system). A pushdown system P = (Q,Γ,Δ, c0) is
a quadruple, where Q contains the control locations, and Γ is the stack alphabet.
A configuration of P is a pair (q, ω) where q ∈ Q and ω ∈ Γ ∗. The set of all
configurations is denoted by conf(P). With P we associated the unique transition
system IP = (conf(P),⇒, c0), whose initial configuration is c0.

Δ is a finite subset of (Q × Γ ) × (Q × Γ ∗). If ((q, γ), (q′, ω)) ∈ Δ, we also
write 〈q, γ〉 ↪→ 〈q′, ω〉. For each transition relation, if 〈q, γ〉 ↪→ 〈q′, ω〉, then
〈q, γω′〉 ⇒ 〈q′, ωω′〉 for all ω′ ∈ Γ ∗.

We define a set of messages used for the pushdown system as follows,

Definition 9 (Messages in the pushdown system)

pr ::= x | � | m[ ] | m[pr, . . . , pr]
M,N,L ::= pr | (M,N) | {M}L | H(M)

Two new messages are introduced. � is a special name, substituting a variable
that can be substituted to an unbounded number of names. m[ ] is a binder
marker, representing nested binders, together with the stack depth. For instance,
A[A[Null]] is represented by A[ ], with two stack elements in the stack.

Definition 10 (compaction). Given a parametric trace ŝ, a compaction t̂r is
a parametric trace by cutting off redundant actions with the same labels in ŝ.

We represent the parametric model with at most one sequential recursive process
by the pushdown system as follows,

– control locations are pairs (R, t̂r), where R is a finite set of recursive mes-
sages, and t̂r is a compaction.

– stack alphabet only contains a symbol  .
– initial configuration is 〈(∅, ε), ε〉, where ε represents an empty parametric

trace, and ε represents an empty stack.
– Δ is defined by two sets of translations, the translations for the parametric

rules, and the translations for the refinement step.

An occurrence of 0 in the last sequence process of a recursive process means a
return point of the current process. We will replace it to a distinguished marker,
Nil, when encoding a parametric system to the pushdown system.

The key encodings of the parametric transitions are as follows, in which t̂r

and t̂r
′
are compactions of ŝ and ŝ′, respectively.

1. For parametric transition rules except PIND rules, 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r
′
),

ω〉 if 〈ŝ, P 〉 −→p 〈ŝ′, P ′〉.
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Fig. 2. Snapshot of Maude Result for the Recursive Authentication Protocol

2. For PIND rule, when R is firstly met,〈(R, t̂r), ω〉 ↪→〈(R, t̂r
′
), ω〉 if 〈ŝ, P 〉−→p

〈ŝ′, P ′〉, where R(p̃r) � P ; Otherwise 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂r),  ω〉.
3. 〈(R, t̂r), γ〉 ↪→ 〈(R, t̂r), ε〉 if 〈ŝ,Nil〉 is met.

In the refinement step, we need to satisfy rigid messages by unifications [10,9].
A rigid message is the pattern of a requirement of an input action that can be
satisfied by messages generated only by legitimate principals. We distinguish two
kinds of rigid messages, context-insensitive, and context-sensitive.

Definition 11 (Context-sensitive/insensitive rigid messages). Context-
sensitive rigid messages are rigid messages that contain binder markers, while
context-insensitive rigid messages do not contain any binder markers.

Intuitively, a context-sensitive rigid message has an bounded number of can-
didate messages within the current context to unify with, while a context-
insensitive one has an unbounded number of candidate messages to unify with.

The transition relations for the refinement step in Δ are defined as follows.

4. 〈(R, t̂r), ω〉 ↪→ 〈(R, t̂rρ̂), ω〉, if N is context-sensitive and ρ̂-unifiable in R ∪
el(ŝ1).

5. 〈(R, t̂r), ω〉 ↪→ 〈(R ∪N ′, t̂rρ̂′), ω〉, if N is context-insensitive and ρ̂-unifiable
to N ′ in el(ŝ1), and ρ̂′ is the substitution that replaces different messages in
N and N ′ with �.

4.2 Implementing in Maude

We implemented the pushdown system above by Maude [14]. It describes model
generating rules by rewriting, instead of constructing directly. The reachability
problem can be checked at the same time while a model is being generated.
We tested the RA protocol by our Maude implementation. A counterexample
is automatically detected. The result snapshot is in Fig. 2, in which MA, MN,
and Mk are binder markers. name(1) is the server name S. It describes attacks
showed in Fig. 3, which actually represents infinitely many attacks. An intruder
intercepts the message sent by S, splits it, and sends the parted message to A0.
The minimal one is,
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Fig. 3. The Attack of the RA Protocol

A0 −→ A1 : HKA0S (A0, A1, NA0 , Null)
A1 −→ S : HKA1S (A1, S,NA1 ,HKA0S (A0, A1, NA0 , Null))
S −→ I(A1) : {K1, S,NA1}KA1S , {K0, A0, NA1}KA1S , {K0, A1, NA0}KA0S

I(A1) −→ A0 : {K0, A1, NA0}KA0S

This result obstructs that: (1) further update of the session key of A0 is disabled,
and (2) traceability of the session key of A0 is violated, which are frequently
required in the real-world security.

The implementation contains about 400 lines for the general structures and
functions, and 32 lines for the protocol description. The test was performed on
a Pentium M 1.4 GHz, 1.5 G memory PC. The flaw is detected at the last step.

protocols states times(ms) flaws
recursive authentication protocol 416 824 detected

The reason of attacks is that S sends the message without any protections.
One modification is that S protects the message it sends iteratively with long-
term symmetric keys shared with principals. In the two-principal case,

A0 −→ A1 : HKA0S (A0, A1, NA0 , Null)
A1 −→ S : HKA1S (A1, S,NA1 ,HKA0S (A0, A1, NA0 , Null))
S −→ A1 : {{K1, A2, NA1}KA1S , {K0, A0, NA1}KA1S ,

{K0, A1, NA0}KA0S}KA1S

A1 −→ A0 : {K0, A1, NA0}KA0S

The fixed protocol is checked secure by the same Maude implementation.

protocols states times(ms) flaws
fixed recursive authentication protocol 416 1,068 secure

5 Related Work

G. Lowe proposed a taxonomy that elucidates four levels of authentication [15].
Let us suppose that in a session of a protocol, a sender A communicates with a
receiver B.
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– Aliveness of B guarantees that B attended the protocol.
– Weak agreement of B guarantees that B attended the protocol with A.
– Non-injective agreement of B guarantees that B attended the protocol with

A, and two principals agreed on a set of messages H.
– Injective agreement of B guarantees non-injective agreement of B, and that

A corresponds to a unique run of B in the session.

Each level subsumes the previous one. This paper, together with other re-
searches [12,3], took non-injective agreement as the standard authentication,
which can be specified by the correspondence assertion.

Paulson took a weak form of key distribution property, and used Isabelle/HOL
to prove that the correctness of the RA protocol with bounded number of prin-
cipals [6]. Bella pointed out that non-injective agreement authentication and the
weak form of key distribution “might be equivalent” [4]. However, we showed in
this paper that the weak form of key distribution does not hold non-injective
agreement, specified by the correspondence assertion.

Bryans and Schneider adopted CSP to describe behaviors of the RA protocol
with the same assumption as Paulson’s. They considered the correspondence as-
sertion between the server and the last principal who submitted the request, and
used PVS to prove the correctness of the authentication for the RA protocol [16].

Basin et al. proposed an on-the-fly model checking method (OFMC) [17] for
security protocol analysis. In their work, an intruder’s messages are instantiated
only when necessary, known as lazy intruder. Their research is similar to our
work in analyzing authentication in bounded sessions without binders.

A tree transducer-based model was proposed for recursive protocols by
Küsters, et al. [18]. The rules in this model are assumed to have linear left-
hand sides, so no equality tests can be performed. Truderung generalized the
limitation, and proposed a selecting theory for recursive protocols [19]. Both of
the two works focused on the secrecy property of the RA protocol. Recently,
Küsters and Truderung considered the arithmetic encryption algorithm for the
RA protocol, detected the known attack [20] automatically [21]. Since we assume
a perfect cryptography, this attack is out of our methodology.

6 Conclusion

This paper presented the pushdown model checking of authentication of the
RA protocol. It extended our previous work [7], allowing to analyze protocols
with at most one recursive procedure. Our Maude implementation successfully
detected a previously unreported attack that violates authentication in the sense
of corresponding assertion of the RA protocol automatically. This result shows
the effect of the subtle difference among security definitions.

Acknowledgements. The authors thank Prof. Kazuhiro Ogata for fruitful dis-
cussions. This research is supported by the 21st Century COE “Verifiable and
Evolvable e-Society” of JAIST, funded by Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology.
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Abstract. In this paper, a uniform approach for synthesizing monitors
checking correctness properties specified in linear-time logics at runtime
is provided. Therefore, a generic three-valued semantics is introduced re-
flecting the idea that prefixes of infinite computations are checked. Then
a conceptual framework to synthesize monitors from a logical specifica-
tion to check an execution incrementally is established, with special focus
on resorting to the automata-theoretic approach. The merits of the pre-
sented framework are shown by providing monitor synthesis approaches
for a variety of different logics such as LTL, the linear-time μ-calculus,
PLTLmod, S1S, and RLTL.

1 Introduction

Runtime verification (RV) is an emerging lightweight verification technique in
which executions of systems under scrutiny are checked for satisfaction or viola-
tion of given correctness properties. While it complements verification techniques
such as model checking and testing, it also paves the way for not-only detect-
ing incorrect behavior of a software system but also for reacting and potentially
healing the system when a correctness violation is encountered.

Typically, a monitor is employed in RV, checking whether the execution meets
a certain correctness property. Such a monitor may on one hand be used to check
the current execution of a system. In this setting, which is termed online moni-
toring, the monitor should be designed to consider executions in an incremental
fashion and in an efficient manner. On the other hand, a monitor may work on a
(finite set of) recorded execution(s), in which case we speak of offline monitoring.
In this paper we focus on online monitoring.

In online monitoring, often an—at least ideally—non-terminating system is
checked. In the very end, this asks for checking correctness of an infinite execu-
tion trace. Clearly, this cannot be done at runtime. In fact, we aim at deriving
a verdict whether an infinite execution satisfies a correctness property by con-
sidering its finite prefixes. In [1], we formulated two maxims a monitor should
ideally follow to capture implications of this idea:
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– Impartiality requires that a finite trace is not evaluated to true or false , if
there still exists an (infinite) continuation leading to another verdict.

– Anticipation requires that once every (infinite) continuation of a finite trace
leads to the same verdict, then the finite trace evaluates to this verdict.

Intuitively, the first maxim postulates that a monitor only decides for false—
meaning that a misbehavior has been observed—or true—meaning that the cur-
rent behavior fulfills the correctness property, regardless of how it continues—
only if this is indeed the case. Clearly, this maxim requires to have at least three
different truth values: true, false , and inconclusive, but of course more than
three truth values might give a more precise assessment of correctness. The sec-
ond maxim requires a monitor to indeed report true or false , if the correctness
property is indeed violated or satisfied.

Typically, monitors are generated automatically from some high-level speci-
fication. Runtime verification, which has its roots in model checking, often em-
ploys some variant of linear temporal logic, such as Pnueli’s LTL [2]. However,
typically these logics and corresponding verification algorithms are considered
on infinite executions. To follow the ideas of impartiality and anticipation, we
defined in [3] a three-valued semantics for LTL obtaining the logic LTL3. More-
over, in [3,4], we presented a monitor synthesis algorithm for LTL3. Using similar
ideas, we also introduced a three-valued semantics for a real-time version of LTL
and provided a corresponding monitor synthesis algorithm.

However, there is large variety of linear-time logics, for which monitor synthe-
sis algorithms are of interest. In this paper, a uniform approach for synthesizing
monitors checking correctness properties specified in linear-time logics at run-
time is provided, which is based on our approach in [3]. To this end, we define
linear-time logics as logics interpreted over infinite words, for example, LTL,
PLTLmod [5], linear μ-calculus, timed LTL etc. Uniformly, we give an impartial
and anticipatory semantics for linear-time logics suitable for runtime verifica-
tion. We identify key decision and abstraction functions from which a monitor
for a formula of the respective logic is directly obtained.

Satisfiability and model checking are common problems addressed for logics.
A pattern emerging for solutions of these problems is the so-called automata-
theoretic approach: In satisfiability checking, it means to construct for a given
formula φ the automaton Aφ accepting (abstractions of) words satisfying φ, so
that the language of Aφ is non-empty iff φ is satisfiable. Model checking, though,
is often reduced to constructing the automaton A¬φ accepting the counter ex-
amples of φ and checking the intersection of a model and A¬φ for emptiness.
Also for the exemplifying linear-time logics the automata-theoretic approach for
checking satisfiability has been studied and it seems beneficial to reuse such
automata constructions when looking for monitors—provided this is possible.
We define precisely the automata-theoretic approach and we elaborate certain
criteria (forgettable past and faithfulness of abstraction) under which a moni-
tor is directly obtained from automata accepting the models of a formula at
hand. We show that automata constructions existing in the literature for sev-
eral linear-time logics satisfy the introduced criteria such that we derive easily
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impartial and anticipating monitors, e.g., for the linear-time μ-calculus [6,7],
monadic second-order logic (over words) [8], RLTL [9], and PLTLmod [5] which
is interpreted over sequences of integer valuations.

2 Anticipatory Monitors

Definition 1 (Linear-time Logic). A linear-time logic L defines a set FL of
L-formulae and a two-valued semantics |=L. Every L-formula φ ∈ FL has an
associated and possibly infinite alphabet Σφ. For every formula φ ∈ FL and
every word σ ∈ Σω

φ , we require the semantics to be well-defined, i.e., either
σ |=L φ or σ �|=L φ must hold.

Furthermore, we require a linear-time logic L to satisfy the following properties:

(L1) ∀φ ∈ FL : ¬φ ∈ FL. Note that this property does not require that
negation is applicable to every subformula of φ.

(L2) ∀σ ∈ Σω
φ : (σ |=L φ ⇔ σ �|=L ¬φ). Note that ¬φ ∈ FL must hold

because of property (L1).

Definition 2 (Anticipation Semantics). If L is a logic following Defini-
tion 1, then we define the anticipation semantics [π |= φ]L of an L-formula
φ ∈ FL and a finite word π ∈ Σ∗

φ with

[π |= φ]L =

⎧⎨⎩
� if ∀σ ∈ Σω

φ : πσ |=L φ

⊥ if ∀σ ∈ Σω
φ : πσ �|=L φ

? otherwise

Note that the definition of anticipation semantics fulfills both, the impartiality
and anticipation requirements stated in the introduction: It is impartial since
for every prefix π ∈ Σ∗ with two continuations σ, σ′ ∈ Σω such that πσ |=L φ
and πσ′ �|=L φ hold, the semantics [π |= φ]L evaluates to the inconclusive verdict
?. On the other hand, once only satisfying or unsatisfying continuations exist,
the semantics [π |= φ]L evaluates to the corresponding verdict � or ⊥.

Since we want to use the anticipation semantics in runtime verification, we
have to develop a monitor procedure monitorφ(a) which reads a trace incremen-
tally: It takes a symbol a in each invocation and returns thereupon the valuation
of the currently processed prefix. To this end, we evaluate the core question aris-
ing in the anticipation semantics ∀σ ∈ Σω

φ : πσ |=L φ using the equivalence

∀σ ∈ Σω
φ : πσ |=L φ ⇔ �σ ∈ Σω

φ : πσ �|=L φ ⇔ �σ ∈ Σω
φ : πσ |=L ¬φ

which holds for every logic L which satisfies property (L2). By handling the
complemented case analogously, we obtain the following rule to evaluate the
anticipation semantics:

[π |= φ]L =

⎧⎨⎩� if decide¬φ(π) = ⊥
⊥ if decideφ(π) = ⊥
? otherwise
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where decideφ(π) is defined to return � for φ ∈ FL and π ∈ Σφ if ∃σ ∈ Σω
φ :

πσ |=L φ holds, and ⊥ otherwise. Note that decideφ(π) is well-defined since φ and
¬φ are both in FL. Observe that a computable anticipatory semantics requires
the satisfiability problem of the underlying logic to be decidable.

Remark 1. A linear-time logic has a computable anticipatory semantics, only if
the satisfiability problem for the logic is decidable.

In order to give an incrementally working monitor procedure, we have to avoid
reevaluating the entire prefix π in decideφ(π) whenever a symbol is read. Instead,
we want to use an automaton construction to compute decideφ(πa) for π ∈ Σ∗

φ

and a ∈ Σφ after having already processed π. Hence,we introduce a procedure
stepφ(S, a) which takes a set S ⊆ Sφ of states and a symbol a ∈ Σφ and returns
a new set S′ ⊆ Sφ. By executing stepφ stepwise on a finite prefix π = a1 . . . an

we obtain the automaton abstraction αφ(π) of π with

αφ(π) = stepφ(. . . (stepφ(stepφ(Iφ, a1), a2), . . . ), an)

where Iφ is an initial set of states for φ. Then we apply a suitably defined
procedure checkφ on the resulting set of states αφ(π) to obtain checkφ(αφ(π)) =
decideφ(π). We summarize these terms in the following definition:

Definition 3 (Automaton Construction with Emptiness Check). A logic
L has an automaton construction with emptiness check if we have for every
formula φ ∈ FL, (a) a finite set Sφ of states, (b) a set Iφ ⊆ Sφ of initial states,
(c) a transition function stepφ(S, a) which maps a set of states S ⊆ S and a
symbol a ∈ Σφ to a new set S′ ⊆ S of states, and (d) a function checkφ(S)
with checkφ(αφ(π)) = decideφ(π) for all π ∈ Σ∗

φ where we define automaton
abstraction αφ with αφ(ε) = Iφ and recursively with αφ(πa) = stepφ(αφ(π), a)
for all π ∈ Σ∗

φ and a ∈ Σφ.

procedure monitorφ(a)
init

Sφ := Iφ; S¬φ := I¬φ

begin
Sφ := step

φ
(Sφ, a);

S¬φ := step¬φ
(S¬φ, a);

if checkφ(Sφ) = ⊥
then return ⊥;

if check¬φ(S¬φ) = ⊥
then return �;

return ?;

end

Fig. 1. Procedure monitorφ(a)

If a logic L has an automaton construction
with emptiness check, we use the following
rule to evaluate the anticipation semantics

[π |= φ]L =

⎧⎨⎩
� if check¬φ(α¬φ(π)) = ⊥
⊥ if checkφ(αφ(π)) = ⊥
? otherwise

which leads to the procedure monitorφ(a) as
shown in Figure 1.

As an example for a logic which directly
yields an automaton abstraction with empti-
ness check, consider LTL [2]. The set of LTL
formulae is inductively defined by the gram-
mar φ ::= true | p | ¬φ | φ ∨ φ | φ U φ | Xφ.
Recall that a (nondeterministic) Büchi automaton (NBA) is a tuple A =
(Σ, Q, Q0, δ, F ), where Σ is a finite alphabet, Q is a finite, non-empty set of
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states, Q0 ⊆ Q is a set of initial states, δ : Q× Σ → 2Q is the transition func-
tion, and F ⊆ Q is a set of accepting states. For an NBA A, we denote by A(q)
the NBA that coincides with A except for the set of initial state Q0, which is
redefined in A(q) as Q0 = {q}.

Let Aφ = (Σ, Qφ, Qφ
0 , δφ, Fφ) denote the NBA which accepts all models of the

LTL-formula φ, and let A¬φ = (Σ, Q¬φ, Q¬φ
0 , δ¬φ, F¬φ) denote the NBA which

accepts all words falsifying φ. The corresponding construction is standard [10].
Now we define step and check for LTL as follows:

– stepφ : 2Qφ × Σ → 2Qφ

does the Büchi automaton steps of Aφ. That is,
stepφ(S, a) =

⋃
q′∈S δφ(q′, a) for S ⊆ Qφ and a ∈ Σ. Analogously, step¬φ :

2Q¬φ ×Σ → 2Q¬φ

is defined based on A¬φ.
– checkφ : 2Qφ → {�,⊥} does the emptiness check for the states. That is,

checkφ(S) = � iff
⋃

q′∈S L(Aφ(q′)) �= ∅ for S ⊆ Qφ, otherwise checkφ(S) =

⊥. Analogously, check¬φ : 2Q¬φ → {�,⊥} is defined in terms of A¬φ.

Note that we essentially get the monitor procedure established in [3].

3 Monitors Via the Automata-Theoretic Approach

So far, we have understood that there is a canonical anticipatory semantics well-
suited in runtime verification for a wide range of linear-time logics, which is based
on the function decideφ. Thus, for any linear-time logic, a (non-incremental) RV
semantics can be computed, provided that for each formula φ of the logic a
computable decideφ can be constructed. Moreover, a monitor construction for
checking an input sequence incrementally was developed for linear-time logics,
provided an automaton abstraction is given.

In consequence, runtime verification support for a linear-time logic is reduced
to providing the corresponding functions/abstractions. We have shown that this
task is simple in the setting of Pnueli’s LTL. However, for some relevant richer
logics, like real-time logics [11] or logics interpreted over the integers [5], this
task is considerably more involved [4]. Nevertheless, as the approach given for
LTL suggests, there is a typical pattern for deriving those functions, which
we describe in this section. In simple words, we show that whenever for the
underlying logic the so-called (a) automata-theoretic approach to satisfiability
checking is followed—as it is the case for many logics (see also Section 4)—and
certain (b) accuracy criteria are fulfilled, a general pattern is applicable to derive
monitors in a uniform manner.

We first give a generic definition of nondeterministic ω-automata which covers
various well-known classes of ω-automata such as Büchi, Muller, Rabin, Street,
Parity etc. Note that we decided against generalizing the concept to cover also
event-clock or timed automata, mainly to keep the technical details simple.

Definition 4 (Nondeterministic ω-Automata). A (non-deterministic) ω-
automaton A is a tuple A = (Σ, Q, Q0, δ,Acc), where Σ is a (possibly infinite)
alphabet, Q is a finite non-empty set of states, Q0 ⊆ Q is a set of initial states,
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δ : Q×Σ → 2Q is the transition function, and Acc is an accepting component
(which varies for different automata types.)

For example, we derive the notion of non-deterministic Büchi automata with a
subset of the states Acc ⊆ Q as accepting component.

A run of an ω-automatonA = (Σ, Q, Q0, δ,Acc) on a word w = a0a1 · · · ∈ Σω

is a sequence q0, q1, . . . with q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for i ≥ 0. The run is
called accepting if it meets the acceptance condition. For example in case of Büchi
automata, the acceptance condition requires at least one of the states q ∈ Acc to
be visited infinitely often. The accepted language (or language, for short) L(A)
of A is the set of words w for which an accepting run exists.

Yet dependent on the actual acceptance condition, emptiness of the accepted
language of an automaton can usually be checked easily and is one of the stan-
dard problems extensively studied for various automata types. In the following,
we silently assume that every automaton type comes with an emptiness proce-
dure.

Definition 5 (Satisfiability Check by Automata Abstraction). Given a
linear-time logic L with its formulae FL, the satisfiability check by automata
abstraction proceeds as follows.

1. Define an alphabet abstraction which yields for each formula φ ∈ FL with
its possibly infinite alphabet Σφ an abstract alphabet Σ̄φ, which is finite.

2. Define a word abstraction which yields an abstraction function βφ : Σω
φ →

Σ̄ω
φ for each φ ∈ FL .

3. Define an automaton construction (a computable function), which yields for
all φ ∈ FL an ω-automaton Aφ reading words over Σ̄φ, such that for all
σ̄ ∈ Σ̄ω

φ it holds σ̄ ∈ L(Aφ) iff ∃σ ∈ Σω : σ̄ = βφ(σ) and σ |= φ.

The satisfiability check by automata abstraction then proceeds as follows: For a
given formula φ ∈ FL of the logic L construct the automaton Aφ and check the
language of Aφ for emptiness. Clearly, φ is satisfiable iff L(Aφ) �= ∅.

To distinguish Σφ and Σ̄φ and corresponding words literally, we call Σ̄φ an
abstract alphabet and elements of Σ̄∗

φ or Σ̄ω
φ abstract words or symbolic abstrac-

tions . To simplify notation, we often drop the subscript φ when φ is given by
the context. For example, we write A = (Σ, Q, Q0, δ,Acc) for the automaton ac-
cepting symbolic abstractions σ̄ ∈ Σ̄ω of words σ ∈ Σω (i.e. σ̄ = β(σ)) satisfying
a fixed formula φ.

For a wide range of linear-time logics, the satisfiability check by automata
abstraction is followed and corresponding automata constructions are provided
in the literature. For example, for LTL as described in the previous section,
the abstraction function β is simply the identity function and the automaton
construction was first described in [10]. In the setting of the real-time logic TLTL
[11], an event-clock automaton is constructed accepting precisely the models of
the formula at hand. In the setting of Demri’s PLTLmod [5], words over an
infinite alphabet (representing integer valuations) are abstracted to words of a
finite alphabet and a suitable construction of a Büchi automaton accepting these
symbolic evaluations is provided.
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The goal is now to reuse such automata constructions for generating monitors.
Reconsidering the example for LTL given the previous section, one is drawn to
the following approach: Given an ω-automaton accepting symbolic abstractions
of words satisfying the formula to check, reuse its transition function δ for defining
the function step. Moreover, check may be defined as checking emptiness of the
accepted language of the automaton when starting the automaton in the states
reachable via step/δ. Recall that we assume the satisfiability check by automata
abstraction to come with an emptiness check for the automaton at hand.

However, δ reads words π̄ over the symbolic alphabet while, in runtime veri-
fication, we want to derive the semantics for words π over Σ. Hence, we would
like to use the symbolic abstraction function β to abstract π to π̄. However,
β is defined for ω-words rather than for finite words. To deal with symbolic
abstractions of finite prefixes of infinite words, we introduce extrapolate(π) as

extrapolate(π) =
{
β(πσ)0...i | i + 1 = |π|, σ ∈ Σω

}
(1)

as the set of possible abstractions of π where β(πσ)0...i denotes the first i + 1
symbols of β(πσ). We require that there is an algorithm that yields for each φ
a computable function extrapolate : Σ∗ → 2Σ̄∗

.
By means of extrapolate, we transfer a (finite) word π to a set of symbolic

words extrapolate(π), which guide the automaton from its initial states Q0 to a
set of states

⋃
q′∈Q0

δ(q′, extrapolate(π)), for which we check the emptiness with
check(S) = �, iff

⋃
q′∈S L(A(q′)) �= ∅, and check(S) = ⊥ in all other cases, where

S is a subset of state set Q of the automaton for φ.
Now we are tempted to assume that function decide is obtained as decide(π) =

check
(⋃

q′∈Q0,π̄∈extrapolate(π) δ(q′, π̄)
)
. However, in general this might not be cor-

rect. In the real-time setting, for example, a prefix of a timed trace typically
imposes a post-condition for the remainder of the string. Depending on the au-
tomaton construction employed, such post-conditions of prefixes are overlooked
when solely checking emptiness for states. This may then result in incorrect
results. See [4] for a detailed discussion of the real-time case.

If, however, the automaton abstraction satisfies a certain accuracy condition,
our intuition meets the facts:

Definition 6 (Accuracy of Abstract Automata). A satisfiability check by
automata abstraction for a given linear-time logic L is said to satisfy the accu-
racy of abstract automata property, if, for all π ∈ Σ∗,
– if π has a satisfying continuation σ, then there must exist an accepting ab-

stract continuation σ̄ for some π̄ ∈ extrapolate(π), i.e.: (∃σ : πσ |=L φ) ⇒
(∃π̄∃σ̄ : π̄σ̄ ∈ L(Aφ)) with π̄ ∈ extrapolate(π),

– and if an abstract prefix π̄ has an accepting abstract continuation σ̄ then there
must exist a satisfying concretization σ for some π with π̄ ∈ extrapolate(π),
i.e.: (∃σ̄ : π̄σ̄ ∈ L(Aφ)) ⇒ (∃π∃σ : πσ |=L φ) with π̄ ∈ extrapolate(π).

Note that the accuracy of abstract automata property implies that the automa-
ton only accepts valid symbolic abstractions, i.e., A only accepts words σ̄ which
are indeed images of some σ under β.
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The discussion and notions introduced so far give now rise to the following
theorem:

Theorem 1 (Correctness of decide). Given a satisfiability check by automata
abstraction for a linear-time logic L satisfying the accuracy of automata prop-
erty, we have decide(π) = check

(⋃
q′∈Q0,π̄∈extrapolate(π) δ(q′, π̄)

)
. Moreover, if

there is an algorithm yielding for each formula of L a computable function
extrapolate satisfying Equation 1, decide is computable.

However, as mentioned in the previous section, decide is mainly useful for ob-
taining non-incremental monitors, as π has to be stored for deriving abstractions
of its extensions. Nevertheless, if the abstraction β satisfies further properties,
we come up with an incremental monitor construction:

Definition 7 (Forgettable Past and Faithful Abstraction). Given β of a
satisfiability check by automata abstraction. We say that

– β satisfies the forgettable past property, iff β(πaσ)i+1...i+1 = β(aσ)0...0 for
all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, and σ ∈ Σω.

– β is called faithful, iff for all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, σ, σ′ ∈ Σω for
which there is some σ′′ ∈ Σω with β(πσ)0...iβ(aσ′)0...0 = β(σ′′)0...i+1 there
also exists a σ′′′ ∈ Σω with β(πσ)0...iβ(aσ′)0...0 = β(πaσ′′′)0...i+1

The intuition behind forgettable past is that a prefix of some infinite string
has no effect on the abstraction of the suffix (while the suffix might influence
the abstraction of the prefix). Moreover, for a faithful abstraction, we have the
following: whenever the prefix of length |π| of the abstraction of πσ, followed by
the first letter of the abstraction of aσ′ can be written as the abstraction of some
infinite word, then we obtain the same result for πa continued by a suitable suffix
σ′′′. Roughly speaking, this is a kind of a homomorphic property for prefixes of
representatives. We then get, setting Lβ = {β(σ) | σ ∈ Σω}:
Lemma 1 (Incremental Extrapolation). For π ∈ Σ∗, |π| = i+1, a ∈ Σ, we
have extrapolate(π)extrapolate(a) ∩ L0...i+1

β = extrapolate(πa) where β satisfies
the forgettable past and faithful abstraction properties.

Lemma 2 (Incremental Emptiness for Extrapolation). Let A be a Büchi
automaton obtained via a satisfiability check by automata abstraction satisfying
the accuracy of automaton abstraction property with a faithful abstraction func-
tion having the forgettable past property. Then, for all π ∈ Σ∗ and a ∈ Σ, it
holds L(A(extrapolate(πa))) = L(A(extrapolate(π)extrapolate(a))).

We are now ready to define the essential procedure for an incremental monitor
construction: Let step be defined by step(S, a) =

⋃
q′∈S,ā∈extrapolate(a) δ(q′, ā).

Theorem 2 (Correctness of step and check). Consider a satisfiability check
by automata abstraction that has the accuracy automaton abstraction property
and comes with a faithful abstraction function that moreover satisfies the for-
gettable past property. Then check(α(π)) = decide(π) for all π ∈ Σ∗. Moreover,
if there is an algorithm yielding for each formula of L a computable function
extrapolate satisfying Equation 1, α and check are computable.
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In other words, under the mentioned criteria, we have identified an automaton
construction according to Definition 3, resulting in a monitor as depicted in
Figure 1. In the next section, we illustrate the general scheme developed in this
section for various linear-time logics.

4 Applications: Monitors for Various Linear-Time Logics

The anticipation semantics is suitable for various linear-time logics and a mon-
itor synthesis by the automaton construction with emptiness check is directly
obtained by establishing the functions step and check. Reusing the results of
satisfiability check by automata abstraction, these functions are obtained easily.
In the following, we present several linear-time logics as example applications
including LTL, PLTLmod, linear-time μ-calculus, RLTL and S1S.
Linear-time Temporal Logic (LTL) [2]: Because the alphabet of LTL is finite,
the abstraction functions for LTL formulae are trivial, i.e. βφ(σ) = σ and
extrapolate(π) = {π}. The resulting functions stepφ and checkφ are exactly the
ones that we get in Section 2. Furthermore, a monitor synthesis algorithm is also
obtained for the LTL enriched by past operators or forgettable past operators
[12] with a corresponding satisfiability check by automata abstraction.
PLTLmod [5]: PLTLmod is a decidable fragment of Presburger LTL, which
extends LTL with first-order integer arithmetic constraints. The alphabet of a
PLTLmod formula is infinite because it includes all valuations of variables over
Z. [5] proposed an approach of mapping all valuations to the finite symbolic valu-
ations which are equivalence classes. Let φ be a PLTLmod formula with alphabet
Σ. The symbolic alphabet Σ̄φ, the symbolic abstraction function βφ : Σω

φ → Σ̄ω
φ

and the automaton construction can be obtained, which are three essential el-
ements in satisfiability check by automata abstraction. A careful investigation
shows that the abstraction function is faithful and satisfies the forgettable past
property and that the automaton abstraction is accurate. Thus, functions stepφ

and checkφ and an anticipatory monitor can easily be constructed along the lines
of Theorem 2. Details can be found in an extended version of the paper.
Linear-time μ-calculus (νTL) [6,13]: νTL extends standard modal logic with
maximal and minimal fixpoint quantifiers, and can express regular expressions.
In [7], a first automata-theoretic approach to νTL is presented. Given a νTL
formula φ, the Büchi automata of A that accepts precisely the pre-models of φ
and Ā that seeks an infinite regeneration sequence for least fixpoint formula in
closure of φ can be generated. The Büchi automaton Aφ that accepts precisely
the models of φ is the intersection of A and Ā. Thus, the abstraction functions
for νTL formulae are also trivial ones, and the functions stepφ and checkφ will
be established just like for LTL. A more direct automaton construction was
presented in [14], which makes use of parity automata. While emptiness of the
accepted language for a set of states is computed differently due to the parity
acceptance condition, it is easily verified that the requirements for applying
Theorem 2 are fulfilled.
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RLTL and S1S: Simlar as νTL, also regular linear temporal logic RLTL is a
formalism that can express every ω-regular language [9]. For a RLTL formula
φ, an alternating Büchi automaton accepting precisely the ω-words satisfying φ
can be generated. This automaton can be translated into an equivalent Büchi
automaton. A monadic second order (MSO) logic interpreted over words, also
called S1S, consists of formulae having a single individual free variable, for
which a Büchi automaton can be generated [8]. Again, it is easily verified that
the requirements for applying Theorem 2 for RLTL and S1S are fulfilled.

5 Conclusion

In this paper, a uniform approach for synthesizing monitors checking correctness
properties specified in a linear-time logic is provided. After making the notion of
linear-time logics precise, a generic three-valued semantics has been introduced
reflecting the idea that prefixes of infinite computations are checked for correct-
ness. Then we established a conceptual framework to synthesize monitors from
a logical specification to check an execution incrementally. Moreover, the main
elements of the automata-theoretic approach for checking satisfiability of correct-
ness properties are identified as starting point in reusing them as components
for a general monitor generation procedure. We applied the presented framework
and sketched monitor synthesis algorithms for a variety of logics such as LTL,
the linear-time μ-calculus, PLTLmod, S1S, and RLTL.

Besides the plain practical benefits of the developed framework, the results
shed light on the similarities and differences of satisfiability checking, model
checking, and runtime verification.
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Abstract. Electronic inter-organizational relationships are governed by
contracts regulating their interaction, therefore it is necessary to run-time
monitor the contracts, as to guarantee their fulfillment. The present work
shows how to obtain a run-time monitor for contracts written in CL, a
formal specification language which allows to write conditional obliga-
tions, permissions, and prohibitions over actions. The trace semantics
of CL formalizes the notion of a trace fulfills a contract. We show how
to obtain, for a given contract, an alternating Büchi automaton which
accepts exactly the traces that fulfill the contract. This automaton is
the basis for obtaining a finite state machine which acts as a run-time
monitor for CL contracts.

1 Introduction

Internet inter-business collaborations, virtual organizations, and web services,
usually communicate through service exchanges which respect an implicit or
explicit contract. Such a contract must unambiguously determine correct inter-
actions, and what are the exceptions allowed, or penalties imposed in case of
incorrect behavior.

Legal contracts, as found in the usual judicial or commercial arena, may serve
as basis for defining such machine-oriented electronic contracts (or e-contracts
for short). Ideally, e-contracts should be shown to be contradiction-free both
internally, and with respect to the governing policies under which the contract is
enacted. Moreover, there must be a run-time system ensuring that the contract
is respected. In other words, contracts should be amenable to formal analysis
allowing both static and dynamic verification, and therefore written in a formal
language. In this paper we are interested in the run-time monitoring of electronic
contracts, and not in the static verification of their consistency or conformance
with policies.
CL, introduced in [12], is an action-based formal language tailored for writ-

ing e-contracts, with the following properties: (1) Avoids most of the common
philosophical paradoxes of deontic logic [18]; (2) Has a formal semantics given
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Table 1. Syntax of the CL language to use for specifying contracts

C := CO | CP | CF | C ∧ C | [β]C | $ | ⊥
CO := OC(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := FC(α) | CF ∨ [α]CF

α := 0 | 1 | a | α&α | α · α | α + α
β := 0 | 1 | a | β&β | β · β | β + β | β∗ | C?

in terms of Kripke structures [13]; (3) It can express (conditional) obligations,
permissions, and prohibitions over concurrent actions; as well as (4) contrary-to-
duty obligations (CTD) and contrary-to-prohibitions (CTP). CTDs/CTPs spec-
ify the obligation/prohibition to be fulfilled and which is the reparation/penalty
to be applied in case of violation. The use of e-contracts, and in particular
of CL, goes beyond the application domain of service-exchanges, comprising
component-based development systems, fault-tolerant and embedded systems.

The main contribution of this paper is an automatic procedure for obtaining
a run-time monitor for contracts, directly extracted from the CL specification.
The road-map of the paper starts by recalling main results on CL in first part of
Section 2 and we give a trace semantics for the expressions of CL in the second
part. This expresses the fact that a trace respects (does not violate) a contract
clause (expression of CL). In Section 3 we show how to construct for a contract an
alternating Büchi automaton which recognizes exactly all the traces respecting
the contract. The automaton is used in Section 4 for constructing the monitor
as a Moore machine (for monitoring the contract). Though we concentrate on
theoretical aspects, we use throughout the paper the following small example to
exemplify some of the main concepts we define.

Example 1. “If the Client exceeds the bandwidth limit then (s)he must pay
[price] immediately, or (s)he must delay the payment and notify the Provider
by sending an e-mail. If in breach of the above (s)he must pay double.”

2 CL – A Formal Language for Contracts

CL is an action-based language for writing contracts [12]. In this paper we are
interested in monitoring the actions of a contract. Therefore, we give here a
slightly different version of CL where we have dropped the assertions from the
old CL, keeping only the modalities over actions. Other differences are in the
expressivity: we have incorporated the Kleene star operator over the actions in
the dynamic box modality, and we have attached to the obligations/prohibitions
the corresponding reparations (modelling the CTDs/CTPs directly).

Syntax: CL formulas are defined by the grammar in Table 1. In what follows
we provide intuitions for the CL syntax and define our notation and terminology.

We call an expression C a (general) contract clause. CO, CP , and CF are called
respectively obligation, permission, and prohibition clauses. We call OC(α), P (α),
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and FC(α) the deontic modalities, and they represent the obligation, permission,
or prohibition of performing a given action α. Intuitively OC(α) states the oblig-
ation to execute α, and the reparation C in case the obligation is violated, i.e.
whenever α is not performed.1 The reparation may be any contract clause. Oblig-
ations without reparations are written as O⊥(α) where ⊥ (and conversely �) is
the Boolean false (respectively true). We usually write O(α) instead of O⊥(α).
The prohibition modality FC(α) states the actual forbearing of the action F (α)
together with the reparation C in case the prohibition is violated. Note that it
is possible to express nested CTDs and CTPs.

Throughout the paper we denote by a, b, c ∈ AB the basic actions, by indexed
α ∈ A compound actions, and by indexed β the actions found in propositional
dynamic logic [4] with intersection [5]. Actions α are used inside the deontic
modalities, whereas the (more general) actions β are used inside the dynamic
modality. An action is an expression containing one or more of the following
binary constructors: choice “+”, sequence “ ·”, concurrency “&” and are con-
structed from the basic actions a ∈ AB and 0 and 1 (called the violating action
and respectively skip action). Indepth reading and results related to the α ac-
tions can be found in [13]. Actions β have the extra operators Kleene star ∗ and
test ?.2 To avoid using parentheses we give a precedence over the constructors:
& > · > +. Concurrent actions, denoted by α&, are actions of A&

B ⊂ A gener-
ated from basic actions using only the & constructor (e.g. a, a&a, a&b ∈ A&

B and
a+ b, a&b+ c, a · b �∈ A&

B). Note that A&
B is finite because AB is defined as finite

and & is defined idempotent over basic actions. Therefore, we consider concur-
rent actions of A&

B as sets over basic actions of AB. We have now a natural way
to compare concurrent actions using ⊆ set inclusion. We say that an action, e.g.
a& b& c is more demanding than another action, e.g. a& b iff {a, b} ⊆ {a, b, c}.
The negation α of action α is a function : A → A.

We use the propositional operators ∧, ∨, and ⊕ (exclusive or). The dynamic
logic modality [β]C states that after the action β is performed C must hold. The [·]
modality allows having a test inside, and [C1?]C2 must be understood as C1 ⇒ C2.
In CL we can write conditional obligations (permissions and prohibitions) of two
kinds: [β]O(α) read as “after performing β, one is obliged to do α”, and using
the test operator [C?]O(α) to simulate implication. Similarly for F and P .

Example 1 in CL syntax : The transition from the conventional contract of in-
troduction to the CL expression below is manual,

[e]OO⊥(p·p)(p + d&n)

where the basic actions are AB = {e, p,n, d} (standing for “extend bandwidth
limit”, “pay”, “notify by email”, and “delay”). In short the expression is read as:
After executing the action e there is the obligation of choosing between either p or
at the same time d and n. The CL expression also states the reparation O⊥(p ·p)
1 The modality OC(α) (resp. FC(α)) represents what is called CTD (resp. CTP) in the

deontic logic community.
2 The investigation of the PDL actions β can be found in the literature related to

dynamic and Kleene algebras [7].
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Table 2. Trace semantics of CL. Dynamic and propositional operators are omitted [6].

σ |= OC(α&) if α& ⊆ σ(0), or if σ(1..) |= C.
σ |= OC(α · α′) if σ |= OC(α) and σ |= [α]OC(α′).

σ |= OC(α + α′) if σ |= O⊥(α) or σ |= O⊥(α′) or σ |= [α + α′]C.
σ |= FC(α&) if α& �⊆ σ(0), or if α& ⊆ σ(0) and σ(1..) |= C.
σ |= FC(α · α′) if σ |= F⊥(α) or σ |= [α]FC(α′).
σ |= FC(α + α′) if σ |= FC(α) and σ |= FC(α′).
σ |= [α&]C if α& �⊆ σ(0) and σ(1..) |= C, or if α& ⊆ σ(0).

σ |= [α · α′]C if σ |= [α]C and σ |= [α][α′]C.
σ |= [α + α′]C if σ |= [α]C or σ |= [α′]C.

in case the obligation above is violated which is an obligation of doing twice in
a row the action of paying. Note that this second obligation has no reparation
attached, therefore if it is violated then the whole contract is violated. Note also
that we translate “pay double” into the CL sequential composition of the same
action p of paying.

Semantics on Respecting Traces: The rest of this section is devoted to
presenting a semantics for CL with the goal of monitoring electronic contracts.
For this we are interested in identifying the traces of actions which are respecting
or violating a contract clause. We follow the many works in the literature which
have a presentation based on traces e.g. [11]. For a complete presentation of the
theoretical notions (and proofs), as well as more explanations and examples see
the extended version of this paper in [14].

Definition 1 (traces). Consider a trace denoted σ = a0, a1, . . . as an ordered
sequence of concurrent actions. Formally a trace is a map σ : N → A&

B from
natural numbers (denoting positions) to concurrent actions from A&

B. Take mσ ∈
N∪∞ to be the length of a trace. A (infinite) trace which from some position mσ

onwards has only action 1 is considered finite. We use ε to denote the empty
trace. We denote by σ(i) the element of a trace at position i, by σ(i..j) a finite
subtrace, and by σ(i..) the infinite subtrace starting at position i in σ. The
concatenation of two traces σ′ and σ′′ is denoted σ′σ′′ and is defined iff the trace
σ′ is finite; σ′σ′′(i) = σ′(i) if i < mσ′ and σ′σ′′(i) = σ′′(i −mσ′) for i ≥ mσ′

(e.g. σ(0) is the first action of a trace, σ = σ(0..i)σ′ where σ′ = σ(i+1..)).

Definition 2 (Semantics of CL). We give in Table 2 a recursive definition of
the satisfaction relation |= over pairs (σ, C) of traces and contracts; it is usually
written σ |= C and we read it as “trace σ respects the contract (clause) C”. We
write σ �|= C instead of (σ, C) �∈ |= and read it as “σ violates C.”

A trace σ respects an obligation OC(α&) if either of the two complementary
conditions is satisfied. The first condition deals with the obligation itself: the
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trace σ respects the obligation O(α&) if the first action of the trace includes α&.
Otherwise, in case the obligation is violated,3 the only way to fulfill the contract
is by respecting the reparation C; i.e. σ(1..) |= C. Respecting an obligation of a
choice action OC(α1+α2) means that it must be executed one of the actions α1 or
α2 completely; i.e. obligation needs to consider only one of the choices. If none of
these is entirely executed then a violation occurs (thus the negation of the action
is needed) so the reparation C must be respected. An important requirement
when modelling electronic contracts is that the obligation of a sequence of actions
OC(α ·α′) must be equal to the obligation of the first action OC(α) and after the
first obligation is respected the second obligation must hold [α]OC(α′). Note that
if OC(α) is violated then it is required that the second obligation is discarded,
and the reparation C must hold. Violating OC(α) means that α is not executed
and thus, by the semantic definition, [α]OC(α′) holds regardless of OC(α′).

From [6] we know how to encode LTL only with the dynamic [·] modality
and the Kleene ∗; e.g. “always obliged to do α” is encoded as [any∗]O(α) where
any �= +γ∈A&

B
γ is the choice between any concurrent action.

3 Satisfiability Checking Using Alternating Automata

Automata theoretic approach to satisfiability of temporal logics was introduced
in [17] and has been extensively used and developed since. We recall first basic
theory of automata on infinite objects. We follow the presentation and use the
notation of Vardi [16]. Given an alphabet Σ, a word over Σ is a sequence a0, a1 . . .
of symbols from Σ. The set of infinite words is denoted by Σω.

We denote by B+(X) the set of positive Boolean formulas θ (i.e. containing
only ∧ and ∨, and not the ¬) over the set X together with the formulas true
and false. For example θ = (s1 ∨ s2) ∧ (s3 ∨ s4) where si ∈ X . A subset Y ⊆ X
is said to satisfy a formula θ iff the truth assignment which assigns true only to
the elements of Y assigns true also to θ. In the example, the set {s1, s3} satisfies
θ; but this set is not unique.

An alternating Büchi automaton [2, 10] is a tuple A = (S,Σ, s0, ρ, F ), where
S is a finite nonempty set of states, Σ is a finite nonempty alphabet, s0 ∈ S is
the initial state, and F ⊆ S is the set of accepting states. The automaton can
move from one state when it reads a symbol from Σ according to the transition
function ρ : S×Σ → B+(S). For example ρ(s0, a) = (s1∨s2)∧(s3∨s4) means
that the automaton moves from s0 when reading a to state s1 or s2 and at the
same time to state s3 or s4. Intuitively the automaton chooses for each transition
ρ(s, a) = θ one set S′ ∈ S which satisfies θ and spawns a copy of itself for each
state si ∈ S′ which should test the acceptance of the remaining word from that
state si. Alternating automata combine existential choice of nondeterministic
finite automata (i.e. disjunction) with the universal choice (i.e. conjunction) of
∀-automata [9] (where from a state the automaton must move to all the next
states given by the transition function).

3 Violation of an obligatory action is encoded by the action negation.
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Table 3. Computing the Fischer-Ladner Closure (see [6] for the standard operators)

FL($) � {$} FL(⊥) � {⊥} FL(P (α)) � {P (α)}
FL(OC(α&)) � {OC(α&)} ∪ FL(C)

FL(OC(α · α′)) � {OC(α · α′)} ∪ FL(OC(α)) ∪ FL([α]OC(α′))

FL(OC(α + α′)) � {OC(α + α′)} ∪ FL(O⊥(α)) ∪ FL(O⊥(α′)) ∪ FL(C)
FL(FC(α&) � {FC(α&} ∪ FL(C)

FL(FC(α · α′)) � {FC(α · α′)} ∪ FL(F⊥(α)) ∪ FL(FC(α′))

FL(FC(α + α′)) � {FC(α + α′)} ∪ FL(FC(α)) ∪ FL(FC(α′))

Because the alternating automaton moves to all the states of a (nondetermin-
istically chosen) satisfying set of θ, a run of the automaton is a tree of states.
Formally, a run of the alternating automaton on an input word α = a0, a1, . . . is
an S-labeled tree (T,V) (i.e. the nodes of the tree are labeled by V with state
names of the automaton) such that V(ε) = s0 and the following hold:

for a node x with |x| = i s.t. V(x) = s and ρ(s, ai) = θ then x has k children
{x1, . . . , xk} which is the number of states in the chosen satisfying set of
states of θ, say {s1, . . . , sk}, and the children are labeled by the states in the
satisfying set; i.e. {V(x1) = s1, . . . ,V(xk) = sk}.

For example, if ρ(s0, a) = (s1 ∨ s2) ∧ (s3 ∨ s4) then the nodes of the run tree
at the first level have one label among s1 or s2 and one label among s3 or s4.
When ρ(V(x), a) = true, then x need not have any children; i.e. the branch
reaching x is finite and ends in x. A run tree of an alternating Büchi automaton
is accepting if every infinite branch of the tree includes infinitely many nodes
labeled by accepting states of F . Note that the run tree may also have finite
branches in the cases when the transition function returns true.

Fischer-Ladner closure for CL: For constructing the alternating automaton
for a CL expression we need the Fischer-Ladner closure [4] for our CL logic. We
follow the presentation in [6] and use similar terminology. We define a function
FL : CL→2CL which for each expression C of the logic CL returns the set of its
“subexpressions”. The function FL is defined inductively in Table 3 (see also [14]).

Theorem 1 (automaton construction). Given a CL expression C, one can
build an alternating Büchi automaton AN (C) which will accept all and only the
traces σ respecting the contract expression.

Proof: Take an expression C, we construct the alternating Büchi automaton
AN (C) = (S,Σ, s0, ρ, F ) as follows. The alphabet Σ = A&

B consists of the finite
set of concurrent actions. Therefore the automaton accepts traces as in Definition
1. The set of states S = FL(C) ∪ FL(C) contains the subexpressions of the start
expression C and their negations. Note that in CL the negation ¬C is [C?]⊥, thus
∀C ∈ FL(C) then [C?]⊥∈ FL(C). The initial state s0 is the expression C itself.

The transition function ρ : S × A&
B → B+(S) is defined in Table 4 (the

dynamic logic operators are omitted; see [14]) and is based on the following
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Table 4. Transition Function of Alternating Büchi Automaton for CL

ρ(⊥, γ) � false ρ($, γ) � true ρ(P (α), γ) � true

ρ(OC(α&), γ) � if α& ⊆ γ then true else C
ρ(OC(α · α′), γ) � ρ(OC(α), γ) ∧ ρ([α]OC(α′), γ)

ρ(OC(α + α′), γ) � ρ(O⊥(α), γ) ∨ ρ(O⊥(α′), γ) ∨ C
ρ(FC(α&), γ) � if α& �⊆ γ then true else C

ρ(FC(α · α′), γ) � ρ(F⊥(α), γ) ∨ FC(α′)

ρ(FC(α + α′), γ) � ρ(FC(α), γ) ∧ ρ(FC(α′), γ)

ρ([α&]C, γ) � if α& ⊆ γ then C else true

ρ([C1?]C2, γ) � ρ(C1, γ) ∨ (ρ(C1, γ) ∧ ρ(C2, γ))

dualizing construction: for a Boolean formula θ ∈ B+(S) the dual θ is obtained
by switching ∨ and ∧, true and false; and the dual of a state C is the state
[C?] ⊥ containing the negation of the expression. By looking at the definition of
ρ we see that the expression [β∗]C is the only expression which requires repeated
evaluation of itself at a later point (causing the infinite unwinding) in the run
tree. It is easy to see that if a run tree has an infinite path then this path goes
infinitely often through a state of the form [β∗]C, therefore the set of final states
F contains all the expressions of the type [β∗]C.

The rest of the proof shows the correctness of the automaton construction.
Soundness : given an accepting run tree (T,V) of AN (C) over a trace σ we prove
that ∀x ∈ T a node of the run tree with depth |x| = i, labeled by V(x) = Cx
a state of the automaton (i.e. subexpression Cx ∈ FL(C)), it is the case that
σ(i..) |= Cx. Thus we have as a special case that also σ(0..) |= V(ε) = C, which
means that if the automaton AN (C) accepts a trace σ then the trace respects
the initial contract C. We use induction on the structure of the expression Cx.
Completeness : given a trace σ s.t. σ |= C we prove that the constructed automa-
ton AN (C) accepts σ (i.e. there exists an accepting run tree (T,V) over the trace
σ). �

Example 1 as alternating automata: We shall now briefly show how for the CL
expression C = [e]OO⊥(p·p)(p + d&n) of page 399 we construct an alternating
automaton which accepts all the traces that satisfy C and none others. The
Fischer-Ladner closure of C generates the following set of subexpressions:

FL(C) = {C, OO⊥(p·p)(p + d&n), O⊥(p),⊥, O⊥(d&n), O⊥(p · p), [p]O⊥(p)}

The set A&
B of concurrent actions is the set {e, p,n, d}& of basic actions closed

under the constructor &. The alternating automaton is:

AN (C) = (FL(C) ∪ FL(C), {e, p,n, d}&, C, ρ, ∅)
Note that there is no expression of the form [β∗]C in FL(C) because we have no
recursion in our original contract clause from Example 1. This means that the
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automaton is accepting all run trees which end in a state where the transition
function returns true on the input symbol.4 The transition function ρ is defined
in the table below where C1 = OO⊥(p·p)(p + d&n):

ρ(state, action) e p d e&d e&p d&n e&d&n

C C1 true true C1 C1 true C1
C1 O⊥(p · p) true O⊥(p · p) O⊥(p · p) true true true

O⊥(p) ⊥ true ⊥ ⊥ true ⊥ ⊥
O⊥(d&n) ⊥ ⊥ ⊥ ⊥ ⊥ true true
O⊥(p · p) ⊥ O⊥(p) ⊥ ⊥ O⊥(p) ⊥ ⊥
[p]O⊥(p) true O⊥(p) true true O⊥(p) true true

Computing the values in the table above is routine; e.g.:

ρ(C1, e) = ρ(O⊥(p), e) ∨ ρ(O⊥(d&n), e) ∨O⊥(p · p) =⊥ ∨ ⊥ ∨ O⊥(p · p)

Because from the state ⊥ nothing can be accepted (as it generates only false)
we have written in the table only O⊥(p · p). There are 24 labels in the alphabet
of AN (C) but we show only some of the more interesting ones. Moreover, none
of the states from FL (i.e. [C1?] ⊥, the complemented expressions) are reachable
nor do they contribute to the computation of any transition to a reachable state
(like e.g. O⊥(d&n) contributes to the computation of ρ(C1, e)), so we have not
included them in the table. The line for state ⊥ is omitted.

4 Monitoring CL Specifications of Contracts

We use the method of [1] and we consequently use a 3-valued semantics approach
to run-time monitoring. The monitor will generate a sequence of observations,
denoted [σ |= C], for a finite trace σ defined as:

[σ |= C] =

⎧⎪⎨⎪⎩
tt if ∀σ′ ∈ Σω : σσ′ |= C
ff if ∀σ′ ∈ Σω : σσ′ �|= C
? otherwise

We use a standard method [16] to construct an exponentially larger nondeter-
ministic Büchi automaton NBA(C) from our alternating automaton AN (C) s.t.
both automata accept the same trace language. Therefore NBA(C) is exponential
in the size of the expression.

The method of [1] is the following: take the NBA(C) constructed above for which
we know that [σ |= C] �= ff if there exists a state reachable by reading σ and
from where the language accepted by NBA(C) is not empty. Similarly for [σ |=
C] �= tt when taking the complement of NBA(C) (or equivalently we can take the
NBA(¬C) of the negated formula which is [C?] ⊥). Construct a function F : S →
{�,⊥} which for each state s of the NBA(C) returns � iff L(NBA(C), s) �= ∅ (i.e.
4 Note that for this particular example we do not see the power of alternating au-

tomata. More, the alternating Büchi automata behaves like a NFA.
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the language accepted by NBA(C) from state s is not empty), and ⊥ otherwise.
Using F one can construct a nondeterministic finite automaton NFA(C) accepting
finite traces s.t. σ ∈ L(NFA(C)) iff [σ |= C] �=⊥. This is the same NBA only
that the set of final states contains all the states mapped by F to �. Similarly
construct a NFA(¬C) from NBA(¬C). One uses classical techniques to determinize
the two NFAs. Using the two obtained DFAs one constructs the monitor as a finite
state Moore machine which at each state outputs {tt,ff , ?} if the input read until
that state respectively satisfies the contract clause C, violates it, or it cannot be
decided. The monitor is the product of the two DFA(C) and DFA(¬C).

We need that the monitor can read (and move to a new state) each possible
action from the input alphabet. When doing the product of the two DFAs, if
one of them does not have a transition for one of the symbols then this is lost
for the monitor too. Therefore we add to each DFA a dummy state which is not
accepting and which collects all the missing transitions for all states.

Correctness of the method [1] states λ(ρ(s0, σ)) = [σ |= C], i.e. the output
function λ : S → {tt,ff , ?} of the Moore machine returns for the state reached
by reading σ from the starting state s0 the semantics of C on the finite trace σ.
The monitor generated is proven to have size double-exponential in the size of
the expression; one exponent coming from translation of AN into the NBA and
the other from determinization.

5 Conclusion

The work reported here may be viewed from different angles. On one hand we use
alternating automata which has recently gained popularity [8] in the temporal
logics community. We apply these to our rather unconventional logic CL [12]; i.e.
a process logic (PDL [4]) extended with deontic logic modalities [18]. On another
hand we presented the formal language CL with a trace semantics, and showed
how we specify electronic contracts using it. From a practical point of view we
presented here a first fully automated method of extracting a run-time monitor
for a contract formally specified using the CL logic.

Note that our main objective is not to enforce a contract, but only to monitor
it, that is to observe that the contract is indeed satisfied. The trace semantics
presented in this paper is intended for monitoring purposes, and not to explain
the language CL. Thus, from the trace semantics point of view [α&]C is equivalent
to FC(α&), but we need such a distinction since this is not the case in CL (see
CL branching semantics [13]).

Related work: For run-time verification our use of alternating automata on infi-
nite traces of actions is a rather new approach. This is combined with the method
of [1] that uses a three value (i.e. true, false, inconclusive) semantics view for run-
time monitoring of LTL specifications. We know of the following two works that
use alternating automata for run-time monitoring: in [3] LTL on infinite traces is
used for specifications and alternating Büchi automata are constructed for LTL
to recognize finite traces. The paper presents several algorithms which work on
alternating automata to check for word inclusion. In [15] LTL has semantics on
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finite traces and nondeterministic alternating finite automata are used to recog-
nize these traces. A determinization algorithm for alternating automata is given
which can be extended to our alternating Büchi automata.

We have taken the approach of giving semantics to CL on infinite traces of
actions which is more close to [3] but we want a deterministic finite state machine
which at each state checks the finite input trace and outputs an answer telling if
the contract has been violated. For this reason we fount the method of [1] most
appealing. On the other hand a close look at the semantics of CL from Section 2
reveals the nice feature of this semantics which behaves the same for finite traces
as for infinite traces. This coupled with the definition of alternating automata
from Section 3 which accepts both infinite and finite traces gives the opportunity
to investigate the use of alternating finite automata from [15] on the finite trace
semantics. This may generate a monitor which is only single-exponential in size.
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Abstract. This paper shows how the modular structure of composite systems
can guide the state-space exploration in explicit-state linear-time model-checking
and make it more efficient in practice. Given a composite system where every
module has input and output variables — and variables of different modules can
be connected — a total ordering according to which variables are generated is
determined, through heuristics based on graph-theoretical analysis of the modular
structure. The technique is shown to outperform standard exploration techniques
(that do not take the modular structure information into account) by several orders
of magnitude in experiments with Spin models of MTL formulas.

1 Introduction

Systems are complex; as apparent as it sounds, complexity is the primal hurdle when
it comes to describing and understanding them. Abstraction and modularization are
widely-known powerful conceptual tools to tame this complexity. In extreme summary,
a large system is described as the composition of simpler modules. Every module en-
capsulates a portion of the system; its internal behavior is abstracted away at its interface
— the set of input/output variables that are connected to other modules [10]. Modular-
ization is widely practiced in all of computer science and software engineering.

A class of systems that are especially difficult to analyze is given by concurrent sys-
tems. In such systems the various parts are often highly coupled, as a result of their
ongoing complex synchronization mechanisms. Nonetheless, over the last decades the
state of the art in specifying and verifying concurrent systems has made very conspic-
uous advancements. A significant part of them is centered around the formalisms of
temporal logics [2] and finite-state automata [13], and the algorithmic verification tech-
nique of model-checking [1].

Although model-checking techniques target primarily closed monolithic systems,
modularization has been considered for model-checking in the research trends that go
by the names module checking [8] and modular model-checking [7]. Both extend model-
checking techniques to open systems, i.e., systems with an explicit interaction with an
external environment (that provides input) [5]. Then, in module checking properties of
the system are checked with respect to all possible environments, whereas in modu-
lar model-checking properties are checked with respect to environments satisfying a
temporal-logic specification (according to the assume/guarantee paradigm).

In this paper we take a different approach, which exploits the information that comes
from the modular decomposition of systems to ameliorate model-checking performances
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in practice. We consider explicit-state model-checking techniques for linear-time tem-
poral logic: the system and the property are represented as finite-state automata, and
checking that all runs of the system satisfy the property amounts to performing an ex-
ploration of the state-space of the overall automaton — resulting from the composition
of the various component automata — in order to detect cycles (which correspond to runs
where the property is violated) [1]. This exploration is the more efficient the earlier we
are able to detect “unproductive” paths that lead to no cycle. If the various components
of a system are decomposed into communicating modules, the information about how
these modules are connected is useful to guide such state-space exploration paths.

Our approach aims at being practical, in that we do not claim any asymptotic worst-
case gain over traditional algorithms. In fact, our technique is essentially based on
heuristics that may or may not be effective according to the particular structure of the
system at hand, and that cannot escape the inherent worst-case complexity of automated
verification. However, we demonstrate the significant practical impact of our technique
by means of a verification examples where traditional “vanilla” techniques are com-
pared against our optimized modular approach. Our technique clearly outperforms the
unoptimized algorithm by several orders of magnitude. This abridged version of the
paper omits several items, including a discussion of related work, a few details about
the experiments of Section 4, and a more practical description of some implementation
aspects. These missing points can be found in [3].

2 Definitions

Variables and Computations. A variable v is characterized by the finite domain Dv

over which it ranges; if no domain is specified the variable is assumed to be Boolean
with Dv = {0, 1}. For a set of variables V , V ′ denotes the set of primed variables
{v′ | v ∈ V} with the same domains as the original variables.

The behavior of systems — and components thereof — is described by ω-sequences
of variable values called computations. Formally, given a finite set of variables V , a
computation over V is an ω-sequence w = w0, w1, w2, . . . ∈ Dω, where D is the
Cartesian product

∏
v∈V Dv of variable domains. Also, given a subset of variables Q ⊆

V , the projection of w overQ is a computation x = x0, x1, x2, . . . overQ obtained from
w by dropping the components of variables in V \ Q, that is xj = wj |Q for all j ≥ 0.
Projection is extended to sets of computations as obvious: for a set of computations C,
its projection over Q is C|Q = {w|Q | w ∈ C}. The set of all computations over V is
denoted by C(V).

Modules and Composition. A system is described by the composition of modules;M
denotes the set of all modules.

The simplest component is the primitive module, defined as M = 〈I,O,H,W 〉,
where:

– I , O, and H are sets of input, output, and hidden (i.e., internal) variables, respec-
tively. We assume that these sets are pairwise disjoint. P = I ∪O ∪H denotes all
variables of the module.
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Fig. 1. Flat composite open module M0 (left) and its connection graph (right)

– W is a set of computations over P , describing the module’s semantics. In practice,
the behavior of modules is specified as the language L(F ) of some finite-state
automaton or temporal logic formula F .

Usually, one assumes that the value of input variables is provided “from the
outside”, hence it should not be constrained in W ; this can be stated formally by
requiring that W |I � {w|I | w ∈W} equals C(I). However, this assumption is not
strictly required for the discussion of this paper, as it will be clear in the following.

We introduce a graphical representation for (the interface of) primitive modules: a
module is represented by a box with inward arrows corresponding to variables in I ,
outward errors corresponding to variables in O, and internal lines corresponding to
variables in H .

Example 1. Primitive module M3, pictured in Figure 1, has input variables I = {v4,
v8}, output variables O = {v5, v6, v7}, and hidden variables H = {v11, v12}.

Primitive modules can be composed to build composite modules. A composite module
is defined as N = 〈I,O, n, η, C,X〉, where:

– n > 0 is the number if internal modules;
– η is a finite set of module identifiers such that |η| = n;
– C : η → M provides the module definition C(i) of every internal module i ∈ η.

We denote the components of every module C(i) with superscripts as in Ii, Oi, Hi,
etc. Also, we define the sets of all input, output, and hidden variables of internal
modules as: I �

⋃
i∈η I

i, O �
⋃

i∈η O
i, andH �

⋃
i∈η H

i respectively. Accord-

ingly, V � I ∪ O ∪H.
– X ⊆ O × I is a connection relation, which defines how the inputs and outputs of

the various modules are connected: (o, i) ∈ X iff output o is connected to input i.
– I,O have the same meaning as in primitive modules. Hence, input and output vari-

ables of composite modules are defined as those of internal modules that are not
connected, namely: I = {i ∈ I | ∀o ∈ O : (o, i) �∈ X} and O = {o ∈ O | ∀i ∈
I : (o, i) �∈ X}.

We extend the graphical notation to composite modules as obvious, by representing
connections through connected arrows.

A module is closed iff I = ∅, otherwise it is open. A module is flat iff it is primitive
or it is composite and all its internal modules are primitive; if a module is not flat it is
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nesting. A module is non-hierarchical iff it is flat or it is nesting and all its components
are flat; otherwise it is hierarchical.

For a composite module N = 〈I,O, n, η, C,X〉, its connection graph is a directed
graph G = 〈V,E〉 with V = η and (h, k) ∈ E iff there is a connection (o, i) ∈ X with
o ∈ Oh and i ∈ Ik. We stretch the terminology by “lifting” attributes of the connection
graph to the modules themselves. So, for instance, if the connection graph is acyclic
(resp. connected), the modular system is called acyclic (resp. connected), etc.

Example 2. Figure 1 (left) pictures flat composite open module M0 with I = {v1, v8},
O = {v3, v5}, n = 3, η = {M1,M2,M3}. For graphical simplicity, variables that are
connected are given a unique name. To the right, we have the connection graph of M0.

Let us define the semantics of modules. For a primitive module M , the semantics is
trivially given by W = L(M), which is called the language of M .

Let us now consider a composite module N . The language L(N) accepted by such
a module is a set of computations over V defined as follows. A computation w is in
L(N) iff: (1) w is compatible with every component module, i.e., w|P i ∈ L(M i) for
all component modules i ∈ η; and (2) connections between modules are respected, i.e.,
for all connections (o, i) ∈ X we have w|{o} = w|{i}.

Notice that, for linear-time models, semantics of open modules is trivial, and implicit
in our previous definitions. To make this apparent, we introduce the notion of maximal
environment, which is a module generating all possible inputs to another (open) module.
Given a set V of variables, a maximal environment E(V ) is a primitive module such
that I = H = ∅, O = V , and the language L(E(V )) is exactly C(V ). So, for an
open module K (either primitive or composite), the language L(K) can be defined
as the language of the composite closed module K ′ obtained by composing K with
a maximal environment. Hence, K ′ = 〈∅, OK , 2, {e,m}, 〈E(IK ′),K〉, X〉 with X =
{(x′, x) | x ∈ IK}. However, for any computation x ∈ C(V ∪ IK ′) it is x ∈ L(K ′) iff
x|IK ′ ∈ L(E(IK ′)) = C(IK ′) and x|V ∈ L(K) and x|IK ′ = x|IK . Hence, L(K ′)|V =
L(K).

3 Efficient Design of Generators

Practical Module Checking. Let us consider what happens in practice when performing
explicit-state model-checking of a modular system using an automata-based approach.
In this setting, the model-checking algorithm is basically an on-the-fly state-space search
for cycles (or absence thereof). Correspondingly, the modular structure of the system
can be exploited to greatly improve the performances of the check in practice. Essen-
tially, structure can guide the state-space exploration in order to minimize the degree of
unnecessary nondeterminism.1

We take advantage of these remarks in the following way. For every module M in
a system we introduce a generator component G(M). The generator is responsible for

1 In a sense, a model with shared-variable concurrency is transformed into one with message-
passing concurrency, according to the functional dependencies among variables of different
modules.
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setting the value of all variables in M . It operates as an interface between M and the
other modules in the system. Namely, it can receive input variables from the other mod-
ules, once they have generated them, and it is responsible for setting the value of hidden
and output variables, according to the behavior of M . We also define a total ordering
over all generators in a system. This induces a generation order for environment vari-
ables in the whole system. As we have shown in the previous example, this can influence
the efficiency of the system state-space exploration.

Notice that generators are not additional modules of the system, but they are com-
ponents that pertain to a lower level of abstraction, namely the system description in
the model-checking environment. These components realize in practice the coordina-
tion among modules in an efficient way. This framing of the problem has been espe-
cially inspired by our experience with the Spin model-checker and its implementation
of ProMeLa processes [6], in particular the one based on a translation from TRIO metric
temporal logic formulas [12,9,11]. However, we present the results in a more general
setting which is exploitable also with other linear-time explicit-state model-checkers
(see [3] for more implementation details).

In the remainder, we show a strategy to design an ordered set of generator for any
given modular system. The strategy aims at designing and ordering the generators so
as to cut down the state-space exploration as soon as possible. It is based on a set of
heuristics and built upon the analysis of the modular structure of the system.

Clearly, we can assume that the the connection graph of our system is connected. In
fact, if it is not connected, we can partition it into a collection of connected components,
such that every connected component can be treated in isolation as discussed below.

Acyclic Flat Modules. Let M = 〈I,O, n, η, C,X〉 be an acyclic flat connected module;
without loss of generality we assume it is a composite module (otherwise, just consider
a composite module with a single primitive component). For every i ∈ η the generator
G(i) of module C(i) is responsible for generating the following variables: Hi ∪ Oi ∪
(Ii ∩ I). That is, G(i) generates all hidden and output variables, and all input variables
that are not connected to any output variables of other modules.

Cyclic Flat Modules. Let M = 〈I,O, n, η, C,X〉 be a cyclic flat connected module;
note that such a module is also necessarily composite. In order to design generators for
such a module we recall the notion of feedback arc set. Let G = 〈V,E〉 be the cyclic
connection graph of M . A feedback arc set (FAS) is a set of edges F ⊆ V such that the
graph 〈V,E \ F 〉 is acyclic. In practice, we can consider M as an acyclic module with
(self-)connections going from some of its output variables to some of its input variables;
these connections correspond to edges F of the FAS. It is clear that a FAS always exists
for a cyclic module; in general, however, the FAS is not unique.

Through the definition of FAS we can re-use the simple strategy for designing gen-
erators that we applied in the acyclic case. Namely, let IF ⊆ I \ I and OF ⊆ O \ O
be the sets of input and output variables, respectively, corresponding to the edges in
F . Then, for every i ∈ η generator G(i) of module C(i) is responsible for generating
the following variables: Hi ∪ (Oi ∩ (O \ OF )) ∪ (Ii ∩ I) ∪ (Ii ∩ IF ). That is, G(i)
generates all hidden variables, all output variables that are not in the cycle (because
these are the same as the input variables they are connected to, and these input variables
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are generated by the generator of the corresponding modules), all input variables that
are not connected to any output variables of other modules (hence coming from the
environment), and all input variables that belong to the FAS.

Example 3. Consider the connection graph of cyclic module M0 in Figure 1. If we
choose F1 = {(M3,M1)} as FAS, the generators would generate the following vari-
ables: G(M1) = {v9, v2, v1, v6, v7}, G(M2) = {v10, v3, v4}, G(M3) = {v11, v12, v5,
v8}. If we choose instead F2 = {(M1,M2)} as FAS, we would generate: G(M1) =
{v9, v1}, G(M2) = {v10, v3, v4, v2}, G(M3) = {v11, v12, v5, v6, v7, v8}.

In order for the generation to be correct all variables in the system must be generated,
in some order, in such a way that all constraints imposed by the modules’ semantics
are satisfied. Any FAS guarantees a correct generation in this sense, because it simply
induces a particular generation order on the set of all variables, such that no variable
is ignored. While correctness is guaranteed regardless of which FAS is chosen, it is
advisable to choose the arcs corresponding to the minimum number of variables, so that
the minimum number of variables is generated first. Hence, we introduce the following
minimization problem to select a suitable FAS.

Consider the weighted connection graph, a weighted enhancement of the connection
graph defined as follows. Let G = 〈V,E〉 be the (unweighted) connection graph. The
corresponding weighted version GW = 〈V,E,W〉 introduces a weight function W :
E → N>0 that associates with every edge e = (M1,M2) ∈ E a weight W(e) =∏

v∈M1�M2
|Dv| where M1 ( M2 is the set of output variables of M1 connected to

input variables of M2 (i.e., M1 (M2 = {o ∈ OM1 | ∃i ∈ IM2 : (o, i) ∈ X}).
Finding the optimal generator design amounts to solving the (weighted) minimum

FAS problem over the weighted connection graph. This problem is well-known to be
NP-complete [4], while it is solvable in polynomial time for planar graphs. However,
the connection graph of a modular system is not likely to be significantly large, hence it
is acceptable to use exact algorithms that have a worst-case exponential running time.
Indeed, one can solve the problem with a brute-force algorithm which finds the min-
imum FAS MINFAS(G) for a weighted connection graph G = 〈V,E,W〉 in time
O(2|E||V |2).

Example 4. For module M0 in Figure 1, the weighted minimum FAS problem suggests
to choose (M1,M2) (or (M2,M3)) over (M3,M1) as FAS. Notice that, if arc (m,n) is
chosen, one must start generating from module n, where the broken cycle is entered.
In fact, in the previous example we have shown that choosing (M3,M1) involves gen-
erating variables for modules 5, then 3, then 4, whereas choosing (M1,M2) involves
generating variables for modules 2, then 4, then 6.

Non-Hierarchical Nesting Modules. In increasing order of complexity, let us now con-
sider nesting modules that are non-hierarchical. The connection graph of such modules
must be first analyzed at the top level, in order to cluster its component flat modules
into two classes. To this end, we have to identify the strongly connected components of
the connection graph.

A strongly connected component (SCC) of a directed graph is a maximal sub-graph
such that for every pair v1, v2 of its vertices there is a directed path from v1 to v2. The
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Fig. 2. Non-hierarchical nesting module M0 and its 4 SCCs (dotted boxes)

collection of all strongly connected components of a directed graph form a partition
such that the “higher-level” graph where each SCC is represented by a single node
is acyclic. The collection of SCCs of a graph G = 〈V,E〉 can be computed in time
Θ(|V |+ |E|).

For a non-hierarchical nesting module M = 〈I,O, n, η, C,X〉 let G = 〈V,E〉 be its
connection graph, and let S = {S1, S2, . . . , S|S|} be a partition of V such that 〈Si, Ei〉
with Ei = {(v1, v2) ∈ E | v1, v2 ∈ Si} is a SCC for all 1 ≤ i ≤ |S|. Then, every SCC
〈Si, Ei〉 belongs to exactly one of the following two categories: (1) |Si| = 1, that is the
SCC Si represents a single flat module; and (2) |Si| > 1, that is the SCC Si represents
a collection of (more than one) flat modules. We build the generators for every module
in a SCC according to the following strategy:

1. If |Si| = 1 we just apply the techniques for flat modules that we presented in the
previous sections;

2. If |Si| > 1 we “flatten” the collection of corresponding modules as follows.
Let Si ⊆ η with |Si| > 1, such that every j ∈ Si is a flat module. Let C =
〈IC , OC , nC , ηC , CC , XC〉 be a new composite module defined as follows. For
every composite module C(j) = 〈Ij , Oj , nj , Cj , Xj〉 with j ∈ Si, we introduce
in C the set of primitive modules {Cj(k) | k ∈ ηj} by adding: (1) nj = |ηj |
to nC , (2) ηj to ηC , (3) the mappings {k �→ Cj(k) | k ∈ ηj} to CC , and (4)
the tuples {(o, i) ∈ Xj} to XC . Also, for every primitive C(j) with j ∈ Si we
simply increase nj by one, add the new identifier j to ηC and the new mapping
{j �→ C(j)} to CC . IC and OC are defined accordingly as

⋃
j∈Si

Ij and
⋃

j∈Si
Oj

respectively. Finally, C replaces all modules {C(j) | j ∈ Si} in the system.
In all, informally, we have removed the “wrapper” of every composite module

in Si by merging its components directly into the top level of C. Now, C is a flat
(composite) module, which can be analyzed through the techniques presented in
the previous sections.

Example 5. Consider non-hierarchical nesting module M0 in Figure 2 (left). Its com-
ponents M2,M3,M4 form a SCC with more than one node, which can be flattened into
module C in M′

0 (right). The SCC of M′
0 are the singletons {M1}, {C}, {M5}, hence

they can be analyzed according to the discussions in the previous section.

Hierarchical Modules. For a hierarchical module M we can apply recursively the
strategies discussed in the previous sections. First, we build the connection graph for
M , which represents the structure of the system at the top level. By analyzing this graph
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as shown before, we identify, for every node in the graph, a set of variables that must be
generated for its lower-level components. Then, we recur on every node in the graph:
we consider the corresponding modules in isolation from the rest, we build the corre-
sponding (lower-level) connection graph, and further partition the variables according
to the discussed techniques. In the end, we will have introduced a generator for every
component at the lowest level.

Choosing the Total Ordering of Generators. Let us now discuss how to choose a total
ordering over the generators. Consider a directed acyclic weighted connection graph
G = 〈V,E,W〉 such that for every module M ∈ V we have defined a generator G(M).
This setting is without loss of generality, because if the graph is cyclic we choose a FAS
F as described above in this section and consider the “cut” acyclic graph 〈V,E \F,W〉.
Also, for composite modulesM we may have one generator for every component of M ;
however, we first consider M as an aggregate component (so G(M) represents a collec-
tion of generators that we consider atomic) and then recursively apply the enumeration
technique to M itself.

The acyclic graph G defines the partial order E ⊆ V ×V on its nodes V . Through a
standard technique, we select a total order E ⊆ % ⊆ V × V by repeatedly selecting a
pair M1,M2 ∈ V of nodes such that M1 and M2 are not comparable in E and adding
either (M1,M2) or (M2,M1) to %. Pairs are selected according to the generation do-
main dimension (GDD) heuristic. For a module Mi we define:2

gdd(Mi) =

{∏
π∈Γ+W(π) +

∏
π∈Ii∩I |Dπ| if Mi is a source node∏

π∈Γ+W(π)−
∏

π∈Γ−W(π) otherwise

with Γ+ = {(Mi, v) ∈ E} and Γ− = {(v,Mi) ∈ E} the sets of outgoing and
ingoing edges, respectively, and Ii∩I the set of input variables ofMi that are generated.
Then, we let M1 % M2 iff gdd(M1) < gdd(M2). This corresponds to putting first
the generators corresponding to modules that “filter out” the most variables. Hence it
hopefully cuts down as soon as possible several possible future states to be considered
in the state-space exploration.

4 Examples and Experiments

Our experiments are based on a reservoir system example whose precise behavior is
formalized in [3]. The reservoir system is made of four primitive modules: two reser-
voirs, a controller, and a pipe connecting the two reservoirs (see Figure 3, where the top
“wrapper” module is not pictured for simplicity). We verify that, under suitable choices
for the parameters, the following two properties hold for the modular system: (1) the
level of both reservoirs is always in the range [1..M − 1]; and (2) if level1 reaches
a minimum threshold minthr = 5 it grows back to the value M/2 in no more than
M/2−minthr time units.

In order to evaluate the effectiveness of our approach we verified the reservoir sys-
tem using both the flat “vanilla” approach — as presented in [9] — and the modular

2 A source node is a node without ingoing edges.
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level1 : [0..max] level2 : [0..max]

fill1 drain2
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Fig. 3. The Reservoir System

approach of this paper. The model for the flat verification can be automatically gen-
erated using the TRIO2ProMeLa translator.3 In a nutshell, TRIO2ProMeLa translates
MTL (and TRIO) formulas in ProMeLa models, the input language of the Spin model-
checker [6]. The generated ProMeLa models simulate alternating automata, which are
finite-state automata over infinite computations, potentially exponentially more concise
variants of Büchi automata [13]. The ProMeLa simulation accepts (or rejects) computa-
tions by analyzing the validity of the current value of variables at each step, also taking
in account the current history of the computation. In the flat approach, the modular
structure of the system is ignored, hence computations are generated by a unique global
generator that proceeds exhaustively step by step, until acceptance or rejection can be
decided. In the modular setting, we translated MTL formulas similarly as in the flat case
but we associated different ProMeLa processes to each system module.

Table 1. Experiments with the Reservoir System

F/M M PROP. GEN. ORDER MSTATES MTRANS. MEM. TIME

F 12 (1) 34.00 36.92 ∞ 165
F 12 (2) 34.00 36.92 ∞ 166
M 12 (1) PCR1R2 11.34 12.03 632 75
M 12 (2) PCR1R2 11.34 12.03 632 75
M 12 (1) PR1R2C 1.81 1.95 94 11
M 12 (2) PR1R2C 1.81 1.95 94 10
M 12 (1) R1R2CP 0.53 0.58 28 3
M 12 (2) R1R2CP 0.53 0.58 28 3
M 12 (1) CPR1R2 16.04 17.11 896 105
M 12 (2) CPR1R2 16.04 17.11 896 103
M 20 (1) PR1R2C 6.43 6.92 357 42
M 25 (1) PR1R2C 13.31 14.33 773 90
M 31 (1) PR1R2C 29.42 31.68 1667 193
M 32 (1) PR1R2C 29.43 31.70 ∞ 194

Table 1 shows several test results obtained by running modified TRIO2ProMeLa
models of the reservoir system described above with the Spin model-checker. For each
test the table reports: whether a flat or modular model is used (F/M), the value of
parameter M in the specification, the checked property, the total ordering of mod-
ules according to which variables are generated, the number of explored states and

3 TRIO2ProMeLa is available at http://home.dei.polimi.it/spoleti/TRIO2ProMeLa.htm, together
with the code used in the experiments.
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transitions (in millions), the used memory (in MBytes, ∞ means “out of memory”),
and the verification time (in seconds). The tests have been performed on a PC equipped
with an AMD Athlon64 X2 Dual-Core Processor 4000+ and 2 GBytes of RAM. The
experiments show clearly that the reservoir system cannot be analyzed with the flat
approach, and taking into account the modular structure is needed.

In addition to the modular technique, in the experimentation we also tinkered with
some ad hoc optimizations, that are reported in [3], together with several details about
the example.

5 Conclusion

We showed how the information on the modular structure of composite systems can be
availed to increase the efficiency of the state-space exploration in explicit-state linear-
time model-checking. We introduced heuristic techniques that extract a total order-
ing among modules of a complex system according to its topology. Experiments have
shown clearly very relevant performance enhancements when the state-space explo-
ration is done according to the technique. In particular, the verification of the example
system has been made possible with limited resources.

Acknowledgements. We thank the anonymous reviewers for their useful remarks.
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Abstract. This paper presents a methodology to perform passive test-
ing based on invariants for systems that present temporal restrictions.
Invariants represent the most relevant expected properties of the imple-
mentation under test. Intuitively, an invariant expresses the fact that
each time the implementation under test performs a given sequence of
actions, then it must exhibit a behavior in a lapse of time reflected in the
invariant. In particular, the algorithm presented in this paper are fully
implemented.

1 Introduction

Testing consists in checking the conformance of an implementation by performing
experiments on it. In order to perform this task, several techniques, algorithms,
and semantic frameworks have been introduced in the literature. The application
of formal testing techniques to check the correctness of a system requires to
identify the critical aspects of the system, that is, those aspects that will make
the difference between correct and incorrect behavior. In this line, the time
consumed by each operation should be considered critical in a real-time system.

Most testing approaches consist in the generation of a set of tests that are
applied to the implementation in order to check its correctness with respect to
a specification. Thus, testing is based on the ability of a tester to stimulate the
implementation under test (IUT) and check the correction of the answers pro-
vided by the implementation. However, in some situations this activity becomes
difficult and even impossible to perform. For example, this is the case if the
tester is not provided with a direct interface to interact with the IUT or the
implementation is built from components that are running in their environment
and cannot be shutdown or interrupted for a long period of time. The activity of
testing could be specially difficult if the tester must check temporal restrictions.
In these situations, the instruments of measurement could be not so precise as
required or the results could be distorted due to mistakes during the observa-
tion. As a result, undiscovered faults may result in failures at runtime, where
the system may perform untested traces. In these situations, there is a particu-
lar interest in using other types of testing techniques such as passive testing. In
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passive testing the tester does not need to interact with the IUT. On the con-
trary, execution traces are observed and analyzed without interfering with the
behavior of the IUT. Passive testing has very large domains of application. For
instance, it can be used as a monitoring technique to detect and report errors
(this is the use that we consider in this paper). Another area of application is
in network management to detect configuration problems, fault identification,
or resource provisioning. It can be also used to study the feasibility of new fea-
tures as classes of services, network security, and congestion control. Usually,
execution traces of the implementation are compared with the specification to
detect faults in the implementation. In most of these works the specification has
the form of a finite state machine (FSM) and the studies consist in verifying that
the executed trace is accepted by the FSM specification. A drawback of these
first approaches is the low performance of the proposed algorithms (in terms of
complexity in the worst case) if non-deterministic specifications are considered.
A new approach was proposed in [1]. There, a set of properties called invariants
were extracted from the specification and checked on the traces observed from
the implementation to test their correctness. One of the drawbacks of this work
was the limitation on the grammar used to express invariants. A new formalism
that overcomes this restriction for expressing invariants was presented in [2]. It
allows to specify wildcard characters in invariants and to include a set of out-
puts as termination of the invariant. In addition, a new kind of invariants was
introduced: Obligation invariants.

In this paper we extend [2] in order to deal with timed restrictions. We will use
a simple extension of the classical concept of Finite State Machines that allows a
specifier to explicitly denote temporal requirements for each action of a system.
Intuitively, transitions in timed finite state machines indicate that if the machine
is in a state s and receives and input i then after t time units it will produce
and output o and it will change its state to s′. Next, we informally introduce the
formalism to express temporal conditions in the invariants: Timed invariants.
We distinguish between timed restrictions related to each action in the trace
represented in the invariant and the one corresponding to the whole trace. For
example we could represent properties as “Each time that a user applies “a”
and observes “y” the amount of time the system spends to perform the action is
between 3 and 5 time units, if after performing some operations the user applies
“b” then he observes “z” in 2 time units and the performance of all these actions
does not exceed 10 time units”.

In our approach, we perform two types of property verification: One on the
specification and another one on the traces generated by the implementation.
Due to the fact that we assume that the timed invariants can be supplied by
the tester, the first step must be to check that the invariant is in fact correct
with respect to the specification. An extension of the algorithm proposed in [2]
to check this correctness is provided, taking into account the timed conditions
that appear in the timed invariants. The next step is to check whether the trace
produced by the IUT respects timed invariants. In this case, we propose an
algorithm that is an adaption of the classical algorithms for string matching.
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It works, in the worst case, in time O(m · n) where m and n are the length of
the trace and the invariant, respectively. Let us remark that we cannot achieve
complexities as good as the ones in classical algorithms because we have to find
all the occurrences of the pattern. Due to the last of space we could not include
this part of our research in this paper. A longer version of this paper, including
all the previously mentioned algorithms, can be found at [3].

The rest of the paper is organized as follows. In Section 2 we present the
notation we apply along the paper. We also introduce our timed extension of the
classical finite state machine model. In Section 3 notions of timed invariant and
passive testing are presented, as well as the algorithms to check the correctness
of invariants with respect to the specification. Finally, Section 4 presents the
conclusions of the paper and some lines for future work.

2 Preliminaries

First we introduce notation regarding the definition of time intervals. In this
paper we consider that these intervals are contained in IR+, that is, they contain
real values greater than or equal to zero.

Definition 1. We say that â = [a1, a2] is a time interval if a1 ∈ IR+, a2 ∈
IR+ ∪ {∞}, and a1 ≤ a2. We assume that for all t ∈ IR+ we have t < ∞ and
t +∞ = ∞. We consider that IIR+ denotes the set of time intervals. Let â =
[a1, a2] and b̂ = [b1, b2] be time intervals. We consider the following functions:

– ⊕ : IIR+ × IR+ → IIR+ defined as ⊕(â, t) = [a1 + t, a2 + t].
– � : IIR+ × IIR+ → IIR+ defined as �(â, b̂) = [min(a1, b1),max(a2, b2)] where

min and max denote the minimum and maximum value respectively.
– + : IIR+ × IIR+ → IIR+ defined as [a1, a2] + [b1, b2] = [a1 + b1, a2 + b2]. ��

Time intervals will be used to express time constraints associated with the per-
formance of actions. The idea is that if we associate a time interval [t1, t2] ∈ IIR+

with a task we indicate that this task should take at least t1 time units and at
most t2 time units to be performed. Intervals like [0, t], [t,∞], or [0,∞] denote
the absence of a temporal lower/upper bound and the absence of any bound,
respectively. Let us note that in the case of [t,∞] we are abusing the notation
since this interval represents, in fact, the interval [t,∞).

Next we introduce our timed extension of the classical finite state machine
model. The main difference with respect to usual FSMs consists in the addition
of time to indicate the lapse between offering an input and receiving an output.

Definition 2. A Timed Finite State Machine, in the following TFSM, is a tuple
M = (S, I,O, T r, sin) where S is a finite set of states, I is the set of input
actions, O is the set of output actions, Tr is the set of transitions, and sin is the
initial state.

A transition belonging to Tr is a tuple (s, s′, i, o, t) where s, s′ ∈ S are the
initial and final states of the transition, i ∈ I and o ∈ O are the input and output
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s1 s2

s4 s3

a/x/3

b/y/5

a/x/1

b/z/4

c/y/6

b/y/2

b/x/4

a/z/1

c/y/7

a/z/4

Fig. 1. Example of TFSM

actions, respectively, and t ∈ IR+ denotes the time that the transition needs to
be completed. We say that M is input-enabled if for all state s ∈ S and input
i ∈ I, there exist s′ ∈ S, o ∈ O, and t ∈ IR+ such that (s, s′, i, o, t) ∈ Tr. ��

Intuitively, a transition (s, s′, i, o, t) indicates that if the machine is in state s
and receives the input i then, after t time units, the machine emits the output o

and moves to s′. We denote this transition by s
i/o,t−−−−→ s′. In Figure 1 we give a

graphical representation of a TFSM where s1 is the initial state. In this paper we
assume that all the machines are input enabled. Next, we introduce the notion
of trace of a TFSM. As usual, a trace is a sequence of input/output pairs. In
addition, we have to record the time that the trace needs to be performed.

Definition 3. Let M = (S, I,O, T r, sin) be a TFSM. We say that a tuple such
as (s, s′, (i1/o1, . . . , ir/or), t) is a timed trace, or simply trace, of M if there
exist (s, s1, i1, o1, t1) . . . (sr−1, s

′, ir, or, tr) ∈ Tr such that t =
∑

ti. We will
sometimes denote a trace (s, s′, (i1/o1, . . . , ir/or), t) by (s, σ, s′), where σ =
((i1/o1, . . . , ir/or), t). ��

3 Timed Invariants

In this section we introduce the notion of timed invariant. These invariants allow
us to express temporal properties that must be fulfilled by the implementation. For
example, we can express that the time the system takes to perform a transition
always belongs to a specific interval. Thus, timed invariants are used to express
the temporal restrictions of a trace. In our formalism we assume that timed in-
variants are given by the tester and are derived from the original requirements.
Alternatively, we could consider that invariants are extracted from the specifica-
tion. In fact, we can do this easily by adapting the method given in [1] to our timed
framework. However, this leads to a huge set of invariants, where not all of them
are relevant. In our approach we need to check that the timed invariants proposed
by the tester are correctwith respect to the specification. Once we have a collection
of correct timed invariants, we will have to check if these invariants are satisfied
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by the traces produced by the implementation. In the extended version of the pa-
per [3] we provide an algorithm to check the correctness of the log, recorded from
the implementation, with respect to an invariant.

In order to express traces in a concise way, we will use the wildcard characters ?
and  . The wildcard ? represents any value in the sets I and O, while  represents
a sequence of input/output pairs.

Definition 4. Let M = (S, I,O, T r, sin) be a TFSM. We say that the sequence
I is a (simple) timed invariant for M if the following two conditions hold:

1. I is defined according to the following EBNF:

I ::= a/z/p̂, I |  /p̂, I ′ | i �→ O/p̂ 	 t̂
I ′ ::= i/z/p̂, I | i �→ O/p̂ 	 t̂

In this expression we consider p̂, t̂ ∈ IIR+ , i ∈ I, a ∈ I ∪ {?}, z ∈ O ∪ {?},
and O ⊆ O.

2. I is correct with respect to M .
3. We denote the set of simple timed invariants by SimpleTInv. ��

Let us remark that time conditions established in invariants are given by inter-
vals. However, machines in our formalism present time information expressed
as fix amounts of time. This fact is due to consider that it can be admissible
that the execution of a task sometimes lasts more than expected: If most of the
times the task is performed on time, a small number of delays can be tolerated.
Moreover, another reason for the tester to allow imprecisions is that the artifacts
measuring time while testing a system might not be as precise as desirable. In
this case, an apparent wrong behavior due to bad timing can be in fact correct
since it may happen that the watches are not working properly. A longer ex-
planation on the use of time intervals to deal with imprecisions can be found
in [4].

Intuitively, the previous EBNF expresses that an invariant is either a sequence
of symbols where each component, but the last one, is either an expression a/z/p̂,
with a being an input action or the wildcard character ?, z being an output
action or the wildcard character ?, and p̂ being a timed interval, or an expression
 /p̂. There are two restrictions to this rule. First, an invariant cannot contain
two consecutive expressions  /p̂1 and  /p̂2. In the case that such a situation
was needed to represent a property, the tester could simulate it by means of
the expression ∗, (p̂1 + p̂2). The second restriction is that an invariant cannot
present a component of the form  /p̂ followed by an expression beginning with
the wildcard character ?, that is, the input of the next component must be a real
input action i ∈ I. In fact,  represents any sequence of inputs/outputs pairs
such that the input is not equal to i.

The last component, corresponding to the expression i �→ O/p̂ 	 t̂ is an input
action followed by a set of output actions and two timed restrictions, denoted by
means of two intervals p̂ and t̂. The first one is associated to the last expression
of the sequence. The last one is related to the sum of time values associated to all
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input/output pairs performed before. For example, the meaning of an invariant
as i/o/p̂,  /p̂�, i

′ �→ O/p̂′ 	 t̂ is that if we observe the transition i/o in a time
belonging to the interval p̂, then the first occurrence of the input symbol i′ after
a lapse of time belonging to the interval p̂�, must be followed by an output
belonging to the set O. The interval t̂ makes reference to the total time that the
system must spend to perform the whole trace. This notion of invariant allows
us to express several properties of the system under study. Next we introduce
some examples in order to present how invariants work.

Example 1. The simplest invariant we can define with our framework for ex-
pressing a property of the system follows the scheme i �→ {o}/[2, 3] 	 [2, 3]. The
idea is that each occurrence of the input i is followed by the output o and this
transition is performed between 2 and 3 time units.

We can specify a more complex property by taking into account that we
are interested in observing the output o after the input i only if the input i0
was previously observed. In addition, we include intervals corresponding to the
amount of time the system takes for each of the transitions and the total time
it spends in the whole trace. We could express this property by means of the
invariant i0/?/[1, 4],  /[2, 5], i �→ {o}/[2, 3] 	 [2, 12]. An observed trace will be
correct with respect to this invariant if each time that we find a (sub)sequence
starting with the input i0 and any output symbol which has been performed in
an amount of time belonging to the interval [1, 4], then if there is an occurrence of
the input symbol i before 5 time units pass then the input i must be paired with
the output symbol o and the lapse between i and o must be in the interval [2, 3]. In
addition, the whole sequence must take a time belonging to the interval [2, 12].
Let us remind that the notion of correctness that we just discussed concerns
traces observed from the IUT and invariants. A different correctness concept,
that we analyze in this paper, relates invariants and specifications.

We can refine the previous invariant if we consider only the cases where the
pair i0/o0 was observed. The invariant for denoting this property is the following
i0/o0/[1, 4],  /[0, 5], i �→ {o}/[2, 3] 	 [2, 12]. Let us remark that we could not
deduce that we have found an error if the pair i0/o0 appears in the observed
trace but the input i is not detected afterwards in the corresponding trace. In
such a situation we cannot conclude that the implementation fails. Similarly,
if we find the pair i0/o1 we cannot conclude anything since the premise of the
invariant, that is, the whole sequence but the last pair was not found. Again,
the situation is different when analyzing the correctness of an invariant with
respect to a specification. For instance, if the specification cannot perform the
trace induced by the invariant then we will consider that the invariant is not
correct with respect to the specification.

Finally, an invariant such as i �→ {o1, o2}/[1, 4] 	 [1, 4] indicates that after
input i we observe either the output o1 or o2 in a time belonging to [1,4]. ��
Since we assume that invariants can be defined by a tester, we must ensure that
they are correct with respect to the specification. Next we explain the most
relevant aspects of our algorithm to decide whether an invariant is correct with
respect to a specification. We separate the algorithm into three different parts.
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in : M = (S, I,O, T r, sin).
I = {a1/p̂1, . . . , an−1/ ˆpn−1, in �→ O/p̂n 	 p̂} where for all 1 ≤ k ≤ n− 1 we

have that p̂k ∈ IIR+ , and either ak = ik/ok, with ik ∈ I ∪ {?} and ok ∈ O ∪ {?},
or ak = �; in ∈ I, O ⊆ O, and p̂n, p̂ ∈ IIR+ .
out: Bool .
b :: array of IIR+ [|S|] ;
// an array containing time intervals, having size |S|,
//and being ⊥ the initial value of all positions
I ′ = I ; S′ ← S; j ← 1; S′′ ← ∅;
while (j < n) do

b′ :: array of IIR+ [|S|];
if (head(I ′) = (�/t̂)) then

while (S′ �= ∅) do
Choose sα ∈ S′;
S′ ← S′ \ {sα};
Saux ← afterInt(sα, t̂, ij+1);
while (Saux �= ∅) do

Choose (sp, t) ∈ Saux;
Saux ← Saux \ {(sp, t)};
S′′ ← S′′ ∪ {sp};
if (b′p =⊥) then

b′p ← ⊕(bα, t);
else

b′p ← �(⊕(bα, t), bp
′);

else
while (S′ �= ∅) do

Choose sa ∈ S′;
S′ ← S′ \ {sa};
Tr′ ← afterCond(sa, ij , oj , p̂j);
while (Tr′ �= ∅) do

Choose (sa, sb, ij , oj , t) ∈ Tr′;
Tr′ ← Tr′ − {(sa, sb, ij , oj , t)};
if (b′b =⊥) then

b′b ← ⊕(ba, t);
else

b′b ← �(⊕(ba, t), bb
′);

S′′ ← S′′ ∪ {sb};

I ′ = tail(I ′);
b← b′; S′ ← S′′; S′′ ← ∅; j ← j + 1;

Fig. 2. Correctness of an invariant with respect to a specification (1/3)

The first part of the algorithm (see Figure 2) is responsible for treating the
preface of the invariant, that is, to determine the states that can be reached
in the specification after the first n − 1 input/output/time tuples have been
traversed. The second phase (see Figure 3, left) is used to check that the last
pair of the invariant is correct for the specification. In other words, to detect
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that for all the states computed in the previous step, if the last input of the
invariant can be performed then the obtained output belongs to the set of outputs
appearing in this last expression of the invariant. In addition we also check that
these transitions are performed in the time interval appearing in the invariant.
Finally, the third part of the algorithm (see Figure 3, right) verifies the last part
of the invariant: The sequence is always performed in a time belonging to the
corresponding interval. Next we introduce additional notation.

Definition 5. Let M = (S, I,O, T r, sin) be a TFSM, s ∈ S, a ∈ I ∪ {?}, z ∈
O ∪ {?}, and t̂ ∈ IIR+ . We define the set afterCond(s, a, z, t̂) as the set of
transitions belonging to Tr having as initial state s, as input a, as output z, and
such that its time belongs to the interval t̂.

afterCond(s, i, o, t̂) = {(s, s′, i, o, t)|∃s′ ∈ S, t ∈ IR+(s, s′, i, o, t) ∈ Tr ∧ t ∈ t̂}

afterCond(s, ?, o, t̂) =
�

i∈I afterCond(s, i, o, t̂)

afterCond(s, i, ?, t̂) =
�

o∈O afterCond(s, i, o, t̂)

afterCond(s, ?, ?, t̂) =
�

i∈I,o∈O afterCond(s, i, o, t̂)

We define the function afterInt(s, t̂, i) as the function that computes the set of
pairs (s′, t) of states s′ ∈ S that can be reached from state s after t time units,
belonging t to the interval t̂, and such that the input i is not performed. We will
use an auxiliary function so that afterIntAux(s, t̂, i) = afterIntAux(s, t̂, i, 0),
being this function defined as follows:

afterIntAux(s, t̂, i, tot) = {(s, tot)|tot ∈ t̂}⋃
⋃

(s, s′′, i′, o, t) ∈ Tr
t̂4 (tot + t)

i �= i′

afterIntAux(s′′, t̂, i, tot + t)

where 4 : IIR+ × IR+ → {true, false} is defined as [t1, t2]4 t = (t ≤ t2). ��

In the first phase of the algorithm we have to initially obtain the set of states that
can perform the first input/output of the invariant. We compute the states that
can be reached from that initial set after performing that transition and such
that the time value associated with the transition falls within the range marked
by the invariant. We iterate this process until we reach the last expression of the
invariant. We consider two auxiliary functions: head() returns the first element
of the invariant and tail() removes this first element from the invariant. Let us
remark that we distinguish between input/output pairs, possibly including the
wildcard ?, and occurrences of  . In the latter case we will use the previously
defined afterInt() function to compute the corresponding reached states.
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error ← false;
if (S′ = ∅) then

error ← true;
end
b′ :: array of IIR+ [|S|];
while (S′ �= ∅) do

Choose sa ∈ S′;
S′ ← S′ \ {sa};
Tr′ ← afterCond(sa, in, ?, [0,∞]);
while (Tr′ �= ∅) do

Choose (sa, sb, in, o, t) ∈ Tr′;
Tr′ ← Tr′ \ {(sa, sb, in, o, t)};
if ((o ∈ O) ∧ (t ∈ p̂n)) then

if (b′b =⊥) then
b′b ← ⊕(ba, t);

else
b′b ← �(⊕(ba, t), b′b);

S′′ ← S′′ ∪ {sb};
else

error ← true

if (S′′ = ∅) then
error ← true;

end
while (S′′ �= ∅) do

Choose si ∈ S′′;
S′′ ← S′′ \ {si};
if (¬(b′

i ⊆ p̂)) then
error ← true;

return (¬error );

Fig. 3. Correctness of an invariant with respect to a specification (2/3) and (3/3)

The input of the second phase of the algorithm (see Figure 3, left) is the set
of states that can be reached after the preface of the invariant is performed. In
addition, we also record the time that it took to reach each of these states. If this
set is empty then the invariant is not correct. The idea is that we should not use an
invariant such that its sequence of input/output/interval cannot be performed in
the specification. If this set is not empty, we will check that for all reached states
if they can perform the last input of the invariant then the obtained output must
belong to the set of outputs appearing in this last expression of the invariant. In
addition, time values have to belong to the time interval of the invariant.

The third step of the algorithm (Figure 3, right) will be devoted to check that
the time behavior of the whole invariant is correct with respect to the specifica-
tion. In order to do this, in the previous stages we recorded all the time values
associated with the performance of input/output pairs. We use the functions ⊕
and � to operate with the recorded time values and construct an interval. Thus,
in the position k of the array b we store an interval that has as bounds the min-
imal/ maximal times that are needed to reach the state k after performing the
whole invariant. If a state is not reachable after the sequence associated with the
invariant then b[k] = ⊥. Next, we concentrate only in states of the specification
that can be reached, that is, b[k] �= ⊥ and check that all those intervals are
contained in the interval appearing at the very last position of the invariant.

Lemma 1. Let M = (S, I,O, T r, sin) be a TFSM. The worst case of the al-
gorithm given in Figures 2 and 3 checks the correctness of the invariant I =
i1/o1/p̂1, . . . , in−1/on−1/p̂n−1, in �→ O/p̂n 	 t̂ with respect to M :
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– in time O(n · |Tr|) and space O(|Tr|) if I does not present occurrences of  .
– in time O(k · |Tr|2+(n−k)· |Tr|) and space O(|Tr|) if I presents occurrences

of  , being k the number of  ’s in I. ��

4 Conclusions and Future Work

In this paper we have introduced a new methodology for passive testing systems
that present timed constraints over the duration of the actions. We introduced
an extension of the classical Finite State Machine model in order to deal with
this kind of systems. This methodology extends the definition of an invariant,
allowing to express properties regarding temporal conditions that the IUT must
fulfill. We presented an algorithm which allows to establish the correctness of the
proposed invariants with respect to a given specification. In a longer version of
this paper [3] we also deal with the correctness of an observed trace with respect
to an invariant.

Regarding future work, we plan to extend the family of invariants. In fact,
we have already developed a timed version of obligation invariants [2]. The sec-
ond line of future work consists in performing real experiments. The experience
gained with the WAP protocol during the preparation of [2] makes this a good
candidate to study time properties in our passive testing framework.
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