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Abstract. When two players wish to share a security token (e.g., for
the purpose of authentication and accounting), they call a trusted third
party. This idea is the essence of Kerberos protocols, which are widely
deployed in a large scale of computer networks. Browser-based Kerberos
protocols are the derivates with the exception that the Kerberos client
application is a commodity Web browser. Whereas the native Kerberos
protocol has been repeatedly peer-reviewed without finding flaws, the
history of browser-based Kerberos protocols is tarnished with negative
results due to the fact that subtleties of browsers have been disregarded.
We propose a browser-based Kerberos protocol based on client certifi-
cates and prove its security in the extended formal model for browser-
based mutual authentication introduced at ACM ASIACCS’08.

1 Introduction

Motivation. An immediate goal browser-based protocols strive for to meet
is user authentication and access control to services or private information. A
widely adopted approach is to use TLS in server authenticated mode and ex-
ecute a protocol on top, where the user enters a password in a Web form. To
this end, the user has to memorize a plethora of passwords. The problem with
passwords is that the user frequently forgets about them. Otherwise, it would
be unnecessary to include a ”‘Forgot your password”’ link in a Web applica-
tion). Furthermore, the user tends to recurrently choose the same low-entropy
password, thus making offline dictionary attacks feasible. In order to alleviate
the problem, 3-party authentication protocols have been introduced where a
trusted third party is asked to issue a token that is valid for a fixed time period
and permits access to some service. A pioneer and quite successful protocol for
closed networks that emulates the task is the widely adapted Kerberos proto-
col [1]. Here, the Kerberos server issues an token in form of a ticket that the
client may redeem to authenticate to a server. Related protocols that adapt the
idea are Microsoft’s Passport and its successor Cardspace, the Security Assertion
Markup Language (SAML), the Liberty Alliance project, the Shibboleth project
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for university identity federation, or WS-Federation, whereby SAML is an open
protocol standard and basis for Liberty and Shibboleth.

The migration of the Kerberos idea to open networks, in particular, the In-
ternet is peppered with problems (see Section 2). In particular, the problem
with the browser-based realization is that some assumptions have been made
which are unfounded today. Most notably, the user is assumed to determine the
authenticity of a Web server on the basis of server certificate and the Domain
Name System (DNS) is assumed to be an authentic host name resolution pro-
tocol. The first clashes with usability studies, showing that the average Internet
user neither understands server certificates nor perceives the security indicators
in commodity browsers [8,23]. The latter is a crucial factor for the enforcement
of the Same Origin Policy (SOP). This security policy, which is universally sup-
ported by browsers, loosely states that Web objects are accessible by other Web
objects under the condition that they are from the same domain. However, many
attacks against the domain name resolution exist, ranging from Javascript code
that alters a router’s configuration [22] to large scale DNS attacks [15]. A related
attack vector arises from cross Site scripting (XSS) attacks [16] where the ad-
versary injects some malicious code into the response of the application server.
Since the code is in the same security context, the SOP does not apply. Con-
sequently, malicious code can break free and invoke arbitrary browser scripting
functionalities.

Our Contribution. We solve the above problems by presenting a Browser-
based Kerberos-like protocol, in the following denoted by BBKerberos, that is
close to the native Kerberos scheme. Our BBKerberos protocol.

– combines authentication with key agreement: The user authenticates to the
Kerberos server through a TLS client certificate in addition to (optional)
passwords. The Kerberos server issues an authentication ticket for the ap-
plication server which is concealed within an HTTP cookie. The cookie is
transferred in another TLS session whereby the browser authenticates to the
server using the same client certificate. Thus in both TLS connections key
agreement is linked to authentication through the client certificate.

– binds the Kerberos ticket to a specific browser. The ticket is linked to the
client certificate. Thus, attacks that enable adversaries to extract the cookie
carrying the Kerberos ticket (e.g. XSS, Pharming) work. However, the at-
tacker is now unable to use the cookie. The reason is that the application
server learns from the underlying TLS protocol session that the client is a
legitimate owner of the client certificate (note that in the TLS protocol the
client authenticates to the Kerberos server by signing a protocol transcript
and proving ownership of the corresponding private key). Here, we make use
of the fact that any feasible adversary does not have access to the long-term
secrets for the TLS layer. It has only access to secrets on application layer.
Conversely, the application server may extract the public key from the TLS
layer and verify the cookie.

– provides secure single sign-on. The sign-on ticket may also be reused in
a federation of application servers. Application servers need to establish a
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TLS-protected channel where the client conveys a certificate matching the
cookie binding and where the client demonstrates that it knows the corre-
sponding secret key.

Organization. The remaining sections are structured as follows. We review
related work in Section 2. In Section 3, we present the formal security model
for browser-based authentication protocols, and use it to analyze BBKerberos in
Section 4. Finally, we conclude in Section 5.

2 Related Work

The native Kerberos protocol has been studied without finding severe flaws [6,3].
By contrast, few browser-based Kerberos protocols have been subject to rigorous
security analysis. The first attempt to disburden from a client application and
employ a browser’s capabilities has led to Microsoft’s Passport protocol. Unfor-
tunately, it turned out that the protocol had some vulnerabilities [17]. Korman
and Rubin show that the adversary is able to steal the ticket granting ticket
cookie by mounting a DNS attack. In addition to the Passport analysis due
to [17], Groß [12] analyzes SAML, an alternative identity management pro-
tocol, and shows that the protocol is vulnerable to adaptive attacks where the
adversary intercepts the authentication token contained in the URL. Groß makes
use of the fact that browsers add the URL in a referrer tag into a HTTP re-
sponse when they are redirected. Hence, a man-in-the-middle adversary signaling
the browser to redirect the request to a rogue server retrieves the authentica-
tion token from the referrer tag. The previously described flaw in the SAML
protocol has led to a revised version of SAML. Groß and Pfitzmann analyzed
this version, again finding the need for improvements [13]. Similar flaws have
been found in the analysis of the Liberty single sign on protocol [20] due to
Pfitzmann and Waidner. The authors point out some weaknesses in presence
of man-in-the-middle attacks. Gajek, Schwenk and Xuan show that Microsoft’s
identity metasystem CardSpace is vulnerable to dynamic pharming attacks and
enables the adversary to steal a security token [11].

3 Modeling BBKerberos with Client Certificates

In this section we refine the original security model for mutual authentication
from [10] to capture adversarial queries where the adversary access the DOM.
Similar to [10] we consider an active probabilistic polynomial time (PPT) ad-
versary who interacts with involved parties through queries and controls all the
communication.

3.1 Protocol Participants and Communication Model

Server, Browser, Authentication Server. We consider the server S, the
browser C, and the authentication server (e.g. Kerberos server) K as participants
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of a BBKerberos protocol Π . We make the weak security assumptions on C to
represent a practical setting, namely that web objects stored in C (see below) can
be accessed by the adversary via the DOM (by mounting DNS or XSS attacks).
However, the adversary does not have the privilege to access the private key of
the Web browser. Since we do not consider attacks on either S or K, we model
both servers as being secure.

The browser C is modeled as a PPT machine that exchanges protocol messages
with S and K through physical communication links.We further assume that the
authentication server K is able to identify the browser C. This is achieved through
client certificates. In high security applications trust in the client certificate must
once be established, using some out-of-band mechanisms.

Remark 1. We cannot expect an average Internet user acting ”behind” C to
properly identify K. In order to relax the assumption, the construction based
on human perceivable authenticator, proposed in [10], may be employed in our
protocol.

Modeling Browser DOM Access. The browser plays the role of a messenger
and transports the messages from the authentication server K to the application
server S (and vice versa), however, is unaware of the semantic meaning: It takes
a message m ∈ M from the message space M ∈ {0, 1}λ1(κ) (the space of all web
objects) that K wishes to send to S and stores the information according to the
browser’s state Ψ ∈ {0, 1}λ2(κ) to U as a Web object. (Here and in the following,
λi : N → N, i ∈ [1, 2] is a polynomial and κ is the security parameter). State
Ψ denotes the browser’s configuration for processing the retrieved message that
may be altered by querying the browser’s DOM1 model.

Loosely speaking, the DOM model describes the browser’s tree-based view
of a Web page and defines access to document nodes, browser and connection
information through the use of Web scripting languages (e.g., Javascript). One
important security policy is the same origin policy. This policy which is uni-
versally supported in browsers, ensures that there is no communication between
pages that have different domains. This includes access to the browser’s chrome,
cache, cookies, and history. Access to any ephemeral and long-term secrets which
are stored in separated containers, or the ability to open, create or delete a file
from the operating system, are subject to different security policies which nor-
mally involve user interaction.

Remark 2. There are different methods to send messages from one server to
another through the browser:

– The most popular mechanism are HTTP cookies. Cookies are short text
messages which contain (name, value) pairs. Cookies can be persistent, i.e.
they can be stored in the browser for a certain time, and they can be set for
a target address that consists of a domain and a path within that domain.
Cookies can directly be sent to the destination server by combining the

1 Document Object Model, see [24] for details.
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Set-Cookie directive in the HTTP header with a redirect status code from
the sending web server. However, for security reasons this mechanism is
restricted to servers from the same domain. Thus in the general case we
must use other mechanisms to transport data from K to S across Domain
boundaries (e.g. HTTP POST and GET of hidden form fields).

– Dynamically generated URLs are hyperlinks within a HTML document,
where part of the URL is used to encode the data to be transmitted. They
are not persistent and will be deleted when the HTML document is closed.
Since hyperlinks are treated differently according to their position within the
HTML document, they can be used to send data directly (e.g. when used
within an image tag), or only after some user action.

– Hidden HTML forms are normal HTML forms that a hidden from the user,
i.e. the form will not be displayed. This only makes sense if the form is
already filled with data, and this data can be transported to another server
triggered by events. Data can be sent as POST data, or as a GET query
string, and may later be persistently stored by the receiving server in form
of a HTTP cookie.

All the above methods support the immediate transmission of data between two
servers through the browser as an intermediary. They further have in common
that the data is stored for some time within the DOM of the browser, and is thus
vulnerable to DNS and XSS attacks. In the following, we will use HTTP cookies
to transport data from the authentication server K to the application server S
and vice versa. Our proof applies to other transport mechanisms as well.

Protocol Sessions and Instances. In order to model participation of C, S
and K in distinct executions of the same BBKerberos protocol Π we consider
instances [C, sidC], [S, sidS ] and [K, sidK] where sidC , sidS , sidK ∈ N are respec-
tive session identifiers. If sidC = sidS or sidC = sidK then we assume that both
instances belong to the same session, and say the instances are partnered. Note
that in our protocol sidC , sidS and sidK will be given by the concatenation of
random nonces exchanged between C and S (resp. C and K) in the beginning of
the TLS handshake protocol. For simplicity, we sometimes omit the indication
of the instance and write C, S and K instead. Whether the actual party or its
instance is denoted is usually visible from the context.

Execution States. Each instance [C, sidC], [K, sidK] and [S, sidS ] may be ei-
ther used or unused. The instance is considered as unused if it has never been
initialized. Each unused instance can be initialized with the corresponding long-
lived key. The instance is initialized upon being created. After the initialization
the instance is marked as used, and turns into the stand-by state where it waits
for an invocation to execute the protocol. Upon receiving such invocation the
instance turns into a processing state where it proceeds according to the proto-
col specification. The instance remains in the processing state until it collects
enough information to decide whether the execution was successful or not, and
to terminate then. If the execution is successful then we say that the instance
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accepts before it terminates. In case that the execution was not successful (due
to failures) instances terminate without accepting, i.e., they abort.

3.2 Security Model

In the following we specify attacks and security goals for BBKerberos protocols
from the perspective of fixed identities C, S and K.

Assumptions. The adversary A controls all communication between the pro-
tocol parties. This implies:

- The adversary controls the domain name resolution. Upon sending forged
domain resolution responses, the adversary foils browsers’ same origin policy.
Then, the adversary has access to the DOM model. That is, the adversary
has access to the browser’s chrome, cache, cookies, and history; specifically,
we assume that the cookie containing the Kerberos ticket is known to the
adversary. However, the adversary is prevented from opening, creating or
deleting a file from the operating system; thus he can not read the browser’s
private key from disk or from memory.

- The adversary issues public keys which C accepts. There is no trusted third
party in the sense of a trusted CA. Hence, a certified public key in a X.509
server certificate is treated as a public key that can be identified by a unique
identifier (i.e., hash value of the public key).

- The adversary is unable to corrupt C. Note that in this model we do not
deal with malware attacks against the browser and server, therefore, do not
consider the case where A reveals the ephemeral and longterm secrets stored
inside C.

- The adversary is unable to corrupt S or K. Note also that in this model
we do not deal with malware attacks against the servers. This means that
the adversary is excluded from revealing the ephemeral and longterm secrets
stored inside S or K.

Adversarial Queries. The adversary A can participate in the actual protocol
execution via the following queries:

- Execute(C, P ) (P ∈ {K, S}): This query models passive attacks where the
adversary A eavesdrops the execution of the new protocol session between
C and P . A is given the corresponding transcript.

- Invoke(C, P ) (P ∈ {K, S}): C starts the protocol execution with the new
instance of P and A obtains the first protocol message returned by B (which
is usually generated on some input received from C, e.g., the entered URL).

- Send(P, m): This query models active attacks where A sends a message to
some instance of P ∈ {C, K, S}. The adversary A receives the response which
P would generate after having processed the message m according to the
protocol specification (note that the response may be an empty string if m
is unexpected).
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- RevealDOM(C): This query (which is refined in comparison to [10]) models
attacks which reveal information stored with the browser’s DOM, i.e. Ψ .
Technically, the adversary queries for the authentication token (as stored in
a cookie). Note that RevealDOM(C) enables the adversary to read the DOM.
However, the adversary is prevented from writing the DOM, i.e. subverting
the protocol execution by injecting malicious script code.

Protocol Execution in the Presence of A. By asking the Execute(C, P )
(P ∈ {K, S}) query A obtains the transcript of the complete protocol execution
between new instances of C and P without being able to perform any further
actions during this execution. We assume that at most qex such queries can be
asked during the attack. On the other hand, if A wishes to actively participate
in the execution of Π then it can ask a special invocation query Invoke(C, P )
implying that a new instance of C starts the protocol execution with the new
instance of P using the associated instance of browser C. A then obtains the
first protocol message returned by C. Active participation of A is defined further
through at most qs Send queries. We also assume that A can ask at most qin

Invoke and qr RevealDOM queries. Thus, the total number of queries which can be
asked by the PPT adversary during the duration of the attack is upper-bounded
by q := qex + qin + qs + qr.

Correctness and Authentication. The following definition specifies the cor-
rectness requirement for BBKerberos protocols.

Definition 1 (Correctness). A browser-based Kerberos protocol Π is correct
if each Execute(C, P ) query where P ∈ {K, S} results in two instances, [C, sidC ]
and [P, sidP ] which are partnered (sidC = sidP ) and accept prior to termination.

In the following we define the main security goal of browser-based Kerberos
protocols, namely the requirement of authentication of C to S which is implied
by an authentic communication between C and K. The adversary A wins when
he succeeds in authenticating to either K or S as a legitimate C.

Definition 2 (Authentication of C). Let Π be a correct browser-based Ker-
beros protocol and Gamebb−auth

Π (A, κ) the interaction between the instances of C,
K and S with a PPT adversary A who is allowed to query Execute, Invoke, Send,
and RevealDOM. We say that A wins if at some point during the execution for
sid′C �=sidC:

1. An instance [C, sidC] accepts but there is no partnered instance [S, sidS ], or
an instance [S, sidS ] accepts but there is no partnered instance [C, sidC], or

2. an instance [C, sid′C ] accepts but there is no partnered instance [K, sidK], or
an instance [K, sidK] accepts but there is no partnered instance [C, sid′C].

The maximum probability of this event (over all adversaries running within
the security parameter κ, and all public keys pkC registered with K) is denoted
SuccΠ(A, κ) = maxA | Pr[A wins in Gamebb−auth

Π (A, κ)|. We say that a browser-
based Kerberos protocol Π provides authentication if this probability is a
negligible function of κ.
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The first requirement ensures that C authenticates to the matching server S; the
second requirement ensures a matching conversation with K. (It is important to
note that the second requirement is an prerequisite in our protocol to achieve
the first. Details follow.)

4 The BBKerberos Protocol

4.1 Building Blocks

TLS Protocol. A main pillar of BBKerberos is the mutually authenticated key
transport/key agreement [2]. The security of the TLS protocol has already been
analyzed with respect to certain cryptographic primitives or in an abstract term-
algebra (see [9]). However, since we combine two TLS sessions with higher-layer
protocols, the security analyses cited above are insufficient. We thus use a model
similar to [5] to model the security requirements and the proof. We describe the
protocol using the most common, RSA based variant. All other ciphersuites are
of course possible as well.

Cryptographic Primitives. In order to be able to use the term “negligible” in
a mathematically correct way, here and in the following let pi : N → N, i ∈ [1, 5]
be polynomials, and let κ ∈ N be a security parameter. However, note that in
practice many parameters in TLS are fixed in their length. As usual, we formalize
the notion of an algorithm trying to solve a certain computational problem in
order to compromise the security goals of our protocol and its building blocks by
a probabilistic Turing machine running in time polynomial in κ (PPT adversary).

In our BBKerberos protocol we make use of the (well-known) cryptographic
primitives used by the cryptographic suites of the TLS protocol, namely:

– A pseudo-random function PRF : {0, 1}p3(κ) × {0, 1}∗ → {0, 1}∗. Note that
TLS defines PRF with data expansion s.t. it can be used to obtain outputs
of a variable length which becomes useful for the key derivation phase. By
Advprf

PRF (κ) we denote the maximum advantage over all PPT adversaries (run-
ning within security parameter κ) in distinguishing the outputs of PRF from
those of a random function better than by a random guess.

– A symmetric encryption schemes which provides indistinguishability un-
der chosen plaintext attacks (IND-CPA). The symmetric encryption oper-
ation is denoted Enc and the corresponding decryption operation Dec. By
Advind−cpa

(Enc,Dec)(κ) we denote the maximum advantage over all PPT adversaries
(running within security parameter κ) in breaking the IND-CPA property
of (Enc, Dec) better than by a random guess;

– An IND-CPA secure asymmetric encryption scheme whose encryption op-
eration is denoted E and the corresponding decryption operation D. By
Advind−cpa

(E,D) (κ) we denote the maximum advantage over all PPT adversaries
(running within security parameter κ) in breaking the IND-CPA property
of (E , D) better than by a random guess.
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– A collision-resistant hash function Hash : {0, 1}∗ → {0, 1}p4(κ). We denote
by Succcoll

Hash(κ) the maximum success probability over all PPT adversaries
(running within security parameter κ) in finding a collision, i.e., a pair
(m, m′) ∈ {0, 1}∗ × {0, 1}∗ s.t. Hash(m) = Hash(m′).

– A digital signature scheme which provides existential unforgeability under
chosen message attacks (EUF-CMA). The signing operation is denoted Sig

and the corresponding verification operation V er. By Succeuf−cma
(Sig,V er)(κ) we

denote the maximum success probability over all PPT adversaries (running
within security parameter κ) given access to the signing oracle in finding a
forgery;

– The well-known message authentication code function HMAC which is be-
lieved to satisfy weak unforgeability under chosen message attacks (WUF-
CMA) [4]. By Succwuf−cma

HMAC (κ) we denote the maximum success probability
over all PPT adversaries (running within security parameter κ) given access
to the tagging/verification oracle in finding a forgery.

4.2 Protocol Description

Initialization Phase. Before BBKerberos can be executed, a registration phase
is necessary. During this phase, the following keys are exchanged/registered:

– The long-lived key LLC stored in the credential store of the browser C con-
sists of the private/public signature key pair (skC , certC); we assume that
the corresponding public key pkC is part of the certificate. This public key
pkC is registered with the Kerberos server K after some initial out-of-band
authentication.

– The long-lived key LLS consists of the private/public encryption key pair
(skS , certS), and a symmetric encryption key kKS . The key kKS has to be
exchanged out-of-band between K and S.

– Finally, the long-lived key LLK consists of the private/public encryption key
pair (skK, certK).

Execution Phase. In the following we briefly describe the execution of our
BBKerberos protocol specified in Figures 1 and 2. We first give an overview of
the protocol and then describe the TLS handshake,which is performed twice
with different random values in detail.

1. Initiate the Protocol. The browser C initiates the protocol by requesting
an URL from the server S which requires authentication. The server S tells
the browser C to connect to the Kerberos server K using TLS through a
redirect status code.

2. First TLS Handshake. A first TLS handshake with client authentication is
performed between C and K. Both parties exchange certificates, so they know
each other’s public key. The identificator for the negotiated cryptographic
key material is sidC=rC |rK. Symmetric keys are derived from the master
secret km, which in turn is derived from the premaster secret kp. This value
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kp has been chosen randomly by C, and has been sent to K encrypted with
pkK. The browser C authenticates himself by signing a hash of previous
messages. The Kerberos server K authenticates by computing a HMAC over
all previous messages, using a key derived from km.

3. Retrieving the Authentication Cookie. After the TLS handshake, K
knows that he is talking to C through a confidential and authentic channel.
K now issues the ticket tCS , which is authenticated and encrypted by K using
the shared symmetric key kKC whereby the ticket is cryptographically linked
to the client’s public key pkC . The result is encoded as a text string c, sent to
C using HTTP GET or POST, and stored persistently in the browser. The
browser C sends c whenever it thinks it is connected to S.

4. Second TLS Handshake. A second TLS handshake with client authentica-
tion is performed between C and S. Again both parties exchange certificates,
so they know each other’s public key. The new TLS session uses different ses-
sion identifier sid′C=r′C |rK, and secret keys k′p and k′m. Again the browser C
authenticates by signing a hash of previous messages. The Kerberos server
K authenticates by computing a HMAC over all previous messages, using a
key derived from k′m.

5. Authenticating via Kerberos Cookie. After a successful TLS hand-
shake, browser C sends the value c as GET or POST data (and later as a
HTTP cookie) to S. We only require the TLS tunnel to authenticate data
sent from the browser C; confidentiality is not needed. The server S validates
the value c using the key kKS , and if this validation is successful, it com-
pares the public key contained in c to the public key used to authenticate
the browser C. If this comparison is positive, he accepts the Kerberos ticket
contained in c and grants C access to the requested resource.

TLS sessions in detail. The TLS protocol with client authentication in order
to establish a secure transport channel is the main component in our security
analysis. Let l1, l2,l3 and l4 denote the publicly known labels specified in TLS
for the instantiation of PRF. The TLS protocol proceeds as follows:

1. ClientHello and ServerHello. The browser C chooses his own nonce rC of
length p5(κ) at random and forwards it to S (ClientHello). In response S
chooses his own random nonce rS and a TLS session identifier sid of length
p5(κ) and appends it to his certificate certS (ServerHello). We stress that
sid chosen by S is not the session identifier sidS used in our security model
but a value specified in TLS.

2. Negotiate Key Material. C chooses a pre-master secret kp of length p5(κ)
at random and sends it to S encrypted with the received public key pkS
(ClientKeyExchange). The pre-master secret kp is used to derive the mas-
ter secret km through a pseudo-random function PRF on input (l1, rC |rS) with
kp as the secret seed. This key derivation is performed based on the stan-
dard TLS pseudo-random function PRF (see [2, Sect. 5]). The master secret
is then used as secret for the instantiation of the pseudo-random function
PRF on input (l2, rC |rS) to derive the session keys (k1, k2) used to encrypt
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Kerberos Server K
{LLK := (kKS , skK, certK)}

Browser C
{LLC := (skC , certC)}

A := rC ∈r {0, 1}p5(κ)

←−
A

−−−−−−−−−−−−−
rK ∈r {0, 1}p5(κ)

B := rK|certK

−
B

−−−−−−−−−−−−−→
sidC := rC|rK
kp ∈r {0, 1}p3(κ)

km := PRFkp (l1, sidC)
C := EpkK (kp)|certC
σC := SigskC (Hash(A|B|C))
(k1|k2) := PRFkm (l2, sidC)
h1 := Hash(A|B|C|σC)
FC := PRFkm (l3, h1)
D := Enck1(FC |HMACk2 (FC))

←−
C|σC|D

−−−−−−−−−−−−−
kp := DskK (C′)
km := PRFkp (l1, sidC)
(k1|k2) := PRFkm (l2, sidC)
h1 := Hash(A|B|C|σC)
(FC |ηC) := Deck1 (D)
if FC �= PRFkm (l3, h1)
or ηC �= HMACk2 (FC)
or NOT V er(certC, A|B|C, σC)
then ABORT else
h2 := Hash(A|B|C|σC|FC)
FK := PRFkm (l4, h2)
E := Enck1 (FK|HMACk2 (FK))

−
E

−−−−−−−−−−−−−→
(FK|ηK) := Deck1 (E)
(w|μK) := Deck1 (F )
h2 := Hash(A|B|C|σC|FC)
if FK �= PRFkm (l4, h2)
or ηK �= HMACk2 (FK)
or μK �= HMACk2 (w)
then ABORT

t := HMACkKS (pkC |ticket)
c := EnckKS (pkC|ticket|t)
m :=
Redirect(S)|SET −COOKIE(c,S)
F := Enck1 (m|HMACk2 (m))

− F−−−−−−−−−−−−−→
store(c,S)

Fig. 1. BBKerberos Protocol with TLS Client Authentication, Part 1. Boxed messages
denote the standard TLS handshake.

and authenticate session messages exchanged between C and S. [Remark:
TLS specifies the generation of six session keys: A symmetric encryption
key, a MAC key, and an IV for block ciphers only (both for client-to-server
and for server-to-client communication). For simplicity, we denote k1 as the
encryption key and k2 as the authentication key and assume that they are
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Browser C
{LLC := (skC , certC)}

Server S
{LLS := (kKS , skS , certS)}

A′ := r′
C ∈r {0, 1}p5(κ)

−
A′

−−−−−−−−−−−−−→
rS ∈r {0, 1}p5(κ)

B′ := rS |certS

←−
B′

−−−−−−−−−−−−−
sid′

C := r′
C|rS

k′
p ∈r {0, 1}p3(κ)

k′
m := PRFk′

p
(l1, sid′

C)

C′ := EpkS (k′
p)|certC

σ′
C := SigskC (Hash(A′|B′|C′))

(k′
1|k′

2) := PRFk′
m

(l2, sid′
C)

h′
1 := Hash(A′|B′|C′|σ′

C)
F ′

C := PRFk′
m

(l3, h′
1)

D′ := Enck′
1
(F ′

C|HMACk′
2
(F ′

C))

−
C′|σ′

C |D′

−−−−−−−−−−−−−→
k′

p := DskS (C′)
k′

m := PRFk′
p
(l1, sid′

C)

(k′
1|k′

2) := PRFk′
m

(l2, sid′
C)

h′
1 := Hash(A′|B′|C′|σ′

C)
(F ′

C|η′
C) := Deck′

1
(D)

if F ′
C �= PRFk′

m
(l3, h1)

or η′
C �= HMACk′

2
(F ′

C)

or NOT V er(certC , A′|B′|C′, σ′
C)

then ABORT else
h′
2 := Hash(A′|B′|C′|σ′

C|F ′
C)

F ′
S := PRFk′

m
(l4, h′

2)
E′ := Enck′

1
(F ′

S |HMACk′
2
(F ′

S))

←−
E′

−−−−−−−−−−−−−
(F ′

S |η′
S) := Deck′

1
(E′)

h′
2 := Hash(A′|B′|C′|σ′

C|F ′
C)

if F ′
S �= PRFk′

m
(l4, h′

2)
or η′

S �= HMACk′
2
(F ′

S)
then ABORT
m′ := COOKIE(c)
F ′ := Enck′

1
(m′|HMACk′

2
(m′))

− F’−−−−−−−−−−−−−→
m′ = Deck′

1
(F ′)

c′ = V ALUE(m′)
(pk′

C |ticket′|t′) := DECkKS (c′)
if not pk′

C = pkC
and t′ := HMACkKS (pkC |ticket)
then ABORT

Fig. 2. BBKerberos Protocol with TLS Client Authentication, Part 2. Boxed messages
denote the standard TLS handshake.
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the same for both directions.] The browser C also proves possession of the
private key skC by signing the hash hσC over all previously negotiated mes-
sages, i.e., signature σC (ClientVerify).

3. Session Key Confirmation. C confirms the session key generation, i.e., FC
is the first message that is authenticated via HMAC computed with k2 and en-
crypted via the symmetric encryption scheme computed with k1. FC is com-
puted as output of PRF on input (l3, h1) with km as the secret seed; whereby h1
denotes the hash value computed over all messages previously processed by C
(Finished). S verifies σC , using the public key pkC . Further, S generates km

and derives the session keys (k1, k2) in a similar way. S uses the own session
keys (k1, k2) to ensure that it communicates with C through the verification
of FC . If the verification fails, S aborts the protocol. Otherwise, it confirms
the negotiated session parameters, using PRF on input (l4, h2) with km as se-
cret seed; whereby h2 denotes the hash value over the received messages. The
output of PRF is first authenticated via HMAC computed with k2 and then en-
crypted via the symmetric encryption scheme computed with k1.

4.3 Security Analysis

In the following we analyze security of the BBKerberos protocol. We recall that
the goal of the protocol is to provide secure authentication of C to S, brokered
by K.

Theorem 1. Let π be a BBKerberos protocol as specified in Section 4. If PRF is
pseudo random, (Enc, Dec) are IND-CPA secure, (E , D) are IND-CCA2 secure,
Hash is collision-resistant, (Sig, V er) is EUF-CMA secure, and HMAC is WUF-
CMA secure, then π provides authentication in the sense of Definition 2.

Proof (Sketch). Due to space limitation, the full proof appears in the extended
version of the paper. The main idea is to simulate an execution of the protocol
based on the event RevealDOM(C) event. Then, the security can be reduced to
the MAC-and-encrypt construction which conceals the authentication ticket and
protects the ticket from forgeries, i.e. the adversary wins if it issues a valid ticket.
However, if the RevealDOM(C) event does not occur, then the security can be
reduced to the TLS handshake, which ensures that the owner of the ticket which
is linked to some public key is in fact a legitimate owner by proving possession
of the corresponding private key.

Remark 3. Although not stated in Theorem 1 explicitly, the security proof of
BBKerberos based on the current TLS standard is valid in the Random Oracle
Model (ROM) [5]. The reason is that the specification of TLS prescribes the use
of the RSA encryption according to PKCS#1 (a.k.a. RSA-OAEP) which in turn
is known to provide IND-CPA security in ROM (see [21] for the proof). How-
ever, Theorem 1 assumes (E , D) to be IND-CPA secure (independent of ROM).
Thus, using an encryption scheme whose security holds under standard assump-
tions would also disburden the current security of BBKerberos from the strong
assumptions of ROM. Similarly, the proof holds when the signature scheme is
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instantiated with RSA signature according to PKCS#1 (a.k.a. RSA-PSS) which
in turn is known to provide EUF-CMA security in ROM (see [14] for the proof).

Remark 4. The HMAC construction used in the standard specification of the
TLS protocol, formally, does not play any role for the security of the protocol.
This is not surprisingly since every output of HMAC is encrypted using session
key k1 before being sent over the network. Since k1|k2 is treated as a single
output of PRF the separation into k1 and k2 can be seen as redundant from the
theoretical point of view. Note also that Krawczyk has proved the MAC-then-
encrypt construction as secure in [18]. Though he mentions some problems in
the general construction he shows that they do not apply to TLS.

5 Conclusion

We have introduced and analyzed a browser-based Kerberos protocol that made
weak assumptions on the browser’s security: The browser guarantees that private
keys and sessions keys are confidential. However, our model allows the adversary
to take control of the browser’s DOM model, thus taking into account known
browser attacks, such as XSS, Pharming. We did not consider malware attacks
on the operating system the browser is running on. Since malware attacks may
subvert the security of any cryptographic protocol (including classical Kerberos)
without additional assumptions (e.g. the existence of a Trusted Platform Mod-
ule), this exception seems justified.

We proved security in a game-based style by refining the model, proposed
in [10], towards the consideration of DOM attacks. An interesting challenge for
future work is to design Browser-based Kerberos which are provably secure under
the stronger notion of Universal Composition[7,19]. Thus, the protocols could be
composed with higher-layer protocols, but the analysis of the composition would
be considerably simplified.
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