
Termination-Insensitive Noninterference
Leaks More Than Just a Bit

Aslan Askarov1, Sebastian Hunt2, Andrei Sabelfeld1, and David Sands1

1 Chalmers University of Technology, Sweden
2 City University, London

Abstract. Current tools for analysing information flow in programs build upon
ideas going back to Denning’s work from the 70’s. These systems enforce an
imperfect notion of information flow which has become known as termination-
insensitive noninterference. Under this version of noninterference, information
leaks are permitted if they are transmitted purely by the program’s termination be-
haviour (i.e., whether it terminates or not). This imperfection is the price to pay
for having a security condition which is relatively liberal (e.g. allowing while-
loops whose termination may depend on the value of a secret) and easy to check.
But what is the price exactly? We argue that, in the presence of output, the price
is higher than the “one bit” often claimed informally in the literature, and ef-
fectively such programs can leak all of their secrets. In this paper we develop a
definition of termination-insensitive noninterference suitable for reasoning about
programs with outputs. We show that the definition generalises “batch-job” style
definitions from the literature and that it is indeed satisfied by a Denning-style
program analysis with output. Although more than a bit of information can be
leaked by programs satisfying this condition, we show that the best an attacker
can do is a brute-force attack, which means that the attacker cannot reliably (in a
technical sense) learn the secret in polynomial time in the size of the secret. If we
further assume that secrets are uniformly distributed, we show that the advantage
the attacker gains when guessing the secret after observing a polynomial amount
of output is negligible in the size of the secret.

1 Termination-Insensitive Noninterference

Does the following program leak its secret?

for i = 0 to secret (Program 1)
output i on public_channel

Let us assume that the secret is a natural number. The program simply counts from zero
up to the value of the secret, so it is clearly not secure. What about the following minor
variation?

for i = 0 to secret (Program 1a)
output i on public_channel

while true do skip

The only difference here is that after performing its output the program goes into a non
productive infinite loop. Is it reasonable to consider program 1a to be secure if program
1 is not? Now consider the following program:

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 333–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 A. Askarov et al.

for i = 0 to maxNat ((Program 2)
output i on public_channel
if (i = secret) then (while true do skip)

)

Program 2 is semantically equivalent to program 1a. But it has an important differ-
ence. Program 2 is deemed acceptable by state-of-the-art information flow analysis tools
such as Jif [MZZ+08], FlowCaml [Sim03], and the SPARK Examiner [BB03,CH04].
Such tools are, at their core, built on ideas going back to Denning and Denning’s semi-
nal paper about certifying programs for secure information flow [DD77]. The programs
1 and 1a, for example, would be rejected as insecure because they contain a “high” loop
(a loop depending of the value of a secret) which assigns to a “low” variable (a public
channel) causing an implicit information flow from secret to public.

For program 2 however, a Denning-style certification (and in particular all the con-
crete tools mentioned above) would say that the program is secure. Such an analysis
would reason as follows: the outer loop is “low” because the loop condition does not
refer to the secret, and so the output statement is permitted. The if-expression, on the
other hand, is considered secure simply because it does not raise any exceptions or
assign to anything at all.

In order to justify Denning-style analyses, an imperfect notion of information flow
which has become known as termination-insensitive noninterference1 is widely used.
Under this version of noninterference, information leaks are permitted if they are trans-
mitted purely by the program’s termination behaviour. But what is the price to pay for
having a relatively liberal security condition? Program 2 above shows that, in the pres-
ence of output, the price is higher than the “one bit” often claimed informally in the
literature, and effectively such programs can leak all of their secrets.

Note that the same issue arises with other forms of abnormal termination than diver-
gence. As we illustrate in Section 6, a stack/heap overflow or other computation with
an uncaught runtime exception instead of the infinite loop would lead to the same prob-
lems, which suggests that we cannot reduce the termination channel to a special case
of a timing channel. The results in this paper are not limited to any particular form of
abnormal termination, although, for simplicity, we model only divergence explicitly.

Batch-job noninterference. A “batch-job” style of termination-insensitive security
has been widely used to argue the correctness of Denning-style program analyses. This
style ignores nonterminating runs and assumes that the attacker can observe only the
final state of a computation. In particular, the batch-job notion of termination-insensitive
noninterference corresponds to the correctness condition by Volpano et al. [VSI96] for
Denning-style analysis:

Definition 1 (BTINI). A deterministic program C satisfies batch-job termination-insen-
sitive noninterference (BTINI) if, for any memories M and N that agree on public (low)
variables, the final memories produced by running C on M and on N also agree on public
variables (provided that both runs terminate successfully).

1 This terminology referring to insensitivity to the termination channel (for signalling informa-
tion through the termination or nontermination of a computation), seems to have been coined
in [SS99], although the concept arises already in discussions from e.g. [Fen74].

Termination-Insensitive Noninterference Leaks 335

The above definition permits, for example:

if (secret = 0) then (while true do skip)
public := 0

The general intuition here is that such programs leak only a little – at most one bit per
run.

Despite its popularity, the above definition is wholly unsuitable if attackers can ob-
serve intermediate results such as outputs. For such programs we cannot turn a blind
eye when programs fail to terminate, otherwise we would deem the following program
secure:

output secret on public_channel
while true do skip

In [VSI96], “a program that needs to ‘write output’ does so by an assignment to an ex-
plicit location”. Similar issues with inappropriate use of batch-job noninterference arise
elsewhere. For example, both Askarov et al. [AHS06] and Le Guernic et al. [LBJS08]
consider languages with output, but their noninterference conditions ignore divergent
runs. Askarov and Sabelfeld [AS07] model an attacker who observes intermediate val-
ues – but only if the program terminates (a fact also raised in [BNR08]).

A related problem is the belief that as long as the attacker “cannot observe termi-
nation” then a program leaks at most one bit. As our opening examples show, this is
clearly not the case once output is possible. For example, JFlow/Jif features outputs
but still appeals to the “one-bit” argument: “JFlow treats this error 〈heap exhaustion〉
as fatal, preventing it from communicating more than a single bit of information per
program execution” [Mye99].

One solution to these problems would be to abandon the weaker notion of security
that is inherent in a Denning-style analysis. But Denning-style termination-insensitive
analyses are popular not because of the semantic notion of security that they enforce,
but because they allow more programs. Alternative stronger security conditions would
require either a difficult liveness analysis to show the absence of divergent behaviour,
or a draconian restriction on the programs that can be written (e.g., no loops depending
on secret guards are allowed [VS97]).

Generalising BTINI. So, what is the right definition of termination-insensitive non-
interference for languages with output, and moreover what security guarantees does it
provide?

In this paper we define a suitable notion of termination-insensitive noninterference
(Section 2), which we believe correctly captures the security property guaranteed by
Denning-style program analyses. Instead of considering only terminating runs, this no-
tion incorporates insensitivity to divergence in intermediate states. The formulation is
intuitive because it is based on a more explicit attacker model which reasons about an
attacker’s knowledge as it evolves during a run, rather than the more standard “two run”
style presentations of noninterference properties. We substantiate our claim that this is a
suitable condition for a Denning-style analysis by showing that a formalisation [VSI96]
of Denning’s analysis for a language with output satisfies this condition (Section 3).

336 A. Askarov et al.

Fig. 1. Our results on termination-insensitive noninterference (TINI)

We then show that program 2 given above is the best an attacker can do – a brute force
search of the space of possible secrets. We present this as two results. In Section 4,
we show that it is impossible to reliably leak the secret by a program that satisfies
termination-insensitive noninterference in polynomial time in the size of the secret. In
Section 5, we show that if the secret is uniformly distributed, then the probability of the
attacker guessing the secret after observing a polynomial number of outputs (again, in
the size of the secret) gives only a negligible advantage over guessing the secret without
running the program.

We discuss further examples and simple experiments with Jif, FlowCaml and SPARK
Examiner in Section 6 and conclude in Section 7.

Figure 1 schematically illustrates the main contributions of the paper. The soundness,
computational and probabilistic results are proved in Theorems 1, 2 and 3, respectively.
The gray area corresponds to the attacker that is capable of observing divergence/ab-
normal termination.

2 Semantics, Attacker Model and Noninterference

In this section we define a suitable definition of termination-insensitive noninterference
(TINI) which we believe suitably captures the intentions of Denning-style analyses, and
generalises the batch-job definitions.

Computation model. We use a model of stateful computation represented as a la-
belled transition system consisting of commands (C, C′. . .) together with a memory
(M, M ′. . .) performing computations which produce low observable outputs. Since
noninterference only constrains low outputs we simply do not model high outputs.

For simplicity we also assume that a memory is simply a pair consisting of a
low (public) and a high (secret) value. We write such a memory M as a pair LH
where L denotes the low part of the memory and H the high part. We also refer

to the respective variables as L and H . We write 〈C, M〉 �→ 〈C′, M ′〉 to denote a
computation step producing a low observable output � and evolving to 〈C′, M ′〉. We

write 〈C, M〉
��→ 〈C′, M ′〉 in the usual way to denote the existence of a sequence of

transitions 〈C, M〉 �1→〈C1, M1〉
�2→· · · �n→〈Cn, Mn〉 where �� = �1, . . . , �n, and 〈C, M〉

��→

Termination-Insensitive Noninterference Leaks 337

to mean ∃〈C′, M ′〉.〈C, M〉
��→ 〈C′, M ′〉. We write 〈C, M〉⇑ to mean that 〈C, M〉 has

no labelled transitions. Note that we do not explicitly model normal termination, or dis-
tinguish stuck configurations from divergence. This is without loss of generality since
observation of termination can be modelled easily by adding specific termination out-

puts at the end of each command. We write 〈C, M〉
��⇑→ to mean 〈C, M〉

��→ 〈C′, M ′〉 for
some 〈C′, M ′〉 such that 〈C′, M ′〉⇑. Let α range over either � or the symbol ⇑, and
let �α range over sequences of the form �� or ��⇑. We write ��� to denote the sequence ��
followed by the single output �.

We henceforth assume a deterministic labelled transition system, i.e., if 〈C, M〉 �→
〈C, M〉 and 〈C, M〉 �′

→ 〈C′, M ′〉 then � = �′ and 〈C, M〉 = 〈C′, M ′〉.

On modelling divergence. For the purposes of this paper, we assume an attacker who
can observe divergence. We take the view that there is a natural boundary between
observing a program’s timing behaviour and supposing that the attacker cannot even
recognise divergence (what is such an attacker assumed to do: wait forever?).

We make a critical distinction between termination-(in)sensitivity in the attacker
model vs. termination-(in)sensitivity in the security condition. We observe that the
two are sometimes conflated in the literature. But unobservable divergence does
not automatically make a security definition termination-insensitive. For example,
by forcing all processes to diverge Huisman et al. [HWS06] achieve a form of
termination-insensitivity in the attacker model, but their noninterference condition is
not termination-insensitive in the traditional sense (despite the claims in the paper): it
disallows programs like (while (H=0)do skip); L:=1.

Beyond batch-job noninterference. As we mentioned in the introduction, BTINI is
an inappropriate notion for programs which actually produce observable outputs even
though they do not terminate.

To define a more appropriate generalisation of batch-job termination-insensitive non-
interference we model the knowledge gained by an attacker who (i) knows the initial
low part of the memory, and (ii) observes some (not necessarily maximal) output trace
��, and (iii) knows the program and is able to make perfect deductions about the semantic
behaviour of the program.

Definition 2 (Observations). Given a program C and a choice of low input L, the set
of possible observation of a run of the program is defined:

Obs(C, L) = {�α | 〈C, LH〉 �α→}

Definition 3 (Attacker’s knowledge). The attacker’s knowledge from observing �α
from a run of a program C with initial low memory L, written k(C, L, �α), is defined to
be the set of all possible high memories that could have lead to that observation:

k(C, L, �α) = {H |〈C, LH〉 �α→}

338 A. Askarov et al.

�

��

�

�

k

��

�1

�2 �3

Fig. 2. Change of knowl-
edge with low outputs

This is based on the notion of knowledge defined in
[AS07]. We include the possibility that the attacker explic-
itly observes divergence, and this will be used as a worst-
case assumption in the following sections.

Figure 2 illustrates how attacker’s knowledge changes
with the observation of successive low outputs. The smaller
the knowledge set, the more the attacker knows. In the ex-
treme case a singleton set represents complete knowledge of
the high memory. The empty set represents inconsistency –
an impossible observation. Knowledge is also monotonic –
the more you see the more you learn:

k(C, L, ��α) ⊆ k(C, L, ��)

From this notion of knowledge we can build various notions of noninterference. The
strong termination-sensitive notion corresponds to the demand that at each step of out-
put the attacker learns nothing new about the initial high memory. This can be formu-
lated in the following way:

Definition 4 (Termination-sensitive noninterference). C satisfies termination-
sensitive noninterference if whenever ��α ∈ Obs(C, L) then k(C, L, ��α) = k(C, L, ��).

It perhaps looks nonstandard in this definition to include the explicit observations of
divergence. In fact in this deterministic setting it turns out to make no difference to the
definition if we restrict the α to α 	= ⇑. In a nondeterministic setting there are subtle
differences as to whether one explicitly observes divergence or not (cf. [JL00]), but this
is not the concern of the present paper.

To define termination-insensitive noninterference we must relax the requirement that
nothing new is learned at each step. We allow leaks that would arise from observing
divergence. In the case of an output step, the idea is to permit some new knowledge
when observing the next output �, but only through the fact that there is some output.
However nothing should be learned from the actual value which is output – observing
one value teaches us as much as observing any other value.

Definition 5 (Termination-insensitive noninterference (TINI)). Program C satisfies
TINI if whenever ��� ∈ Obs(C, L) then k(C, L, ���) =

⋃
�′ k(C, L, ���′).

The term
⋃

�′ k(C, L, ���′) deserves some extra attention. In terms of knowledge (as rep-
resented by sets of possible memories), union corresponds to disjunction of knowledge.

More directly, this union can be defined as {H | 〈C, LH〉
���′
→, for some �′ }.

Note that, in the definition, �, �′ 	= ⇑: the definition intentionally places no restric-
tions on what might be learned if an attacker were able to observe divergence.

The following proposition captures a number of equivalent formulations of TINI. For
example, 1(2) says that TINI is equivalent to saying that what is learned from observing
a specific run �� is no more that what is learned by knowing that there exists a run of that
length.

Termination-Insensitive Noninterference Leaks 339

Proposition 1. The following properties of a program C are equivalent to TINI:

1. For all L, if ��� ∈ Obs(C, L) and ���′ ∈ Obs(C, L) then k(C, L, ���) = k(C, L, ���′)
2. For all L, if �� ∈ Obs(C, L) then k(C, L, ��) =

⋃
|��|=|��′| k(C, L, ��′)

3. For all L, if 〈C, LH〉
��→ then for all H ′ either (i) 〈C, LH ′〉

��→, or (ii) 〈C, LH ′〉
��′⇑→

where ��′ is a prefix of ��.
4. For all L, if ��� ∈ Obs(C, L) and ���′ ∈ Obs(C, L) then � = �′

5. For all L, the set {�� | 〈C, LH〉
��→ } forms a chain under the prefix ordering.

The first two variants are simple consequences of the definition. The third corresponds
to a more classic “two run” style definition; The last two characterisations, unlike the
earlier ones, rely crucially on the assumption that computation is deterministic.

TINI subsumes BTINI. It is easy to see from this proposition that TINI generalises
BTINI by considering a batch-job program to be one which performs at most one out-
put, at the point of termination. This means that for such programs C and a given L,

{�� | 〈C, LH〉
��→ } contains at most a single trace of one output, and hence for any two

runs which terminate they must produce the same output.

3 Enforcement

We show that a simple Denning-style static analysis (which is at the heart of both
Jif [MZZ+08] and FlowCaml [Sim03]) for a language with outputs does indeed en-
force termination-insensitive noninterference.

Consider a simple imperative language with an output(e) primitive that outputs the
value of e on a low channel. The semantics of the language builds on standard small-
step semantics and forms a labelled transition system, as described in Section 2. The
most interesting semantic rule is the one for output:

e(LH) = v

〈output(e), LH〉 v→ 〈stop, LH〉

Provided expression e evaluates to v in memory LH , the configuration
〈output(e), LH〉 makes a step with low-observable event v to a configuration with
a halting command stop and unchanged memory.

Figure 3 displays the type-based enforcement rules. The rules draw on those of Vol-
pano et al. [VSI96]. Typing environment Γ is defined as Γ (L) = low and Γ (H) =
high . Typing judgement for expressions has the form
 e : �. Expression e is typed as
low
 e : low only if no high variables occur in e. Typing judgement for commands
has the form pc
 c, where pc is the program counter that keeps track of the con-
text. Explicit flows (as in L:=H) are prevented by the typing rule for assignment that
disallows assignments of high expressions to low variables. Implicit flows (as in if (

H=0)then L:=0 else L:=1) are prevented by the pc mechanism. It demands that
when branching on a high expression, the branches must be typed under high pc, which

340 A. Askarov et al.

� n : �
Γ (x) = � � � �′

� x : �′
� e : � � e′ : �

� e op e′ : �

pc � skip
� e : � � � pc � Γ (x)

pc � x := e

pc � C1 pc � C2

pc � C1; C2

� e : � � � pc � C1 � � pc � C2

pc � if e then C1 else C2

� e : � � � pc � C

pc � while e do C

� e : low
low � output(e)

Fig. 3. Typing rules

prevents assignments to low variables in the branches. The rule for output is a natural
extension of the rules by Volpano et al. It has the same constraints on the expression
and context as in the rule for assigning to a low variable.

We prove that the type system indeed guarantees termination-insensitive noninter-
ference (TINI).

Theorem 1. If pc
 C then C satisfies termination-insensitive noninterference.

According to the definition of TINI, whenever ��� ∈ ObsN (C, L), we need to prove
k(C, L, ���) =

⋃
�′ k(C, L, ���′). The inclusion k(C, L, ���) ⊇

⋃
�′ k(C, L, ���′) is more

interesting, because k(C, L, ���) ⊆
⋃

�′ k(C, L, ���′) is vacuous. We prove the former
inclusion by induction on the length |��| of the sequence of low events �� generated by C.
A key property that we use in the proof is stated in the following lemma:

Lemma 1. Suppose we have the following computation sequence starting with a con-
figuration 〈C0, L0H0〉:

〈Ci, LiHi〉
�i+1→ 〈Ci+1, Li+1Hi+1〉, i ∈ {0 . . . n − 1}.

If C0 is typable, and H ′
0 ∈ k(C0, L0, �1 . . . �n) then there exist H ′

1, . . . , H
′
n such that

〈Ci, LiH
′
i〉

�i+1→ 〈Ci+1, Li+1H
′
i+1〉, i ∈ {0 . . . n − 1}.

The lemma guarantees that if a typable program generates a sequence of events from
some initial memory, then traces that produce the same sequence from other low-
equivalent initial memories have to agree on commands in configurations that follow
each low event.

4 Computational Security Implication

The type system of the previous section verifies that program 2 from the introduction
is TINI. Our aim now is to show that this program is in some sense as bad as it gets –
the only way for a TINI program to reliably leak its secret – given that the attacker can
only observe a single run – is to take a non polynomial amount of time in the size of the
secret.

Termination-Insensitive Noninterference Leaks 341

A refined attacker model We begin by refining our attacker model. The refinement is
to include a notion of time – which represents a bound on the length of the output
sequences that an attacker will observe. As is usual we express results in terms of the
size of the secret, N , and this is threaded through our definitions accordingly.

Definition 6 (Bounded Observations).

ObsN (C, L) = {�α | 〈C, LH〉 �α→, 0 ≤ H < 2N}

Definition 7 (Attacker knowledge (bounded version)). The attacker’s knowledge
from observing �α by program C with initial low memory L, written kN (C, L, ��), is
defined to be the set of all high memories up to size N that could have lead to that
observation:

kN (C, L, �α) = {H |H ∈ k(C, L, �α), 0 ≤ H < 2N}

The bounded version of attacker knowledge kN differs from the knowledge k simply in
that the size of the domain of H is bounded (and known to the attacker).

Definition 8 (TINI (bounded version)). Program C satisfies TINI if for all N , when-
ever ��� ∈ ObsN(C, L) then kN (C, L, ���) =

⋃
�′ kN (C, L, ���′).

The only difference from the earlier definition is that the domain of secrets is bounded
and known to the attacker – but we quantify over all such bounds. Then we have

Lemma 2. A program C satisfies TINI (bounded version) if and only if it satisfies TINI.

Proof. We prove the left to right implication – the proof for the other direction is a sim-
pler variant. We prove the contrapositive. Suppose C does not satisfy TINI. Then from
proposition 1(1) there must exist two different observations ��� and ���′ in ObsN (C, L)
for some L which yield different knowledge sets. Let H be a witness to this difference.
Without loss of generality, assume H ∈ k(C, L, ���) and H 	∈ k(C, L, ���′). Now take
any N such that H < 2N . Clearly H ∈ kN (C, L, ���) and H 	∈ kN (C, L, ���′) and hence
C is not TINI for bound N . �

Reliable leakage. We let the attacker be a pair of families ({Ln}n≥0, {tn}n≥0), indexed
over natural numbers n ∈ N, where for any given natural N , LN is a low memory that
the attacker chooses based on the size of the secret N , and tN – the attacker’s running
time – is the maximum time during which the attacker observes a run for secrets of that
size. We will henceforth write {Ln, tn} as an abbreviation for ({Ln}n≥0, {tn}n≥0).

A program leaks reliably for an attacker if he is guaranteed to learn the secret by
observing a single run of the system.

Definition 9 (Reliable leakage). Say that C leaks reliably for an attacker {Ln, tn} if,
for each choice of N , and H ∈ {0, . . . , 2N − 1} there is some �α ∈ ObsN (C, LN) such
that |�α| ≤ tN and kN (C, LN , �α) = {H}. Say that C leaks reliably within running time
{tn} if there exists an attacker with that running time for which C leaks reliably.

For example, for i = 0 to H (output i) leaks reliably within running time 2n,
and output H leaks reliably within running time λn.1.

We can now state the main theorem of this section:

342 A. Askarov et al.

Theorem 2. If C is TINI then C does not leak reliably within any polynomial running
time.

To prove the theorem we introduce the notion of knowledge trees.

Knowledge tree Given a program C and an attacker {Ln, tn} the set of possible obser-
vations that the attacker can make within the running time tN is

TN = {�α ∈ ObsN (C, LN) | |�α| ≤ tN}

This set is non-empty and prefix-closed. As is standard, such a set defines a tree. This
tree is finite (finite height: |�α| ≤ tN ; finite branching: finite set of possible inputs
0 ≤ H < 2N plus determinism).

Definition 10 (Knowledge tree). The Knowledge tree for N is the tree defined by TN

with each node �α labeled by its knowledge set kN (C, L, �α).

We look at how knowledge trees look for N when tN = 2. (These simple examples do
not use L so it is not necessary to specify LN .)

Example 1. Consider the program

for i = 1 to N (
output (H mod 2) on public_channel
H := H div 2

)

This program leaks the N least significant bits of H . The knowledge tree for N when
tN = 2 is presented in Figure 4(a). Here, annotations on the edges of the tree correspond
to outputs observed by the attacker. K0 and K1 are knowledge sets of the form

Ka = {H | 0 ≤ H < 2N , the least significant bit of H is a} for a ∈ {0, 1},

K00, K01, K10, and K11 are sets of the form

Kab = {H | 0 ≤ H < 2N , the two least significant bits of H are ab} for a, b ∈ {0, 1}.

Example 2. Consider now the program

for i=0 to 2ˆN-1 (
output i on public_channel
if (i = H) then

(while true do skip)
)

The knowledge tree for this program when tN = 2 is shown in Figure 4(b). As in the
previous example, the annotations on the edges correspond to the attacker’s observa-
tions. Thus, if the attacker observes divergence after the first output, then the knowledge
about H immediately reduces to the singleton set {0}. On the other hand, observing 1
as the result of the second output only shrinks the size of the knowledge set by one.

We are now ready to formulate some properties of knowledge trees.

Termination-Insensitive Noninterference Leaks 343

0 1

K0
0 1

K1
0 1

K00 K01 K10 K11

(a) Example 1

0

⇑ 1

{0} {H | 1 ≤ H < 2N}
(b) Example 2

Fig. 4. Example knowledge trees

Lemma 3 (Disjointness). Given a program C and attacker {Ln, tn}, let �� ∈ TN be an
internal node in the knowledge tree with children ��α1, . . . ��αn. Let K be the knowledge
set for �� and let Ki be that for child i, 1 ≤ i ≤ n. Then the Ki are pairwise disjoint.

Proof. Suppose H ∈ Ki and H ∈ Kj , thus 〈C, LNH〉
��αi→ and 〈C, LNH〉

��αj→ . Since C
is deterministic, αi = αj .

�

The following proposition says that for programs satisfying TINI knowledge trees have
a specific form.

Proposition 1 If C satisfies TINI then for all choices of LN , tN , the knowledge tree
has the form:

More formally, for any �� ∈ ObsN (C, LN), let
{��α1, . . . , ��αn} be the set {��α | ��α ∈ ObsN (C, LN)}. If
n > 1 then n = 2 and exactly one of α1, α2 is ⇑.

Proof. Suppose αi 	= ⇑ and αj 	= ⇑. Then since C satisfies TINI we have

kN (C, L, ��αi) =
⋃

�′

{kN(C, L, ���′)} = kN (C, L, ��αj)

By the Disjointness Lemma i = j. Hence at most one αi 	= ⇑. �

This brings us to the proof of Theorem 2.

Proof. By definition, the height of the knowledge tree for N is tN . If C leaks reliably
then the knowledge tree contains (at least) 2N distinct nodes, each labeled {H} for
some 0 ≤ H < 2N . Without loss of generality we may assume that each of these
singleton labels occurs on a leaf (otherwise we can prune the tree, thus choosing a
shorter running time). By Proposition 1 there are at most tN + 1 leaves, hence tN ≥
2N − 1. �

344 A. Askarov et al.

5 Probabilistic Security Implication

The notion of reliable leakage in the previous section is quite strong – it requires that
there is never a single case when the attacker cannot deduce the exact value of the secret.
To obtain a result which says something about a wider class of programs we consider
the case when the attacker does not necessarily learn all the secret all the time, and
hence must guess.

In this section we show that, for programs satisfying TINI, if the secrets are chosen
according to a uniform distribution, then the advantage that an attacker gains by guess-
ing the secret based on a particular observation of the computation is negligible2 (as a
function of N).

Suppose secrets 0 ≤ H < 2N are chosen with probability μ(H). Let C be a program
and let (Ln, tn) be an attacker. To guess a secret the attacker observes a computation
and hence deduces a knowledge set. For any H , let �α ∈ TN be the observation which
the attacker uses as a basis to guess the value of H . Since knowledge is monotonic –
the more an attacker observes the smaller the knowledge set – we may safely assume

the attacker chooses �α to be the longest �α ∈ TN such that 〈C, LNH〉 �α→, i.e. �α is a leaf
in knowledge tree (put another way, the attacker gets most information by waiting until
�α with length tN is produced or ⇑ is detected). Given a leaf �α ∈ TN let the knowl-
edge associated with �α be K�α = kN (C, LN , �α). Given this, how can an attacker best
guess the secret? The attacker can do no better than to choose from those elements of
kN (C, LN , �α) which have maximal probability according to μ. There is no disadvan-
tage for the attacker to choose among these deterministically, so let us assume that the
guess is given by a function gN (�α) ∈ K�α.

Now, the probability that �α is observed is just the sum of probabilities of all secrets

H such that 〈C, LN , H〉 �α→, i.e.:

μ(K�α) =
∑

H′∈K�α

μ(H ′)

Given that �α is observed, the probability that the secret is H ∈ K�α is μ(H)
μ(K�α) . Let

Leaf ⊆ TN be the set of all leaves in the knowledge tree. Then the probability that the
attacker guesses the secret is

GN =
∑

�α∈Leaf

μ(K�α) × μ(gN (�α))
μ(K�α)

=
∑

�α∈Leaf

μ(gN (�α))

For uniformly distributed secrets, define the attacker advantage to be GN − 1/2N

i.e., the difference between the probability of guessing the secret based on the knowl-
edge gained from observing a run, GN , and a “blind” guess of the secret (which has
probability 1/2N).

Theorem 3. If C satisfies TINI, and secrets are chosen according to a uniform distrib-
ution, then the advantage for any polynomially-bounded attacker is negligible.

2 A negligible function is one that approaches zero faster than the reciprocal of any polynomial.

Termination-Insensitive Noninterference Leaks 345

Proof. Since μ is uniform then regardless of gN , μ(gN(�α)) = 1/2N . Thus, in this case,
the probability GN that the attacker guesses the secret is no better than

∑

�α∈Leaf

1
2N

=
|Leaf |
2N

We have |Leaf | ≤ tN + 1. Thus, GN ≤ tN +1
2N , and hence the attacker advantage

is ≤ tN/2N . From the assumption that tN is polynomial in N , and the fact that the
product of a polynomial (tN) and a negligible function (1/2N) is negligible, the attacker
advantage is negligible. �

6 Practical Implications

As mentioned in Section 1 existing practical security-typed languages are based on
Denning-style analysis and as a result they accept programs like program 2 from Sec-
tion 1. We have encoded this program in Jif, FlowCaml and SPARK Ada to get a rough
estimate on the bandwidth that such an attack creates in the worst case.

Leaking by termination in FlowCaml. Listing 1 presents encoding of program 2 from
Section 1 in the FlowCaml security-typed language [Sim03].

flow !low < !stdout and !stdin < !high
let maxInt : !low int = 1000000000

let _ = let secret : !high int =
try read_int() with _ -> 0

in
for i = 1 to maxInt do

begin
print_int i; print_newline();
if i = secret then

while true do () done
end

done

Listing 1. Leaking by termination in FlowCaml

Leaking by crashing in FlowCaml. Similarly to divergence, one may also exploit
program crashing. In the example above we may force a stack overflow by replacing
the if statement with the following snippet:

if i = secret then
let rec crash x = let _ = crash x in crash x
in crash 1

Leaking secrets in Jif and SPARK Ada. Examples similar to the one above can be
constructed for Jif security-typed language and SPARK Ada. The listings of the corre-
sponding programs are given in the full version of this paper [AHSS08].

346 A. Askarov et al.

Channel capacity. To get a rough estimate of how practical such an attack can be we
have performed a small experiment. For this, we have modified the program in Listing 1
in order to reduce the overhead related to printing on standard output. Instead, the out-
put has been replaced by a call to a function which has the same security annotations as
print_int, but instead of printing only saves the last provided value in a shared mem-
ory location. Observation of divergence is implemented as a separate polling process.
This process periodically checks if the value in the shared location has changed since
the last check. If the value is not changed this process decides that the target program
has diverged.

While the time needed to reliably leak the secret is exponential in the number of
secret bits, the rate at which this leakage happens also depends on the representation
of the secret, in particular, the time needed to check two values for equivalence. Not
surprisingly, the highest rate we observe is when secret is just an integer variable that
fits into a computer word. In this case a 32-bit secret integer can be leaked in under 6
seconds on a machine with 3GHz CPU. Assuming this worst-case rate we may estimate
time needed to leak a credit card number, typically containing 15 significant digits (50
bits), as approximately 18 1/2 days of running time. For larger secrets like encryption
keys, that are usually at least 128 bits in their size, such brute-force attacks are obviously
infeasible.

7 Conclusion

We have argued that in the presence of output, justifications of Denning-style analyses
based on claims that they leak “just a bit” are at best misleading. We have presented the
first careful analysis of termination-insensitive noninterference – the semantic condition
at the heart of many information flow analysis tools and numerous research papers based
on Denning’s approach to analysing information flow properties of programs.

We have proposed a termination-insensitive noninterference definition that is suit-
able to reason about output. This definition generalizes “batch-job” style notions of
termination-insensitive noninterference. The definition is tractable, in the sense that
permissive Denning-style analyses enforce it. Although termination-insensitive nonin-
terference leaks more than just a bit, we have shown that for secrets that can be made
appropriately large, (i) it is not possible to leak the secret reliably in polynomial running
time in the size of the secret; and (ii) the advantage the attacker gains when guessing
the value of a uniformly distributed secret in polynomial running time is negligible in
the size of the secret.

Not only is our formulation of TINI attractive for Denning-style static certification,
but also for dynamic information-flow analyses. Moreover, reasoning about security
based on single runs is particularly suitable for run-time monitoring approaches. On-
going work [AS08] extends TINI with powerful declassification policies and proposes
high-precision hybrid enforcement techniques that provably enforce these policies for
a language with dynamic code evaluation.

Related work. The only paper of which we are aware that attempts to quantify termina-
tion leaks in Denning-style analyses is recent work of Smith and Alpı́zar [SA07,Smi08].

Termination-Insensitive Noninterference Leaks 347

Their work takes a less general angle of attack than ours since it is (i) specific to a partic-
ular language (a probabilistic while language) and (ii) specific to a particular Denning-
style program analysis. Furthermore, it uses a batch-processing model (no intermediate
outputs). In their setting, the probability of divergence is shown to place a quantitative
bound on the extent to which a program satisfying Denning-style conditions can devi-
ate from probabilistic noninterference (intuitively, well-typed programs which almost
always terminate are almost noninterfering). By contrast, being based on a semantic
security property (TINI), our definitions and results are not language-specific, we con-
sider deterministic systems, and the probability of divergence plays no direct role in our
definitions or results. Moreover, the metric we consider is the guessing advantage af-
forded by termination leaks, which is not analysed in their work (we note that guessing
advantage is considered in Section 2 of [Smi08] but not in the context of termination
leaks).

Acknowledgements. This work was supported by EPSRC research grant
EP/C009746/1 Quantitative Information Flow, the Swedish research agencies SSF, Vin-
nova, VR and by the Information Society Technologies programme of the European
Commission under the IST-2005-015905 MOBIUS project.

References

[AHS06] Askarov, A., Hedin, D., Sabelfeld, A.: Cryptographically-masked flows. In: Proc.
Symp. on Static Analysis, August 2006. LNCS, pp. 353–369. Springer, Heidelberg
(2006)

[AHSS08] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive non-
interference leaks more than just a bit. Technical report, Chalmers University
of Technology (July 2008), http://www.cs.chalmers.se/∼aaskarov/
esorics08full.pdf

[AS07] Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption and
key release policies. In: Proc. IEEE Symp. on Security and Privacy, May 2007, pp.
207–221 (2007)

[AS08] Askarov, A., Sabelfeld, A.: Tight enforcement of flexible information-release policies
for dynamic languages. Draft (July 2008)

[BB03] Barnes, J., Barnes, J.G.: High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

[BNR08] Banerjee, A., Naumann, D., Rosenberg, S.: Expressive declassification policies and
modular static enforcement. In: Proc. IEEE Symp. on Security and Privacy, May 2008,
pp. 339–353 (2008)

[CH04] Chapman, R., Hilton, A.: Enforcing security and safety models with an information
flow analysis tool. ACM SIGAda Ada Letters 24(4), 39–46 (2004)

[DD77] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.
Comm. of the ACM 20(7), 504–513 (1977)

[Fen74] Fenton, J.S.: Memoryless subsystems. Computing J. 17(2), 143–147 (1974)
[HWS06] Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of observa-

tional determinism. In: Proc. IEEE Computer Security Foundations Workshop (July
2006)

[JL00] Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science of
Computer Programming 37(1–3), 113–138 (2000)

348 A. Askarov et al.

[LBJS08] Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.: Automata-based confidentiality
monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89.
Springer, Heidelberg (2008)

[Mye99] Myers, A.C.: JFlow: Practical mostly-static information flow control. In: Proc. ACM
Symp. on Principles of Programming Languages, January 1999, pp. 228–241 (1999)

[MZZ+08] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information
flow. Software release (July 2001–2008), http://www.cs.cornell.edu/jif

[SA07] Smith, G., Alpı́zar, R.: Fast probabilistic simulation, nontermination, and secure in-
formation flow. In: PLAS 2007: Proceedings of the 2007 workshop on Programming
languages and analysis for security, pp. 67–72. ACM, New York (2007)

[Sim03] Simonet, V.: The Flow Caml system. Software release (July 2003), http://
cristal.inria.fr/∼simonet/soft/flowcaml/

[Smi08] Smith, G.: Adversaries and information leaks. In: Barthe, G., Fournet, C. (eds.) TGC
2007. LNCS, vol. 4912, pp. 383–400. Springer, Heidelberg (2008)

[SS99] Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential pro-
grams. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 40–58. Springer,
Heidelberg (1999)

[VS97] Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Proc.
IEEE Computer Security Foundations Workshop, June 1997, pp. 156–168 (1997)

[VSI96] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J.
Computer Security 4(3), 167–187 (1996)

	Termination-Insensitive Noninterference Leaks More Than Just a Bit
	Termination-Insensitive Noninterference
	Semantics, Attacker Model and Noninterference
	Enforcement
	Computational Security Implication
	Probabilistic Security Implication
	Practical Implications
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

